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We use the cubic complex Ginzburg-Landau equation linearly coupled to a dissipative linear equation as
a model for lasers with an external frequency-selective feedback. This system may also serve as a general
pattern-formation model in media driven by an intrinsic gain and selective feedback. While, strictly speaking,
the approximation of the laser nonlinearity by a cubic term is only valid for small field intensities, it qualitatively
reproduces results for dissipative solitons obtained in models with a more complex nonlinearity in the whole
parameter region where the solitons exist. The analysis is focused on two-dimensional stripe-shaped and vortex
solitons. An analytical expression for the stripe solitons is obtained from the known one-dimensional soliton
solution, and its relation with vortex solitons is highlighted. The radius of the vortices increases linearly with
their topological charge m, therefore the stripe-shaped soliton may be interpreted as the vortex with m = ∞, and,
conversely, vortex solitons can be realized as unstable stripes bent into stable rings. The results for the vortices
are applicable for a broad class of physical systems.
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I. INTRODUCTION

The field of spatial pattern formation in nonlinear dis-
sipative media has grown significantly in the past decades
(see reviews [1–11]). The research in this field was strongly
driven by the interest in self-localized states (“dissipative
solitons”), which arise in sundry systems, including various
optical settings. The studies of the transverse dissipative-
pattern formation in nonlinear optics have been focused on
systems such as lasers with saturable gain and absorption (see
Chap. 5 in Refs. [7] and [12]), nonlinear cavities pumped by a
holding beam [13], and coupled cavities [14].

More recently, broad-area vertical-cavity surface-emitting
lasers (VCSELs), coupled to an external frequency-selective
feedback (FSF) element, have been considered in the context
of the pattern formation [15–20]. This system may be modeled
by a complex Ginzburg-Landau equation (CGLE) coupled to
a linear one, which represents, respectively, the nonlinear and
linear subsystems. In this setting, the (complex) intra-VCSEL
field features nonlinear spatiotemporal dynamics due to the
two-way coupling between the optical field and the inversion
of the electronic population (driven by the injection current),
while the separate feedback field obeys a linear equation [21]
which is linearly coupled to the main equation for the intra-
VCSEL field. Previous studies have modeled the VCSEL-
FSF system using various approximations, which display a
rich variety of spatiotemporal regimes, including solitons with
complex dynamics [15,16], side-mode solitons supported by
the external cavity [16], and solitary vortices [17].

Although the use of the cubic nonlinearity for modeling the
VCSEL is a simplification which is only strictly valid for low-
field intensities, the cubic CGLE enables analytical treatment
of the problem in some cases, and also provides a direct insight
into the underlying physical mechanisms. In this paper, we

demonstrate that the cubic nonlinearity produces qualitatively
the same results, concerning the formation and dynamics
of solitons, as more complex (saturable) nonlinearities, thus
justifying the use of the system of the CGLE coupled to the
linear equation as a basic model of the VCSEL-FSF system.

The paper is organized as follows. In Sec. II we present
the model and its basic behavior. In Sec. III we revisit the
analytical one-dimensional (1D) solution of our CGLE-FSF
model and produce its analytically found bifurcation diagram.
In Sec. IV, which is the core part of the paper, we report
our findings for two-dimensional (2D) solutions. The paper is
concluded by Sec. V.

II. THE SYSTEM AND MODEL

Following Ref. [17], we start from the general model
describing the VCSEL coupled to the frequency-selective
feedback without delay:⎧⎨

