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1 Introduction

The primary goal of the Compact Muon Solenoid (CMS) experiment [1] is to explore particle
physics at the TeV energy scale, exploiting the proton-proton collisions delivered by the Large
Hadron Collider (LHC) at CERN. The central feature of the Compact Muon Solenoid apparatus is
a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field
volume are the silicon pixel and strip tracking detectors, the crystal electromagnetic calorimeter
and the brass/scintillator hadron calorimeter. Muons are measured in gas-ionization detectors em-
bedded in the steel return yoke. In addition to the barrel and endcap detectors, CMS has extensive
forward calorimetry.

In autumn of 2008, after closing the CMS detector in preparation for the LHC start-up and the
first underground test of the magnet, CMS undertook a long period (about 1 month) of data taking,
collecting about 270 million cosmic ray events with varying detector and trigger conditions. Data
were collected both without and with magnetic field (at various values of the current in the coil
of the solenoid). In this “Cosmic Run At Four Tesla” (CRAFT), the large majority of the data
were collected with a magnetic field of B = 3.8 T in the volume of the solenoid. Almost all CMS
sub-detectors were active and included in the data acquisition [2].

– 1 –



2
0
1
0
 
J
I
N
S
T
 
5
 
T
0
3
0
1
5

In summer 2006, cosmic ray data were taken on the surface with the detector closed, the “Mag-
net Test and Cosmic Challenge” (MTCC) [3]. In that period only a small part (about 5%) of the
muon detector was equipped for readout, and the tracking detectors were not installed inside the
coil. Many results on the muon detector performance [4] and measurements of physical quantities
related to the cosmic ray properties [5] were obtained. The CRAFT exercise allowed the exten-
sion of those studies of muon reconstruction and identification to the entire system, and in much
greater detail.

This paper addresses muon reconstruction in the drift tube chambers of the barrel muon sys-
tem, hereafter referred to as “DT chambers”, focusing on the reconstruction of local hits and track
segments in the chambers. Information from this reconstruction, together with the output of the
local reconstruction of other CMS subsystems, is used as input to the following stage of the global
muon reconstruction [6]. Detailed comparisons of different track segments belonging to the same
track, but measured in different stations, were performed, using in addition information from the
internal tracking devices. The non-bunched structure of the cosmic rays affects the time mea-
surements in the DT cells and hence the position resolution obtained in the initial stage of the
reconstruction process. Despite this, and the fact that cosmic rays illuminate a large part of the
detector quite differently from the muons produced in proton-proton collisions, it is shown that
the final reconstruction performance is very good, not far from the performance expected from test
beam studies and required for operation at the LHC.

The muon barrel system and its operating trigger conditions are described in section 2. After
a brief discussion of the Monte Carlo simulation of cosmic ray data in section 3, the main features
of the local muon reconstruction in the DT chambers are summarized in section 4. The results on
hit reconstruction and local track segments are given in sections 5 and 6, respectively.

2 DT chamber setup and trigger conditions

A schematic view of CMS is shown in figure 1. As seen in the longitudinal view, the barrel part
of the detector is divided in 5 wheels, named YB0, YB±1, YB±2 throughout this paper. All 250
DT chambers of the barrel muon system [7] were installed in the wheels and equipped for data
taking at beginning of CRAFT. Two chambers were subsequently switched off for most of the data
acquisition period due to hardware problems, which were solved by interventions carried out in the
winter 2009 shutdown. Each wheel is divided into 12 sectors, each covering an azimuthal region
of 30 degrees. Sectors are numbered anticlockwise, starting from the right-most vertical sector
shown in figure 1 (bottom) in the direction of increasing azimuthal angle, φ . There are four layers
of chambers (stations), named MB1-MB4 starting from the innermost one. In each station there
is one DT chamber per sector, except in the uppermost (lowermost) sector, named sector 4 (sector
10), where the station MB4 is physically made of two DT chambers.

There is a vertical shaft leading from the cavern to the surface originally used for lowering parts
of the CMS detector into the cavern. This shaft is located on the negative z side of the detector, and
as a consequence, the cosmic rays flux was not uniform along the z coordinate of CMS, decreasing
by about 20% when passing from wheel YB−2 to YB2.

A schematic layout of a DT chamber and of a DT cell are shown in figure 2. In each cham-
ber there are 12 layers of contiguous drift tube cells grouped in three “superlayers” (SL) with 4
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Figure 1. Schematic view of the CMS detector. Top: longitudinal view of one quarter of the detector.
Bottom: transverse view at z = 0. The barrel muon detector elements are denoted as MBZ/N/S, where
Z=−2,. . . +2 is the barrel wheel number, N=1. . . 4 the station number and S=1. . . 12 the sector number.
Similarly, the steel return yokes are denoted YBZ/N/S.

staggered layers each; the innermost and outermost SLs, labeled SL1 and SL3 in the figure, are
dedicated to coordinate measurement in the CMS bending plane (r-φ plane), while in the central
SL, labeled SL2, the hits are measured along the beam axis (r-z plane). The outermost stations,
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named MB4, located outside the steel return yokes of the CMS magnet, have only the two SLs mea-
suring the hit position in the r-φ plane. The distance between the anode wires of consecutive cells
is 4.2 cm; the cells are separated by 1 mm thick aluminium I-beams glued between two 2.5 mm
thick aluminium plates separating consecutive layers. Also visible are the aluminium strips, named
“electrodes” in the figure, below and above the anode wire of the cell, which are needed to shape
the electric field lines. This field shaping guarantees a good linearity of the cell behaviour over al-
most the entire drift volume [8]. The chambers are operated with an Ar/CO2(85/15%) gas mixture.
The voltages applied to the electrodes are +3600 V for wires, +1800 V for strips, and −1200 V
for cathodes. The electron drift velocity is about 54 µm/ns. The DT readout electronics is capable
of recording multiple hits in the same cell, with a dead time of 150 ns between consecutive signals.

At the operating value of B = 3.8 T for the magnetic field inside the solenoid, typical values of
the magnetic field inside the steel return yokes of the magnet structure, where the muon chambers
are located, range between 1.2 and 1.8 T. In the active volume of the DT chambers, the residual
magnetic field is generally small (below 0.2 T), except for the innermost chambers in the outermost
wheels YB±2.

