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Abstract  

Mucosal-associated invariant T (MAIT) cells are a subset of antibacterial innate-like T cells 

that are localised to mucosal surfaces. MAIT cells are characterised by the expression of a 

semi-invariant T cell receptor, specific to a bacterial antigen presented on the MHC class 

I-related protein, MR1. The bacterial ligand is derived from 5-amino-6-D-ribitylaminouracil 

(5-A-RU), produced as an intermediate in the bacterial riboflavin synthesis pathway. 5-A-RU 

undergoes non-enzymatic condensation with methylglyoxal (MG), a glycolysis by-product, to 

form the final ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). 

Presentation of 5-OP-RU to MAIT cells stimulates a robust MAIT cell response. Given the 

abundance of MAIT cells at mucosal surfaces and the broad range of bacteria capable of 

activating them, it has been hypothesised that MAIT cell activation is tightly regulated to 

prevent hyperactivation and immunopathology. Understanding these regulatory mechanisms 

may enable modulation of MAIT cells to prevent or treat human disease. Here I show that both 

phagocytosis of bacteria by an antigen presenting cell (APC) and enhanced glycolysis regulate 

MAIT cell activation. To assess this, THP-1 cells, a monocytic cell line, served as APCs. THP-

1 cells were incubated with glycolysis modulators, exogenous ligand, and non-ligand 

producing bacteria. Primary human MAIT cells were subsequently co-cultured with THP-1 

cells and activation assessed by flow cytometry. Treatment with intact bacteria and 5-A-RU 

was found to activate MAIT cells to a greater extent than treatment with 5-A-RU alone or with 

lysed bacteria. Enhancement of THP-1 glycolysis augmented MAIT cell activation to 5-A-RU 

alone or 5-A-RU and lysed bacteria. In contrast, a reduction in activation was not observed 

when THP-1 cell glycolysis or PI3K, mTORC1, and mTORC2 signalling were inhibited. 

Furthermore, THP-1 cells did not exhibit increased glucose uptake upon stimulation with intact 

bacteria. These results suggest that phagocytosis of intact bacteria may enhance glycolysis, 
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resulting in increased production of MG and formation of 5-OP-RU. However, further research 

is required to confirm this. The process described provides a potential regulatory mechanism 

by which MAIT cell activation is regulated in response to intact bacteria but not to soluble 

bacteria-derived 5-A-RU.  
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1 Introduction 

1.1  Innate-like lymphocytes   

Innate-like lymphocytes are a subset of immune cells redefining the field of immunology. 

Traditionally, immune cells have been classified as either innate or adaptive. The innate system 

is made up of rapid and broad-acting immune cells bearing cell surface pattern recognition 

receptors (PRRs) that detect highly conserved pathogen-associated molecular patterns (PAMPs) 

on invading pathogens.1 In contrast, the adaptive immune system responds in a slower yet 

highly specific manner to variable antigens, made possible by the large variety of antigen 

receptors, known as T cell receptors (TCR) or B cell receptors.1 The hypervariability of TCRs 

is made possible by V(D)J recombination of the TCRα and  b chains, splicing together a range 

of V, D (in the  b chain), and J segments to form unique TCR structures. The hypervariable 

TCR structure allows for the recognition of a wide range of antigens bound to variable Major 

Histocompatibility Complexes (MHC) at the population level. As our understanding of the 

immune system has expanded, the distinction between the two categories has blurred with the 

discovery of cell types that do not fit into either category. These cells, termed ‘innate-like 

lymphocytes’, include invariant natural killer T (iNKT) cells, γδ T cells, and mucosal-

associated invariant T (MAIT) cells, and have recombined TCRs that are restricted to highly 

conserved antigens.2, 3, 4  

1.2 MAIT cell phenotype 

MAIT cells are a key antibacterial immune cell first identified in 1993 and are primarily 

characterised by the presence of a semi-invariant αβ chain heterodimer TCR.5, 6, 7 This receptor 

is fundamentally different than conventional TCRs which consist of highly variable α and β 
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chains. The process of V(D)J recombination allows for the production of a wide range of 

unique TCR structures. In contrast, the human MAIT cell TCR α chain is restricted to 

Vα7.2-Jα12/20/33.5, 6 The sequence is highly conserved, with limited variability observed 

between humans, mice, and cattle.6 More variability is found in the β chain, though bias is 

observed towards Vβ2 and Vβ13.6 The TCR α chain is of vital importance in TCR binding to 

MHC class I-related, MR1, which presents the MAIT cell activating ligand on antigen 

presenting cells (APC). The interaction between the TCR and MR1 is mediated by six key 

residues on the α chain.8 The major role of these TCR binding residues may explain the 

evolutionary conservation observed in the α chain, compared to the more variable β chain.  

Human MAIT cells are further defined by their high expression of CD161 (CD161++).9, 10, 11 

CD161, also known as NKR-P1A, is a C-type lectin receptor that is expressed by a range of T 

lymphocytes, including MAIT cells and iNKT cells.11, 12 These cells have a shared innate-like 

phenotype, including high expression of IL-18Rα.11 In humans, MAIT cells make up a small 

portion of CD161++CD8+ T cells at birth, with this proportion rising in adults.11  

MAIT cells can be further classified into subtypes based on the expression of co-receptors CD4 

and CD8. The frequencies of CD4+CD8- and CD4+CD8+ MAIT cell subsets are significantly 

higher in the thymus than in circulating MAIT cell populations.13 The composition of MAIT 

cell subsets in the blood is approximately 82.9% CD4-CD8+, 12.1% CD4-CD8-, known as 

double negative (DN), and 1.9% CD4+CD8-.14 These MAIT cell subsets display some degree 

of plasticity, as stimulation of CD4-CD8+ MAIT cells can induce CD8 downregulation, 

producing a DN population.15  

MAIT cells exhibit a mixed T-helper-1 (Th-1)/T-helper-17 (Th-17) phenotype, due to 

co-expression of the transcription factors T-Box Transcription Factor 21 (T-Bet) and RAR 

related orphan receptor C (RORg).16 This enables characteristic Th-1 and Th-17 polarisation, 
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and the production of the proinflammatory cytokines interferon (IFN)γ, tumour necrosis factor 

(TNF)α, and interleukin (IL)-17.17 The CD8+ MAIT cell subset tend to exhibit more Th1 

polarisation, whereas DN subsets tend to show Th17 polarisation.15  

MAIT cells are found in the 

peripheral blood, liver, and at 

mucosal sites, including the 

lungs, oral mucosa, and 

gastrointestinal tract.17, 18, 19, 20 

They are enriched in mucosal 

surfaces due to the expression of 

specific chemokine receptors, 

CCR2, CCR5 CCR6, CXCR6, 

and CCR9.17, 21, 22, 23  

Overall, most human MAIT 

cells express an effector 

memory phenotype, defined as CD45RO+CD62LloCD122+CD127++CD95+ (Fig 1.1).17 

Experimentally, CD8, CD3, CD161, and the Vα7.2 component of the TCR are most commonly 

used to identify MAIT cells by flow cytometry. However, these are merely a small selection of 

characteristic markers of MAIT cells, including additional co-receptors, transporters, and 

transcription factors (Figure 1.1).14, 17, 23, 24 

Figure 1.1: Characteristic MAIT cell transcription 
factors and effector memory phenotype surface 
expression. Created with BioRender.com. 
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1.3 MR1 presentation of the MAIT cell activating ligand 

1.3.1 MR1 function 

The MR1 molecule on APCs exhibits remarkable evolutionary conservation across mammals, 

indicating a significant role of this protein.25 MAIT cells were first shown to be restricted to 

MR1 by Treiner et al. who demonstrated that MR1 was capable of inducing cytokine 

production in MAIT cells.18 Subsequent research revealed that MR1 binding and presentation 

of an unknown ligand was necessary for MAIT cell activation in response to a range of bacteria, 

including Mycobacterium tuberculosis and Staphylococcus epidermidis.19, 26 Interestingly, 

non-riboflavin producing bacteria, including Enterococcus faecalis and 

Streptococcus pyogenes, do not activate MAIT cells in a TCR-dependent manner.26 However, 

these pathogens are capable of activating MAIT cells in a cytokine dependent manner.24 

The identity of the MAIT cell activating ligand was originally unclear. Although compounds 

derived from vitamin B metabolism, such as 6-formyl pterin (6-FP), could bind and stabilise 

MR1, they were unable to activate MAIT cells.27 Further study identified that derivatives of 

intermediates of riboflavin biosynthesis were able to bind MR1 and successfully activate Jurkat 

MAIT cell lines.4, 27, 28 Mutagenesis studies of the riboflavin pathway performed by Corbett et 

al identified 5-amino-6-D-ribitylaminouracil (5-A-RU) as the specific component of the 

riboflavin synthesis pathway required for MAIT cell activation.4 Mutation of genes encoding 

enzymes upstream of 5-A-RU production prevented MAIT cell activation, whereas disruption 

of those encoding downstream enzymes did not.4 However, 5-A-RU itself does not bind MR1 

causing MAIT cell activation. 5-A-RU reacts via an enzyme-independent condensation 

reaction with either glyoxal (G) or methylglyoxal (MG) to produce 5-(2-oxoethylideneamino)-

6-D-ribitylaminouracil (5-OE-RU) or 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil 

(5-OP-RU), respectively (Fig 1.2).4 5-OE-RU and 5-OP-RU are highly unstable pyrimidine 
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intermediates that rapidly undergo a non-enzymatic reaction to form lumazine structures if not 

stabilised (Figure 1.2).4 5-OE-RU and 5-OP-RU can be bound, stabilised, and presented by 

MR1 through the formation of a Schiff base to a lysine residue in the carbonyl group in MR1.4 

This process is vital in the preservation of the ligands for successful presentation to the MAIT 

cell TCR.4  

1.3.2 MR1 loading 

The exact pathway of MR1 loading and trafficking to the cell surface has not been fully 

established despite ongoing research in this area. In the absence of ligand, MR1 does not pass 

through the Golgi and unbound MR1 localises in the endoplasmic reticulum (ER).29 Once 

bound, MR1 interacts with beta-2-microglobin and traffics through the Golgi to the cell 

surface.29, 30, 31, 32 Ligand binding is thought to be necessary for MR1 folding. However, it is 

unclear how this soluble ligand, speculated to be either a exogenous or a low-affinity 

endogenous ligand, would access the ER.29, 33 Potentially, MR1, either unbound or bound to 

soluble ligand, can reach the cell surface where the bacterial ligand would then bind.29 As there 

are likely minimal amounts of unbound MR1 at the cell surface this would be a minor 

pathway.29 Ligand loading may also occur in endosomes by displacement of the endogenous 

or exogenous ligand; MR1 was identified in endosomes after trafficking from the ER or 

5-A-RU 5-OP-RU 7-methyl-8-D-ribityllumazine

Me

H
Me

H

Non-enzymatic 
condensation 

reaction

+ MG

Me O

Figure 1.2: Formation of the final MAIT cell activating ligand, 5-OP-RU. 5-A-RU and MG 
substrates react to produce 5-OP-RU, which breaks down into the lumazine structure 
7-methyl-8-D-ribityllumazine if not stabilised by MR1. Adapted from Corbett et al.  
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recycling from the cell surface.29, 34 Finally, loading may occur when intracellular pathogens 

are recognised and sent to an endosomal compartment by xenophagy.35  

1.4  The MAIT cell response 

MAIT cells are capable of mounting both TCR- and cytokine-dependent responses. Early 

activation of MAIT cells is almost entirely dependent on TCR signalling following binding to 

ligand-bound MR1 occurring within 5 hours of infection in vitro.24 Presentation of the final 

activating ligand to MAIT cells by MR1 results in the rapid production of effector functions, 

including proliferation and production of IFN-γ, TNF-α, and IL-17A.17, 36, 37, 38 Furthermore, 

TCR signalling leads to the production of the chemokines CCL3, CCL4, and CCL20.37 TCR 

signalling also enables production of cytotoxic molecules granzyme B and perforin by MAIT 

cells for direct killing of bacterially infected cells.36  

At later stages of an infection, or in infections lacking riboflavin metabolising bacteria, 

cytokines act synergistically with TCR signalling for effective MAIT cell activation.24 

Cytokines IL-12 and IL-18 act on MAIT cells after 20 hours of infection in vitro leading to the 

production of IFNγ and the chemokines CCL3 and CCL4.24, 37 

MAIT cell responses to each mode of stimulation differ. TCR activated MAIT cells produce 

higher levels of TNFα whereas cytokine stimulation results in higher production of IFNγ by 

MAIT cells.37 Both cytokine-mediated and MR1-dependent responses play roles in mounting 

a robust MAIT cell response over the course of an infection. 

Multiple factors are capable of influencing the major modes of MAIT cell activation. IL-7 and 

IL-15 both enhance weak bacterial stimulation of MAIT cells to produce a robust response.39, 

40, 41 IL-7 is capable of inducing perforin and granzyme A and B production.40 As the IL-7 

receptor is expressed highly on MAIT cells, it suggests that IL-7 plays an important role in 
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cytokine-mediated activation.39 IL-15 activates MAIT cells indirectly by inducing IL-18 

production in monocytes.41 Furthermore, type 1 interferons are capable of enhancing the TCR 

dependent production of proinflammatory cytokines and cytotoxic molecules.42 Different 

infective agents may also cause differential cytokine expression by MAIT cells.43 In addition, 

opsonisation of bacteria influences TNF production by the APC, causing MAIT cells to 

increase expression of IFNγ and TNF.44 More research is required to fully explore and 

characterise the range of factors capable of modulating a MAIT cell response.  

