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Abstract 

The orchestrated regulation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-

subtype of glutamate receptors by neuronal activity and neuromodulators is critical to the expression 

of both long-term potentiation (LTP) and memory. In particular, GluA1-containing, Ca2+-permeable 

AMPAR (CP-AMPAR) comprise a unique role in these processes due to their transient, activity-

regulated expression at the synapse. Importantly, many of the mechanisms which govern these 

processes are negatively affected in neurodegenerative disorders such as Alzheimer’s disease, 

suggesting that understanding the mode of action of neuromodulatory molecules may reveal much 

needed novel therapeutic interventions. Secreted amyloid precursor protein-alpha (sAPPα), a 

metabolite of the parent amyloid precursor protein (APP) has been previously shown to enhance 

hippocampal LTP and facilitate memory formation. Accordingly, we hypothesised that sAPPα may act 

via modulation of AMPAR synthesis and cell surface expression. 

 

Using primary hippocampal neurons grown in culture, we found that sAPPα (1 nM) differentially 

regulates the expression of cell surface GluA1-, GluA2-, and GluA3-containing AMPAR. Interestingly, 

using fluorescent non-canonical amino acid tagging with proximity ligation assay (FUNCAT-PLA), we 

found that short-term sAPPα treatments (1 nM, 30 min) rapidly enhanced the cell surface expression 

of newly synthesised extrasynaptic GluA1-, but not GluA2-containing AMPAR, while long-term 

treatments of sAPPα (1 nM, 120 min) increased levels of pre-existing GluA1/2-containing heteromers 

at the cell surface, indicating a dynamic regulation of distinct AMPARs following treatment. Moreover, 

using electrophysiology in area CA1 of acute hippocampal slices, we provide evidence that the 

expression of CP-AMPAR is important in the induction of sAPPα-enhanced LTP. Using 

immunocytochemistry and siRNA knockdown, we provide evidence that internalization of CP-AMPARs 

may be governed, at least in part by sAPPα-driven expression of the activity-regulated cytoskeletal-

associated protein (Arc). Further, we show that Arc expression is not induced by the related APP 

metabolite sAPPβ, but is dependent on synergistic activation of N-Methyl-D-Aspartate and α7-

nicotinic acetylcholine receptors, as well as downstream activation of CaMKII, MAPK, and PKG.  

 

Together, these findings suggest that application of sAPPα to hippocampal neurons engages a 

cascade of mechanisms which enhance the synthesis and expression of AMPAR and Arc protein, in 

the regulation of synaptic strength and the expression of hippocampal LTP. These experiments 

expand upon our current knowledge underlying mechanisms of synaptic plasticity in hippocampal 

neurons.  
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 Chapter 1:  
Controlling Plasticity with Molecules and What This Means for 
Memory and Disease: Mediators, Messengers, Modulators and More 

1.1. Learning and Memory 

 

Learning and memory are fundamental phenomena which describe the ability of both animals and 

humans to acquire, retain, and retrieve information (Seyfarth and Cheney, 2003). Many of these 

processes consist of mechanisms necessary to permit the recognition of the familiar, prediction of 

future events, and assessment of behaviour, allowing humans and animals to make sense of the 

environment around them (Sherry and Schacter, 1987; Camina and Güell, 2017). The formation, 

storage, and retrieval of both short- and long-term memories is understood to occur through cellular 

changes within the central nervous system (CNS), contributing to specific modifications in the 

strength and efficacy of neuronal cells to respond to stimulation (Okano, 2000). This idea was first 

proposed by American psychologist William James, who linked the properties of plasticity with those 

of behavioural habits (James, 2007). Here, William James proposes; 

 

“When two elementary brain-processes have been active together or in immediate 

succession, one of them, on reoccurring, tends to propagate its excitement into the 

other.” (James, 1890) 

 

The idea that the nervous system has intrinsic plastic properties capable of reshaping the 

relationships between neurons was later supported by descriptions, both philosophical and 

anatomical, of the synapse. The synapse was first described by Italian neuropsychiatrist Eugenio Tanzi 

(Tanzi, 1893) as “minimal interruptions between adjacent and functionally related neurons” through 

which activity “increases the nutritional processes… accompanied by hypertrophy” and effectively 

decreases the “distance between adjoining and contiguous neurons”. This proposition was further 

expanded upon by Tanzi’s disciple Ernesto Lugaro, who further suggested that repetition or habitual 

processes “establish reciprocal connections” and “facilitates the transmission of functional activity 

from one to the other” (Lugaro, 1898). These ideas were further supported by anatomical 

observations made by Italian biologist Camillo Golgi and Spanish pathologist Santiago Cajal (Golgi, 

1885; Cajal, 1893; Cajal, 1909), who provided detailed descriptions of nerve cells as well the 

appearance of “thorns or short spines” (Cajal, 1888; Cajal, 1896), now considered the first 

observations of synapses (Berlucchi and Buchtel, 2009; Yuste, 2015).  
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The early concepts describing the plastic abilities of the nervous system, together with direct 

observations of neurons and the connections between them, was later refined into a concrete model 

of synaptic plasticity by Canadian psychologist Donald Hebb (Hebb, 1949). Simply put, Hebb describes 

synaptic plasticity as a mechanism through which repeated and persistent firing of a presynaptic cell, 

which leads to the firing of a consecutive postsynaptic cell, will increase the strength, stability, and 

efficacy of the connection, through a form of growth or metabolic change within the cell. This model 

has become to be known as Hebbian plasticity and remains one of the leading theories on how neural 

tissue adapts to change, and may contribute, in part, to the underlying processes of learning and the 

formation of long-term memories (Abbott and Nelson, 2000). 

 

 The Hippocampus 

 
Observations of the mechanisms and functions of learning and memory have been made since as 

early as the late 19th century (Ribot, 1882; Freud and Breuer, 1895; Kennedy, 1898; Bregman, 1899; 

Barr and Bieliauskas, 2016). Around this time, Ebbinghaus, (1885) first introduced the division of 

short-term and long-term memory, while Ribot, (1882) began to describe the necessary conditions for 

memory (“the conservation of certain conditions, their reproduction, and their localization in the 

past”), beginning to distinguish between ‘temporary amnesia,’ ‘periodical amnesia,’ and ‘progressive 

amnesia’. However, many of these observations did so in the absence of references to the nervous 

system. The early 20th century bought with it observations of the mechanisms which may permit 

formation or maintenance of memories; including the pairing of stimuli in classical conditioning 

(Semon, 1911; Pavlov and Gantt, 1928), the importance of emotion in memory strength (Gregor, 

1907), and the acquisition of mnemonic memories (Ranschburg, 1911). Importantly, these 

observations aided in cytoarchitectural (Brodmann, 1909) and physiological mapping of the cerebral 

cortex (Silverstein, 2012), and identification of a region-specific, functional representation of the 

entire body (Penfield and Boldrey, 1937). These observations were further characterised by limb 

amputations and attributable changes to cortical and peripheral sensitivity (Katz, 1920; Haber, 1955; 

1958), which began to both localise brain function to anatomy as well as indicate that experience-

dependent changes may correlate to changes in anatomy and physiology.  

 Following these findings, observations began to arise providing evidence towards the 

localization of memory formation specifically. Zingerle, (1912) first described marked memory 

disturbances and reduced intelligence in a 40-year-old patient in which the right temporal lobe was 

absent. Following this, Gamper (1928) and Grünthal (1947) described clear diencephalic damage and 

impaired memory related to alcohol-related brain damage and hypoglycaemia, respectively.  
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Most recently, a well-known case of this involves patient Henry Molaison (H.M.) who suffered from 

major seizures following an accident in his childhood. In an effort to resolve this, H.M. underwent 

surgery for a bilateral medial temporal lobectomy, removing the hippocampus, amygdala, and the 

adjacent parahippocampal gyri (Squire, 2009). Following surgery, patient H.M. experienced profound 

impairments in his ability to form long-term declarative memories, 

 

“so severe so as to prevent [H.M.] from remembering the location of the rooms in 

which he lives, the names of his close associates, or even the way to the toilet”  

(Scoville, 1954) 

 

leading neurosurgeon William Scoville to conclude:  

 

“…that the anterior hippocampus and hippocampal gyrus, either separately or 

together, are critically concerned in the retention of current experience”  

(Scoville and Milner, 1957) 

 

Over the next decade, neuroanatomical studies began to evaluate the intricate structure and 

function of the medial temporal lobe memory system and its relationship to the central nervous 

system (Squire and Zola-Morgan, 1991).  

 

Encompassing the hippocampus, in addition to associated entorhinal, perirhinal, and 

parahippocampal cortices, the medial temporal lobe memory system has come to be understood to 

Figure 1-1 | Homologous regions of the hippocampus in the human and rat brains.  

Representative images show rat brain (left) and dorsal (■) and ventral (■) hippocampus, with coronal (top 

left) and sagittal (bottom left) sections. Right images show stylized human brain (right), and dorsal (■) and 

ventral (■) hippocampus, with coronal (top right) and sagittal (bottom right) sections. 
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be responsible for the formation and 

consolidation of long-term memories, but 

ultimately is not an absolute storage structure as 

Scoville may have implied (Penfield and Milner, 

1958; Marslen-Wilson and Teuber, 1975; 

Steinvorth et al., 2005; Kirwan et al., 2008).  

Because of its elegant structure and very 

ordered cellular connections, the hippocampus 

has become a popular practice to examine 

underlying mechanisms of memory through 

electrophysiological, cellular, and molecular 

neurobiology practices. Early and ongoing 

experimental practices have utilized non-human 

animals as a means of investigating the underlying mechanisms and behaviours which may drive 

many neurodegenerative, cognitive and affective disorders in human beings. Primarily, rodent models 

(especially Mus musculus and Rattus norvegicus) have been the most widely used models in 

biomedical research for many years, encompassing approximately 20% in the 1970s and 1980s to 

around 50% of neuroscience-related research in recent years (Ellenbroek and Youn, 2016). Arguably, 

the use of rodents has formed a strong basis for preclinical research regarding drug therapies, 

genome-editing technologies, and a means to investigate physiological, anatomical, biochemical and 

pharmacological underpinnings of neurodegenerative disorders. The anatomy of the rat cortex and 

hippocampus has been thoroughly characterised in order for comparisons to human be made. These 

comparisons allow the identification of possible anatomical, functional, and behavioural linkages. As 

shown by Figure 1-1., the gross anatomy of the hippocampus differs substantially. While the curved, 

elongated structure is constant throughout all mammals (Strange et al., 2014), the location and 

extent of the hippocampal boundaries differ with respect to the dorsoventral axis. The primate 

hippocampus is primarily contained within the temporal lobe, while much of the rodent hippocampus 

rests dorsally beneath the corpus callosum (Insausti, 1993; Royer et al., 2010; Lisman et al., 2017). 

Importantly, the overall pattern of connectivity shows a high degree of conservation across mammals, 

such that while the gross anatomy may differ, the fields of the hippocampal formation are linked by 

similar and largely unidirectional connections. 

The hippocampus itself is subdivided into the Cornu Ammonis (CA), also referred to as CA1–4, 

and the dentate gyrus (DG; Figure 1-2). Parahippocampal and entorhinal cortices project afferents 

into the dentate gyrus via the perforant path (Burwell and Amaral, 1998; Wible, 2013). Here, afferent 

Figure 1-2 | Schematic diagram of the 
Hippocampal formation. Coronal cross-section 

(as indicated bottom left) of the hippocampus 

shows subfields, including the dentate gyrus (■), 

cornu ammonis (■), entorhinal cortex (■), and 

parahippocampal gyrus (■).  
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axons terminate on the granule cells of the dentate gyrus which in turn project mossy fiber tracts to 

the CA3 field of the hippocampus. Here, pyramidal cells of area CA3 send collateralized axons of the 

Schaffer collaterals, the major input to CA1. CA1 provides the major output of the hippocampus, 

sending efferent projections to the subiculum which in turn projects to many cortical and subcortical 

targets (Witter and Groenewegen, 1990; O'Mara et al., 2001). This conserved hierarchy of 

connectivity has led to the proposal that he hippocampus may serve as a central node of rapid 

synaptic change, such that information is processed through a limited number of synaptic changes to 

be gradually interleaved into existing networks of knowledge within the cortex (McClelland et al., 

1995).  

 

 As mentioned above, primary cells of the hippocampus include glutamatergic granule and 

pyramidal cells of the DG and CA1–4 areas, respectively. As shown by Figure 1-3., pyramidal cells can 

be defined by their large pyramidal-shaped soma (approximately 20 m; Figure 1-3A) and distinct 

apical and basal dendritic arborization. Alternatively, granule cells of the DG are defined by their small 

soma (approximately 10 m; Figure 1-3B) and unique apical, cone-shaped arborization (Amaral et al., 

2007), receiving information from the perforant path, and projecting mossy fiber axons towards CA3. 

The dendrites of both pyramidal and granule cells are the sites of small (< 1 m) protrusions called 

Figure 1-3 | Principal cells of the hippocampus. Morphological characteristics of A) CA1-3 pyramidal 

neurons (■), B) dentate gyrus granule cells (■), and C) i. basket (■), and ii. interneuron-specific (IS, ■) 

interneurons. Inset image shows representative magnification of pyramidal, granule, basket cell and bipolar 
spines. Scale bar = 50 μM. 
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spines, and are the site of the postsynaptic response (Nimchinsky et al., 2002; Bekkers, 2011). In 

addition to the excitatory principal cells, the hippocampus also contains subpopulations of 

interneurons, primarily expressing the inhibitory transmitter γ-aminobutyric acid (GABA; Figure 1-3C). 

The term interneuron conveys the unifying principal that these inhibitory cells regulate local circuit 

excitation, and display diverse morphological and chemical properties. Specific types of interneurons 

are classified based on their clear axonal or dendritic processes, such as basket cells (Figure 1-3 Ci.), 

which form dense connections on the soma of pyramidal cells (Fasano et al., 2017). In addition, 

various populations of interneurons were found to contain different peptides (e.g. parvalbumin, 

cholecystokinin, somatostatin, calbindin and calretinin), resulting in additional classifications based on 

neurochemical composition (Freund, and Buzsáki, 1996). While the expression of parvalbumin, 

calbindin and calretinin appears to identify specific groups of morphologically distinct and input-

specific interneurons, some neurochemical markers overlap and have been found to co-exist within 

distinct population-specific, morphologically distinct populations (Kosaka et la., 1987; Losonczy et al., 

2002), as well as neurochemically distinct populations of morphologically identical interneurons (e.g. 

parvalbumin- and cholecystokinin-positive basket cells; Fasano et al., 2017). Finally, populations have 

been identified based on their functional characteristics, such as interneuron-specific (IS) cells (Figure 

1-3 Cii), which provide inhibitory feedback of other interneurons (Chamberland and Topolnik, 2012), 

and oriens-lacunosum moleculare (OLM) interneurons, which preferentially innervate CA1 pyramidal 

neuron dendrites (Müller and Remy, 2014; Maccaferri and Lacaille, 2003). 
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1.2. Mechanisms of Cellular Memory 

 

  Long Term Potentiation 

 

Following decades of research, a canonical model has emerged, which permits observation and 

quantification of Hebbian plasticity following electrical or chemical stimulation. This model was 

initially described by Tim Bliss and Terje Lømo with work done in the dentate gyrus of the 

hippocampus of anaesthetized (Bliss and Lomo, 1973) and unanaesthetized (Bliss and Gardner-

Medwin, 1973) rabbits. As shown by Figure 1-4., tetanisation of the perforant path by high frequency 

simulation (HFS) produced a persistent increase in the efficacy of the excitatory postsynaptic potential 

(EPSP) to subsequent stimulations, specific to the tetanized pathway. This increase was found to last 

the length of the experiment in anaesthetized rabbits, but was found to slowly decay to baseline 

across 3 days in unanaesthetized rabbits (with one exception, still potentiated following 16 weeks). 

This long-lasting enhancement in the synaptic response was later termed long-term potentiation (LTP) 

and has become a principal experimental method and theoretical model for examining the processes 

and underlying mechanisms of Hebbian plasticity in neural tissue (Lomo, 2003). For Hebbian plasticity 

to serve as a mechanism through which cellular correlates of memory occur, four properties have 

been described which may permit this. Firstly, as described by Tim Bliss and Terje Lømo’s early 

experiments, LTP exhibits input specificity, such that 

potentiation induced at individual synapses only 

affects those which contribute directly to LTP and does 

not spread to non-potentiated synapses. This has been 

proposed to occur through Frey and Morris’ mode of 

‘synaptic tag and capture’ (Dynes and Steward, 2007), 

wherein currently unidentified proteins or processes 

act to target plasticity related proteins (PRP) 

exclusively to activated or potentiated synapses. 

Secondly, LTP displays rules of associativity, such that 

weakly activated synapses can be strengthened by a 

strong stimulus at spatially distinct synapses (Shors 

and Matzel, 1997). Thirdly, and similar to associativity 

is cooperativity: LTP can be induced by either a strong 

stimulation or in the case of cooperative potentiation, 

Figure 1-4 | The discovery of LTP. 
Long term potentiation was first reported 
in the perforant path in  anaesthetized 
rabbits. Responses from both control and 
tetanized pathways A) before and B) after 
conditioning. C) Graph showing the 
amplitude of the population EPSP for 
control (●) and tetanized (●) pathways. 
Conditioning trains (arrows) were given at 
a rate of 15/sec for 10 sec. 

 

Figure 1-62 | Schematic illustration 
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many individual weak stimulations converging spatially and temporally at one pathway, neuron, or 

synapse may act to collectively depolarize the postsynaptic membrane enough to produce LTP 

(Kitajima and Hara, 1991). Lastly, and perhaps the most distinct characteristic of LTP is its persistence, 

that is the ability of LTP to last from several minutes to many months (Abraham, 2003), and it is this 

that distinguishes LTP from other forms of plasticity expressed on much shorter timescales 

(milliseconds to minutes), such as paired-pulse facilitation, and post-tetanic potentiation (Citri and 

Malenka, 2008).  

Since 1973, the field has expanded, covering many of the plausible aspects that might 

contribute to the expression and persistence of Hebbian plasticity using LTP as a model, examining 

electrophysiology, molecular biology, biochemistry, genetics and epigenetics (Lynch et al., 1979; 

Teyler, 1999; Matynia et al., 2002). Early observations began to describe underlying mechanisms 

governing LTP. Of these, it was shown that learning paradigms were correlated with an increase in 

protein synthesis and preventing this process impaired the persistence and consolidation of 

memories (Flexner et al., 1962; Flexner et al., 1963; Agranoff and Klinger, 1964; Agranoff et al., 1965; 

Flexner et al., 1965; Flexner et al., 1966; Agranoff, 1967; Shashoua, 1976). Following this, the cellular 

correlate of protein synthesis-dependent memory consolidation was sought. In 1984, Manfred Krug 

showed that the maintenance of hippocampal dentate gyrus LTP beyond 3 hours in vivo could be 

blocked by application of the protein synthesis inhibitor anisomycin (Krug et al., 1984). Various 

researchers later replicated these findings, observing similar results throughout the hippocampus 

using a variety of stimulation methods (Frey et al., 1988; Frey et al., 1989; Otani and Abraham, 1989; 

Fazeli et al., 1993; Osten et al., 1996; Nayak et al., 1998). Through these observations, it was 

theorized that LTP displays distinct phases, depending on the necessity of protein synthesis. Short-

term plasticity (STP) is defined as a form of plasticity which decays rapidly, lasting approximately 20–

40 minutes, and is thought to be dependent on primarily presynaptic mechanisms (Hennig, 2013), 

including; residual presynaptic calcium (Katz and Miledi, 1968; Kamiya and Zucker, 1994; Wu and 

Saggau, 1994), saturation or dislocation of presynaptic calcium buffers (Caillard et al., 2000; Blatow et 

al., 2003; Timofeeva and Volynski, 2015), enhancement of presynaptic calcium currents (Borst and 

Sakmann, 1998; Leal and Klein, 2009), and changes in the sensitivity of calcium sensors such as 

synaptotagmins, controlling delayed versus fast presynaptic neurotransmitter vesicle release 

(Burgoyne and Weiss, 2001; Stevens and Sullivan, 2003; Burgoyne, 2004; Yoshihara and Montana, 

2004; Jackman et al., 2016; Figure 1-5).  

Early phase (E-LTP or LTP1) and late-phase (L-LTP or LTP2) LTP are further distinguished by 

their dependency on protein synthesis. LTP1 is thought to last anywhere from one to many hours and 

is independent of protein synthesis (Krug et al., 1984), emerging through post-translational 
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modifications of pre-existing proteins by calcium-dependent enzymes, as well as expansion of the 

spine cytoskeleton and glutamate receptor trafficking (Blundon and Zakharenko, 2008; Bosch et al., 

2014; Park, 2018b; Figure 1-5). LTP2 on the other hand, is invariably long-lasting, persisting for up to 

many hours post-stimulation (Malenka, 1991a; Schulz and Fitzgibbons, 1997; Frey et al., 2001; Figure 

1-5). Evidence suggests that LTP2 is dependent on the dendritic synthesis of PRPs, for its persistence. 

This ‘local protein synthesis’ comes from studies utilizing dendrites isolated from the soma, and thus 

preventing distal trafficking of new proteins. In these preparations, L-LTP could still be produced and 

was blocked by the application of protein synthesis inhibitors (Manahan-Vaughan et al., 2000; Cracco 

et al., 2005; Huang and Kandel, 2005; Vickers and Wyllie, 2007). These observations likely indicate a 

role in the local translation of pre-existing mRNA present at or near the activated synapses (Steward 

and Schuman, 2001), likely in order to engage mechanisms which consolidate the changes initiated 

during LTP1 (Hardt et al., 2013). There is increasing evidence that the consolidation of the synaptic 

changes during LTP2 occur, in part, through the synthesis and function of neuromodulators, such as 

dopamine (Frey et al., 1991a; Frey et al., 1991b; Huang and Kandel, 1995; Granado et al., 2008), BDNF 

(Ying et al., 2002; Lu et al., 2008; Panja and Bramham, 2014), and serotonin (Mlinar et al., 2015). 

Furthermore, evidence exists of an additional phase of LTP (LTP3) which requires the transcription of 

new mRNA (Nguyen et al., 1994; Frey et al., 1996; Vickers et al., 2005; Ryan et al., 2011), and has 

been described to underlie the persistence of long-term memories, lasting anywhere from hours 

(Nguyen et al., 1994; Frey et al., 1996) to months (Abraham et al., 2002). These gene transcripts may 

underlie mechanisms which expand the pool of newly synthesised proteins, replenish proteins and 

mRNA directly involved in early enhancements of LTP (Abraham and Williams, 2003), as well as 

orchestrate chromatin and epigenetic modifications (Alberini and Kandel, 2014). 

 

As the expression characteristics of LTP were slowly being elucidated, a second debate arose 

within the field — that which was concerned with the mechanistic locus of LTP. For many years the 

debate sat split down the centre of the synaptic cleft. On one side, those believing presynaptic 

changes underlie the increased synaptic response, and on the other; those who believe postsynaptic 

changes dictate changes in potentiation. Early studies found evidence for the presynaptic component 

of LTP through increases in neurotransmitter release probability (Bekkers and Stevens, 1990; Malinow 

and Tsien, 1990), the number of active release sites (Bolshakov et al., 1997), or the quantal size of 

neurotransmitter vesicles (Kullmann and Nicoll, 1992; Stricker et al., 1996). Countering this, the 

postsynaptic argument posited that changes in the synaptic expression of N-Methyl-d-aspartate 

(NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are 

responsible for the observed increase in the EPSP, as evidenced from increases in the AMPA:NMDA 
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current ratio (Watt et al., 2004; Sjostrom et al., 2007), the number of AMPAR (Hayashi et al., 2000) 

and NMDAR (Berretta et al., 1991; Xie et al., 1992), the dependence on AMPAR expression (Zamanillo 

et al., 1999; Granger et al., 2013), as well as changes in structural plasticity (Matsuzaki et al., 2004).  

 

 

 Importantly, throughout this debate, a proportion of researchers began to shift their focus to 

phenomena of ‘silent synapses’. These synapses are termed as such due to the absence of functional 

AMPAR during baseline responses, able to be ‘awoken’ or ‘unsilenced’ upon LTP stimulation through 

an NMDAR-dependent mechanism. Similar to the debate surrounding the locus of LTP expression, 

silent synapses sparked a parallel debate regarding the mechanism of synapse unsilencing. Many of 

those on the presynaptic side of the debate carry their beliefs to the unsilencing of silent synapses, 

such that these synapses can be explained primarily through low release probability of glutamate 

(Gasparini et al., 2000; Montgomery et al., 2001). Likewise, with LTP, postsynaptic mechanisms may 

also explain a mechanism to unsilence silent synapses. Initial studies posited that unsilencing occurs 

Figure 1-5 | Schematic illustration of separate phases of synaptic long-term potentiation. 
STP (■) is defined by a short-lasting potentiation of the EPSP induced by weak tetanisation. LTP1 (E-

LTP, ■) is defined primarily by a sensitivity to kinase inhibitors, as well as increases in presynaptic 

quanta and requires strong tetanisation, decaying within an hour. LTP2 (L-LTP, ■) is a long-lasting 

potentiation which is sensitive to protein-synthesis inhibitors and additive to LTP1, lasting > 3 hours. 

LTP3 (■) is dependent on new gene transcription and is sensitive to inhibitors of this. LTP2 and LTP3 

can be achieved through strong or repeated tetanization or addition of modulators including 
neurotrophins or growth factors including dopamine (DA), brain-derived neurotrophic factor (BDNF), 
and serotonin (5-HT). Originally defined by Reyman & Frey, (2007). 
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throughout development, with many synapses initially containing NMDAR but little to no AMPAR, 

finding that miniature EPSCs (mEPSC) frequency increases throughout development – concluding that 

AMPAR insertion underlies synapse awakening (Petralia et al., 1999; Vincent-Lamarre et al., 2018; 

Wright et al., 2020; Xu et al., 2020). Further, evidence suggests that LTP underlies one mechanism 

through which silent synapses are awoken (Liao et al., 1995; Durand et al., 1996; Liao et al., 1999). 

 

 Long-Term Depression 

 
Early studies investigating mechanisms that serve to increase the strength between neural 

connections (such as LTP) theorized that a system such as this must have a way to actively decrease 

synaptic strength in contrast. The reversible nature of LTP, such that LTP undergoes passive decay 

following extended potentiation over a period of days to weeks, could theoretically be sufficient to 

employ a mechanism of information storage. Yet, a system serving to only actively increase the 

strength of a synapse would inevitably reach a point of saturation of maximal information storage. 

Thus, the ability to actively decrease and reset individual synaptic weights adds a distinct 

computational advantage. Therefore, long-term depression (LTD) became the focus of many studies 

in the 80s and 90s as a mechanism which may act to 1) prevent the saturation of LTP (Byrne, 2010), 2) 

act as an active resetting of previously potentiated synapses (Barr et al., 1995; Muller et al., 1995; 

Villarreal et al., 2002), 3) amplify the signal-to-noise ratio of neighbouring potentiated synapses 

(Dayan and Willshaw, 1991; Kemp and Manahan-Vaughan, 2007), or 4) mediate mechanisms 

underlying forgetting (Tsumoto, 1993; Nabavi et al., 2014). 

 The earliest publications describing what we now understand to be LTD, described the effect 

of low frequency stimulation (LFS) on the postsynaptic response (Barrionuevo et al., 1980; Levy and 

Steward, 1983; Lynch et al., 1976; Lynch et al., 1977). Of note is Barrionuevo & Lynch (1980) who 

elicited LFS on both control (non-potentiated) and previously potentiated Schaffer collateral–

Commissural projections in the rat hippocampus. Interestingly, they describe a persistent depression 

of both experimental groups, lasting 15–30 minutes following LFS, concluding LTD to be a mechanism 

by which the hippocampus employs to both offset enhancement by LTP and decrease the baseline 

strength of synapses (Figure 1-6). While it is argued that the depression of the previously potentiated 

pathway may in fact be depotentiation, a mechanism distinct from LTD (Huang and Hsu, 2001; 

Sanderson, 2012), the effect of LFS on control synapses was evident.  



 12 

Following these findings, efforts 

were made to understand the mechanisms 

behind LTD. Dudek and Bear, (1992) first 

examined LTD under the principals 

previously applied to LTP, finding that LTD 

in the hippocampus shows input 

specificity, cooperativity, associativity, and 

persistence. These findings, and many 

more describe a similar mechanism to LTP. 

It has been found that the induction of LTD 

1) is dependent on the simulation 

protocol, such that 900 pulses at 1-3Hz 

consistently yielded a depression of the EPSP, while 10Hz produced no change in EPSP and 50Hz 

caused potentiation (Dudek and Bear, 1992; Figure 1-6), 2) is blocked by an NMDA receptor 

antagonist (Mulkey and Malenka, 1992), 3) does not prevent later LTP by HFS, 4) reaches saturation, 

or maximal depression (Levy and Steward, 1983; Christie and Abraham, 1992), and 5) can be reversed 

by LTP (Abraham and Goddard, 1983). These discoveries generated a new outlook on the 

modification of synaptic information processing through controlled bidirectional changes in synaptic 

strength, defining a mechanism separate from LTP, produced through opposing stimulation patterns, 

yet converging through the necessity of the NMDA receptor. 

As observed with LTP, the induction and persistence of LTD may be separated into distinct, 

overlapping mechanisms. Short-term depression (STD) is a transient form of synaptic depression 

shown to occur following trains of frequent stimulation. This STD is thought to occur through, 1) a 

depletion of the readily releasable pool (RRP) of neurotransmitter vesicles at the presynaptic terminal 

(Zucker and Regehr, 2002; Rizzoli and Betz, 2005; Regehr, 2012), 2) inactivation or saturation of 

vesicle fusion sites (Neher and Sakaba, 2008; Hosoi et al., 2009), 3) reduction in presynaptic calcium 

currents (Forsythe et al., 1998; Xu and Wu, 2005; Catterall and Few, 2008; Neher and Sakaba, 2008; 

Hosoi et al., 2009), and 4) desensitization of postsynaptic glutamate receptors (Antzoulatos et al., 

2003; Koike-Tani et al., 2008). Similar to LTP, initial short-lasting changes such as STD, have the 

capacity to evolve into stronger, more persistent forms. As first shown by Barrionuevo et al., (1980) 

and later by Dudek and Bear, (1992b), decreasing the rate at which synapses are stimulated, greatly 

enhanced the level of synaptic depression observed, such that 5-10 Hz stimulation results in a short 

lasting LTD, “decaying” back to baseline (E-LTD), while lower 1-3 Hz stimulation results in long-lasting 

depression of synaptic depression (L-LTD; Dudek and Bear, 1992b; Kauderer and Kandel, 2000). 

 

 
Figure 1-88 | The discovery of LTD. 

 

Figure 1-6 | The discovery of LTD. The effect of low 

frequency stimulation (arrow) on the population spike 

amplitude. 1/sec (■), 5/sec (▲), 15/sec (●), 33/sec (〇), 

100/sec (×). Data from Barrionuevo et al., (1980) | The 

discovery of LTD. 
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Importantly, as with early-phase LTP, both STD and E-LTD have been shown to be protein synthesis-

independent, with the expression of E-LTD likely involving the activity of protein phosphatases 

(Lisman, 1989; Mulkey et al., 1993). Conversely, long-lasting L-LTD has been shown to involve an 

additional protein synthesis-dependent component, necessary for its maintenance (Huber et al., 

2000; Kauderer and Kandel, 2000; Sajikumar and Frey, 2004), for at least 4-5 hours following 

induction in vivo. Interestingly, the persistence of L-LTP may depend on pre-existing mRNA for local 

translation of required proteins (Huber et al., 2000; Sajikumar and Frey, 2003). Beyond this, some 

evidence also exists for an additional requirement of transcription ex vitro (Lindecke et al., 2006) and 

a much later (> 24 hours) role in vivo (Kemp et al., 2013). 

Importantly, while LTP involves the formation, growth, and maturation of dendritic spines and 

synapses, LTD may govern an opposing mechanism of synapse shrinkage and elimination. Application 

of NMDA to cultured neurons showed a protein phosphatase-, protein synthesis- and transcription-

dependent reduction in the number of functional synapses and spines (Ramiro-Cortés and Israely, 

2013; Henson et al., 2017), while LTD-inducing stimulation was found to shrink spines (Nägerl et al., 

2004), in a manner which could be rescued by LTP-inducing stimulation (Zhou et al., 2004). These 

results have been further corroborated by in vivo studies, in which induction of LTD eliminated both 

depressed synapses, as well as weakly-integrated neighbouring synapses (Wiegert and Oertner, 

2013). These results indicate that LTP- and LTD-like mechanisms promote bidirectional changes in 

both physiological as well as morphology to regulate the expression of plasticity. 

 

 Homeostatic plasticity 

 

As mentioned above, Hebbian plasticity in the central nervous system acts to encode information 

through changes in the strength of synaptic connections. However, a caveat of this means stronger 

synapses are more likely to depolarize the postsynaptic neuron, increasing the probability that they 

will undergo further potentiation. A system such as this, without forces that prevent uncontrolled 

excitability, would lead to unconstrained synaptic strengthening, wherein the specificity of 

information breaks down and can no longer be effectively stored through differences in synaptic 

strength (Whitt et al., 2014). In theory, without a mechanism to maintain relative differences 

between competing inputs, a mechanism such as LTP, which aims to increase the excitability of cells 

or synapses, would only serve to further potentiate other inputs, increasing the probability of pre- 

and postsynaptic associations. Therefore, homeostatic plasticity allows for the adjustment of 

neuronal or synaptic weights, in order to avoid hyperexcitability, maintain the ability of inputs to 

remain plastic, and prevent the loss of valuable information following both strong synaptic activity or 
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sustained periods of inactivity. Here, relative strengths are maintained within a physiological range for 

Hebbian plasticity to occur (Figure 1-7A.) 

 There are several ways in which neurons may compensate for periods of increased or 

decreased activity. These include altering their intrinsic excitability (Camp, 2012), modifying the 

relative strength of inhibitory or excitatory inputs (Turrigiano and Nelson, 2004), as well as adapting 

the thresholds for the expression of 

plasticity (Bienenstock et al., 1982; 

Bear et al., 1987; Bear, 1995; Figure 

1-7B-C). The latter of these 

describes a mechanism wherein 

neighbouring synaptic weights are 

‘counterbalanced’ following single 

input potentiation, such that when a 

single synapse increases in strength, 

neighbouring synapses decrease in 

compensation (Rabinowitch and 

Segev, 2006; 2008; Lee et al., 2013). 

Similarly, a global process that scales 

all synaptic weights up or down 

proportionally, regardless of 

previous potentiation, allows 

neurons to stabilize excitability and 

firing without changing the relative strength of synaptic inputs (Turrigiano, 2008; Turrigiano, 2012). 

These models allow for the stabilization of overall cell excitability by maintaining stable excitability 

within a dendritic compartment, branch, or whole cell.  

In the past decade, much effort has been made investigating mechanisms of homeostatic 

plasticity, first described by (Turrigiano et al., 1998). One method of homeostatic plasticity, synaptic 

scaling, has been investigated by measuring spontaneous miniature EPSPs (mEPSP) of neurons 

following treatment with GABA antagonists, such as bicuculline. This effect increases firing rates due 

to the prolonged decrease in network inhibition and the increase in spontaneous activity (Turrigiano 

et al., 1998). This group found that following treatment across a 48-hour period, mEPSPs returned to 

baseline values. Similarly, suppressing network excitability by overexpressing inward-rectifying 

potassium channels or application of the sodium channel blocker tetrodotoxin (TTX) was found to 

increase synaptic mEPSPs (Burrone et al., 2002; Gainey et al., 2009). Together these results indicate a 

Figure 1-7 | Conceptual illustration of synaptic scaling. 
A) Schematic depiction of individual synapses (●). LTP of one 

input increases postsynaptic firing (●), homeostatic scaling will 

reduce the strength of both potentiated (●) and non-

potentiated (●) synapses, to restore firing rate to baseline 

levels. B) Global increases (TTX) or decreases (Bic) shift the 
excitation of cultured neurons. C) sliding threshold for LTP and 
LTD induction. Increases or decreases in activity shift the 
threshold to promote LTD or LTP, respectively.  
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mechanism for compensatory, bi-directional control over cell excitability (Figure 1-7B). However, if 

Hebbian plasticity acts to increase or decrease the strength of individual inputs, and homeostatic 

plasticity acts to move a neuron back towards its original state, how does homeostatic plasticity avoid 

erasing the encoded Hebbian information? Early insights theorised that changes in neuronal 

excitability may shift the threshold for the induction of plasticity. From this, the Bienenstock, Cooper 

and Munro (BCM) learning rule was developed and describes a model in which decreases in activity 

result in a reduced threshold for LTP — promoting synapse strengthening and making LTD harder to 

achieve (Bienenstock et al., 1982). Conversely, increases in activity are proposed to shift the threshold 

to favour LTD and promote LTP (Figure 1-7C), and vice versa. The BCM rule has been shown to be 

applicable in vivo, such that light deprivation shifts the threshold for promoting LTP in the visual 

cortex as a means to promote changes in synaptic efficacy with minimal stimulation (Kirkwood et al., 

1996). Many mechanisms have been thought to carry out homeostatic plasticity such as changes in 

the size of releasable presynaptic neurotransmitter vesicles (Murthy et al., 2001), release of 

neuromodulators from glial cells (Stellwagen and Malenka, 2006), as well as changes in the 

accumulation of glutamate receptors at the synapse (Turrigiano, 2008; Gainey et al., 2009; Pozo and 

Goda, 2010; Hou et al., 2011). 

