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I. INTRODUCTION

The term “econophysics”, proposed in 1995 in Kolkata
by E. H. Stanley, celebrates 15 years; however, the studies
of economic systems using the tools of statistical physics
initiated much earlier. Indeed, V. Pareto formulated his
famous law of income distribution already in 1897 [1],
and only three years later, L. Bachelier put forward the
random walk model as the fundamental model for finan-
cial time-series [2]. Further, E. Majorana pointed out
that statistical mechanics is a tool that can be applied
also in social sciences [3]. In 1963 B. Mandelbrot found
that the time-series of cotton price undergoes large fluc-
tuations [4]. The studies of econophysics have developed
at an ever accelerating rate since 80’s, particularly fast
after the adoption of the very term, until drawing the at-
tention of Estonian physicists at the beginning of the new
century. The present paper is aimed to provide a short
overview of the econophysical research in Estonia, which
thus far has resulted in more than 15 research papers.
Economy is a very good example of complex systems:

numerous building blocks interact with each other and
form a system with qualitatively new properties, inter-
mittent and scale-invariant behaviour. However, in the
case of economy, already the building blocks — humans
performing economical activities — are not simple enti-
ties. This is unlike to what is observed in the case of
“simple” complex systems, such as sandpiles or turbu-
lent flow. The physics of complex systems has taught us
that even these “simple” complex systems can lead to a
strong intermittency and are very difficult to study the-
oretically. So, it becomes clear that in econophysics, one
can find examples of an ultimate complexity.
What can be done in the case of such an extreme com-

plexity? There is probably not much sense to make very
detailed models, just because it is impossible to account
for all the “unreasonable players”. We are basically left
with two options: first, we can make very robust models,
which, although inaccurate, capture certain features of
the economical dynamics. For example, one can intro-
duce an ensemble of stochastically interacting traders to
derive a power law scaling of market prices [5]. Similarly,
one can use the Pareto law for market participants and
postulate optimal trading behaviour to derive the power
law for the probabilities of large market movements [6].
Alternatively, one can follow a (semi)empirical approach
to devise general statistical descriptions of the spatio-
temporal behaviour of markets. For instance, one can
use Trade and Quote databases to show the existence of

two phases in the behaviour of financial markets: besides
the equilibrium phase, there is also a phase where the
most probable behaviour is either selling or buying [7].
Another example is provided by the study, which shows
that upon properly accounting for the market capitaliza-
tion of different economic sectors, the price-impact data
can be collapsed into a single power law as a function of
the transaction size [8].
In Estonia, both, the branch of robust models as well

as that of the semi-empirical approach, are represented.
The corresponding studies are carried out, respectively,
at the National Institute of Chemical Physics and Bio-
physics and at the Institute of Cybernetics at Tallinn
University of Technology, both in Tallinn.

II. MANY-AGENT WEALTH EXCHANGE

MODELS

The researchers at the National Institute of Chemical
Physics and Biophysics have been investigating kinetic

wealth-exchange models (KWEM) of closed economy sys-
tems. This type of models were independently introduced
in different fields such as social sciences [9–11], economics
[12–14], and (econo)physics [15, 16]. The International
Meeting Econophys-Kolkata 1 [17] hold in 2005 had an
important role in integrating the knowledge accumulated
that far about the various models, bringing out the ear-
lier works of John Angle [18] and Eleonora Bennati [19],
and in unveiling the basic mechanism in action leading
to the appearance of a power law tail in the stationary
wealth distribution in KWEMs.
Let us discuss the general structure and features of

KWEMs. In a KWEM the system is made up of N
agents, whose status at a certain time t is characterized
by the wealths xi(t) ≥ 0 (i = 1, 2, . . . , N). In simple
models agents interact with each other pairwise: at every
time step two randomly chosen agents j and k exchange
an amount ∆x of wealth so that the total wealth is con-
served. The new values x′

j and x′
k after the exchange are

(x′
j , x

′
k ≥ 0)

x′
j = xj −∆x ,

x′
k = xk +∆x . (1)