1.5 Role of MAIT cells in health and disease   

1.5.1 Role of MAIT cells in infectious disease 

MAIT cells play a role in clearing a large range of bacterial infections. MAIT cell frequencies 

are decreased in the blood of patients with mucosal-associated bacterial infections, including 

M. tuberculosis, Legionella longbeachae, E. coli, and Helicobacter pylori. 26, 45, 46, 47 There is 

some evidence to suggest MAIT cells migrate to the site of infection. 26 Decreased blood MAIT 

cell frequencies correlated with increased time spent in hospital, persistently decreased 

frequencies with an increased risk of ICU acquired infection.48, 49 Murine studies have 

demonstrated that MAIT cells produce proinflammatory cytokines and enable bacterial 

clearance in L. longbeachae, Klebsiella pneumoniae, and Francisella tularensis infections in 

an MR1-dependent manner.38, 46, 50 Furthermore, in F. tularensis infection, a functional MAIT 

cell population aided in the recruitment of adaptive T cells to the site of infection.38 In this way 

MAIT cells can link the innate and adaptive arms of the immune response, in order to aid 

bacterial clearance.38  

Viruses activate MAIT cells independent of MR1 signalling. Originally, researchers concluded 

that viral infection does not result in MAIT cell activation.26 However, more recent studies 

demonstrated that influenza and hepatitis C viruses activate MAIT cells in a cytokine-
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dependent manner.51, 52 In HIV infection, the frequency of MAIT cells in the blood is 

significantly reduced and, unlike CD4+ T cell populations, does not recover with antiretroviral 

treatment.40, 53 The remaining cells appear functionally impaired, producing less 

proinflammatory cytokines upon bacterial treatment.40 This alteration of MAIT cell frequency 

and function may explain why HIV positive individuals are at a higher risk of opportunistic 

infections, even after antiretroviral treatment.53  

1.5.2 Role of MAIT cells in non-communicable diseases 

MAIT cells have been identified in multiple clinical settings, often related to their localisation 

to mucosal surfaces. MAIT cells are decreased in the blood of patients with colorectal, gastric, 

and lung cancers.54, 55 Multiple studies have found MAIT cells infiltrating colorectal tumours.54, 

55, 56, 57 However, this is not universally accepted, as evidenced by the degree of discord in the 

literature.54, 55, 56, 57 Their numbers are also decreased in the circulation of patients with 

autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, 

dermatomyositis, and inflammatory bowel disease.58, 59, 60 MAIT cells may migrate to areas of 

inflammation in Crohn’s disease as they are found at increased frequencies in inflamed 

tissues.60  

The scope of the role of these cells in disease is rapidly increasing; recent studies have also 

implicated MAIT cells in both obesity and wound healing.61, 62 More research is needed to fully 

understand how MAIT cells protect from or contribute to pathogenesis in specific diseases.  

1.6 Regulation of MAIT cell activation  

It is imperative that the mechanisms of MAIT cell activation and regulation are fully 

understood due to their localisation to mucosal sites as well as their implications in a range of 

disease states. Tight regulation of MAIT cells must occur to prevent hyperactivation in 
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response to commensal mucosal bacteria, many of which contain a riboflavin synthesis 

pathway. Previous work in the Ussher Laboratory has suggested this process may be mediated 

by both bacterial signalling, aided by Toll like receptors (TLRs), and immunometabolism 

within the APC.63, 64  

1.6.1 Phagocytosis 

Phagocytosis of bacteria by the APC has been implicated in MAIT cell activation. Inhibition 

of dendritic cell (DC) phagocytosis and endosomal acidification significantly decreases MAIT 

cell activation.26 Furthermore, Ussher et al. found that treatment of APCs with whole bacteria 

caused greater MAIT cell activation than treatment with sonicated bacteria.64 Phagocytosis 

may be an important regulatory component of MAIT cell activation by providing a method of 

5-A-RU delivery into the APC in order to react with MG and bind MR1.63 

1.6.2 Glycolysis and immunometabolism 

Glycolysis plays an integral role in immunometabolism and is at the crossroads between 

cellular metabolism and immune function. Glycolysis has long been implicated in immune 

responses; a spike in glycolytic activity has been detected after activation of macrophages, 

mature T cells, and MAIT cells.65, 66, 67, 68 Additionally, glycolysis is required to produce the 

characteristic effector phenotypes of T lymphocytes and MAIT cells.67, 68 Glycolytic enzymes 

have been implicated in the regulation of IFNγ production in mouse CD4+ T lymphocytes, with 

inhibition of glycolysis resulting in reduced IFNγ production.67, 69 There appear to be both 

epigenetic and translational mechanisms of glycolysis regulation, potentially creating some 

level of functional redundancy.67 69 Further, glycolysis appears to play an important role in the 

MAIT cell effector response. MAIT cells show similarities to other T lymphocytes; glycolysis 

is upregulated upon activation and is required for MAIT cell effector functions, such as 
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granzyme B and IFNγ expression.62, 68 One key difference observed in MAIT cell activation is 

the absence of oxidative phosphorylation upregulation, as seen in T lymphocytes.62, 67  

Glycolysis also appears to be an integral element of APC activation and in the stimulation of 

effector functions, however gaps in knowledge remain. Multiple studies have highlighted that 

the upregulation of glycolysis in macrophages induces a proinflammatory response, including 

the production of proinflammatory cytokines, reactive oxygen species, and caspase-1.70, 71, 72 

Regulation of this response is likely multifaceted, with multiple mechanisms of control 

identified.70, 72 Multiple regulatory proteins have been implicated in this process including both 

mTOR induced glycolysis and glycolysis inhibition by carbohydrate kinase-like protein, 

CARKL.70 72 The role of glycolysis may not be limited to a bacterial infection, as multiple 

viruses can stimulate glycolysis in plasmacytoid DC by an unknown mechanism.73  

1.6.3 Role of TLRs in APC activation  

TLRs allow APCs to quickly recognise and respond to potentially pathogenic bacteria. TLRs 

recognise highly conserved, broadly expressed microbial components, known as PAMPs or 

TLR-agonists. TLR signalling is crucial in the activation of multiple APCs, including 

macrophages and DCs.74, 75 Stimulation of both endosomal and cell surface TLRs can lead to 

enhanced glycolysis of APCs.74, 76 Increased glycolysis creates an excess of glycolytic 

by-products which are used as substrates in other metabolic pathways to produce lipids for ER 

and Golgi expansion, crucial aspects of DC activation.74 Pre-treating THP-1 cells with TLR 

agonists before the addition of whole bacteria enhanced MAIT cell activation.64 Endosomal 

TLRs may provide the connection between phagocytosis of potential pathogens APC 

immunometabolism. 
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1.6.4 Potential mechanisms of MAIT cell regulation 

As MAIT cells are largely found at mucosal surfaces, tight regulation must exist to prevent 

unnecessary activation in response to mucosal commensal bacteria.18, 20 This hypothesis was 

first raised by Ussher et al., who reported that tight regulation through mechanisms such as 

phagocytosis of whole bacteria was necessary for MR1-dependent MAIT cell activation.64 

Unpublished work in the Ussher Laboratory used THP-1 cell lines to assess MAIT cell 

activation. MAIT cell activation by 5-A-RU was significantly enhanced when treated with 

fixed E. coli ΔribD, a strain which cannot produce 5-A-RU, compared to sonicated 

E. coli ΔribD.63 This effect was abolished when THP-1 cells were treated with 5-OP-RU.63 

This raised the possibility that 5-OP-RU may bind directly within endosomes or at the cell 

surface, whereas 5-A-RU requires G or MG for formation of the final activating ligand.63 MG 

is produced by the non-enzymatic break down of glyceraldehyde-3-phosphate and 

dihydroxyacetone phosphate, components of the glycolytic pathway.77, 78 Additionally, G and 

MG can form in the breakdown of glycosylated proteins in early glyclation.79 Therefore, it was 

hypothesised that the enhancement observed with the addition of whole bacteria to treated cells 

resulted from the induction of glycolysis in the APC and the associated increase in G and MG 

production.63 Stimulation of APCs by TLR agonists present on bacteria induce a metabolic 

switch to glycolysis.74, 75 A glycolytic enhancement may result in increased G and MG 

production, potentially leading to increased efficiency of 5-OP-RU formation.  

Therefore, the Ussher Laboratory hypothesised that glycolysis may be an integral step in the 

successful formation of 5-OP-RU within APCs upon bacterial stimulation. Preliminary data 

obtained using peripheral blood mononuclear cell culture (PBMC) indicated a reduction of 

MAIT cell activation by 5-A-RU with inhibition of glycolysis, irrespective of E. coli ∆ribD 

treatment.63 Furthermore, enhancement of PBMC glycolysis increased MAIT cell activation 

when exposed to 5-A-RU and E. coli ∆ribD.63 These results suggest that phagocytosis of intact 
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bacteria may upregulate the APC glycolytic pathways, aiding ligand formation and resulting 

in the successful activation of MAIT cells (Fig 1.3). However, the experimental procedures 

investigating the role of glycolysis used PBMC cultures, which contain a mixture of immune 

cells. As glycolysis has been implicated in MAIT cell effector function it is not possible to 

attribute the results to glycolysis within the APC alone. There are also many unknowns in the 

mechanism occurring, such as whether increased uptake of glucose or increased expression of 

glycolytic enzymes occurs upon bacterial licensing. Continued investigation is required to 

confirm the hypothesis and to identify the exact mechanism occurring. In future, manipulation 

of this mechanism may enable modulation of MAIT cell responses to prevent or treat bacterial 

infections. 

 

Figure 1.3 Potential mechanism of MAIT cell activation. Phagocytosis increases the 
glycolytic capacity of the APC, increasing methylglyoxal (MG) and enabling efficient 5-OP-RU 
formation for binding and presentation to MAIT cells by MR1. Created with BioRender.com. 
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1.7 Aims and hypothesis 

MAIT cells are a subset of innate-like lymphocytes found at multiple mucosal surfaces which 

have been implicated in antibacterial immunity and multiple disease states.26, 17, 18, 19, 20, 51, 58, 59, 

60 MAIT cells must have strict regulatory mechanisms to prevent hyper-activation mediated 

immunopathologies in response to riboflavin producing bacteria at mucosal surfaces.64 

Previous evidence in the Ussher Laboratory has indicated that phagocytosis and glycolysis may 

provide the basis for one regulatory mechanism of MAIT cell activation.63, 64 Therefore, I 

hypothesise that bacterial signalling, via phagocytosis of bacteria into APCs, enhances APC 

glycolysis leading to enhanced availability of MG for increased production of the final MAIT 

cell activating ligand, 5-OP-RU, for presentation by MR1 and activation of MAIT cells.  

MAIT cell activation was assessed to address the following aims:  

1. To investigate whether phagocytosis of intact bacteria is required for successful APC 

licensing for MAIT cell activation, and;  

2. To determine if phagocytosis of intact bacteria effects APC glycolysis, leading to 

altered MAIT cell activation.  
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2 Materials  

Table 2.1: Cell lines 

Cell line  Description  Source  

THP-1  Human monocytic cell line  Prof Alex McLellan, 
University Otago, NZ.  

 

Table 2.2: Bacterial stocks 

Bacteria name  Details  Culture 
conditions  

Original 
Source 

Local 
Source  

Escherichia 
coli ΔribD 

 

Strain C93D, derived 
from strain BSV13 
ribD::CmR, non-
riboflavin producing. 
Genotype: lacIq rrnBT14 
ΔlacZWJ16 hsdR514 
ΔaraBADAH33 
ΔrhaBADLD78 

LB broth + 
20 mg/mL 
riboflavin at 
37°C with 
shaking at 
220 rpm. 

Prof Olivier 
Lantz, Curie 
Institue, Paris, 
France.  

 

E. coli HB101  

 

Strain HB101, 
riboflavin producing. 
Genotype: F-, araC14, 
leuB6(Am), Δ(gpt- 
proA)62, lacY1, 
glnX44(AS), 
galK2(Oc), λ-, recA13, 
rpsL20(strR), xylA5, 
mtl- 
1, thiE1, [hsdS20]  

LB broth at 
37°C with 
shaking at 
220 rpm. 

Prof Herbert 
Boyer, 
University of 
California.  

Associate 
Prof Keith 
Ireton, 
University of 
Otago, NZ. 
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Table 2.3: Media and broth 

Media or broth name  Components/Preparation 

R10  

RPMI medium 1640 with L-glutamine (Life Technologies, 
CA, USA), supplemented with 10% heat inactivated fetal 
bovine serum (FBS, 56°C for 30 minutes) (Life 
Technologies), 10,000 U/mL penicillin and 10,000 mg/mL 
streptomycin (Sigma-Aldrich, MO, USA). 

R10 + human serum  R10 medium supplemented with 10% human serum (from 
male AB clotted whole blood, Sigma Aldrich).  