 

 Metaplasticity 

 
As has been made clear, synaptic plasticity is not a unitary event. Alterations in synaptic efficacy, 

including but not limited to LTP, LTD, and homeostatic plasticity, are made not only at the synaptic 

level, but at the level of the dendrite (Williams et al., 2007b), the cell (Debanne, 2009), the memory 

trace or engram (Bocchio et al., 2017), and network (Kajiwara et al., 2019). Importantly, these 

mechanisms do not occur in isolation, and mounting evidence suggests that previous synaptic and 

cellular activity alters the expression of subsequent plasticity at each of these levels. This plasticity of 

synaptic plasticity has been termed Metaplasticity, and is described as prior cellular or synaptic 

activity or inactivity which elicits a persistent change in the state of the synapse, altering the outcome 

of subsequent potentiation, depression, or expression of memory (Abraham, 2008). While 

metaplasticity appears most obvious when it occurs in the absence of altered synaptic efficacy, 

metaplastic modifications may also be induced by long-lasting changes, such as those occurring 

during LTP and LTD (Abraham and Bear, 1996). Early work showed that synaptic activity which, by 

itself, does not produce long-lasting changes, significantly influenced the degree of subsequent 

plasticity (Huang et al., 1992) such that the degree of LTP was significantly reduced. Further, both 

homeostatic plasticity (Kirkwood et al., 1996; Guo et al., 2012), and behavioural learning have been 
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shown to alter the induction of LTP (Tsvetkov et al., 2002; Whitlock et al., 2006), indicating that both 

non-hebbian and Hebbian-like mechanisms contribute to aspects of metaplasticity. Many of the 

mechanisms which have been found to influence metaplasticity involve the activation of NMDAR 

(Rebola et al., 2011), metabotropic glutamate receptors (mGluR; Gisabella et al., 2003), Ca2+ (Mahajan 

and Nadkarni, 2019), and protein phosphatases (Kato et al., 1999) and kinases (Gisabella et al., 2003; 

Young et al., 2006; Zorumski and Izumi, 2012). Importantly, metaplasticity has also been observed 

following application of neuromodulators, including dopamine (Otani et al., 2003; Sheynikhovich et 

al., 2013; Otani et al., 2015), nicotine (Huang et al., 2013), serotonin (Inoue et al., 2014), 

noradrenaline (Inoue et al., 2013; Keralapurath et al., 2014), BDNF (Rivera-Olvera et al., 2016), and 

tumour necrosis factor-α (TNF-α; Singh et al., 2019). In many cases these molecules act to prime 

synapses in order to enhance or suppress the induction of LTP, by shifting the threshold such that 

induction of LTP or LTD is more or less likely to occur. 

 

1.3. Mechanisms Governing the Expression of Cellular Memory 

 

So far, this review has aimed to summarise the characteristics which govern the expression of 

learning and memory at the cellular level. Early observations postulated that repetitive synaptic 

activity governs the metabolic change at the synaptic and cellular level. Research henceforth further 

characterised the role of high- or low-frequency stimulation in governing the synaptic potentiation 

and depression observed. Metabolic growth, initially postulated by (Hebb, 1949) has been further 

defined through the necessity of protein synthesis in regulating the persistence of memories, and 

gene expression in consolidating these changes. It is well understood that the genes and proteins 

expressed following the induction of LTP or LTD are strictly regulated, and govern discrete functions, 

each acting to directly or indirectly alter the postsynaptic potential. Henceforth, this review aims to 

address key questions which remain unanswered, firstly, what events occur during the initiation of 

LTP or LTD? Secondly, in what way are synapses altered following LTP or LTD, and how do these 

changes manifest into a persistent, stable memory? Thirdly, what is the role of growth factors in the 

induction and persistence of LTP? And lastly, how are these mechanisms altered in neurological 

diseases?  

 To answer these questions, I aim to characterise the relative contribution of proteins or 

molecules I believe to be innately linked to the expression of memory. Here, mediators, messengers, 

modifiers, and modulators form the foundations of a hierarchy, each contributing a specific set of 

functions in the expression of plasticity.  
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1.4. Mediators of Plasticity 

 

Following the observations of the electrophysiological properties of LTP, LTD and homeostatic 

plasticity, research began to define the underlying molecular mechanisms which permit these 

changes. Much overlap exists between the proteins or processes responsible for many of the 

mechanisms which affect synaptic strength, however for the purpose of this literature review much 

emphasis will be placed on those which govern LTP. Consequently, I have defined four distinct 

categories of processes or molecule classes, which I believe to contribute to the expression of late LTP 

(LTP3) and plasticity in distinct ways. Mediators in this sense are defined as proteins or molecules, 

which are necessary for, and are directly involved in the mechanisms that lead to a change in synaptic 

strength. Genetic or chemical elimination of these mediators results in complete, or near complete 

obstruction of LTP, severely impairing plasticity, and ultimately affecting the expression of learning 

and memory.  

 

 NMDA Receptors 

 
NMDA receptors (NMDAR) are ionotropic glutamate receptors with unique and extensive roles in 

mediating many of the changes during synaptic plasticity. NMDAR are heterotetrameric, formed from 

seven differentially expressed subunits: GluN1, which undergoes extensive splicing to produce eight 

variants (GluN1-1A–GluN1-4A & GluN1-1B–GluN1-4B), four GluN2 (GluN2A–GluN2D), and two GluN3 

(GluN3A–GluN3B; Iacobucci and Popescu, 2017), produced from separate genes (GRIN1-3). 

Structurally, NMDAR are formed from the association of an obligatory GluN1 subunit with various 

GluN2 subunits to yield four major subtypes: GluN1/GluN2A, GluN1/GluN2B, GluN1/GluN2C, 

GluN1/GluN2D, characterised by distinct but overlapping regional and developmental expression 

patterns (VanDongen, 2008; Figure 1-8). Minor populations have also shown the association of GluN1 

with GluN2A and GluN2B or GluN2C, as well as GluN1 with GluN2B and GluN2D, within the same 

receptor (Stephenson, 2001; Rauner and Köhr, 2011; Bhattacharya et al., 2018). Variations in GluN1 

and GluN2A/2B compositions at the synapse regulate both the development of neural circuits, as well 

as the expression of plasticity (Sheng et al., 1994). The role of GluN3-containing subunits is not as 

clear; however, they appear to form functional receptors with GluN1, but not GluN2 subunits, 

primarily expressed during a short window of development (Pachernegg et al., 2012; Pérez-Otaño et 

al., 2016). 
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Following the characterization of NMDAR structure, 

many sought to determine the contribution of NMDAR to 

synaptic activity. It was Collingridge et al., (1983) who first 

described the sensitivity of hippocampal tissue to excitatory 

amino acids such as L-glutamate, and further described the 

dependence of NMDAR during LTP, finding that the NMDAR 

antagonist APV blocked LTP at Schaffer-collateral synapses. 

Around the same time, Lynch et al., (1983) described the 

importance of intracellular calcium (Ca2+), by injection of the 

calcium chelator EGTA into the postsynaptic cell. This was 

found to significantly impair the induction of Schaffer 

collateral–CA1 LTP, indicating Ca2+ influx as a crucial mediator 

of downstream processes governing the expression of LTP in 

these cells. Importantly, later contributions found that 

NMDAR are highly permeable to both sodium (Na+) and Ca2+ 

ions (Müller and Connor, 1991; Jahr and Stevens, 1993; 

Schneggenburger et al., 1993; McBain and Mayer, 1994; Garaschuk et al., 1996; Yu and Salter, 1998), 

and therefore may contribute significantly to processes of plasticity.  

From this evidence, it seemed reasonable to propose an NMDAR-dependent influx of 

postsynaptic Ca2+ as a mechanism through which synaptic changes could occur. Therefore, following 

these results, a series of papers were published which further delineated the details of this. In 1984, 

Nowak et al., showed the importance of a Mg2+-dependent NMDA receptor blockade, such that in 

conditions in which extracellular Mg2+ was reduced, the NMDA receptor response was largely 

facilitated (Nowak et al., 1984). In 1985, Wigström and Gustafsson showed that blockade of 

postsynaptic inhibition by use of GABA inhibitors strongly facilitated LTP (Wigstrom and Gustafsson, 

1985a), while Malinow and Miller showed that hyperpolarization of the postsynaptic membrane 

reversibly blocked LTP (Malinow and Miller, 1986). These properties suggest a ‘membrane voltage-

dependent’ role of postsynaptic depolarization in regulating LTP. In this sense, NMDAR is thought to 

act as a coincident detector for activity sufficient to promote LTP and compute the Hebbian 

conditions necessary for associative memory. It has been proposed that ionic non-NMDAR channels 

(passing Na+ and K+), or changes in the level of postsynaptic inhibition, is sufficient to provide 

postsynaptic depolarization and Mg2+ expulsion from the NMDAR channel, while consecutive 

presynaptic neurotransmitter release provides activation of NMDAR itself, promoting Ca2+ influx 

(Wigstrom and Gustafsson, 1985b). Later influential work by Morris et al., (1986) further tied NMDA 

Figure 1-8| Schematic diagram of 
NMDAR Structure. Stylized diagram 

of GluN1 (■) and GluN2A (■) and 

GluN2B (■)-containing NMDAR 

showing amino terminal domains 
(ATD), ligand binding domains (LBD), 
transmembrane domains (TMD), and 
C-terminal domains (CTD). 
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receptor activation directly to memory formation during a spatial learning task. Chronic 

intraventricular infusion of APV was found to selectively impair both the memory formation and the 

expression of LTP. More conclusive evidence from genetic ablation of CA1-specific NMDAR found a 

distinct absence of LTP at these synapses and an impairment in spatial memory (Tsien et al., 1996), 

suggesting NMDA receptors as an enticing mechanism of action in permitting the changes observed 

during long-term potentiation and memory.  

 

 AMPA receptors 

 

In addition to NMDAR, many glutamatergic synapses house an abundant population of AMPA 

receptors. AMPA receptors comprise the primary excitatory receptor in the CNS, belonging to a class 

of ionotropic glutamate receptors further divided based on the individual subunit compositions, these 

include AMPA (GluA1–GluA4), kainate (GluK1–GluK5), delta (δ) receptors (GluD1 and GluD2), as well 

as NMDAR (Traynelis et al., 2010). AMPAR are composed of four subunits by a dimer of two identical 

homo- or heterodimers that together form a tetramer. Each subunit contains one ligand-binding site, 

and upon binding the subunit undergoes a conformational change allowing the channel to open and 

ions to flow through the pore (Mayer, 2005). The structure of each subunit can be divided into a large 

extracellular amino-terminal domain (ATD), ligand-binding domain (LBD), transmembrane domain 

(TMD) forming the pore, as well as a cytoplasmic carboxy-terminal domain (CTD, Figure 1-9). GluA1 

and GluA4 (and a splice variant of GluA2, GluA2L) contain long carboxy-terminal domains, while these 

are short in GluA2 and GluA3 subunits (Diering and Huganir, 2018). These carboxy-terminal domains 

allow the subunits to interact with specific cytoplasmic and transmembrane proteins, due to the 

presence of phosphorylation, palmitoylation, ubiquitination, and nitrosylation sites along its length 

(Figure 1-9A). 

The synthesis of AMPAR subunits and the subsequent assembly into functional receptors is a 

highly regulated process and occurs through two possible routes. The primary method occurs through 

the canonical synthesis and trafficking pathway (Hangen et al., 2018; Figure 1-10). This process begins 

in the soma, where AMPAR subunits are synthesised and assembled in the endoplasmic reticulum 

(ER), first forming dimers, followed by the formation of tetramers (Herguedas et al., 2013). Before 

release from the ER, AMPAR undergo a form of quality control through their associations to AMPAR-

interacting proteins (Rubio and Wenthold, 1999; Hebert and Molinari, 2007), dependence on external 

signals such as Ca2+ (Lu et al., 2014; Pick et al., 2017; Hangen et al., 2018), and detection of 

conformational state (Penn et al., 2008), and edited RNA motifs (Greger et al., 2002). In the neuronal 

soma, AMPAR traffic from the ER to Golgi apparatus. Here, AMPAR may undergo extensive 
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posttranslational modifications (PTM), such as glycosylation, palmitoylation, and phosphorylation 

(Jiang et al., 2006). These PTMs are dynamic, reversible, and sensitive to alterations in synaptic 

activity (Jiang et al., 2006). From here, AMPAR may undergo transport from the soma towards target 

sites throughout the dendrites (Passafaro et al., 2001), or delivered directly to the somatic cell surface 

to undergo lateral diffusion (Borgdorff and Choquet, 2002; Adesnik et al., 2005). Transport 

throughout the dendrites occurs under the guidance of chaperone proteins such as kinesin and 

myosin motor proteins (Wang et al., 2008; Hoerndli et al., 2013), and the Ca2+/calmodulin-dependent 

kinase (CaMKII; Hoerndli et al., 2015; Hangen et al., 2018), along microtubules into dendrites and 

spines. 

 Alternatively, AMPAR may also undergo synthesis at local sites within the dendrites (Torre 

and Steward, 1992; Kacharmina et al., 2000; Grooms et al., 2006; Sutton and Schuman, 2006). This 

method still involves the translation of mRNA by polyribosomes and ER located at the base of 

synapses (Steward and Levy, 1982; McCarthy and Milner, 2003; Ainsley et al., 2014), as well as 

specialized spine ER, called the spine apparatus (Frotscher and Deller, 2005; Jedlicka et al., 2008). 

However, as dendrites mostly lack the Golgi apparatus (Krijnse-Locker et al., 1995; Torre and Steward, 

Figure 1-9 | Schematic diagram of AMPAR Structure. A) shows sites present in GluA1-4 subunits, 

including the amino terminal domain (ATD, ■), ligand binding domains S1 (■) and S2 (LBD, ■), 

transmembrane domain (TMD, ■), and the C-terminal domain (CTD) of GluA1 (■), GluA2 (■), GluA3 (■) 

and GluA4 (■). Post-translational modifications include: phosphoserine (pS), phosphothreonine (pT), 

phosphotyrosine (pY), ubiquitinated lysine (Ub), nitrosylation (Ni). Scale bar: amino acids. B) Shows a 

stylized example diagram of the GluA1- (■) and GluA2 (■)-containing heterodimers forming the 

tetrameric AMPAR structure. 
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1996), AMPAR instead pass through a modified Golgi-related compartment, called the Golgi outpost 

(Horton and Ehlers, 2003; Horton et al., 2005). Conversely, recent evidence suggests AMPAR may 

undergo Golgi-independent trafficking, instead directly incorporating into the recycling endosome, 

following exit from the ER (Bowen et al., 2017; Figure 1-10). These mechanisms likely underlie distinct 

functional roles mediating the persistence of LTP (Vickers and Wyllie, 2007; Hangen et al., 2018). 

 

 GluA1 

 

GluA1 (also referred to as GluR1 and GluRA) is undoubtedly the most studied AMPAR subunit in the 

context of synaptic plasticity and learning and memory. Considering its expression throughout many 

structures of the CNS, including the cortex, amygdala, cerebellum, thalamus, brainstem and the 

highest levels in the CA1–CA3 and DG regions of the hippocampus, it is clear to see why (Breese et al., 

1996). GluA1 mRNA has been found extensively within both excitatory principal cells as well and 

inhibitory interneurons (Geiger et al., 1995), however expression has also been observed in GFAP-

positive glial cells (Patneau et al., 1994; Matthias et al., 2003), as well as oligodendrocytes (Zonouzi et 

al., 2011; Evonuk et al., 2020). GluA1 has been shown to undergo both canonical de novo synthesis as 

well as activity-dependent local translation (Ju et al., 2004; Grooms et al., 2006; Cajigas et al., 2012), 

before highly regulated trafficking to the cell surface and synapse. GluA1 primarily forms 

heterodimers with GluA2 to form GluA1/2 AMPAR comprising approximately 80% of the total AMPAR 

population (Lu et al., 2009). However, it has also been shown to form GluA1 homomeric AMPAR (Lu 

et al., 2009) comprising 8% of the AMPAR population (Wenthold et al., 1996), yet the presence and 

contribution of there AMPAR is highly debated in the literature.  

The differences in AMPAR subunit make-up impacts its trafficking and retention dynamics 

from the rough ER. While each subunit exhibits similar core structures, differences in the C-terminal 

domain (CTD) determine their trafficking dynamics in response to activity. Primarily, the long CTD 

present in the GluA1 subunit permits phosphorylation by activity-driven proteins such as 

Ca2+/calmodulin kinase (CaMKII), and protein kinase A (PKA), PKC and PKG to regulate the trafficking 

and stabilization of GluA1-containing AMPAR (Hayashi et al., 2000), by facilitating associations with 

crucial chaperone and scaffold proteins such as PSD-95/Drosophilla discs large/zona occludens-1 

(PDZ) domain proteins (Shi et al., 2001; Anggono and Huganir, 2012), including Synapse-associated 

protein 97 (SAP97; Leonard et al., 1998) A-kinase anchoring protein 79 (AKAP79; Colledge et al., 

2000), and Cornichon Family AMPA Receptor Auxiliary Proteins 2/3 (CNIH2/3; Herring et al., 2013), 

transmembrane AMPA receptor regulatory proteins (TARPs) γ8 and γ2 (Diering and Huganir, 2018), 

and protein 4.1N (Shen et al., 2000).  
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Figure 1-10 | Regulated AMPAR synthesis and trafficking methods. Schematic diagram shows both 

A) canonical and B) local mechanism governing AMPAR synthesis and trafficking. A) Following i) synthesis a 
within the soma AMPAR subunits exit the ER and pass though the Golgi apparatus, here AMPAR can be ii) 
exocytosed at the somatic cell surface and undergo lateral diffusion or iii) are trafficked within dendrites 
towards the synapse, where AMPAR are incorporated into vi) recycling endosomes before v) trafficking to the 
cell surface. Alternatively, B) AMPAR subunits may be synthesised locally at i) polyribosomes and ER or ii) 
spine apparatus present within the dendrites and spine. AMPAR may iii) pass through the Golgi apparatus or 
vi) incorporate directly into the recycling endosome before v) trafficking to the cell surface. 
 

 

These associations permit GluA1 to contribute prominently to LTP through its activity-

dependent regulation and delivery to potentiated synapses (Hayashi et al., 2000; Kakegawa et al., 

2004; Williams et al., 2007a; Zhang et al., 2015; Yamasaki et al., 2016; Coombs et al., 2017; Bissen et 

al., 2019; Figure 1-9A). Conversely, inclusion of the shorter CTD present in GluA2 and GluA3 subunits 

results in longer retention within the ER, compared to AMPAR containing GluA1 subunits (Greger et 

al., 2003). Here, trafficking primarily occurs in a constitutive manner, thought to replace GluA1-

containing AMPAR at the synapse (Araki et al., 2010; Casimiro et al., 2013). This trafficking is 

permitted through associations with PDZ protein such as N-ethylmaleimide sensitive factor (NSF; 

Nishimune et al., 1998), protein interacting with C-kinase 1 (PICK1; Lin and Huganir, 2007), and 

glutamate receptor-interacting protein 1 (GRIP1; Dong et al., 1997; Figure 1-9A). Within the CTD of 

GluA1 are six known phosphorylation sites: serine818 (Ser-818; Boehm et al., 2006) and threonine840 

(t840; Lee et al., 2007) by protein kinase C (PKC), serine831 (Ser-831) by PKC and CaMKII (Barria et al., 

1997a), serine567 (s567) by CaMKII, serine845 (s485) by PKA (Roche et al., 1996), and serine863 
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(s863) by P21-Activated Kinase 3 (PAK3; Park, 2018a; Figure 1-9A). Phosphorylation at these sites 

modifies the properties of the subunit by increasing channel conductance, increasing mean open 

probability, or permitting the trafficking of GluA1 to the cell surface or synapse (Hayashi et al., 2000; 

Lee et al., 2000). It has been generally accepted that phosphorylation of Ser-845 controls trafficking 

and retention of GluA1-contatining AMPAR, as well as enhancing channel open-probability to 

facilitate either LTP or homeostatic up-scaling (Banke et al., 2000; Esteban et al., 2003; Oh et al., 

2006; Lee et al., 2010a), while dephosphorylation of Ser-845 has been shown to facilitate receptor 

endocytosis and LTD (Lee et al., 2010a). Conversely, phosphorylation of GluA1 at Ser-831 has been 

previously thought to enhance LTP through changes in single channel conductance (Derkach et al., 

1999), which may now be understood as the trafficking of higher conductance Ca2+-permeable 

AMPAR (Kim and Ziff, 2014; Yang et al., 2018; Park et al., 2019; Summers et al., 2019).  

 

Following synthesis, trafficking of GluA1 

to the cell membrane has been shown to be 

necessary for memory formation underlying fear 

conditioning (Rumpel et al., 2005), spatial 

memory (Sanderson et al., 2010), experience-

dependent synaptic activity (Takahashi et al., 

2003; Harms et al., 2005), and in both in vitro and 

in vivo LTP (Shi et al., 1999; Williams et al., 2007a; 

Zhang et al., 2015). While it is generally accepted 

that GluA1-containing AMPAR are delivered to the 

cell surface in an activity-dependent manner, the 

locus of exocytosis is greatly contested. Several 

studies have suggested that GluA1-containing 

AMPAR are initially inserted into the extrasynaptic 

dendritic membrane before laterally diffusing into 

the spine and PSD (Choquet and Triller, 2003; 

Adesnik et al., 2005; Ashby et al., 2006; Yang et al., 2008; Makino and Malinow, 2009; Figure 1-11) . 

However, it has also been suggested that AMPAR are inserted directly into both spines and 

perisynaptic sites lateral to the PSD (Yang et al., 2008; Kennedy et al., 2010). The dependence on 

these mechanisms has been deeply explored in a recent publication examining the role of AMPAR 

trafficking in LTP and memory formation (Penn et al., 2017). By cross-linking, and immobilizing cell 

surface GluA1/2-containing AMPAR, this group found that immobilization of surface pools of AMPAR 

Figure 1-11 | Model of local AMPAR 
trafficking at the synapse. AMPARs enter the 

synapse by i) exocytosis at extrasynaptic sites, and 
ii) diffuse towards the perisynaptic domain and 
enter the PSD (iii). Here AMPAR may be exchanged 
directly by constitutive cycling (Gerges et al., 
2006), or iv) diffuse out of the synapse to 
extrasynaptic sites to exit by endocytosis (v).  
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prevents both the induction and maintenance of LTP, as well as impairing the acquisition of 

contextual learning in vivo. Interestingly, permitting the mobility of surface receptors but restricting 

the diffusion of solely exocytosed AMPAR permits typical early induction of LTP, but impaired late 

phase consolidation. These results indicate that there may exist multiple steps in the regulation of 

synaptic AMPAR during LTP, governing distinct phases of potentiation.  

 Furthermore, a recent single-molecule trafficking study has sought to describe an alternate 

mechanism for AMPAR trafficking. (Morise et al., 2019) posit that AMPAR are unlikely to be formed as 

whole, functional tetrameric units within the ER, instead as individual monomeric AMPAR subunits 

which are trafficked to the cell surface, where they exist as monomers and dimers, rapidly (100-200 

ms) exchanging in and out of tetrameric AMPAR assemblies, and able to diffuse rapidly in and out of 

the synapse, more readily than tetramers. Interestingly, GluA1/2 heterodimers and heterotetramers 

were found to be more stable than GluA1 homodimer and homotetramers. The formation of these 

complexes was found to be dependent on the interactions of N-terminus amino terminal domain 

(ATD) and C-terminal association with TARPγ2. Importantly, GluA1 homotetramers were capable of 

forming functional receptors, present at synapses and highly permeable to Ca2+ (Morise et al., 2019). 

 

 Calcium-Permeable AMPA Receptors 

 

Calcium-permeable AMPA receptors (CP-AMPAR) are recognized as a rather elusive phenomenon 

within the memory and synaptic literature due to difficulties in detection (Shepherd, 2012), and their 

possibly transient nature, both developmentally (Gray et al., 2007; Ho et al., 2007; Lu et al., 2007; 

Sanderson et al., 2016), and following activity (Shi et al., 2001; Plant et al., 2006; Park et al., 2016; 

Morise et al., 2019). Regardless, CP-AMPAR have been detected throughout the CNS, including the 

hippocampus (Katsumaru et al., 1988; Koh et al., 1995), motor and auditory cortices (Otis et al., 1995; 

Angulo et al., 1999), amygdala (Mahanty and Sah, 1998), dorsal horn (Albuquerque et al., 1999), 

cochlear (Gardner et al., 1999; 2001), basal ganglia (Götz et al., 1997), and retina (Mørkve et al., 

2002). 

CP-AMPAR are formed through two possible mechanisms; firstly GluA1/2-containing AMPAR 

have been found to be permeable to Ca2+ under certain conditions. GluA2 subunit mRNA is subject to 

RNA editing by the ADAR2 enzyme (Horsch et al., 2011). ADAR2 converts the codon for glutamine 

(Gln607; Q) to arginine (Arg607; R). This editing restricts the flow of Ca2+ when in complexes with 

GluA1 and GluA3 subunits (Wright and Vissel, 2012), while unedited subunits permit Ca2+influx. 

Interestingly, the presence of unedited GluA2 appears to accelerate GluA2 trafficking to the cell 

surface, while edited GluA2 AMPAR appear to show slower cycling rate, forming a more stable 
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recycling pool for later AMPAR formation (Greger et al., 2002). As GluA2 editing occurs in greater than 

95–99% of all GluA2 mRNA (Isaac et al., 2007; Pachernegg et al., 2015), the contribution of unedited 

GluA2 in plasticity is unknown. Of note, a mouse line with genetically reduced Q/R editing showed a 

loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell 

spine density, as well as learning and memory impairments (Konen et al., 2020), indicating that 

chronic expression of GluA2-containing CP-AMPAR appears detrimental to neuronal health and 

plasticity. Alternatively, CP-AMPAR can be formed through the association of solely GluA1 subunits, 

forming homomeric GluA1 receptors (Rozov et al., 2012). The complete lack of GluA2 in this 

composition renders the receptor Ca2+-permeable and inwardly rectifying, such that the outward ion 

flow is minimal, and at depolarised holding potentials (+40mV), CP-AMPAR exhibit a voltage-

dependent block by endogenous polyamines. The rectification index (RI) is measured as the ratio of 

the AMPAR current observed between -60mV to that at +40mV, such that greater rectification 

displays a decrease in the RI. The presence of GluA2 is the determinant for this characteristic, if GluA2 

is present, rectification of the AMPAR current does not occur at positive potentials, as Q/R editing 

renders the pore insensitive to polyamine blockade (Hayashi et al., 2000; Liu and Cull-Candy, 2000; 

Henley and Wilkinson, 2016). In addition to Ca2+-permeability, CP-AMPAR are unique for displaying 

extremely fast kinetics and high conductance (Verdoorn et al., 1991; Geiger et al., 1995; Grosskreutz 

et al., 2003),  

 

While GluA1 homomers are highly expressed during early periods of development (Pickard et al., 

2000), in the adult CNS they appear absent from synapses, instead restricted to extrasynaptic or 

intracellular stores during basal conditions in adult animals (Lu et al., 2009; Yang et al., 2010; Jaafari 

et al., 2012). Yet, they have been found to contribute a significant proportion of AMPAR transmission 

following synaptic activity (Rozov et al., 1998) or the induction of LTP (Park et al., 2016; Plant et al., 

2006; Guire et al., 2008; Lu et al., 2007; Yang et al., 2010; Yamanaka et al., 2017; Cepeda-Prado et al., 

2019). However, these results have been contested by few groups, finding little to no contribution of 

GluA1 homomers to LTP (Adesnik et al., 2007; Gray et al., 2007). Regardless, genetic ablation of GluA1 

in the hippocampus results in complete disruption of LTP at CA1 synapses (Zamanillo et al., 1999; 

Mack et al., 2001; Jensen et al., 2003; Selcher et al., 2012; Terashima et al., 2017), with animals 

experiencing disruptions in some (Reisel et al., 2002; Schmitt et al., 2004; Sanderson et al., 2007), but 

not all (Zamanillo et al., 1999) learning and memory processes. 

Emerging bodies of evidence suggest CP-AMPAR play an important role in synaptic plasticity 

and memory formation (Man, 2011). Genetic knockout of GluA2 subunits in the mouse hippocampus 

has been found to enhance measures of both LTP and hippocampus-dependent learning tasks, due to 
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the increased likelihood that GluA1 subunits will associate to form homomers in the absence of GluA2 

(Asrar et al., 2009; Wiltgen et al., 2010). A recent publication reported that spaced but not 

compressed theta burst stimulation (TBS) LTP protocols lead to the insertion of CP-AMPAR in a 

protein kinase A (PKA)-dependent manner (Park et al., 2016), while many others report similar 

findings in response to various LTP stimulation paradigms (Guire, et al., 2008; Lu et al., 2007 

Yamanaka et al., 2017 Plant et al., 2006; Purkey et al., 2018), as well as experience-dependent 

plasticity in vivo (Clem and Barth, 2006; Williams et al., 2007a; Clem et al., 2008; Conrad et al., 2008; 

Clem and Huganir, 2010; Wen and Barth, 2012; Hong et al., 2013; Zhang et al., 2016; Ouyang et al., 

2017; Suyama et al., 2017; Takemoto et al., 2017; Whitehead et al., 2017; Torquatto et al., 2019). 

However, some groups have provided evidence to suggest that CP-AMPAR do not govern all forms of 

LTP (Gray et al., 2007; Guire, et al., 2008; Adesnik et al., 2007; Purkey et al., 2018), and may be highly 

regulated by animal species and developmental age (Lu et al., 2007). 

The trafficking and retention of CP-AMPAR at the synapse is under strict influence of activity-

dependent phosphorylation. Phosphorylation of the Ser-831 site by CaMKII (Derkach et al., 1999) and 

PKC (Roche et al., 1996; Boehm et al., 2006) as well as Ser-818, also by PKC (Lin et al., 2009; Jenkins et 

al., 2014), regulates the trafficking of CP-AMPAR to the cell surface, while phosphorylation at Ser-845, 

a target of PKA phosphorylation, has been shown to be crucial for stabilization of CP-AMPAR at 

perisynaptic sites (He et al., 2009). Alternatively, dephosphorylation of Ser-845 during LTD removes 

perisynaptic AMPAR from the cell surface, underlying synaptic depression (He et al., 2009; Sanderson 

et al., 2012), yet insertion of CP-AMPAR may also underlie the induction of LTD, through low-

frequency Ca2+ influx (Sanderson et al., 2016). Additionally, expression of the catalytic domain of the 

kinase CaMKI by viral vector in hippocampal neurons has been shown to promote the surface 

expression of CP-AMPAR (Guire et al., 2008), while the scaffold protein TARPγ2 has been shown to 

increase CP-AMPAR pore permeability and channel conductance through attenuation of the 

polyamine block (Panchenko et al., 1999; Soto et al., 2014). 

 

Following accumulation at the PSD, CP-AMPAR are rapidly internalized and have been found to be 

quickly replaced by GluA2-containing AMPAR in an activity-dependent manner (Plant et al., 2006; 

Yang et al., 2010; Mattison et al., 2014). Preventing the interaction between GluA2 and trafficking 

proteins, or an absence of synaptic activity post-LTP induction prevents this switch, resulting in 

subsequent LTP mediated by CP-AMPAR. Further, knockout of GluA1 and GluA2 protein compromised 

initiation or completion of this synaptic exchange, respectively (McCormack et al., 2006), which may 

indicate distinct phasic roles for these subunits.  
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Importantly, the expression of CP-AMPAR at the synapse has been shown to promote a 

‘labile’ synaptic state (Hong et al., 2013; Wright et al., 2020), such that activity governed through CP-

AMPAR may underlie expansion and stabilization of the spine cytoskeleton during potentiation (Kopec 

et al., 2007; Fortin et al., 2010), while the synapse remains sensitive to depotentiation (Yang et al., 

2008) until replaced by GluA2-containing Ca2+-impermeable (CI-AMPAR; Wright et al., 2020). Through 

this, it is thought that CP-AMPAR mediate the induction of LTP by initially trafficking to perisynaptic 

regions and further localizing to the PSD. To account for the rapid delivery of GluA1-containing 

AMPAR to the PSD, is thought that the accumulation of these AMPAR initially occurs through lateral 

diffusion from extrasynaptic and dendritic membrane (Makino and Malinow, 2009; Petrini et al., 

2009) and that later exocytosis of AMPAR acts to replenish these surface pools (Williams et al., 

2007a). However, this finding has been contested as increases in GluA1 (but not GluA2) have been 

found at the synapse following in vitro LTP induction, followed by an increase in GluA2-containing 

AMPAR (Tanaka and Hirano, 2012), possibly supporting the notion for rapid GluA1 insertion and 

replacement of CP-AMPAR with GluA2-containing AMPAR.  

While CP-AMPAR have been shown to be directly involved in the induction of many forms of 

LTP, CP-AMPAR may also contribute to supplementary mechanisms which underlie the formation of 

new synapses, through the unsilencing of silent synapses. Morita et al., (2013) have previously shown 

that immediately following the induction of LTP, previously AMPAR-silent synapses show complete or 

very strong inward rectification, indicating the incorporation of solely CP-AMPAR. A further 15 

minutes of baseline stimulation results in a gradual decrease in rectification but the appearance of 

AMPA receptor-mediated EPSCs, indicating the insertion or replacement of CP-AMPAR with GluA2-

containing AMPAR. Whether this indicates an ‘and/or’ mechanism of CP-AMPAR during LTP is 

unknown. However, the presence of CP-AMPAR has been further linked to the development of 

immature stubby, and thin spines following cocaine withdrawal-induced synapse unsilencing (Wright 

et al., 2020). This may indicate a strong role for CP-AMPAR in synapse formation, yet CP-AMPAR also 

appear to have a role in the growth and maturation of existing spines (Fortin et al., 2010). 

 Further, in addition to Hebbian plasticity, CP-AMPAR may also regulate many of the 

mechanisms regulating non-Hebbian homeostatic plasticity (Lissin et al., 1998; Thiagarajan et al., 

2005; Goel et al., 2006; Aoto et al., 2008; Hou et al., 2008; Lee, 2012; Soares et al., 2013; Werner et 

al., 2017), an effect which has been observed by increases in solely surface GluA1 protein, or AMPAR 

rectification. However, there is some evidence that GluA2 is also involved in certain conditions 

(Wierenga et al., 2005; Anggono et al., 2011). Beyond neurons, homomeric CP-AMPAR play a pivotal 

role in regulating Ca2+ transients in glial cells including hippocampal astrocytes and Bergmann glial 

cells in the cerebellum (Enkvist et al., 1989; Muller et al., 1992; Jabs et al., 1994; Porter and McCarthy, 



 28 

1995; Bezzi et al., 1998; Verkhratsky and Kirchhoff, 2007). Interestingly, CP-AMPAR have been shown 

to regulate neuron-glia LTP-like mechanisms (Ge et al., 2006), indicating a functional response to 

neurotransmitters released by neurons, mediated though CP-AMPAR. Together this research shows 

that the expression and regulation of CP-AMPAR in both a cell-type and activity-dependent manner 

may govern the expression of plasticity through a multitude of diverging mechanisms. 

 

 GluA2, GluA3, and GluA4 

 

While GluA1 is referred to as the plasticity-promoting AMPAR subunit, GluA2- and GluA3-containing 

AMPAR appear to take place as AMPAR which consolidate these changes. GluA1/2 heteromers are 

abundant in principal cells of the hippocampus, comprising a majority of pyramidal cell AMPAR 

(Wenthold et al., 1996). Similar to GluA1 homomers, their trafficking is predominantly regulated by 

the presence of the GluA1 C-terminal, and is therefore considered to be activity regulated, 

participating in the plasticity-promoting induction of LTP (Isaac et al., 2007). The presence of the 

GluA2 C-terminal domain can permit exit from the ER through association with the PDZ domain 

protein, Protein Interacting With PRKCA 1 (PICK1) and CaMKII, however it may also regulate the 

retention of GluA2-containing AMPAR within endosomal compartments, permitting initial increases in 

GluA1-containing AMPAR at the cell surface, before release of GluA2-containing and replacement of 

CP-AMPAR (Jaafari et al., 2012). Due to the presence of the edited Arginine residue, GluA2-containing 

AMPAR are predominately non-rectifying, and solely permeable to sodium (Na+) and potassium (K+). 

Therefore, the addition of GluA1/2 AMPAR is thought to promote NMDAR-dependent plasticity by 

contributing to increasing the size of the postsynaptic potential. Importantly, knockout of the GluA2 

gene (Gria2), results in enhanced LTP, fully governed by CP-AMPAR (Jia et al., 1996; Mainen et al., 

1998; Meng et al., 2003). Interestingly, these animals express intact LTD, depotentiation, and basal 

synaptic transmission, until additional knockout of the GluA3 (Gria3) gene. Double Gria2-/-/Gria3-/-

knockout animals show significantly reduced basal synaptic transmission and impaired LTD and 

depotentiation, while LTP remains enhanced (Meng et al., 2003). Although LTP is enhanced GluA2 

knockout animals, reduced performance on spatial working memory and spatial reference learning 

tasks have also been observed (Shimshek et al., 2006) 

As mentioned above, the presence of the GluA1 C-terminal domain governs the activity-

dependent trafficking of GluA1/2-containing AMPAR during plasticity. Replacement of the GluA1 CTD 

with the CTD of GluA2 has been shown to impair LTP, while replacement of GluA2 CTD with that of 

GluA1 has been shown to impair NMDAR-dependent LTD (Zhou et al., 2018). Using genetic 

overexpression of Gria1 and Gria2, Shi et al., (2001) has further examined the contribution of GluA1-3 
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in activity-dependent and constitutive trafficking. Following the induction of LTP, homomeric GluA1-

containing AMPAR were shown traffic primarily to previously silent synapses. Overexpression of 

GluA2, and formation of GluA2 homomers showed synaptic delivery in the absence of activity, 

occurring constitutively. Importantly, this shows that the presence of the CTD of GluA1- and GluA2 

AMPAR subunits dictates the trafficking characteristics of GluA1- and GluA2- containing AMPAR, such 

that GluA1 homomers and GluA1/2 heteromers are under primary control of the activity-regulated 

GluA1 CTD. On the other hand, AMPAR containing the GluA2 CTD and lacking the GluA1 CTD, such as 

GluA2 homomers and endogenous GluA2/3 heteromers are likely governed by constitutive trafficking 

to replace synaptic AMPAR. However, as GluA2 homomeric AMPAR do not occur naturally, GluA1/2-

containing AMPAR may in fact dictate an activity-regulated replacement of existing AMPAR. This has 

been described by (Liu and Cull-Candy, 2000) wherein activity at GluA2-lacking CP-AMPAR promotes 

the replacement of these AMPAR by non-rectifying GluA2-containing AMPAR.  

Similar to GluA1, GluA2 can undergo extensive post-translation modifications through 

phosphorylation occurring at s863 and s880 by PKC and t876 by Src family tyrosine kinases (Henley 

and Wilkinson, 2013). The phosphorylation state of many of these sites dictates the binding affinity of 

associated auxiliary proteins including SAP97, Glutamate Receptor Interacting Protein 1/2 (GRIP1/2), 

PICK1, postsynaptic density protein 95 (PSD95), and TARPγ2 and γ8 (Henley, 2003; Czöndör and 

Thoumine, 2013; Hanley, 2014b; Herguedas et al., 2019). Interestingly, synaptic activity through CP-

AMPAR has been shown to facilitate the replacement of CP-AMPAR by disrupting their interaction 

with GRIP1/2 and driving GluA2-containing AMPAR to the extrasynaptic membrane in a manner 

dependent on PICK1 (Liu and Cull-Candy, 2005), and lateral diffusion to the synapse in a manner 

dependent on NSF (Gardner et al., 2005). These results indicate that expression of GluA2-containing 

AMPAR is a dynamic process, involving both activity-dependent and constitutive mechanisms. 