The DT chamber Local Trigger [9] performs a rough track reconstruction within each SL and
uniquely assigns the parent bunch crossing number to a track candidate. A Track Correlator pro-
cessor associates track segments in the same chamber by combining the information from the SLs
of the r-φ view, enhancing the angular resolution and providing a quality hierarchy of the trig-
ger primitives. Up to two local trigger primitives are transmitted to the Regional Muon Trigger,
which constitutes the following step of the level-1 muon trigger, running an algorithm called DT
TrackFinder. This algorithm links the track primitives and forms muon candidates, assigning their
angular coordinates and transverse momentum measurement. The DT local trigger was operating
in all the sectors and wheels of the barrel muon system. After proper chamber synchronization
within the same sector and between neighbouring sectors, the DT TrackFinder trigger provided a
stable cosmic muon rate of about 240 Hz for the entire one month period of data taking [10]. It was
operated with an open look-up table configuration requiring the coincidence of local triggers from
at least two chambers in the same sector, with no requirements on the muon candidate direction
and transverse momentum. The combination of the two chambers used correlated trigger candi-
dates from the trigger processor in each station, which combines the trigger primitives between the
chambers’ SLs in the r-φ bending plane [10].

3 Monte Carlo simulation of cosmic ray data

A simulation of the cosmic muon spectrum [11] has been used to compare the detector performance
in the simulation to the data. About 20 million events with a muon momentum above 4 GeV/c, as
defined on a cylindrical surface of 8 m radius co-axial with the CMS z-axis, were generated and
processed through the full CMS simulation and reconstruction chain. The magnetic field inside the
CMS solenoid was set to B = 3.8 T. The muon crossing time at the top of the CMS detector was
generated according to a flat distribution within a ±12.5 ns time window, to replicate the random
arrival time of the muon in a bunch crossing window (25 ns) of the trigger. The time signals
that constitute the Time-to-Digital Converters (TDCs) raw data were generated by the digitization
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Figure 2. Top: schematic layout of a DT chamber. The distance between the innermost and outermost
superlayer (SL) in the chamber is about 25 cm. The SL1 and SL3 superlayers measure the r-φ coordinate in
the bending plane of CMS; the SL2 superlayer measures the z coordinate, along the direction parallel to the
beam (perpendicular to the plane of the figure). Bottom: layout of a DT cell, showing the electric field lines
in the gas volume.

algorithm based on the parameterization of the DT cell response described in ref. [12] and tuned
on test beam data, taking into account the muon time of flight from chamber to chamber.

A realistic representation of misalignments based on the analysis of CRAFT data [13] was
implemented in the CMS detector simulation. The CMS alignment strategy combines precise
survey and photogrammetry information, measurements from an optical based muon alignment
system [14], and the result of the alignment procedures based on muon tracks [13]. A complete
alignment of all muon chambers was not available for CRAFT. For the internal geometry of the
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DT chambers, which is relevant for the local reconstruction of the muon tracks, the spread of the
measurements of the layer relative positions measured during chamber construction and of the pho-
togrammetry measurements made on reflective targets on the exterior of the superlayers were taken
into account in the geometrical database of the detector. In the simulation, typical RMS deviations
from the ideal detector geometry are taken to be 100 µm, with 30–40 µm systematical uncertainty
for the layer position, and about 200 µm for the superlayer positions inside the chamber. The
positions of the muon chambers in the global CMS reference system were misaligned with a 2
mm Gaussian smearing in x , 4 mm in y and z, reflecting the initial uncertainty expected from the
available photogrammetry measurements, taken with the CMS detector open. The orientations of
the chambers in r−φ and r− z planes were smeared by 2 mrad.

4 Local reconstruction of muon tracks

In the first stage of the local reconstruction, the hits in each DT cell are reconstructed starting from
the measured time associated to them, as recorded by the TDCs. The electron drift time, tdrift, is
computed from the TDC raw data by performing the following operations:

• subtraction of the inter-channel synchronization constants, T0s, which correct for different
signal path lengths of readout electronics in the chamber front-end. The T0s are measured
using electronic test pulse signals [15].

• subtraction of the “time-pedestal”, ttrig, computed at the superlayer level in each chamber.
The quantity ttrig accounts for the time latency of the Level-1 trigger and the time of flight of
the muon to the chamber. It is computed by a calibration procedure that fits the rising edge
of the distribution of the TDC recorded times for all the cells in the superlayer, as described
in detail in ref. [15].

A typical distribution is shown in figure 3 for real and simulated data, after the measured T0’s
have been subtracted cell-by-cell. The peak at the beginning of the time distribution is due to non-
linear effects in the avalanche region very near (a few wire diameters wide) the anode wire, and to
the occurrence of δ -ray electrons which pass closer the anode wire than the muon track. The tail
in the real data after the “time-box” distribution (i.e. for TDC time greater than 2800 ns which, for
the specific superlayer shown in the figure, corresponds to the maximum drift length in the cell) is
due to “feed-back” electrons. These are electrons extracted either from the cell I-beam or from the
aluminium strips (see figure 2) by photons produced in the cascade process initiated by the primary
electrons very near the anode wire (these photons are not further considered in the simulation). The
arrival time of the signal associated with these feed-back electrons thus exceeds the maximum drift
time in a cell. The stability of the calibration results and their dependence on trigger conditions
and chamber locations is discussed in ref. [16].

Hits with tdrift < −3 ns are discarded, while hits having −3 < tdrift < 0 ns are retained and
assigned the position x = 0 in the local reference frame of the cell, corresponding to the anode
wire position. The conversion from time measurements to hit positions in a DT cell [17], leading
to one-dimensional reconstructed hits, or “rechits”, was performed assuming a constant effective
drift velocity in the whole chamber volume, independent of track position and inclination. This
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assumption is justified for all chambers except the innermost stations, MB1n (n = 1 . . .12), of
those mounted on the YB2 and YB−2 wheels [16]. More sophisticated algorithms [17] based on
a detailed parametrization of the DT cell behaviour, developed using simulated data, are currently
under study. For the purposes of the present studies, however, including the MB1 chambers in the
outermost wheels, the current algorithm is adequate (once the correct average value of the drift
velocity in these chambers is properly taken into account), as will be shown in section 5.