Freezing media  90% FBS and 10% dimethyl sulfoxide (DMSO, Sigma-
Aldrich).  

Glucose-free (GF) R10 
RPMI medium 1640, no glucose (Life Technologies), 
supplemented with 10% heat-inactivated FBS, 10,000 U/mL 
penicillin and 10,000 mg/mL streptomycin.  

LB broth 20 g LB broth (Invitrogen) per 1 L distilled water (dH2O). 
Autoclave. 

LB + riboflavin broth  
2X autoclaved LB broth mixed in a 1:10 ratio with 40 mg/mL 
filtered riboflavin (Sigma-Aldrich) to give a final 
concentration of 1X LB + 20 mg/mL riboflavin. 

 

Table 2.4: Buffers 

Media or broth name  Components/Preparation 

1X Permeabilisation buffer  
1 in 10 dilution of 10 X intracellular staining 
permeabilization wash buffer (BioLegend, San Diego, CA) in 
MilliQ water.  

Phosphate buffered saline 
(PBS) 

1 PBS tablet (Oxoid, ThermoFisher, UK) per 100 mL dH2O. 
Autoclaved. 

MACS buffer 1% FBS, 2 mM ethylenediaminetetraacetic acid (EDTA) 
(Sigma-Aldrich), 1X PBS.  
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Table 2.5: Inhibitors and reagents 

Reagent/inhibitor Details Working 
concentration Source 

2-(N-(7-nitrobenz-2-
oxa-1,3-diazol-4-
yl)amino)-2-
deoxyglucose (2-
NBDG) 

Fluorescent glucose 
analogue. 50 μM Life technologies 

2-deoxy-D-glucose 
(2-DG) 

Glucose analogue 
serving as glycolysis 
inhibitor. 

2 mM Sigma-Aldrich 

5-amino6- 
Dribitylaminouracil 
(5-A-RU) 

Synthetic precursor of 5-
(2-
oxopropylideneamino)-6-
D-ribitylaminouracil 
(5-OP-RU), the MR1 
ligand. Riboflavin 
synthesis pathway 
intermediate. 

1 μM 

Dr Andrea 
Vernall 
(Department of 
Chemistry, 
University of 
Otago) 

Brefeldin A 

Inhibitor of protein 
transport between the 
endoplasmic reticulum 
(ER) and Golgi. 

3 μg/mL BioLegend 

D-glucose anhydrous Monosaccharide energy 
source for cells. 11 mM 

Ajax Finechem 
Pty Ltd, 
Austrailia 

Dimethyl sulfoxide 
(DMSO) 

Solvent for reagent 
dilution and freezing 
media. 

As stated Sigma-Aldrich 

Fructose 1,6-
bisphosphate trisodium 
salt hydrate 

Intermediate of 
glycolysis. Enhances the 
rate limiting step in 
glycolysis. 

1 mM Sigma-Aldrich 

KU-0063794 (KU) Dual inhibitor of mTOR1 
and mTOR2. 1 μM Sigma-Aldrich 

Methylglyoxal (MG) In vivo glycolysis by-
product. Undergoes 
condensation with 
5-A-RU to form 
5-OP-RU. 

50X 5-A-RU 
concentration  

Sigma-Aldrich 
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Paraformaldehyde 
(PFA) 

Cellular fixative agent. 2% Sigma-Aldrich 

LY294002 (LY) Inhibitor of PI3 kinase 
p100a/d/b. 

10 μM  Selleck 
Chemicals 

Rapamycin Inhibitor of mTOR1.  50 nM  Sigma-Aldrich 

 

Table 2.6: Cell isolations 

Components Details  Working 
concentration  

Source 

Heparin sodium 
sulphate 

Anticoagulant. 1,000 IU/mL  Hospira Australia 
Pty Ltd, 
Melbourne, 
Australia  

Lymphoprep Density gradient for 
human PBMC 
isolation. 

Undiluted Axis-Shield, 
Dundee, UK  

CD8 microbeads, 
human 

Magnetic microbeads 
for CD8+ T cell 
isolation. 

20 μL per 107 

cells (up to 
2x108 cells) 

Miltenyi Biotec 

MS column Magnetic columns for 
separation of magnetic 
bead labelled cells. 

N/A Miltenyi Biotec 
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Table 2.7: Antibodies and dyes 

Antibody/dye Fluorophore  Clone  Working conc. Source 

Anti-CD69 PerCP/Cy5.5 FN50 2 μg/mL BioLegend 

Anti-CD107a  PE H4A3 8 μg/mL BioLegend 

Anti-CD15 PE/Cy7 W6D3 8 μg/mL BioLegend 

Anti-CD161  APC  191B8 0.15 μg/mL Miltenyl 

Anti-CD3 BV510 OKT3 0.15 μg/mL Biolegend  

 PE/Cy7 UCHT1 1.5 μg/mL Biolegend 

Anti-CD8a eFluor450 (BV421) RPA-T8 1 μg/mL BioLegend 

Anti-interferon-γ 
(IFNγ) 

PerCP/Cy5.5 4S.B3 2.5 μg/mL BioLegend 

Anti-tumour 
necrosis factor-α 
(TNFα)  

FITC MAb11 4 μg/mL BioLegend 

Anti-Vα7.2  PE/Cy7 3C10 4 μg/mL BioLegend 

 PE 3C10 1 μg/mL BioLegend 

aMR1 PE 26.5 10 μg/mL Medi’Ray 

 

Glut1-AF488  FITC 202915 6 μg/mL R&D systems 

Live/Dead 
Fixable Near IR 
dye 

N/A N/A 1μL of 1:1250 
dilution of stock 
solution 

Invitrogen 

123count eBeads  N/A 
N/A 1011 beads/μL  eBioscience 

San Diego, 
CO 
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3 Methodology 

3.1 Cell isolation and culture 

3.1.1 PBMC isolation  

Blood was drawn from healthy donors with informed consent, as approved by the University 

of Otago Human (Health) Ethics Committee, reference H14/046. 50 mL of heparinised blood 

(1000 IU/mL heparin sodium sulphate) was collected into sterile 50 mL tubes and diluted 1:1 

with pre-warmed PBS. Diluted blood was layered onto a density gradient medium, 

Lymphoprep, and centrifuged at 800 xg for 30 minutes at room temperature (acceleration = 5; 

brake = 0). The enriched PBMC fraction was removed, transferred to a fresh tube, and cells 

were centrifuged at 250 xg for 10 minutes (acceleration and brake = 5). PBMC pellets were 

washed twice in 50 mL room temperature PBS with centrifugation for 10 minutes at 250 xg. 

Cells were prepared at 107 cells/mL in cold freezing media (FBS + 10% dimethyl sulfoxide), 

aliquoted into 1 mL cryovials, and frozen at -80°C in a Mr. Frosty™ Freezing Container with 

isopropanol. The following day, samples were transferred into liquid nitrogen.  

3.1.2 CD8+ T cell isolation  

Cryopreserved PBMCs were defrosted in a 37°C water bath and added to 10 mL R10 before 

centrifugation at 400 xg for 5 minutes. Thawed cells were resuspended 2 mL R10 per 1x107 

cells and rested at 37°C + 5% CO2 overnight.  

The following day, PBMCs were centrifuged at 400 xg for 5 minutes, resuspended in R10, and 

the cell count determined. PBMCs were then washed twice by centrifugation at 400 xg for 5 

minutes and resuspended in 2 mL of MACS buffer. PBMCs were then resuspended in 20 µL 

CD8 microbeads and 80 µL MACS buffer per 107 cells and incubated for 15 minutes at 4°C in 

the dark. After incubation cells were washed once in 2 mL of FACS per 107 cells, and 
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resuspended in 500 µL MACS buffer. MS columns were attached to a MACS magnet and 

washed once with 500 µL MACS buffer. 500 µL of sample was then run through the MS 

columns, before washing the column three times with 500 µL MACS buffer. MS columns were 

transferred into sterile 15 ml tubes before adding 500 µL FACS and pushing a stopper through 

the column to displace the CD8+ T cells. Isolated CD8+ T cells were washed once and 

resuspended in 2 mL of R10, counted, and prepared to a final concentration of 105 cells per 

100 µL in R10. Cells were seeded at 105 cells/well into a 96-well round-bottom plate containing 

THP-1 cells. A purity stain of isolated CD8+ T cells was performed by staining with Live/Dead 

Fixable Near IR dye and ant-CD8 eFluor450. Purities 90% and above were achieved (see 

Figure 3.3 for gating strategy).  

3.1.3 THP-1 cell culture 

THP-1 cells were cultured in R10 media in 75 cm2 Corning cell culture flasks. Cells were 

passaged every two days at a concentration of 2 x 105 cells/mL. After 20 passages, cell cultures 

were discarded. Unless otherwise stated, cells were prepared for assays to a final concentration 

of 105 cells per 100 µL in R10 and seeded into a 96-well round-bottom plate. The plate was 

incubated at 37°C + 5% CO2 overnight.  

3.2 Bacterial culture, fixation, and preparations 

3.2.1 Preparation of fixed bacterial stocks  

Four 10 mL LB or LB + riboflavin broths (Table 2.3) were each inoculated with E. coli HB101 

or E. coli ΔribD, respectively, and incubated overnight at 37°C with shaking at 200 - 220 rpm. 

The following day, broth cultures were pooled, centrifuged for 8 minutes at 3220 xg, and 

washed twice in 40 mL PBS. Fixation was performed by resuspension of bacteria in 2 mL 2% 

paraformaldehyde (PFA) for 20 minutes at 4°C. Following fixation, bacteria were washed 

twice in PBS, as described above. Following the final centrifugation, bacteria were 
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resuspended in 1 mL PBS and stored at 4°C for up to 1 month. The concentration of bacterial 

stock was determined by flow cytometry using 123count eBeads (Figure 3.1, 3.2).  

 

	𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎	𝑐𝑜𝑢𝑛𝑡	𝑖𝑛	1	𝑖𝑛	1,000	𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛−6𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎6𝑐𝑜𝑢𝑛𝑡	𝑖𝑛	𝑏𝑒𝑎𝑑𝑠	𝑜𝑛𝑙𝑦	𝑠𝑎𝑚𝑝𝑙𝑒

1	𝑖𝑛	1,000	𝑏𝑒𝑎𝑑	𝑐𝑜𝑢𝑛𝑡 ∗ 1011 ∗ 1,000

+	
𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎	𝑐𝑜𝑢𝑛𝑡	𝑖𝑛	1	𝑖𝑛	10,000	𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛−6𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎6𝑐𝑜𝑢𝑛𝑡	𝑖𝑛	𝑏𝑒𝑎𝑑𝑠	𝑜𝑛𝑙𝑦	𝑠𝑎𝑚𝑝𝑙𝑒

1	𝑖𝑛	10,000	𝑏𝑒𝑎𝑑	𝑐𝑜𝑢𝑛𝑡 ∗ 1011 ∗ 10,000 = 

Figure 3.1 Equation for counting of E. coli bacterial stocks (bacteria/ µL). The concentration 
of bacterial stock was calculated using two ten-fold dilutions and 123count eBeads 
(1011 beads/µL).  
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Figure 3.2:Gating strategy for calculation of fixed E. coli ∆ribD and E. coli HB101 stock 
concentrations. Representative plots of (A) a beads only control or (B) E. coli HB101 at 
1:1,000 dilution in PBS. (C) Example calculation of E. coli HB101 stock concentration. 

A

B

Beads 
count

Debris + 
Bacteria 
count

Bacteria 
count -
beads

E. coli HB101 
count 

Dilution 
corrected 
count 
(Bacteria/ 
μL)

Mean 
(Bacteria/
μL)

Beads only 3000 2082

E. coli HB101 
1/1000 + Beads

2999 292789 290716 98003.960 98003960.0 9.21x107

E. coli HB101  
1/10,000 + Beads 

3002 27700 25618 8627.51432 8625143.2

C
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3.2.2 Sonication of fixed bacteria 

1 mL of fixed bacteria for sonication was prepared in a 15 mL tube at the same concentration 

as was used for treatment with whole fixed bacteria and kept on ice. Bacteria were sonicated 

using a SONICS Vibra- cell CV33 for one minute at 20% amplitude, followed by two 30 

second pulses at 20% amplitude. Samples were placed on ice between sonication intervals to 

prevent overheating. Once sonicated, lysates were filtered through a 0.2 µM filter. Bacterial 

lysates were prepared fresh for each experiment.  

3.2.3 Opsonisation of bacteria  

Fixed bacteria stocks were diluted 1/10 for a final volume of 500 μL and centrifuged for 5 

minutes at 1500 xg. The supernatant was removed and bacteria were resuspended in 500 μL 

R10 + 10% human serum (Sigma Aldrich). Bacteria were incubated at 37°C for 20 minutes 

with rotation (20 rpm). After incubation, bacteria were centrifuged for 5 minutes at 1500 xg, 

the supernatant removed, and resuspended in 500 μL R10. Opsonised bacteria were prepared 

fresh for each experiment. 

3.2.4 Bacterial treatment of THP-1 cells 

Fixed whole and fixed opsonised bacteria were added at a concentration of 10 bacteria per cell 

(BPC). An equivalent volume of sonicated fixed bacteria to the fixed whole bacteria was added 

for all assays.  

