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ABSTRACT

We study the spherical Mexican hat wavelet (SMHW) as a detector of primordial
non-Gaussianity of the local type on the Cosmic Microwave Background (CMB)
anisotropies. For this purpose we define third order statistics based on the wavelet
coefficient maps and the original map. We find the dependence of these statistics in
terms of the non-linear coupling parameter fnl and the bispectrum of this type of
non-Gaussianity. We compare the analytical values for these statistics with the re-
sults obtained with non-Gaussian simulations for an ideal full-sky CMB experiment
without noise. We study the power of this method to detect fnl, i. e. the variance of
this parameter σ2(fnl), and compare it with the variance obtained from the primary
bispectrum for the same experiment. Finally we apply our wavelet based estimator on
WMAP-like maps with incomplete sky and inhomogeneous noise and compare with
the optimal bispectrum estimator. The results show that the wavelet cubic statis-
tics are as efficient as the bispectrum as optimal detectors of this type of primordial
non-Gaussianity.

Key words: methods: data analysis - cosmic microwave background

1 INTRODUCTION

The primordial perturbations generated during the inflation-
ary period are imprinted in the radiation and matter distri-
bution. The study of the CMB anisotropies has become an
important source of information to understand the physics
of the very early universe. Thus for example the search of
primordial non-Gaussianities on the CMB anisotropies, the
measurement of the tilt and running of the index of the
power spectrum ∆2

R(k) = Akns−1 and the search of pri-
mordial gravitational waves have become part of a set of
observables that are being used to select among many dif-
ferent models for the inflationary paradigm. The simplest
models of inflation as the standard, single-field, slow roll in-
flation (Guth 1981; Albrecht & Steinhardt 1982; Linde 1982,
1983; Mukhanov et al. 1992) predict that the anisotropies
are compatible with a nearly Gaussian random field.

There are two main procedures for the Gaussianity anal-
yses of a map of CMB anisotropies. One can perform blind
tests searching for deviations with respect to the null hy-
pothesis (the random field is Gaussian). The second option
is to consider different physical scenarios and to look for
their imprints on the anisotropies.

Among the many different blind tests performed

⋆ e-mail: curto@ifca.unican.es

on the Wilkinson Microwave Anisotropy Probe WMAP1

data, there are several reports of anomalies present
in these data. We can mention the asymmetry be-
tween the two ecliptic hemispheres (Eriksen et al.
2004; Hansen et al. 2004; Eriksen et al. 2005, 2007;
Hoftuft et al. 2009; Pietrobon et al. 2010; Vielva & Sanz
2010b), anomalous quadrupole-octupole alignment
(Copi et al. 2004; de Oliveira-Costa et al. 2004; Copi et al.
2006; Gruppuso & Burigana 2009; Frommert & Enßlin
2010), a non-Gaussian cold spot (Vielva et al. 2004;
Mukherjee & Wang 2004; Cruz et al. 2005, 2006, 2007a,b,
2008; Vielva et al. 2010a), unexpected alignment of CMB
structures (Wiaux et al. 2006; Vielva et al. 2007) and an un-
expected low value of the CMB variance (Monteseŕın et al.
2008; Cruz et al. 2010).

Regarding targeted tests, one has to think about
the possible physical mechanisms that lead to non-
Gaussianities and search for their possible signatures. His-
torically motivated, many inflationary models that gener-
ate non-Gaussianity can be parametrised by the local non-
linear coupling parameter fnl, which is introduced through
the primordial gravitational potential (Verde et al. 2000;
Komatsu & Spergel 2001; Bartolo et al. 2004)

1 http://map.gsfc.nasa.gov/
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2 A. Curto et al.

Φ(x) = ΦL(x) + fnl{Φ
2
L(x)− 〈ΦL(x)〉

2}. (1)

Significant non-Gaussianity of the local form can be gen-
erated for example in the curvaton model (Lyth et al.
2003), multi-field inflationary models (Komatsu et al. 2005),
the inhomogeneous reheating scenario (Dvali et al. 2004;
Bartolo et al. 2004), models with low reheating efficiency
(Mukhanov et al. 1992; Salopek & Bond 1990), models
based on hybrid inflation (Lin 2009), etc. This kind of
non-Gaussianity is characterised by correlations among
modes k in the Fourier space with very different amplitude
(Creminelli et al. 2006, 2007). This can be seen for example
through the shape function F (k1, k2, k3) of the local non-
Gaussianity

F (k1, k2, k3) = Afnl

(

1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

)

(2)

where A is a normalization constant (see for example the
plot of the shape function of the local distribution by
Babich et al. 2004). The most significant contributions of
this kind of non-Gaussianity arise for the cases with k1 <<
k2 ≈ k3 and permutations among the three modes k1,
k2 and k3. Other shapes of inflationary models that pro-
duce their particular kind of non-Gaussianity are for exam-
ple the equilateral and the orthogonal shape (Senatore et al.
2010; Komatsu et al. 2010). The most significant contribu-
tion to the non-Gaussianity is located in specific ranges of
the Fourier space k1 ≈ k2 ≈ k3 for the equilateral shape
whereas the orthogonal shape is nearly orthogonal to the
two previous forms.

