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Abstract 

This project aimed to improve the stability of the novel oncolytic virus, Seneca Valley virus 

(SVV). This was with the overarching goal of determining the residues and mutations thereof 

within the viral capsid that are responsible for capsid stability, to inform the future production 

of SVV Virus-Like Particles (VLPs) for use as a drug delivery vector.  

The thermal stability of wild-type SVV-001 was first investigated to determine a baseline to 

which thermostable mutants could be compared, and to inform a regimen of heating and 

passage to derive thermostable mutants. During optimisation of these initial experiments, 

heating of a sample containing approximately 107 PFU/mL SVV-001 to 58.5 °C for 30 minutes 

produced a single viral plaque. Virus collected from this plaque was shown to be resistant to 

heating at 56 °C, an improvement on the wild-type, which was shown to lose approximately 

99% viral titre to heating at 53.5 °C for 30 minutes. This thermostable phenotype was also 

confirmed using Particle Stability Thermal Release Assays (PaSTRy). Attempts to select for 

increasingly thermostable virus were unsuccessful.  

Mutant virus was purified and the capsid-coding region of the genome sequenced. This 

revealed four mutations in the thermostable mutants. One of these mutations, A1776G, was 

predicted to have an effect on the maturation of capsid proteins, which was supported by initial 

results of SDS-PAGE gel analysis. The other three mutations were either synonymous 

mutations well-conserved in Senecavirus isolates, or outside of the capsid coding region of the 

genome, and so were of limited applicability to the production of VLPs. 

Thermostable virus was then optimised for cryo-electron microscopy to determine its structure, 

with a low-resolution structure derived as a proof-of-principle. 

Future studies are warranted to determine if the A1776G confers a thermostable phenotype to 

the wild-type virus, and in turn to the SVV VLP. The basis for this phenotype should also be 

investigated, as well as a means to introduce the desired drugs into the genomeless capsid. 



 3 

Acknowledgements 

Firstly, I would like to thank Dr. Laura Burga for her patience and expertise for the duration of 

this project. Her support and tutelage have been invaluable. 

 

I would also like to thank Dr. Mihnea Bostina for extending me the opportunity to be part of 

the Bostina Lab and facilitating this research. 

 

I would like to express my sincere appreciation for Nadishka Jayawardena and for his advice 

and mentorship over the course of the project. 

 

My gratitude goes to Richard Easingwood, Allan Mitchell, Gillian Grayston and Sharon 

Lequeux from Otago Micro and Nano Imaging (OMNI) for their technical support and training. 

 

Thanks also to the rest of the Bostina Lab, Sailakshmi, Guillaume, Kai and Shakeel, for creating 

a warm and supportive lab environment.  

 

I owe tremendous gratitude to the Department of Microbiology and Immunology, with whom 

I earned my Bachelor of Science and Bachelor of Science with Honours, and who generously 

provided me with the Department of Microbiology and Immunology Masters scholarship. 

 

My thanks go to my parents Gerard and Brenda, without whom none of this would have been 

possible. Their ongoing love and support, as well as that from my siblings Finbarr, Diarmaid 

and Niamh, is something I have always been able to rely on. 

 



 4 

List of Abbreviations 
 

3’ 3 Prime 

5’ 5 Prime 

ACT Adoptive Cell Transfer 

ANTXR1 Anthrax Toxin Receptor 1 

BBB Blood-Brain Barrier 

BEV Bovine Enterovirus (e.g. BEV1, BEV2) 

°C Degrees Celcius 

CAR Chimeric Antigen Receptor 

CAR Coxsackievirus and Adenovirus Receptor 

CD Cluster of Differentiation (e.g. 28, 3ζ, 155) 

cDNA Complementary Deoxy Ribonucleic Acid 

CDR Complementarity Determining Region 

CPR Otago’s Centre for Protein Research 

CRE Cis-acting Replicative Element 

CSC Cancer Stem Cell 

CTF Contrast Transfer Function 

CTL Cytotoxic T-Lymphocytes 

CVA Coxsackievirus A (e.g. CVA21, CVA13, CVA15, CVA18) 

CVB Coxsackievirus B (e.g. CVB3, CVB6) 

DAF Decay Accelerating Factor 

DAMP Damage-Associated Molecular Pattern 

DC Dendritic Cell 

dNTP Deoxy Nucleotide Triphosphate 

DRBP76 Double-stranded RNA Binding Protein 76 

dsRNA Double-stranded Ribonucleic Acid 

ECHO Enteric Cytopathic Human Orphan 

EMCV Encephalomyocarditis Virus 

eIF Eukaryotic Initiation Factor 

ESST Environment-Specific Substitution Table  

EV Echovirus (e.g. EV7) 

FBS Foetal Bovine Serum 

FMDV Foot-and-Mouth Disease Virus 



 5 

H2O Water 

HRV2 Human Rhinovirus 2 

HSP Heat-Shock Protein (e.g. HSP 60, HSP 70, HSP90) 

IBD Inflammatory Bowel Disease 

ICAM-1 Intercellular Adhesion Molecule-1 

ICTV International Committee for the Taxonomy of Viruses 

IFN Interferon (e.g. INF-) 

IL Interleukin (e.g. IL-12) 

IRES Internal Ribosome Entry Site 

kDa Kilodalton 

LAPV Live Attenuated Poliovirus  

LEV Live Enterovirus Vaccine 

mA Milli-Amperes 

MART-1 Melanoma-associated Antigen Recognised by T-cells-1 

MALDI-TOF Matrix-Assisted Laser Desorption Ionisation-Time of Flight 

MEV Mengovirus 

MHC-II Major Histocompatibility Complex-II 

mL Millilitre 

MOI Multiplicity of Infection 

MWCO Molecular Weight Cut-Off 

NCI CTCAE National Cancer Institute Common Terminology Criteria for Adverse Events 

Necl5 Nectin-Like molecule 5 

OMNI Otago Micro and Nano Imaging 

OR Odds Ratio 

OV Oncolytic Virus 

OVA Ovalbumin 

PBS Phosphate Buffered Saline 

PCR Polymerase Chain Reaction 

PET Positron Emission Tomography 

PFU Plaque-Forming Units 

pmol picomolar 

PV Poliovirus 

PVR Poliovirus Receptor 



 6 

RdRp RNA-dependent RNA Polymerase 

RNA Ribonucleic acid 

SCLC Small Cell Lung Cancer 

SDS-PAGE Sodium Dodecyl Sulfide Polyacrylamide Gel Electrophoresis 

SVV Seneca Valley Virus 

TCR T-cell Receptor 

TEM8 Tumour Endothelial Marker 8 

TIL Tumour Invading Lymphocytes 

TMEV Theilers Murine Encephalomyelitis Virus 

TNF- Tumour Necrosis Factor-alpha 

T-VEC Talimogene Laherparepvec 

UCSF University of California San Francisco 

µL Microlitre 

US United States (of America) 

US FDA United States Food and Drug Administration 

UTR Untranslated Region 

V Volts 

VCN Vibrio Cholera Neurominidase 

VLP Virus-Like Particle 

vMC24 Poly-C truncated Mengovirus 

VPg Viral Protein genome-linked 

WHO World Health Organisation 

 

  



 7 

List of Figures 
 

Figure 1 Contemporary treatments for cancers  Page 15 

Figure 2 Genomic relatedness of a select group of picornaviruses Page 18 

Figure 3 Principle of the adaptive advantage of the quasispecies phenomenon Page 19 

Figure 4 Naturally occurring oncolytic picornaviruses Page 21 

Figure 5 Engineered oncolytic picornaviruses Page 29 

Figure 6 Organisation of the SVV genome Page 37 

Figure 7 In-vitro cytotoxicity of SVV-001 for cancer cell lines of human origin Page 38 

Figure 8 C-flat grid structure Page 62 

Figure 9 Heating at 58.5 °C reduces SVV viral titre 100-fold Page 64 

Figure 10 Heating at 53.5 °C significantly reduces SVV viral titre Page 65 

Figure 11 Heating at 58.5 °C for 30 minutes produced a single SVV viral plaque Page 66 

Figure 12 Plaque purified virus showed no adaptation to heating at 58.5 °C Page 67 

Figure 13 Plaque purified virus was completely resistant to heating at 56 °C Page 68 

Figure 14 Viral purification of 56 °C resistant and 58.5 °C selected viral populations Page 69 

Figure 15 
Workflow of the preparation of the wild-type, 56 °C resistant and 58.5 °C 

selected viral populations for sequencing 
Page 71 

Figure 16 Mutations observed in the thermostable SVV mutants Page 72 

Figure 17 VP2 I206V is predicted to decrease intraprotomeric binding Page 73 

Figure 18 Predicted secondary structures of wild type and mutant genomic RNA Page 75 

Figure 19 
Protein bands observed in SVV-001 lane appear different to those in the 56 

°C resistant and 58.5 °C selected viral mutants’ lanes 
Page 76 

Figure 20 
Wild-type SVV-001 has a greater ratio of VP2 and VP4 with respect to 

VP0 than the thermostable mutants 
Page 77 

Figure 21 
Four bands of interest from an SDS-PAGE gel were investigated with 

mass spectrometry 
Page 78 

Figure 22 PaSTRy comparing wild-type SVV-001 with thermostable mutant Page 80 

Figure 23 Cryo-electron microscopy micrograph acquisition Page 82 

Figure 24 Single particle analysis of the 56 °C resistant mutant Page 83 

Figure 25 Cryo-EM determined structure of the 56°C resistant mutant. Page 84 

Figure 26 
Clustal omega alignment of the A1776G mutation against analogous sites 

in 96 Senecavirus A isolates 
Page 109 

Figure 27 
Clustal omega alignment of the C2527U mutation against analogous sites 

in 96 Senecavirus A isolates 
Page 111 

Figure 28 
Clustal omega alignment of the A3434G mutation against analogous sites 

in 96 Senecavirus A isolates 
Page 113 

Figure 29 
Clustal omega alignment of the G3777A mutation against analogous sites 

in 96 Senecavirus A isolates 
Page 118 

Figure 30 ImageJ Fiji analysis of SDS PAGE gels Page 120 

 

  



 8 

Table of Contents 

Abstract ................................................................................................................................................................. 2 

Acknowledgements ............................................................................................................................................... 3 

List of Abbreviations ............................................................................................................................................ 4 

List of Figures ....................................................................................................................................................... 7 

1 Introduction ............................................................................................................................................... 11 

1.1 Cancer .................................................................................................................................................... 11 
1.1.1 Incidence, epidemiology & contributing factors ........................................................................... 11 
1.1.2 Contemporary cancer treatments .................................................................................................. 12 

1.2 Picornaviruses ........................................................................................................................................ 15 
1.2.1 Picornaviral biology ...................................................................................................................... 15 
1.2.2 Quasispecies: An RNA viral phenomenon ................................................................................... 18 

1.3 Oncolytic Picornaviruses ....................................................................................................................... 20 
1.3.1 The field of oncolytic virotherapy ................................................................................................ 20 
1.3.2 Naturally occurring oncolytic picornaviruses ............................................................................... 21 
1.3.3 Engineered oncolytic picornaviruses ............................................................................................ 28 

1.4 Seneca Valley Virus ................................................................................................................................ 35 
1.4.1 Introduction and discovery ........................................................................................................... 35 
1.4.2 A novel oncolytic picornavirus ..................................................................................................... 37 
1.4.3 An emerging porcine pathogen ..................................................................................................... 42 

1.5 Project .................................................................................................................................................... 43 

2 Methods and Materials ............................................................................................................................. 45 

2.1 Cells and virus ........................................................................................................................................ 45 
2.1.1 Cell culture reagents and materials ............................................................................................... 45 
2.1.2 Sub-culturing reagents .................................................................................................................. 45 
2.1.3 Sub-culturing protocol .................................................................................................................. 45 
2.1.4 Cell counting ................................................................................................................................. 46 
2.1.5 Viral strains ................................................................................................................................... 46 

2.2 Plaque formation assay .......................................................................................................................... 46 
2.2.1 Plaque assay: reagents and materials ............................................................................................ 46 
2.2.2 Plaque formation assay: protocol .................................................................................................. 46 

2.3 Thermal stability probe .......................................................................................................................... 47 
2.3.1 Thermal stability probe reagents ................................................................................................... 47 
2.3.2 Thermal stability probe protocol ................................................................................................... 47 

2.4 Selection for thermostable viral mutants ................................................................................................ 47 
2.4.1 Selection for thermostable viral mutants: reagents and materials ................................................. 47 
2.4.2 Selection for thermostable viral mutants: protocol ....................................................................... 48 

2.5 Viral purification .................................................................................................................................... 48 
2.5.1 Optiprep® viral purification: reagents and materials .................................................................... 48 
2.5.2 Optiprep® viral purification: protocol .......................................................................................... 49 
2.5.3 Caesium chloride viral purification: reagents and materials ......................................................... 50 
2.5.4 Caesium chloride viral purification: protocol ............................................................................... 50 

2.6 Viral RNA isolation ................................................................................................................................ 51 
2.6.1 Viral RNA isolation: reagents and materials (Nucleospin) ........................................................... 51 
2.6.2 Viral RNA isolation: protocol (Nucleospin) ................................................................................. 51 
2.6.3 Viral RNA isolation: reagents and materials (QIAmp) ................................................................. 52 
2.6.4 Viral RNA isolation: protocol (QIAmp) ....................................................................................... 52 



 9 

2.7 cDNA generation .................................................................................................................................... 52 
2.7.1 cDNA generation: reagents and materials .................................................................................... 52 
2.7.2 cDNA generation: protocol ........................................................................................................... 53 

2.8 PCR amplification .................................................................................................................................. 53 
2.8.1 PCR amplification: reagents and materials ................................................................................... 53 
2.8.2 PCR amplification: protocol ......................................................................................................... 54 
2.8.3 Gel electrophoresis ....................................................................................................................... 55 
2.8.4 Gel extraction ................................................................................................................................ 55 

2.9 Sequencing ............................................................................................................................................. 55 
2.9.1 Sequencing: reagents and materials .............................................................................................. 55 
2.9.2 Sequencing: protocol .................................................................................................................... 56 

2.10 In silico analysis of putative thermostability mutations .................................................................... 56 
2.10.1 Visualisation of viral capsid structures with UCSF Chimera ................................................... 56 
2.10.2 Prediction of protein stability change using DUET ................................................................. 56 

2.11 Transmission electron microscopy .................................................................................................... 56 
2.11.1 Transmission electron microscopy: reagents and materials ..................................................... 56 
2.11.2 Transmission Electron Microscopy: protocol .......................................................................... 57 

2.12 SDS-PAGE gel analysis ..................................................................................................................... 57 
2.12.1 SDS-PAGE gel analysis: reagents and materials ..................................................................... 57 
2.12.2 SDS-PAGE gel analysis: protocol............................................................................................ 58 
2.12.3 ImageJ: Fiji analysis................................................................................................................. 59 

2.13 Mass spectrometry ............................................................................................................................. 59 
2.13.1 Mass spectrometry protocol ..................................................................................................... 59 

2.14 Particle Stability Thermal Release assay (PaSTRy) .......................................................................... 59 
2.14.1 PaSTRy: reagents and materials ............................................................................................... 59 
2.14.2 PaSTRy: protocol ..................................................................................................................... 60 

2.15 Cryo-electron microscopy ................................................................................................................. 61 
2.15.1 Cryo-electron microscopy reagents and materials ................................................................... 61 
2.15.2 Cryo-electron microscopy protocol .......................................................................................... 61 
2.15.3 Single Particle Analysis ........................................................................................................... 62 

3 Results ........................................................................................................................................................ 64 

3.1 Thermal probe ........................................................................................................................................ 64 
3.1.1 Susceptibility of wild-type SVV to varying incubation temperatures. ......................................... 64 
3.1.2 Susceptibility of wild-type SVV to varying incubation temperatures (revised method) .............. 65 

3.2 Thermal selection ................................................................................................................................... 66 
3.2.1 Thermal selection of wild-type SVV-001 ..................................................................................... 66 
3.2.2 Thermal selection for a 58.5 °C resistant mutant from plaque-purified viral population ............. 67 
3.2.3 Thermal selection for a 56 °C resistant SVV-001 mutant from plaque-purified viral population 68 

3.3 Viral purifications .................................................................................................................................. 69 
3.3.1 Viral purification by ultracentrifugation through Optiprep® gradient .......................................... 69 

3.4 PCR amplification .................................................................................................................................. 70 
3.4.1 SVV-001 and putative thermostable mutants ............................................................................... 70 

3.5 Observed mutations in thermostable viral populations .......................................................................... 71 
3.5.1 Synonymous and non-synonymous mutations .............................................................................. 71 
3.5.2 Structural protein mutations .......................................................................................................... 72 
3.5.3 Genomic RNA secondary structural mutations............................................................................. 73 

3.6 SDS-PAGE analysis ............................................................................................................................... 75 
3.6.1 SDS PAGE analysis of wild type and mutant SVV structural proteins ........................................ 75 
3.6.2 In silico analysis of SDS-PAGE gels ............................................................................................ 76 

3.7 Mass Spectrometry ................................................................................................................................. 77 
3.7.1 MASCOT database search results of analysed protein bands ....................................................... 77 



 10 

3.8 Particle Stability Thermal Release assay (PaSTRy) ............................................................................... 78 

3.9 Cryo-electron microscopy ...................................................................................................................... 80 
3.9.1 Image collection ............................................................................................................................ 80 
3.9.2 Single particle analysis ................................................................................................................. 81 
3.9.3 Cryo-electron microscopy derived structure of the 56 °C resistant mutant .................................. 82 

4 Discussion ................................................................................................................................................... 84 

4.1 Thermostability of wild-type SVV-001 .................................................................................................... 84 

4.2 Selection for thermostable SVV-001 mutants ......................................................................................... 85 

4.3 Altered capsid maturation as the likely modality granting thermostability to mutant SVV-001 ............ 89 

4.4 Summary ................................................................................................................................................. 92 

5 Future Work .............................................................................................................................................. 94 

6 References .................................................................................................................................................. 95 

7 Supplementary Figures ........................................................................................................................... 110 

7.1 Alignments of the thermostable SVV mutants against 96 Senecavirus isolates .................................... 110 
7.1.1 Conservation of A1776G mutation across analogous sites in 96 Senecavirus isolates ............... 110 
7.1.2 Conservation of C2526U mutation across analogous sites in 96 Senecavirus isolates ............... 112 
7.1.3 Conservation of A3434G mutation across analogous sites in 96 Senecavirus isolates ............... 114 
7.1.4 Conservation of G3777A mutation across analogous sites in 96 Senecavirus isolates ............... 117 

7.2 ImageJ Fiji analysis of SDS PAGE gels ............................................................................................... 119 
 

  



 11 

1 Introduction 
 

1.1 Cancer 

 

1.1.1 Incidence, epidemiology & contributing factors 

Globally, cancer remains one the greatest causes of mortality in humans. In 2018, there was an 

estimated 18 million new cases of cancer worldwide, as well as 9.5 million deaths 

(International Agency for Research on Cancer, 2019). Among the most prevalent cancers 

worldwide are lung, breast, prostate and colorectal cancers,  which together are thought to 

make up approximately 6.5 million of these new cases and 3.3 million of the overall deaths 

(Bray et. al., 2018).  