For each TDC signal there are two possible rechits due to the left-right ambiguity on the
position with respect to the anode wire inside the cell. This ambiguity is resolved at the track
segment building stage [17] by the local pattern recognition algorithm that takes the rechits as input,
thanks to the staggered structure of the cells in the chamber SLs as shown in figure 2. The pattern
recognition is initiated by considering all possible pairs of hits (seeds) in different layers, starting
from the most separated hits in the chamber. For each seed, additional hits are searched for in all
layers and included in the segment candidate if they are compatible with the extrapolation from the
seed within a loose requirement (2 mm). Segment candidates are built by performing a straight-line
fit to the associated hits and sorted on the basis of their total number of hits and χ2, defined as the
sum of the squares of the hit residuals divided by the hit position error, normalized to the number of
degrees of freedom. The sagitta of the muon track in the (generally small) residual magnetic field
in the chamber volume is negligible. For each seed, only the segment candidate with the maximum
number of hits is considered; among the candidates with the same number of hits, the one with best
χ2 is selected. Segments with at least three hits and χ2/NDOF < 20 are finally retained.

The pattern recognition is performed independently in the r-φ and r-z SLs of each chamber
to deliver the so-called 2-dimensional (2D) track segments in both views. The 2D segments are
then paired using all possible combinations to form 4-dimensional (4D) segments in the chamber,
carrying 3-dimensional spatial information and the fitted value of the arrival time of the muon
in the chamber (see next section). The arrival time of the TDC signal determining the position
in a given direction is corrected for the signal propagation time along the cell wire, using the
position information of the associated hits measured in the orthogonal view of the chamber, and
the rechit position is updated in the 4D segment accordingly. The 4D segments are used as input
to the subsequent stage of the global muon reconstruction that links the information from different
muon stations and from the tracker detector to fit a unique track. The reconstruction used the
standard CMS reconstruction code that takes into account the alignment corrections obtained from
the knowledge of the internal structure of most chambers, but not yet the complete information of
the chambers’ position in the CMS structure.

5 Reconstructed hits in DT chambers

One-dimensional reconstructed hits in the DT cell are the basic objects from which the muon track
reconstruction is initiated. This section summarizes the main results concerning the hit resolution
and reconstruction efficiency.

5.1 Spatial resolution

The one-dimensional hits are first determined assuming a fixed arrival time in the chamber of the
cosmic muon, t0 = 0, inside the 25 ns wide window associated with the L1 trigger. At this stage

– 7 –



2
0
1
0
 
J
I
N
S
T
 
5
 
T
0
3
0
1
5

 TDC time (ns)
2300 2400 2500 2600 2700 2800 2900 3000 3100

 e
nt

rie
s 

/ (
4 

ns
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
CMS 2008

Figure 3. Distribution of the signal arrival time in CRAFT (points) and simulated data (full line histogram).
The arrival time in all the cells from a single superlayer in a chamber are shown, after the cell-by-cell
equalization based on electronic test-pulse calibration.

the hit resolution is about 660 µm, largely dominated by the uncertainty on t0. Once the local
pattern recognition is performed and local segments are built, a re-fit is performed treating t0 as a
free parameter, recomputing the hit positions and the final segment position and direction. At this
final stage of the local reconstruction, the resolution is about 260 µm, in good agreement with the
requirements for collision data [7] and the results from test beam measurements [8].

A measure of hit resolution is provided by the residuals of the hit position with respect to
the predicted position in the layer obtained from the segments, reconstructed excluding the hit
under study from the fit. The distribution of the residuals in the r-φ SL’s with respect to the
position obtained from the segment extrapolation is shown in figure 4, for the first stage of the hit
reconstruction. The data are shown for the four stations of sector 4 in the central wheel of the
barrel detector. Only segments with more than 6 hits used in the fit were considered. The full line
histograms shown in the left plots in the figure correspond to the hit residual distributions from
“off-time” events, i.e., events triggered with a bunch crossing identification provided by the local
trigger of the chamber differing by ±1 (in 25 ns units) from the one occurring more frequently. As
expected, for this population of events the spread of the residuals is significantly larger, since the
subtracted time pedestal computed by the calibration procedure is shifted on average by ±25 ns
with respect to the muon arrival time. The double peak structure for these events reflects the
staggering of the DT cells between consecutive layers: hits occurring on the half-cell volume on
the left side of the anode wire have a bias opposite with respect to hits occurring in the half-cell
volume on the right side.

In the right plots of figure 4 the distribution of the residuals is shown both for real and sim-
ulated data for “in-time” events, i.e., for events triggered with the most frequent bunch crossing
identification in the chamber. A single Gaussian fit to the residual distributions, shown by the
curve superimposed to the data point, gives σres = 620 µm. To have an estimation of the hit reso-
lution at this stage, this value must be corrected for the segment extrapolation error, which at this
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reconstruction stage is on average σextrap = 320 µm (slightly dependent on the layer position of the
hit under test). The observed single hit resolution is thus:

σhit = [σ2
res−σ

2
extrap]

1/2 = 530µm. (5.1)

The pedestal-subtracted time recorded by the TDC is the sum of the electron drift time (ranging
from 0 to a maximum of about 380 ns for muon tracks passing at the DT cell boundary [4]), the
random arrival time t0 of the muon in the trigger window and the time of the signal propagation
along the anode wire. This last effect can be taken into account once the segment pattern recog-
nition is performed in the orthogonal superlayer and the hit position along the wire is determined.
The expected hit resolution is then:

σhit = [σ2
cell +σ

2
t0 +σ

2
prop]

1/2 = 470µm (5.2)

roughly consistent with the observed value. In the expression above, σcell = 200 µm is the intrinsic
position resolution of the DT cell as measured with muon test beam [18] and σt0 = (25 ns /

√
12) ·

vdrift = 390 µm is the contribution due to the uncertainty of the muon arrival time for an average
electron drift velocity vdrift = 54 µm/ns [18]. Finally σprop = vdrift ·σt = 160 µm is the uncertainty
due to the signal propagation along the anode wire, where σt = (l/

√
12)/vprop, vprop = 0.244 m/ns

is the signal propagation velocity [19] and l = 2.5 m is the anode wire length. The corrections
with respect to the ideal detector geometry for the layer misalignments inside the chambers [13]
have been included in the reconstruction. The contribution to the observed hit resolution from the
remaining uncertainty (of the order of 30-40 µm) on this corrections is negligible.