⎩
∂E
∂t

= −κ(1 + iα)E + κ(1 + iα)μ E
1+|E|2

−i�⊥E + F − iωmE,
∂F
∂t

= −λF + σλE,

(1)

where κ is the cavity decay rate, α is the phase-amplitude
coupling factor, μ is the pump current, normalized to be 1
at the threshold in the absence of the external feedback, and
�⊥ is the transverse Laplacian accounting for the diffraction
in the paraxial approximation. Relating to the feedback, λ

stands for the width of the frequency filter, and σ its strength
in units of κ , i.e., the minimum threshold is reduced from
μ = 1 at σ = 0 to μ = 1 − σ/κ . Finally, because we choose
our reference frequency to coincide with the maximum of
the frequency-selective feedback profile, ωm is the detuning,
with respect to the reference frequency, of the solitary laser at
threshold.
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Truncating the Taylor expansion of the saturable nonlin-
earity at the third order, Eq. (1) becomes a special case of a
general system consisting of a cubic CGLE coupled to a linear
equation:{

∂E
∂t

= g0E + g2|E|2E + (d + iD)�⊥E + F,

∂F
∂t

= −λF + σ̃E,
(2)

where Re(g0) is the total linear loss (if negative) or gain
(if positive), and Im(g0) is the effective detuning between
the laser and the filter. Further, Re(g2) is the nonlinear loss
(if negative) or gain (if positive), while Im(g2) represents
the strength of the self-focusing or defocusing nonlinearity.
In this general setting, real parameters D and d account
for transverse diffraction and diffusion of the field. These
parameters become, for our particular case when Eq. (1)
represents a laser with FSF,

g0 = κ(1 + iα)(μ − 1) − iωm,

g2 = −κ(1 + iα)μ, (3)

σ̃ = σλ,

and d = 0, the latter (absence of the diffusion of light)
being relevant to optics in the spatial domain [22–25], but
d �= 0 occurs in other physical situations—in particular, in the
temporal domain [8,26].

Obviously, the stability of the nonlasing (zero) solutions of
Eqs. (1) and (2) is identical. An interesting property exploited
in previous papers is the existence, for positive α and for a
range of negative values of ωm, of a stability region for the zero
solution above the off-axis emission threshold (see Fig. 1). In
this region, stable self-localized modes can be found [15,16].

Strictly speaking, the truncation of the series mentioned
above is valid only for |E| � 1. We observe, however, that
the spatiotemporal patterns in model (2) are qualitatively
the same as those previously discussed in more complicated
models [15]. This provides a justification for the use of the
CGLE coupled to FSF for modeling lasers with FSF even
for high pump currents (hence for high-field values). For a
set of parameters close to those adopted in Fig. 1, which
are relevant to the laser dynamics, the following scenario
is observed. For the pump current in the unstable region
(μ ≈ 0.45), small random perturbations of the zero solution
grow exponentially, generating complex 2D spatiotemporal
patterns, e.g., as shown in Fig. 2(a). If, starting from this
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FIG. 1. (Color online) The marginal stability curve of the zero
solution. The regions where the zero solution is unstable against
perturbations with transverse wave number k⊥ are shaded. The black
line is the marginal-stability boundary. Throughout this paper we
fix the following values of the parameters: ωm = −250, σ = 60,
κ = 100, λ = 2.71, α = 5, d = 0, and D = −1.

FIG. 2. (Color online) An instantaneous 2D amplitude profile
corresponding to (a) a pump current at which the zero solution
is unstable and a complex spatiotemporal regime arises, and
(b) after having increased the pump current to a value for which the
zero solution is stable, and the corresponding spatiotemporal pattern
evolves into a set of fundamental solitons [27].

regime, the pump current μ is further increased up to a value
at which the zero background is stable (μ = 0.52), a transition
is observed from the patterns built of densely packed filaments
to a 2D set of isolated quiescent solitons [see Fig. 2(b)].
Initially, the distance between the solitons is small, and the
interaction among them leads to annihilation events. However,
when the soliton density becomes small enough, the resulting
set of quiescent cavity solitons is quasistationary, featuring
very weak interactions. A similar scenario is observed in one
dimension, which is of special interest because exact analytical
1D self-localized solutions are available in the CGLE coupled
to a linear equation [26], as we discuss in detail below.