3.3 Preparation of 5-A-RU and 5-OP-RU 

The synthesis of 5-A-RU has been described previously.80 Ligand treatment consisted of 1 or 

10 nM 5-OP-RU or 1 µM 5-A-RU.37 Fresh aliquots of 5-A-RU, stored at -80°C, were defrosted 

for each experiment. 5-OP-RU was prepared by mixing 5-A-RU with MG at a 1:50 molar ratio 

until a colour change from clear to yellow was observed (1 - 2 minutes). 5-OP-RU was 
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subsequently diluted to 1 nM and/or 10 nM, based on input concentrations of 5-A-RU. All 

ligand dilutions were performed using MilliQ water.  

3.4  MAIT cell activation assays  

Unless otherwise stated, 105 THP-1 cells were treated with bacteria (fixed whole, fixed 

sonicated, or fixed opsonised) and/or ligand (5-A-RU or 5-OP-RU) for 5 hours before three 

wash steps in 200 μL PBS (centrifugation = 400 xg, 3 min). Following the final centrifugation, 

THP-1 cells were resuspended in R10 before addition of 105 CD8+ T cells for the final 4 hour 

incubation. CD8+ T cells were suspended in R10 before addition to the THP-1 cells (as 

described in figure legends). After 1 hour of THP-1 and CD8+ co-culture, brefeldin A (3 µg/mL) 

was added to required wells for assessment of cytokine production. Where CD107a expression 

was assessed, an anti-CD107a-PE antibody was added at the same time as CD8+ T cell seeding. 

Cells were stored overnight at 4°C following assay completion prior to staining. 

In glycolysis enhancement experiments, THP-1 cells were pre-treated with 1 mM fructose 

1,6-bisphosphate (F-1,6-BP) in R10 for 1 hour at 37°C + 5% CO2 before the addition of further 

treatments.  

In glycolysis inhibition experiments, THP-1 cells were washed twice in PBS before 

resuspension in 100 μL of GF-R10. Cells were pre-incubated for 2 hours at 37°C + 5% CO2 

before addition of 2-deoxy-D-glucose (2-DG) or D-glucose at a final concentration of 

2 mmolL-1 or 11 mmolL-1 per well, respectively. Cells were incubated for 1 hour before the 

addition of further treatments. 2-DG treatment concentration was optimised by assessment of 

MAIT cell activation by THP-1 cells treated with 2, 4, 10, 20, 50, 100, or 150 mmolL-1 2-DG 

per well. Inhibition of glycolysis was alternatively assessed by pre-treatment of THP-1 cells 
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for one hour with either 10 μM LY294002 (LY), 50 nM rapamycin (Rapa), or 1 μM 

KU 0063794 (KU), in glucose-containing R10 before the addition of bacterial treatments. 

3.5 Assessment of 2-NBDG uptake by THP-1 cells 

To assess glucose uptake following bacterial treatment, THP-1 cells were treated with 50 μM 

2-NBDG with or without fixed whole E. coli ΔribD for between 10 minutes and 1 hour. A 

second matched set of cells lacking 2-NBDG treatment were prepared simultaneously for 

normalisation. After treatment cells were washed twice with cold PBS (4°C). Cells were fixed 

in 100 μL 2% PFA for 25 minutes at 4°C in the dark. The THP-1 cells were washed twice in 

cold PBS (4°C) and resuspended in 200 µL PBS, transferred into FACS tubes, and run 

immediately on the flow cytometer.  

3.6 Assessment of THP-1 cell GLUT-1 expression  

To assess GLUT-1 expression, THP-1 cells were treated with fixed whole E. coli ΔribD at the 

following timepoints: 0, 30 minutes, and hourly for up to 4 hours. Following treatment, the 

cells were washed twice with PBS and stained with anti-GLUT-1-AF488 and Live/Dead 

fixable near IR dye. A second set of cells lacking staining with anti-GLUT-1-AF488 were 

prepared simultaneously. After fixation, the THP-1 cells were suspended in 200 µL PBS and 

transferred into FACS tubes for flow cytometry. 

3.7 Immunostaining  

All wash steps consisted of centrifugation of sample plates (400 xg, 3 min), removal of 

supernatant, and resuspension in 200 µL PBS, unless otherwise stated. Treated cells were 

washed twice and resuspended in 50 µL of surface antibody master mix consisting of: 

anti-CD161 APC, anti-CD69 PerCP/Cy5.5 (when required), and Live/Dead fixable near IR dye 

in PBS. Cells were incubated for 25 minutes at 4°C in the dark. After incubation, cells were 
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washed twice in PBS and fixed in 100 µL of 2% PFA for 10 minutes at room temperature (RT) 

in the dark, unless otherwise indicated. The cells were washed twice in PBS, then once in 1X 

Permeabilisation Wash Buffer (PWB). Cells were resuspended in 50 µL of intracellular 

antibody master mix prepared in PWB, consisting of: Vα7.2 PE or PE/Cy7, CD3 BV510 or 

PE/Cy7, CD8 eFluor450, and when required IFNγ PerCP/Cy5.5 and TNFα FITC. Cells were 

incubated for 25 minutes at RT in the dark. After incubation, the cells were washed once in 

PWB and once in PBS, before resuspension in 200 µL PBS and transfer into FACS tubes for 

sample collection.  

3.8 Analytical flow cytometry  

Stained cells were transferred into FACS tubes for data collection using either a BD 

FACSCanto II or BD LSRFortessa flow cytometer. Analysis of FCS files was performed on 

FlowJo version 10.6.2 (TreeStar, USA). Positive gates were set on untreated cells for 

proinflammatory cytokines, IFNγ and TNFα, as well as cytotoxic marker CD107a. CD69 

gating was determined by gating between the two cell populations observed in untreated 

samples. Gating strategies are depicted in Figures 3.2 to 3.6, inclusive, below. 

 

Figure 3.3 Gating strategy to assess CD8+ T cell purity. CD8+ T cells were defined as single 
cells (singlets)/lymphocytes/live/CD8+. Forward Scatter Height = FSC-H, Forward Scatter 
Area = FSC-A. 
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 Figure 3.4 Gating strategy for the identification and characterisation of MAIT cells. Cells 
were first gated for single cells (singlets) prior to identification of lymphocytes by size and 
granularity (FSC and SSC, respectively). Dead cells were excluded from assessment and MAIT 
cells identified as CD3+/CD8+/CD161++/Vα7.2+. Gating for assessment of MAIT cell 
activation is shown (IFNγ, TNFα, CD69 and CD107a). Representative pseudoplots from one 

Untreated
Fixed E. coli ΔribD + 1 μM 5-A-RU
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donor left untreated or treated with fixed E. coli ΔribD + 1 µM 5-A-RU are shown. Forward 
Scatter Area (FSC-A), Side Scatter Area (SSC-A), and Forward Scatter Height (FSC-H). 
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Figure 3.5: Gating strategy for assessment of TNFα expression by THP-1 cells. Cells were 
first gated for single cells (singlets) prior to identification of monocytes by size and granularity 
(FSC and SSC, respectively). THP-1 cells were identified as CD15+ monocytes. Representative 
pseudoplots from one donor left untreated and/or treated with fixed E. coli ΔribD + 1 µM 
5-A-RU are shown. Forward Scatter Area (FSC-A), Side Scatter Area (SSC-A), and Forward 
Scatter Height (FSC-H).  

 

Untreated
Fixed E. coli ΔribD + 1 μM 5-A-RU
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Figure 3.6: Gating strategy used to determine 2-NBDG uptake by THP-1 cells. THP-1 cells 
were defined as singlets/THP-1 cells. Representative pseudoplots from one biological replicate 
left untreated or treated with fixed E. coli ΔribD are shown. Cells were incubated with (right) 
or without (left) 50 μM 2-NBDG. Forward Scatter Area (FSC-A), Side Scatter Area (SSC-A), 
and Forward Scatter Height (FSC-H).  

+ 2-NBDGNo 2-NBDG

Untreated
Fixed E. coli ΔribD
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Figure 3.7: Gating strategy used to determine GLUT-1 expression by THP-1 cells. Cells were 
first gated for single cells (singlets) prior to identification of THP-1 monocytes by size and 
granularity (FSC and SSC, respectively). Dead cells were excluded from assessment by 
live/dead staining. Representative pseudoplots from one biological replicate left untreated or 
treated with fixed E. coli ΔribD are shown. Cells were stained with (right) or without (left) 
anti-GLUT-1-AF488. Forward Scatter Area (FSC-A), Side Scatter Area (SSC-A), and Forward 
Scatter Height (FSC-H).  

 

3.9 Statistical analysis  

Data was analysed using GraphPad Prism software, version 8.4.0. Data are presented as mean 

with the standard error of the mean (SEM). Statistical analyses used for specific experiments 

are described in figure legends. Normality of the data was assessed using a Shapiro-Wilk test. 

If the data was normally distributed, multiple groups were compared by repeated measures 

one-way ANOVA, with comparisons made between groups using the Sidak’s multiple 

No GLUT-1-AF488 + GLUT-1-AF488

Untreated
Fixed E. coli ΔribD
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comparisons test. If comparisons between two treatments were made, two-tailed, repeated 

measures two-way ANOVA was used, with multiple comparisons made using Bonferroni’s 

multiple comparisons test.  

If the data in an experiment comparing multiple groups was deduced to be non-normal, a 

Friedman’s test was used to compare multiple groups. When two treatment groups were being 

simultaneously assessed for non-normal data, an arcsine transformation was performed. 

Normality was then re-assessed, and a two-tailed, repeated measures two-way ANOVA was 

performed, with multiple comparisons made using Bonferroni’s multiple comparisons test. 

Statistical significance was defined as a two-tailed p value of 0.05 or below. Statistical 

guidance was sought from a statistician, Dr Matthew Parry, before data analysis.  
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4 Results 

4.1 Bacteria differentially regulate MAIT cell activation in response to 5-A-RU or 

5-OP-RU 

Past data (unpublished, Ussher Laboratory) using PBMC cultures observed enhanced MAIT 

cell activation upon treatment with 5-A-RU, but not 5-OP-RU, in conjunction with fixed 

E. coli ΔribD.63 This effect was mitigated in the presence of sonicated E. coli ΔribD.63 To 

confirm the past data, THP-1 cells were treated with 5-A-RU or 5-OP-RU and either fixed or 

sonicated E. coli ΔribD for ten hours (Figure 4.1A). CD8+ T cells were added for the final four 

hours. E. coli HB101 treatment was included as a control (Figure 4.1A). MAIT cell activation 

was determined by measurement of production of proinflammatory cytokines, IFNγ and TNFα.  

No change was observed in MAIT cell IFNγ or TNFα production upon THP-1 cell treatment 

with 1 nM 5-OP-RU and fixed or sonicated E. coli ΔribD, compared to cells treated with 1 nM 

5-OP-RU alone (Figure 4.1B, E). The production of IFNγ and TNFα by MAIT cells increased 

across all treatments with increased 5-OP-RU concentration (Figure 4.1B, E). Furthermore, no 

change was seen in IFNγ production upon treatment with 10 nM 5-OP-RU, irrespective of 

bacterial treatment (Figure 4.1B, E). MAIT cell TNFα production increased significantly when 

THP-1 cells were treated with 10 nM 5-OP-RU and fixed E. coli ΔribD, compared to 10 nM 

5-OP-RU alone (Figure 4.1 E).  

Differences in MAIT cell activation were observed when THP-1 cells were treated with 

5-A-RU and fixed or sonicated E. coli ΔribD. There was a non-significant trend towards 

increased MAIT cell IFNγ production in response to 1 μM 5-A-RU and fixed E. coli ΔribD, 

compared to 5-A-RU alone (Figure 4.1B). No difference in MAIT cell IFNγ production was 

observed between the 5-A-RU alone and 5-A-RU plus sonicated E. coli ΔribD treatments 
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(Figure 4.1B). A significant increase in TNFα production was observed with the addition of 

E. coli ΔribD and 5-A-RU treatment compared to 5-A-RU alone (Figure 4.1E). This effect was 

mitigated when THP-1 cells were treated with sonicated E. coli ∆ribD and 5-A-RU (Figure 

4.1E). MAIT cell activation was prevented with the addition of αMR1 for all treatments, 

indicating that MAIT cell activation occurred in an MR1-dependent manner (Figure 4.1B, E).  

