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7Université Montpellier 2, Laboratoire Univers & Particules de Montpellier UMR 5299, F-34095 Montpellier, France

8CNRS/IN2P3, Laboratoire Univers & Particules de Montpellier UMR 5299, F-34095 Montpellier, France
(Received 6 July 2011; published 3 November 2011)

The standard model Higgs sector, extended by one weak gauge triplet of scalar fields with a very small

vacuum expectation value, is a very promising setting to account for neutrino masses through the so-called

type II seesaw mechanism. In this paper we consider the general renormalizable doublet/triplet Higgs

potential of this model. We perform a detailed study of its main dynamical features that depend on five

dimensionless couplings and two mass parameters after spontaneous symmetry breaking, and highlight

the implications for the Higgs phenomenology. In particular, we determine (i) the complete set of tree-

level unitarity constraints on the couplings of the potential and (ii) the exact tree-level boundedness from

below constraints on these couplings, valid for all directions. When combined, these constraints delineate

precisely the theoretically allowed parameter space domain within our perturbative approximation.

Among the seven physical Higgs states of this model, the mass of the lighter (heavier) CP even state

h0 (H0) will always satisfy a theoretical upper (lower) bound that is reached for a critical value �c of �

(the mass parameter controlling triple couplings among the doublet/triplet Higgses). Saturating the

unitarity bounds, we find an upper bound mh0 <Oð0:7–1 TeVÞ, while the upper bound for the remaining

Higgses lies in the range of several tens of TeV. However, the actual masses can be much lighter. We

identify two regimes corresponding to � * �c and � & �c. In the first regime the Higgs sector is

typically very heavy, and only h0 that becomes SM-like could be accessible to the LHC. In contrast, in the

second regime, somewhat overlooked in the literature, most of the Higgs sector is light. In particular, the

heaviest state H0 becomes SM-like, the lighter states being the CP odd Higgs, the (doubly) charged

Higgses, and a decoupled h0, possibly leading to a distinctive phenomenology at the colliders.

DOI: 10.1103/PhysRevD.84.095005 PACS numbers: 12.60.�i, 14.60.Pq

I. INTRODUCTION

One of the major goals of the LHC is to uncover the
mechanism underlying the electroweak symmetry breaking
and thereby the origin of theweak gauge boson and fermion
masses. Moreover, observation of neutrino oscillations has
shown that neutrinos are massive (for a review see, for
instance, [1] and references therein). Such masses do not
necessarily require physics beyond the standard model
(SM), since one can accommodate a (Dirac) mass through
a Yukawa coupling assuming a right-handed neutrino simi-
larly to the other massive fermions. However, the introduc-
tion of such a right-handed state, whose only role is to allow
for nonzero neutrino masses while being neutral under all
the SM interactions,might seem rathermysterious. Further-
more, in contrast with the other right-handed fermion states
of the SM, the right-handed neutrino allows also for a
Majorana mass that is invariant under the SM gauge group
but violates lepton number. These features make plausible

the existence of new flavor physics beyond the SM associ-
ated with the neutrino sector. Probably one of the most
attractive aspects is the ability to induce naturally the tiny
neutrino masses from this new flavor physics sector [2].
The celebrated seesaw mechanism [3–5] relating directly
the smallness of the neutrino masses to the presence of a
large new scale� throughm� � v2=�, when� � vwhere
v denotes the electroweak scale, is realized in a grand
unified theory (GUT) context comprising right-handed neu-
trinos and is often dubbed type I seesaw. It can also be
achieved without right-handed neutrinos through an ex-
tended Higgs sector including an SUð2ÞL triplet scalar field,
type II seesaw [6–10], or by including two extra matter
multiplets in the adjoint ofSUð2ÞL, type III seesaw [11], or a
hybrid-type mixture of type I and type III [12–15].
If such extended sectors are too heavy to be directly

accessible to TeV scale experiments, they could still be
indirectly probed through distinctive low energy effective
operators in the neutrino sector [16]. In the present paper
we will rather focus on the possibility of accessing directly
the Higgs sector per se of the type II scenario, studying*Corresponding author.
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general dynamical constraints which originate from the
potential that couples the Higgs doublet and the Higgs
triplet. However, given the present theoretical uncertain-
ties, we do not commit to any specific GUT or flavor
physics scenarios beyond the SM. In particular, mass pa-
rameters such as � and M� will not necessarily take large
GUT scale values, even though such a configuration is
included in the analysis. We will even consider regimes

with very small � (� G�1=2
F ). As noted in [17], such a

small � makes all the Higgs sector accessible to the LHC.
Here we carry out a complete study, taking into account the
full set of renormalizable operators present in the potential.
The aim is to exhibit the various possible regimes consis-
tent with the dynamical constraints dictated by the poten-
tial and their consequences on the phenomenology of the
extended Higgs sector. Most of these operators are often
neglected in the existing phenomenological studies of the
type II seesaw mechanism, based on the fact that after
spontaneous symmetry breaking their effects are sup-
pressed by the small Higgs triplet vacuum expectation
value (VEV), vt, when compared to the electroweak scale.
This is, however, not justified when studying the small �
regimes just mentioned, where� can be of order vt. In this
case the detailed dynamics leads to an interesting structure
of the Higgs sector.

The paper is organized as follows: In Sec. II, we present
the ingredients of the model, the physical Higgs states and
mass spectrum, as well as a parametrization of the potential
parameters in terms of the physical masses. In Sec. III, we
discuss some of the phenomenological and theoretical
constraints on the parameters related to precision measure-
ments, the absence of tachyonic Higgs modes, as well as
the presence of false vacua. In Sec. IV, we provide a
thorough study of the boundedness from below (BFB) of
the potential and establish, for the first time simple, neces-
sary and sufficient conditions on the couplings that are
valid for all field directions. The unitarity constraints are
analyzed in detail in Sec. V, through the study of all the
scalar scattering channels. In Sec. VI, we combine, in an
analytical compact form, the constraints obtained in
Secs. IV and V. Section VII presents the behavior of the
CP even Higgs masses as functions of the potential parame-
ters, highlighting theoretical upper and lower mass bounds
and identifying different regimes that give better insight
into the overall Higgs sector phenomenology, as well as the
determination of unitarity mass bounds on the lightest
Higgs. Section VIII is devoted to a short review of the
salient features of the Higgs phenomenology at the col-
liders as well as to specific illustrations of our results.
We conclude in Sec. IX and give some technical details
in the appendixes.

II. THE MODEL

We start by recalling the scalar potential and the
main properties of the Higgs physical eigenstates after

electroweak symmetry breaking (EWSB), as well as the
corresponding eigenmasses and mixing angles. We give the
expressions without neglecting any of the couplings ap-
pearing in Eq. (2.4) nor making any specific assumption
about the magnitudes of �, m2

H, and M2
� which would

originate from the unknown underlying high energy theory.
The results of this section fix the notations and will serve
for the completely model-independent analysis carried out
in the subsequent sections.

A. The Higgs potential

The scalar sector consists of the standard Higgs weak
doublet H and a colorless scalar field � transforming as a
triplet under the SUð2ÞL gauge group with hypercharge
Y� ¼ 2, so that H� ð1; 2; 1Þ and �� ð1; 3; 2Þ under the
SUð3Þc � SUð2ÞL �Uð1ÞY .
Under a general gauge transformation UðxÞ, H and �

transform as H ! UðxÞH and � ! UðxÞ�UyðxÞ. One
can then write the most general renormalizable and gauge
invariant Lagrangian of this scalar sector as follows:

L ¼ ðD�HÞyðD�HÞ þ TrðD��ÞyðD��Þ � VðH;�Þ
þLYukawa; (2.1)

where the covariant derivatives are defined by

D�H ¼ @�Hþ igTaWa
�H þ i

g0

2
B�H; (2.2)

D�� ¼ @��þ ig½TaWa
�;�� þ ig0

Y�

2
B��; (2.3)

with ðWa
�; gÞ and ðB�; g

0Þ denoting, respectively, the

SUð2ÞL and Uð1ÞY gauge fields and couplings and
Ta � �a=2, with �a (a ¼ 1, 2, 3) the Pauli matrices.
The potential VðH;�Þ is given by

VðH;�Þ¼�m2
HH

yHþ�

4
ðHyHÞ2þM2

�Trð�y�Þ
þ½�ðHTi�2�yHÞþH:c:�þ�1ðHyHÞTrð�y�Þ
þ�2ðTr�y�Þ2þ�3Trð�y�Þ2þ�4H

y��yH;

(2.4)

where Tr is the trace over 2� 2matrices.LYukawa contains
all the Yukawa sector of the SM plus one extra Yukawa
term that leads, after spontaneous symmetry breaking, to
(Majorana) mass terms for the neutrinos, without requiring
right-handed neutrino states,

L Yukawa � �Y�L
TC 	 i�2�Lþ H:c:; (2.5)

where L denotes SUð2ÞL doublets of left-handed leptons,
Y� denotes neutrino Yukawa couplings, C the charge
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conjugation operator, and we have suppressed flavor in-
dices for simplicity. Although part of the type II seesaw
model, we will refer to the above model Eq. (2.1) as the
doublet-triplet-Higgs model (DTHM) since in this paper
we are mainly interested in the scalar sector, bringing up
only occasionally the content of the Yukawa sectorLYukawa

and the related neutrino masses issue.
Defining the electric charge as usual, Q ¼ I3 þ Y

2 where

I denotes the isospin, we write the two Higgs multiplets in
components as

� ¼ �þ=
ffiffiffi
2

p
�þþ

�0 ��þ=
ffiffiffi
2

p
 !

and H ¼ �þ
�0

� �
; (2.6)

where we have used, for convenience, the 2� 2 traceless
matrix representation for the triplet.1

The potential defined in Eq. (2.4) exhausts all possible
gauge invariant renormalizable operators. For instance, a
term of the form �5H

y�y�H, which would be legitimate
to add if � contained a singlet component, can actually
be projected on the �1 and �4 operators appearing in
Eq. (2.4) thanks to the identity Hy�y�H þHy��yH ¼
HyH Trð�y�Þ which is valid because � is a traceless
2� 2 matrix. This simply amounts to redefining �1 and
�4 such as �1 þ �5 ! �1, �4 � �5 ! �4. The potential
thus depends on five independent dimensionless couplings,
� and �i (i ¼ 1; . . . ; 4), and three mass parameters, m2

H,
M2

�, and �. In the present paper we will assume all these

parameters to be real valued. Indeed, apart from the �
term, all other operators in V are self-conjugate so that, by
hermiticity of the potential, only the real parts of the �’s
and the m2

H, M
2
� mass parameters will be relevant. As for

�, the only parameter that can pick up a would-be CP
phase, this phase is unphysical and can always be absorbed
in a redefinition of the fields H and �. One thus concludes
that the DTHM Lagrangian is CP conserving (see also the
discussion in [18]). Moreover, V depends on five complex
(or ten real) scalar fields.

Assuming that spontaneous EWSB is taking place at
some electrically neutral point in the field space, and
denoting the corresponding VEVs by

h�i ¼ 0 0
vt=

ffiffiffi
2

p
0

� �
and hHi ¼ 0

vd=
ffiffiffi
2

p
� �

; (2.7)

one finds, after minimization of the potential Eq. (2.4), the
following necessary conditions:

M2
� ¼ 2�v2

d �
ffiffiffi
2

p ð�1 þ �4Þv2
dvt � 2

ffiffiffi
2

p ð�2 þ �3Þv3
t

2
ffiffiffi
2

p
vt

;

(2.8)

m2
H ¼ �v2

d

4
� ffiffiffi

2
p

�vt þ ð�1 þ �4Þ
2

v2
t : (2.9)

Even though, as we noted above, CP symmetry is realized
at the level of the Lagrangian, there remains, in principle,
the possibility for a spontaneous breakdown of this sym-
metry, an issue which we do not address in this paper. We
can thus choose in the following vd and vt to be real
valued; that is, we consider only CP conserving vacua
for which complex valued vd and/or vt can always be
rotated simultaneously to real values through some un-
physical phase redefinition of the fields.
These equations, to which we will refer as the EWSB

conditions, ensure that the vacuum corresponds to an ex-
tremum of the potential [that is, @V=@�ij�¼h�i;H¼hHi ¼ 0
for each of the ten real-valued field components denoted
here by �i (i ¼ 1; . . . 10)], but one would still need to
check that this extremum is indeed a stable, albeit local,
minimum. The corresponding extra conditions are nothing
but the absence of tachyonic modes in the Higgs sector, to
be considered in a later section. We just anticipate here that
the latter conditions will enforce the signs of� and vt to be
identical. We can thus choose in the following vt > 0,�>
0 without loss of generality. Furthermore, the two free
parameters m2

H and M2
� can now be traded for vd and vt

through Eqs. (2.8) and (2.9). In the rest of the paper we will
take the eight parameters of the potential as being �, �i

(i ¼ 1; . . . ; 4), �, vd, and vt; requiring the correct electro-

weak scale will put the further constraint v �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ 2v2

t

q
¼ 246 GeV on vd, vt, reducing this set of

free parameters down to seven.
Let us also note that the above EWSB conditions will not

necessarily imply that the gauge symmetric vacuum (i.e. at
�i ¼ 0) is unstable. Indeed the latter instability requires
that M2

� < 0 and/or m2
H > 0, which are not guaranteed by

Eqs. (2.8) and (2.9). Even more so, regimes with large �
will lead, through the EWSB conditions, to a very narrow
gauge symmetric local minimum so that metastability
issues might have to be considered. (More comments about
the structure of the vacua of the model will be deferred to
Sec. III C.)
On the other edge of the spectrum, very small values of

� could be favored if one requires the lepton number not to
be strongly violated. Indeed, the � term in Eq. (2.4) is the
only source of lepton number violation at the Lagrangian
level and before spontaneous EWSB. If this term is absent
the Yukawa term Eq. (2.5), together with the other standard
Yukawa terms, implies a conserved lepton number (where
the � and H Higgs fields carry, respectively, the lepton

1Note that the electric charge assignments for the upper and
lower component fields are only conventional and can be inter-
changed by taking Y� ¼ �2, YH ¼ �1, entailing an exchange
of the upper and lower components of the fermion weak dou-
blets, without affecting the physical content. This seemingly
trivial statement is important to keep in mind when discussing
possible electric charge breaking minima of the potential.
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numbers l� ¼ �2 and lH ¼ 0).2 Then, from the lepton
number assignment for H and � it follows that the �
term violates lepton number by two units. However, this
violation is soft since the �-induced lepton number violat-
ing processes (corresponding either to loop suppressed
2 ! 2 processes or to propagator suppressed multiparticle
processes) will have to involve both the standard and
neutrino Yukawa couplings. These features suggest that if
the two seemingly independent sources of lepton number
violation, namely, the�VEVand�, are assumed to have a
common origin such as some spontaneous symmetry
breaking of an underlying flavor theory, then it is natural
to expect � ¼ OðvtÞ up to possible Yukawa coupling
factors.

B. Higgs masses and mixing angles

The 10� 10 squared mass matrix

M 2 ¼ 1

2

@2V

@�2
i

���������¼h�i;H¼hHi
(2.10)

can be recast, using Eqs. (2.8) and (2.9), in a block diagonal
form of one doubly degenerate eigenvalue m2

H

 and four

2� 2 matrices denoted in the following by M2
, M2
CP even

,

and M2
CP odd

.

1. Mass of the doubly charged field

The double eigenvalue m2
H

 corresponds to the doubly

charged eigenstate �

 and could also be obtained directly
by collecting all the coefficients of �þþ��� in the poten-
tial. It reads

m2
H

 ¼

ffiffiffi
2

p
�v2

d � �4v
2
dvt � 2�3v

3
t

2vt

: (2.11)

From now on we will denote the doubly charged mass
eigenstates �

 by H

.

2. Mass of the singly charged field

The mass-squared matrix for the singly charged field is

M 2
 ¼
� ffiffiffi

2
p

�� �4vt

2

�
vt �vd=

ffiffiffi
2

p
�vd=

ffiffiffi
2

p
v2
d=2vt

 !
:

This matrix is diagonalized by the following matrix
R�0 , given by

R �0 ¼ cos�0 � sin�0
sin�0 cos�0

� �
; (2.12)

where�0 is a rotation angle. Among the two eigenvalues of
M2
, one is zero and corresponds to the charged Goldstone
boson G
 while the other corresponds to the singly
charged Higgs boson H
 and is given by

m2
H
 ¼ ðv2

d þ 2v2
t Þ½2

ffiffiffi
2

p
�� �4vt�

4vt

: (2.13)

The mass eigenstates H
 and G
 are rotated from the
Lagrangian fields �
, �
 and defined by

G
 ¼ cos�0�
 þ sin�0�
; (2.14)

H
 ¼ � sin�0�
 þ cos�0�
: (2.15)

The diagonalization of M2
 leads to the following rela-
tions involving the rotation angle �0:

v2
d

2vt

� ffiffiffi
2

p
�� �4vt

2

�
¼ cos2�0M2

H
 ; (2.16)

vdffiffiffi
2

p
� ffiffiffi

2
p

�� �4vt

2

�
¼ sin2�0

2
M2

H
 ; (2.17)

vt

� ffiffiffi
2

p
�� �4vt

2

�
¼ sin2�0M2

H
 : (2.18)

These equations lead to a unique solution for sin�0, cos�0
up to a global sign ambiguity. Indeed, Eq. (2.16) impliesffiffiffi
2

p
�� �4vt

2 > 0 in order not to have a tachyonic H
 state

and given our convention of vt > 0. Then it follows from
Eq. (2.17) that sin�0 and cos�0 should have the same sign.
One finds

sin�0 ¼ 	�0

ffiffiffi
2

p
vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d þ 2v2

t

q ; cos�0 ¼ 	�0
vdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d þ 2v2

t

q
(2.19)

with a sign freedom 	�0 ¼ 
1, and

tan�0 ¼ ffiffiffi
2

p vt

vd

: (2.20)

3. Mass of the neutral fields

The neutral scalar and pseudoscalar mass matrices read

M2
CP even

¼ A B

B C

 !
and

M2
CP odd

¼ ffiffiffi
2

p
�

2vt �vd

�vd v2
d=2vt

 !
;

(2.21)

where

2The processes mediated by Eq. (2.5) and involving Higgs
triplet decay or exchange are sometimes misleadingly dubbed
‘‘lepton number violating.’’ One can check that the net overall
lepton number of any process, comprising such decays or
exchange, is conserved. This global symmetry will be violated
only spontaneously when � acquires a VEV, that is, when the
Majorana mass is induced from (2.5).
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A ¼ �

2
v2
d;

B ¼ vdð�
ffiffiffi
2

p
�þ ð�1 þ �4ÞvtÞ;

C ¼
ffiffiffi
2

p
�v2

d þ 4ð�2 þ �3Þv3
t

2vt

:

(2.22)

These symmetric matrices are diagonalized by the follow-
ing two orthogonal matrices:

R
 ¼ cos
 � sin


sin
 cos


 !
and R� ¼ cos� � sin�

sin� cos�

 !
;

(2.23)

where 
, � denote the rotation angles, respectively, in the
CP even and CP odd sectors.3 Upon diagonalization of
M2

CP even
one obtains two massive even-parity physical

states h0 and H0 defined by

h0 ¼ c
hþ s
�
0; (2.24)

H0 ¼ �s
hþ c
�
0; (2.25)

where h and �0 are the real parts of the �0 and �0 fields
shifted by their VEV values,

�0 ¼ 1ffiffiffi
2

p ðvd þ hþ iZ1Þ and �0 ¼ 1ffiffiffi
2

p ðvt þ �0 þ iZ2Þ:
(2.26)

The masses are given by the eigenvalues of M2
CP even

as

follows,

m2
h0

¼ 1

2

�
Aþ C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� CÞ2 þ 4B2

q �
; (2.27)

m2
H0 ¼ 1

2

�
Aþ Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� CÞ2 þ 4B2

q �
; (2.28)

so that mH0 >mh0 . Note that the lighter state h0 is not
necessarily the lightest of the Higgs sector (see Sec. VII).