In this paper we focus on the non-Gaussianity of
local type. The canonical inflationary model predicts
fnl ∼ 10−2 whereas other models predict larger amounts
of non-Gaussianity (Bartolo et al. 2004). An eventual
detection of a deviation from Gaussianity will rule out
many inflationary models from the present available list.
Many studies have been performed to constrain the local
fnl on different data sets such as the Cosmic Background
Explorer (COBE) data (Komatsu et al. 2002; Cayón et al.
2003a), the MAXIMA data (Santos et al. 2003; Cayón et al.
2003b), the Very Small Array data (Smith et al. 2004),
the BOOMERang data (De Troia et al. 2007; Natoli et al.
2009) and the Archeops data (Curto et al. 2007, 2008).
Significant improvements on the (S/N) ratio of the local
fnl parameter have been achieved with the WMAP data
using different estimators. For most of the works, fnl is
positive with a significance between 1σ and 2σ. See for
example the results obtained with different bispectrum-
based estimators (Komatsu et al. 2003; Spergel et al.
2007; Creminelli et al. 2006, 2007; Yadav & Wandelt 2008;
Komatsu et al. 2009; Smith et al. 2009; Elsner & Wandelt
2009; Bucher et al. 2010; Komatsu et al. 2010; Smidt et al.
2010), with the SMHW (Curto et al. 2009a,b), with
needlets (Pietrobon et al. 2009; Rudjord et al. 2009,
2010; Cabella et al. 2010), with the HEALPix wavelet
(Casaponsa et al. 2010), with the Minkowski functionals
(Hikage et al. 2006; Gott et al. 2007; Hikage et al. 2008;
Matsubara 2010), the N-PDF distribution (Vielva & Sanz
2009), the skewness of the power spectrum (Smidt et al.
2009), etc. Other works use the distribution of mat-
ter on large scales (see for example Dalal et al. 2008;
Matarrese & Verde 2008; Slosar et al. 2008; Seljak 2009;

Desjacques & Seljak 2010; Xia et al. 2010) to constrain the
local fnl.

This work is a study of the efficiency of the third or-
der wavelet-based estimators (Curto et al. 2009a,b) to de-
tect primordial non-Gaussianity of the local type. We find
the dependence of the third order estimators in terms of
the local bispectrum and fnl. We compare the power of this
method to detect fnl with the optimal bispectrum estima-
tor for an ideal full-sky and noiseless experiment and the
same comparison for an experiment with WMAP 5-year and
WMAP 7-year beam, noise and sky cut properties. Our re-
sults indicate that the wavelet estimators are as efficient as
the optimal estimators based on the bispectrum.

The article is organised as follows. Section 2 presents
the estimators based on wavelets, their dependence on the
angular bispectrum, their analytical covariance matrix and
the fnl Fisher matrix for wavelet and bispectrum estimators.
In Section 3 we compare the σ(fnl) values obtained with
the wavelet estimator and the bispectrum estimator and the
conclusions are presented in Section 4.

2 THE THIRD ORDER STATISTICS

2.1 Expected values of the wavelet estimator in

terms of the bispectrum

The third order statistics of this analysis are based
on the SMHW. See Antoine & Vandergheynst (1998);
Mart́ınez-González et al. (2002); Vielva (2007);
Mart́ınez-González (2008) for detailed information about
the wavelets and a list of applications to the CMB
anisotropies. Given a function f(n) defined at a position n

on the sphere and a continuous wavelet family on that space
Ψ(n;b, R), we define the continuous wavelet transform as

w(R;b) =

∫

dnf(n)Ψ(n;b, R) (3)

where b is the position on the sky at which the wavelet
coefficient is evaluated and R is the scale of the wavelet.