Besides the fact that the model with the cubic nonlinearity
provides qualitatively the same results as the one with the
full saturation, the system including the cubic nonlinearity is
relevant as a basic model for the study of generic features of the
pattern formation in the class of dissipative nonlinear media
to which the present laser model belongs [8].

III. ONE-DIMENSIONAL SOLITONS

In the case of one transverse dimension (�⊥ = ∂2/∂x2)
an exact analytical solution to Eqs. (2) can be found in the
form [8,26] {

E = Emax [cosh(Kx)]−1−iβ eiωt ,

F = Fmax [cosh(Kx)]−1−iβ eiωt .
(4)

Substituting expressions (4) into Eqs. (2), we eliminate one
amplitude,

Fmax = σ̃

λ + iω
Emax, (5)

and arrive at a quadratic equation for chirp β,

β2 + 3β
Re [g2(d − iD)]

Im [g2(d − iD)]
− 2 = 0, (6)

which yields a single physical root, due to the condition that
the field intensity

|Emax|2 = 3βK2 d2 + D2

Im [g2(d − iD)]
(7)

must be positive. Note that β does not depend on linear
coefficient g0, but only on the nonlinear one g2, and on the
parameters of the spatial coupling d and D. Once β is known,
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a complex algebraic equation involving ω and K is obtained.
By separating the real and imaginary parts of this equation, we
obtain

K2 = −Re(g0)

Re(β̃)
− σ̃ λ

λ2 + ω2

1

Re(β̃)
, (8)

β̃ ≡ (1 + iβ)2(d + iD). (9)

Next, we obtain a cubic equation for ω:

a3ω
3 + a2ω

2 + a1ω + a0 = 0, (10)

where coefficients a0, a1, a2, and a3 depend on the system’s
parameters and on β̃:

a3 = Re(β̃),

a2 = Re(g0)Im(β̃) − Im(g0)Re(β̃),
(11)

a1 = (σ̃ + λ2)Re(β̃),

a0 = a2λ
2 + σ̃ λ Im(β̃).

In principle, Eq. (10) can be solved analytically, but it is more
practically relevant to solve it numerically.

To summarize, the analytical solutions can be constructed
according to the following scheme: (i) Solve Eq. (6) for β, and
choose the proper root to satisfy the positivity of |Emax|2 as per
Eq. (7). (ii) Solve Eq. (10) for ω with the coefficients defined
by Eqs. (9) and (11), and β produced by the previous step.
(iii) Calculate K using Eqs. (8) and (9), and ω, with β produced
by two previous steps. (iv) Calculate Emax using Eq. (7).
(v) Calculate Fmax using Eq. (5).

Once all parameters of solution (4) are determined, the
stability of this solution can be analyzed following, e.g., the
numerical procedure developed in Ref. [17].

Figure 3(a) shows the bifurcation diagram for quiescent
solitons (4), using parameter values typical to the lasers
models. Point A corresponds to the pump threshold for the
on-axis emission. For the pump levels μ between points A and
B, the zero background is unstable as shown in Fig. 1. These
points coincide with the origin of two branches of localized
modes. The two branches collide at point C and disappear
through a saddle-node bifurcation.
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FIG. 3. (Color online) The bifurcation diagram for analytical
solution (4). (a) The amplitude (absolute value of the field at the
center of the fundamental soliton) as a function of the pump current.
(b) The growth rate of unstable, neutral, and least-damped stable
perturbation eigenmodes versus pump current μ. Point M designates
the drift instability of the soliton.

FIG. 4. (Color online) Spatiotemporal dynamics of the 1D soliton
in the course of the development of the drifting instability, for μ =
0.7.

Figure 3(b) shows the real part of the most relevant
eigenvalues resulting from the stability analysis of the upper
branch [the one connecting points C, M, and A in Fig. 3(a)].
The soliton solution is stable between points C and M, and
a drift instability appears at point M [16]. The instability
spectrum is not shown between points A and B because the
zero background solution is unstable in that region. The lower
branch of the soliton solution, which connects points B and C
in Fig. 3(a), is entirely unstable, as usual [28,29].