 

The incidence of individual cancers and their mortality in a given population is informed by 

the complex intersection of biological and cultural factors. Lung cancer represents a fairly 

straightforward example, in that it is most often related to the recreational smoking of tobacco. 

Recent statistics indicate that as the rates of smoking decline, for instance in males in higher 

income countries, so too the incidence of lung cancer decreases (Torre et. al., 2015). As 10-

15% of lung cancer sufferers in the US have ever smoked, smoking is not the sole modality 

through which people place themselves at risk of lung cancer (Samet et. al., 2009). Air 

pollution, through occupation or environment, increases risk to populations with low rates of 

smoking, with Chinese women as an example (Torre et. al., 2015). Other risk factors also 

include second-hand smoke exposure, aspects of diet, and infections (Samet et. al., 2009).  

 

In most countries throughout the world, breast cancer is among the chief causes of death for 

women (Ghoncheh, Pournamdar & Salehiniya, 2016). Whereas the risk factors that underpin 

lung cancer are largely dictated by lifestyle, those which underpin breast cancer in women 

appear to be mostly biological, including advanced age, age at first pregnancy, early onset 
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menarche and later than average menopause (McPherson, Steel & Dixon, 2000). Note that this 

is not an exclusive rule, as alcohol, oral contraceptive and therapeutic hormone use have each 

been identified as risk factors (Barnard, Boeke & Tamimi, 2015).  

 

Prostate cancer in men can be thought of as being the equivalent of breast cancer in women. It 

is an interesting cancer, as 80% of men who live to age 80 are thought to develop the condition, 

but clinically the lifetime risk is 8% (Bostwick et. al., 2004). For this reason, the observation 

has been made that “most men die with prostate cancer, rather than from it” (Bostwick et. al., 

2004 p. 2372). Genetics seems to play a significant role in the development of prostate cancer. 

One Quebec-based study showed that the odds ratio (OR) of developing prostate cancer if one 

to four of a man’s first-degree relatives also has prostate cancer is 9 (Ghandirian et. al., 1991). 

Another study from Jamaica showed that the OR for developing prostate cancer is 2.1 if a 

single first degree relative also has, or had, prostate cancer (Glover et. al., 1998). 

 

Colorectal cancer is the third most common cancer in both men and women worldwide, 

differentially effecting Westernised societies such as North America, New Zealand, Australia 

and Europe (Haggar et. al., 2009). This may be explained in part by vices such as alcohol and 

tobacco use, which are both shown to be associated with early onset colorectal cancer (Zisman 

et. al., 2006). Inflammatory bowel disease (IBD) and genetic inheritance can also play a role 

in colorectal cancer (Haggar et. al., 2009).  

 

1.1.2 Contemporary cancer treatments 

Common treatments for cancer include mono- or combination therapy regimens of surgery, 

chemotherapy and/or radiation therapy. None of these interventions are without risk, and often 

carry side effects which can be severe. In surgery, masses of cancer cells are physically 



 13 

removed from the surrounding tissue, which by definition causes damage to this tissue. Taking 

the example of rectal cancer, results from multiple studies indicate that of those who receive 

surgery, 7% will develop a wound infection, 11% will suffer from anastomotic leakage 

(transfer of matter across the intestinal lumen into the body), and 12% will develop pelvic 

sepsis (Paun et. al., 2010).  

 

Chemotherapy encompasses a large range of therapies of different modalities. Chemotherapy 

drugs are most often introduced intravenously, exerting effects systemically, but preferentially 

against malignancies. This systemic toxicity manifests in negative side effects, for instance 

cisplatin, oxaliplatin, vincristine, methotrexate and cytarabine, among others, are known to 

cause central and/or peripheral nervous system complications (Verstappen et. al., 2003). 

Advances in understanding of cancers have brought about targeted chemotherapies, which 

include monoclonal antibodies and small molecule inhibitors. While generally considered less 

toxic, these too have side effects. These include the gastrointestinal perforation and 

haemorrhage that can be caused by bevacizumab, and the cardiac toxicity associated with 

lapatinib (Gerber, 2008).  

 

Radiation therapy utilises high-energy ionising radiation to cause DNA damage, and thereby 

cellular destruction, of healthy and tumour cells in the treatment field. The complications that 

can arise from therapeutic irradiation are well demonstrated in an oral context, where radiation 

therapy can cause mucositis (inflammation of oral mucosa), xerostomia (lack of saliva, altered 

properties of saliva), and osteoradionecrosis (tissue and bone degeneration) (Sciubba & 

Goldenberg, 2006).  
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In recognition of the toxicity, and sometimes lack of efficacy, of traditional cancer therapies, 

new strategies are being developed constantly. These include adoptive T-cell transfer (ACT) 

and the use of oncolytic viruses (OVs). ACT can be subdivided into three categories: tumour 

invading lymphocytes (TILs) transgenic T-cell receptor T-cells (TCR T-cells) and chimeric 

antigen receptor T-cells (CAR T-cells) (June et. al., 2018). TIL therapy is a personalised 

treatment strategy wherein invading tumour lymphocytes are extracted from excised patient 

tumours and co-incubated with tumour cells in the presence of IL-2. TILs which are shown to 

destroy tumour cells in vitro are then expanded and re-introduced to the patient to exert 

therapeutic effect (Rosenberg & Restifo, 2015). Transgenic TCR T-cell therapy makes use of 

T-cells transduced to express T-cell receptors specific to cancer antigen (Ping, Liu & Zhang, 

2018). An example of the cancer antigen targeted in TCR T-cell therapy is melanoma 

associated antigen recognised by T-cells-1 (MART-1). MART-1-recognising transgenic TCR 

T-cell therapy was able to produce objective responses in up to 30% of patients trialled in one 

study, but not without targeting of melanocytes in the skin, eyes and ears of patients (Johnson 

et. al., 2009). CARs are fusion proteins which contain an extracellular domain based on 

complementarity-determining region (CDR)-containing heavy and light chains of antibodies, 

and hinge domain, a transmembrane domain, and an intracellular signalling domain. CAR T-

cells have gone through multiple “generations” in their development based on the intracellular 

domains that can be incorporated. First generation CARs had the intracellular domain of CD3ζ, 

second had CD3ζ and either CD28 or 4-1BB, and third generation CARs have all three (June 

et. al., 2018). Second generation CAR T-cells have shown great efficacy against B-cell 

malignancies such as Chronic Lymphoid Leukaemia, at the cost of B-cell hyperplasia (Porter 

et. al., 2011). Figure 1 below surmises therapeutic strategies for the treatment of malignancies 

that are well established, such as surgery, chemotherapy and radiation therapy, as well as 

upcoming therapies like ACT and OVs. 
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Figure 1: Contemporary treatments for cancers. A summary of the anti-tumour and off-

target effects of surgery, chemotherapy, radiation therapy, adoptive cell transfer therapy and 

oncolytic virotherapy. 

 

OVs will be discussed in greater detail in the coming text, but as the focus will be on those 

OVs from the picornavirus family, it would be beneficial to first define Picornaviridae. 

  

1.2 Picornaviruses 

 

1.2.1 Picornaviral biology 

From the Latin “pico” meaning small, Picornaviridae are a family of small, non-enveloped, 

positive sense, single-stranded RNA viruses. The picornavirus family is well researched, with 

notable members such as poliovirus, foot and mouth disease virus and hepatitis A virus. The 
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genomes of picornaviral species have a characteristic “L-4-3-4” format, where the single 

polyprotein is cleaved by virally encoded proteases into the Leader protein, which is not always 

present, and three polypeptide regions P1 (four structural proteins), P2 (three non-structural 

proteins) and P3 (four non-structural proteins), hence “L-4-3-4” (Bedard & Semler, 2004). At 

the 5’ extreme of picornaviral genomes is the 5’ untranslated region (UTR). The 5’ UTR 

associates with the viral genome associated protein (VPg) and contains important secondary 

structural features, such as the internal ribosome entry site (IRES). Ordinarily, an essential step 

in human cellular RNA translation is the 7-methyl guanosine cap interacting with the 

eukaryotic initiation factor (eIF) protein, this function in the cap-independent translation of 

picornaviral genomes however, is served by the IRES (Svitkin et al., 2001). Immediately 

following the IRES, the Leader protein is a protease that sits at the 5’ end of the translated 

picornaviral polyprotein. It should be noted that the Leader protein is not present in all species 

encompassed by the Picornaviridae family. The Leader protein is followed by the four capsid 

proteins, in what is denoted as the P1 region of the picornaviral polyprotein. From 5’ to 3’, the 

capsid proteins are VP4, VP2, VP3 and VP1 respectively. While VP1 and VP3 are cleaved 

from P1 proteolytically, VP4 and VP2 are usually processed from the precursor VP0 following 

genome packaging inside the viral capsid.  

 

The P2 region of the translated polyprotein consists of 2A, 2B and 2C. The picornaviral 2A 

protein is somewhat enigmatic, as it can be absent, present, or in some cases, be coded for twice 

in the genome. 2A proteins can be organised into five groups based on function and conserved 

residues, these are: chymotrypsin-like protease, parechovirus-like, hepatitis-A-like, 

apthovirus-like and cardiovirus 2A proteins (Yang et. al., 2017). The roles of 2B and 2BC are 

in the formation of pores in membranes of intracellular organelles, disturbing cation balances 

and impairing glycoprotein trafficking (Neiva et. al., 2003). 2C by itself has a range of activities 
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that can be specific to various viral taxa. In Seneca Valley virus (SVV) for example, 2C is 

shown to induce apoptosis (Liu et. al., 2019), whereas in Encephalomyocarditis Virus 

(EMCV), it has been shown to antagonise that IFN- (Li et. al., 2019). Most commonly, 

picornaviral 2C proteins are thought to associated with membranes and bind viral genomic 

RNA (Banerjee & Dasgupta, 2001).  

 

P3 consists of 3A, 3B, 3C and 3D. A sole function for 3A is not known, but it has been shown 

to interact with 3B, and the hydrophobic carboxy terminus of 3A is presumed to act as an 

anchor for 3AB in cellular membranes (Cameron, Suk Oh & Moustafa, 2010). 3B, which is 

also known as the viral genome associated protein (VPg) is a small protein which interacts with 

the 5’ terminus of the genome and plays an essential role in genome replication. 3B does this 

by providing a primer for RNA synthesis when uridylated by cis-acting replicative elements 

(CREs). The CREs are looped secondary structural elements which can occur at several places 

in the RNA genome, including 5’ and 3’ UTRs, and 2C regions. The protease encoded by 3C 

performs most cleavages of the picornaviral polyprotein as well as inhibiting host transcription. 

Last among the picornaviral proteins is 3D, the RNA-dependent RNA polymerase (RdRP) 

(Porter et.al., 1993). The 3CD protein has protease and CRE-binding activity, but does not have 

polymerase activity. Finally, the 3’ UTR of picornaviruses includes features such as the poly-

A tail, and occasionally a CRE (Cameron, Suk Oh & Moustafa, 2010).  

 

Figure 2 below describes the genome organisation and phylogenetic relationship between a 

number of picornaviral species. 
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Figure 2: Genomic relatedness of a select group of picornaviruses. A) Radial phylogenetic 

tree showing the relatedness of several picornaviral species grouped into the Aptho-, Seneca-, 

Cardio- and Enterovirus genera respectively. B) RNA sequences of picornaviral isolates were 

aligned using clustal omega (Sievers et. al., 2011). Abbreviations: TMEV Theiler’s murine 

encephalomyelitis virus MEV Mengovirus EMCV Encephalomyocarditis virus HRV Human 

Rhinovirus PV Poliovirus CVA Coxsackievirus A BEV bovine enterovirus EV71 enterovirus 

71 ECHO echovirus FMDV foot and mouth disease virus SVV Seneca Valley virus. 

 

1.2.2 Quasispecies: An RNA viral phenomenon 

The concept of quasispecies is crucial to understanding the evolutionary success of many RNA 

viruses, including picornaviruses. Rather than existing as clonal populations derived from a 

consensus nucleotide sequence, RNA viruses exist as mutant spectra, or mutant clouds as they 

can be termed (Domingo, Sheldon and Perales, 2012). Quasispecies therefore refers to the fact 

that individual virions within the same species can be sufficiently distinct so as to appear to be 



 19 

from separate species (Domingo, Sheldon and Perales, 2012). This is due in no small part to 

the activity of virally encoded RdRPs. The activity of RdRPs is inherently error-prone, with 

most thought to introduce an error rate of between 10-4 to 10-6 mutations per base-pair per 

round of replication (Stern et. al., 2014). The consequences of this error-rate for a hypothetical 

10,000 base-pair RNA virus is that for every genome duplication event, an average of one to 

0.01 mutations occur. The mutant spectra that are produced from this process are not reflective 

of a truly random process wherein bases at all positions are equally likely to be mutated, rather 

they are constrained by the functional consequence of each specific mutation by negative 

selection of unfit genomes (Domingo, Sheldon and Perales, 2012). Figure 3 below surmises 

the concept of RNA-viral quasispecies.  

 

Figure 3: Principle of adaptive advantage of the quasispecies phenomenon. The genomic 

diversity of RNA viral quasispecies provides the maximal fitness to the viral population. 
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Taking the example of picornaviruses to expand on the idea of mutational constraints, the joint 

role of RNA secondary structures and the translated capsid proteins in forming functional 

virions means that the implications for mutations are two-fold. Firstly, there are several RNA 

secondary structures that need to be preserved for production of viral progeny, including 

IRESs, CREs, and as shown in the case foot and mouth disease virus (FMDV), packaging 

signals regularly interspersed throughout the genome (Logan et. al., 2018). Genomic RNA 

bound within picornaviral capsids has also been shown to be highly ordered, interacting with 

the interior aspects of capsid proteins (Shakeel et. al., 2016). Secondly, mutations are 

constrained by how they preserve the function of the translated viral proteins.  

 

1.3 Oncolytic Picornaviruses 

 

1.3.1 The field of oncolytic virotherapy 

The inception of oncolytic virotherapy was a product of the early 20th century, inspired by 

reports of patients with cancers such as leukaemia and Hodgkin’s disease surviving 

concomitant viral infections and showing evidence of clinical remission (Hoster, Zanes & Von 

Hamm, 1949, Pelner, Folwer & Nauts, 1958). These observations lead to a number of trials 

from the mid-to-late 20th century such as West Nile virus Egypt 101 against various cancers 

(Southam & Moore, 1952), Adenovirus versus cervical carcinomas (Georgiades et. al., 1959) 

and Mumps virus against various terminal cancers (Asada, T., 1974). Each of these trials 

showed varying degrees of protective effect. For instance, the trial concerning Adenovirus 

showed that 26 of 40 inoculations resulted in tumour necrosis (Georgiades et. al., 1959), and 

the Mumps virus trial resulted in complete regression of tumours in of 37 out of 90 trial 

subjects, as well as 42 instances of growth suppression (Asada, T., 1974). In 2015, an important 

milestone in the endeavour to make oncolytic virotherapy a viable therapy was reached. This 
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was the approval of the first oncolytic virus, modified herpes simplex virus-1 a.k.a. Talimogene 

Laherparepvec (T-VEC), by the US FDA for the treatment of malignant melanomas (Greig, S. 

L., 2016). Important to note is that T-VEC was not the first oncolytic virus to be approved 

worldwide, as Echovirus 7 (Rigvir) and modified adenovirus (Oncorine) have been approved 

in Latvia since 2004 (Alberts et. al., 2018) and China since 2005 respectively, (Xia et. al., 2004, 

Garber, K., 2006).  

 

1.3.2 Naturally occurring oncolytic picornaviruses 

There are species within the picornavirus family which, for a variety of reasons, have an innate 

selective toxicity against human cancers over healthy tissue. Figure 4 provides examples of 

picornaviruses shown in literature to have oncolytic activity, with little or minimal 

pathogenesis in humans. 

 
Figure 4: Naturally occurring oncolytic picornaviruses. A selection of picornaviral species 

whose oncolytic activity will be discussed, including coxsackievirus A21 (PDB accession 

number: 1Z7S) Seneca Valley virus (PDB accession number: 3CJI) echovirus 7 (PDB 

accession number: 2X5I) and bovine enterovirus 2 (PDB accession number: 1BEV). 
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1.3.2.1 Coxsackievirus 

The discovery of coxsackievirus is accredited to Dalldorf and Sickles. In attempting to isolate 

Poliovirus from affected patients using unweaned “suckling” mice, the two observed an 

atypical paralysis of these mice due to skeletal muscle destruction, rather than the central 

nervous system damage as would be expected in Poliovirus infection (Dalldorf & Sickles, 

1948). The filtrable agent isolated from these mice could be inactivated in human sera and was 

shown to be distinct from other known viruses by host range (Dalldorf & Sickles, 1948). Since 

then the coxsackievirus species has broadened to include 29 serotypes, 23 in coxsackievirus A, 

which infect the skeletal muscle of mice, and 6 in coxsackievirus B, which infect a broader 

range of tissues (Bradley et. al., 2014). In humans, coxsackieviruses are considered “common-

cold viruses”, causing mild upper respiratory tract infections (Buckland, Bynoe & Tyrell, 

1965). Most coxsackieviruses use Intercellular Adhesion Molecule 1 (ICAM-1) as a primary 

receptor to facilitate viral infection of susceptible cells, with Decay Accelerating Factor (DAF) 

as a secondary receptor (Bradley et. al., 2014). Exceptions do exist however, such as 

coxsackievirus B3, which utilises coxsackievirus and adenovirus receptor (CAR) (Shafren et. 

al., 2004).  