 

While the role of GluA1- and GluA2-containing AMPAR are well documented, the role of GluA3-

containing AMPAR remains rather enigmatic. Next to GluA1/2, GluA2/3-containing AMPAR comprise 

the second most abundant heteromeric AMPAR in cortical principal cells, yet comprise only 10-30% of 

GluA1 and GluA2 levels (Geiger et al., 1995; Wenthold et al., 1996; Tsuzuki et al., 2001). Relative to 

GluA1-containing AMPAR, GluA3-containing AMPAR increase in expression throughout the 

hippocampus during development (Ritter et al., 2002). Likewise, in adult rats, approximately 80% of 

spines in the lateral amygdala are immunoreactive for GluA3, commonly following the same 

proportion as the NMDAR subunit GluN1 (Radley et al., 2007). Together, these allude to a role of 

GluA3-containing AMPAR in synapse maturity and stabilization. 
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GluA3-containing AMPAR do not contribute to canonical LTP, LTP-associated insertion of 

AMPARs, nor contextual fear memory (Meng et al., 2003; Humeau et al., 2007). However, in GluA1-

deficent mice, β-adrenergic signalling has been shown to convert low-activity GluA3-containing 

AMPAR into plasticity-promoting receptors in CA1 neurons, resulting in GluA3-dependent plasticity 

(Renner et al., 2017). Regardless, during basal conditions, GluA3-containing AMPAR may act to 

stabilize changes in AMPAR receptor surface expression through slow constitutive recycling and 

replacement of synaptic GluA1/2-containing AMPAR (Passafaro et al., 2001; Shi et al., 2001; Malinow 

and Malenka, 2002). Similar to GluA2, GluA3 shares binding domains for PICK1 and GRIP1/2 (Xia et al., 

1999; Silverman et al., 2007; Hanley, 2014), which regulate trafficking to the cell surface and 

stabilization within the synapse. In response to both LTD-dependent and constitutive endocytosis, 

interactions of the GluA2 CTD with the PDZ-domain protein PICK1 has been shown to be required for 

removal of GluA2/3-containing AMPAR from the cell surface (Kim et al., 2001). Mimicking GluA2 s880 

phosphorylation prevents interactions with GRIP1/2 and excludes GluA2/3-containing AMPAR from 

synapses, depressing transmission, and partially occluding LTD. On the other hand, preventing s880 

phosphorylation reduces the extent of LTD, indicating that s880 phosphorylation may disrupt GluA2 

and GRIP1/2 interactions, facilitate removal of these AMPAR from the synapse (Seidenman et al., 

2003), and promote their trafficking to and from recycling endosomes (Mao et al., 2010). 

Interestingly, both basal and LTD-dependent interactions with PICK1, and GRIP1/2 require the activity 

of PKC (Daw et al., 2000; Xia et al., 2000). While GluA1-containing AMPAR are thought to occupy the 

synapse by lateral diffusion from perisynaptic and extrasynaptic stores, some evidence suggests 

GluA3-containing AMPAR are inserted directly into the PSD (Gerges et al., 2006), supported by 

electron microscopy observations that GluA3-containing AMPAR predominately occupy the PSD, and 

lie more centrally within the PSD than GluA1-containing AMPAR (Radley et al., 2007; Jacob and 

Weinberg, 2015).  

  

Converse to GluA3, GluA4-containing AMPAR show the greatest expression during early development 

(Ritter et al., 2002; Henley and Wilkinson, 2016), expressed primarily in the cerebellum, but are 

absent from the majority of excitatory neurons in the adult brain  (Schwenk et al., 2014; Pelkey et al., 

2015). The CTD of GluA4 contains a PKA/PKC phosphorylation site at s842 (Esteban et al., 2003). 

During early development, phosphorylation of s842 regulates activity-dependent recruitment and 

stabilization of GluA4-containing AMPAR at the synapse (Gomes et al., 2007), and may also be 

regulated by TARPγ2, γ4 and γ8 (Semenov et al., 2012; Pierce and Niu, 2019), as well as GSG1L (Keifer 

et al., 2017) auxiliary proteins. This period of development coincides with a period where PKA, but not 

CaMKII is required for hippocampal LTP (Yasuda et al., 2003), likely implicating a developmental 
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switch in activity-dependent AMPAR subunits. Alternatively, spontaneous synaptic activity has been 

shown to deliver GluA4-containing AMPAR to previously AMPA-silent synapses, allowing non-

functional connections to be strengthened. These GluA4-containing AMPAR are later exchanged for 

GluA2 containing AMPAR in a manner requiring little neuronal activity (Zhu et al., 2000). However, 

following classical conditioning in freshwater pond turtles, GluA4 appears to show a predominant role 

in late phase consolidation of silent synapses (Mokin et al., 2007). Interestingly, parallels have been 

observed in the proportion of GluA4-containing AMPAR following spatial memory training in adult 

mice and classical conditioning in adult freshwater pond turtles, such that training increased both 

total and synaptic levels GluA4 (Keifer et al., 2008; Keihan Falsafi et al., 2012), while knockout of 

GluA4 impaired acquisition of spatial reference memory, with no effect on LTP or retention of spatial 

reference memory (Sagata et al., 2010). 

 The Role of Calcium 

 

Following NMDAR activation, it has been accepted that the postsynaptic NMDAR-dependent influx of 

calcium initiates the essential signalling cascades required for the expression of NMDAR-dependent 

LTP. Synaptic potentiation has been observed following uncaging of a calcium-loaded calcium chelator 

Nitr-5 (Malenka et al., 1988), and alternatively, lowering the bath concentrations of calcium has been 

shown to selectively inhibit LTP (Dunwiddie and Lynch, 1979). Further, the kinetics of Ca2+ transients is 

tightly linked to the outcome of plasticity, such that differing outcomes of potentiation between cells 

can be predicted by the Ca2+ transients observed by each individually, thus the initial magnitude of 

postsynaptic Ca2+ increase is a critical variable in controlling the strength and duration of potentiation 

(Malenka, 1991b; Ismailov et al., 2004). Further, compartmentalization of Ca2+ transients have also 

been observed which may assist in the input specificity of LTP. Endogenous Ca2+ within dendritic 

spines is low, allowing for rapid changes in concentration, while diffusion across the spine neck is 

negligible, preventing the spread of Ca2+-induced potentiation to neighbouring synapses (Sabatini et 

al., 2002). Crucially, Ca2+ gains its efficacy through the influence it has on downstream processes. 

Simply, Ca2+, through its association with calmodulin, is the activity-dependent link between synaptic 

activity and downstream enzymatic activation (Eccles, 1983; Bliss and Collingridge, 1993; Suzuki, 

1994; Malenka and Nicoll, 1999; Wu et al., 2006), and has therefore been defined as a key mediator 

in synaptic plasticity and potentiation. 
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 Calcium/Calmodulin-dependent Kinase II 

 

Following the discovery and identification of NMDAR and their role in plasticity, the field aimed to 

identify possible downstream targets of the NMDAR-dependent rise in intracellular Ca2+. One of these 

targets was found to be the Ca2+-dependent enzyme Ca2+/calmodulin-dependent kinase II (CaMKII; 

Lisman et al., 2002). The major isoforms of the CaMKII gene consist of the α and β subunits which 

form dodecameric holoenymes consisting of either one or both subunit types. An appealing property 

of this molecule is its ability to autophosphorylate target sites within itself to remain active (site t286 

on CaMKIIα subunits and t287 on CaMKIIβ subunits), even after intracellular Ca2+ has returned to 

baseline (Lisman, 1985). Mutation of this autophosphorylation site has been shown to not only 

prevent LTP but interfere with experience-dependent plasticity in vivo (Giese et al., 1998), while 

genetic CaMKII knockout mice showed deficiencies in the expression of LTP (Silva et al., 1992b) and 

impaired spatial memory (Silva et al., 1992a). Alternatively, introduction of active CaMKII into CA1 

neurons potentiates the EPSC and occludes further LTP (Lledo et al., 1995). Thus, the activity of 

CaMKII has been proposed as one potential mechanism through which a cell or synapse may maintain 

a cellular correlate of ‘memory-like’ persistence (Lisman, 1994; Lisman et al., 2002). However, 

evidence shows that inhibition of CaMKII affects the induction of LTP and memory formation during 

contextual fear conditioning, but is not involved in maintenance of LTP, nor memory storage or 

retrieval in vivo (Buard et al., 2010). In line with this, stimulation of single dendritic spines has seen 

the activation and translocation of CaMKII to activated synapses within seconds following single 

synapse glutamate-uncaging or light-activation of channelrhodopsin-2 (Takao et al., 2005; Zhang et 

al., 2008; Lee et al., 2009), lasting for up to one hour post LTP-induction (Otmakhov et al., 2004). The 

rapid nature of CaMKII and its role in early LTP may be due to its abundant presence within the 

postsynaptic density (Kennedy et al., 1983; Petersen et al., 2003), forming complexes with GluN1, 

GluN2A, and GluN2B subunits of the NMDA receptor, regulating their association to synaptic 

scaffolding protein PDS-95 (Gardoni et al., 2006), as well as associating with other PSD proteins 

including densin-180 (Walikonis et al., 2001), synGAP (Oh et al., 2004), cytoskeletal proteins f-actin 

and α-actinin (Lin and Redmond, 2008; Jalan-Sakrikar et al., 2012), and the motor protein myosin Va 

(Costa et al., 1999), regulating trafficking to and from the synapse. The close association of CaMKII 

with these synaptic proteins and its localization within the PSD places CaMKII in prime position for 

incoming Ca2+ signalling (Gardoni et al., 1998; Leonard et al., 1999; Strack et al., 2000; Sanhueza et al., 

2011), and a likely candidate for the regulation of synaptic processes during plasticity. Alternatively, 

CaMKII has also been show to translocate from within dendritic spines towards NMDAR-potentiated 

synapses during LTP (Thalhammer et al., 2006). This mechanism may add an additional amplification 



 33 

to existing synaptic CaMKII, increasing the specificity of potentiated synapses, as well as mediate the 

potentiation and growth of naïve synapses (Strack et al., 1997; Rongo, 2002; Tsui and Malenka, 2006; 

Lisman et al., 2012). 

 

A primary mechanism through which CaMKII potentiates LTP is through the trafficking and regulation 

of cell surface and synaptic AMPAR. CaMKII regulates phosphorylation of GluA1 AMPAR subunits at 

the Ser-831 and s567 sites (Barria et al., 1997a; Barria et al., 1997b; Mammen et al., 1997; Lu et al., 

2010), of which Ser-831 is shared with PKC (Roche et al., 1996), while PKA regulates Ser-845 

phosphorylation (Diering et al., 2016). Importantly, a bidirectional regulation of these 

phosphorylation sites has been described during LTP and LTD, such that during basal activity, cell 

surface GluA1-containing AMPAR are phosphorylated at the PKA Ser-845 site. Following LTP, these 

AMPAR are further phosphorylated by CaMKII at Ser-831, while LTD removes Ser-845 

phosphorylation and permits endocytosis (Lee et al., 2000). Interestingly, CaMKII-mediated 

phosphorylation has been found to enhance AMPAR activity through two primary mechanisms; firstly 

by increasing single channel conductance of existing AMPAR following Ser-831 phosphorylation 

(Derkach et al., 1999), and secondly, by enhancing synaptic targeting of extrasynaptic GluA1-

containing AMPAR by s567 (Lu et al., 2010). Interestingly, CaMKII may further regulate AMPAR 

expression indirectly by phosphorylation of the AMPAR auxiliary protein TARPγ2 (Hayashi et al., 2000; 

Opazo et al., 2010), promoting the trapping of extrasynaptic AMPAR within the synapse, likely 

through an increased association with PSD-95 (Ehrlich and Malinow, 2004b). The latter of these is 

thought to underlie a possible mechanism through which CaMKII may unsilence previously AMPAR-

silent synapses (Poncer et al., 2002). Together, this evidence suggests both direct and indirect roles of 

CaMKII in promoting the induction of LTP (Diering and Huganir, 2018).  
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1.5. Messengers of Plasticity 

 

Here, messengers of plasticity are defined as proteins or molecules which permit the action or 

regulation of proteins and processes which mediate plasticity. These proteins show distinct functions 

at the synapse, yet may comprise coinciding processes to regulate the induction, maintenance, and 

persistence of cellular memory. Many of the proteins described show clear evidence pertaining to the 

function, expression, and regulation of glutamate receptors, synaptic morphology, or related gene 

expression. 

 

  The A–ζ of Protein Kinases 

 

Of the 250+ known protein kinases, only a few have been identified which contribute significantly to 

mechanisms of learning and memory. The idea that memory could be actively maintained by 

enzymatic activity was first established by Crick (1984), who proposed that persistently active 

enzymes could replace synaptic proteins necessary for maintaining changes that occur during learning 

(Crick, 1984). These kinases mediate changes in proteins by catalysing the addition of a phosphate 

group to specific protein substrates, which impact synaptic transmission through changes in ion 

channel expression, protein synthesis, and gene regulation (Giese and Mizuno, 2013). Of those shown 

to regulate synaptic plasticity, few have shown direct involvement with regards to the induction and 

maintenance of hippocampal LTP and LTD, through the regulation of glutamate receptors. Here, 

protein kinases A, C, and G will be discussed due to their direct roles in regulating AMPAR expression, 

protein synthesis, or immediate early gene (IEG) expression with relevant literature. Of note, PKB 

(also referred to as Akt), PKD, and PKN have also shown to play minor roles in the regulation of 

AMPAR expression (Pen et al., 2016; Zhao et al., 2019), and spine morphology (Dong et al., 2000; 

Taniguchi et al., 2001; Olayioye et al., 2013; Bencsik et al., 2015). 

 

 Protein Kinase A 

 

Protein kinase A (PKA) is a tetrameric holoenzyme that consists of two catalytic and two regulatory 

subunits, initially identified in the 50s–60s (Sutherland and Rall, 1958; Walsh et al., 1968). Upon 

activation by Ca2+, cyclic adenosine monophosphate (cAMP) binds PKA. The regulatory subunits 

dissociate from the catalytic subunits, and enable phosphorylation of target proteins. Interestingly, 

studies investigating mice with a genetic knockout of one of the catalytic subunits of PKA (Cα) shows 
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dramatic developmental impairments, significantly affecting growth and fertility in the few offspring 

which survive postnatally (Skålhegg et al., 2002). In contrast, knockout mice generated by ablation of 

the catalytic subunit Cβ1 are phenotypically indistinguishable from wildtype littermates, with the only 

differences observed in the hippocampus, in which Cβ1 knockout mice show impaired LTP, LTD, and 

depotentiation (Qi et al., 1996). These and additional findings have implicated PKA in both late phase 

LTP (Abel et al., 1997), and contextual fear conditioning (Bernabeu et al., 1997; Barad et al., 1998; Ahi 

et al., 2004; Isiegas et al., 2006). Interestingly, PKA expression may require protein synthesis, 

occurring between 1–6 hours post-training, placing its activity somewhere in the transition period 

between STP/E-LTP and L-LTP, and has been theorised to act in part as a ‘synaptic tag’ for capture of 

PRPs important for late phase LTP (Bernabeu et al., 1997; Bourtchouladze et al., 1998; Young et al., 

2006).  

 

Multiple targets of PKA phosphorylation have been identified, all of which play significant roles in 

mediating plasticity. Both NMDA and AMPA receptors have been shown to be tightly regulated by 

PKA activity (Greengard et al., 1991; Wang et al., 1991; Westphal et al., 1999; Skeberdis et al., 2006). 

PKA is associated with both NMDAR and AMPAR at the synapse through their affinity to PDZ-domain 

proteins PSD-95 and SAP97, and the formation of a complex with AKAP79/150 (Colledge et al., 2000). 

Importantly, another NMDAR binding protein, Yotiao, binds the calcineurin and protein phosphatase 

1 (PP1) in close proximity to PKA (Westphal et al., 1999). Constitutive dephosphorylation of NMDAR 

by PP1 maintains low activity, whereas upon activation, PKA may phosphorylate PP1 to inhibit its 

activity, enhancing NMDAR currents and Ca2+ permeability (Michel and Scott, 2002; Skeberdis et al., 

2006).  

 Further, PKA shows important roles in the regulation of cell surface GluA1-containing AMPAR, 

phosphorylating both Ser-831 and Ser-845 sites (Roche et al., 1996). Phosphorylation of Ser-845 is 

thought to enhance the trafficking of GluA1-containing AMPAR to the cell surface during both LTP 

(Ehlers, 2000; Esteban et al., 2003; Oh et al., 2006; Man et al., 2007), and synaptic upscaling during 

homeostatic plasticity (Diering et al., 2014). Importantly, opposing activity downregulates Ser-845 

phosphorylated GluA1 from the cell surface, such that LTD or synaptic downscaling dephosphorylates 

GluA1 at Ser-845, removing GluA1-containing AMPAR from the synapse (Lee et al., 1998; Tavalin et 

al., 2002; Lee et al., 2003). Therefore, it is thought that maintenance of Ser-845 phosphorylation by 

PKA serves to maintain AMPAR at the synapse, likely through associations with AKAP79/150 and 

SAP97 (Diering et al., 2014). Interestingly, many of the associations between PKA and AKAP79/150 

regulate the trafficking of CP-AMPAR during LTP, LTD or homeostatic plasticity (Kim and Ziff, 2014; 

Zheng and Keifer, 2014; Sanderson et al., 2016), primarily by interrupting the association of 
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AKAP79/150 associated calcineurin, which inhibits CP-AMPAR expression during basal activity 

(Sanderson et al., 2012; Purkey and Dell’Acqua, 2020). Of note, it has been proposed that both PKA 

and calcineurin exist in complex with AKAP79/150 and SAP97 on CP-AMPAR, such that NMDAR-

dependent LTD promotes GluA2-containing AMPAR removal and simultaneous PKA-dependent CP-

AMPAR insertion and translocation to the synapse. Low-frequency activity through synaptic CP-

AMPAR is thought to promote activation of tethered calcineurin activity and rapid removal of CP-

AMPAR from the synapse (Hell, 2016) 

 In addition to the role of PKA at the synapse, evidence suggests that PKA may play an 

additional role in regulating the activation of the cAMP response element-binding protein (CREB), a 

transcription factor with a crucial role in learning and memory (Impey et al., 1998; Athos et al., 2002; 

Abel and Nguyen, 2008; Kirschner et al., 2009). Importantly, the activation of CREB by PKA has been 

shown to regulate the expression of IEGs including Arc, Zif268, and c-Fos following synaptic activity 

(Didier et al., 2018), and LTP (Waltereit et al., 2001). In line with this, PKA has also been found to 

regulate the expression of long-term memories in vivo (Schafe et al., 1999; Schafe and LeDoux, 2000; 

Michel et al., 2011; Bollen et al., 2014). Therefore, the concerted regulation of both glutamate 

receptors and IEGs by PKA appears critical for the expression of many learning paradigms.  

 

  Protein Kinase C 

 

In addition to PKA, protein kinase C (PKC) has been shown to regulate the expression of LTP and the 

formation of long-term memories. First isolated in the 80s, the PKC family consist of 10 isoenzymes, 

divided into three subgroups: conventional (α, βI, βII, and γ), novel (δ, ε, η, and θ) and atypical (λ and 

ζ; Coussens et al., 1986; Jaken, 1996), each of which are generally activated by Ca2+ and diacylglycerol 

(DAG). The first evidence that PKC could be involved in the mechanisms underlying memory comes 

from a publication in the mid-80s which found that application of phorbol esters, which bind to and 

activate PKC, or intracellular injection of PKC in rat hippocampal slices elicited a long-lasting 

enhancement of synaptic transmission, counteracted by PKC inhibitors (Hu et al., 1987; Reymann et 

al., 1988). Interestingly, inhibition of PKC has been found to impair the induction but not maintenance 

of LTP (Malinow et al., 1989; Muller et al., 1990). This data indicates that PKC may be required for 

early-phase potentiation, however some evidence contradicts this (Colley et al., 1990). 

 Importantly, similar to PKA, PKC has been shown to play a role in the regulation of cell surface 

GluA1-containing AMPAR. PKC shares the GluA1 Ser-831 phosphorylation site with CaMKII (Diering et 

al., 2016). As mentioned previously, the scaffold protein AKAP79/150 regulates the binding of PKC 

and calcineurin to GluA1 through associations with the synaptic protein SAP97. Additionally, 
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AKAP79/150 also binds PKC in this complex, and this association is said to promote preferential access 

of PKC over CaMKII to the Ser-831 substrate, following LTP (Tavalin, 2008). Through this, the 

AKAP79/150-PKA complex acts to regulate the phosphorylation and expression characteristics of 

GluA1-containing AMPAR. In the presence of AKAP79/150, PKC phosphorylation of Ser-831 promotes 

the preferential expression of CP-AMPAR at the synapse (Summers et al., 2019) and enhances single 

channel conductance (Jenkins and Traynelis, 2012). PKC has also been found to regulate the 

expression of GluA2-containing AMPAR, such that phosphorylation at the GluA2 PKC site s880 

releases GluA2 from GRIP and enhances its interaction with PICK1 leading to increased internalization 

(Chung et al., 2000). This role has been found necessary for the expression of LTD (Matsuda et al., 

2000; Kim et al., 2001), yet dedepression may also be dependent upon the activity of PKC, thought to 

occur by placing internal s880-phosphorylated GluA2/3-containing AMPAR into a constitutive pool for 

insertion (Daw et al., 2000).  

 A persistently active, brain-specific isoform of PKC (PKMζ), has been previously described as 

both necessary and sufficient for maintaining LTP. Application of the general PKC inhibitor 

chelerythrine chloride or the PKMζ-specific myristoylated zeta-pseudosubstrate inhibitory peptide 

(ZIP) to hippocampal slices significantly impairs potentiation following HFS (Ling et al., 2002), and 

erases consolidated spatial memories (Pastalkova et al., 2006). One of the mechanisms employed by 

PKMζ to enhance and maintain synaptic transmission is through its association with PICK1 and NSF. It 

is thought that PKMζ enhances trafficking of GluA2/3-containing AMPAR to the cell surface by 

enhancing NSF-GluA2 binding and disrupting interactions between PICK1-GluA2 (Yao et al., 2008; 

Migues et al., 2010). Interestingly, release of GluA2 from PICK1 via NSF has been shown necessary for 

the persistence of synaptic potentiation following CP-AMPAR-dependent LTP (Gardner et al., 2005), 

and therefore may describe a mechanism though which PKC (or PKMζ) maintains memory persistence 

following CP-AMPAR-mediated LTP induction. 

The inhibition of conventional (Abeliovich et al., 1993; Bonini et al., 2007), novel (Hongpaisan 

et al., 2013), and atypical (Serrano et al., 2008; Ren et al., 2013; Schuette et al., 2016) isoforms of PKC 

impair the expression of LTP, as well as alter aspects of spatial and contextual conditioning. These 

data indicate that PKC plays a varied role in the regulation of LTP and memory.  

 

 Protein Kinase G 

 
Protein kinase G (PKG) is a cyclic guanosine monophosphate (cGMP)-dependent enzyme (also 

referred to as cGMP-dependent kinase, or cGK) activated by soluble guanylate cyclase (sGC) following 

stimulation by nitric oxide (NO), guanylate cyclase (sGC; Giese and Mizuno, 2013). There exists two 
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PKG genes (PRK1 and PRK2) encoding PKG type I (PKG-I, consisting of α and β isoforms) and type II 

(PKG-II), both of which are ubiquitously expressed, especially in the hippocampus, as well as the 

cerebellum, neuromuscular junction end plates, and kidney (Wu et al., 2018b). Conventional and 

conditional PKG knockout mice show impairments in cerebellar LTD and motor learning (Feil et al., 

2003), as well as an age-dependent impairment in hippocampal protein synthesis-dependent LTP 

(Kleppisch et al., 2003). Further, direct or indirect inhibition of PKG has been shown to impair 

hippocampal CA1 LTP (Frey et al., 1993; Zhuo et al., 1994; Lu and Hawkins, 2002; Monfort et al., 

2004). Interestingly, the role of PKG was initially thought to occur primarily through the regulation of 

presynaptic mechanisms, supported by observations that bath application, but not postsynaptic 

whole-cell filling of the cGMP inhibitor Rp-8-Br-cGMPS inhibits LTP (Blitzer et al., 1995) while the 

cGMP analogue 8-Br-cGMP enhances synaptic transmission (Arancio et al., 1995), in a manner 

independent of NMDAR activation (Son et al., 1998). 

While much evidence suggests a presynaptic mechanism, evidence also exists for a 

postsynaptic mechanism. Importantly, NMDAR are directly linked to the activation of the NO-cGMP-

PKG pathway. Early observations found that glutamate increased NO and cGMP levels in a manner 

dependent on NMDAR activation (Garthwaite, 1985; Chalimoniuk et al., 1996). These observations 

were later supported by the physical interaction between the NO precursor NO synthase (NOS) and 

GluN2B subunits of the NMDAR, bridged by PSD-95 (Brenman et al., 1996; Christopherson et al., 

1999; Sattler et al., 1999; d'Anglemont de Tassigny et al., 2007; D'Mello et al., 2011). This close 

association allows for rapid activation of NOS by Ca2+ and calmodulin (Hayashi et al., 1999), and thus 

rapid downstream stimulation of sGC, cGMP, and PKG (Denninger and Marletta, 1999). Disruptions of 

this complex impair fear conditioned memory formation (Li et al., 2018), while activation of the NO-

cGMP-PKG pathway has been shown to be important for fear memory consolidation (Ota et al., 

2008), object recognition (Furini et al., 2010), and place preference (Shen et al., 2012; Shen et al., 

2014), the latter of which was found to be dependent on the activation of GluN2B-containing NMDAR 

and the trafficking of GluA1-containing AMPAR (Shen et al., 2016). 

Importantly, early investigations examined the necessity of NO as a retrograde messenger, 

such that postsynaptic activation of NMDAR promotes NO production and diffusion to the presynaptic 

cell (Schuman and Madison, 1991). However, key roles have also been identified within the 

postsynaptic cell primarily though PKG activation (Hardingham and Fox, 2006; Rameau et al., 2007), 

and enhancement of AMPAR expression at the synapse. Importantly, GluA1 AMPAR subunits contain 

PKG phosphorylation sites within the CTD, at the PKA Ser-845 and CaMKII/PKC Ser-831 site (Roche et 

al., 1996; Lu and Roche, 2012; Seo et al., 2013; Mao et al., 2014; Diering and Huganir, 2018). In line 

with this, recent evidence has shown that PKG colocalizes with and binds with the CTD of GluA1 in 
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vitro and in vivo, at a site distinct from the phosphorylation site (amino acids 850–873), following 

activation of cGMP cLTP (Serulle et al., 2007). This interaction enhanced the phosphorylation of GluA1 

by PKG at Ser-845 and promotes the delivery of GluA1-containing AMPAR to the cell surface. 

Moreover, these actions occur independently of PKA, and unlike PKA does not require the binding of 

anchoring proteins AKAP79/150 and SAP97). In pathologically driven hyperexcitable states, such as 

temporal lobe epilepsy (TLE), PKG has been found to be upregulated, and inhibition of PKG in vivo 

prevents hyperexcitability though an inhibition of synaptic delivery of CP-AMPAR (Gu et al., 2018). 

These effects indicate that PKG may play a role in synaptic plasticity and LTP. In fact, application of 

nNOS, sGC, cGMP, or PKG inhibitors has been shown to significantly impair both the increase in 

mEPSC frequency following cLTP in vitro as well as the induction and persistence of LTP following TBS 

tetanisation ex- and in-vivo (4 pulses of 100 Hz at 5 Hz; Serulle et al., 2007). Inhibition of the PKG-

GluA1 binding domain was found to be necessary for both the delivery of GluA1 to the cell surface 

following cLTP as well as the expression of LTP in vivo. Further, it has been shown that NO, cGMP and 

PKG promote the formation of new synapses and the trafficking of GluA1-containing AMPAR to the 

cell surface following cLTP (Wang et al., 2005). These findings have been further supported by the 

observation that enhancement of NO, cGMP or PKG increases the proportion of cell surface and 

synaptic CP-AMPAR, while silencing of PKG decreases CP-AMPAR expression (Incontro et al., 2013; Gu 

et al., 2018). Inversely, it has also been shown that activation of CP-AMPAR induces a PKG-dependent 

increase in GluA1-containing AMPAR, and a small increase in GluA2-containing AMPAR (Tukey and 

Ziff, 2013), possibly indicating that PKG may play a role in the receptor subunit switch following 

activity at CP-AMPAR (Liu and Cull-Candy, 2000; Plant et al., 2006). Further, NO activity may act as 

part of a downstream signalling cascade following CP-AMPAR activation, to regulate LTP (Haj-

Dahmane et al., 2017) 

 

In research investigating the behavioural effects of NO-cGMP-PKG signalling, it has been shown that 

NMDAR signalling in the lateral nucleus of the lateral amygdala (LA) following auditory fear 

conditioning drives the expression of IEGs Arc, c-Fos, and Zif268, while selective inhibition of this 

pathway inhibited fear memory consolidation and likewise impaired IEG expression (Ota et al., 2010), 

Similarly, inhibition of the NO-cGMP-PKG pathway in vitro attenuates the expression of c-Fos, Zif268, 

Arc, and BDNF following activity-induced homeostatic upscaling (Gallo and Iadecola, 2011). 

Interestingly, reduced levels of cerebrospinal fluid (CSF) cGMP correlates with severity of 

dementia and depression in AD patients (Hesse et al., 2017), and inhibition of the cGMP-degrading 

enzyme phosphodiesterase (PDE5), has been shown to result in long lasting amelioration of synaptic 

and memory abnormalities in APP/PS1 mice (Zhang et al., 2013), as well as reductions in levodopa-



 40 

induced dyskinesia 6-OHDA-lesioned rats (Picconi et al., 2011). These properties have identified PKG 

as a key kinase in regulating mechanism of learning and memory, as well as a potential therapeutic 

target for many neurodegenerative diseases and neurological disorders including Huntington’s 

disease (Saavedra et al., 2013) Parkinson’s disease (Picconi et al., 2010) Alzheimer’s disease (AD; 

Puzzo et al., 2009), and major depressive disorder (Reierson et al., 2011). 

 

 Scaffold and Auxiliary Proteins 

 

More than one thousand proteins comprise the PSD, including neurotransmitter receptors, cell 

adhesion molecules, scaffold proteins, signalling enzymes, cytoskeleton proteins, and membrane 

trafficking proteins. The expression and synaptic localization of many of these proteins permit both 

basal transmission, as well as the full complement of synaptic plasticity. The major families of 

postsynaptic proteins are that of the membrane associate guanylate kinases (MAGUKs), which 

comprise PSD-93 and PSD-95 (Ehrlich and Malinow, 2004b; Ehrlich et al., 2007), and SAP97 and 

SAP102 (Elias and Nicoll, 2007), and that of the guanylate kinase-associated proteins (GKAPs) 

including GKAP, SAP90, PSD-95-associated protein 1 (SAPAP1), and discs large homologue-associated 

protein 1 (DLGAP1; Kim et al., 1997). Importantly, all of these scaffold proteins contain PDZ domains, 

capable of binding the CTD of NMDAR directly (Kornau et al., 1995; Niethammer et al., 1996), and 

indirectly to AMPAR through auxiliary proteins such as TARPγ2 (Schnell et al., 2002; Nicoll et al., 

2006). This association may be enhanced by scaffold and chaperone proteins such as AKAP79/150, 

PICK1, GRIP1/2, NSF, and the AP2 adaptor complex which act to regulate the binding of downstream 

protein kinases and phosphatases during plasticity events (Dong et al., 1997; Colledge et al., 2000; 

Tavalin et al., 2002; Collingridge et al., 2004; Gardner et al., 2005; Smith et al., 2006; Jaafari et al., 

2012; Nair et al., 2013). These findings have brought forward the ‘slot’ and ‘scaffold’ hypotheses of 

LTP and LTD (Xu, 2011). Such that PSD MAGUKs, in association with TARPγ2 (Bats et al., 2007), may 

mediate the maximum possible concentration of NMDAR and AMPAR at the synapse (Opazo et al., 

2012). In fact, the formation of these ‘slots’ has been examined though the overexpression or 

knockout of PSD95 (El-Husseini et al., 2000), and to a lesser extent SAP102 (Schnell et al., 2002) and 

SAP97 (Schlüter et al., 2006). Overexpression of PSD-95 has been shown to selectively enhance basal 

synaptic transmission, mimic LTP (Ehrlich and Malinow, 2004), awaken previously silent synapses 

(Stein et al., 2003), and promote spine maturation (El-Husseini et al., 2000), while knockdown of 

MAGUKs reduces basal (Chen et al., 2015) and activity-driven (Ehrlich and Malinow, 2004) synaptic 

expression of both AMPAR and NMDAR, reduces in vivo LTP (Zhao et al., 2013), and impairs LTP-

mediated spine morphology changes (Ehrlich et al., 2007). These observations indicate that scaffold 
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proteins are uniquely linked to the facilitation and regulation of synaptic plasticity through their 

associations to glutamate receptors and PSD proteins.  

 

 Cytoskeletal Proteins 

 

A major aspect of cellular processes underlying plasticity includes the molecular and structural 

remodelling of the synapse, spine, dendrite, or major morphological changes to the entire cell (such 

as dendritogenesis and axonogenesis). In addition to changes in the postsynaptic potential following 

LTP, primarily governed through changes in the receptor content at the synapse, enhancements in 

potentiation are also shown to reflect changes in the postsynaptic morphology. Accordingly, 

plasticity-inducing stimulation has been shown to promote the formation of new dendritic spines 

(Parnavelas et al., 1973; Collin et al., 1997; McKinney et al., 1999; Wosiski-Kuhn and Stranahan, 2012), 

and the growth and stabilization of existing ones (Van Harreveld and Fifkova, 1975; Lee et al., 1980; 

Lendvai et al., 2000; Popov et al., 2004). Importantly, increases in spine size have been shown to be 

synapse specific (Jungenitz et al., 2018), correlates strongly with changes in AMPAR expression 

(Matsuzaki et al., 2001; Ganeshina et al., 2004; Matsuzaki et al., 2004), and are linked to in vivo 

behavioural learning, such as exposure to complex environments (Greenough and Volkmar, 1973), 

social isolation (Connor and Diamond, 1982), fear conditioning (Heinrichs et al., 2013; Xu et al., 2019), 

and working and spatial memory (Mahmmoud et al., 2015), indicating a strong correlation between 

memory formation and morphological changes to the synapse. 

 Many of these mechanisms involve the reorganization of the actin cytoskeleton (Lin 

et al., 2005; Korobova and Svitkina, 2010). Cellular actin exists in monomeric or globular (G-actin) and 

polymerized or filamentous (F-actin) forms. Importantly, F-actin remodelling and has been shown to 

regulate the trafficking, stabilization, and anchoring of AMPAR and NMDAR at the synapse (Allison et 

al., 1998; Mao et al., 2010), in addition to scaffolding proteins including PSD-95 (Pak et al., 2001; 

Mizui et al., 2005; Cingolani and Goda, 2008) and SAP97 (Waites et al., 2009; Hanley, 2014), while 

inhibition of F-actin stabilization has been shown to impair LTP (Kim and Lisman, 1999; Krucker et al., 

2000). Seemingly counterintuitive, the Actin Depolymerizing Factor (ADF)/cofilin severs F-actin 

filaments, reducing the proportion of F-actin, but increasing the available pool of G-actin, creating 

actin nucleation sites and ultimately enhancing F-actin turnover. Inhibition of cofilin impairs AMPAR 

trafficking to the cell surface following LTP (Gu et al., 2010), reduces the surface motility of 

extrasynaptic AMPAR (Rust et al., 2010), restructures synaptic AMPAR nanodomains (Kerr and 

Blanpied, 2012), and results in impaired spatial memory performance (Rust et al., 2010).  
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An important aspect of AMPAR trafficking is the transport of AMPAR-containing vesicles across both 

large scale (soma to dendrite), as well as small scale (dendrite to synapse) distances. This is carried 

out primarily through associations between the F-actin cytoskeleton and myosin or kinesin motor 

proteins (Soldati and Schliwa, 2006). The best characterised of these are MyoV and MyoVI, which 

permit anterograde and retrograde directed movement, respectively (Hartman et al., 2011). MyoVI 

has been shown to associate with SAP97 and AP2 to promote the endocytosis of GluA1-containing 

AMPAR (Wu et al., 2002; Osterweil et al., 2005), while MyoVa, a subclass of MyoV proteins, can bind 

directly to the GluA1 C-terminus, and is necessary for the delivery of AMPAR to the cell surface during 

LTP (Correia et al., 2008). Conversely, MyoVb appears necessary for the delivery of Rab11-positive 

recycling endosomes into spines following LTP (Wang et al., 2008).  

 

 Immediate Early Genes 

 

In addition to synaptic changes, mediated in part by interactions between glutamate receptors and 

spine scaffold and structure proteins, additional regulators of plasticity have been linked to strongly 

synaptic activity. These proteins include IEGs, defined as class of genes that show rapid upregulation 

in response to signals such as neurotransmitters and growth factors. Included in these are the 

transcription factors early growth response protein 1 (ERG-1, also known as Zif268), and the Jun (c-

Jun, JunB, JunD) and Fos (c-fos, FosB, FosB2) families (Bahrami and Drabløs, 2016), as well as effector 

IEGs Homer (Vazdarjanova et al., 2002), Rheb (Yamagata et al., 1994), Narp (Tsui et al., 1996), β-A 

activin (Andreasson and Worley, 1995), and activity-regulated cytoskeletal-associated protein, Arc 

(Lanahan and Worley, 1998).  While both transcription factor IEGs and effector IEGs are rapidly 

upregulated by synaptic activity, the contribution of transcription factor IEGs is indirect, involving the 

regulation of other genes, while effector IEGs appear to directly modify cellular function. Much of the 

literature surrounding IEGs has investigated their role in neuronal ensembles and memory traces. In 

the hippocampus, many spatial, and working memory paradigms induce strong transcription and 

expression of IEGs in select populations of task-specific neurons (Vann et al., 2000; Hall et al., 2001; 

Xie et al., 2014). Of these, Arc has been shown to elicit control of many aspects mentioned above, 

including F-actin reorganization, AMPAR trafficking, and gene transcription. 
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 Activity-Regulated Cytoskeletal-Associated Protein, Arc 

 

Originally discovered by (Lyford et al., 1995) and (Link et al., 1995) Arc mRNA was initially shown to be 

rapidly and specifically upregulated at activated synapses following high frequency stimulation (HFS; 

Wallace et al., 1998; Steward and Worley, 2001). The expression of Arc mRNA and the synthesis of 

Arc protein has been further shown to require Ca2+, PKA, CaMKII, mitogen activated protein kinase 

(MAPK), eukaryotic elongation factor 2 kinase (eEF2K), and CREB signalling (Park et al., 2008; Kumar et 

al., 2012), driven by activation of ionotropic, metabotropic, and enzyme-linked receptors, including 

NMDAR (Bloomer et al., 2008), nicotinic acetylcholine receptors (α7nAchR; Kristensen et al., 2007), 

mGluR (Xia et al., 1996; Kumar et al., 2012), platelet-derived growth factor receptors (PDGFR), and 

tropomyosin receptor kinase B (TrkB; Yin et al., 2002; Kuipers et al., 2016). 

