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Abstract 

CAR T cell therapy has revolutionized cancer treatment, but has also provided an opportunity 

for treating chronic viral infections such as HIV, HBV, and HCV. Despite the profound 

outcomes in the treatment of hematological malignancies, CAR T cell therapy for solid tumours 

has not been almost invariably unsuccessful in the clinic. Hostile conditions of TME, low 

tumour infiltration, lack of persistence, and absence of memory CAR T cell formation are the 

main obstacles ahead of CAR T cell therapy for solid tumours. This study aimed to improve 

Her2-CAR T cell persistence and TM (T memory) development. 

TM cells have distinct mitochondria morphology and metabolism. TM cells have larger 

mitochondria (fusion) and rely on OXPHOS metabolism. In order to achieve the aim of this 

study, we selected Mcl-1 and miR429 as genes to overexpress in CAR T cells. Recently, several 

studies suggested that AICD (activation-induced cell death) induced by the CD95 pathway is 

the one of the main causes of  low CAR T cell persistence in vivo. Mcl-1 is also well 

characterised for its role in OXPHOS metabolism, mitochondrial energetics and mitochondrial 

fusion. To complement this approach, the miRNA429 was selected as a means to enhance CAR 

T cell function through the suppression of genes that negatively affect T cell function, TM 

development, and mitochondrial fusion such as TCAIM, MFF, and TET-2.  

The first aim of this study was to upregulate the endogenous level of Mcl-1. We tested eight 

small activating RNA (saRNA) targeting different regions of the Mcl-1 promoter, but none of 

them was able to induce Mcl-1. Further promoter analysis led to the identification and 

characterisation of the first antisense transcript (named mcl1-AS1) that modulate Mcl-1 

expression. However, due to the late manifestation of gene regulation (at 48 - 72 hours) that 

was seen following mcl1-AS1 inhibition, it was not applicable for us to use this strategy to 

increase Mcl-1 expression (Chapter II).  

The next strategy to control expression of Mcl-1 was using the Tet-On system. We used several 

approaches to improve the Tet-On system, including gene replacement, codon-optimisation of 

rt-TA, using G72V-rtTA, removing cryptic splice sites within rt-TA, creating an autoregulatory 

Tet-On system, and manipulating regulatory elements in TCE minimal promoter. Our final 

optimised construct showed high inducibility and a very low background expression compared 

to the original construct (Chapter III). However, due to the low transfection efficiency of SB 

system in primary T cells and lack of artificial antigen presenting cell (aAPC) at the time for 

expansion of T cells, we decided to create an inducible LV system. The lack of inducibility in 
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low doxycycline concentration and low transduction efficiency made our inducible LV system 

not suitable for our study. Therefore, we decided to use a constitutive system to see the effects 

of Mcl-1 and miR429 overexpression in CAR T cells.  

In order to express Mcl-1 and miR429 in a constitutive LV system, we examined the strength 

of four commonly used promoters, EF-1, CMV, RPBSA, and hPGK, in running short and long 

transcripts. EF-1 showed to be the best promoter in running short and long RNA in T cells 

(Chapter IV). As a result, we chose EF-1 to run the GFP-P2A-Her2CAR and hPGK to 

transcribe Mcl-1 or miR429. 

For the first time, we showed that TCAIM, MFF, and TET-2 are direct targets of miR429. 

Overexpression of miR429 in CAR T cells slightly increased the number of TSCM and TCM in 

CD4+CAR T cells, while the number of Treg and TEMRA cells was marginally decreased. 

Upregulating Mcl-1 in CAR T cells promoted the TSCM and TCM development in both CD4+ 

and CD8+ CAR T cells, whereas the frequency of Treg and TEMRA cells declined. Mcl-1 

overexpression also protected CAR T cells from CD95L-induced AICD. Although our study 

cannot provide a mechanism for the Mcl-1 role in memory CAR T cell development, an 

increase in mitochondrial mass and mtDNA suggest that Mcl-1 likely enhances mitochondrial 

energetics and fusion (Chapter V). 

Lastly given lack of access to the laboratory dues to the SARS-CoV-2 pandemic, the effect of 

recurrent mutations on viral RNA secondary structure and host miRNA interaction was 

investigated remotely. From an evolutionary point of view, mutations that arise several times 

independently (homoplasies) and lead to clade expansion are highly likely to increase viral 

fitness. The emergence of several mutations has resulted in the emergence of a G-clade 

responsible for 97% of cases around the globe. This clade consists of four mutations, two cause 

amino changes (C14408U and A23403G), while others (C241U, C3037U) are silent and are 

currently of unknown impact on viral fitness. Based on our bioinformatics survey, the C3037U 

mutation destroys the miR-197-5p binding site. Interestingly, miR-197-5p is highly expressed 

in SARS-CoV-2 target cells and has been reported to be upregulated in patients with 

cardiovascular disease. Interestingly, this miRNA also acts as defence against variety of viral 

infections such as HBV, HCV, HAV, Enterovirus 71, Ebola and H7N9. Further in vitro work 

is underway to test the significance of the C3037U mutation on miRNA inhibition in a SARS-

2 pseudovirus and live virus assays.  
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1.1 Cancer immunotherapy 

In the last decades, there has been extensive progress regarding our understanding of 

the human immune system and its interaction with cancer. The first theory that there 

is a host immune system reaction against tumour cells proposed in 1909 by Paul 

Ehrlich, the time that his theory was not backed up by experimental data due to lack 

of tools (1). He wrote: “in the enormously complicated course of fetal and post-fetal 

development, aberrant cells become unusually common. Fortunately, in the majority 

of people, they remain completely latent thanks to the organism's positive 

mechanisms” (1). Later, an immunological surveillance mechanism was suggested in 

which the immune system is capable of recognising specific neo-antigens on tumour 

cells and subsequently destroying them (2, 3). Eventually, Burnet formulated the 

immune surveillance theory against tumour cells. He stated that: “It is by no means 

inconceivable that small accumulation of tumour cells may develop and because of 

their possession of new antigenic potentialities provoke an effective immunological 

reaction with regression of the tumour and no clinical hint of its existence” (4).  

Although now we know immune surveillance occurs against cancer by T cells and 

natural killer cells (NK cells), unfortunately, the immune system fails to eliminate the 

established tumours. Several mechanisms are involved such immune evasion and 

immune tolerance. For example, the immunosuppressive nature of the tumour 

microenvironment (TME) is enriched in suppressive cytokines such as interleukin 

(IL)-10 and transforming growth factor-β (TGF-β) that induces T cell exhaustion and 

regulatory T cells (Treg) differentiation leading to immune tolerance (5). Besides, 

tumour cells can escape from recognition by immune cells through downregulation of 

the major histocompatibility complex (MHC) molecules or tumour-associated 

antigens (TAAs) (6, 7). The mechanisms are described in detail by Hanahan and 

Weinberg as hallmarks of cancers (8). 

In general, immunotherapy refers to therapeutic approaches that use or enhance the 

immune system to fight cancers. Immunotherapy falls into five main categories: 

immune system modulators, cancer vaccines, monoclonal antibodies (mAbs), immune 

checkpoints (ICPs) blockage and adoptive cell therapy (ACT) (9).  
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1.1.1 Immune system modulators 

Immune system modulators comprise a range of treatments (e.g., cytokines and growth 

factors) that enhance the immune system’s ability to destroy cancer cells. Developed 

cancers have limited ability to trigger an effective immune response. This low 

immunogenicity of tumour cells due to the weak expression of MHC and adhesion 

molecules as well as downregulation of costimulatory signals, does not allow T cells 

to be completely activated. In this case, cytokines such as IL-2 (10, 11), interferon-

alpha (IFN-α) (10, 12, 13) and tumour necrosis factor-α (TNF-α) (14) have been used 

to boost immune system function in clinical trials. Hematopoietic growth factors (also 

known as hematopoietic cytokines) such as granulocyte-macrophage colony-

stimulating factor (GM-CSF) have been used in several clinical trials (15, 16). GM-

CSF enhances tumour antigen presentation to CD4 and CD8 T cells by recruited 

dendritic cells (DC) and macrophages (17). IL-2 was approved by FDA for treatment 

of metastatic melanoma 1998. 

 

1.1.2 Therapeutic cancer vaccines 

Therapeutic cancer vaccines, as opposed to traditional vaccines which are preventive, 

are designed to magnify and improve the quality of the existent response against TAA 

(18). Therapeutic cancer vaccines are administered as peptides, proteins, or tumour-

antigen-pulsed DCs with adjuvants. Since many of therapeutic cancer vaccines were 

not associated with clinical benefits, their position in cancer therapy remains limited 

(19). Most of these vaccines are designed to boost the immune responses against TAA, 

which are generally not immunogenic such as viral antigens or tumour specific 

antigens (TSA). TAA are expressed in normal tissues at a low level; hence specific 

mechanisms of tolerance may occur for them. 

 

1.1.3 Monoclonal antibodies (mAbs)     

Since 1997, several mAbs have been approved for use in oncology. Most anti-cancer 

mAbs bind to TAA and provoke direct or indirect immune responses to destroy the 

tumour cells (20-22). The mechanism of tumour cell killing mediated by mAbs 
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consists of blocking tumour cell survival signalling pathways (Pertuzumab), hindering 

tumour growth by inhibiting angiogenesis (Bevacizumab), triggering an immune-

mediated cytotoxic response and inducing apoptosis (Rituximab and Trastuzumab) 

(20-22). The Fc region of mAbs are important for their functions in killing of cancer 

cells such as activation of antibody-dependent cell-mediated cytotoxicity (ADCC) or 

complement-dependent cytotoxicity (CDC) (22). A recently updated list of mAbs 

approved by the Food and Drug Administration (FDA) is provided by Bayer et al. (20). 

 

1.1.4 Immune checkpoint (ICP) blockade 

ICPs are co-inhibitory molecules mainly expressed on T cells. The primary role of 

ICPs in normal physiological conditions is to maintain the self-tolerance, prevent 

autoimmunity and protect tissues from damages during inflammatory responses 

against pathogens (23, 24). However, cancer cells can hijack this mechanism and by 

overexpressing ICPs translate it to an immune resistance mechanism. Examples of 

ICPs and their corresponding blockages are as follow; Programmed cell death-1 (PD-

1, Nivolumab), Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4, Ipilimumab), 

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3, MBG453) and 

Lymphocyte-activation gene-3 (LAG-3, IMP321) (23, 24). 

 

1.1.5 Adoptive cell therapy (ACT) 

Tumour-infiltrating lymphocytes (TIL) are all lymphocytic cells (mainly T cells) that 

enter the tumour tissues. Several studies show  that T cells are associated with tumour 

regression, and T cells have a prominent role in adoptive cell therapy (ACT) . 

However, the clinical benefits of ACT are still limited due to short response duration 

and TIL disappearance (25). Further studies revealed that lymphodepletion using a 

nonmyeloablative chemotherapy regimen before ACT can enhance tumour regression 

and TIL persistence in patients (26).  

Although tumour-specific lymphocytes can be expanded in vitro from different 

cancers, ACT using TILs seems to be mainly effective in melanoma (25). Weak 

antigenicity, less-accessible tumour sites and inadequate number of TILs due to 
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technical complications are the major limitations of ACT (27). With advances in gene 

transfer technology, T cells were genetically engineered to express T cell receptor 

(TCR) or a chimeric antigen receptor (CAR) specific for a TAA (25, 28). This allowed 

ACT technology to expand to the other cancer types.  

In TCR-mediated therapy TIL with high TCR affinity for tumour antigens are isolated. 

Then, genes encoding the selected clones of TCR alpha and beta chains are transduced 

into primary T cells. After an in vitro expansion, TCR transduced T cells are reinfused 

back to the patient (Figure 1.1) (28). Successful TCR therapy is limited due to 

inconsistent TCR expression, low persistency of T cells, inability to confer an 

immunologic memory (28-30) and increased risk of autoimmunity (28). 

 

 

 

Figure 1.1. An overview of genetically engineered T cells in the ACT. T cells obtained 

from patients can be transduced with alpha and beta chains of TCR with high affinity 

for tumour antigens or a chimeric antigen receptor specific for an antigen. After an in 

vitro expansion, TCR transduced T cells are reinfused back to the patient. Figure was 

from Rosenberg et al. (25). 
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1.1.5.1 Chimeric antigen receptor (CAR) T cell therapy 

Generally, a CAR is composed of both components of antibody and TCR that can 

recognise TAA in an MHC-independent manner. Indeed, this is the most significant 

advantage of CAR T cells over TILs and TCR therapy, mostly when tumour cells lose 

or downregulate MHC expression. A CAR made of three central parts: extracellular 

domain (antigen recognition domain and hinge), a transmembrane (TM) domain and 

intracellular domain(s). The antigen recognition domain is a single-chain variable 

fragment (scFV) consist of variable light (VL) and heavy (VH) chain regions of a 

mAb. A flexible linker, usually made of glycine and serine repeats, separates the VL 

and VH. The hinge and TM are commonly derived from CD28, CD8α or IgG (31, 32).  

The first CAR T cell was developed by Kuwana et al. in 1987 (33), and  is known as 

a “first-generation” type”. This CAR uses a CD3ζ signalling domain as the sole 

intracellular signalling domain. Upon binding of scFv to antigen, intracellular domain 

clusters and undergoes conformational changes, ZAP-70 and immunoreceptor 

tyrosine-based activation motifs (ITAMs) become phosphorylated (31, 32). This leads 

to signal transduction, which results in T cell activation. This design has undergone a 

subsequent stepwise evolution as our knowledge about T cell activation and 

development increased. The first change was replacing CD3γ with CD3ζ (34, 35). 

However, the first-generation CAR was not able to optimally activate T cells and had 

low persistence and antitumor efficacy in vivo (35, 36).  

Identification of costimulatory molecules and their function in T cells resulted in 

designs of second and third-generations of CAR T cells (Figure 1.2) (37-40). The 

second-generation CARs use one costimulatory domain which is either CD28, CD137 

(4-1BB) or CD134 (OX40) linked in tandem with either CD3-ζ or FcRγ chains (31). 

The second-generation CAR T cells are the most widely utilised CAR T cells in 

clinical trials. The CD28 costimulatory domain has several vital roles in T cell 

function. This signalling is critical for sufficient IL-2 production and Bcl2-xL 

upregulation. Both of these proteins are essential for T cell survival and proliferation 

(41). Also, CD28 stimulation promotes the glycolysis pathway in T cells to support 

the energy demand and providing precursors necessary for cell division (see T cell 
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metabolism section) (42). CD28 is needed for the establishment of memory T cells 

(TM) and effector T cells (TEFF) from Naïve T cells (TN) (31, 43). Furthermore, CD28 

is believed to be dispensable for cytotoxicity and sustained response of T cells (31).  

CD137 sustains the proliferation and IL-2 production in T cells (37) through the 

initiation of signalling pathways important for survival and memory T cell 

development (37). The advantages of using CD137 over CD28 in the second-

generation CAR T cells is that CD137- CD3ζ-CAR T cells have higher persistence 

(44). However, CD137- CD3ζ-CAR T cells may still result in early exhaustion in CAR 

T cells (45). CD28- CD3ζ -CAR T cells are more potent in tumour clearance, and may 

enable the tonic signalling through clustering of intracellular domains in which 

enhance the proliferation of CAR T cells (46). More studies are needed to compare the 
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ability of CD28- CD3ζ -CAR T cells versus CD137- CD3ζ -CAR T cells in different 

cancer types in clinical trials.  

Figure 1.2. Structure of a chimeric antigen receptor (CAR) and five different CAR 

generations. (A) A CAR is composed of an extracellular domain, a transmembrane 

domain and intracellular domain(s). The extracellular domain is composed of a single-

chain variable fragment (scFV) responsible for antigen recognition, a transmembrane 

(TM) domain and intracellular domain. Based on the composition of costimulatory 

domains in the intracellular part of CARs, they fall into five categories. The first-

generation CAR have only CD3 as intracellular domain, second-generation has one of 

CD28/CD134/CD137 while, third-generation has CD3/CD28 along with either CD134 

or CD137. Fourth and fifth-generation CARs overexpress IL-2 or activate JAK–

STAT3/5 signalling, respectively, to enhance the cytotoxicity of CAR T cells. CM; 

costimulatory molecule. Figure was from Tokarew et al. (32).   

Third-generation CARs are based on second-generation CD28-CD3ζ along with either 

CD134 (CD28-CD134-CD3ζ) or CD137 (CD28-CD137-CD3ζ). Therefore, the third-

generation CARs have the advantages of two co-stimulatory domains. Third-

generations CAR T cells have shown enhanced immune activities such as cytokine 

production and killing ability (47). However, the third-generation CD20 and Her2 

CAR T cells did not show improvement compared to the second-generation CAR T 

cells (48, 49). Further clinical trials are needed to properly evaluate the efficacy and 

safety of the third-generation CAR T cells.   

Fourth and fifth generations are based on second-generation CARs. Fourth-generation 

uses constitutive or inducible overexpression of IL-12 to increase synergistic signals 

that lead to higher cytokine production and killing abilities (31). Fifth-generation has 

a truncated cytoplasmic IL-2 receptor β-chain (IL-2Rβ) domain with a binding site for 

the transcription factor (TF) STAT3. Upon antigen binding, a physiologically fully 

activated T cell similar to TCR activation happens by activation of CD3ζ, CD28 and 

JAK–STAT3/5 signalling at the same time (32). 

CAR T cell therapy has profound therapeutic capacity against haematological 

malignancies. For instance, patients suffering from acute B-cell lymphoblastic 

leukaemia have shown 81% of 75% complete remission when they are treated with 
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CD19-CAR T cells (50, 51). However, due to the immunosuppressive nature of TME, 

successful CAR T cell therapy for solid tumours has been a challenge.  

 

1.1.5.2 Barriers ahead of successful CAR T cell therapy in solid tumours 

1.1.5.2.1 Target antigen  

The ideal target for a CAR T cell therapy is an antigen that is expressed on all tumour 

cells but not normal tissue. However, since tumour cells derived from normal cells, 

they share the same antigens with normal tissue but at a different level. Therefore, an 

ideal target for CAR T cell therapy against tumour cells should at least meet two 

criteria; first, a TAA overexpressed in all tumour cells at a high level. Second, TAA 

should be expressed at low level on normal tissue CD19-CAR T cells, and its 

expression should not be on vital organs such as heart, liver, brain and lungs whereas 

its expression is necessary for tumour growth. One of the reasons CD19 CAR have 

shown such a success in the clinic is due to the fact this TAA meets both criteria.  

To date, almost 30 TAAs have been evaluated as targets for CAR T cell therapy (52). 

These TAAs can be classified into three groups: neoantigens, oncofetal antigens and 

tumour-selective antigens. Neoantigens are the result of mutations in coding genes. 

Epidermal growth factor receptor (EGFR) rearrangements in glioblastoma are one of 

the most attractive neoantigens for CAR T cell therapy. EGFR variant III (EGFRVIII), 

which is the result of the exons 2–7 deletion, is the most commonly detected variant 

in glioblastoma cells (53). Other examples of neoantigens are mostly posttranslational 

modifications. For instance, abnormal glycosylation of extracellular domain of MUC1 

can induce tumour specific responses (54). Both EGFRVIII- and MUC1 CAR T cells 

have shown promising outcome (54, 55).  

Oncofetal antigens are usually proteins that express during development and 

sometimes on normal adult stem cells. These stem cell genes again re-express in 

tumour cells. Oncofetal antigens are attractive targets since their expression is limited 

to cancer cells (56). Examples of oncofetal antigens that have been used in CAR T cell 

therapies are Alpha-Fetoprotein (57), carcinoembryonic antigen (58) and 5T4 

trophoblast glycoprotein (59).  
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Tumour-selective antigens express at a high level on transformed cells and low basal 

level on normal tissue. For example, mesothelin is overexpressed in mesothelioma, 

ovarian and pancreatic carcinomas while it presents at a low level on peritoneal, 

pleural, and pericardial surfaces (60). Several CAR T cell therapies for mesothelin are 

undergoing (60). Human epidermal growth factor receptor 2 (Her2) overexpresses 20-

100 fold more in 20% of breast cancers, making it a suitable target for CAR T cell 

therapy (61). The Her2 CAR T cell is the most studied CAR for solid tumours in 

clinical trials.  

 

1.1.5.2.2 Trafficking 

Successful migration of CAR T cells to tumour sites depends on the expression of 

adhesion molecules on both T cells and the tumour endothelium as well as, a match 

between the chemokine receptors on the CAR T cells such as CXCR3 and CCR5 and 

the chemokines secreted by the tumour cells. However, tumour cells downregulate the 

suitable ligand for T cell chemokine receptors in order to reduce T cell infiltration in 

the TME. An approach to facilitate the trafficking of T cells into tumour sites is an 

exogenous expression of chemokines on CAR T cells. For example, expression of 

CCR2b in CAR T cells enhanced intratumoral migration of CAR T cells to tumours 

expressing CCL2 (62, 63). Other chemokine receptors that have been used to improve 

the trafficking are CCR2 (64), CCR4 (65), CCR7 (66), CXCR2 (67) and 

CXCR4 (68). 

 

1.1.5.2.3 The hostile TME 

Beside anatomical barriers, TME contains factors that can abolish the effector function 

of CAR T cells (69). These factors include adenosine, lactate, acidosis, vascular 

endothelial growth factor, phosphatidylserine, high extracellular K+ levels, hypoxia, 

cytokines and ICPs that have immunosuppressive functions (70). Coexpressing a CAR 

and an accessory gene have been shown to enhance CAR T cell function. For example, 

inhibition of protein kinase A localisation signalling using a decoy protein in 

Mesothelin-CAR promoted the migration and killing ability of CAR T cells in vivo 
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(71). Moreover, TME is enriched in Treg, myeloid-derived suppressor cells, tumour-

associated macrophages and tumour-associated neutrophils creating an extremely 

immunosuppressive environment by secreting TGF-β, IL-10, nitric acid, and 

indoleamine dioxygenase 2–3 (69-71). Redirecting CAR T cells to recognize soluble 

TGF-β not only covert the immunosuppressive effect of TGF-β to an activatory signal, 

but can also protect neighbouring immune cells against TGF‐β–induced Treg 

differentiation (72). 

 

1.1.5.2.4 Low persistence and survival 

Successful CAR T cell therapy ideally accomplishes long-term complete remission. 

The extent of T cell expansion and persistence in patients receiving the CAR T cells 

determine the outcome of therapy (73). Adequate expansion and persistence are 

required in order for CAR T cells reach a sufficient number necessary to eliminate 

tumour cells. ’Expansion of T cells depends on their proliferation capacity while they 

receive survival signals. Fundamentally, T cells require three signals to drive 

proliferation and survival; TCR engagement, costimulatory signalling and cytokine 

signalling (32, 74). Adding costimulatory domains such as CD28 and CD137 in the 

second and third-generation CARs or expressing IL-12 in fourth and fifth-generation 

CAR T cells, are the strategies to overcome insufficient CAR T cell expansion in vivo 

(73).  

Durable tumour remission will be achieved if CAR T cells overcome the following 

barriers (73); (i) immunosuppressive nature of TME, (ii) tolerance induced by 

continuous exposure to antigen, (iii) exhaustion mediated by tonic/chronic CAR, (iv) 

inhibitory cytokines and ICPs, (v) contraction after the majority of tumour cells are 

dead, and CAR T cells do not receive enough signalling due to lack of antigen, (vi) 

activation-induced cell death (AICD) mediated by CD95:CD95L interaction (vii) lack 

of memory T cell differentiation. More information is provided about CAR T cell 

persistence and memory on our review article provided at the end of this chapter (73). 

In the next sections, I will focus on topics related to my project, namely AICD induced 

by CD95 pathway and the role of mitochondria in T cell persistence and memory 

development.  
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1.1.5.2.5 CD95:CD95L pathway in T cell persistence and survival 

CD95 (Fas/APO-1/TNFRSF6) belongs to the tumour necrosis factor (TNF) receptor  

family and induces apoptosis when bound to its ligand, CD95L 

(FasL/CD178/TNFSF6) or stimulated with antibodies (75). CD95L expresses in 

activated T cells, NK cells and tissues of immune-privilege (e.g. testis and eye) (75). 

There are two forms of CD95L, transmembrane (m-CD95L) and soluble (s-CD95L) 

forms. Membrane CD95L exists in a multi-aggregated homotrimer and induces cell 

death on cells that express the CD95 receptor (76). On the other hand, s-CD95L is the 

result of matrix metalloproteases (MMP) cleavage of m-CD95L (MMP3, MMP7, 

MMP9, and ADAM10) and has a nonapoptotic role, namely in activating NF-κB and 

PI3K pathways (77). It’s worth to mention each of the MMPs create a unique type of 

s-CD95L and s-CD95L cleaved by MMP7 can induce apoptosis (78). Here, I focus on 

m-CD95L (mentioned in the text as CD95L) and its role in T cell persistence and 

memory.  

Upon binding of CD95L to CD95, assembling of the death-inducing signalling 

complex (DISC) initiate the cascade. DISC consist of CD95, Fas-associated with a 

death domain (FADD), procaspase-8, procaspase-10, and the caspase-8/10 regulator 

c-FLIP (75). Following the formation of DISC complex, oligomerisation of 

procaspase-8 results in its activation, autoproteolytic processing, and release of an 

active heterotetrameric caspase-8 (79). Based on the apoptosis downstream pathway, 

cells divide into two types; type I cells are independent of mitochondria in CD95-

induced apoptosis, whereas type II need mitochondria involvement to induce apoptosis 

via CD95 pathway (80). In the type I cells, the amount of activated caspase-8 is enough 

to activate caspase-3 and downstream cascade result in apoptosis. In contrast, in type 

II cells, the cleavage of the BH3-only protein Bid via caspase-8 create truncated Bid 

(tBid) which leads to dimerization of Bax and Bak complexes on MOM, mitochondria 

depolarization and release of cytochrome C into cytosol (75, 79, 81). Both type I and 

type II activate the mitochondrion-dependent apoptotic pathway (Figure 1.3) (81).  
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Figure 1.3. Schematic illustration of CD95-induced apoptosis in type I and II cells. 

Activation of CD95 upon binding to CD95L result in the formation of death-inducing 

signalling complex (DISC). Activation of caspase-8, in type I cells leads to direct 

activation of caspase-3 and then induction of apoptosis independent of mitochondria. 

In type II cells, caspase-8 cleaves the Bid proapoptotic protein to make truncated tBid. 

Next, tBid promote the oligomerisation of Bak/Bax complexes to form pores in the 

mitochondria outer membrane. Releasing cytochrome C in cytosol activates caspase-

9, which in turn activates caspase-3 and then apoptosis.  

CD95-induced apoptosis is one of the main ways that both CD4 and CD8 cytolytic 

TEFF use to kill transformed and virally infected cells (75). Almost all human tumours 

express CD95 and CD95L on their cell surface (81). Upregulation of CD95L along 

with downregulation of CD95 promote tumour progression. In the “tumour 

counterattack” theory, high level of CD95L on the tumour cell surface, activate AICD 

in TILs (75). This theory is supported by the data gained from in vitro studies that have 

shown activated T cells are susceptible to AICD triggered by CD95L on tumour cells. 

The lack of in vivo studies is due to failure in the establishment of mouse models (75, 

82). Tumour cells expressing a high level of CD95L often get rejected after injection 

into mice due to rapid infiltration of neutrophils and other granulocytes (81).  
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Several studies have shown that endothelial cells of patients with solid tumours 

overexpress CD95L on their surface (82). The expression of CD95L on endothelial 

cells reduced the number of TILs in the ovarian cancer mouse model, and mAb against 

CD95L could reverse the effect (82). 

Tumour cells also benefit from nonapoptotic functions of CD95 signalling. Cancer 

cells upregulating CD95/CD95L also express chemotactic factors such as IL-8 and 

MCP1. Chemotactic proteins increase the recruitment of proinflammatory cells and 

create an inflammatory environment supporting cancer growth (81, 83). Activation of 

CD95 in apoptosis-resistant tumour cells results in the induction of pathways or set of 

genes with a variety roles in tumour progression. For instance, activation of CD95 is 

an inducer for NF-κB and all three major MAPK pathways: ERK1/2, p38, and JNK1/2 

(84). The implications of these pathways are in growth, invasion, metastasis, resistance 

to apoptosis and cell cycle progression (8). Moreover, the vast majority of reports have 

shown that upregulation of CD95L by cancer cells is a negative prognostic marker for 

many solid tumours (75), and the elimination of CD95 or CD95L in cancer cells 

induces “death induced by CD95 or CD95L” (85). 

Recently, several studies suggested that AICD induced by CD95 pathway is the main 

reason for CAR T cell low persistence in vivo (86-89). Blockage of CD95:CD95L 

pathway showed to enhances the CAR T cell therapy in vivo. For example, inhibition 

of CD95 or CD95L translation via siRNA increases the CD171-CAR T cells 

persistence (87). Blockade of CD95:CD95L either with a dominant-negative form of 

FADD or mAb, increases the number of CAR T cells without causing autoimmunity 

(86, 88, 89). 

CAR T cells also use CD95L to lysis CD95 positive target cells. Hong et al.  showed 

that CD30-CAR T cells killed their CD30+ target cells as well as CD30- surrounding 

cells via a cell-cell contact-dependent CD95:CD95L interaction (90). In addition, it is 

well-known that memory T cells express CD95 as their marker, and overexpression of 

CD95 has been shown in a memory T cell subset known as “T memory stem cells 

(TSCM)” (91). In another study, Klebanoff et al. showed that stimulating CD95 

signalling using leucine zipper CD95L (lz-CD95L) elevated memory CAR T cell 
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differentiation (92). Due to the dual role of CD95 pathway in AICD and TM 

development, careful considerations are needed. 

 

1.2. Mitochondrial dynamic in T cells 

1.2.1 Overview of mitochondrial functions in T cells 

Mitochondria dynamics in the T cells involves alterations of size, shape, cellular 

localisation and a variety of oxidative and metabolic-related functions. In T cells, 

mitochondria have at least seven functions, which I will discuss briefly (Figure 1.4) 

(93). Mitochondrial localisation is necessary for polarization and migration of T cells. 

Generally, mitochondria tend to accumulate where the highest amount of ATP and 

calcium demand is needed (93, 94). Mitochondrial position and producing ATP at the 

posterior trailing edge (known as uropod) is crucial during T cell migration and 

blocking mitochondria to locate in uropod inhibit T cell migration (95). During the T 

cell activation, mitochondria absorb calcium and release it later at the end of the 

calcium transient peak during T cell activation. Mitochondria and endoplasmic 

reticulum are responsible for regulating the calcium homeostasis during T cell 

activation and resting condition (96).  
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Figure 1.4. Mitochondrial functions in T cells. When T cells detect the chemotactic 

factors, mitochondria accumulate at the uropod to support the energy demand during 

T cell migration. Mitochondria take up calcium during stimulation and have a role in 

the calcium homeostasis. Besides, mitochondria by anabolic metabolism provide ATP 

and energy for T cells, while by catabolic metabolism providing building blocks for 

cell proliferation. Figure was from Desdín-Micó et al. (93).  

 

 

1.2.2 Catabolism and anabolism pathways 

 Adenosine triphosphate (ATP) is the energy in cells and cells use three 

macromolecules to produce ATP, carbohydrates (e.g. glucose), fatty acids and amino 



17 
 

acids (e.g. glutamine). Glucose catabolism starts with glycolysis, a process to generate 

two ATP and pyruvate as the final product. In the resting cells, pyruvate enters the 

tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) in the 

mitochondria. Fatty acids enter the TCA after they convert to acetyl-CoA (Ac-CoA) 

via a process known as fatty acid oxidation (FAO) in mitochondria. Amino acids join 

the TCA after being metabolised into 3-, 4-, and 5-carbon substrates. TCA cycle is a 

series of an enzymatic reaction that converts citrate to oxaloacetate resulting in the 

production of NADH (reduced nicotinamide adenine dinucleotide) and FADH2 

(reduced flavin adenine dinucleotide). NADH and FADH2 generate thirty-four ATPs 

by passing through the electron transport chain (ETC). The process that 

macromolecules being broken down to generate energy called catabolic metabolism. 

Stem cells, TN, TM and Treg use this pathway to generate maximum ATP (Figure 1.4A) 

(122, 127).  

Rapidly proliferating cells such as TEFF cells use anabolic metabolism, a process to 

manufacture new molecules. Every time a cell divides, they need to synthesis new 

DNA molecules and lipid for the cell membrane. Lactate dehydrogenase converts 

pyruvate to lactate, which is used to regenerate NAD. NAD is required for enzymatic 

reactions that lead to de novo synthesises of purine and pyrimidine bases. Lipids are 

made from citrate by ATP citrate lyase (Figure 1.4B) (122, 127). 

 



18 
 

 

 Figure 1.4. Catabolic and anabolic metabolisms. (A)  Stem cells, TN, TM, Treg cells 

use the catabolic pathway to break down the carbohydrates (e.g. glucose), fatty acids 

and amino acids (e.g. glutamine). In mitochondria, a series of enzymatic reactions 

called the TCA cycle produces NADH and FADH2. Next, TCA products enter the 

respiration process by passing through the electron transport chain located in the 

mitochondria matrix to produce 34 ATP in exchange for each glucose molecule. (B) 

Rapid proliferative cells such as TEFF cells and cancer cells, use anabolic metabolism. 

This pathway only produces two ATP in exchange for one glucose through the 

glycolysis. Pyruvate converts to lactate and enters the TCA cycle as substrates for the 

synthesis of membrane lipids and purine and pyrimidine bases. AA; amino acids, FAO; 

fatty acid oxidation, Ac-CoA; acetyl coenzyme A, OAA; oxaloacetate, α-KG; α-

ketogluterate, FAD; flavin adenine dinucleo-tide, NAD; nicotinamide adenine 

dinucleotide, ATP; adenosine triphosphate, TCA cycle; tricarboxylic acid cycle. 

Figure was from Park et al. (97). 
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1.2.3 Metabolic changes during T cell activation 

Mitochondria has two shapes with distinct functions and bioenergetics capacity in T 

cells (126). The mitochondrial dynamic is controlled by external (e.g. the growth 

factors and nutrient) and internal factors (e.g. TFs and reactive oxygen species). T cells 

are mobile; they need to adapt their metabolism to the new environment. TN cells rely 

on catabolic metabolism through the TCA cycle coupled with OXPHOS to maximise 

the ATP production (98). Upon activation, TN cells undergo metabolic reprograming 

to switch to anabolic metabolism and aerobic glycolysis (98, 99). As mentioned above, 

the anabolic pathway provides the building blocks such as lipids and DNA molecules 

to support TEFF expansion. Intrinsic and extrinsic factors coordinate to initiate the 

metabolism reprogramming. IL-2 and activation of CD28 enhance the glycolysis by 

inducing expression of the nutrient transporters, activation of anabolic regulators such 

as mTOR and Akt (100). C-Myc, estrogen-related receptor α (ERRα), and hypoxia 

inducible factor-1α (HIF-1α) are main the TFs in this metabolic remodelling (99, 100).  

After antigen clearance, most of TEFF cells undergo apoptosis (contraction), while a 

small number of T cells differentiate to long-lived TM cells. Activation of FAO 

metabolic program is necessary for TM differentiation, long-term survival and 

enhanced response to the second antigen encounter. It has been shown that the 

enhanced response in TM cells compared to TEFF cells is linked to the mitochondria 

mass, upregulation of genes involved in FAO and their higher spare respiratory 

capacity (SRC) (101, 102).  

 

1.2.4 Mitochondria fusion and fission 

In T cells, mitochondria have two morphologies, short (fission) or long (fusion) 

tubules. During the fission and fusion transition, the mitochondrial OMM, IMM and 

matrix undergo changes that will determine the mitochondrial function (103). The 

exact mechanism of fusion and fission transition in mammalian is poorly known. Three 

GTPases proteins are known to be critical for fusion; Mitofusin 1 and 2 (Mfn1 and 

Mfn2) and optic atrophy 1 (OPA1). MFN1 and MFN2 are localised at OMM and form 
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complexes between two adjacent mitochondria during fusion (Figure 5). C-terminal 

region of Mfn1/2 contains a hydrophobic heptad repeat region (HR2). The HR2 region 

dimerized with other Mfn on other ends of adjacent mitochondria to bring both 

mitochondria close in order to initiate fusion. OPA1 and cardiolipin (CL) localise 

within the mitochondrial intermembrane space, and both are responsible for the IMM 

fusion (Figure 1.5) (104).  

Mitochondrial fission initiate by recruiting the dynamin-related protein 1 (Drp1), a 

GTPase protein, to mitochondrial fission sites at the OMM. Mitochondrial dynamics 

proteins of 49 and 51 kDa (Mid49 and Mid51) and mitochondrial fission factor (MFF) 

are responsible for Drp1 recruitment. Next, Drp1 oligomerises to form a belt around 

mitochondria, then GTP hydrolysis by Drp1 constrict the mitochondria to split both 

inner and outer membranes (Figure 1.5) (105).  
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Figure 1.5. Mitochondria fusion and fission. During fission, Mid49, Mid51 and MFF 

recruit Drp1 to mitochondrial fission sites at the OMM. Then, Drp1 oligomerises to 

form a spiral around the mitochondria. GTP hydrolysis by Drp1 drives the 

compression of Drp1 spiral and dividing the mitochondria in two. Mitochondrial 

fusion starts by tethering MFN1 and MFN2 proteins and fusing OMM of two 

mitochondria. Interaction between OPA1 and cardiolipin (CL) leads to IMM fusion. 

Figure was from Kameoka et al. (106). 

TN and TM cells have fusion mitochondria, while TEFF cells have fission mitochondria. 

It has been shown that T cell fate can be modulated by altering mitochondria fusion 

and fission (107). Enforcing fission and aerobic glycolysis impairs the TM cell 

development in activated T cells. On the other hand, enhancing mitochondria fusion, 

promoting OXPHOS and FAO in TEFF T cells resulted in increasing TM phenotypes 

(45, 93, 97-99, 103). For instance, treating T cells with IL-15 promote TM cell 

development by enhancing mitochondria fusion and FAO metabolism (108). 