The form of ∆x defines the underlying dynamics of the
model; in the most simple case it is a constant [12–14],
or it can be a function of xj , xk and some parameter
characterizing the agents [20]. In more complex multi-
agent interaction models the number of agents that enter
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each trade is M > 2. Then the evolution law has a
more general form x′

i = xi + ∆xi, with i = 1, . . . ,M ,
∑M

i=1 ∆xi = 0, and the ∆xi depending somehow on the
wealths xi of the M interacting agents.
Typically in KWEMs there is solely one parameter

characterizing the agents. For example, it can be an ex-
change parameter ω ∈ (0, 1] which defines the fraction of
the wealth x that enters the exchange process. Equiv-
alently with ω one can introduce the saving parameter,
λ = 1 − ω, representing the fraction of x preserved dur-
ing the exchange. If the value of ω (or λ) is the same for
all the agents, the model is referred to as homogeneous.
If the agents assume different values ωi (or λi) then the
model is called heterogeneous. As studied in Ref. [21], the
parameter ω (or λ) also determines the time scale of the
relaxation process. In Ref. [20] a unified formulation of
various types of KWEMs with pairwise interacting agents
was provided.
For ω < 1 (or λ > 0), the homogeneous KWEMs have

the self-organizing property to converge toward a stable
state with a wealth distribution which has a non-zero
median, differently from a purely exponential distribu-
tion. It is well fitted by a Γ-distribution, which describes
real wealth distributions in the range of small and in-
termediate values of the wealth, representing most of the
agents [22]. In Ref. [23] it was shown that the equilibrium
wealth distribution fn(x) of the homogeneous KWEM
proposed in Ref. [15], defined by ∆x = ω(ǭxj − ǫxk) =
(1−λ)(ǭxj − ǫxk), where ǫ and ǭ = 1− ǫ are two uniform
random numbers in (0, 1), is very similar to the following
Γ-distribution,

〈x〉

n
fn(x) =

(

nx

〈x〉

)n−1
e−nx/〈x〉

Γ(n)
=

ξn−1e−ξ

Γ(n)
≡ γn(ξ) . (2)

Here ξ = nx/〈x〉, with n(λ) = (1 − 2λ)/(1 − λ), 〈x〉 =
∑

i xi/N being the (constant) average wealth of the sys-
tem, and γn(ξ) being the Γ-distribution. In Ref. [20] a
comparison between the wealth equilibrium distributions
of various other KWEMs was presented.
Let us discuss the link between KWEMs and statistical

physics. The form (1) of the exchange law suggests an
analogy with the energy transfer between molecules of a
fluid [17, 24, 25]. Furthermore, the distribution (2) is well
known in statistical mechanics, representing for example
the canonical distribution of the molecular kinetic energy
of a gas in D = 2n dimensions if, following the equiparti-
tion theorem, the average kinetic energy is assumed to be
〈x〉 = DT/2 = nT , where T is the temperature. This di-
rect link between KWEMs and statistical physics can be
confirmed through a standard kinetic theory approach
a la Clausius, which shows that homogeneous KWEM
agents with saving parameter λ behave dynamically as
the molecules of a gas in D(λ) = 2n(λ) dimensions [26].
In Ref. [27] it was shown that when all the agents are

trying to save as much as possible (λ → 1), the distribu-
tion (2) tends to an egalitarian distribution, i.e., in the
end all agents have the same amount of wealth 〈x〉.

While the Γ-distribution provides a good fitting to the
stationary wealth distributions, it does not seem to rep-
resent the exact solution [28]. The search of the actual
shape of the equilibrium wealth distribution is still an
active topic of research [11, 20, 28, 29].

As mentioned, the real wealth distributions in the
range of small and intermediate values of the wealth,
representing most of the agents, are well fitted by a Γ-
distribution [22]. Instead, the remaining agents with
large values of wealth, forming a small part of the system
yet owning a significant fraction of the total wealth, are
described by the Pareto power law. Such power law tails
are reproduced by heterogeneous models. Indeed, as dis-
cussed in Ref. [30], heterogeneous models with diversified
parameters ωi (or λi) provide both, the exponential or Γ-
distribution shapes of real wealth distributions at small
and intermediate values as well as the Pareto power law
observed at larger values of wealth.