 

The lion’s share of research into coxsackievirus as an oncolytic agent has gone into 

coxsackievirus A 21 (CVA21), registered as CAVATAK® by Viralytics Inc. (Bradley et. al., 

2014). CVA21 was investigated in vitro and in vivo in a range of cancers, including melanoma 

(Shafren et. al., 2004, Au et. al., 2005, Shafren et. al., 2014, Yuan et. al., 2015), multiple 

myeloma (Au et. al., 2007), breast cancer (Skelding et. al., 2009) and bladder cancer (Annels 

et. al., 2018). Highlights from these studies include that across these various cancers, ICAM-1 

and DAF expression were strong predictors of susceptibility to CVA21 infection, and that in 

animal models, CVA21 reliably suppressed (Au et. al., 2005, Skelding et. al., 2009, Shafren et. 
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al., 2014, Yuan et. al., 2015) or cleared (Shafren et. al., 2004, Annels et.al., 2018) introduced 

tumours. CVA21 was also shown to act in concert with other drugs such as immune checkpoint 

inhibitors (Shafren et. al., 2014, Yuan et. al., 2015) or viral-receptor upregulators (Annals et. 

al., 2018) to produce synergistic effects in eliminating in vivo tumours.  

 

Results from the previously mentioned experiments inspired Phase I - II clinical trials with 

CAVATAK® in melanoma (Shafren, Smithers & Formby, 2011, Andtbacka et. al., 2015, 

Andtbacka et. al., 2015), late-stage cancers (Pandha et. al., 2015, Pandha et. al., 2016, Pandha 

et. al., 2017) and bladder cancer (Pandha et. al., 2016). The findings of these clinical trials have 

been overwhelmingly positive, with CAVATAK® having been shown to be safe (Pandha et. 

al., 2017), as well as in some cases producing objective or complete responses (Shafren, 

Smithers & Formby, 2011, Pandha et. al., 2015, Pandha et. al., 2016). Clinical trials with 

CAVATAK® are still underway, with multiple clinical trials currently recruiting patients.  

 

Returning to the idea that CVA21 is a common cold virus, the transient and relatively mild 

infection brought about by this virus means that pre-existing immunity is common in humans 

(Au et. al., 2011). Pre-existing immunity of patients against CVA21 could mean that the virus 

is cleared before exerting therapeutic effects in a clinical setting. In anticipation of this 

phenomenon, a number of other less common coxsackievirus serotypes and strains have been 

investigated for a similar selective oncolytic activity to that of CVA21. For example, 

coxsackievirus A 13, A 15 and A 18 (CVA13, CVA15, CVA18) have each been tested as 

putative substitutions for CVA21, with CVA18 having the strongest selective activity against 

in vivo melanoma models, where all treated animals completely cleared tumours (Au et. al., 

2011). Importantly, no donated serum samples from melanoma patients or commercial IgG 

samples were shown to have neutralising antibodies against CVA13, CVA15 or CVA18, 
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whereas 20% of melanoma patients and both commercial IgG samples contained neutralising 

antibodies to CVA21 (Au et. al., 2011).  

 

Another trial pitted 28 enteroviral strains against 12 human cancer cell lines and a healthy bone 

marrow stroma control (Miyamoto et. al., 2012). From this trial CVB2 Ohio-1, CVB3 Nancy 

and CVB4 JBV emerged as promising candidates for oncolytic viruses, especially CVB3 

Nancy, which could clear a number of lung cancer tumours in vivo, though at the cost mild 

hepatic dysfunction and myocarditis (Miyamoto et. al., 2012). CVB3 Nancy, as well as other 

strains of CVB3 including 31-3-93, H3 and PD, were later tested for their activity against 

colorectal cancers (Hazini et. al., 2018). In this study it was CVB3 PD that stood out, having 

not only the greatest oncolytic activity, but also having the least toxicity to the murine hosts 

(Hazini et. al., 2018). CVB3 strain 2035 was also shown to have dose-dependent toxicity 

against endometrial cancers in animal models as well as ex vivo patient derived samples (Lin 

et. al., 2018). Lastly, three coxsackievirus B 6 live enterovirus vaccine (LEV) strains, LEV8, 

LEV14 and LEV15 were evaluated for toxicity against a panel of cancers of diverse origin 

(Svyatchenko et. al., 2017). LEV15 distinguished itself amongst the other strains by virtue of 

its selectivity for cancer cell lines. Importantly, LEV15 was shown to be able to bio-adapt to 

cell lines such as RD rhabdomyosarcoma cells and MCF-7 breast cancer cells, after repeat 

passage through these cells (Svyatchenko et. al., 2017). This observation, as well as that of the 

previously mentioned study wherein CVB3 PD was shown to have developed some adaptation 

to healthy cells, provides an interesting dual consideration (Hazini et. al., 2018). While it is 

encouraging that the host cell range of coxsackieviruses can be widened, thereby increasing 

the pool of patients that can potentially benefit from coxsackievirus virotherapy, this has to be 

measured against the converse eventuality that the virus becomes increasingly pathogenic.  
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1.3.2.2 Echovirus 

Enteric cytopathic human orphan (Echo)-viruses belong to the enterovirus B species. Like 

coxsackieviruses, clinical focus has largely centred around one particular strain of Echovirus, 

Echovirus 7 (EV7), registered as Rigvir® (Alberts et. al., 2018). Rigvir® is named for Riga, 

Latvia, where the viromic monitoring of patients receiving the Salk inactivated Poliovirus 

vaccine lead to the discovery of EV7 (Donina et. al., 2015). In Latvia, it is thought that as many 

as 75% of cases of melanoma are treated with Rigvir®, its widespread use possibly influencing 

its approval in Georgia, Armenia and Uzbekistan (Alberts et. al., 2018). However, in countries 

with the most stringent requirements for experimentally proven drug safety and efficacy, such 

as many countries of the European Union, United States of America, and Japan, Rigvir® has 

yet to be approved (Babiker et. al., 2017). This is likely due to the unavailability of the results 

of clinical trials which are alluded in the literature to have occurred between 1965 and 1991 

(Alberts et. al., 2018).  

 

Most of the experimental data that are available is in the form of case studies and retrospective 

studies, with some in vitro work. Beginning with in vitro experiments, EV7 has shown 

cytotoxicity against melanoma, pancreatic adenocarcinoma, muscle rhabdomyosarcoma, 

mesenchymal stem cells, gastric carcinoma, lung carcinoma and human normal dermal 

fibroblasts (Tilgase et. al., 2018). To date, five case studies have been published in peer-

reviewed journals. These detail the improved outcomes of patients of a range of cancers and 

stages thereof after treatment with Rigvir®. One paper followed a stage IV melanoma patient, 

stage IIIA small-cell lung cancer patient and stage IV histiocytic sarcoma patient on a long-

term Rigvir® regimen (Alberts et. al., 2016). Each of the patients were given different drugs 

alongside Rigvir®, and so the role of Rigvir® in improving their condition is unclear, but in 

any case, all three had improved conditions and were stable at the time of publication, with no 
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parameters exceeding NCI CTCAE grade 1 (Alberts et. al., 2016). The other case studies 

followed patients for whom the prognosis was especially poor. Rigvir® along with FOLFOX-

4 and bevacizumab was used to treat a patient with a stage IV poorly-differentiated rectal 

adenocarcinoma, which carries a five-year predicted survival rate of 5% (Tilgase et. al., 2018). 

This drug cocktail caused sufficient suppression of metastases to allow further surgical 

resection of affected tissues, and further treatment post-surgery lead to complete response 

(Tilgase et. al., 2018). Finally, a case study in the treatment of a basal cell carcinoma (median 

expected survival 5 months) with Rigvir® as a monotherapy resulted in the patient being alive 

for 3.9 years up to the time up publication (Proboka et. al., 2018). 

 

The last bodies of work on Rigvir® are retrospective studies. The results of one indicated a 

statistically significant increase in 3-year survival time of melanoma patients receiving 

Rigvir® when compared to patients from a historical cohort who had opted for surgery alone 

or surgery in combination with other immunomodulators (Donina et. al., 2015). This study also 

suggested that direct, intratumoural injection of Rigvir® was more efficacious than 

intramuscular infusion, an effect which may be in part explained by another finding that 

administering Rigvir® locally increases the total proportion of active (CD38+) and cytotoxic 

(CD8+) T-cells present (Bruvere et. al., 2002). Another retrospective trial enrolled stage IB 

through to stage IIC melanoma patients, with 52 patients enrolled for Rigvir therapy and 27 in a 

control group. The Rigvir® group in this case had a lower mortality rate, but the time spent 

disease-free was unchanged between the two (Donina et. al., 2015). 

 

1.3.2.3 Bovine Enteroviruses 

The International Committee for the Taxonomy of Viruses (ICTV) regularly releases reports 

on the official nomenclature of viruses. It does so in an attempt to create a cohesive system 
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through which the disparate and varied virology research around the world can be produced 

and evaluated by virologists universally. As a consequence of this, viruses often have their 

names changed and are retroactively moved between species etc. While currently bovine 

enterovirus 1 (BEV1) & bovine enterovirus 2 (BEV2) are now categorised as enterovirus E & 

enterovirus F respectively (Adams et. al., 2013), much of the research into their oncolytic 

activity occurred before this distinction made, and so it becomes convenient to discuss them 

together. 

 

Bovine enteroviruses do not cause disease in humans, but as their name suggests they are 

endemic pathogens of cows (Smythe et. al., 2002). The cytotoxicity of BEV1 against human 

cancer cell lines was first tested in 1971, when 65% of cancer cell lines tested met the threshold 

for significant viral killing by BEV1, compared to 4% of healthy cell lines (Taylor et. al., 1971). 

Of those cancer cell lines that were susceptible to BEV1 mediated killing, the degree of 

susceptibility varied widely, between 18% cell death in Ehrlich ascites and 98% cell death in 

L-cells (Taylor et. al., 1971). The variability of BEV1 cytotoxicity against these cell lines was 

thought to be receptor based, as cellular treatment with Vibrio cholerae neuraminidase (VCN) 

showed a dose and time dependent inverse correlation between VCN exposure and viral titre 

following BEV 261 infection in a panel of susceptible cancer cells (Stoner et. al., 1973).  

 

Referring briefly back to coxsackievirus, CVB3 (Svyatchenko et. al., 2017) and CVB6 (Hazini 

et. al., 2018) were shown to be able to adapt to various cell lines through repeated passage, 

however, the same could not be achieved with BEV1 (Taylor et. al., 1971). The same study 

also showed that BEV1 could clear sarcoma-1 xenografts and suppress leukemia 4946 tumours 

in mice (Taylor et. al., 1971).  
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Somewhat atypically, in addition to the studies in mice, BEV1 has been tested in rabbits and 

dogs with cancer, which both tolerated BEV1 well (Hodes et. al., 1973). Of note: BEV1 treated 

mice were shown to suppress ascites sarcoma 180 tumours, and a BEV1 treated dog had a 

transient positive response to its seminoma (Hodes et. al., 1973). In the most recent study of 

oncolytic bovine enterovirus in vivo, rabbits with induced adult T-cell-like leukemia showed 

increased survival when given BEV MZ-468, with treatment animals surviving up to four 

months until the end of the trial, whereas control animals died by day 11 (Shingu et. al., 1991). 

 

1.3.2.4 Encephalomyocarditis Virus 

Encephalomyocarditis virus (EMCV) was discovered in 1945 as a result of a captive male 

gibbon suddenly and inexplicably dying of pulmonary oedema and myocarditis (Helwig & 

Schmidt, 1945). Mice treated with the filtered fluid from this oedema developed paralysis and 

myocarditis (Carocci & Kassimi, 2012). 

 

Columbia-SK virus, the name by which EMCV was known in 1965, was shown experimentally 

to exert therapeutic effects on fructose sarcomas in mice and rats, especially in rats (Kuwata 

et. al., 1965). While research into EMCV continued, research into its oncolytic properties 

underwent a 50-year hiatus before EMCV was shown to have significant selective toxicity 

against retinoblastomas (Adachi et. al., 2006) and clear-cell renal cell carcinomas (Roos et. al., 

2010) in vivo.  

 

1.3.3 Engineered oncolytic picornaviruses 

While some picornaviruses have an innate selective toxicity for human cancers, there also exist 

picornaviruses specifically engineered for the purpose of oncolytic virotherapy. There are a 

number of reasons why these viruses may be altered, including attenuation of pathogenesis and 
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to increase immune evasion. Figure 5 contains examples of engineered picornaviral species, as 

well as the changes implemented for oncolytic virotherapy, which will be discussed in greater 

detail.  

 
Figure 5: Engineered oncolytic picornaviruses. Poliovirus (PDB accession number: 1HXS) 

has been altered in a number of ways for oncolytic virotherapy, among them is the replacement 

of the wild-type IRES of the sabin strain of poliovirus 1 with that of human rhinovirus 2 to 

construct PVSRIPO. Theiler’s murine encephalomyelitis virus (PDB accession number: 

1TME) can be engineered to express tumour antigen in the leader protein, with chicken 

ovalbumin commonly used as a proof-of-principle. Oncolytic mengovirus (PDB accession 

number: 2MEV) attenuated by the introduction of sequences complementary to micro-RNAs 

upregulated in healthy tissue. 

 

1.3.3.1 Poliovirus 

Poliovirus (PV) is best known as the causative agent of poliomyelitis, a disease which causes 

extensive paralysis in 1-2% of those people infected (Mehndiratta, Mehndiratta & Pande, 

2014). The basis for PV causing poliomyelitis in humans is the gastric and neuronal cell 

expression of CD155, also known as Necl5 (nectin-like molecule 5) or PVR (Poliovirus receptor) 

(Strauss et. al., 2015). As wild-type poliovirus carries the inherent risk of poliomyelitis, the 
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investigation into poliovirus as a cancer therapeutic has been with the express goal of 

ameliorating neurotoxicity while retaining oncolytic activity. Among the engineered 

polioviruses investigated for their use in oncolytic virotherapy are live attenuated poliovirus 

(LAPV), poliovirus replicons, A133Gmono-cre PV and perhaps most importantly PVSRIPO. 

 

LAPV, which is the attenuated Sabin strain of poliovirus 1 (PV1), was shown to have 

infectivity in bone and soft tissue cancer cell lines in vitro, as well as being able to significantly 

decrease sarcoma xenograft tumours in vivo (Atsumi et. al., 2012).   

 

Another method to attenuate PV neurotoxicity is by using replication incompetent poliovirus 1 

(PV1) replicons. Encapsidated replicons with the P1 segment of the PV1 genome deleted have 

been produced by co-infection of helper cells with a complementing P1-encoding Vaccinia virus 

vector (Ansardi et. al., 2001). Once inside the targeted cell, the PV1 replicon RNA genome is 

capable of replicating and causing cell lysis. However, the replicons cannot form full 

encapsidated virions to spread to other cells, as the lack of the P1 region prevents capsid 

formation. PV1 replicons have shown broad spectrum cytotoxicity against central nervous 

system and non-central nervous system tumours, and ex vivo primary patient tumours (Ansardi 

et. al., 2001). PV1 replicons significantly prolong survival of murine glioblastoma models by 

infecting primary tumours as well as distal metastases (Ansardi et. al., 2001). 

 

A133Gmono-cre PV is a PV mutant engineered specifically for oncolytic virotherapy (Toyoda 

et. al., 2007). The development of A133Gmono-CRE PV began with the observation that base 

substitutions in the 5’ UTR can attenuate wild-type PV. The issue with this however, was that 

these substitutions were never stable (Toyoda et. al., 2007). To decrease the chance of revertant 

mutants, researchers designed mono-CRE PV, which was wild type PV1 with the CRE moved 
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from the 2C protein to the 5’ UTR (Toyoda et. al., 2007). This both interrupted the 5’ UTR and 

prevented escape mutants due to essential function of the CRE. Mono-CRE PV strains 

developed a range of adaptations to infecting neuroblastoma cells in vivo and in vitro, though 

a single mutant, A133G, arose in both instances (Toyoda et. al., 2007). Going forward then, 

A133Gmono-cre PV was shown experimentally to have potent activity against neuroblastomas 

in vivo (Toyoda et. al., 2007). Both the CD8+ T-cells from A133Gmono-CRE treated mice and 

the non-infectious lysate from A133Gmono-CRE treated neuroblastoma cell cultures were later 

shown to effectively vaccinate mice from neuro-2a neuroblastoma cell challenge (Toyoda et. 

al., 2011). 

 

The greatest current prospect for the use of PV as a cancer therapy is PVSRIPO. PVSRIPO 

(sometimes referred to as “PV1(RIPOS)” in early literature) is the Sabin strain of PV1 (PVS) 

with IRES substituted with that of Human Rhinovirus 2 (HRV2) (Gromeier, Alexander & 

Wimmer, 1996, Jahan, Wimmer & Mueller, 2011). This attenuates PVSRIPO in neuronal cells 

(Jahan, Wimmer & Mueller, 2011, Cello et. al., 2008). There are a few reasons for this 

attenuation. For one, the HRV2 IRES is thought to have properties unsuited for the recruitment 

and activity of translation complexes specific to neurons (Brown & Gromeier, 2015). Another is 

the sequestration of double stranded RNA binding protein 76 (DRBP76) to the nuclear 

compartment of neoplastic cells, as opposed to its role in binding secondary structural elements 

of the HRV2 IRES in the cytoplasm of healthy cells (Brown & Gromeier, 2015). Cancer cells, 

generally speaking, have deregulated mitogenic signalling, and as such favour the m7G cap-

independent translation of viral genomes (Brown & Gromeier, 2015).  

 

PVSRIPO has demonstrated potent oncolytic activity in a breadth of cancers, including gliomas 

(Merrill et. al., 2004), breast cancers (Ochiai et. al., 2004, Holl et. al., 2016), glioblastoma 
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multiforme (Ochiai et. al., 2006), melanomas (Walton et. al., 2018), astrocytomas (Yang et. al., 

2009, Dobrikova et. al., 2008) and prostate cancers (Holl et. al., 2016).  

 

The oncolytic activity of PVSRIPO is in part due to its immunostimulatory properties. PVSRIPO 

causes sub-lethal infection in human macrophages, inducing expression of major 

histocompatibility complex class II (MHC II) and costimulatory molecules, leading to IFN-, 

IL-12 and TNF- production (Brown et. al., 2015). This immune stimulating effect could also 

be induced in human dendritic cells (DCs) after incubation with the virus-free lysate of PVSRIPO 

destroyed cells, stimulating tumour-antigen specific T-cells (Brown et. al., 2017). Similar to 

macrophages, activation of DCs occurs partially through sublethal infection producing low viral 

progeny, and is magnified in the presence of tumour lysate, as measured by CD40, CD80, IFN-

 and TNF- expression (Brown et. al., 2015). PVSRIPO oncolysis releases cancer antigens, 

including MART-1 (melanoma-associated antigen recognised by T-cells-1), DAMPs (damage-

associated molecular patterns, e.g., HSP 60/70/90, HMGB1 protein) and double-stranded RNA 

(dsRNA) (Brown et. al., 2017). In mice, mRIPO, which is PVSRIPO adapted to mouse 

astrocytoma cells, was used to treat OVA-expressing melanomas. Infection of these melanomas 

with mRIPO produced cytotoxic T-lymphocytes (CTLs) primed against OVA, as well as native 

melanoma antigen tyrosinase related protein 2. This delayed tumour growth, increased survival 

times and induced invasion of neutrophils, DCs and T-cells in to tumours (Brown et. al., 2017). 