 

1.3 Role of the Mcl-1 gene in T cells  

Myeloid Cell Leukemia-1 (Mcl-1) is an antiapoptotic member of the Bcl-2 protein 

family. The Bcl-2 proteins family is divided into two groups based on inhibiting or 

promoting apoptosis. Proapoptotic members are Bax, Bak, Bok, Bid, Bim, Noxa, 

Puma and Mcl-1 short variant (Mcl-1S). Antiapoptotic members are Bcl-2, Bcl-xL, 

Bcl-w and Mcl-1 long variant (Mcl-1L) (109). All antiapoptotic members of Bcl-2, 

enhance cell survival and inhibit apoptosis (110).  

Upon activation of proapoptotic members, Bak and Bax become activated. Then, Bak 

and Bax oligomerise on the OMM to create pores that result in the release of 

cytochrome C into the cytosol. Cytochrome C activates the caspase 9, which activates 

caspase 3 leading to nuclear fragmentation and apoptotic body formation, and cell 

death. Mcl1-L blocks this pathway by binding and sequestering Bak and Bax (111).  

Mcl-1 protein is the largest protein in the Bcl-2 family and composed of 350 amino 

acids. At the C-terminal (residues 170-300) of Mcl-1 shows high similarity to other 

antiapoptotic members such as Bcl-xL. This region contains three putative the BCL-2 
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homology (BH) 1, BH2, BH3, responsible for binding to proapoptotic members of the 

family. Two weak PEST (proline, glutamic acid, serine and threonine), as well as two 

strong PEST domains, are located in the N-terminal region (Figure 1.6). These motifs 

regulate the Mcl-1 turnover, localisation and phosphorylation. The PEST sequences 

are common among labile proteins (protein with short half-life); however, the Mcl-1 

half-life depends on cellular conditions and cell type (110, 111).  

 

 

Figure 1.6 Schematic representation of the Mcl-1 (A) gene and (B) protein. (A) 

Alternative splicing between exon I and exon III result in Mcl-1S isoform while Mcl-

1L contains all three exons. (B) The relative positions of post-translational 

modifications including ubiquitination, phosphorylation and caspase cleavage sites are 

shown with blue, red and black arrows, respectively. Mcl-1 N-terminal contains two 

weak (lower case) and two strong (upper case) PEST sites. At the -terminal, Mcl-1 has 

three the Bcl-2 homology domains (BH1, 2 & 3) and a transmembrane (TM) domain.  

It has been shown that several other variants of Mcl-1 present in a tiny fraction along 

with Mcl-1L. For instance, an extra short variant (Mcl-1ES), contains truncated exon 

1 (lacks PEST motifs) but have motifs at C-terminal region (BH1, BH2, BH3 and TM). 

The Mcl-1ES has 197 amino acids, bears three mutations probably introduced at post-

transcriptional level and similar to Mcl1-S is proapoptotic (112). Another Mcl-1 splice 



23 
 

variant carries a 45 bp deletion in the Mcl-1L named Mcl-1JAM (Just Another Mcl1) 

(113). Due to the lack of Gly158 to Asp172, Mcl-1JAM is very unstable protein. 

Overexpression of Mcl-1JAM protects cells against apoptosis by sequestrating 

proapoptotic Bim. However, in contrast to antiapoptotic Mcl-1L, Mcl-1JAM does not 

bind to proapoptotic Noxa (113).  

Mcl-1L and Mcl-1S are the dominant forms of Mcl-1 (114, 115). Mcl-1S (271 amino 

acids) is either result of proteolytic cleavage of Mcl-1L by caspase 3/8 (116), or 

product of alternative splicing by skipping the second exon (117). However, recent 

studies have confirmed that proteolytic cleavage of Mcl-1L is probably the primary 

mechanism for Mcl1-S generation. Indeed, the overexpression of a codon-optimised 

intronless (used in this study) of Mcl-1L leads to producing both Mcl-1L and Mcl-1S.  

Mcl-1 is unique among Bcl-2 family protein due to its expression in a wide range of 

cells. Mcl-1 expresses from the early stage of embryonic development to many 

differentiated cells (118). Mcl-1 is crucial for haematopoiesis and expressed in all 

blood cells except monocyte (Figure 1.7) (118, 119). 
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Figure 1.7. Expression of Mcl-1 in haematopoiesis. Hematopoietic stem cells (HSCs) 

are multipotent stem cells with self-renewal capability. During haematopoiesis, HSCs 

produces multipotent progenitors (MPPs) which have lower self-renewal capacity. 

Next MPPs give rise to two progenitor cells, common myeloid progenitors (CMPs) 

and common lymphoid progenitors (CLPs). CLPs differentiates to the lymphoid 

lineages including B cells, T cells and natural killer (NK) cells. CMPs give rise to two 

other unipotent progenitor cells, megakaryocyte erythroid progenitor (MEP) and 

granulocyte monocyte progenitor (GMP), which finally differentiate to the other blood 

cells. Mcl-1 expresses in all blood cell types except monocytes.   

In a normal condition, Mcl-1 localises in various part of cells including mitochondria, 

nucleus and cytoplasm (111). In the nucleus, Mcl-1 interacts with cyclin-dependent 

kinase 1 (CDK-1) and proliferating cell nuclear antigen (PCNA), and regulate cell 

cycle (111). Mcl-1L and Mcl-1S exhibit different mitochondrial sub localisation (114, 

116, 117). Mcl-1L enriches at OMM where it stops the formation of Bak and Bax 

complex. On the other hand, Mcl1-S only localise at IMM and matrix, where it 

enhances mitochondria homeostasis, fusion and respiratory function (Figure 1.8) 

(114).  

Still much to discover about the nonapoptotic functions of Mcl-1. Recent studies have 

shown that Mcl-1S is required for the formation of normal IMM structure, 

mitochondrial fusion, as well as OXPHOS (109, 114). Cells lacking Mcl-1S have 

impaired oxygen consumption rates (OCRs) and elevated mitochondrial superoxide 

levels (114). Interestingly, Mcl-1S deletion did not alter the expression of nuclear-

encoded ETC complexes (I, II and III), but mitochondrial -encoded subunits of 

complex IV (Cox 1 and Cox 2) showed lower expression. Further experiments 

confirmed that deletion of Mcl-1S leads to decreases of mitochondrial DNA (mtDNA). 

Furthermore, lack of Mcl1-S impairs the assembly of F1F0-ATP synthase oligomers 

and organisation of cristae membranes (114). Mcl-1 can also promote FAO 

metabolism by direct interaction of its BH3 motif to very long-chain Ac-CoA 

dehydrogenase (VLCAD), a key enzyme in this pathway (120). 

One of the newly discovered roles of Mcl-1 is its involvement in mitochondria fusion 

and fission. The first 50 aa of Mcl-1 N-terminal carries a mitochondrial targeting 
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sequence (MTS), which is cleaved by an unknown mitochondrial protease in IMM 

(114). Mcl-1 can interact with the Drp1 at OMM, and reverse the Drp1-mediated 

mitochondria fission (109). In addition, Mcl-1 interaction with MFF seems to be a part 

of the mechanism that Mcl-1 inhibits the mitochondrial fission (121). Later Rasmussen 

et al. showed that  Mcl-1 could also binds to fusion promoting factors OPA1, MFN1 

and MFN2 at IMM and increases their stability and promote the fusion (122).  

 

Figure 1.8. The localisation of Mcl1-L and Mcl-1S at the outer mitochondrial 

membrane (OMM) and inner mitochondrial membrane (IMM), respectively. Mcl-1L 

stops the formation of the pore by Bak and Bax complex, whereas Mcl-1S enhances 

mitochondrial functions. Mcl-1 can bind to fission promoting factors Drp1 and MFF 

and stop the mitochondrial fission. In addition, Mcl-1S binds to fusion promoting 

factors such as OPA1, MFN1 and MFN2 and enhance mitochondrial fusion.   

 

1.4 T cell activation inhibitor, mitochondrial (TCAIM) 

TCAIM (also known as tolerance-associated gene (TOAG-1) positioned at the long 

arm of chromosome 12 with 71983 bp length (NC_000003.12). The TCAIM protein 

localises exclusively to mitochondria, and only a few studies have carried out on the 

TCAIM gene or protein. TCAIM protein has not been fully annotated, and only a 
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mitochondrial leader sequence at N-terminal and a J-domain at its C-terminal have 

been annotated so far (123, 124). TCAIM is highly expressed in TN, Treg and CD11c+ 

DCs, but its expression is downregulated upon T cell activation (125). Knock-in 

TCAIM mice have reduced TM cells; higher Treg cells and reject the allogeneic skin 

grafts (126). DCs in TCAIM knock-in mice, produce less proinflammatory cytokines 

and have a lessened capacity of priming both CD4+ and CD8+ T cells (123, 127).  

Human T cells upregulating TCAIM have decreased proliferation, lower 

mitochondrial membrane potential (ΔΨm) and are more susceptible to apoptosis (124). 

Similar to mice studies, overexpression of TCAIM in human T cells leads to a 

reduction in TN and TM phenotypes (124). TCAIM is a newly identified protein, and 

the functions in T cell is unknown. 

 

1.5. Hsa-microRNA-429 (miR429) 

MicroRNAs (also known miRNAs or miRs) are small non-coding RNAs, negatively 

regulate gene expression at post-transcriptional level by binding to 5′ untranslated 

region (UTR), coding and 3′ UTR of all mRNAs (128). The miRNA biogenesis is 

described in details in Figure 1.9.  
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Figure 9. miRNA biogenesis. MiRNAs are initially transcribed into primary miRNA 

(pri-miRNA) by RNA polymerase II, and similar to the coding mRNAs, they have a 

5′ cap (7-methylguanosine) and a polyA tail at their 3′ ends. Pri-miRNAs undergo 

cleavage by Drosha/DGCR8 complex to produce a ~70 bp precursor miRNA (pre-

miRNA). Next, pre-miRNA export to the cytoplasm by cellular exportin-5, where the 

loop region is cleaved by Dicer to form miRNA duplex. Depending on which strand 

loads into the RNA induced silencing complex (RISC); one duplex miRNA can result 

in two functional miR-5p (if the sense strand is loaded) or miR-3p (if the antisense 

strand is loaded). Then RISC complex scans the mRNAs; perfect matches result in 

mRNA degradation, while imperfect matches result in translational interference. It is 

well known that one miRNA can target a set of genes or modulate a cascade (129, 

130). Figure was from Winter et al. (130). 
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miR429 belongs to the miR200 (consist of miR200a, b, c, miR141 and miR429) family 

and its functional form is miR429-3p (Figure 1.10) (131). MiR429 is a tumour 

suppressor-miRNA and targets a variety of oncogenes such as ZEB1, ZEB2, several 

genes in Notch1 signalling pathway (131, 132).  

 

Figure 1.10. The pre-miR429 structure obtained from miRBase database. The mature 

sequence of miR429 is shown in purple.     

miR429 target genes in T cells are still unknown. Guan et al. showed miR429 

downregulates ZEB2 but not ZEB1 in T cells (133). This finding is interesting because 

ZEB2 cooperate with T-bet to switch on a terminal differentiation program while the 

repressing genes necessary for TM development (134). The miR429 highly expresses 

in TN cells, downregulates in TEFF cells and then again upregulates in TM cells during 

viral infection (133).  

In our recently published review article (73) (provided at the end of this chapter), we 

explain memory T cell subsets, their characteristic and their potential usages in CAR 

T cell therapy. We also reviewed the potential strategies to enhance CAR T cell 

persistence and memory developments. Finally, we proposed a mechanism for TEFF 

to TM development. 

 

1.6. Scope and aims of the study 

This thesis is presented as six chapters and includes five publications with self-

supporting materials and method provided within the manuscripts and supplementary 

materials. The main aim of this study is to enhance the persistence and memory 

development of the Her2-CAR T cell. Mitochondrial status is the organelle in resistant 
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to the AICD (as the primary reason for CAR T cell lost) and memory T cell 

development. We hypothesised by overexpression or downregulation of genes 

involved in the mitochondrial dynamic we can increase memory T cell development. 

We chose Mcl-1 to upregulate and TCAIM to downregulate via overexpressing 

miR429 as a TCAIM negative regulator. 

The aims of this study are listed below and shown as four main chapters. As I was 

finalising my thesis, a pandemic happened. During the NZ lockdown period, I 

characterised mutations in genome and their implications in genome structure and host 

miRNA targeting and the viral life cycle. The findings were published the International 

Journal of Molecular Science (IJMS) and included as the sixth chapter of this thesis.   

 Strategies to elevate the endogenous level of Mcl-1  

 Inducible overexpression of Mcl-1 using a Tet-on system 

 Strategies for constitutive overexpression of Mcl-1 

 The role of Mcl-1 and miR429 overexpression in human Her2-CAR T cells 

  Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and 

Host microRNA Targeting 
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Abstract

It is now becoming clear that less differentiated naive and memory T cells are

superior to effector T cells in the transfer of immunity for adoptive cell

therapy. This review will outline the challenges faced by chimeric antigen

receptor (CAR) T cell therapy in the generation of persistence and memory for

CAR T cells, and summarize recent strategies to improve CAR T cell

persistence, with a focus on memory cell formation. The relevance of

enhancing persistence in more differentiated effector T cells is also covered,

because genetic and pharmacological interventions may prolong effector T cell

activity and lifespan, thereby improving anti-cancer activity. In particular, it

may be possible to enforce epigenetic changes in differentiated T cells to

enhance memory CAR T cell formation. Optimizing the generation of self-

renewing T cell populations (e.g. memory cells), while maintaining

differentiated effector T cells through epigenome modification, will help

overcome barriers to T cell expansion and survival, thereby improving clinical

outcomes in CAR T cell therapy.

INTRODUCTION

Chimeric antigen receptor T cell therapy

Chimeric antigen receptor (CAR) T cell therapy has now

emerged as a clinically tested and effective treatment for

CD19-positive lymphoma and leukemia. CARs are

comprised of an anti-cancer monoclonal antibody,

spliced to intracellular T cell receptor (TCR) signaling

domains. CAR T cells expanded in vitro are adoptively

transferred back into the patient to destroy cancer cells

when triggered by tumor antigen.1-7 In CAR T cell

therapy of B-cell malignancies, expansion and persistence

of adoptively transferred T cell populations is considered

a critical requirement for long-term tumor immunity

without relapse.1-5,8,9 This may be especially true for B-

cell acute lymphoblastic leukemia which typically requires

prolonged conventional treatment timelines. In contrast,

for certain B-cell non-Hodgkin’s lymphoma subtypes that

often respond to shorter, intensive courses of

chemotherapy, as evidenced by the recovery of normal B

cells in CAR T cell–treated lymphoma patients in

remission, long-term CAR T cell persistence may be of

lesser importance.10 Anti-CD19 CAR T cells may persist

for months to years in the blood of lymphoma patients,

with the longevity of CAR T cells likely influenced by

costimulator domain of the CAR, as well as the disease

subtype.1-3,9

In contrast to physiological T cell responses, CAR

T cell expansions differ in several ways, as summarized in

Figure 1. First, CAR transduction occurs ex vivo within a

polyclonal population, that can then be expanded

relatively independently of endogenous TCR expression.

Second, CAR T cell expansion ex vivo involves exposure

to elements not encountered by in vivo expanded T cells;

for example, transducing virus exposure and infection

(most frequently gamma-retroviral or lentiviral particles)

and CD3/CD28 stimulation in the presence of

recombinant cytokines. Preconditioning of patients

encourages lymphopenic expansion of the CAR product.

Predictably, the final expanded CAR T cell population

will be polyclonal with respect to TCR (but not CAR)

specificity, and will likely possess a diversity of activation/

differentiation states among individual CAR T cells.
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Barriers to CAR T cell persistence

The maintenance of functional anti-cancer CAR T cell

therapy could be hampered by the following: (1) insufficient

expansion of the initial T cell product, (2) recognition of

immunogenic CAR sequences and rejection by the host

immune system, (3) tumor immune-suppression, (4)

tolerance induced by normal B cells expressing tumour-

associated antigen (TAA) (5) activation-induced cell death

(AICD), (6) exhaustion that follows tonic/chronic CAR or

TCR triggering and (7) contraction that occurs when antigen

is no longer available at sufficient levels to maintaining the

dividing pool of T cells. These factors may translate into

inefficient tumor killing and poorer patient outcomes. The

subject of barriers to CAR T cell therapy topic has been dealt

with in recent reviews,11,12 and due to space limitations, only

exhaustion, AICD and contraction will be discussed further

(see below). Instead, this review will outline the contribution

of memory and persistence to CAR T cell therapy, as well as

relevant strategies to improve clinical outcomes.

Exhaustion, AICD and lymphocyte contraction

Exhaustion describes the onset of often irreversible

epigenetic changes in terminally differentiated T cells.13-16

The evolutionary advantage of exhaustion is that T cells

that are repeatedly stimulated by self-peptide/major

histocompatibility complex (MHC) are inactivated.

However, in many cancers, antigen may persist for

extended periods of time and despite initial effective anti-

cancer cell responses, T cells can become exhausted and

susceptible to AICD.13,14,17 Following chronic repetitive

antigen stimulation, the antigen T cell–specific T cell

pool may contract, or become effete in terms of cytokine

secretion and cytolytic potential.13,17

Although CAR T cells have been shown to undergo

AICD via CD95:CD95L,14 T cell contraction can occur in

the absence of CD95, CD95L and TNF signaling,

suggesting that cell-intrinsic mechanisms may play out

during lymphocyte contraction. For example, replicative

senescence and growth factor withdrawal are possible

mechanisms, in addition to cell-intrinsic onset of

terminal exhaustion.13,17 In infection settings, lymphocyte

contraction occurs following the peak immune response,

yet memory cell formation is the usual outcome.17,18

Given that withdrawal of antigen signaling can enhance

memory cell formation,18 it is not clear why CAR T cells

are lost, even in patients with complete responses, but is

likely the result of the combination of the factors discussed

above.2,3 It is also possible that the sensitivity of polymerase

Figure 1. Contrasting chimeric antigen receptor (CAR) T cell and physiogical processes for T cell expansion and memory cell development. Top

panel: The generation of CAR T cells requires ex vivo stimulation of patient T cells with CD3/CD28, lentiviral (LV), retroviral or transposon mediated

gene transfer, followed by additional culture in a selection of cytokines that stimulated via the common gamma chain. Patients are preconditioned

with lymphodepleting regimes (fludarabine/cyclophosphamide; Flu-Cy). Following adoptive transfer, CAR T cells undergo further activation and

expansion in response to lymphopenic environment and tumour antigen. Bottom panel: Physiologic activation of T cells proceeds strictly in vivo in

response to antigen and does not involve lymphopenic expansion. Physiologically activated T cells will be expected have a lower endogenous T cell

receptor (TCR) diversity, compared to CAR T cells that are produced from a nonselected, polyclonal repertoire. [The color version of this figure can be

viewed at www.wileyonlinelibrary.com/journal/icb]
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chain reaction (PCR) used to detect CAR T cells may not

be consistent across different studies. Therefore, PCR-based

CAR detection may miss trace populations of persisting

CAR T cells at numbers below the limit of detection, or fail

to detect CAR T cells that infiltrate the spleen, lungs, lymph

node or bone marrow.6 Surprisingly, the lack of long-term

persistence of CAR T cells is in some cases unrelated to

positive clinical outcomes, particularly in non-Hodgkin’s

lymphoma (NHL). This is demonstrated by relapse-free

survival observed well after CAR T cells have dropped

below the limit of detection, and non-malignant B cells

have rebounded.10

Persistence and memory

Are persistence and memory one and the same?

Although the terms of T cell memory and persistence

may sometimes be used interchangeably, a working

definition of memory T cell function must include

longevity and self-renewal.19,20 In terms of persistence,

functionally active anti-cancer T cells, without typical

memory features, may persist in favorable conditions in

the host, particularly when the manifestation of

exhaustion-related and AICD is minimized.21-26

Strategies to prolong the lifespan and activity of non-

memory T cells may still contribute markedly to the

anti-tumor response. Moreover, appropriately primed

effector T cells (TE) can provide a source of memory

cells,21-30 although TE to T memory cell transformation

has yet to be demonstrated in adoptive CAR T cell

therapy. Despite possessing limited capacity for self-

renewal, improving TE longevity would be expected to

improve anti-cancer immunity.13,31

SUBSETS OF MEMORY CELLS

The development of naive T cells into memory and

effector cell populations follows progressive epigenetic

changes that impart unique gene expression profiles and

functions.15,19,20,32 It has been proposed that considerable

artificial complexity exists in memory T cell subset

definitions, and that such stringent categorization may

not accurately reflect the true phenotypic and functional

gradients existing in nature.32 In this review, we will only

briefly cover the definitions of memory cells in order to

illustrate how in vitro culture and clinical interventions

could contribute to enhancing CAR T cell memory and

persistence. For more extensive discussion on T cell

memory subsets, the reader is referred to three excellent

and recent reviews.19,20,32

Naive T cells reflect the most immature T cell, and by

classic definition have not been antigen-triggered. Upon

interaction via the native TCR or CAR, naive T cells

proliferate and differentiate to form TE and/or memory

cells. Central memory T cells (TCM) circulate throughout

the body and provide rapid cytokine production upon

stimulation, but are poorly cytotoxic. The adoptive

transfer of a single TCM clone is sufficient to confer self-

renewal of memory cells, while allowing the

differentiation of effector cells for the appropriate

immune response.33 TCM cell division forms TE, more

daughter TCM, or effector memory T cells (TEM).
19,20,34

TCM to TEM transition results in the downregulation of

CCR7 and CD62L, and a loss in homing ability to

lymphoid tissues, although TEM exhibit the highest level

of cytotoxicity of all the memory cell subtypes.19,20,34

Stem cell memory T cells (TSCM) appear to be a subset

of TCM that display a more extensive capacity for self-

renewal.19,20,34 Despite their maturity, as determined by

TCR excision circle dilution, TSCM share transcription

factor profiles, as well as self-renewing characteristic with

classic stem cells.19,20

In adoptive cell immunotherapy, naive, TSCM or TCM
subsets outperform TE and TEM, in spite of the enhanced

cytotoxic and cytokine-releasing potential of effector T cell

subsets.8,20,25,33,35 Since TE display superior tumor killing

capacity in vitro, as compared to naive or memory T cells,

the results might be explained by the low-level self-renewal

capacity of effector cells. However, it is also possible that

effector cells are inefficiently transferred to the host by the

adoptive transfer procedure and have limited niche

homing and survival, compared to their less differentiated

counterparts. For example, lung or splenic trapping may

render adoptive transfer of activated lymphocytes for niche

formation less efficient. In a recent clinical trial, CAR T

cells predominantly homed to the lungs and spleen,

possibly as a result of the enhanced integrin expression on

effector CAR T cells, leading to trapping in highly vascular

organs.6 In contrast to the limited ability of effector cells

to survive following adoptive transfer, strategies to

establish populations of memory cells within the host will

give rise to populations of both TE, as well as self-

renewing memory cells (Figure 1).

Tissue resident memory T cells (TRM) resemble TEM

in that they home to nonlymphoid tissue, but TRM

express CD103 and CD69, do not recirculate, and are

self-renewing in situ.19,36 The degree of infiltration of

solid tumors by TRM may be a useful indicator of anti-

cancer responses, including the success of immune

checkpoint inhibition.36 TRM appear to possess direct

cytotoxicity, which is dependent on CD103

interactions.36 Due to their ability to infiltrate solid

tumors and immediate cytotoxicity, TRM hold potential

as ideal CAR T cells for the therapy of solid tumors.

Furthermore, the ability of anti-PD1 reagents to reverse

TRM suppression, points to further control measures that
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may be used to enhance to the activity of transferred

CAR T cells36 (see Figures 2 and 3).

Virus-specific T cells represent a convenient source of

memory cells in peripheral blood that can be expanded

with antigen-presenting cells pulsed with peptide pools, for

example, to Epstein–Barr virus or varicella zoster. Repeated
stimulation for expansion via the native (virus-specific)

TCR was best achieved using CD28 endodomains,

demonstrating that the choice of costimulator domains is

critical for maintaining CAR T cell proliferation via the

endogenous TCR.9,37 However, 41BB-based CAR gave

superior in vivo anti-tumor responses, as compared to

CD28-based CAR.37

Virtual memory T (TVM) cells are memory T cells

differentiated from naive T cells via interactions with

MHC: self-peptide. This self-recognition upregulates the

IL-15-receptor, which in turn provides signals from

endogenous IL-15 for memory cell development.38

Despite their selection by self-recognition, TVM cells do

not appear to contribute to pathological autoimmune

reactions.39 TVM make up 15–20% of CD8+ memory

cells in a naive murine host and their presence in

humans is inferred by the presence of a similar

population of CD45RA+/Eomes+/KIR+/NKG2A+ T cells

representing 5% of CD45RA+ T cells in adult blood.38

Therefore, TVM are likely to have been inadvertently

included in CAR transduction protocols, using either

unselected or selected memory cell populations.

Although their potential role in CAR T cell activity has

not been investigated, TVM produce IFN-c in an

infection model and provide a level of protection

superior to naive counterparts, but similar to TCM.
39

Despite the potential for auto-reaction from including

TVM in CAR T cell product, CAR T cell trials have

shown minimal evidence for autoantigen-specific

reactions.1-7 Therefore, TVM remain an attractive subset

for further investigation in CAR T cell therapy.

Ex vivo and in vivo expansion, and memory cell

formation

Because the epigenetic status of memory T cells reflects

that of undifferentiated T cells, one of the major

challenges is the generation of CAR T memory in the

face of the potent ex vivo stimuli necessary for optimal

CAR T cell transduction and expansion (see Figure 1). In

comparison to physiological expansion of antigen reactive

lymphocytes, CAR T cells undergo in vitro CD3/CD28

stimulation, transduction, further CD3/CD28 stimulation,

followed by expansion in recombinant cytokines in the

weeks prior to adoptive transfer (Figure 1).14-28 Given

that all T cells present in the ex vivo culture preparation

will have been triggered via CD3 and CD28, by definition

the product lacks strictly “naive” T cells. In vivo, naive T

(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 2. Summary of strategies employed in CAR T cell therapy to enhance persistence and memory cell formation. Strategies to enhance CAR

T cell persistence, memory or effector cell activity, as discussed in this review: (a) Cytokine stimulation during ex vivo CAR T cell generation; (b)

small molecule inhibitors that activate transcription or metabolic transformation;50,52,54 (c) membrane expression of homeostatic cytokines, for

example, mIL-15;60 (d) immune checkpoint blockade (e.g. with anti-PD1 mAb);15,36,66,67 (e) knockout of pro-exhaustion demethylase tet2;64 (f)

enforced expression of microRNA to enhance persistence and anti-tumor activity, for example, miR-15561 or miR-143;62 (g) detuning CD3f

activation by reducing ITAM number;55 or (h) choice of costimulator domain to enhance memory or persistence appropriate to the subtype of

cancer.9 [The color version of this figure can be viewed at www.wileyonlinelibrary.com/journal/icb]
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cells may divide once every 3–6 years;34 however, a

typical CAR T cell stimulation protocol with CD3/CD28

pushes naive cell division to occur every few hours.40,41

Following CAR transduction and ex vivo expansion, only

a minor proportion of naive T cells maintain expression

of CD27, CCR7, CD62L and CD45RA.4,40 Memory or

effector lineage commitment may occur as early as the

first cell division.32 Therefore, strategies to increase the

generation and maintenance of self-renewing memory

CAR T cells ex vivo must operate in the presence of

potent differentiating factors during the ex vivo CAR

T cell culture. Furthermore, to improve the in vivo

expansion of adoptively transferred CAR T cells,

recipients are preconditioned using chemotherapeutic

drugs which destroy host lymphocytes to increase the

levels of the homeostatic cytokines IL-7 and IL-15.19,20

Increased availability of niche and resources to the

adoptively transferred CAR T cells allows rapid,

lymphopenic expansion of adoptively transferred T cells

further driving T cell differentiation to establish pools of

effector and memory CAR T cells. Therefore, unlike

physiological T cell expansion, CAR T cells expand under

the aegis of both lymphopenia and CAR-triggering by

tumor antigen (Figure 1).34 Such expansion is critical to

efficacy: the most important predictor of CAR T cell

response in lymphoma patients is CAR T cell expansion:

responders to treatment were reported to have area under

the plasma concentration versus time curve from 0 to

28 days that is 5.4 times higher than nonresponders.42

The abundance of tumor antigen can increase the

magnitude of peak expansion,1 as well as persistence of

CAR T cells, therefore antigen availability plays an

important role in expanding and maintaining CAR

T cell populations.7

STRATEGIES TO ENHANCE CAR T CELL
PERSISTENCE AND MEMORY

Composition of the blood product

Despite the proven synergistic effects of including

antigen-specific CD4 and CD8 in adoptive cell therapy

for tumor models,4 a challenge with treatment of

lymphoma patients is the highly variable numbers and

ratios of CD4+ and CD8+ T cells, and in the depletion of

naive or memory T cell subsets—a situation exacerbated

by prior chemotherapy.4,5,7 For example, B-cell

lymphoma patients have an increased percentage of CD8+

T cells and TEM cells, but depressed numbers of naive

CD4 and CD8 cells.4 Normalizing CD4: CD8 ratios, or

using defined naive or memory cell subsets, improves

engraftment in preclinical models, which may improve

clinical outcomes. In particular, co-infusion of naive

CD4+ T cells provides optimized help for CD8+ TCM

activation, proliferation and cytotoxicity.4,5,7 It is possible

that transfer of defined CD4+ and CD8+ ratios enhances

the generation of CAR T cell memory for naive cells;

however, this has not been extensively investigated.4,5,7

Figure 3. Manipulating persistence and memory cell development at different points of CAR T cell differentiation. Illustration of the

approximated points of interactions of different interventions with T cell differentiation state. [The color version of this figure can be viewed at

www.wileyonlinelibrary.com/journal/icb]
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Adoptive transfer of defined CD4 and CD8 ratios

undoubtedly shows clear benefits. However, costs and

processing time may be increased by the cell selection

and ex vivo expansion procedures, with an overall

lowered CAR T cell product yield due to the extensive

cell selection procedures.

The presence of memory cells in unselected populations

of CAR T cells can result in a deleterious conversion of

naive T cells into a more differentiated state that performs

poorly in adoptive therapy.43 Dubbed a type of “quorum

sensing,” the conversion mechanism occurs via a non-

apoptotic CD95 signaling in responding naive T cells.43

Therefore, despite the well-researched benefit of including

memory T cells in CAR product,4,8,20,25,33,35 this may

negatively impact on the anti-tumor effects of adoptively

transferred naive T cells.

In general, naive T cells, or TSCM/TCM cells, induce potent

anti-tumor responses in adoptive cell therapy.5,8,43,44 In a

NHL phase I trial, safety was demonstrated using CAR T

cells with a memory phenotype generated using IL-2 and

IL-15, followed by bead-selection for CD3, CD45RO and

CD62L.45 Although feasible in generating product for

infusion for this patient cohort, it is likely that not all

lymphoma patients will possess sufficient existing memory

subsets for expansion.5 Moreover, TCM generation ex vivo

required longer expansion times (24 days), compared with

10–15 days for standard CAR T cell generation from

peripherla blood mononuclear cells (PBMC).45 In vivo

persistence of CAR T cell product enriched for memory

cells was similar to that obtained using standard CAR T cell

treatment.45 In a more recent study, patients with relapsed/

refractory B-cell malignancies were treated with CD19.28.f
CAR T cells. The frequency of CD8+ CD45RA+ CCR7+

TSCM-like CAR T cells, was the only identified factor that

correlated with in vivo CAR T cell expansion in the first

6 weeks.44 In additional preclinical studies, Xu et al. further

showed that IL-7 and IL-15 preferentially increased the

frequency of CD8+ CD45 RA+ CCR7+ CAR T cells with

superior in vivo anti-tumor responses.44

A recent landmark study identified factors associated

with CAR T cell responses in B-cell chronic lymphocytic

leukemia, where the response rate to CAR T cell therapy

is much lower than that of B-cell acute lymphoblastic

leukemia. Differences in response rates were not

explained by patient and disease characteristics. Instead,

the presence of T memory populations with the

appropriate gene expression profile impacted significantly

on the clinical response. Patients that responded well

demonstrated a gene-set signature of IL-6/phosphorylated

STAT3 in pre-infusion CAR T cells. CAR T cell product

containing higher numbers of memory-like CD27+/

CD45RO�/CD8+/TCF7+/LEF1+ T cells was associated

with clinical remission.5

Metabolism

The transition from quiescent naive T cells to proliferating

TE utilizes the aerobic glycolysis pathway, but entry to the

memory pool requires metabolic reprogramming toward

fatty acid oxidation. This was first demonstrated by

pioneering studies showing that inhibition of the

mammalian target of rapamycin (mTOR) pathway and

enhancement of fatty acid oxidation induced an increase in

the differentiation rate of memory CD8+ T cells.46-48 The

production of metabolically “fit” memory cells appears to

be promoted by mitochondrial remodeling, including

networks of fused mitochondria, with recent findings

showing that CD28 co-stimulation drives that process.49,50

TCM either synthesize their own fatty acids in order to drive

fatty acid oxidation, or in the case of skin TRM, use the

more direct pathway of free fatty acid uptake (involving the

fatty acid-binding proteins Fabp4 and Fabp5) to satisfy

their fatty acid oxidation needs.32 Pearce and colleagues

reported enhanced memory cell formation following

treatment of T cells with the mitochondria “fusion

promoter” M1 and the “fission inhibitor” Mdivi-1.

Moreover, TE treated with fusion enforcers performed

better in adoptive cell therapy (ACT) setting, with superior

anti-tumor responses as compared to untreated T cells.50

Fusion-promoted TE cells underwent subtle shifts toward a

surface memory cell phenotype, and maintained

proliferative and cytolytic capacities, with enhanced

cytokine production. However, it was not clear whether

drug-treated TE gained additional memory cell function

(e.g. self-renewal). Other strategies to boost T cell memory

through metabolic shifting include the use of GW501516.

GW501516 activates the peroxisome proliferator-activated

receptors alpha and delta to boost T cell memory-related

fatty acid oxidation. Despite the high expression of T-bet,

GW501516-treated cells displayed enhanced persistence

in vivo, and improved activity in adoptive cell therapy.51

Small molecule inhibitors

Activating Wnt signaling arrests the development of

effector cell populations and induces self-renewing CD8+

TSCM with enhanced proliferation and better antitumor

activity compared to TCM and TEM subsets.52 While several

small molecules identified to date can preferentially arrest

T cells at the TCM stage, they can reduce cell yield, putting

their widespread use in in vitro CAR T cell expansion in

doubt.20 In contrast, inhibition of Akt may promote

“memory-naive” phenotype by downregulating perforin

and IFN-c synthesis, and enhancing CD27, IL-6 and IL-7

expression.53 Recently, an ex vivo protocol was optimized

for the use of highly selective Akt inhibitors for generation

of memory T cells.54
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Modulating CAR signal strength

Tonic CAR signaling in the absence of antigen-specific

stimulation, or hyperstimulation during TAA-recognition

could impact on T cell survival and persistence. A recent

study carried out a systematic mutation of each of three

immunoreceptor tyrosine-based activation motif (ITAMs)

of CD3f in a CD28-based CAR. T cells possessing only

the first (membrane proximal) ITAM displayed superior

tumor killing in vivo and persistence, compared to the

original CD28.CD3f CAR. CARs with an intact distal

ITAM more efficiently generated a central and effector

memory cell phenotype, distal ITAM CARs lacked anti-

tumor activity.55 However, a single distal ITAM increased

CAR T cell persistence and the generation of central

memory cells. Recently, switchable CAR systems that

allow in vivo rest and restimulation cycles, were reported

to improve CAR T cell memory.56 Therefore, signal

strength tuning of CAR signaling is critical to balance the

outcomes of effector and memory cell development.

Cytokine selection

The preferential in vitro expansion of memory cells with

stem cell like properties can be facilitated using gamma-

chain cytokines present during antigen-stimulation of

naive CD8+ T cells.57,58 In addition, pre-formed memory

cells undergo homeostatic proliferation in response to IL-7

and IL-15, even in the absence of antigen triggering (see

Figure 3).20 IL-7 and IL-15 increase resistance to AICD

and maintain normal lymphocyte migration within

secondary lymphoid tissues.19,20,44 The use of 1L-7 and IL-

15 is therefore widespread in CAR T cell protocols that

intend to generate, or enrich for T memory cells. Common

c-chain cytokines may appear redundant, but differ in

their ability to support persistence and the type of memory

cell formation.19,20 IL-21 was reported to induce the

formation of memory cells and improve adoptive cell

therapy,59 but its use in CAR T cell protocols appears less

common compared to IL-7/IL-15. Another approach is the

expression of membrane IL-15, tethered in the context of

the natural IL-15Ra receptor.60 Dual CAR and membrane-

bound IL-15 resulted in increased rates of TSCM generation,

superior CAR T cell persistence, with enhanced anti-tumor

responses.60

micro RNA

Micro RNA (miR) are 20–23-base-pair-long noncoding

RNAs involved in RNA silencing and translational

regulation of gene expression. The discrete expression of

different miRNA subsets in different memory and effector

T cell subsets imparts critical control over natural gene sets

involved in the broad function of each subset. miR-155 is

expressed in TEM and TE and controls multiple points of

protein expression to enhance Th1 and Th17

inflammation.20,31 An attractive proposition in adoptive cell

therapy is the avoidance of preconditioning with

lymphodepletion regimes that may cause adverse events,

mostly related to toxicity and immunosuppression.

