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Abstract

Angiogenesis is acknowledged as an essential mechanism for tumor spreading and
metastasis of neoplastic diseases. Consequently, anti-angiogenic therapy has been
proposed as a complementary or perhaps an alternative strategy to the traditional
cytotoxic therapies. This work considers a model of ordinary differential equations
that describe the dynamics of tumors at the vascular stage (after the angiogenic
process has been triggered), under the action of chemical and anti-angiogenic ther-
apies. Due to the increase of endothelial cells at the vascular stage, the cancer state
prevails over the internal state in the no treatment situation. Results from the lo-
cal stability analysis and numerical integration, indicate that the combination of
chemotherapy and anti-angiogenic therapy is the best strategy to eliminate the tu-
mor, reducing the cytotoxic effect. At a fixed infusion rate, the cure state may be
reached when the combined therapy is considered but not for the anti-angiogenic
therapy only. On the other hand, pure chemotherapy effectively destroys the tumor,
but only when higher infusion doses are applied.
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1 INTRODUCTION

Neoplastic diseases are responsible for 12% of deaths around the world. They
constitute a most important issue in public health and puzzle the researchers of
several disciplines with ever new and intriguing challenges. A malignant tumor
corresponds to an assembly of ill-functioning cells. They suffer the lack of inter-
nal control that characterizes the normal cells of the tissues where they grow.
They also lose the ability to perform tissue specific tasks, proliferate much
faster than the normal cells, and finally provide mechanisms for their own
reproduction. This includes metastatic activities and the development of spe-
cific irrigation vessels to warrant themselves the necessary nutrients for their
rapid growth (Evans, 1991; Sherbet, 1982). Since the last decades of the 20th
century, this last mechanism (usually called tumor angiogenesis) is pointed
out as essential for spreading and metastasis of solid tumors (Folkman, 1971;
Alberts et al., 2002). As a consequence, the anti-angiogenic therapy, which is
much less drug resistant than chemotherapy (Hanahan and Folkman, 1996) has
been proposed as an alternative, rather complementary than isolated, to the
conventional therapies. Anti-angiogenic therapy may be particularly efficient
for solid tumors that grow slowly (Beecken et al., 2001). Up to now, it has been
applied both to malignant tumors (colon, metastatic kidney, metastatic col-
orectal) and benign tumors (hemangiomas). In the case of colorectal tumors, it
is expressly recommended in association with chemotherapy (O’Dwyer, 2006).

The angiogenic process corresponds to the formation of new blood vessels
(from a previous vascularization) due to the proliferation, migration and differ-
entiation of endothelial cells (EC’s) that revest the blood vessels. That process
occurs during embriogenesis and tissue reparation, but the number of EC’s can
also be enhanced due to the emergence of some diseases like solid tumors, when
new vessels are created to supply the tumors with oxygen and nutrients (Birk-
falvi, 1995). After the tumor reaches 1-2 mm (pre-vascular stage), the cancer
cells (CC’s) induce a synthesis of several substances, generally called Tumor
Angiogenic Factors (TAF). This includes the family of vascular endothelial
growth factor (VEGF-A to VEGF-E), that stimulate the proliferation of new
EC’s (Bussolino et al., 2003). They also produce smaller amounts of inihibtors
(TIF), as the protein TP53, thrombospondin, endostatin, and angiostin, all
of which can regulate the density of EC’s (Bussolino et al., 2003; Reilly et
al., 1997), (Wodarz and Komarova, 2005). Some experiments show that the
growth of EC’s does not depend on the normal cells (Alberts et al., 2002). In
general, the natural growth rate of EC’s is much smaller than its growth due
to the presence of a tumor (Alberts et al., 2002). The net result of TAF and
TIF is proportional to the tumor size (Maggelakis, 1996).
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The term angiogenesis has been traditionally used for the mechanism by which
local EC’s give rise to new EC’s that build more blood cells. More recently,
another mechanism, referred to as vasculogenesis, has been suggested (Wodarz
et. al., 2005): TAF induces a circulating population of endothelial progenitor
cells which migrate to the neighborhood of the tumor, and build new blood
vessels locally. For both mechanisms, angiogenesis and vasculogenesis, the es-
sential feature is the increasing of the number of EC’s due to the tumor.

Folkman and collaborators (Folkman, 1971; Hahnfeldt et al., 1999; Hahn-
feldt et al., 2003) focused their research on anti-angiogenic therapy. The anti-
angiogenic drugs act on EC’s instead of on CC’s. This therapy is little drug
resistant because EC’s are genetically stable. Besides the reduction of EC’s,
the anti-angiogenic drugs also normalize the vascularization (Jain, 2001), op-
timizing the chemotherapy action. It is well known that vascularization is nec-
essary for the flow of the chemotherapy drug, but it can not be so dense as to
provide resistance to the flow (Kerbel et al. 2007). Nowadays some physicians
accept that treating both CC’s and EC’s in a tumor may be more effective
than treating CC’s alone (Bussolino et al. 2003; Hanahan, 1998).

The understanding of angiogenic dynamics (Hanfeldt et al., 1999) is funda-
mental for both an accurate description of tumor growth at the vascular stage
and for modelling therapies with the purpose of identifying the best treatment
strategy. In this sense, a large number of continuous (Liu and Freedman, 2005)
and discrete (Sansone et al., 2001; Scalerandi et al., 2001) models have been
proposed to describe the essential aspects of cancer dynamics at the vascular
stage, where the angiogenic process is taken into account. Most of the con-
tinuous models are based on reaction-diffusion partial differential equations
(for a review, see Anderson and Chaplain, 1998, and a collection of papers by
several authors in a book edited by Preziosi, 2003). However, models based
on ordinary differential equations (ODE) may capture the therapy response
(Magni et al., 2006), that is overlooked by other models, because it is sim-
pler to make an optimization analysis of the therapy dose (Martin and Teo,
1994). Indeed Sachs (2001) argues that ‘The simplest ODE models form the
foundations of applied biological modelling in practice’.

In a previous work (Pinho et al., 2002), some of us proposed a time delayed
chemotherapy model of metastatic tumor but did not discuss the angiogenic
process explicitly. In this work, we advance those previous investigations by
considering the vascular stage of the tumor and by explicitly modelling the an-
giogenesis process, and by including the anti-angiogenic therapy in the former
chemotherapy model. To this purpose, we add a new variable representing
the quantity of new EC’s, produced by the presence of TAF and TIF, to
the previous model of competing CC’s and normal cells (NC’s). As in the
previous model, it is reasonable to suppose that CC’s win the competition
against NC’s for the no treatment situation (Pinho et al., 2002). At this point,
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our main goal is to compare the isolated chemotherapy effect with the com-
bined (chemo+anti-angiogenic) therapies in one single tissue, neglecting any
metastatic effect.