Direct simulations starting from the 1D analytical soliton in
the unstable region (on the left-hand side of point M in Fig. 3)
show the development of the drift instability (see Fig. 4). Once
the drift instability sets in, the soliton moves away from its
original location at a constant speed.

IV. TWO-DIMENSIONAL LOCALIZED MODES:
STRIPES, FUNDAMENTAL, AND VORTEX SOLITONS

In two dimensions (�⊥ = ∂2

∂x2 + ∂2

∂y2 ), 1D solution (4) can
be generalized into a continuous family of stripe solitons,
parametrized by the transverse wave number ky :{

E = Emax [cosh(Kx)]−1−iβ eiωt eikyy,

F = Fmax [cosh(Kx)]−1−iβ eiωt eikyy,
(12)

the difference from the 1D solution amounting to a modifi-
cation of coefficient g0, which is replaced by g̃0 = g0 − (d +
iD)k2

y . An example of this solution is shown in Figs. 5(a) and
5(b). The whole family of the stripe solitons is represented,
as a function of ky , by plots displayed in Fig. 6. They exist
only for values of k2

y below a certain value, beyond which the
frequency shift introduced by ky pushes the solution outside
the frequency range of the feedback filter. The solution with the
largest amplitude, marked by a filled circle, occurs at ky = kc

y ,
corresponding to ω = 0, where the feedback is strongest.

The stripe soliton is always unstable to perturbations in the
y direction, which break it into a chain of fundamental 2D
solitons. This instability takes place at a finite characteristic
wavelength. When considering vortices, this instability corre-
sponds to the possible azimuthal instabilities. For vortices of
small radii the curvature can suppress these instabilities, and
the vortices can be stable.

Studying the stability and dynamics of the stripe in the x
direction is very relevant to determine the radial dynamics
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FIG. 5. (Color online) Spatial profiles of the absolute value
(a) and real part (b) of the field for the unstable 2D stripe soliton
(12) at μ = 0.52. (c) and (d): The same as (a) and (b), but for the
stable vortex with m = 3.

of large vortex rings. Moreover, the growth rate of the drift-
instability in the x direction is much higher than the growth
rate of the instability in the y direction. Then, for the stripe
soliton bent into a ring with a large radius, the drift instability
dominates, reducing the radius, while y instability is eventually
suppressed, leading to the formation of the stable vortex.

Figure 6(c) shows the largest real parts of the eigenvalues
obtained from the linear stability analysis in the x direction.
The stripe soliton is subject to a drift instability, similar to
that of the 1D soliton outlined in the previous section. In this
case, the stripe starts to move in the perpendicular direction
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FIG. 6. (Color online) Characteristics of the continuous family of
2D stripe solitons parametrized by ky , for μ = 0.52: (a) frequency ω;
(b) the soliton’s amplitude |Emax|; (c) the growth rates of the unstable,
neutral, and least damped eigenmodes (the stability is considered
against perturbations depending only on coordinate x).

before breaking up into a chain of fundamental 2D solitons. It
is noteworthy that the drift instability occurs, within numerical
accuracy, at ky = kc

y , and hence ω = 0. The critical value
kc
y will be very relevant below, when considering the radial

dynamics of vortices.
We now proceed to the study of fully localized 2D solutions.

There are two types of stable 2D modes: fundamental solitons
with a bell-like intensity profile [see Fig. 2(b)] and ring-shaped
vortex solitons [see Fig. 5(c)]. Vortex solutions with integer
topological charge m can be looked for as E(r,φ) = E0(r)eimφ ,
where (r,φ) are polar coordinates with the origin at the pivot of
the vortex. The fundamental 2D soliton corresponds to m = 0,
with the maximum at the origin. Every vortex with topological
charge m has a mirror-image counterpart with charge −m and
identical dynamical properties. Therefore, we only consider
the solutions with m � 0.