However, lymphodepletion reduces competition for

endogenous host common c-chain cytokines required for

the proliferation and maintenance of adoptively transferred

lymphocytes. Strikingly, the overexpression of miRNA-155

in adoptively transferred T cells produced equivalent anti-

tumor responses in both lymphodepleted and

nonlymphodepleted recipients. In contrast, control

transduced T cells were only effective in lymphodepleted

hosts.61 Enforced miR-155 expression induced cytokine

polyfunctionality, persistence and enhanced effector cell

activity.61 Modulation of T cells with miR-155 carried a

theoretical risk due to the association of miR-155 with B-cell

lymphomas. However, mice engrafted with miR-155-

transduced lymphocytes followed for up to >700 days

showed no increase in cellular transformation, as compared

with control cells.61 The main pathway of activation was

through src homology 2 (SH2) – containing inositol 5-

phosphatase (SHIP) inhibition which increased STAT5a

activation, T cell persistence, and enhanced T cell activation

via Akt. Similarly, overexpression of miR-143 enhanced

central memory T cell development, decreased apoptosis

and potentiated proinflammatory cytokine secretion and

anti-tumor cytotoxicity of HER2-CAR T cells.62

Costimulator domains

While inclusion of the CD28 in the CAR structure appeared

to generate effector memory cells with an enhanced reliance

on glycolysis, 4-1BB-based CARs elaborated TCM with

enhanced mitochondrial biogenesis and fatty acid

oxidation.63 The inclusion of the 4-1BB-domain in

clinically applied CARs appears to enable long-term T cell

persistence.9 Similarly, inducible T cell costimulator (ICOS)

and CD27 costimulator molecules have been reported to

enhance the persistence of CAR T cells.9 ICOS stimulation

results in the formation of CD4+ Th17 cells, which may

represent a less differentiated form of CD4 with possible

multipotency.20 Th17 expresses high levels of the Tcf7 and

b-catenin memory cell markers, and appears to possess

multipotency similar to their CD8+ TCM counterparts.20

Although 4-1BB CAR T cells may persist longer than

CD28-based CAR T cells, the long-term response rates in

B-cell Non Hodgkin Lymphoma, appear to be similar with

both CAR subtypes.9 Due to space limitations for this

section, the reader is referred to our recent review on the

impact of CAR costimulator domains on CAR activity.9
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Epigenetic modification

Exhaustion is a progressive degradation of differentiation

potential mediated by epigenetic changes that erode

memory and persistence. Because immune checkpoint

inhibition does not prevent the suppressive imprinting of

exhaustion,15 cell intrinsic strategies appear to be the most

likely way to prevent and reverse exhaustion-related

epigenetic changes. The Ten Eleven Translocation (TET2)

family of methylcytosine dioxygenases catalyzes DNA

methylation through oxidation of 5-methylcytosine to 5-

hydroxymethylcytosine—an intermediate step in DNA

demethylation. Methylation of DNA can alter the

transcription levels of a variety of immune-associated

genes, resulting in changes in T cell differentiation and

activity. Disruption of the tet2 gene improves T cell

proliferation and memory differentiation.16,64 In particular,

a recent study found that in one CLL patient in remission,

CAR T cells had preferentially expanded from a single

clone that harbored one allele with an inborn loss of tet2

function, while the second allele had been mutated by the

transgene insertion.64 The conclusion being that tet2

mutations not only conferred a cell division survival

advantage, but also enabled potent anti-tumor activity.64

T cell suppression by tet2 may be explained by a loss of

DNA methylation at the PD-1 promotor region.15

In contrast to the key role of TET2 in demethylation,

DNMT3a is a DNA methylase.15,16 However, similar to

TET2, DNMT3a activity drives T cell suppression and

exhaustion, presumably by enabling epigenetic changes at

loci distinct from tet2.15,16 De novo methylation driven by

DNMT3a increases dramatically during late effector cell

generation and DNMT3a inhibits T cell lineage plasticity

and selectively downregulates the expression of factors,

such as TCF7 and CCR7, involved in memory cell

formation.15,16 Therefore, DNMT3a inhibits the

differentiation of early effector cells into memory

precursor cells.16 Similar to TET2, reducing DNMTA3a

activity during critical events in T cell differentiation

offers a promising avenue of research.

Immune checkpoint blockade

Combining CAR T cell therapy with immune checkpoint

blockade may be a useful strategy to enhance the

persistence and memory cell formation in CAR T therapy.

In a study utilizing CAR T cells to treat Her2+ tumors,

John et al. were able to improve CAR T cell activity by PD-

1 blockade, which also decreased the numbers of tumor-

associated Gr1+/CD11b+ myeloid-derived suppressor

cells.64 PD-1-mediated expansion of T cells appear to act

on CXCR5+/TIM3� T cells, as well as tissue and tumor-

resident memory T cells.36,66 However, it does not appear

to reverse exhaustion in majority of T cells.15,67 It was

recently demonstrated that a proportion of supposedly

“exhausted” tumor-infiltrating T cells that express TCF1

(see below) preferentially respond to anti-PD1 treatment

and could transform into self-renewing memory cells.26

Enabling effector cell to memory cell transformation

Data from adoptive cell therapy of six melanoma patients

demonstrated that terminally differentiated CD8 effector

cells acquire TEM-like phenotypes (CD28+ CD27+ IL7Ra+

CD62L� CCR7�), and that these cells were detected in

patient blood for more than 6 months and able to eliminate

tumors.22 This study is in line with the finding that TE with

high-level common-c-chain receptor expression are possible

precursors of memory T cells, with enhanced persistence

through Bcl-2 expression.23,25 In a macaque model, Berger

et al. were able to show that TE derived from TCM but not

TEM were able to undergo rescue in vivo with c-chain
cytokines, particularly IL-15 and form both TCM and TEM.

24,25

The transformation of TE to memory T cells occurs via

the appearance of a transient population of memory

precursor effector cells. These precursors have arrested cell

cycle and do not proliferate upon Ag or cytokine

exposure.27 The fully transcriptional network responsible for

transition from precursor to mature memory cells is poorly

known, but it appears that transcription factors such as

TCF-1 and FoxO1 play a crucial role.26,27,30 Re-entry into

the cell cycle activation may be critical for effector cell to

memory cell transformation—similar to the model somatic

cell reprogramming to induced pluripotent stem cells

through enforced expression of oct-4, sox2, klf4 and c-

myc.28 We hypothesize that in effector to memory T cell

transition, c-myc activates the cell cycle, which in turn

induces DNA replication, reducing repressive

heterochromatin conformation (see Figure 4). Memory cell-

related transcription factors can then gain access to newly

exposed regulatory regions to initiate the necessary

transcriptional changes.29 Thus, T effector cells that express

c-myc and IL7Ra or IL15Ra are able to enter cell cycle and

acquire a memory phenotype.21,24,25

CONCLUSIONS AND FUTURE DIRECTIONS

T cell–mediated immunotherapy requires the

establishment of long-term memory, together with the

generation of anti-cancer effector cells. Our review has

summarized the contribution of expansion, persistence and

memory to CAR T cell therapy. Although stem cell-like

memory T cells are required to establish immunity in an

adoptive cell therapy, downstream effector cell generation

is required for cancer cell destruction. Interventions that

increase effector cell lifespan and activity may act
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independent of memory cell development, yet still enhance

anti-tumor activity. Although current efforts are mainly

focused on the generation and expansion of memory cells,

new knowledge of epigenetic modification opens up the

possibility of strategies to enhance effector cell activity and

their possible differentiation into true memory cells.
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Chapter II 

Endogenous upregulation of Mcl-1 

The aim of this chapter was to induce the endogenous level of Bcl2-family member Mcl-

1 for possible application in CAR T cell therapy. We tested eight small activating RNA 

(saRNA) targeting different regions of the Mcl-1 promoter. However, none of the 

overexpressed saRNA were able to induce Mcl-1 above endogenous levels. During this 

work we identified an uncharacterized lncRNA (LOC107985203) transcribed from the 

opposite direction of the Mcl-1 promoter. Using gain-of-function and loss-of-function 

experiments, we verified LOC107985203 lncRNA (named mcl1-AS1) expresses from 

Mcl-1 promoter and negatively modulates Mcl-1 expression. 
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A B S T R A C T

Mcl-1 is a member of the Bcl-2 anti-apoptotic protein family with important roles in the development, lifespan
and metabolism of lymphocytes, as well as oncogenesis. Mcl-1 displays the shortest half-life of all Bcl-2 family
members, with miRNA interference and proteasomal degradation being major pathways for Mcl-1 down-
regulation. In this study, we have identified a previously undescribed control mechanism active at the RNA level.
A divergently transcribed lncRNA LOC107985203 (named here mcl1-AS1) negatively modulated Mcl-1 ex-
pression resulting in downregulation of Mcl-1 at both mRNA and protein level in a time-dependent manner.
Using reporter assays, we confirmed that the mcl1-AS1 lncRNA promoter was located within Mcl-1 coding
region. We next placed mcl1-AS1 under tetracycline-inducible control and demonstrated decreased viability in
HEK293 cells upon doxycycline induction. Inhibition of mcl1-AS1 with shRNA reversed drug sensitivity.
Bioinformatics surveys predicted direct mcl1-AS1 lncRNA binding to Mcl-1 transcripts, suggesting its mechanism
in Mcl-1 expression is at the transcriptional level, consistent with a common role for anti-sense transcripts. The
identification of a bi-directional promoter and lncRNA controlling Mcl-1 expression will have implications for
controlling Mcl-1 activity in cancer cells, or for the purpose of enhancing the lifespan and quality of anti-cancer T
lymphocytes.

1. Introduction

Myeloid cell leukemia factor 1 (Mcl-1) belongs to the Bcl-2 anti-
apoptotic family which inhibit apoptosis by binding and interrupting
the formation of Bak / Bax dimers on the mitochondrial outer mem-
brane (Thomas et al., 2010). Mcl-1 has tissue specific expression and
apart from other Bcl-2 family members has a unique roles in physio-
logical and pathological conditions (Thomas et al., 2010). Mcl-1 de-
regulation has been reported in both hematological (Gouill et al., 2004)
and solid cancers (Fleischer et al., 2006) and its overexpression is as-
sociated with chemotherapy resistance (Song et al., 2005). In the im-
mune system, Mcl-1 contributes to T lymphocyte viability, respiration
and memory cell formation (Kim et al., 2016; Morciano et al., 2016).
Due to the potential importance of control of Mcl-1 to activity and
lifespan of chimeric antigen receptor (CAR) T cells, we investigated
mechanisms of Mcl-1 control with a view to modulating these for en-
hanced anti-cancer responses.

Mcl-1 expression in lymphocytes is rapidly induced by T cell re-
ceptor signaling and during peak cell expansion (Wensveen et al., 2010;

Tripathi et al., 2013). However, Mcl-1 displays the lowest stability of all
Bcl-2 family members with a half-life of< 1 h (Liu et al., 2005;
Senichkin et al., 2020). Mcl-1 expression is controlled by a number of
non-coding RNA (Senichkin et al., 2020). In addition, post-translational
control is mediated by caspases and Mcl-1 PEST domains that undergo
phosphorylation to induce proteasomal degradation (Senichkin et al.,
2019).

lncRNAs are a heterogeneous class of non-coding RNAs (ncRNAs)
classified as ≥200 bp in length to distinguish them from small ncRNAs
(e.g. rRNAs, tRNAs, microRNAs (Mercer et al., 2009). lncRNAs are
normally expressed in a time and tissue-specific manner, and display a
greater tissue-specificity than mRNAs (Rutenberg-Schoenberg et al.,
2016). lncRNAs are implicated in pathological and biological processes
such as cancer, development, proliferation and immunity (Chen et al.,
2017; Rad et al., 2017; Kopp and Mendell, 2018). For example, lncRNA
MALAT1 plays an important role in normal biological and physiological
process such as RNA splicing, transcriptional regulation of genes, neural
development as well as its oncogenic role in development of various
cancers (Zhang et al., 2017).
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In addition to classification based on function, lncRNAs can also be
categorized based on their location in the genome (Laurent et al.,
2015). Long intergenic noncoding RNAs (lincRNAs) are expressed from
intergenic regions and do not overlap with neighboring coding genes.
On the other hand, natural antisense transcripts and intronic lncRNAs
are expressed from coding regions (intron or exon). Lastly, antisense
(AS) are the result of divergent transcription (Mercer et al., 2009;
Atianand et al., 2017). Large portions of lncRNAs are antisense tran-
scripts which usually exert their regulatory function on neighboring
genes at different stages of transcription and translation (Su et al., 2010;
Magistri et al., 2012). Up to 40% of human coding genes may be
regulated by antisense transcripts (Chen et al., 2004; Werner et al.,
2009). Antisense transcripts have variety of functions in biological
processes, such as development, growth, migration and apoptosis (Lin
et al., 2016).

Among the antisense transcripts, the ones derived from promoters of
coding-genes are abundant in organisms from bacteria, plant and
mammalians (Wei et al., 2011). lncRNAs are often transcribed near the
transcription start site (TSS) and appear to be a widespread feature of
active promoters (Seila et al., 2008; Sigova et al., 2013). However, the
role of most of these antisense transcripts in regulation of their neigh-
boring gene is unknown.

Several microRNAs such as miR-125b (Gong et al., 2013), miR-29
(Mott et al., 2007) and miR-101 (Su et al., 2009) target the Mcl-1 3́ UTR
and downregulate its expression at a post-transcriptional level
(Senichkin et al., 2020). However, the regulation of Mcl-1 expression by
antisense transcripts has not yet been reported.

In the current study, we demonstrate that mcl1-AS1 lncRNA (NCBI
Gene ID: 107985203) is expressed from the Mcl-1 proximal promoter
and regulates Mcl-1 expression. Quantitative and functional studies
showed that mcl1-AS1 negatively regulates Mcl-1 expression at both
mRNA and protein levels in a time dependent manner, and impacts
upon sensitivity to a chemotherapeutic agent. Using reporter assays, we
confirmed that the mcl1-AS1 lncRNA promoter is located within Mcl-1
coding region. Bioinformatics surveys predicted that mcl1-AS1 lncRNA
could bind Mcl-1 mRNA, suggesting a mechanism in Mcl-1 control at
the transcriptional level, a common feature of most AS (Mercer et al.,
2009; Werner et al., 2009; Guil and Esteller, 2012).

2. Experimental procedures

2.1. Cloning and plasmid construction

Mcl1-AS1 lncRNA (574 bp of NCBI reference sequence:
XR_001738230.2) were synthesized as a gene block (gBlock, IDT) and
cloned into a tetracycline inducible Sleeping beauty plasmid (pSBtet-
GP) using asymmetric SfiI restriction sites (Kowarz et al., 2015). For
screening of the potential promoter region for mcl1-AS1, fragments of
Mcl-1 were amplified from human genomic DNA (gDNA) of PBMCs
using primers provided in the supplementary data Table S1. These
genomic fragments were cloned into pSB-bi-RFP-luciferase or dual re-
porter pSB-GFP-RFP plasmids (developed in our laboratory from Ko-
warz et al. (Kowarz et al., 2015); see Figs. 5 and 6) using NheI and NcoI
restriction enzymes.

2.2. Short hairpin RNAs (shRNAs) design and construction

Five shRNAs were designed using three different software: shRNA1
& 2 were designed by Invitrogen Block-iT (https://rnaidesigner.
thermofisher.com/rnaiexpress/), shRNA3 & 4 via WI siRNA (http://
sirna.wi.mit.edu/) and sh-RNA5 using Sfold software (http://sfold.
wadsworth.org/cgi-bin/sirna.pl). All shRNAs were synthesized as
sense and antisense oligonucleotides (IDT) with SfiI overhangs, an-
nealed as previously described (Rad et al., 2015) and cloned into
Sleeping Beauty-based, tetracycline-inducible vector pSBtet-GP.
shRNAs sequences are listed in supplementary data Table S2.

2.3. Genomic DNA and RNA extraction, cDNA synthesis and qPCR

gDNA was extracted using QIAamp DNA Mini Kit (Qiagen) ac-
cording to the manufacturer's protocol. Total RNA was extracted using
NucleoSpin® RNA Plus kit (MACHEREY-NAGEL) and was reverse
transcribed to cDNAs by PrimeScript™ RT Reagent Kit (Takara), ac-
cording to manufactures protocols. Next, 1 µl of cDNA was used as a
template in the qPCR reaction with Luna® Universal qPCR Master Mix
(NEB). The expression levels of mcl1-AS1 and Mcl-1 (isoform L) were
measured by comparative CT (2-ΔΔct) method and normalized to β-actin
as a housekeeping gene. Primer sequences are provided in supple-
mentary data Table S1.

2.4. Cell culture and transfection

Human embryonic kidney 293 (HEK293) cells were cultured in
Dulbecco’s modified eagle’s medium (DMEM; Gibco, Auckland, NZ)
supplemented with 10% fetal bovine serum (Pan Biotech, Aidenbach,
Austria) and Pen-Strep (100 U/ml penicillin and 100 µg/ml strepto-
mycin). Cells were maintained in 5% CO2 at 37 °C.

For transfection, a total of 2 × 105 HEK293 cells were cultured per
well in a 24-well plate and transfected with Sleeping Beauty transfer
and transposase plasmids (a ratio of 5:1 SB transfer plasmid to trans-
posase plasmid) using Lipofectamine 3000 following the manufacturer’s
protocol. After 24 h of transfection, media was replaced with fresh
DMEM containing 10% FBS and cells maintained at 37 °C with 5% CO2.
For induction of mcl1-AS1, shRNAs or empty plasmid (control) cells
were treated with 5 µg/ ml of doxycycline.

2.5. Western blot

Cells were lysed using RIPA lysis buffer (0.02% azide, 150 mM
NaCl, 0.25% CHAPS, 0.5% Triton-X100, 100 mM Tris, pH 8.0 along
with freshly added complete protease inhibitor; Roche #11–697-
498–001). The total protein in the cell lysate was determined by
Pierce™ BCA Protein Assay Kit (Thermo Fisher). A total of 20 µg of the
protein was separated by Bolt 4–12% Bis-Tris Plus gels (Invitrogen) and
transferred onto Nitrocellulose membranes (Protran, Amersham,
Auckland, NZ). Membranes were blocked with 0.5% sodium caseinate
(Arotech, Wellington, NZ) / PBS (Sigma) and was probed with rabbit
anti-Mcl-1 antibody (Abcam # ab28147) at 1:1000 dilution as primary
antibody and donkey anti-rabbit IgG DyLight 800 (SA5-10044) in
1:10000 dilution was used as secondary antibody. Mouse monoclonal β-
actin at a concentration of 0.5 mg/ml was used as a primary antibody
(Sigma-Aldrich #A2228) and Goat anti-mouse IgG DyLight 680
(Thermofisher #A3274) was used as secondary antibody. The mem-
brane was scanned using an Odyssey Fc Imaging System (LI-COR
Biosciences, Germany) and was analyzed using Image Studio Lite soft-
ware.

2.6. Resazurin assay

Cell viability was measured by resazurin assay (Sigma-Aldrich).
Briefly, cells were incubated with resazurin 1/10 diluted stock and
incubated for 4 h at 37 °C. Supernatants (100 µl) were transferred to a
black 96-well plate and fluorescence measured using a Varioskan™ LUX
multimode microplate (Thermo Fisher).

2.7. Bioinformatics analysis

All the software used in this study for structure prediction, position
in genome, alignments, RNA/RNA and TF binding prediction are listed
in Table 1.
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2.8. Statistical analysis

All experiments were carried out at least three times, presented as
mean ± standard deviation (SD) and analyzed by student T test and
ANOVA test with Bonferroni post-test correction. The P values
of ≤ 0.05 were considered statistically significant. (* P < 0.05, **
P < 0.01, *** P < 0.001, **** P < 0.0001)

3. Results

3.1. Characterization of mcl1-AS1 lncRNA and Mcl-1 genes

Mcl-1 is located on chromosome 1 between two lncRNAs expressed
from its upstream (mcl1-AS1 lncRNA) and downstream (lnc-MCL1-2)
regions (Fig. 1). The proximal promoter of Mcl-1 has binding sites for
transcription factors, including STAT5, SRE, Ets, SP1, CRE-BP and NF-
ƙB (Akgul et al., 2000). The Mcl-1 TSS is either located 80 bp upstream
of the ATG translation initiation codon (ACTTC) (Akgul et al., 2000), or
according to the DBTSS, is at position 150579738 (GCGCAA) (Fig. 1).
At around exon 1 and 2, Mcl-1 gene shows enrichment for promoter
marks such as H3K4me3, H3K27Ac and DNase I hypersensitivity, sug-
gesting that mcl1-AS1 lncRNA promoter is located in the intragenic site
of the Mcl-1 open reading frame (ORF) (Supplementary Figure S1 & 2).

Mcl1-AS1 lncRNA is expressed from a primary transcript encom-
passing two fused exons to create a 574 bp transcript (joining positions
1…404 and 24305…24474, NCBI Gene ID: 107985203). RNAseq data
from normal tissue shows that mcl1-AS1 lncRNA is expressed in most

tissues at low levels, with a higher level of expression in skin cells
(Supplementary Figure S3).

3.2. mcl1-AS1 lncRNA regulates Mcl-1 expression at both mRNA and
protein level

Firstly, a gain-of-function study was carried out to see the effect of
mcl1-AS1 lncRNA up-expression on endogenous expression of Mcl-1. A
doxycycline inducible sleeping beauty system was used in this study so
that the expression of mcl1-AS1 lncRNA could be controlled accord-
ingly. The expression level of mcl1-AS1 lncRNA upon treatment with
5 µg/ml of doxycycline was measured by qPCR to ensure inducible
expression of mcl1-AS1 lncRNA (Fig. 2A). lncRNAs are involved in
regulation of gene expression both at mRNA and protein level by
binding to either transcriptional or mRNA maturation machinery. To
assess the effect of mcl1-AS1 overexpression on Mcl-1 at protein level
western blotting was performed on HEK293 cells at 24 to 72 h after
mcl1-AS1 lncRNA induction by doxycycline. Induction of mcl1-AS1 did
not alter Mcl-1 level at 24 and 48 h, but Mcl-1 levels were significantly
downregulated at 72 h post-induction (Fig. 2 B&C). Similarly, mcl1-AS1
overexpression led to a decrease in Mcl-1 mRNA levels (Fig. 2 F),
confirming negative regulation of mcl1-AS1 lncRNA of Mcl-1 expres-
sion at both mRNA and protein level.

Next, five shRNAs targeting different regions of mcl1-AS1 lncRNA
were tested (Fig. 2D). To study the effect of mcl1-AS1 downregulation
on endogenous Mcl-1 by shRNA, Mcl-1 expression was measured at
both mRNA and protein levels following 72 h doxycycline induction of

Table 1
Name, application and URL of bioinformatics software used in this study.

Name Application URL

NCBI Gene Position, sequence and gene expression https://www.ncbi.nlm.nih.gov/gene
UCSC genome Browser Position, sequence and histone mark https://genome.ucsc.edu/
DBTSS TSS prediction and histone mark https://dbtss.hgc.jp/
LNCpedia version 5.2 Position, sequence and structure https://lncipedia.org/
YAPP Promoter’s element characterization http://www.bioinformatics.org/yapp/cgi-bin/yapp.cgi
PROMO TF binding site prediction http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
AliBaba2.1 TF binding site prediction http://gene-regulation.com/pub/programs/alibaba2/
Geneious Prime® Primer design, ClustalW sequence alignment https://www.geneious.com/academic/
RNAfold Secondary structure prediction http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
RNAalifold Structure alignment http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAalifold.cgi
LocARNA Sequence-structure-based alignment http://rna.informatik.uni-freiburg.de/LocARNA/Input.jsp
IntaRNA RNA/RNA interaction prediction http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp
RNAup RNA/RNA interaction prediction http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAup.cgi

Fig. 1. Characterization of human Mcl-1 gene. Mcl-1 is located in chromosome 1 and has three exons (red boxes). The Mcl-1 proximal promoter contains a 103 bp
CpG island. Two lncRNAs are driven from Mcl-1 gene. Mcl1-AS1 lncRNA is expressed from proximal promoter of Mcl-1 (classified as an 'anti-sense promoter') and lnc-
MCL1-2 is expressed from the Mcl-1 3′ UTR and acts as ceRNA. Recently, lnc-ADAMTSL4 family which comprises 13 uncharacterized lncRNAs that may overlap the
Mcl-1 promoter and enhancer. The first exon / intron of Mcl-1 shows enrichment for promoters marks such as H3K4me3, H3K27Ac and DNase I hypersensitivity
according to DBTSS and UCSC databases. For more details please see Supplementary Figure S1 & 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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shRNA expression. As shown in Fig. 2 E & F, downregulation of mcl1-
AS1 lncRNA resulted in upregulation of endogenous Mcl-1 expression at
72 h. These results confirm that the overexpression of mcl1-AS1 lncRNA
downregulates Mcl-1. To rule out that doxycycline was affecting mcl1-
AS1 expression we tested the effect of 5 µg/ml of doxycycline on
lncRNA expression, but observed no major perturbation in the expres-
sion of mcl1-AS1 (Supplementary Figure S4).

3.3. Regulation of Mcl-1 through mcl1-AS1 lncRNA affect cell viability of
HEK293 cells

Mcl-1 is an anti-apoptotic protein that impacts on cell viability by
modulating mitochondria function, particularly through its ability to
stabilise membrane potential by interfering with Bak/ Bax- mediated
pore formation in the mitochondrial outer membrane (Morciano et al.,
2016). Previous studies have shown that downregulation of Mcl-1 by
microRNAs, such as miR-101 and miR-193b sensitized cancer cells to
doxorubicin, emphasizing on the role of Mcl-1 in cell survival (Long
et al., 2015; He et al., 2016). HEK293 cells transfected with mcl1-AS1
or sh-mcl1-AS1s were treated with 10 µg/ml of doxorubicin, equivalent
to the IC50 (Supplementary Figure S5). As shown in Fig. 3, altering Mcl-
1 levels, by either overexpression or downregulation of mcl1-AS1
lncRNA, affects cellular sensitivity to doxorubicin.

3.4. Identification and characterization of mcl1-AS1 lncRNA promoter

Since the mcl1-AS1 lncRNA is complementary to the Mcl-1 proximal
promoter, its promoter is likely present within the Mcl-1 coding region.
As discussed above, exon 1 to exon 2 of Mcl-1 shows enrichment for
promoter marks (Fig. 1). To confirm the activity of the predicted mcl1-
AS1 promoter the Mcl-1 proximal to the second intron of Mcl-1 or
fragments thereof, were cloned upstream of luciferase according to
their orientation in the genome to determine if they act as a promoter

for mcl1-AS1 or Mcl1 (Fig. 4 A). Both the Mcl-1 proximal promoter and
the exon1-intron1 fragment showed promoter activity in inducing the
luciferase gene 2-fold (P < 0.0001; Fig. 4B).

To further validate the exon1-intron1 as mcl1-AS1 lncRNA

Fig. 2. Overexpression and knockdown of mcl1-AS1 lncRNA alter Mcl-1 expression. (A) Overexpression of mcl1-AS1 lncRNA in Tet-On SB system. Doxycycline (5 µg
/ ml) was added to induce mcl1-AS1 lncRNA. (B and C) Western blot of enforced expression of mcl1-AS1 lncRNA resulting in downregulation of Mcl-1 72 h post-
induction. (D) The ability of synthetic shRNAs to inhibit mcl1-AS1 expression, as determined by qPCR assay. (E) Western blot analysis of Mcl-1 expression 72 h after
transfection of HEK293 cells with shRNAs against mcl1-AS1. (F) Mcl-1 expression level quantified by qPCR, after upregulation or downregulation of mcl1-AS1
lncRNA. shRNA2 was used in qPCR experiment as it showed the most powerful shRNA. Control in all experiments is HEK293 cells transfected with empty plasmid and
treated with 5 µg / ml of doxycycline.

Fig. 3. Modulation of endogenous level of Mcl-1 through mcl1-AS1 lncRNA
alters the sensitivity of HEK293 cells to doxorubicin. HEK293 cells were in-
duced with 5 µg / ml of doxycycline to enhance (Tet-On-expressed mcl1-AS1)
or downregulate (Tet-On expressed mcl1-AS1 shRNA-2) mcl1-AS1 lncRNA ex-
pression. HEK293 was treated with 10 µg / ml of doxorubicin at 48 h, and cell
viability measured using resazurin assay at 72 h post doxycycline induction (see
also Fig. S4).
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promoter, this region was cloned into a SB-based dual-reporter plasmid
(Fig. 5 A). This dual reporter allowed us to determine the promoter
direction according to its orientation in the genome. Therefore, if the
region has promoter activity for the sense strand in the genome, GFP
should be expressed and if activity is directed to the anti-sense strand
RFP will be expressed. As Fig. 5B & C show, the proximal promoter of
Mcl-1, located in the antisense strand, expressed RFP. The exon1-in-
tron1 fragment drove GFP expressing, confirming this region as mcl1-
AS1 lncRNA promoter. Weaker expression of GFP by the second exon
and intron could be explained by the fact that this region is either an
enhancer, or an upstream promoter element, resulting in only weak
reporter expression, rather than acting as a core promoter.

To further characterize the mcl1-AS1 lncRNA promoter, we utilized
bioinformatics tools to identify transcription factor binding sites (TFBS)
and core promoter elements (Fig. 6). UCSC genome browser and
PROMO software predicted enrichment for TFs such as STAT, C/EBP,
NF-κB, Sp1 and Ets within the first exon and intron, similar to those
binding the Mcl-1 promoter (Akgul et al., 2000). The mcl1-AS1 lncRNA
core promoter contains a TATA box motif, similar to the one has been
reported for Mcl-1 gene (Tullai et al., 2007).

3.5. mcl1-AS1 lncRNA is similar to one of the members of the lnc-
ADAMTSL4 lncRNAs family

LNCipedia browser includes a new class of lncRNAs, lnc-
ADAMTSL4, that vary in length (from 213 bp to 12066 bp) and are
expressed from the Mcl-1 regulatory region (Supplementary Table S3 &
4). This family contains 13 uncharacterized lncRNAs. ClustalW align-
ment of mcl1-AS1 lncRNA against lnc-ADAMTSL4 family revealed
mcl1-AS1 lncRNA is 100% similar to lnc-ADAMTSL4-5:1 (Table 2).
Furthermore, structure based and sequence–structure-based alignments
confirmed high similarity between mcl1-AS1 lncRNA and ADAMTSL4-
5:1 (Fig. 7 A & B). In fact, ADAMTSL4-5:1 (418 bp) is shorter version of
mcl1-AS1 lncRNA (574 bp) by 156 bps, suggesting that either both
transcripts are same transcript with small differences in length (due to
different sources of RNA-seq data) or mcl1-AS1 lncRNA is a new
member of this family. Further information about the ADAMTSL4 fa-
mily is provided in Supplementary Table S3 & 4.

3.6. mcl1-AS1 lncRNA is predicted to bind to Mcl-1 mRNA

lncRNAs can regulate genes at the transcriptional level by directly
binding to the regulatory regions of gene, TFs, chromatin remodeling
proteins and transcriptional machinery (Magistri et al., 2012; Zhang
et al., 2017). At post-transcriptional level, they can bind to various RNA

Fig. 4. Identification of the potential promoter region for mcl1-AS1 lncRNA within Mcl-1 coding regions. (A) Schematic illustration of the luciferase reporter
constructs used to investigate the promoter activity of different regions of Mcl-1 gene. The luciferase plasmids lack the minimal promoter to reduce background
expression. (B) Luciferase assay for HEK293 cells transfected with reporter plasmids carrying different Mcl-1 regions.

Fig. 5. Verification of mcl1-AS1 lncRNA promoter
using a dual-reporter system. (A) Schematic illustra-
tion of the dual-reporter promoter for determining
the promoter orientation relative to its position in the
genome. Mcl-1 expresses from anti-sense strand
while mcl1-AS1 lncRNA expresses from sense strand.
Transcription from the antisense strand will result in
RFP expression, while sense transcription results in
GFP expression. (B) Fluorescent microscopy and (C)
flow cytometric analysis of HEK293 cells transfected
with dual-reporter plasmids carrying different region
of Mcl-1 gene. Induction of GFP with the first exon-
intron region verifies this sequence as the mcl1-AS1
lncRNA promoter in the sense orientation.

S.M. Ali Hosseini Rad, et al. Gene 762 (2020) 145016

5



binding proteins or mRNA causing changes in stability, polyadenyla-
tion, splicing, exportation and subcellular localization of the mRNA (He
et al., 2019). We looked for a possible direct interaction between mcl1-
AS1 and Mcl-1 mRNA using two different software. IntaRNA predicted
the interaction between mcl1-AS1 has different nucleotides ranged at
position 114–176 that could bind to the Mcl-1 mRNA nucleotides from
613 to 682 (Fig. 8A). Furthermore, RNAup software predicted direct
interactions of Mcl-1 and mcl1-AS1 at different positions compared to
those predicted by IntaRNA (Fig. 8B). Secondary structure of mcl1-AS1
lncRNA predicted by RNAfold is shown in Fig. 8C (see also Fig. 9).

4. Discussion

This study has identified the regulation of Mcl-1 expression (ex-
pressed on the conventional anti-sense strand) by a divergent lncRNA
expressed from the (conventional sense strand) Mcl-1 promoter (see
Fig. 9). Activity of the mcl1-AS1 core promoter was demonstrated using
reporter genes. Inducible overexpression of the mcl1-AS1 lncRNA de-
creased the abundance of endogenous Mcl-1 transcripts, confirming a

Fig. 6. Prediction of TF-binding sites within the mcl1-AS1 lncRNA promoter. TF binding sites were predicted using PROMO and AliBaba2.1 (both using different
versions of the TRANSFAC database). The TATA box was predicted using YAPP software.

Table 2
ClustalW alignment of mcl1-AS1 lncRNA versus lnc-ADAMTSL4 family
members.

Names % Pairwise Identity

mcl1-AS1 vs lnc-ADAMTSL4-1:1 40.4%
mcl1-AS1 vs lnc-ADAMTSL4-1:2 40.5%
mcl1-AS1 vs lnc-ADAMTSL4-2:1 43.1%
mcl1-AS1 vs lnc-ADAMTSL4-4:1 42.1%
mcl1-AS1 lnc-ADAMTSL4-5:1 100%
mcl1-AS1 vs lnc-ADAMTSL4-6:1 40%
mcl1-AS1 A vs lnc-ADAMTSL4-7:1 43%
mcl1-AS1 vs lnc-ADAMTSL4-7:3 41.3%
mcl1-AS1 vs lnc-ADAMTSL4-7:4 43%
mcl1-AS1 vs lnc-ADAMTSL4-7:5 43%
mcl1-AS1 vs lnc-ADAMTSL4-7:6 43%
mcl1-AS1 vs lnc-ADAMTSL4-7:7 43%
mcl1-AS1 vs lnc-ADAMTSL4-7:8 48.5%
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functional interaction between these RNA species. Conversely, shRNA
mediated knock-down of endogenous mcl1-AS1 led to a detectable in-
crease in Mcl-1.

Mcl-1 expression in lymphocytes is rapidly induced by triggering T
cell receptor signaling 24 h after activation with CD3 and CD28 anti-
bodies followed by rapid downregulation 48 and 72 h after activation
(Wensveen et al., 2010; Tripathi et al., 2013). Consistent with these
findings, Mcl-1 and mcl1-AS1 RNA showed divergent expression in
primary T cells upon CD3 and CD28 stimulation (Supplementary Figure
S6).

It is not at this stage clear how mcl1-AS1 lncRNA influences Mcl-1
expression. Direct interaction of mcl1-AS1 with Mcl-1 mRNA was pre-
dicted with some certainty using a bioinformatics approach. It is

possible that such an interaction could lead to transcriptional stalling,
mRNA degradation or interference with the nuclear export of spliced
Mcl-1 mRNA (Kopp and Mendell, 2018; He et al., 2019). Processing and
export of mcl1-AS1 or fragments thereof, could theoretically impact
upon protein translation in the cytoplasm. Another possibility is that
mcl1-AS1 lncRNA is expressed from the Mcl-1 promoter and through its
complementarity to Mcl-1 proximal promoter, mcl1-AS1 lncRNA in-
teracts with the Mcl-1 regulatory region to interrupt Mcl-1 transcrip-
tion, or to induce alternate splicing to pro-apoptotic Mcl-1S. Like most
lncRNAs, mcl1-AS1 is predicted to form a stem-loop structure which
could bind Suz12, a core component of the polycomb repressive com-
plex 2 (PRC2). Such an RNA stem-loop sequence at the 5′ end of genes
might allow histone H3 Lys27 trimethylation (H3K27me3) to inhibit

Fig. 7. Sequence-structure alignment between mcl1-AS1 lncRNA and lnc-ADAMTSL4-5:1: (A) Visualization of the local sequence–structure-based alignment relia-
bility (STAR) between mcl1-AS1 lncRNA and lnc-ADAMTSL4-5:1 using LocARNA-P Reliability Profile (STAR Profile Plot). The profile consists of the reliabilities for
each single alignment column. The dark regions indicate structure reliability, the light regions represent sequence reliability, and the thin line shows the combined
column-reliability. The column-wise reliabilities are computed as sum-of-pairs over match probabilities, which are computed by LocARNA-P. (B) The consensus
structure of the alignment, as predicted by RNAalifold, is shown in a 2D layout. Base pairs use the same color code as in “Colour and structure annotated alignment”.
The hue demonstrates sequence conservation, while saturation shows structural conservation. If gaps are present, lower case letters are used.

Fig. 8. Possible interaction between mcl1-AS1 lncRNA and Mcl-1 mRNA. (A) Possible interaction between mcl1-AS1 lncRNA and Mcl-1 mRNA at nucleotide position
114–176 of mcl1-AS1 with 613–682 nucleotides of Mcl-1 mRNA predicted by IntaRNA software. (B) Interaction at nucleotide mcl1-AS1 RNA (1492–502) with Mcl-1
mRNA (2940–2950), as predicted by RNAup software (C) Prediction of mcl1-AS1 secondary structure using RNAfold program.
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transcription (Guil and Esteller, 2012; Senichkin et al., 2020).
One possibility to modulate the influence of AS is the use of small

activating RNA (saRNA) that target promoter regions. These typically
bind to CpG islands to upregulate gene expression. Interestingly, saRNA
are slow to act compared to siRNA or miRNA, with maximal effects on
gene expression observed at 72 h (Li et al., 2006), similar to our ob-
served kinetics of shRNA-mediated relief of Mcl-1 inhibition by mcl1-
AS1. Although theoretically designed to bind to promoter regions,
saRNA have the potential to bind to AS transcripts expressed diver-
gently from gene promoters (Portnoy et al., 2011). Not surprisingly,
when we attempted to regulate Mcl-1 expression using a series of eight
saRNA targeted to the upstream Mcl-1 promoter region, these failed to
upregulate Mcl-1 gene expression (Supplementary Figure S7). Induction
of endogenous Mcl-1 expression may require 'shRNA' to directly bind
the AS transcripts and therefore effectively act as 'saRNA'.