In a recent paper (Nagy, 2004) the angiogenic process and the competition with
normal cells were taken into account in a ODE model where, as in our model,
there is an endothelial cell compartment. In another ODE model (Magni et
al., 2006), the drug effect has been analysed. Our model has the advantage
of including altogether the competition with normal cells, the angiogenic pro-
cess and more than one kind of therapy (chemotherapy and anti-angiogenic
therapy). Of course the assumptions of our model do not replace the role of
spatial structure, but it helps to describe some features as the control action
of the anti-angiogenic therapy (Hanfeldt et al. 2003), and the success of the
combined therapy strategy as in the case of colorectal tumors.

This paper is organized as follows. In Section 2, we introduce the model; in
Section 3, we discuss the cancer hypothesis at the vascular stage; the main
analytical and numerical results are shown in Section 4 for the combined
(C+A) therapy model and, as a particular case, the chemotherapy model.
Finally, in Section 5, we present our conclusions and some perspectives.

2 THE MODEL

The ODE model we propose to describe the cancer dynamics at the vascular
stage includes the features considered in Pinho et al., 2002. To its basic struc-
ture we add three relevant features concerning the angiogenic process and the
anti-angiogenic therapy action.

a) The endothelial compartment

We consider an EC compartment that depends on the tumor size (Sachs,
2001), since its number is associated with the net result of TAF and TIF.
Based on the experimental observation that the natural growth rate of EC’s
on mice varies from months (liver) to years (brain) (Alberts et al., 1002), we
consider that the natural birth rate of EC’s is much smaller than its growth
due to tumor angiogenesis (Sachs et al., 2001). The endothelial cells, which
are responsible for the neo-vascularization, also helps the chemotherapy action
whose flow depends strongly on the vascular system.

b) Dynamical carrying capacity

In Hanfeldt et al., 1999, the concept of a dynamical carrying capacity was
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introduced to describe the feedback mechanism of angiogenesis: ‘... a tumor
regulates associated vascular growth or suppression, and the tumor vasculature
in turn controls tumor growth through its usual nutritive functions’. Since the
tumor vasculature may be associated with the increase of EC’s, we consider
that its amount increases the carrying capacity of CC’s K2 by a term γz(t).

c) Action of anti-angiogenic drugs

The action of anti-angiogenic drugs reducing the amount of EC’s is included
into our model, as well as their additional action in helping the action of
chemical drugs, which eventually normalize the vascularization. In the extreme
situation, very high vascularization makes it more difficult for the chemical
drugs to flow.

Let us first consider the no-therapy situation. The assumptions of the no-
therapy model are: that both NC’s and CC’s exhibit logistic natural growth
rates; NC’s and CC’s compete for available resources; new EC’s, beyond the
usual basal level, are regulated by the increase of TAF and the decrease of
TIF produced by CC’s as well as by a much slower death rate. Assuming the
variables x1(t), x2(t) and z(t) to represent the amount of the NC’s, CC’s and
EC’s at time t, we obtain the following model formed by three differential
equations:

ẋ1(t) = α1x1(t)

[
1− x1(t)

K1

]
− q1 x1(t) x2(t),

ẋ2(t) = α2x2(t)

[
1− x2(t)

(K2 + γ z(t))

]
− q2 x1(t) x2(t),

ż(t) = β x2(t) + α3 z(t)

[
1− z(t)

K3

]
,

(1)

where all variables are non-negative for all t ≥ 0. The initial conditions are
such that z(t = 0)) = 0 and x1(t = 0) > x2(t = 0) ≥ 0. The pre-vascular stage
is recovered when z = 0.

All parameters are positive. They are defined as follows:

αi, i = 1, 2, 3, the natural birth rates of the NC’s, CC’s, and EC’s;
Ki, i = 1, 2, the respective carrying capacities;
qi, i = 1, 2, the competition coefficients between x1 and x2;
β, the birth rate of new EC’s due to an increase of TAF and a decrease of
TIF;
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γ, the proportion of EC’s that contributes to neo-vascularization.

To obtain the therapy models, we add to system [1] variables to describe
the amount of chemical and anti-angiogenic agents respectively. While the
chemotherapeutic agent acts as a predator on both CC’s and NC’s with dif-
ferent intensities, the anti-angiogenic therapeutic agent acts on EC’s only. As
in (Pinho et al., 2002), we consider that both chemical and anti-angiogenic
therapies are continuously injected into the individual. Although the periodic
injection is more realistic, the continuous treatment at shorter intervals may
avoid the regrowth of tumor cells due to the angiogenic process (Browder et
al., 2001). We may assume that EC’s are less drug resistant than the CC’s
(Browder et al., 2001). The effective quantity of drug decreases due to its ac-
tion on the cells and also because of the washout rate for both therapies. Ac-
cording to these features, the efficiency of the chemotherapy depends both on
the vascularization (EC’s) and on its normalization (anti-angiogenic therapy).
Finally, we consider that chemical and anti-angiogenic therapies are applied
simultaneously (Reilly et al., 1997). Defining the variables y(t) and w(t) as
the amount of chemical and anti-angiogenic agents at time t, the combined
CA-model is given by:

ẋ1(t) = α1x1(t)

[
1− x1(t)

K1

]
− q1x1(t)x2(t)− p1(z(t), w(t))

x1(t)y(t)

a1 + x1(t)
,

ẋ2(t) = α2x2(t)

[
1− x2(t)

K2 + γ z(t)

]
− q2x1(t)x2(t)− p2(z(t), w(t))

x2(t)y(t)

a2 + x2(t)
,

ż(t) = β x2(t) + α3 z(t)

[
1− z(t)

K3

]
− p3 z(t) w(t)

a3 + z(t)
,

ẏ(t) = ∆−
[
ξ + d1(z(t), w(t))

x1(t)

a1 + x1(t)
+ d2(z(t), w(t))

x2(t)

a2 + x2(t)

]
y(t),

ẇ(t) = Φ−
[
η +

d3z(t)

a3 + z(t)

]
w(t).

(2)

where

pi(z(t), w(t)) = pi0 +
pi1z(t)

b1 + z(t)
+

pi2w(t)

b2 + w(t)

di(z(t), w(t)) = di0 − di1z(t)

c1 + z(t)
− di2w(t)

c2 + w(t)

(3)

and di0 − di1 − di2 > 0, with i=1,2.
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As in the former no-therapy model, all variables are non-negative for all t ≥ 0
and the initial conditions are the same as in system (1) with y(t = 0) ≥ 0 and
w(t = 0) ≥ 0.