Considering a set of different angular scales {Ri} we de-
fine a third order statistic depending on three scales {i, j, k}
(Curto et al. 2009b)

qijk =
1

4π

1

σiσjσk

∫

dnw(Ri,n)w(Rj ,n)w(Rk,n) (4)

where σi is the dispersion of the wavelet coefficient map
w(Ri,n). In the particular case of R0 = 0, w(R0,n) ≡ f(n).
Using the properties of the wavelet, we have

w(Ri,n) =
∑

ℓm

aℓmωℓ(Ri)Yℓm(n) (5)

and

σ2
i =

∑

ℓ

Cℓ
2ℓ+ 1

4π
ω2
ℓ (Ri) (6)

where ωℓ(R) is the window function of the wavelet at a
scale R and it is given by the harmonic transform of the
mother wavelet of the SMHW (Mart́ınez-González et al.
2002; Sanz et al. 2006). The convolution with the wavelet is
equivalent to filter the maps with a window function ωl(R)
which depends on the scale. In Fig. 1 we plot the wavelet

c© 0000 RAS, MNRAS 000, 000–000



On the optimality of the spherical Mexican hat wavelet estimator for the primordial non-Gaussianity 3

Figure 1. The window function for the SMHW at different an-
gular scales. Note that the wavelet filters high multipoles for low
angular scales and viceversa.

window function for several angular scales. For small scales,
the wavelet filters low multipoles and viceversa. Therefore
it is important to select a set of angular scales that ranges
all the interesting multipoles.

2.2 The statistics and the primordial

non-Gaussianity

Considering Eqs. 4 and 5, the third order moments can be
written as

qijk =
1

4π

1

σiσjσk

×

{

∑

ℓ1,ℓ2,ℓ3,m1,m2,m3

aℓ1m1
aℓ2m2

aℓ3m3

×ωℓ1(Ri)ωℓ2(Rj)ωℓ3(Rk)

×

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)(

ℓ1 ℓ2 ℓ3
0 0 0

)

×

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

}

, (7)

where matrix is the Wigner 3j symbol and we have used the
Gaunt integral (Komatsu & Spergel 2001)

∫

d2nYℓ1m1
(n)Yℓ2m2

(n)Yℓ3m3
(n) =

×

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)(

ℓ1 ℓ2 ℓ3
0 0 0

)

×

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π
. (8)

The mean value of the third order statistic qijk can be
written in terms of the reduced bispectrum as defined by
Komatsu & Spergel (2001):

〈qijk〉 =
1

4π

1

σiσjσk

×
∑

ℓ1,ℓ2,ℓ3

ωℓ1(Ri)ωℓ2(Rj)ωℓ3(Rk)I
2
ℓ1ℓ2ℓ3bℓ1ℓ2ℓ3 , (9)

where Iℓ1ℓ2ℓ3 is defined as

Iℓ1ℓ2ℓ3 =

(

ℓ1 ℓ2 ℓ3
0 0 0

)

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π
. (10)

Now assuming a primordial gravitational potential of the
form given by Eq. 1 it is possible to derive its corresponding
bispectrum in terms of fnl (see Komatsu & Spergel 2001).
The expected value of the third order moments is propor-
tional to fnl

〈qijk〉fnl
= αijk × fnl, (11)

where

αijk =
1

4π

1

σiσjσk

×
{

∑

ℓ1,ℓ2,ℓ3

ωℓ1(Ri)ωℓ2(Rj)ωℓ3(Rk)I
2
ℓ1ℓ2ℓ3b

prim
ℓ1ℓ2ℓ3

}

. (12)

The pixel properties are taken into account by re-

placing Cℓ by Cℓ

[

ω
(pix)
ℓ

]2

in Eq. 6 and bprimℓ1ℓ2ℓ3
by

bprimℓ1ℓ2ℓ3
ω

(pix)
ℓ1

ω
(pix)
ℓ2

ω
(pix)
ℓ3

in Eq. 12, where ω
(pix)
ℓ is the

pixel window function for the HEALPix pixelization
(Górski et al. 2005).

We have evaluated the αijk statistics analytically us-
ing Eq. 12 as well as from non-Gaussian simulations for the
same set of 12 angular scales used in Curto et al. (2009b)2.
We have used a full-sky ideal experiment without noise and
a characteristic angular resolution of 6.9 arcmin (HEALPix
Nside = 512). We need the expected values of the local
primordial bispectrum to evaluate analytically the statis-
tics αijk. We have computed the primordial bispectrum up
to ℓmax = 1535 using the gTfast3 code based on CMB-
Fast (Seljak & Zaldarriaga 1996) to evaluate the transfer
function. The cosmological parameters for this analysis are
Ωcdm = 0.25, Ωb = 0.05, ΩΛ = 0.70, τ = 0.09, h = 0.73
and a scale invariant spectral index n = 1 for the power
spectrum P (k). We have used a set of 300 non-Gaussian
simulations generated with the same cosmological parame-
ters following the algorithm defined in Liguori et al. (2003,
2007). The mean value of the αijk statistics of these simu-
lations and its error bars are plotted in Fig. 2. These values
are compared with the theoretical value obtained from Eq.
12. We can see that there is a good agreement between the
simulations and the analytic model. There is a slight dis-
crepancy at negative values but we do not consider it very
significant due to the correlations among the αijk quanti-
ties. In any case, these values correspond to αijk involving
large scales where cosmic variance is more important and
a larger number of simulations would be needed to achieve
convergence. There is also a slight deviation at small angular
scales (corresponding to values of αijk ∼ 0.5 × 10−4). This
may be related to numerical uncertainties in the evaluation
of the integrals that lead to the bispectrum bprimℓ1ℓ2ℓ3