On the other hand,M2
CP odd

leads to one massive physical

state A0 and one massless Goldstone boson G0 defined by

A0 ¼ �s�Z1 þ c�Z2; (2.29)

G0 ¼ c�Z1 þ s�Z2; (2.30)

with masses

m2
A ¼ �ðv2

d þ 4v2
t Þffiffiffi

2
p

vt

: (2.31)

Knowing the above eigenmasses, one can then determine
the rotation angles 
 and �, which control the field content

of the physical states, from the following diagonalization
conditions:
(1) CP even,

C ¼ s2
m
2
h0
þ c2
m

2
H0 ; (2.32)

B ¼ sin2


2
ðm2

h0
�m2

H0Þ; (2.33)

A ¼ c2
m
2
h0
þ s2
m

2
H0 : (2.34)

(2) CP odd,

2
ffiffiffi
2

p
�vt ¼ s2�m

2
A; (2.35)

ffiffiffi
2

p
�vd ¼ sin2�

2
m2

A; (2.36)

�v2
dffiffiffi

2
p

vt

¼ c2�m
2
A: (2.37)

Of course, Eq. (2.32) should be equivalent to Eq. (2.34)
upon use of s2
 þ c2
 ¼ 1 and Eqs. (2.27) and (2.28), and
similarly for Eqs. (2.35) and (2.37). Furthermore, s
, c
,
s�, c� will all be determined up to a global sign. There is,

however, a difference between the two sectors. In the
CP odd sector s� and c� must have the same sign, as can

be seen from Eq. (2.36) and the fact that �> 0 [the latter
being due to the absence of the tachyonic A0 state,
Eq. (2.35)]. One then obtains unambiguously

tan� ¼ 2vt

vd

and tan2� ¼ 4vtvd

v2
d � 4v2

t

(2.38)

from Eqs. (2.35) and (2.37), and

s� ¼ 	�
2vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d þ 4v2

t

q ; c� ¼ 	�
vdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d þ 4v2

t

q (2.39)

with a sign freedom 	� ¼ 
1.

In contrast, the relative sign between s
 and c
 in the
CP even sector depends on the values of �, as can be seen
from Eqs. (2.22) and (2.33). While they will have the same
sign and tan
> 0 for most of the allowed � and �1, �4

ranges, there will be a small but interesting domain of
small � values and tan
< 0 which we discuss in detail
in Sec. VII. One obtains from Eqs. (2.32), (2.33), and (2.34)

s
 ¼ � 	
	ffiffiffi
2

p
�
1þ ðA� CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA� CÞ2 þ 4B2

p �
1=2

; (2.40)

c
 ¼ 	
ffiffiffi
2

p
�
1� ðA� CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA� CÞ2 þ 4B2

p �
1=2

; (2.41)

where 	
 ¼ 
1 and 	 � sign½B�, and
3Hereafter, we will use the shorthand notations, sx � sinx and

cx � cosx, for all three angles 
, �, �0.
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tan2
 ¼ 2B

A� C
: (2.42)

Let us finally note that the angles� and�0 are correlated
since they depend exclusively on vd and vt. For instance,
one always has

tan� ¼ ffiffiffi
2

p
tan�0; (2.43)

as can be seen from Eqs. (2.20) and (2.38).

4. Lagrangian parameters from physical
masses and couplings

The full experimental determination of the DTHM
would require not only evidence for the neutral and (dou-
bly) charged Higgs states, but also the experimental deter-
mination of the masses and couplings of these states among
themselves as well as to the gauge and matter sectors of the
model. Crucial tests would then be driven by the predicted
correlations among these measurable quantities. For in-
stance, one can easily express the Lagrangian parameters
� and the �’s in terms of the physical Higgs masses and the
mixing angle 
 as well as the VEVs vd, vt, using
Eqs. (2.11), (2.13), (2.31), (2.32), (2.33), and (2.34). One
finds

�1 ¼ � 2

v2
d þ 4v2

t

�m2
A þ

4

v2
d þ 2v2

t

�m2
H


þ sin2


2vdvt

� ðm2
h0
�m2

H0Þ; (2.44)

�2 ¼ 1

v2
t

�
s2
m

2
h0
þ c2
m

2
H0

2
þ 1

2
� v2

d

v2
d þ 4v2

t

�m2
A

� 2v2
d

v2
d þ 2v2

t

�m2
H
 þm2

H



�
; (2.45)

�3 ¼ 1

v2
t

� �v2
d

v2
d þ 4v2

t

�m2
A þ 2v2

d

v2
d þ 2v2

t

�m2
H
 �m2

H



�
;

(2.46)

�4 ¼ 4

v2
d þ 4v2

t

�m2
A � 4

v2
d þ 2v2

t

�m2
H
 ; (2.47)

� ¼ 2

v2
d

fc2
m2
h0
þ s2
m

2
H0g; (2.48)

� ¼
ffiffiffi
2

p
vt

v2
d þ 4v2

t

�m2
A: (2.49)

The remaining two Lagrangian parameters m2
H andM2

� are

then related to the physical parameters through the EWSB
conditions Eqs. (2.8) and (2.9). To complete the determi-
nation in terms of physical quantities, one should further
extract the mixing angle 
 from the measurement of some

couplings (see also Appendix C) and vd and vt from theW
(or Z) masses. Using Eqs. (2.38), (3.1), and (3.2), one finds

v2
d ¼ 1

ð1þ 1
2 tan

2�Þ
sin2�WM

2
W



QED

;

v2
t ¼ tan2�

ð1þ 1
2 tan

2�Þ
sin2�WM

2
W

4

QED

(2.50)

or

v2
d ¼ 1

ð1þ tan2�Þ
sin2�WM

2
Z

2

QED

;

v2
t ¼ tan2�

ð1þ tan2�Þ
sin2�WM

2
Z

8

QED

(2.51)

or

v2
d ¼

sin2�W


QED

ð2M2
W � cos2�WM

2
ZÞ;

v2
t ¼ sin2�W

2

QED

ðcos2�WM2
Z �M2

WÞ:
(2.52)

Using any of the above equations to substitute for vd, vt in
Eqs. (2.44) and (2.49) allows us to obtain the Lagrangian
parameters solely in terms of experimentally measurable
quantities. Although Eqs. (2.50), (2.51), and (2.52) are
theoretically trivially equivalent, they involve different
sets of experimental observables and can thus lead to non-
equivalent reconstruction strategies depending on the
achieved accuracies in the measurement of these observ-
ables. Similarly, trading tan� for tan�0 through Eq. (2.43)
can be useful, depending on which of the two quantities is
experimentally better determined through some coupling
measurements. We should also note that Eqs. (2.44), (2.45),
(2.46), (2.47), (2.48), (2.49), (2.50), (2.51), and (2.52) not
only allow us to reconstruct the Lagrangian parameters
from the measurable Higgs masses, 
, �, MZ, and/or
MW , but can also serve as consistency checks among
observable quantities for the model when the �’s and �
are determined independently through the measurement of
couplings in the purely Higgs sector (see also Appendix C).
Finally, as can be seen from Eq. (2.52), the magnitude of vt

entails the deviation of the � parameter from its SM tree-
level value, a point we will discuss further in the following
section.

III. MISCELLANEOUS CONSTRAINTS

A. Constraints from electroweak
precision measurements

In the standard model the custodial symmetry ensures

that the � parameter, � � M2
W

M2
Zcos

2�W
, is equal to 1 at tree

level. In the DTHM one obtains the Z and W gauge boson
masses readily from Eq. (2.7) and the kinetic terms in
Eq. (2.1) as
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M2
Z ¼ ðg2 þ g02Þðv2

d þ 4v2
t Þ

4
¼ g2ðv2

d þ 4v2
t Þ

4cos2�W
; (3.1)

M2
W ¼ g2ðv2

d þ 2v2
t Þ

4
; (3.2)

hence the modified form of the � parameter:

� ¼ v2
d þ 2v2

t

v2
d þ 4v2

t

� 1 (3.3)

and actually � < 1 at the tree level. Since we are interested
in the limit vt � vd we rewrite

� ’ 1� 2
v2
t

v2
d

¼ 1þ �� (3.4)

with �� ¼ �2
v2
t

v2
d

< 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ 2v2

t

q
¼ 246 GeV. Thus

the model will remain viable as long as the experimentally
driven values of �� are compatible with a negative number.
The implication for the DTHM has already been studied in
the literature [17]. Here we only discuss briefly this point,
taking into account the latest updates of the electroweak
observable fits as reported by the PDG [19]. One should
compare the theoretical value with the experimental value
after having subtracted from the latter all the known stan-
dard model contributions to the � parameter. The quoted
number after this subtraction, �0 ¼ 1:0008þ0:0017

�0:0007, ob-

tained from a global fit including the direct search limits
on the standard Higgs boson, is not compatible with a
negative �� and would exclude the DTHM. However, at
the 2� level, one obtains �0 ¼ 1:0004þ0:0029

�0:0011 [19], which is

again compatible with �� < 0. Moreover, relaxing the
Higgs direct limit leads to �0 ¼ 1:0008þ0:0017

�0:0010, again com-

patible with �� < 0. From the last two numbers one gets an
upper bound on vt of order 2.5–4.6 GeV. In the present
study we will thus be contented by the conservative as-
sumption that an upper bound of 2.5 GeV guarantees
consistency with the experimental constraints. We should
note, though, that the tree-level DTHM value of �� being
of order 10�4, it is legitimate to ask about the effects of
radiative corrections to this quantity within the DTHM.
As far as we know, radiative corrections to �� are not
available in the literature in the case of Y� ¼ 2 that con-
cerns us here, while several studies have been dedicated to
this question in the framework of a Y� ¼ 0 triplet Higgs
[20–23]. In [20], it has been shown that the tree-level
bound on the triplet VEV could be pushed to higher values
by one-loop radiative corrections. Whether this will hap-
pen also in our case is still to be investigated and deserves a
study that is out of the scope of the present paper, including
for that matter all other CERN LEP/Stanford Linear
Collider SM observables.

B. Absence of tachyonic modes

From Eq. (2.31), the requirement that m2
A should be

positive implies �vt > 0. The same positivity requirement
in the singly charged and doubly charged sectors,
Eqs. (2.11) and (2.13), together with our phase convention
vt > 0 discussed in Sec. II, leads to the following bounds
on �:

�> 0; (3.5)

�>
�4vt

2
ffiffiffi
2

p ; (3.6)

�>
�4vtffiffiffi

2
p þ ffiffiffi

2
p �3v

3
t

v2
d

: (3.7)

The tachyonless condition in the CP even sector, Eqs. (2.27)
and (2.28), is somewhat more involved and readsffiffiffi

2
p

�v2
d þ �v2

dvt þ 4ð�2 þ �3Þv3
t > 0; (3.8)

� 8�2vt þ
ffiffiffi
2

p
�ð�v2

d þ 8ð�1 þ �4Þv2
t Þ

þ 4ð�ð�2 þ �3Þ � ð�1 þ �4Þ2Þv3
t > 0: (3.9)

The first of these two equations is actually always satis-
fied as a consequence of Eq. (3.5) and the boundedness
from below conditions for the potential [see Sec. IV and
Eq. (4.21)]. The second equation, quadratic in �, will lead
to new constraints on � in the form of an allowed range

�� <�<�þ: (3.10)

The full expressions of �
 and a discussion of their real
valuedness are given in Appendix A. Here we discuss their
behavior in the regime vt � vd. In this case one finds a
vanishingly small �� given by

��¼ðð�1þ�4Þ2��ð�2þ�3ÞÞ2
ffiffiffi
2

p
�

v3
t

v2
d

þOðv4
t Þ (3.11)

and a large �þ given by

�þ ¼ �

4
ffiffiffi
2

p v2
d

vt

þ ffiffiffi
2

p ð�1 þ �4Þvt þOðv2
t Þ: (3.12)

Depending on the signs and magnitudes of the �’s, one of
the lower bounds (3.5), (3.6), and (3.7) or �� will over-
whelm the others. Moreover, these no-tachyon bounds will
eventually have to be amended by taking into account the
existing experimental exclusion limits. This is straightfor-
ward for A0, H
, and H

. We thus define, for later
reference,

�min ¼ max

ffiffi
2

p
vt

v2
d
þ4v2

t
ðm2

AÞexp
�4vt

2
ffiffi
2

p þ
ffiffi
2

p
vt

v2
d
þ2v2

t
ðm2

H
Þexp
�4vtffiffi

2
p þ ffiffiffi

2
p �3v

3
t

v2
d

þ
ffiffi
2

p
vt

v2
d

ðm2
H

Þexp

2
66664

3
77775; (3.13)
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where ðmAÞexp, ðmH
Þexp, ðmH

Þexp denote some experi-

mental lower exclusion limits for the Higgs masses.
Equations (3.5), (3.6), and (3.7) are then replaced by

�>�min (3.14)

in order for the masses to satisfy these exclusion limits.
Similar modifications on �
 taking into account experi-
mental exclusion limits in the CP even sector are more
involved and will be differed to Sec. VII after having
established the theoretical upper (lower) bounds on the
h0 (H0) masses. Furthermore, the upper bound �þ will
be instrumental in determining the maximally allowed
values of the six Higgs masses mH0 , mA, mH
 , mH

 , as
we will see in Sec. VII.

C. The vacuum structure

Obviously, violation of any of the constraints discussed
in the previous subsection is a signal that the would-be
electroweak vacuum is not a minimum (but rather a saddle
point or a local maximum) for the given set of values �, �i,
vd, vt when � is either very small or very large. However,
since Eqs. (2.8) and (2.9) are nonlinear in vd, vt, it could
still be possible to find a different set of values v0

d, v
0
t, for

the same input values of m2
H, M

2
�, where the true electro-

weak minimum is obtained at a lower point of the potential
than the previous one. More generally, and depending on
the values of the parameters of the potential, one expects,
on top of the electroweak minimum, a rich structure of
extrema that can affect the interpretation and viability of
this minimum and thus possibly lead to additional con-
straints on these parameters. A complete study of such
extrema can be very involved since the potential depends
on ten independent real fields. Here we only provide a
partial qualitative discussion.