Next generation RNA-sequencing data provided by projects such as
ENCODE (https://www.encodeproject.org/) and FANTOM5 (http://
fantom.gsc.riken.jp/5/) have led to the identification of thousands of
ncRNAs. For instance, the ENCODE release (version 25) revealed that
coding regions only account for ~2% of human genome, while
~75–90% of human genome is transcribed to ncRNAs, with an esti-
mation of 80% of them being functional in at least one cell type
(Laurent et al., 2015; Atianand et al., 2017). Furthermore, the
FANTOM5 project led to identification of 20,000 new lncRNAs, which
so far only a fraction have been characterized. The gap between raw
RNA-sequencing data and characterization of lncRNAs is made wider by
poor evolutionary conservation and limited tools to predict and func-
tionally validate their interaction with DNA, RNA and protein (Thiel
et al., 2019).

In addition to the transcription of coding sequences, antisense
transcription is also abundant at active promoters and may drive the
expression of short-lived, non-coding RNA (Seila et al., 2008; Werner
et al., 2009). While the functions of most of these antisense transcripts
are poorly known, previous studies suggest that AS may mainly play
repressive roles (Shearwin et al., 2005). The regulatory pathway un-
covered here further highlights the potential for anti-sense regulation of
cell survival pathways and its relevance to cancer and the immune re-
sponse (Zhang et al., 2017; Chen et al., 2018).

Among the lncRNAs, PVT1 and LINC00152 have been shown to

enhance Mcl-1 expression by increasing Mcl-1 mRNA stability or act as
competitive endogenous RNAs (ceRNAs) for miRNAs (Wu et al., 2017;
Chen et al., 2018). Both PVT1 and LINCOO152 are located in different
chromosomes (chromosome 8 and 2 respectively) than Mcl-1 (chro-
mosome 1), hence they are acting in trans in Mcl-1 regulation. The only
known lncRNA acting in cis in Mcl-1 regulation is lnc-MCL-1-2. Using in
silico analysis, Ronchetti et al. suggested that lnc-MCL-1-2, which is
expressed from Mcl-1 3́ UTR region, has potential binding sites for the
miR-17 family (miR-106a, miR-18a & b, miR-20a and miR-17) and
therefore could act as competing endogenous ceRNA to enhance Mcl-1
expression (Ronchetti et al., 2016).

Mcl1-AS1 may be a newly identified member of lnc-ADAMTSL4
lncRNA family, since ADAMTSL4-5:1 (418 bp) shares 100% similarity
with mcl1-AS1 lncRNA (574 bp). Either both are transcribed as the
same transcript, with small differences in length (possibly due to dif-
ferent sources of RNA-seq data), or mcl1-AS1 lncRNA is a new member
of this family. Future investigations are necessary to validate the latter
possibility.

Due to the critical role of Mcl-1 in both cancer and for T cell activity
and lifespan, it may be possible to regulate Mcl-1 expression by mod-
ulating the level of endogenous lncRNA identified here. This has po-
tential for enhancing susceptibility of cancer cells to chemotherapy, or
enhancing the activity of anti-cancer T cells for immunotherapy.
However, the diversity of potential transcripts expressed from the Mcl-1
regulatory region (see Fig. 1) highlights the extreme complexity of
control mechanisms for Mcl-1 expression. It is also possible that the
transcripts display tissue-specific roles in Mcl-1 regulation. Further re-
search will be required to determine the potential for these transcripts
in the regulation of Mcl-1 and neighboring genes.
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Fig. 9. Possible mechanisms for mcl1-AS1 lncRNA negative regulation of Mcl-1 expression. Direct interaction of mcl-AS1 lncRNA with Mcl-1 mRNA was predicted by
two different bioinformatic tools as shown. The interaction could result in interference of mcl1-AS1 with Mcl-1 mRNA maturation and exportation. In addition, since
mcl1-AS1 is complementary to the Mcl-1 promoter it is possible it directly interacts with the Mcl-1 regulatory region to interrupts transcription. LncRNAs with stem-
loop structures have been shown to recruit the repressory complexes at regulatory regions of genes to suppress their expression.
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Supplemenatary data for Chapter II 

 

 

 

 

Figure S1. Chromatin status of Mcl-1 gene in A) DBTSS and B) UCSC databases. 

Enrichments for promoter marks such as H3K4me3, H3K2Ac and high DNaseI 

hypersensivity in the first exon and intron of Mcl-1 suggest the presence of a promoter 

for mcl1-AS1. 

 

 

 



Figure S2.  RNA-seq data of Mcl-1 and mcl1-AS1 expression 27 normal tissues extracted 

from NCBI-gene expression browser. Reads per kilobase per million reads (RPKM). 

 

 

 

 

 



Figure S3. Effect of Doxycycline on mcl1-AS1 expression. Doxycycline does not alter 

the mcl1-AS1 expression in Hek293 cells. Hek293 cells were transfected with empty 

plasmid and treated with 5 µg/ml of doxycycline. 72 hrs after induction, qPCR performed 

for investigation of  doxycycline effect on mcl1-AS1. As data shows, doxycycline does 

not alter the mcl1-AS1 expression in Hek293 cells. 
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Figure S4. determination of Doxorubicin IC50 in HEK293 cells. Cells were treated with 

different concentration of doxorubicin and cell viability were measured using resazurin 

assay. 

 

 

 

 

 



 

Figure S5.  The expression level of Mcl-1 and mcl1-AS1 after activation of primary T 

cells with CD3/ CD28 antibodies 24, 48 and 72 hours after activation using qPCR. 

 

 

 

 

 

 

 

 



 

Figure S6.  Mcl-1 expression 72 hours after HEK293 cells transfected with eight saRNAs 

targeting different regions of Mcl-1 promoter.  

 

 

 

 

 



Table S1. Primer sequences used for qPCR experiments and cloning the different parts 

of human Mcl1 gene. Overhangs for restriction enzyme sites are underlined.   

 

 

Table S2. shRNA sequences with software used for designing them. Loop sequences are 

underlined.   

 

 

 

 

 

 

 

 

 

 



Table S3. Members of lnc-ADAMTSL4 family with their structure and source. Exons 

are shown in green boxes. 

 

 

 

 

 

 

 

 



Table S4. 13 Members of lnc-ADAMTSL4 family classified as 3 antisense and 10 

intergenic lncRNAs. Only lnc-ADAMTSL4-1:1 & 2 have potentially coding capacity. 

The family show low conservation compare to other animals. Data are available in 

LINipedia genome browser. Coding capacity was determined by two algorithms; CPAT 

and PhyloCSF. For locus conservation, Emsembl Compara API was used. CPAT: 

Coding-Potential Assessment Tool using an alignment-free logistic regression model. 

Human coding probability (CP) cutoff: 0.364 (CP ≥ 0.364 probability coding sequence, 

CP < 0.364 probability noncoding sequence). (http://rna-cpat.sourceforge.net/). 

PhyloCSF: Coding Potential of a multi-species nucleotide sequence alignment. CP cutoff: 

60.7876 (CP ≥ 0.364 probability coding sequence, CP < 0.364 probability noncoding 

sequence) (https://github.com/mlin/PhyloCSF/wiki). 
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Chapter III 

Optimisation of Tet‑On inducible system for Sleeping 

Beauty-based CAR T cell applications 

In this chapter, we developed an inducible SB Tet-On system in order to control 

expression of Mcl-1 in CAR T cells. The most significant weakness of this system was 

high background expression in the absence of doxycycline. We used several approaches 

to improve the Tet-On system, including gene placement, codon-optimisation of rt-TA, a 

G72V mutation in the rtTA tet activator, removal of cryptic splice sites within rt-TA, 

creation of an autoregulatory Tet-On system, and through manipulation of regulatory 

elements in the tetracycline response element (TCE) promoter. Our final optimised 

construct showed high inducibility and a very low background expression compared to 

the original construct. 

 

Author contributions: 

A.R. and A.M. wrote the paper and supervised the study. A.R. contributed to experimental 

data in all figures, prepared the figures, tables and performed the bioinformatics analysis. 
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Optimisation of Tet‑On inducible 
systems for Sleeping Beauty‑based 
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Regulated expression of genetic elements that either encode polypeptides or various types of 
functional RNA is a fundamental goal for gene therapy. Inducible expression may be preferred over 
constitutive promoters to allow clinician-based control of gene expression. Existing Tet-On systems 
represent one of the tightest rheostats for control of gene expression in mammals. However, basal 
expression in absence of tetracycline compromises the widespread application of Tet-controlled 
systems in gene therapy. We demonstrate that the order of P2A-linked genes of interest was critical 
for maximal response and tightness of a chimeric antigen receptor (CAR)-based construct. The 
introduction of G72V mutation in the activation region of the TetR component of the rtTA further 
improved the fold response. Although the G72V mutation resulted in a removal of a cryptic splice 
site within rtTA, additional removal of this splice site led to only a modest improvement in the fold-
response. Selective removal of key promoter elements (namely the BRE, TATA box, DPE and the four 
predicted Inr) confirmed the suitability of the minimal CMV promoter and its downstream sequences 
for supporting inducible expression. The results demonstrate marked improvement of the rtTA based 
Tet-On system in Sleeping Beauty for applications such as CAR T cell therapy.

Inducible-gene expression is one of the most sought-after elements of synthetic gene regulation systems. Engi-
neering mammalian cells to express proteins or RNA in an inducible fashion offers opportunities for the devel-
opment of safe cellular-based therapies to treat a wide spectrum of inborn and acquired diseases. Compared 
to prokaryote genetic systems, the development of tight, inducible gene expression in eukaryote cells has been 
challenging1–3. Unlike prokaryotes, mammalian genetic control is not usually mediated by single or oligo-compo-
nent regulators, but rather by multiple transcription factors that bind to both promoters, as well as often distant 
enhancer regions located on different chromosomes. Moreover, both promoters and enhancers may be regulated 
by epigenetic control mechanisms, and the site of transgene insertion in the genome influences the response 
profile of transgenes4. Tet-On systems utilise a mutant TetR component that binds to tetracycline response ele-
ments (TRE) in the presence of tetracycline, or its stable analogue doxycycline5. To activate transcription, fusion 
of the herpes-simplex VP16 transcriptional activator to the C-terminus of the mutant TetR, recruits generalised 
transcription factors, as well as RNAP II to initiate gene transcription. Modified tetracycline-inducible systems 
represent the most widely used inducible system in eukaryotic systems, from yeast to human cells5. The potential 
exists for drug inducible systems to be used in cell-based immunotherapy to control the expression of genes 
or other sequences of interest (GOI). Although 103 to 106-fold induction of gene expression with tetracycline-
based control systems has been reported, basal expression in the absence of inducer can result in undesirable 
GOI expression5. In vivo use would be compromised by such leakiness, particularly if the GOI was involved in 
T cell survival, or resistance to apoptosis. Unfortunately, compared to Tet-Off systems, Tet-On systems are less 
sensitive to tetracycline and generally exhibit a higher level of basal expression in the absence of induction6. On 
the other hand, Tet-Off systems are slow to respond to withdrawal of tetracycline and this may be compounded 
by sequestration of tetracycline in vivo, especially within bones2,7.

OPEN

1Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand. 2These 
authors contributed equally: S. M. Ali Hosseini Rad, Aarati Poudel and Grace Min Yi Tan. *email: alex.mclellan@
otago.ac.nz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-70022-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13125  | https://doi.org/10.1038/s41598-020-70022-0

www.nature.com/scientificreports/

The Sleeping Beauty (SB) transposon system was developed from extinct Salmonid transposons awoken 
after 10 million years of inactivity through consensus-based correction of accumulated mutations8. Compared 
to retroviral-based insertions into transcriptional units and their regulatory regions, SB vectors insert almost 
randomly into TA-sites throughout the genome. This property minimises deleterious integrations and helps 
maintain constitutive or inducible gene expression9,10. SB-based vectors carry a GOI along with optional mark-
ers or selection elements flanked by inverted terminal repeats (ITRs)9–12. Although the transposase has been 
re-engineered to enhance activity12,13, a lower-activity SB-transposase is preferred for human clinical trials to 
minimise the incidence of multiple genome integrations. Along with piggy bac transposase systems, SB trans-
posase systems have been used in CAR T cell therapy trials for B cell malignancies14,15. To expand the utility of 
SB-based vectors to express a CAR together with additional GOI under drug-control, we revisited the SB-based 
Tet-On system, through: (1) alterations in the placement of genes within the P2A-linked CAR cassette, (2) the 
introduction of a G72V mutation in rtTA-M2 – previously only described for yeast Tet-On control16 (3) the 
placement of rtTA under auto-regulatory control, (4) the removal of cryptic splicing sites, and (5) modifications 
of the proximal promoter. To test the induction of the Tet-On system, we expressed myeloid leukaemia cell dif-
ferentiation (Mcl-1) as a GOI involved in T cell survival and resistance to apoptosis.

Results
The rtTA location within a multi‑gene cassette influences responsiveness of the Tet‑On sys‑
tem.  We reasoned that placing a codon-optimised rtTA-M2 gene proximal to the RPBSA promoter (pSBtet-1) 
should result in robust rtTA-M2 expression and therefore tight control of inducible gene expression (Fig. 1).

Surprisingly, this setting led to a decrease in both the fold-expression of luciferase and Mcl-1 mRNA 
(Fig. 2A,B). It has previously been reported that expression of rtTA-M2 by strong promoters compromises 
inducible expression16,17. We therefore relocated the original rtTA-M2 sequence distal to the RPBSA and down-
stream from either one (pSBtet-2) or two (pSBtet-3) additional GOI. However, inducibility of the GOI was still 
poor (Figs. 1, 2C,D).

Introduction of a G72V mutation in rtTA‑M2 enhances the tightness of the Tet‑On sys‑
tem.  Roney et al.16 reported that a GGG to GTG (G72V) missense mutation in rtTA mitigated basal gene 
expression in the absence of an inducer in S. cerevisiae clones. Because of the similarity of transcriptional 
machinery amongst eukaryote cells, we reasoned that this approach may give similar results in human cells. The 
G72V mutation was next introduced into pSBtet-2 and pSBtet-3 to create the pSBtet-4 and pSBtet-5 constructs 
(Fig. 1). The G72V mutation in rtTA-M2 decreased the background expression of TCE promoter in the absence 
of doxycycline at both the mRNA and protein level (P < 0.001, Fig. 3A,B). The G72V mutation also restored the 
maximal expression of pSBtet-2 and pSBtet-3 constructs following induction with doxycycline (Fig. 3C). As pre-
viously reported, G72V-rtTA-M2 appeared less sensitive to doxycycline compared to original rtTA-M2, though 
this was not statistically significant (Fig. 3C, P > 0.9)16. A similar pattern of results was obtained after two weeks 
passage of cells to ensure stable integration of the pSBtet-5 (Fig. 3D,E). Note, the GFP expression of the trans-
fected cell lines dropped from ~ 90 to ~ 70% after two weeks of culture, most likely due to a shift from transient 
gene expression to that from integrated cassettes.

Figure 1.   Schematic illustration of SB-based Tet-On systems used in this study. Constructs derived from 
original pSBtet-GP developed by Kowarz et al. TCE: tet-responsive promoter/ GOI: gene of interest (Mcl-1 
or firefly luciferase); PA: polyadenylation site; P2A: 2A self-cleaving; rtTA-M2: reverse tetracycline-controlled 
transactivator; RPBSA: constitutive promoter comprised of the Rpl13a core promoter and exon 1, plus 
additional exon and intron elements from Rpl41.
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Investigation of autoregulatory strategy with G72V variant.  We next investigated possible 
improvements in inducibility of multiple GOIs using positive feedback control in an autoregulatory cassette. 
Autoregulation can improve tetracycline-regulation in a retroviral vector18 and in a bi-directional19 or uni-direc-
tional lentiviral vector7. The bi-directional approach appears tight in transient transfection, however, high back-
ground was detected when cells were stably transduced19. Therefore, we utilised a uni-directional strategy with 
a P2A sequence in place of an Internal Ribosome Entry Site (IRES) sequence, to allow expression of GOI-P2A-
G72VrtTA under TCE promoter (pSBtet-6,Fig. 1). We speculated that the leaky expression of the TCE would 
still allow sufficient levels of G72V-rtTA inducer to respond to doxycycline stimulation. Although the positive 
feedback system resulted in tight expression at the protein level (Fig. 4A), as previously reported7,18,19, the system 
was leaky at the mRNA level for Mcl-1 (Fig. 4B). Basal expression of luciferase in pSBtet-6 was lower than for 
pSBtet (P < 0.05) and showed a higher response upon induction (P < 0.05, Fig. 4C). Compared to the constitu-
tive expression of G72V-rtTA, the autoregulatory system showed greater sensitivity to doxycycline induction 
(P < 0.05; Fig. 4C), although the basal expression was higher (P = 0.0066).

Removing cryptic alternative splice sites within rtTA reduces the background expres‑
sion.  Since the first description of the eukaryotic Tet-On inducible system, most optimisation studies have 
focused on rtTA mutations: for example, the removal of cryptic splice sites (flanking amino acids 8–144) in the 
TetR sequence20,21. Using recently-developed software22, we identified eight additional potential cryptic splice 
sites within the coding region of rtTA-M2 (Fig. 5A and Table S1). Because the G72V mutation resulted in the 
loss of a cryptic splice site at position 215 (Fig. 5A and Table S2, we determined if the success of the G72V muta-
tion was due to the removal of the potential cryptic splice site at 215. These cryptic splice sites are located in two 
regions of rtTA; one in a surface residue (215 nt and seven in the dimerisation domains (320 nt, 326 nt, 367 nt, 
392 nt, 408 nt, 456 nt and 541 nt; Fig. 5A, Figure S1). We therefore removed all eight cryptic splices sites by silent 
or conserved missense-mutations in the pSBtet construct (Table 1).

The removal of six cryptic splice sites modestly enhanced the tightness of Tet-On system 7.7–19.6 fold com-
pared with original rtTA (P < 0.001, Fig. 5B). The remaining two mutations at position 320 (~ twofold, P = 0.8) 
and 367 (~ fivefold, P = 0.08) did not significantly affect Tet-On performance. The mutation at position 320 
produced E106Q, while 367 (Q122) was a silent mutation (Table 1). It is possible these two splice sites are weak 
5′ acceptor splice sites which are only used if other competing splice sites are removed23. Indeed, positions 
320 and 367 have low score and confidence which represent strength and the probable occurrence of a splice 
site, respectively (Table S1). Combining all mutations together, improved the leaky background of the Tet-On 
system ~ 40 fold compared to original rtTA (P < 0.0001, Fig. 5B). However, superior results were still seen with 
G72V mutation (Fig. 5C).

Surprisingly, combining the G72V mutation and removing all cryptic splice sites abolished responsiveness 
and inducibility of Tet-On system (Fig. 5C,D). There are four altered amino acid positions within rtTA-M2 that 
result in a reverse activator phenotype, as compared to the original TetR: E71K, D95N, L101S and G102D2. In 
TetR, E71 is a surface residue amino acid, D95 connects the DNA reading head to the core domain, while L101 
and G102 are crucial for dimerisation and the tetracycline response, respectively2. In TetR the E71 and G72 amino 
acids create the turn between α-helix-4 and 5 (Fig. 6). This region bridges the DNA binding domain to the tetra-
cycline binding domain and the combination of both the E71K and G72V mutations might destroy the structure 
of this critical turn, causing a loss of rtTA-M2 activity. This may also explain the drop in tetracycline-induction 
observed with the position 320 mutant (E107 to Q107, Fig. 5D), since this residue is close to a ’high sensitivity 

Figure 2.   Locating a commercially-codon optimised rtTA-M2 (cop-rtTA; pSBtet-1) proximal to RPBSA 
increases the leakiness of TCE promoter as measured by (A) luciferase fold induction and (B) qPCR for Mcl-1 
mRNA. Relocating the unmodified rtTA-M2 distal to the RPBSA in (pSBtet-2 &-3) did not improve the basal 
expression measured by (C) luciferase fold induction and (D) qPCR for Mcl-1 mRNA. Experiments were 
carried out 96 h post-transfection. Statistical analysis: (A, B) two-tailed t-test, (C, D) one-way ANOVA test with 
Bonferroni post-test correction (*P < 0.05, **P < 0.01, ***P < 0.001).
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region’ (Figure S2)21,24–26. It is possible that the G72V mutation affected the secondary structure of rtTA16, rather 
than simply removing a cryptic splice site. It is interesting to note that further commercial algorithm-mediated 
codon optimisation of rt-TA-M2 attempted in pSBtet-1 (see Fig. 2) re-introduced 13 cryptic alternative splice 
sites with high score and confidence (Fig. 5A, Table S3) within the rtTA coding region. This may have contributed 
to the poor performance of the first pSBtet-1 construct analysed, since cryptic splice sites might be associated 
with poor performance of Tet-On systems20,21 (Fig. 2A,B).

Dissection of the TCE proximal promoter.  Modification of the minimal CMV promoter can affect TCE 
promoter performance27. Removing elements downstream of the TATA box can reduce the maximal expres-
sion, whereas deleting the upstream elements can decrease the leakiness27. We therefore revisited the design of 
pTIGHT to ensure optimal performance in our setting. Core promoter elements were identified using the YAAP 
program (Fig. 7A). It is possible that the presence of alternative initiator element (Inr) might lead to a loss of 
control of the TCE-promoter. We therefore removed these elements in single or combinatorial mutation fashion 
from pSBtet and monitored the tightness and maximal expression of TCE promoter.

Removal of each, or all, downstream elements of the TATA box (Inr-1, -2, -3 and -4 sites, and the DPE ele-
ment) markedly decreased the tightness of the TCE promoter (Fig. 7B), and also reduced the maximal expression, 
as previously reported27 (Fig. 7C). Specifically, removing Inr-3 increased the background expression remarkably 

Figure 3.   Introducing the G72V mutation into pSBtet-2 & -3 and generation of pSBtet-4 & -5. The efficacy of 
G72V-rtTA SB based Tet-On system was measured at 96 h by (A) luciferase fold induction and (B) qPCR for 
Mcl-1 mRNA. (C) The G72V mutation restores the inducibility of pSBtet-2 and pSBtet-3 upon doxycycline 
induction. (D, E) Confirmation of the improvement of SB-based Tet-On system after two weeks passaging, 
as quantified by luciferase fold induction and qPCR for Mcl-1 mRNA. Statistical analysis: (A–C) one-way 
ANOVA test with Bonferroni post-test correction, (D, E) two-tailed t-test (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001).
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(P < 0.01). Inr-3 contains two CTF/NF1 binding sites that bind to DNA as dimers28 (Fig. 7A). CTF/NF1 is an 
enhancer-blocker element which specifically blocks the interaction of other enhancers with the promoter29. A 
general explanation would be that deletion of the CTF/NF1 binding site could increase the interaction of neigh-
bouring enhancers to the TCE promoter, resulting in high background.

The only core promoter element found upstream of the TATA box is B recognition element (BREu). As 
shown in Fig. 7D,E, removing BREu did not improve the tightness and the basal expression of the TCE promoter 
(P > 0.19) and optimal transcription through the TCE promoter was dependent on the TATA box. However, 
deleting the BREu site increased the response of the TCE promoter to doxycycline (Fig. 7E, P < 0.01).

Discussion
Several strategies have been proposed to reduce the leakiness and enhance the inducibility of Tet-On systems, 
with only some tested in human cells. Such approaches include: (1) increased expression of rtTA using a strong 
promoter and codon optimisation21,30,31, (2) mutation of rtTA to increase binding to doxycycline or DNA16,20,21,26, 
(3) autoregulatory systems7,18,19,32, (4) removing a cryptic splice sites in the rtTA coding region20, and (5) altera-
tion of the core promoter elements within the proximal region of the TCE promoter 27. We revisited these strate-
gies for use in the SB-based Tet-On system in a human cell line for future investigation in CAR T cell therapy.

The introduction of a single mutation G72V, gave the optimal induction results at both mRNA and protein 
level, as reported in S. cerevisiae16. Future studies may explore the use of a G72P instead of G72V in our system 
as a candidate amino acid at position G72, though G72P appeared to result in a small loss in sensitivity, as 
compared to G72V16. It is interesting that independent efforts into the rtTA structure have resulted in distinct 
amino acid changes in different studies, but with similar outcomes. For example, mutations introduced into the 
rtTA-M2 gene used here are present in distinct positions, as compared to the original four mutations in rtTA6,20. 
Moreover, introducing sensitivity enhancing (SE) mutations24–26 (V9I, F67S, G72P, F86Y, and R171K) could 
further increase the sensitivity to doxycycline, without increasing the background, as demonstrated in yeast16.

Autoregulatory systems have recently generated interest, with both the rtTA and GOI transcribed by a single 
TCE promoter, using either a bi-directional promoter19 or an IRES sequence7,18,32. However, our constitutive 
expression of G72V-rtTA gave tighter expression, but was less sensitive to doxycycline compared to the autoregu-
latory system. The autoregulatory system may be preferred for controllable expression of a toxic rtTA or toxic 
GOI in mammalian protein production32–35.

Next, our analysis found evidence of cryptic splice sites within an rtTA, a sequence that was previously opti-
mised for mammalian expression by Urlinger et al.30 Removing these splice sites reduced the basal expression 
and further increased the maximal expression. Unfortunately, using the combination of the G72V mutation with 
all splice sites removed (using predominantly silent, but with two necessarily non-silent, mutations) created a 
non-responsive system. It appears likely that the combination of the E71Q and G72V mutations disrupted the 
turn between two critical α-helixes 4 and 5.

It is also noteworthy that different programs identified other possible splice sites that needed to be inves-
tigated (Table S4). At least three independent approaches for codon optimisation of rtTA have been reported 
to enhance Tet-On function21,30,31. For example, Urlinger et al. modified the S. cerevisiae-developed rtTA-M2 
sequence to remove potential hairpin, splice, and endonuclease sites, as well as codon optimising the sequence 
for use within mammalian systems21.

Figure 4.   pSBtet-6 autoregulatory system showed superior regulation to pSBtet with (A) luciferase fold 
induction, but (B) higher background expression at the mRNA level for Mcl-1. (C) Comparison of maximal 
expression of luciferase in pSBtet-6 versus constitutive expression of G72V (psBtet-5) after induction 
with doxycycline. pSBtet-6 showed higher sensitivity, but higher background expression in the absence of 
doxycycline compared to pSBtet-5. Experiments were carried out 96 h post-transfection. Statistical analysis: 
one-way ANOVA test with Bonferroni post-test correction (*P < 0.05, **P < 0.01, ***P < 0.001).
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Figure 5.   Investigation of potential cryptic splice sites within rtTA. (A) Predicted cryptic alternative splice sites within (top): original 
rtTA-M2, (middle): G72V-rtTA-M2 and (below): commercially codon optimised (cop)-rtTA-M2 using ASSP program. The default 
cut-off values of the ASSP program was used. The cut-off 2.2 for acceptor sites and 4.5 for donor sites have shown to correctly predict 
75 to 80% of cryptic splice sites (Wang M and et al. 2006). (B) Removing the eight potential cryptic splice sites alone, or combination 
of all eight, improved the tightness of Tet-On system. (C) Comparison of the fold induction of pSBtet-5 with removing all cryptic 
splice sites in pSBtet-5. Combining G72V mutation with the eight cryptic splice sites removed, resulted in a non-responsiveness 
Tet-On system (D) Induction of luciferase expression in mutated rtTA-M2 proteins upon doxycycline induction. The missense E107Q 
mutation at position 320 bp showed lower induction. Experiments were carried out 96 h post-transfection. Statistical analysis: one-way 
ANOVA test with Bonferroni post-test correction (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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In the proximal region of the TCE promoter, we confirmed that the TATA box was essential for the function 
of the TCE promoter27. Removal of the BREu element increased maximal expression, but did not markedly 
affect the tightness of the TCE. The deletion of the BRE site might enhance the elongation and / or reduce the 
TFIIB-rtTA sequestration. BRE plays a role in the preinitiation complex (PIC), leading to the dissociation of 
TFIIB from the promoter which is necessary for RNA polymerase II to initiate the elongation step36–38. Hence, 
interrupting the BRE-TFIIB interaction may enhance transcription via the enhancement of elongation39. Alter-
natively, direct sequestration VP16 on TFIIB has been reported40,41 that may act to reduce VP16-mediated 
transcriptional activation.

Collectively, our results demonstrate marked improvements to the rtTA-M2 based Tet-On system in a Sleep-
ing Beauty system through the yeast-optimised G72V mutation. The results especially highlight the necessity 
to investigate the placement of individual GOI and rtTA within an expression cassette. The use of the clinically 
relevant CAR cassette within this setting offer the possibility to enhance adoptive cell therapy though drug-
inducible expression of cell-survival and memory enhancing genes, or death switches to conditionally ablate 
CAR T cells following the onset of cytokine release syndrome.

Material and methods
Plasmid construction and cloning.  The Tet-On SB (pSBtet-GP) contains the tetracycline-inducible 
pTIGHT promoter upstream of two asymmetric SfiI sites for cloning genes of interest (GOI), with a down-
stream RPBSA promoter driving GFP-P2A-rtTA-P2A-puromycin. pSBtet-GP and the SB-transposase vector 
(pCMV(CAT)T7-SB100) were purchased from Addgene. The pTIGHT promoter is a derivative of (Ptet-14) 
with shorter spacer (16–17 bp) sequences27 between the TRE and the minimal CMV promoter (see Fig. 7)9,27,42. 
To generate the modified SB plasmids, a multiple cloning site (MCS) with Bsu36I and BstBI sites was cloned into 
pSBtet to remove GFP-P2A-rtTA-P2A-puromycin to create pSBtet-MCS. The codon optimised rtTA-M2 gene 
and FRP5 scFv Her2-CAR​43 were synthesised as gene blocks (IDT Singapore) and cloned into pSBtet MCS to 
create pSBtet-1. Other plasmids were generated by splicing by overlap extension (SOE) PCR to fuse the original 
rtTA2S-M2 (rtTA)9,21, GFP and Her2CAR in different combinations as illustrated in Fig. 1. Mutations into rtTA 
was introduced using inverse or SOEing PCR. Codon optimised-mouse Mcl-1 (Cop-Mcl-1) was synthetised 
as a gene block (IDT) with SfiI overhangs to replace the Firefly luciferase gene in the pSB-tet constructs. Both 
the Mcl-1 and firefly luciferase genes were used as GOI in this study. To modify the core promoters elements 
(Fig. 5A), the proximal promoter of TCE was PCR amplified from pSBtet and then subcloned into a pUC19 vec-
tor (Addgene) using conventional restriction fragment ligation method with EcoRI and NcoI enzymes. Inverse 
PCR with primers carrying point mutations were used to change the core promoter elements. Finally, each of the 
modified fragments were PCR amplified from pUC19 and cloned back to pSBtet using PshAI and NcoI restric-
tion sites. To alter the cryptic splice sites within rtTA (Table 1), rtTA was sub-cloned into PUC19 and mutations 
introduced using inverse PCR.

Bioinformatics analysis.  Analysis of the TCE proximal promoter for core promoter elements, including 
the initiation repeats (Inr1, 2, 3 and 4), TATA box, B recognition element (BRE) site and downstream pro-
moter element (DPE), was carried out using YAPP Eukaryotic Core promoter predictor. TF binding sites were 
predicted using AliBaba 2.144 and PROMO45,46 programs. The transcriptional start site (TSS) was predicted as 
reported previously for the minimal CMV promoter47. Screening of rtTA for cryptic splice sites was carried out 
using Alternative Splice Site Predictor (ASSP) software and Human Splicing Finder (HSF)22,48. The protein struc-
ture of TetR and the prediction of secondary structure were obtained from Protein Data Bank (PBD).

Table 1.   Putative cryptic acceptor and donor splice sites within rtTA. Dinucleotide splice sites (AG or GT) are 
highlighted in bold and mutated sequences are underlined.

Name Type Original sequence Mutated sequence Mutation type

215 Acceptor CCC CTG GAA GGC GAG TCA​
Pro Leu Glu Gly Glu Ser

CCC CTG GAT GGC GAG TCA​
Pro Leu Asp Gly Glu Ser

Missense
(conservative)

320 Acceptor CCA ACA GAG AAA CAG TAC​
Pro Thr Glu Lys Gln Tyr

CCA ACA CAA AAA CAG TAC​
Pro Thr Gln Lys Gln Tyr

Missense
(conservative)

326 Donor CCA ACA GAG AAA CAG TAC
Pro Thr Glu Lys Gln Tyr

CCA ACA GAG AAA CAA TAC
Pro Thr Glu Lys Gln Tyr Silent

367 Acceptor TGT CAG CAA GGC TTC TCC​
Cys Gln Gln Gly Phe Ser

TGT CAA CAA GGC TTC TCC​
Cys Gln Gln Gly Phe Ser Silent

392 Donor AAC GCA CTG TAC GCT CTG​
Asn Ala Leu Tyr Ala Leu

AAC GCA TTA TAC GCT CTG​
Asn Ala Leu Tyr Ala Leu Silent

408 Donor TCC GCC GTG GGC CAC TTT​
Ser Ala Val Gly His Phe

TCC GCC ATC GGC CAC TTT​
Ser Ala Ile Gly His Phe

Missense
(conservative)

456 Donor GAG CAT CAA GTA GCA AAA​
Glu His Gln Val Ala Lys

GAG CAT CAA GTG GCA AAA​
Glu His Gln Val Ala Lys Silent

541 Acceptor GAC CGG CAG GGA GCC GAA​
Asp Arg Gln Gly Ala Glu

GAC CGG CAA GGA GCC GAA​
Asp Arg Gln Gly Ala Glu Silent
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Cell culture and transfection.  The human embryonic kidney 293 (HEK293; ATCC CRL-1573) cell line 
was cultured in high glucose Dulbecco’s Modified Essential medium (DMEM) supplemented with tetracycline-
free 10% foetal bovine serum (FBS; Pan Biotech), Pen-Strep (100 U/mL penicillin and 100 µg/mL streptomycin) 
(Gibco) at 37 °C with 5% CO2. One day prior to transfection, HEK293 cells were cultured in a 24 well plate at 
2 × 105 cells/ mL. A ratio of 5:1 (transfer plasmid: transposase) was used to stably transfect HEK293 cell line 
using Lipofectamine 3,000 (Thermo Fisher) and the medium was replaced at 24 h post transfection. For induc-
tion of the TCE promoter, at 72 h post transfection, cells from each well were detached and divided into four 
wells in a 96-well plate. Two wells were cultured with DMEM containing 5 µg / mL of doxycycline (Sigma), 
while control wells were maintained with only DMEM, for additional 24 h. Doxycycline-induced and control 
values for each construct are derived from each independent transfection to eliminate the possibility of different 

Figure 6.   (A) Secondary structure of TetR obtained from protein data bank (PBD) with focus on the E71 and 
G72 (highlighted by red box) that form a turn between α-helix-4 and 5. Mutating both amino acids may cause a 
conformational change in rtTA. (B) Annotation of TetR protein sequence and position of the ten α-helices.
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transfection efficiencies between Dox + and Dox- wells. Then, cells were proceed either with qPCR or luciferase 
assays. For Fig. 3D,E cells were maintained for to two weeks to confirm the consistency of gene-regulation over 
longer time periods.

Figure 7.   Investigation of core promoter elements in the proximal region of TCE promoter. (A) Annotated 
TCE promoter sequence for core promoter elements and TF binding sites. (B, C) Deleting elements downstream 
of TATA box including Inr-1, -2, -3, -4 and DPE in single or combination form increases leaky expression of 
TCE as well as reduction in TCE promoter induction (D, E) The effect of removing TATA box and BREu on 
luciferase induction with or without induction by doxycycline. Removing BREu does not affect the tightness of 
TCE promoter, whereas TCE showed to be sensitive over loss of TATA box. Only removing BREu improved the 
inducibility of TCE promoter, without increasing the basal expression. Experiments were carried out 96 h post-
transfection. Statistical analysis: one-way ANOVA test with Bonferroni post-test correction (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001). Inr: initiation repeats; BRE: B recognition element (BRE); DPE: downstream 
promoter element; TSS: transcriptional start site.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13125  | https://doi.org/10.1038/s41598-020-70022-0

www.nature.com/scientificreports/

RNA extraction, cDNA synthesis and quantitative PCR (qPCR).  Total RNA was extracted using 
NucleoSpin RNA Plus kit (Macherey–Nagel, Germany) and cDNA prepared using PrimeScript RT Reagent Kit 
(Takara Bio, USA). QPCR was carried out using Luna Universal qPCR Master Mix (NEB) in a ViiA 6 Real-Time 
PCR (Applied Biosystems, Foster City, CA). The comparative CT (2−ΔΔct) method was used to analyse the relative 
expression level of cop-Mcl1, by normalising to β-actin. Primers used for the qPCR reactions were: Mcl1-Fwd: 
GCA GAA TTG TGA CAC TGA TAA G, Mcl1-Rev: TTT TGT TCT AAC CAA TAC ATC G, β-actin-Fwd: CTT 
CCT TCC TGG GCA TG, β-actin-Rev: GTC TTT GCG GAT GTC CAC.

Reporter assay.  Luciferase assays were carried out using Pierce Firefly Luc one-step glow assay kit (Ther-
moFisher #16197) with cells at 105 cells per 100 µL in a 96 well plate. Firefly Luc One-Step Glow assay working 
solution (100 µL) was added to each well. Cells were incubated at room temperature for one hour before reading 
with a Varioskan LUX multimode microplate reader (Thermo Fisher, USA). Luciferase data was presented either 
as relative luminescence units (RLU) or fold change. Fold change was calculated with the following formula:

Statistical analysis.  All data are presented as mean ± standard deviation (SD) and pooled from three 
independent experiments. Statistical analysis was performed by two-tailed t-test or one-way ANOVA test with 
Bonferroni post-test correction in GraphPad prism (version 8). The P values of ≤ 0.05 were considered statisti-
cally significant (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). (* P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001).
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Table S1. Potential cryptic alternative splice sites within rtTA coding region by ASSP program. 