Thus, heterogeneity plays a crucial role in the gener-
ation of the power law tail: a power law is produced
by the overlap of the single agent wealth distributions,
which are fitted by Γ-distributions with different param-
eters. In other words, the global wealth distribution can
be resolved as a mixture of partial wealth probability
densities with exponential tails. This has been suggested
in Ref. [31] to represent only one example of a more gen-
eral mechanism leading to the appearance of a power law
tail in many other complex systems, including the Zipf
law in linguistics, i.e., the power law observed in the rank
distribution of words in a written text.

In Ref. [21] the wealth scale and the time scale of
a KWEM have been investigated. In a heterogeneous
KWEM, both the wealth scale and the time scale of each
agent i is determined by the parameter λi (or ωi). An
agent with saving parameter λi has a relaxation time
τi ∝ 1/(1 − λi). Therefore the relaxation time τ of the
global heterogeneous system is determined by the largest
saving parameter Λ = max{λi} so that τ ∝ 1/(1−Λ). In
a heterogeneous KWEM a power law can appear. In this
case a natural wealth scale is present in the stationary
wealth distribution, represented by the wealth cutoff X
at which the power law ends and the wealth distribution
goes to zero. X = max{xi} represents the wealth of the
richest agent. The wealth cutoff X and the saving pa-
rameter cutoff Λ are closely related to each other: the
closer Λ is to 1, the larger is X . This goes well also with
the proverb that rich is not the one who earns a lot, but
the one who spends a little.

To summarize, KWEMs are minimal models of closed
economies, in which the total amount of wealth

∑

i xi

is constant and therefore can be used to describe sys-
tems where the flow of money is conserved. However,
it is noteworthy that even so KWEMs provide realistic
shapes of the stationary wealth distributions, suggesting
that there are two main factors underlying the wealth
dynamics: the microscopic exchange mechanism between
pairs of agents, and the heterogeneity of the agents.
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III. SEMI-EMPIRICAL STUDIES OF

FINANCIAL TIME-SERIES

Econophysics research at the Institute of Cybernetics
has been following predominantly the semi-empirical ap-
proach. The first studies were triggered by the practi-
cal problem of optimal portfolio construction, which was
faced by Robert Kitt at the Hansabank (formerly the
largest bank in Estonia, now a part of Swedbank). The
conventional econometric models to determine the op-
timal portfolio structure for many assets were found to
yield unstable results in stock markets (cf. Ref. [32]).
The first studies were relatively simple: they were aimed
to test the “regularity” of the local markets by study-
ing the self-affine scaling behaviour of the Baltic market
indices and comparing these with the global ones (cf.
Ref. [33]). In full agreement with the earlier studies, c.f.
Ref. [34], it was found that the Baltic indices are sta-
tistically self-affine. However, the Hurst exponent val-
ues tended to be somewhat higher (0.6–0.7) than in the
case of larger and longer established markets (ca 0.5).
Therefore, it was hypothesized that new and far-from-
equilibrium economies are characterized by stronger per-
sistency in market movements.

Nowadays it is well understood that the self-affine be-
haviour is only a very specific case of scale-invariance.
As argued above, the market dynamics is inherently ex-
tremely complex. Hence, in order to understand its
statistical features, a statistical description, which is as
generic as possible, is needed. Multifractality represents
a significantly more generic class of scale-invariance than
the Gaussian self-affine time-series and has been shown
to be present in financial time-series [35, 36]. However,
multifractality implies also the validity of a specific as-
sumption, namely, the presence of a random multiplica-
tive cascade. This is in a natural way satisfied in the case
of turbulence: the frozen-in and conserved quantities (en-
strophy, energy) are passed down to the next generation
of vortices when a larger vortex splits into smaller ones.
However, in the case of market fluctuations, there is no
“enstrophy”, and no multiplicative cascades in the asset
markets. If the total amount of money is conserved this
could lead to some kind of multifractality, if the mar-
ket were to split into smaller fragments. However, there
is no such kind of market splitting in reality. Hence,
it would be desirable to devise a statistical description
of the scale-invariant time-series, which would be more
generic than the multifractal formalism. Precisely this
led to the introduction of the method called multiscaling

of low-variability periods (MLVP) [37, 38].