at high
multipoles ℓ. However, we have seen that these small devia-
tions do not introduce significant differences (< 1%) in the
estimation of σ(fnl) when we use either the analytic or the
simulated αijk.

2 The angular scales used in Curto et al. (2009b) are: 6.9, 10.6,
16.3, 24.9, 38.3, 58.7, 90.1, 138.3, 212.3, 325.8 and 500 arcmin.
The unconvolved map was also included in the analysis.
3 http://gyudon.as.utexas.edu/∼komatsu/CRL/nongaussianity/
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4 A. Curto et al.

Figure 2. The αijk statistics computed analytically and with
nsim = 300 non-Gaussian simulations. The error bars correspond
to the dispersion σ(αijk)/

√
nsim obtained with the simulations.

The αijk are sorted such as the largest values correspond to
pixel-dominated scales while the smallest values correspond to
the largest scales.

Figure 3. The analytical covariance matrix computed through
Eq. 16 compared to the one obtained from Gaussian simulations
for the same power spectrum Cℓ.

2.3 The covariance of the third order statistics

The covariance matrix of the third order moments can be
computed in the Gaussian limit using the properties of the
covariance for the bispectrum. Considering the Gaussian
case we have

Cijk,rst = 〈qijkqrst〉 − 〈qijk〉〈qrst〉 = 〈qijkqrst〉. (13)

From the definition of qijk

〈qijkqrst〉 =
1

(4π)2
1

σiσjσk

1

σrσsσt
×

∫

dn̂1dn̂2

×
〈

w(Ri,n1)w(Rj ,n1)w(Rk,n1)

×w(Rr,n2)w(Rs,n2)w(Rt,n2)
〉

. (14)

Using Wick’s theorem and the properties of Gaussian distri-
butions (in a similar manner as in Eq. 13 of Heavens 1998)
we have

〈

w(Ri,n1)w(Rj ,n1)w(Rk,n1)

×w(Rr,n2)w(Rs,n2)w(Rt,n2)
〉

=

〈w(Ri,n1)w(Rj ,n1)〉

×〈w(Rk,n1)w(Rr,n2)〉

×〈w(Rs,n2)w(Rt,n2)〉+

+ permutations (total 15 terms) (15)

From these terms, there are only 6 that do not vanish in Eq.
14. They are those which involve the two coordinates n1

and n2 in the same average (Srednicki 1993). Taking this
into account and the properties of the two point correlation
functions (see Eq. 14 of Heavens 1998) we have

〈qijkqrst〉 =
1

(4π)2
1

σiσjσk

1

σrσsσt

∑

l1l2l3

I2l1l2l3Cl1Cl2Cl3

×{ωl1(Ri)ωl1(Rr)ωl2(Rj)ωl2(Rs)ωl3(Rk)ωl3(Rt)

+ωl1(Ri)ωl1(Rr)ωl2(Rj)ωl2(Rt)ωl3(Rk)ωl3(Rs)

+ωl1(Ri)ωl1(Rs)ωl2(Rj)ωl2(Rr)ωl3(Rk)ωl3(Rt)

+ωl1(Ri)ωl1(Rs)ωl2(Rj)ωl2(Rt)ωl3(Rk)ωl3(Rr)

+ωl1(Ri)ωl1(Rt)ωl2(Rj)ωl2(Rr)ωl3(Rk)ωl3(Rs)

+ωl1(Ri)ωl1(Rt)ωl2(Rj)ωl2(Rs)ωl3(Rk)ωl3(Rr)}

(16)

The pixel properties are taken into account here by replac-
ing Cℓ by Cℓω

(pix)
ℓ ω

(pix)
ℓ . We have compared the analytical

covariance matrix obtained through Eq. 16 with the covari-
ance matrix obtained with 104 Gaussian simulations for the
same cosmological parameters defined in Subsect. 2.2. The
covariance matrix elements Cijk,rst, are compared by pairs
in Fig. 3, obtaining a very good agreement.