 

As with any PV-based vaccine, PVSRIPO has been tested for pathogenesis in macaques, as per 

World Health Organisation (WHO) standards. Ex vivo cultures of macaque and human kidney 

cells displayed no appreciable infection after exposure to PVS or PVSRIPO (Dobrikova et. al., 

2012). In live macaques, PVSRIPO was patently safe, with all animals surviving to trial’s end. 

The tested macaques also did not shed virus in bodily fluids and only one had any measurable 
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viral titre in the spinal cord and pons / medulla (Dobrikova et. al., 2012). PVSRIPO has been 

entered in to clinical trials. One Phase I clinical pitted PVSRIPO against a 13-strong cohort of 

patients with recurrent glioblastoma. Consistent with the trial in macaques, this trial 

demonstrated the safety of PVSRIPO, with no patients developing adverse NCI CTCAE 

(National Cancer Institute Common Terminology Criteria for Adverse Events) events grade 3 or 

above from PVSRIPO, though one experienced a grade 4 event from a catheter removal (Trotti 

et. al., 2003, Desjardins et. al., 2014). Another Phase I clinical trial of 61 glioblastoma patients 

focused on dose finding, indicating an optimal treatment dose of 5x107 TCID50 (Desjardins et. 

al., 2018). This trial also showed PVSRIPO had a protective effect on patient survival when 

compared to historical controls, with a 36-month survival rates of 21% and 4% respectively 

(Desjardins et. al., 2018). 

  

1.3.3.2 Theiler’s Murine Encephalomyelitis Virus 

The prospective use of Theiler’s murine encephalomyelitis virus (TMEV) for cancer therapy 

deviates from that of most other oncolytic viruses. This is because rather than direct infection 

and lysis of tumour cells, TMEV is more often engineered to express tumour antigen, thereby 

directing the host immune system to clear tumours as an extension of clearing TMEV.  

 

Most commonly in the literature, chicken ovalbumin (OVA) is introduced to the Leader protein 

of TMEV (TMEV-OVA) to generate a cytotoxic immune response against tumours also 

exogenously expressing OVA. While the addition of OVA comes at a cost to the virulence of 

TMEV (Pavelko et. al., 2011, Pavelko et. al., 2013), this alteration has indeed been shown in 

multiple studies to generate adaptive immunity to OVA (Bell et. al., 2014), leading to 

suppression of tumours and increased survival times in murine models (Renner et. al., 2015).  
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TMEV is known to harbour a highly immunogenic region in the VP2 capsid protein (VP2121-

130) and so any adaptive immune response generated against TMEV-OVA is in part against OVA, 

and in part against TMEV, including VP2121-130 (Bell et. al., 2014). As VP2121-130 specific 

immunity does not further the cause of tumour suppression, attempts have been made to 

emphasise OVA-specific immune responses over VP2121-130 specific immune responses. 

Deletion of the VP2121-130 region in TMEV-OVA was shown to increase the relative amount of 

Cytotoxic T-Lymphoctyes (CTL’s) targeted against OVA in vivo (Bell et. al., 2014). Vector 

silencing on the other hand, the exposure of the host to TMEV viral proteins before TMEV-OVA 

infection, seemed not to have any effect on the immune response directed toward OVA, tumour 

progression, or overall survival of mice with melanoma or glioma (Malo et. al., 2017).  

 

OVA is widely used as a model antigen for its high immunogenicity (Martner et. al., 2013), but 

authentic tumour antigen is often not as immunogenic. That being said, engineered TMEV 

vaccination does still work with weakly immunogenic tumour antigen, as shown by experiments 

with TMEV expressing p66 in a murine breast cancer model (Pavelko et. al., 2013).  

 

Not all of the research on TMEV in an oncolytic context has been as a cancer vaccine. While 

the DA strain of TMEV was ineffective in controlling breast cancers and melanomas in vivo, a 

chimeric fusion with the more neurovirulent strain GDVII was effective, significantly delaying 

B16 melanoma tumour outgrowth and increased survival when compared to DA strain and 

vehicle controls (Bell & Pavelko, 2016). This fusion took the 3’ end of the 5’ UTR to the 3’ end 

of the 2C protein of the DA strain and replaced it with that of the GDVII strain, the resultant 

chimeric virus named GD7-KS1 (Bell & Pavelko, 2016).   
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1.3.3.3 Mengovirus 

Mengovirus (MEV) was originally isolated from a Rhesus monkey which developed sudden 

paralysis. MEV is a novel virus in that it has a diverse range of mammalian hosts, including 

voles, squirrels, elephants, swine, wild boar, racoons, antelope, lions, birds and several 

species of non-human primate (Carocci & Kassimi, 2012).  

 

Due to the tenacity with which MEV infects a broad range of mammalian cell lines, research 

into its oncolytic activity has been undertaken with an attenuated version of MEV, vMC24, 

which is a poly-C truncated mutant (Dethlefs et. al., 1997). However, even this mutant caused 

paralysis in test mice, and so researchers utilised a novel strategy in engineering vMC24 to 

include complementary sequences to micro-RNA’s (miRNAs) preferentially expressed in 

healthy tissues infected by vMC24 (Ruiz et. al., 2016). A number of vMC24 variants were 

produced, with combinations of sequences complementary to miR125b (expressed in brain 

tissue), miR124 (expressed in neurons), miR133 and miR208a (enriched in cardiomyoctyes). 

Among these, a construct called vMC24-NC stood out as producing low viral titres in the brain, 

spine and heart of infected test mice (Ruiz et. al., 2016). Not only did vMC24-NC not cause 

negative side-effects, but it could also clear multiple myeloma tumours previously shown to be 

refractory to vMC24 infection in 40% of mice (Ruiz et. al., 2016). vMC24-NC contained two 

copies of complementary miR124 sequences in the 5’ UTR, and one of each of miR133b and 

miR208a in the 3’ UTR (Ruiz et. al., 2016). 

 

 

1.4 Seneca Valley Virus 

 

1.4.1 Introduction and discovery 
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Seneca Valley virus (SVV) is a member of the picornaviridae family as well as the first and 

namesake species of the senecavirus genus (Hales et. al., 2008.; Cartens, E. B., 2009; Adams 

et. al., 2015). A schematic representation of the SVV genome as well as the internal and 

external structures of the protomers, pentamers and capsids based on SVV crystal structure is 

shown in Figure 6 (Venkataraman et. al., 2008). 

 

The first strain of SVV to be discovered, SVV-001, was initially observed as a cell culture 

contaminant during development of a paired, replication-deficient adenovirus – helper cell 

gene therapy vector production system (Fallaux et. al., 1998). When this gene therapy vector 

production system, PER.C6 cells and E1 deleted adenovirus, was used again in 2002, cell 

cultures that succumbed to premature cytopathic effect (CPE) were investigated. Purification 

by ultracentrifugation followed by Sodium Dodecyl-Sulfate Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) revealed three protein bands of 36, 31 and 27 kDa length. These 

most likely corresponded to SVV VP2, VP3 and VP1 respectively (Strauss et. al., 2018). N-

terminal sequencing of two of the protein bands revealed a close sequence relatedness to 

cardioviruses. Viral infection of PER.C6 cells was also confirmed with electron microscopy of 

cells inoculated with purified virus. SVV gets its name from Seneca Valley, Maryland, USA 

where Gene Therapy Inc., who performed this work, is located.  

 

SVA can be stratified into 3 clades based on temporal isolation. Clade I consists of the 

originally isolated strain SVV-001, Clade II is a grouping of historical SVV strains taken from 

samples isolated in the US from the 80’s and 90’s that were re-tested following discovery of 

SVV, and Clade III refers to the strains isolated since SVV’s discovery (Segales et. al., 2017). 
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Figure 6: Organisation of the SVV genome. Starting with the positive-sense, single stranded 

RNA genome in its full form, complete with genome associated protein (Vpg), descending 

through the translated polyprotein, its further division by viral proteases and finally maturation 

of structural proteins as a result of genome packaging (Hales et. al., 2008). Also shown are the 

crystal structures of the interior and exterior of the protomer, pentamer and viral capsid 

(Venkataraman et. al., 2008). Capsid structures generated with UCSF Chimera (Petterson et. 

al., 2004). 

 

1.4.2 A novel oncolytic picornavirus 

SVV is counted among the ranks of picornaviruses that display a natural selective tropism for 

human cancer cells (Morton et. al., 2010). 

 

Capsid Exterior Capsid Interior 
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In vitro studies of SVV indicated potent, selective activity against a range of cancer cell lines 

with a unifying feature of having neuroendocrine features. Figure 7 surmises two in vitro 

studies of SVV-001 (NTX-010) against panels of cancer and non-cancer cell lines. 

 

 

Figure 7: In-vitro cytotoxicity of SVV-001 for cancer cell lines of human origin. Human 

cancer cell lines were organised by the site of original isolation and stratified by IC50 

(proportion of SVV-001 versus target cell line required to cause death in 50% of those cells) 

according to pooled results from two studies (Reddy et. al., 2007.; Morton et. al., 2010). Those 

cell lines studied which showed no permissivity to SVV infection were omitted. 

 

These studies showed the very first signs of the potential for SVV to be used as a cancer 

therapeutic. One of the in vitro studies also showed that SVV-001 is not inactivated by human 

blood components, does not cause haemagglutination of human erythrocytes and that 

neutralising antibodies to SVV-001 have a very low prevalence among a random selection of 
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blood samples (Reddy et. al., 2007). The same study also showed that SVV-001 is well 

tolerated in murine models (Reddy et. al., 2007). 

 

Researchers then began to evaluate SVV efficacy in an in vivo setting. Attached to one of the 

aforementioned in vitro studies was a trial in which H446 (Small Cell Lung Cancer) and Y79 

(Retinoblastoma) cells were injected in to the flank of athymic mice. In both cases SVV-001 

was sufficient to completely destroy these tumours, and at the lower concentrations a reduction 

in tumour mass was shown in H446 (Reddy et. al., 2007). Another trial centred around the 

treatment of retinoblastomas in mouse xenograft models, as the previous trial showed success 

with the Y79 cell line, but did not address the ability for SVV to diffuse across the blood-brain 

barrier (BBB).  Traversing the BBB would be necessary if SVV-001 were ever to be used in a 

clinical setting for the treatment of retinoblastoma. SVV-001 was shown in this study to greatly 

reduce intraocular tumour burden and thus was able to cross the BBB (Wadhwa et. al., 2007). 

Though some residual tumours were observed to remain post-treatment, this was thought to be 

due to lack of tumour vasculature, which would not be the case in a human retinoblastoma 

(Wadhwa et. al., 2007).  

 

The ability for SVV-001 to cross the BBB brings into question other important cancers which 

are complicated by the necessity of drug permeability across the BBB. One such cancer is 

medulloblastoma, the most common form of paediatric brain cancer (Rood, MacDonald & 

Packer, 2004; Huse & Holland, 2010). An in vivo study of 10 primary medulloblastoma 

xenograft mice, 5/10 had significant tumour growth repression, while the other 5 did not (Yu 

et. al., 2010). Another important finding from this study was that a subpopulation of 

medulloblastoma Cancer Stem Cells (CSC’s), identified as being CD133+, are effectively 
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killed by SVV-001 (Yu et. al., 2010). This is important as CSC’s are thought to have increased 

resistance to radiation therapy (Hambardzumyan et. al., 2008).  

 

Based on encouraging results with medulloblastoma treatment, a similar trial involving 6 

glioma xenografts was undertaken. In vitro experiments showed among these clinical isolates, 

4 were permissive to SVV-001, while 2 were resistant, and this was consistent for both cell 

monolayers and neurospheres (Liu et. al., 2013). This trial also showed that intravenous SVV-

001 injection of 5x1012 viral particles per kg mouse body weight (vp/kg) had a significant effect 

in prolonging survival times in mice with medium (1-4 mm) and small (<1 mm) xenograft 

tumours from permissive cell lines, and interestingly also one of the resistant cell lines (Liu et. 

al., 2013).  

 

H446 Small-Cell Lung Cancer (SCLC) cells were shown to be particularly susceptible to SVV-

001 infection. To interrogate the activity of SVV against SCLC more broadly, tumour cells 

from three classic and three variant sub-type patient tumours were grown in vitro and 

transplanted into mice (Poirier et. al., 2013). In vitro and in vivo testing showed that the classic 

sub-type SCLC was completely resistant to SVV oncolysis, whereas the variant sub-type cells 

were highly susceptible (Poirier et. al., 2013). This lead to the hypothesis that susceptibility to 

SVV might be positively correlated to NEUROD1 expression, and negatively correlated with 

ASCL1 expression (Poirier et. al., 2013). 

 

SVV has entered a number of clinical trials. First, a phase I clinical trial of 30 patients with SCLC 

was undertaken (Rudin et. al., 2011). Patients treated with NTX-010 between 107 to 1011 vp/kg 

showed no dose limiting toxicities, with flu-like symptoms mainly manifesting in the lower dose 

cohorts. Neutralising antibodies were detected as early as two weeks into treatment. In terms of 
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outcomes, one patient showed disease stabilisation while another five had minor responses, 

which were not sufficient to meet response evaluation criteria in solid tumours (RECIST) criteria 

(Eisenhauer et. al., 2009). The patient with stable disease was alive three years post trial, up until 

the time of publication, with positron-emission tomography (PET) scans revealing a 50% 

decrease in tumours (Rudin et. al., 2011). Shortly after, a second Phase I clinical trial was 

launched in cohort of children with neuroblastoma, rhabdomyosarcoma or other rare tumours 

with neuroendocrine features (Burke et. al., 2014). In part A of the trial, 13 patients were injected 

with 109, 1010 or 1011 vp/kg NTX-010, and in part B, patients were given oral (days 1 to 14) and 

intravenous (days 1 and 8) cyclophosphamide, in combination with two doses of 1011 vp/kg 

NTX-010. The study showed that NTX-010 was well tolerated with a single dose limiting 

toxicity event recorded. While no objective response was observed, six patients did show disease 

stabilisation. A rapid neutralising antibody response to NTX-010 was also shown in this trial 

(Burke et. al., 2014).  

 

Finally, a single Phase II clinical trial was undertaken in SCLC patients who had been stable or 

responding after a regimen of four cycles platinum-based chemotherapy (Molina et. al., 2013). 

Patients were randomised into Arm A or Arm B and treated with a single dose of 1x1011 vp/kg 

NTX-010 or the saline control respectively. Within Arm A there were three observed grade 4 

events, with none in Arm B. Between Arms A and B there was no difference in progression-free 

survival and overall survival was only marginally different in Arm A (83%) vs. Arm B (85%). 

This clinical trial was also put on hold while the death of one patient was confirmed not to have 

been caused by NTX-010 treatment (Molina et. al., 2013). 

 

The results of the two Phase I clinical trials and the single Phase II clinical trial seemed to be 

at odds with each other, and with the promising results of the in vitro and in vivo trials. It 
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seemed then, that there was a lack of knowledge with respect to the defining characteristic that 

determined the distinct cellular susceptibility to SVV-001. In 2017 however, this defining 

characteristic was discovered. This was that the cellular receptor for SVV-001 is Anthrax Toxin 

Receptor 1 (ANTXR1), known also as Tumour Endothelial Marker 8 (TEM8) (Miles et. al., 

2017). This provides a key criterion by which future clinical trials can select patients who might 

benefit from NTX-010 therapy. ANTXR1 is a useful receptor in cancer therapy as it is 

upregulated in 60% of human cancers, and only weakly expressed in healthy cells (Miles et. 

al., 2017). That being said, ANTXR1 expression is necessary but not sufficient for successful 

infection and lysis of cancer cells (Miles et. al., 2017). Interestingly, the genome-less procapsid 

of SVV can also bind ANTXR1 (Strauss et. al., 2018).  

 

1.4.3 An emerging porcine pathogen 

As previously alluded to, SVV-001 was first isolated as a contaminant of cell culture. SVV-

001 was thought to be introduced through porcine trypsin, which is used to detach cells from 

culture vessels. This is because SVV has been shown to cause mild, self-limiting disease in 

pigs, with the exception of neonatal piglets, for whom SVV infection can be lethal (Segales et. 

al., 2017). The mild disease experienced by older pigs is characterised by the formation of 

vesicles around the mouths and coronary bands, which when the aetiological agent is not 

known, is termed porcine/swine idiopathic vesicular disease (PIVD/SIVD) (Singh et. al., 

2012). 

 

Currently, Clade III SVV is causing disease in pigs from Canada (Pasma, Davidson & Shaw, 

2008), the United States (Zhang et. al., 2015), Colombia (Sun et. al., 2017), Brazil (Leme et. 

al., 2015), Thailand (Saeng-Chuto et. al., 2018) and China (Zhao et. al., 2017). While the 

disease that SVV causes in these countries is not of concern in and of itself, it is clinically 
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indistinguishable from foot and mouth disease, thereby forcing immediate and costly 

quarantine and investigation of afflicted animals.  

 

1.5 Project 

This project comes in the context that cancer is highly prevalent, causing millions of deaths 

every year. This is despite the advances that have been made with respect to diagnosis of cancer 

and its treatment with surgery, chemotherapy and radiation therapy. In addition, each of these 

medical interventions comes with their own side effects which can significantly reduce the 

quality of life of treated persons. To address the bipartite problem of cancer mortality and the 

inefficacy and toxicity of contemporary treatments, new treatments are needed that are 

conversely effective and non-toxic.  

 

The necessity for new safe and effective treatments has born a number of promising therapies 

such as immunotherapy and the use of oncolytic viruses. Within the broad range of viral taxa 

that are employed for oncolytic virotherapy are a family of small, positive-sense RNA viruses, 

called picornaviruses. A number of naturally occurring and engineered picornaviruses have 

been investigated for their potential use as cancer therapeutics, but the subject of this particular 

project is Seneca Valley virus (SVV), a naturally occurring virus endemic in pigs. SVV has a 

selective tropism for cells expressing Anthrax Toxin Receptor 1 (ANTXR1), otherwise known 

as Tumour Endothelial Marker 8 (TEM8), which is upregulated in many cancers.  