Upon use of Eqs. (2.7), (2.8), and (2.9) in Eq. (2.4), one
readily finds that the value of the potential at the electro-
weak minimum, hViEWSB, is given by

hViEWSB ¼ � 1

16
ð�v4

d þ 4ð�2 þ �3Þv4
t

þ 4v2
dvtðð�1 þ �4Þvt �

ffiffiffi
2

p
�ÞÞ: (3.15)

Since the potential vanishes at the gauge invariant origin of
the field space, VH¼0;�¼0 ¼ 0, then spontaneous electro-

weak symmetry breaking would be energetically disfa-
vored if hViEWSB > 0.4 One can thus require as a first
approximation the naive bound on �,

�<�max � �

4
ffiffiffi
2

p v2
d

vt

þ ð�1 þ �4Þ vtffiffiffi
2

p þOðv2
t Þ; (3.16)

to ensure VEWSB < 0. As can be seen from Eq. (3.12)
one has either �max <�þ or �max >�þ depending
on the sign of �1 þ �4. But for all practical purposes
�max ’ �þ in the regime vt=vd � 1, so that the proviso
stated above concerning the relevance of the tachyonless
conditions is weakened for the upper bound �þ which can
be replaced by�max. There is, however, yet another critical
value of �. As mentioned at the end of Sec. II A, M2

� and

�m2
H can both be positive for sufficiently large values of

�, thus making the gauge invariant point H ¼ 0, � ¼ 0 a
local minimum. This happens when �>�H, where

�H ¼ �

4
ffiffiffi
2

p v2
d þ ð�1 þ �4Þ vt

2
ffiffiffi
2

p : (3.17)

If �1 þ �4 > 0 then �H <�max <�þ. To delineate some
consistency constraints in this case, it would be necessary
to look more closely at the decay rate from a metastable
gauge invariant vacuum to the EWSB vacuum, if �H <
�<�max, and vice versa, from a metastable EWSB vac-
uum to the gauge invariant vacuum when�max <�<�þ.
Fortunately, however, these configurations altogether are
already excluded if we take into account the experimental
mass limits on the standard model Higgs. Indeed, as will be
shown in Secs. VII and VIII, the lightest CP even Higgs
state h0 becomes purely SM-like for such large values of
�, irrespective of the values of the couplings �, �i, while

mh0 becomes very small for these values [e.g. mh0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�1 þ �4Þ

p
vt for � ¼ �H] and thus experimentally

excluded.
Nonetheless, the structure of the potential Eq. (2.4) is

sufficiently rich to provide dangerous extrema configura-
tions which are not excluded by the above-mentioned
experimental limits. We exhibit here, without many details,
one example among a manifold of possibilities. There is an

extremum in the field space direction defined by Re�0 ¼
Re�þ � vc

dffiffi
2

p and Re�0 ¼ �Re�þþ � vc
tffiffi
2

p , and all other

fields put to zero.
This requires

� ¼ ��4v
c
tffiffiffi
2

p ; (3.18)

m2
H ¼ 1

2ð�vc2
d þ ð2�1 � �4Þvc2

t Þ; (3.19)

M2
� ¼ ��1v

c2
d � ð2�2 þ �3Þvc2

t : (3.20)

Note that this direction, and thus the corresponding extre-
mum, spontaneously breaks charge conservation. We will
refer to this extremum as charge breaking (CB).
Furthermore, in contrast with the EWSB point, Eqs. (2.8)
and (2.9), here � is not a free parameter. We can then seek
a region in parameter space where this CB extremum
coexists with an EWSB minimum, and check what hap-
pens at the gauge invariant extremum point as well.
Requiring Eqs. (2.8), (2.9), (3.18), (3.19), and (3.20) to be

4We should, however, keep in mind the possibility that a long-
lived metastable vacuum could still be physically acceptable,
even when hViEWSB > 0, thus altering our constraints; these
issues are not addressed further in the present paper.
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simultaneously satisfied leads to correlations among vd, vt,
vc
d, v

c
t . These lead in turn to constraints on the �, �i

parameter space in order for all these VEVs to be real
valued (modulo gauge transformations), together with the
immediate constraint �4v

c
t < 0 originating from Eq. (3.18)

and �> 0.5 The ensuing correlations allow us to write
m2

h0
, hViEWSB, and hViCB (the value of the potential at the

CB extremum) in the following form:

m2
h0
¼ð�ð2�2þ�3Þþ2�2

4þ�1ð�4�2�1ÞÞvtv
c
t

�4

þOðv2
t Þ

¼2m2
HþOðv2

t Þ; (3.21)

hViEWSB ¼ �ð�ð2�2 þ �3Þ þ 2�2
4 þ �1ð�4 � 2�1ÞÞ

� ð�ð2�2 þ �3Þ þ �1ð�2�1 þ �4ÞÞ

� v2
t v

c2
t

4��2
4

þOðv3
t Þ; (3.22)

hViCB ¼ ð4�2
1 � 2�ð2�2 þ �3Þ � �2

4Þ
vc4
t

4�
þOðv2

t Þ:
(3.23)

Various interesting conclusions can be drawn from the
above equations. As can be seen from Eq. (3.21), a physical
h0, i.e.m2

h0
> 0, implies a positivem2

H and thus an unstable

gauge invariant point at the origin of the fields (H ¼ 0,
� ¼ 0). Furthermore, in the consistent ð�; �iÞ domain
(given in footnote 2) m2

h0
is indeed positive and, further-

more, one finds from Eq. (3.22) that hViEWSB < 0. The
EWSB vacuum is thus energetically favored over the gauge
symmetry preserving one which lies at V ¼ 0. It then
remains to compare the EWSB point with the CB point.
Close inspection of Eq. (3.23) shows that hViCB > 0 in
all the ð�; �iÞ domain given in footnote 2, if and only if
�4 < 0, in which case the EWSB is energetically favored
over the CB. However, if �4 > 0 (and thus vc

t < 0),
there are regions in the ð�; �iÞ consistent domain where
hViCB < 0, provided that 4�2

4 < �ð2�2 þ �3Þ. Moreover,
the potential at this CB point becomes much deeper than
at the EWSB point since we are in the regime vt � jvc

t j.
This is a dangerous configuration since it makes the EWSB
vacuum potentially very short-lived due to tunneling ef-
fects [24,25]. We stress here that this EWSB point is a true
local minimum in this configuration; i.e. there are no
tachyonic Higgs states which could have signaled its non-
relevance beforehand. (This is easily seen from the fact that
h0 is nontachyonic and is the lightest Higgs state when

�� jvc
t j � vt; see also Sec. VII.) Even more so, the

potential is bounded from below, as can be shown by
comparing the corresponding ð�; �1Þ domain with the
boundedness from below constraints that we will derive
in the following section. We have thus exhibited an
example of a configuration where � can be very large,
consistent with the experimental h0 mass limit, and a
fortiori with all the nontachyon constraints, corresponding
locally to an acceptable EWSB vacuum, but still nonviable
due to the existence of lower (charge breaking) points akin
to what happens in two-Higgs-doublet models (see, for
instance, [26]).
We end this section with a general comment concerning

the neutrino mass seesaw mechanism. The common lore is
to assume a GUT origin for � and M�, and taking ��
M� �OðMGUTÞ leads, through Eq. (2.8), naturally to a tiny
vt. However, as noted in the Introduction we do not com-
mit, in the present study, to specific high energy physics
scenarios, so that M� and/or � could be smaller than a
hypothetical GUT scale. It is then interesting to note that
even in this case a kind of seesaw mechanism is actually
still at work model-independently due to the dynamics of
the potential. This is simply due to the form of the� upper
bound �þ, Eq. (3.12): The larger � is, the smaller vt

should be in order to avoid a tachyonic h0. For instance,
taking � ’ 0:5 and�þ ’ 2� 1012 GeV leads to vt ’ 1 eV
and M� ’ 1013 GeV.

IV. BOUNDEDNESS OF THE POTENTIAL

A necessary condition for the stability of the vacuum
comes from requiring that the potential given in Eq. (2.4)
be bounded from below when the scalar fields become
large in any direction of the field space. The constraints
ensuring BFB of the DTHM potential have been studied in
the literature so far only partially (see e.g. [18]), and at the
tree level. It would thus be somewhat premature to invoke
possible quantum modifications of these constraints before
fully settling the tree-level issue first. This section is de-
voted to this issue and aims at deriving, at the tree level, the
complete necessary and sufficient BFB conditions valid for
all directions in field space.6

Obviously, at large field values the potential Eq. (2.4) is
generically dominated by the part containing the terms that
are quartic in the fields,

Vð4ÞðH;�Þ ¼ �

4
ðHyHÞ2 þ �1ðHyHÞTrð�y�Þ

þ �2ðTr�y�Þ2 þ �3 Trð�y�Þ2
þ �4H

y��yH: (4.1)

5Working in the regime vt � vd, jvc
t j, jvc

dj and keeping
only terms OðvtÞ, the constraint in the ð�; �iÞ space satis-

fying all these requirements is found to be �1 <
1
4 �

ð�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�ð2�2 þ �3Þ þ 17�2

4

q
Þ. Note that � > 0 and 2�2 þ

�3 > 0 for a bounded from below potential (see Sec. IV).

6We will thus not address in this paper the possibility that loop
corrections could lift the potential in some otherwise unbounded
from below directions, nor the issues related to metastability of
the vacuum which could relax some of the constraints. See also
Sec. III C.
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The study of Vð4ÞðH;�Þ will thus be sufficient to obtain the
main constraints. To obtain BFB conditions it is common
in the literature to pick up specific field directions or to put
some of the couplings to zero. Consider, for instance, the
following two cases:

(1) In the absence of any coupling between doublet and
triplet Higgs bosons, i.e. �1 ¼ �4 ¼ 0, it is obvious
that

� > 0 & �2 > 0 & �3 > 0 (4.2)

will ensure that the potential is bounded from below.
(2) If one picks up the field space directions where only

the electrically neutral components are nonvanish-
ing, one finds

Vð4Þ
0 ¼ �

4
j�0j4 þ ð�2 þ �3Þj�0j4

þ ð�1 þ �4Þj�0j2j�0j2: (4.3)

In order for the potential to be bounded from below

in this subspace, Vð4Þ
0 should be positive for any

values of j�0j and j�0j, including when one or the
other is vanishing. The latter cases imply the neces-
sary conditions � > 0 and �2 þ �3 > 0. It is then
possible to rewrite Eq. (4.3) in the form

Vð4Þ
0 ¼

� ffiffiffiffi
�

p
2
j�0j2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þ�3

p j�0j2
�
2

þ
�
�1þ�4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2þ�3Þ

q �
j�0j2j�0j2: (4.4)

Since the first term is non-negative and vanishes in

the direction j�0j2=j�0j2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 þ �3Þ=�

p
, then

the necessary and sufficient conditions for the
BFB of the potential in this direction are

� > 0;

�2 þ �3 > 0;

�1 þ �4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
> 0:

(4.5)

As it will become clear later on in this section, the con-
ditions in case 1 are sufficient but not necessary, even for
this special case. Furthermore, while the conditions in
case 2 are necessary and sufficient for the corresponding
direction, they obviously remain necessary for the general
potential, but it is a priori not clear whether they can be
sufficient. By looking at other special cases in two-field
and three-field directions, we will show that they are gen-
erally not sufficient. Before doing so, let us first point out a
more convenient method to obtain positivity constraints
like Eq. (4.5) directly from Eq. (4.3) rather than writing it
first in the form of Eq. (4.4). The potential Eq. (4.3) can be
cast in the form

Vð�Þ ¼ aþ b�2 þ c�4 (4.6)

by the change of variable � ¼ j�0j=j�0j. Since � is, by
definition, real valued and the moduli j�0j and j�0j can
have any value, then the problem of finding the necessary
and sufficient BFB conditions for Eq. (4.3) is equivalent to
finding the conditions on a, b, c such that Vð�Þ> 0 for any
� 2 ½0;1½. Since Vð�Þ has no linear or cubic terms in �, it
is easy to find these conditions by studying Vð�Þ as a
biquadratic function:

a > 0;

c > 0;

bþ 2
ffiffiffiffiffiffi
ac

p
> 0:

(4.7)

Applied to Eq. (4.3) these conditions reproduce immedi-
ately Eq. (4.5). We can now easily study other field direc-
tions. For instance, the direction where only �þþ and �0

are nonvanishing yields

V ¼ ð�2 þ �3Þj�þþj4 þ �1j�þþj2j�0j2 þ �

4
j�0j4 (4.8)

for which the BFB constraints are readily obtained from
Eq. (4.7) as

� > 0 & �2 þ �3 > 0 & �1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
> 0:

(4.9)

Similarly, if we consider the field direction with nonvan-
ishing �þ and �þ, then

V ¼
�
�2 þ �3

2

�
j�þj4 þ

�
�1 þ �4

2

�
j�þj2j�þj2 þ �

4
j�þj4

(4.10)

and the corresponding BFB conditions read

�> 0 & �2 þ�3

2
> 0 & �1 þ�4

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
�2 þ�3

2

�s
> 0:

(4.11)

It is then obvious that these two sets of conditions are
neither equivalent nor contained in the conditions of
Eq. (4.5). This shows that the BFB conditions derived
only from the neutral direction Eq. (4.3) are neither neces-
sary nor sufficient to ensure boundedness from below of
the full potential Eq. (2.4). In Appendix B we have listed
the potentials for all the field directions with only two
nonvanishing fields, together with the corresponding BFB
conditions. Adding these conditions, we come closer to the
real sufficient and necessary conditions. But one can get
more conditions by going now to field directions where
three fields are nonvanishing. We give the exhaustive list of
all these three-field direction potentials in Appendix B. In
these more complicated configurations, an iteration of the
method described above allowed us to treat all of them,
although the results become somewhat complicated and
not so telling. For instance, the three-field direction with
nonvanishing �0, �þ, �þ [see Eq. (B24)] yields some of
the simplest BFB conditions,
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� > 0 ^ 2�2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4�2 þ 2�3Þ

q
þ 2�1 þ �4

> 0 ^ ð2�ð2�2 þ �3Þ> ð2�1 þ �4Þ2 _ 2�1 þ �4 > 0Þ;
(4.12)

where ^, _ stand, respectively, for the logical AND, OR.
These conditions are obtained by first defining the reduced
variables �1 ¼ j�þj=j�0j, �2 ¼ j�þj=j�0j, and then us-
ing iteratively the constraints Eqs. (4.7). By the same
method we could obtain even more complicated BFB
conditions as given in Eqs. (B26)–(B35). Analyzing them
numerically we confirm that Eqs. (4.5) are far from being
the full story. However, and despite their apparently com-
plicated structure, the intersection of the regions they
delineate in the space of the �’s has a form similar to
Eqs. (4.5) and (B14). Moreover, the true BFB conditions
will be obtained only if all field directions are taken into
account, up to some arbitrary SUð2Þ �Uð1Þ gauge trans-
formations, but in this case the method used so far is not
tractable anymore.

To proceed to the most general case, we adopt a different
parametrization of the fields that will turn out to be par-
ticularly convenient to entirely solve the problem. Without
loss of generality we can define

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HyH þ Tr�y�

p
; (4.13)

HyH � r2cos2�; (4.14)

Tr ð�y�Þ � r2sin2�; (4.15)

Tr ð�y�Þ2=ðTr�y�Þ2 � �; (4.16)

ðHy��yHÞ=ðHyH Tr�y�Þ � � (4.17)

(where we adopted here a parametrization similar to the
one used in [27] to study two-Higgs-doublet models,
although for the latter models the problem is not fully
solved by such a parametrization). Obviously, when H
and� scan all the field space, the radius r scans the domain
½0;1½ and the angle � 2 ½0; 
2�. Moreover, one can show

that

0 � � � 1 and 1
2 � � � 1: (4.18)

With this parametrization it is straightforward to cast

Vð4ÞðH;�Þ in the following simple form,

Vð4Þðr; tan�; �; �Þ ¼ r4

4ð1þ tan2�Þ2 ð�þ 4ð�1

þ ��4Þtan2�þ 4ð�2 þ ��3Þtan4�Þ:
(4.19)

Because of the bi-quadratic dependence in tan�, one can
indeed consider only the range 0 � tan� <þ1 in accor-
dance with the above-stated range for �. We have thus

written Vð4Þ in the form of Eq. (4.6). Boundedness from

below is then equivalent to requiring Vð4Þ > 0 for all
tan� 2 ½0;1½ and all �, � satisfying Eq. (4.18). Now
applying directly the conditions Eqs. (4.7), one obtains

�> 0 & �2þ ��3> 0 &

�1þ��4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2þ ��3Þ

q
> 0 8� 2 ½12;1�; 8 �½0;1�:

(4.20)

Because of the monotonic dependence in � and �, it is easy
to show that these conditions can be rewritten as

� > 0 & �2 þ �3 > 0 & �2 þ �3

2
> 0 (4.21)

& �1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
> 0 & �1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
�2 þ �3

2

�s
> 0

(4.22)

& �1 þ �4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
> 0 &

�1 þ �4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
�2 þ �3

2

�s
> 0:

(4.23)

We stress here that the above conditions ensure BFB
for all possible directions in field space and thus provide
the most general ‘‘all directions necessary and sufficient
BFB conditions’’ that solve completely the issue at the
tree level. Note that all the two-field direction condi-
tions given in Eqs. (B11)–(B15) are special cases of the
above conditions. We also checked numerically that this
is the case for all ten three-field direction conditions,
Eqs. (B26)–(B35).

V. UNITARITY CONSTRAINTS

Constraints on the scalar potential parameters can be
obtained by demanding that tree-level unitarity be pre-
served in a variety of scattering processes: scalar-scalar
scattering, gauge-boson–gauge-boson scattering, and
scalar–gauge-boson scattering, as was initially done for
the SM [28–30]. The generalizations of such constraints
to various extended Higgs sector scenarios have been
studied in the literature; see, for instance, [31–34]. Here
we treat such constraints in the DTHM at the tree level,
limiting ourselves to two-body scalar scattering processes
dominated by quartic interactions. This is justified by the
fact that we are interested in the leading unitarity con-
straints, that is, in the limit where

ffiffiffi
s

p
is much larger than

any other mass scale involved. In particular, this means that
we disregard here unitarity constraints that would involve
the � parameter when the latter is very large. Indeed, this
parameter contributes to the scalar scattering processes
through the cubic interactions entering the Feynman dia-
grams with scalar exchange in the s, t, and u channels.
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Furthermore, the ratio �=vt controls the size of the ex-
changed scalar masses so that some of the aforementioned
diagrams can be important in the vicinity of the resonance
pole in the limit of large

ffiffiffi
s

p ��vd=vt.
In order to derive the unitarity constraints on the scalar

masses, we adopt the basis of unrotated states, correspond-
ing to the fields before electroweak symmetry breaking.
The quartic scalar vertices have, in this case, a much
simpler form than the complicated functions of �i, 
,
and � obtained in the physical basis (H

, H
, G
, h0,
H0, A0, and G0) of mass eigenstate fields. The S matrix for
the physical fields is related, by a unitary transformation, to
the S matrix for the unrotated fields. Close inspection
shows that the full set of two-body scalar scattering pro-
cesses leads to a 35� 35 S matrix which can be decom-
posed into seven block submatrices corresponding to
mutually unmixed sets of channels with definite charge
and CP states. One has the following submatrix dimen-
sions, structured in terms of net electric charge in the

initial/final states: Sð1Þð6� 6Þ, Sð2Þð7� 7Þ, and Sð3Þð2� 2Þ
corresponding to zero-charge channels, Sð4Þð10� 10Þ
corresponding to the one-charge channels, Sð5Þð7� 7Þ cor-
responding to the two-charge channels, Sð6Þð2� 2Þ corres-
ponding to the three-charge channels, and Sð7Þð1� 1Þ
corresponding to the unique four-charge channel. The

corresponding T-matrix submatrices Tð1Þ; . . . ; Tð7Þ—with
a momentum conservation factor ð2
Þ4�4ðPmomentaÞ
properly factored out– are then easily extracted using the
pure scalar quartic interactions expressed in terms of the
nonphysical fields�
, �
, �

, h, �0, and Ziði ¼ 1; 2Þ, as
listed in Appendix C.