The ratios of MAIT cell IFNγ and TNFα production altered in response 5-A-RU in conjunction 

with fixed or sonicated E. coli ΔribD. IFNγ and TNFα production was significantly higher with 

fixed E. coli ΔribD than with sonicated E. coli ΔribD (Figure 4.1C, F). Conversely, no 

statistically significant changes were observed between the ratios of MAIT cell IFNγ and TNFα 

production upon 5-OP-RU treatment in conjunction with fixed and sonicated E. coli ΔribD 

(Figure 4.1D, G). Overall, these results indicated that effective MAIT cell activation by 

5-A-RU was increased with fixed bacteria, whereas activation with 5-OP-RU was less affected 

by bacteria.  
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Figure 4.1: Sonication of bacteria disrupts the response to 5-A-RU stimulation. (A) 
Schematic depicting the MAIT cell activation assay using a 1:1 co-culture of THP-1 cells and 
purified human CD8+ T cells. THP-1 cells were treated for 6 hours with bacteria ± 5-A-RU or 
5-OP-RU ± αMR1, as indicated. CD8+ T cells were added to the co-culture and incubated for 
1 hour. Brefeldin A (3 μg/mL) was then added for the final 3 hours. Schematic created with 
BioRender.com. (B - E) THP-1 cells were treated with 10 bacteria per cell (BPC) fixed or 
sonicated E. coli HB101 or E. coli ΔribD ± 1 nM or 10 nM 5-OP-RU, or 1 μM 5-A-RU ± 10 
μg/mL αMR1. The production of (B) IFNγ and (E) TNFα by MAIT cells was assessed by 
intracellular staining and flow cytometry (n = 4). MAIT cell production of (C) IFNγ or (F) 
TNFα in response to 5-A-RU and fixed or sonicated E. coli ΔribD normalised to 5-A-RU 
treatment alone. MAIT cell production of (D) IFNγ or (G) TNFα in response to 5-OP-RU and 
fixed or sonicated E. coli ΔribD normalised to 5-OP-RU treatment alone. Data points 
represent individual blood donors tested in three independent experiments. Statistical 
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significance was calculated by a Friedman test with Dunn’s multiple comparisons test (B), 
one-way ANOVA with Sidak’s multiple comparisons test (E), or a paired T test (C, D, F, and 
G). ns, non-significant; *, p<0.05; **, p<0.01; ***, p<0.001. 

 

4.2 Magnitude of MAIT cell activation by THP-1 cells varies based on treatment time 

Previous experiments performed in the Ussher Laboratory incubated THP-1 cells with bacteria 

and 5-A-RU for a total of 10 hours in order to assess MAIT cell activation. The incubation time 

was based on past data (unpublished, Ussher Laboratory) which found the highest levels of 

MR1 expression on THP-1 cells occurred after 10 hours.81 However, more recent experiments 

have suggested that the abundance of MR1 at the cell surface may not correlate with the level 

of MAIT cell activation (unpublished, Ussher Laboratory). Therefore, a time course was 

performed to determine the optimal pre-incubation time for THP-1 cells before MAIT cell 

addition. 

The optimal assay incubation time was assessed by treatment of THP-1 cells hourly over 6 

hours before the addition of CD8+ T cells. THP-1 cells were treated with fixed E. coli ΔribD 

and either 5-OP-RU, 5-A-RU, or fixed E. coli HB101 and incubated for 2 - 6 hours (Figure 

4.2A). THP-1 cells were treated with fixed E. coli ΔribD alone for either 2 or 6 hours (Figure 

4.2A). CD8+ T cells were then co-cultured with the THP-1 cells for a further four hours and 

production of proinflammatory cytokines assessed. The percentage of MAIT cells producing 

IFNγ or TNFα, as well as production of TNFα by THP-1 cells, was then determined.  

MAIT cell production of both IFNγ and TNFα gradually increased with time across samples 

treated with 5-A-RU or E. coli HB101 (Figure 4.2B, C). Where samples were treated with 

5-A-RU and E. coli ΔribD, no marked difference in cytokine production was observed between 

8 - 10 hour treatment times (Figure 4.2B, C). Treatment with 5-OP-RU, with or without 

E. coli ΔribD, showed minimal variation in cytokine production between time points (Figure 
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4.2B, C). Minimal production of TNFα by THP-1 cells (monocytes) was detected; this was 

highest in samples treated with bacteria and peaked at early time points, and decreased over 

time (Figure 4.2D). As expected, no MAIT cell activation was observed at 6 or 10 hours with 

E. coli ΔribD treatment alone (Figure 4.2B, C).  
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Figure 4.2: MAIT cell activation enhanced with increased THP-1 cell exposure to treatment: 
no wash step. (A) Schematic diagram depicting the MAIT cell activation assay using a 1:1 
co-culture of THP-1 cells and purified human CD8+ T cells. Schematic created with 
BioRender.com. (B-D) THP-1 cells were treated for 2 - 6 hours with 10 BPC fixed 
E. coli HB101 or E. coli ΔribD ± 10 nM 5-OP-RU or 1 μM 5-A-RU, as indicated. Isolated 
CD8+ T cells were added for a further 4 hours, with addition of brefeldin A (3 μg/mL) for the 
final 3 hours. MAIT cell IFNγ (B) and TNFα (C) production and THP-1 cell TNFα production 
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(D) was assessed by intracellular staining and flow cytometry. Data points represent individual 
blood donors (n = 3) tested in three independent experiments. Due to the COVID-19 lockdown, 
testing was limited to three donors, therefore statistical comparisons were not made. 

Subsequent experiments require washing of THP-1 cells prior to the addition of CD8+ T cells, 

removing potentially important secreted co-stimulatory molecules produced by the THP-1 cells. 

Therefore, a second time course was performed to deduce whether washing THP-1 cells would 

alter the magnitude of MAIT cell activation. To achieve this THP-1 cells were treated with the 

same treatments as seen in Figure 4.2 every hour for a total of 6 hours. After 6 hours the THP-1 

cells were washed three times in PBS before the addition of CD8+ T cells for a further four 

hours (Figure 4.3A). CD8+ T cells were then stained for production of proinflammatory 

cytokines. The percentage of MAIT cells producing IFNγ or TNFα, as well as production of 

TNFα by THP-1 cells, was then determined.  

MAIT cell activation was similar when THP-1 cells were washed (Figure 4.3), compared to 

when they were not washed prior to the addition of CD8+ T cells (Figure 4.2). MAIT cell 

activation increased over time with 5-A-RU, E. coli HB101 and, for IFNγ production, 5-A-RU 

plus E. coli ΔribD, reaching peak activation at nine hours (Figure 4.3B, C). Minimal production 

of TNFα by THP-1 cells was seen; increased production occurred with addition of whole 

bacteria, peaking at 8 hours total incubation time (Figure 4.3D). Conversely, TNFα by THP-1 

cells remained unchanged in ligand only treatments (Figure 4.3D). Therefore, subsequent 

assays were incubated for nine hours total.  
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Figure 4.3: MAIT cell activation enhanced with increased THP-1 cell exposure to treatment: 
with PBS wash step. (A) Schematic diagram depicting the MAIT cell activation assay using a 
1:1 co-culture of THP-1 cells and purified human CD8+ T cells. Schematic created with 
BioRender.com. (B - D) THP-1 cells were treated for 2 - 6 hours with 10 BPC fixed 
E. coli HB101 or E. coli ΔribD ± 10 nM 5-OP-RU or 1 μM 5-A-RU, as indicated. Three PBS 
washes of THP-1 cells occurred prior to the addition of CD8+ T cells. Isolated CD8+ T cells 
were added and the culture incubated for a further 4 hours, with addition of brefeldin A 
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(3 μg/mL) for the final 3 hours. MAIT cell IFNγ (B) and TNFα (C) production and THP-1 cell 
TNFα production (D) was assessed by intracellular staining and flow cytometry. Data points 
represent individual blood donors (n = 3) tested in two independent experiments. Due to the 
COVID-19 lockdown, testing was limited to three donors, therefore statistical comparisons 
were not made. 

4.3 Modulation of THP-1 cell glycolysis affects MAIT cell activation 

The differences observed in Figure 4.1 indicated that THP-1 cell treatment with whole bacteria 

enhanced the MAIT cell response to 5-A-RU but not to 5-OP-RU. MG, a glycolytic by-product, 

reacts with 5-A-RU to produce the MAIT cell activating ligand, 5-OP-RU.4 Additionally, 

activation of endosomal TLRs, typically activated upon phagocytosis of microorganisms, leads 

to an increase in APC glycolysis.74 Therefore, I hypothesised treatment with whole bacteria 

was enhancing the conversion of 5-A-RU to 5-OP-RU through enhanced glycolysis within 

THP-1 cells. Previous experiments performed in PBMCs indicated that glycolysis modulation, 

either enhancement or inhibition, was able to alter MAIT cell actvation.63 However, a 

secondary effect of the modulators on MAIT cells could not be excluded in the PBMC system. 

Therefore, to investigate the role of glycolysis specifically within APCs, THP-1 cells were 

pre-treated with glycolysis modulators before bacterial treatments and subsequent CD8+ T cell 

co-culture.  

4.3.1 Enhancing THP-1 cell glycolysis augments MAIT cell activation in the absence of 

whole bacteria 

Fructose-1,6-bisphosphate (F-1,6-BP), the substrate for aldolase, a rate limiting enzyme of the 

glycolytic pathway, was used to enhance glycolysis within the THP-1 cells.82 THP-1 cells were 

pre-treated with F-1,6-BP for one hour before treatment with 5-A-RU and fixed, sonicated, or 

opsonised E. coli ΔribD, or 5-OP-RU for 5 hours (Figure 4.4A). Opsonisation of E. coli ΔribD 

enhances phagocytosis of intact bacteria by APCs, and therefore was used to investigate if 

enhancement of phagocytosis further modulates the MAIT cell response. CD8+ T cells were 

co-cultured with THP-1 cells for 4 hours. MAIT cell activation was assessed by staining for 
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IFNγ and TNFα production, as well as the degranulation marker, CD107a, and activation 

marker, CD69.  

Prior treatment of THP-1 cells with F-1,6-BP that were subsequently treated with 5-A-RU 

alone or with sonicated E. coli ΔribD significantly increased MAIT cell production of IFNγ 

and TNFα, compared to the equivalent samples that were not pre-treated with F-1,6-BP (Figure 

4.4B, C). This change was also observed in the CD107a geometric mean florescence intensity 

(geoMFI), but not CD69 geoMFI (Figure 4.4D, E). No change in IFNγ, TNFα, CD107a or 

CD69 was observed with F-1,6-BP pre-treatment with 5-A-RU in conjunction with fixed or 

opsonised E. coli ΔribD (Figure 4.4B, C, D, E). Furthermore, no change in MAIT cell 

activation with F-1,6-BP pre-treatment was seen with 5-OP-RU treatment (Figure 4.4B, C, D, 

E).  
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Figure 4.4 Enhancement of glycolysis in THP-1 cells augments MAIT cell activation by 
5-A-RU in cultures lacking whole bacteria. (A) Schematic depicting MAIT cell activation 
assay using a 1:1 co-culture of THP-1 cells and purified human CD8+ T cells. Schematic 
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created with BioRender.com. (B - E) THP-1 cells were pre-treated with F-1,6-BP for 1 hour 
before treatment with 1 μM 5-A-RU ± 10 BPC fixed, opsonised, or equivalent sonicated 
E. coli ΔribD or 10 nM 5-OP-RU alone for 5 hours. After washing, isolated CD8+ T cells were 
added and incubated for a further 4 hours, with addition of brefeldin A (3 μg/mL) for the final 
3 hours or anti-CD107a for the final 4 hours. MAIT cell IFNγ (B), TNFα (C) production and 
CD107a (D) and CD69 (E) surface expression was assessed. Data points represent individual 
blood donors tested in three independent experiments (n = 8). Treatments were analysed by an 
arcsine transformation with repeated measures two-way ANOVA with Geisser-Greenhouse 
correction and Bonferroni’s multiple comparisons test (B, C) or repeated measures two-way 
ANOVA with Geisser-Greenhouse correction and Bonferroni’s multiple comparisons test (D, 
E). *, p<0.05; **, p<0.01. 

The effect F-1,6-BP pre-treatment of THP-1 cells treated with bacteria containing an intact 

riboflavin synthesis pathway was then assessed. THP-1 cells were pre-treated with F-1,6-BP 

for one hour before treatment with E. coli HB101 for 5 hours (Figure 4.5A). CD8+ T cells were 

subsequently co-cultured with THP-1 cells for 4 hours. MAIT cell activation was assessed by 

staining for characteristic proinflammatory cytokines, IFNγ and TNFα. 

No change was observed in MAIT cell IFNγ and TNFα production with F-1,6-BP pre-treatment 

of THP-1 cells in samples treated with fixed E. coli HB101 (Figure 4.5B, C). This is consistent 

with the results observed when THP-1 cells were treated with fixed E. coli ΔribD and 1 μM 

5-A-RU (Figure 4.4B, C). 
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Figure 4.5: Enhancement of THP-1 glycolysis does not alter MAIT cell activation by 
E. coli HB101. (A) Schematic depicting MAIT cell activation assay using a 1:1 co-culture of 
THP-1 cells and purified human CD8+ T cells. Schematic created with BioRender.com. (B - C) 
THP-1 cells were pre-treated with F-1,6-BP for 1 hour before treatment with 10 BPC fixed 
E. coli HB101 for 5 hours. Isolated CD8+ T cells were added and incubated for a further 4 
hours, with addition of brefeldin A (3 μg/mL) for the final 3 hours. MAIT cell IFNγ (B) and 
TNFα (C) production was assessed. Data points represent individual blood donors tested in 
two independent experiments (n = 6). Treatments were analysed by repeated measures 
two-way ANOVA with Bonferroni’s multiple comparisons test (B, C). ns, non-significant.  
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used to inhibit glycolysis.83 THP-1 cells were rested in glucose free media (GF-R10) for 2 

hours before the addition of either D-glucose or 2-DG for 1 hour (Figure 4.6A). THP-1 cells 

were then treated with 5-A-RU and fixed, sonicated, or opsonised E. coli ΔribD, or 5-OP-RU 

or fixed E. coli HB101. After 5 hours, THP-1 cells were washed three times in PBS before 

being resuspended in glucose containing-R10. CD8+ T cells were then added and co-cultured 

for 4 hours. MAIT cell activation was determined by measurement of production of 

proinflammatory cytokines, IFNγ and TNFα. (Figure 4.6A). 