All additional parameters, listed below, are also positive:

- pi,0, i = 1, 2, 3, the predation coefficients of y on NC’s, CC’s, and EC ′s
respectively;
- pi,1, i = 1, 2, the rates of the neo-vascularization which aid chemotherapy
action on xi;
- pi,2, i = 1, 2, the rates of the anti-angiogenic which aid chemotherapy
action on xi;
- ai, i = 1, 2, 3, a saturation parameter to describe this effect on the preda-
tion action on z and xj, j = 1, 2;
- di,0, i = 1, 2, 3, rates of the agents that act, respectively, on NC’s, CC’s,
and EC’s. Hence they are proportional to pi, i = 0, 1, 2;
- di,1, i = 1, 2, the rates of the neo-vascularization which aid the chemother-
apy agent due to interaction with xi;
- di,2, i = 1, 2, the rates of the anti-angiogenic which aid the chemotherapy
agent due to interaction with xi;
- bi, i = 1, 2, a saturation parameter to describe this effect on the cells of the
neo-vascularization and anti-angiogenic actions, respectively, on chemother-
apy action;
- ci, i = 1, 2, a saturation parameter to describe this effect on the agent
of the neo-vascularization and anti-angiogenic actions on the chemotherapy
agent, respectively;
- ∆, the continuous infusion rate of the chemical agent;
- ξ, the washout rate of the chemical agent;
- Φ, the continuous infusion rate of the anti-angiogenic agent;
- η, the washout rate of the anti-angiogenic agent.

As in the model introduced in Pinho et al., 2002, we also impose certain
restrictions on the parameter values. CC’s grow at a faster rate than NC’s
(α2 > α1); the chemical agent must be considerably more effective in killing
CC’s than NC’s (p2 > p1) (Dorr and Von Hoff, 1994; Silver et al., 1987). The
birth rate of EC’s due to the tumor is much larger than its natural death
rate (β À α3). In addition, there are other inequalities related to competitive
outcome, which we list in the next section as they depend on the equilibria of
system (1).

Single therapy situations can be handled as particular cases of system 2. We
can obtain a chemotherapy model (C-model), by imposing w ≡ 0 and elimi-
nating the last equation of system (2). If z ≡ 0 in system (2), we recover the
non-metastatic version of the model introduced in Pinho et al.(2002). Pro-
ceeding along the same lines, an anti-angiogenic (A-model) is obtained from
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(2) by setting y ≡ 0 and eliminating the fourth equation of (2).

2.1 Boundedness and Dissipativity

In this subsection we establish two important properties of the solutions to
system (2):

1. All solutions with positive values remain positive.

Proof. Arguing uniqueness of solutions, no solution with x1(t) > 0 at any
time t ≥ 0 can become zero in finite time since x1 ≡ 0 is a solution of the
first equation of (2). Similarly the same is true for x2(t) . Since ẏ(0) = ∆ > 0,
no solution y(t) of (2) with y(t) > 0 can become zero. Similarly, since ẇ(0) =
Φ > 0, no solution w(t) of (2) with w(t) > 0 can become zero. Finally, since
x2 ≡ 0 is a solution of the first equation of (2), ż(0) = βx2(0) = 0. 2

2. System (2) is dissipative.

Proof. Since the initial conditions are nonnegative, so are the solutions.
From the first equation (2), it follows that

ẋ1(t) ≤ α1x1(t)

(
1− x1(t)

K1

)
.

From standard comparison theory we get

lim
t→∞ sup x1(t) ≤ K1.

Since di0 − di1 − di2 > 0, bi > 0, and ci > 0, with i=1,2, we obtain from the
fourth equation of (2):

ẏ(t) ≤ ∆− ξy,

what implies

lim
t→∞ sup y(t) ≤ ∆

ξ
.

Similarly, from the fifth equation of (2),

lim
t→∞ sup w(t) ≤ Φ

η
.

After some calculations, the third equation of (2) leads to:

lim
t→∞ sup z(t) ≤ M1,
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where

M1 =
K3

2

(
1 +

γβ

α3

)
+

1

2

√√√√K2
3

(
1 +

βγ

α3

)2

+
4βK2K3

α3

.

From the second equation of (2),

lim
t→∞ sup x2(t) ≤ K2 + γM1.

Hence the region

R = {(x1, x2, z, y, w) ∈ R5
+ / 0 ≤ x1 ≤ K1, 0 ≤ x2 ≤ K2 + γM1, 0 ≤ y ≤

ξ−1∆, 0 ≤ z ≤ M1, 0 ≤ w ≤ η−1Φ} is an attracting invariant region, proving
the property. 2

3 CANCER HYPOTHESIS

We assume the cancer hypothesis based on the local stability of the equilibria
of system (1), with the same approach considered in Nani and Freedman (2000)
and Pinho et al. (2002): without any therapy, CC’s win the competition with
NC’s.

The equilibria of system (1) are:

V0 = (0, 0, 0), V10 = (K1, 0, 0), V1 = (K1, 0, K3), V2 = (0, K2+γz̃, z̃), V3 = (x∗1, x
∗
2, z

∗)

with

z̃ =
βγK3 + α3K3 +

√
(βγK3 + α3K3) 2 + 4βK2K3α3

2α3

. (4)

The coordinates x∗1 and x∗2 of V3 are given by

x∗1 =
α2

(
−α3z

∗2 + βγK3z
∗ + K3α3z

∗ + βK2K3

)

β (z∗γ + K2) K3q2

,

x∗2 =
z∗ (z∗ −K3) α3

βK3

,

(5)

where z∗ is any real solution of the cubic equation :

D3z
∗3 + D2z

∗2 + D1z
∗ + D0 = 0 (6)
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with

D3 = α3 q1 q2 K1 γ

D2 = α3 (K1 K2 q1 q2 + α1 α2) + K3 α3 q1 q2 K1 γ

D1 =−K3 α3 (K1 K2 q1 q2 + α1 α2)− β γK3 α1 K2 (K1 q2 − α2)

D0 = β K3 α1 K2 (−K1 q2 + α2).

(7)

In terms of equilibria, the cancer hypothesis is verified if the system evolves
to V2.

The Jacobian matrix for a generic equilibrium V (x̄1, x̄2, z̄) is given by:

JV =




J11 −q1x̄1 0

−q2x̄2 J22 J23

0 β J33




, (8)

with

J11 = α1 (1− 2x̄1/K1)− q1x̄2, J22 = α2 [1− 2x̄2/(K2 + γz̄)]− q2x̄1

J23 = γα2x̄
2
2/(K2 + γz̄)2, J33 = α3 (1− 2z̄/K3).

The local stability analysis of boundary equilibria leads to the following eigen-
values (λ1, λ2, λ3) associated with the corresponding equilibria:

V0 : (α1, α2, α3)

V10 : (−α1, α2 − q2K1, α3)

V1 : (−α1, α2 − q2K1,−α3)

Hence V0 and V10 are locally unstable, while V1 is locally unstable when α2 >
K1q2.