One can then, in principle, extract the unitarity con-
straints on each component of the T matrix through the uni-
tarity equation, which we write here in a shorthand form as

� iðT � TyÞ �
Z

“TTy” (5.1)

where
R

denotes, symbolically, the phase space integral
over each intermediate state channel (see, for instance,
[35]). However, it provesmore efficient to define amodified
matrix in such away that its diagonalized form still satisfies
Eq. (5.1). The usual unitarity bound on partial-wave ampli-
tudes that is valid for elastic scattering would then apply
readily to all the eigenvalues, thus encoding indirectly the
bounds on all the components of the T matrix.7 The proper
redefinition is a ~T matrix having the same entries as T but

with an extra 1=
ffiffiffi
2

p
factor for each initial or final state

channel having two identical particles. ~T now satisfies
Eq. (5.1) with the same phase space for all channels and a

true matrix multiplication of ~T by ~Ty. Its diagonalized form
will thus satisfy the same equation. Defining Mn � i ~TðnÞ,
with n ¼ 1; . . . ; 7, we give hereafter the resulting subma-
trices whose entries correspond to the quartic couplings that
mediate the 2 ! 2 scalar processes. These submatrices are
Hermitian; thus the sought for eigenvalues will all be real
valued.
The first submatrix M1 corresponds to the scattering

whose initial and final states are one of the following:
ð�þ��; �þ��; hZ2; �

0Z1; Z1Z2; h�
0Þ. With the help of

Appendix C one finds

M1 ¼

�1 þ �4

2 0 � i�4

2
ffiffi
2

p i�4

2
ffiffi
2

p �4

2
ffiffi
2

p �4

2
ffiffi
2

p

0 �1 þ �4

2
i�4

2
ffiffi
2

p � i�4

2
ffiffi
2

p �4

2
ffiffi
2

p �4

2
ffiffi
2

p

i�4

2
ffiffi
2

p � i�4

2
ffiffi
2

p �þ
14 0 0 0

� i�4

2
ffiffi
2

p i�4

2
ffiffi
2

p 0 �þ
14 0 0

�4

2
ffiffi
2

p �4

2
ffiffi
2

p 0 0 �þ
14 0

�4

2
ffiffi
2

p �4

2
ffiffi
2

p 0 0 0 �þ
14

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
;

(5.2)

where �

ij ¼ �i 
 �j. We find that M1 has the following

three double eigenvalues:

e1 ¼ �1 þ �4; (5.3)

e2 ¼ �1; (5.4)

e3 ¼ 1
2ð2�1 þ 3�4Þ: (5.5)

The second submatrixM2 corresponds to the scattering
with one of the following initial and final states:

ð�þ��; �þ��; �þþ���; Z1Z1ffiffi
2

p ; Z2Z2ffiffi
2

p ; hhffiffi
2

p ; �
0�0ffiffi
2

p Þ, where theffiffiffi
2

p
accounts for identical particle statistics. Again, with

the help of Appendix C, one finds that M2 is given by

M2 ¼

�
~�14

2 �þ
14

�
2
ffiffi
2

p �1ffiffi
2

p �
2
ffiffi
2

p �1ffiffi
2

p

~�14

2 2 ~�23 2�þ
23

~�14

2
ffiffi
2

p
ffiffiffi
2

p
�þ
23

~�14

2
ffiffi
2

p
ffiffiffi
2

p
�þ
23

�þ
14 2�þ

23 4�þ
23

�1ffiffi
2

p
ffiffiffi
2

p
�2

�1ffiffi
2

p
ffiffiffi
2

p
�2

�
2
ffiffi
2

p ~�14

2
ffiffi
2

p �1ffiffi
2

p 3
4�

�þ
14

2
�
4

�þ
14

2

�1ffiffi
2

p
ffiffiffi
2

p
�þ
23

ffiffiffi
2

p
�2

�þ
14

2 3�þ
23

�þ
14

2 �þ
23

�
2
ffiffi
2

p ~�14

2
ffiffi
2

p �1ffiffi
2

p �
4

�þ
14

2
3�
4

�þ
14

2

�1ffiffi
2

p
ffiffiffi
2

p
�þ
23

ffiffiffi
2

p
�2

�þ
14

2 �þ
23

�þ
14

2 3�þ
23

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

;

(5.6)

7This, however, cannot be achieved, in general, by simply
diagonalizing T, since on the right-hand side of Eq. (5.1) the
phase space factor is not the same for all the two-particle
channels, even in the high energy massless limit we are consid-
ering. It picks up a factor 1=2 only for internal states with
identical particles so as to avoid double counting. The right-
hand side of Eq. (5.1) is thus not a proper matrix multiplication
of T by Ty, a fact emphasized by the quotation marks in the
equation.
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where ~�14 ¼ 2�1 þ �4 and ~�23 ¼ 2�2 þ �3. Despite its
apparently complicated structure, one can easily determine
the seven eigenvalues of M2 as follows:

f1 ¼ �

2
; (5.7)

f2 ¼ 2�2; (5.8)

f3 ¼ 2ð�2 þ �3Þ; (5.9)

a
 ¼ 1

4

�
�þ 4�2 þ 8�3 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� 4�2 � 8�3Þ2 þ 16�2

4

q �
;

(5.10)

b
 ¼ 1

4

�
3�þ 16�2 þ 12�3



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�� 16�2 � 12�3Þ2 þ 24ð2�1 þ �4Þ2

q �
:

(5.11)

The third submatrix M3 corresponds to the basis
ðhZ1; �

0Z2Þ and is given by

M 3 ¼
�
2 0
0 2�þ

23

 !
(5.12)

with eigenvalues k1 ¼ f1 and k2 ¼ f3.
The one-charge channels occur for two-by-two body

scattering between the ten charged states ðh�þ; �0�þ;
Z1�

þ; Z2�
þ; h�þ; �0�þ; Z1�

þ; Z2�
þ; �þþ��; �þþ��Þ.

The 10� 10 submatrix M4 obtained from the above scat-
tering processes is given by

M4 ¼

�
2 0 0 0 0 �4

2
ffiffi
2

p 0 �i�4

2
ffiffi
2

p ��4

2 0

0 �1 0 0 �4

2
ffiffi
2

p 0 i�4

2
ffiffi
2

p 0 0 0

0 0 �
2 0 0 i�4

2
ffiffi
2

p 0 �4

2
ffiffi
2

p �i�4

2 0

0 0 0 �1
�i�4

2
ffiffi
2

p 0 �4

2
ffiffi
2

p 0 0 0

0 �4

2
ffiffi
2

p 0 i�4

2
ffiffi
2

p 1
2
~�14 0 0 0 0 ��4

2

�4

2
ffiffi
2

p 0 �i�4

2
ffiffi
2

p 0 0 2�þ
23 0 0 � ffiffiffi

2
p

�3 0

0 �i�4

2
ffiffi
2

p 0 �4

2
ffiffi
2

p 0 0 1
2
~�14 0 0 �i�4

2

i�4

2
ffiffi
2

p 0 �4

2
ffiffi
2

p 0 0 0 0 2�þ
23 �i

ffiffiffi
2

p
�3 0

��4

2 0 i�4

2 0 0 � ffiffiffi
2

p
�3 0 i

ffiffiffi
2

p
�3 2�þ

23 0

0 0 0 0 ��4

2 0 i�4

2 0 0 �þ
14

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (5.13)

As one can see, this matrix contains many vanishing ele-
ments, and the ten eigenvalues are straightforward to ob-
tain analytically. They read as follows:

d1 ¼ e1; (5.14)

d2 ¼ e2 ðtwiceÞ; (5.15)

d3 ¼ e3; (5.16)

d4 ¼ f1; (5.17)

d5 ¼ f2; (5.18)

d6 ¼ f3; (5.19)

d7 ¼ �1 � �4

2
; (5.20)

d
 ¼ a
: (5.21)

The fifth submatrix M5 corresponds to the scattering with
initial and final states being one of the following seven
states: ð�þ�þffiffi

2
p ;�

þ�þffiffi
2

p ;�þ�þ;�þþ�0;�þþZ2;�
þþZ1;�

þþhÞ.
It reads

M5 ¼

�
2 0 0 0 0 0 0

0 ~�23 0 ��3 �i�3 0 0

0 0
~�14

2 0 0 �i�4

2
��4

2

0 ��3 0 2�2 0 0 0

0 i�3 0 0 2�2 0 0

0 0 i�4

2 0 0 �1 0

0 0 ��4

2 0 0 0 �1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
(5.22)
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and possesses the following seven distinct eigenvalues:

c1 ¼ e1; (5.23)

c2 ¼ e2; (5.24)

c3 ¼ f1; (5.25)

c4 ¼ f2; (5.26)

c5 ¼ f3; (5.27)

c6 ¼ d7; (5.28)

c7 ¼ 2�2 � �3: (5.29)

There are also triply charged states. The submatrix M6

corresponding to this case generates the scattering with
initial and final states being one of the following
ð�þþ�þ; �þþ�þÞ, and is given by

M 6 ¼ �þ
14 0
0 2�þ

23

� �
(5.30)

with eigenvalues k1 ¼ e1 and k2 ¼ f3. Finally, it is easy to
check that there is just one quadruply charged state
1ffiffi
2

p �þþ�þþ, leading to

M 7 ¼ f3 (5.31)

with f3 an eigenvalue.
From the usual expansion in terms of partial-wave am-

plitudes aJ, we write, following our notations,

M ðkfÞ ¼ i ~Tkf ¼ 16i

X
J
0

ð2J þ 1ÞaðkfÞJ ðsÞPJðcos�Þ;

(5.32)

where MðkfÞ denotes the entries of the M matrix, the
subscripts k and f run over all possible initial and final
states of the above 35-state basis, � denotes the scattering
angle of the corresponding processes, and the PJ’s are the
Legendre polynomials. Since we considered only the lead-
ing high energy (massless limit) contributions that are s
and � independent, all the partial waves with J � 0 vanish,
and one is left with

aðkfÞ0 ¼ � i

16

MðkfÞ (5.33)

for each channel. The S-matrix unitarity constraint for

elastic scattering jaðkkÞ0 j � 1 [or alternatively jReðaðkkÞ0 Þj �
1
2 [36,37]] applies to the diagonal entries of M. It encodes

as well the constraints for nonelastic scattering, provided
that it is applied to the eigenchannels of the 35-state basis
as noted previously. Thus, this constraint translates through
Eq. (5.33) directly to all the eigenvalues we determined
above. We defer to the next section, Eqs. (6.4), (6.5), (6.6),

(6.7), (6.8), (6.9), (6.10), (6.11), (6.12), and (6.13), the list
of all the resulting constraints.

VI. COMBINED UNITARITYAND POTENTIAL
STABILITY CONSTRAINTS

Let us first recall all the constraints obtained in Secs. IV
and V.
BFB:

� 
 0 & �2 þ �3 
 0 & �2 þ �3

2

 0 (6.1)

& �1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ�3Þ

q

 0 & �1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
�2 þ�3

2

�s

 0

(6.2)

& �1 þ �4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q

 0 &

�1 þ �4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
�2 þ �3

2

�s

 0: (6.3)

Unitarity:

j�1 þ �4j � �
; (6.4)

j�1j � �
; (6.5)

j2�1 þ 3�4j � 2�
; (6.6)

j�j � 2�
; (6.7)

j�2j � �

2

; (6.8)

j�2 þ �3j � �

2

; (6.9)

j�þ 4�2 þ 8�3 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� 4�2 � 8�3Þ2 þ 16�2

4

q
j � 4�
;

(6.10)

j3�þ 16�2 þ 12�3



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�� 16�2 � 12�3Þ2 þ 24ð2�1 þ �4Þ2

q
j � 4�
;

(6.11)

j2�1 � �4j � 2�
; (6.12)

j2�2 � �3j � �
; (6.13)

where we introduced the parameter � which takes the
values � ¼ 16 or 8, depending on whether we choose
ja0j � 1 or jReða0Þj � 1

2 , as pointed out at the end of

Sec. V.
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Working out analytically these two sets of BFB and
unitarity constraints, one can reduce them to a more com-
pact system where the allowed ranges for the �’s are easily
identified. One can obtain a necessary domain for �, �2, �3

that does not depend on �1 and �4, by considering simul-
taneously Eqs. (6.7), (6.8), (6.9), (6.10), (6.11), (6.12), and
(6.13) together with Eq. (6.1). It then turns out that
Eqs. (6.8) and (6.9) as well as the lower part of Eq. (6.13)
are weaker than the actually allowed domains for �2, �3,
and similarly, Eq. (6.7) is weaker than the constraint on �
coming from Eq. (6.11). We find

0 � � � 2
3�
; (6.14)

�2 þ �3 
 0 & �2 þ �3

2

 0; (6.15)

�2 þ 2�3 � �

2

; (6.16)

4�2 þ 3�3 � �

2

; (6.17)

2�2 � �3 � �
: (6.18)

We stress here that the above constraints define the largest
possible domain for �, �2, �3 for any set of allowed values
of �1, �4, although Eqs. (6.10) and (6.11) have been used to
determine this domain. It is noteworthy that the upper
bound on �, Eq. (6.14), is reduced by a factor 3 with res-
pect to the naive expectation, Eq. (6.7). Studying further
Eqs. (6.10) and (6.11), one can rewrite them in the follow-
ing simple form where the dependence on �1, �4 has been
explicitly separated from that on �, �2, �3:

j�4j � min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�
 2�
Þ

�
�2 þ 2�3 
 �

2



�s
; (6.19)

j2�1 þ �4j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
�� 2

3
�


��
4�2 þ 3�3 � �

2



�s
;

(6.20)

where Eqs. (6.14) and (6.18) have been used in deriving
Eq. (6.20).8 Various comments are in order here. First, to
obtain the full domain for �1, �4, one has to add to the
above two equations Eqs. (6.4), (6.5), (6.6), and (6.12) as

well as Eqs. (6.2) and (6.3). Thus for each set of values of
�, �2, �3, the allowed domain for �1, �4 is easily deter-
mined as the overlap of a set of linear bands, as illustrated
in Fig. 1.
As stated earlier, Eqs. (6.15), (6.16), (6.17), and (6.18)

define the largest possible domain for �2, �3 allowed by the
combined unitarity and BFB constraints. The reason is
seen from Eqs. (6.19) and (6.20) which are the only extra
constraints on �2, �3 depending on the actual values of �,
�1, �4. As one can easily check, these constraints become
trivially satisfied when �1 ¼ �4 ¼ 0 and thus correspond
to the case of the largest �2, �3 domain. For each set of
nonvanishing values for �1, �4, the domain of �2, �3 given
by Eqs. (6.15), (6.16), (6.17), and (6.18) will be further
reduced according to Eqs. (6.19) and (6.20). We illustrate
the largest ð�2; �3Þ domain in Fig. 2.
To summarize, the boundaries of the combined unitarity

and general BFB domains for the five couplings are now
given by the reduced set of Eqs. (6.2), (6.3), (6.4), (6.5),
(6.6), (6.14), (6.15), (6.16), (6.17), (6.18), (6.19), and (6.20),
which moreover have an analytically simpler form. In
particular, one readily finds from Eq. (6.20) that saturating
the unitarity bound on �, i.e. � ¼ 2

3�
, reduces the two-

dimensional ð�1; �4Þ domain to the one-dimensional
(straight line) �4 ¼ �2�1. This, as well as other features,
will be useful in determining lower and upper bounds on
the Higgs masses in the next section.

FIG. 1 (color online). An illustration of a section of the
ð�1; �4Þ domain (light gray) in units of � as determined by
Eqs. (6.4), (6.5), (6.6), (6.12), (6.19), and (6.20), where we fixed
� ¼ �2 ¼ �3 ¼ 0. Adding the BFB constraints, Eqs. (6.2) and
(6.3), one obtains the reduced domain shown (gray).

8In writing Eq. (6.20) we relied on the fact that the mini-

mum of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�
 2

3�
Þð4�2 þ 3�3 
 �
2
Þ

q
is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð�� 2
3�
Þð4�2 þ 3�3 � �

2
Þ
q

in all the domain allowed by

�, �2, �3. In contrast, min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�
 2�
Þð�2 þ 2�3 
 �

2
Þ
q

appear-

ing in Eq. (6.19) cannot be written in a closed form in this
domain.
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VII. HIGGS MASS THEORETICAL BOUNDS

In this section we rely on the results of the previous
sections to study the theoretically allowed ranges of the
Higgs masses when varying the �0

is and the� parameter in
their allowed domains. Rather than assuming that � is
very large, i.e. of the order of the GUT scale together
with � ’ M�, we will study all the phenomenologically
allowed range. We stress here that even very small values
of � are consistent with a tiny value of vt necessary for
realistic neutrino masses [and Oð1Þ Yukawa couplings],
provided that we take into account consistently Eq. (2.8).

Let us first describe qualitatively the generic behavior of
the masses when � is varied. We will show that, as a
function of �, the h0 mass features a maximum mmax

h0
for

a specific value� ¼ �c. This maximum will translate into
an upper bound on mh0 when the unitarity bound on � is
saturated. Similarly, the H0 mass reaches a minimum mmin

H0

at a nearby value which we momentarily also denote
� ¼ �c for the sake of the qualitative discussion. In the
range �<�c, H

0 is the heaviest among all the Higgses,
decreasing very slowly with increasing� towards its mini-
mum value mmin

H0 , while mh0 increases very quickly with �

to mmax
h0

. The other Higgs masses can have various hierar-

chies and, in particular, the unusual one where the mH

 is
the lightest state,mH

 <mH
 <mA ’ mh0 . In contrast, in

the range�c < �<�max,mH0 now increases quickly with
�whilemh0 decreases very slowly from its maximal value.
This sharply different behavior of mh0 and mH0 below and
above �c can be traced back to the smallness of vt. We
illustrate numerically such a behavior in Fig. 3, where the
seemingly constant m2

h0
for �>�c and constant m2

H0 for

�<�c are artifacts of the very small ratio vt=vd. In fact,
m2

h0
is decreasing very slowly to the right of�c and reaches

zero when � ¼ �þ (cf. Sec. III B and Appendix A), while
m2

H0 starts off at � ¼ �min and decreases very slowly until

its minimum value at � ¼ �c, then increases very slowly

between �c and approximately � ¼ �� ’ �vt=
ffiffiffi
2

p
, and in-

creases very quickly afterwards.9

More quantitatively, we find that there are two different

values of �c, which we dub �ð1Þ
c , �ð2Þ

c , that are uniquely
determined in terms of vd, vt and the �’s. When one of
these two critical values corresponds tommax

h0
, the other will

correspond to mmin
H0 , and vice versa, depending on the sign

of the following quantity:

V � � ð��þ �1 þ �4Þv2
d þ 4ð�2 þ �3Þv2

t : (7.1)

Moreover, it turns out that at these extrema one of the two
h0 or H0 states will correspond to a purely SM-like Higgs
state, and this too is controlled by the sign ofV �. One can
summarize the behavior analytically as follows.
(i) V � > 0:

In this case mh0 reaches a maximum given by

m2
h0

max
ð1Þ ¼ m2

ð1Þ �
�v2

d

2
(7.2)

when � takes the value

� ¼ �ð1Þ
c � ð�1 þ �4Þ vtffiffiffi

2
p ; (7.3)

and m2
H0 reaches a minimum given by

m2
H0

min
ð1Þ ¼ m2

ð2Þ �
1

2ðv2
d þ 16v2

t Þ
� ð�v4

d þ 16v2
t ðð�1 þ �4Þv2

d

þ 4ð�2 þ �3Þv2
t ÞÞ

¼ �v2
d

2
þOðv2

t Þ (7.4)

when � takes the value

� ¼ �ð2Þ
c � vtffiffiffi

2
p ðv2

d þ 16v2
t Þ
ðð2�� �1 � �4Þv2

d

þ 8ð2�1 þ 2�4 � �2 � �3Þv2
t Þ: (7.5)

FIG. 2 (color online). We illustrate here the largest �2 � �3

domain allowed by the combined unitarity and BFB constraints
in units of �. This domain corresponds to Eqs. (6.15), (6.16),
(6.17), and (6.18) and is attained for �1 ¼ �4 ¼ 0, in which case
Eqs. (6.19) and (6.20) are trivially satisfied. As can be seen from
Eqs. (6.19) and (6.20), a smaller domain is obtained as soon as �1

and/or �4 are nonzero, irrespective of the value of � satisfying
Eq. (6.14).