The distribution of the hit resolution, obtained using eq. (5.1) from the RMS values of the
Gaussian function fit to the hit residuals, is shown in figure 5. The average value of the distribution
obtained for 246 chambers is 660 µm with an RMS of about 200 µm. In addition to the two cham-
bers completely switched off, there were two chambers in sector 8 of YB1 and YB−1 respectively
having the innermost r-φ SL switched off (cfr. figure 11), for which the hit resolution study was
not performed. It is worth noting that the tail in the distribution comes from the chambers in the
most inclined sectors with respect to the horizontal direction. In particular, the worst performance
is obtained in the chambers of the vertical sectors 1 and 7 (corresponding to the shaded entries
shown in the histogram), where the average direction of the triggered cosmic muons with respect
to the chamber normal axis is larger than 50 degrees. In this condition, which is very far from the
one expected for prompt muons originating in pp collisions at the LHC, the ttrig determination has
larger uncertainties and the effects due to cell non-linearity become important.

After the local pattern recognition, the arrival time of the muon, t0, can be treated as a free
parameter in a refit of the segment that determines the final segment position and direction [4].
Typical distributions of the fitted muon arrival time in the chambers of sector 4 are shown in fig-
ure 6, for all events triggered by the local trigger, and separately for bunch crossings differing from
the most common by one. The local trigger assigns the candidate track to a given bunch crossing
time window, defined with 25 ns granularity. The distributions of the bunch crossing identifica-
tion number in all the chambers of the sector are also shown in figure 6. Although the number is
arbitrary, it is evident that the tails are dominated by events triggered at the bunch crossing dif-
fering by ±1 from the most commonly identified crossing of 12. The differences between the
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Figure 4. Hit residuals in DT muon chambers of YB0, sector 4, at the first stage of the hit reconstruction.
Left column plots: all events; the full line histograms show the hit residuals for the events with bunch
crossing identification in the chamber different from the most frequent one. Right column: events with the
most frequent bunch crossing identification; real data: points, simulated data: full histogram. The curves
show the result of a fit to the data using a Gaussian function. The fitted RMS values are listed.

distributions of the bunch crossing identification shown for different chambers in the lowest right
plot are due to the imperfect fine tuning of the synchronization of the local trigger devices of the
chambers [20]. In this sector, for MB1 and MB2 chambers, the population of events with bunch
crossing 11 is practically absent, as a consequence of the muon time of flight, which enhances
the probability to have in these stations a bunch crossing identification number shifted by +1 with
respect to the bunch crossing number assigned by MB3 and MB4. The differences between the
fitted arrival times in consecutive chambers are also shown in the figure. It must be stressed that the
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Figure 5. Distribution of the hit resolution computed using eq. (5.1) from the RMS values of the Gaussian
function fitted to the reconstructed hit residuals in all DT chambers, obtained at the first stage of the local
reconstruction. The dark entries are from chambers in the vertical sectors. Four chambers are not included
in the plot due to powering problems.

time pedestal calibration procedure mentioned above is defined by taking into account the muon
time of flight between them. The average values of the distribution of the time differences between
consecutive chambers are thus expected to be zero.

The distribution of the hit residuals after the t0 refit is shown in figure 7 for sector 4 of the
external wheel YB−2. In this wheel (as well as in wheel YB2), the residual magnetic field in
the chambers volume has the largest variation along the chamber’s length, reaching the highest
values (up to 0.8 T for the radial component in the MB1 stations [7]). This variation does not
affect significantly the average hit resolution observed in the chamber, once the corresponding
average change of the effective electron drift velocity (about 2% for MB1 chambers [16]) is taken
into account in the reconstruction. As for the distributions shown in figure 4, the residuals are
computed with respect to the extrapolated position from the segment, obtained excluding the hit
under study. The residuals are shown for all the triggered events. Plots of the hit residuals vs. the
distance to the anode wire in the DT cells are shown in figure 8, displaying the good uniformity
of the cell behaviour in the whole drift volume. Moreover, the approximate straight line behaviour
of the mean value of the residual distribution in each bin demonstrates that non-linear effects are
smaller than 100 µm. This is in agreement with accurate studies performed on dedicated test beam
data, that show deviations from linearity not larger than 60 µm [18]. Although the distributions of
hit residuals have width significantly narrower than the corresponding distributions obtained before
the t0 fit, they still have rather large tails. These are due to displaced hits from δ -rays, originally
included in the segment by the pattern recognition algorithm. It is worth remembering here that the
algorithm was run with a loose criterion to include a hit in the segment, in order to cope with the
initial uncertainty on the hit position dominated by the t0 jitter. The distributions of hit residuals
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were fitted with a sum of two Gaussian functions, constrained to have the same mean values. As
seen in figure 7, the narrower Gaussian gives σ ≈ 280 µm, accounting for about 80% of the total
population, while the wider Gaussian has σ ≈ 1 mm.

The distribution of the hit resolution, computed using eq. (5.1) from the RMS values of the
narrower Gaussian function fitted to the reconstructed hit residuals in all the DT chambers, is shown
in figure 9. The value of the extrapolation error used in eq. (5.1) is σextrap = 140 µm. For most of
the chambers, the resolution is approximately 260 µm. Again, the tail at large values comes from
chambers in the sectors most inclined with respect to the horizontal direction. The shaded entries
in the histogram are from vertical chambers.

5.2 Hit reconstruction efficiency

The hit reconstruction efficiency is measured by looking for hits in a given layer after extrapolating
the local segment fit to that layer. The extrapolation is done with hits on the segment after excluding
in the reconstruction the hits in the layer under consideration. Figure 10 shows the efficiency as a
function of the predicted hit position in the cell for MB1 stations (data from all the cells from all the
chambers of a given type are combined in the plot). The efficiency is greater than 98% over a large
part of the drift volume. Similar behaviour is observed for the MB2–4 stations. The observed small
inefficiency near the anode wire (x = 0 in the plots) is due to the pedestal subtraction procedure
described in section 4 and is well reproduced by the simulation. However, near the cell boundaries
the efficiency is overestimated by the simulation in the last millimeter of the cell volume (corre-
sponding to 5% of the total sensitive volume). No significant difference between the data at B = 0 T
and B = 3.8 T is observed. The noise effect is negligible in this plot because the number of noisy
cells having an occupancy larger than 1% in the recorded data amounts to less than 0.1% of the
total number of DT cells. A detailed study of noise rates in the DT system can be found in ref. [15].