The first eigenvalue of V2 is expressed by

λ1 = α1 −K2q1 − βK3q1γ
2

2α3

− K3q1γ

2
− q1

√
K2

3(βγ + α3)2 + 4βK2K3α3γ

2α3

(9)

The other two eigenvalues of V2 constitute the set
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σ(BV ) = {λi | λ2
i − Tr(BV )λ + det(BV ) = 0, i = 2, 3} (10)

where

BV =



−α2 γα2

β α3 (1− 2z̃/K3)


 , (11)

According to (4), we have z̃ > K3/2. Therefore

Tr(BV ) = −α2 + α3

(
1− 2z̃

K3

)
< 0

and

det(BV ) =−α2α3

(
1− 2z̃

K3

)
− βγα2

=
α2

√
(βγK3 + α3K3) 2 + 4βK2K3α3

K3

> 0.

Therefore, by the Routh-Hurwitz criterion (Coppel, 1965), the real parts of
eigenvalues λ2 and λ3 are negative.

We conclude that the conditions

α2 > K1 (12)

and

α1 < K2q1 +
βK3q1γ

2

2α3

+
K3q1γ

2
+

q1

√
K2

3(βγ + α3)2 + 4βK2K3α3γ

2α3

(13)

guarantee the cancer hypothesis. If inequality (13) holds, it follows that D0 < 0
as expressed in (7). Since D3 > 0 always, the interior solution V3 does not exist
in the positive cone. In conclusion, this proves the following theorem.

Theorem 1 Conditions (12) and (13) guarantee the cancer hypothesis: V2 is
asymptotically stable, V1 is locally unstable and V3 does not exist in the positive
cone.
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Fig. 1. Bifurcation analysis of the no-therapy model with respect to the parameter
K3. The parameter values are shown in Table 1, except for the value of K3. The
transcritical bifurcation occurs at K?

3 = 200.893. The bifurcation diagram for NC’s,
CC’s and, EC’s are represented by (a), (b) and (c) respectively.

Condition (13) sets up the threshold value of K3 for the existence and stability
of the internal solution. In this case, there is a transcritical bifurcation between
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the internal state V3 and the cancer state V2 at

K?
3 =

(K2q1 − α1)
2α3

γq1 [βγα1 + α3(α1 −K2q1)]
. (14)

Table 1
Parameters of the no-therapy model

NC’s natural birth rate α1 15

CC’s natural birth rate α1 25

EC’s natural birth rate α3 10

NC’s carrying capacity k1 200

CC’s carrying capacity k2 125

EC’s carrying capacity k3 210

competition coefficients for NC’s q1 0.084

competition coefficients for CC’s q2 0.08

neo-vascularization parameter γ 0.1

rate of TAF and TIF production β 50

In Figure 1, we show a transcritical bifurcation for the parameter values shown
in Table 1 except for K3 that is allowed to vary. The diagram bifurcation was
obtained numerically (Doedel, 1997). The parameter values obey the cancer
hypothesis conditions (12) and (13). The transcritical bifurcation occurs at a
threshold value of K3, K?

3 = 200.893. Below this value, the internal state V3

is stable. From this value on, the cancer state V2 is stable. In Figure 1a, it is
easy to note that, above the threshold value, the internal state does not exist
in the positive cone.

In the next section, we perform a comparative study of the action of therapies
based on analytical and numerical results for the C-model, A-model and CA-
model.

4 ACTION OF THE THERAPY: ANALYTICAL AND NUMER-
ICAL RESULTS

To better analyze the therapeutic models, this section is divided into subsec-
tions where each of the different treatment strategies, including one or more
therapies, are considered individually. Our analysis is based on local stability
theory and numerical integration of the ODE’s system (2).
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4.1 CHEMOTHERAPY MODEL (C-MODEL - w ≡ 0)

The equilibria of the C-model are:

C0 =

(
0, 0, 0,

∆

ξ

)
, C03 =

(
0, 0, K3,

∆

ξ

)
,

C10 = (x̂1, 0, 0, ŷ), C1 = (ˆ̂x1, 0, K3, ˆ̂y), C2 =
(
0, ˜̃x2, ˜̃z2, ˜̃y

)
, C3 = (x∗∗1 , x∗∗2 , z∗∗, y∗∗) .

The equilibria C0 and C03 always exist, but have no actual relevance from the
clinical point of view.

The coordinates x̂1 and ŷ of C10 are the solutions of the quadratic equation:

α1(ξ + d10)x̂
2
1 + [ξa1 −K1(ξ + d10)]α1x̂1 + K1(p1∆− α1ξa1) = 0

given by

x̂1 =
α1[K1(ξ + d10)− ξa1]± {α2

1[K1(ξ + d1) + ξa1]
2 − 4K1p1∆(ξ + d10)}1/2

2α1(ξ + d10)
,

and

ŷ =
∆(a1 + x̂1)

[ξa1 + (ξ + d10)x̂1]
.

Thus the equilibrium C10 exists, when the following conditions are satisfied
(Pinho et al., 2002):

p10∆ < α1ξa1

or

{ξa1 < K1(ξ + d10) and ξa1α1 < p10∆}.

For the first condition, there is just one positive equilibrium C10. For the set
of second conditions, there are two positive equilibria C10.

The coordinates ˆ̂x1 of C1, a cure state with the presence of EC’s, are the
solutions of the quadratic equation

D2
ˆ̂x

2

1 + D1
ˆ̂x1 + D0 = 0 ,

where
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D2 =− (b1 + K3) [c1 (ξ + d10) + (ξ + d10 − d11) K3] α1

D1 =− (b1 + K3) {ξ a1 (c1 + K3)−K1 [c1 (ξ + d10) + (ξ + d10 − d11) K3]} α1

D0 =−K1 (c1 + K3) [b1 (∆ p10 − ξ a1 α1) + K3 (∆ p10 + ∆ p11 − ξ a1 α1)] .

(15)

They are expressed by

ˆ̂x1 =
− (b1 + K3) {ξ a1 (c1 + K3) + K1 [−c1 (ξ + d10)− (ξ + d10 − d11) K3]} α1

2 (b1 + K3) [c1 (ξ + d10) + (ξ + d10 − d11) K3] α1

±

±
√
− (b1 + K3) α14∆K1 (c1 + K3) [c1 (ξ + d10) + (ξ + d10 − d11) K3] [(b1 + K3) p10 + K3p11]−

2 (b1 + K3) [c1 (ξ + d10) + (ξ + d10 − d11) K3] α1

√
− (b1 + K3) {ξa1 (c1 + K3) + K1 [c1 (ξ + d10) + (ξ + d10 − d11) K3]}2 α1

2 (b1 + K3) [c1 (ξ + d10) + (ξ + d10 − d11) K3] α1

ˆ̂y =
∆(a1 + x̂1)

{ξa1 + [ξ + d10 − d11K3/(c1 + K3)] x̂1} .

The equilibria C1 exist when the coefficients of equation (15), D0, D1 and D2

are such that (D2 > 0, D0 < 0), or (D2 > 0, D1 < 0, D0 > 0) .

For the first condition there is just one positive equilibrium C1. For the set of
second conditions, there are two positive equilibria C1.