9The precise value is �� ¼ vtð�v2
d þ 4ð4�1 � �2 � �3 þ

4�4Þv2
t Þ=

ffiffiffi
2

p ðv2
d þ 16v2

t Þ. In fact, �� is the common value of �
at which the slopes of the variations of m2

h0
and m2

H0 as functions
of � experience a sudden change.
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Expanding the Higgs masses squared around �ð1Þ
c ,

one finds

m2
h0

¼ m2
h0

max
ð1Þ � 4v2

d

V �

�2
�1 þOð�3

�1Þ; (7.6)

�2
H0 ¼ ð��þ �1 þ �4Þv

2
d

2
þ 2ð�2 þ �3Þv2

t

þ v2
dffiffiffi
2

p
vt

��1 þOð�2
�1Þ; (7.7)

�2
A0 ¼ ð��þ �1 þ �4Þv

2
d

2
þ 2ð�1 þ �4Þv2

t

þ ðv2
d þ 4v2

t Þffiffiffi
2

p
vt

��1 þOð�2
�1Þ; (7.8)

�2
H
 ¼

�
��þ �1 þ �4

2

�
v2
d

2
þ ð2�1 þ �4Þv

2
t

2

þ ðv2
d þ 2v2

t Þffiffiffi
2

p
vt

��1 þOð�2
�1Þ; (7.9)

�2
H

 ¼ð��þ�1Þv

2
d

2
��3v

2
t þ v2

dffiffiffi
2

p
vt

��1þOð�2
�1Þ;

(7.10)

where �2
X � m2

X �m2
h0

max denotes the various

squared mass splittings from m2
h0

max and ��1 �
���ð1Þ

c .
(ii) V � < 0:

In this case the reversed configuration occurs. mh0

reaches a maximum given by

m2
h0

max
ð2Þ ¼ m2

ð2Þ (7.11)

at � ¼ �ð2Þ
c , while mH0 reaches a minimum

given by

m2
H0

min
ð2Þ ¼ m2

ð1Þ (7.12)

at � ¼ �ð1Þ
c , where m2

ð1Þ, m2
ð2Þ, �ð1Þ

c , �ð2Þ
c are as

defined in Eqs. (7.2), (7.3), (7.4), and (7.5). Again,

expanding around �ð2Þ
c we find

m2
h0

¼ m2
h0

max
ð2Þ þ 4v2

d

V �

�2
�2 þOð�3

�2Þ (7.13)

and the squared mass splittings

�2
H0 ¼ ð�� �1 � �4Þv

2
d

2
� 2ð�2 þ �3Þv2

t þ v2
dffiffiffi
2

p
vt

��2 þOð�2
�2Þ; (7.14)

�2
A0 ¼ v2

d

ðv2
d þ 16v2

t Þ
�
ð�� �1 � �4Þv

2
d

2
þ 2ð2ð�� �2 � �3Þ � �1 � �4Þv2

t

�
þ ðv2

d þ 4v2
t Þffiffiffi

2
p

vt

��2 þOð�2
�2; v

4
t =v

2
dÞ;
(7.15)
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FIG. 3 (color online). Illustration of the regimeV � < 0with � ¼ 16

3 , �2 ¼ 10�1, �3 ¼ 2� 10�1, �1 ¼ � 1

2 , �4 ¼ 1, vt ¼ 1 GeV,

v ¼ 246 GeV, vd ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 2v2

t

p
, � ¼ 8, leading to �ð2Þ

c ’ 23 GeV. See Eq. (7.5).
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�2
H
 ¼ v2

d

ðv2
d þ 16v2

t Þ
��
�� �1 � 3

2
�4

�
v2
d

2
þ
�
2�� �1 � 4�2 � 4�3 � 11

2
�4

�
v2
t

�
þ ðv2

d þ 2v2
t Þffiffiffi

2
p

vt

��2 þOð�2
�2; v

4
t =v

2
dÞ;

(7.16)

�2
H

 ¼ v2

d

ðv2
d þ 16v2

t Þ
�
ð�� �1 � 2�4Þv

2
d

2
� ð4�2 þ 5�3 þ 8�4Þv2

t

�
þ v2

dffiffiffi
2

p
vt

��2 þOð�2
�2; v

4
t =v

2
dÞ; (7.17)

where ��2 � ���ð2Þ
c .

Noting that �ð1Þ
c ��ð2Þ

c , m2
ð2Þ �m2

ð1Þ, and V � have the

same sign, and defining

�min
c � minf�ð1Þ

c ; �ð2Þ
c g; (7.18)

�max
c � maxf�ð1Þ

c ; �ð2Þ
c g; (7.19)

one can recast the results of Eqs. (7.2), (7.4), (7.11), and
(7.12) in a more compact form as

m2
h0

max ¼ m2
h0
ð� ¼ �max

c Þ ¼ minfm2
ð1Þ; m

2
ð2Þg; (7.20)

m2
H0

min ¼ m2
H0ð� ¼ �min

c Þ ¼ maxfm2
ð1Þ; m

2
ð2Þg; (7.21)

with an implicit reference to the two regimes (i) and (ii) if

one keeps in mind that m2
ðiÞ is reached for � ¼ �ðiÞ

c . A

numerical illustration of the above features is given in
Figs. 3 and 4.

The mixing pattern.—For � ¼ �ð1Þ
c , h0 and H0 become

pure doublet or triplet states, since in this case B ¼ 0, as
can be seen from Eq. (2.22). However, a close inspection
of Eq. (2.40) shows that in regime (i) [respectively, (ii)]
one has s
 ¼ 0 (respectively, s
 ¼ 1) for this value of �.

Thus, at � ¼ �ð1Þ
c , h0 becomes a pure SM-like Higgs in

regime (i), but it is H0 that becomes a pure SM-like Higgs
in regime (ii). The fact that the SM-like state is not always
associated with the lightest CP even state is important when
discussing the Higgs phenomenology and the interpreta-
tion of the experimental limits and is consistent with the
fact that m2

ð1Þ is indeed the SM-Higgs squared mass,

Eq. (7.2). In fact, due to the smallness of vt=vd, the
behavior of the mixing angle 
 over the full range of the
� parameter follows closely the generic pattern discussed
above: In both regimes (i) and (ii) one has essentially
s
 ’ 
1 or s
 ’ 0 over most of the � range, except for a
very narrow region in the vicinity of �� defined in footnote 9
and satisfying

�� ¼ 1
2ð�ð1Þ

c þ�ð2Þ
c Þ; (7.22)

where js
j changes quickly from ’ 0 to ’ 1. The gen-
eric dominance of no-mixing regimes can be under-
stood from the asymptotic behavior at small and large �

values, i.e. j sin
j�!0j ¼ 1� 2 ð�1þ�4Þ2
�2 ðv2

t =v
2
dÞ þOðv3

t Þ
and sin
j�!�þ ¼ 2ðvt=vdÞ þOðv2

t Þ, together with the

fact that ds
=d� ¼ Oðv3
t Þ. We illustrated this behavior

in Fig. 5, adopting the sign convention 	
 ¼ þ1. As
seen in Fig. 5(b), s
 remains positive in all the � range
since B< 0 [cf. Eqs. (2.22) and (2.40)]. And in accordance
with the asymptotic behavior, s
 tends to Oð10�2Þ at large
�ð> ��Þ, where h0 is nearly SM-like, and to Oð1Þ at
small �ð< ��Þ, where H0 is nearly SM-like. (Note that in

this numerical example�ð1Þ
c becomes negative and is never

reached.) In contrast, for the regime illustrated in Fig. 5(a),

s
 remains negative for �<�ð1Þ
c , crosses zero at �ð1Þ

c , and

again tends to a positive value Oð10�2Þ for � � �ð1Þ
c .

The exact magnitude of js
j at the three critical values of
� can be summarized as follows:

V � > 0: V � < 0:
js
ð� ¼ �ð1Þ

c Þj ¼ 0; 1

js
ð� ¼ ��Þj ¼
�
1
2 � 2vtffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d
þ16v2

t

p
�
1=2

;

�
1
2 þ 2vtffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d
þ16v2

t

p
�
1=2

¼ 1ffiffi
2

p � ffiffiffi
2

p
vt

vd
þO

�
v2
t

v2
d

�
; 1ffiffi

2
p þ ffiffiffi

2
p

vt

vd
þO

�
v2
t

v2
d

�

js
ð� ¼ �ð2Þ
c Þj ¼ vdffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
d
þ16v2

t

p ; 4vtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d
þ16v2

t

p

¼ 1� 8
v2
t

v2
d

þO
�
v3
t

v3
d

�
; 4 vt

vd
þO

�
v3
t

v3
d

�

(7.23)

Large mixing scenarios have been discussed previously in
[18,38], while here we quantify more precisely the regions
where such a large mixing takes place. For later analyses it

is useful to characterize the � range in the large js
j

regime. One sees from the above equations that the size
of this range is OðvtÞ. As a first approximation one can

characterize it by the interval 0<�<�min
c , with �min

c

given by Eq. (7.18). However, depending on the values
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of � and �1 þ �4, js
j can still be very close to 1 in the

range �min
c < �< ��, especially when �min

c is not positive
definite [it becomes negative when �1 þ �4 < 0 or
2�� ð�1 þ �4Þ< 0]. It is more sensible to base this char-
acterization on the amount of deviation from the value
js
j ¼ 1. Defining �̂ in the vicinity of �� in the form

�̂ � ��� �� vt, with � strictly >0, one finds js
ð�̂Þj ¼
1� kð�Þ v2

t

v2
d

þOðv3
t

v3
d

Þ. For each given positive value of k,

there corresponds a value of �̂ given by

�̂ ð
Þ ¼
�
�ffiffiffi
2

p � �� �1 � �4ffiffiffi
2

p 
 ffiffiffi
k

p
�
vt þO

�
v3
t

v2
d

�
: (7.24)

The twofold ambiguity in this expression is resolved as

follows: Requiring consistently �min
c � �̂ < �� to hold,

one should take for V � > 0, �̂ ¼ �̂ð�Þ with k 
 8, and

for V � < 0, �̂ ¼ �̂ðþÞ for any k 
 0.10 In particular, �̂

reproduces, respectively, �ð1Þ
c and �ð2Þ

c for the special
values k ¼ 0 and k ¼ 8 as expected, while �� cannot be
reached for any finite value of k [consistently with the fact

that js
ð�̂Þj ’ 1 and js
ð�̂Þj ’ 1=
ffiffiffi
2

p
are not perturbatively

close to each other in terms of powers of vt=vd].
With the above prescription one can characterize the �

range in the large js
j regime by 0<�< �̂ðkÞ, where k
can now be interpreted as triggering the experimental
sensitivity to the deviation of js
j from its maximal value
js
j ¼ 1. Equation (7.24) shows that the lower the sensi-
tivity to large js
j (i.e. the larger k), the lower the sensi-
tivity of the size of the� domain to �1 þ �4. We will come
back to the above issues in the phenomenological discus-
sion of Sec. VIII.

Unitarity bounds.—Relying on the above properties we
can now easily derive the theoretical upper bounds on the
various Higgs masses. From Eq. (7.2), and using the maxi-
mal value allowed by the tree-level unitarity constraint for
�, Eq. (6.14), and vd ’ 246 GeV, we determine an upper
bound on mh0 ,

mh0 & 712 GeV ðfor � ¼ 8Þ; (7.25)

& 1 TeV ðfor � ¼ 16Þ: (7.26)

If Eq. (7.11) is used instead, then the saturation of unitarity
and BFB bounds on �1 þ �4 should also be considered.
However, due to the smallness of vt=vd, this would lead to
only a few GeV change in the above upper bounds. As far
as mH0 is concerned, the above bounds are essentially the
minimally allowed values, as is obvious from Eqs. (7.20)

and (7.21), in the unitarity saturation limit. To obtain its
theoretical upper bound as well as those of the other Higgs
masses, one should rather take � at its maximally allowed

value,�max ’ �þ ’ �
4
ffiffi
2

p v2
d

vt
, since all these masses increase

monotonically with �. For instance, with the set of pa-
rameters chosen in Figs. 3 and 4 and vt ¼ 1 GeV, one finds
the upper bounds

mH

 ’mH
 ’mA’mH0 ’88TeV ðfor�¼8Þ; (7.27)

’ 124 TeV ðfor � ¼ 16Þ; (7.28)

which are not phenomenologically compelling. Actually,
somewhat lower bounds are obtained when taking into
account the experimental exclusion limits on a light
Higgs mh0 but remain too high to be useful. In contrast,
phenomenologically interesting scenarios with light char-
ged, doubly charged, CP odd and CP even Higgses are pos-
sible for small values of �. For instance, as illustrated in

Figs. 3 and 4, such a light spectrum occurs when � �
�ð2Þ

c ’ 23 GeV. More generally, the analytical expressions
given above for the mass splittings show that in the vicinity
of �c and, in particular, for �<�c, the neutral CP even h

0

is not necessarily the lightest Higgs.11 The detailed pat-
terns will depend on the actual values of the �’s and will be
studied more thoroughly in the next section, but one can
already see some generic features in regimes (i) and (ii) at
� ’ �c. In regime (i), where ��þ �1 þ �4 > 0, one ex-
pects H

 to become the lightest Higgs if ��þ �1 < 0,
that is, when �1 < �< �1 þ �4. Similarly, in regime (ii),
where typically �� �1 � �4 > 0, one again expects H


to be the lightest Higgs when �1 þ �4 < �< �1 þ 2�4.
More generally, a close inspection of Eqs. (2.11) and (2.27)

shows that mH

 <mh0 when �<�?¼ð�þ�4Þvt=
ffiffiffi
2

p þ
Oðv3

t =v
2
dÞ, and only if �4 > 0.12 Furthermore, it immedi-

ately follows from Eqs. (2.13) and (2.31) that mH

 <
mH
 <mA when �4 > 0 so that the necessary and suffi-
cient condition for H

 to be the lightest Higgs is

�<�? with �4 > 0: (7.29)

Phenomenological bounds.—In order to prepare for
a phenomenological study, we discussed in Sec. III B the
modification on the tachyonic bounds of � when experi-
mental exclusion limits are available for mA0 , mH
 , and
mH

 , cf. Eqs. (3.13) and (3.14). Here we address the
same question concerning mh0 and mH0 . For each given
experimental bound ðmh0Þexp [respectively, ðmH0Þexp] there
correspond two values �h0
 [respectively, �H0


 ], namely,

10Strictly speaking, in the caseV � > 0 one can still choose k in
the interval 2< k< 8 if V � is sufficiently close to zero to
ensure that �min

c � �̂. In practice, these details will not be
important, since one does not expect an experimental sensitivity
to the deviation from js
j ¼ 1 to be better than a few percent. A
deviation of 1%, with vt ¼ 1 GeV, puts the value of k already
around 600.

11We have kept in these expressions subleading terms of Oðv2
t Þ

in order to handle as well the small parts of the �i’s parameter
space where the leading Oðv2

dÞ are suppressed.
12Although this expression of �? is well defined for �4 < 0,
one finds that the splitting m2

H

 �m2
h0

is negative only in the

domain defined by �< ð�þ 2�4Þvt=
ffiffiffi
2

p þOðv3
t =v

2
dÞ and

��4v
2
d=ð4

ffiffiffi
2

p
vtÞ þOðvtÞ<�< ð�þ �4Þvt=

ffiffiffi
2

p þOðv3
t =v

2
dÞ,

which is clearly nonempty only for �4 > 0.
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�h0
 ¼ 1

8
ffiffiffi
2

p
�t

�
��2

d þ 8ð�1 þ �4Þ�2
t � 2ðm2

h0
Þexp


 2½ðm2
ð1Þ � ðm2

h0
ÞexpÞðm2

ð2Þ � ðm2
h0
ÞexpÞ�1=2

�
�
1þ 16

�2
t

�2
d

�
1=2
�

(7.30)

[and similarly for �H0


 with ðmh0Þexp replaced by ðmH0Þexp],
for which mh0 reaches ðmh0Þexp [respectively, mH0 reaches

ðmH0Þexp]. Note that in the limit of no experimental bounds,

i.e. ðm2
h0;H0Þexp ! 0, Eq. (7.30) gives back Eq. (A1).

Furthermore, relying on the fact that mh0 has a maximum
and mH0 has a minimum as functions of �, cf. Eqs. (7.20)
and (7.21), the phenomenological bounds read

�h0� � � � �h0þ assuming ðmh0Þexp � mmax
h0

and

� � �H0

� or �H0

þ � � assuming ðmH0Þexp 
 mmin
H0 :

(7.31)

Obviously ðmh0Þexp >mmax
h0

would be an inconsistent as-

sumption, while ðmH0Þexp <mmin
H0 would be an empty as-

sumption not leading to any constraint as far as � is
concerned.

In summary, the experimental lower bounds on the
various Higgs masses will typically constrain the � pa-
rameter to lie in a finite domain defined by the combination
of Eqs. (3.14) and (7.31).