Let us consider a time-series x(t), where x can be, for
example, a market index value. Then, a low-variability
period of length li is defined as a continuous time interval
Ti = [ti, ti + li] (i = 1, 2, . . .) so that:

(a)

|x(t)− 〈x(t)〉τ | ≤ δ for t ∈ Ti (3)

and δ being a threshold parameter; angular braces
denote sliding average over a window of width
τ > τ0 (in principle, the width of the window can
be arbitrarily large, however, the highest time res-
olution of the method and the widest scaling range
is achieved when it is as small as possible, i.e., just
a few cut-off scales τ0);

(b) each period has maximal possible length, implying
that decreasing ti or increasing li would lead to
violation of Eq. (3).

Note that in Eq. (3), the left-hand-side can be alterna-
tively normalized to the sliding average 〈x(t)〉τ . This
allows to improve the analysis of very long time-series,
which are characterized by an exponential price growth.
Further, we study the cumulative distribution function of
the low-variability periods (the number of periods with
li ≥ n), R(n). We speak about multiscaling behaviour if
there is a power law,

R(n) = R0 n
−α(δ,τ), (4)

where α(δ, τ) is a scaling exponent and R0 is a constant.
Note that a particular case of this method (with τ being
fixed to the cut-off scale τ0) has been introduced recently
also in Refs. [39, 40] and is referred to as the “volatility
return intervals analysis”.
In Ref. [41] the researchers of the Institute of Cyber-

netics showed theoretically that in the case of multifrac-
tal time-series, there is a MLVP-behaviour; this has been
confirmed in Ref. [39]. Furthermore, it turns out that
the scaling exponent α(δ, τ) is defined by the multifrac-
tal spectrum of the Hurst exponents f(h) [37]:

α(δ, τ) = f(logτ δ). (5)

Whereas the multifractal spectrum is a function of one
variable, the MLVP exponent is a function of two vari-
ables, and hence, it can describe a wider class of scale-
invariance. If the MLVP-behaviour is followed, Eq. (5)
allows us to test the presence of multifractality. Indeed,
if one plots α versus logτ δ, the data for different values
of τ and δ should lay on a curve, rather than being scat-
tered over a plane. Using this method, it was found that
currency exchange rates and market indices follow rea-
sonably well multifractality for τ larger than a day, but
fails at time scales smaller than a day [37]. Let us note
that for multifractal time-series the MLVP method effec-
tively substitutes the multifractal scaling analysis, with
two small benefits: it remains applicable when multifrac-
tal analysis fails and it tests the time-series at the highest
available frequency [for α(δ, τ) one can use τ = τ0, but for
f(h) any h implies a scaling from the highest frequency
down to lower frequencies, with the range of time scales
representing at least a couple of octaves].
In Ref. [42] the method of MLVP analysis has been

also applied to daily trading volumes for different stock
indices. The multiscaling behaviour has been, indeed,
observed, but there was no data collapse on the graph
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of scaling exponent α versus logτ δ. Therefore, it was
concluded that multifractality is not a good model for
these data. Furthermore, the MLVP method has been
straightforwardly generalized to allow a multivariate data
analysis. Upon introducing two thresholds, one for the
volume and the other for the price movement, one can de-
fine the low variability periods as either the period during
which none of the thresholds is exceeded, or the period
during which at least one of the thresholds is exceeded.
Not surprisingly, such a scaling analysis revealed a strong
coupling of the price movements and the trading volumes
[42].

Furthermore, it was shown that as soon as the price
movements follow a MLVP behaviour, an interesting
super-universality is to be expected: the probabil-
ity of observing a larger-than-threshold movement (the
“silence-breaking” probability) is inversely proportional
to the length of the ongoing low-variability period. While
theoretically this is a nearly obvious finding, it was not
so easy to test on the basis of the financial data series:
almost all these series are just too short to provide sta-
tistical volumes which are easy to analyse. In Ref. [41] a
novel data analysis technique was developed to overcome
this problem of data sparseness. It allowed to confirm
the validity of the super-universal scaling of the silence-
breaking probability on the basis of various time-series.