The equilibria C2 and C3 result from the solutions of polynomial equations of
6th and 11th order in z respectively. They are obtained numerically as we will
discuss in the bifurcation analysis.

The Jacobian matrix of the C-model for a generic equilibrium is given by:

JC =




J11 −q1x1 J13 J14

−q2x2 J22 J23 J24

0 β α3 (1− 2z/K3) 0

J41 J42 J43 J44




, (16)
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J11 = −y a1 [(z + b1) p10 + z p11]

(z + b1) (a1 + x1)
2 − q1 x2 + α1

(
1− 2 x1

K1

)
;

J13 = − y b1 p11 x1

(z + b1)
2 (a1 + x1)

; J14 = − [(z + b1) p10 + z p11] x1

(z + b1) (a1 + x1)
;

J22 = −q2 x1 − y a2 [(z + b1) p20 + z p21]

(z + b1) (a2 + x2)
2 + 1− 2 x2 α2

K2 + z γ
;

J23 = x2

[
−

(
y b1 p21

(z + b1)
2 (a2 + x2)

)
+

γ x2 α2

(z γ + K2)
2

]
;

J24 = x2

[
−

(
∆ b1 p21

ξ (z + b1)
2 (a2 + x2)

)
+

γ x2 α2

(z γ + K2)
2

]
;

J41 = −y a1 [(z + c1) d10 − z d11]

(z + c1) (a1 + x1)
2 ; J42 = −y a2 [(z + c1) d20 − z d21]

(z + c1) (a2 + x2)
2 ;

J43 =
y c1 [a2 d11 x1 + (a1 d21 + (d11 + d21) x1) x2]

(z + c1)
2 (a1 + x1) (a2 + x2)

;

J44 = −ξ − d10 x1

a1 + x1

+
z d11 x1

(z + c1) (a1 + x1)
− d20 x2

a2 + x2

+
z d21 x2

(z + c1) (a2 + x2)
.

The eigenvalues, obtained from (16), (λ1, λ2, λ3, λ4) associated with the equi-
libria C0 and C03 are respectively:

C0 :

(
−∆ p10

ξ a1

+ α1,−∆ p20

ξ a2

+ α2, α3,−ξ

)

C03 :

(
−∆ p10

ξ a1

− ∆ K3 p11

ξ a1 (b1 + K3)
+ α1,−∆ p20

ξ a2

− ∆ K3 p21

ξ a2 (b1 + K3)
+ α2,−α3,−ξ

)
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So, C0 is always locally unstable. C03 is also locally unstable if

α1 >
∆ p10

ξ a1

+
∆ K3 p11

ξ a1 (b1 + K3)
or α2 >

∆ p20

ξ a2

+
∆ K3 p21

ξ a2 (b1 + K3)
. (17)

One of the eigenvalues of C10 is λ = α3 > 0; so C10 is also locally unstable.
Under restriction (17), the system may evolve to C1, C2 or C3 depending on
the values of the parameters and on the initial conditions. There are different
regions of parameter space for which C1, C2 and C3 are asymptotically stable.

Table 2
Parameters of the C-model.

saturation rate of the agent on NC’s a1 10

saturation rate of the agent on CC’s a2 801

saturation rate on the cells of vascularization on the agent b1 100

saturation rate on the agent of vascularization on the agent c1 100

rate of the agent on NC’s d10 0.5

rate of vascularization on agent, due to interaction with NC’s d11 0.1

rate of the agent on CC’s d20 36

rate of vascularization on agent, due to interaction with CC’ d21 0.5

predation coefficient on NC’s p10 0.05

rate of the vascularization on chemotherapy action on NC’s p11 0.01

predation coefficient on CC’s p20 18

rate of the vascularization on chemotherapy action on CC’s p21 5

chemical infusion rate ∆ vary

chemical washout rate ξ 50

The eigenvalues of the cure state C1 are:





λ
(1)
2 = α2 − q2

ˆ̂x1 − a−1
2

ˆ̂y [p20 + K3p21/(b1 + K3)]

λ
(1)
3 = −α3

σ(Bc) = {λ(1)
i | λ2 − Tr(Bc)λ + det(Bc) = 0, i = 1, 4}

where Bc is the sub-matrix of the Jacobian (16) with the restriction that only
lines and columns 1 and 4 at the C1 equilibrium are considered, i.e.,
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BC =




J11(C1) J14(C1)

J41(C1) J44(C1)


 , (18)

with

J11(C1) = −
ˆ̂y a1 [(K3 + b1) p10 + K3 p11]

(K3 + b1) (a1 + ˆ̂x1)
2 + α1

(
1− 2 ˆ̂x1

K1

)
;

J14(C1) = − [(K3 + b1) p10 + K3 p11] ˆ̂x1

(K3 + b1)
(
a1 + ˆ̂x1

) ;

J41(C1) = −
ˆ̂y a1 [(K3 + c1) d10 −K3 d11]

(K3 + c1)
(
a1 + ˆ̂x1

)2 ;

J44(C1) = −ξ − d10
ˆ̂x1

a1 + ˆ̂x1

+
K3 d11

ˆ̂x1

(K3 + c1)
(
a1 + ˆ̂x1

) .

Therefore, analogously to Theorem 5 of Pinho et al., 2002, the Routh-Hurwitz
criterion (Coppel, 1965) requires that Tr(Bc) < 0 and det(Bc) > 0 in order
that the cure state is locally stable. Thus we prove the following theorem.

Theorem 2 . Suppose that ˆ̂x1 > K1/2 and d10c1 > (d11 − d10)K3. If α2 <
q2

ˆ̂x1−a−1
2

ˆ̂y [p20 + K3p21/(b1 + K3)], then C1 is locally asymptotically stable. If
α2 > q2

ˆ̂x1 − a−1
2

ˆ̂y [p20 + K3p21/(b1 + K3)], then C1 is hyperbolic saddle point.

The bifurcation analysis of the C-model is illustrated in Figure 2 for the pa-
rameter values shown in Tables 1 and 2. Beside satisfying the cancer hypothe-
sis, the parameter values obey the conditions for existence of equilibria C1, C2

and C3. It is reasonable to choose the infusion rate ∆ as a control parameter.
On increasing ∆, there is a transcritical bifurcation between the cancer state
(C2) and the internal state C3: below a threshold value ∆1 the cancer state
is stable and the internal state does not exist in the positive cone. Above ∆1

and below another threshold value ∆2, the three relevant equilibria exist; the
internal state becomes stable while the cancer state becomes unstable. Finally
above ∆2, the internal state does not exist and the cure state becomes stable.
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(a) (b)

(c) (d)

Fig. 2. Bifurcation analysis of the C-model with respect to infusion rate ∆. The
set of parameter values is shown in Tables 1 and 2, except the value of ∆. There
are two transcritical bifurcations: the first one between cancer and internal states
at ∆1 = 820 value and, the second one between the internal and cure states at
∆2 = 17179 value. The bifurcation diagram for NC’s, CC’s, EC’s and chemotherapy
agent are represented by (a), (b), (c) and (d) respectively.