 

ANTXR1 is necessary, but not sufficient, for the successful infection, intracellular replication 

and subsequent lysis of host cells by SVV. This means that there are cancers to which SVV 

can attach and infect, but not destroy. To increase the range of cancers that are potentially 

treatable by SVV, it has been proposed that the empty capsids of SVV, which can still bind 
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ANTXR1, be utilised as drug delivery vectors to deliver cytotoxic drugs / prodrugs. Among 

the primary issues with this idea is the intrinsic instability of the SVV empty capsids. To 

facilitate SVV’s use as a drug delivery vector then, there needs to be a way to stabilise these 

empty capsids.  

 

The aim of this project is to identify the residues and mutations thereof that confer increased 

stability to the capsid of SVV-001, and the mechanisms by which this occurs. 

 

We hypothesise that the inherently error-prone process of SVV viral replication, which brings 

about the quasispecies phenomenon, will inevitably produce SVV virions with increased 

stability. We plan to use exposure to heat to select for these hypothetical thermostable virions 

out of the heterogeneous population, and on purification and sequencing, determine how they 

compare to the wild-type. We will then explore this difference. 
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2 Methods and Materials 
 

2.1 Cells and virus 

2.1.1 Cell culture reagents and materials 

R10 media: Roswell Park Memorial Institute 1640 medium (GibcoTM, Fischer scientific 

catalogue number: 11-875-127) plus 20mM HEPES and 3.7 g L-1 NaHCO3. 

FBS: Foetal Bovine Serum. Moregate FCS, Lot#29827102 

2.1.2 Sub-culturing reagents 

TrypLE (ThermoFisher Scientific catalogue number: 12563-029) 

PBS: Phosphate Buffered Saline 

15 mL falcon tubes (Greiner Bio-One CELLSTAR catalogue number: 188271) 

T25 25 cm2 cell culture vessel (Greiner Bio-One CELLSTAR reference number: 690160) 

T75 75 cm2 cell culture vessel (Greiner Bio-One CELLSTAR reference number: 658170) 

10 mL tissue culture pipette (Greiner Bio-One CELLSTAR reference number: 607180) 

 25 mL tissue culture pipette (Greiner Bio-One CELLSTAR reference number: 760180) 

2.1.3 Sub-culturing protocol 

When cells had grown to confluence, commonly every 3-4 days, the media was decanted from 

the T75 culture vessel. The cells were then washed with PBS twice. 0.5 mL of TrypLE was 

then added to the cells and they allowed to incubate for a few minutes at 37 °C + 5% CO2. 2 

mL of cell line appropriate growth media was added and pipetted up and down to ensure 

detachment of cells from the T75 tissue culture vessel. The cells and media were then 

transferred to a sterile 15 mL falcon tube using a 10 mL pipette. The 15 mL falcon tube was 

centrifuged for 5 minutes at 1,200 rpm. Without disturbing the cellular pellet, the media was 

decanted. The pellet was then brought up to a single cell suspension in 9 mL by pipetting up in 

down with a 10 mL tissue culture pipette. A confluent tissue culture vessel would be split 1:3 

by 6mL of the cell suspension for being used for other experiments / or discarded. The 
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remaining 3 mL was then re-seeded in a T75 with 10mL fresh media and the cell line, media, 

date and passage number were recorded on the vessel.  

2.1.4 Cell counting 

A clean cover slip was placed on a haemocytometer. From a 15 mL falcon tube containing a 

single cell suspension of cells and media, a small volume (10 μL for one reading, 20 μL for 

two readings on the same haemocytometer) was taken from the falcon tube and loaded onto 

the haemocytometer. The haemocytometer was then examined under a light microscope, the 

cells in the grid counted and the cell numbers enumerated with the following formula. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 = 𝐶𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑥
1

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 𝑥 10,000 𝑥 𝑉𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑓𝑎𝑙𝑐𝑜𝑛 𝑡𝑢𝑏𝑒 

2.1.5 Viral strains 

Initial stocks of SVV-001 kindly provided by collaborators Linde A. Miles and John T. Poirier 

from the Molecular Pharmacology Program and Department of Medicine, Memorial Sloan 

Kettering Cancer Center, New York, New York, USA. SVV-001 was further amplified and 

isolated in the Bostina Lab. 

 

2.2 Plaque formation assay 

2.2.1 Plaque assay: reagents and materials 

R10 media (GibcoTM, Fischer scientific catalogue number: 11-875-127) 

FBS: Foetal Bovine Serum. Moregate FCS, Lot#29827102 

Tissue culture agarose (Lonza catalogue number: 50100) 

12-well plates (Greiner Bio-One CELLSTAR reference number: 665180) 

2.2.2 Plaque formation assay: protocol 

Individual wells of 12 well plates were seeded with H446 cells in 1 mL R10 + 10% FBS and 

allowed to attach overnight. The next day the medium was removed, replaced with 100 µL, 10-

fold serial viral dilutions in R10 media + 2% FBS or media only controls. They were allowed 

to incubate for an hour with regular stirring. The media was then removed from the wells and 
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replaced with 1 mL 2X R10 + 2% FBS + 1% agarose. This was allowed to set overnight while 

incubating at 37 °C + 5% CO2. After 24 hours, plaques were counted and viral titres were 

derived from the following equation.  

𝑉𝑖𝑟𝑎𝑙 𝑡𝑖𝑡𝑟𝑒 = 𝑃𝑙𝑎𝑞𝑢𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑥
1

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 𝑥 

1 𝑚𝐿

𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑙𝑎𝑡𝑒𝑑 (𝑚𝐿)
  

 

2.3 Thermal stability probe 

2.3.1 Thermal stability probe reagents 

R10 media (GibcoTM, Fischer scientific catalogue number: 11-875-127) 

Bio-Rad T100TM Thermal Cycler (Bio-Rad, Hercules, California, USA) 

0.2 mL PCR tubes (Lab supply catalogue number: AXY321-01-102) 

2.3.2 Thermal stability probe protocol 

Initial method 

50 µL of 1:50 dilutions of a 5x1010 PFU/mL SVV-001 stock in 0.2 mL PCR tubes were 

sonicated and heated to desired temperatures in thermocycler for 30 minutes and cooled back 

down to 12 °C. The viral titres of the heated samples, as well as unheated controls were 

enumerated using plaque formation assays (See: 2.2 Plaque formation assay). 

Revised method 

From a 1:1000 dilution of a 5x1010 PFU/mL SVV-001 stock, paired 50 µL samples were taken, 

one would be heated to the desired temperature in a thermocycler for 30 minutes, and the other 

kept at room temperature for the same time. Both were then enumerated with plaque formation 

assays (See: 2.2 Plaque formation assay).  

 

2.4 Selection for thermostable viral mutants  

2.4.1 Selection for thermostable viral mutants: reagents and materials 

0.2 mL PCR tubes (Lab supply catalogue number: AXY321-01-102) 



 48 

Bio-Rad T100TM Thermal Cycler (Bio-Rad, Hercules, California, USA) 

50,000 MWCO centrifugal filters (Amicon reference number: UFC805024) 

T25 25 cm2 cell culture vessel (Greiner Bio-One CELLSTAR reference number: 690160) 

2.4.2 Selection for thermostable viral mutants: protocol 

Viral samples in 0.2 mL PCR tubes were heated to desired temperatures in thermocycler for 

30 minutes and cooled back down to 12 °C. The viral titres of the heated samples, as well as 

unheated controls were enumerated using plaque formation assays (See: 2.2 Plaque formation 

assay). Virus from the heated sample was infected at an MOI of 0.1 through a confluent T25 

containing approximately 1.72x106 H446 cells. The virus was allowed to infect the cells over 

48 hours. The flasks were then collected and freeze-thawed three times at -80 °C to lyse the 

cells. The cell debris was separated from the supernatant by centrifugation for 5 minutes at 

3,000 rpm. The supernatant was then passed through a 50,000 molecular weight cut-off filter. 

The bulk liquid that passed through the filter was discarded and the liquid that didn’t pass 

through was resuspended in 100 µL R10 media + 2% FBS. This was further divided into two 

0.2 mL PCR tubes, one which would then serve as the unheated control and one which would 

then be heated and titred as before.  

 

2.5 Viral purification 

2.5.1 Optiprep® viral purification: reagents and materials  

R10 media (GibcoTM, Fischer scientific catalogue number: 11-875-127) 

FBS: Foetal Bovine Serum. Moregate FCS, Lot#29827102 

T175 175 cm2 culture vessels (Greiner Bio-One CELLSTAR reference number: 660160) 

60% Optiprep stock solution (Axis Shield product number: 1114542) 

250 mL Nalgene bottles (ThermoFisher catalogue number: 2103-0008) 

Beckman Coulter Avanti J-26 XP1 high-speed centrifuge (Beckman Coulter, Indianapolis, 

USA) 
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Fiberlite F250 rotor (ThermoFisher Scientific Waltham, Massachusetts, USA) 

Beckman Coulter Optima XPN-80 ultracentrifuge (Beckman Coulter, Indianapolis, USA) 

Beckman Coulter SW32.1 Ti rotor (Beckman Coulter, Indianapolis, USA) 

Beckman 16.8 mL polypropylene tubes (Beckman Coulter reference number: 337986) 

Beckman 36 mL polypropylene tubes (Beckman Coulter reference number: 326823) 

2.5.2 Optiprep® viral purification: protocol 

H446 cells were grown to confluence in six T175 culture vessels containing 35mL R10 + 10% 

FBS. The growth media in each culture vessel was replaced with 25 mL infection media 

containing 20 mL R10 + 2% FBS and 5mL R10 + 2% + 1 µL SVV 1:40 µL viral dilution in 

R10. The cells and virus were incubated at 37 °C + 5% CO2 for 48 hours, or until complete 

cytopathic effect was observed. The cells were then freeze-thawed from -80 °C to room 

temperature repeatedly to lyse the cells. The media containing virus and cells from all of the 

culture vessels were combined in 250 mL Nalgene bottle(s) and balanced with Nalgene 

bottle(s) containing water. The Nalgene bottles were centrifuged at 10,000 g for 1 hour at room 

temperature using a Fiberlite F250 rotor in a Beckman Coulter Avanti J-26 XP1 high-speed 

centrifuge. The virus containing supernatant was collected and the cell debris pellet was stored 

at 4 °C. The virus containing supernatant was added to 36 mL tubes, balanced and placed in 

Beckman Coulter SW 32 buckets. They were then spun down for 2 hours at 28,500 rpm using 

a Beckman Coulter SW32.1 Ti rotor in a Beckman Coulter Optima XPN-80 ultracentrifuge. 

The supernatant was decanted and stored at 4 °C. The viral pellet was covered with 200 µL 

sterile PBS and stored overnight. The following day the viral pellet was vigorously resuspended 

and loaded into a 17 mL tube containing 25% optiprep solution, underlaid with 2mL 50% 

optiprep. The tubes were loaded into SW 32.1 buckets and centrifuged for 1 hour at 28,500 

rpm using a Beckman Coulter Optima XPN-80 ultracentrifuge. The viral band on the interface 

of the 25% and 50% optiprep solutions was then disturbed by pipetting up and down, and the 



 50 

tubes spun down for 18 hours at 28,500 rpm using a Beckman Coulter Optima XPN-80 

ultracentrifuge. Virus from observed bands was then collected and visualised under 

transmission electron microscopy (see: 2.12: Transmission electron microscopy). 

 

2.5.3 Caesium chloride viral purification: reagents and materials 

R10 media (GibcoTM, Fischer scientific catalogue number: 11-875-127) 

FBS: Foetal Bovine Serum. Moregate FCS, Lot#29827102 

T175 175 cm2 culture vessels (Greiner Bio-One CELLSTAR reference number: 660160) 

Caesium Chloride (Serva product number: 15554) 

250 mL Nalgene bottles (ThermoFisher catalogue number: 2103-0008) 

Beckman Coulter Avanti J-26 XP1 high-speed centrifuge (Beckman Coulter, Indianapolis, 

USA) 

Fiberlite F250 rotor (ThermoFisher Scientific Waltham, Massachusetts, USA) 

Beckman Coulter Optima XPN-80 ultracentrifuge (Beckman Coulter, Indianapolis, USA) 

Beckman Coulter SW32.1 Ti rotor (Beckman Coulter, Indianapolis, USA) 

Beckman 16.8 mL polypropylene tubes (Beckman Coulter reference number: 337986) 

Beckman 36 mL polypropylene tubes (Beckman Coulter reference number: 326823) 

2.5.4 Caesium chloride viral purification: protocol 

H446 cells were grown to confluence in ten T175 culture vessels containing 35mL R10 + 10% 

FBS. The growth media in each culture vessel was replaced with 25 mL infection media 

containing 20 mL R10 + 2% FBS and 5mL R10 + 2% + 1 MOI SVV in R10. The cells and 

virus were incubated at 37 °C + 5% CO2 for 48 hours, or until complete cytopathic effect was 

observed. The cells were then freeze-thawed from -80 °C to room temperature repeatedly to 

lyse the cells. The media containing virus and cells from all of the culture vessels were 

combined in 250 mL Nalgene bottle(s) and balanced with Nalgene bottle(s) containing water. 

The Nalgene bottles were centrifuged at 10,000 g for 20 minutes at room temperature using a 
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Beckman Coulter Avanti J-26 XP1 high-speed centrifuge. The cell-free supernatant was then 

removed and the cell pellet stored at 4 °C. The cell-free supernatant was then divided between 

six 36 mL Beckman polypropylene tubes and centrifuged at 120,000 g for one hour and 10 

minutes at 4 °C. This was done using SW32 buckets in a SW32.1 rotor. The supernatant was 

then collected and the viral pellets were allowed to resuspend overnight at 4 °C. The following 

day, the pellets were collected. CsCl gradients were formed by the addition of one part CsCl to 

two parts CsCl buffer. The density of the CsCl solution was measured by weighing a known 

volume and then checked for appropriateness against provided CsCl density vs. centrifugation 

speed graphs to prevent “bulleting”. Beckman 16.8 mL polypropylene tubes were first loaded 

with 6 mL CsCl solution and then 4 mL of CsCl buffer. In one of the tubes, resuspended viral 

pellets in CsCl were added and the remainder of the tube was filled with CsCl buffer. This was 

balanced against another tube filled with just CsCl. The two tubes were then centrifuged at 

22,000 rpm for 18 hours at room temperature. The CsCl around observed bands were collected 

and fractions were viewed under electron microscopy.  

 

2.6 Viral RNA isolation 

2.6.1 Viral RNA isolation: reagents and materials (Nucleospin) 

Nucleospin® RNA virus kit (Macherey-Nagel reference number: 740956.250) 

2.6.2 Viral RNA isolation: protocol (Nucleospin) 

The viral RNA isolation protocol was performed according to the Nucleospin® RNA virus 

protocol as follows. 150 µL of purified virus sample was combined with 600 µL RAV1 and 

heated to 70 °C for 5 minutes. This was then combined with 600 µL ethanol, loaded into the 

Nucleospin® column and spun down at 8,000 g for 1 minute. 500 µL RAW was added to the 

column and this too was spun down at 8,000 g for 1 minute, the flow-through was then 

discarded. 600 µL RAV3 was added to the Nucleospin® column and the flow-through was 

discarded, this was repeated with 200 µL RAV. The column was then loaded into a new sterile 
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1.5 mL microcentrifuge tube. RNAse-free H2O was heated to 70 °C and 50 µL was added to 

the column. This was then centrifuged at 11,000 rpm for 1 minute and the flow-through was 

collected.  

 

2.6.3 Viral RNA isolation: reagents and materials (QIAmp) 

QIAmp® Viral RNA Mini Kit (QIAGEN catalogue number: 52904) 

2.6.4 Viral RNA isolation: protocol (QIAmp) 

SVV RNA isolation was performed according to the QIAmp® kit directions as follows: 

560 µL buffer AVL with carrier RNA was combined with 140 µL sample in a 1.5 mL 

microcentrifuge tube. The microcentrifuge tube was then pulse-vortexed for 15 seconds and 

allowed to sit for 10 minutes at ambient temperature. This was then followed by centrifugation, 

addition of 560 µL ethanol, vortexing and another round of centrifugation. Two halves of the 

current solution (should be 630 µL) were added to two QIAmp mini columns inside two 2mL 

collection tubes. 560 µL of buffer AW1 was added to each of the tubes and they were 

centrifuged at 8,000 rpm for minute. The flow-through in the 2 mL collection tube was 

discarded and the same collection tube was replaced. 500 µL buffer AW2 was then added and 

centrifuged at full speed for 3 minutes. This step was then repeated as per kit recommendation. 

The 2 mL column was then replaced by a clean 1.5 mL microcentrifuge tubes and following 

the addition of 60 µL buffer AVE, were centrifuged for a final time for one minute at 8,000 

rpm. 

 

2.7 cDNA generation 

2.7.1 cDNA generation: reagents and materials 

High capacity cDNA reverse transcription kit (Applied Biosystems reference number: 

4368814) 

Bio-Rad T100TM Thermal Cycler (Bio-Rad, Hercules, California, USA) 
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0.2 mL PCR tubes (Lab supply catalogue number: AXY321-01-102) 

Primers: 

Pair 1 Forward TTTGAAATGGGGGGCTG 

Pair 1 Reverse GATAGACGGGATCTGAAAGGGTG 

Pair 2 Forward CTACCTCGGTAGACATAAAC 

Pair 2 Reverse GCTATTTGGTTCCAGTCTTTG 

2.7.2 cDNA generation: protocol 

Reaction mixtures were generated according to the following proportions 

• 2 µL RT buffer 

• 0.8 µL dNTP’s  

• 1.5 µL random primers 

• 0.5 µL specific primers 

• 1 µL reverse transcriptase 

• 4.2 µL H2O 

= 20 µL reaction mix 

Reaction mixtures were then heated according to the regime stipulated in Table 1. 