No change in MAIT cell activation was observed upon 2-DG treatment of THP-1 cells, 

irrespective of bacterial treatment (Figure 4.6B, C). A trend of decreased IFNγ and TNFα 

production by MAIT cells was observed with 2-DG treated THP-1 cells and treatment with 

fixed E. coli HB101, however, this change was not statistically significant (Figure 4.6B, C). 
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Figure 4.6: Inhibition of glycolysis in THP-1 cells does not alter MAIT cell activation. (A) 
Schematic depicting MAIT cell activation assay using a 1:1 co-culture of THP-1 cells and 
purified human CD8+ T cells. Schematic created with BioRender.com. (B and C) THP-1 cells 
were incubated in GF-R10 for 2 hours before pre-treatment with 2 mmolL-1 2-DG or 11 mM 
D-glucose. THP-1 cells were then treated with 1 μM 5-A-RU ± 10 BPC fixed, opsonised, or 
equivalent sonicated E. coli ΔribD, or 10 nM 5-OP-RU, or fixed E. coli HB101. Isolated CD8+ 
T cells were added and incubated for a further 4 hours, with addition of brefeldin A (3 μg/mL) 
for the final 3 hours. MAIT cell IFNγ (B) and TNFα (C) production was assessed. Data points 
represent individual blood donors tested in two independent experiments (n = 5). Treatments 
were analysed by repeated measures two-way ANOVA with Geisser-Greenhouse correction 
and Bonferroni’s multiple comparisons test (B, C). 
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before addition of D-glucose or a range of 2-DG concentrations (Figure 4.7A). After 1 hour of 

pre-treatment, cells were treated with 5-A-RU and fixed E. coli ΔribD. THP-1 cells were 

incubated for 5 hours then washed three times in PBS before addition of CD8+ T cells in 

glucose containing R10. CD8+ T cells were co-cultured for 4 hours. MAIT cell activation was 

determined by measurement of production of proinflammatory cytokines, IFNγ and TNFα 

activation (Figure 4.7A).  

2-DG treatment did not impact MAIT cell activation, irrespective of 2-DG concentration. No 

significant change was observed in production of either IFNγ or TNFα by MAIT cells (Figure 

4.7B, C, E, F). A slight decrease in IFNγ, but not TNFα, production was observed at 100 and 

150 mmolL-1 2-DG (Figure 4.7E, F). Furthermore, 2-DG treatment did not alter THP-1 cell 

viability (Figure 4.7D, G). These results indicated that increasing concentrations of 2-DG 

treatments does not alter MAIT cell activation.  
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Figure 4.7: Pre-treatment of THP-1 cells with increased concentrations of 2-DG does not 
alter MAIT cell activation. (A) Schematic depicting MAIT cell activation assay using a 1:1 
co-culture of THP-1 cells and purified human CD8+ T cells. Schematic created with 
BioRender.com. (B - G) THP-1 cells were incubated in GF-R10 for 2 hours before pre-
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treatment with 11 mM D-glucose (labelled 0 mmolL-1 2-DG) or 2, 4, 10, 20, 50, 100, or 150 
mmolL-1 2-DG. THP-1 cells were then treated with 10 BPC fixed E. coli ΔribD + 1 μM 5-A-RU. 
Cells were washed and isolated CD8+ T cells were added and incubated for a further 4 hours, 
with addition of brefeldin A (3 μg/mL) for the final 3 hours. MAIT cell IFNγ (B and E) and 
TNFα (C and F) production was assessed. Viability of THP-1 cells was assessed by live/dead 
staining (D and G) Data points represent individual blood donors tested in one independent 
experiment (n = 3). Due to the COVID-19, testing was limited to three donors, therefore 
statistical comparisons were not made. 

4.3.4 THP-1 PI3K/mTORC inhibition in THP-1 cells does not impede MAIT cell activation 

The cell signalling proteins PI3K and mTORC have been previously implicated in the 

glycolytic switch that occurs after bacterial stimulation.76, 84 Therefore, as an alternative 

mechanism to inhibit glycolysis, PI3K and mTORC1 and mTORC2 were inhibited in THP-1 

cells. THP-1 cells were pre-treated with the PI3K inhibitor LY294002 (LY), the mTORC1 

inhibitor rapamycin (Rapa), or the dual mTORC1 and mTORC2 inhibitor KU-0063794 (KU). 

After a 1 hour incubation, THP-1 cells were then treated with 5-A-RU with fixed, sonicated, 

or opsonised E. coli ΔribD, or 5-OP-RU, or fixed E. coli HB101. After 5 hours THP-1 cells 

were washed 3 times in PBS before resuspension in R10. CD8+ T cells were then added and 

co-cultured for 4 hours. MAIT cell production of IFNγ and TNFα was measured.  

 

No change in MAIT cell activation was observed upon inhibition of PI3K or mTORC1 and 

mTORC2 in THP-1 cells (Figure 4.8B, C). No change in THP-1 cell viability was observed, 

irrespective of drug treatments (Figure 4.8D).  
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Figure 4.8: Inhibition of THP-1 PI3K and mTORC1 and mTORC2 does not alter MAIT cell 
activation. (A) Schematic depicting MAIT cell activation assay using a 1:1 co-culture of THP-1 
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cells and purified human CD8+ T cells. Schematic created with BioRender.com. (B - D) THP-1 
cells were pre-treated with either DMSO, 10 μM LY294002 (LY), 50 nM rapamycin (Rapa), or 
1 μM KU0063794 (KU). THP-1 cells were then treated with 1 μM 5-A-RU ± 10 BPC fixed, 
opsonised, or equivalent sonicated E. coli ΔribD, or 1 nM 5-OP-RU or fixed E. coli HB101. 
Isolated CD8+ T cells were added for a further 4 hours, with addition of brefeldin A (3 μg/mL) 
for the final 3 hours. MAIT cell IFNγ (B) and TNFα (C) production was assessed. Viability of 
THP-1 cells (D) was assessed by live/dead staining. Data points represent individual blood 
donors tested in four independent experiments (n = 7). Two donors were excluded for 
E. coli HB101 treatments only, due to non-responsiveness to a new bacterial stock; time 
limitations meant repeats could not be attempted (n=5). Treatments were analysed by an 
arcsine transformation with repeated measures two-way ANOVA with Geisser-Greenhouse 
correction and Bonferroni’s multiple comparisons test (B, C) or repeated measures one-way 
ANOVA with Geisser-Greenhouse correction and Bonferroni’s multiple comparisons test (D). 

4.4 THP-1 cells do not alter glucose uptake upon E. coli treatment 

After determining that enhancement of glycolysis in THP-1 cells with F-1,6-BP alters MAIT 

cell activation in response to 5-A-RU, I next sought to determine whether THP-1 cells showed 

an increase of glucose uptake upon bacterial treatment. 2-NBDG, a fluorescent glucose 

analogue, was used to assess glucose uptake. To ensure there was no competition for glucose 

transporters, THP-1 cells were resuspended in GF-R10, allowing 2-NBDG uptake into THP-1 

cells (Figure 4.9A). Every ten minutes over an hour, 2-NBDG was added to THP-1 cells either 

with or without fixed E. coli ΔribD. Cells were then fixed and the geoMFI of 2-NBDG 

calculated and normalised to samples treated in the same manner without 2-NBDG treatment 

(Figure 4.9A).  

A gradual increase in 2-NBDG uptake, measured as geoMFI of 2-NBDG, occurred for both 

untreated THP-1 cells and for cells treated with fixed E. coli ΔribD (Figure 4.9B). No 

statistically significant difference was observed in THP-1 cells treated with fixed E. coli ΔribD 

compared to untreated THP-1 cells across all timepoints (Figure 4.9B, C). Changes to multiple 

parameters were tested for protocol optimisation, including incubation time, live/dead staining, 

fixation, or pre-treatment of THP-1 cells with GF-R10. These changes did not alter the results 

observed (data not shown).  
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Expression of the glucose uptake channel, GLUT-1, was also measured. At hourly intervals 

THP-1 cells were left untreated or treated with fixed E. coli ΔribD, over a 4 hour time course 

(Figure 4.9D). THP-1 cells were then stained for GLUT-1 on the cell surface (Figure 4.9D). 

The cells were fixed and the geoMFI of GLUT-1 calculated and normalised to samples treated 

in the same manner without GLUT-1 staining.  

No change was seen in GLUT-1 expression over the time course irrespective of treatment 

(Figure 4.9E). Furthermore there was no statistically significant change in GLUT-1 expression 

in THP-1 cells treated with fixed E. coli ΔribD, compared to untreated THP-1 cells (Figure 

4.9E, F). These results indicated that upon stimulation, THP-1 cells do not appear to display a 

classical switch to glycolysis.  
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Figure 4.9: THP-1 cells do not alter glucose uptake upon bacterial treatment. (A) Schematic 
to demonstrate 2-NBDG uptake assay using THP-1 cells. Schematic created with 
BioRender.com. (B and C) THP-1 cells were cultured in glucose free (GF) R10 and treated 
with ± 50 μM 2-NBDG ± 10 BPC fixed E. coli ΔribD for 0 - 60 minutes. (D) Schematic 
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depicting GLUT-1 expression assay. Schematic created with BioRender.com. (E and F) THP-1 
cells were cultured in R10 treated with ± 10 BPC fixed E. coli  ΔribD for 0 - 4 hours, cells were 
then stained ± GLUT-1-AF488. The geoMFI of (B) 2-NBDG uptake and (E) GLUT-1 
expression by THP-1 cells was assessed by flow cytometry. Results were normalised to samples 
of the same treatment lacking addition of 2-NBDG (B) or GLUT-1-AF488 (E). Exemplar 
histograms of (C) 2-NBDG uptake and (F) GLUT-1 expression. All experiments were repeated 
three times in triplicate. Treatments were compared by two-way ANOVA with Geisser-
Greenhouse correction and Sidak’s multiple comparison test.  
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5 Discussion 

Understanding the regulation of MAIT cell activation is of vital importance to further elucidate 

their role within the antibacterial immune response. A large proportion of bacteria present at 

mucosal surfaces produce riboflavin, and the riboflavin derived MAIT cell ligand which is 

capable of crossing mucosal surfaces.85 It is hypothesised that tight regulation of MAIT cells 

is crucial to prevent hyperactivation and resulting immunopathology, while still allowing for 

robust responses to infection.64 In this study both phagocytosis and glycolysis within the APC 

were implicated in MAIT cell regulation. MAIT cells were activated to a greater extent by 

antigen presenting THP-1 cells treated with fixed E. coli ΔribD and 5-A-RU, compared to 

treatment with sonicated E. coli ΔribD and 5-A-RU or 5-A-RU alone. This difference was not 

observed with E. coli ΔribD and 5-OP-RU treated THP-1 cells. Enhancement of THP-1 cell 

glycolysis augmented MAIT cell activation to 5-A-RU in the absence of whole bacteria to 

levels that are similar to those seen with 5-A-RU in the presence of whole bacteria. However, 

inhibition of THP-1 cell glycolysis did not impact MAIT cell activation. Inhibition of the 

PI3K/AKT/mTOR signalling pathway, responsible for glycolysis regulation, did not alter 

MAIT cell activation. Finally, THP-1 glucose uptake and glucose transporter expression was 

not altered upon bacterial stimulation. Together, these results suggest that phagocytosis and 

glycolysis within the APC may regulate MAIT cell activation. Further research is required to 

fully understand the interconnected nature of the cellular metabolic pathways impacting this 

process.  

5.1 Phagocytosis is required to achieve robust 5-A-RU mediated MAIT cell activation  

Phagocytosis of riboflavin-producing whole bacteria into an acidified endosomal compartment 

has previously been implicated in MAIT cell activation.64 Conversely, MR1 ligand alone, 



 57 

obtained from riboflavin-producing bacterial cell lysate or bacterial culture supernatant, fails 

to strongly activate MAIT cells.64 Interestingly, phagocytosis of the non-riboflavin producing 

bacteria, Enterococcus faecalis, did not enhance the ability of bacterial culture supernatant to 

activate MAIT cells.64 It is not yet known why this occurred, though it was hypothesised that 

insufficient MR1 ligand was phagocytosed.64 The inability to standardise ligand concentration 

or to isolate it from other bacterial components made it difficult to draw meaningful 

conclusions with regard to the role of phagocytosis in the regulation of MAIT cell activation.  