Position Splice site 
type 

Sequence Score* Confidence** 

215 Acceptor cccctggaagGCGAGTCATG 3.637 0.768 

320 Acceptor cgcccaacagAGAAACAGTA 2.567 0.552 

326 Donor CAGAGAAACAgtacgaaacc 6.389 0.894 

367 Acceptor cctgtgtcagCAAGGCTTCT 3.704 0.849 

392 Donor AGAACGCACTgtacgctctg 4.895 0.919 

408 Donor TCTGTCCGCCgtgggccact 5.697 0.609 

456 Donor GGAGCATCAAgtagcaaaag 5.673 0.903 

541 Acceptor cgaccggcagGGAGCCGAAC 5.154 0.858 
 

Table S2. Potential cryptic alternative splice sites within G72V-rtTA coding region by ASSP 
program. 

Position Splice site 
type 

Sequence Score* Confidence* 

320 Acceptor cgcccaacagAGAAACAGTA 2.567 0.552 

326 Donor CAGAGAAACAgtacgaaacc 6.389 0.894 

367 Acceptor cctgtgtcagCAAGGCTTCT 3.704 0.849 

392 Donor AGAACGCACTgtacgctctg 4.895 0.919 

408 Donor TCTGTCCGCCgtgggccact 5.697 0.609 

456 Donor GGAGCATCAAgtagcaaaag 5.673 0.903 

541 Acceptor cgaccggcagGGAGCCGAAC 5.154 0.858 
 

Table S3. Potential cryptic alternative splice sites within Cop-rtTA coding region by ASSP 
program. 

Position Splice site 
type 

Sequence Score* Confidence* 

132 Donor GTACTGGCATgtaaaaaaca 5.127 0.917 

214 Acceptor tcccttggagGGAGAAAGTT 3.729 0.612 

240 Acceptor atttcctcagGAATAACGCC 3.586 0.352 

260 Donor AGAGTTTTAGgtgtgcgctc 8.709 0.966 

282 Acceptor tgtctcacagAGATGGTGCG 8.920 0.112 

286 Donor CACAGAGATGgtgcgaaggt 6.777 0.911 

294 Donor TGGTGCGAAGgttcacttgg 4.538 0.936 

326 Donor CCGAGAAACAgtatgaaacc 6.194 0.951 

367 Acceptor cctgtgccagCAAGGTTTCT 3.470 0.807 

370 Donor TGCCAGCAAGgtttctcact 5.293 0.863 

407 Acceptor gcactctcagCCGTTGGTCA 3.323 0.932 



428 Donor TTACTCTCGGgtgcgtcctc 7.722 0.959 

456 Donor GGAACATCAGgtggctaaag 7.849 0.871 

517 Acceptor gcttcgccagGCCATTGAAC 6.456 0.275 

605 Donor AGCAATTGAAgtgtgagagt 5.391 0.896 

607 Donor CAATTGAAGTgtgagagtgg 8.156 0.832 
 

* Score reflects splice site strength and ranges between one to ten. 

** Confidence reflects the probable occurrence of splicing and ranges between zero to one. 

 

Table S4. Potential splice sites within rtTA coding region predicted by Human Splice Finder (HSF) 
program. 

Position Splice site 
type 

Sequence Consensus 
value (0-100) 

7 Acceptor agactggacaagAG 65.22 

9 Acceptor actggacaagagCA 67.25 

22 Donor AAAgtcata 68.79 

47 Acceptor tactcaatggagTC 73.33 

55 Donor GGAgtcggt 69.44 

59 Acceptor tcggtatcgaagGC 76.38 

59 Donor TCGgtatcg 70.52 

72 Acceptor cctgacgacaagGA 73.99 

88 Acceptor ctcgctcaaaagCT 76.86 

100 Acceptor ctgggagttgagCA 68.08 

103 Acceptor ggagttgagcagCC 73.18 

104 Donor GAGttgagc 68.07 

127 Acceptor tggcacgtgaagAA 72.07 

130 Donor CACgtgaag 73.73 

163 Acceptor ctgccaatcgagAT 75.06 

174 Acceptor gatgctggacagGC 80.9 

199 Acceptor ttctgccccctgGA 66.14 

203 Acceptor gccccctggaagGC 77.96 

212 Donor AAGgcgagt 71.05 

216 Donor CGAgtcatg 65.29 

218 Acceptor agtcatggcaagAC 68.31 

222 Donor ATGgcaaga 65.13 

241 Acceptor aacaacgccaagTC 67.3 

249 Donor CAAgtcatt 72.08 

284 Acceptor acggggctaaagTG 68.62 

292 Donor AAAgtgcat 66.34 

308 Acceptor cccgcccaacagAG 85.25 

310 Acceptor cgcccaacagagAA 71.56 

316 Acceptor acagagaaacagTA 70.69 

324 Donor ACAgtacga 72.58 

337 Acceptor ctggaaaatcagCT 75.6 

355 Acceptor ttcctgtgtcagCA 85.01 

359 Acceptor tgtgtcagcaagGC 75.35 

359 Donor TGTgtcagc 75.1 

373 Acceptor ttctccctggagAA 84.47 

390 Donor ACTgtacgc 72.45 

399 Donor TCTgtccgc 66.4 



406 Donor GCCgtgggc 70.8 

430 Acceptor tgcgtattggagGA 77.01 

436 Acceptor ttggaggaacagGA 80.23 

446 Acceptor aggagcatcaagTA 66.28 

449 Acceptor agcatcaagtagCA 68.24 

454 Donor CAAgtagca 66.73 

455 Acceptor aagtagcaaaagAG 67.2 

457 Acceptor agactggacaagAG 65.22 

466 Donor GAGgaaaga 69.07 

501 Acceptor cccacttctgagAC 76.08 

506 Acceptor ttctgagacaagCA 72.82 

514 Acceptor caagcaattgagCT 67.43 

525 Donor GCTgttcga 66.46 

529 Acceptor ttcgaccggcagGG 88.74 

533 Acceptor accggcagggagCC 65.49 

583 Acceptor tgtggcctggagAA 75.88 

589 Acceptor ctggagaaacagCT 75.66 

595 Acceptor aaacagctaaagTG 68.29 

603 Donor AAAgtgcga 76.17 

641 Acceptor attttgacttagAC 76.79 

653 Acceptor acatgctcccagCC 82.52 
 



 

 

 

Figure S1. The whole rtTA sequence with translation and position of each domain.  



 

Figure S2. Secondary structure of TetR with focus on the high sensitivity region comprising D95, 
L101 and G102. Modifying the splice site at nucleotide 320 (E107) resulted in a conformational 
change that decreased TCE-induction upon doxycycline treatment. 
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Chapter IV 

Functional analysis of promoters for driving long RNA 

transcripts in CAR T cells 

In this chapter, using a series of experiments, we tested the strength of four commonly 

used promoters, EF-1, CMV, RPBSA, and hPGK, in running short and long transcripts. 

EF-1 was shown to be the best promoter in running short and long RNA in T cells. As a 

result, we chose EF-1 to run the GFP-P2A-Her2CAR and hPGK to transcribe Mcl-1 or 

miR429 in our next experiments.  
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Abstract

Chimeric antigen receptor (CAR) T cell therapy is an effective treatment for B cell malignan-

cies, with emerging potential for the treatment of other hematologic cancers and solid

tumors. The strength of the promoter within the CAR cassette will alter CAR-polypeptide lev-

els on the cell surface of the T cell–impacting on the kinetics of activation, survival and mem-

ory cell formation in T cells. In addition to the CAR, promoters can be used to drive other

genes of interest to enhance CAR T cell function. Expressing multiple genes from a single

RNA transcript can be effectively achieved by linking the genes via a ribosomal skip site.

However, promoters may differ in their ability to transcribe longer RNAs, or could interfere

with lentiviral production, or transduction frequencies. In this study we compared the ability

of the strong well-characterized promoters CMV, EF-1, hPGK and RPBSA to drive func-

tional expression of a single RNA encoding three products: GFP, CAR, plus an additional

cell-survival gene, Mcl-1. Although the four promoters produced similarly high lentiviral

titres, EF-1 gave the best transduction efficacy of primary T cells. Major differences were

found in the ability of the promoters to drive expression of long RNA encoding GFP, CAR

and Mcl-1, highlighting promoter choice as an important consideration for gene therapy

applications requiring the expression of long and complex mRNA.

Introduction

Promoters are of critical importance for expressing optimal levels of the transgene in CAR T

cells for the production of functional proteins or non-coding RNA [1–5]. It is also clear that

high expression of the CAR can result in antigen-independent CAR signaling, resulting in T

cell exhaustion and sub-optimal anti-tumor responses, or lead to the inappropriate recognition

of tumor antigen on self-tissue [1, 2]. In addition, controlling CAR T cell signaling is critical

for proper memory cell formation [6]. Because surface expression of the CAR may be limited

by mRNA levels, the choice of promoter is critical [1, 2].

There have been limited studies that directly compare the efficiency of different promoters

for driving long mRNA comprising multiple genes within CAR T cells [1, 2, 7]. Recent studies

investigating promoter performance in mouse or human T cells were usually limited to either

the CAR, a single gene of interest alone, or single fluorescent reporter genes of limited size [1,
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2, 7–9]. For the generation of lentiviral particles for transduction, using multiple internal pro-

moters or internal ribosome entry sites (IRES) for multiple genes may interfere with transcrip-

tion or reverse transcription of viral genomic RNA (vgRNA), impacting upon lentiviral

particle titre, and/or on the efficiency of integration into the target cell [8, 10]. Therefore, strat-

egies that employ single promoters to drive multiple genes may be preferred for CAR T cell

engineering [9].

Although all current, clinically-approved second and third generation CAR T cells rely on

the expression of a single gene encoding a single polypeptide, it may be advantageous to

express longer RNA containing the CAR, together with one or more genes of interest. For

example, endogenous growth factors or membrane bound or secreted cytokines could improve

T cell expansion and survival [6, 11]. Alternatively, markers of transduction efficiency or death

switches could be incorporated into the CAR element [4, 12–14]. Promoter choice for such

applications is crucial to obtain optimised gene expression of multiple, linked genes.

Because requirements for driving short versus long RNA might be distinct in CAR T cell

genetic elements, we investigated the ability of several promoters to drive an extended down-

stream genetic sequence comprised of GFP, anti-Her2-CAR and an additional cell survival

gene Myeloid leukemia cell differentiation protein (Mcl-1), an anti-apoptotic Bcl2 family

member. Mcl-1 aids in T cell development, mitochondrial function and lifespan and appears

to a suitable candidate for enhancing CAR T cell performance [15, 16]. Mcl-1 inhibits the

action of pro-apoptotic BIM / BAK / BAX at the mitochondrial membrane and is expressed

throughout T cell differentiation and is essential for memory T cell formation [16–20].

The individual elements were tested at protein level and for functional activity. The results

demonstrated clear differences in the ability of these internal promoters to drive expression of

multiple CAR-cassette associated transgenes.

Material and methods

Plasmid construction

The third-generation lentiviral vector pCCLsin.cPPT.hPGK.GFP.WPRE (pCCLsin) and

VSV-G-based packaging plasmids were a kind gift from Prof. Dr. Naldini and have been

described elsewhere [21]. The anti-Her-2 CAR FRP5, anti-CD19 CAR FMC63 (with–EQKLI-

SEEDL–c-myc tag between scFv and CD8 hinge) and codon-optimized human Mcl-1 (cop-

Mcl-1) were synthesized as gene blocks (IDT Technologies). Both CAR constructs are second

generation CAR with CD28 costimulatory domains (Fig 1A). Sap I Type IIs restriction enzyme

cloning was utilized for scarless assembly of the eGFP-P2A-CAR-P2A-Mcl-1. This cassette was

then cloned into the BamHI and SalI sites of the pCCLsin (Fig 1A). Promoters were amplified

with 5’ EcoRV and 3’ BamHI sites from respective plasmids: CMV from pcDNA3.1(-), EF-1

from Sleeping Beauty (pSBbiRP) and RPBSA from Sleeping Beauty (pSBtet-GP) and ligated

upstream of the GFP-CAR-mcl1 cassette. Codon optimized Leucine Zipper CD95

(LZ-CD95L) gene was synthesized by IDT with EcoRI and BamHI sites and cloned into

pcDNA3.1(-) (Addgene #104349).

Cell culture

Cell lines were cultured in a humidified atmosphere at 37˚C, 5% CO2 (or with 8% CO2 for

LV-Max and Expi293F). Human embryonic kidney 293T (ATCC CRL-1573) and MCF-7

(ATCC HTB-22) cell lines were cultured in high glucose Dulbecco’s Modified Essential

medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Pan-Biotech GmbH),

penicillin (100 U/mL) and streptomycin (100 μg/mL) (Gibco). MCF-7 and HEK293T cells

were transfected using Lipofectamine 3000 according to manufacturer’s protocol. Human
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peripheral blood mononuclear cells (PBMC) were isolated from healthy donors. The Univer-

sity of Otago Human Ethics Committee (Health; Ethics Approval# H18/089) approved this

study and written consent was obtained from blood donors. Frozen PBMCs were thawed and

then rested overnight in T cell expansion media (Thermofisher #A1048501) supplemented

with 50 U/mL of hIL-2 (Peprotech, #200–02), L-glutamine and 10 U/mL penicillin and strep-

tomycin (Gibco), prior to CD4 and CD8 T cells isolation using EasySep Human T cell isolation

kit (STEMCELL Technology, #17951). Isolated T cells were activated with Dynabeads Human

T-Activator CD3/CD28 (Thermo Fisher, #111.32D).

Lentiviral production, titration and T cell transduction

Lentiviral production and titration were carried out using LV-Max Viral production system

(ThermoFisher #A35684) according to manufacturer’s protocol. HEK293T cells were trans-

duced at MOI 2:1 with 8 μg/mL of polybrene (Sigma-Aldrich). One day before T cell transduc-

tion, plates were coated with 40 μg/mL retronectin (TAKARA, #T100A/B) overnight at 4˚C,

blocked with 2% FBS/PBS for 15 min, before adding LV at 40:1 MOI to the plate; followed by

centrifugation at 800 ×g for 2.5 h at room temperature. After 48 h of activation with a 1:1 ratio

of CD3/CD28 Dynabeads, T cells were added to virus-coated wells and spinoculation carried

out at 500 ×g for 5 min. The next day, T cells were debeaded and cultured in media plus 50 U/

mL of hIL-2. Media was changed with fresh medium supplemented with 50 U/mL hIL-2 every

three days.

RNA extraction, long cDNA synthesis and RT-PCR

Total cellular RNA (containing viral genomic RNA) was extracted 48 h after transfection using

NucleoSpin RNA Plus kit (Macherey-Nagel, Germany) according to the manufacturer’s proto-

col. Then RNA was reverse transcribed using PrimeScript™ RT Reagent Kit (Takara Bio, USA)

according to manufacturer’s protocol RT-PCR was performed using internal primers PPT-

Fwd: GGGTACAGTGCAGGGGAAAG and Woodchuck-Rev: AAGCAGCGTATCCACATAGCG for

comparison with β-actin Fwd: CTTCCTTCCTGGGCATG and β-actin-Rev: GTCTTTGCGGA
TGTCCAC.

Quantification of gDNA/ integrated viral DNA ratio

At 48 h post transduction, integrated lentiviral DNA was quantified by extracting genomic

DNA using Qiamp DNA Mini kit (Qiagen, Germany) and the ratio of viral genome: human

gDNA were estimated using qPCR via Luna Universal qPCR Master Mix (New England Bio-

labs) using designed primers Gag-Fwd: GGA GCT AGA ACG ATT CGC AGT TA, Gag-Rev:

Fig 1. The effect of internal promoters in producing functional lentiviral particles. (a) Schematic illustration of the pCCLsin backbone bearing four different internal

promoters (CMV, EF-1, hPGK and RPBSA) for driving a long RNA consist of GFP-P2A-Her2CAR-P2A-Mcl-1, (b) HEK293T cells were transfected with lentiviral

constructs containing different promoters along with packaging plasmids. At 24 h post transfection, total RNA was extracted and 1 μg of RNA was converted to cDNA.

PCR was carried out using specific primers binding to PPT and woodchuck region. Agarose gel electrophoresis displays the PCR product band of each construct. Lower

band displays the PCR product of β-actin serving as a loading control. The ratio between viral genomic RNA (vgRNA) to β-actin was quantified and presented in the bar

graph (right) using Image Studio Lite. There was no statistically significant difference between promoters (P>0.05). (c) Shows the ratio between integrated viral cassettes

to gDNA 48 h post-transduction. Genomic DNA was extracted from cell lysates and qPCR was performed using Gag for integrated lentivirus and β2 microglobulin and β-

actin as a housekeeping genes for host gDNA quantification. There was no statistically significant difference between promoters (P>0.05). (d) Comparison of the viral

particle titration of four different constructs through analysis of the percent GFP expression in HEK293T cells using flow cytometry. Bar graph values represent the titre

unit/mL (TU/mL) from three independent repeats. There was no statistically significant difference between promoters (P>0.05). (e) Transduction efficiency of primary T

cells for the four lentivectors. CD3 / CD28 stimulated human primary T cells were transduced at MOI 40 and cells were analyzed for GFP expression at 72 h post-

transduction by flow cytometry. A representative experiment, and all GFP MFI values relating to graph, are presented in Fig 3A. Dead cells were excluded with Zombie

NIR viability dye gating at analysis. Bar graph values represent the mean values ± SD from three independent repeats. scFv; single-chain variable fragment, VH; variable

heavy chain, VL; variable light chain, TM; transmembrane domain.

https://doi.org/10.1371/journal.pone.0232915.g001
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GGT TGT AGC TGT CCC AGT ATT TG TC, PBS-Fwd: TCT CGA CGC AGG ACT CG;

PBS-Rev: TAC TGA CGC TCT CGC ACC, and β-actin forward and reverse primers

described above. All reactions were run in triplicate and were presented as mean ± SD.

Western blot

Cell lysates were prepared using RIPA lysis buffer and blotting carried out using mouse mono-

clonal anti-EGFP antibody (Abcam, #ab184601), rabbit anti-human Mcl-1 (Abcam,

#ab28147), biotin anti-c-myc (Biolegend #908805). Mouse monoclonal β-actin primary anti-

body (Sigma-Aldrich #A2228) was used as loading control. goat anti-mouse IgG DyLight 680

(Thermo Fisher #A3274), goat anti-rabbit IgG 800, streptavidin-800 in 1:10000 dilution as sec-

ondary antibody (#A32730 and # A32735). The membrane was scanned using an Odyssey Fc

imaging system (Licor, Germany) and analyzed using Image Studio Lite software.

Mitochondrial membrane potential assay (TMRE)

Transduced T cells were incubated overnight with 1 μg/mL LZ-CD95L, then 4 μM TMRE

(Invitrogen) was added at 37˚C for 30 min. DAPI (50 ng /mL) was added immediately prior to

flow cytometric analysis and GFP positive cells electronically gated for quantification of

TMRE and DAPI signals using the YG586/16 and BV421 channels.

Cytotoxicity and cytokine release assay

Luciferase-based cytotoxicity assay was carried out for Her2 and CD19 CAR T cells as previ-

ously described [22] at a 10:1 ratio of effector to target cells of using Firefly Luc One-Step Glow

assay (Thermo Fisher #16197). For analysis of cytokine release, CAR T cells were added to tar-

get cells in a 2:1 ratio. IL-2 and IFN-γ concentration secreted in cell supernatant were mea-

sured using sandwich ELISA according to manufacturer’s protocol (BD Biosciences, USA).

Plates were read on a Varioskan Lux multimode microplate reader (Thermo Fisher, USA).

Flow cytometry

CAR T cells were stained with biotin anti-c-myc antibody (Biolegend #908805) detected with

Streptavidin-Brilliant Violet 421 (Biolegend #405225). Antigen stimulated CAR T cells were

stained for CD69 expression using APC-conjugated anti-human CD69 antibody (Biolegend

#310910). Flow cytometric data was acquired using a BD LSRFortessa with BD FACSDiva soft-

ware. Data was analysed with FlowJo v10.6.2 software. Cells were subject to FSc and SSc dou-

blet discrimination and dead cells were excluded from analysis using Zombie NIR viability dye

(Biolegend #423106).

Statistical analysis

All experiments were carried out at least three times, presented as mean ± standard deviation (SD)

and analyzed by one-way ANOVA test with Bonferroni post-test correction. The P values of� 0.05

were considered statistically significant. (� P<0.05, �� P<0.01, ��� P<0.001, ���� P<0.0001)

Results

Compatibility of the promoter systems with a third-generation lentiviral

system

The four promoters were chosen based on their widespread use in the literature and docu-

mented ability to drive high level expression of transgenes in either lentiviral vectors, or in
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Sleeping Beauty transposon vectors [1, 8, 9, 21, 23]. Each of the four promoters were cloned

upstream of the series of P2A-linked genes comprised of GFP, the FRP5 anti-Her2 CAR fol-

lowed by human Mcl-1 (Fig 1A), a Bcl2 family member–the latter gene as a strategy to protect

CAR T cells against activation-induced cell death (AICD). A first consideration for the choice

of internal promoter driving transgenes within lentiviral systems is the effect on viral titration

and transduction efficiency. Generally, there is a difference in the degree of transcriptional

interference between the internal promoters and the promoter driving expression of genomic

RNA, resulting in a lower number of full-length viral genomic RNAs (vgRNA) particularly

when the CMV or EF-1 promoter is being used [10, 24]. In order to test the promoter interfer-

ence, HEK293 cells were transfected with four constructs along with helper plasmids and the

levels of vgRNA for four promoters were measured (P>0.05, Fig 1B). Similar levels of full-

length transcripts were obtained using all constructs, as assessed by RT-PCR carried out with

primers binding to cPPT and woodchuck regions (Fig 1B). Next, the effect of internal pro-

moter interference with provirus production was estimated. QPCR was performed on gDNA

extracted from HEK293 cells transduced with all constructs. The ratio between integrated cas-

sette to gDNA did not show significant differences among constructs (P>0.05, Fig 1C), sug-

gesting that the selected promoters do not adversely affect reverse transcription or integration

steps.

Next, we determined if the choice of internal promoter affects titre and transduction of pri-

mary T cells. As shown in Fig 1D, constructs containing any of the four promoters were able

to produce similar viral titres, as determined by transduction of the GFP marker into

HEK293T cells. To determine if the sequences of internal promoters altered primary T cells

transduction, we transduced primary T cells obtained from different donors and analyzed for

GFP expression by flow cytometry three days later. EF-1 gave superior transduction efficacy

compared to the other three promoters (P� 0.0001, Fig 1E).

Promoter comparison for long and complex gene expression

To determine if the promoters differed in their ability to transcribe individual gene products

within a long gene, the expression of individual genes were assessed in HEK293T and primary

T cells. From the data obtained with HEK293T, CMV and EF-1 were superior to hPGK and

RPBSA in producing all three products (Fig 2). We next examined the strength of the four pro-

moters in primary T cells by analyzing GFP and CAR expression. Live primary T cells were

gated for GFP, for determining the intensity of CAR and GFP expression. As shown in Fig 3,

EF-1 gave stronger expression of GFP and Her2 CAR compared to the other promoters. CMV

was weaker in primary T cells, as compared to its activity in HEK293T cells. This could be due

to the differences in the transcriptome of both cell types and / or the different techniques that

have been used to measure the protein level.

Functional effect of CAR T cells in tumour and T cell engagement

We next examined the function of the CAR T cells transduced with each of the promoter con-

structs, measuring cytokine release (IL-2 and IFN-γ), cytotoxicity and activation following

incubation of CAR T cells with the Her2+ MCF-7 breast cancer cell line. Although the expres-

sion of CD69 as an activation marker was similarly expressed among the CAR T cells with dif-

ferent promoters (Fig 4A), EF-1 and CMV CAR T cells showed optimal cytokine release after

engaging MCF-7 cells (Fig 4B & 4C). CAR T cells transduced with hPGK were less active and

those with the RPBSA construct failed to release detectable IL-2 and IFN-γ. Cytotoxicity assay

with the four constructs showed similar results with strong killing with CAR T cells expressing

under the EF-1 promoter at 24 h time points (Fig 4D).
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To functionally test the relationship between the expression level of the most distal gene

Mcl-1, and resistance to AICD, CAR T cells carrying four different promoters were challenged

with 1 μg/mL LZ-CD95L and mitochondrial depolarisation monitored by TMRE staining and

flow cytometry. In the absence of CD95L-triggering, there was little difference in cell viability

or CAR T cell yields using the four different promoters (Fig 5A and data not shown). Again,

EF-1 provided the most potent protection against CD95L-induced cell death (Fig 5). Note, the

protection against AICD observed here could reflect a contribution of both Mcl-1, as well as

Fig 2. Protein expression from four different constitutive promoters driving long mRNA. Transfected HEK293T cells were

lysed with RIPA buffer and processed for immunoblotting using antibodies to detect (a) GFP (b) c-Myc tag for Her2 CAR and (c)

Mcl-1 expression with β-actin used as a loading control for the Western blots. All representative blots above are repeated three

times and quantified and presented in the bar graph (right) using Image Studio Lite. Bar graph values represent the mean

values ± SD from three independent repeats.

https://doi.org/10.1371/journal.pone.0232915.g002
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the pro-survival effect of the CD28 domain in the CAR. For example, CD28 has been shown to

enhance the T cell survival by upregulating Bcl2-xL [25]. However, in this setting (without

CAR triggering), the presence of the CD28 domain-CAR makes only a minor contribution to

the observed protection against CD95L-induced cell death, as compared to the major anti-apo-

ptotic action of Mcl-1 (manuscript in preparation).

Promoter comparison for driving short transcripts

We compared the ability of the four promoters in transcribing GFP linked to an FMC63 CD19

CAR, the most studied CAR construct and the first CAR T cell design approved by the FDA.

The FMC63 CAR transcript is 1.2 kb shorter than the GFP-Her2CAR-Mcl1. Viral titres and

transduction efficacies were similar among all promoters driving the shorter FMC63 CAR

mRNA (Fig 6A & 6B). Protein expression of the shorter GFP-CAR constructs was enhanced in

HEK293T transduced with EF-1 and CMV constructs (Fig 6C). In primary T cells, EF-1 gave

the highest expression for GFP and CD19 CAR, while CMV gave a more heterogenous expres-

sion, but this was not statistically significantly lower than EF-1 (Fig 6D & 6E).

Although CD69 expression on antigen stimulated CAR T cells was similar for all promoter

constructs (Fig 7A), EF-1 constructs drove higher levels of CAR triggering in terms of cytokine

release and cytotoxicity. RPBSA was more effective in driving short transcripts, as compared

to performance observed earlier for long and complex RNA (Fig 7B–7D), further emphasizing

that promoter activity is dependent on the nature of the downstream transcript.

Core promoter elements, CpG island and TF binding sites are varying

between promoters

Although all four selected promoters are assumed to be constitutive and active in most cell

types, bioinformatic analysis showed that the four promoters vary in terms of core promoter

Fig 3. GFP and Her2 CAR expression of the four constructs in primary human T cells. Flow cytometry carried out to measure the expression of (a) GFP and (b) Her2

CAR (c-myc tag). Dead cells were excluded by Zombie NIR viability dye at analysis. GFP positive cells were gated and MFI assessment of CAR and GFP is shown for

three individual donors are shown in graphs. (c) Live T cells positive for GFP (Y-axis) and / or Her2 CAR (anti-c-myc; X-axis).

https://doi.org/10.1371/journal.pone.0232915.g003
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elements and potential TF binding sites. While there is no universal core promoter elements

for RNA polymerase II, the TATA box, initiator (Inr) element, TFIIB recognition element

(BRE), downstream core promoter element (DPE) and motif ten element (MTE) are well-

established core promoter elements (Fig 8A). Overall, EF-1 had more core promoter elements,

such as GC box, DPE and MTE (Fig 8B, Table 1). Except for hPGK, all promoters contain a

TATA box.

Fig 4. Comparison of anti-tumor activity using different promoters in CAR T cells. (a) Flow cytometric analysis of Her2 CAR T cells 18 h after co-culture

with Her2+ / MCF-7 cells. Data shows the MFI of CD69 expression from three different donors. Bar graphs show the secretion of (b) IL-2 and (c) IFN-γ by

different CAR T cells measured by ELISA. CAR T cells were incubated with Her-2+ MCF-7 cell line for 24 h before supernatants were collected. Cytokines

were measured in ng/mL. (d) Luciferase based cytotoxicity assay assessed 24, 48 and after 72 h after incubation of CAR T cells with MCF-7 cells stably

expressing the firefly luciferase gene. The graph shows the percent of cell viability, calculated by dividing the luciferase of the sample well over the luciferase

reading of untreated MCF-7.

https://doi.org/10.1371/journal.pone.0232915.g004
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Another feature of eukaryotic promoters is the presence of CpG islands. CpG islands could

result in hypermethylation and gene silencing. However, promoters with CpG islands contain-

ing multiple Sp1 binding sites exhibit a hypomethylated state and are typically stronger pro-

moters [26]. We therefore searched for CpG islands within our promoters using two different

programs (Table 2). Except for CMV, all promoters were expected to have at least one CpG

island. When we searched the Sp1 binding sites within the CpG islands, EF-1 and hPGK

showed the highest number of Sp1 binding sites in their CpG islands (Table 3). EMBOSS

Cpgplot program predicted two CpG island for EF-1 with 37 Sp1 binding sites. Fig 8C repre-

sents the total number of TFBS within the four promoters. Of these identified TFBS, sixteen

TFs were selected based on their function and expression in T cells [27–29] and the relative

Fig 5. TMRE assay for monitoring mitochondrial membrane potential. (a) CAR T cells expressing Mcl-1 as an anti-apoptotic gene as the most distal gene in the

cassette were challenged with 1 μg/mL (top) or 0 μg/mL (below) LZ-CD95L to mimic AICD. TMRE+ events represent intact cells with healthy mitochondria, while

TMRE- are cells with depolarised mitochondria. pCCLsin (lentivector expressing only GFP) was used as control. Graphs represent the percent of (b) TMRE and c) DAPI

positive CAR T cells.

https://doi.org/10.1371/journal.pone.0232915.g005
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enrichment of their corresponding TFBS in each promoter plotted (Fig 8D) [27–29]. Fig 8D

highlights promoters that demonstrate a specific enrichment of binding sites for T cell-associ-

ated TF, relative to the other promoters. Essentially, the graph illustrates the number of TFBS

present in each promoter, expressed as percentage of those present in all promoters. EF-1 pos-

sessed binding sites for all these TFs (Fig 8D). CMV is the next promoter enriched for T cell-

specific TFs, excluding GATA3, LEF-1, STAT5 and IF-2 (Fig 8D). It should be noted that EF-1

is almost twice the length of other promoters (>600 bp), and this length allows a greater possi-

ble enrichment of TFBS and core promoter elements.

Who should drive the CAR?

In order to have a broader view in comparing the strength of each promoter, scores from 0–10

were assigned to all functional assays carried out in primary T cells (Fig 9). Scores were calcu-

lated using the following formula:

Score ¼
Mean of each value

Mean of maximum value
� 10

Based on data from Fig 9A, the promoter strengths for short transcript were in the follow-

ing order: EF-1 > RPBSA > hPGK > CMV. For long transcripts carrying another accessory

gene (Mcl-1) in addition to GFP-CAR, the promoter strengths were as follow: EF-1 > CMV >

hPGK> RPBSA (Fig 9B). Taken together, EF-1 displayed the best function in driving both

short and long RNA transcripts. However, if the insert size between two LTR increases beyond

10 kb, other promoters could be considered to mitigate drops in the viral titre and transduc-

tion efficiency [30]. In our study, the largest insert utilised was 6.8 kb.

Fig 6. Comparison of four constructs for transcribing short RNA. The eGFP gene linked to FMC63 CD19 CAR was cloned under the control of the four promoters.

(a) Titration and (b) transduction efficacy among four constructs (c) Western blot analysis for GFP and CD19 CAR level of HEK293T cells transduced at MOI 2:1 plus

1 μg/mL polybrene (d) Quantification representation of western blot using Image Studio Lite. Bar graph values represent the mean values ± SD from three different

repeats. (e) GFP and f) CD19 CAR expression in CAR T cells by flow cytometry.

https://doi.org/10.1371/journal.pone.0232915.g006
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Fig 7. Functional analysis of CAR T cells expressing short RNA. (a) CD69 activation assay was carried out 18 hours after incubation of the four types of promoter-

driven CD19 CAR T cells with CD19+ HEK293T cells. (b, c) Cytokine release assay for secretion of (b) IL-2 and (c) IFN-γ. CAR T cells were co-cultured with CD19+

HEK239T and supernatant were collected after 24 h. (d) Luciferase based cytotoxicity assay assessed 24, 48 and 72 h after incubation of CD19 CAR T cells with CD19+

HEK293 cells stably expressing the firefly luciferase gene. The graph shows the percent of cell viability, calculated by dividing the luciferase of test wells divided by the

luciferase signal of untreated HEK293T.

https://doi.org/10.1371/journal.pone.0232915.g007

PLOS ONE Functional analysis of promoters in CAR T cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0232915 July 24, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0232915.g007
https://doi.org/10.1371/journal.pone.0232915


Discussion

In this study, we compared four promoters for optimal expression of long RNA encoding mul-

tiple gene products in CAR T cells. Our results suggest that promoter requirements are strin-

gent for driving long RNA, and that EF-1 is the best choice for driving short or long RNA in

CAR T cells, similar to an early study [31]. In contrast to the poor results obtained here for

Fig 8. Structure and bioinformatic analysis of the four different promoters. (a) Structure of a typical eukaryotic core promoter and the position of core elements within

a promoter were investigated in the four different promoters (b) Total number of core promoter elements predicted by YAPP, GPMiner and ElemeNT algorithms (details

provided in Table 1) (c) The number of TF binding sites in promoters sequenced analyzed by AliBaba2.1, PROMO and GPMiner programs d) Enrichment of sixteen TFs

highly-expressed in T cells in the four promoters. The data shows the percentage of total number predicted binding sites for the four promoters.

https://doi.org/10.1371/journal.pone.0232915.g008
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hPGK and RPBSA in driving long and complex RNA, these same promoters demonstrated lit-

tle difference to the so-called strong promoters CMV and EF-1 in lentiviral based systems driv-

ing shorter RNA sequences, such as CAR and fluorescent reporter genes (see Fig 6E)–

consistent with other studies [1, 8, 9, 21, 23].

To determine the functional role of additional accessory genes expressed in long constructs,

we utilised Mcl-1, a bcl2 family member with an essential role in T cell development, mito-

chondrial function and lifespan. To our knowledge, this is the first study to demonstrate that

Mcl-1 is a suitable candidate for enhancing CAR T cell performance [15, 16]. Expression of

mcl1 in a position distal to the CAR allowed protection from CD95-induced cell death. Inter-

estingly, although protection was noted with all promoters, EF-1 driven-cassettes consistently

gave the best protection. The fact that protection was observed with Mcl-1 driven by the

weaker promoters RPBSA and hPGK contrasts with the stringent requirement for a strong

promoter to drive CAR expression for optimal cytotoxicity and cytokine release.

Our analysis of promoter motifs demonstrates clear differences in transcription factor bind-

ing sites and core promoter elements between the strong (EF-1 and CMV) and weaker (hPGK

and RPBSA) promoters. Although not all the predicted core promoter elements might be func-

tional in primary T cells, the high number of the core elements can correlate with the strength

of the promoter [26]. In addition EF-1 and CMV predominantly enriched for TFs specific or

highly expressed in T cells [27–29, 32, 33] such as GATA3, NFATc3, NF-kB, AP1 and c-Jun,

The number of transcription factor and core promoter element sites predicted within the pro-

moters may provide some explanation for the ability of the CMV and EF-1 promoters to direct

long mRNA expression (Fig 1, S1 Data). However, it should be noted that EF-1 is almost twice

the length of the other promoters, therefore has the potential to house more TFBS and core

promoter elements.

The activity of promoters with predicted ’ubiquitous’ expression, such as the four studied

here, will still depend greatly on the lineage of the host cell [34]. However, EF-1 promoter was

found to be active and resistant to silencing in cells where other viral promoters may become

silenced [35]. Therefore, future work will be required to determine if the superior performance

Table 1. The number of core promoter elements and TF binding sites predicted for four promoters with YAPP, GPMiner and ElemeNT algorithms.

Promoter Size (bp) Core prompter elements

GC box CAAT box BRE TATA box Inr MTE DPE Bridge

CMV 617 3 4 - 2 10 - 6 12

EF-1 1192 11 - 2 2 7 2 24 22

hPGK 516 8 2 3 - 3 2 12 10

RPBSA 612 3 1 1 2 3 - 10 8

https://doi.org/10.1371/journal.pone.0232915.t001

Table 2. Bioinformatic tools used for studying promoter structure and TF binding sites.

Program Promoter element CpG island TF binding sites

YAPP ✓ - -

GPMiner ✓ ✓ ✓

ElemeNT ✓ - -

AliBaba2.1 - - ✓

PROMO - - ✓

EMBOSS Cpgplot - ✓ -

CpGFinder - ✓ -

https://doi.org/10.1371/journal.pone.0232915.t002
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of EF-1 and CMV in expressing long RNA sequences can be extrapolated to other cell primary

cell types.

In our study, the lower expression of CAR within a long mRNA transcript driven by the

RPBSA and hPGK translated into lower lytic function for a Her2-expressing tumor cell line.

Given the profound effects that CAR density has on T cell activation, our results will be useful

for developing strategies to titrate CAR expression at the T cell. Promoter choice would be

expected to be a critical consideration for controlling the levels of surface expressed CAR,

which in turn would dictate the level of T cell activation, lytic function, as well as undesirable

tonic (antigen-independent) signaling [2, 36–39]. Optimal CAR expression will be critical for

minimizing tonic signaling, while optimizing signal transduction during antigen-specific sig-

naling. In addition, lowering the level of CAR expression could contribute desirable avidity

effects to T cell recognition of antigen, thereby minimizing CAR T cell activation by tumor-

associated antigen on self-tissue [14]. Interestingly, despite CMV inducing a noticeably higher

level expression of GFP, CAR and Mcl-1 in HEK293T cells, as compared to EF-1, functional

analysis showed superior activation of primary human CAR T cells driven by EF-1 in terms of

cytokine release and cytotoxicity against MCF-7. EF-1 is enriched in binding sites of TFs

expressed in T cells (Fig 8C), suggesting a mechanism for the increased EF-1 activity in T cells,

as compared to HEK293T cells. In addition functional experiments demonstrated that EF-1

Table 3. The number of CpG islands and Sp1 binding sites within selected promoters.