Table 1. Thermocycler regimen for cDNA generation 

Temperature 25 °C 37 °C 85 °C 4 °C 

Time 10 minutes 120 minutes 5 minutes  

 

 

2.8 PCR amplification 

2.8.1 PCR amplification: reagents and materials 

Bio-Rad T100TM Thermal Cycler (Bio-Rad, Hercules, California, USA) 

0.2 mL PCR tubes (Lab supply catalogue number: AXY321-01-102) 

Phision Hot Start II DNA Polymerase (ThermoFisher scientific catalogue number: F549L) 

5X Phusion HF buffer (Included with Phusion Hot Start II DNA polymerase) 

DMSO (Included with Phusion Hot Start II DNA polymerase) 

50 mM MgCl2 (Included with Phusion Hot Start II DNA polymerase) 
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Primers: 

Pair 1 Forward GGCAACATCCAACCTGCTTTTG 

Pair 1 Reverse TTTGTGAGGAGACCCGCTAATCC 

Pair 2 Forward TTCAGTAGACTTCTCGACCTCCTC 

Pair 2 Reverse AGGAGTTCTGTGTCTCTGAGGATTG 

Pair 3 Forward GTCCCAATTTCATCAACCCCTATCAAG 

Pair 3 Reverse TTGTGCAGGCTAAACCAACCATCAG 

Pair 4 Forward CTACATCTCGCCCAGTGACTACC 

Pair 4 Reverse TGTTTTACAGCGGTGCTTTTCTTCTC 

Pair 5 Forward CATGCTGATTGGGGGACTATTTACG 

Pair 5 Reverse GCAGCTATTTGGTTCCAGTCTTTGAC 

2.8.2 PCR amplification: protocol 

Reaction mixtures were generated according to the following proportions 

• 12.4 µL H2O 

• 4 µL buffer 

• 0.4 µL dTNP’s (10mM) 

• 0.2 µL Phusion Hot Start II DNA polymerase 

• 1 µL forward primer 

• 1 µL reverse primer 

• 1 µL template cDNA 

= 20 µL reaction mix 

Table 2. Thermocycler regimen for PCR amplification of wild-type and putative SVV-001 

mutant genomes  

  40x Cycles  

Temperature 98 °C 98 °C 55 °C 72 °C 12 °C 

Time 30 seconds 7 seconds 30 seconds 45 seconds  
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2.8.3 Gel electrophoresis 

PCR reaction mixes were combined with 1 µL 5X loading dye and subjected to 

electrophoresis through 2% agarose gels at 60 V until the dye fronts had migrated the length 

of the gel, taking somewhere between 75-90 minutes. Gels were visualised with a Cambridge 

Uvitec gel doc. 

2.8.4 Gel extraction 

Gel extraction of the PCR fragments of interest were performed using a QIAGEN MinElute® 

Gel extraction kit (QIAGEN catalogue number: 28604) according to the supplied protocol. 

This was as follows: DNA fragment was excised with a clean, sharp scalpel and placed in a 1.5 

mL microcentrifuge tube. The gel fragment was then weighed and three parts buffer QG was 

added to one part gel slice. The contents of the microcentrifuge tube were then heated to 50 °C 

with regular stirring until the gel fragment was completely dissolved. One gel volume’s worth 

of isopropanol was then added and mixed by inversion. The liquid was then added to a 

MinElute column inside a 2 mL collection tube and centrifuged for 1 minute at 13,000 rpm. 

500 µL of buffer QG was added and the column was centrifuged for a further 1 minute at 

13,000 rpm. This was followed by the addition of 750 µL of buffer PE and centrifugation at 

13,000 rpm for 1 minute. The column was then allowed to stand for 2-5 minutes before being 

centrifuged again at 13,000 rpm. The MinElute column was then placed in a sterile 1.5 mL 

microcentrifuge tube, and 10 µL buffer EB was added to the column before a final 

centrifugation at 13,000 rpm for 1 minute. The column was then removed and the eluted DNA 

stored at -4 °C.  

 

2.9 Sequencing  

2.9.1 Sequencing: reagents and materials 

MilliQ water 

0.2 mL PCR tubes (Lab supply catalogue number: AXY321-01-102) 
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2.9.2 Sequencing: protocol 

Gel extracted PCR products were measured for protein concentration using a Nanodrop. 5 µL 

reaction mixtures were made according to the following proportions. 

• 1 ng per 100 bp PCR product per 5 µL  

• 3.2 pmol primer per 5 µL  

These samples were submitted to Genetic Analysis Services and the results were analysed 

using DNASTAR Seqman Pro software.  

 

2.10 In silico analysis of putative thermostability mutations 

2.10.1 Visualisation of viral capsid structures with UCSF Chimera 

Viral structures were accessed using protein database accession numbers. Using in-built tools, 

the changes in internal binding were shown between the wild-type and mutant (Petterson et. 

al., 2004). Contacts between residues were defined by having a Van Der Waal overlap of -0.4 

Å or greater. 

2.10.2 Prediction of protein stability change using DUET 

DUET utilises two methods to predict the change in protein stability due to mutation (Pires, 

Ascher & Blundell, 2014). The first is SDM, which utilises environment-specific substitution 

tables (ESSTs) to calculate change in thermal stability of proteins on mutation (Pandurangan 

et. al., 2017). The second is mCSM (Pires, Ascher & Blundell, 2013). The basis of mCSM 

protein stability prediction is the use of graph-based signatures representing the distance 

between atoms (Pires, Ascher & Blundell, 2013). 

 

2.11 Transmission electron microscopy 

2.11.1 Transmission electron microscopy: reagents and materials 

1% Uranyl Acetate (pH 4) 

Phosphotungstic acid 
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2.11.2 Transmission Electron Microscopy: protocol 

2.11.2.1 Sample preparation 

Copper grids were glow-discharged. The copper grids were then treated with 5 µL sample and 

allowed to sit for 1 minute before being blotted off. The copper grids were then treated with 5 

µL of either 1% Uranyl Acetate (pH 4) or Phosphotungstic Acid for 1 minute, before blotting 

the liquid off.  

2.11.2.2 Image collection 

Philips CM100 BioTWIN transmission electron microscope with a LaB6 emitter (Philips/FEI 

Corporation, Eindhoven, Holland) running at 100 kV. Images were acquired using a 

MegaView lll digital camera (Olympus Soft Imaging Solutions GmbH, Münster, Germany). 

 

2.12 SDS-PAGE gel analysis  

2.12.1 SDS-PAGE gel analysis: reagents and materials 

MilliQ water 

100% Methanol 

500 mM DTT (Dithiothreitol) 

NuPAGETM LDS Sample Buffer (ThermoFisher Scientific catalogue number NP0007) 

Chloroform 

Bolt™ 4-12% Bis-Tris Plus Gel (Invitrogen catalogue number: NW04120BOX) 

ECLTM RainbowTM Full Range Protein Marker (GE Healthcare product number: RPN800E) 

SeeBlueTMPlus2 Pre-stained Protein Standard (Thermofisher scientific catalogue number: 

LC5925) 

QubitTM protein assay kit (ThermoFisher Scientific catalogue number Q33211) 

QubitTM assay tubes (ThermoFisher Scientific catalogue number Q32856) 

Qubit 1.0 flurometer (ThermoFisher Scientific Waltham, Massachusetts, USA) 
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2.12.2 SDS-PAGE gel analysis: protocol 

2.12.2.1 Protein Precipitation 

In a 1.5 mL microcentrifuge tube, 150 µL of purified virus in solution was combined with 650 

µL methanol and mixed well. This was combined with 150 µL chloroform and vortexed. 450 

µL of milliQ water was also added and the microcentrifuge tube was vortexed again. The liquid 

was then centrifuged at 13,000 rpm for 5 minutes. This resulted in a white band between and 

upper and lower volumes. The upper volume was removed and a further 650 µL of methanol 

was added. The microcentrifuge tube was inverted 3 times and centrifuged at 13,000 rpm for 

5 minutes. The pellet was resuspended overnight in 20 µL milliQ water.  

2.12.2.2 Sample preparations 

The 20 µL of resuspended protein from the previous step was combined with 6.66µL 

NuPAGETM LDS Sample buffer and 2.66 µL 500 mM DTT. The 1.5 mL microcentrifuge 

tube containing the resuspended protein was then heated to 90 °C for 10 minutes.  

2.12.2.3 Qubit assay 

Qubit protein buffer was made by addition of 1 part QubitTM protein reagent to 200 parts 

QubitTM protein buffer. Protein standards were made by adding 10 µL of supplied protein 

solutions in 190 µL Qubit protein assay buffer. Samples were measured with 1 µL prepared 

protein sample in 199 µL Qubit protein buffer. The standards were first measured with a Qubit 

1.0 fluorometer to generate Bradman curves. The fluorescence from the samples were then 

measured against the Bradman curves to derive the concentration of protein in the samples.  

2.12.2.4 Gel electrophoresis 

Gel tanks were almost completely filled with 1X MES. The sticker on the reverse of a Bolt™ 

4-12% Bis-Tris Plus Gel was removed and the gel itself inserted into the gel tank, fixed in place 

with the cassette clamps. The comb from the Bolt™ 4-12% Bis-Tris Plus Gel was removed 

and the tank filled to the indicated level so as to fill the wells of the Bolt™ 4-12% Bis-Tris 
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Plus Gel. Viral protein samples and ECLTM RainbowTM Full Range Protein Marker were loaded 

into wells of the gel. Gels were run under a constant voltage of 70 V until dye fronts had 

migrated through the length of the gel (usually one and a half hours). The gels were removed 

from the tank and the plastic casing cracked open. The gel was placed in a plastic tray with 

coomassie blue colloidal stain and left to stain overnight. The stained gel was then destained 

and viewed under the Uvitec Cambridge gel doc. 

2.12.3 ImageJ: Fiji analysis 

Image J is an extensible open-source program for the analysis of scientific images. Image J: 

Fiji contains a number of additional plugins particularly suited to the analysis of biological 

images based on common biology techniques (Schindelin et. al., 2012). Once SDS PAGE gels 

were photographed, Image J: Fiji was used to determine the varying ratios of capsid proteins 

present in the wild-type and thermally selected populations. For more information on how this 

was done, refer to (7.2 ImageJ Fiji analysis of SDS PAGE gels). 

 

2.13 Mass spectrometry 

2.13.1 Mass spectrometry protocol 

Gel bands were extracted with a sterile scalpel and were submitted in sterile 1.5 mL 

microcentrifuge tubes to Otago’s Centre for Protein Research (CPR). MALDI tandem Time-

of-Flight (MALDI-TOF) Mass Spectrometry was used to analyse the submitted protein bands 

and the results were checked against MASCOT and SEQUEST search engines.  

 

2.14 Particle Stability Thermal Release assay (PaSTRy) 

2.14.1 PaSTRy: reagents and materials 

QubitTM protein assay kit (ThermoFisher Scientific catalogue number Q33211) 

QubitTM assay tubes (ThermoFisher Scientific catalogue number Q32856) 

Qubit 1.0 flurometer (ThermoFisher Scientific Waltham, Massachusetts, USA) 



 60 

MicroAmp® Fast Optical 96-well Reaction Plate (Applied Biosystems reference number: 

4346906) 

20X SYTO9 (ThermoFisher Scientific catalogue number: S34854) 

30X SYPRO Orange (ThermoFisher Scientific catalogue number: S6650) 

Applied Biosystems Viia7 qPCR (Applied Biosystems, Carlsbad, California, USA) 

2.14.2 PaSTRy: protocol 

Protein in virus solution was measured using a Qubit 1.0 fluorometer (see: 2.12.2.3: Qubit 

assay) to determine the volume necessary for 1 µg total viral protein. Wells of 96-well plates 

were filled with 20 µL reaction mixtures according to the proportions outlines in Table 3.  

 

 

 

 

 

Table 3: Reaction mixtures for PaSTRy  

56 °C resistant 

SVV + Nucleotide 

binding dye 

SVV-001 + 

Nucleotide binding 

dye 

56 °C resistant SVV + 

hydrophobic residue 

binding dye 

56 °C resistant SVV 

+ hydrophobic 

residue binding dye 

6 µL purified viral 

fraction 

3 µL 20X SYTO9 

11 µL PBS 

4 µL purified viral 

fraction 

3 µL 20X SYTO9 

13 µL PBS 

2 µL purified viral 

fraction 

2 µL 30X SYPRO 

Orange 

16 µL PBS 

2 µL purified viral 

fraction 

2 µL 30X SYPRO 

Orange 

16 µL PBS 

 

Reaction mixtures were heated from 25 °C to 95 °C in 0.5 °C increments with a 30 second 

resting step at each temperature. 2 minute holding steps were used at 25 °C to 95 °C, but 

fluorescence was not measured during these steps.  
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2.15 Cryo-electron microscopy 

2.15.1 Cryo-electron microscopy reagents and materials 

JEOL 2200FS Cryo-TEM (JEOL ltd., Tokyo, Japan)                        

FEI Vitrobot Mark IV (FEI, Hillsboro, Oregon, USA) 

C-flat grids CF-2/1-2C-50 (Electron microscopy sciences catalogue number: E13557) 

100,000 NMWL filters (Amicon reference number: UFC510024) 

GloQube glow discharger (Quorum technologies, Lewes, UK) 

2.15.2 Cryo-electron microscopy protocol 

Sample Preparation 

CsCl purified 56 °C resistant thermostable SVV-001 mutant was concentrated by passing 

isolated fractions through 100,000 NMWL filters and resuspension in PBS. C-flat grids were 

glow discharged for 60 seconds at a constant current of 5 mA using a GloQube glow discharger. 

3.5 µL of purified thermostable SVV mutant in PBS was added to the C-flat grids and the 

excess liquid was blotted off with a FEI Vitrobot Mark IV at 100% humidity for 3.5 seconds 

with blot force 0. Immediately following blotting, grids were plunge frozen in liquid ethane at 

-180 °C. Frozen grids were transferred into grid storage boxes and stored in liquid nitrogen 

until imaging. 

Image acquisition 

Frozen grids were imaged at 20,000x or 25,000x magnification on a JEOL 2200FS Cryo-TEM 

operating at 200 kV. Movie frames were recorded with a DE-20 direct electron detector. Grid 

areas were selected on the basis of optimal ice thickness. Montages were taken of grid areas 

with thin ice, which provides a low-magnification overview of the available grid holes for 

imaging. Grid holes within grid areas containing vitreous ice and particles were manually 

labelled for image acquisition. Figure 8 below is included to distinguish between the some of 

the terminology used in describing areas and/or sub-areas within C-flat grids. 
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Figure 8: C-flat grid structure. C-flat grids as they appear under increasing magnification, 

from the whole grid, to a representation of how a grid hole appears in a micrograph taken at 

20,000x magnification. 

 

2.15.3 Single Particle Analysis 

The data collected from cryo-electron microscopy investigation of 56 °C resistant SVV 

mutants was analysed using Relion 3.0 software. First, a total of 18 movie frames were aligned, 

a process which is performed to correct for motion of particles induced by agitation from the 

electron beam. Each movie frame had a total dose of 2.78 el/Å2/frame, culminating in a total 

dose of 50 el/Å2/image. Particles of interest were manually picked using in-built software tools. 

The picked particles were then Contrast Transfer Function (CTF) corrected. CTF correction is 

undertaken to adjust for sub-optimal imaging conditions using the Scherzer formula as below: 

𝛾(𝑘) = 𝜋 2⁄ (𝐶𝑠𝜆3𝑘4 − 2∆𝑧𝜆𝑘2) 

Where: γ(k) = Phase shift 
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k = Scattering vector 

CS = Spherical aberration coefficient of the microscope 

λ = Wavelength of the electron beam 

∆z = Defocus 

 

The Scherzer formula determines phase shift as a result of defocus and spherical aberration, 

which when corrected for provide an image that better represents the sample. After CTF 

correction, 2D classes of picked particles /were iteratively generated to filter out particles that 

were not examples of full, packaged virions. Once 2D classes were determined to be of 

sufficient quality, 3D classification was performed using a a low-pass filtered 30 Å structure 

of the SVV-001 (Electron Microscopy Data Bank accession number: 7110) and imposing I4 

symmetry. A gold-standard fourier shell cut-off of 0.143 was then used to estimate the 

resolution of the generated 3D model. 
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3 Results 

3.1 Thermal probe 

3.1.1 Susceptibility of wild-type SVV to varying incubation temperatures.  

Before attempting to select for a thermostable mutant, it was prudent to characterise the 

thermostability of wild-type SVV-001. This was to inform the temperature for the regime of 

heating and passage to select for the mutants, and provide a reference to which any generated 

mutants could be compared. Figure 3 shows SVV viral titres remained stable when heated for 

30 minutes at temperatures between 37 °C and 55 °C, with SVV viral titre declining sharply 

with incubation temperature exceeding 56 °C. At 58.5 °C, there was a 100-fold decrease in 

viral titre which would be used in forthcoming experiments to select for thermostable SVV 

mutants.  
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Figure 9: Heating at 58.5 °C reduces SVV viral titre 100-fold. From a 5x1011 PFU/mL stock 

of purified SVV, 1:50 µL dilutions were aliquoted and heated at various temperatures for 30 

minutes before being cooled to 12 °C and titred by plaque assay. 

 

3.1.2 Susceptibility of wild-type SVV to varying incubation temperatures (revised method)  

To gain a clearer idea as to the temperature required to exert a significant pressure on wild-

type SVV-001, the methodology was amended to include a comparison of the heated samples 

and analogous unheated controls, rather than comparing viral titres of the heated samples to 

the titre of the stock from which they were derived. This was done in light of conflicting results 

from the previously discussed thermal probe experiments and the initial thermal selection 

experiment (see: 3.2.1 Thermal selection of SVV-001). Figure 10 shows a statistically 

significant approximately 200-fold decrease in SVV viral titre when heated to 53.5 °C.    

 

Figure 10: Heating at 53.5 °C significantly reduces SVV viral titre. Aliquots of SVV-001 

in solution were added in equal volumes to PCR tubes and of paired samples, one was heated 

to the desired temperature for 30 minutes and the incubated other at room temperature for 30 

minutes. The viral titres of the two samples were enumerated with plaque assays and the 

difference plotted above.  
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3.2 Thermal selection  

3.2.1 Thermal selection of wild-type SVV-001 

Following the initial temperature probe, wild-type SVV-001 was passaged through H446 cells 

and heated to 58.5 °C. Contrary to the results of the first temperature probe, Figure 11 shows 

that when heated to 58.5 °C for 30 minutes, SVV-001 viral titre would drop below the limits 

of detection, inferring much greater loss in viral titre than 100-fold. This experiment was the 

basis for the need to revise the method for the thermal probe (see: 3.1.2 Thermal probe). This 

experiment did show that SVV-001 titre could be maintained at similar levels when passaged 

without heating at 0.1 MOI.  

 

Figure 11: Heating at 58.5 °C for 30 minutes produced a single SVV viral plaque. SVV-

001 was inoculated into a confluent T25 culture vessel of H446 cells (approximately 1.72 x 

106 cells) at MOI 0.1. After separation from cells by freeze-thawing and centrifugation, virus 

in solution were heated to 58.5 °C and titred with plaque assays. Passage without heating is 

shown in black, while red lines denote heating.  

 

One viral plaque was observed in a plaque assay of the undiluted heated viral sample. As this 

plaque was thought to represent a uniquely thermostable viral population, the plaque was 
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extracted from the well using a 20 µL – 200 µL pipette tip and grown in a confluent T25 of 

H446 cells. The virus from this plaque will be referred to as the plaque purified viral population 

in forthcoming experiments.  