Figure 5 highlights the similarity between the vortex
and stripe solitons. Roughly speaking, the vortex may be
considered as a stripe bent into a closed circle, at least for
large values of m. Following this similarity, one can study the
radial dynamics of vortices using the radial version of Eq. (2),
with

�⊥ = ∂2

∂r2
+ 1

r

∂

∂r
− m2

r2
, (13)

avoiding azimuthal instabilities. As initial conditions, we use
the 1D analytical solution (4), written in the radial direction:{

E(r) = Emax {cosh[K(r − R0)]}−1−iβ eiωt ,

F (r) = Fmax {cosh[K(r − R0)]}−1−iβ eiωt ,
(14)

where R0 is the initial radius of the vortex. If R0 is too small,
the field decays to zero, but for R0 large enough we observe
the evolution of the position of the maximum of the field’s
amplitude rmax(t) toward the equilibrium radius Rst(m) of
the vortex soliton for each charge m (see Fig. 7). If R0 is
much larger than Rst(m), we observe shrinkage of the vortex
at a constant speed, which is then followed by relaxational
oscillations, as radius Rst(m) is approached.

The constant shrinkage speed may be explained by the
quasi-1D dynamics of the stripe-soliton solution. Indeed, if the
initial condition has very large rmax, the ring may be considered
locally as a stripe with ky ≈ 0, which is drift-unstable (see
Fig. 6). The overall curvature of the ring breaks the left-right
symmetry of the stripe solution. The symmetry breaking
is such that the drift naturally takes place inward (which
corresponds to the action of the effective surface tension),
hence the ring as a whole starts contracting at a constant speed.
Thus, the first stage of the dynamics shown in Fig. 7 for t < 7
is essentially the same as in Fig. 4. As the radius rmax shrinks,
the effective wave number ky increases, eventually suppressing
the drift instability and enabling the ring to relax to the stable
radius Rst(m).

Running the simulations for different (large enough) values
of m, we have produced the dependence of the equilibrium
radius Rst on topological charge m, which turns out to be linear
(see Fig. 8). Therefore, vortex rings expand as m increases,
tending toward the stripe solution in the limit of m → ∞.
The inverse of the slope of the line in Fig. 8, Rst(m)/m, is
the transverse circular wave number kc, which is, apparently,
nearly constant for all vortices. The value of kc is, actually,
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FIG. 7. (Color online) (a) The spatiotemporal dynamics of the
radial profile of the field amplitude relaxing toward the equilibrium
for the vortex with m = 2 and μ = 0.52. (b) The evolution of position
rmax of the maximum of the field intensity.

very close to the above-mentioned critical wave number of the
drift instability of the soliton stripe, kc

y .
The mechanism leading to 2D stable vortices discussed here

has no counterpart in the simple curvature-driven dynamics
of fronts connecting two equivalent states [30,31]. In those
systems, 1D fronts in the 2D setting may be subject to
modulational instabilities, but not to drifting ones. Therefore,
there is no transient regime in which the ring radius evolves at
a constant rate. Thus, the drift instability of the 1D soliton
plays a critical role in the formation of the 2D vortical
solitons.

The analysis presented above on the basis of the radial
equation did not consider azimuthal instabilities. In fact,
similar to the modulational instability of the stripe solitons,
vortices with large m are azimuthally unstable in the full 2D
problem. Azimuthal instabilities are, however, suppressed for
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FIG. 8. (Color online) The equilibrium radius Rst of the vortex
solitons versus the topological charge m. Parameters are as in Fig. 7.
Filled circles mark even integer values of m, while the solid line is a
linear fitting. Figure 7 corresponds to the leftmost point in this figure.
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FIG. 9. (Color online) (a) The amplitude of the soliton with
m = 0 (the dashed-dotted line) and m = 1 (the solid line) versus the
pump current. (b) The growth rate of six localized eigenmodes with
highest �, including unstable, neutral, and least damped stable ones,
for the solution branch C1M1A in (a). (c) The same as in (b), but for
branch C0M0A in (a). Parameters are the same as used throughout
this section.