Promoter Number of CpG islands Position Number of Sp1 binding sites

EF-1 1 604–868 17

CMV 0 - -

hPGK 1 54–392 16

RPBSA 1 194–405 8

https://doi.org/10.1371/journal.pone.0232915.t003

Fig 9. Heat map charts representing the strength of each promoter in functional assays for a) short transcripts and b) long transcripts. Each promoter was assigned a

score from 0–10 based on the data obtained from primary T cell experiments, and values were calculated by dividing mean of each data set by mean of the maximum

value obtained in the experiment and multiplied by ten.

https://doi.org/10.1371/journal.pone.0232915.g009
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driven expression of Mcl-1 provided the best protection of CAR T cells to AICD induced by

CD95L.

A further consideration for promoter choice is possible silencing in vivo. In particular,

CMV can be silenced after a period of weeks post-transduction [34, 40]. However, the effects

of promoter silencing might be overshadowed by the long term CAR T cell downregulation

that occurs in a methylation-independent fashion following CAR triggering both in vitro and

in vivo [14, 41, 42]. In conclusion, the study of long mRNA production will improve our ability

to express multiple genes in CAR T cells to improve cell survival and persistence of infused

CAR T cells.
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LZ-CD95L production and Resazurin assay 

The pcDNA3.1(-)-LZ-CD95L plasmid containing isoleucine zipped human CD95 ligand (LZ-CD95L) with 

histidine tag (made in house and available from Addgene #104349) was transfected into Expi293 cells (1.0 µg 

DNA per mL of culture volume with exp293 transfection reagent; Thermofisher) and LZ-CD95L isolated by 

nickel chromatography. 

The ability of LZ-CD95L to induce activation-induced cell death (AICD) was determined using the resazurin 

assay. Jurkat cells (50 × 103 seeded in 96-well plate in 100 µl) were treated with variety of concentrations 0-1.5 

µg/ ml) LZ-CD95L. After 24 hours, 10 µl of resazurin solution (12 mg/L of resazurin, 10 mg/ L methylene blue, 

40 μM potassium ferricyanide, 40 μM potassium ferrocyanide and 100 mM phosphate buffer pH 7.4) was added 

to the wells. After a further 4 hours culture, fluorescence (ex540 nm / em585 nm) was determined using Varioskan 

LUX multimode microplate reader (Thermo Fisher, USA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S 1. Ability of LZ-CD95L in inducing AICD in Jurkat 

cells. 



CMV promoter sequence 

ACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAG 50 

 

TTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGC 100 

 

CCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGAC 150 

 

GTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGG 200 

 

TGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT 250 

 

ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTG 300 

 

GCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACA 350 

 

TCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTAC 400 

 

ATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCA 450 

 

CCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACT 500 

 

TTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGG 550 

 

CGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGA 600 

 

ACCCACTGCTTACTGGC                                  617 
 

 

EF1 promoter sequence 

AAGCTTGATATCGGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGC 50 

 

CCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCC 100 

 

TAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCT 150 

 

CCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCG 200 

 

CCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGT 250 

 

GCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTG 300 

 

CGTGCCTTGAATTACTTCCACGCCCCTGGCTGCAGTACGTGATTCTTGAT 350 

 

CCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTA 400 

 

AGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCTTGGCCTGGGCGCTGGG 450 

 



GCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTC 500 

 

GATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTT 550 

 

TTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTA 600 

 

TTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGC 650 

 

ACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACG 700 

 

GGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGC 750 

 

CGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTT 800 

 

GCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAA 850 

 

ATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAA 900 

 

GGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAG 950 

 

TACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTAC 1000 

 

GTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCATA 1050 

 

CTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTC 1100 

 

TCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCC 1150 

 

TCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTAAGGTGTCGTGAAAAC 1200 

 

TACCCCGGATCCGTGGT                                  1217 
 

 

 

hPGK promoter sequence 

CCACGGGGTTGGGGTTGCGCCTTTTCCAAGGCAGCCCTGGGTTTGCGCAG 50 

 

GGACGCGGCTGCTCTGGGCGTGGTTCCGGGAAACGCAGCGGCGCCGACCC 100 

 

TGGGTCTCGCACATTCTTCACGTCCGTTCGCAGCGTCACCCGGATCTTCG 150 

 

CCGCTACCCTTGTGGGCCCCCCGGCGACGCTTCCTGCTCCGCCCCTAAGT 200 

 

CGGGAAGGTTCCTTGCGGTTCGCGGCGTGCCGGACGTGACAAACGGAAGC 250 

 

CGCACGTCTCACTAGTACCCTCGCAGACGGACAGCGCCAGGGAGCAATGG 300 

 

CAGCGCGCCGACCGCGATGGGCTGTGGCCAATAGCGGCTGCTCAGCGGGG 350 



 

CGCGCCGAGAGCAGCGGCCGGGAAGGGGCGGTGCGGGAGGCGGGGTGTGG 400 

 

GGCGGTAGTGTGGGCCCTGTTCCTGCCCGCGCGGTGTTCCGCATTCTGCA 450 

 

AGCCTCCGGAGCGCACGTCGGCAGTCGGCTCCCTCGTTGACCGAATCACC 500 

 

GACCTCTCTCCCCAGG                                   516 

 

 

RPBSA promoter sequence 

AAGCTTGATATCGCGAGACCCTGTCTCACAAAATAAAGTAAGCCCGGACT 50 

 

GAGTGCGGAAAGGCGGGCCTGGCGGGTCTGGTCTCCCCATGCGGGCCACC 100 

 

AGAGGCCCTGCAGCCTTCAGTCGCTTGAAGGGGTAATGGCGCTTCCACTC 150 

 

ACAAACATGGCGGACAGAGCGTGTGAACGAGATGAACAGCCCCTCAAAAA 200 

 

TATGGCCGCCGAGGCTGGACGGCCGTGCCCCAGCAGCACCGCCTCCGCGC 250 

 

CCCACGTGATCTCTCGCCGGGCACAGCGCTGACCGCGGAGGTCCAACCGG 300 

 

AAGAATGTCCGGATTGGACATTCGGAAGAGGGCCCGCCTTCCCTGGGGAA 350 

 

TCTCTGCGCACGCGCAGAACGCTTCGACCAATGAAAACACAGGAAGCCGT 400 

 

CCGCGCAACCGCGTTGCGTCACTTCTGCCGCCCCTGTTTCAAGGTATATA 450 

 

GCCGTAGACGGAACTTCGCCTTTCTCTCGGCCTTAGCGCCATTTTTTTGG 500 

 

GTGAGTGTTTTTTGGTTCCTGCGTTGGGATTCCGTGTACAATCCATAGAC 550 

 

ATCTGACCTCGGCACTTAGCATCATCACAGCAAACTAACTGTAGCCTTTC 600 

 

TCTCTTTCCCTGTAGAAACCTCTGCGGATCCGTGGT               636 
 

 

 

 

 

 

 

 



 

Table. 1 Core promoter element predicted for CMV promoter 

 

 

 

 

 

 

Motif Pos Score Sequence 

INR 310 0.96 CCAGTAC 

INR 223 0.95 CCACTTG 

INR 170 0.91 CCAATAG 

INR 44 0.88 TCATTAG 

INR 47 0.85 TTAGTTC 

INR 369 0.84 CTATTAC 

INR 503 0.83 CCAAAAT 

INR 484 0.83 CCAAAAT 

INR 336 0.82 CTACTTG 

INR 247 0.82 TCATATG 

TATA 567 0.93 TCTATATAAGCA 

TATA 58 0.85 CCCATATATGGA 

DPE 413 0.92 GGATA 

DPE 361 0.91 AGTCA 

DPE 42 0.90 GGTCA 

DPE 69 0.89 AGTTC 

DPE 49 0.89 AGTTC 

DPE 17 0.88 AGTTA 



Table. 2 Core promoter element predicted for EF1 promoter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motif Pos Score Sequence 

INR 782 0.95 CCAGTTG 

INR 1125 0.94 TCATTCT 

INR 1033 0.87 CCATACT 

INR 221 0.86 CCAGAAC 

INR 299 0.85 TTACTTC 

INR 964 0.85 TTAGTTC 

INR 833 0.81 TCAAAAT 

TATA 167 0.92 CGTATATAAGTG 

TATA 502 0.84 CATTTAAAATTT 

MTE 698 0.87 CAAGCTGGCCGG 

MTE 662 0.81 CGAGCGCGGCCA 

DPE 843 0.99 GGACG 

DPE 683 0.99 GGACG 

DPE 800 0.97 AGATG 

DPE 1140 0.96 AGACA 

DPE 183 0.95 AGTCG 

DPE 571 0.94 AGATC 

DPE 774 0.94 GGTCG 

DPE 66 0.94 GGTCG 

DPE 1115 0.93 GGATC 

DPE 547 0.93 AGATA 

DPE 784 0.92 AGTTG 

DPE 53 0.92 AGTTG 

DPE 412 0.92 AGTTG 

DPE 42 0.92 AGTCC 

DPE 998 0.91 GGTTG 

DPE 349 0.91 GGTTG 

DPE 873 0.91 AGTCA 

DPE 966 0.89 AGTTC 

DPE 368 0.89 AGTTC 

DPE 247 0.89 GGTTC 

DPE 1122 0.89 GGTTC 

DPE 1147 0.89 GGTTC 

DPE 1057 0.88 AGTTA 

DPE 274 0.87 GGTTA 

BRE 305 0.97 CCACGCC 

BRE 942 0.91 GGGCGCC 



Table. 3 Core promoter element predicted for hPGK promoter 

Motif Pos Score Sequence 

INR 328 0.91 CCAATAG 

INR 259 0.89 TCACTAG 

INR 262 0.84 CTAGTAC 

MTE 300 0.93 GCAGCGCGCCGA 

MTE 80 0.90 GAAACGCAGCGG 

DPE 275 1.00 AGACG 

DPE 51 0.99 GGACG 

DPE 232 0.99 GGACG 

DPE 198 0.95 AGTCG 

DPE 473 0.95 AGTCG 

DPE 279 0.95 GGACA 

DPE 142 0.93 GGATC 

DPE 7 0.91 GGTTG 

DPE 13 0.91 GGTTG 

DPE 207 0.89 GGTTC 

DPE 72 0.89 GGTTC 

DPE 217 0.89 GGTTC 

BRE 89 0.96 CGGCGCC 

BRE 350 0.96 GCGCGCC 

BRE 303 0.96 GCGCGCC 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table. 4 Core promoter element predicted for RPBSA promoter 

Motif Pos Score Sequence 

INR 406 0.97 TCACTTC 

INR 476 0.97 CCATTTT 

INR 104 0.92 TCAGTCG 

TATA 430 0.88 GGTATATAGCCG 

TATA 17 0.86 AAAATAAAGTAA 

DPE 443 1.00 AGACG 

DPE 204 0.99 GGACG 

DPE 167 0.97 AGATG 

DPE 3 0.97 AGACC 

DPE 534 0.96 AGACA 

DPE 106 0.95 AGTCG 

DPE 303 0.95 GGACA 

DPE 149 0.95 GGACA 

DPE 277 0.91 GGTCC 

DPE 501 0.89 GGTTC 

BRE 232 1.00 CCGCGCC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table. 5 The TF binding sites predicted by AliBaba program for CMV promoter. 

Promoter: CMV 

Length: 617 bp 

Number of sites found: 97 

 

Class      Factor          Start      Stop        

--------------------------------------------------- 

4.3.1.1    MEB-1           17         26          

1.2.8.0    Id3             29         38          

3.1.1.12   HNF-1C          29         38          

4.1.3.0    NF-ATc3         29         38          

9.9.29     AP-1            37         46          

2.1.2.3    T3R             38         47          

4.3.2.0    SRF             58         68          

1.1.3.0    C/EBPalpha      75         84          

2.3.1.0    Sp1             96         108         

1.1.1.1    c-Jun           103        112         

2.3.1.0    Sp1             109        118         

2.3.1.0    Sp1             122        134         

2.3.2.1    Egr-1           123        132         

1.1.1.6    CRE-BP1         131        140         

1.1.2.0    CREB            131        140         

2.3.3.0    CPE_binding_pro 131        140         

9.9.51     ATF             131        140         

1.1.1.6    CRE-BP1         142        151         

2.3.3.0    CPE_binding_pro 143        152         

9.9.51     ATF             144        153         

4.3.2.0    SRF             169        178         

2.3.4.0    MBP-1_(1)       175        184         

9.9.588    NF-kappaB       175        184         

9.9.591    NF-kappaB(-like 175        184         

4.1.1.0    c-Rel           176        185         

9.9.590    NF-kappaB       176        185         

1.1.1.6    CRE-BP1         184        193         

1.1.2.0    CREB            184        193         

2.3.3.0    CPE_binding_pro 184        193         

9.9.51     ATF             184        193         

2.3.1.0    Sp1             193        205         

9.9.77     CACCC-binding_f 195        204         

2.3.1.0    Sp1             217        230         

9.9.539    NF-1            224        233         

2.2.1.1    GATA-1          244        253         

3.1.2.2    Oct-1           244        255         

9.9.539    NF-1            249        260         

1.1.1.6    CRE-BP1         267        276         

1.1.2.0    CREB            267        276         

2.3.1.0    YY1             289        301         

2.3.1.0    Sp1             307        316         

2.1.2.1    RAR-alpha1      315        324         

2.1.2.3    T3R-alpha       315        325         

2.1.1.4    ER              316        325         

2.2.2.0    Ttx             316        325         

2.3.4.0    KBP-1           326        335         

4.1.1.0    c-Rel           326        335         

9.9.213    EBP-1           326        335         

9.9.588    NF-kappaB       326        335         

9.9.590    NF-kappaB       326        335         

9.9.591    NF-kappaB(-like 326        335         

9.9.539    NF-1            337        346         

1.1.1.2    c-Fos           355        366         

http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.3.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.2.8.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.1.1.12
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.29
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.2.3
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.3.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.2.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.6
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.6
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.3.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.4.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.588
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.591
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.590
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.6
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.77
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.2.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.1.2.2
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.6
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.2.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.2.3
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.1.4
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.2.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.4.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.213
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.588
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.590
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.591
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.2


1.1.1.5    GCN4            356        365         

1.1.1.1    c-Jun           357        366         

9.9.29     AP-1            357        366         

1.1.3.0    C/EBPalpha(p20) 369        378         

9.9.539    NF-1            386        395         

2.3.1.0    Sp1             403        413         

1.1.1.1    c-Jun           420        429         

1.1.1.2    c-Fos           420        429         

9.9.29     AP-1            423        432         

2.3.4.0    AGIE-BP1        431        440         

9.9.213    EBP-1           431        440         

9.9.588    NF-kappaB       431        440         

9.9.590    NF-kappaB       431        440         

9.9.594    RelA            431        440         

4.1.1.0    NF-kappaB       432        441         

1.1.3.0    C/EBPalpha      434        443         

9.9.537    NF-1            437        446         

2.3.1.0    Sp1             444        456         

1.1.1.6    CRE-BP1         453        462         

1.1.2.0    CREB            453        462         

2.3.3.0    CPE_binding_pro 453        462         

9.9.51     ATF             453        462         

9.9.539    NF-1            474        483         

2.3.4.0    MBP-1_(1)       494        503         

4.1.1.0    c-Rel           494        503         

9.9.588    NF-kappaB       494        503         

9.9.590    NF-kappaB       494        503         

9.9.591    NF-kappaB(-like 494        503         

9.9.594    RelA            494        503         

1.1.3.0    C/EBPalpha      497        506         

9.9.1469   Ik-1            498        507         

9.9.1470   Ik-2            498        507         

9.9.1471   Ik-3            498        507         

9.9.535    NF-1            500        509         

9.9.539    NF-1            500        509         

2.3.1.0    YY1             503        512         

9.9.51     ATF             505        514         

2.3.1.0    Sp1             517        527         

9.9.51     ATF             525        534         

1.1.3.0    C/EBPalpha      528        537         

2.3.1.0    Sp1             536        545         

2.3.1.0    Sp1             555        565         

4.3.2.0    SRF             566        575         

1.1.1.1    c-Jun           585        594  

 

 

 

 

 

 

 

 

 

http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.5
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.29
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http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
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http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.29
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.4.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.213
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.588
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.590
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.594
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.537
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.6
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.4.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.588
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.590
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.591
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.594
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.1469
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.1470
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.1471
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.535
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
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http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.3.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.1.1


Table. 6 The TF binding sites predicted by AliBaba program for EF-1 promoter. 

Promoter: EF1 

Length: 1192 bp 

Number of sites found: 109 

 

Class      Factor          Start      Stop        

--------------------------------------------------- 

9.9.51     ATF             12         21          

2.3.1.0    Sp1             15         27          

1.1.3.0    C/EBPalpha      30         39          

2.3.1.0    Sp1             38         47          

2.3.3.0    MIG1            55         64          

2.3.1.0    Sp1             56         70          

2.3.1.0    Sp1             94         106         

1.3.1.2    USF             97         106         

9.9.701    PTF1-beta       111        120         

9.9.428    ISGF-3          112        121         

2.3.1.0    Sp1             132        143         

9.9.77     CACCC-binding_f 150        159         

2.3.1.0    Sp1             150        162         

2.3.3.0    MIG1            154        163         

9.9.535    NF-1            199        208         

1.3.2.3    E2F             213        222         

9.9.726    repressor_of_CA 214        223         

2.1.1.1    GR              221        230         

2.3.1.0    Sp1             250        264         

2.3.1.0    Sp1             257        266         

4.3.2.0    SRF             275        284         

1.1.3.0    C/EBPalpha      280        289         

1.2.8.0    Id3             297        306         

3.1.1.12   HNF-1C          297        306         

4.1.3.0    NF-ATc3         297        306         

2.3.1.0    Sp1             303        316         

9.9.539    NF-1            310        319         

2.3.1.0    Sp1             354        364         

2.3.1.0    Sp1             392        403         

1.6.1.0    AP-2alphaA      398        407         

2.3.1.0    Sp1             414        423         

9.9.539    NF-1            420        429         

2.3.1.0    Sp1             421        431         

2.3.1.0    Sp1             430        443         

2.3.1.0    Sp1             437        446         

3.1.1.2    Ubx             497        506         

2.3.1.0    Sp1             500        509         

3.1.2.1    Pit-1a          502        511         

2.1.1.4    ER              514        523         

1.1.1.5    GCN4            532        541         

9.9.535    NF-1            537        546         

1.1.3.0    C/EBPalpha      551        560         

9.9.539    NF-1            561        572         

2.3.1.0    Sp1             562        571         

9.9.537    NF-1            562        571         

2.3.1.0    Sp1             571        580         

3.5.3.0    IRF-1           587        596         

2.1.1.1    GR              589        598         

2.3.1.0    Sp1             598        610         

1.6.1.0    AP-2alphaA      599        608         

2.3.1.0    Sp1             604        613         

2.3.1.0    Sp1             611        620         

http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.51
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
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http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.428
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http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.535
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.3.2.3
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.726
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.3.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.2.8.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.1.1.12
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.6.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
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http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.537
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.5.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.6.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.3.1.0


2.3.1.0    Sp1             617        626         

9.9.270    ETF             645        654         

2.3.1.0    Sp1             647        658         

2.3.1.0    Sp1             666        675         

2.3.1.0    Sp1             681        690         

2.3.1.0    Sp1             697        709         

2.3.1.0    Sp1             720        731         

2.3.1.0    Sp1             729        739         

2.3.2.1    Egr-1           744        753         

2.3.1.0    Sp1             744        754         

9.9.270    ETF             745        754         

9.9.537    NF-1            749        758         

2.3.1.0    Sp1             753        764         

2.3.1.0    Sp1             764        777         

2.3.1.0    Sp1             770        779         

9.9.561    NF-muE1         799        808         

4.3.2.0    SRF             802        811         

2.3.1.0    Sp1             804        818         

2.3.1.0    Sp1             811        821         

2.3.1.0    YY1             833        842         

2.3.1.0    Sp1             842        851         

2.3.1.0    Sp1             861        870         

3.5.1.2    REB1            862        871         

1.1.1.5    CPC1            867        876         

9.9.29     AP-1            867        877         

1.1.1.1    c-Jun           868        877         

9.9.32     AP-1            869        878         

2.3.1.0    Sp1             874        883         

3.5.1.2    RAP1            874        883         

4.3.2.0    SRF             885        894         

1.1.3.0    C/EBPalpha      903        912         

1.3.1.2    USF             919        928         

1.1.1.1    c-Jun           923        932         

1.1.2.0    ATF-1           924        933         

2.3.2.2    CF2-III         924        933         

2.3.1.0    Sp1             939        948         

2.3.3.0    MIG1            1000       1009        

2.3.1.0    Sp1             1001       1011        

9.9.588    NF-kappaB       1022       1031        

2.3.4.0    MBP-2           1023       1032        

4.1.1.0    c-Rel           1023       1032        

9.9.213    EBP-1           1023       1032        

9.9.590    NF-kappaB       1023       1032        

9.9.592    NF-kappaB(-like 1023       1032        

9.9.594    RelA            1023       1032        

3.5.1.2    RAP1            1038       1047        

9.9.77     CACCC-binding_f 1041       1050        

2.3.1.0    Sp1             1041       1051        

3.1.1.0    MATalpha2       1076       1085        

2.3.1.0    Sp1             1086       1095        

2.1.2.3    REV-ErbAalpha   1096       1105        

1.1.3.0    C/EBPalpha      1118       1127        

9.9.29     AP-1            1131       1140        

1.1.3.0    C/EBPgamma      1150       1159        

1.1.1.5    GCN4            1154       1163        

2.3.2.2    Hb              1155       1164        

4.3.2.0    SRF             1165       1174  
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Table. 7 The TF binding sites predicted by AliBaba program for hPGK 

promoter. 

Promoter: hPGK 

Length: 516 bp 

Number of sites found: 50 
 

 

Class      Factor          Start      Stop        

--------------------------------------------------- 

1.1.3.0    C/EBPalpha      11         20          

1.1.3.0    C/EBPalpha      19         28          

2.3.1.0    Sp1             49         58          

2.3.1.0    Sp1             64         73          

9.9.1299   MPBF            72         81          

3.5.1.2    FlbD            73         82          

2.3.1.0    Sp1             84         98          

2.3.1.0    Sp1             93         102         

1.1.1.6    CRE-BP1         132        141         

9.9.51     ATF             132        141         

2.3.3.0    CPE_binding_pro 133        142         

1.1.2.0    CREB            134        143         

3.5.1.2    REB1            135        144         

2.3.1.0    Sp1             162        174         

1.6.1.0    AP-2alphaA      166        175         

2.3.1.0    Sp1             168        181         

2.3.3.0    CPE_binding_pro 169        178         

3.5.2.0    c-Ets-1_68      177        186         

2.3.1.0    Sp1             179        188         

2.3.1.0    Sp1             185        195         

3.4.1.0    TSF3            202        211         

2.3.1.0    Sp1             221        235         

3.5.2.0    GABP            241        250         

1.1.1.6    CRE-BP1         251        260         

2.3.1.0    YY1             285        294         

1.1.3.0    C/EBPalpha      288        297         

3.5.1.2    Adf-1           295        304         

2.3.1.0    Sp1             298        312         

2.3.1.0    Sp1             305        314         

2.3.1.0    Sp1             314        327         

9.9.150    CP1             323        332         

9.9.539    NF-1            324        333         

3.5.1.2    Adf-1           331        340         

2.3.1.0    Sp1             342        354         

2.3.1.0    Sp1             361        372         

2.3.1.0    Sp1             369        383         

2.3.1.0    Sp1             377        389         

2.3.1.0    Sp1             384        397         

2.3.1.0    Sp1             392        404         

2.3.1.0    Sp1             398        407         

2.2.1.1    GATA-1          410        419         

2.3.1.0    Sp1             420        430         

2.3.1.0    Sp1             426        435         

3.6.1.0    TEC1            437        446         

2.3.1.0    Sp1             452        461         

1.3.1.2    USF             462        471         

2.3.1.0    Sp1             503        512         

1.6.1.0    AP-2            505        514         

2.2.1.1    GATA-1          505        514         

2.3.3.0    MIG1            509        518  
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Table. 8 The TF binding sites predicted by AliBaba program for RPBSA 

promoter. 

Promoter: RPBSA 

Length: 612 bp 

Number of sites found: 59 

 

Class      Factor          Start      Stop        

--------------------------------------------------- 

1.1.3.0    C/EBPalpha      14         23          

2.3.1.0    Sp1             28         41          

2.3.1.0    Sp1             48         57          

1.6.1.0    AP-2alphaA      66         75          

2.3.1.0    Sp1             73         82          

2.3.1.0    Sp1             88         99          

1.6.1.0    AP-2alphaA      93         102         

3.5.1.2    REB1            117        126         

1.2.8.0    Id3             138        147         

2.3.1.0    Sp1             138        147         

2.2.1.1    GATA-3          166        175         

2.3.1.0    Sp1             172        181         

4.3.2.0    SRF             183        192         

2.3.1.0    Sp1             194        203         

2.3.1.0    Sp1             205        217         

1.1.3.0    C/EBPalpha      211        220         

1.6.1.0    AP-2alphaA      213        222         

2.3.1.0    Sp1             223        234         

2.3.2.1    Krox-20         225        234         

2.3.1.0    Sp1             229        242         

1.3.1.2    USF             237        246         

1.1.1.6    ATF-a           240        249         

1.1.2.0    CREB            240        249         

2.3.3.0    CPE_binding_pro 240        249         

2.3.1.0    Sp1             270        279         

3.5.1.2    RAP1            291        300         

1.1.3.0    C/EBPdelta      297        306         

2.3.1.0    Sp1             310        319         

2.3.1.0    Sp1             316        325         

2.3.4.0    MBP-2           331        340         

4.1.1.0    c-Rel           331        340         

9.9.213    EBP-1           331        340         

9.9.590    NF-kappaB       331        340         

9.9.594    RelA            331        340         

9.9.637    NRF-1           341        350         

9.9.1197   NRF-1           341        350         

9.9.150    CP1             359        368         

3.5.2.0    c-Ets-1_68      374        383         

2.3.1.0    Sp1             383        392         

1.1.1.6    CRE-BP1         398        407         

1.1.3.0    C/EBPalpha      398        407         

2.3.3.0    CPE_binding_pro 398        407         

9.9.29     AP-1            400        409         

2.3.1.0    Sp1             411        420         

4.5.1.0    TBP             427        436         

4.4.1.0    E2              437        446         

3.4.1.0    HSTF            446        455         

2.3.1.0    YY1             473        482         

2.3.2.2    Hb              474        483         

2.3.2.2    Hb              492        501         
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3.5.3.0    NF-EM5          496        505         

3.5.2.0    PU.1            499        508         

4.1.1.0    NF-kappaB       510        519         

9.9.539    NF-1            522        531         

2.1.2.10   COUP            535        544         

1.1.3.0    C/EBPalpha      565        574         

2.2.1.1    GATA-1          583        592         

9.9.701    PTF1-beta       587        596         

3.4.1.0    HSE-binding_pro 600        609 

 

 

 

 

 

 

EF1 
(67 TFBDs) 

CMV 
(62 TFBDs) 

hPGK 
(55 TFBDs) 

RPBSA 
(58 TFBDs) 

Pax-5 C/EBPbeta C/EBPbeta RXR-alpha 

p53  C/EBPalpha NF-1 TFIID 

c-Jun  GR-beta TFII-I HNF-3alpha 

Egr-3  HOXD9 STAT4 GR 

ETF  HOXD10 NF-AT1 GR-beta 

TFII-I  c-Jun c-Ets-1 Pax-5 

C/EBPbeta  Pax-5 STAT1beta p53 

NF-1  p53 GR-alpha IRF-1 

GR-alpha  YY1 AP-2alphaA GR-alpha 

GR-beta  SRF NFI/CTF AP-2alphaA 

C/EBPalpha  TFII-I Pax-5 NF-AT1 

VDR  STAT4 p53 ENKTF-1 

PXR-1:RXR-alpha  E2F-1 EBF TFII-I 

ENKTF-1  c-Ets-1 IRF-1 YY1 

FOXP3  HNF-1C FOXP3 XBP-1 

c-Myb  FOXP3 NF-AT1 C/EBPbeta 

IRF-1  HNF-1B GCF STAT4 

TFIID  c-Myb RXR-alpha c-Ets-1 

NF-AT1  XBP-1 c-Jun Elk-1 

IRF-2  ENKTF-1 T3R-beta1 FOXP3 

XBP-1  ER-alpha E2F-1 PR B 

E2F-1  Sp1 Elk-1 PR A 

NF-AT2  NFI/CTF Sp1 VDR 

STAT4  RXR-alpha TFIID PXR-1:RXR-alpha 

c-Ets-1  ETF HIF-1 MEF-2A 

PR B  ATF-1 GR-beta E2F-1 

PR A  CREB XBP-1 PPAR-alpha:RXR-
alpha  

RelA  ATF3 ENKTF-1 WT1 

Elk-1  ATF-2 ER-alpha GCF 

AhR:Arnt  ATF ATF3 c-Myc 

AP-2alphaA  NF-kappaB PR B USF1 

YY1  RBP-Jkappa PR A ER-alpha 

Table. 9 The TF binding sites predicted by PROMO program. 

 

http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.5.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.5.2.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#4.1.1.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.539
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.1.2.10
http://transfac.gbf.de/TRANSFAC/cl/cl.html#1.1.3.0
http://transfac.gbf.de/TRANSFAC/cl/cl.html#2.2.1.1
http://transfac.gbf.de/TRANSFAC/cl/cl.html#9.9.701
http://transfac.gbf.de/TRANSFAC/cl/cl.html#3.4.1.0


HNF-3alpha  GR-alpha c-Ets-2 NFI/CTF 

ER-alpha  NF-AT2 ETF AR 

GATA-3  NF-AT1 C/EBPalpha C/EBPalpha 

NFI/CTF  NF-1  CTF NF-Y 

PPAR-alpha:RXR-alpha  GATA-1 NF-Y NF-1 

GCF STAT1beta YY1 ETF 

GATA-1  AP-1 AR AhR:Arnt 

Sp1  HNF-3alpha AhR:Arnt c-Ets-2 

GR  GR NF-kappaB c-Jun 

AP-1  TFIID PPAR-alpha:RXR-
alpha 

Sp1 

RXR-alpha  PR B RelA c-Myb 

c-Fos PR A GR HNF-1C 

T3R-beta1  AP-2alphaA RAR-beta HNF-1B 

SRY  RAR-beta  NF-AT2 

TCF-4E  Egr-3  STAT1beta 

c-Ets-2 AhR:Arnt  COUP-TF1  

STAT1beta POU2F1   

ATF3  IRF-1   

NF-kappaB  NF-AT1   

NF-kappaB1  NF-kappaB1   

HNF-4alpha  c-Fos   

SRF  GATA-2   

LEF-1 T3R-beta1   

TCF-4 c-Ets-2   

RAR-beta CTF   

MAZ NF-Y   

AhR E2F   

EBF VDR   

HOXD9 PXR-1:RXR-alpha   

HOXD10 RAR-alpha1   

STAT5A    

Ik-1    

ATF-1    

E2F    

RBP-Jkappa    
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Chapter V: 

The potential improvement of CAR T cell function by 

Mcl-1 and miR429 overexpression 
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As noted in the Introduction, the mitochondrial dynamic has a central role in T cell 

persistence and memory development. We therefore selected two genes based on their 

role in mitochondrial dynamics; Mcl-1 and TCAIM. Mcl-1 upregulation protects T cells 

from AICD and enhances T cell persistence (1). Also, Mcl-1 promotes mitochondrial 

fusion, an essential step in TM formation (2-4). TCAIM downregulation was correlated 

with an increase in TM and mitochondrial fusion (5-7). Our bioinformatic analysis 

predicted miR429 as a negative regulator of TCAIM. We hypothesized that 

overexpression of Mcl-1 and miR429 would facilitate mitochondria fusion and TM 

development in Her2-CAR T cells.  

First, we used the Tet-On Sleeping Beauty (SB) system to overexpress GOI (construct 

has been optimized in chapter III). However, utilizing different protocols, transfection 

efficiency remained lower than 10%. Hence, we created a Tet-On lentiviral (LV) system 

to improve the efficiency of gene delivery. This system also had several drawbacks, 

including low transduction efficiency and weak inducibility. Therefore, we decided to use 

a constitutive system to overexpress Mcl-1 and miR429, along with a GFP-P2A-

Her2CAR in T cells. 

This chapter is an unfinished story of Mcl-1, the work being affected by the SARS-CoV-

2 pandemic. Our laboratory only received permission to work with the LV system in July 

2019. The first steps were making the LV constructs, cloning, optimization methods of 

LV production, and transduction methods. In this time, I tried to complete at least a proof 

of concept that suggests Mcl-1 promotes TM development possibly via mitochondrial 

fusion.  
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5.1. Investigation of Tet-On inducible system in SB system 

In order to have controlled expression of Mcl-1, we used the Tet-On SB that was  

developed and described in chapter 3. This system showed high inducibility and low 

background expression. Hence, Jurkat T cells were electroporated with Tet-On SB 

plasmids with or without cop-Mcl-1 (here named 'Mcl-1') under TCE promoter. 

Transfected Jurkat cells were purified by 2 µg/mL of Puromycin for two weeks. Mcl-1 

upregulation was verified at RNA and protein levels using qPCR and western blot assays, 

respectively (Figure 5.1). In line with previous reports, the expression of Mcl-1S (in our 

intronless sequence) indicated that protease cleavage of Mcl-1L by caspase 3/8 is 

probably the primary mechanism for Mcl-1S production (8, 9). 

 

Figure 5.1. Quantification of Mcl-1 expression 24 hours after treatment of cells with 5 

µg/mL of doxycycline. Jurkat cells were lysed for RNA or protein extraction. (A) Mcl-1 

expression at mRNA level using qPCR assay, and (B) Western blot analysis for Mcl-1 

protein verified the upregulation of long and short isoforms of Mcl-1. The graph 

represents the mean ± SD of three independent experiments. 

Next, two electroporation methods, Neon electroporation (Thermo Fisher) and 4D-

Nucleofector (Lonza), were used to transfect primary T cells (10). However, the 

transfection efficiency was lower than 10%. Since artificial antigen presenting cells have 
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only just been developed in the lab but, were not available at this time to expand CAR T 

cells (Lawrence Cooper's group), we decided to develop a Tet-On LV system.  

 

5.2 Investigation of Tet-On inducible system in lentiviral (LV) system 

In order to improve gene delivery efficiency, we decided to use the LV system. First, we 

removed the Poly(A) site downstream of Mcl-1 and then sub-cloned the construct into a 

third-generation LV system, pCCLSin (Figure 5.2A). After producing LV particles, 

HEK293T cells were transduced at MOI 2 with 8 μg/mL of polybrene. After 48 hours, 

cells were treated with 0 to 10 μg/mL of doxycycline. The expression level of Mcl-1 was 

measured at RNA (Figure 5.2B) and protein level (Figure 5.2B) and compared to 

constitutive expression. Unfortunately, Tet-On lost its inducibility in LV, and even 10 

μg/mL of doxycycline did not significantly increase the Mcl-1 level. In addition, 

transduction efficiency was ~10%, and increasing the MOI to 30 did not increase the 

percentage of transduced T cells (Figure 5.2C).  
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Figure 5.2. Tet-On system showed poor inducibility in the LV system. (A) Schematic 

representation of the Tet-On LV system. (B & C) HEK93T cells were transduced with 

LV particles at MOI 2 along with 8 μg/mL of polybrene. After 48 hours, HEK293T cells 

were treated with different concentrations of doxycycline. After overnight treatment, 

HEK293T cells were proceeded to measure Mcl-1 expression at RNA and protein level 

using qPCR and western blot. (D) A pilot experiment using the Tet-On LV system for 

Mcl-1 and miR429 showed low transduction efficiency compared to the LV expressing 

only Her2-CAR. (E & F) Human primary T cells cultured for 24 hours in the presence of 

0, 1, 5, and 10 μg/mL of doxycline. LUNA-II™ automated cell counter (Thermo Fisher) 

was used to measure the total cell number. Cell viability was determined by the resazurin 

assay. Three experiments were performed in triplicate, except (D) pilot experiment only. 

doxycycline is an antibiotic which blocks bacterial protein translation. In human cell 

lines, doxycycline was shown to reduce proliferation, increase apoptosis, and promote 

glycolytic metabolism (11). Consistent with this, a 10 µg/mL of doxycycline treatment 

for 24 hours decreased the cell number and cell viability (Figure 5.2E & F).  

 

5.3 Constitutive overexpression of Mcl-1 and miR429 in Her2-CAR T cells  

5.3.1 Construct design 

Since the Tet-On system failed to operate in an inducible manner in LV-transduced cells, 

we decided to use the constitutive overexpression of Mcl-1 and miR429 in Her2-CAR T 

cells. We chose EF-1 to express the GFP-P2A-Her2CAR and hPGK to transcribe Mcl-1 

or miR429. The promoter choice for longer RNA (GFP-P2A-Her2CAR, ~2.3 kb) was 

EF-1, while for transcribing Mcl-1/miR429 (≤1 kb), we selected hPGK (see chapter IV) 

(4). pCCLsin group represents T cells that underwent CD3/CD28 activation, LV 

transduction procedure, and expresses GFP marker (Figure 5.3A). Her2CAR is the 

control group and expresses GFP and Her2-CAR (Figure 5.3A).  

It has been shown that CD28- CD3ζ -CAR T cells aggregate at the cell surface and cause 

an antigen-independent CAR stimulation (12). CD28 stimulation of CAR promotes CAR 

T cell survival as well as CAR T cell exhaustion (12, 13). Besides, the level of Her2-CAR 

expression is correlated with the extent of CAR T cell cytotoxicity (1). Therefore, the 
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level of the CAR should be similar in the control and treated groups. To express a GOI in 

the treatment group, we had three options (Figure 5.3B). The first option was to express 

all genes under EF-1 using two P2A sequences (Figure 5.3B) (1). The advantage of this 

system is the higher LV titer and transduction rate since this design has a smaller size and 

contains only one promoter. However, the expression level of Her2-CAR at the protein 

level between the control and treatment groups will not be equal (see chapter IV). 