VIII. HIGGS PHENOMENOLOGY

Although previous studies in the literature typically
assumed the triplet mass M� and the mass parameter �
to be much larger than the electroweak scale, M� � vd,
more recently the possibility of having M�, � & 1 TeV,
where the Higgses of the DTHMmight be accessible at the
Tevatron and the LHC [17,39–46], has received more

attention. In this spirit, the results obtained in the previous
sections help define educated strategies to extract con-
straints on the physical Higgs masses and model parame-
ters from experimental data, rather than performing merely
blind (and CPU time-consuming) scans on these parame-
ters. The existing experimental exclusion limits on the
SM-Higgs particle are readily translated into constraints
on the DTHM in the parameter space region where h0

becomes SM-like, i.e. when the mixing between the dou-
blet and the triplet is very small. However, even when far
from this region, existing exclusion limits for an extended
Higgs sector (such as in two-Higgs-doublet models or in
the minimal supersymmetric extension of the SM) can also
be partially adapted to h0,H0, A0, andH
, while of course
H

 has a distinctive experimental search.
In this section we give a quick overview of the Higgs

sector phenomenology and experimental searches (for an
extended overview on the phenomenology of triplet mod-
els, see Ref. [47]), followed by a preliminary analysis using
our results. A detailed study taking into account all
present-day experimental limits lies out of the scope of
this paper and will be presented elsewhere.

A. Doubly charged Higgs

Observation of the doubly charged Higgs H

 would
unambiguously signal physics beyond Higgs doublets, let
alone physics beyond the SM-Higgs sector. Owing to
charge conservation, it is obvious that H

 cannot couple
to a pair of quarks; therefore, its possible decay modes are
as follows:
(i) same sign charged lepton pair H

 ! l
l
 that

proceeds via lepton number violating coupling,
(ii) a pair of W
 gauge bosons H

 ! W
W
,
(iii) H

 ! W
H
,
(iv) a pair of charged Higgs bosons H

 ! H
H
.

We emphasize also that the doubly charged Higgs couples
to the photon and to the Z boson through gauge couplings,
Eqs. (C17) and (C18), while its coupling to a pair ofW
 is
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FIG. 4 (color online). Zoom on the variation of mh0 with � in the vicinity of �ð2Þ
c ; � ¼ 16


3 , �2 ¼ 10�1, �3 ¼ 2� 10�1, �1 ¼ � 1
2 ,

�4 ¼ 1, vt ¼ 1 GeV, v ¼ 246 GeV, vd ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 2v2

t

p
, � ¼ 8, leading to �ð2Þ

c ’ 23 GeV. See Eq. (7.5).
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proportional to the triplet VEV vt; see Eqs. (C15).
Therefore, the decay channel (ii) will be suppressed for
vt � vd. The decay channel (iv) will also be suppressed
for small vt, as can be seen from the form of the coupling
of H

 to a pair of charged Higgses H
, Eq. (C16).
Indeed, one has cos�0 ’ 1 and sin�0 � vt=vd from
Eq. (2.19), and furthermore, the �sin2�0 is also of order
vt due to the� upper bound�þ � v2

d=vt, viz. Eq. (A1). In

contrast, the coupling H

W
H
 is proportional to the
gauge coupling and has no suppression factors. The decay
channel (ii) will thus contribute substantially if kinemati-
cally open. Depending on the size of the Yukawa couplings
of the leptons, the doubly charged Higgs can decay dom-
inantly either to a pair of leptons or to W
 and H
, and
subdominantly to a pair of W
 and/or a pair of H
 if
kinematically allowed.

In eþe� collisions, the doubly charged Higgs can be pair
produced through the � and Z s channel,13 eþe� ! ��,
Z� ! H

H�� [48–51]. One can also have access to the
associate production of H
 with W� through s-channel Z
exchange [52–54]. If the e�e� option is available at the
International Linear Collider, then the doubly charged
Higgs can be produced in W
W
 fusion through e�e� !
W��W�� ! e�e�Hþþ. Even if H

W�W� has a vt

suppression, the rate for W
W
 fusion could be substan-
tial, especially at higher energy options for e�e� [49].

At the Tevatron or the LHC, the two production mecha-
nisms with potentially large cross sections are p �p=pp !
��, Z� ! H

H��X or a single production through WW
fusion, p �p=pp ! W
�W
� ! H

X [55,56]. The latter
process as well as the s channel p �p=pp ! W
� !
W�H

 depend on the coupling H

W�W� which is
proportional to the triplet VEV. However, the suppression
due to the small value of vt is somewhat compensated by
the fact that W
W
 fusion could be substantial at high
energies. Those processes have to be supplemented by
the associated production of singly and doubly charged
Higgs bosons p �p=pp ! H

H�X which could have a
cross section comparable to p �p=pp ! H

H��X
[57,58].

Such doubly charged Higgses have been subject to many
experimental searches. At LEP-II, the experiments L3,
OPAL, and Delphi [59–61] performed a search for doubly
charged Higgs bosons assuming that H

 decay domi-
nantly to a pair of leptons, H

 ! l
l
. Four lepton final
states have been analyzed at L3, OPAL, and Delphi. L3
performed a search for the six possibilities: ee, ��, �e,
��, e�, and ��. No excess has been found, and lower limits
in the range 95–100 GeV at the 95% confidence level on
the doubly charged Higgs boson mass are derived. Those
lower limits depend on the doubly charged Higgs decay
modes. For example, if H

 ! e
e
 is the dominant

decay, then the lower limit is 100 GeV, while if H

 !
�
�
 is the dominant decay, then the lower limit is about
95 GeV.
At the Tevatron, D0 [62,63] and CDF [64,65] have

searched for p �p ! ��, Z� ! H

H��X with H

 !
l
l
. The D0 measurement [62] represents the first doubly
charged Higgs search with the decayH

 ! �
�
. Note
that the D0 search was limited to H

 ! �
�
 which is
an almost background-free signal, while CDF explored the
three final states e
e
, �
�
, and e
�
. Both D0 and
CDF excluded a doubly charged Higgs with a mass in the
range 100–150 GeV. We stress that all those bounds as-
sume a 100% branching ratio for H

 ! l
l
 decay,
while in realistic cases one can easily find scenarios where
H

 ! l
l
 is suppressed while H

 ! W
�W
� is
substantial [17,39,66,67], which could partially invalidate
the CDF and D0 limits. However, the LHC has the capa-
bility to extend the above limits up to a mass of about
1 TeV for the high luminosity option [17,40,56,68]. Very
recently CMS released the search results for doubly
charged Higgs bosons using an integrated luminosity of
0:98 fb1[69]. A lower limit of 313 GeV has been set on
H

 which decays with a 100% branching ratio to l
l0
, l,
l0 ¼ �, e. This limit is weakened to 266 GeV (respectively,
254 GeV) in the case of the �
�
 (respectively, e
�
)
final state.
Note that the observation of doubly charged Higgs bo-

sons at the LHC and measurement of its leptonic branching
ratios will also shed some light on the neutrino mass
pattern [17,39,44,51,58,66,67,70,71].
Finally, indirect limits on the mass and the bileptonic

couplings of the doubly charged Higgs boson can be
extracted from low energy lepton flavor violating pro-
cesses, such as � ! e�, � ! 3e, � ! 3l; . . . (see, for
instance, [41,45]).

B. Singly charged Higgs

Let us now discuss briefly the couplings of the singly
charged Higgs and its decay modes. The charged Higgs
coupling to a lepton and a neutrino is proportional to �
m�=vt � Y� [17], which could be of the orderOð1Þ if vt is
very small. Similarly, the charged Higgs coupling to a pair
of quarks, u and d, is proportional to tan�0, which is
suppressed by vt=vd [17]. In the case of H� �tb, this cou-
pling could enjoy some enhancement from the Yukawa
coupling of the top quark. The suppression of the coupling
H� �tb has three consequences:
(i) Given the suppression factor of the order vt=vd for

H� �tb, the charged Higgs mass cannot be subject
to the b ! s� constraint, similarly to the type I
two-Higgs-doublet model where the coupling is sup-
pressed by 1= tan�.

(ii) Some of the conventional mechanisms for charged
Higgs production at hadron colliders such as
bg ! tHþ and gg ! tbHþ will be suppressed.

13The t channel mediated by a lepton is, in general, suppressed
by the small Yukawa coupling.
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(iii) Since the charged Higgs search at the Tevatron is
based on the top decay t ! Hþb, given the sup-
pression of the Hþt �b coupling, the branching ratio
of t ! bHþ would also be suppressed. One con-
cludes then that the CDF, CMS, and ATLAS
[72–75] limits do not apply in this case.

Besides those processes which are suppressed, one can
still produce charged Higgses through the associated pro-
duction of singly and doubly charged Higgs pp=p �p !
W� ! H

H� [57,58] with a spectacular signature from
H

 ! l
l
. Other mechanisms are as follows: the
Drell-Yan process (pp=p �p ! ��, Z� ! H
H�), the
associated production of the charged Higgs and neutral
Higgs (pp=p �p!W�!H
h0, pp=p �p ! W� ! H
H0,
pp=p �p ! W� ! H
A0), and the associated produc-
tion of the charged Higgs with a W gauge boson
(pp=p �p ! Z� ! W
H�). Note that among the latter
processes, the ones with W
H� or H�h0 final states
are suppressed by a vt=vd factor as compared to the
Drell-Yan process and the two other associated production
processes that are controlled by gauge couplings, cf.
Eqs. (C10)–(C13).

If the charged Higgs decays dominantly to leptons
(for small vt) we can apply the LEP mass lower bounds
that are of the order of 80 GeV [76,77]. For large vt,
i.e. much larger than the neutrino masses but still well
below the electroweak scale, the dominant decay is either
Hþ ! t �b or one of the bosonic decays Hþ ! WþZ,
Hþ ! Wþh0=WþA0. For the first two decay modes there
has been no explicit search at the LEP or at the Tevatron,
while for the Hþ ! WþA0 decay (and possibly for Hþ !
Wþh0 if h0 decays similarly to A0), one can use the LEP-II
search performed in the framework of two-Higgs-doublet
models. In this case the charged Higgs mass limit is again
of the order of 80 GeV [77].

C. Neutral Higgses

The lighter CP even Higgs boson h0 is fully dominated
by the doublet component (i.e. the mixing js
j � 1) when
�> ��, as discussed in Sec. VII and illustrated in Fig. 5.
In this case the coupling of h0 to a pair of neutrinos is
suppressed, being proportional to s
. Such a Higgs will
completely mimic the SM-Higgs boson, and then the LEP
and the recent Tevatron, CMS, and ATLAS limits would
apply. In this scenario of very small mixing, the other
neutral Higgses H0 and A0 would be fermiophobic to all
charged leptons and quarks, but their coupling to a pair of
neutrinos that is proportional to cos
Y� � Y� ¼ m�=vt

could be enhanced for small vt. Then the dominant decay
mode for H0 and A0, for small vt, would be a pair of
neutrinos [17].
Note that A0, being CP odd, does not couple to a pair of

gauge bosons, while the couplings H0ZZ and H0WW in
the small mixing case are suppressed by vt=vd, Eqs. (C4)
and (C6). Thus the W and Z Higgsstrahlung productions
of H0 and A0 are expected to be small. Furthermore, while
the H0A0Z vertex is controlled by the gauge coupling,
Eq. (C8), h0A0Z has an extra vt=vd suppression,
Eq. (C7). This implies that in the small mixing case, one
can still produce A0 and H0 through the Drell-Yan process
eþe�=pp=p �p ! Z� ! H0A0. For very small vt, A andH0

would decay essentially into a pair of neutrinos. At the
LEP, the signal would then be a photon (from initial state
radiation) and missing energy in the final state. A lower
bound on mH and mA of the order of 55 GeV can be
extracted in this case from LEP-II data, assuming mass
degeneracy between A0 andH0 [78]. (In the nondegenerate
case the lower bound translates into mH þmA 

110 GeV.) Increasing vt well above the neutrino masses
significantly decreases H0=A0 ! ��, and the decay chan-
nels H0 ! b �b, A0 ! b �b, as well as H0 ! ZZ, A0 ! Zh0
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FIG. 5 (color online). The mixing angle as a function of �, in the regimes V � > 0 (a) and V � < 0 (b); the other parameters are
given by vt ¼ 1 GeV, �max ¼ 16
=3, �2 ¼ �3 ¼ 0:1, �1 ¼ 0:5, and 	
 ¼ þ. The log scale in (b) shows the asymptotic values at
large �. The same asymptotic values apply in (a). See text for further discussion.

A. ARHRIB et al. PHYSICAL REVIEW D 84, 095005 (2011)

095005-22



if open [see Eqs. (C4) and (C7)], can become dominant. If
H0 ! b �b, A0 ! b �b dominate, the LEP-II Higgs search
through eþe� ! H0A0 in the two-Higgs-doublet model
can apply to the DTHM in this case, and the limit is
roughly mH þmA 
 185 GeV [79]. There is, however, a
distinctive feature in the DTHM related to the H0h0h0

coupling, Eq. (C9), the latter becoming substantial for
increasing � and thus for heavier H0. The H0 ! h0h0

decay mode would then be important in both the large
and small (with respect to the neutrino masses) vt regimes.

In the case of maximal mixing js
j � 1which occurs for
�< �� (see Fig. 5), the roles of h0 and H0 are inter-
changed. H0 is fully doublet and h0 is fully triplet.
Taking into account this interchange, the previous discus-
sion applies here to H0. However, since h0 remains the
lighter Higgs, which can now be far from SM-like, one
expects weaker experimental constraints on its mass than
the ones quoted above.

D. Top decay into a charged Higgs

A light charged Higgs of the order 100–200 GeV is
still allowed by theoretical constraints, as well as by an
experimental search. If the charged Higgs satisfies mH
 �
mt �mb, one could ask whether the decay t ! bHþ can
have a significant branching ratio to be observed at the
LHC. As mentioned before, the couplingHþtb has a vt=vd

suppression, and the branching ratio for t ! bHþ is ex-
pected to be small. We perform a systematic scan over the
DTHM parameter space looking for charged Higgs masses
that allow the t ! bHþ decay to be open. In Fig. 6 we
show the branching ratio for t ! bHþ, where we included
t ! bWþ and t ! sWþ decay channels and the QCD
corrections. It is obvious that a large effect on t ! bHþ
would appear for the largest possible values of vt that are

allowed by electroweak precision constraints and the
theoretical constraints. Indeed, for a triplet VEV vt in the
range 0:1 ! 3:5 GeV and a charged Higgs mass less than
165 GeV, one finds Brðt ! bHþÞ in the range 10�5–10�4.
However, it is well known that the LHC will act as a top

factory. With low luminosity 10 fb�1, 8� 106 t�t pairs per
experiment per year will be produced. This number will
increase by 1 order of magnitude with the high luminosity
option. Therefore, the properties of top quarks can be
examined with significant precision at the LHC. For in-
stance, it has been shown that for top decays through
flavor changing neutral processes, it is possible to reach
Brðt!cH0Þ�4:5�10�5 at the LHC [80]. For t ! bHþ,
no such studies are available. But it is clear that if we
let one top decay to bW and the other one decay to bH
with a branching ratio in the range 10�5–10�4, this would
lead to 800–8000 raw bWþ �bH� (or �bW�bHþ) events in
the case of the high luminosity option, which may be
enough to extract a charged Higgs and measure its cou-
pling to the top. Note also that high sensitivity to the
charged or neutral Higgses of top decays through loop
induced flavor changing neutral currents can also be at-
tained at the International Linear Collider [81–83].

E. DTHM spectrum and theoretical constraints

We illustrate, in Figs. 7(a) and 8(a), the correlations
among �, sin
, and vt for fixed values of the �i’s and �,
and in Figs. 7(b), 8(b), and 8(c), the correlations among �,
sin
, and the CP even Higgs masses (or equivalently �), for
fixed values of the �i’s and vt, where we take into account
the boundedness from below and unitarity constraints dis-
cussed in the previous sections. Note that the chosen
numbers in the figures are such that V � < 0 in Fig. 7
and V � > 0 in Fig. 8(a), while Figs. 8(b) and 8(c) inter-
polate between these two regimes; see Eq. (7.1). For fixed
�, increasing the magnitude of vt decreases mh0 and
increases the mixing parameter js
j, as can be seen from
Figs. 7(a) and 8(a). The upper-left white areas in these plots
correspond to mh0 & 115 GeV, where we took the latter
value as a fiducial lower bound for a SM-like Higgs. Such a
bound corresponds to �SM ’ 0:44, for vt < 1 GeV, while
the upper bound formh0 is around 120 GeV, corresponding
to the value � ¼ 0:48 chosen in the figures, cf. Eqs. (7.2)
and (7.4). It thus follows that the colored areas in the plots,
indicating mainly very small s
 values, i.e. h0 behaving
like a SM Higgs, correspond to the small Higgs mass range
115 GeV � mh0 & 120 GeV. Increasing the value of �,
keeping �SM fixed, would result in an increase of the
Higgs mass range as well as of the regions with larger
js
j (the dark gray areas on the plots). In fact, there are two
regions corresponding to mh0 & 115 GeV—the white area
in the upper-left corner corresponding to small values of�
delimited by the thin dark gray area, and another region at
very large values of� [ * Oð1Þ–Oð103Þ TeV]—which are
out of the scope of the � range shown on the plots,

FIG. 6 (color online). Branching ratio for t ! bHþ as a func-
tion of the charged Higgs mass for three values of the triplet VEV
vt. The branching ratios increase with increasing values of vt.
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delimited by the light gray to black areas. One should note
that, in the former region, js
j reaches 1 quickly, so that h0
carries essentially a triplet component and is thus not
excluded by a fiducial SM-like Higgs mass lower bound,
even if it is lighter than this bound. In contrast, in the latter
region where js
j remains very small, a SM-Higgs mass
lower bound applies to h0. It follows that such a bound
does not put lower bounds on �, while it leads typically to
very large upper bounds on � as a function of vt. In the
small � region, H0 carries mainly the SM-like component
and should respect a SM-Higgs mass lower bound.
However, due to the very low sensitivity to� in this regime
(see Fig. 3), such a bound will translate merely into a lower
bound on �. Therefore, exclusion of very small values of�
can only originate from exclusion limits on the lightest
non-SM-like CP even or CP odd Higgses, which could be
extracted, for instance, from existing limits for the minimal
supersymmetric extension of the SM in the nondecoupling
regime [84].