Figure 11 summarizes the results for the hit efficiency in all the layers of the DT chambers,
averaged over all the cells of the considered layer. The efficiency is higher than 95% almost every-
where in the barrel detector, with a small decrease in the vertical sectors.

6 Reconstructed track segments in DT chambers

The second stage of the local track reconstruction described in section 3 provides “2D” and “4D”
track segments, which are studied in detail in this section.

6.1 Multiplicity of associated hits and track segment efficiency

Reconstructed hits are associated to 2D track segments built independently in the r-φ and r-z
planes, as described in section 3. Collections of 4D track segments are then built considering
all possible combinations of 2D r-φ and r-z segments in each chamber. The distributions of hit
multiplicities for all reconstructed 4D track segments are shown in figure 12 for each DT station
in the horizontal sectors of YB1 separately. The distributions are peaked, as expected, at the total
number of layers in the chamber (8 in MB4 and 12 in the other stations), although the Monte Carlo
simulation predicts a slightly larger average multiplicity. Track segments that have a large incident
angle and pass near the boundary between neighbouring drift cells may have more than one asso-
ciated hit in a given layer, thus resulting in a hit multiplicity larger than the number of layers in
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Figure 6. Left column: distributions of the fitted arrival times of the muon in the chambers of sector 4 in
YB−1. The full line histograms refer to all events triggered by the local trigger. The dotted (dashed) line his-
tograms refer to events with bunch crossing identification = +1 (-1) with respect to the most frequent bunch
crossing (12) provided by the local trigger in each chamber [9]. Three upper right plots: distributions of the
difference of the t0 values between two consecutive stations. The curves show the result of a Gaussian fit over
the range [-10,+10] ns. The fit results are given to provide a rough measure of the mean and RMS of the core
of the distribution. Bottom right plot: distributions of the bunch crossing identification in the four chambers
of the sector (full line histogram: MB1; dashed line: MB2; dotted line: MB3; dashed-dotted line: MB4).

the station. The distribution of the segment incident angle with respect to the vertical axis in the
bending plane of CMS, also shown in figure 12, is well reproduced by the simulation. The observed
increase of the spread around the normal direction when passing from MB4 to MB1, i.e. from the
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Figure 7. Hit residuals in DT muon chambers of YB−2, sector 4 after t0 segment refit. Left column: data;
right column: simulation. The curves show the result of a fit to the data using a double Gaussian function.
The fitted RMS values of the narrower Gaussian function are listed.

outer to inner stations (from top to bottom plots in the figure), is due to the opposite bending effects
of the magnetic field in the steel yokes on positive and negative muons.

The difference between data and simulation in the hit multiplicity distributions is due to the
discrepancy in the hit reconstruction efficiency observed near the I-beams separating the DT cells
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Figure 8. Plot of residuals vs hit position in a DT cell, for the chambers of YB−2, sector 4; the plot profile
is shown by the points. Top plots: MB1 (left) and MB2 (right). Bottom plots: MB3 (left) and MB4 (right).

(see figure 10) and additional small discrepancies, which sum up independently in the different
layers used in the segment reconstruction. As an example of such small discrepancies, figure 13
shows the efficiency for hit reconstruction and association to the muon track, in a region extending
approximately over four cells in two consecutive layers of an r-φ superlayer of the MB2 chamber in
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Figure 9. Distribution of the RMS values of the narrower Gaussian curve fitted to the reconstructed hit
residuals in all DT chambers, after t0 segment refit. The plotted values have been corrected for the track
extrapolation error. The dark entries are from chambers in the vertical sectors.
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Figure 10. Efficiency to have reconstructed a hit in a cell crossed by a cosmic muon, as a function of the
predicted muon position in the cell, for the MB1 stations. The x = 0 position corresponds to the location of
the anode wire in the cell.

the top sector (sector 4) of YB0. As can be expected, the discrepancy between data and simulation
is larger near the cell boundaries (0, 4.2, 8.4 . . . cm in the first layer shown, staggered by half a cell
between consecutive layers). In addition, a decrease of the efficiency can be due to the presence

– 16 –



2
0
1
0
 
J
I
N
S
T
 
5
 
T
0
3
0
1
5

Entries  1932

Mean   0.9776
RMS    0.01261

hit reconstruction efficiency
0.75 0.8 0.85 0.9 0.95 1 1.05

nu
m

be
r o

f l
ay

er
s

0

100

200

300

400

500

600

Entries  1932

Mean   0.978
RMS    0.012

CMS 2008 Entries  716
Mean   0.9807

RMS    0.01705

hit reconstruction efficiency
0.75 0.8 0.85 0.9 0.95 1 1.05

nu
m

be
r o

f l
ay

er
s

0

50

100

150

200

250
Entries  716
Mean   0.981

RMS    0.017

Figure 11. Average of the reconstructed hit efficiency in the layers of the Muon Barrel DT chambers. Left:
r-φ superlayers; right: r-z superlayers.

of a noisy cell, as is the case for the fourth cell in the upper plot. A pulse due to noise can indeed
mask the hit produced by the muon, which is therefore lost. Since the number of noisy DT channels
is at the level of a few per mille [15], the overall effect on the multiplicity distributions shown in
figure 12 is however negligible. A discrepancy at a few percent level is also visible for distances
larger than about 1 cm from the anode wires (located at 2.1, 6.3 . . . cm in the upper plot), due to
non-linear drift effects. Finally, the inefficiencies observed very near the anode wires are in general
small, especially in horizontal chambers like the one shown in figure 13, for which the time pedestal
determination has a small uncertainty.