The second design produces two RNA, one from hPGK and another from EF-1. Since 

there is no poly(A) site after Mcl-1, both RNA encode Her2-CAR (Figure 5.3B). 

Therefore, the amount of CAR protein is slightly different in the two compared groups. 

Adding a Poly(A) site after Mcl-1 would most likely reduce the LV titer and transduction. 

Only the third strategy resulted in the robust expression of Her2-CAR in the treatment 

and control group (Figure 5.3B). It worth mentioning that we have tested miR429 

expression in the first and second designs, and fold induction was 10 to 25 compared to 

50 fold change in the third design. 

 

Figure 5.3. LV constructs have been used in this study. (A) pCCLsin is the original vector 

that only expresses a GFP. The control group expresses both GFP and Her2-CAR under 
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EF-1 promoter (B) Strategies to express GOI along with a HER2-CAR. We used the third 

strategy to acquire a ubiquitous expression of Her-CAR in the control and treated group. 

 

5.3.2 miR429 targets TCAIM by binding to its 3′ UTR  

Bioinformatics analysis predicted miR429 has potential binding sites within TCAIM, 

MFF, and TET-2 3'UTR (Figure 5.4A). TCAIM is a mitochondrial gene, and its 

downregulation has been linked to an increase in mitochondrial fusion and TM 

development (5-7). MFF enhances mitochondrial fission by recruiting Drp1 at OMM 

(14), and the downregulation of MFF by miR27 increased the mitochondrial fusion in 

human cells (15). Downregulation of TET-2 also has been associated with long-term 

CAR T cell persistence and complete remission (16). Further studies showed that 

inhibition of TET-2 improves the CAR T cell therapy via epigenetic changes that 

encourage TM differentiation (16, 17).  

First, stem-loop qRT-PCR (18) confirmed that the genomic sequence ranged from 

1168816 to 1169361 in chromosome 1 (GRCh38.p12) and that this produced a 22 bp 

mature miR429-3p (Figure 5.4B). As flanking sequences, we arbitrarily cloned 190 bp 

upstream and 274 bp downstream of the miR429 pre-miRNA sequence. miR429 

overexpression in HEK293 cells resulted in the downregulation of TCAIM, MFF, and 

TET-2 at mRNA level (Figure 5.4C). To verify the predicted miR429 binding sites in 

Figure 5.3B, three repeats of each binding site were cloned downstream of a luciferase 

gene (pmirGLO dual-luciferase vector). Mutated sequences of each binding site were also 

cloned as the negative control. The reporter vectors were transfected into HEk293T cells 

overexpressing miR429, and luciferase assay carried out 48 hours post-transfection. 

Reporter assay confirmed the direct binding of miR429 to the TCAIM, MFF and TET-2 

3′ UTR (Figure 5.4D). Since the main focus of this study was mitochondrial related genes 

(Mcl-1 and TCAIM); we only confirmed the TCAIM downregulation by miR429 at the 

protein level (Figure 5.4E).  
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Figure 5.4. Confirmation of TCAIM, MFF, and TET-2 as miR429 targets (A) miR429 

binding sites within 3′ UTR of TCAIM, MFF, and TET-2 predicted by DIANA-microT 

tool (19, 20). (B) Stem-loop RT-qPCR assay verified the elevated level of mature 

miR429, 48 hours post-transduction. (C) SYBR green qPCR assay for TCAIM, MFF, and 

TET-2 showed miR429 upregulation led to target gene downregulation in HEK293T 

cells. The comparative CT (2−ΔΔCT) method was utilised to analyse the relative expression 

level of target genes. β-actin was used as the housekeeping gene. (D) HEK293T 

overexpressing miR429 were transfected with the reporter vectors carrying wild type or 

mutated miR429 binding sites of TCAIM, MFF, and TET-2. This reporter expresses a 

second luciferase gene (Renilla) under the SV40 promoter as an internal control to 

minimize the transfection error. Fold induction was calculated by the following formula: 
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Fold induction =
Read from Firefly gene

Read from Renilla gene 
. (E) Western blot analysis of TCAIM and β-actin 

on the HEK293T cell lysate 48 after transduction. Statistical analysis: all data are 

presented as the mean ±  SEM and pooled from three independent experiments, (B & E) 

two-tailed t-test; (D) one-way ANOVA test with Bonferroni post-test correction 

(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

 

5.4 Functional analysis of Her2-CAR T cells overexpressing Mcl-1 or miR429 

5.4.1 An overview of workflow and study design  

The workflow of in vitro assays is briefly described in Figure 5.5. Cytotoxicity and IL-

2/INF-γ release assays carried out one week after transduction while the majority of CAR 

T cells were still TEFF or TEM. TMRE assay was also carried out at this time point because 

TEFF cells are more susceptible to the AICD. Ten days post-transduction, CD4/CD8 Her-

CAR T cells were stained for Treg markers (CD25+CD127-) and T cell activation marker 

CD69. Three weeks post-transduction, CD4/CD8 CAR T cells were stained for TM cell 

markers (CCR7, CD45RO, CD45RA, CD27, CXCR3, CD95 and CD57). At this time 

point, mitochondrial mass (Mitotracker staining) and the ratio of mitochondrial 

(mt)DNA:gDNA were also measured.   
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Figure 5.5. An overview of (A) workflow and (B) gating strategy used in this study. The 

fluorescence minus one (FMO) control was used for two colour plots. 

 

5.4.2 Experiments seven days post-transduction  

5.4.2.1 Transduction, cytotoxicity and cytokine release assays 

CD95L induces AICD in T cells via two cascades. First, at the high level of activated 

caspase 8, caspase 8 directly activates caspase 3 and initiates apoptosis independent of 

mitochondria. Second, the mitochondria-dependent pathway, which leads to the release 

of cytochrome C into the cytosol (21). T cells with elevated expression of Bcl2/Mcl-1 

(e.g., TM) are protected against AICD through the second pathway while they benefit from 

non-apoptotic functions of the CD95 (see introduction). Plus, culturing CAR T cells with 

46 ng/mL of CD95L enhanced the CAR T cell functions and the number of TM cells (22-
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25). Accordingly, we hypothesized that treatment of Her2CAR-Mcl-1 T cells with 46 

ng/mL of CD95L would improve TM development while most of CAR T cells are 

protected against AICD. 

Viral titer ranged from 6-10 × 107 TU/mL, even when two promoters were used (1). 

However, Her2CAR-Mcl1 had lower transduction efficacy (~30%) compared to the other 

constructs (Figure 5.6A). The use of two promoters (EF-1 and hPGK), higher size (1.5 

kb more compared to the control), and complexity of the Mcl-1 transcript can negatively 

affect the reverse transcriptase activity during the transduction process.  

Cytotoxicity assay carried out by the co-culturing of CAR T cells with Luciferase+/Her2+ 

MCF-7 cells in a 5:1 ratio, as described before in chapter IV (1). Luciferase expression 

was read 24 and 48 hours after incubation of the Her2-CAR T cells with MCF-7 cells. 

The percentage of the live cells was calculated using the following formula:  

%Target cell viability =
read from the sample well

read from untransduced T cells + MCF − 7 cells
× 100        

Her2-CAR T cells in the control group had ~10% more cytotoxicity activity at the 24 

hour time point (P> 0.9). All CAR T cells killed MCF-7 cells within 48 hours of post-

incubation (Figure 5.6B). 

Next, CAR T cells were incubated with MCF-7 cells (ratio 2:1) for 24 hours, and 

supernatant were analysed for IL-2 and IFN-γ secretion by ELISA (Figure 6C & D). All 

CAR T cells had similar levels of cytokine secretion. For both cytotoxicity and cytokine 

release experiments, samples were checked for the percentage of CAR T cells (GFP+ 

cells) before co-culturing with MCF-7. We admixed in untransduced cells to normalise 

the total number of T cells and CAR T cells among samples.  
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Figure 5.6. Functional analysis of Her2-CAR T cells. (A) Percentage of transduced T 

cells at MOI:30. (B) Cytotoxicity assay of Her2-CAR T cells 24 and 48 hours after 

incubation with Luciferase+/Her-2+ MCF-7 cells (ratio 5:1). (C & D) Cytokine release 

capability of Her-CAR T cells measured by ELISA. Supernatants were collected 24 hours 

after incubation of CAR T cells with MCF-7 cells (ratio 2:1). Statistical analysis: data 

represent the mean ± SD of three independent experiments. (A, C & D) one-way (B) two-

way ANOVA test with Bonferroni post-test correction (**P=0.005).  
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5.4.2.2 Activation-induced cell death (AICD) mediated by CD95L 

Healthy mitochondria with high membrane potential (ΔΨm) will retain the TMRE dye, 

whereas depolarised mitochondria release it. DAPI binds to the AT-rich regions in DNA 

exposed in cells with compromised plasma and nuclear membrane integrity, thus 

discriminating between live (DAPI-) and dead cells (DAPI+). Hence, in an AICD 

experiment stained with TMRE and DAPI dyes, four distinct cell populations can be seen 

(Figure 5.7A).  

Previously we showed that ~90% CAR T cells overexpressing Mcl-1 are protected against 

AICD triggered by 1 µg/mL of CD95L (see chapter IV) (1). In this chapter, we increased 

the CD95L concentration to 3 µg/mL to test the protection at the highest concentration. 

As shown before (1), overexpression of Mcl-1 decreased the AICD in CAR T cells. Her2-

CAR-Mcl1 and Her2CAR-Mcl1-CD95L T cells showed the highest number of healthy 

CAR T cells compared to the control (Figure 5.7B). Interestingly, cells were grown with 

46 ng/mL of CD95L had higher content of fully viable  cells (~38%) compared to the 

control (~12%). Her2CAR-miR429 T cells were more susceptible to AICD, possibly due 

to Bcl-2 downregulation via miR429 (26). 

All samples had ≥90% viable CAR T cells (Figure 5.7D). CAR T cells overexpressing 

Mcl-1 had ~2% higher viable cells compared to the control. CAR T cells upregulated 

Mcl-1 and have been grown with 46 ng/mL CD95L, had the lowest content of fully viable 

cells (90%) with more early apoptotic cells. The presence of early apoptotic cells could 

be due to the AICD activation through the mitochondria-independent pathway (21, 27).  
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Figure 5.7. TMRE assay following overnight treatment with 3 µg/mL of CD95L. (A) 

Her2-CAR T cells were stained with 4 μM TMRE and 50 ng/mL DAPI dyes. GFP+ CAR 

T cells were electronically gated for quantification of TMRE and DAPI signals using the 

YG586/16 and BV421 channels. (B & C) Graphs represent the mean of two independent 

experiments.  
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5.4.3 Experiments ten days post-transduction 

5.4.3.1 CD69 expression following antigen stimulation  

Following one hour after TCR engagement with antigen, the phosphorylation of ITAM 

domains lead to CD69 expression in TN cells (28). CD69 protein was maintained on the 

cell surface for several days, suggesting relatively stable protein. CD69 stimulation on T 

cells induces proliferation, Ca2+ efflux, and IL-2/INF-γ/TNF production (28). 

Her2-CAR T cells had a higher population of CD96+, although it was not statistically 

significant (P>0.9) (Figure 5.8). The control group, at this time point, comprises more 

TEFF compared to other samples (Figure 5.9). Therefore, it is not surprising that the control 

group also had higher CD69+ CAR T cells.  

 

Figure 5.8. (A) Her2-CAR T cells were co-cultured with MCF-7 cells overnight. Live 

GFP+ cells were gated for CD69, as previously described in chapter IV (1). (B & C) 

Graphs represent the mean ± SEM of three independent experiments. Statistical analysis: 
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One-way ANOVA test with Bonferroni post-test correction. MFI: mean fluorescent 

intensity. 

 

5.4.3.2 Composition of Her2-CAR T cells ten days post-transduction (focus on Treg)  

Despite the vital role of Treg in self-tolerance and autoimmune diseases, Treg dampen T 

cell responses, particularly CAR T cell therapy (29-31). Although the majority of Treg are 

CD4+ T cells, several subsets of CD8+ Treg cells have been characterized (32, 33). 

Generally, Treg cells are divided into natural Treg (developed in the thymus) and adaptive 

Treg (generated after antigen stimulation) (34). Several markers have been used to define 

the adaptive CD4+ and CD8+ Treg (33, 35). CD25 and FoxP3 are the common markers that 

have been used to identify CD4+ Treg (32-34). However, the intracellular expression of 

FoxP3 limits its application. It has been shown that using CD25+CD127-/low signature is 

comparable to the conventional markers, CD25+Foxop3+, in defining CD4+ and CD8+ 

Treg (33, 36). Furthermore, CD25 and CD127 expression distinguishes between Treg, TEFF, 

TCM, and TEM within a mixed T cell population (Figure 5.9A) (37, 38).  

CD4/CD8 Her2CAR-Mcl1 and Her2CAR-Mcl1-CD95L had the lowest percentage of 

phenotypes resemble to TEFF and Treg cells compared to the control (Figure 5.9B & C). At 

this time point, Her2CAR-Mcl1-CD95L CAR T cells were mainly composed of 

phenotypes similar to TEM (P<0.05). I will discuss these results in the next section.  
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Figure 5.9. The composition of Her2-CAR T cells ten days post-transduction. (A) 

Defining CAR T cell population based on CD25 and CD127 expression. Live GFP+ Her2-
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CAR T cells were gated for CD25 and CD127. CAR T cells upregulating Mcl-1 had lower 

Treg compare to the control. (B & C) Graphs represent the mean of three independent 

experiments. Statistical analysis: two-way ANOVA test with Bonferroni post-test 

correction.  

 

5.4.4 Experiments twenty-one days post-transduction 

5.4.4.1 Memory T cell subsets  

In general, it takes 18-21 days for TM cells to develop, and most of CAR T cell studies 

use this time point to investigate TM commitment (39-41). First, CD4/CD8 Her2-CAR T 

cells were gated for CD45RO and CCR7 to differentiate between TN/SCM, TCM, TEM, and 

TEMRA (TEM cells re-express CD45RA) (42, 43). CXCR3 was used to separate TN from 

TSCM populations (Figure 5.10). Thereby, TM subsets were categorized as follows: TN; 

CD45RO-CCR7-CXCR3-, TSCM; CD45RO-CCR7-CXCR3+, TCM; CD45RO+CCR7+, TEM; 

CD5RO+CCR7- and TEMRA (TEM re-expressing CD45RA); CD45RO-CCR7-. 

CAR T cells overexpressing Mcl-1 with or without CD95L treatment had a high 

frequency of phenotypes similar to TSCM and TCM subsets, while the number of TEM and 

TEMRA-like cells was reduced compared to the control (Figure 5.10B). The origin of TSCM 

cells is still unknown: they may arise from TN cells in the early stage of T cell activation 

or originate from TCM. Several studies have shown that TSCM (and less TCM cells) have 

excessive self-renewing capacity, longevity, and can reconstitute all the TM subsets (44, 

45). TSCM cells have shown remarkable persistence and tumour killing in clinical and 

preclinical studies (46). 

Interestingly at day-10, Her2CAR-Mcl1 and Her2CAR-Mcl1-CD95L cells were enriched 

for TEM-like phenotypes (Figure 5.9B). At day-21, TSCM and TCM cells were predominant 

in CD8+ and CD4+ CAR T cells, respectively. Differentiation of TM subsets after antigen 

encounter is varied, and several paths have been suggested for TM development (please 

see the discussion). However, TN→TEEF→TEM→TCM is known as the leading route (40). 

Thus, Mcl-1 induction in CAR T cells probably increases the TCM number through the 

same path. TCM cells have high proliferation and cytotoxicity capacity; they can last for 

years after development and are able to differentiate to TEM and TEFF cells (45). 
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The upregulation of miR429 did not change the TM composition in CD8+ Her2-CAR T 

cells. However, phenotypes similar to TSCM and TCM cells in this group were 2.5% and 

8.6% higher in CD4+ CAR T cells, respectively (Figure 5.10). miRNA target selection is 

a cell- and context-dependent; notably, various immune cells express different isoforms 

of a gene with distinct 3′ UTR (47). Interestingly, highly proliferative cells tend to use 

alternative polyadenylation to remove the negative regulators (e.g., miRNA binding sites) 

in the 3′ UTR of essential genes (48).  For instance, both ZEB1 and ZEB2 genes are well-

known targets of miR429 (49, 50). However, in CD8+ T cells, miR429 selectively only 

targets ZEB2, not ZEB1 (51). Therefore, it is possible that miR429 targets different genes 

in CD4+ and CD8+ T cells.  

The number of, phenotypes similar to TEM and TEMRA cells in Her2-CAR T cells 

overexpressing Mcl-1 (with or without CD95L treatment) and miR429 were lower 

compared to the control. TEM cells similar to their progeny TEFF have effector functions 

but with higher lifespan, proliferation, and multipotency capacity. However, TEM cells do 

not possess self-renewal capacity, identical to TCM and TSCM. Single-cell serial transfer of 

TM subsets showed that TCM and TSCM were able to reconstitute the murine immune 

system, while an infusion of 100-fold TEM cells in mice failed to rebuild the host immune 

system (45, 52). In another study, the TSCM number was unchanged for decades, whereas 

the population of TCM and TEM shrunk 10- to 100-fold, respectively (53). TSCM number 

was constant in patients receiving engineered T cells decades after ACT (54, 55). 

Remarkably, vaccination with yellow fever created CD8+ TSCM cells that remained 

unchanged after 25 years  (56). 

TEMRA cells are usually considered as terminally differentiated cells with an intermediate 

phenotype between TEM and TEFF cells. TEMRA cells have a lower proliferation capacity, 

IL-2/INF-γ secretion, and lifespan. These cells have CD95high/Bcl-2low signature that 

makes them susceptible to apoptosis, even more than TEFF cells (57, 58). Her2CAR-

Mcl1and Her2CAR-Mcl1-CD95L CAR T cells contain lower TEMRA cells compared to 

the control (Figure 5.10).  
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Figure 5.10. Memory T cell subsets within the Her2-CAR T cell population. CD45RO 

and CCR7 were used to distinguish between live CD4/CD8 TN/SCM (CD45RO-CCR7+), 
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TCM (CD45RO-CCR7+), TEM (CD45RO-CCR7+), and TEMRA (CD45RO-CCR7+) Her2-

CAR T cells. CXCR3 was used to separate TSCM (CXCR3+) and TN (CSXCR3-). (B & C) 

Graphs represent the mean of three independent experiments. Statistical analysis: two-

way ANOVA test with Bonferroni post-test correction.  

Recently, it has been shown that TEMRA cells include functional cytotoxic and cytokine 

secreting cells. These cells do not express CD57 but induce CD27 expression (59-61). 

Functionally, TEMRA cells are not senescent, yet possess effector functions such as IL-

2/INF-γ secretion, cytotoxicity, and showed decreased sensitivity to apoptosis (59, 61). 

The number of non-functional TEMRA cells is higher in older people (60). Strikingly, 

Her2CAR-Mcl1, and Her2CAR-Mcl1-CD95L T cells demonstrated higher CD57-CD27+ 

cells within their TEMRA cell population (Figure 5.11). 

 

5.4.4.2  CD45RO-CD27+ Her2-CAR T cells 

Several clinical trials have shown that responder patients have an elevated frequency of 

CD45RO-CD27+ CAR T cells (62-64). Further analysis showed CD45RO-CD27+ CAR T 

cells resemble the TN/SCM phenotype (62-64). Interestingly a decade before, this 

population has been visualised in patients responding to vaccination or anti-viral therapy 

and was known as "true resting" TM cells (65-67). Overexpression of Mcl-1, especially 

cells treated with CD95L, had a greater number of CD4/CD8 CD45RO-CD27+ CAR T 

cells (Figure 5.12). Forced expression of miR429 slightly increased the number of these 

cells exclusively in CD4+ CAR T cells (Figure 5.12).  

Another criterion to predict the outcome of CAR T cell therapy is the CD4:CD8 ratio at 

the time of infusion. Although CD8+ CAR T cells are known to be responsible for the 

direct tumour killing, CD4+ CAR T cells have been shown to have a cytotoxic capacity 

comparable to the CD8+ CAR T cells (68). Interestingly, TCR engagement in CAR T 

cells induced apoptosis and exhaustion in CD8+, but not CD4+ CAR T cells (68). Early 

studies suggested a 1:1 ratio as the optimal composition for CAR T cell therapy in ALL 

and NHL (69, 70). More recent clinical trials in multiple myeloma showed that a larger 

number of CD4+ CAR T cells is correlated with durable remission and desire in vivo 

expansion (62, 64). The CD4:CD8 ratio in our study differed between treatments: 
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Her2CAR = 0.39, Her2CAR-miR429 = 0.43, Her2CAR-Mcl1 = 1.21 and Her2CAR-

Mcl1-CD95L = 2.63 (mean ratios; n=3).    

 

Figure 5.11. Discriminating between functional (CD57-CD27+) and non-functional  

TEMRA Her2-CAR T cells. CAR T cells upregulating Mcl-1 had lower non-functional 

TEMRA cells. Graphs represent the mean ± SEM of three independent experiments. 

Statistical analysis: two-way ANOVA test with Bonferroni post-test correction. 
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Figure 5.12. (A & B) Live GFP+ CD4/CD8 Her2-CAR T cells were gated for CD27 and 

CD45RO. Overexpression of Mcl-1 improved the number of CD4/CD8 CD45RO-CD27+ 

CAR T cells. The graph represents the mean ± SEM of three independent experiments. 

(C) The chart shows the number of CD4+and CD8+ Her2-CAR T cells at day 21 post-

transduction. Statistical analysis: two-way ANOVA test with Bonferroni post-test 

correction.  
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5.4.4.3 Expression of memory T cells markers 

5.4.4.3.1 CD27 

CD27 belongs to the TNF family and, alike to CD137 and CD134 has a costimulatory 

role in T cells. TN cells express CD27; its expression induces upon TCR activation and 

gets lost after several rounds of proliferation and activation (71). CD27 ligand (CD70) is 

expressed on antigen presenting cells (APC), and stimulation of CD27 enhances T cell 

persistence, proliferation, and TM development (71). Less differentiated TM cells such as 

TSCM and TCM overexpress CD27, TEM cells do not express  CD27 (or express at a low 

level), and TEMRA cells are negative for CD27 (72). Her2-CAR T cells overexpressing 

Mcl-1 had a higher CD27+ CAR T cells (Figure 5.13). These results are in line with the 

findings in Figure 5.10, in which these CAR T cells contain higher TSCM and TCM and 

lower TEMRA population (Figure 5.10). miR429 upregulation resulted in a higher number 

of CD4+CD27+ CAR T cells, as this population has shown to include more TCM cells 

(Figure 5.10).   
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Figure 5.13. Flow cytometry analysis of CD27 expression. (A) Live GFP+ CD4+ or CD8+ 

CAR T cells were gated for CD27 expression. (B & C) Graphs represent the mean ± SEM 

of three independent experiments. Statistical analysis: two-way ANOVA test with 

Bonferroni post-test correction. 

 

5.4.4.3.2 CCR7 and CD62L 

CCR7 and CD62L (L-selectin) play a crucial role in adaptive immunity and T cell 

migration into lymph nodes during infections. CCR7 and CD62L expression separates  

TN, TSCM, TCM (CCR7+CD62L+) and TEFF, TEM and TEMRA (CCR7-CD62L-) (67, 72, 73). 

CD62L+CCR7+ T cells have shown to be the optimal cells for ACT purposes, such as 

CAR T cell therapy, as they contain high TSCM and TCM cells (74, 75). Her2-CAR T with 

elevated Mcl-1 expression had higher CD62L+CCR7+ as they also contain more TN, TSCM, 

TCM (Figure 5.14 & 5.15).  
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Figure 5.14. Flow cytometry analysis of CCR7 expression. (A) Live GFP+ CD4+ or CD8+ 

CAR T cells were gated for CCR7 expression. (B & C) Graphs represent the mean ± SEM 

of three independent experiments. Statistical analysis: two-way ANOVA test with 

Bonferroni post-test correction. 

 

Figure 5.15. Flow cytometric analysis of CD62L expression. (A) Live GFP+ CD4+ or 

CD8+ CAR T cells were gated for CD62L expression. (B & C) Graphs represent mean ± 

SEM of three independent experiments. Statistical analysis: two-way ANOVA test with 

Bonferroni post-test correction. 

 

5.4.4.3.3 CD95 

CD95 belongs to the TNF family, and it is well-known for its role in AICD. Upon T cell 

activation, CD95 expression elevates in TEFF cells, while they also upregulate CD95L 
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(76). Following Bcl-2 and Mcl-1 downregulation (contraction), TEFF cells undergo AICD, 

while TM cells, which overexpress Bcl-2 and Mcl-1, are protected against AICD. For 

more information about the apoptotic and non-apoptotic functions of CD95, please see 

the introduction.  

The frequency of CD95+ Her2-CAR T cells was similar in all groups, with a minor 

reduction in CAR T cells overexpressing Mcl-1 (Figure 5.16). As I discussed above, 

Her2CAR and Her2CAR-miR429, which have higher CD95+ cells, also contain a greater 

number of CD62L-CCR7- cells (TEFF, TEM, and TEMRA - Figure 5.14 & 5.15). Except for 

TN cells, all T cells have been shown to express CD95 (72, 77). It should be noted that 

CD95 expression in TN cells is still controversial as some studies showed that a percentage 

of TN cells are positive for CD95 and prone to AICD (78, 79). Therefore, a ~2-5% lower 

CD95+ in CAR T cells upregulating Mcl-1 can be explained due to the lower number of 

TEFF, TEM, and TEMRA cells.  
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Figure 5.16. Flow cytometry analysis of CD95 expression. (A) Live GFP+ CD4+ or CD8+ 

CAR T cells were gated for CD95 expression. (B & C) Graphs represent the mean ± SEM 

of three independent experiments. Statistical analysis: two-way ANOVA test with 

Bonferroni post-test correction. 

 

5.4.4.3.4 CXCR3 

CXCR3 is an inflammatory chemokine receptor responsible for the migration of T cells 

towards the inflammation site. Tumour cells expressing CXCR3 ligands (CXCL9, 

CXCL10 and CXCL11) have better T cell infiltration and improved response to 

immunotherapy (80). 

  

Figure 5.17. Flow cytometry analysis of CXCR3 expression. (A) Live GFP+ CD4+ or 

CD8+ CAR T cells were gated for CXCR3 expression. (B & C) Graphs represent mean ± 
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SEM of three independent experiments. Statistical analysis: two-way ANOVA test with 

Bonferroni post-test correction. 

Similar to CD95, all T cells except TN express CXCR3 with different expression levels. 

Her2-CAR T cells upregulating Mcl-1 had 12-20% higher CXCR3+ cells, probably due 

to the presence of higher TSCM and TCM numbers (Figure 5.17). Besides, CXCR3+ CAR 

T cells were higher in CD8+ compare to CD4+ CAR T cells, since they contain more TSCM 

(Figure 5.10). Forced expression of miR429 only increased 2-4% CXCR3+Her2CAR T 

cells.  

 

5.4.4.3.5 CD57 

CD57, also known as HNK-1, is expressed in terminally differentiated cells and has been 

used routinely as a senescence and exhaustion marker for T cells (81). T cells expressing 

CD57 have low proliferation and cytotoxicity capability and susceptible to apoptosis (81). 

Manufacturing low CD57+ CAR T cells population enhances the efficacy of CAR T cell 

therapy (82). Interestingly, the upregulation of Mcl-1, especially with CD95L treatment, 

decreases the number of CD4+ (2-6%) and CD8+ (3-10%) Her2-CAR T cells (Figure 

5.18).  
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Figure 5.18. Flow cytometry analysis of CD57 expression. (A) Live GFP+ CD4+ or CD8+ 

CAR T cells were gated for CD57 expression. (B & C) Graphs represent the mean ± SEM 

of three independent experiments. Statistical analysis: two-way ANOVA test with 

Bonferroni post-test correction. 

 

5.4.4.4 Mitochondrial mass  

Similar to the surface markers, TN, TM, and TEFF cells have morphologically distinct 

mitochondria with different metabolism program. TN and TM cells have larger 

mitochondrial mass (fusion) and rely on OXPHOS metabolism. TEFF cells have smaller 

mitochondria (fission) and use glycolysis to produce ATP (for more information, please 

see the introduction). Both Mcl-1 isoforms facilitate mitochondrial fusion; Mcl-1L 

inhibits fission by interacting with Drp-1 and MFF, while Mcl-1S promotes fusion 
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through binding to OPA-1, MFN1, and MFN2 (2-4). In addition, miR429 might enhance 

fusion by downregulating the TCAIM and MFF. Overexpression of Mcl-1, particularly 

with CD95L treatment, increases mitochondrial mass and mtDNA:gDNA ratio in Her2-

CAR T cells (Figure 5.19), suggesting Mcl-1 (and less miR429) increase the TM 

differentiation probably by expediting mitochondrial fusion.  

 

 

Figure 5.19. Estimation of mitochondrial mass. (A & B) Her2-CAR T cells were stained 

with MitoTracker deep red and flow cytometric analysis carried to determine the 

mitochondrial mass. The graph shows the MFI of MitoTracker for three independent 

repeats (C) qPCR analysis of mtDNA:gDNA ratio. Genomic DNA was extracted from 

cell lysates and qPCR was performed using primers for β2-microglobulin and β-actin 

(nuclear genes), Leu-tRNA and Cytochrome C (mitochondrial genes). The comparative 

CT (2−ΔΔCT) method was used to analyses the fold change against Gag and PBS as 

internal genes. Statistical analysis: all data are presented as mean ±  SEM and pooled from 

three independent experiments. One-way ANOVA test with Bonferroni post-test 

correction (***P < 0.001). 
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5.5 Conclusion 

We investigated the overexpression of a non-coding gene (miR429) and a coding gene 

(Mcl-1) in Her2-CAR T cells. These genes were selected based on their role in the 

mitochondrial dynamic. First, we used a Tet-On system we have established in chapter 

III. Despite trying several protocols, the transfection efficiency was lower than 10%. 

Hence, we created a Tet-On LV vector. Unfortunately, this system had several drawbacks 

that made it inapplicable. First, at least 10 µg/mL was needed to achieve an adequate level 

of Mcl-1 (Figure 5.2B & C). The high concentration of doxycycline decreased the cell 

viability and cell number of human primary T cells (Figure 5.2 E & F). Also, transduction 

efficiency was still low. Hence, miR429 and Mcl-1 constitutively were expressed under 

the hPGK promoter. We divided CAR T cells overexpressing Mcl-1 into two groups; 

grown with or without 46 ng/ mL CD95L.  

We screened TCAIM 3′UTR for potential miRNA binding sites. miR429 was chosen 

among candidate miRNA since this miRNA also was predicted to target MFF and TET-

2. qPCR and reporter assays confirmed TCAIM, MFF, and TET-2 as miR429 targets. 

TCAIM downregulation, as the primary target, was also verified by at protein level 

(Figure 5.2). Compared to the control, overexpression of miR429 had limited benefits 

such as 5% lower Treg, 2-5% higher TCM, and TSCM CAR T cells.  

In terms of cytotoxicity, IL-2 and IFN-γ secretion, all Her2-CAR T cells had a similar 

activity (Figure 5.6). The upregulation of Mcl-1 protects CAR T cells from AICD-

mediated by CD95L (Figure 5.7). Her2-CAR T cells overexpressing Mcl-1 had a reduced 

number of CD69+ CAR T cells after stimulating with antigen (Figure 5.8), probably due 

to the lower number of TEFF cells (Figure 5.9). These CAR T cells contained a lower 

number of CD25+CD127- Treg compares to the control (Figure 5.9). On the other hand, 

the upregulation of Mcl-1, especially along with CD95L stimulation, enhanced the TSCM 

and TCM development (Figure 5.10). Interestingly, these CAR T cells also had lower non-

functional exhausted TEMRA cells (Figure 5.11). Although more experiments need to be 

done, measuring mitochondrial mass and mtDNA:gDNA ratio suggested that Mcl-1 

probably improves TM differentiation via promoting mitochondrial fusion (Figure 5.11).   
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Chapter VI 

Implications of SARS-CoV-2 Mutations for Genomic 

RNA Structure and Host microRNA Targeting 

The bulk of the data from the following manuscript was produced during the New Zealand 

lockdown period and was performed as a result of the skills gained in miRNA analysis 

prior to and during my PhD. The purpose of the work was to determine if SARS-CoV-2 

had the potential to be recognised by the host gene-control and immune system of 

miRNA.  Performed entirely in silico, the study shows a number of miRNA target sites 

filtered to low free-energy binding and represent only those targeted by miRNA with 

confirmed expression in target cells (e.g. airway epithelia). Importantly, a number of these 

SARS-CoV-2 binding sites have been lost by conserved mutations, including the C3037U 

mutation that has been independently mutated >40 times. The C3037U mutation is in 

linkage disequilibrium with both P232L (RdRp) and G614D (S) mutations, highlighting 

a possible cluster of functional changes that may impact on SARS-CoV-2 fitness and 

transmission.   
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Abstract: The SARS-CoV-2 virus is a recently-emerged zoonotic pathogen already well adapted to
transmission and replication in humans. Although the mutation rate is limited, recently introduced
mutations in SARS-CoV-2 have the potential to alter viral fitness. In addition to amino acid changes,
mutations could affect RNA secondary structure critical to viral life cycle, or interfere with sequences
targeted by host miRNAs. We have analysed subsets of genomes from SARS-CoV-2 isolates from
around the globe and show that several mutations introduce changes in Watson–Crick pairing,
with resultant changes in predicted secondary structure. Filtering to targets matching miRNAs
expressed in SARS-CoV-2-permissive host cells, we identified ten separate target sequences in the
SARS-CoV-2 genome; three of these targets have been lost through conserved mutations. A genomic
site targeted by the highly abundant miR-197-5p, overexpressed in patients with cardiovascular
disease, is lost by a conserved mutation. Our results are compatible with a model that SARS-CoV-2
replication within the human host is constrained by host miRNA defences. The impact of these
and further mutations on secondary structures, miRNA targets or potential splice sites offers a new
context in which to view future SARS-CoV-2 evolution, and a potential platform for engineering
conditional attenuation to vaccine development, as well as providing a better understanding of viral
tropism and pathogenesis.

Keywords: SARS-CoV-2; RNA secondary structure; conserved mutation; miRNA

1. Introduction

The SARS-CoV-2 virus has rapidly emerged as a zoonotic pathogen with broad cellular tropism
in human or zoonotic-host cells. Host selection pressure on the SARS-CoV-2 virus will have a major
impact on the long-term conservation of mutations that enhance viral fitness. Of these selection
pressures, the cellular-based adaptive and innate immune systems place constraints on viral fitness.
Intracellular detection and anti-viral pathways within infected cells are a critical frontline to control
virus replication. The success of the pathogenic SARS coronaviruses is proposed to be due to their ability
to suppress intracellular anti-viral pathways [1]. For example, interference with dsRNA detection
and the interferon response is enabled through the activity of several non-structural proteins (Nsp).
In addition, the sequestration of genomic viral RNA into double membrane vesicles, and dsRNA
cleavage by Nsp15, is inferred from the closely related SARS viruses, and likely acts to prevent
intracellular detection of the virus [1]. In addition to encoded mechanisms of immune avoidance,
the paucity of CpG runs in the SARS-CoV-2 genome with unexpectedly low GC-content at codon
position three points to major selection pressure being placed on structural features of the genome [2].

As a recently-emerged zoonotic pathogen, it might be expected that bat-adaptations will not be
optimal for infection and replication in human cells. However, extensive mutation and strain-radiation
has not yet been observed [3]. The mutation rate in SARS-CoV-2 is reduced by the -proof-reading 3′–5′

exonuclease Nsp14 in the RNA-dependent RNA polymerase (RdRp) complex. The observed mutation
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rate may be lower than the actual mutation rate, since deleterious mutations have likely been lost
through natural selection. The short time frame of SARS-CoV-2 evolution, coupled to a low mutation
rate is consistent with a founder effect for geographical bias in mutation patterns [3,4].

A common primary focus of mutational analysis of emerging viruses is the alteration in amino
acid sequence of viral proteins that may provide enhanced or new functions for virus replication,
immune avoidance, or spread. For instance, the non-synonymous A23403G mutation in the S gene may
enhance viral infectivity through decreased S1 shedding and increased S trimer stability [5]. However,
synonymous mutations can critically impact nucleic acid secondary structure and sub-translational
events including genome replication and packaging, and virus maturation [6,7], as well as translation
and polypeptide folding [8,9]. In addition, the RNA secondary structures of SARS-CoV-2 genes have
been proposed to be druggable targets [10–12]. Because little is known of the influence of SARS-CoV-2
mutations on the RNA secondary structure, and its possible implications for inhibition by host miRNA,
we have modelled the impact of common mutations of the SARS-CoV-2 RNA structure and the
susceptibility of the genome to interference from host miRNA.

The incident presence of host miRNA targets within the SARS-CoV-2 genome may be pivotal
for host selection pressures to further shape further viral evolution. Viruses not only alter host
miRNA expression, but may also produce miRNAs to promote their infectivity [13–16]. On the other
hand, the host targets viral transcripts for inhibition of translation, or mRNA destruction, through
a miRNA-mediated defence system. Since miRNAs are divergent between species [17], it would
be expected that bat-adapted SARS-CoV-2 will undergo selection pressure derived from human
miRNA interference [13–15,18,19]. While perfect matches of miRNA to target viral sequences result in
miRNA-induced silencing complex (miRISC)-mediate destruction of viral RNA, imperfect matches
interfere with translation [20].

A growing body of evidence suggests that human miRNAs act as a critical host defence against
coronaviruses. An interaction between human coronavirus OC43 nucleocapsid and miR-9 can enhance
the type I interferon response necessary to clear viral infection [21]. Several host miRNAs (miR-574-5p,
−214, −17, −98, −223, and −148a) bind to SARS-CoV encoded transcripts such as S, E, M, N, and
ORF1a [22,23]. However, SARS-CoV escapes from miRNA-mediated defence through the manipulation
of host miRNA machinery [22,23]. Additionally, SARS-CoV and SARS-CoV-2 express short RNAs that
resemble miRNAs and could impact upon host house-keeping or immune defence processes [24–26].
More recently, several studies have proposed that host miRNAs bind SARS-CoV-2 transcripts [24,26,27].
However, the relevance of host miRNAs for inhibition of viral replication is relevant only if the
identified miRNAs are expressed in target host cells.