 

Following synthesis, Arc protein has been shown to associate with the cytoskeletal proteins F-

actin, MAP2, Drebrin-A, and WASP-family verprolin-homologous protein (WAVE1), components of the 

clathrin-mediated endocytic mechanism, endophilin-3 (Endo3), dynamin-2 (Dmn2), and the clathrin 

adaptor complex AP2 (Fujimoto et al., 2004; Moga et al., 2004; Chowdhury et al., 2006; Rial Verde et 

al., 2006), the AMPAR auxiliary protein TARPγ2, the PSD proteins GKAP, α and β isoforms of CAMKII, 

and NMDAR subunits GluN2A and GluN2B, and Notch1 (Zhang et al., 2015), the histone 

acetyltransferase Tip60 (Wee et al., 2014), the endoplasmic reticulum protein, Calnexin (Myrum et al., 

2017), as well presenilin-1 (PSEN1) as part of the γ-secretase complex (Figure 1-12). Through these 

associations, Arc has been linked to the regulation of cytoskeleton restructuring, gene expression, and 

the regulation and expression of both GluA1 (Chowdhury et al., 2006) and GluA2-containing (Rial 

Verde et al., 2006) AMPAR. This later function appears dependent on Arcs ability to interact with 

endophilin-3 and dynamin-2, indicating that Arc has the ability to actively promote the endocytosis of 

Figure 1-12 | Schematic diagram of Arc protein properties. Post-translational modifications 

include: phosphoserine (pS, ■), phosphothreonine (pT, ■), phosphotyrosine (PY, ■), ubiquitinated 

lysine (Ub, ■), SUMOylated lysine (SUMO, ■). Key sites include the nuclear retention domain (NRD, ■), 

nuclear export signal (NES, ■), and the nuclear localization signal (NLS, ■) within putative domain (■) 

and N- (■) and C-lobes (■). Dnm2 = dynamin-2, endo2/3 = endophilin-2/3. Scale bar = amino acids. 

Structure based of (Nikolaienko et al., 2018).  



 44 

GluA1 and GluA2-containing AMPARs from the cell membrane in an activity regulated manner. 

Through this, it is thought that Arc mediates the expression of LTP, LTD and homeostatic plasticity. 

The induction of Arc synthesis upon synaptic activation, localization to active dendrites, association 

with key synaptic proteins, and regulation of cell surface AMPAR expression makes it a prime 

candidate for investigating the mechanisms underlying learning and memory. Due to this, previous 

publications have provided strong evidence for the necessity of Arc protein synthesis in the 

expression of LTP induction and consolidation. By negating the effects of Arc protein through 

conditional knockout (cKO; Plath et al., 2006) in vivo (in the DG) and ex vivo (in the CA1), or infusion of 

antisense oligodeoxynucleotides (ODNs; Guzowski et al., 2000; Messaoudi et al., 2007) in vivo (DG), 

these groups provided initial evidence that both persistent and acute blockade of Arc function alters 

the expression of LTP. Primarily, all groups found a significant deficit in the persistence of late phase 

LTP, lasting between 90 minutes to 5 days following acute (Messaoudi et al., 2007), and persistent 

(Guzowski et al., 2000) ODN treatment, respectively. In both cKO and persistent ODN experiments, 

blockade of Arc protein expression impaired spatial memory (Guzowski et al., 2000; Plath et al., 

2006), as well as context fear conditioning, conditioned taste aversion, and object recognition in cKO 

mice (Plath et al., 2006). Interestingly, this work has been recently examined through a 

comprehensive approach of Arc KO and cKO mice (Kyrke-Smith et al., 2020), utilizing both HFS and 

TBS LTP induction protocols. Here, the authors describe a lack of dependence of Arc expression on 

the persistence of LTP in both KO and cKO mice using both HFS and TBS induction protocols. The 

authors note differences in anaesthetic regime and Arc knockout strategy, which may account for 

differences in the expression of LTP.  

Importantly, in Arc cKO (Plath et al., 2006) and KO (Kyrke-Smith et al., 2020) mice, but not 

ODN infused rats, the initial induction of LTP was significantly enhanced, exceeding that of wild-type 

(WT) mice by 50% (Plath et al., 2006), before rapidly returning to baseline by 90 minutes in the case 

of (Plath et al., 2006). This may reflect differential regulation of basal levels of cell surface AMPAR 

following persistent and acute blockade of Arc. Such that, the delivery of AMPAR following synaptic 

activity in cKO/KO mice may result in the accumulation of AMPAR at the extrasynaptic membrane, 

priming the induction of LTP. Acute blockade of Arc by ODN 5-90 minutes before the induction of LTP 

minutes (Guzowski et al., 2000; Messaoudi et al., 2007) may not be sufficient to expand these 

extrasynaptic pools (Kennedy and Ehlers, 2011).  

Importantly, the observed differences in the necessity of Arc protein in the regulation of late-

phase LTP, may also be due to the expression and requirement of CP-AMPAR. Due to due to Arc’s role 

in receptor endocytosis it is thought that the increase in potentiation observed by both Plath et al., 

(2006) and Kyrke-Smith et al., (2020) may be due to increased expression and availability of 
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extrasynaptic CP-AMPAR. Overexpression of Arc has been shown to decrease cell surface expression 

of CP-AMPAR (Lanté et al., 2011; DaSilva et al., 2016; Scheyer et al., 2018), and may permit the 

insertion of CI-AMPAR (Wall et al., 2018). If the induction protocol used by Plath et al., (2006; in vivo: 

6 series of 6 trains of 6 stimuli at 400 Hz, 200 ms, ex vivo: 200 pulses at 1.5 Hz + postsynaptic 

depolarization) is sufficient to induce the induction of CP-AMPAR in these animals, but not the 

induction protocol used by Kyrke-Smith et al., 2020; 4 trains of 10 bursts at 5Hz containing 4 stimuli at 

100Hz), LTP in absence of Arc may saturate synaptic AMPAR and impair the removal of CP-AMPAR, 

preventing the exchange for GluA2-containing AMPAR and impairing the persistence of LTP (Liu and 

Cull-Candy, 2000). Alternatively, it is possible the induction protocol used by (Kyrke-Smith et al., 2020) 

induced CP-AMPAR dependent LTP, and the increase in both induction and persistence ex vivo and 

increased induction in vivo may result from LTP governed solely by CP-AMPAR, due to impaired 

endocytosis of CP-AMPAR.  

 

In addition to mediating aspects of LTP, Arc also plays a role in the regulation of LTD. Arc cKO mice 

show reductions in the extent of both the induction and persistence of LTD in vivo (Plath et al., 2006), 

acute siRNA-mediated blockade of Arc prevents the maintenance, but not induction of LTD (Park et 

al., 2008; Waung et al., 2008). This mechanism appears more directly linked to impairments in the 

endocytosis of both GluA1- and GluA2/3-containing AMPAR as overexpression of Arc occludes LTD 

through a mechanism requiring the removal of GluA2/3-containing AMPAR (Rial Verde et al., 2006), 

while knockdown of Arc protein impairs mGluR-mediated endocytosis of GluA1- and GluR2/3-

containing AMPAR. Interestingly, while NMDAR may be required for the induction of Arc following LTP 

(Bloomer et al., 2008; Yilmaz-Rastoder et al., 2011), NMDAR-dependent LTD appears to function 

independent of Arc function (Rial Verde et al., 2006), and in fact may negatively regulate Arc mRNA 

(Yilmaz-Rastoder et al., 2011). It is thought that past activity, such as novel environment exposure, 

induces dendritic transport of Arc mRNA and primes neurons for local synthesis of Arc protein during 

mGluR-mediated LTD (Jakkamsetti et al., 2013). Importantly, Steward et al., (2015) posit that if 

increased Arc activity is linked to the endocytosis of AMPAR, strong Arc expression following high 

periods of synaptic activity, such as electroconvulsive stimulation (ECS; Lyford et al., 1995; Steward 

and Worley, 2001) should result in a rundown of synaptic efficacy in vivo during the period of high Arc 

expression. Interestingly, this group found that following ECS, strong activation of Arc expression did 

not result in a depression of synaptic responses (Steward et al., 2015). This work indicates that Arc 

may play a more complex role in the maintenance of synaptic transmission.  

 

Lastly, Arc has also been implicated in the mechanisms of homeostatic scaling through its removal of 

GluA1- and GluA2-containing AMPARs from the synapse and cell surface. In primary hippocampal cell 
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cultures, experimentally induced inactivity with the sodium channel blocker tetrodotoxin (TTX), or 

increased activity with the GABAA antagonist bicuculline has been shown to result in increased and 

decreased surface GluA1 AMPAR expression, respectively. Overexpression or knockout of Arc protein 

occludes these homeostatic scaling responses, such that overexpression of Arc decreases basal 

expression of GluA1 AMPARs and impairs synaptic downscaling, while knockout of Arc increases basal 

cell surface GluA1, preventing the upscaling of AMPAR following activity blockade (Shepherd et al., 

2006). Conversely, Arc has also been found to selectively reduce synaptic GluR2/3 AMPARs (Rial 

Verde et al., 2006). Here, reductions in AMPAR transmission, following overexpression of Arc in 

organotypic hippocampal slices, were occluded by expression of the GluR2 C-terminal tail, preventing 

removal from the cell surface. Biotinylation of cell surface proteins saw a reduction in GluA2, with no 

effect on surface GluA1. 

Following these findings, authors note that the disparities between outcomes observed by 

Shepherd et al., (2006) and their own observations, and posit that differences in the recycling 

dynamics of GluA1- and GluA2-containing AMPAR in cell cultures versus organotypic slices may be 

responsible. Slow recycling of GluA1-containing compared to GluA2/3-containing AMPAR in 

hippocampal slice cultures may explain the selectivity for GluA2/3 over GluA1-containing AMPAR, 

while GluR1-containing AMPAR recycling is much faster in primary cultured neurons. Further, cultured 

neurons obtained from young animals may differ in the expression of subunit composition compared 

to tissue obtained from adult animals. The expression of GluA1-containing CP-AMPAR is higher in 

tissue obtained from young animals than that in adult tissue (Takemoto et al., 2017). Therefore, 

internalization of AMPAR may arise from the expression or availability of AMPAR for endocytosis, 

rather than selectivity governed by Arc itself, and thus conclusions from overexpression and knockout 

studies must be interpreted from the perspective of the system in which it is examined. 

Additionally, Arc has also been found to be necessary for synapse-specific homeostatic 

scaling, by mediating the synaptic upscaling of GluA1-containing AMPARs (Béïque et al., 2011). Here, 

chronic inactivation of glutamate release from the single presynaptic terminals showed a homeostatic 

increase in CP-AMPAR. However, within Arc-KO cells, these synapses fail to promote this upregulation 

in synaptic AMPARs. It is thought that this may occur through an occlusion-like mechanism, such that 

Arc may be required for enhancing the trafficking of GluA1 to the synapse. Alternatively, persistent 

Arc expression may be required for the formation and maintenance of internal AMPAR reserve pools 

(Béïque et al., 2011).  

 
Regardless, following the observed interactions of Arc with AMPAR regulatory proteins and Arc’s 

proposed regulation of both GluA1- and GluA2-containing AMPAR, the following mechanism has been 

proposed (Hanley, 2018; Wall and Corrêa, 2018; Figure 1-13); 
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1) GluA1- and GluA2-containing AMPAR at the synapse are bound to PSD-95 via TARPγ2. 

Following LTD stimulation, dephosphorylation of TARPγ2 disrupts the association with PSD-95 

while Ca2+ enhances GluA2-PICK1 binding (Citri et al., 2010). Alternatively, following LTP, 

phosphorylation of TARPγ2 enhances PSD-95 binding (Tomita et al., 2005). 

2) Arc protein associates with the AP2 complex, which binds GluA1 via PDS-95-bound TARPγ2 

(Matsuda et al., 2013), or GluA2 via PICK1, at the plasma membrane (Lee et al., 2002; Biou et 

al., 2008; Garafalo et al., 2015; DaSilva et al., 2016). This selectivity may define the differential 

recruitment of activity driven GluA1-containing and CP-AMPAR, and more stable GluA2/3-

containing AMPAR populations.  

3) Calcineurin enhances AP2-PICK1 binding, and AP2 recruits clathrin to the membrane to 

initiate the formation of the clathrin-coated pit (CCP) assembly. AP2-PICK1 interaction 

disrupts GluA2-PICK1. Formation of the CCP decreases the binding affinity of AP2 and Arc and 

this complex dissociates (Kelly et al., 2014). 

4) Dissociation of Arc from AP2 frees the same binding motif used by dynamin-2 as well as 

binding endophilin. The binding of dynamin-2 and endophilin-3 promotes the scission of the 

endocytic vesicle containing the AMPAR (Sundborger et al., 2011).  
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Figure 1-13 | Regulation of GluA1 and GluA2 endocytosis by Arc.  Arc has been hypothesised to 

differentially regulate cell surface GluA1 and GluA2-containing AMPAR expression through proposed protein-
protein interactions.  

A) Arc regulates GluA1-containing AMPAR. 1) Following activity, Arc binds AP2. 2) GluA1 binds PSD-95 
via TARPγ2. 3) AP2 binds GluA1 via TARPγ2. AP2 recruits clathrin and initiates formation of the 
clathrin-coated pit (CCP). 5) Arc dissociates and binds dynamin and endophilin to enable scission of 
the CCP from the membrane. 6) GluA1-bound vesicle is then internalized. 

B) Arc regulates GluA2-containing AMPAR. 1) Following activity, Arc binds AP2. 2) TARPγ2 dissociates 
from GluA2, PICK1 binds GluA2. 3) Arc-AP2 binds PICK1. 4) Arc dissociates from AP2, AP2 recruits 
clathrin. 5) Arc binds dynamin and endophilin to enable scission of the CCP from the membrane. 6) 
GluA2-containing vesicles are internalized. 

 

Figure 1-135 | Arc aids in growth of the cytoskeleton during plasticity events.Figure 1-136 | 
Regulation of GluA1 and GluA2 endocytosis by Arc.  Arc has been hypothesised to differentially 

regulate cell surface GluA1 and GluA2-containing AMPAR expression through proposed protein-protein 
interactions.  
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In addition to regulating synaptic AMPAR, Arc expression may also play an important role in the 

dynamic regulation of morphological plasticity (Figure 1-14). As previously shown by Messaoudi et al., 

(2007), infusion of Arc antisense ODNs into the rat dentate gyrus 2 hours post-HFS impaired the 

persistence of LTP. This effect was found to be dependent on Arc-mediated phosphorylation of cofilin. 

Dephosphorylation of cofilin allows for nucleation and polymerization of F-actin filaments by Arp2/3 

(Smith et al., 2013), promoting trafficking of AMPAR to the cell surface (Wang et al., 2013), while 

phosphorylation of cofilin inhibits F-actin polymerization, consolidating spine growth, and stabilizing 

synaptic AMPAR, following activity (Fukazawa et al., 2003; Chen et al., 2007; Gu et al., 2010; 

Calabrese et al., 2014). Interestingly, within one hour following HFS, Arc has been previously found to 

undergo SUMOylation, a post-translational modification involving the addition of a small ubiquitin-like 

modifier (Nair et al., 2017). This SUMOylation promotes the association of a complex with the F-actin 

binding protein Drebrin-A in synaptoneurosomal and cytoskeletal fractions in vivo. Debrin-A has been 

previously shown to be important in regulating actin stabilization (Hayashi and Shirao, 1999; Kojima 

and Shirao, 2007; Ivanov et al., 2009; Mikati et al., 2013) by promoting phosphorylation and inhibition 

of cofilin activity (Grintsevich and Reisler, 2014). The binding of SUMOylated Arc protein to Drebrin-A 

is thought to promote the dephosphorylation of cofilin and polymerization of F-actin. Therefore, Arc 

may regulate actin dynamics in a two-step manner, through both SUMOylated and non-SUMOylated 

functions. Firstly, within one hour, a fraction of the total pool of newly synthesised Arc undergoes 

SUMOylation, associates with Drebrin-A and exits the spine head (Koganezawa et al., 2017), 

permitting dephosphorylation and activation of cofilin. In turn, cofilin promotes F-actin 

polymerization, growth of the actin cytoskeleton, trafficking of AMPAR to the cell surface, and 

induction of LTP. Secondly, within 2 hours, the return of Drebrin-A to the spine promotes 

phosphorylation and deactivation of cofilin, stabilizing the F-actin cytoskeleton and anchoring 

synaptic AMPAR. Supporting this idea is the observation that SUMOylated Arc has been found to be 

required for the upscaling of AMPAR following inactivity (Craig et al., 2012), possibly by promoting the 

trafficking of AMPAR to the cell surface (Henley and Wilkinson, 2013; Figure 1-14).  

Interestingly, SUMOylated Arc does not coprecipitate with CaMKIIα, CaMKIIβ, PSD-95 and 

dynamin-2, unlike non-modified Arc (Nair et al., 2017). Therefore, it is possible this modification 

allows for distinction between separate mechanisms such that spine expansion during early phase 

LTP, may occur concurrently or independently to Arc’s endocytosis of AMPARs and spine stabilization 

following periods of high activity (Craig et al., 2012; Hanley, 2014). Furthermore, Huang et al., (2007) 

have shown that following HFS, local inhibition of actin polymerization by infusion of a Rho kinase 

inhibitor blocked Arc mRNA localization to the activated dendritic laminar. These results likely indicate 

a positive feedback, wherein locally translated Arc is initially SUMOylated, associating with Drebrin-A 
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and enhancing F-actin polymerization. This in turn may allow localization of Arc mRNA to activated 

synapses, where non-modified Arc binds CaMKIIα, CaMKIIβ, PSD-95 and dynamin-2 to regulate 

consolidation of LTP and LTD.  

Interestingly, Arc may play an additional role in the trafficking of GluA4-containing AMPAR to 

the synapse during classical conditioning (CC), in freshwater pond turtles (Pseudemys scripta elegans). 

Here, CC has been found to increase GluA4-containing AMPAR at the synapse (Mokin and Keifer, 

2004), as well as enhancing the rapid colocalization and co-immunoprecipitation of Arc with both 

actin and GluA4-containing AMPAR (Mokin et al., 2006). This data is thought to described a role for 

Arc in the synaptic targeting of GluA4-containing AMPAR during CC (Mokin et al., 2007), through an 

association with the actin cytoskeleton and the selective localization of GluA4-containing AMPAR to 

previously silent synapses (Mokin et al., 2007). 

Figure 1-14 | Arc aids in growth of the cytoskeleton during plasticity events. 1) During basal 

stimulation, an equilibrium exists between F-actin growth and decay. Drebrin-A remains bound to– and 
stabilizes– f-actin, cofilin is phosphorylated and inactive. 2) Following stimulation, SUMOlyated Arc binds 
to, and releases, Drebrin-A from F-actin. This dissociation promotes dephosphorylation and activation of 
cofilin. Dephosphorylated cofilin is free to bind and destabilize F-actin. Severing and debranching of F-
actin into monomeric G-actin promotes actin nucleation and elongation by increasing availability of 
filament ends, via Arp2/3. 3) Unbound from SUMOylated Arc, Drebrin-A returns to the spine, inhibits 
cofilin’s actions and stabilizes the F-actin cytoskeleton. 



 51 

Arc’s ability to regulate and modify the actin cytoskeleton may in turn influence the formation 

and growth of spines. Increasing Arc expression in cultured hippocampal neurons has been shown to 

increase spine density by increasing the proportion of mature, thin and filopodia spines, decreasing 

the proportion of immature stubby spines (Peebles et al., 2010; Enriquez-Barreto et al., 2014). 

Conversely, Arc knockout mice show decreased spine density, further supporting Arc’s role in activity 

regulated spine development (Huang et al., 2007; Bramham et al., 2008). Impairing Arc’s ability to 

internalize GluA1-containing AMPAR, by overexpression of mutant Arc lacking the endophilin-3 

binding domain (amino acids Δ91–100), failed to replicate Arc’s increase in thin and filopodia spines. 

Therefore, this alteration in spine morphology may be driven, in part, by Arc’s ability to 

simultaneously drive endocytosis of GluA1 AMPARs and regulate growth of the cytoskeleton (Peebles 

et al., 2010). Interestingly, previous work has shown that GFP-tagged Arc mRNA localizes stably and 

selectively to the base of stubby, thin, and mushroom spines by means of a mechanism which is not 

dependent on synaptic activity (Dynes and Steward, 2012). This may indicate that under conditions of 

basal activity docked Arc mRNA is selective for these spine types. Alternatively, synaptic activity has 

also been shown to simultaneously drive mRNA decay, eliminating Arc mRNA from inactive dendritic 

domains (Farris et al., 2014). This mechanism may allow or enhance the selective localization of Arc 

mRNA to active synapses, such that Arc mRNA may dock at the base of many spine types, but 

depending on the stimulation paradigm, mRNA is driven towards translation or degradation.  

 
As well as localization within dendrites and regulation of the synaptic assembly, Arc has shown 

additional subcellular localization within the nucleus, concentrated in puncta associated with 

promolocytic leukaemia (PML) bodies, which are known to regulate gene transcription (Bernardi and 

Pandolfi, 2007). Here it has been proposed to regulate nuclear gene transcription (Eskiw and Bazett-

Jones, 2002; Bloomer et al., 2008), involving the down regulation of GluA1 (Gria1) transcription (Korb 

et al., 2013). Thus, rapid upregulation of Arc may result in internalization of GluA1-containing AMPAR, 

in addition to reduced synthesis of GluA1 AMPAR subunits. Further, within the nucleus, Arc has been 

shown to interact with the histone-acetyltransferase, Tip60, a subunits of chromatin remodelling 

(Wee et al., 2014). This interaction has been shown to promote PML recruitment to enhance 

acetylation of histones. This finding indicates that Arc may also be involved in promoting learning 

induced gene-expression (Park et al., 2013). However, in response to acute cocaine administration, 

nuclear Arc expression appears to suppress chromatin remodelling and gene expression (Salery et al., 

2017). These data may suggest that during periods of high activity, Arc acts primarily to reduce 

synaptic activity and gene expression, dampening down the network to maintain the expression of 

Hebbian plasticity.  
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Finally, while Arc has shown strong associations with AMPAR expression, and gene 

transcription, recent work has identified a novel role for Arc protein through shared properties with 

retroviral Gag proteins (Dodonova et al., 2019). Due to these similarities, Arc has been found to form 

virus-like capsids, capable of encapsulating and transporting functional RNA and protein between 

cells in endosomal-derived extracellular vesicles, in both cultured hippocampal rat neurons (Pastuzyn 

et al., 2018) and Drosophila neuromuscular junction (Ashley et al., 2018), therefore suggesting Arc 

can modulate synapse-, cell-, and network-wide plasticity. 

 

1.6. Modulators of Plasticity 

 

A final level in the dynamic control of plasticity includes molecules which act to modulate 

immediate synaptic transmission, or prime synapses for future strengthening or weakening. Much 

research has examined the mechanisms through which neurotrophins, hormones, and neuropeptides 

enhance the expression of LTP and LTD. In general, these modulators permit the synthesis, 

expression, or regulation of mediators and messengers of plasticity, but are not directly involved in 

the full expression of canonical LTP or LTD.  

 Here, I have defined neurotrophic molecules as modulators which share seemingly closely 

related mechanisms of action with a specific focus on the regulation of LTP and memory, and have 

been implicated in the pathophysiology of neurodegenerative disorders and neurological diseases. 

Based on previously established criteria (McAllister et al., 1999), Table 1-1 outlines a range of 

molecules with defined implications in plasticity. These criteria include: 

 

1. Neurotrophic molecules and their cognate receptors must be expressed in the 

right places and at the right times for the form of synaptic plasticity being 

considered. 

 

2. Expression and secretion must be activity dependent. 

 

3. Must regulate aspects of neuronal function which change activity in neural circuits, 

including synaptic function, membrane excitability, and neuronal morphology and 

connectivity. 
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Table 1-1 | Identification of molecules involved in neuronal plasticity 
 

Classification Abbreviation Definition Evidence for involvement in plasticity 

Neurotrophins NGF Nerve growth factor (Sastry et al., 1988; Conner et al., 2009)  

 BDNF Brain-derived 

neurotrophic factor 

(Cunha et al., 2010; Panja and Bramham, 2014; 

Solinas et al., 2019) 

 NT-3 Neurotrophin 3 (Arvanov et al., 2000) 

 Aβ Amyloid-β (Khan et al., 2010; Parihar and Brewer, 2010; 

Palmeri et al., 2017; Lazarevic et al., 2017 ; 

Gulisano et al., 2019) 

 sAPPα Secreted amyloid 

precursor protein α 

(Clarris et al., 1994; Small et al., 1994;Ring et 

al., 2007; Young-Pearse et al., 2008; Taylor et 

al., 2008; Weyer et al., 2011; Hick et al., 2015; 

Klevanski et al., 2015; Richter et al., 2018; 

Mockett et al., 2019) 

 sAPPβ Secreted amyloid 

precursor protein β 

(Furukawa et al., 1996b; Barger and Harmon, 

1997; Chasseigneaux et al., 2011) 

Neuropoietic 

factors 

CNTF Ciliary neurotrophic 

factor 

(Stoop and Poo, 1996) 

Hematopoietic 

factors 

GCSF Granulocyte colony-

stimulating factor 

(Diederich et al., 2009) 

 IL-1, 2, 6, 11 Interleukins 1, 2, 6, 

11 

(Ross et al., 2003; Xiong et al., 2003; Chirila et 

al., 2014) 

Growth factors EFG Epidermal growth 

factor 

(Kopec et al., 2015), 

 FGF Fibroblast growth 

factors 

(Wozniak et al., 2007) 

 TNF Tumour necrosis 

factors, α and β 

(Stellwagen and Malenka, 2006; Liu et al., 

2017) 

Neuropeptides ACTH Adrenocorticotropic 

hormone 

(Seidenbecher et al., 1993; Scantlebury et al., 

2017) 

 CGRP Calcitonin gene-

related peptide 

(Wu et al., 2018a) 

 CCK Cholecystokinin (Yasui and Kawasaki, 1995; Chen et al., 2019) 

 CRF Corticotropin-

releasing factor 

(Wang et al., 2000b; Blank et al., 2002) 

 ENK Enkephalin (Bramham and Sarvey, 1996; Roberts et al., 

1997) 

 GAL Galanin (Sakurai et al., 1996; Badie-Mahdavi et al., 

2005) 
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Figure 1-15 | Production and release of BDNF. 
Pre-proBDNF is synthesised and processed in the 
endoplasmic reticulum. ProBDNF is transported to the 
Golgi to be sorted. From here, ProBDNF is processed by 
furin or protein convertase 1 (PC1) into mature BDNF 
before release into the extracellular space or by plasmin 
metalloproteases (MMP) following release from the cell. 

 

 Brain-Derived Neurotrophic Factor 

 

One of the most acknowledged neuromodulators 

in the field of plasticity is the brain-derived 

neurotrophic factor (BDNF). BDNF belongs to a 

family of growth factors alongside nerve growth 

factor (NGF), neurotrophins-3, 4, 5 and 6 (NT-3-

6). BDNF synthesis occurs through both activity-

regulated and constitutive pathways. 

Interestingly, BDNF exists as one of the numerous 

mRNA transcripts present in the dendrites, and is 

capable of undergoing activity-dependent local 

translation (An et al., 2008). Similar to many 

neurotrophins, BDNF is initially synthesised as 

a precursor protein (preproBDNF) in the 

endoplasmic reticulum (Figure 1-15) 

Following cleavage, proBDNF is transported to 

the Golgi and sorted into either constitutive 

or regulated secretory vesicles (Greenberg et al., 2009). It is here that proBDNF can be converted into 

 NPY Neuropeptide Y (Whittaker et al., 1999; Sajdyk et al., 2008) 

 NT Neurotensin (Amano et al., 2008) 

 NRG1 Neuregulin-1 (Kwon et al., 2008; Jedlicka et al., 2015) 

 SOM Somatostatin (Baratta et al., 2002; Chen et al., 2009) 

 SP Substance P (Kato and Yoshimura, 1993; Dasgupta et al., 

2017) 

 VP Vasopressin (van den Hooff et al., 1989; Chafai et al., 2012) 

 VIP Vasoactive intestinal 

polypeptide 

(Cunha-Reis et al., 2014) 

Catecholamines

, hormones 

Ach Acetylcholine (Luo et al., 2008; Mitsushima et al., 2013; 

Takkala and Woodin, 2013)  

 Epi Epinephrine   (Kuba and Kumamoto, 1986; Kumamoto and 

Kuba, 1987)  

 GH Growth hormone (Mahmoud and Grover, 2006; Molina et al., 

2012) 

 NE Norepinephrine   (Izumi and Zorumski, 1999; Maity et al., 2015) 

 DA Dopamine (Li et al., 2003; Swant and Wagner, 2006)  

 5-HT Serotonin (Villani and Johnston, 1993; Hu et al., 2004; 

Mlinar et al., 2015) 
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mature BDNF in the trans-Golgi network, by endoproteases such as furin, or in the immature 

secretory granules by proprotein convertases such as protein convertase 1 (PC1). Alternatively, 

following secretion proBDNF can be converted to mature BDNF by plasmin and matrix 

metalloproteinases present extracellularly.  

BDNF acts through the tropomyosin receptor kinase B (TrkB), eliciting activation of 

downstream signalling cascades including Ras, MAPK, PKC, CaMKII, PI3K and PLC-γ (Sasi et al., 2017). 

Through these, BDNF mediates many neurotrophic processes, including neurogenesis (Lian et al., 

2016; Liu and Nusslock, 2018), neuroprotection (Hofer and Barde, 1988), and cellular excitation and 

synaptic plasticity (Kang and Schuman, 1995; Kafitz et al., 1999). While proBDNF has been implicated 

in the facilitation of LTD (Woo et al., 2005), mature BDNF has been shown to enhance both E-LTP and 

L-LTP. Importantly, heterozygous and homozygous BDNF knockout mice show impaired maintenance 

of LTP (Korte et al., 1995), able to be rescued by virus-mediated perfusion of BDNF (Korte et al., 1996; 

Patterson et al., 1996). Interestingly, in conditions wherein the activity-dependent secretion of BDNF 

is inhibited, the maintenance, but not induction, of LTP is impaired (Sakata et al., 2013). While these 

past experiments have examined BDNF-mediated potentiation in response to tetanic stimulation, 

acute application of BDNF (25 minutes) to hippocampal slices has been shown to gradually enhance 

synaptic transmission in the dentate gyrus in the absence of tetanisation, or NMDAR activation (Ying 

et al., 2002). This enhancement of synaptic transmission was found to plateau within 3–4 hours post-

BDNF, persisting without decrement for at least 15 hours. Further, this effect was found to be 

dependent on the early activity of MAPK, promoting CREB phosphorylation within 15 minutes and Arc 

transcription and translation within 3 hours (Messaoudi et al., 2002; Ying et al., 2002; Kuipers et al., 

2016). Inhibition of BDNF by TrkB-targeted antibodies 45 minutes before the induction of LTP, or 10 

minutes, 2- and 4-hours following the induction of LTP significantly attenuated the expression and 

maintenance of LTP in vivo. Application of TrkB-targeted antibodies 8- and 10-hours post-LTP 

induction did not significantly attenuate LTP persistence, indicating that BDNF may have an effective 

window in which it acts (Panja and Bramham, 2014). 

In order to enhance the maintenance of LTP, it is thought that BDNF promotes the local 

synthesis of PRPs at the site of synaptic activity (Zhang and Poo, 2002; Leal et al., 2014). This 

mechanism has been described to mediate the synaptic tag and capture of PRPs during 

heterosynaptic plasticity. In conjunction with PKMζ, BDNF has been shown to enhance mGluR-primed 

LTP, converting a weak heterosynaptic LTP into a protein synthesis dependent, non-decaying LTP. 

Interestingly, although BDNF has been shown to coordinate a protein synthesis-dependent 

maintenance of LTP (Sajikumar and Korte, 2011), application of BDNF minutes after TBS stimulation 

has been shown to rescue an anisomycin-induced impairment in LTP maintenance (Pang et al., 2004). 
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This has been thought to occur through the protein synthesis-independent activation of PKMζ (Mei et 

al., 2011), suggesting PKMζ may act downstream of BDNF signalling.  

Both pre- and postsynaptic mechanisms have been described in BDNF-mediated induction 

and maintenance of LTP. BDNF has been show to enhance presynaptic transmission (Gottschalk et al., 

1998), likely by enhancing the synthesis of presynaptic vesicle proteins (Tartaglia et al., 2001), and the 

number of docked vesicles (Tyler and Pozzo-Miller, 2001). Postsynaptically, BDNF enhances the 

transcription, translation and trafficking of GluN1, GluN2A-, and GluN2B NMDAR (Caldeira et al., 

2007), as well as the GluA1-containing CP-AMPAR (Smith et al., 2005; Li and Wolf, 2011; Fortin et al., 

2012). The incorporation of CP-AMPAR has been shown to occur within 60 minutes, and was found to 

be dependent on mammalian target of rapamycin (mTOR), CaMKII, and protein synthesis (Caldeira et 

al., 2007). 

 APP: A Multifaceted Control of Plasticity 

 

The APP protein is a lipid membrane bound protein 695-770 amino acids in length, belonging to the 

family of proteins including the amyloid precursor-like proteins (APLP1 and APLP2) in mammals and 

the amyloid precursor protein-like protein (APPL) in drosophila (Figure 1-16). APP exists in 8 isoforms, 

3 of which are the most common: the APP695 is predominantly expressed in the CNS, while APP751 

and APP770 forms, are more ubiquitously expressed (Bayer et al., 1999). Initially, full-length APP was 

understood to play a crucial role in regulating cell processes involved in metabolism and 

development, throughout the CNS, as well as kidney, heart, muscle, and lung tissue (Tanaka et al., 

1989). APP knockdown mice show significant reductions in body weight, grip strength, locomotion 

and impaired synaptic transmission, as well as a susceptibility to epileptic seizures (Zheng et al., 

1995). Further, in the CNS, APP is widely believed to be functionally involved in neuronal 

development, cell signalling, and homeostasis (Young-Pearse et al., 2007; O'Brien and Wong, 2011).  

Within the CNS, APP is present in both excitatory and inhibitory neurons (Liao et al., 2016) at 

both pre- and postsynaptic terminals, as well as within glial cells including astrocytes and microglia 

(LeBlanc et al., 1996; Wang et al., 2009). Following synthesis and sorting in the ER and Golgi, APP is 

delivered to both axons (Koo et al., 1990) and dendrites (Das et al., 2013) by fast anterograde 

trafficking, mediated by kinesin-driven transport (Kamal et al., 2000). Following trafficking, both 

constitutive and activity-dependent processing permit cleavage of secreted metabolites (Figure 1-17). 

The processing of APP by α-, β-, and γ-secretases determines the outcome of the amyloidogenic 

versus the non-amyloidogenic pathway. Following trafficking from the trans-Golgi network, APP is 

transported to the cell surface. Here, APP may be proteolyzed directly by A disintegrin and 

metalloproteinase (ADAM10) α-secretase to generate the N-terminal secreted amyloid precursor 
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protein-α (sAPPα; Figure 1-16). Alternatively, a small population of cell surface APP may be processed 

by the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), releasing sAPPβ (Wang et al., 

2018). Cleavage at the β-secretase site releases an APP fragment 16 amino acids shorter than sAPPα, 

and these 16 amino acids (CTα16) have been shown to mediate many of the differences between the 

two peptides (Richter et al., 2018; Morrissey et al., 2019b). 

 

The dwell time of APP at the cell surface is short (Lorenzen et al., 2010). Unprocessed, full-length APP, 

or remaining C-terminal fragments following α-, and β-secretase activity (generating α and βCTFs, 

respectively), may be reinternalized in clathrin-coated pits into late endosomes or lysosomes 

containing both BACE1 and γ-secretase proteases. Here, unprocessed APP may undergo both β-

secretase and γ-secretase processing to release sAPPβ, Aβ, and AICD, while α- and β-CTFs may also 

undergo further γ-secretase processing releasing p3, and APP intracellular domain (AICD), and Aβ, 

and AICD, respectively (O'Brien and Wong, 2011). Both p3 and AICD have been proposed to be 

involved in a range of intracellular signalling cascades, such as gene transcription, and neurite 

development, as well as caspase-mediated cell death signalling (Müller et al., 2008; Chow et al., 2010; 

Frykman et al., 2010; Zhou et al., 2012). This processing permits the production of sAPPα to preclude 

Aβ generation by cleavage and secretion at the plasma membranes (Nitsch et al., 1993; Lammich et 

al., 1999). Following generation of Aβ, Aβ fragments undergo lysosomal degradation or release into 

the extracellular space via vesicle recycling (Schroeder and Koo, 2005), or packaging into extracellular 

Figure 1-16 | Structure and domains of the Amyloid Precursor Protein. Schematic diagram 

depicts the APP protein and primary metabolites, as well as sites of α-(■), β-(■), γ-(■), ε-(■), and η (■)-

secretase activity. Post-translational modifications include: phosphoserine (pS, ■), phosphothreonine (pT, 

■), glycosylation (Gl, ■). Heparin-binding domain (HBD, ■), growth factor binding domain (GFBD, ■), 

Zn2+- (■) and Cu2+- (■) binding domains. E1 (■), ED (■), AD (■), E2 (■), juxtamembrane region (JMR, 

■), transmembrane domain (■), APP intracellular domain (AICD; ■). Scale bar = amino acids. Structure 

based on (Nikolaienko et al., 2018).  
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vesicles (Sardar Sinha et al., 2018; Figure 1-17). Recently, alternative proteases have been identified 

which cleave APP to generate sAPPη (Willem et al., 2015) and CTF-ϵ (Eggert et al., 2004). Generation 

of the N-terminal product sAPPη by membrane-bound matrix metalloproteinases such as MT5-MMP 

(η-secretase) also releases CTF-η fragments Aηα and Aηβ, via α- and β-secretase, respectively. 

Conversely, the ϵ-secretase cleavage occurs in close proximity to γ-secretase and likely promotes 

release of the intracellular domain of APP following α, and β-secretase activity (De Strooper et al., 

2010).  

While processing of APP has been shown to occur constitutively, the release of both Aβ and 

sAPPα have also been linked directly to synaptic activity (Cirrito et al., 2003). Due to this, the naturally 

high metabolic activity of the hippocampus and closely associated cortices appear preferentially 

targeted for increased APP processing (Del Turco et al., 2016). During activity increased presynaptic 

vesicle fusion during neurotransmitter release, and clathrin-mediated endocytosis during vesicle 

recycling, promotes the delivery and internalization of APP, permitting Aβ generation and release. 