The transcritical bifurcation between the cure state and the internal state is
regulated by the first eigenvalue shown in (18) which depends on different
parameters. As shown in Figure (2), depending on the value of ∆, the sys-
tem can also evolve to cancer state C2 for low doses, to internal state C3 for
intermediate values, and to cure state (C1) for high values.

4.2 ANTI-ANGIOGENIC THERAPY MODEL (A-MODEL - y ≡ 0)

The equilibria of the A-model are:

A0 =

(
0, 0, 0,

Φ

η

)
, A10 =

(
K1, 0, 0,

Φ

η

)
, A1 = (K1, 0, γž, w̌)

A2 = (0, x̆2, z̆, w̆), A3 = (x†1, x
†
2, z

†, w†).

The equilibria A0 and A10 always exist. The cure state A1 is such that the
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coordinate ž is the solution of the following quadratic equation:

α3(η + d3)ž
2 + α3[η(a3 −K3)−K3d3]ž + K3(p3 − α3a3) = 0

given by:

ž =
K3

2
− ηa3

2 (η + d3)
±

√
α2

3 [−ηa3 + K3(η + d3)]
2 + 4α3K3 (η + d3) (ηa3α3 − Φp3)

2α3 (η + d3)

and

w̆ =
Φ(a3 + z̆)

[ηa3 + (η + d3)z̆]
.

The cancer states A2 are solutions of the cubic equation:

E3z̆
3 + E2z̆

2 + E1z̆ + E0 = 0

where

E3 = (η + d3) α3

E2 =− (η + d3) K3 (βγ + α3)− η a3α3

E1 =−K3 [β (η + d3) K2 − Φp3 + ηa3 (β γ + α3)]

E0 =−βηa3K2K3

(19)

and

x̆2 = K2 + γz̆ and w̆ =
Φ(a3 + z̆)

[ηa3 + (η + d3)z̆]
.

The equilibria A3 result from the solutions of polynomial equations of 4th

order in z. They are obtained numerically as we will discuss in the bifurcation
analysis.

To analyze the local stability of equilibria, we consider the Jacobian matrix
for a generic equilibrium A(x̄1, x̄2, z̄, w̄), which is written as

JA =




J11 −q1x̄1 0 0

−q2x̄2 J22 γα2x̄
2
2/(K2 + z̄)2 0

0 β J33 −p3z̄/(a3 + z̄)

0 0 −d3w̄a3/(a3 + z̄)2 J44




, (20)
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J11 = α1

(
1− 2x̄1

K1

)
− q1x̄2; J22 = α2

(
1− 2x̄2

K2 + γz̄

)
− q2x̄1;

(21)

J44 = −η − d3z̄

a3 + z̄
; J33 = −

(
w̄ a3 p3

(z̄ + a3)
2

)
+

(
1− 2 z̄

K3

)
α3.

(22)

The spectra of A0 and A10, (λ1, λ2, λ3, λ4), are respectively:

A0 : (α1, α2,−δ − p3Φ/(a3η),−η)

A10 : (−α1, α2 − q2K1, α3 − Φp3/ηa3,−η)

A1 : (−α1, α2 − q2K1, λ3
(1), λ4

(1))

where {λ(1)
i | λ2 − Tr(BA)λ + det(BA) = 0, i = 3, 4} with

BA =



−[w̌ a3 p3/(ž + a3)

2] + α3 (1− 2 ž/K3) −p3ž/(a3 + ž)

−d3w̌a3/(a3 + ž)2 −η − d3ž/(a3 + ž)


 (23)

A0 is always locally unstable. Theorem 1 requires that α2 − q2K1 > 0. This
shows that A10 and A1 are both locally unstable because of their second eigen-
values.

Therefore we enunciate the following theorem:

Theorem 3 Assuming condition (12), the cure equilibria A10 and A1 are hy-
perbolic saddle points.

Table 3
Parameters of the A-model.
saturation rate of the agent on EC’s a3 801

predation coefficients on EC’s p3 18

rate of vascularization on EC’s d3 36

anti-angiogenic infusion rate Φ 1000

anti-angiogenic washout rate η 50
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Fig. 3. Bifurcation analysis of the A-model with respect to anti-angiogenic infu-
sion rate Φ. The set of parameter values are shown in Tables 1 and 3, except the
value of Φ . There is a transcritical bifurcation between A2 and A3, at the value
Φ? = 5533.123. The bifurcation diagram for NC’s, CC’s, EC’s and anti-angiogenic
agent are represented by (a), (b), (c) and (d) respectively.

There are different regions of parameter space in which both A2 and A3 are
asymptotically stable. Hence, in general, the system may evolve to A2 or A3,
depending on the values of the parameters and on the initial conditions.

The bifurcation analysis of the A-model is illustrated in Figure 3 for parameter
values shown in Tables 1 and 3. There we illustrate a transcritical bifurcation
between the cancer state A2 and the internal state A3: below a threshold value
of the infusion rate Φ, Φ?, the cancer state is stable and the internal state does
not exist.

We recall that, as A1 is not asymptotically stable, it is very unlikely to reach
this cure state. The isolated effect of the anti-angiogenic agent is to reduce the
tumor. The previous results for the C-model had shown that, due to angiogen-
esis, only for some values of infusion doses, chemotherapy is able to eliminate
the tumor (see Figure2). Hence, in the next subsection we will investigate the
combined therapy (Browder et al., 2001), as an efficient strategy to eliminate
the tumor with lower doses of chemotherapy.
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4.3 COMBINED THERAPY MODEL (CA-MODEL)

The equilibria of the combined chemo+anti-angiogenic (C+A) therapy model
are:

CA0 = (0, 0, ž, ∆/ξ, w̌, ) , CA1 = (x̌1, 0, ž, y̌, w̌) ,

CA2 = (0, ˘̆x2, ˘̆z, ˘̆y, ˘̆w), CA3 = (x‡1, x
‡
2, z

‡, y‡, w‡),

The coordinates ž and w̌ of equilibria CA0 and CA1 are the same of equilibria
A1. The coordinates x̌1 of CA1 are given by:

x̌1 =
−ξa1 (ž + c1) (w̌ + c2)

c1 [c2 (ξ + d10) + w̌ (ξ + d10 − d12)] + ž [c2 (ξ + d10 − d11) + w̌ (ξ + d10 − d11 − d12)]

y̌ =
∆ (a1 + x̌1)

ξ a1 + [ξ + d10 − ž d11/(ž + c1)− w̌ d12/(w̌ + c2)] x̌1

The equilibria CA2 and CA3 result from the solutions of polynomial equations
of 8th and 11th order in z respectively. They are obtained numerically as we
will discuss in the bifurcation analysis.