Both DNA viruses, and ‘cytoplasmically-confined’ RNA viruses, use the host RNA splicing-
machinery to generate new viral transcripts, or to modify the host transcriptome in favour of their own
replication [28–32]. It has been suggested that the fused leader sequence in 5′ end of the mouse hepatitis
virus (betacoronavirus) mRNAs is the result of a non-canonical splicing process [33]. Moreover,
deep RNA sequencing has identified several unknown SARS-CoV-2 viral RNAs, possibly the result
of non-canonical splicing events [34]. Therefore, our study has additionally identified and mapped
mRNA splice sites within the SARS-CoV-2 genome.

No selective advantage of the identified sequence alterations in SARS-CoV-2 should be inferred
by their inclusion here. However, the potential of these mutations to impact upon RNA structure and
miRNA recognition provides a basis for ongoing monitoring of viral evolution at these sites in the
SARS-CoV-2 genome.

The interplay of viral genome sequences and host miRNA is translatable for clinical outcomes.
For example, the inclusion of host miRNA binding sites into the ORF of conserved viral regions
essential for the viral life cycle is a feasible mechanism for the attenuation of live vaccines [35–38].
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2. Results

2.1. Identification of SARS-Cov-2 Recurrence Mutations

A total of 65 SARS-CoV-2 patient isolate sequences were collected from NCBI and GISAID
databases and aligned against SARS-CoV-2 reference sequence NC_045512.2 (Table S1). The mutations
present in multiple sequences and in at least in three different countries were categorized as ‘conserved
mutations’ (Table 1) [39].

Table 1. Conserved mutations in SARS-CoV-2 genome.

Gene Mutation Amino Acid Change

5′ UTR C to U—nt241 -

Nsp1 C to U—nt313 No (L16)

Nsp2
C to U—nt1059 T85I

G to A—nt1397 V198I

Deletion 1606–1609 D268 deletion

Nsp3 C to U—nt3037 No (F106)

Nsp4
C to U—nt8782 No (S76)

C to U—9802 No (A416)

G to U—9803 No (L417)

Nsp6 G to U—nt11083 L37F

Nsp12 C to U—nt14408 P232L

C to U—nt14805 No (Y455)

Nsp13 U to C—nt17247 No (R337)

S
A to G—nt23403 D614G

C to U—nt24034 No (N824)

ORF3a
G to U—nt25563 Q57H

G to U—nt26144 G251V

ORF8 C to U—nt27964 S24L

U to C- nt28144 L84S

N
C to U—nt28311 P13L

U to C—nt28688 No (L139)

GGG to AAC—nt28881-28884 R203K and G204R

3′ UTR G to U—nt29742 -

Greater than 50% of the observed mutations in our analysis were synonymous mutations (Figure 1,
Table S2). Similar data was obtained from Observable notebook on all sequencing data available up to
12 June 2020 (Figure 1, Table S2). Recently, Li et al. suggested that SARS-CoV-2 is under purifying
selection, with dN/dS < 1 [40]; similar results were observed in our study and others [40,41].

Most of these mutations are substitutions of C/G to U. The high A/U content (U = 32.1%; A = 29.9%;
G = 19.6%; C = 18.4%) and enrichment of codons in pyrimidines is likely due to APOBEC editing
of viral RNA and the fact that the proof-reading Nsp14 does not remove U (the product of cytosine
deamination) [42]. Two mutations at 241 and 29742, are in the 5′ and 3′ untranslated regions (UTRs).
Nine mutations are synonymous mutations, including 313, 9802, 9803, 14,805, 17,247, and 28,686,
while the others are non-synonymous (Table 1). Interestingly, the C27964U (S24L in ORF8) exists only
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in 97 USA sequences, with the earliest isolated on March 9th (MT325581.1), after USA underwent
lockdown [43] (Figure S1).
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2.2. RNA Secondary Structure

Among all the mutations, only two mutations were predicted to have an impact on the secondary
structure of viral RNAs. First, a conserved mutation 1059 in Nsp2 changed the secondary structure
of Nsp2 dramatically (Figure 2A). We performed local RNA secondary structure analysis on 500 bp
flanking the mutation region (250 bp upstream and 250 bp downstream of mutation site), as global
folding predictions for large mRNA have been shown to be unreliable [44].
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using RNAfold tool. (B) The base pair probabilities by circular plots with higher base pairing potential 
is reflected in darker hues of grey lines and the mutated position highlighted by red arrow 
(MutaRNA). (C) The dot plot shows the differences of the base pairing probabilities of 1059 mutation 
vs. wild type RNA, Pr(bp in WT)—Pr(bp in mut). The base pairs weakened by the 1059 mutation are 
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Figure 2. The impact of C1059U mutation on local RNA secondary structure of Nsp2. (A) RNA secondary
structures of Nsp2 wild type (MFE structure: −146.10 kcal/mol—centroid structure: −132.30 kcal/mol)
and 1059 mutation (MFE structure: −147.20 kcal/mol—centroid structure: −137.80 kcal/mol) using
RNAfold tool. (B) The base pair probabilities by circular plots with higher base pairing potential is
reflected in darker hues of grey lines and the mutated position highlighted by red arrow (MutaRNA).
(C) The dot plot shows the differences of the base pairing probabilities of 1059 mutation vs. wild type
RNA, Pr(bp in WT)—Pr(bp in mut). The base pairs weakened by the 1059 mutation are in blue, while
higher base pair probability in the mutant is depicted in red. The mutated position is highlighted by
red dotted lines (P values based on RNAsnp are as follows: mode-1 = 0.2617, mode-2 = 0.3344). (D) The
accessibility profiles of wild type (green line) and the mutation (yellow line) and their differences
provide an assessment of the mutation effect on the RNA single-strandedness, which may relate to
its interaction potential with other RNAs or proteins. Accessibility is measured in terms of local
single-position unpaired probabilities and is plotted as WT—Mut, whereby a negative value indicates
increased accessibility caused by the mutation [45]. The mutated position is highlighted by a red line.

Next, the effects of mutations on base pair probabilities of local folding of Nsp2 RNA were
investigated. As shown in Figure 2B, the 1059 mutation increased the Watson–Crick base pair probability
in flanking regions, resulting in a more stable predicted RNA secondary structure (Figure 2C). The 1059
mutation had no effect on RNA accessibility which is a consideration for RNA-RNA and RNA-protein
interactions (Figure 2D).

Mutation 29742 occurs in a conserved region within 3′ UTR known as the coronavirus 3′ stem-loop
II-like motif (s2m). This mutation alters the global RNA secondary structure of the 3′ UTR (Figure 3A).
An increase in stability of s2m in the mutated sequence was observed in both MFE (−6.10 kcal/mol vs.
−11.70 kcal/mol) and centroid (−0.47 kcal/mol vs. −11.40 kcal/mol) structures. It is well known that
s2m is present in most coronaviruses and plays a vital role in viral replication and invasion [46–48].
Mutations in this region have been shown to increase the stability of 3′ UTR and its interaction with 5′

UTR [47].
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type 3′ UTR (MFE structure: −36.90 kcal/mol—centroid structure: −30.50 kcal/mol) and 29,742 mutation
(MFE structure: −40.30 kcal/mol—centroid structure: −30.30 kcal/mol) using RNAfold tool. Note the
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change in predicted secondary structure of 3′ UTR RNA through the 29742 mutation. The s2m
regions are highlighted by red rectangles. (B) The base pair probabilities of global fold of Nsp2 RNA
demonstrated by circular plots, with higher base pairing potential reflected in darker hues of graduated
grey lines. The original and mutated nucleotides are highlighted by red arrows (MutaRNA). (C) The
dot plot shows the differences of the base pairing probabilities of the 29,742 mutation vs. wild type
RNA, Pr(bp in WT)—Pr(bp in mut). The base pairs weakened by the mutation are in blue while higher
base pair probability in the mutant is depicted in red. The mutated position is highlighted by red
dotted lines (P values based on RNAsnp are as follows: mode-1 = 0.6204, mode-2 = 0.6638). (D) The
accessibility profiles of wild type (green line) and mutation (yellow line) and their differences provide
an assessment of the effect of the mutation on the RNA single-strandedness. Accessibility is measured
in terms of local single-position unpaired probabilities and is plotted as WT—Mut, whereby a negative
value indicates increased accessibility caused by the mutation [45]. The mutated position is highlighted
by a red line.

Analysing base pairing probability, the G29742U mutation slightly decreased base pair probabilities
in the global folding of RNA (Figure 3B). But the same mutation slightly increased the number of
strong base pair probabilities downstream of the mutation in the s2m region 29795-29865 (Figure 2C)
and may contribute to the stronger thermodynamic structure predicted in mutated s2m (see above).
Several SARS-CoV-2 encoded genes bind to the host proteins involved in biological processes, such as
protein trafficking, translation, transcription, and ubiquitination regulation [49,50]. In addition,
s2m interacts with viral and host proteins such as the polypyrimidine tract-binding protein (PTB),
to regulate viral replication and transcription [47,48]. Interestingly, the G29742U mutation (underlined)
removed a c-Myc binding site (GCC ACG CGG A) within s2m, but increased the RNA accessibility of
this region (Figure 3D).

It should be noted that both 1059 and 29,746 mutations exist in the regions that are highly sensitive
to nucleotide changes based on the RNAsnp mode-3 and RaSE programs (Tables S3–S6). Collectively,
these results suggest that 1059 and 29,742 yield more stable RNA structures around the mutation
sites. However, noting the limitations of prediction software, the relationship of changes in RNA
secondary structure of Nsp2 and 3′ UTR to viral replication or infectivity must be tested in adequate
experimental assays.

2.3. Potential Interaction of SARS-CoV-2 Transcripts and Human miRNAs

Using databases and published data, we filtered our considered miRNA to those with documented
expression in SARS-CoV-2 target cells, and additionally focused on miRNAs that have been reported as
components of the anti-viral miRNA-mediated defence system. Using independent programmes, we
identified ten human miRNAs with potential binding sites across the SARS-CoV-2 genome (Figure 4
and Figures S3–S17).

As shown in Figure 5, a total of eight mutations were detected in six miRNA binding sites of
which four are conserved mutations (3037, 9802, 9803 and 24034).

Out of eight mutations, two mutations are G↔A, while six mutations are G/C→U, likely the result
of host RNA editing mechanisms [51]. We hypothesised that some mutations may affect the miRNA
binding sites and therefore impact on miRNA-mediated defence, since miRNA-mRNA interactions
are sensitive to the GC loss (see above). We also mapped the critical positions in which nucleotide
substitutions will negatively affect miRNA binding to its target (Figure 5, asterisks).

MiR-197-5p is upregulated in patients with cardiovascular disease and has been proposed as
a biomarker for the prediction of cardiovascular events [52–54]. It is well established that patients
with cardiovascular disease are overrepresented in symptomatic COVID-19 cohorts and have a higher
mortality rate [55]. The C3037U conserved, but synonymous, mutation within Nsp3 sequence abolished
the miR-197-5p target sequence, as the C3037 nucleotide is among the sensitive nucleotides (Figure 5,
Table S7). This mutation was introduced in early January 2020 (Figure S2), and is frequently linked to
dominant D614G mutation [56]. Interestingly an analysis carried out by van Dorp et al. showed that
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C3037U mutation is a homoplasy that has independently emerged three times in global lineages and
has a positive association with clade expansion [4].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 19 

 

 
Figure 4. (A) Identification of host miRNA targeting different regions of SARS-CoV-2 genome. (B) 
The relative expression level of candidate miRNA in different human tissues. Data was obtained from 
the IMOTA database. Darker blue indicates the higher expression. Grey colour shows undetectable 
expression in those tissues. The plotted presentations of miRNA expression in different human tissues 
obtained from TissueAtlas and TISSUES databases are available in the supplementary figure file. 

As shown in Figure 5, a total of eight mutations were detected in six miRNA binding sites of 
which four are conserved mutations (3037, 9802, 9803 and 24034). 

Figure 4. (A) Identification of host miRNA targeting different regions of SARS-CoV-2 genome. (B) The
relative expression level of candidate miRNA in different human tissues. Data was obtained from
the IMOTA database. Darker blue indicates the higher expression. Grey colour shows undetectable
expression in those tissues. The plotted presentations of miRNA expression in different human tissues
obtained from TissueAtlas and TISSUES databases are available in the supplementary figure file.
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The mutations that occur in miRNA binding sites are indicated in red, and the designations of the
mutations are shown in red font. Conserved mutations are indicated with red asterisks while the
nucleotide substitutions that result in significant effect on MBS are shown with black asterisks. The figure
was produced using IntaRNA tool.

Three mutations within Nsp4 occur in target sequences of miR-3935 and miR-18b-5p. Both miRNAs
are expressed in SAR-CoV-2 target cells (Figure 4B and Figures S7–S10). Nsp4 A9259G is present in a
sequence obtained from Vietnam (GISAID: EPI_ISL_416429). Two recurring synonymous mutations,
G9802U and G9803U, disrupt the miR-18b binding site of Nsp4. The miR-18b miRNA was reported to
be downregulated in viral infections such as HBV and Ebola [57,58] while its expression in patients
with cardiovascular disease is upregulated [59–61].

We identified three miRNAs with perfectly matched complementary sequences within the S-gene:
miR-338-3p, miR-4661-3p, and miR-4761-5p. As shown in Figure 5, two of these sites were altered by
recently identified mutations in the S-gene. In particular, the miR-338-3p miRNA is expressed at high
levels in SARS-CoV-2 target cells (Figure 4B, and Figures S14 and S15). The sequences carrying recurrent
mutations C24034U and G24057A (EPI_ISL_429691) were predicted to have lost the miR-338-3p binding
sites, although these mutations did not decrease the binding energy of miR-338-3p to S (Table S7).
The miR-338-3p miRNA acts as a tumour suppressor in liver, lung, and gastric cancers [62–64].
The expression level of miR-338-3p declines during HBV infection [65,66] and miR-338-3p has a
recognition site within the Vaccinia virus genome [67].

Lastly, G25311U in a patient sample isolated in India (MT396242.1) removed the miR-4661-3p
binding site within the S gene (Figure 5, Table S7).

In addition to the sites mentioned here, we identified an additional four host miRNAs with perfect
complementarity within the receptor binding domain (RBD) region of S gene (Figure 6). These miRNAs
are not expressed by SARS-CoV-2 target cells (data not shown). However, because these miRNA target
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sequences exist within the critical ACE-2 targeting region, they may be relevant to miRNA-mediated
virus attenuation technology. For example, viral replication can be attenuated in a species-specific
and tissue-specific manner by host miRNA machinery, which controls viral tropism, replication,
and pathogenesis [35–38].
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2.4. Possible Impact of Mutations on Cryptic Splice Sites

Atypical cytoplasmic RNA splicing has been proposed to contribute to non-canonical viral
transcripts, even for viruses that classically replicate in the cytoplasm [28–33]. Moreover, deep RNA
sequencing has identified several previously unidentified SARS-CoV-2 viral RNAs that may be
the result of non-canonical splicing events, or alternative transcriptional start sites [34]. We used
RegRNA2 [68], HSF [69], and NIPU [70,71] tools to identify the putative splice sites and motifs within
the SARS-CoV-2 genome. Our computational prediction identified several 5′ donor and 3′ acceptor
splice sites, as well as splice enhancer/inhibitor motifs [72] (Table S8). However, none of the conserved
mutations introduced, or deleted, any potential splice sites.

3. Discussion

At present there are nearly 200 mutations identified within global SARS-CoV-2 isolates.
These mutations are mostly limited to point mutations, with little evidence for recombination
events mediating the simultaneous transfer of multiple mutations. Although mutations may be
due to RdRP/Nsp12 infidelity, the predominance of C→ U and G→ A mutations is consistent with
base-editing defence (e.g., APOBEC/ADAR) [42,73]. The Nsp14 exonuclease-based proof-reader is
a critical counter-defence against host base-editor attack on the coronavirus genome [1]. It is also
possible that the position of mutations within the genome could reflect accessibility of host base-editors
to the SARS-CoV-2 genome upon uncoating, or during genome translation [42].

In our study, we filtered mutations to common/conserved events according to published
sources [39]. There is little evidence that the existing mutations in SARS-CoV-2 have an impact
on transmission, replication, or viral load, but our study has flagged potential sites that could impact
on viral fitness. It remains to be seen if these mutations be maintained in human populations
over time. Carriage of SARS-CoV-2 mutations through rapid expansion into naive populations
throughout the world can be due to neutral founder effect, or from fitness gains. However, the ratio of
non-synonymous to synonymous mutations is consistent with an emerging virus undergoing purifying
selection (see Figure 1 and ref. [40]).

Our study identified a potential binding site for miR-197-5p lost by the Nsp3 synonymous C3037U
mutation. miR-197-5p is overexpressed in patients with cardiovascular disease – a patient group that
demonstrates an increased susceptibility to SARS-CoV-2 infection. miR-197-5p was previously reported
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to act in defence against hepatitis viruses, such as HBV, HCV, HAV, and Enterovirus 71 [74–76] and was
highly elevated in serum of patients with H7N9 [77]. It is possible that a loss of miR-197-5p-mediated
defence against SARS-CoV-2 is relevant to the increased mortality noted in this patient group [55].
van Dorp et al. showed that the Nsp3 C3037U mutation was significantly (p = 0.027) associated with
’transmission’ – as determined by the relative frequency of homoplasies between sister clades [4].
The C3037U is linked to the A23403G (G614D) mutation [4,56], which may enhance viral infectivity
through structural changes in the S protein [5]. Our studies provide further context to monitor the
linkage of the C3037U and A23403G sites. However, further investigations into the interactions of
miR-197-5p expression, the C3037U mutation, and COVID-19 disease severity in this cardiovascular
patients are required.

It has been shown that folding energy and stability of the mRNA secondary structure influences
polypeptide translation and folding. Stable RNA structures act as gauges during translation and
reduce the speed of translation to avoid “ribosomal traffic jams” to allow proper folding of newly
translated peptides [8]. Therefore, both the sequence and secondary structure of viral mRNA is subject
to selection pressure for optimal translation in eukaryotes [9].

Recently, several studies have shown that RNA editing affects the specificity and strength
of miRNA binding to its target, and tumour cells may exploit this mechanism to escape from
miRNA recognition [78,79]. Three mutations within Nsp4 were predicted to affect miR-3935 and
miR-18b-5p targeting. The expression of miR-3935 and miR-18b is altered upon viral infection [57,80–82].
The expression level of miR-3935 upregulates during H1N1, Crimean-Congo haemorrhagic fever
virus, Coxsackievirus A16, and Enterovirus 71 infection [80–82]. The miR-18b was reported to be
downregulated during HBV and Ebola virus infections [57,58]. Similar to what was observed
for miR-197-5p, both miR-18b and miR-3935 are upregulated in patients with cardiovascular
disease [59,60,83]. It should be noted that the effect of total free energy of binding on miRNA
function is highly dependent on physiological temperature. For instance, if a mutation increases the
∆G of binding, the effect of mutation will be exacerbated at higher host temperature (e.g., related to the
euthermia of the host species, or febrile temperature elevation).

We noted that filtered miRNAs (except miR-338-3p) belong to the GC-rich class of miRNA within
their binding region (avg. GC content = 56%). The content of miRNA seed sequence plays critical
roles in miRNA function, biogenesis, and ability to downregulate target genes. MiRNAs with higher
GC content form relatively more stable duplexes with their target and preferentially originate from
canonical pathways of miRNA biogenesis, correlating with greater target suppression [84]. In general,
stress-responsive miRNAs have a higher GC content that might enhance miRNA-target duplex stability
to activate the stress response [85,86]. Interestingly, the stability of interactions between miRNA and its
targets correlates with body temperature: at higher body temperature miRNA-mRNA duplexes with
lower GC contents are less functional [85,87]. It should be noted that both 3′ and 5′ ends of miRNAs
are responsible for stable and specific interaction between miRNA and its target, particularly if the
target region is in a coding region [88,89].

It is not yet clear if anti-viral miRNAs have evolved as host defence against viral infection,
or are simply critical gene regulatory elements that assume an additional role for targeting viral
transcripts—particularly when the human cellular defence machinery is confronted by an emerging
zoonotic virus [13,18,19]. The possibility of including host miRNA binding sites into the genome of
live-attenuated viruses offers a further checkpoint for the further attenuation of live vaccines, in a
host-cell specific manner. For example, the identification of miRNA target sites in viral pathogens
opens up opportunities for further study of viral host cell-tropism, or to create cell-specific or
species-specific viral vaccines [35–38]. Finally, miRNA sites within the coding sequence of viral genes
may be critical for ribosomal stalling, leading to the production of pioneer translation products (PTP).
Enhanced production of PTP peptides may be critical for MHC-I loading for boosting the anti-viral
CTL response [89–92].
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4. Methods

4.1. Sequence Alignment

The SARS-CoV-2 virus reference sequence was downloaded from NCBI (NC_045512.2) along with
65 sequences up to May 26, 2020 from NCBI or GISAD databases. We included a range of countries
with available sequences up to 26 May 2020. In the case of the USA, 16 sequences from 13 states were
included. Clustal Omega (using mBed algorithm for guide tree) and Geneious alignment tools were
used to perform multiple sequence alignment. The following parameters were used for Geneious
alignment: sensitivity; highest/slow, fine tuning; iterate up to five times. Iterative fine tuning involves
initial reads to map the consensus sequence, followed by repeated mapping to the consensus sequence.
The results are then converted back to mappings relative to the original reference sequence and the
process is repeated until the results stabilise, or for a maximum of five iterations.

4.2. Mutational Analysis

Mutations with occurrence in multiple sequences originating from different countries were categorized
as ‘conserved’. Cumulative plots of the average behaviour of each codon in alignment analysis
for insertions/deletions (indels), synonymous (syn), and non-synonymous (nonsyn) substitutions,
observed/potential syn and nonsyn mutations, and the ratio of syn to nonsyn substitutions (ds/dn) were
calculated using SNAP v2.1.1 for all pairwise comparisons [93]. Natural selection analysis of SARS-CoV-2
sequences in GISAD up to 12th June 2020 was obtained from Observable (https://observablehq.com/).

For mapping the host-spot substitutions which lead to significant change on base pair probabilities
of global folding, mode-3 (which is a combination of mode-1/2) of RNAsnp was used. The following
parameters were considered using RNAsnp mode-3: folding window—selected size of flanking regions
on either side of mutation; 200 nt, p-value threshold to filter substitutions that are predicted using
mode-2; 0.1, p-value threshold to filter substitutions that are predicted using mode-1; 0.05, minimum
length of flanking regions on either side of the substitution; 200 nt.

4.3. RNA Secondary Structure and Base Pair Probability Analysis

We used well-accepted methods to predict the RNA secondary structure in both wild type and
mutated sequences. Minimum free energy (MFE) structures [94] and centroid structures [95] were
calculated by RNAfold program to predict RNA secondary structures. To evaluate the impact of
mutations on RNA secondary structure and base pair probability, we utilized RNAfold, RNAalifold [96],
MutaRNA [71,97], and RNAsnp [98] programs.

The following parameters were used in RNAsnp program: mode-1 (designed to predict the effect
of SNPs on short RNA sequences < 1000 bp); folding window (the size of flanking regions on either
side of mutation) of 200 nt; minimum length of the sequence interval was 50; cut-off for the base
pair probabilities was 0.01. Regardless of the length of sequence, the p values were calculated and
presented with both modes (p < 0.2 considered significant). MutaRNA was used to calculate the effect
of mutations on local folding with a window size of 200 nt and maximal base pair span of 150 nt.

RNAsnp mode-3 and RaSE [71] tools were used to predict the role of each single nucleotide and
their substitutions in RNA secondary structure. RaSE program uses EDeN to determine the role of
each nucleotide in the RNA secondary structure by assigning a score for each nucleotide based on
RNAplfold base pair probabilities. The outputs are: (i) which substitution in each nucleotide has the
most effect on RNA structure and (ii) similar to RNAsnp filters, the most significant substitutions.
Default parameters were used in the RaSE structure graph, RNAplfold, and EDeN.

4.4. Potential miRNA Binding Site Analysis

For identifying potential miRNA binding sites, the SARS-COV-2 genome was screened with
RegRNA2 (filtered to human miRNAs, score ≥ 170, free energy ≤ −25) and miRDB (custom prediction
tool) [99]. We excluded miRNAs not expressed in SARS-CoV-2 target cells such as lung, oesophagus,
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kidney, and small intestine [100,101]. The expression levels of miRNA in target cells were determined
by TissueAtlas [102], IMOTA [103], TISSUES [104], or using published data. The impact of mutations
on miRNA binding was visualized by RegRNA2.0, miRDB, IntaRNA (one interaction per RNA pair,
minimum 7 base pairs in seed, no seed with GU end, no lonely base pairs) [105] and CopomuS (no A:U,
G:U base pairs, no lonely base pairs, no helix ends, IntaRNA parameters: no GU at helix ends, min. 7
base pairs in seed) [71], and RNAup (avoid isolated base pairs, length of the unstructured region; 4nt,
maximal length of the region of interaction; 25nt). We used IntaRNA to illustrate miRNA binding to
its target.

Wild type and mutated sequences were analysed by RegRNA2.0 and miRDB to determine if
mutations result in a loss of miRNA binding prediction. In addition, the total free energy of binding
(∆G) was calculated with IntaRNA and RNAup. If WT ∆G < Mut ∆G, the mutation was assumed to
reduce the strength of miRNA binding to the target sequence.

4.5. Potential Splice Site Analysis

Potential splice donor/acceptor splice sites, exon splicing enhancer (ESE), exon splicing silencer
(ESS), intron splicing enhancer (ISE), and intron splicing silencer (ISS) motifs were predicted using
RegRNA2.0 [68], HSF [69], and NIPU [70,71] tools.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/13/4807/s1.
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CAR T cell therapy has revolutionized cancer treatment, but has also provided an 

opportunity for treating chronic viral infections such as HIV, HBV, and HCV (1, 2). 

Despite the profound outcomes in the treatment of hematological malignancies, CAR T 

cell therapy for solid tumours has not been successful. Hostile condition of TME, low 

tumour infiltration, lack of persistence, and absence of memory CAR T cell formation are 

the main obstacles ahead of CAR T cell therapy for solid tumours. This study aimed to 

improve Her2-CAR T cell persistence and TM development.   

Mitochondria play a central role in both T cell survival and TM development. Interaction 

of CD95:CD95L initiates AICD, which leads to depolarization of the mitochondria outer 

membrane resulting in downstream events in apoptosis (3). On the other hand, the 

mitochondrial transition from fission to fusion is an essential step in TM development (4, 

5). Facilitating mitochondrial fusion in T cells enhances TM differentiation (4, 5).  

Recently, several studies suggested that AICD induced by the CD95 pathway is the main 

reason for CAR T cell low persistency in vivo, and blockage of this signaling enhanced 

CAR T cell survival (6-9). For instance, inhibition of CD95 or CD95L via RNAi increases 

the CD171-CAR T cell persistence (7). Interestingly, expanding CAR T cells under 46 

ng/mL of CD95L enhanced TM differentiation (10).  

To enhance persistence and memory, we selected Mcl-1 to overexpress in CAR T cells.  

Mcl-1 blocks the AICD by binding and sequestering Bak and Bax at OMM (11). Mcl-1 

also inhibits the mitochondrial fission by directly binding to Drp-1 (12). Mcl-1S that 

localizes at IMM promotes mitochondrial fusion through interacting with OPA-1, MFN1, 

and MFN2. Mcl-1S is required for the formation of typical IMM structures, OXPHOS 

metabolism, and arrangements of ETC and ATPase complexes (12-15). 

We also decided to downregulate TCAIM to enhance the mitochondrial fusion and 

thereby improve CAR T cell memory differentiation. The TCAIM protein localises 

exclusively to mitochondria, and only a few studies have been carried out on the TCAIM 

gene or protein. TCAIM is highly expressed in TN, Treg, while its expression is being 

downregulated in TM cells (16). T cells upregulating TCAIM have decreased 

proliferation, lower mitochondrial membrane potential (ΔΨm), and reduced number of 

TN and TM phenotypes (17-19).  
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We decided to downregulate TCAIM in our Her2-CAR T cells using a miRNA. Among 

all potential miRNA, we chose miR429 because it also targets MFF and TET-2 (Figure 

5.3). MFF enhances mitochondrial fission by recruiting Drp1 at OMM (20), and the 

downregulation of MFF by miR27 increased the mitochondrial fusion in human cells 

(21). Downregulation of TET-2 has been associated with long-term CAR T cell 

persistence and complete remission (22, 23). Further studies showed that inhibition of 

TET-2 improves the CAR T cell therapy via epigenetic changes that encourage TM 

differentiation (23, 24). 

Mcl-1 has been classified as oncogene due to its contribution to stopping apoptosis and 

enhancing tumour cell survival (13, 25). Overexpressing Mcl-1 (or any GOI) raises 

concerns about developing cancerous CAR T cells. Therefore, our first aim was to induce 

the endogenous level of Mcl-1. We tested eight small activating RNA (saRNA) targeting 

different regions of the Mcl-1 promoter, but none of them was able to induce Mcl-1. 

Further, we noticed an uncharacterized lncRNA (LOC107985203) is transcribing from 

the opposite direction of the Mcl-1 promoter. Often the antisense (AS) transcripts have a 

negative role in the regulation of a gene (26). Using gain-of-function and loss-of-function 

experiments, we verified LOC107985203 lncRNA (named mcl1-AS1) expresses from 

Mcl-1 promoter and negatively modulates Mcl-1 expression (27). However, due to the 

late manifestation of gene regulation (at 48 - 72 hours) that was seen following mcl1-AS1 

inhibition, it was not applicable for us to use this strategy to Mcl-1 expression.  

The next strategy was the controlled expression of Mcl-1 using the Tet-On system. Tet-

On system is the most commonly used drug inducible system (28). The most significant 

weakness of this system is high background expression in the absence of doxycycline 

(28). We used several approaches to improve the Tet-On system, including gene 

replacement, codon-optimisation of rt-TA, using G72V-rtTA, removing cryptic splice 

sites within rt-TA, creating an autoregulatory Tet-On system, and manipulating 

regulatory elements in TCE minimal promoter (29). As we have shown in chapter III, our 

final optimised construct showed high inducibility and a very low background expression 

compared to the original construct (29). However, due to the low transfection efficiency 

of SB system in primary T cells and lack of aAPC at the time for expansion of T cells, 

we decided to create an inducible LV system. This system had several drawbacks. The 

lack of inducibility in low doxycycline concentration and low transduction efficiency 



90 
 

were the major weaknesses (Figure 5.2). Therefore, we decided to use a constitutive 

system to see the effects of Mcl-1 and miR429 overexpression in CAR T cells. We 

decided to address the safety concerns later since we still did not know that Mcl-1 and 

miR429 upregulation will benefit the CAR T cell therapy. 

The primary step to express a GOI in a constitutive system is the promoter choice. 

Promoters vary in terms of lengths, strength, TF binding sites, their effect on LV titer and 

transduction. Hence in a series of experiments, we tested the strength of four commonly 

used promoters, EF-1, CMV, RPBSA, and hPGK, in running short and long transcripts. 

EF-1 showed to be the best promoter in running short and long RNA in T cells. As a 

result, we chose EF-1 to run the GFP-P2A-Her2CAR and hPGK to transcribe Mcl-1 or 

miR429. 

To the best of our knowledge, this is the first report of the downregulation of TCAIM, 

TET-2, and MFF by miR429. Overexpressing miR429 increased the susceptibility of 

CAR T cells to AICD (Figure 5.7), probably due to the Bcl-2 downregulation by miR429 

(30). Her2-CAR T cells upregulating miR429 had ~2.8-5% lower phenotypes similar to 

Treg and TEMRA cells in both CD4+ and CD8+ CAR T cells. Also, TSCM had 2.5%, and TCM 

had 5.6% more in CD4+ Her2CAR T cells (Figure 5.9 and 5.10). It is well-known that 

miRNA targets are cell- and context-dependent. Usually, genes have multiple isoforms 

with distinct 3′UTR due to alternative splicing or alternative polyadenylation (31, 32). 

Consequently, overexpression of a miRNA does not always result in target inhibition. For 

example, miR429 downregulates ZEB1 and ZEB2 in CD4 T cells, whereas in CD8 T 

cells, it only inhibits ZEB2. Interestingly, TCAIM has six different variants with unique 

3′ UTR. Thus, miR429 may downregulate TCAIM only in CD4, not CD8 T cells. 

However, the expression of these variants has not been shown in CD4 or CD8 T cells.  

As noted before in the introduction, Mcl-1 has a central role in the mitochondrial 

dynamic. Expression of Mcl-1 is vital for FAO and OXPHOS metabolism, formation of 

crista, assembly of ETC, and ATPase complexes, and mitochondrial fusion (12-14). 

Overexpression of Mcl-1 in T cells promotes CD8+ TM development and survival in viral 

infection (33, 34). Mcl-1 also is necessary for maintaining stemness in human pluripotent 

stem cells, and depletion of Mcl-1 promotes stem cell differentiation (35).  
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In line with previous reports, overexpression of Mcl-1 enhanced the TM development in 

Her2-CAR T cells (Figure 5.10). In this study, both CD+ and CD8+ CAR T cells 

overexpressed Mcl-1 showed an increase in phenotypes similar to TSCM and TCM numbers 

(Figure 5.10). Expansion of CAR T cells under 46 ng/mL of CD95L enhanced the number 

of TSCM and augmented TCM development. These results confirm the previous report that 

CD95L treatment enhances TSCM development (10, 36). Single-cell serial transfer of TM 

subsets showed that TCM and TSCM were able to reconstitute the murine immune system, 

while an infusion of 100-fold TEM cells in mice failed to rebuild the host immune system 

(37, 38). In another study, the TSCM number was unchanged for decades, whereas the 

population of TCM and TEM were reduced by 10 to 100 fold, respectively (39). TSCM 

number was constant in patients receiving engineered T cells decades after ACT (40, 41). 

Remarkably, vaccination with yellow fever created CD8+ TSCM cells that remained 

unchanged after 25 years  (42). 

Several differentiation models have been proposed for the development of TM subsets 

from TN cells (Figure 6.1) (43, 44). The high frequency of TEM cells at day-10 following 

an increase in the number of TCM at day-21 suggests that Mcl-1 overexpression promotes 

phenotypes similar to TCM differentiation via the TN→TEEF→TEM→TCM route.  However, 

cell tracking experiments must be done to verify this theory. Although our study cannot 

provide a mechanism for the Mcl-1 role in memory CAR T cell development, an increase 

in mitochondrial mass and mtDNA suggest that Mcl-1 probably enhance the 

mitochondrial fusion. It should be noted that TM subsets identified in this study are more 

likely intermediate phenotypes that resemble different TM subsets, rather than distinct 

populations. 
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Figure 6.1. Multiple paths for TN development to TM subsets after antigen encounter. TN 

to TM development starts simultaneously with TEFF development. In addition, TM cells 

have been shown to develop from TEFF cells. TM subsets have differences in proliferation 

and multipotency capacity.  

Several CAR T cell clinical trials revealed parameters associated with successful therapy, 

such as the presence of TSCM CAR T cells (CD45RO-CD27+) or a CD4:CD8 ratio higher 

than 1 at the time of infusion. Strikingly, overexpression of Mcl-1 increased the number 

of CD45RO-CD27+ CAR T cells and CD4:CD8 ratio (Figure 5.12). The rise in CD4 T 

cells after Mcl-1 overexpression could be due to the selective survival of CD4 T cells 

over CD8 T cells. However, this has not been reported yet that the anti-apoptotic function 

of Mcl-1 is only restricted in CD4 T cells and not CD8 T cells. On the contrary, studies 

have shown that Mcl-1 protects both CD4 and CD8 T cells against AICD (45-47). 

Another theory is overexpression of Mcl-1 promotes CD8 to CD4 conversion. Recently, 

CD8 ↔ CD4 conversions have been shown to occur due to the high plasticity of T cells 

(48-51). This process is similar to the transdifferentiation in which cells from a lineage 

can be converted to another lineage (52). Thus, forced expression of Mcl-1 may enhance 

TM development and CD8 to CD4 conversion.  

  

Future direction 

1. Imaging and metabolically analysis of CAR T cells in order to reveal Mcl-1 

contribution in mitochondrial fusion. We will swap the GFP in our construct with GFP-

targeted mitochondria for confocal imaging to observe the fusion process. Also, using the 

Seahorse XF kit, we will investigate the metabolism of CAR T cells. 

2. Following transduction, we will separate CD4+ and CD8+ CAR T cells (FACS cell 

sorting) and observe if the increase in CD4+ cells is the result of the CD8+ conversion to 

CD4+ T cells. Another approach is to transduce CD4 and CD8 T cells with different 

markers (e.g., GFP and RFP) if the cross-differentiation only happens in a mixed culture.  

3. Besides IL-2 and IFN-γ cytokines, expanding the composition of cytokines, and surface 

markers analysed (e.g. 4-1BB and CD40L) would give further insights into the 
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phenotypic differences in T cells induced by miRNA and mitochondrial remodelling in 

our culture system.  

4. We will sort different TM subsets at day-21 and challenge them with antigen to see if 

TSCM and TCM cells possess polyfunctional properties such as cytotoxicity activity and IL-

2, IFN-γ, Perforin, and TNF-α production. 

5. For in vivo assays, our laboratory has already developed an NSG mice model using the 

MCF-7 breast cancer cell line. In vivo studies will be carried out to see if Mcl-1 

overexpression improves survival and reduces the tumour size. We are also interested in 

following the longevity of the TSCM population in healthy NSG mice. 

6. Lastly, if the in vitro and in vivo studies provided substantial evidence that Mcl-1 

overexpression enhances CAR T cell function, controlled expression or using death-

switches must be considered in the CAR T cells. In our laboratory, two lab members are 

investigating the approaches to improve the safety of the CAR T cell therapy.  
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