The production of synthetic 5-A-RU has allowed investigation into how the ligand alone and 

the additive effect of bacterial derived signals that occur upon addition of whole bacteria impact 

MAIT cell activation. Using 5-A-RU, previous work in the Ussher Laboratory indicated that 

MR1 is upregulated on the APC cell surface in response to whole E. coli ΔribD and 5-A-RU.81 

This effect was lost upon inhibition of phagocytosis or sonication of E. coli ΔribD.81 

Furthermore, MAIT cell activation by 5-A-RU was enhanced with the addition of E. coli ΔribD 

treatment in PBMCs, as well as in THP-1 and CD8+ T cell co-cultures.63 

Consistent with previous results, this study found an MR1 dependent synergistic effect on 

MAIT cell activation of co-treatment with 5-A-RU and fixed E. coil ΔribD (Figure 4.1B, E). 

This effect was lost upon THP-1 treatment with sonicated E. coli ΔribD, where MAIT cell 

activation reduced to levels similar to those seen upon 5-A-RU treatment alone (Figure 4.1B, 

C, E, F). The effect of sonication was seen in treatments with both E. coli ΔribD, and the 

riboflavin-producing E. coli HB101 strain (Figure 4.1B, E).  

There were multiple discrepancies between the results obtained with the precursor ligand, 

5-A-RU, and those obtained with the final ligand, 5-OP-RU. Firstly, there was a significant 

difference in the concentration required to sufficiently activate MAIT cells. 5-OP-RU was 

added at concentrations a hundred-fold lower than that of 5-A-RU to achieve similar levels of 
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MAIT cell activation (Figure 4.1B, E). Secondly, the synergistic effect of whole bacteria 

addition was greatly reduced by 5-OP-RU treatment (Figure 4.1B, E). This may have been in 

part due to differences in MR1 binding between 5-A-RU and 5-OP-RU. As the intermediate 

ligand, 5-A-RU requires condensation with MG to form the activating MAIT cell ligand, 

5-OP-RU, before binding to MR1.4 5-OP-RU binding to MR1 has been postulated to occur in 

multiple different locations within the cell. 5-OP-RU may displace endogenous ligand bound 

to MR1 to bind directly at the cell surface, or within endosomes.29, 34 The ability of 5-OP-RU 

to bind directly and independently of phagocytosis may allow for a mechanism of robust 

5-OP-RU mediated MAIT cell activation, regardless of bacterial treatment. In support of this, 

the levels of MAIT cell activation were unchanged when ER to Golgi trafficking was inhibited 

in 5-OP-RU treated PBMC samples, suggesting that 5-OP-RU binding can occur outside of the 

ER-Golgi system.63 To further investigate this theory folate free media, which would sequester 

MR1 to the ER, could be used to prevent ligand binding in the endosome.27, 29 This would 

determine whether 5-OP-RU binding in our system occurs in endosomes or on the cell surface.  

While small in magnitude, a synergistic effect was still observed with addition of whole 

bacteria to 5-OP-RU treated samples (Figure 4.1B, E). In part, this enhancement of MAIT cell 

activation may be due to a role for other bacteria-derived signals in activating robust immune 

responses. Stimulation of TLR signalling pathways by bacteria enhances production of a range 

of co-stimulatory molecules, including IL-6, IL-12 and IFNγ.86 Stimulation of APCs with TLR 

agonists prior to incubation with whole bacteria has been shown to enhance early activation of 

MAIT cells.64 This may explain the small increase in MAIT cell activation upon treatment with 

5-OP-RU and whole bacteria, but does not fully explain the large enhancement observed with 

the addition of whole bacteria to 5-A-RU treatment of THP-1 cells.  
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The key difference between 5-A-RU and 5-OP-RU-mediated MAIT cell activation is the 

requirement for 5-A-RU to react with MG in order to produce the final ligand.4 Previous 

unpublished work in the Ussher Laboratory using PBMC cultures indicated that glycolysis may 

be crucial in MAIT cell regulation, potentially through the production of the glycolytic 

by-product, MG.63 Indeed, the addition of MG derived from Mānuka honey has been shown to 

enhance 5-A-RU mediated MAIT cell activation.87 Multiple papers have indicated that 

bacterial signalling is capable of enhancing glycolysis and leads to the production of effector 

functions within APCs.74, 75 Furthermore, both cell surface and endosomal TLR signalling has 

been shown to induce a switch from oxidative phosphorylation to glycolysis as a mechanism 

of activation.74, 76 Despite the current research suggesting a link between phagocytosis and 

glycolysis, limited research has occurred to demonstrate if there is a causal effect of 

phagocytosis on glycolysis enhancement within APCs. I observed an increase in 

5-A-RU-mediated MAIT cell activation with APC phagocytosis of intact bacteria (Figure 4.1B, 

E). Therefore, phagocytosis of intact bacteria by APCs may cause an upregulation of glycolysis 

resulting in increased MG production and availability to react with 5-A-RU, thereby producing 

more 5-OP-RU, to robustly activate MAIT cells in a TCR dependent manner.  

5.2 The ability of APCs to activate MAIT cells increases with time  

MR1-mediated MAIT cell activation was dependent on APC activation (Figure 4.2, 4.3).64 

There has been limited research into the optimal pre-treatment time of THP-1 cells to allow for 

an effective MAIT cell response. Previous work in the Ussher Laboratory used a THP-1 

treatment time of 6 hours, followed by 4 hours of MAIT cell co-culture, based on data showing 

peak MR1 surface expression at this time.81 However, the TCR-dependent response relies on 

multiple factors, including ligand loading, presentation of MR1 on the cell surface, and the 

production of co-stimulatory molecules or cytokines.88 As a consequence, maximal MR1 
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expression alone does not necessarily correlate to optimal MAIT cell activation. LPS 

stimulation of DCs was found to cause a shift to glycolysis within 50 minutes of treatment.74 

Furthermore, peak MR1 expression in the C1R cell line was found to occur four hours after 

5-OP-RU treatment.29 Therefore this study sought to optimise the co-culture model in order to 

obtain the peak MAIT cell activation. 

MAIT cells were readily activated at all time points tested, with optimal activation observed at 

a nine hour total incubation time across all treatments (Figure 4.2B, 4.2C, 4.3B, 4.3C). Innate 

signalling has been identified as a necessary component for MR1-mediated MAIT cell 

activation. Therefore, it was speculated that washing of THP-1 cells before addition of CD8+ 

T cells might alter the magnitude of MAIT cell activation. Counter to this hypothesis, MAIT 

cell activation was not demonstrably altered between protocols with or without washing 

(Figure 4.2B, 4.2C, 4.3B, 4.3C). Potentially this was due to MAIT cell activation at early 

timepoints being largely mediated by MR1 and modulated by the expression of co-stimulatory 

molecules on the APC surface.24 

5.3 Modulation of THP-1 cell glycolysis has varied impact on MAIT cell activation 

5.3.1 Enhancement of glycolysis augments MAIT cell activation in the absence of whole 

fixed bacteria  

Enhancement of THP-1 glycolysis augmented MAIT cell activation in samples lacking whole 

bacteria. A significant increase in MAIT cell activation occurred when THP-1 cells were 

treated with F-1,6-BP and 5-A-RU alone or sonicated E. coli ΔribD and 5-A-RU, compared 

with the same treatments lacking F-1,6-BP (Figure 4.4B, C, D). Augmentation of glycolysis in 

samples lacking whole bacterial treatments enhanced MAIT cell activation to comparable 

levels to those seen in samples treated with whole bacteria. Interestingly, MAIT cell activation 

was not further enhanced with augmented glycolysis in samples treated with whole bacteria 
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(Figure 4.4, 4.5). Conversely, unpublished work from the Ussher Laboratory observed 

increased MAIT cell activation in response to ligand and whole bacteria treatment in PBMC 

cultures upon enhancement of glycolysis with F-1,6-BP.63 This is likely due to effects of F-

1,6-BP on cell types other than APCs. MAIT cells are reliant on a switch to glycolysis upon 

stimulation to produce characteristic effector functions including granzyme B and IFNγ.62, 89 

Therefore, in PBMC studies, glycolysis enhancement in MAIT cells may have directly 

upregulated effector functions, confounding the true effect of enhancing APC glycolysis. The 

experimental system used in the current study specifically targeted the APC, by washing away 

any modulators before the addition of MAIT cells. Therefore, the observed effects can be 

attributed solely to APC function.  

As MG is a metabolic by-product produced during glycolysis, enhancement of glycolysis by 

phagocytosis of bacteria may increase MG availability for condensation with 5-A-RU to enable 

efficient formation of 5-OP-RU. Stimulation of endosomal TLRs, TLR3, TLR7/8, and TLR9, 

by bacterial TLR agonists induces a switch to glycolytic metabolism.74 Furthermore, inhibition 

of phagocytosis by cytochalasin D has been shown to reduce MAIT cell activation in response 

to riboflavin-producing bacteria.63, 64 This further supports the data obtained which 

demonstrated that MAIT cell activation was not enhanced upon THP-1 treatment with 

F-1,6-BP and intact bacteria or 5-OP-RU (Figure 4.4B, C, D, E). Potentially phagocytosis had 

already induced an upregulation in glycolysis which cannot be further enhanced. Activation of 

MAIT cells can still occur upon cytochalasin D treatment, potentially due to uptake of 5-A-RU 

into the APC by alternative mechanisms.63 Phagocytosis may also enable efficient delivery of 

soluble ligand into the APC and therefore enhance MAIT cell activation. Overall, these results 

supported the hypothesis that phagocytosis of whole bacteria causes an upregulation of 

glycolysis. Potentially enhancement of APCs glycolytic capacity when treated with whole 

bacteria allowed for sufficient MG production which was unable to be enhanced further.  
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Enhanced MAIT cell activation upon treatment with opsonised bacteria has been observed in 

the published literature.44, 90 The process of opsonisation involves coating bacteria in antibodies, 

enabling enhanced phagocytosis by APCs. Contrary to published data, no difference was 

observed with bacterial opsonisation in our system (Figure 4.4, 4.6, 4.8).44, 90 Studies by Bánki 

et al and Boulouis et al observed enhanced MAIT cell activation when co-cultured for 20 and 

24 hours, respectively, with THP-1 cells treated with riboflavin synthesising bacteria.44, 90 As 

activation of MAIT cells at later time points is dependent on both TCR- and cytokine-mediated 

activation, the observed increase in MAIT cell activation reported may be due to enhanced co-

stimulatory molecules produced by THP-1 cells, such as TNFα.24, 37, 44 Bánki et al indicated 

that THP-1 cells reached a maximum rate of bacterial uptake at 2 BPC; potentially the higher 

concentration of bacteria used in this study (10 BPC) may have mitigated any gain in activation 

observed with opsonisation.44  

The effects of glycolysis on expression of CD69, an activation marker on multiple lymphocytes, 

was also assessed. MAIT cell CD69 expression has previously been shown to be independent 

of glycolysis in MAIT cells.89 In this study, MAIT cell CD69 expression was also not altered 

by enhancement of THP-1 cell glycolysis (Figure 4.4E). NK cells have been found to 

upregulate CD69 in an IFNγ dependent mechanism.91 However, this present study involved 

washing away the media containing any cytokines produced by the APCs before the addition 

of CD8+ T cells (Figure 4.4A). Therefore, the amount of IFNγ present in the media produced 

by THP-1 cells is likely to have been reduced to a level where no effect could be observed.92 

It is unlikely that a substantial amount of IFNγ would have been produced after washing due 

to the addition of brefeldin A after one hour, which sequesters cytokines within the APC. 

Potentially enhancement of CD69 expression was not observed upon glycolytic enhancement 

as expression is largely dependent on co-stimulatory molecule production, as opposed to a TCR 
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dependent mechanism which is hypothesised to be enhanced upon enhancement of THP-1 cell 

glycolysis. 

5.3.2 Inhibition of glycolysis in THP-1 cells does not alter MAIT cell activation  

In contrast, inhibition of THP-1 glycolysis by the glucose analogue 2-DG did not alter MAIT 

cell activation, irrespective of bacterial treatment (Figure 4.6B, C). This was true even at 

concentrations of 2-DG that were significantly higher than the glucose concentration found in 

glucose-containing R10 (11 µM) (Figure 4.7B, C, E, F). As such, drug dosage was ruled out as 

a contributing factor to the observed results. 

The lack of MAIT cell inhibition may reflect differences in cell biology and subsequent 

effectiveness of 2-DG treatment between primary monocytes and THP-1 cells. 2-DG has been 

shown to inhibit glycolysis and cell activation in primary monocytes.93 Conversely, THP-1 

cells are reasonably resistant to 2-DG.94, 95, 96 Cell viability, glucose uptake, and the production 

of glycolysis by-products by THP-1 cells remain relatively unchanged upon treatment.94, 95, 96 

It is of note that a reduction in THP-1 cell metabolic activity is observed at high concentrations 

of 2-DG, indicating that some level of THP-1 cell glycolysis inhibition may have occurred 

(Figure 4.7E, F).95 However, this was insufficient to inhibit MAIT cell activation.  

Modification to MAIT cell activation upon 2-DG treatment may not have been observed due 

to alternate MG production pathways (Figure 5.1). THP-1 cells are partially reliant on fatty 

acid metabolism, where MG is produced during a two-step enzymatic reaction of acetone.94, 96, 

97, 98 Glucose deprivation has been shown to enhance fatty acid metabolism in monocytes.99 

Therefore, as the THP-1 cells were cultured GF-R10, it is possible that this pathway was 

enhanced in the THP-1 cells. Additionally pyruvate, present in the GF-R10 media, can be 

converted to MG in a series of steps.100 Because of these alternate pathways, MG production 
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may have been unaffected by partial impairment of THP-1 glycolysis upon 2-DG treatment 

(Figure 5.1).  