2.4 fnl Fisher matrix of the third order moments

We discuss the detectability of primary non-Gaussianity
with the third order moments. Assuming that the third or-
der statistics are Gaussian-like, we can use the Gaussian
likelihood to constrain the fnl parameter

L(fnl) = C0e
−χ2(fnl)/2, (17)

where C0 is a constant and χ2(fnl) is given by

χ2(fnl) =
∑

ijk,rst

(qobsijk−〈qijk〉fnl
)C−1

ijk,rst(q
obs
rst−〈qrst〉fnl

).(18)

C−1
ijk,rst is the inverse of the covariance matrix of the third

order statistics that we have computed analytically in the
previous section, qobsijk are the third order statistics obtained
from the data and 〈qijk〉fnl

are the expected values of the
third order statistics for a given model with fnl. As we have
seen in Subsect. 2.2, 〈qijk〉fnl

= fnlαijk, with αijk a constant
independent of fnl. Using this on Eq. 18, we have

χ2(fnl) =
∑

ijk,rst

(qobsijk − αijkfnl)C
−1
ijk,rst(q

obs
rst − αrstfnl). (19)

The variance of the fnl parameter can be computed using
the Fisher matrix, which leads to:

σ2(fnl) =
−1

∂2logL(fnl)

∂f2

nl

=
1

1
2

∂2χ2(fnl)

∂f2

nl

=

=
1

∑

ijk,rst
αijkC

−1
ijk,rstαrst

. (20)

c© 0000 RAS, MNRAS 000, 000–000
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2.5 Principal Component Analysis of the third

order moments

One of the most significant advantages of the wavelet-based
analysis for this type of non-Gaussianity is that we are able
to reduce the non-Gaussian information present in the bis-
pectrum bℓ1ℓ2ℓ3 (about 107 elements) to a set of several hun-
dreds of qijk statistics. However, these quantities are corre-
lated and in certain conditions their covariance matrix may
be ill-conditioned. There are different approaches to deal
with these matrices. We will apply a Principal Component
Analysis (PCA) in all the tests where the wavelet coefficient
covariance matrix is involved in order to keep the errors re-
lated to the covariance matrix under a certain threshold.

The χ2 statistic of a random variable x of dimension n
can be written

χ2 =

n
∑

i,j=1

xiC
−1
ij xj , (21)

where C is the covariance matrix of this variable. For any
positive definite covariance matrix, it is possible to find a lin-
ear transformation of the x vector where the corresponding
covariance matrix is the identity

χ2 =

n
∑

i=1

y2
i (22)

where yi =
∑n

j=1
(D1/2Rt)ijxj and D and R are the eigen-

value and eigenvector matrices of the covariance matrix,
C = RDRt. In particular we sort the eigenvalues in descend-
ing order Di > Di+1. We can define a partial χ2

m statistic

χ2
m =

m
∑

i=1

y2
i (23)

such that only the yi quantities related to the largest m
eigenvalues are considered. The Fisher matrix for the fnl

parameter using χ2
m is defined as

σ2
m(fnl) ≡

1
1
2

∂χ2
m(fnl)

∂f2

nl

. (24)

As the third order moments are linearly proportional to fnl,
xj = qj − fnlαj and defining βi =

∑n

j=1
(D−1/2Rt)ijαj , the

Fisher matrix for the fnl parameter is

σ2
m(fnl) =

1
∑m

i=1
β2
i

. (25)

2.6 Bispectrum estimator and error bars

The bispectrum-based estimators are the most widely ap-
plied tools for detecting primordial non-Gaussianity. Con-
sidering the angle averaged bispectrum Bℓ1ℓ2ℓ3 as defined in
Komatsu & Spergel (2001), it can be shown that the unbi-
ased bispectrum-based minimum variance estimator for the
full-sky limit and homogeneous noise is (Creminelli et al.
2006)

f̂nl =
1

N

∑

ℓi,mi

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

Bmodel
ℓ1ℓ2ℓ3

Cℓ1Cℓ2Cℓ3

×aℓ1m1
aℓ2m2

aℓ3m3
. (26)

Figure 4. σ(fnl) for different ℓmax using the Fisher matrix of
the bispectrum.