 

3.2.2 Thermal selection for a 58.5 °C resistant mutant from plaque-purified viral population 

As the plaque-purified viral population was initially derived from a plaque that remained after 

exposure of wild-type SVV-001 to incubation at 58.5 °C, we investigated whether this 

population remained resistant to heating at this temperature. Figure 12 shows that initially, this 

was not the case, though this plaque purified viral population was more resistant to heating at 

58.5 °C than the wild-type, there still remained a significant difference between the pre- and 

post-heated viral titres. This trend continued for 10 cycles of heating and passage, with no 

apparent adaption of the plaque purified viral population to heating at 58.5 °C. At this time, 

attempts to select for increased thermal stability were ceased.  

 

Figure 12: Plaque purified virus showed no adaptation to heating at 58.5 °C. Titres of pre- 

and post-heated virus were enumerated with plaque assays and surviving virus post-heating 

was passaged through H446 cells, forming the next passage’s pre-heated virus. After the initial 
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passage, experiments were performed in triplicate and statistically analysed with paired 

student’s T-test.   

 

3.2.3 Thermal selection for a 56 °C resistant SVV-001 mutant from plaque-purified viral 

population 

Though selection with the plaque purified viral population failed to produce a viral mutant that 

was completely resistant to heating at 58.5 °C, it was reasoned that as there was a similar loss 

in viral titre when heating the wild-type to 53.5 °C, that this plaque purified viral population 

might be completely resistant to heating at temperatures lower than 58.5 °C, but higher than 

53.5 °C. Figure 13 shows that the plaque purified viral population remained stable across three 

successive passages after heating to 56 °C.  

 

Figure 13: Plaque purified virus was completely resistant to heating at 56 °C. Titres of 

pre- and post-heated virus were enumerated with plaque assays and surviving virus post heating 

was passaged through H446 cells, forming the next passage’s pre-heated virus. Experiments 

were performed in triplicate and statistically analysed with paired student’s T-test.   
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3.3 Viral purifications 

3.3.1 Viral purification by ultracentrifugation through Optiprep® gradient 

The viral populations shown in the thermal selection experiments to have a higher tolerance to 

heating were grown to high titres in H446 cells before being purified by Optiprep® or caesium 

chloride gradient. Figure 14 below provides an example of a viral band, which is somewhat 

difficult to see, but lies between the interface (strong white band) and the point at which the 

curved and cylindrical portions of the Beckman tubes intersect. Figure 8 also shows electron 

micrographs taken from two separate purifications of the 56 °C resistant viral population and 

58.5 °C selected viral population.  

  

 

Figure 14: Viral purification of 56 °C resistant and 58.5 °C selected viral populations. A) 

An example of a viral band following the final step in viral purification. B) Electron micrograph 

of purified 56 °C resistant virus. C) Electron micrograph of purified 58.5 °C virus. D) Electron 

micrograph of purified 56 °C resistant virus. Scale bars 500 nm.  

Viral band 
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3.4 PCR amplification 

3.4.1 SVV-001 and putative thermostable mutants  

The RNA from wild-type SVV-001 and 56 °C resistant viral populations were extracted using 

a Nucleospin® RNA virus kit. This was used as the template for the generation of two cDNA 

products which together are analogous to P1, that included part of the 5’ UTR and part of P2 

(See: 2.8 cDNA generation). This cDNA was then expanded in five separate PCR reactions as 

described in methods (See: 2.9 PCR amplification). As the third set of PCR primers targeted 

an area of overlap between the two cDNA constructs, either of the two could be used as a 

template for PCR. For this reason, both cDNA constructs were used as templates, generating 

similarly sized PCR products. Figure 11 shows the process of preparing the SVV capsid 

encoding region for sequencing, including gel electrophoresis of PCR reactions of wild-type 

SVV-001, 56 °C resistant and 58.5 °C selected viral populations. 
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Figure 15: Workflow of the preparation of the wild-type, 56 °C resistant and 58.5 °C 

selected viral populations for sequencing. A) cDNA from the capsid coding region of SVV-

001 and thermostable populations was generated in two halves. Using the two cDNA constructs 

as templates, the capsid coding region of SVV-001 and thermostable populations were 

expanded in five PCR reactions. B) PCR reactions expanding the first two segments of each of 

the 56 resistant and wild-type viral populations. C) PCR reactions expanding the remaining 

segments of each of the 56 resistant and wild-type viral populations. D) PCR reactions 

expanding 58.5 °C selected viral populations. 

 

3.5 Observed mutations in thermostable viral populations 

3.5.1 Synonymous and non-synonymous mutations 

The results of sequencing the putative thermostable populations identified a number of 

mutations which were present in thermostable mutants but absent in the reference and 

sequenced SVV-001. These include synonymous and non-synonymous mutations. Figure 16 

below lists the mutations within the sequenced DNA, these were present in both the 56 °C 

resistant and 58.5 °C selected viral populations, and their relative conservation across 96 

aligned Senecavirus isolate genomes.  
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Figure 16: Mutations observed in the thermostable SVV mutants. Four mutations were 

identified in the sequenced portion of the mutant genomes, A1776G, C2526T, A3434G and 

G3777A. These were organised by effect on translated polyprotein and degree to which they 

are present in 96 sequenced Senecavirus isolates available in Genbank. 

 

Among the four mutations in the sequenced region of the 56°C resistant and 58.5 °C selected 

viral populations there were two synonymous mutations, which were well conserved in 96 of 

the Senecavirus isolate full genomes accessible through Genbank. Conversely, the two non-

synonymous mutations were not seen in any of the other 96 Senecavirus isolates. 

 

3.5.2 Structural protein mutations 

To gain insight into how the VP2 I206V mutation may affect thermostability, the SVV-001 

protomer was modelled using UCSF Chimera. Using in-built tools, interactions between 

residues were shown based on defined parameters. For exact settings refer to 2.11.1. Figure 17 
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below provides a representation of the position of VP2 I206V mutation within the SVV-001 

protomer, as well as potential interactions with nearby residues. 

 

D 
 

mCSM Predicted Stability 

change (ΔΔG): 

-1.9 Kcal/mol 

(Destabilising) 

 

SDM Predicted Stability 

change (ΔΔG): 

-2.38 Kcal/mol 

(Destabilising) 

DUET Predicted Stability 

change (ΔΔG): 

-2.323 Kcal/mol 

(Destabilising) 

Figure 17: VP2 I206V is predicted to decrease intraprotomeric binding. A) The SVV-001 

capsid protomer with area of interest highlighted was visualised using UCSF Chimera 

(accession number 3CJI). B) The highlighted area of A) showing the interactions (highlighted 

with yellow lines) between VP2 H204 and residues including VP2 I206 in the wild-type capsid 

as predicted by UCSF Chimera. C) The same highlighted area as in B) with the same 

parameters for internal binding applied but with the VP2 I206V residue shown in dark red. D) 

The results of mCSM, SDM, and DUET predictions of the change of stability as a result of the 

introduction of the I206V mutation. 

 

3.5.3 Genomic RNA secondary structural mutations 

To predict the effect of synonymous and non-synonymous mutations on the secondary structure 

of the SVV viral genome, the wild type and mutant sequences were entered into the RNAfold 

WebServer and the predicted structures shown below in Figure 18. The A1776G, C2526U and 

G3777A mutations are predicted to change the secondary structure of the RNA genome to a 

B 

C 

A 
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noticeable degree. The A3434G mutation is not predicted to alter the secondary structure of 

the RNA genome.  

 

 

 

Figure 18: Predicted secondary structures of wild type and mutant genomic RNA. A) The 

thermostable mutant genome structure as predicted by RNAfold WebServer. B) The SVV-001 

genome structure as predicted by the RNAfold WebServer. In A) and B), areas of interest of 

the wild-type and mutant are cropped and shown separate from the full genome. 
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3.6 SDS-PAGE analysis 

3.6.1 SDS PAGE analysis of wild type and mutant SVV structural proteins 

As the VP2 I206V mutation is predicted to ablate interaction with H204, the residue essential 

for the cleavage of VP0 to VP2 and VP4, it was hypothesised that this would manifest in a 

difference in the proportion of precursor and cleaved structural proteins present in the wild-

type vs. mutant virus. To investigate whether this was the case, protein from wild-type and 

mutant virus was extracted and run on SDS-PAGE gels, with results as shown in Figure 19 

below. 
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Figure 19: Protein bands observed in SVV-001 lane appear different to those in the 56 °C 

resistant and 58.5 °C selected viral mutants’ lanes. A) As well as appearing better defined 

than the wild-type bands, the mutant lanes also had two strong bands at around 62 kDa and 130 

kDa. B) A later SDS-PAGE gel using wild-type SVV-001 purified by Optiprep® gradient also 

showed bands at around 62 kDa and 130 kDa, note that the 56 resistant and 58.5 selected mutant 

lanes were not considered in further analysis. C) A repeated gel where the wild-type lane was 

not used in further analysis 

 

3.6.2 In silico analysis of SDS-PAGE gels  

ImageJ: Fiji (Schindlen et. al., 2012) was used to quantify the relative intensities of the bands 

corresponding to structural proteins in the SDS-PAGE gels (see: Figure 19). The relative 

intensities of VP2 and VP4 with respect to the precursor VP0 for the wild-type, 56 °C resistant 

and 58.5 selected mutants were measured, with results as shown below in Figure 20. 

 
Figure 20: Wild-type SVV-001 has a greater ratio of VP2 and VP4 with respect to VP0 

than the thermostable mutants. Ratios of ImageJ Fiji analysed structural protein bands from 

SDS-PAGE gels were compared between wild-type and thermostable mutants. 
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3.7 Mass Spectrometry 

3.7.1 MASCOT database search results of analysed protein bands 

The results of the SDS-PAGE gel raised a number of questions, for instance, the nature of the 

two strong bands that were not present in the wild-type, but that were present in the mutant 

lanes. To determine what exactly these are, they were excised from the gel and submitted to 

Otago’s Centre for Protein Research (CPR). Figure 21 indicates those bands that were 

submitted to CPR, as well as the results of database searches following Matrix-Assisted Laser 

Desorption Ionisation-Time of Flight (MALDI-TOF) mass spectrometry. 

  

Figure 21: Four bands of interest from an SDS-PAGE gel were investigated with mass 

spectrometry. Bands submitted for MALDI-TOF mass spectrometry are denoted “B” (for 

“band”) 1 through 4 and results with respect to database searches are displayed.  

 

Mass spectrometry revealed that the 62 kDa and 130 kDa bands in the initial SDS-PAGE 

experiment were most likely bovine serum proteins. Taken in light of later SDS-PAGE gels, 

these were most likely the result of Optiprep® gradient co-purification. As an internal control, 

the band “B2” was determined, as predicted, to be VP2 of SVV. 

Sample: B1 

Database: SwissProt tryptic search 

Protein hits: ALBU BOVIN Serum 

albumin OS=Bos Taurus OX=9913 

GN=ALB PE=1 SV=4 

 

Sample: B2 

Database: SwissProt tryptic search 

Protein hits: 3CJI C Chain C, 

Structure of Seneca Valley Virus-001 

 

Sample: B3 

Database: SwissProt tryptic search 

Protein hits: ALBU BOVIN Serum 

albumin OS=Bos Taurus OX=9913 

GN=ALB PE=1 SV=4 

 

Sample: B4 

Database: SwissProt tryptic search 

Protein hits: A2MG BOVIN Alpha-2-

macroglobulin OS=Bos Taurus 

OX=9913 GN=A2M PE=1 SV=2 
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3.8 Particle Stability Thermal Release assay (PaSTRy) 

To directly contrast the thermal stability SVV-001 and 56 °C resistant viral populations, 

Particle Stability Thermal Release assays (PaSTRy) were performed with CsCl purified viral 

fractions. Figure 22 below demonstrates capsid destruction as a result of incubation at high 

temperature, using concentration of free RNA and exposure of protein hydrophobic residues 

as metrics.  
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Figure 22: PaSTRy comparing wild-type SVV-001 with thermostable mutant. Release of 

viral RNA and exposure of hydrophobic residues from capsids in response to heating was 

monitored by SYTO9 and SYPRO Orange dyes respectively, with wild-type shown in dark 

blue, and 56 °C resistant viral population shown in red. In the RNA experiments, thermostable 

virus was assayed three times with triplicate values, and wild-type virus was assayed three 

times as internal controls. The protein experiments were performed with duplicate values. A) 

Normalised curve derived from melt curve actual values B) Derivative plot of melt curves 

A 

B 
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Results from the RNA-based PaSTRy assays showed an approximate positive 2 °C shift in the 

point of maximal fluorescence between the wild-type (59 °C) and thermostable mutants (61 

°C), confirming the thermostable phenotype of the 56 °C resistant viral population. In the 

hydrophobic residue-based PaSTRy assays, there was a similar difference between the first 

peaks of the wild-type (61 °C) and thermostable virus (63.5 °C), while the secondary peaks 

were near-identical at approximately 84.5 °C. The first peaks correspond to the dissociation of 

virus from full capsids to pentamers, and the secondary peaks correspond to the denaturation 

of pentamers.  

 

3.9 Cryo-electron microscopy 

The 56 °C resistant mutant virus was prepared for cryo-electron microscopy, and a low-

resolution structure was derived using the equipment readily available to Otago Micro and 

Nano Imaging (OMNI), including a JEOL 2200FS and RELION 3.0 software (Scheres, S. H., 

2018). Note that this work was only made possible with assistance from Nadishka 

Jayawardena, who provided supervision and technical support with the JEOL 2200FS 

microscope, as well as invaluable assistance with single particle analysis. 

 

3.9.1 Image collection 

C-flat grids were visualised at 200 kV using a JEOL 2200FS cryo-electron microscope. First, 

grid areas to be examined were chosen based on ice quality. Montages were taken of chosen 

grid areas using in-built software tool Serial EM. From these montages, grid holes were 

labelled and images were acquired of the grid holes and particles therein.  Figure 23 provides 

insight into this process. 
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Figure 23: Cryo-electron microscopy micrograph acquisition. A) A completed montage of 

a grid area with red crosses indicating those grid holes to be imaged B) Image of a grid hole 

with both full and empty capsids visible. 

 

3.9.2 Single particle analysis 

Single particle analysis describes a process by which three-dimensional structures are derived 

from the data collected during cryo-electron microscopy. First image stacks are aligned to 

correct for motion during the exposure of the sample to the electron beam. Particles of interest 

in aligned images were manually picked. Particles that were picked were CTF corrected (see: 

2.16.3 Single particle analysis) and 2D classes were generated to filter out broken and/or junk 

particles and ensure only intact, full viral capsids were to be analysed. Once the 2D classes 

were determined to be of sufficient quality, an initial 3D class was generated using SVV cryo-

EM map as a reference and by imposing icosahedral symmetry (I4). Figure 24 below 

demonstrates results from important steps within the process of single particle analysis.  

A B 

Empty 

Full 
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Figure 24: Single particle analysis of the 56 °C resistant mutant. A) Examples of particles 

picked from micrographs collected using the JEOL 2200FS electron microscope. B) CTF 

correction of motion corrected micrographs with simulated power spectrum (grey) and 

experimental power spectrum (black). C) 2D classes generated from picked particles including 

intact, broken and/or junk particles. D) 3D reconstruction produced a 10.36 Å resolution 

structure according to the gold standard fourier shell correlation cut-off of 0.143.  

 

3.9.3 Cryo-electron microscopy derived structure of the 56 °C resistant mutant 

Single particle analysis of collected micrographs culminated in a 10.36 Å structure of the 56 

°C resistant mutant, as shown in Figure 21 alongside a 5.9 Å structure of the wild-type SVV-

A B 

- 

C 

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

0.143

Spatial frequency (1/A)

F
o

u
r
ie

r
 s

h
e

ll
 c

o
r
r
e

la
to

n

10.36 Å

D 



 83 

001. This structure was derived from 404 out of 412 initially selected particles.                 

 

Figure 25: Cryo-EM determined structure of the 56°C resistant mutant. Structures of the 

56 °C resistant mutant (A) at 10.36 Å resolution and of SVV-001 at 3.8 Å resolution (B) are 

shown on the left and right respectively. The scale bar shown represents 10 nm. 

 

  



 84 

4 Discussion 

4.1 Thermostability of wild-type SVV-001 

While there are a variety of means to select for viral mutants with increased stability, for 

example exposure to extreme pH, the application of heat for this purpose was chosen for this 

work as it has a precedence in the literature (Adeyemi et. al., 2017). Successful SVV infection 

of susceptible cells requires binding to ANTXR1, more specifically the binding of the BC loop 

& loop II of VP1, the “puff” of VP2 and the “knob” of VP3, to ANTXR1 (Jayawardena et. al., 

2018). Heat denatures the bonds between the viral proteins that comprise the viral capsid, 

thereby altering the delicate steric relationship of viral proteins and allowing the RNA genome 

to leak out of the capsid and in turn preventing successful infection. With heat selected as the 

means to derive stable mutants, the thermal probe experiments were performed for two reasons. 

Firstly, this was to characterise the thermostability of the SVV-001 viral capsid to provide a 

reference to which any mutant could be compared. Secondly, this was to inform an appropriate 

temperature to be used in a regimen of heating and passage to select for thermostable mutants. 

The first method that was used to determine this was taking aliquots of an SVV-001 stock of 

known viral titre, and measuring the viral titre after exposure to heating for 30 minutes. The 

initial experiments performed showed no appreciable loss in viral titre after incubation for 30 

minutes between 40 °C and 55 °C, with a sharp decrease between 55 °C and 60 °C. After 

heating at 58.5 °C, there was an approximately 99% decrease in viral titre, and so this 

temperature was deemed appropriate for thermal selection going ahead. In light of the results 

of the thermal selection, which will be discussed later, there was a need to return to the thermal 

probe experiments. The method was therefore changed from comparing heated virus to the titre 

of a known stock, to include paired, equal aliquots of unheated and heated virus of a more 

dilute solution. This indicated that heating at 53.5 °C for 30 minutes causes a statistically 

significant approximately 99% decrease in SVV-001 viral titre. It is not immediately clear for 
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what reason the results from the two sets of experiments were so different. It could be that in 

first method the higher concentration of virus in sample would aggregate, thereby shielding 

some virus from complete exposure to heat. 