The efficiency of reconstructed hit association is also affected by the occurrence of δ -ray elec-
trons originating in the gas volume and/or in the mechanical structure of the chambers. If these
electrons pass closer to the anode wire of the cell than the original muon, they mask the muon
signal if it arrives within the electronics dead time of 150 ns. Figure 14 shows the distribution of
the difference between the distance from the cell anode wire of the first hit recorded (independently
from its association to the muon track segment) and the distance of the position of the track ex-
trapolation. The population at large values of the distance difference is due to the δ -ray hits that
are not associated to the track segment. The tail at positive values of the difference (extended to
values bigger than the half-cell dimension to show the population from neighbouring cells in the
same layer) is due to events with a δ -ray, where the muon hit goes undetected. The data and sim-
ulation distributions show a reasonably good agreement, both in the absolute yield of δ -rays and
in the asymmetry of the distribution, with a slight underestimation of the effect in the simulated
data. The shoulder seen at about 0.8 cm for B = 0 T data is due to signals from feed-back electrons
(see section 4) extracted from the electrode strip below the anode wire in the cell. This effect is
almost invisible in the B = 3.8 T data, due to the tilt of the electron drift paths which makes the
detection of these electrons less efficient. Returning to figure 12, the difference of about 15% seen
in figure 12 between real and simulated data in the fraction of segments having 12 associated hits (8
in MB4) is understood as mainly due to an average difference of about 1% in the hit reconstruction
and association efficiency, concentrated in the part of the DT cell farther from the anode wire.
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Figure 12. Left plots: multiplicity of associated hits in reconstructed 4D segments in YB+1, sector 4. Right
plots: segment direction with respect to the vertical axis. Real data (points) and simulated data (solid line
histogram) are shown in both sets of plots.

The evaluation of the segment reconstruction efficiency is performed using muon tracks recon-
structed in the silicon tracker independently of the muon chambers. Distributions of the residuals
between the reconstructed 2D r-φ segment intersection with the first layer plane in MB1 and the
extrapolated tracker track position to the same plane for the muons in four different momentum
ranges (as measured by the inner tracker system) are shown in figure 15. Similar distributions
are observed for chambers MB2-MB4, with slightly increasing RMS values when going from the
innermost to the outermost stations (e.g., RMS = 8.4 cm in MB2 and RMS = 10.7 cm in MB4
for muons with pT in the [45–80] GeV/c range). The width of the distributions is dominated by
the effect of multiple scattering in the calorimeters and in the steel return yokes of the magnet. It
decreases at larger momentum, with a behaviour well reproduced by the simulated data. The small
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Figure 13. Efficiency for hit reconstruction and association to the muon track segment as a function of the
predicted muon position in layer one (top) and layer two (bottom) of one SL in the MB2 station of sector 4
in YB0. A region corresponding approximately to four DT cells in each layer is shown. Points: data; full
line histogram: simulation. Note the suppressed zero of the vertical axis.

discrepancy at large distance values, increasing with the momentum of the muon, is due to fluctua-
tions in the muon energy loss which are slightly underestimated in the simulation. To measure the
segment reconstruction efficiency, only muons with pT > 30 GeV/c were considered. A window of
20 cm around the predicted position was used to accept a segment candidate. To ensure a reliable
extrapolation from the tracker tracks, when computing the efficiency for a given chamber MBn, the
extrapolation of the track to station MB(n+1) (exceptionally MB3 when considering the efficiency
of MB4 chambers) was required to be confirmed by a DT segment reconstructed with at least six
associated hits also in this station MB(n+1), within the same acceptance window as defined above.
To avoid bias in the efficiency determination due to the trigger, in the selection for the efficiency
computation of chamber MBn it was required that the event have high-quality local triggers deliv-
ering the same bunch crossing identification in at least two chambers in the same sector, excluding
the chamber under study. This procedure guarantees that the events were triggered independently
from the trigger response of the local trigger device of the considered chamber. The segment re-
construction efficiency as a function of the local coordinate in the chamber is shown in figure 16
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Figure 14. Distribution of the difference between the distance to the cell anode wire of the first hit recorded
in a cell and the distance of the extrapolated track position.

for the r-φ layers of chambers MB1-MB4 of sector 4 in YB0. The observed decrease of efficiency
near the chamber’s edges is due to the fact that a track passing near the boundary but outside the
chamber volume can be incorrectly predicted to have its extrapolation inside the chamber. Note
that the asymmetric behaviour of the efficiency curve on the opposite sides of a chamber is due to
the staggered geometry of the chambers in a sector (see figure 1, bottom part) and to the track selec-
tion which requires a confirmation of a good track segment, compatible with track extrapolation, in
chamber MBn+1 when chamber MBn is under study. Due to this requirement, the chamber region
near one edge of the chamber is not illuminated for MB1, MB2 and MB3. The method can be
safely applied to all chambers of the three uppermost and lowermost sectors of the wheels YB−1,
YB0 and YB1, where there are enough good quality tracker tracks that allow reliable extrapolation.

The DT chamber efficiency can also be evaluated making use exclusively of the information
coming from the muon spectrometer, thus extending the efficiency measurement to the chambers
of outer barrel wheels YB±2. Muon tracks are reconstructed with the information provided by
neighbouring chambers and extrapolated to the middle of the chamber under test. Two different
approaches have been considered to reconstruct the tracks and obtain the extrapolated position.
A simple, linear fit to the hits recorded in the other chambers in the same sector was performed,
taking into account the uncertainty due to multiple scattering in the iron. The resulting track was
extrapolated to the chamber under test. This method is only valid for data taken with no magnetic
field, as in this case muons essentially follow a straight line trajectory. For runs taken with the
nominal magnetic field we rely on the “Standalone Muon” reconstruction software [21]. In this
case, the hits present in the chamber under test take part in the track fitting process, thus potentially
biasing the determination of the segment reconstruction efficiency. Results obtained while applying
this procedure to runs taken with zero field are, however, compatible with those obtained from the
linear tracker extrapolation. To ensure a good accuracy in the track extrapolation and to minimize
a potential bias, the following selection criteria were applied:
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Figure 15. Distance between the extrapolated position from the tracker track and the reconstructed 2D r-φ
segment position in MB1, for different pT bins. Dots: real data; full line histograms: simulated data.

• in both r-z and r-φ planes the number of hits associated with the muon track was required to
be over 4 and 13 hits, respectively, not counting the chamber under study;

• the error on the position of the extrapolation point in the chamber was required to be smaller
than 1.5 cm;

• the tracks must cross only a single sector and wheel;

• track segments in the top (bottom) chambers of CMS are selected if the event was triggered
on the opposite side, bottom (top) part of the detector, in order to decouple the efficiency
study from any potential trigger effects.