The unbiased bispectrum-based minimum variance estima-
tor for the incomplete sky limit and inhomogeneous noise is
(Creminelli et al. 2006)

f̂nl =
1

N

∑

ℓi,mi

(

〈

aℓ1m1
aℓ2m2

aℓ3m3

〉

fnl=1

×C−1
ℓ1m1,ℓ4m4

C−1
ℓ2m2,ℓ5m5

C−1
ℓ3m3,ℓ6m6

×aℓ4m4
aℓ5m5

aℓ6m6

−3
〈

aℓ1m1
aℓ2m2

aℓ3m3

〉

fnl=1

C−1
ℓ1m1,ℓ2m2

C−1
ℓ3m3,ℓ4m4

aℓ4m4

)

. (27)

In particular, the signal-to-noise ratio for the fnl parameter,
using a Fisher analysis for a full-sky and homogeneous noise
experiment is (Komatsu & Spergel 2001)

fnl

σ2(fnl)
=

∑

26ℓ16ℓ26ℓ3

Bmodel
ℓ1ℓ2ℓ3

Bmodel
ℓ1ℓ2ℓ3

σ2
ℓ1ℓ2ℓ3

, (28)

where σ2
ℓ1ℓ2ℓ3

is the variance of the bispectrum.
Given a map with Npix pixels, the number of operations

to obtain the local fnl through the KSW algorithm based
on the bispectrum is ∼ 100N

3/2
pix (Komatsu et al. 2005). Our

algorithm based on the SMHW requires ∼ nscalN
3/2
pix op-

erations, where nscal is the considered number of scales
(nscal ∼ 15 for a WMAP-like experiment). Therefore, the
wavelet algorithm is about an order of magnitude faster than
the bispectrum algorithm for this kind of non-Gaussianity.

3 COMPARISON WITH THE OPTIMAL

BISPECTRUM ESTIMATOR

In this Section we study the values of σ(fnl) obtained with
the wavelet and bispectrum estimators for a full-sky and
homogeneous noise experiment and for WMAP-like 5-year
and 7-year V+W combined maps.

3.1 Estimated error bars for fnl with an ideal

experiment

We consider the local primordial bispectrum of a noiseless
experiment with an angular resolution of 6.9 arc minutes
(ℓmax = 1535), and a cosmological model characterised by

c© 0000 RAS, MNRAS 000, 000–000



6 A. Curto et al.

Figure 5. The window function of the SMHW for the list of selected angular scales for this case. We have convolved each wavelet window
function with the pixel window function at Nside = 512. Note that the scales of 2.9 and 4.5 arc minutes are smaller than the pixel size
(6.9 arc minutes). However they provide additional information because of the shape of the wavelet.

Ωcdm = 0.25, Ωb = 0.05, ΩΛ = 0.70, τ = 0.09, h = 0.73 and
n = 1. The variance of fnl is computed through the Fisher
matrix of the bispectrum (see Eq. 28). We have used the
gTfast code to estimate the radiation transfer function and
evaluate the expected values of the local bispectrum for this
experiment following Eq. (19) of Komatsu & Spergel (2001).
We have computed σ(fnl) for different ℓ3 6 ℓmax (see Fig.
4).

Note that as we include higher multipoles (i.e. smaller
scales) σ(fnl) decreases obtaining a limit of σ(fnl) = 5.4 for
ℓmax = 1535.

For the wavelet estimator, we consider the ideal exper-
iment and the cosmological parameters defined previously
for the primordial bispectrum estimators. To maximise the
non-Gaussian signal we take a wide interval of different
angular scales. We select 21 angular scales (including the
unconvolved map) from 2.9 arc minutes to 167.07 degrees
logarithmically spaced4. See Fig. 5 for the list of consid-
ered scales and the wavelet window function correspond-
ing to these scales. We compute the third order quantities
αijk given by Eq. 12 and the covariance matrix of the qijk
statistics given by Eq. 16 for these angular scales. There are

4 The two smallest scales peak at very small angular scales, cor-
responding to sub-pixel structures at the selected resolution of
Nside = 512. Although the localization properties of the wavelet
may be affected for those scales for the considered resolution, we
have checked that this effect does not affect the fnl estimation.
To test this point, we have compared the values of σ(fnl) using
the same set of 21 angular scales in the current case of pixel re-
sultion Nside = 512 and ℓmax = 1535 and in another case with
Nside = 1024 and ℓmax = 1535. The differences in σ(fnl) are
< 1% between both cases.