 

Figure 5.1: Metabolic pathways leading to MG production. THP-1 cells exhibit partial 
reliance on fatty acid metabolism, leading to enhanced MG production. Adapted from Desai 
et al, 2010.  

The role of MG production by APCs in MAIT cell activation could be assessed in future 

experiments by MG detoxification. This process reduces the amount of MG available to react 

with 5-A-RU in APCs. MG is detoxified in an enzymatic reaction with glutathione (GSH), 

catalysed by glyoxalase (glo) enzymes.101 Supplementation of THP-1 cells with GSH may 

enhance MG breakdown, thereby reducing MG build-up in cells. This may provide a more 

viable inhibition protocol, as inhibition of all of the individual pathways responsible for MG 

production would likely lead to cell death or other non-desirable off target effects.  

5.3.3 PI3K/mTOR inhibition does not impede MAIT cell activation  

PI3K and mTOR have been implicated in the regulation of glycolysis in immune cells.76, 84, 93 

Therefore, it was hypothesised that inhibition of these cell signalling proteins would reduce 

MG production and subsequent MAIT cell activation. However, inhibition of THP-1 cell PI3K 
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and mTORC1 and -2 inhibition did not impede MAIT cell activation (Figure 4.8B, C). This 

data provides additional evidence that other MG production pathways in THP-1 cells are 

involved in MAIT cell activation. PI3K serves as a pivotal enzyme that, when activated, creates 

a cascade of downstream effects, including the activation of mTORC1 and subsequent 

upregulation of glycolysis.76, 84 LPS stimulation of primary monocytes causes an mTORC1 

dependent increase in GLUT-1 expression and glycolysis.93 Inhibition of mTORC1 by 

rapamycin significantly reduces the activation and glycolytic profile of primary monocytes.93 

However, there is a degree of discord within the literature, with Evarts et al reporting that 

inhibition of PI3K and mTOR was insufficient to reduce the surge in glycolysis after DC 

activation.74 An alternative mechanism was proposed, suggesting that kinases independent 

from PI3K activated AKT in order to enhance glycolysis.74 Cell signalling pathways are 

strongly related, a range of cell signalling proteins, including PI3K and mTOR, and external 

signals may be needed to produce a robust switch to glycolysis. Additionally, the wide range 

of interconnected metabolic pathways may also contribute to MG production.  

Due to the interconnected nature of cell signalling, inhibition of cell signalling proteins can 

cause a range of off-target effects. It is possible that the observed MAIT cell activation was 

due to secondary effects of PI3K and mTOR inhibition within the THP-1 cells. Indeed, 

treatment of DCs with either LPS or whole S. aureus paired with mTORC1 inhibition results 

in enhanced production of multiple proinflammatory cytokines via the enhancement of NF-κB 

signalling.102, 103 Inhibition of mTORC1 in monocytes increases the production of IL-12 in a 

GSK3-β and NF-κB dependent manner.104 There is limited research into the effects of 

mTORC1 inhibition in THP-1 cells. Sun et al reported that rapamycin inhibition reduced 

proinflammatory cytokine production by THP-1 cells.105 However, only the TLR2 agonist was 

used to assess activation, and IL-12 production was not investigated.105 Further, any 

proinflammatory cytokines produced in our system would have been washed away, so cytokine 
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mediated effects were not expected to have a large impact on the results observed. The specific 

TLR stimulated may also alter the mechanism of activation and effector functions. For example, 

treatment of THP-1 cells with specifically the TLR1, 2, or 6 agonists, and not other agonists, 

enhanced MAIT cell activation to subsequent treatment with E. coli.64 This data suggests that 

different signalling pathways may lead to differing APC effector functions. Differential TLR 

stimulation may have different effects on cell metabolism. In CD14+ monocytes TLR4 

stimulation with LPS enhanced glycolysis and downregulated oxidative phosphorylation while 

TLR2 stimulation upregulated both glycolysis and oxidative phosphorylation.106  

THP-1 cells express high levels of glo1, one of the two enzymes (glo1 and glo2) which break 

down MG into lactate.100, 101, 107 Expression of glo1 is dependent on PI3K, a pathway that is 

hyperactivated in multiple cancer cell lines.108 Talesa et al demonstrated in prostate cancer cell 

lines that inhibition of both PI3K and mTOR reduced the expression of glo1 and glo2.108 

Therefore, inhibition of PI3K in THP-1 cells may result in increased levels of MG due to lower 

expression of glo1 and the subsequent lack of MG breakdown. The decreased amount of MG 

breakdown may counter any reduction in MG production caused by glycolysis inhibition, still 

allowing for sufficient MG production, and therefore MAIT cell activation.  

Another possible explanation for the lack of an effect on MAIT cell activation upon THP-1 

PI3K and mTOR1 inhibition lies in the interconnected nature of cell signalling pathways and 

THP-1 cell biology (Figure 5.2). Enhancement of fatty acid metabolism, coupled with reduced 

MG break down may lead to an accumulation of MG within THP-1 cells.96 This would offset 

the lack of glycolytic MG production, allowing for effective MAIT cell activation. Additionally, 

inhibition of mTOR in APCs may stimulate the production of proinflammatory cytokines, 

enhancing MAIT cell activation.102, 103, 104 It is unclear how large a role this would have as 

MAIT cell activation is largely TCR-dependent at earlier timepoints. Inhibition of these cell 
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signalling molecules also impacts on a wide range of cellular functions such as autophagy and 

on the production of reactive oxygen species, which may have further impacted the observed 

results (Figure 5.2).109 

 

Figure 5.2: Role of interconnected cellular metabolic and signalling pathways in MG 
production. The integration of multiple pathways is required for MG production, which can 
be modulated by inhibition of PI3K with LY294002 (LY) and mTORC1 inhibition with 
Rapamycin (Rapa) treatments. Created with BioRender.com. 

5.4 THP-1 cells do not show an increase in glucose uptake upon bacterial stimulation  

To assess whether glycolysis is upregulated in response to whole bacteria, both uptake of 

glucose and expression of the glucose transporter, GLUT-1, were assessed. No significant 

differences occurred between bacterially treated and untreated THP-1 cells in assessment of 

both uptake of the florescent glucose analogue, 2-NBDG, and GLUT-1 expression (Figure 

4.9B, D). These results were surprising and contradictory to published literature. Multiple 

APCs, including DCs, monocytes, and macrophages have been shown to increase glucose 

uptake, usage, and GLUT-1 expression following LPS stimulation.74, 93, 110, 111, 112 There is a 

degree of discord in the published literature surrounding glucose uptake by the THP-1 cell 

line.113, 114 THP-1 cells express mRNA for multiple GLUT transporters, including GLUT-1.112 

Singh et al saw increased GLUT-1 surface expression and 2-NBDG uptake upon a three hour 
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incubation of THP-1 cells with an M. tuberculosis antigen.113 Conversely, Ubanako et al saw 

enhanced lactate production and glycolytic polarisation of THP-1 cells following 48 hours of 

stimulation with LPS.114 However, this change was not observed at a 24 hour timepoint.114 A 

transcriptomic approach was also used to observe upregulation of multiple glycolytic 

enzymes.114 As THP-1 cells are already expressing substantial amounts of GLUT transporters, 

potentially glucose uptake is already occurring at the maximum rate, and therefore is not 

enhanced further upon bacterial stimulation.112, 113 Instead, glycolytic enzymes may be limiting 

glycolysis in THP-1 cells. It is also of note that there is limited research in respect to THP-1 

cells glucose uptake following whole bacteria treatment. To best address this discord 2-NBDG 

uptake and GLUT-1 expression could be analysed using primary monocytes. This would 

mitigate the effects of using a cancer cell line, such as THP-1 cells, which show enhanced 

glucose uptake, 2-DG resistance, and over expression of multiple enzymes including glo1.94, 

107, 112 

5.5 Investigation into the role of phagocytosis in glycolysis upregulation 

A key question that remains is whether phagocytosis directly leads to increased MG production 

in order to form the final MAIT cell activating ligand. It is unknown what form of ligand, 

5-A-RU or 5-OP-RU, is present in intact bacteria. If 5-A-RU is the predominant ligand found 

in intact bacteria then upregulation of MG production pathways, including glycolysis, would 

be crucial in ensuring the formation of 5-OP-RU. These mechanisms of MG product would 

become less essential if 5-OP-RU is present in large quantities in intact bacteria. Although 

stimulation of endosomal TLRs, which come into contact with bacteria upon phagocytosis can 

cause an upregulation of glycolysis, a causative link between phagocytosis and glycolysis 

upregulation remains to be determined.74 
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Multiple techniques could be used to identify both a metabolic switch and MG upregulation 

upon phagocytosis. RNA sequencing of primary monocytes treated with either fixed or 

sonicated E. coli ΔribD could be performed. Expression of key glycolytic enzymes and glucose 

transporters could then be assessed to deduce if phagocytosis causes an upregulation of the 

glycolytic machinery, and subsequently, MG production. A metabolomic approach could also 

be used to assess the cellular metabolism occurring after bacterial stimulation. A Seahorse XF 

analyser could be used to determine if a switch to glycolysis is occurring upon bacterial 

stimulation by measuring media acidification that occurs due to lactate production. This 

technique has been used to identify a glycolytic switch upon activation of a range of immune 

cells including monocytes, DCs and MAIT cells.74, 89, 93 A metabolomic approach should 

indicate whether a clear switch from oxidative phosphorylation to glycolytic metabolism is 

occurring.  

5.6 Proposed model for MAIT cell activation  

Based on the published literature, previous unpublished data, and the data generated here, I 

propose the following mechanism of MAIT cell activation (Figure 5.3). Whole bacteria and 

bacterial ligands activate extracellular TLRs (1). External TLR stimulation causes a change in 

gene expression (2), leading to the expression of cytokines and co-stimulatory molecules (3). 

Phagocytosis of intact bacteria possibly enhances 5-A-RU delivery into APC endosomes (4). 

TLRs present in the endosome are activated by phagocytosed bacteria (5). Stimulation of both 

TLRs on the cell surface and in the endosome and PRRs cause an upregulation of the glycolytic 

pathway (6). Upregulation of glycolysis leads to augmented MG production (7). Fatty acid 

metabolism provides an alternate pathway for MG production (8). Bacteria are lysed in the 

phagolysosome, releasing 5-A-RU and 5-OP-RU formed in the bacteria (not shown) (9). The 

non-enzymatic condensation reaction of 5-A-RU and MG occurs in the phagolysosome, to 
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form 5-OP-RU (10). 5-OP-RU binds to MR1 and is trafficked to the cell surface (11). MAIT 

cells are activated in response to MR1-TCR interactions, secretory cytokines and 

co-stimulatory molecules produced by the APC (12, 13). The integration of the two signalling 

pathways causes changes in MAIT cell gene expression (14), leading to a robust production of 

pro-inflammatory cytokines and cytotoxic molecules by MAIT cells (15).  

 

Figure 5.3: Proposed model of regulation of MAIT cell activation by phagocytosis of whole 
bacteria and subsequent glycolysis upregulation. Refer to section 1.5 for detailed description. 
Created with BioRender.com. 

5.7 Conclusions and future directions  

Overall this study has partially elucidated the role of both phagocytosis and glycolysis within 

the APC for MAIT cell activation. Phagocytosis of whole bacteria is required for the robust 

activation of MAIT cells by 5-A-RU, but not 5-OP-RU. This suggests a role of phagocytosis 

in enhancement of MG production. Augmentation of glycolysis in THP-1 cells enhanced 

MAIT cell activation by 5-A-RU in the absence of intact bacteria to levels seen with intact 
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bacterial treatment. Activation by treatment with whole bacteria could not be further enhanced 

with F-1,6-BP treatment, suggesting that glycolysis is enhanced with phagocytosis of whole 

bacteria and cannot be further enhanced. However, inhibition of glycolysis did not reduce 

MAIT cell activation, likely due to the production of MG by other metabolic pathways. THP-1 

cells do not exhibit enhanced glucose uptake upon bacterial stimulation, highlighting 

limitations of using the THP-1 cell line.  

There is still a large amount of work to be done in order to dissect the full mechanism of 

regulation occurring in APCs. Usage of bioinformatic techniques, such as RNA sequencing 

and Seahorse acidification and oxygenation measurements could be employed in order to 

confirm the switch to glycolytic metabolism following bacterial stimulation. To overcome the 

limitations of using the THP-1 cell line, isolated primary monocytes could be treated with a 

range of bacterial preparations and TLR agonists to identify which signals are responsible for 

the upregulation of glycolysis.  

MAIT cells are widely regarded as playing a pivotal role in the antibacterial immune response. 

Despite this, the mechanism for MAIT cell regulation and activation remains largely 

unresearched. This research implicates both phagocytosis and glycolysis upregulation in APCs 

in the regulation of MAIT cell activation. These findings provide a strong baseline of research 

which can be built upon in order to fully dissect and understand the regulatory mechanisms 

occurring in MAIT cell activation. 
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