Most tracks with high extrapolation error have a low momentum (pT < 10 GeV/c), as they
are most affected by multiple scattering effects. Given the large amount of data recorded during
CRAFT, the number of events left after the selection is sufficient for a good efficiency measurement.
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Figure 16. 2D r-φ segment efficiency as a function of the local coordinate in the chamber in YB0, sector
4. Dots: real data; full line histograms: simulated data. Note that the MB4 station in this sector is split into
two chambers.

A chamber was considered to be efficient when a r-φ or r-z segment was found in that chamber
within a 5 cm window around the extrapolated position (about 10 times the RMS spread of the
distribution of the spatial residuals, see next section). The inefficiency is concentrated at chamber
borders, due to geometrical effects. Efficiencies are higher than 99% for the r-φ plane once the
predicted position from the extrapolation is required to be inside the chamber, at a distance larger
than 10 cm from the border (cf. figure 16), in fair agreement with the results obtained using tracker
tracks information for all the wheels in which the comparison between the two methods was pos-
sible. Efficiencies in the r-z plane are approximately 2% lower, given the smaller number of hits
available for segment reconstruction in this plane.

All DT sectors but the vertical ones (sectors 1 and 7) of the five wheels were studied. Figure 17
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of the sector number for the different wheels.
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Figure 18. Segment reconstruction efficiency in the r-z planes in the barrel muon chambers, as a function
of the sector number for the different wheels.

shows the chamber efficiency in the r-φ plane, obtained by the second method described above
Every plot gives the efficiencies for a given station for each sector and wheel analyzed, marked on
the horizontal axis. Figure 18 shows the corresponding efficiencies in the r-z plane, for the three
chamber types (MB1/2/3) that measure the coordinate of the hit position in this plane. Results on
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Figure 19. Left: distribution of the difference of the angles in the CMS bending plane of muon track
segments reconstructed in consecutive stations in YB−1, sector 4, measured at B = 0 T. Right: distribution
of the distance between the intersection with the central plane of station MBn of the segment reconstructed
in this station and of the extrapolation of the segment reconstructed in station MBn-1.

efficiencies are fully compatible among sectors; the drop of efficiency observed in some of them
corresponds to those sectors where the muon incident angle is largest. Results obtained at B = 0 T
are in agreement with those shown in figures 17 and 18.

6.2 Track segment position and direction measurements

In order to study the quality of the segment reconstruction, the comparison of position and direction
measurements between different muon chambers for the same cosmic muon have been performed.
First, the data collected with B = 0 T were studied. The distributions of the difference of the di-
rections of muon track segments reconstructed in the CMS bending plane in consecutive chambers
are shown in figure 19 (left) for the chambers of sector 4 of YB−1. The average values of the dis-
tributions are of the order of 1 mrad, due to misalignment effects (both in the internal components
of the chambers and on the relative orientation between chambers) which are not yet completely
taken into account in the reconstruction. Figure 19 (right) shows the distribution of the distance
between the intersection with the central plane of station MBn of the segment reconstructed in
this station and of the extrapolation of the segment reconstructed in MBn-1. The average values
indicate relative position misalignments between consecutive chambers of the order of a few mil-
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Figure 20. Left: distribution of the averages of the angle differences at B = 0 T between consecutive stations
in all wheels and sectors. Right: distribution of the averages of the distances at B = 0 T between measured
and extrapolated positions in consecutive chambers.

limeters. It is worth noting that the smaller dispersion of the position difference for MB1-MB2
chambers (right-bottom plot in the figure) is due to the smaller size of the steel yoke between these
chambers, compared to the steel yokes between MB2-MB3 and MB3-MB4.

The summary of the above results for all the wheels and sectors is shown in figure 20. The
distribution of the average values of the angle differences is shown in the histogram on the left.
The RMS of the distribution is about 1 mrad. The histogram on the right shows a similar plot for
the differences between measured and extrapolated positions. The RMS of the distribution is about
2 mm, showing that the relative alignment between the chambers is compatible with the tolerance
expected for the mechanical installation of the chambers in CMS. This result guarantees that for
the beginning of LHC running the muon L1 trigger processor will operate correctly, efficiently
providing muon trigger candidates with reliable estimation of their transverse momentum. Since
there is no evidence for chambers placed outside the design mechanical tolerance, we expect that
from these start-up mis-alignment conditions the use of survey data and of the data from the laser
alignment system [14] will bring the position uncertainty to the design goal of about 100 µm
for High Level Trigger and off-line reconstruction. In addition, software alignment procedures
using prompt muon tracks have been deployed, which show that it will be possible to reach a
comparable accuracy on the chambers’ position after accumulating data corresponding to a few
pb−1 of integrated luminosity [13].

6.3 Bending power measurements

Data with the magnetic field value B = 3.8 T in the central solenoid were used to study the bending
power of the muon spectrometer. The difference in the track angle measurements between consec-
utive stations were studied for different values of the transverse momentum of the associated track,
which was measured independently by the tracker. These distributions are shown in figure 21 for
MB2-MB3 pairs of stations. As seen from the figure, the bending power for a pT = 30 GeV/c
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Figure 21. Bending angle differences between MB2 and MB3 stations. Top: µ+; bottom: µ−. Distributions
for different pT intervals are shown: [8–12] (dashed line), [18–22] (full line), [27–33] (points) and [90–
110] GeV/c (dashed-dotted line). The curves show the result of a Gaussian fit to data distribution for the
27 < pT < 33 GeV/c sample.

muon is about 6.6 mrad. Similar distributions are observed for MB1-MB2 and MB3-MB4 pairs
of stations, with bending power equal to 4.0 mrad and 6.0 mrad, respectively. Note that the width
of the magnetized steel between the chambers is about 30 cm between MB1 and MB2 and 62 cm
between MB2-MB3 and MB3-MB4 [22]. The magnetic flux density in the steel yokes decreases
slightly with the radial position.

Figure 22 shows the distributions of the angle difference between MB1 and MB4 stations,
displaying the bending power of the full lever arm in a barrel sector. For muons selected in the pT

range [150,250] GeV/c, the average deflection by the magnetic field in the steel return yokes of the
magnet is about 3.4 mrad.