(21+3−1)!/[3!(21−1)!] = 1771 different third order statistics
for 21 angular scales. The variance of fnl given by Eq. 20
and the variance estimated with Monte Carlo simulations
require the inverse of the covariance matrix Cijk,rst. This
covariance matrix has a large condition number, defined as
the ratio of the maximum and minimum eigenvalues. The
eigenvalues of this matrix are plotted on the left panel of
Fig. 6. This implies that the computation of its inverse is
an ill-conditioned problem. Therefore the numerical errors
present due to the limited precision of our computers (of
the order of 21−53 ≃ 10−16) can affect the value of σ(fnl).
In order to take into account the effect of this source of
errors, we compute σ(fnl) for different subsets of eigenval-
ues of the C matrix using the PCA described in Subsect.
2.5. This is plotted on the right panel of Fig. 6 using the
Fisher matrix for fnl given by Eqs. 24 and 25 and the PCA
method. We as well plot the value of σ(fnl) obtained with
the Fisher matrix of the bispectrum given by Eq. 28 for the
same experiment and ℓmax = 1535. In particular, imposing
a limit on the ratio of the minimum and maximum eigen-
values of the covariance matrix Di/Dmax 6 10−12, we have
σ(fnl) =5.4. Similar results are obtained for σ(fnl) when it
is estimated with 103 Monte Carlo simulations. In particu-
lar, we have obtained σFisher(fnl)/σsims(fnl) ≃ 0.93 for the
wavelet estimator. We have obtained a similar ratio for the
bispectrum estimator in the same ideal experiment using the
Fisher matrix and Gaussian simulations.

Finally, we have studied the dependence of the wavelet
estimator on the angular scale. In Fig. 7 we present the
σFisher(fnl) obtained with the wavelet estimator vs the
Rmin and the Rmax. We have used the PCA method in
order to minimize the influence of the errors in the in-
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Figure 6. Left: list of sorted eigenvalues of the covariance matrix C among the list of 1771 third order statistics. Right: σ(fnl) obtained
with the wavelet estimator using different subsets of eigenvalues of the C matrix following the PCA method. The vertical line shows the
limit where the ratio of the maximum and minimum considered eigenvalues is 1012.

Figure 7. Left: σ(fnl) vs the maximum angular scale Rmax considered for the analysis. Right: σ(fnl) vs the maximum angular scale
Rmin considered for the analysis.

verse of the C matrix by using only the eigenvalues with
Di/Dmax 6 10−12. We can see that σFisher(fnl) is highly de-
pendent on Rmin. This dependence is explained because the
small scales map better the higher multipoles (even for scales
smaller than the pixel size), while the large scales are all cen-
tered around low multipoles. We have also found that the
most significant contribution to the local non-Gaussianity
is given by combinations of small and large scales, which
is in agreement with the squeezed configurations of the
shape form of this kind of non-Gaussianity (see for example
Fergusson & Shellard 2009; Jeong & Komatsu 2009).

3.2 Estimated error bars for fnl with a

WMAP-like experiment

We have estimated the expected dispersion of the local fnl

parameter for the WMAP 5-year data and WMAP 7-year
data. In this analysis we have considered the instrumental
properties of the experiment, the noise level and the recom-
mended sky cuts of each data release. We have compared our
results with the values obtained with the optimal estimator
for WMAP 5-yr (Smith et al. 2009), where σ(fnl) = 21, and
with the optimal estimator for WMAP 7-yr (Komatsu et al.
2010) where σ(fnl) = 21.

For WMAP 5-yr analysis we have used 104 Gaussian
simulations of the combined V+W WMAP 5-yr data to es-

timate the covariance matrix C and 300 non-Gaussian sim-
ulations to estimate the expected values of the third order
moments. We have normalised these non-Gaussian simula-
tions to the ΛCDM model that best fits the WMAP 5-year
data. As we are using a fraction of the full sky, we need to ex-
tend the masks in order to avoid the propagation of the zeros
that are masking the Galaxy to other regions (Curto et al.
2009a), specially for large angular scales. This imposes a
limit on the largest scale available for the analysis. In par-
ticular, from the set of scales given in Fig. 5, we use all
the scales with at least 10% of the sky. Following the crite-
ria to extend the masks defined in Curto et al. (2009a), we
have 15 available scales. Their corresponding masked area
is given in Table 1. In Fig. 8 we plot the eigenvalues of the
C matrix for this case and the σ(fnl) for different subsets
of eigenvalues of C using the PCA method. Using 1012 as a
safe limit for the ratio of the maximum and minimum eigen-
values, we obtain σ(fnl) = 22 for this data. Compared with
the optimal estimator based on the bispectrum (Smith et al.
2009), we obtain very similar results. Compared with the
results presented by Curto et al. (2009a) and Curto et al.
(2009b), we obtain significant improvements. The better re-
sults obtained here are explained because of the wider ratio
of large-to-small angular scales considered now. This allows
to have more third order moments with squeezed triangles
for their corresponding three angular scales. These are the
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Table 1. Considered angular scales and the fraction of the sky that is masked out by each extended mask for the WMAP 5-yr initial
mask. Similar values are obtained for the WMAP 7-yr masks.