 

4.2 Selection for thermostable SVV-001 mutants 

The idea of the thermal selection experiments was to change the fundamental representation of 

SVV-001 virions with thermostable capsids from a minority to a majority, while still preserving 

qualities important for oncolytic activity, such as the ability to productively infect susceptible 

cells. The first thermal selection experiment, wherein wild-type SVV-001 was exposed to 

heating at 58.5 °C for 30 minutes, produced drastically different results than expected. Rather 

than losing approximately 99%, as the first thermal probe experiment would suggest, the SVV 

viral titre would fall over 99.99% and 99.999%, falling below the limit of detection. When the 

limit was sufficiently changed, there was a measurable 6 log decrease in viral titre down to the 

observation of a single viral plaque post-heating. Though the initial idea was not to plaque-

purify putative thermostable mutants, this single plaque was the only one to come from the 

undiluted sample of the heated viral solution, and was therefore thought to represent a 

maximally and uniquely thermostable population. The single viral plaque was isolated from 

the plaque formation assay and was grown in a confluent T25 culture vessel of H446 cells. The 

concentrated cell lysate from this culture vessel was the “passage zero” for the forthcoming 56 

°C and 58.5 °C thermal selection experiments. The difference between the expected results 

from the thermal probe and the observed results from the first thermal selection experiment 

was the basis for the revision of the method of the thermal probe. An important but minor 

finding from this experiment was that infection of susceptible cells with a known MOI of SVV-

001 reliably produced similar titres of progeny virus.  
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As the single viral plaque was originally isolated from a wild-type SVV population heated to 

58.5 °C, it was pertinent to determine whether this population was completely resistant to 

heating at this temperature. As it would turn out, it was not, and repeated passage and heating 

over 10 successive passages was not sufficient to select for a population that was completely 

resistant to heating at 58.5 °C. This finding was not entirely unexpected however, as literature 

on related viruses provides insight as to why this may be. In poliovirus, thermostable virus 

could be selected for that would be completely resistant to heating at 53 °C for 30 minutes, but 

a population that was completely resistant to heating at 57 °C for 30 minutes could not be 

selected for (Adeyemi et. al., 2017). This is consistent with findings in foot-and-mouth disease 

virus (FMDV) that capsid instability, as determined in the case of FMDV by mutually repellent 

charged residues on the interpentameric axis, is a property necessary for preserving infectivity 

(Lopez-Agruello et. al., 2019). Both of those studies suggest the pursuit of selection for 

thermostable mutants with conserved infectivity is inherently a self-limiting process.  

 

While there was no discernible trend of adaptation of the plaque purified viral population to 

heating at 58.5 °C, the amount of viral titre produced after every passage gradually decreased 

over the course of the experiment. This is despite infection at a constant MOI. It was reasoned 

that the virus that has been through 10 successive passages may have developed additional, or 

alternative, mutations conferring thermostability, as was the case in poliovirus after 10 

successive passages at 57 °C (Adeyemi et. al., 2017).  For these reasons it would be purified 

and the capsid coding region sequenced. 

 

As the plaque purified viral population was similarly resistant to heating at 58.5 °C as the wild-

type SVV-001 was to heating at 53.5 °C, it was reasonable to expect that the plaque purified 

population would be resistant to heating at a temperature less than 58.5 °C but higher than 53.5 
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°C. The plaque purified viral population was evaluated for resistance to 56 °C, the average of 

the two values, and was shown to be completely resistant to heating at this temperature across 

three successive passages. The virus from the final passage of each of the 58.5 °C and 56 °C 

thermal selection experiments were used in forthcoming purification and sequencing 

experiments.  

 

Though the thermostable phenotype of the mutant virus could be inferred from the results of 

the plaque formation assays, it is important to remember that plaque formations assays are, by 

nature, based on infectivity. SVV infectivity is based in large part on receptor binding, a 

property which would necessarily be conserved in any thermostable mutants from which VLPs 

are to be derived. For this reason, plaque assays are valuable in selecting for thermostable virus 

with conserved functionality. Conversely, plaque assays comparing the heated and unheated 

populations do not strictly measure the effect of heating on capsid integrity, rather they measure 

the effect of heating on infectivity. This is where PaSTRy becomes advantageous. PaSTRy 

utilises fluorescent dyes to monitor the levels of indicators of molecule denaturation in 

response to heat, such as exposure of protein hydrophobic residues, or levels of free RNA 

accessible to the dye. As PaSTRy does not rely on successful infection and lysis of prey cells, 

comparison between the wild-type and thermostable mutant response to heating using PaSTRy 

is a direct comparison of capsid stability. The results of the PaSTRy experiments showed an 

approximate 2 °C difference between in the fluorescence associated with capsid degradation 

of the wild-type and thermostable mutants, as measured by release of free RNA and exposure 

of hydrophobic residues. For the RNA measurements, the wild-type showed maximal 

fluorescence at approximately 59 °C and the 56 °C resistant mutant displayed maximal 

fluorescence at 61 °C. The protein results were somewhat different, with the wild-type 

plateauing after 61 °C and the 56 °C resistant mutant plateauing after heating to 63.5 °C. This 
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would suggest that RNA release precedes exposure of hydrophobic residues. This would be 

consistent with the RNA evacuating the capsid before dye can penetrate and bind the 

hydrophobic residues on the inside of the capsids. This may also speak to why rather than 

discreet peaks as seen in the RNA PaSTRy experiments, the increase in fluorescence in the 

protein PaSTRy has a much flatter curve. Whereas the RNA release conceivably occurs 

rapidly, due to the pressure difference across the capsid, hydrophobic residues may be 

continually exposed as the heat denatures viral capsids. The difference between the two viral 

populations as measured by PaSTRy would appear slight, especially when compared to plaque 

assay results, highlighting the importance of using both. 

 

Aside from the RNA fluorescence peaks at around 59 °C and 61 °C for the wild-type and 

mutant respectively, there were smaller, secondary peaks were seen at higher temperatures. 

These smaller peaks were at approximately 84 °C  for the thermostable mutant and 85 °C for 

the wild-type. Similar results were observed in another picornavirus, Equine Rhinitis A virus 

(ERAV), using another RNA-binding dye, SYBRgreen2 (Walter et. al., 2012). In the case of 

ERAV, smaller peaks were seen around 81 °C. The exact nature of these smaller peaks was not 

commented on (Walter et. al., 2012). Due to the extreme nature of the temperatures at which 

the secondary peaks are observed, it is unlikely that they represent capsid degradation of a viral 

sub-population. Most likely, the secondary peaks represent the denaturation of RNA secondary 

structures, which would free up additional nucleotide lengths for dye-binding. If the secondary 

structures of the genome have indeed changed between the wild-type and thermostable SVV, 

this may then be reflected in a difference in the temperature that produces the secondary 

fluorescence peaks. 
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4.3 Altered capsid maturation as the likely modality granting thermostability to mutant 

SVV-001 

The explicit intent of this project was to determine mutations conferring stability to the SVV 

capsid, for the production of Virus-Like Particles. This means that the mutations that are of the 

greatest interest to this project are non-synonymous mutations in the SVV structural proteins. 

Investigations into both thermally selected mutants only found one such mutation, VP2 I206V. 

It was not immediately obvious how, if at all, this mutation may confer thermostability to the 

SVV viral capsid. Commonly, mutations conferring thermostability to picornaviral capsids 

increase the internal binding of these capsids, either within protomers (Adeyemi et. al., 2017) 

or between pentamers (Lopez-Arguello et. al., 2019). This appears not to be the case with VP2 

I206V, as modelling with DUET software indicated that the mutation itself is decreases the 

overall internal binding of the SVV protomer. VP2 I206V is not positioned at either the inter-

protomeric or interpentameric interfaces, and so most likely does not act to strengthen binding 

between capsid subunits. Further in silico analysis of the VP2 I206V mutation with UCSF 

Chimera predicted that the substitution of isoleucine with the shorter valine is predicted to 

ablate interaction with VP2 H204. VP2 H204 is an amino-acid previously identified as being 

integral to the cleavage of VP0 to VP2 and VP4 in SVV, with homologues in other 

picornaviruses, including VP2 H195 in PV and VP2 H145 in FMDV (Strauss et. al., 2018). If 

the interaction with VP2 I206 is important for the positioning and/or function of VP2 H204, 

then this would manifest as a change in the relative proportions of VP0 to VP2 and VP4 

observed between the wild-type and mutants. For this reason, we isolated the structural proteins 

from wild-type and mutant SVV and analysed these with SDS-PAGE gel electrophoresis. The 

bands seen in the mutant and wild-type lanes were quite different, with strong, distinct bands 

at approximately 62 kDa and 130 kDa in the mutant lane that were not present in the wild-type 

lane. As these seemed to be rough multiples of the 36 kDa VP2 protein, or fusions of multiple 
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capsid proteins, we hypothesised that perhaps there may have been altered capsid protein 

translation in the thermostable mutants. These would be investigated with mass spectrometry. 

For mass spectrometry, bands of interest were extracted from SDS-PAGE gels and submitted 

to Otago’s Centre for Protein Research, where analysis and database referencing revealed that 

the approximately 62 and 138 kDa bands were bovine serum proteins. These were most likely 

co-purified with SVV during optiprep gradient purification. As in the original SDS-PAGE gel 

the wild-type SVV-001 was purified with caesium chloride gradient, this would likely explain 

why those bovine serums were not present in the wild-type. Repeated gels with wild-type SVV-

001 likewise purified by Optiprep® gradient revealed similar higher kDa bands to those seen 

in the thermostable mutant lanes, precluding the conclusion that these bands were in some way 

related to the thermostable phenotype of the mutants. Though identical protein amounts were 

loaded in the initial SDS-PAGE experiment, the presence of bovine serum proteins in the 

Optiprep® purified samples would have contributed to the measured protein concentration, 

and thus direct comparison of the band intensities of the structural proteins of the wild-type 

and thermostable virus would have been inappropriate. For this reason, the band intensities for 

structural proteins were compared to each other within their own lanes. The initial gel that was 

run suggested that the ratio of VP2 and VP4 when compared to VP0 was non-significantly 

lower in the thermostable mutants than in the wild-type. This supports the idea the VP2 I206V 

mutation impacts the cleavage of precursor structural proteins. Work from within this lab has 

shown that as well as the genome packaged capsid, the SVV procapsid has cleaved VP0 

(Strauss et. al., 2018). This means that whatever degree of thermostability that VP2 I206V 

confers, any SVV VLP’s produced also stand to benefit from. It is worth mentioning as well 

that the A1776G mutation is predicted to alter the secondary structure of the SVV-001 genome, 

and as the RNA genome interacts with the interior of the capsid, this may play a role in 

improving the thermostability of the mutant virion (Shakeel et. al., 2016). 
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While technically in the structural proteins coding sequences, the C2526U and A3434G 

mutations are synonymous mutations, and so do not alter the translated structural proteins. This 

does not necessarily mean that they do not have any impact on thermostability. As previously 

mentioned, the RNA bound within picornaviral capsids can interact with the interior of the 

capsid structural proteins (Shakeel et. al., 2016). The C2526U mutation is predicted to change 

the secondary structure of the RNA genome, which may alter the interactions between the 

genome and the capsid interior. The A3434G mutation however, is not predicted to appreciably 

change the secondary structure of the viral genome, and so may simply be a chance mutation, 

that does not contribute to the thermostable phenotype. 

 

Finally, the G3777A mutation is an interesting one, as it is outside the capsid-encoding P1 

region of SVV-001 and therefore cannot have an impact on the capsid protein stability. It is 

located in the sequence encoding the viral 2B protein, which in most picornaviruses is a 

viroporin. Viroporins are relatively small proteins which oligomerise and permeabilise lipid 

membranes (Nieva et. al., 2012). Picornaviral 2B proteins localise to the endoplasmic reticulum 

and Golgi complex, where mulitmers form pores through which small solutes can leak out 

(Nieva et. al. 2003). This raises questions as to how, if at all, the G3777A mutation might 

contribute to the replication of the thermostable selected mutants. Hypothesis generation is 

further complicated by the low degree of primary sequence identity between picornaviral 2B 

proteins, as shown by the initial study reporting the discovery of SVV-001, where no 

picornaviral species shared an excess of 20% sequence identity with SVV-001 (Hales et. al., 

2008). Despite low sequence identity, picornaviral 2B proteins are thought to have a high 

degree of structural similarity with each other, sharing a helix-turn-helix motif that is 

responsible for the membrane binding activity. G3777A is predicted to have an effect on the 
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secondary structure of the RNA genome, which presents a much clearer way in which it might 

contribute to the thermostable phenotype. 

 

Cryo-electron microscopy was undertaken to discern any changes to the structure of the 

thermostable mutant virus as a result of mutations in the structural proteins and/or RNA 

genome. From CsCl purified fractions, a 10.36 Å structure was derived of the 56 °C resistant 

mutant. Unfortunately, as 10.36 Å is relatively low resolution, the conclusions that can be 

drawn from this structure are limited. At this resolution, it would appear that the thermostable 

mutant is not appreciably different to a 3.8 Å structure of the SVV-001 capsid. 

 

4.4 Summary 

This work sought to determine residues and mutations thereof that confer thermal stability to 

the SVV-001 capsid, to inform the production of thermostable VLPs. First, the temperature 

sufficient to exert a significant selection pressure on SVV-001 was investigated. Early results 

from this investigation lead to the heating of SVV-001 to 58.5 °C for 30 minutes, which when 

enumerated produced a single viral plaque. This single viral plaque was extracted and grown 

in H446 cells while the method for determining an appropriate selection temperature was 

amended. With the amended method, roughly 99% of wild-type SVV-001 was shown to be 

inactivated as a consequence of heating at 53.5 °C for 30 minutes. When tested similarly, the 

plaque purified viral population was completely resistant to heating at 56 °C for 30 minutes, 

and could not be successfully be selected to be fully resistant to heating at 58.5 °C after 30 

minutes. Wild-type SVV-001, as well as viral populations that were resistant to heating at 56 

°C, and that had undergone 10 successive passages with heating at 58.5 °C, were then 

expanded, purified and sequenced. This revealed a number of mutations inside and outside of 

the capsid coding region of the genome which were present in the 56 °C resistant and 58.5 °C 
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selected viral populations that were not present in wild-type SVV-001. These mutations were 

then modelled in silico. One mutation in particular, VP2 I206V, was reasoned to alter the 

relative amounts of the capsid proteins VP2 and VP4 versus their precursor VP0. Protein from 

purified viral fractions was precipitated out and analysed using SDS-PAGE. This suggested 

that there was a non-significantly increased proportion of VP0 in the thermostable mutants than 

in the wild-type SVV-001. The SDS-PAGE results also showed two bands in the thermostable 

mutant lanes at approximately 62 kDa and 130 kDa, which were confirmed by mass-

spectrometry to be bovine serum proteins. Repeated SDS-PAGE with SVV-001 purified by 

Optiprep® gradient also showed two similar bands. The wild-type and 56 °C resistant viral 

populations were then directly contrasted with PaSTRy. PaSTRy demonstrated that the capsids 

of wild-type virus dissociate and release RNA from around 59 °C, whereas capsids of 56 °C 

resistant virus dissociate do the same from 61 °C onwards. Finally, CsCl purified 56 °C 

resistant SVV was prepared for cryo-electron microscopy, producing a 10.36 Å structure of the 

full capsid. 
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5 Future Work 

This work identified mutations present in thermally selected populations of the novel oncolytic 

virus, Seneca Valley Virus. Though four mutations were initially identified, it would seem that 

only one of these would likely be of utility of the production of thermostable VLPs, as was the 

express purpose of undertaking this project. This was the VP2 I206V mutation. Naturally, 

future work would involve the introduction of the VP2 I206V mutation in to the wild-type 

SVV-001 and the verification of the presence or absence of the thermostable phenotype. 

 

Continuing on the assumption that VP2 I206V is experimentally demonstrated to confer 

increased structural stability to the SVV-001 capsid, the next objective would be to determine 

if the VP2 I206V mutation would similarly increase the structural stability of the empty capsid 

of SVV-001 compared to the wild-type empty capsid. As the VLP is non-infectious, VLP titres 

post-heating would have to be measured using a different method than the plaque assays used 

for determining SVV viral titres. Looking further in to the development of stable VLP’s, 

strategies would have to be developed for the successful packaging of cytotoxic drugs into the 

SVV-001 VLP. As in FMDV there has been putative packaging signals identified within the 

secondary structures of the genome (Logan et. al., 2018), it stands to reason SVV may have 

similar packaging signals. At the time of this writing, this lab is undertaking work to determine 

the presence of packaging signals within the SVV genome. If they are discovered, they will 

present a likely route by which cytotoxic drugs can be introduced into the SVV VLP. 

 

This project also resulted in solving the structure of the 56 °C resistant SVV to a resolution of 

10.36 Å. Further work would entail solving the structure to a much higher resolution so as to 

draw much more meaningful conclusions as to the effect of the mutations on the viral structure. 
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7 Supplementary Figures 

7.1 Alignments of the thermostable SVV mutants against 96 Senecavirus isolates 

7.1.1 Conservation of A1776G mutation across analogous sites in 96 Senecavirus isolates 
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Figure 26: Clustal omega alignment of the A1776G mutation against analogous sites in 

96 Senecavirus A isolates. SVV-001 thermostable mutant sequence is shown on the top row 

(shortened to SVV-001), with the rest annotated with their genbank accession numbers. 

Senecavirus isolates that share the mutation are shown in in green, with those that don’t shown 

in red. The A1776G mutation does not appear in any of the Senecavirus isolates tested. 
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7.1.2 Conservation of C2526U mutation across analogous sites in 96 Senecavirus isolates 
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Figure 27: Clustal omega alignment of the C2527U mutation against analogous sites in 

96 Senecavirus A isolates. Senecavirus isolates that share the mutation are shown in in green, 

with those that don’t shown in red. The C2527T mutation is well conserved appearing in 85.4% 

of tested Senecavirus isolates. 
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7.1.3 Conservation of A3434G mutation across analogous sites in 96 Senecavirus isolates 
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Figure 28: Clustal omega alignment of the A3434G mutation against analogous sites in 

96 Senecavirus A isolates. Senecavirus isolates that share the mutation are shown in in green, 

with those that don’t shown in red. The A3434G mutation is well conserved appearing in 92.7% 

of tested Senecavirus isolates. 
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7.1.4 Conservation of G3777A mutation across analogous sites in 96 Senecavirus isolates 
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Figure 29: Clustal omega alignment of the G3777A mutation against analogous sites in 

96 Senecavirus A isolates. Senecavirus isolates that share the mutation are shown in in green, 

with those that don’t shown in red. The G3777A mutation, like the A1776G mutation, does not 

appear in any other tested Senecavirus isolates. 
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7.2 ImageJ Fiji analysis of SDS PAGE gels  

 

 

Figure 30: ImageJ Fiji analysis of SDS PAGE gels. A, D & G Lanes to be analysed within 

the SDS PAGE gels were defined using in-built tools B, E & H From defined areas, plots were 

generated as functions of intensity versus position within the defined areas C, F & I Area under 

the curves were calculated for peaks manually divided to better represent discreet bands.  
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