Complementary features, now with a fixed vt and vary-
ing �, are illustrated in Figs. 7(b), 8(b), and 8(c). The gross
features of Figs. 7(b) and 8(b) are in agreement with the
previous discussion on the phenomenological bounds, re-
lated to Eqs. (7.30) and (7.31). They illustrate how infor-
mation on mh0 constrains the allowed range for � without
any prior knowledge on �. For a given mh0 , the allowed
range of � is theoretically bounded from below by some
�min, in order to satisfy mh0 � mmax

h0
; see Eq. (7.31). Then

for each value of � in the domain �min � � � �max � 16

3

there corresponds two values of � consistent with a given
mh0 , according to Eq. (7.30). Then it is easy to see, from the
shape of the mh0ð�Þ plots shown in Fig. 3, that the largest

spread between�h0þ and�h0� is reached for � ¼ �max, since
increasing � results in shifting these plots upwards. The
two branches of the envelope of the domains in Figs. 7(b)

and 8(b) correspond to �h0
 ð�maxÞ. Furthermore, increasing

mh0 with fixed � ¼ �max results in an increase of�� and a
decrease of �þ, as can again be seen from the shape of the
mh0ð�Þ plots shown in Fig. 3, till the two branches join and
terminate when mh0 reaches its unitarity bound, Eq. (7.26).
With the numbers chosen on the plots, � is bounded to lie
between �� � 0:3 GeV and �þ � 105 GeV. One can see
that for small � � 1 GeV, mh0 must be less than about
200 GeV. The latter bound on mh0 increases quickly to
reach the unitarity bound, Eq. (7.26), when � increases
from 1 GeV to 10 GeV. Above, � ¼ 10 GeV, mh0 can be
any number between the LEP limit (114 GeV) and this
unitarity bound. As noted previously, one should take into
account the actual doublet content of h0 when reading out
exclusion domains from these plots. In the plot, we have
illustrated the size of js
j. In most of the cases the mixing
angle is very small (black to light gray areas), which means
that h0 is dominated by a doublet component. In these
regions where a SM-Higgs exclusion limit can be readily
applied, one might still need to combine this information
with the search limits for the other charged, doubly
charged, and CP odd Higgs states, in order to further reduce
the otherwise large allowed domain for �; see Eq. (3.13).
However, due to the vt suppression in Eq. (3.13) of the
lower bound �min, such a reduction is not expected to be
significant unless the experimental lower bounds,
ðmH

Þexp or ðmH
Þexp or ðm

HA0 Þexp, become sufficiently

higher than the electroweak scale. In contrast, bounds on
mh0 alone would significantly shrink the spread of the �
range whenever js
j> 10�2 (the light gray/dark gray
areas), reducing as well the order of magnitude of the
size of �. In such a regime of small � one starts being
sensitive to the actual values of the �i’s, as can be seen
through the slight difference, in the light gray area, be-
tween Figs. 7(b) and 8(b). This effect will, of course,
increase for higher values of the �i’s consistent with uni-
tarity and BFB constraints.

FIG. 7 (color online). (a) Correlation between � and vt with mh0 >mðSMÞ
h0

¼ 115 GeV and � ¼ 0:48; (b) correlation between � and
mh0 , scanning over � in the range 0:44 � � � 16
=3, with vt ¼ 1 GeV. The color code is as follows: 10�1 � s
 � 1 (dark gray),
10�2 � s
 � 10�1 (light gray), 10�3 � s
 � 10�2 (black), and s
 � 10�3 (gray). The other parameters are �1 ¼ ��4 ¼ 1, �2 ¼
�3 ¼ 0, and � ¼ 8. V � < 0 for both figures.
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Figure 8(c) illustrates the behavior of mH0 as a function
of � and � which, as compared to Fig. 8(b), shows a
striking difference from the behavior of mh0 . According
to the previous discussion on neutral Higgses (see also
Fig. 5), js
j is essentially either very small or very close
to 1. Thus, the dark gray area corresponds to an H0

behaving essentially like the SM Higgs. The dual sizes of
the dark gray areas in both plots can be understood again
from the mass shapes of Fig. 3: For small �ð< ��Þ, mh0

changes very quickly with � while mH0 is almost insensi-
tive to �. It follows that a variation of �, that amounts to
shifting these mass shapes upwards or downwards in
Fig. 3, results in a small change in � for a fixed mh0 and
a big change in � for a fixed mH0 , hence the narrow dark
gray strip in Fig. 8(b) and the large dark gray area in
Fig. 8(c). [One can similarly understand the dual sizes of
the black and light gray areas for large �ð> ��Þ.] These
features suggest a useful complementary strategy when
using present or future exclusion limits, depending on
whether one interprets these limits in the small or large js
j
regimes. We discuss this strategy only qualitatively here,
summarizing its main points as follows:

(I) In the small js
j regime, akin to moderate to large �
values, the typical Higgs spectrum features a CP even

lightest state h0 behaving like a SM Higgs, the
remaining Higgs states being much heavier, as illus-
trated in Figs. 3 and 9(a). Interpreting the exclusion
limits within this regime amounts to applying a

SM-Higgs mass lower bound mðSMÞ
h to mh0 that leads

to a lower bound on �; see Eq. (7.31). A lower, �h0� ,

and an upper, �h0þ , bound on � will correspond to

any � above this bound. The lower bound �h0� is,
however, typically too small to be consistent with the
small js
j regime and should be superseded by a

larger value Oðmaxf�ð1Þ
c ; �ð2Þ

c ÞgÞ. Furthermore, one

should keep in mind that �h0þ is extremely sensitive
to mh0 and decreases quickly with increasing mh0 .
This implies the important feature that a slight im-

provement of the exclusion limit mðSMÞ
h results in a

substantial decrease of the upper bound on �. The
heavier CP even state H0 is not expected to bring
significant constraints. Indeed, in the considered
regime, this state carries essentially the triplet

FIG. 8 (color online). (a) Correlation between � and vt with mh0 >mðSMÞ
h0

¼ 115 GeV and � ¼ 0:48; (b) correlation between � and
the light CP even Higgs mass; (c) correlation between � and the heavy CP even Higgs mass, scanning over � in the range 0:44 � � �
16
=3, with vt ¼ 1 GeV. The color code is as follows: 10�1 � js
j � 1 (dark gray), 10�2 � js
j � 10�1 (light gray), 10�3 �
js
j � 10�2 (black), and js
j � 10�3 [white bottom area in (a)]. The other parameters are given by �1 ¼ 1:5, �2 ¼ �3 ¼ 0:1, �4 ¼
�1, and � ¼ 8. V � > 0 in (a), while in (b) and (c) V � changes sign with increasing Higgs masses.
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component with suppressed couplings to the SM
sector. Its mass can thus be bounded only by

mðnon-SMÞ
h , the exclusion mass limit on non-SM-like

Higgs particles. Since such an exclusion mass limit
is expected to be weaker than the SM-like limit due

to lower statistics, that is, mðnon-SMÞ
h < mðSMÞ

h , then

taking into account that one theoretically has mH0 >

mh0 , one is trivially led to mðnon-SMÞ
h < mmin

H0 , which

implies no new constraints [cf. the discussion fol-
lowing Eq. (7.31)]. As stated previously, exclusion
limits on the remaining Higgs states can also be used
independently to improve the lower bound on �
based on Eq. (3.13). One can, however, get further
information within the present regime depending on
whether these exclusion limits are higher or lower

than mðSMÞ
h . In particular, if ðmH

Þexp * mðSMÞ

h ,

which excludes an H

 lighter than h0, then one
excludes all the �4 > 0 region, or else puts a stronger
lower bound on �, namely, �>��. [See Eq. (7.29)
and discussion thereof.] In the case where

ðmH

Þexp & mðSMÞ
h , which is the present experimen-

tal situation, there is a small window �min <�<

�� with �4 > 0; otherwise, �� <�<�h0þ irrespec-
tive of the sign of �4, and for all the allowed
values of � discussed above. We have illustrated in
Fig. 9(b) a case whereH

 can be the lightest Higgs
state.

(II) In the large js
j regime, akin to small � values, H0

is the heaviest among all the Higgs states of the
model and behaves like a SM Higgs. This is a rather
unusual configuration that should help constrain
more efficiently, or perhaps exclude, this regime.
Also in this small� regime, and in contrast with the
previous regime where only � was playing a role,
there can now be a somewhat increased sensitivity

to the �i’s as well, in particular, �1 þ �4. The
reason for this is that the size of the � domain is
of order �̂, Eq. (7.24), where in the latter, �1, �4 do
not suffer a vt suppression as compared to �.
However, as discussed in Sec. VII, the parameter
k will characterize the sensitivity to the deviation of
H0 from a pure SM-Higgs state, which can lead, for
realistic experimental sensitivities, to a significant
reduction of the sensitivity on �1 þ �4.

One then has to consider two cases:

(a) mðSMÞ
h < mmin

H0 .—This case implies essentially a

lower bound on � through Eq. (7.21), but no con-
straint on � apart from the defining region in this
regime, namely, 0<� � �̂, whose size depends
mainly on � and, to a lesser extent, on �1 þ �4.
The latter couplings are bounded by the combined
unitarity and BFB constraints of Sec. VI, so that
there is an indirect sensitivity to �2 and �3 as well.
The dark gray area in Fig. 8(c) gives an illustration
of this least-constrained case. The� domain extends
over all the dark gray area, while the vertical bound-
ary of this area is determined by the maximal value
of � ¼ 16


3 given by unitarity. This boundary corre-

sponds to the unitarity upper bound on the SM-
Higgs mass as well as the one on mh0 , Eq. (7.26).
Of course H0 can escape this bound but at the
expense of switching consistently to the small js
j
regime as seen in Fig. 8(c).

(b) mðSMÞ
h * mmin

H0 .—In this case not only do we have an

upper bound on � through Eq. (7.21), but we actually
have a lower bound also. Indeed, a too small �,

leading to a too low mmin
H0 with respect to mðSMÞ

h ,

will eventually put mðSMÞ
h just above all the values

of mH0 corresponding to the large js
j regime, thus
ruling out this regime altogether. Furthermore, this
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FIG. 9 (color online). Higgs boson masses as a function of � with vt ¼ 1 GeV, � ¼ 8
=3, �1 ¼ 0:5, �2 ¼ �3 ¼ 0:1, for V � < 0,
�4 ¼ �1 (left panel) and V � > 0, �4 ¼ 10 (right panel). We note that in the left (right) panel one has mH
 ’ mA0 (mH0 ’ mA0 ).
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configuration will immediately rule out the small

js
j regime as well, since mðSMÞ
h is, by definition,

applicable only to SM-like states and we have

mðSMÞ
h * mmin

H0 >mh0 for all mh0 . Consequently, a

too small � would exclude the whole � parameter
space. One concludes that � should lie in a very nar-

row strip such that mmin
H0 & mðSMÞ

h & mH0ð� ¼ 0Þ.
This strip is essentially giving the lower bound on
� of case (a) and thus does not provide significantly
new information. [Note, though, that for values
of �1 þ �4 close to its unitarity bound, and taking,

for instance, mðSMÞ
h ’ 114 GeV and vt ¼ 1 GeV,

case (b) can still reduce the lower bound on �, from
� ’ 0:43 to � ’ 0:38. But the effect will be smaller
for smaller values of vt.] One should, however, keep
in mind that due to the high flatness of mH0 as a
function of� in the region 0<� � �̂, the slightest
variation of � within the above-noted strip would
result in the exclusion of significant parts of the
0<� � �̂ region. For instance, with �1 ¼ 1:5,
�2 ¼ �3 ¼ 0:1, �4 ¼ �1 and taking the SM-

Higgs lower bound mðSMÞ
h ¼114GeV, if one re-

duces the lower bound of � (for which the whole
range 0<�� �̂�0:3 of the large js
j regime is al-
lowed) by just 1w, then the SM-Higgs lower bound
would imply �<�5 GeV or �> 0:3 GeV, thus
ruling out the whole large js
j regime.

For all practical purposes and barring the fine-tuned
effects just mentioned, the above discussion of cases (a)
and (b) shows that an experimental lower bound on the SM-
like Higgs mass cannot, by itself, cut into the large
js
j/small � regime; it either excludes it or allows all of
it, depending on whether � is, respectively, below or above

the value �� that satisfies mðSMÞ
h ¼ mmin

H0 ð� ¼ ��Þ. Thus, the
size of the � domain ½0; �̂� that is controlled mainly by �
(but can also be sensitive to �1 þ �4) for each given value of
vt [see Eq. (7.24)] will not be reduced by the actual value of

the experimental bound mðSMÞ
h . Moreover, an extra con-

straint from an experimental lower bound on the mass of a
non-SM-like CP even Higgs state would have a marginal
effect since mh0 decreases very quickly in the region
� & �̂. An efficient reduction of the � domain can come
only from experimental lower bounds on the masses of the
charged, doubly charged, and CP odd Higgs states. Indeed,
these bounds translate into a lower bound on � typically of
the same size as �̂, Eq. (3.13). As long as these experimental
bounds are of the same order, ðm2

A0Þexp ’ ðm2
H
Þexp ’

ðm2
H

Þexp, the relevant bound will be given by A0 (respec-

tively, H

) when �4 < 0 (respectively, �4 > 0).
Comparing �min and �̂, one easily determines the

necessary and sufficient conditions for which the large
js
j regime would be excluded. They read as follows:

ðm2
A0Þexp 
 ðk� � 2ð�1 þ �4Þ �

ffiffiffiffiffi
2k

p j� � �1 � �4jÞ �

v2
d

2ðk�2Þ þ Oðv2
t Þ, for �4 < 0, and ðm2

H

Þexp 

ðkð���4Þ � 2�1 �

ffiffiffiffiffi
2k

p j���1 ��4jÞ v2
d

2ðk�2Þ þOðv2
t Þ, for

�4 > 0, where we have taken into account the twofold
structure as discussed after Eq. (7.24).

IX. CONCLUSION

We have carried out a detailed study of the renormalizable
Higgs potential relevant to the type II seesaw model, keep-
ing the full set of seven free parameters of the potential. We
determined analytically the unitarity constraints on the vari-
ous scalar couplings and fully solved the all directions
conditions for boundedness from below. These combined
theoretical constraints delineate efficiently the physically
allowed regions of the parameter space and should be taken
into account in phenomenological studies. We also exam-
ined the vacuum structure of the potential and determined
general consistency constraints on the � parameter, as well
as theoretical upper (respectively, lower) bounds on the
lighter (respectively, heavier) CP even Higgs particle mass
that can further constrain the phenomenological analyses.
We also identified two distinct regimes, respectively, for
large and small �. In the first regime the lightest Higgs
particle is the h0, behaving as a SM-like Higgs, the remain-
ing Higgses being typically too heavy to be of any phe-
nomenological relevance. In the second regime, it is the
heaviest Higgs H0 that behaves as a SM-like Higgs; the
lighter charged, doubly charged; and CP odd states become
accessible to the colliders, with the H

 possibly being the
lightest state, while the lighter CP even decouples quickly
from the SM sector. We also initiated the study of possible
consequences from existing experimental exclusion limits.
Although we did not commit to any underlying GUT

assumptions, thus allowing � to vary between a few GeV
and possibly the GUT scale, we do retrieve, as a conse-
quence of the (model-independent) dynamical constraints
on �, a seesaw-like behavior that leads to tiny vt if � is
taken very large.
Finally, since the results of this study have been obtained

at the tree level, one should keep in mind that modifications
due to quantum corrections to the effective potential can
possibly be substantial in some cases. The inclusion of
such corrections is, however, beyond the scope of the
present paper, given the nontrivial form of the constraints
already at the tree-level.
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APPENDIX A

As stated in Sec. III, the positivity of m2
h0
constrains � to lie in the range �� � � � �þ so as to satisfy Eq. (3.9). We

give here the full expression for �
:

�
 ¼ ��2
d þ 8ð�1 þ �4Þ�2

t 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð��4

d þ 16�2
t ðð�1 þ �4Þ�2

d þ 4ð�2 þ �3Þ�2
t ÞÞ

q
8

ffiffiffi
2

p
�t

: (A1)

Note that due to the negative coefficient of �2 in
Eq. (3.9), �
 should always be real valued, otherwise
Eq. (3.9) is not satisfied and h0 is tachyonic for all
values of �. As can be seen from Eq. (A1), this require-
ment leads, in principle, to an extra constraint on top of
Eqs. (3.8), (3.9), and (3.10), that is,

�ð��4
dþ16�2

t ðð�1þ�4Þ�2
dþ4ð�2þ�3Þ�2

t ÞÞ
0: (A2)

However, we show here that this extra constraint is
automatically satisfied due to the BFB constraints: Since
� > 0, cf. Eq. (6.1), it suffices to show that ð��4

d þ
16�2

t ðð�1 þ �4Þ�2
d þ 4ð�2 þ �3Þ�2

t ÞÞ 
 0. Now using the

first inequality of Eq. (6.3), one obtains

�v4
d þ 16v2

t ðð�1 þ �4Þv2
d þ 4ð�2 þ �3Þv2

t Þ

 ð�v4

d þ 16v2
t ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
v2
d þ 4ð�2 þ �3Þv2

t ÞÞ

 ð ffiffiffiffi

�
p

v2
d � 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ �3Þ

q
v2
t Þ2; (A3)

which proves our statement.

APPENDIX B

In this appendix we give the form of the Higgs potential
in the field subspaces where only two or three fields are
nonvanishing, dubbed, respectively, two-field and three-
field directions. We identify exhaustively ten different
directions for each of these two classes and give their
corresponding BFB conditions.