smaller topological charges, and vortices can be stable up to
a certain value of m [17]. Figures 5(c) and 5(d) show, for
instance, a stable vortex with m = 3. Following the method
described in Ref. [17], we have generated bifurcation diagrams
for the solitons with m = 0 and 1, and have analyzed their
full stability (see Fig. 9). The fundamental soliton (vortex) is
stable between points M0 and C0 (M1 and C1). Point M0(M1)
corresponds, as in Fig. 3, to the onset of the drift instability of
the mode as a whole. The branches connecting points B and
C0 (B and C1) correspond to the solitons which play the role
of the unstable separatrix. The fundamental 2D soliton and
the m = 1 vortex have quite similar bifurcation diagrams. In
comparison to the diagram for 1D solitons (see Fig. 3), points
A and B correspond to the limits of the region where the
zero background solution is unstable against spatially uniform
perturbations, hence are identical to their counterparts in Fig. 3,
while points C and M, corresponding to the 2D solitons, are
located at lower values of the pump.

We have also investigated the stability of vortices with
m = 2 and 3 (not shown in the figure). Their existence region
is almost identical to that of the m = 1 vortex, while their
stability region is narrower and lies inside interval M1C1, in
terms of Fig. 9.

Finally, we have also observed different types of radially
symmetric localized states, which feature radial oscillations in
the intensity profile (see Fig. 10). These solutions have been
obtained in both models, based on Eqs. (2) and (1), using the
shooting method in the radial equation. Similar solutions have
been observed in conservative nonlinear wave equations with
the cubic nonlinearity [32,33], and they can be interpreted as
excited states of radial modes. The bifurcation diagrams for
these excited states look qualitatively similar to that of the
fundamental soliton. These solutions may be stable against
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FIG. 10. (Color online) Profile of an excited radial mode. The
solid line shows the absolute value of the field, while the dashed
(dashed-dotted) line displays the real (imaginary) part of the field.
The left-hand inset shows the 2D distribution of the real part [the
gray (orange) background is zero, while the minimum (maximum)
value corresponds to the black (white)]. The right-hand inset shows
the amplitude profile (here black corresponds to zero, and white—to
the maximum value of the amplitude).

radial perturbations, but they are always subject to azimuthal
instability.

V. SUMMARY

In this paper, we have proposed a system consisting of
a cubic complex Ginzburg-Landau equation coupled to an
additional dissipative linear equation as a model for laser

cavities with external frequency-selective feedback. We have
justified the validity of the model for a range of phenomena
and parameters, where the field amplitudes are not necessarily
small. This has been done by showing the similarity of our
results to those recently reported in the more complex models
with the saturable nonlinearity [15–18]. In other contexts, this
model was known before in 1D settings, but not in 2D, to the
best of our knowledge.

As a matter of fact, our results present an example of stable
2D solitons, both fundamental and vortical ones, in a phase-
invariant system with cubic nonlinearity. Stable fundamental
2D solitons were known before in models of other types,
namely, with saturable and cubic-quintic nonlinearities (in the
latter case, stable solitary vortices with m = 1 and 2 were
also known [34]), and in cubic systems with broken phase
invariance [35,36].

Using analytical considerations and numerical analysis, we
have shown that 2D vortex solitons can be interpreted as
stripe solitons bent into rings, which eventually suppresses
the instability of the stripes and allows one to find stable
vortex rings. This correspondence is clear for m → ∞, but it
actually holds for rather small topological charges, too, since
the circular transverse wave number appears to be the same
for all m. In such a way, we have established a connection
between 1D and 2D solitons.
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