Alternatively, PKC-dependent activity has been shown to enhance cell surface expression of APP 

(Hung et al., 1993), promoting α-secretase activity, and inhibiting Aβ production (Skovronsky et al., 

2000). 

 

 Amyloid Beta 

 

Amyloid beta (Aβ) was first isolated as the principal component of amyloid deposits in the brain and 

cerebral vasculature of AD and Down’s Syndrome (DS) patients (Masters et al., 1985). While Aβ has 

been shown to form peptides ranging from 39-43 residues in length, the primary forms are Aβ40 and 

Aβ42, produced by γ-secretase cleavage. It is through these two forms arise from poor specificity for 

the cleavage site (Li et al., 2000), while mutations in the γ-secretase complex protein PS1 (PSEN1) 

drive γ-secretase towards Aβ42 production (Wolfe, 2007). The presence of the longer C-terminal tail 

of Aβ42 is thought to promote aggregation into higher order molecules, and the formation of 

extracellular Aβ plaques (Jarrett et al., 1993). Due to this, a consistent feature of AD pathology is an 

increased ratio of Aβ42/40, suggesting a shift in balance of these products is a critical step in AD 

pathogenesis  

Aβ has been widely understood as a key regulator of the neurodegeneration observed in AD. 

The presence of extracellular Aβ-containing plaques and intracellular hyperphosphorylated Tau 

protein and accumulation of neurofibrillary tangles (Spillantini et al., 1990). These dystrophies are 

thought to occur downstream of aberrant Aβ signalling, promoted by sporadic or genetic factors 

contributing to the pathogenesis of AD (Ricciarelli and Fedele, 2017). These changes, mediated in 
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large by Aβ, have been linked to the loss of excitatory synapses (Lue et al., 1999), impairments in 

memory and LTP (Shankar et al., 2008; Faucher et al., 2016), and neuritic dystrophy (Pike et al., 1992), 

ultimately leading to cell death (Bancher et al., 1997) and atrophy of the CNS (Whitwell, 2010). 

Notably, in animal models expressing mutated forms of APP or PS1, deficits in synaptic composition 

and transmission are present before the emergence of plaques by several months (Hsia et al., 1999). 

At the synapse, oligomeric Aβ has been shown to bind in close proximity to synapses (Lacor et al., 

2004; Koffie et al., 2009), and impair synaptic density in a radial manner from Aβ plaques (Hsieh et al., 

2006; Spires-Jones et al., 2007; Birnbaum et al., 2015). These oligomers have been further shown to 

impair the induction and maintenance of LTP (Freir et al., 2001; Shankar et al., 2008), enhance LTD (Li 

et al., 2009), and reduce cell surface levels of GluN1 and GluN2B NMDAR subunits (Snyder et al., 

2005; Kurup et al., 2010), as well as synaptic GluA1, (Almeida et al., 2005), and GluA2 (Liu et al., 2010) 

AMPAR subunits. From this, it is posited that small Aβ oligomers provide a majority of the 

neurotoxicity evident in AD, with Aβ plaques providing diffuse stores of these peptides.  

 

This research provides strong evidence that Aβ acts to promote pathological dysregulation of 

synapses, however under conditions in which high concentrations of Aβ are present. Converse to this, 

a non-pathological role of Aβ has also been identified at lower, physiological levels. At concentrations 

reflective of those present in the healthy brain (Rozmahel et al., 2002; Phinney et al., 2003; Pawlik et 

al., 2004), mounting evidence suggest that Aβ shows characteristics of a canonical neurotrophin. Such 

that APP, and thus Aβ, as well as β- and γ-secretases are expressed throughout the hippocampus 

(Hébert et al., 2004; Del Turco et al., 2016; Meakin et al., 2018) and cortex (Satoh et al., 2012; 

Bergström et al., 2016), from early in development throughout adulthood (Yusof et al., 2019; 

Bergström et al., 2016). Further, as mentioned above, the generation of Aβ is activity dependent, with 

extracellular release tightly linked to vesicle fusion and recycling (Cirrito et al., 2003), and Aβ has 

shown promise in positively modulating neuronal function, such as enhancing synaptic transmission, 

cell excitability, and promoting plasticity.  
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It has been previously shown that inhibition of Aβ degradation enhances mEPSC responses 

through an enhancement in presynaptic vesicle release (Abramov et al., 2009; Lazarevic et al., 2017). 

Likewise, picomolar concentrations of Aβ enhances neuronal neurotransmission (Puzzo et al., 2008), 

and spontaneous astrocytic calcium transients (Lee et al., 2014), both in a manner dependent on the 

activation of α7nAch receptors. Further, cGMP-induced LTP has been found to be dependent on Aβ 

through a mechanism which increases APP/BACE-1 convergence in lysosomes (Palmeri et al., 2017). In 

line with this, recent work has highlighted a role of Aβ in the conversion of E-LTP to a protein 

synthesis-dependent L-LTP, as well as increasing phosphorylation of CREB and CaMKII and increasing 

BDNF levels, in a manner dependent on the NO/cGMP/PKG cascade and α7nAchR activation (Gulisano 

et al., 2019). Interestingly, Aβ may act in a concentration- and aggregation-dependent manner to gate 

α7nAchR activity. Such that, at picomolar concentrations, monomeric Aβ promotes α7nAchR 

Figure 1-17 | Stylized diagram of APP processing. In the non-amyloidogenic pathway, APP is 

trafficked towards the plasma membrane where it is cleaved by α-secretase, generating soluble APP 
alpha (sAPPα) and α-secretase C-terminal fragment (α-CTF). Full length APP is internalised by clathrin-
dependent endocytosis. APP, BACE1 and BACE2 converge in early endosomes. The amyloidogenic 
pathway then results in APP cleavage into soluble APPβ (sAPPβ) and β-secretase C-terminal fragment (β-
CTF; also known as C99). Both non-processed, full-length APP and sAPPβ can be reinserted into the 
plasma membrane through recycling endosomes. Final γ-cleavage of APP generates the APP intracellular 
domain (AICD) and amyloid β (Aβ) peptides. 
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activation (Dineley et al., 2002; Dougherty et al., 2003; Wu et al., 2007; Puzzo et al., 2008), while 

nanomolar concentrations (Liu et al., 2001; Pettit et al., 2001; Grassi et al., 2003) and oligomeric Aβ 

(Kroker et al., 2013) inhibit the activation of α7nAchRs (Wang et al., 2000a; Lasala et al., 2019). Lastly, 

depletion of Aβ in vivo has been shown to result in impaired performance on both reference and fear 

conditioning-based tasks (Puzzo et al., 2008; Garcia-Osta and Alberini, 2009). Taken together, these 

data provide evidence for a role of Aβ in regulating memory formation at physiological 

concentrations, while significantly impairing synaptic plasticity and neuronal health at greater 

concentrations (Figure 1-18). These dual mechanisms displayed by Aβ may provide insight into why 

many of the drug treatments aiming to reduce or eliminate Aβ in AD fail (Lista et al., 2015; Morley and 

Farr, 2016). 

 

 

 

 

 sAPPα 

 
A facet of the APP protein which has arisen throughout the course of its research is its role in 

promoting neurotrophic support during development, as well as contributing to the regulation of 

plasticity. Research examining acute and chronic application or knockout of APP have provided 

Figure 1-18 | Hormetic relationship between APP metabolites and the expression of key 
neurotrophic mechanisms. Aβ (■), sAPPβ (■), and sAPPα (■) show distinct concentration-dependent 

regulation of cellular processes, with minimal overlap. Many of the positive effects of Aβ- and sAPPα are 
present at low picomolar and nanomolar concentrations, respectively. sAPPα begins to inhibit neuronal active 
at high nanomolar concentrations, while Aβ becomes detrimental to plasticity and cell health at high 
nanomolar and micromolar concentrations. Effective sAPPβ concentrations appear at low nano- and 
micromolar concentrations. Concentrations are presented as a log of molar (M) concentration. 
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significant evidence that APP mediates many aspects of central and peripheral nervous system 

function. Initial observations found that knockout of APP resulted in reduced peripheral motor 

function (Zheng et al., 1995; Zheng et al., 1996; von Koch et al., 1997), defective CNS neuronal 

migration (Herms et al., 2004), reduced neuronal morphology and synaptic transmission (Zheng et al., 

1995; Zheng et al., 1996; Dawson et al., 1999), and impaired spatial memory performance (Müller et 

al., 1994). Around this time the N-terminus of APP was identified to contain growth factor-like 

structure (Rossjohn et al., 1999), containing heparin-binding, and cysteine-rich domains. Animal 

models lacking the expression of N-terminal APP, but retaining the amyloidogenic C-terminal domain, 

show extensive gliosis, impaired spatial memory performance, and reduced LTP magnitude 

(Nalbantoglu et al., 1997). Importantly, many of the deficits displayed by knockout or mutation of the 

endogenous APP gene, could be rescued with acute application of sAPPα, restoring brain and body 

weight, as well as motor deficits and synaptic transmission and spatial memory (Ring et al., 2007). 

Importantly, application of sAPPβ was insufficient to rescue the increased lethality of APP-KO mice, 

nor the associated motor deficits (Li et al., 2010). While sAPPβ has been shown to regulate aspects of 

neurite outgrowth (Chasseigneaux et al., 2011), neural differentiation (Freude et al., 2011), and 

neuroprotection (Furukawa et al., 1996b; Barger and Harmon, 1997), mounting evidence suggests 

sAPPα mediates many of the neurotrophic and plasticity-enhancing effects present in APP, at lower 

effective concentrations (see Figure 1-18). Crucially, in many neurological and neurodegenerative 

disorders, the expression and regulation of sAPPα appears altered and may contribute significantly to 

the pathology of the disease. 

 

 sAPPα as a Biomarker 

 

As part of the pathology which arises in AD and associated pathologies, the amyloid cascade 

hypothesis further posits that there is a clear shift in the processing of APP towards the 

amyloidogenic pathway, and away from the non-amyloidogenic pathway (Selkoe and Hardy, 2016). 

AD is a multifactorial disease, consisting of both familial (fAD) and sporadic (sAD) forms (Barykin et al., 

2017). A minority of AD cases present with fAD, with a predominantly early-onset, driven primarily by 

the inheritance of mutations in APP, ADAM10, PSEN1, and PSEN (Bertram et al., 2010). Most cases 

(90%) present as the more complex sAD, arising from a combination of environment and lifestyle 

factors (Piaceri et al., 2013), as well as genetic predisposition associated with the ε4 allele of the 

Apolipoprotein E gene (APOE), in approximately 20% of sAD cases (Ertekin-Taner, 2010). APOE has 

been described to regulate the metabolism and clearance of Aβ from the CNS (Verghese et al., 2013), 

and therefore has been implicated in contributing to Aβ-mediated pathology. Importantly, both fAD 
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and sAD have been hypothesised to arise, in part, as a result of the amyloid cascade hypothesis. Such 

that mutations which directly influence APP processing in fAD or Aβ clearance in sAD alter Aβ 

expression in the CNS. Logically, if a therapeutic is administered before the deposition and 

accumulation of Aβ, which opposes the further deposition of Aβ or counteracts early dysfunction, a 

therapeutic such as this would be expected to delay onset or severity of the disease. However, a 

caveat of this arises such that the period before detrimental cognitive decline, but possible to be 

detected physiologically, must be defined. 

Due to this, many studies have attempted to measure the metabolites of APP processing, 

including sAPPα, sAPPβ, total sAPP, and Aβ40/42, from blood, plasma, and cerebral spinal fluid (CSF) 

from human patients, aiming to detect onset or manifestation of neurodegenerative diseases, 

including AD. Much of the research examining the expression of APP metabolites in AD has focused 

on Aβ, finding strong correlations between levels of Aβ40/42 with Mini-Mental State Examination 

(MMSE) scores (Struyfs et al., 2015) and disease progression (Bibl et al., 2012; Janelidze et al., 2016), 

in both sAD (Portelius et al., 2010) and fAD (Portelius et al., 2012). Studies examining the 

concentration of sAPPα in AD patients have however been somewhat inconsistent. This may have 

arisen partially through discrepancies in the methodology, including MMSE scores, heterogeneity of 

the disease, comorbid conditions, specificity and sensitivity of the assays and cross-reactivity of 

antibodies, and differences in sampling, processing, and storage of samples. One study in particular 

was conducted on patients scoring greater than 20 on the MMSE. Of those patients with CSF 

characteristics of AD, many demonstrated high CSF levels of sAPPα and sAPPβ (Lewczuk et al., 2010). 

However, comparing this to studies which have found a significant decrease in sAPPα while using less 

strict exclusion criteria, the increased levels of APP metabolites may be indicative of patients with 

typically higher cognitive ability (scoring > 20) despite presence of pathological AD characteristics, or 

those in an early stage of the disease progress (Prior et al., 1991; Van Nostrand et al., 1992; Sennvik 

et al., 2000; Colciaghi et al., 2002; Rosen et al., 2012). Notably, in studies which concluded little to no 

change in AD patients CSF levels of sAPPα and sAPPβ, the antibodies used failed to distinguish 

between sAPPα and sAPPβ and thus measured total sAPP (Palmert et al., 1990; Hock et al., 1998). This 

limits the conclusions drawn as many recent studies suggest unchanged sAPPβ with decreased sAPPα 

(Prior et al., 1991; Van Nostrand et al., 1992; Sennvik et al., 2000). 

Furthermore, differences may arise in the aetiology of the disease. In patients with fAD 

mutations such as those affecting APP (Swedish APP KM670/671NL) and ADAM10 (Q170H and 

R181G), there are significant decreases in CSF levels of sAPPα (Lannfelt et al., 1995; Kim et al., 2009), 

which is further correlated with poor performance on neuropsychological tests that assess 

intelligence, verbal and visuospatial functions, memory, and attention (Almkvist et al., 1997). A similar 
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trend is seen in patients possessing one or two copies of the ɛ4 allele of APOE, suggesting risk factors 

for sAD may also affect the processing and expression of sAPPα (Olsson et al., 2003; Thordardottir et 

al., 2017). Importantly, while the levels of sAPPα significantly decrease in fAD, and in moderate-to-

severe AD (Lannfelt et al., 1995; Almkvist et al., 1997), it appears many studies have not found 

significant changes in the early stages of sAD and mild cognitive impairment (MCI; Perneczky et al., 

2011; Rosen et al., 2012; Brinkmalm et al., 2013; Perneczky et al., 2013; Araki et al., 2017), compared 

to sAD patients in advanced stages of the disease (Rosén et al., 2012). This indicates that direct 

genetic alterations in APP processing may influence biofluid levels of sAPPα to a greater, more 

detectable level than in sAD. Interestingly, reduced CSF concentrations of sAPPα are also evident in 

other conditions, including cerebrovascular and neurodegenerative diseases such as stroke (Selnes et 

al., 2010), amyotrophic lateral sclerosis (ALS; Selnes et al., 2010; Steinacker et al., 2011), bipolar 

disorder (Jakobsson et al., 2013; Rolstad et al., 2015), and idiopathic normal pressure hydrocephalus 

(Miyajima et al., 2013), therefore changes in the levels of sAPPα in these conditions may indicate a 

critical clinical evaluation is necessary to rule out comorbid diseases which may interfere with the 

specificity of an AD diagnosis. 

 

 sAPPα as a Neuroprotective Molecule 

 

Following the observations that APP can regulate copper- (White et al., 1999), iron- (Maynard et al., 

2002; Duce et al., 2010), zinc-, and manganese- (Needham et al., 2014) homeostasis, levels of glucose 

and insulin (Needham et al., 2008), as well as provide anticoagulant functions with regards to 

thrombosis (Henry et al., 1998; Xu et al., 2009), it was becoming clear that sAPPα may also 

demonstrate neuroprotective and neurotrophic functions. sAPPα has since been shown to protect 

against a battery of insults including traumatic brain injury (TBI; Pierce et al., 1996; Chen et al., 2004; 

Thornton et al., 2006; Loane et al., 2009; Corrigan et al., 2012; Siopi et al., 2013; Plummer et al., 

2016), hypoglycemia and glutamate toxicity (Mattson et al., 1993; Furukawa et al., 1996b; Ryan et al., 

2013), and proteasomal deficiency-induced cell stress and apoptosis (Copanaki et al., 2010; Kundu et 

al., 2016). While many of these assays examine sAPPα’s ability to counteract apoptosis or apoptosis-

related pathways, a 2016 study examined the effects of transient hypoxia on electrical activity at the 

network and cellular level, in APP-KO mouse tissue. Relative to wild-type (WT) mice, in APP-KO mice 

hypoxia-induced impairments were exacerbated, including increased intracellular Ca2+, faster loss of 

function, higher incidence of spreading depression, and much slower recovery upon reoxygenation 

(Hefter et al., 2016). Importantly, these deficits could be abrogated following selective expression of 

sAPPα or blockade of L-type calcium channels. These results indicate that sAPPα contributes much of 
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its neuroprotective functions to calcium homeostasis. Of interest, many of the neuroprotective 

effects including activation of nuclear factor-kappa B (NFκB) DNA-binding activity, calcium 

homeostasis, and K+-channel activation, occur as part of the cGMP pathway (Furukawa et al., 1996a; 

Furukawa and Mattson, 1998). Further, in vivo studies have corroborated this research, finding that 

during transient hippocampal ischemia, administration of sAPPα significantly ameliorated neuronal 

loss (Smith-Swintosky et al., 1994), consistent with findings that APP-KO and BACE-KO mice show 

increased mortality as a result of cerebral ischemia (Koike et al., 2012). Similarly, APP-KO mice appear 

more vulnerable to TBI, but show reduced cell death, and axonal deficits, and improved motor 

outcomes following intracerebroventricular administration of sAPPα or peptides derived from it 

(Corrigan et al., 2014), indicating an endogenous role of sAPPα during injury. Importantly, sAPPα has 

also been shown to provide neuroprotection against Aβ-induced toxicity (Goodman and Mattson, 

1994; Barger and Mattson, 1996b; Gralle et al., 2009; Milosch et al., 2014), by promoting an 

upregulation in neuroprotective genes such as transthyretin and insulin-like growth factor-2 (Stein et 

al., 2004). sAPPα may also directly regulate the expression of Aβ, by binding to and inhibiting of 

BACE1 directly, reducing the production of Aβ (Obregon et al., 2012; Peters-Libeu et al., 2015). These 

observations further support the hypothesis that dysregulation of APP processing exacerbates Aβ-

mediated pathology through an impairment in sAPPα-mediated neuroprotection. 

 

 sAPPα as a Putative Treatment 

 

The rise of the amyloid cascade hypothesis has largely driven by efforts to minimize levels of Aβ in the 

brain. This has led to clinical trials aimed at reducing Aβ action directly or inhibiting its production. 

Among the anti-Aβ therapeutic approaches, the most extensively developed is that of 

immunotherapy– direct targeting of endogenous Aβ protein through administration of exogenous 

monoclonal antibodies (van Dyck, 2018). While many attempts have reached phase 1 (Ostrowitzki et 

al., 2012; Landen et al., 2013; Sevigny et al., 2016) or 2 (Salloway et al., 2009; Rinne et al., 2010; 

Farlow et al., 2012) of clinical trials, many have also made it through to phase 3 (Doody et al., 2014; 

Salloway et al., 2014). However, all cases have failed to meet their primary end points, with no 

significant changes to disease progression or cognition in the face of major problems with safety. 

Because of this, indirect targets of Aβ generation have been sought. The β-secretase enzyme BACE1 

has been shown to be significantly increased in AD patients (Fukumoto et al., 2002; Fukumoto et al., 

2004), and significantly correlated with Aβ load (Li et al., 2004), and has therefore been targeted as a 

target of potential therapeutics. Early investigations found BACE1 inhibitors to provide significant 

ameliorations to brain Aβ levels (Lai et al., 2012; Stamford et al., 2012; Bernier et al., 2013; Forman et 
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al., 2013; Eketjäll et al., 2016) while increasing sAPPα levels (Martenyi et al., 2012; Willis et al., 2012). 

However, many of these trials failed to provide significant ameliorations in cognitive or functional 

decline (Hawkes, 2017; Egan et al., 2018), likely due to little benefit in reducing Aβ late in the disease 

progression, and off-target effects (Lahiri et al., 2014). 

Due to sAPPα’s innate role in combating neurodegeneration, whilst providing trophic support, 

it is only logical to approach treatment against neurodegeneration from the standpoint of enhancing 

either direct CNS concentrations of sAPPα, or upregulating endogenous mechanisms which do so. 

Perhaps surprisingly, recent investigations into FDA-approved drugs marketed towards improving 

symptoms present during mild-moderate AD, has shown a unique link to APP physiology. 

Cholinesterase inhibitors Rivastigmine, Phenserine, and Donepezil have been show to significantly 

decrease Aβ in vitro (Lahiri et al., 2007; Takada-Takatori et al., 2019 ), in vivo (Ray et al., 2020), and in 

CSF of AD patients (Maccecchini et al., 2012). Additionally, Rivastigmine has been found to inhibit Aβ 

generation through a mechanism which enhances ADAM-9, -10, and -17 α-secretase activity, and thus 

simultaneously enhance sAPPα production. This effect was found to be robust when assayed in rat 

neuronal PC12 cells, primary human brain cultures, 3× transgenic (APPKM670/671NL, PS1M146V, 

MAPTP301L) mice, as well as post-mortem human brain samples from those with AD and treated with 

Rivastigmine. The action of these drugs is spurred by the cholinergic hypothesis of AD, which posits 

that cholinergic hypofunction mediates the cognitive decline present in AD, and augmentation of this 

may be beneficial, by either enhancing activity of the endogenous acetylcholine (ACh) or by 

exogenous agonists (Fisher, 2012). Results from animal research provides support for this as high 

concentrations of Aβ impair  α7nAchR activation (Liu et al., 2001; Pettit et al., 2001; Grassi et al., 

2003), which negatively affect the induction of LTP (Kroker et al., 2013), but can be rescued by co-

application of competitive agonists of α3β4 (Nery et al., 2013) and α4β2- and α7nAchRs (Kroker et al., 

2013). Importantly, activation of α4β2-, and α3- and α7-containing nAchR (Nitsch et al., 1992; 

Mousavi and Hellstrom-Lindahl, 2009), as well as m1- and m3-containing muscarinic AChRs (mAchRs; 

Nitsch et al., 1996), enhances the release of sAPPα while simultaneously attenuating Aβ production, 

indicating that Aβ itself may drive positive feedback regulation at physiological levels and may be an 

avenue worth exploring therapeutically.  

 

 sAPPα as a Promoter of Plasticity 

 

In addition to promoting neuroprotection, APP has been shown to contribute to the growth of 

neurons, promoting the formation and strengthening of synapses and enhancing plasticity. APP-null 

and APP-silenced mice show significant reductions in the proportion of synaptophysin-positive 
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presynaptic terminals, impaired induction and maintenance of hippocampal LTP (Seabrook et al., 

1999; Taylor et al., 2008), in addition to prominent reductions in total neurite length, dendritic 

branching, reduced spine density and reduced spine head volume (Ring et al., 2007; Hick et al., 2015).  

As research has continued, sAPPα has begun to prove itself as not only a key facilitator of 

neuroprotection but as a neurotrophic and plasticity-enhancing protein, also. Early observations 

found that APP-null and APP-silenced (through antibody targeting) mice showed prominent 

reductions in the proportion of synapses (Seabrook et al., 1999), reductions in total neurite length, 

dendritic branching, reduced spine density and reduced spine head volume (Lee et al., 2010b; Tyan et 

al., 2012), as well as significant reductions in the induction and persistence of hippocampal LTP (Ring 

et al., 2007; Weyer et al., 2011; Hick et al., 2015), and impaired performance on hippocampal-

dependent memory tasks (Klevanski et al., 2015). Importantly, many of these impairments are able to 

be rescued by acute application or viral knock-in of sAPPα or the C-terminal 16 amino acid APP672–

688 peptide (CTα16), but not the sAPPβ fragment (Ring et al., 2007; Weyer et al., 2011; Hick et al., 

2015; Klevanski et al., 2015), indicating that many of the synaptic functions provided by APP may arise 

by sAPPα-driven mechanisms. In fact, sole application of sAPPα to hippocampal tissue has been 

shown to promote neurite (Clarris et al., 1994; Small et al., 1994), and axonal outgrowth (Young-

Pearse et al., 2008), primarily produced through the presence of heparin-binding site at residues 

APP96-110 (Small et al., 1994), APP319–335 containing the amino sequence RERMS (Ninomiya et al., 

1994), or the APP328-332 motif alone (Jin et al., 1994). In line with this, overexpression of human APP 

(Mucke et al., 1996; Lee et al., 2010b), or the α-secretase ADAM10 (Bell et al., 2008) has been shown 

to increase the proportion of cholinergic, glutamatergic and GABAergic synapses, accompanied by 

increases in surface and total GluA2, but not GluA1-containing AMPAR (Lee et al., 2010b). Further, 

using time-lapse two-photon in vivo microscopy, spine density was found to remain unaltered in APP-

KO mice, however these mice showed significant deficits in spine turnover, affecting spine formation 

and elimination, as well as environmental enrichment-dependent increase in spine density. 

Interestingly, the latter was found to be rescued by application of exogenous D-serine (Zou et al., 

2016), indicating that APP, or sAPPα may mediate astrocyte and D-serine homeostasis to regulate 

these changes. Together, these results indicate a crucial role of autocrine or paracrine signalling of 

sAPPα in the formation and maintenance of spines, necessary for learning-induced plasticity. 

In addition to altering morphological plasticity, sAPPα has been shown to also facilitate 

functional physiological outcomes. Early experiments showed that application of sAPPα to acute 

hippocampal slices shifts the frequency of the LTD induction, such that low frequency, LTD-inducing 

stimulation (LFS, 1Hz) was insufficient to induce LTD following pre-treatment with sAPPα. 

Alternatively, sAPPα was also shown to enhance HFS-induced (100Hz) LTP by 50% (Ishida et al., 1997), 
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in a manner dependent on cGMP, and likely PKG. Similarly, inhibition of endogenous sAPPα by 

antibody targeting, or inhibition of α-secretase by TAPI-1, significantly reduces LTP in the dentate 

gyrus of adult rats in vivo (Taylor et al., 2008), as well as impairing spatial memory. These results have 

been so-far linked to an increase in NMDAR currents (Moreno et al., 2015), however this is contested 

(Furukawa and Mattson, 1998), while more recent work has linked the activation of α7nAChRs in 

sAPPα- and CTα16-mediated enhancements of LTP (Richter et al., 2018; Morrissey et al., 2019a). 

 

sAPPα’s ability to enhance synaptic potentiation, in both in- and ex-vivo preparations, is further 

evident by sAPPα’s effect on behaviour. Intracerebral administration of antibodies targeted towards 

residues 672–688 of APP has been shown to impair performance on inhibitory avoidance in rats 

(Doyle et al., 1990), and passive avoidance in chicks (Mileusnic et al., 2000). Similarly, inhibition of α-

secretase impairs spatial water-maze memory in rats (Taylor et al., 2008), similar to complete 

knockout of APP (Ring et al., 2007). Importantly, these deficits could be restored by either acute 

administration (Taylor et al., 2008) or genetic overexpression (Ring et al., 2007) of sAPPα. Further, 

these memory-enhancing effects have been found to be applicable in rescuing amnesia- (Meziane et 

al., 1998), Aβ- (Mileusnic et al., 2004), AD- (Fol et al., 2016), TBI- (Corrigan et al., 2012), and aging-

induced memory impairments (Xiong et al., 2017). Further, acute treatment of sAPPα, but not sAPPβ, 

is capable of protecting against oligomeric Aβ-induced spine loss (Tackenberg and Nitsch, 2019), while 

both sAPPα and CTα16 have been shown to rescue impairments in LTP in an AD mouse model (Fol et 

al., 2016; Morrissey et al., 2019a). Interestingly, evidence from human studies, show in both AD and 

Bipolar Disorder (BD), cerebrospinal fluid concentrations of sAPPα have been found to be significantly 

lower than healthy controls (Zhang et al., 2011; Jakobsson et al., 2013; Rolstad et al., 2015). In 

addition, decreased sAPPα is significantly correlated with decreased cognitive performance on 

attention and speed in those with BD. 

 

While many strides have been made in understanding how sAPPα promotes LTP and concomitant 

modulations to memory and behaviour, many of the underlying mechanisms remain unsubstantiated. 

sAPPα has been previously shown to enhance both de novo transcription and translation (Ryan et al., 

2013; Mockett et al., 2019), with transcription thought to be mediated through NFκB (Barger and 

Mattson, 1996a). The outcomes of this appear to mediate extensive gene expression, much of which 

regulates neuroprotection through cell survival, inflammatory, anti-apoptotic, and neurogenic 

responses (Stein et al., 2004; Aydin et al., 2011; Demars et al., 2011).  

sAPPα has been further shown to regulate translational processes by directly regulating 

protein synthesis. Application of sAPPα (1, 10 nM; 25 min) but not sAPPβ has been shown to enhance 
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synaptodendritic protein synthesis in rat hippocampal synaptoneurosomes (Claasen et al., 2009), 

independent of transcription. This effect was found to be dose-dependent and dependent on the 

activity of CaMKII, MAPK, and PKG. Interestingly, the degree of protein synthesis enhancement was 

significantly affected by age, such that old (22–23-month-old) rats increased protein synthesis 

approximately 15% less than young (8-12 weeks) counterparts. More recently, sAPPα has been shown 

to enhance LTP in a concentration- and protein synthesis-dependent manner (Mockett et al., 2019) as 

well as requiring trafficking of proteins from the Golgi to the cell surface. Importantly, this 

enhancement of LTP was found to be specific to sAPPα, as LTP remined unaffected by sAPPβ. Further, 

sAPPα was found to concomitantly increase cell surface levels of GluA1 but not GluA2 AMPAR 

subunits, in a concentration (0.3, 1 nM)-dependent manner and dependent on CaMKII, PKG and 

activation of NMDAR. Similarly, sAPPα also increased cell surface levels of GluN1, in a concentration 

(1 nM)- and CaMKII-dependent manner. Further, in primary hippocampal cell culture, sAPPα (1 nM, 2 

hr) was found to enhance de novo synthesis of GluA1, but not GluA2 AMPAR subunits (Mockett et al., 

2019). Interestingly, the enhancement of LTP is able to be recapitulated by application of as little as 

three amino acids found within the E2 APP328-330 domain of sAPPα (Morrissey et al., 2019a), 

referred to as the RER peptide, as well as CTα16 (Morrissey et al., 2019b), in a concentration- and 

protein synthesis-dependent manner.  

Together, these results define many likely mechanisms through which sAPPα, and associated 

peptides, may promote the expression of synaptic plasticity and memory. This work has established 

gene expression, protein synthesis, and glutamate receptor trafficking as key processes mediating 

these changes, yet the underlying details remain largely unknown. To date, no study has examined 

the effect of sAPP on the expression of IEGs such as Arc and the relationship to cell surface 

expression of AMPAR. The regulation of these processes is critical to the expression of LTP, and 

therefore would provide important insights into the regulation of memory in both health and disease. 

This thesis aims to extend the current understanding of the mechanisms underlying sAPPα-mediated 

plasticity by investigating AMPAR trafficking and Arc protein in hippocampal neurons. We hypothesise 

that sAPPα regulates the enhancement of LTP, in part through the insertion of newly synthesised 

GluA1-containing CP-AMPAR at the cell surface. Moreover, we hypothesise that the expression of 

these AMPAR would be regulated by the expression and function of the IEG Arc. 
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 Chapter 2: Materials and Methods 

 

2.1. Primary Neuronal Culture Preparation 

 

All experimental protocols conducted in New Zealand were approved by the University of Otago 

Animals Ethics Committee and conducted in accordance with New Zealand Animal Welfare Legislation 

under the ethics approval ET18/15. 

 

The preparation of primary hippocampal cultures followed a modified protocol based on Banker and 

Goslin, (1998), Banker and Cowan, (1977) and Kaech and Banker, (2006), and refined by Dr. Tet-Woo 

Lee and Dr. Megan Elder. Antibiotics were not used for experiments examining the expression of 

glutamate receptors but were present for the examination of Arc protein. All instruments were 

autoclaved and all liquids were filter sterilized prior to use. Aseptic techniques were employed at all 

times. Glass bottom culture dishes (50 mm, 14 mm glass, MatTek Corporation, #P35G-1.5-14-C), 6 

well plastic dishes (Corning, #3516), 96-well assay plates (Corning, #3603), or 175 cm2 flasks (Sigma, 

#CL55431306) were coated overnight with Poly-D-Lysine (PDL; 100-200 μg/mL, Sigma), rinsed with 

autoclaved sterilised Milli-Q ultrapure water (MQ), and left to dry in a Herasafe KS Class II Biological 

Safety Cabinet (Thermofisher).  

 

 Dissection 

 
Two Sprague-Dawley rat pups (male or female, postnatal day (PD) 0-1) were sourced from a breeding 

colony maintained at the Hercus Taieri Resource Unit by the University of Otago. Pups were 

decapitated with a sharp pair of scissors (Fine Science Tools, #14060-09), and heads were submerged 

in a 100 x 20 mm petri dish (Corning, #430591) containing ice-cold dissection media (DM; in mM: 82 

Na2SO4, 30 K2SO4, 5.8 MgCl2, 0.252 CaCl2, 1 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 20 glucose, 0.001% Phenolred in MQ, adjusted to pH 7.4) and moved to a sterile laminar 

flow cabinet (Esco).  

The skin and skull were cut along the midline to the nose, and laterally to the eyes in a ‘T’ 

shape using a small pair of scissors (Figure 2-1A-D). Using forceps (Fine Science Tools, #91197-00), the 

skull was peeled back to expose the brain, which was carefully removed following the severing of the 

optic tracts and cranial nerves using a small iris spatula (Fine Science Tools, #91110-13). The brain was 

transferred to a dish of fresh, chilled DM. A pair of forceps with extra fine angled tips (Fine Science 



 71 

Tools, #91110-10) was used to separate the midbrain and forebrain, sever the corpus callosum, and 

separate the hemispheres. The meninges and blood vessels were removed from the lateral surface of 

the hemisphere and the olfactory bulb and cerebellum were removed using a curved Iris spatula 

(Figure 2-1E-I). Any midbrain and meninges from the medial aspect were removed using forceps, 

exposing the hippocampus (Figure 2-1J). The hippocampi were inverted from the cortex and removed 

from the surrounding tissue by carefully pinching away the cortex. Any remaining cortical tissue was 

carefully removed from the hippocampus and transferred to a 15 mL Falcon® conical tube containing 

ice-cold DM (Figure 2-1K-M). For the dissociation and culture of cortical tissue, remaining midbrain 

tissue was removed and the cortex was cut into smaller pieces, and transferred to ice-cold DM (Figure 

2-1N-Q) 

 

 Dissociation and Plating of Primary Neurons 

 

Following dissection, the hippocampi were incubated in cysteine-activated papain (2.64 mM L-

Cysteine (Sigma #168149), 3 % Papain (Sigma, #19001-73-4) in DM, NaOH was added to return to pH 

7.4) for 15 min at 37 °C to initiate dissociation of the extracellular matrix. This incubation was 

repeated with fresh papain solution for an additional 15 min before tissue was thoroughly washed (4 

x, 30 s) with ice-cold DM to arrest the protease action. Cells were then manually dissociated by 

trituration in warm neuronal growth media (NGM; 97 % Neurobasal A media, 2 % B27 supplement 

and 1 % Glutamax-100; Life Technologies), and any remaining tissue was allowed to settle during 

incubation on ice (3 min). The supernatant was removed and centrifuged (70 x g, 4 °C, 5 min) to pellet 

the dissociated cells, which were resuspended in warm NGM and counted using Trypan blue staining 

in a hemocytometer. Cells were plated at a density of 40,000 cells/cm2 (40,000 total) on MatTek 

dishes for immunofluorescence, 67,500 cells/cm2 (20,000 total) in 96-well plates, and 31,500 

cells/cm2 (300,000 total) or 63,000 cell/cm2 (600,000 total) in 6-well plates for RNA or protein 

extraction, respectively. Cells were maintained at 37 °C (5 % CO2) in a Heracell™ VIOS 160i CO2 

Incubator (ThermoFisher). 
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Figure 2-1 | Hippocampal and cortical dissection. A) Sprague-Dawley rat pups (PD 0-1) are 

decapitated. B-C) Skull is exposed by T-shaped cut down the midline, D) and the skull is removed to 
access the brain. E) The brain is removed and placed in ice-cold dissection media. F) The two cortical 
hemispheres are separated medially through the corpus callosum and G-H) the meninges are removed 
from the lateral surface of the cortex. I) The olfactory bulb and cerebellum are removed from each 
hemisphere, and Ji) the cortex is turned onto the lateral face, Jii) midbrain tissue is removed, and the 
hippocampus is exposed. Any remaining meninges in the hippocampal fissure and on the face of the 
hippocampus are removed and Jiii) the hippocampus is inverted and separated from the cortex by 
pinching with forceps. K-L) Any excess tissue is removed from the hippocampus and M) all hippocampi 
are place in 10 mL of ice-cold DM. For cortical cultures, N) remaining neocortex tissue is quartered (O-P) 
and Q) placed in 10 mL of ice-cold DM. 
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 Production of Conditioned Media for Cell Culture Maintenance 

 
Following plating, cultures were supplemented with conditioned media at four hours post-plating and 

4 days in vitro (DIV 4). This media consisted of NGM that had been supplemented with media from 

healthy cultures comprised primarily of cortical neurons or glial cells, which contained secreted 

factors to support the growth of primary hippocampal cultures (Conde Guerri et al., 1989; Figure 2-2). 

For the curation of conditioned media, neuronal cells were plated in a 75 cm2 flask coated with PDL 

(100 μg/mL) and maintained in NGM, with weekly feeding with NGM. Approximately 80% of the 

media was harvested every four days after DIV 7. For glial conditioned media, glial cells were 

dissociated from cortical tissue, resuspended, and plated in Minimal Essential Media (MEM; 87 % 

minimum essential medium (Gibco), 10 % fetal bovine serum (Gibco) and 3 % glucose (1.1 mM), 

supporting glial but not neuronal growth, in uncoated 175 cm2 flasks. On DIV 1, the flask was shaken 

to loosen microglial attachments and remaining unhealthy neurons. The media was changed for fresh 

MEM to remove cell debris, and again on DIV 3 and DIV 5. On DIV 7, only glial cells remained and the 

MEM was replaced with NGM to support further glial cell growth and proliferation. Glial conditioned 

media was harvested every four days from DIV 11. Media from both flasks was harvested for up to 40 

days, or until the cells appeared less healthy as determined visually by increasing debris or 

fragmented neuronal projections. Following collection, the media was centrifuged (69.5 x g, 5 min) to 

pellet any cellular debris and the supernatant was stored at -20 °C prior to use. 