The above results and a comparison with the simulation are summarized in figures 23 and 24,
where the average and the width of the Gaussian fits to the distributions of the angle difference are
plotted versus the transverse momentum of the track. The results are shown both for positive (full
points) and negative muons (open points). The behaviour shown in figure 24 is consistent with the
expectations from the multiple scattering in the iron: the dashed and full lines show respectively
the computation for an average material crossed by the muon between the two innermost stations
of MB1 and MB2 (18 radiation lengths) and of MB2 and MB3 or MB3 and MB4 (37 radiation
lengths) [7], summed in quadrature with a constant term σ∝ = 2.5 mrad. This asymptotical value
reached at high momenta is compatible with expectations. In fact, the intrinsic angular resolution
of each chamber expected from the observed single hit resolution (on average about 290 µm, see
figure 9, for the core of the hit residual distribution) is σintrins. = 1.5 mrad, taking into account the
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Figure 22. Bending angle differences between MB1 and MB4 stations. Top: µ+; bottom: µ−. Distributions
for different pT intervals are shown: [8–12] (dashed line), [18–22] (full line), [27–33] (dashed-dotted line)
and [150–250] GeV/c (points). The curves show the result of a Gaussian fit to data distribution for the
150 < pT < 250 GeV/c sample.

hit multiplicity distributions of the segments and the presence of tails in the hit residual distribu-
tions shown in figure 7. The contribution to the bending measurement error from the incomplete
knowledge of chambers’ alignment, as extracted from B = 0 T data (cf. the distribution of the ∆φ

averages shown in figure 20) is σmis−align = 1.3 mrad/
√

2 = 0.9 mrad. The expected value for σ∝

is thus σ∝ = [σ2
intrins. + σ2

mis−align]
1/2 ·
√

2 = 2.5 mrad. It must be noted that the asymptotic be-
haviour for MB2-MB3 and MB3-MB4 is slightly worse, mainly due to the fact that the modelling
of the multiple scattering effects with a Gaussian curve tends to be inadequate when increasing the
amount of material crossed by the muon. The intrinsic angular resolution measured in dedicated
bunched test beams [23] was about 1 mrad for muon tracks normal to the chamber plane. It is
worth stressing here that the present result is obtained using segment tracks with a very large an-
gular spread with respect to the direction normal to the chambers’ plane, for which the chamber
behaviour is optimal. The angular spread of segments originating from prompt muons produced in
pp collisions is considerably smaller.

7 Conclusions

The performance of the DT barrel muon detector of CMS was studied in detail using cosmic muon
data collected in autumn 2008, both with zero magnetic field and with the magnet solenoid op-
erating at B = 3.8 T. The data analysis performed on 246 out of the total of 250 DT chambers
shows a very good muon reconstruction capability, with a resolution of single reconstructed hits
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on the order of 260 µm in all chambers except the vertical ones, which could not be studied well
with cosmic rays. The reconstruction efficiency of high-quality local track segments in each station
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has been measured to be about 99% in all chambers. The comparison between measurements of
the track segment positions and directions in the different chambers shows a behaviour compatible
with the expectations from the multiple scattering of the muons in the steel yoke. The spread in
the measurement of the track direction in the bending plane of CMS was about 6 mrad, averaged
over the whole momentum spectrum of cosmic muons with pT > 10 GeV/c. The bending power in
the steel return yoke between the innermost and outermost station has been measured to be about
3 mrad for pT = 200 GeV/c muons. The relative misalignments of the chambers, as measured by
the data collected at B = 0 T, are well within the mechanical tolerances (a few mm) for the insertion
of the chambers into their cradles inside the magnet yoke structure.

The chamber performance is in good agreement with the simulation; it provides a good start-
ing point that assures fully efficient operation of the muon DT trigger and eventual achievement
of the original design criteria of the DT system. The criteria specify robust and efficient muon
identification, and the capability of measuring the muon position in each station with a precision
of about 100 µm, in order to provide good momentum resolution for highly energetic muons. The
above results are very encouraging and allow the anticipation of a good performance of the DT
barrel muon detector during early phases of LHC operation and data taking, which would provide
efficient identification and reconstruction of muons.
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Université Libre de Bruxelles, Bruxelles, Belgium
O. Bouhali, E.C. Chabert, O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, S. Elgammal,
A.P.R. Gay, G.H. Hammad, P.E. Marage, S. Rugovac, C. Vander Velde, P. Vanlaer, J. Wickens

Ghent University, Ghent, Belgium
M. Grunewald, B. Klein, A. Marinov, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen,
P. Verwilligen
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Nucléaire de Lyon, Villeurbanne, France
C. Baty, M. Bedjidian, J. Blaha, G. Boudoul, H. Brun, N. Chanon, R. Chierici, D. Contardo,
P. Depasse, T. Dupasquier, H. El Mamouni, F. Fassi5, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le
Grand, M. Lethuillier, N. Lumb, L. Mirabito, S. Perries, M. Vander Donckt, P. Verdier

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
N. Djaoshvili, N. Roinishvili, V. Roinishvili

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi,
Georgia
N. Amaglobeli

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
R. Adolphi, G. Anagnostou, R. Brauer, W. Braunschweig, M. Edelhoff, H. Esser, L. Feld,
W. Karpinski, A. Khomich, K. Klein, N. Mohr, A. Ostaptchouk, D. Pandoulas, G. Pierschel,
F. Raupach, S. Schael, A. Schultz von Dratzig, G. Schwering, D. Sprenger, M. Thomas, M. Weber,
B. Wittmer, M. Wlochal

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
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D. Treille, P. Trüb25, M. Weber, L. Wehrli, J. Weng, S. Zelepoukine27

– 39 –



2
0
1
0
 
J
I
N
S
T
 
5
 
T
0
3
0
1
5

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, S. De Visscher, C. Regenfus, P. Robmann, T. Rommerskirchen,
A. Schmidt, D. Tsirigkas, L. Wilke

National Central University, Chung-Li, Taiwan
Y.H. Chang, E.A. Chen, W.T. Chen, A. Go, C.M. Kuo, S.W. Li, W. Lin

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y. Chao, K.F. Chen, W.-S. Hou, Y. Hsiung, Y.J. Lei, S.W. Lin, R.-S. Lu,
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