index i 0 1 2 3 4 5 6 7
scale Ri map 2.9’ 4.5’ 6.9’ 10.6’ 16.3’ 24.9’ 38.3’

masked out area (%) 28.4 28.4 28.4 28.8 29.3 29.9 30.7 31.8

index i 8 9 10 11 12 13 14 -
scale Ri 58.7’ 90.1’ 138.3’ 212.3’ 325.8’ 500’ 767.3’ -

masked out area (%) 33.4 36.0 40.1 46.7 55.8 68.6 85.4 -

Figure 8. Left: list of sorted eigenvalues of the covariance matrix C among the list of 680 third order statistics (15 scales) for WMAP
5-year data. Right: σ(fnl) obtained with the wavelet estimator using different subsets of eigenvalues of the C matrix following the PCA
method. The vertical line shows the limit where the ratio of the maximum and minimum considered eigenvalues is 1012.

combinations where the most significant part of the local
non-Gaussianity signal is located (Yadav & Wandelt 2010).

For the case of WMAP 7-year data, we have used 104

Gaussian simulations of the combined V+W WMAP 7-yr
data to estimate the covariance matrix C and the same 300
non-Gaussian simulations normalised to the ΛCDM model
that best fits WMAP 7-year data to estimate the expected
values of the third order moments. We consider the same 15
angular scales as for the WMAP 5-year case masking a simi-
lar area. In Fig. 9 we plot the eigenvalues of the C matrix for
this case and the σ(fnl) for different subsets of eigenvalues of
C using the PCA method. Using 1012 as a safe limit for the
ratio of the maximum and minimum eigenvalues, we obtain
σ(fnl) = 21 for this data map. Compared with the optimal
estimator based on the bispectrum (Komatsu et al. 2010),
we obtain equally optimal error bars with the SMHW.

4 CONCLUSIONS

We have developed an efficient method to constrain the lo-
cal fnl with the CMB anisotropies based on wavelets. We
have found the dependence of the third order moments de-
fined in Eq. 4 on fnl and the cosmological model through the
primordial bispectrum (see Eq. 12). On the other hand we
have found an analytical expression for the covariance ma-
trix for all the third order statistics (see Eq. 16). Assuming
a Gaussian-like distribution for the third order moments,
we have estimated the variance of fnl through the Fisher
matrix (see Subsect. 2.4). This variance is compared with
the variance obtained with the same method for the bispec-
trum in Sect. 3. Both cases have been applied to an ideal

experiment with an angular resolution of 6.9 arcmin and
without instrumental noise. After applying Principal Com-
ponent Analysis in order to minimize the influence of the
errors of the inversion of the covariance matrix, we have
found that σ(fnl) = 5.4 when we use the wavelets while
σ(fnl) = 5.4 for the bispectrum up to ℓmax = 1535. In ad-
dition, considering the case of a more realistic experiment
with anisotropic and incomplete sky, such as the WMAP
data, we have obtained σ(fnl) = 22 for V+W WMAP 5-year
data and σ(fnl) = 21 for V+W WMAP 7-year data. These
results are almost equal to the values obtained with the op-
timal bispectrum estimator where σ(fnl) = 21 (Smith et al.
2009; Komatsu et al. 2010). All these results indicate that
wavelets can be as efficient as the bispectrum to detect the
non-Gaussianity of the local type. Apart from the efficiency
of the tool (about 7 times faster than the bispectrum estima-
tor for a WMAP-like experiment) it is remarkable that, as
they are different statistical estimators, wavelets may be sen-
sitive to different systematics in real data. Moreover wavelets
allow us to test the isotropic character of the fnl parameter
(Curto et al. 2009b; Rudjord et al. 2010) by studying dif-
ferent regions of the sky. We stress the importance of this
statistical tool as an efficient alternative to measure local
fnl in experiments such as Planck. In forthcoming works we
will apply this tool on WMAP real data to constrain the
local and other configurations of the non-linear coupling pa-
rameter fnl.
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Figure 9. Left: list of sorted eigenvalues of the covariance matrix C among the list of 680 third order statistics (15 scales) for WMAP
5-year data. Right: σ(fnl) obtained with the wavelet estimator using different subsets of eigenvalues of the C matrix following the PCA
method. The vertical line shows the limit where the ratio of the maximum and minimum considered eigenvalues is 1012.
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reiro R. B., Santos D., Hansen F. K., Liguori M., Matar-
rese S., 2008, A&A, 486, 383
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Vielva P., Mart́ınez-González E., Cruz M., Barreiro R. B.,
Tucci M., 2010a, arXiv:1002.4029

Vielva P., Sanz J. L., 2010b, MNRAS, 404, 895
Wiaux Y., Vielva P., Mart́ınez-González E., Vandergheynst
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