Primary hippocampal cultures were supplemented at 4 hr and 4 days post-plating with 

conditioned media (80 % NGM, 15 % glial media and 5 % neuronal media prepared, as described in 

section 2.1.3. Production of Conditioned Media for Cell Culture Maintenance) and maintained with 

weekly supplements of NGM for 21–27 DIV. 
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Figure 2-2 | Growth of neurons and proliferation of glia. Representative phase contrast 

images of A) DIV5 and B) DIV 12 neuronal flask cultures. On DIV 1 C) glial flasks show cellular 
debris and dead cells (arrows), removed by shaking. D) By DIV5 remaining neurons present as 
small cell bodies with retracting neurites (arrow, i), astrocytes begin to expand in size and multiply 
in number (arrow, ii). E) By DIV 12 glial cells cover most of the flask surface. 
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2.2. Adult Primary Neuronal Culture Preparation 

 

 Dissection 

 
C57/Bl6 mice and C57/Bl6 mice containing the Swedish APP mutation (APPswe: KM670/671NL) and 

PS1 exon 9 deletion (PS1Δexon9), male or female (9 months) were sourced from a breeding colony 

maintained at the Hercus Taieri Resource Unit by the University of Otago. Mice received an injection 

of pentobarbital (200 mg/kg, i.p.) before decapitation by guillotine. Brains were removed and chilled 

in ice-cold and oxygenated modified artificial cerebrospinal fluid (aCSF) for which sucrose was 

substituted for NaCl (composition in mM: sucrose 210, glucose 20, KCl 2.5, NaH2PO4 1.25, NaHCO3 26, 

CaCl2 0.5, MgCl2 3, pH 7.4 when gassed with 95% O2-5% CO2). Brains were then transferred to 

100mm x 20mm petri dishes, containing ice-cold DM, and moved to a sterile laminar flow cabinet 

(Esco). Henceforth, adult mouse brains were obtained similar to that for primary neuronal cultures 

obtained from young animals (see section 2.1.1. Dissection). However, unlike young tissue the 

removal of meninges proved more difficult and therefore, for the most part, remained intact to avoid 

unnecessary damage to the cortical tissue underneath. Following the removal of the hippocampus, 

brainstem, and cerebellum, cortical tissue was diced into fine pieces and stored on ice in a 15 mL 

Falcon® tube containing DM for transport. 

 

 Dissociation and Plating of Primary Neurons 

 
Dissociation and plating of cortical tissue followed a similar protocol as for young tissue (see 1.1.2. 

Dissociation and plating of primary neurons). Cells were plated at a density of 40,000-56,000 cells/cm2 

(40,000-56,000 total) on MatTek dishes. Following plating, cells were left to settle for 15 minutes to 

ensure attachment, before washed with warm NGM, and replaced with 1 mL conditioned media 

containing 10 ng/mL human basic fibroblast growth factor (bFGF; Thermofisher, #13256029). On DIV 

4 cultures were supplemented with 1 mL NGM containing 10 ng/mL bFGF. Henceforth cells were fed 

weekly with NGM.  
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2.3. Experimental Procedures 

 

 Immunocytochemistry 

 

For a list of drugs and antibodies used in these experiments, see Table 2-1 and Table 2-2, 

respectively. 

 Treatment of Primary Cultures 

 

Recombinant human sAPPα and sAPPβ were produced as per Turner et al., (2009) by Dr. Megan Elder 

in the Tate lab. In brief, sAPPα and sAPPβ constructs were stably integrated into cultured HEK 293T 

cells (American Type Culture Collection). Both sAPPα and sAPPβ were secreted and purified from the 

culture media, and purification of proteins were assessed by a single band on an SDS polyacrylamide 

gel as analysed by Coomassie Blue staining, and by Western analysis. This preparation has been 

validated in a variety of studies in vivo and in vitro including electrophysiological and behavioural 

investigations (Turner et al., 2007; Taylor et al., 2008; Ryan et al., 2013; Mockett et al., 2019). Both 

sAPPα and sAPPβ were diluted into stock solutions in 0.1x PBS, and diluted in culture media or 

artificial cerebrospinal fluid (aCSF) for the final working concentration. 

 

For experiments examining the effect of sAPPα or sAPPβ on the expression of targets of interest, cells 

were incubated in 0.1-1 nM sAPPα diluted in existing media for the length of treatment. Following 

this period, the culture media was aspirated and cells were fixed in 4 % paraformaldehyde (PFA) in 

phosphate buffered saline (PBS; 1.37 M NaCl, 27 mM KCl, 43 mM Na2HPO4•7H2O, 14 mM KH2PO4) 

containing MgCl2 (1 mM), CaCl2 (0.1 mM), and sucrose (PBS-MCS; 155.42 mM), for 20 min at room 

temperature (RT). Here, the inclusion of sucrose aides in maintaining an isotonic solution, preserving 

the cell membrane during fixation (Cheng et al., 2019), as well as maintaining structural integrity of 

internal organelles (Kisselev and Goldberg, 2005; Danchenko et al., 2019).  
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 Primary Antibody Probe 

 
To examine whole cell (total) expression of a protein of interest, cells were permeabilized using 0.5% 

Triton X-100 in PBS (15 min); this step was omitted prior to probing only the surface-bound fraction of 

a target protein. In order to prevent nonspecific binding to target proteins, blocking buffer was 

applied to cells in preparation for probing with primary antibodies (4 % normal goat serum in PBS; 

NGS), for 1-hour at RT or overnight at 4 °C. Antibodies were diluted in blocking buffer and applied for 

Table 2-1 | Catalogue of inhibitors and antagonists used throughout immunocytochemical and 

immunohistochemical experiments.  

 

Drugs 
 (Inhibitors) 

Target Concentration 
(Stock, mM; 

working, μM) 

Pre-Incubation 
(min) 

Details 

Anisomycin Translation 50; 40 30 Sigma, #A9789 
Actinomycin-D Transcription 10; 40 15 Tocris, #1229 

KN62 CaMKII 5; 10 15 Tocris, #1277 
PD98059 MAPK 50; 50 0 Tocris, #1213 
KT5823 PKG 5; 10 0 Tocris, #1289 

Chelerythrine Chloride PKC 10; 1 30 Tocris, #1330 
H-89 Dihydrochloride PKA 2; 10 30 Calbiochem, 

#371963 
Rapamycin mTOR 0.86; 0.001 30 Tocris, # 1292 

Sodium Fluoride Serine/Threonine 
phosphatases 

0.5; 1000 15 Sigma #S7920 

Phenylmethylsulfonyl 
Fluoride 

Serine/Threonine 
phosphatases 

10; 100 15 Sigma,  
#P-7626 

Okadaic Acid Serine/Threonine 
phosphatases 

10; 1 15 Tocris, #1136 

Drugs 
 (Antagonists) 

Target Concentration 
(Stock, mM; 

working, μM) 

Pre-Incubation 
(min) 

Details 

α-Bungarotoxin α7nAChR 0.01; 0.001 30 Abcam, 
#AB120542 

IEM-1460 GluA2-lacking 
AMPAR 

100; 100 50 Abcam, 
#AB141507 

D(−)-2-Amino-5-
Phosphonopentanoic 

Acid 

NMDAR 50; 50 30 Sigma, #A8054 

CPG 55845 
Hydrochloride 

GABAB 25; 50 30 Tocris, #1248 

ANA-12 TrkB 10; 100 30 Tocris, #4781 
± Α-Methyl-4-

Carboxyphenylglycine 
mGluRII/III 25; 500 30 Sigma,  

#M-4796 
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1.5 hours (FUNCAT-PLA, BioPLAy, PLA) or 2 hours (Immunocytochemistry, Immunohistochemistry, 4. 

Antibody Specificity) at RT or overnight at 4 °C. Unbound and excess antibody was removed by 

washing the cells in PBS (3 x 5 min). 

 Secondary antibody probe 

 
Primary antibodies were detected using corresponding fluorescent-labelled secondary antibodies 

diluted in blocking buffer (30 min, RT). The nuclear stain DAPI was routinely included in the secondary 

antibody incubation (1 μg/μL) unless otherwise stated. Unbound antibody was washed from the cells 

with PBS (3 x 5 min), and cells were imaged immediately in PBS (pH 7.4). 
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Table 2-2 | Catalogue of primary and secondary antibodies used in immunocytochemistry (IC), 

immunohistochemistry (IH), western blot (WB), FUNCAT-PLA (F-PLA), BioPLAy (B), and PLA (PLA). 

 

1° Antigen Host species Dilution Use Details 
αTubulin Mouse 1:10000 WB Abcam, AB7291 

Arc Rabbit 1:1000 IC, IH, WB Synaptic Systems, 156003 
Biotin Mouse 1:1000 F-PLA, B Sigma, B7653 
Biotin Rabbit 1:1000 IC Abcam, AB53494 
GFAP Mouse 1:1000 IC Abcam, AB10062 

GluA1 (c-terminal) Rabbit 1:1000 IC, F, B, F-
PLA, WB 

Abcam, AB31232 

GluA1 (N-terminal) Mouse 1:250 IC, WB, PLA Merk Millipore, MAB2263 
GluA2 (C-terminal) Rabbit 1:500 I, F-PLA Merk Millipore, AB1768-I 
GluA2 (N-terminal) Mouse 1:500 IC, B, F-PLA, 

PLA 
Abcam, 133477 

GluA2 (N-terminal) Rabbit 1:500 IC, B, F-PLA, 
PLA 

Thermofisher, 32-0300 

GluA3 (N-terminal) Mouse 1:500 IC, B, F-PLA, 
PLA 

Thermofisher, 32-0400 

MAP2 Guinea Pig 1:1000; 
1:500 

IC, IH, B, F-
PLA, PLA 

Synaptic Systems, 188004; 
Abcam, AB11267 

pCREB (Ser133) Rabbit 1:500 IH Cell Signalling, 9198 
Prox1 Mouse 1:1000 IC Abcam, AB33219 

Synapsin-1 Mouse 1:1000 ICC Synaptic Systems, 106011 
Tau Rabbit 1:500 I Sigma-Aldrich, SAB5500182 

2° Fluorophore Host Species Dilution Use Details 
Alexa fluor 405 Goat anti-mouse 1:1000 IC Invitrogen, A31553 
Alexa fluor 488 Goat anti-mouse 1:500 IC Thermofisher, A11001 
Alexa fluor 488 Goat anti-Guinea 

Pig 
1:1000 IC, IH, F-PLA, 

B, PLA 
Thermofisher, A11073 

Alexa fluor 488 Goat anti-rabbit 1:1000 IC Invitrogen, A11034 
Alexa fluor 555 Goat anti-mouse 1:1000 IC Invitrogen, A21424 
Alexa fluor 555 Goat anti-rabbit 1:1000 IC, IH Invitrogen, A21429  
Alexa fluor 647 Goat anti-mouse 1:500 IC Invitrogen, A21236 

IRDye680 Goat anti-rabbit 1:10000 WB LI-COR, 926-32210 
IRDye800 Goat anti-mouse 1:10000 WB LI-COR, 926,32220 
PLAMINUS  Donkey anti-mouse  1:10 F-PLA, B, PLA Sigma-Aldrich, DUO92004 
PLAPLUS  Donkey anti-rabbit  1:10 F-PLA, B, PLA Sigma-Aldrich, DUO92002 

Miscellaneous 
DAPI - 1:1000  

(1 μg/μL) 
IC, IH, F-PLA, 

B, PLA 
ThermoFisher, D1306 

Duolink Detection 
Reagent Texas Red 

- 1:5 F-PLA, B, PLA Sigma-Aldrich, DUO92008 
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 Fluorescent Non-Canonical Amino Acid Tagging– Proximity Ligase 
Assay (FUNCAT-PLA) 

 

The detection of newly synthesised protein with FUNCAT-PLA was conducted in accordance with 

published protocol from (Dieterich et al., 2010) and adapted for current experiments. All steps carried 

out at RT were conducted at 21-22 °C in a temperature-controlled bench-top incubator (Benchmark 

Scientific, H2200-HC). Cultures used for FUNCAT-PLA experiments were between DIV21-27. The 

methionine analogue L-Azidohomoalanine (AHA, 4 mM; Click Chemistry Tools, #1066) was prepared 

in methionine-free Neurobasal A (Gibco, custom product) supplemented with 2% B27 and 1% 

Glutamax.  

 

 Treatment and Incorporation of AHA 

 
Following visual assessment of cell health, dishes were randomly assigned to treatment groups for 

each experiment. Following the removal of existing media, treatment dishes received 1 nM sAPPα 

(diluted from 320 nM stock) in 4 mM AHA (prepared as described in section 2.3.4 Fluorescent Non-

Canonical Amino Acid Tagging– Proximity Ligase Assay (FUNCAT-PLA). Control groups received only 

AHA-containing NGM for the length of the treatment. Following the incubation period, the cultures 

were immediately washed three times in PBS-MC (pH 7.4, RT) then fixed in 4 % PFA in PBS-MCS (20 

min, RT). Cells were incubated in blocking buffer (4 % normal goat serum in PBS, 1 hr at RT), and then 

washed twice in PBS pH 7.8 (2 x 10 min, RT) to slowly raise the pH in preparation for the click 

reaction. 

 Click Reaction 

 

The detection of the AHA-containing, newly synthesised proteins, is made possible through addition 

of an alkyne-bearing biotin moiety. This moiety can be covalently attached to the azide-bearing AHA 

through a copper(I)-catalysed [3+2] azide-alkyne cycloaddition or ‘click chemistry’ (see Figure 2-3). 

The click reaction mixture was prepared immediately prior to application to the cells. The mixture was 

comprised of 200 μM Tris (1-benzyl-1H-1,2,3-triazol-4-yl)methyl) amine (TBTA triazole ligand, Aldrich), 

500 μM Tris(2-carboxyethyl)phosphine hydro-chloride (TCEP, Thermo Scientific), 25 μM Biotin-PEG4-

alkyne (Biotin alkyne, Aldrich) and 200 μM CuSO4 in PBS pH 7.8. All reagents were dissolved 

sequentially through vigorous vortexing after the addition of each component from stock solutions. 
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Immediately following preparation, 1000 μL of ‘click mix’ was added to each dish, and incubated 

overnight at RT.  

 

 Detection of Newly Synthesized Proteins 

 

Following the ‘click’-mediated labelling of newly synthesized cell surface proteins with a biotin 

moiety, FUNCAT-PLA was employed to visualise their expression and location (Figure 2-4). Cells were 

washed with PBS (pH 7.8, 2 x 10 min), permeabilized with 0.5 % Triton X-100 in PBS (15 min, RT), and 

incubated in blocking buffer (1 hr, RT). Cells were then probed with primary antibodies against biotin, 

MAP2, and the target protein (GluA1 or GluA2; refer Table 2-2; Appendix 4. Antibody Specificity), in 

blocking buffer (1.5 hr, RT). Following incubation, unbound antibody was removed by washing with 

PBS (3 x 5 min) prior to addition of proximity ligation assay (PLA) probes.  

 

 Proximity Ligation Assay (PLA) 

 

Detection of newly synthesized proteins was carried out using proximity ligation assays (PLA; Figure 

2-4). The probes used in PLA recognize the constant region of the primary antibody or antibodies. The 

maximum proximity of these antibodies for successful ligation has been cited as ≤ 16 nm (Trifilieff et 

al., 2011) to ≤ 40 nm (Bagchi et al., 2015). Once in proximity, the DNA strands attached to the probes 

participate the generation of a concatemeric ‘rolling circle amplification’ product, when exposed to 

the appropriate substrates and enzymes. A dilution (1:10) of Donkey PLA+ and PLA- probes (Duolink, 

Sigma-Aldrich; see Table 2-2) was prepared in blocking buffer containing anti-guinea pig 488 

secondary antibody (1:1000) and DAPI (1:1000), where possible. This mixture was applied to the cells 

(37 °C, 1 hr) in a humidified chamber; the dishes were placed on a metal tray surrounded by wet 

paper towels, double-sealed in two zip-lock bags. Following incubation, the cells were washed using 

Wash Buffer A (0.01 M Tris base, 0.15 M NaCl, 0.05 % Tween 20, pH 7.4; 4 x 5 min, RT; Duolink, 

Figure 2-3 | Copper-catalysed azide-alkyne cycloaddition (CuAAC). An alkyne-bearing biotin 

(●) can be covalently attached to the azide-bearing AHA (●) via a Copper-catalysed click-chemistry 
reaction.  
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Sigma-Aldrich) prior to the addition of ligation mixture (containing circularization oligomers 

complementary to those conjugated to the PLA probes, and T4 ligase (1 U/μL) diluted in MQ 

according to manufacturer’s instructions; 30 min, 37 °C; in a humidified chamber).  

Binding of PLA+ and PLA- probes permits the ligation of the circularization oligomers, forming 

the basis of the rolling circle amplification process. Following this, the ligation reaction mixture was 

washed from the cells using Wash Buffer A (4 x 5 min, RT) prior to addition of the amplification 

solution (containing fluorophore-labelled (λex 594 nm; λem 624 nm) nucleotides for the rolling circle 

reaction, and Phi29 polymerase (10 U/μL), diluted in MQ according to Duolink’s instructions; 100 min, 

37 °C, in a humidified chamber). Following amplification, cells were washed in Wash Buffer B (0.2 M 

Tris-HCl, 0.1 M NaCl, pH 7.5; 2 x 10 min, RT; Duolink, Sigma-Aldrich) in order to arrest the polymerase 

reaction. Excess Tris-HCl was washed from the cells using PBS (pH 7.4), and the cells were then post-

fixed to support the stability of the PLA signal (4 % PFA in PBS, 20 min), washed (4 x 5 min, PBS, pH 

7.4) and stored in PBS (4 °C). The resultant fluorescent signal is approximately 500 nm and can be 

effectively detected using fluorescence microscopy.  

 

 

 

 

  

Figure 2-4 | Schematic diagram of FUNCAT-PLA experimental design. Newly synthesised cell 

surface A) GluA1 or B) GluA2 proteins are targeted by incubation with AHA (●) and ‘click’-mediated 

addition of a biotin moiety (●). Following permeabilization of the plasma membrane (●), primary anti-

biotin (●) and A) anti-GluA1 or B) anti-GluA2 antibodies (●) are added, followed by PLA+ and PLA- probes (

●). Incubation of PLA probes with appropriate ligation and amplification reagents allows for formation of 

the rolling circle amplification and addition of fluorescent probes (●). 
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 Detection of Cell Surface Proteins Using BioPLAy 

 

For the detection of cell surface receptors, we employed a novel technique, which incorporates 

biotinylation of surface proteins with proximity ligation assays (BioPLAy; Figure 2-5). All steps carried 

out at RT were conducted at 21-22 °C in a temperature-controlled bench-top incubator (Benchmark 

Scientific, H2200-HC). All PBS used was at pH 7.4, and cultures were used for experiments between 

DIV21-DIV27.  

 

 Treatment 

 

Following a visual assessment of cell health, dishes were randomly assigned to treatment groups for 

each experiment. Following the removal of existing media, treatment dishes received 1 nM sAPPα 

(diluted from 320 nM stock in NGM) diluted in NGM. Control groups received only NGM for the 

length of the treatment.  

 

 Biotinylation 

 

In order to isolate the cell surface fraction of GluA1-containing AMPAR, the cell-impermeant Sulfo-

NHS-SS-Biotin was applied following treatments. Immediately prior to application, EZ-Link Sulfo-NHS-

SS-Biotin (2.5 mg/mL; ThermoFisher Scientific, #21331) was dissolved in PBS-MC (1 mL, RT). Culture 

media was aspirated from the experimental dishes and the dissolved biotin conjugate was added to 

each dish on ice (10 min, 4 °C), to arrest biological processes, including those involved in receptor 

endo- and exocytosis. Excess biotin was washed from the cells using ice-cold PBS-MC (3 x, quickly). 

The cells were immediately fixed in 4 % PFA in PBS-MCS (20 min, RT).  
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 Proximity Ligation Assay (PLA) 

 

Proximity ligation assay was performed as described in section 2.3.4.4. Proximity Ligation Assay (PLA). 

Briefly, the cells were permeabilized in 0.5 % Triton X-100 in PBS (15 min, RT), and incubated in 

blocking buffer (4 % normal goat serum in PBS, 1 hr at RT, or overnight at 4 °C). Following this, all 

dishes were incubated with the primary antibodies of interest (1.5 hr, RT; refer Table 2-2). Cells were 

then washed (PBS pH 7.4, 3 x 5 min) and incubated in PLA+ and PLA- probes (1:10 in blocking buffer) 

with the addition of Alexafluor 488-bound goat anti-Guinea pig secondary antibody (1:1000) and DAPI 

(1 μg/μL; 1 hr, 37 °C, in a humidified chamber). Unbound probes were washed with Wash Buffer A (4 

x 5 min, RT). Dishes were incubated with the ligation mixture (30 min, 37 °C, in a humidified 

chamber), and washed with Wash Buffer A (4 x 5 min, RT) prior to incubation with the amplification 

reaction mixture (100 min, 37 °C, in a humidified chamber). Cells were then washed in Wash Buffer B 

(2 x 10 min, RT) The cells were finally washed (3 x 5 min) and imaged immediately in PBS (pH 7.4). 

 

Figure 2-5 | Schematic diagram of BioPLAy experimental design. Cell surface GluA1 proteins 

are targeted by addition of Sulfo-NHS-SS-Biotin (●). Following permeabilization of the plasma 

membrane (●) primary anti-biotin (●) and anti-GluA1 (●) antibodies are added, followed by PLA+ and 

PLA- probes (●). Incubation of PLA probes with appropriate ligation and amplification reagents allows 

for formation of the rolling circle amplification and addition of fluorescent probes (●). 
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 Detection of Cell Surface Receptor Subunit Dimers (PLA) 

 

Similar to BioPLAy (see section 2.3.6. Detection of Cell Surface Proteins Using BioPLAy), PLA-only 

implements surface labelling of AMPA receptor subunits with epitope-specific antibodies to allow for 

formation of ‘rolling circle amplification’ product upon addition of appropriate PLA probes.  

 

 Treatment 

 

Treatment of experimental cultures was carried out as described in section 2.3.5.1. Treatment. In 

brief, treatment dishes received 1 nM sAPPα (diluted from 320 nM stock), in NGM following 

aspiration of existing media from the dishes. Control groups received NGM-only for the length of the 

treatment.  

 

 Addition of Antibodies  

 

Immediately prior to application, cells were washed (PBS-MC; 3 x, quickly) and immediately fixed in 

4% PFA in PBS-MCS (20 min, RT). For experiments investigating GluA1/2-containing AMPAR (Figure 

2-6A), using both C-terminal and N-terminal antibodies, cells were incubated in blocking buffer (4 % 

normal goat serum in PBS, 1 hr at RT), probed with the N-terminal antibody (1.5 hr, RT), washed (PBS 

pH 7.4, 3 x 5 min), and subsequently permeabilized with 0.5 % Triton X-100 in PBS (15 min, RT). Cells 

were then probed with the C-terminal antibody in addition to guinea pig anti-MAP2 for visualization 

of neuronal structure (1.5 hr, RT) and washed (PBS pH 7.4, 3 x 5 min). 

 For experiments utilizing two N-terminal antibodies, such as those investigating GluA2/3-

containing AMPAR (Figure 2-6B), permeabilization was omitted and cells were incubated in blocking 

buffer (4 % normal goat serum in PBS, 1 hr at RT) followed by incubation of primary antibodies (1.5 hr, 

RT). Following this, cells were washed (PBS, pH 7.4; 3 x 5 min), permeabilized (0.5 % Triton X-100 in 

PBS, RT; 15 min) and incubated in blocking buffer again (4 % normal goat serum in PBS, 1 hr at RT) 

before addition of anti-MAP2 for visualization of neuronal structure (1.5 hr, RT). 
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 Proximity Ligation Assay 

 

Proximity ligation assay was performed as previously described in sections 2.3.4.4. Proximity Ligation 

Assay (PLA) and 2.3.5.3. Proximity Ligation Assay (PLA). In brief, cells were incubated in PLA+ and PLA- 

probes (1:10 in blocking buffer) with the addition of Alexafluor 488-bound goat anti-Guinea pig 

secondary antibody and DAPI (1:1000; 1 hr, 37 °C; humidified chamber). Unbound probes were 

washed with Wash Buffer A (4 x 5 min, RT). Dishes were incubated with the ligation mixture (30 min, 

37 °C; in a humidified chamber), and washed with Wash Buffer A (4 x 5 min, RT) prior to incubation 

with the amplification reaction mixture (100 min, 37 °C, in a humidified chamber). Cells were then 

washed in Wash Buffer B (2 x 10 min, RT) and probed with DAPI (1 μg/μL, 10 min). The cells were 

finally washed (3 x 5 min) and imaged immediately in PBS (pH 7.4). 

 

 

Figure 2-6 | Schematic diagram of A) GluA1/2 and B) GluA2/3 PLA experimental design. A) 

Cell surface GluA1/2 AMPAR were targeted by addition of N-terminal GluA2 antibody (●) before 

permeabilization of the plasma membrane (●). Following permeabilization C-terminal primary anti-

GluA1 (●) are added. B) Cell surface GluA2/3 AMPAR were targeted by addition of N-terminal GluA2 (●) 

and N-terminal GluA3 (●) antibodies, before permeabilization. Both GluA1/2 and GluA2/3 AMPAR 

complexes were targeted by application of PLA+ and PLA- probes (●). Incubation of PLA probes with 

appropriate ligation and amplification reagents allows for formation of the rolling circle amplification and 
addition of fluorescent probes (●). 
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 Treatment of Cultures With siRNA 

 

To investigate the effect of siRNA knockdown of Arc protein following sAPPα treatment, we employed 

treatment of cultures with Accell™ Arc siRNA (1 μM) targeted to the open reading frame (ORF) of the 

Arc gene (see Table 2-3). Cells were pre-treated with Arc siRNA for 1 hour before co-incubation ± 

sAPPα (1 nM, 2 hr) and AHA (4 mM). Cells were processed for FUNCAT-PLA (see section 2.3.4. 

Fluorescent Non-Canonical Amino Acid Tagging– Proximity Ligase Assay (FUNCAT-PLA) or 

Immunocytochemistry (see section 2.3.1. Immunocytochemistry). Alongside this, the non-targeting 

(NT) control siRNA was used to assess effects, if any, of the addition of small molecules in the 

interpretation of results. Additionally, to assess efficacy of Accell™ siRNA expression in our cultures 

we employed the Accell™ Red non-targeting control siRNA (1 μM; Table 2-3). This siRNA contains a 

fluorophore conjugated to a non-targeting sequence, able to be visualized by conventional 

epifluorescence microscopy. Cultures were pre-treated for 1 hour, followed by an additional 2 hours 

in line with experimental treatment lengths. Cells were processed for immunocytochemistry for 

markers of cell structure (MAP2, DAPI) under dark conditions to maintain fluorescence signal. 

All Accell™ siRNA were prepared in a 1x siRNA reconstitution buffer consisting of (in mM): KCL 

300, MgCl2 1, HEPES 30, and pH’d to 7.3-7.6 by addition of 2M KOH. All reagents were prepared in 

RNAse-free water and sterile filtered. siRNA were reconstituted in 1x siRNA reconstitution buffer and 

incubated at 37 °C with gentle rocking for 70 min. Reconstituted siRNA were aliquoted and stored at -

20°C until needed. For treatment of cultures, siRNA were further diluted to a working concentration 

of 1 μM in NGM ± AHA alongside treatment conditions. 

 

Table 2-3 | Summary table of siRNA and their targets used in FUNCAT-PLA experiments. 

Target Target Sequence Molecular 
Weight 
(g/mol)) 

Extinction 
Coefficient 

(L/mol-1cm-1) 

Details 

ARC CUGCAGUACAGUGAGGGUA 13,511.8 346,388 Dharmacon,  
A-080172-15-0020 

NON-
TARGETING 

UGGUUUACAUGUGUCGACUAA 13,400 150,000 Dharmacon,  
D-001910-01-20 

Target Target Sequence Fluorophore Absorption/ 
Emission 

Details  

RED NON-
TARGETING 

UGGUUUACAUGUGUCGACUAA DY-547 557/570 nm Dharmacon,  
D-001960-01-05 
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2.4. Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-
qPCR) 

 

 RNA Isolation and Purification 

 

For the quantification of mRNA from culture, cells were treated as per Section 2.3.1.1. Treatment of 

Primary Cultures. Total RNA was extracted from cortical cell cultures prepared in 6-well plates at a 

density of 31,500 cells/cm2. Tissue was lysed by using 350 μl Buffer RL (Norgen Biotek Corp., #17200) 

directly in the culture plate and gentle swirling for 5 min at RT. Tissue was transferred to an RNase-

free microcentrifuge tube to which 200 μl ethanol was added. RNA was bound to RNA-binding spin 

columns (Norgen Biotek Corp., #17200) by centrifugation for 1 min at 3,500 x g. This was followed by 

an on-column DNA removal, by passing 400 μl of Wash Solution A through the column by 

centrifugation (1 min, RT, 14,000 x g), followed by 100 μl RNase-free DNase solution, centrifugation (1 

min, RT, 13,000 x g). This was repeated three times before incubation (15 min, 25–30°C) and 

centrifugation for a final time (2 min, RT, 13,000 x g) to thoroughly dry the resin. Purified RNA was 

eluted by addition of Elution Solution A (50 μl; Norgen Biotek Corp., #17200) to the column, 

centrifugation (2 min, RT, 200 x g, followed by 1 min, 13,000 x g) and collection in an RNase-free 

microcentrifuge tube kept on ice. A second elution of 50 μl was performed as above into a separate 

collection tube.  

 

 RNA Quality and Quantification 

 

Using a Nanodrop ND-1000 v3.8.1 Spectrophotometer and associated software (Thermofisher 

Scientific), 2 μl of RNase-free water was pipetted onto the measurement pedestal and used as a blank 

measure. Following this, 2 μl of RNA sample was pipetted onto the pedestal, measured, and the 

pedestal cleaned. This was repeated for both primary and secondary elution separately. The quality of 

each of the RNA samples can be determined primarily by the A260/A280 ratio, wherein a ratio of 

approximately 1.8–2.0 indicates a ‘pure’ RNA sample, free of contaminants such as proteins, salts, or 

phenol. Following a ‘pure’ reading from each of the elution samples, both primary and secondary 

elution were combined and a final quality and concentration report was generated using the 

Nanodrop system, resulting in approximately 100 μl of ‘pure’ RNA.  
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 Primer Design 

 

For the quantification of RNA following treatment, the following primers were designed using Primer-

BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/; see Table 2-4), under the conditions that 

the primer must span an exon-exon junction and was specific for rat. Primers were hence selected 

based on specific amplification of the gene of interest, the Tm of each primer were within 5°C of each 

other, and the percentage of guanine (G) or cytosine (C) present was between 40% and 60%. 

Candidate primers were also checked for primer dimerization (binding with itself), repeats (nucleotide 

sequences repeating), and hairpin binding, features which may affect primer efficiency during the RT-

qPCR reaction. 

 

Table 2-4 | Summary table of primer sequence pairs used in RT-qPCR experiments.  

Gene 
Target 

Forward Primer TM 
(°C) 

Reverse Primer TM 
(°C) 

ZIF268 5’-GGG AGC CGA GGG AAC AA-3’ 58.2 5’-CGT TAT TCA GAG CGA TGT CAG AA-3’ 54.8 

HPRT 5’-TGA CAC TGG TAA AAC AAT GCA-3’ 52.8 5’-GGG AGC CGA GCG AAC AA-3’ 58.2 

ARC #1 5’-AGC AGA ATC AGA GAT GGC CG-3’ 57.2 5’-TGA ATC ACT GCT GGG GGC-3’ 58.0 

ARC #2 5’-GAC TTG ATT GAG CTG GGG CT-3’ 57.5 5’-TAT GAA TCA CTG CTG GGG GC-3’ 57.3 

 

 cDNA Synthesis  

 

cDNA libraries were created from the total RNA extracted from cultured cortical neurons (n = 1-4 

wells per condition, 4-5 experimental replicates) using SuperScript III RT (Invitrogen). Following the 

manufacturer’s instructions for a 20 μl reaction volume, Master Mix I was made by adding 1 μl 

Oligo(dT)20 (50 μM) and 1 μl dNTP mix (10 mM) to a 0.6 mL RNase-free microcentrifuge tube. Master 

Mix II contained 4 μl 5X First Strand Buffer, 1 μl dithiothreitol (DTT; 0.1 mM), 1 μl RNaseOUT (40 

U/μl), and 1 μl SuperScript III RT (200 U/μl). Following this, 5 ng of total RNA was added to an RNase-

free tube followed by Nuclease-free H2O for a total volume of 11 μl. This was then heated at 65°C for 

5 min via thermocycler, and incubated on ice for 1 min. 7 μl of Master Mix II was then added and 

mixed via pipette. cDNA samples were stored at -20 °C prior to use. 

 

 

 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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 SYBR Green mRNA Assays 

 

To test the efficiency of each primer, 5 μl of cDNA from each test sample was combined and serially 

diluted with RNase-free H2O at 1:1, 1:5, 1:25, and 1:125. Following qPCR amplification and data 

acquisition, the triplicates were averaged and concentrations were converted to log10 values and 

graphed onto a scatter plot. A line of best fit, as determined by Excel 2011 (Microsoft), was generated 

giving an m and an R2 value. A primer set was determined to be efficient using the equation E = 10-1/m 

x 100, and with an R2 value greater than 0.90. In certain cases, the highest or lowest value was 

removed as they may affect the line of best fit, due to PCR inhibition or low concentrations of RNA, 

respectively. Primers were also deemed efficient by the melting curves generated following the PCR 

to identify a specific amplification is occurring (Figure 2-7). The presence of a singular peak indicated 

a single RNA product had been amplified while a double peak indicated nonspecific amplification or 

primer dimers. Due to this, Arc primer #2 was not used for any experiments.  

 

 

 
 

Figure 2-7 | Melt curve plots. Graphs show A) Zif268, B) HPRT, C) Arc #1, D) Arc #2, E) Gria1, F) Gria2, 

and G) Gria3. Axes show the derivative reporter (−Rn′) plotted against temperature (°C). 
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 Reverse-Transcriptase Quantitative Polymerase Chain Reaction (RT-
qPCR) 

 

Each primer was tested at a 1:25 dilution and each condition was tested in triplicate. On a 96-well 

plate (Roche, #0472962001), each well contained 3 μl cDNA and 7 μl of a premade master mix 

consisting of 1 μl Forward Primer (5 μM), 1 μl Reverse Primer (5 μM) and 5 μl SYBR Green Master Mix 

(ThermoFisher Scientific, #4309155). Using a LightCycler 480 and its associated software, setting the 

sample volume to 10 μl, each plate underwent a pre-incubation program at 95°C for 5 min. Following 

this, an amplification program with a quantification analysis involved 40 cycles of 95°C for 30 s, 60°C 

for 30 s and 72°C for 30 s. Following amplification, a melting curve analysis was carried out with 95°C 

for 15 s, 60°C for 1 min, followed by continuous ramp at 0.05 °C/s up to 95°C before cooling to 40°C 

and holding for 30 s (Figure 2-8) 

 

 

 Western Blot 

 
Western blotting was utilised to validate the binding of antibodies to a target of the expected size as 

the proteins of interest, to be used in immunocytochemical- and PLA-based experiments.  

 

Figure 2-8 | Experimental setup of RT-qPCR amplification and quantification cycles. Image shows 

progress of RT-qPCR experiments during hold stage, PCR, stage, and melt curve stage. Red line indicates rate of 
degree change (°C/s), holding temperature (°C) and holding duration (min).  
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 Protein Extraction and Sample Preparation  

 
Primary hippocampal cultures were grown for protein harvesting on Poly-D-lysine coated wells of a 6-

well plate, and harvested at DIV24-27. The cell layer was washed (PBS-MC, pH 7.4), scraped from the 

well and collected by centrifugation (14,000 x g, 5 min, 4 °C). The pellet was washed with PBS and 

centrifuged again before the cells were lysed and homogenised in buffer (1 mM EGTA, 1 mM EDTA, 

0.1 mM PMSF, 1 x Complete, 1 % Triton-X, 10 % SDS, 10 μM KN62 in PBS). The samples were 

sonicated (Bandelin Sonorex Digital Ultrasonic bath; 2 min, RT), and centrifuged (20 min, 14 000 x g, 4 

°C). The supernatant was collected, and the pellet was re-homogenised. Protein was quantified using 

the BCA assay and stored at - 80 °C until use.  

 Gel Electrophoresis and Transfer 

 
SDS-Polyacrylamide resolving gels (9% Bis-Acrylamide (Bio-Rad), 0.5 mM SDS, 0.05% TEMED, 0.05% 

APS buffered with 0.37 M Tris-HCl) were cast in NOVEX 1 mm gel cassettes (ThermoFisher). The gels 

were sealed with water overnight at 4 °C. Stacking gels (5% acrylamide, 0.5 mM SDS, 0.1% TEMED, 

0.05% APS buffered with 0.125 M Tris-HCl) were cast, and the gels were left at RT for 20 min. NOVEX 

cassettes were locked into a NOVEX X-cell Surelock Minicell system (Invitrogen). Inner and outer 

chambers of the box were filled with sufficient running buffer (192 mM glycine, 0.1% SDS buffered 

with 25 mM Tris-HCl) to cover the wells in the gels. The prepared samples were pipetted into the 

wells alongside a molecular weight rainbow marker (Amersham, GE Healthcare Life Sciences). 

Electrophoresis was conducted at 125 V for 2 hr, or until the dye front reached the base of the gel. 

The separated proteins were then transferred to nitrocellulose membranes (Amersham Protran 0.45 

μm NC, GE Healthcare Life Science) using NOVEX X-cell II blotting modules (Invitrogen). The transfer 

was carried out at 100 mAmp for 2 hr, using transfer buffer (96 mM glycine, 10 % methanol buffered 

with 12 mM Tris-HCl). 

Following transfer, blocking buffer was applied to the membranes (Odyssey blocking buffer; 

Li-Cor; 1 hr, RT). Primary antibodies were diluted in 0.1 % BSA, 0.1 % NGS in PBS with 0.1% Tween, 

and membranes were probed overnight at 4 °C with gentle rocking. The following day, unbound 

antibody was removed using PBS-Tween (4 x 5 min) and the membranes were incubated with the 

appropriate secondary antibodies in PBS-Tween (1 hr, RT, gentle rocking). Unbound antibody was 

washed using PBS-Tween (4 x 5 min) and the membranes were washed in PBS, before being allowed 

to dry on filter paper prior to scanning. Protein was detected using the LI-COR Odyssey Infrared 

Fluorescence Imaging system. Image capture was carried out using Image Studio. The brightness and 

contrast levels of captured images were adjusted for image presentation. 
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2.5. Preparation of Acute Hippocampal Slices for Electrophysiology and 
Biochemical Experiments 

 
All experimental protocols were approved by the University of Otago Animals Ethics Committee and 

conducted in accordance with New Zealand Animal Welfare Legislation under the ethics approval 

DET19/16. All experiments conducted on acute tissue were prepared from young adult male Sprague-

Dawley rats (4-6 weeks), as described previously (Mockett et al., 2019). 