The ten two-field directions:

2V
ð4Þ
dir:1 ¼

�

4
ðj�0j2 þ j�þj2Þ2; (B1)

2V
ð4Þ
dir:2¼ð�2þ�3Þj�þþj4þð�1þ�4Þj�þþj2j�þj2

þ�

4
j�þj4; (B2)

2V
ð4Þ
dir:3 ¼ ð�2 þ �3Þj�þþj4 þ �1j�þþj2j�0j2 þ �

4
j�0j4;

(B3)

2V
ð4Þ
dir:4 ¼

�
�2 þ �3

2

�
j�þj4 þ

�
�1 þ �4

2

�
j�þj2j�þj2

þ �

4
j�þj4; (B4)

2V
ð4Þ
dir:5 ¼

�
�2 þ �3

2

�
j�þj4 þ

�
�1 þ �4

2

�
j�þj2j�0j2

þ �

4
j�0j4; (B5)

2V
ð4Þ
dir:6 ¼

�
�2 þ �3

2

�
j�þj4 þ 2ð�2 þ �3Þj�þj2j�þþj2

þ ð�2 þ �3Þj�þþj4;
(B6)

2V
ð4Þ
dir:7 ¼ ð�2 þ �3Þj�0j4 þ �1j�0j2j�þj2 þ �

4
j�þj4;

(B7)

2V
ð4Þ
dir:8 ¼ ð�2 þ �3Þj�0j4 þ ð�1 þ �4Þj�0j2j�0j2

þ �

4
j�0j4; (B8)

2V
ð4Þ
dir:9 ¼ ð�2 þ �3Þj�0j4 þ 2�2j�0j2j�þþj2 þ ð�2

þ �3Þj�þþj4; (B9)

2V
ð4Þ
dir:10 ¼ ð�2 þ �3Þj�0j4 þ 2ð�2 þ �3Þj�0j2j�þj2

þ
�
�2 þ �3

2

�
j�þj4; (B10)

direction 1: � > 0; (B11)

directions 2 and 8: � > 0; �2 þ �3 > 0; �1 þ �4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
> 0; (B12)

directions 3 and 7: � > 0; �2 þ �3 > 0; �1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
> 0; (B13)

directions 4 and 5: � > 0; �2 þ �3

2
> 0; �1 þ �4

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
�2 þ �3

2

�s
> 0; (B14)
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directions 6; 9 and 10: �2 þ �3 > 0; �2 þ �3

2
> 0;

(B15)

The ten three-field directions:

3V
ð4Þ
dir:1 ¼ ð�2 þ �3Þj�0j4 þ 2ð�2 þ �3Þj�0j2j�þj2

þ
�
�2 þ �3

2

�
j�þj4 þ 2�2j�0j2j�þþj2

þ 2ð�2 þ �3Þj�þj2j�þþj2 þ ð�2 þ �3Þj�þþj4

� �3

���

�0ð��Þ2 j�
0j2j�þj4 � �3

�0ð��Þ2
��� j�þþj2;

(B16)

3V
ð4Þ
dir:2 ¼ ð�2 þ �3Þj�0j4 þ 2ð�2 þ �3Þj�0j2j�þj2

þ
�
�2 þ �3

2

�
j�þj4 þ ð�1 þ �4Þj�0j2j�0j2

þ
�
�1 þ �4

2

�
j�þj2j�0j2 þ �

4
j�0j4; (B17)

3V
ð4Þ
dir:3 ¼ ð�2 þ �3Þj�0j4 þ 2ð�2 þ �3Þj�0j2j�þj2

þ
�
�2 þ �3

2

�
j�þj4 þ �1j�0j2j�þj2

þ
�
�1 þ �4

2

�
j�þj2j�þj2 þ �

4
j�þj4; (B18)

3V
ð4Þ
dir:4 ¼ ð�2 þ �3Þj�0j4 þ 2�2j�0j2j�þþj2

þ ð�2 þ �3Þj�þþj4 þ ð�1 þ �4Þj�0j2j�0j2

þ �1j�þþj2j�0j2 þ �

4
j�0j4; (B19)

3V
ð4Þ
dir:5 ¼ ð�2 þ �3Þj�0j4 þ 2�2j�0j2j�þþj2

þ ð�2 þ �3Þj�þþj4 þ �1j�0j2j�þj2

þ ð�1 þ �4Þj�þþj2j�þj2 þ �

4
j�þj4; (B20)

3V
ð4Þ
dir:6 ¼ ð�2 þ �3Þj�0j4 þ ð�1 þ �4Þj�0j2j�0j2

þ �

4
j�0j4 þ �1j�0j2j�þj2 þ �

2
j�0j2j�þj2

þ �

4
j�þj4; (B21)

3V
ð4Þ
dir:7 ¼

�
�2 þ �3

2

�
j�þj4 þ 2ð�2 þ �3Þj�þj2j�þþj2

þ ð�2 þ �3Þj�þþj4 þ
�
�1 þ �4

2

�
j�þj2j�0j2

þ �1j�þþj2j�0j2 þ �

4
j�0j4; (B22)

3V
ð4Þ
dir:8 ¼

�
�2 þ �3

2

�
j�þj4 þ 2ð�2 þ �3Þj�þj2j�þþj2

þ ð�2 þ �3Þj�þþj4 þ
�
�1 þ �4

2

�
j�þj2j�þj2

þ ð�1 þ �4Þj�þþj2j�þj2 þ �

4
j�þj4; (B23)

3V
ð4Þ
dir:9 ¼

�
�2 þ �3

2

�
j�þj4 þ

�
�1 þ �4

2

�
j�þj2j�0j2

þ �

4
j�0j4 þ

�
�1 þ �4

2

�
j�þj2j�þj2

þ �

2
j�0j2j�þj2 þ �

4
j�þj4; (B24)

3V
ð4Þ
dir:10 ¼ ð�2 þ �3Þj�þþj4 þ �1j�þþj2j�0j2

þ �

4
j�0j4 þ ð�1 þ �4Þj�þþj2j�þj2

þ �

2
j�0j2j�þj2 þ �

4
j�þj4; (B25)

The corresponding BFB conditions read

direction 1: 2�2 þ �3 > 0 ^ �2 þ �3 > 0 ^ ð�2
3 < 4ð�2 þ �3Þ2 _ �3 < 0Þ; (B26)

direction 2: � > 0 ^ �2 þ �3 > 0 ^ 2�2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
þ �1 þ �4 > 0 ^

��
2�ð2�2 þ �3Þ> ð2�1 þ �4Þ2

^
�
ð ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3ð�2 þ �3Þðð2�1 þ �4Þ2 � 2�ð2�2 þ �3ÞÞ
q

þ 2�2�4 > 2�1�3 ^ �3 < 0

�

_
�ð2�2 þ �3Þðð2�1 þ �4Þð2�1 þ 3�4Þ � 4�ð�2 þ �3ÞÞ

2�1 þ �4

> 0 ^ 2�1 þ �4 < 0

���
_ 2�1 þ �4 > 0

�
; (B27)
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direction 3: � > 0 ^ �2 þ �3 > 0 ^ 2�2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
þ �1 > 0 ^

��
2�ð2�2 þ �3Þ> ð2�1 þ �4Þ2

^
��

2�1 þ �4 < 0 ^ ð2�2 þ �3Þð4�ð�2 þ �3Þ � 4�2
1 þ �2

4Þ
2�1 þ �4

< 0

�
_
�
ð�2 þ �3Þð2�2 þ �3 � 2Þ> 0

^ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð�2 þ �3Þðð2�1 þ �4Þ2 � 2�ð2�2 þ �3ÞÞ

q
> 2�1�3 þ 2�4ð�2 þ �3Þ

���
_ 2�1 þ �4 > 0

�
; (B28)

direction 4: � > 0 ^ �2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
þ �1 þ �4 > 0 ^

��ð�2 þ �3Þð���2
2 þ �2

1ð�2 � �3Þ þ 2�1�2�4Þ
�1�2

> 0

^ ðð�2 > 0 ^ �ð�2 þ �3Þ> �2
1 ^ �1 < 0Þ _ ð�1 > 0 ^ �3ð2�2 þ �3Þ> 0 ^ �2 < 0ÞÞÞ _ ð�1 > 0 ^ �2 > 0Þ

_ ð�ð�2 þ �3Þ> �2
1 ^ �3ð2�2 þ �3Þ> 0 ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð2�2 þ �3Þð�ð�2 þ �3Þ � �2

1Þ
q

þ �1�3 þ �4ð�2 þ �3Þ> 0

��
; (B29)

direction 5: � > 0 ^ �2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
þ �1 > 0

^
��ð�2 þ �3Þð��2

2 þ �2
1ð�3 � �2Þ þ 2�1�3�4 þ �2

4ð�2 þ �3ÞÞ
�2ð�1 þ �4Þ < 0 ^ ðð�3ð2�2 þ �3Þ> 0 ^ �1

þ �4 > 0 ^ �2 < 0Þ _ ð�2 > 0 ^ �ð�2 þ �3Þ> ð�1 þ �4Þ2 ^ �1 þ �4 < 0Þ
��

_ ð�2 > 0 ^ �1 þ �4 > 0Þ

_ ð�ð�2 þ �3Þ> ð�1 þ �4Þ2 ^ �3ð2�2 þ �3Þ> 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��3ð2�2 þ �3Þðð�1 þ �4Þ2 � �ð�2 þ �3ÞÞ

q
þ �1�3 > �2�4ÞÞ;

(B30)

direction 6: � > 0 ^ �2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
þ �1 > 0 ^ ð�1 þ �4 > 0 _ ð�ð�2 þ �3Þ> ð�1 þ �4Þ2 ^ �4 < 0ÞÞ;

(B31)

direction 7: � > 0 ^ 2�2 þ �3 > 0 ^ �2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4�2 þ 2�3Þ

q
þ 2�1 þ �4 > 0 ^

��
�ð�2 þ �3Þ> �2

1

^
��

�1ð2�2 þ 3�3Þ þ 2�4ð�2 þ �3Þ> 2�ð�2 þ �3Þ2
�1

^ �1 < 0

�

_ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð�2 þ �3Þð�2

1 � �ð�2 þ �3ÞÞ
q

þ �4ð�2 þ �3Þ> 0

��
_ �1 > 0

�
; (B32)

direction 8: � > 0 ^ 2�2 þ �3 > 0 ^ �2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4�2 þ 2�3Þ

q
þ 2�1 þ �4 > 0

^
��

�ð�2 þ �3Þ> ð�1 þ �4Þ2 ^
�
ð ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3ð�2 þ �3Þðð�1 þ �4Þ2 � �ð�2 þ �3ÞÞ
q

> �4ð�2 þ �3Þ ^ �3 < 0Þ

_
�
2�1�2 þ 3�1�3 þ �3�4 >

2�ð�2 þ �3Þ2
�1 þ �4

^ �1 þ �4 < 0

���
_ �1 þ �4 > 0

�
; (B33)

direction 9:�>0^2�2þ�3>0^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4�2þ2�3Þ

q
þ2�1þ�4>0^ð2�ð2�2þ�3Þ> ð2�1þ�4Þ2_2�1þ�4>0Þ; (B34)

direction 10: � > 0 ^ �2 þ �3 > 0 ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2 þ �3Þ

q
þ �1 þ �4 > 0 ^ ð�1 > 0 _ �ð�2 þ �3Þ> �2

1 _ �4 > 0Þ: (B35)
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We emphasize that all the above BFB conditions are
contained in the general solution given by Eqs. (6.1),
(6.2), and (6.3).

APPENDIX C

For completeness, we give in Appendixes C 1 and C 2a
partial list of the couplings in the DTHM that are relevant,
respectively, to the discussion in Sec. VIII and to the
derivation of the results of Sec. V.

1. Higgs-gauge boson couplings and triple
Higgs couplings

Shifting the neutral fields according to Eq. (2.26), and
using the relations between the physical and nonphysical
state bases,

h
�0

� �
¼ R


h0

H0

� �
;

Z1

Z2

� �
¼ R�

G0

A0

� �
; (C1)

�

�


� �
¼ R�0

G

H


� �
(C2)

withR
,R�, andR�0 as defined in Eqs. (2.12) and (2.23),

one extracts from the kinetic terms and the covariant
derivatives, Eqs. (2.1), (2.2), and (2.3), the couplings in-
volving Higgs bosons and gauge bosons, and from the
potential, Eq. (2.4), the triple Higgs couplings.

We list below some of the resulting Feynman rules and
provide also approximate expressions in the limit of very
small mixing between the triplet and doublet Higgs mul-
tiplets [i.e. s
 ¼ Oðv2

t =v
2
dÞ, c
;�;�0 ¼ 1þOðv2

t =v
2
dÞ,

s� ¼ 2vt=vd þOðv2
t =v

2
dÞ, and s�0 ¼ ffiffiffi

2
p

vt=vd þ
Oðv2

t =v
2
dÞ].

h0ZZ ¼ þi
g

cW
mZðc
c� þ 2s
s�Þg�� � i

g

cW
mZg��;

(C3)

H0ZZ ¼ �i
g

cW
mZðs
c� � 2c
s�Þg��

� 4i
g

cW

vt

vd

mZg��; (C4)

h0WþW� ¼ igcWmZðc
c� þ s
s�Þg�� � igmWg��;

(C5)

H0WþW� ¼ �igmWðs
c� � c
s�Þg��

� 2igmW

vt

vd

g��; (C6)

h0A0Z ¼ � g

2cW
ðc
s� � 2c�s
Þðph � pAÞ�

� � g

cW

vt

vd

ðph � pAÞ�; (C7)

H0A0Z ¼ g

2cW
ðs
s� þ 2c
c�ÞðpH � pAÞ�

� g

cW
ðpH � pAÞ�; (C8)

h0h0H0 ¼ i

��
3

2
�c2
 � �þ

14

�
s
vd � 6�þ

23c
s
2

vt

þ ðc2
 � 2s2
Þð
ffiffiffi
2

p
c
�� �þ

14ðs
vd þ c
vtÞÞ
�

� ið ffiffiffi
2

p
�þ ð3�� 5ð�1 þ �4ÞÞvtÞ þOðv2

t Þ; (C9)

h0WþH� ¼ i
g

2
ðc
s�0 � ffiffiffi

2
p

s
c�0 Þðph � pH�Þ�
� þi

gffiffiffi
2

p vt

vd

ðph � pH�Þ�; (C10)

H0WþH� ¼ �i
g

2
ðs
s�0 þ ffiffiffi

2
p

c
c�0 ÞðpH � pH�Þ�
� �i

gffiffiffi
2

p ðpH � pH�Þ�; (C11)

A0WþH� ¼ g

2
ð ffiffiffi

2
p

c�0c� þ s�0s�ÞðpA0 � pH�Þ�
� gffiffiffi

2
p ðpA0 � pH�Þ�; (C12)

Z�W
þ
� H

� ¼ gmZ

�
c�s�0s2W � s�c�0ffiffiffi

2
p ð1þ s2WÞ

�
g��

� � ffiffiffi
2

p
g
mZvt

vd

g��; (C13)

HþþH�W�
� ¼ igc�0 ðpHþþ � pH�Þ�
� igðpHþþ � pH�Þ�; (C14)

HþþW�
�W

�
� ¼ �i

ffiffiffi
2

p
g2vtg��; (C15)

HþþH�H� ¼ �ið2�s2�0 þ c�0 ð�4s�0vd �
ffiffiffi
2

p
�3c�0vtÞÞ;

(C16)

HþþH��VV 0 ¼ 8ieVeV0g��; (C17)

HþþH��V ¼ �2ieVðpHþþ � pH��Þ�; (C18)

HþH�VV 0 ¼ 2ieVeV0g��; (C19)

HþH�V ¼ �ieVðpHþ � pH�Þ�; (C20)

GþG�VV 0 ¼ 2ieVeV0g��; (C21)

GþG�V ¼ �ieVðpGþ � pG�Þ�; (C22)

where in Eqs. (C17)–(C22) we denote by V and V 0 the � or
Z gauge boson, with the couplings satisfying e� � e and

eZ � e cot2�W . We also adopted the convention that all
momenta are incoming at each vertex.

HIGGS POTENTIAL IN THE TYPE II SEESAW MODEL PHYSICAL REVIEW D 84, 095005 (2011)

095005-31



2. Quartic scalar couplings in the doublet-triplet basis

Here we give the complete list of Feynman rules for the quartic scalar couplings in the unrotated basis which were used
in Sec. V to determine the unitarity constraints:

�þ�þ���� ¼ �2ið2�2 þ �3Þ; Z2Z2�
��þ ¼ �ið�1Þ;

�þ������þþ ¼ �2ið�2 þ �3Þ; Z1Z1�
��þ ¼ �i

1

2
�;

�þþ�þþ������ ¼ �4ið�2 þ �3Þ; �����þ�þ ¼ �i�;

�þ�þ���Z2 ¼
ffiffiffi
2

p
�3; �þ�þ����0 ¼ i

ffiffiffi
2

p
�3;

�����þþZ2 ¼ � ffiffiffi
2

p
�3; �����þþ�0 ¼ i

ffiffiffi
2

p
�3;

���þZ2Z2 ¼ �2ið�2 þ �3Þ; �þZ1�
��0 ¼ �4

2
ffiffiffi
2

p ;

Z2Z2Z2Z2 ¼ �6ið�2 þ �3Þ; ��Z1�
þ�0 ¼ ��4

2
ffiffiffi
2

p ;

�þþ���Z2Z2 ¼ �2i�2; ���þ�0�0 ¼ �2ið�2 þ �3Þ; �þ��Z1Z1 ¼ � i

2
ð2�1 þ �4Þ;

����þþ�0�0 ¼ �2i�2; �þþ���Z1Z1 ¼ �ið�1Þ; Z2Z2�
0�0 ¼ �2ið�2 þ �3Þ;

Z2Z2Z1Z1 ¼ �ið�1 þ �4Þ; Z1Z1�
0�0 ¼ �ið�1 þ �4Þ; Z1Z1Z1Z1 ¼ � 3

2
i�;

���þ�0�0 ¼ �ið�1Þ; �þþ��Z1�
� ¼ ��4

2
; �0�0�0�0 ¼ �6ið�2 þ �3Þ;

�þ��Z1Z2 ¼ � i�4

2
ffiffiffi
2

p ; ���þþ��h ¼ i�4

2
; �þ����þZ1 ¼ �4

2
;

�þ��Z2h ¼ � �4

2
ffiffiffi
2

p ; ���þZ2Z1 ¼ � i�4

2
ffiffiffi
2

p ; �þ����þh ¼ i�4

2
;

���þ�þ�� ¼ � i

2
ð2�1 þ �4Þ; ��Z2�

þh ¼ �4

2
ffiffiffi
2

p ; ����þþ�þ�� ¼ �ið�1 þ �4Þ;

�þ�0h�� ¼ � i�4

2
ffiffiffi
2

p ; ���þ�0h ¼ � i�4

2
ffiffiffi
2

p ; Z2Z2hh ¼ �ið�4 þ �1Þ;

���þhh ¼ � i

2
ð2�1 þ �4Þ; Z1Z1hh ¼ �i

�

2
; ����þþhh ¼ �ið�1Þ;

�þ��hh ¼ �i
�

2
; hh�0�0 ¼ �ið�1 þ �4Þ; hhhh ¼ �i

3�

2
:

One can read off from this list the �-independent part of the triple scalar couplings, by making the substitutions
Z1 ! �ivd, h ! vd or Z2 ! �ivt, �

0 ! vt [cf. Eq. (2.26)] in the appropriate vertices and modifying accordingly the
symmetry factors for identical fields.
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