A somewhat independent research subject that has
been studied at the Institute of Cybernetics is directly re-
lated to the practical applications addressed in Ref. [32]:
developing non-Gaussian portfolio optimization tech-
niques. According to the efficient market hypothesis, the
predictions of the market price movements are bound to
be well below the noise level. Any counterexample would
be equivalent to violating the second law of thermody-
namics; furthermore, it would cease to be valid as soon
as you publish it. However, this fundamental restriction
does not apply to the risk prediction. Therefore, it makes
sense to try to improve the risk optimization techniques.

The problem of portfolio construction takes us back
to the root of nonlinear time-series analysis and econo-
physics: what should the behaviour of investors in the
financial markets be for combining the securities into
the portfolio? The Nobel-prize-winning Markowitz has
postulated (by assuming Gaussian movements in the fi-
nancial time-series) that investors should use variance as
their measure of risk [43]. The mean-variance optimisa-
tion is a centrepiece to a linear portfolio construction.
However, the question can be raised: what is the true
source of risk while investing into the stock markets? The
central idea in Ref. [44] was that the risk can be divided
into two parts: the Gaussian part and the leptokurtic
part (the latter referring to the higher moments of the
time-series). The correlation matrices of these two parts
can differ significantly, and hence imply different optimal
positions. So, the portfolio construction should first an-
swer the question, which is the risk to be minimised. If it
is a risk due to typical Gaussian price fluctuations then
the mean-variance optimisation is a good approximation.

However, if the main concern is to protect against the
extreme (but rare) movements then another approach is
to be taken. The simplest method is just to disregard
the small Gaussian price fluctuations (below a threshold
value, which serves as a control parameter) and devise the
portfolio optimisation, based on the correlation matrix of
the largest movements (corresponding to the “fat tail” of
the distribution function). Of course, there is an addi-
tional problem: disregarding most of the data points re-
duces the reliability of the correlation matrix calculation.
Therefore, it is important to avoid too high threshold
parameter values and apply additional techniques (e.g.
the factor analysis). Such a strategy has been imple-
mented and analysed in Ref. [44] in the simplest case
of two-asset portfolios. As expected, optimising against
the non-Gaussian risk inflated slightly the standard de-
viation of the portfolios (as compared with the tradi-
tionally optimised portfolios), but the drawbacks (large
and rapid losses of the portfolio value) were significantly
smaller. Such studies cannot answer the most important
question: should we reduce the small fluctuations, or the
drawdowns? This is exclusively a subjective choice, but
in some cases the answer is simple; it is provided by a
(not perfect) parallel from the aviation industry: should
we minimize the vibration in the cabin or the chances of
falling down?

IV. CONCLUSION AND OUTLOOK

The present review of the econophysics research in Es-
tonia is devoted to the 15th anniversary of the term
“econophysics”. This context asks for a brief discussion
of the history and translation of this word into Esto-
nian language. The term “majandusfüüsika” was born in
2001, when R. Kitt started his PhD studies; thus, it has
only a half of the age of the English word. This noun is
a straightforward compound of the words “majandus”,
which means “economics”, and “füüsika”, which means
“physics”; therefore, the criticism which has been some-
times addressed to the English term is not applicable
to the Estonian one. However, in parallel also the term
“ökonofüüsika”, adapted directly from English, has been
used.
In absolute numbers, the econophysics community in

Estonia is small. In fact, there are only 6 people who are
working in this field, and thus far only one doctoral thesis
[45] has been defended in econophysics. However, this
makes 4 econophysicists per million habitants, which is
no longer a small number. Furthermore, we believe that
many important results have been obtained. The direct
contacts between the scientists and the largest bank in
Estonia open up a possibility to have an access to real
data, otherwise often difficult to obtain.
Unfortunately, there is currently no tuition of econo-

physics at the Estonian universities; however, from time
to time seminars are held. Also, in year 2007 at the Uni-
versity of Tartu, two courses of complex systems were
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given by M. Patriarca, where (among other topics) an
overview of the basics concepts of econophysics was given.
Furthermore, one doctoral student is currently carrying
out research under the supervision of R. Kitt, in the De-

partment of Economics at Tallinn University of Tech-
nology. This allows us to believe that econophysics is a
growing research field that surely has a future in Estonia.
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