The Jacobian matrix for a generic equilibrium CA(x1, x2, z, y, w) is given by

JCA =




J11 −q1x1 J13 J14 0

−q2x2 J22 J23 J24 J25

0 β J33 0 −p3z/(a3 + z)

J41 J42 J43 J44 J45

0 0 −d3wa3/(a3 + z)2 0 −η − d3z/(a3 + z)




, (24)

J11 =
(
1− 2 x1

K1

)
α1 +

y a1 {− [(w + b2) ((z + b1) p10 + z p11)]− w (z + b1) p12}
(z + b1) (w + b2) (a1 + x1)

2 − q1 x2;

J13 = − y b1 p11 x1

(z + b1)
2 (a1 + x1)

; J14 =
x1 {w (z + b1) p12 + (w + b2) [(z + b1) p10 + z p11]}

(z + b1) (w + b2) (a1 + x1)
;

J22 = 1− 2x2α2

zγ + K2

− q2x1 +
ya2 {− [w (z + b1) p22]− (w + b2) [(z + b1) p20 + zp21]}

(z + b1) (w + b2) (a2 + x2)
2 ;
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J23 = x2

{
−

[
y b1 p21

(z + b1)
2 (a2 + x2)

]
+

γ x2 α2

(z γ + K2)
2

}
;

J24 = −x2 [w (z + b1) p22 + (w + b2) ((z + b1) p20 + z p21)]

(z + b1) (w + b2) (a2 + x2)
;

J25 =
y b2 p22 x2

(w + b2)
2 (a2 + x2)

; J33 = − w a3 p3

(z + a3)
2 +

(
1− 2 z

K3

)
α3;

J41 =
y a1 {(w + c2) [− ((z + c1) d10) + z d11] + w (z + c1) d12}

(z + c1) (w + c2) (a1 + x1)
2

J42 =
y a2 {(w + c2) [− ((z + c1) d20) + z d21] + w (z + c1) d22}

(z + c1) (w + c2) (a2 + x2)
2 ;

J43 =
y c1 {a2 d11 x1 + [d11 x1 + d21 (a1 + x1)] x2}

(z + c1)
2 (a1 + x1) (a2 + x2)

;

J44 = −ξ − d10 x1

a1 + x1

+
z d11 x1

(z + c1) (a1 + x1)
− [(z + c1) d20 − z d21] x2

(z + c1) (a2 + x2)
+

w
(

d12 x1

a1+x1
+ d22 x2

a2+x2

)

w + c2

;

J45 =
y c2 {a2 d12 x1 + [d12 x1 + d22 (a1 + x1)] x2}

(w + c2)
2 (a1 + x1) (a2 + x2)

.

The eigenvalue spectra of CA1, (λ1, λ2, λ3, λ4, λ5), are such that:





λ
(1)
2 = −y̌ {p20 + [ž p21/(ž + b1)] + [w̌p22/(w̌ + b2)]}/a2 − q2 x̌1 + α2

σ(BCA) = {λ(1)
i /λ2 − Tr(BCA) + det(BCA) = 0, i = 1, 4}

σ(DCA) = {λ(1)
i /λ2 − Tr(DCA) + det(DCA) = 0, i = 3, 5}.

24



BCA is the sub-matrix of the Jacobian formed by lines and columns 1 and 4
at the CA1 equilibrium:

BCA =




J11(CA1) J14(CA1)

J41(CA1) J44(CA1)


 , (25)

with

J11(CA1) =
(
1− 2 x̌1

K1

)
α1 − y̌ a1 {[(w̌ + b2) ((ž + b1) p10 + ž p11)] + w̌ (ž + b1) p12}

(ž + b1) (w̌ + b2) (a1 + x̌1)
2 ;

J14(CA1) =
x̌1 {w̌ (ž + b1) p12 + (w̌ + b2) [(ž + b1) p10 + ž p11]}

(ž + b1) (w̌ + b2) (a1 + x̌1)
;

J41(CA1) =
y̌ a1 {(w̌ + c2) [− ((ž + c1) d10) + ž d11] + w̌ (ž + c1) d12}

(ž + c1) (w̌ + c2) (a1 + x̌1)
2 ;

J44(CA1) = −ξ − d10 x̌1

a1 + x̌1

+
ž d11 x̌1

(ž + c1) (a1 + x̌1)
+

w̌ d12 x̌1

(a1 + x̌1)(w̌ + c2)
.

According to the Routh-Hurwitz criterion (Coppel, 1965), the real part of λ
(1)
3

and λ
(1)
5 are negative when Tr(BCA) < 0 and det(BCA) > 0. So their real part

are negative if and only if

d10 >
žd11

ž + c1

+
w̌d12

w̌ + c2

(26)

and

K1/2 < x̌1 <
a1ξ(ž + c1)(w̌ + c2)

w̌(ž + c1)d12 − (w̌ + c2)[(ž + c1)(ξ + d10)− žd11]
(27)

DCA is the sub-matrix of the Jacobian formed by lines and columns 3 and 5
at the CA1 equilibrium:

DCA =



−[w̌ a3 p3/(ž + a3)

2] + (1− 2 ž/K3) α3 −p3ž/(a3 + ž)

−d3w̌a3/(a3 + ž)2 −η − d3ž/(a3 + ž)


 ,
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Using the Routh-Hurwitz criterion again, it is easy to prove that if ž > K3/2

then Tr(DCA) < 0 and det(DCA) > 0. So the real part of λ
(1)
3 and λ

(1)
5 are

negative.

Table 4
Parameters of combined model.

saturation rate on the cells of AA drug on the agent b2 100

saturation rate on the agent of AA drug on the agent c2 100

rate of the AA on chemo agent, due to interaction with NC’s d12 0.05

rate of the AA on chemo agent, due to interaction with CC’s d22 0.1

rate of the AA helpful on chemo action on NC’s p12 0.005

rate of the AA helpful on chemo action on CC’s p22 1

Let us focus our analysis in the comparison between the stability of the cure
state CA1 for the CA-model with the stability of the cure state C1 for the
C-model (the other cure state C10 is locally unstable). As discussed in the
previous section, the cure state A1 for the A-model is locally unstable due to
the the cancer hypothesis.

Comparing the eigenvalues for C1 and CA1, it is enough to observe the second
line of the Jacobian matrices (16) and (24) for the respective cure states C1

and CA1:

(0,−
ˆ̂y

a2

(
p20 +

K3 p21

K3 + b1

)
− q2

ˆ̂x1 + α2, 0, 0, 0) (28)

(0,− y̌

a2

(
p20 +

ž p21

ž + b1

+
w̌ p22

w̌ + b2

)
− q2 x̌1 + α2, 0, 0, 0). (29)

In (28) and (29), it is shown that, for a choice of parameter values such that
C1 is a hyperbolic saddle point according to Theorem 2, it is always possible
to increase the value of the parameter p22 until the cure state CA1 of the CA-
model becomes locally stable, i.e., the real part of the eigenvalues of CA1 are
negative. Hence there exists a region of parameter set such that C1 is locally
unstable and CA1 is locally stable.