 

 Acute Hippocampal Slice Preparation 

 

Rats were deeply anaesthetised with ketamine (100 mg/kg, i.p.) and decapitated by guillotine. The 

brains were removed and chilled in ice-cold and oxygenated modified artificial cerebrospinal fluid 

(aCSF) for which sucrose was substituted for NaCl (composition in mM: sucrose 210, glucose 20, KCl 

2.5, NaH2PO4 1.25, NaHCO3 26, CaCl2 0.5, MgCl2 3, pH 7.4 when gassed with 95% O2-5% CO2). 

Following removal, the brain was transferred to an ice-cold dissection platform (Figure 2-9A,B). 

Hemispheres were separated and cerebellum were removed. Ice-cold aCSF was applied throughout to 

ensure the tissue remained cold and rigid. Using a razor blade, a cut through the forebrain (at the 

point of the middle cerebral artery) was made, and the hemisphere was flipped onto the cut face, 

exposing the midbrain (Figure 2-9C-E). Midbrain tissue was removed using a flat spatula, revealing the 

medial surface of the hippocampus. The tissue was rolled onto the lateral surface of the cortex. The 

flat spatula was then used to slide beneath the hippocampus, carefully flipping it out above the 

cortical tissue, lateral surface facing up (Figure 2-9F-H). The hippocampus was separated from the 

cortex and two 45° cuts were made at each end, loosening the hippocampus from remaining cortical 

tissue (Figure 2-9I). From here the ventral portion of the hippocampus was removed. Area CA3 was 

removed by removal of the lower 1/10th of the remaining dorsal hippocampus, in order to increase 

the signal-to-noise ratio of recordings by reducing the amount of spontaneous activity (Dumas et al., 

2018; Figure 2-9J,K). From here, the hippocampal tissue was glued gently to the vibratome mounting 

platform with the lateral surface facing out and the dorsal surface facing up. Hippocampi were 

dissected at a thickness of 400 μm, using a vibroslicer (Leica, VT1000; Figure 2-9L-N). Slices were 

transferred to a porous, transparent membrane in an incubation chamber, and maintained at the 

interface between air and standard aCSF (in mM: NaCl 124, KCl 3.2, NaH2PO4 1.25, NaHCO3 26, CaCl2 

2.5, MgCl2 1.3, D-glucose 10, equilibrated with carbogen 95% O2-5% CO2; 32°C). Slices remained 

here for 30 minutes before transfer to RT for an additional 90 minutes (Edwards and Konnerth, 1992; 

Lein et al., 2011).  
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 Immunohistochemistry 

 

sAPPα and other drug treatments were subsequently applied in warmed aCSF for 15 minutes or 2 

hours. When studying inhibitor effects on sAPPα treatment, slices were pre-incubated for 30 minutes 

with the inhibitors (αBGT, 10 nM; APV, 50 μM) before subsequent co-incubation with sAPPα for 2 

hours. When studying the effects of sAPPα treatment on phosphorylated CREB (pCREB) expression, 

slices were co-incubated with inhibitors of serine/threonine-protein phosphatases (Sodium Fluoride 

(NaF), 1 mM; Phenylmethylsulfonyl Fluoride (PMSF), 100 μM; Okadaic acid, 1 μM). Following 

treatment, slices were washed in PBS-MC (pH 7.4) and subsequently fixed in 4% PFA in PBS-MCS (pH 

7.4) overnight at 4°C. Following fixation, slices were washed in PBS (pH 7.4) and embedded in Agarose 

(3 %; Roche). 400 μm slices were resliced to 50 μm sections using a vibroslicer (Vibratome  1500, 

Warner instruments). Slices were stored in PBS (pH 7.4) at 4°C until use. For immunohistochemical 

Figure 2-9 | Acute transverse hippocampal slice dissection. Following decapitation and removal 

of the brain, A) brains are transported in oxygenated ice cold modified aCSF and transferred to B) a 
chilled dissection platform. C) Hemispheres are separated and D) the cerebellum is removed. E) The 
forebrain is removed by a vertical slice at the point of the middle cerebral artery. Remaining hemisphere 
is flipped onto the cut face. F) Midbrain tissue is removed, revealing the hippocampus. G) Using the 
spatula, the hippocampus is carefully flipped and H) separated from the remaining cortex. I) Additional 
tissue at the end of the hippocampus are removed by two 45° cuts, J) followed by removal of the most 
ventral aspect. K) The CA3 area is removed from the remaining dorsal tissue by vertical slice of 
approximately the lower 1/10th of the remaining tissue. L) The ventral surface is glued to the vibratome 
mounting platform M-N) and 400 μm transverse sections are cut. 
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analysis, slices were permeabilized with 0.5 % Triton X-100 in PBS (pH 7.4; 10 min). Slices were then 

blocked in 4% normal goat serum in PBS (pH 7.4) for 1-hour at RT. Slices were incubated with primary 

antibodies of interest (overnight, 4 °C), washed (3 x 10 min; PBS, pH 7.4) and incubated in appropriate 

secondary antibodies (1 hr, RT), followed by 3 x 10 min washes (PBS, pH 7.4). All steps were 

performed with gentle agitation. Slices were mounted on coverslips (Histobond) in AquaPolymount 

mounting media (Polysciences) for imaging.  

 

 Field Potential Electrophysiology 

 
Hippocampal slices were obtained from young adult male Sprague-Dawley rats (4-6 weeks) as 

previously described in section 2.5.1. Acute Hippocampal Slice Preparation. Briefly, rats were deeply 

anaesthetised with ketamine (100 mg/kg, i.p.) and decapitated by guillotine. The brains were 

removed the hippocampus was separated from surrounding cortical tissue. Area CA3 was removed 

and the hippocampi were dissected at a thickness of 400 μm, using a vibroslicer (Leica, VT1000; 

Figure 2-9). Slices were transferred to a porous, transparent membrane in an incubation chamber, 

and maintained at the interface between air and standard aCSF. Slices remained here for 30 minutes 

before transfer to RT for an additional 90 minutes.  

Following recovery, slices were transferred to the recording chamber containing recirculating 

aCSF (95% O2, 5% CO2; 32.5 °C), superfused continuously at a rate of 2 mL/min. Baseline field 

excitatory postsynaptic potentials (fEPSPs) were elicited in area CA1 by stimulation of the Schaffer 

collateral-commissural pathway at 0.017 Hz (diphasic pulses, 0.1 ms half-wave duration) using a 

teflon-coated 50 μm tungsten wire monopolar electrode (A-M Systems Inc, Carlsborg, WA). Evoked 

responses were recorded with a glass microelectrode filled with aCSF (1.9-2.9 MΩ) and placed in 

stratum radiatum of area CA1 (approximately 300 μm from stimulating electrode; Figure 2-10). During 

periods of baseline recording the stimulation intensity was adjusted to elicit a fEPSP with an initial 

slope value of 40% of the maximum elicited when delivering 200 μA of current. Drugs, including 

sAPPα (1 nM) and IEM-1460 (100 μM), were bath-applied by switching to an identical preheated and 

oxygenated aCSF solution that contained the compound of interest. IEM-1460 was delivered 20 

minutes prior to, and during, sAPPα administration and continued 10 min post-TBS. Non-saturated 

LTP was induced by applying a half-maximal train of standard theta burst stimulation (TBS; 5 trains of 

5 pulses at 100 Hz delivered at 200 ms intervals) at baseline stimulus intensity (Raymond et al., 2000; 

Mockett et al., 2019). 
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2.6. Microscopy and data analysis 

 

  Sample Choice and Blinding 

 

The primary criterion for the selection of cells for imaging was the presence of a healthy appearance 

and proximity to neighbouring cells. Health was determined by MAP2 immunofluorescence with an 

absence of dendritic fragmentation or swelling. Additionally, DAPI-stained nuclei were examined for 

signs of fragmentation or condensation (refer Appendix 2. Cell health). Cells were selected which 

were not completely isolated from neighbouring cells but presented clearly traceable, unobstructed 

dendrites. Oftentimes cells closest to the outer edge of the dish were selected due to these criteria. A 

minimum of ten cells per dish was selected in this manner for imaging. 

 

Figure 2-10 | Hippocampal slice diagram. A) Illustration of a transverse hippocampal section used in 

electrophysiological experiments. Inset image shows magnification of area stimulation and recording area 
CA1. s. = stratum. B) Representative extracellular waveform. Electrical stimulation of CA1 Schaffer 
collaterals elicits a stimulus artefact, followed by a presynaptic population spike or fibre volley (FV). The 
slope of the negative-going field excitatory postsynaptic potential (EPSP) corresponds to depolarising 
synaptic currents.  
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  Light Microscopy 

 

For experiments examining the expression of a protein using immunofluorescence, images were 

acquired using an Olympus IX71 inverted light microscope using a 40x/0.6-N.A objective (LUCPLFLN). 

The images were captured using a Hamamatsu Orca-AG camera (C4742-80-12AG) in 1024 x 1024 

pixel 8-bit mode and saved as .tif files. 

 

 Image Analysis 

 

To quantify immunofluorescence, neurons were outlined using ImageJ (refer Appendix 1.1. 

Quantifying Arc protein expression in primary hippocampal neurons). An ‘integrated 

intensity/neuronal area’ value was generated for each cell and somatic compartment, including all 

dendrites up until intersection with neighbouring dendrites. This value was corrected for average 

background fluorescence by subtracting average background fluorescence. Dendritic fluorescence 

was determined by subtracting corrected somatic values from whole cell values. For the analysis of 

primary and secondary dendrites, gray values were sampled at 0.5 μm increments, and the averages 

were binned into 50- and 25 μm segments, respectively. Statistical analysis was achieved by averaging 

each dendritic segment per cell, for a total cell average. For experiments examining pCREB expression 

in acute hippocampal slices (refer Appendix 1.2. Quantifying pCREB protein in primary hippocampal 

slices), DAPI was used to define a ‘mask’ around the nuclear layer and pCREB was measured as 

‘integrated intensity/DAPI area.’ For experiments examining Arc expression in acute hippocampal 

slices (refer Appendix 1.2.1. Quantifying Arc Protein Signal in Hippocampal Slices), area CA1 was 

defined by a square area adjacent to the hippocampal fissure (encompassing both the pyramidal cell 

layer and stratum radiatum) and an integrated intensity/area’ value was generated for each slice. 

To quantify the PLA signal within the cultured neurons, a custom made ImageJ script created 

by Maximillian Heumüller (Max Planck Institute for Brain Research, Frankfurt) was used (tom Dieck et 

al., 2015; refer Appendix 1.3. Quantifying PLA signal in primary hippocampal neurons). In brief, images 

were separated into single channel images and the PLA signal threshold was manually defined by 

averaging the optimal value for several images. This value was applied to the PLA channel, and the 

area of the punctate signal was measured. The PLA signal was expressed relative to neuronal size as 

defined by the MAP2 signal which was manually outlined and isolated. The MAP2 mask was dilated by 

2 pixels to encompass signal present in spines. For experiments examining the somatic signal, the 

analysis was conducted as above except that the somatic compartment was manually isolated from 

dendrites and surrounding cells. The somatic analysis for BioPLAy and PLA for the detection of subunit 



 98 

dimers included a step to remove PLA detected within the nucleus, as these experiments showed 

non-specific PLA signal. In order to analyse the dendritic PLA signal, all traceable dendrites to the main 

neuron were measured 50 μm proximal from the soma, and straightened with the ‘straighten’ plug-in 

in ImageJ, and the PLA signal was analysed as above. 

 To analyse the proximity of PLA signal to the synaptic marker synapsin-1, the ImageJ plugin 

Just Another Colocalization Plugin (JACoP) was used (refer Appendix 1.4. Quantifying Colocalization of 

PLA Signal Within Synapses). In brief, images were separated into single channel images and the 

proximal 50 μm of MAP2 and PLA signal was isolated. Average PLA and synapsin-1 signal threshold 

values were determined for all treatment groups and applied within the JACoP plugin. In order to 

determine colocalization, the Mander’s overlap coefficient was used to generate a value 

proportionate to the level of overlap of PLA on synapsin-1 signal. Here, a value of -1 indicates 

negative correlation, 0 indicates no correlation and +1 indicates a positive correlation. In addition, the 

proximity of PLA puncta to synapsin-1 signal was determined by manual measurements of the centre 

of each PLA puncta (determined by the brightest pixel) to the centre of mass of the nearest synapsin-

1 puncta. PLA puncta within 0-2, 2-4, and > 4 μm from the synapsin-1 centre of mass were considered 

synaptic, extrasynaptic, and non-synaptic, respectively.  

 Statistical Analysis 

 
For RT-qPCR data, data exhibited a normal distribution (Shapiro–Wilk normality test), significance was 

assessed using Student’s t-tests where p < 0.05 was accepted as significantly different. Data were 

normalized to the control gene HPRT and expressed relative to no-drug control. 

Statistics for all immunocytochemistry experiments were performed using Kruskal–Wallis 

one-way ANOVA followed by Dunn’s multiple comparisons test. Normal distribution of data was 

determined (D’Agostino and Pearson omnibus normality test). Outliers within the raw data sets were 

detected using the Grubb’s test. Data for all slice work exhibited a normal distribution (Shapiro–Wilk 

normality test). Experiments examining pCREB expression were analysed by use of Student’s t-tests, 

and experiments analysing Arc protein expression were analysed using one-way ANOVA followed by 

Šidák’s multiple comparisons test. Data are expressed as fold change relative to control values. 

For electrophysiology experiments, the baseline response value was calculated by averaging 

the responses over the final 10 min before LTP induction. All responses throughout the recording 

were normalised to the baseline value before application of IEM-1460 and expressed as a percentage 

of baseline. Normal distribution of data was determined by D’Agostino and Pearson omnibus 

normality test. Statistical differences between experimental groups was performed on data 
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normalised to the average of baseline 10 minutes before TBS, and determined by one-way ANOVA 

with Tukey’s multiple comparisons tests, where appropriate. 

 

To observe the effect of treatment on the expression of proteins at the cell surface, data 

were normalised to the experimental control condition. Outliers within the raw data sets were 

detected using the Grubb’s test, and identified candidates were removed if significantly different 

from the data set, following visual analysis of the PLA channel. For all data sets, D’Agostino and 

Pearson omnibus normality tests were used to determine whether the data was normally distributed. 

Data from ≥ 3 experiments was amalgamated and significance was by assessed one-sample t-tests 

(relative to a theoretical mean of 1) or Mann-Whitney two-tailed u-tests (Girard et al., 2007; Boos and 

Stefanski, 2013; tom Dieck, et al., 2015). For data examining the proportion of proteins within 

synaptic domains, normality was determined by Shapiro-Wilk normality test. Significance was 

assessed by two-way ANOVA and Šidák’s multiple comparisons effect.  
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 Chapter 3: Results  
 

3.1. Characterization of Primary Hippocampal Cultures 
 
Previous research investigating the mechanisms of learning and memory have utilized primary 

hippocampal and cortical cultures as a means of isolating neurons for analysis of biological properties 

related to cellular structure and function. A common procedure for producing these cultures involves 

the manual dissection and isolation of cortical or subcortical structures from rodent or murine pups, 

dissociation of the cellular profile, and incubation and maintenance of plated cells for up to four 

weeks or longer (Banker and Goslin, 1998). Comparisons of in vitro cell cultures to the likes of ex vivo 

tissue sections have been continually present throughout the literature as ongoing research is 

performed with both preparations. While brain sections have been regarded as an exceptional 

preparation for maintaining local synaptic circuitry and preserving brain architecture (Cho et al., 

2007), primary cultures have shown an increasing advantage as a convenient and viable technique for 

simulating the molecular microenvironment of complex in vivo tissue, and allowing greater spatial 

resolution (Millet and Gillette, 2012). This thesis aimed to examine the regulation and expression of 

IEGs and glutamate receptors in primary hippocampal neurons in culture, in response to the 

neurotrophic protein, sAPPα. Therefore, before these experiments begin, we first aimed to describe 

the cellular and molecular environment present in these cultures. 

 

 Growth and Development 
 
Primary hippocampal cultures were prepared from PD 0-1 rat pups and maintained in culture for 21–

27 DIV prior to use (refer section 2.1. Primary Neuronal Culture Preparation). While synaptic 

development has been shown to occur within a week in vitro, full maturation and complexity of both 

pre- and post-synaptic complements does not occur until > 21 days in vitro (Dotti et al., 1988; Fletcher 

et al., 1991; Fletcher et al., 1994; Grabrucker et al., 2009). Development of cultures was documented 

as the cells matured using phase contrast microscopy. In accordance with previous studies (Banker 

and Cowan, 1977; Dotti et al., 1988; van Spronsen et al., 2013), immediately following plating, cells 

were observed as small spherical bodies beginning to adhere to the Poly-D-lysine coated glass 

coverslip (Figure 3-1A). By DIV 2, cell bodies began to produce minor processes with many extending 

primary projections. Over the following 7 days, dendritic arborization increased in size and complexity 

(Figure 3-1B), and throughout the next two weeks cells continued to project dendrites and axons 

(Figure 3-1C), increasing the complexity of the network and covering a majority of the culture surface 

(Figure 3-1D). 
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Figure 3-1 | Temporal development of hippocampal cells in primary culture. Phase contrast 

images of primary hippocampal cells in culture (at a density of 4 x 104 cells/cm2) imaged at various time 
points following initial plating. Seeded cell bodies (A, upper right inset) begin to send out primary 
projections and minor neurites by DIV 2 (B, indicated by white arrows), and by DIV 7 have produced 
multiple projections (C). By DIV 24, a dense and complex arborization of dendrites is seen extending 
from a large soma (D). Scale bar = 100 μm (10 x), scale bar (inset images) = 50 μm (A), 20 μm (B; 40 x). 
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 Immunofluorescent Detection of Primary Neuron Development 

 
In addition to examining cell development by phase contrast microscopy, it is also possible to observe 

development by probing cells for key proteins using immunocytochemistry. This method allows for 

finer observation of neuronal growth by examining key proteins in cells of interest. By probing for the 

neuron specific protein microtubule-associated protein 2 (MAP2; Caceres et al., 1984), we are able to 

distinguish MAP2-postive immunofluorescence concentrated in the soma of neurons at the instant of 

cell plating (0 hours; Figure 3-2A; Bernhardt and Matus, 1984). At this stage, it is expected that cells 

develop a lamellipodia around the circumference of the cell body (Dotti et al., 1988), containing 

predominantly actin filaments. By 24-48 hours we can begin to distinguish MAP2- and tau-positive 

minor neurites (Figure 3-2B-C). These neurites appear cylindrical, yet have expanded, flattened, 

growth cones at their tips. Once established these minor neurites appear rather stable, with many 

continuing to develop (Dotti et al., 1988).  

As is common for hippocampal neurons in culture, by 72 hours the primary axon arose as a 

branch from a short process which had dendritic characteristics, including MAP2-immunoreactivity. 

This tau-positive axon differentiates and can be marked as the establishment of neuronal polarity 

(Yogev and Shen, 2017; Figure 3-2D). This polarity can be observed through a marked increase in its 

growth rate, a decrease in MAP2-immunoreactivity, and an increase in tau-immunoreactivity. From 

this stage on, the primary axon grows rapidly, while minor processes begin to elongate and take on 

the appearance of dendrites. This development continues throughout DIV 3-8 (Figure 3-2E-G), while 

dendrites continue to grow and develop, however at a slower rate than axons (LeBrasseur, 2005; 

Polleux and Snider, 2010).  

By DIV 14 additional axons can be observed as branching collaterals emerging from the 

primary axonal process. Around this time, increased observations of en passant boutons are possible, 

as axons began to make close associations with neighbouring dendrites. Many of these associations 

appear as bulb-like protrusions from the axonal process, likely indicating the presence of presynaptic 

boutons, and either the formation of immature synapses or the presence of mature synapses (Reilly 

et al., 2011; Schedin-Weiss et al., 2016; Chéreau et al., 2017; Figure 3-2G). By DIV 21-24, neurons 

reach full dendritic and axonal arborization and growth begins to plateau (van Spronsen et al., 2013; 

Sahu et al., 2019; Figure 3-2H). Associations between axons and dendrites appear to become more 

refined, increasing in number along greater lengths of the dendrite (Figure 3-2F). 
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Figure 3-2 | Temporal development of MAP2- and Tau-positive neurites. Immunocytochemistry 

images of primary hippocampal cells in culture (40 x 100 cells/cm2) imaged at various time points 
following initial plating. Seeded cell bodies (A) begin to send out a MAP2-postive neurite within 24 hours 
(B). Additional neurites form within 48 hours, becoming tau-positive (C). A primary neurite becomes 
primarily tau-positive by 72 hours developing into an axon (D) and MAP2-positive axon-initial segment 
(arrow). By DIV 3 MAP2-positive and tau-positive neurites extend to become dendrites and axon, 
respectively (E). By DIV14 the formation of en passant boutons is observable (arrows, G). Inset image 
shows magnified section of dendritic and axonal proximity. Dendritic and axonal growth continues 
through DIV 24, with the persistence of en passant boutons (arrows, H). Inset image shows magnified 
section of dendritic and axonal proximity. Arrows indicate close associations of tau-positive axons and 

MAP2-positive dendrites. Images show neurons (MAP2, ■), nucleus (DAPI, ■), and axons (Tau, ■). n = 1. 
Scale bars = 20 μm (A-F), 50 μm (G-H), inset image = 10 μm. 
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 Cellular Populations Within Primary Hippocampal Cell Cultures 
 
In order to further understand the cell types present within our primary hippocampal co-cultures, we 

probed our cultures with immunocytochemical markers of cell type-specific proteins. While our 

experimental investigations will focus primarily on the expression of proteins in neurons, it is 

important to note that in healthy co-cultures such as those produced using our protocol, a mixture of 

both neuronal and glial cells will be present. Due to the proliferative capability of glial cells, left long 

enough, co-cultures will become overgrown with glial cells, an occurrence which may obscure or 

otherwise affect downstream analysis of molecular changes (Lauer et al., 2002), thus it was important 

to establish the expression of these cell types before downstream analysis. Many methods have been 

developed to circumvent this, including addition of the anti-mitotic drugs such as cytarabine (Ara-C), a 

pyrimidine antimetabolite additive that acts to inhibit DNA synthesis and thus the division of 

proliferative cells such as glia (Delivopoulos and Murray, 2011). However, methods such as these have 

been shown to have adverse effects on neurons (Wallace and Johnson, 1989; Martin et al., 1990). It is 

well established that the presence of glia in vitro and in vivo is necessary for the development and 

function of neurons (Helmuth, 2001; Ullian et al., 2001). Specifically, several astrocyte-derived signals 

have been described as essential for the induction of neuronal neuritogenesis and synaptogenesis 

(Mauch et al., 2001; Medina and Tabernero, 2002; Haydon and Carmignoto, 2006; Barker et al., 2008;  

Bertrand et al., 2011; Yates, 2012). Our protocol for the culturing of primary hippocampal neurons 

involves the maintenance of cultures in serum-free Neurobasal-A media and B27 supplement which 

support the growth and development of neurons but does not directly support glial proliferation 

(Brewer et al., 1993). Therefore, in order to provide an initial support of glial cell growth, within the 

first four days, co-cultures were supplemented with conditioned media derived from glial-only 

cultures (refer Section 2.1.3. Production of Conditioned Media for Cell Culture Maintenance). Cultures 

were also supplemented with a small percentage of media from neuronal and glial co-cultures, in 

order to account for any secreted factors that may require the presence of both cell types. This allows 

for initial proliferation and support from glial cells, after which media supplementation comes solely 

from Neurobasal-A media, B27 and GlutaMAX only. This method has been shown to enhance survival 

of neurons in co-culture (Conde Guerri et al., 1989; Shi et al., 2013).  

Here, we have probed our primary hippocampal cultures (DIV21-24) with 

immunocytochemical markers such as MAP2, or the glial fibrillary acidic protein (GFAP), present in 

astrocytic cells (Eng et al., 2000). These markers have been shown to be reliable indicators of neuron 

and astrocyte morphology, respectively, through their continued expression in vitro (Caceres et al., 

1984; Sofroniew and Vinters, 2010). As shown by Figure 3-3, our primary hippocampal cell cultures 

show distinct populations of both MAP2- (Figure 3-3A,C) and GFAP-positive (Figure 3-3B-C) cells, 
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expressing typical neuronal and glial cell morphology (Müller et al., 2015). While the ratio of 

astrocytes per neuron has been shown to be 1:1.5 in the rodent hippocampus (Keller et al., 2018), 

this method provided a 1:1 ratio of neurons to astrocytes by DIV24 (cell counts of MAP2- and GFAP-

positive cells; n = 1 experiment), similar to previous observations in culture (Dawes et al., 2018; 

Gunhanlar et al., 2018). In line with observations described in the literature, these co-cultures 

appeared to form close associations with GluA1-positive neurons (Figure 3-3D), which may indicate 

the formation of in vitro tripartite synapses (Todd et al., 2013; Robertson et al., 2014).  

In addition to this, we have further identified subpopulations of granule cells within our 

neuronal population (Figure 3-3E). This population was isolated visually by use of antibodies against 

the granule cell specific transcription factor Prospero Homeobox 1 (Prox1; Lavado et al., 2010; Iwano 

et al., 2012), and indicates that our cultures contain distinct populations of Prox1-positive and -

negative neurons. Identification of these populations provides information which may supplement 

downstream analysis and interpretation of results. Prox1-positive neurons accounted for 30% of 

MAP2-positive neurons in our cultures (cell counts of PROX1-negative and PROX1-positive cells; n = 1 

experiment), with the remaining 70% of neurons able to be attributed to excitatory and inhibitory 

populations, similar to past observations (Soumier et al., 2009; Digilio et al., 2015). Interestingly, 

observations from past literature have shown population estimates of almost 1:1 granule to 

pyramidal cells when obtained from young postnatal (PD 0) mouse pups (Wu et al., 2015). While 

curious, this may arise from developmental differences between species. 

Furthermore, as shown in Figure 3-3A, MAP2 staining shows continuous and robust signal, 

indicating the presence of a healthy neuron. In unhealthy neurons, MAP2 expression is fragmented in 

the dendrites and can take on a 'beads on a string' appearance due to cellular ‘blebbing’ of the 

membrane, a reliable indicator of cell stress (Charras, 2008; Appendix Figure A-15). Alternatively, 

unhealthy astrocytes have been shown to be double-stained by both GFAP and MAP2, and represents 

a permanent change in reactive astrocytes (Geisert et al., 1990; Schinstine and Iacovitti, 1996). In 

addition to this, the use of the nuclear stain 4′,6-diamidino-2-phenylindole (DAPI) can be used to 

identify cell bodies, as well as the presence of a fragmented, condensed, or swollen nuclei, also an 

indication of poor health or cell stress (Dini et al., 1996). While few unhealthy cells are to be expected 

in long-term maintenance of primary cultures, cultures consistently had a very low level of unhealthy 

cells as determined by the above criteria.  
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Figure 3-3 | Primary Hippocampal cultures contain Glial and Neuronal populations. 
Representative images show A) MAP2-positive neurons (■), B) GFAP-positive astrocytes (■), C) the 

close association between neurons and astrocytes throughout the cultures, and D) close associations 

with GluA1-positive dendrites (GFAP, ■; GluA1, ■). D) Populations of Prox1-postive (arrow) granule 

cells are present in our hippocampal cultures (MAP2, ■; Prox1, ■, DAPI, ■). n = 1 experiment. Scale 

bars = 100 μm (A-C), 50 μm (D-E), inset images = 10 μm.  
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 Identification of Pre- and Post-Synaptic Markers of Mature Synapses in 
Neuronal Cultures 

 
Synaptic transmission is a fundamental property of neurons, including those grown in culture (Vogt et 

al., 1995; Maximov et al., 2007). Communication between cells occurs primarily at synapses, which 

consist of pre- and postsynaptic domains separated by a 10–20 nm wide extracellular space, called 

the synaptic cleft. The most direct approach for the visualisation of synapses is the use of 

immunocytochemical markers for both pre- and postsynaptic proteins (Biederer and Scheiffele, 

2007). Presynaptic proteins such as synaptophysin-1, a vesicle-associated protein present along axons 

(Fletcher et al., 1991; Di Liegro et al., 1995; Kwon and Chapman, 2011), and the postsynaptic 

excitatory glutamate receptor subunits GluA1 and GluA2, are reliable markers of mature and active 

postsynaptic domains (Pickard et al., 2000; Jacob and Weinberg, 2015). Single- and dual-labelling of 

these proteins in culture allows for visualisation of synapses via conventional fluorescence microscopy 

(Pickard et al., 2000; Verstraelen et al., 2018). At this resolution, dual labelling of pre- and 

postsynaptic proteins results in the coalescence of fluorescent signals, at points at which both 

proteins are present in close proximity (approximately 200-500 nm; Huang et al., 2009; Dzyubenko et 

al., 2016). Therefore, while single-labelling immunofluorescence can give an indication of protein 

content within a cell, dual-labelling of synaptophysin-1 and GluA1 or GluA2 gives an indication of pre- 

and postsynaptic terminals in close contact.  

 
By one-week in vitro cells will begin to produce endogenous action potentials and synapses will begin 

to form, alongside the presence of immature dendritic spines (Dichter et al., 1983; Basarsky et al., 

1994; Papa et al., 1995). From DIV8, hippocampal neurons grown in culture express the GluA1 protein 

(Zhang et al., 2017) and contribute to synaptic currents (Shi et al., 2010). From DIV8 onwards, spines 

continue to mature and the number of both excitatory and inhibitory synapses continues to increase 

(Grabrucker et al., 2009), as the length and number of dendrites also increases (Harrill et al., 2015). By 

DIV 21 a majority of synapses contain dual immunoreactivity for pre- and postsynaptic proteins 

(Grabrucker et al., 2009), reaching a relatively stable plateau. 

Here, we probed our cultures (DIV 8) for GluA1, and found a small but notable presence of 

GluA1 protein within both the soma and dendrites (Figure 3-4A). We further examined GluA1 (Figure 

3-4B) and GluA2 (Figure 3-4C) in DIV 21 hippocampal neurons which were present to a greater extent 

in both somatic and dendritic compartments, in line with previous observations (Richmond et al., 

1996). DIV 21-27 neurons were also found to be positive for the presynaptic marker synaptophysin-1 

(Figure 3-4D), which colocalized with both GluA1 (Figure 3-4E) and GluA2 (Figure 3-4F), indicating the 

presence active synapses in our cultures.   
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Figure 3-4 | Development of synapses in vitro. Representative images show hippocampal 

neurons stained for A) GluA1 (■, DIV 8), B) GluA1 (■, DIV 21-27), C) Synaptophysin-1 (■, DIV 21-

27), D) GluA2 (■, DIV 21-27), E) the colocalization of both synaptophysin-1 (■) and GluA1 (■), and 

F) the colocalization of both synaptophysin-1 (■) and GluA2 (■). All images show neuronal 

architecture with MAP2 (■) and DAPI (■). n = 1 experiment. Scale bar = 50 μm, inset images = 20 

μm 
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3.2. Observations from the Culturing of Adult Cortical Mouse Neurons 
 
The culturing of tissue from both embryonic and early postnatal rodents has been shown to result in 

successful growth of both neuronal and glial populations. While the use of young tissue provides an 

easy and effective means to isolate primary neurons, these developmental stages may not accurately 

represent later stages of development or disease progression. However, successful culturing of 

neurons from adult animals has been historically difficult, and at times described as impossible, yet 

few groups have found success in isolating neurons and glia (Brewer, 1997; Eide and McMurray, 

2005; Brewer and Torricelli, 2007; Sun et al., 2017), dorsal root ganglia (Mollá et al., 2017), and neural 

progenitor cells (Palmer et al., 1999; Ray and Gage, 2006; Babu et al., 2007) from adult tissue.  

Here we aimed to establish a protocol for the preparation of adult neuronal cultures. Primary 

cortical cultures were prepared from 9-month-old wild-type (WT) and APPswe/PS1ΔE9 C57/Bl6 

(APP/PS1) mice and maintained in culture for 9-14 days DIV prior to use. Adaptions were made to our 

current protocol for culturing postnatal neurons (refer section 2.2 Adult Primary Neuronal Culture 

Preparation; Eide and McMurray, 2005; Brewer and Torricelli, 2007).  

 

 Growth and Development of Adult Neuronal Cultures 
 

Similar to cultures derived from early postnatal tissue, development of adult neuronal 

cultures was documented as the cells matured using phase contrast microscopy. In line with 

observations from Eide and McMurray, (2005) and Brewer and Torricelli, (2007), immediately 

following plating, cells were observed as small spherical bodies and pyramidal soma, beginning to 

adhere to the poly-D coated glass coverslip (Figure 3-5A). After roughly 5-7 days adult cellular 

‘colonies’ appeared (Figure 3-5B), and continued to extend processes (Figure 3-5C). Some neuron-like 

cells were observed clustering together with glia (Figure 3-5D), however without confirmation by use 

of immunocytochemical markers, these observations are purely morphological. While some groups 

have reported maintenance of adult cortical neurons for as long as 3 weeks (Ross et al., 2018), by DIV 

14, neurons began to deteriorate, appearing as clusters of bright spheres, indicating detachment from 

the glass coverslip and cell death. The youngest cultures (DIV 9) were thus fixed and prepared for 

immunocytochemistry.   
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Figure 3-5| Adult mouse culture growth and development. A) By DIV 3, cultures begin to show 

the presence of neurons (i) with immature neurites (ii). DIV 3 cultures also show some cellular debris (iii), 
and many unadhered dead cells (iiii). B) by DIV 5 ‘colonies’ of cells can be observed with neurons and 
small neurites (i). C) these colonies continue to grow and neurites continue to extend and develop into 
identifiable dendrite-like branches (white arrows). Neuron development and the presence of glia is more 
obvious in D) smaller colonies where neurons (i) show multi-branching dendrites (ii) and axons (iii), in 

close proximity to fusiform shaped astrocytes (iiii). n = 1 experiment. Scale bar = 50 μm. 
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 Cellular Populations in Adult Primary Cortical Cultures 
 
In line with our previous work, utilizing neuronal tissue obtained from PD 0-1 rat pups, we aimed to 

examine the populations of neurons and astrocytes in our adult mouse cultures. 

Immunocytochemistry was used targeting the neuronal marker MAP2 and the astrocyte marker 

GFAP. Here the addition of DAPI was used as an indicator of nuclear bodies present in culture which 

may not also express positive for MAP2 or GFAP. Through this, we observed conservation of the 

‘colonies’ seen via phase contrast microscopy. Interestingly, in dishes double labelled for GFAP and 

MAP2, majority of the colonies were positive for GFAP with few MAP2-positive neurons present. 

Astrocytes showed typical morphology for those cultured from adult tissue (Sun et al., 2017), with a 

majority adopting polygonal/fusiform or flat shaped cell bodies, although some astrocytes formed 

monopolar or bipolar morphology. A majority of neurons present showed a typically small soma, with 

1-2 MAP2-positive primary projections (Figure 3-6). 
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Figure 3-6| Cellular populations in adult cortical cultures. Immunocytochemistry showed 

populations of i) MAP2- and DAPI-positive neurons (■), and GFAP-positive (■) ii) monopolar, iii) 

bipolar, iiii) polygonal, and v) flat astrocytes (DIV 9). Inset image shows digital magnification of 

neurons and astrocytes. n = 1 experiment. Scale bar = 50 μm. 
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 Cultured Wild-Type and APP/PS1 Adult Mouse Neurons Express GluA1 
 
Secondary to examining the presence of cell populations within our adult mouse cultures, we further 

aimed to examine whether the cells present in our cultures express appropriate glutamate receptors. 

GluA1 is present in the mouse cerebral cortex and associates strongly with immunocytochemical 

markers for neurons (Carino et al., 2012; Maheshwari et al., 2012), glial cells (Bender et al., 2020), and 

reactive astrocytes (Hefferan et al., 2007). Importantly, past observations have shown high 

immunoreactivity for pre- and postsynaptic markers synapsin-1 and PSD-95, respectively, by 3 weeks 

in vitro (Ross et al., 2018), indicating adult-derived neurons are capable of maintaining the 

regeneration of synapses in culture. 

As mentioned in section 3.1.4. Identification of Pre- and Post-Synaptic Markers of Mature 

Synapses in Neuronal Cultures, neurons obtained from embryonic or young postnatal animals have 

previously been shown to express synaptic markers, including GluA1, from 8 days onwards (Richmond 

et al., 1996). Here, we have obtained cells from much older tissue, with perhaps slower regenerative 

abilities than younger tissue, and maintained for only 9 days in vitro. In face of this, when examining 

GluA1 expression under permeabilized conditions, our cultures showed many GluA1- and MAP2-

positive cells in cultures obtained from both WT and APP/PS1 transgenic tissue (Figure 3-7). 

Importantly, while many MAP2-positive cells appeared morphologically neuronal, a majority MAP2 

staining expressed as showing astrocyte morphology, indicating the likely presence of GluA1-positive 

reactive astrocytes (Geisert et al., 1990; Schinstine and Iacovitti, 1996) 

 
 
Here we aimed to establish a protocol for the preparation of adult neuronal cultures. In line with past 

literature, we have further described the difficulties in isolating cells for co-culture of neurons and 

glia. While we were successful in the isolation of MAP2- and GFAP-positive cells, the identity of these 

cells would require greater validation than the techniques used here. Additionally, as previously 

observed (Brewer, 1997), the use of Neurobasal A medium for preparation of adult neurons can 

sometimes result in the release of neuronal DNA following osmotic shock, possibly promoting the 

death of neurons in these preparations. Future attempts should aim to optimize the osmolarity of 

medium used to isolate adult neurons in order to promote the longevity of neurons in these cultures. 