Therefore the following theorem can be stated.

Theorem 4 Suppose that α2 > q2
ˆ̂x1−a−1

2
ˆ̂y [p20 + K3p21/(b1 + K3)]. The cure
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state CA1 of the CA-model is asymptotically stable if and only if

(i) α2 < q2 x̌1 + y̌ {p20 + [ž p21/(ž + b1)] + [w̌p22/(w̌ + b2)]}/a2

(ii) ž > K3/2
(iii) the inequalities (26) and (27) hold.

(a)
(b)

(c)
(d)

Internal State

BP=672.7

BP=17087.2

Cancer 

State

Cure State

Fig. 4. Bifurcation analysis of the CA-model with respect to infusion rate ∆. The set
of parameter values are shown in Tables 1, 2, 3 and 4, except the value of ∆. There
are two transcritical bifurcations: the first one between cancer state and internal
state at ∆1 = 672.7 and, the second one between the internal state and cure state
at ∆2 = 17087.2. The bifurcation diagram for NC’s, CC’s, EC’s, chemotherapy
agent are represented by (a), (b), (c) and (d) respectively.

We have found numerical evidences of the advantageous effect of combining
both therapies. In the combined model, we still have the same stable states,
but now the presence of anti-angiogenic treatment displaces the bifurcation
to the left side of the ∆ axis. Thus, for the purpose of comparison with the
C-model, the bifurcation analysis is done with respect to the chemotherapy
infusion parameter, ∆. The cure stable state occurs for a smaller value of
chemotherapy doses ∆ (see Figure 4).

Since the value of p22 is responsible for changing the stability of the cure
state, we perform a two parameter analysis (∆ × p22) shown in Figure 5 and
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Fig. 5. Two-parameter bifurcation analysis: p22×∆. The two parameter bifurcation
diagram in a restricted region of p22 and ∆ values where the transcritical bifurca-
tion between intenal and cure states. The same set of parameters of figure (4) is
considered.
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Fig. 6. Two parameter bifurcation analysis: p22 × ∆. The black line indicates the
two transcritical bifurcations. The stable state is indicated in each region. The same
set of parameters of figure (4) is considered.

Figure 6. The bifurcation diagram of the transcritical bifurcation between the
internal and the cure state is shown in Figure 5: under this curve, the internal
state is stable whereas above this curve the cure state is stable. The cure state
dependence on these two parameters seems to have a hyperbolical behavior.
For low values of chemotherapy infusion rate, the values of p22 are higher, but
the dependence on p22 is relaxed when infusion rate is increased. In Figure
6, the bifurcation diagram is enlarged to show both transcritical bifurcations:
cancer-internal states and internal-cure states.
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5 DISCUSSION AND CONCLUDING REMARKS

In this paper we presented a comparative analysis between chemotherapy and
combined (chemo+anti-angiogenic) therapy based on systems of ordinary dif-
ferential equations taking into account the assumptions of an angiogenic pro-
cess. The models (chemotherapy, anti-angiogenic and combined therapy mod-
els) are based on the main features of the dynamics of the therapy action
on normal and cancer cells. We prove that the combined model is bounded
and dissipative. We impose the main assumption ”cancer hypothesis”: with
no therapy, i.e., the system goes to a cancer state as in a previous paper of
two of us (Pinho et al, 2002).

The cancer hypothesis restricts the range of parameter values that we may use
to analyze to the response to the therapy actions. Based on the local stability
of the stationary states, Theorem 1 presents the restricted conditions that
are imposed in our analysis. Figure (1) shows the bifurcation analysis for the
no-treatment case based on the parameter K3, making evident the conditions
for existence and stability of the internal state.

Theorem 2 guarantees that there is a region of the parameter space such that
the cure state C1, for the C-model, is asymptotically stable. In other words,
the cure state may be reached under the chemotherapy action for large values
of chemotherapy infusion ∆. This is also evident in the diagram bifurcation
of the C-model as shown in Figure (2).

According to Theorem 3, the cure states for the A-model are locally unstable.
In other words, the isolated application of the anti-angiogenic therapy is not
able to eliminate the tumor. The control of EC’s has the important role of
avoiding the tumor growth. Further, it reduces the cytotoxic effect over NC’s.
Hence the system may evolve to the internal state or to the cancer state
depending on the parameter values. The behavior is shown in Figure (3).

The most important issue that we considered is as follows: Are there regions
in the parameter space such that the cure state can be reached only under the
effect of the combined therapy? In other words, is it possible to reduce the
chemotherapy infusion (∆) and increase the anti-angiogenic helpful effect to
the conventional chemotherapy action (p22) in order to get a better response
in the treatment of cancer?

Our results indicate positive answers to these questions which stems from
both a comparative study of local stability analysis of the cure states for the
C-model and the CA-model as well as the analysis of their bifurcation dia-
grams. Theorem 4 guarantees that the cure state CA1 of the CA-model is
asymptotically stable in a larger region of parameter space than C1. This is
also shown by comparing Figures (2) and (4), which correspond to the bifur-
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cation analysis for the C-model and the CA-model. It reveals that the addi-
tion of anti-angiogenic therapy may provide more efficiency to the traditional
chemotherapy. Besides this is possible to apply smaller rates of chemotherapy
agents, reducing the cytotoxic effect on normal cells.

It is also important to discuss what is the better strategy to combine the
therapies. According to some numerical integrations of the A-model followed
by the C-model, we can conclude that it is better to apply them simultaneously
(Browder et al., 2001) instead of sequentially. We have observed that the
previous action of the anti-angiogenic therapy does not modify the effect of
the individual action of the chemotherapy.

Summarizing, the results of our models have shown relevant clinical features
of the therapies as follows:

a) For a sufficiently high dose of infusion, the tumor may be eliminated or
reduced by continuous chemotherapy.
b) It is not possible to eliminate the tumor by continuous anti-angiogenic
therapy.
c) The best strategy is to combine chemotherapy and anti-angiogenic ther-
apy in order to eliminate the tumor and to reduce the cytotoxic effect on
NC’s.

In a generalized model, we intend to consider the time delay between the tumor
growth and the neo-vascularization of the tumor observed in some experiments
with mice that show that the tumor angiogenic process is triggered with a
time delay after the tumor starts producing TAF and TIF (Arakelian et al,
2003). Thus a change in vascularization does not immediately affect the tumor
growth. Some events take place from the time that TAF in released from the
solid tumor to the instant that vascularization takes place (Maggelakis, 1996).
Other time delayed differential equations models are also proposed in the
context of growth tumor (Moxnes et al., 2004) and cancer treatment initiation
(Sidorov et al., 2003).

Acknowledgments: STRP, RFSA thank CNPq for partial supporting the re-
search.
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