For these reasons, these cultures were not ultimately used for the experimental drug treatments 

described throughout this thesis. However, the observations provided by this work highlights 

considerations when attempting this approach and provide an early proof-of-concept for future 

directions. 
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Figure 3-7| GluA1-positive cells. Immunocytochemistry showed populations of double labelled cells (DIV 

9) positive for both GluA1 (■) and MAP2 (■) in tissue obtained from A) wild-type, and B) APP/PS1 transgenic 
mice. Upper panels show GluA1, middle panels show MAP2, and lower panels show combined GluA1 and 
MAP2 channels. Inset images show magnification of combined channels, arrows indicate clear GluA1-positive 
neurons. n = 1 experiment. Scale bar = 50 μm. 
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 Chapter 4 

4.1. Examining Arc Expression in Response to sAPPα 
 
Historically, IEGs, and specifically Arc, has been a proven method for effectively measuring plasticity or 

the activation of synapses in both in vitro (Das et al., 2018) and in vivo assays of plasticity (Grinevich et 

al., 2009; Steward et al., 2018). Additionally, Arc has shown direct links to the expression of AMPA 

receptors in governing the regulation of plasticity (Rial Verde et al., 2006; Shepherd et al., 2006; 

Shepherd and Bear, 2011). It is recognized that both endogenous (Taylor et al., 2008) and exogenous 

(Richter et al., 2018) sAPPα promotes the regulation of plasticity and the expression of AMPAR (Mockett 

et al., 2019; Martinsson et al., 2019). Therefore, due to the inherent activity-regulated properties of 

Arc, initial experiments sought to utilize this, allowing for assessment of upstream and downstream 

processes governing sAPPα’s control of plasticity and AMPAR expression in culture.  

 

All data presented here, including additional experiments and observations is available by publication 

in Frontiers of Molecular Science, as part of the research topic Advances in Biomedical and Molecular 

Neuroscience (Livingstone et al., 2019), and can be found at 

https://doi.org/10.3389/fnmol.2019.00198. 

 

 sAPPα Facilitates an Increase in Arc and Zif268 mRNA Expression 
 
Previous work has identified networks of genes associated with the treatment of hippocampal slices 

with sAPPα (1nM), including rapidly-induced transcription factors JunB, c-Fos, and importantly Zif268 

(Minatohara et al., 2016). Therefore, we aimed to examine whether sAPPα (1 nM) promoted an 

increase in Arc mRNA expression in primary cortical cell cultures, in a time-dependent manner, using 

reverse transcription quantitative polymerase chain reaction (RT-qPCR). As a positive control we also 

examined the expression of Zif268, previously shown to increase in expression following sAPPα (1 nM, 

15 min) in organotypic hippocampal slices (Ryan et al., 2013), and further linked to the regulation of 

Arc mRNA in vivo (Penke et al., 2011). As a negative control we also examined the transcription factor 

Specificity Protein 2 (SP2; Suske, 1999). Here, we found that treatment with sAPPα facilitated a slowly 

developing increase in the levels of Arc mRNA (Figure 4-1). No significant change was found in either 

Arc or Zif268 mRNA at 15 or 30 min of sAPPα incubation (Arc: 15 min: 1.27 ± 1.00, p = 0.35; 30 min: 

1.14 ± 0.28, p = 0.49; Zif268: 15 min: 0.96 ± 0.45, p = 0.28; 30 min: 1.30 ± 0.68, p = 0.30). However, 

following 60- and 120-min exposure the levels of both Arc (60 min: 2.29 ± 1.32 p = 0.01; 120 min: 2.69 

± 1.53, p ≤ 0.0001) and Zif268 (60 min: 1.78 ± 1.02, p = 0.01; 120 min: 1.38 ± 0.57, p = 0.04; Figure 4-1) 

https://doi.org/10.3389/fnmol.2019.00198
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mRNA increased significantly relative to no-drug controls. This effect was found to slowly diminish with 

time as both Arc and Zif268 were reduced by 240 minutes (Arc: 1.57 ± 1.15, p = 0.04; Zif268: 1.43 ± 

0.86, p = 0.05) and eliminated by 24 hours (Arc: 1.051 ± 0.14, p = 0.45; Zif268: 0.94 ± 0.043, p = 0.32). 

No significant change was found in SP2 following any length of treatment (15 min: 1.049 ± 0.1501, p = 

0.19; 30 min: 1.063 ± 0.15, p = 0.17; 60 min: 1.15 ± 0.24, p = 0.10; 120 min: 1.18 ± 0.094 p = 0.06; 240 

min: 0.94 ± 0.043, p = 0.33; 24 hr: 1.032 ± 0.14, p = 0.21).   
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Figure 4-1 | sAPPα promotes the transcription of Arc and Zif268 mRNA. RT-qPCR 

showed that sAPPα (1 nM) promotes an increase in the expression of Arc and zif268 mRNA in primary 
cortical cells in culture at 60, 120 min (n = 5 wells), and 240 min (n = 4 wells) relative to no-drug controls 
(n = 9 wells). Normality was detected by Shapiro-Wilk normality test. All data are expressed as mean ± SEM 
from ≥ 4 experiments. No significant change was detected at 15 (n = 5 wells) or 30 (n = 5 wells) min, nor 
24 h (n = 4 wells), nor was there a significant change in the negative control gene SP2 (n = 4). Students t-
tests; ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗∗p ≤ 0.0001. 
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 sAPPα Facilitates an Increase in Arc Protein Expression 
 
Previous research has shown a strong association between the increased expression of Arc mRNA and 

its rapid, activity- and experience-dependent translation (Steward et al., 1998; Steward et al., 2015). 

Interestingly, induction of Arc transcription leads to an increase in dendritic Arc mRNA, by active 

transport to sites of synaptic activity. In this sense Arc stands out from other immediate early genes 

which do not show this pattern of dendritic expression (Maroteaux et al., 2014), or such rapid activity-

dependent transport (Steward et al., 1998). Therefore, examinations of both somatic and dendritic 

accumulation of Arc protein may give important insights into the regulation of plasticity by sAPPα. Thus, 

in order to examine Arc protein expression in our primary hippocampal neurons, we utilized 

immunocytochemistry and examined Arc expression in both somatic and dendritic compartments. 

Further, while evidence from our RT-qPCR data suggest a peak of Arc mRNA expression at 2 hours, this 

is reflected by past observations in behavioural learning paradigms (Hossaini et al., 2010; Lonergan et 

al., 2010; Soulé et al., 2012), and following synaptic activity (Chotiner et al., 2010) and BDNF treatment 

(El-Sayed et al., 2011). Therefore, we selected this timepoint for the examination of Arc protein 

following sAPPα treatment. Here, we found that sAPPα (1 nM, 120 min) increased both somatic (1.35 

± 0.46, p ≤ 0.0001) and dendritic (1.92 ± 0.81, p = 0.0003) Arc protein expression relative to controls 

(Figure 4-2A,C,F,G). Similarly, 0.1 nM sAPPα significantly increased dendritic Arc expression (1.35 ± 0.05, 

p = 0.0002), but it did not significantly affect somatic Arc protein expression (1.15 ± 0.39, p = 0.24; 

Figure 4-2A-B,F,G).  

While many plasticity-enhancing properties have been found of sAPPα, the β-secretase 

product, sAPPβ has shown few comparative properties. sAPPβ differs from sAPPα by 16 C-terminal 

amino acids, and has been described as 100-fold less effective in ameliorating excitotoxicity and 

attenuating glucose deprivation compared to sAPPα (Furukawa et al., 1996), is unable to protect against 

oligomeric Aβ-induced spine loss (Tackenberg and Nitsch, 2019), and does not enhance LTP (Mockett 

et al., 2019). Therefore, we next examined the effect of sAPPβ treatment (0.1 nM, 1 nM; 120 min) and 

found, in contrast to sAPPα, that neither 0.1 nM nor 1 nM sAPPβ significantly increased dendritic Arc 

protein (0.1 nM: 0.97 ± 0.49; 1 nM: 0.92 ± 0.45, p ≥ 0.99; Figure 4-2A,D,F,G). Interestingly, while 0.1 

nM sAPPβ did not affect Arc protein expression in the soma (0.91 ± 0.34, p ≥ 0.99), 1 nM sAPPβ resulted 

in a small but significant decrease in somatic Arc expression (0.82 ± 0.38, p = 0.03; Figure 4-2A,E,F). 

Thus, the enhancement of Arc expression appears to be specific to sAPPα.  
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Figure 4-2 | sAPPα promotes Arc protein 
expression in a concentration-dependent 
manner. Representative images showing Arc 

protein levels in A) no drug control (n = 140 cells), 
B) 0.1 nM sAPPα (n = 40 cells), C) 1 nM sAPPα (n = 
80 cells), D) 0.1 nM sAPPβ (n = 40 cells) and E) 1 nM 
sAPPβ-treated (n = 80 cells) primary hippocampal 
neurons. F) Average data showing 1 nM sAPPα 
promotes an increase, and 1 nM sAPPβ a modest 
decrease in Arc protein expression in the soma. G) 
Average data showing 0.1 and 1 nM sAPPα 
promotes an increase in dendritic Arc protein. All 
data are expressed as mean ± SEM from ≥ 4 
experiments. Normality was detected by 
D’Agostino and Pearson omnibus normality tests, 
and significance was calculated using a Kruskal–
Wallis one-way ANOVA with Dunn’s multiple 
comparisons test on raw data. ∗p = 0.0378, ∗∗∗p = 
0.0002, ∗∗∗∗p ≤ 0.0001. Representative images 

show neuronal soma, dendrites (MAP2; ■), Arc 

protein (■), nuclei (DAPI; ■) and magnified 

somatic (inset, bottom right) and dendritic 
compartments. Scale bars = 50 µm (A-B,D-E), 100 
µm (C); lower panels = 10 µm. 
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 sAPPα Promotes an Increase in Arc Protein Throughout Primary and 
Secondary Dendrites 

 
Following the observation that sAPPα (0.1 nM, 1 nM; 120 min) enhanced dendritic arc protein 

expression, we further aimed to validate these findings and extend this analysis, by assessing 

fluorescence intensity levels and distribution of Arc protein throughout the dendrites– a method 

previously employed Gumy et al., (2017). This assessment validated the finding that sAPPα (1 nM, 120 

min) promotes an increase in Arc protein expression throughout the dendrites, as dendritic Arc 

expression was found to be significantly increased throughout the initial 50 μm (control: 40.06 ± 14.93; 

0.1 nM sAPPα: 63.82 ± 20.1, p ≤ 0.0001; 1 nM sAPPα: 62.04 ± 22.6, p ≤ 0.0001; Figure 4-3), middle 50 

μm (control: 32.43 ± 15.69; 0.1 nM sAPPα: 52.91 ± 25.57 p = 0.0005; 1 nM sAPPα: 52.89 ± 22.29, p ≤ 

0.0001) and final 50 μm segment of primary dendrites (control: 27.09 ± 11.58; 0.1 nM sAPPα; 43.72 ± 

22.3, p ≤ 0.0001; 1 nM sAPPα: 48.09 ± 24.17, p = 0.0311; Fig. 3A; Gilbride, 2016). Increased Arc 

expression in secondary dendrites was observed in the initial 25 μm (control: 32.54 ± 13.55; 0.1 nM 

sAPPα: 45.22 ± 19.61, p = 0.01; 1 nM sAPPα: 43.73 ± 21.08, p = 0.01) and middle 25 μm dendritic 

segment (control: 27.03 ± 14.08; 0.1 nM sAPPα: 37.64 ± 15.19, p = 0.002; 1 nM sAPPα: 36.63 ± 17.49, 

p = 0.004), however Arc expression was not significantly altered in the final 25 μm of secondary 

dendrites (control: 24.85 ± 12.25; 0.1 nM sAPPα: 31.99 ± 13.06, p = 0.26; 1 nM sAPPα: 30.06 ± 14.26, 

p = 0.06). While Arc expression has been previously shown to extend to distal dendrites (de Solis et al., 

2017), the results observed here may indicate that signals regulating Arc expression or Arc protein itself 

fails to reach distal dendrites within the 2-hour window. Alternatively, this may indicate that processes 

of protein degradation may have already begun (Farris et al., 2014). 
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Figure 4-3 | Arc protein expression increases throughout primary and secondary dendrites.  Average 

fluorescent intensity of Arc expression throughout (A) primary and (B) secondary dendrites (mean ± SEM, n = 40–
141). Significance was determined by averaging dendritic gray value within each cell and is expressed per 
treatment group within (A) 50 and (B) 25-micron bins. Representative fluorescence images illustrate Arc protein 

expression (■) within primary (A1,2) and secondary (B1,2) dendrites in the presence of 1 nM sAPPα (A1, B1) or 

no drug (A2, B2). Asterisks (*) and hashes (#) indicate significance found between control and 1 nM and 0.1 nM 
sAPPα, respectively. Data are expressed a raw gray value (solid line) ± SEM (shaded area). All data are expressed 
as mean ± SEM from ≥ 4 experiments. Normality was detected by D’Agostino and Pearson omnibus normality tests, 
and significance was calculated using a Kruskal–Wallis one-way ANOVA with Dunn’s multiple comparisons test on 
raw data. */#p = ≤ 0.05 **/##p ≤ 0.005 ***/###p = 0.0005, ****/####p ≤ 0.0001. Scale bar = 50 μm. Data was analysed 
with help from honours student Courteney Westlake. 
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 Arc Protein Expression is Transcription- and Translation-Dependent  
 

As shown by section 4.1.1. sAPPα Facilitates an Increase in Arc and Zif268 mRNA Expression, sAPPα (1 

nM) enhances the expression of Arc mRNA in primary cortical neurons. Likewise, sAPPα (1 nM, 120 min) 

enhances the expression of Arc protein in both the soma and dendrites of cultured hippocampal 

neurons. To examine the relationship between these two events, we aimed to further examine whether 

the expression and localization of Arc would be otherwise affected by inhibition of both de novo 

transcription and translation in primary hippocampal neurons. Here, we found that sAPPα-induced Arc 

protein expression in both somatic (2.24 ± 1.830, p ≤ 0.0001) and dendritic (1.99 ± 1.45, p ≤ 0.0001) 

compartments was blocked by co-application of the transcription inhibitor actinomycin-D (Act-D; 10 

μM; soma: 0.81 ± 0.68; dendrites: 0.95 ± 0.61, respectively; p ≤ 0.0001; Figure 4-4A-C,E-F). Additionally, 

co-application of the translation inhibitor anisomycin (Aniso; 40 μM) also eliminated the effect (soma: 

0.62 ± 0.30; dendrites: 0.84 ± 0.41, p ≤ 0.0001; Figure 4-4A,B,D-F). These effects indicate that Arc 

protein expression at 2 hours is fully dependent on both de novo transcription and translation of mRNA 

and protein. These results reflect those observed by past literature examining the dependence of Arc 

transcription and translation during BDNF (Messaoudi et al., 2002; Zheng et al., 2009), dopamine 

(Fosnaugh et al., 1995), and nicotine (Schochet et al., 2005) treatment, as well as synaptic activity (Link 

et al., 1995; Lyford et al., 1995). Together, these findings add evidence to support the hypothesis that 

sAPPα promotes both Arc transcription and translation.  
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Figure 4-4 | Arc protein expression is 
prevented by inhibitors of 
transcription and translation. 
Representative images showing Arc 
protein levels in A) sAPPα (1 nM, 120 min, 
n = 157 cells) and B) no drug control (n = 
115 cells) conditions. sAPPα-mediated Arc 
expression is inhibited with co-application 
of C) Actinomycin-D (n = 104 cells) or D) 
Anisomycin (n = 30 cells) in the E) soma 
and F) dendrites of hippocampal neurons. 
All data are expressed as mean ± SEM from 
≥ 4 experiments. Normality was detected 
by D’Agostino and Pearson omnibus 
normality tests, and significance was 
calculated using a Kruskal–Wallis one-way 
ANOVA with Dunn’s multiple comparisons 
test on raw data. Hashes (#) indicate 
significance between control and sAPPα-
treated; asterisks (*) indicate significance 
between sAPPα- and inhibitor-treated; 
****/####p ≤ 0.0001. Representative 
images show neuronal soma, dendrites 

(MAP2; ■), Arc protein (■), nuclei (DAPI; 

■) and   magnified somatic (inset, bottom 

right) and dendritic compartments. Scale 
bars = 50 µm (A-D); lower panels = 10 µm. 
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 Arc Protein Expression is Dependent on CaMKII/MAPK/PKG Signalling 
 
Previous research has identified CaMKII, MAPK, and PKG as key downstream kinases in the regulation 

of cell surface GluA1 (Mockett et al., 2019), and the enhancement of synaptodendritic protein synthesis 

(Claasen et a., 2009). Here, we sought to determine if the translation or subcellular distribution of Arc 

protein utilizes similar processes. As well as this we aimed to extend our assay to examine protein 

kinases likewise linked to the regulation of Arc protein, synaptic plasticity, or protein synthesis, such as 

PKA, PKC, and mammalian target of rapamycin (mTOR; Waltereit et al., 2001; Boehm et al., 2006; Wang 

and Proud, 2006). Here, primary hippocampal cultures were incubated with sAPPα in the presence or 

absence of inhibitors for 2 hours with or without pre-treatment (refer Table 2-1. Catalogue of Inhibitors 

and Antagonists used Throughout Immunocytochemical and Immunohistochemical Experiments).  

Accordingly, we found that sAPPα-mediated Arc protein expression was significantly reduced 

following inhibition of CaMKII in the soma (0.90 ± 0.48, p ≤ 0.0001; Figure 4-5A,B,C,I). Arc protein 

expression in the soma was otherwise unaffected by inhibitors of MAPK (1.15 ± 0.46, p = 0.47; Figure 

4-5A,B,D,I), PKG (1.48 ± 0.82, p ≤ 0.99; Figure 4-5A,B,E,I), PKC (1.60 ± 0.83, p ≤ 0.99; Figure 4-5A,B,F,I), 

PKA (1.5 ± 0.80, p ≥ 0.99; Figure 4-5A,B,G,I) or mTOR (1.54 ± 0.71 p ≤ 0.99; Figure 4-5A,B,H,I). 

Furthermore, dendritic Arc protein expression was significantly reduced through inhibition of CaMKII 

(0.72 ± 0.34, p ≤ 0.0001; Figure 4-5A,B,C,J), MAPK (1.22 ± 0.80, p = 0.0428; Figure 4-5A,B,D,J), and PKG 

(0.97 ± 0.45, p ≤ 0.0001; Figure 4-5A,B,E,J), however remained unaffected by inhibitors of PKA (1.57 ± 

0.88, p ≥ 0.99; Figure 4-5A,B,F,J), PKC (1.12 ± 0.51 p = 0.0875; Figure 4-5A,B,G,J), and mTOR (1.15 ± 

0.58, p = 0.0511; Figure 4-5A,B,H,J). Given these results, and that of past research, it seems likely these 

processes may contribute to the transcription, translation, and localization of Arc in both the soma and 

dendrites following sAPPα treatment. 
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Figure 4-5 | Arc protein expression in 
response to sAPPα is affected by kinase 
inhibitors. Representative images showing A) 

sAPPα (1 nM, 120 min, n = 125 cells) promotes an 
increase in the expression of Arc protein in cultured 
neurons relative to B) no drug controls (n = 134 
cells). Cells were simultaneously treated with C) 
KN62 (n = 51 cells), D) PD98059 (n = 51 cells), and 
E) KT5823 (n = 42 cells), F) H-89 dihydrochloride 
(H89; n = 40 cells), G) Chelerythrine chloride (CC; n 
= 30 cells), or H) Rapamycin (Rap; n = 40 cells) and 
Arc levels in the I) soma and J) dendrites was 
measured. All data are expressed as mean ± SEM 
from ≥ 3 experiments. Normality was detected by 
D’Agostino and Pearson omnibus normality tests, 
and significance was calculated using a Kruskal–
Wallis one-way ANOVA with Dunn’s multiple 
comparisons test on raw data.   Hashes (#) indicate 
significance between control and sAPPα-treated; 
asterisks (*) indicate significance between sAPPα- 
and inhibitor-treated; *p = 0.0428, ***p = 0.001, 

####/****p ≤ 0.0001. Representative images show 

neuronal soma, dendrites (MAP2; ■), Arc protein 

(■), nuclei (DAPI; ■) and magnified somatic 

(inset, bottom right) and dendritic compartments. 
Scale bars = 50 µm (A-D); lower panels = 10 µm. 
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 Dendritic Arc Protein Expression is Dependent on Activation of NMDA- 
and α7nACh Receptors 

 
Despite many studies, the cell surface receptor or receptors which transduce signals downstream of 

sAPPα are yet to be conclusively identified, though candidates have emerged. These include NMDAR, 

α7nAchR, sorting-related receptor with A-type repeats (SORLA), gamma aminobutyric acid receptors 

(GABAB), and membrane-bound APP itself (Rice et al., 2017; Hartl et al., 2013; Milosch et al., 2014; 

Richter et al., 2018; Mockett et al., 2019). Here, we pharmacologically inhibited likely candidates 

mediating sAPPα’s plasticity-promoting effects and observed the effect on Arc protein levels (Figure 

4-6). We found that application of antagonists targeting GABAB (CPG55845; 50 μM), TrkB (ANA-12; 100 

μM), or mGluRI/II receptors (MCPG; 500 μM) had no significant effect on dendritic Arc protein 

expression (Figure 4-6A,B,I) following sAPPα treatment (1 nM, 120 min; CPG55845: 2.79 ± 1.08, p ≥ 

0.99, Figure 4-6C,I; ANA-12: 2.78 ± 1.29, p ≥ 0.99, Figure 4-6D,I; MCPG: 2.29 ± 1.27, p ≥ 0.99, Figure 

4-6E,I). However, Arc protein expression was significantly reduced following antagonism of NMDA 

receptors by APV (50 μM; 1.67 ± 0.78, p = 0.01; Figure 4-6F,I) and α7nAch receptors with α-

bungarotoxin (αBGT, 10 nM; 1.61 ± 1.18, p = 0.0138; Figure 4-6G,I). Combined antagonism of NMDA 

and α7nAch receptors completely abolished sAPPα-mediated Arc expression (0.78 ± 0.49, p ≤ 0.0001; 

Figure 4-6H,I). Previous work has established a coupling between NMDA- and α7nACh Receptors (Li et 

al., 2012; Li et al., 2013), promoting a synergism of activity (Aramakis et al., 1998; Bali et al., 2017; Bali 

et al., 2019). Due to this, these results may suggest a novel mechanism whereby synergistic action 

between NMDA and α7nAch receptors govern an enhancement in sAPPα-mediated Arc protein 

expression.  
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Figure 4-6 | Arc protein expression is dependent on NMDA and α7nAch receptors. Representative 

images showing A) sAPPα (1 nM, 120 min, n = 80 cells) promotes and increase in the expression of Arc protein 
in cultured hippocampal neurons relative to B) no drug controls (n = 80 cells). Co-incubation of sAPPα with C) 
ANA-12 (n = 40 cells), D) CPG55845 (n = 40 cells), and E) MCPG (n = 40 cells) had no effect on sAPPα-induced 
Arc expression. Co-incubation with F) APV (n = 40 cells), or G) αBGT (n = 30 cells) significantly reduced Arc 
protein expression, while co-incubation with both H) APV and αBGT (n = 30 cells) fully eliminated this effect in 
the I) dendrites. Outliers were removed from each experiment prior to amalgamation using Grubb’s tests, and 
normality was detected by D’Agostino and Pearson omnibus normality tests. All data are expressed as mean ± 
SEM from ≥ 3 experiments. Significance was calculated using a Kruskal–Wallis one-way ANOVA with Dunn’s 
multiple comparisons test on raw data. Hashes (#) indicate significance between control and sAPPα treated; 
asterisks (*) indicate significance between sAPPα- and antagonist-treated; *p ≤ 0.05, ####p = 0.0001, ****p ≤ 

0.0001. Representative images show neuronal soma, dendrites (MAP2; ■), Arc protein (■), nuclei (DAPI; ■) 

and magnified somatic (inset, bottom right) and dendritic compartments. Scale bars = 50 µm (A-D); lower 
panels = 10 µm. 
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4.2. sAPPα Increases CREB Phosphorylation and Arc Protein in Acute 
Hippocampal Slices 

 
So far, this thesis has described sAPPα’s ability to enhance Arc protein expression in vitro, in a manner 

dependent on CaMKII, MAPK, PKG signalling and activation of NMDAR and α7nAchRs. Previous work 

has shown that the enhancement of LTP and cell surface GluA1 by sAPPα is likewise dependent on these 

processes (Richter et al., 2018; Mockett et al., 2019). Additionally, Arc expression throughout 

hippocampal areas CA1 (Penke et al., 2011; Jakkamsetti et al., 2013; Gao et al., 2018), CA3 (Rosi et al., 

2005; Chawla et al., 2018a; Chawla et al., 2018b; Hudgins and Otto, 2019), and dentate gyrus 

(Messaoudi et al., 2007; Ramirez-Amaya et al., 2013; Kuipers et al., 2016) have been shown to be 

important for many functional outcomes of memory. Thus, the question remains whether sAPPα 

promotes an equally significant increase in Arc protein expression in acute hippocampal slices, as 

observed in primary hippocampal neurons.  

Here, we aimed to extend our analyses to examine Arc expression in acute hippocampal slices, 

as well as further validate the relationship between NMDAR and α7nAchR activation following sAPPα 

treatment, by inhibition of these receptors and examination of phosphorylated Ca2+/cAMP-response 

element-binding protein (pCREB), a signalling event strongly associated with NDMAR activity (Xia et al., 

1996; Sala et al., 2000; Valera et al., 2008; de Oliveira Coelho et al., 2013; Zhou et al., 2013). We 

hypothesised that in addition to enhancing Arc protein expression, sAPPα (1 nM, 15 min) would 

enhance the expression of pCREB in the cell body layer of area CA1 and the dentate gyrus of the 

hippocampus. Within area CA1 of acute hippocampal slices (Figure 4-7A), we found that sAPPα (1 nM, 

15 min) significantly increased pCREB levels (2.08 ± 0.60, p = 0.01; Figure 4-7B,C,G), supporting a role 

for NDMAR activity. Further, we found that sAPPα (1 nM, 120 min) significantly increased Arc 

expression (1.55 ± 0.22, p = 0.02; Figure 4-7D,E,H) and that this effect was attenuated by co-incubation 

with NMDA and α7nAch antagonists APV (50 μM) and αBGT (10 nM; 1.08 ± 0.18, p = 0.042; Figure 

4-7F,H), validating the observations from primary hippocampal cultures. 
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Figure 4-7 | sAPPα increases CREB phosphorylation and Arc protein in acute 
hippocampal slices. A) A representative transverse section of an acute hippocampal slice, with a 

sub-region of area CA1, used for quantitative analysis, outlined by a white dotted box (MAP2 (■); 

nuclei: DAPI (■); imaged at 4x magnification; scale bar = (500 μm). Relative to B) no drug controls 

(n = 3 rats, 4 slices), C) incubation of slices with sAPPα (1 nM, 15 min, n = 2 rats, 4 slices) increased 

pCREB (■; imaged at 20x magnification; scale bar = 100 μm) in the PCL of CA1. Relative to D) no 

drug controls (n = 3 rats, 4 slices), E) incubation of slices with sAPPα (1 nM, 2 hr, n = 3 rats, 4 slices) 

significantly increased Arc protein expression (■; imaged at 4x magnification) in area CA1. Co-

incubation of sAPPα with F) APV and αBGT (n = 3 rats, 4 slices) attenuated this effect. Normality was 
detected by Shapiro–Wilk normality tests. All data are expressed as mean ± SEM. Significance of 
pCREB (G) and (H) Arc protein expression was calculated by G) student’s t-test, and H) one-way 
ANOVA with Šidák’s multiple comparisons test on raw data. Hashes (#) indicate significance between 
control and sAPPα-treated; asterisks (*) indicate significance between sAPPα- and antagonist-
treated; #p ≤ 0.05, *p = 0.04. PCL = pyramidal cell layer. 
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 Trend in CREB Phosphorylation and Arc Protein Expression in the 
Dentate Gyrus of Acute Hippocampal Slices 

 
Given the involvement of both pCREB and Arc protein expression in synaptic activity in the 

dentate gyrus (Schulz et al., 1999; Bramham et al., 2010), we further sought to expand our analysis to 

examine expression of pCREB and Arc in the hilus of the dentate gyrus of acute hippocampal slices. 

Converse to results observed in area CA1, we found a small but non-significant increase in pCREB in the 

hilus of the dentate gyrus (1.17 ± 0.058, p = 0.0858; Figure 4-8A-C). Likewise, Arc protein in the DG 

showed a small increase in expression (sAPPα: 1.15 ± 0.18, p = 0.6953; APV/αBGT: 0.98 ± 0.13, p = 

0.6610; Figure 4-8H) but did not reach significance, reflecting a similar trend to pCREB expression.  

Interestingly, while many publications have described the induction of Arc protein within the 

dentate gyrus following spatial exploration (Ramirez-Amaya et al., 2013), LTP (Messaoudi et al., 2007), 

and BDNF treatment (Kuipers et al., 2016), these results may be due to the sensitivity of our analysis. 

The relatively small sample size, as well as the large variation in control groups examining both pCREB 

(coefficient of variation (CV): control: 27.26%, sAPPα: 4.96%) and Arc (CV: control: 33.71%, sAPPα: 

16.21%, APV/αBGT: 13.28%) protein expression may have contributed to the observed lack of effect 

within these analyses. Alternatively, we have shown that this effect requires the activation of both 

α7nAChR and NMDAR. While the presence of NMDAR in the dentate gyrus is unquestioned (Bernabeu 

and Sharp, 2000; Dalby and Mody, 2003; Wright and Jackson, 2014), evidence suggests an absence of 

α7nAChR-containing excitatory granule cells in these neurons (Frazier et al., 2003). While synergistic 

activation of α7nAChR and NMDAR is required for Arc expression (see section 4.1.6. Dendritic Arc 

Protein Expression is Dependent on Activation of NMDA- and α7nACh Receptors), it may be expected 

that sAPPα would not induce the full complement of Arc protein expression in this paradigm. The small 

but non-significant increase in pCREB (Figure 4-8A-C) and Arc protein (Figure 4-8H) in the dentate gyrus 

may reflect the NMDAR component of this. 
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Figure 4-8 | sAPPα does not significantly increase pCREB or Arc protein in the hilus of 
the dentate gyrus in acute hippocampal slices. Representative transverse sections of A) 

acute hippocampal slices in the hilus of the dentate gyrus (MAP2 (■); nuclei: DAPI (■; imaged 

at 4x magnification). Relative to B) no drug controls (n = 2 rats, 3 slices), incubation of slices with 
C) sAPPα (1 nM, 15 min, n = 2 rats, 3 slices) did not significantly increase pCREB relative to 

controls, as assessed by student’s t-test (■; imaged at 20x magnification). Relative to D) no drug 

controls (n = 2 rats, 3 slices), E) incubation of slices with sAPPα (1 nM, 120 min, n = 2 rats, 3 slices) 

did not significantly increase Arc protein expression (■; imaged at 20x magnification) in the DG. 

Similarly, co-incubation of sAPPα with F) APV and αBGT (n = 2 rats, 4 slices) did not affect Arc 
protein expression. All data are expressed relative to control, as mean ± SEM. Normality was 
detected by Shapiro–Wilk normality tests, and significance was assessed by H) student’s t-test 
and H) one-way ANOVA with Šidák’s multiple comparisons test on raw data. Scale bars = 500 μm 
(A), 100 µm (B-D).  
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 Increases in Arc Protein is Specific to Area CA1 and Does Not Occur in 
Area CA3 

 
Following the observation that Arc protein expression increases in area CA1 in response to sAPPα-

treatment, we further examined Arc protein expression in area CA3 of acute hippocampal slices. Here, 

we found no significant increase in Arc protein relative to control (sAPPα: 1.55 ± 0.22, p = 0.6343; 

APV/αBGT: 1.080 ± 0.18, p = 0.9630; Figure 4-9).  

 While these data may reflect the relatively small sample size, these observations may also arise 

through differences in the anatomical and molecular structure of synapses terminating in area CA3, 

compared to those in CA1 and the DG. LTP at CA3 mossy fibre synapses occurs through primarily 

presynaptic means, independent of postsynaptic NMDAR activation (Harris and Cotman, 1986; 

Lysetskiy et al., 2005), postsynaptic Ca2+ influx (Zalutsky and Nicoll, 1990), and may not involve an 

AMPAR component (Bliss et al., 2003). Interestingly, α7nAChR may play a unique role in enhancing 

synaptic activity at these synapses through their enhancement of presynaptic Ca2+ currents and 

neurotransmitter release (Gray et al., 1996; Radcliffe et al., 1999; Sharma and Vijayaraghavan, 2003; 

Sharma et al., 2008; Grybko et al., 2010). Regardless, it appears sAPPα may enhance Arc expression and 

synaptic plasticity independent from these mechanisms.  

 

 

 

  



 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-9| sAPPα does not increase Arc protein in area CA3. A) Representative transverse sections 

of acute hippocampal slices in area CA3 (MAP2 (■); nuclei: DAPI (■; imaged at 4x magnification). In area 

CA3, relative to B) no drug controls (n = 2 rats, 3 slices), incubation of slices with C) sAPPα (1 nM, 120 min, n 
= 2 rats, 3 slices) did not significantly increase Arc protein relative to controls, similarly D) APV and αBGT 
significantly alter Arc protein expression. Normality was detected by Shapiro–Wilk normality tests. E) Data 
are expressed relative to control, as mean ± SEM. Significance was assessed by one-way ANOVA with Šidák’s 

multiple comparisons test on raw data. Representative images show MAP2 (■), and Arc protein (■), imaged 

at 20x magnification. Scale bars = 500 µm (A), 100 µm (B-D). 



 134 

4.3. Summary 
 
The work described in this chapter aimed to characterise the expression of the IEG Arc in cultured 

hippocampal neurons, which was enhanced following incubation with sAPPα (1 nM, 120 min). This 

expression was paired with an increase in Arc and Zif268 mRNA in a time dependent manner. In line 

with published research examining the role of sAPPα in protein synthesis and trafficking of GluA1, the 

expression of Arc protein in both somatic and dendritic neuronal compartments was found to be 

differentially regulated following inhibition of CaMKII, MAPK, and PKG. Further, we have defined a novel 

role for the synergistic activity of NMDA- and α7nACh receptors, in mediating this effect. Replicating 

these experiments in area CA1 of acute hippocampal slices validated the dependency on NMDA- and 

α7nACh receptors in the expression of Arc protein, and was found to be coupled to the expression of 

pCREB, indicating a necessary role of NMDAR activation as a downstream signalling event. Interestingly, 

both the increase in pCREB and Arc protein was found to be specific to area CA1, as no significant 

change was present in area CA3 nor the hilus of the dentate gyrus. Importantly, these experiments are 

limited due to the lack of inhibitor or antagonist-only controls as well as the use of only one inhibitor 

per kinase. Previous work has shown that inhibitors of CaMKII, PKG, MAPK and protein synthesis, as 

well as the NDMAR antagonist APV have little to no effect on glutamate receptor trafficking and 

phosphorylation (Mockett et al., 2019), while both NMDAR and α7nACh receptors have been shown to 

provide little to spontaneous synaptic currents in culture (Hefft et al., 1999; Hmaied et al., 2002). 

However, these experiments cannot rule out any drug-only effects on baseline kinase or receptor 

activity nor draw conclusions on the specificity of the kinases targeted. 

 Regardless, these results support the hypothesis that sAPPα enhances both the synthesis and 

the dendritic expression of Arc protein. While this may indicate a role of Arc in mediating the expression 

of the sAPPα-mediated enhancement of LTP, further experiments are required to link the function of 

Arc to the regulation of plasticity following sAPPα treatment.  
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 Chapter 5  
 

5.1. The Role of Calcium-Permeable AMPAR (CP-AMPAR) in sAPPα-Mediated 
Enhancement of LTP 

 

Previous work has shown that sAPPα (1 nM, 30 min) enhances both the induction and persistence of 

LTP, and increases cell surface levels of GluA1-, but not GluA2-containing AMPAR, in a protein 

synthesis-dependent manner following mild TBS (Mockett et al., 2019). This specific increase of GluA1 

on the cell surface suggests a role for GluA1-containing homomeric AMPAR in regulating sAPPα-

enhanced LTP. This chapter aimed to examine the hypothesis that sAPPα (1 nM, 30 min) may enhance 

synaptic transmission by enhancing the expression of GluA1-containing AMPAR at the synapse.  

Here, we sought to test this hypothesis by taking advantage of the susceptibility of GluA1 

homomeric CP-AMPAR to blockade by polyamine-containing inhibitors such as N,N,N-trimethyl-5-

[(tricyclo[3.3.1.13,7]dec-1-ylmethyl)amino]-1-pentanaminium bromide hydrobromide (IEM-1460; 

Schlesinger et al., 2005). IEM-1460 contains a positively-charged polyamine tail and hydrophobic 

adamantane head, blocking the ion channel of GluA2-lacking AMPAR in a voltage-dependent manner 

(Twomey et al., 2018 ), with a relatively high affinity, reversibility (Samoilova et al., 1999) and 

specificity to GluA2-lacking Ca2+-permeable AMPAR (Samoilova et al., 1999). Experiments utilized an 

LTP-inducing stimulation protocol which enhances synaptic transmission, but is non-saturating (half-

maximal train of standard TBS: 5 trains of 5 pulses at 100 Hz delivered at 200 ms intervals) as per 

Mockett et al, (2019). 
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 CP-AMPAR Contribute a Small Fraction of Basal Synaptic Transmission 
 
Importantly, previous research has shown that only 8% of total AMPA receptor complexes exist as 

homomeric GluA1 in CA1/CA2 hippocampal pyramidal neurons, under basal conditions (Wenthold et 

al., 1996). Due to this, previous observations have shown that administration of CP-AMPAR 

antagonists has little-to-no effect on basal CA1 synaptic transmission (Plant et al., 2006; Sutton et al., 

2006; Adesnik and Nicoll, 2007; Park et al., 2016), indicating a lack of synaptic CP-AMPARs, or levels 

below the sensitivity of detection. 

To first examine the role of CP-AMPAR in basal synaptic transmission in our preparation, 

acute hippocampal slices (400 μm) were prepared from young adult male Sprague-Dawley rats (4-6 

weeks), and transferred to a recording chamber (refer section 2.5.1. Acute Hippocampal Slice 

Preparation). Following the establishment of a stable baseline for 20 minutes (Figure 5-1A), IEM-1460 

(100 μΜ, 50 min) was applied to slices and baseline responses were measured. Here we found that 

application of IEM-1460 (20 min) resulted in a modest, but significant reduction in baseline responses 

(94.62 ± 3.82% of baseline, p = 0.0002, n = 12; Figure 5-1B). An additional 30 minutes of IEM-1460 

further reduced baseline transmission (average decrease of 8.3%) relative to initial baseline values, 

however this did not reach significance (91.70 ± 6.71% of baseline, p = 0.0573; Figure 5-1B). While 

previous publications have utilized IEM-1460 to investigate the role of CP-AMPAR in various 

applications across a range of concentrations (30-200 μΜ), those utilizing IEM-1460 at similar 

concentrations to the current study did not report any significant effects on baseline transmission. 

This may result from many factors including animal species, in vivo versus ex vivo, differences in slice 

preparations, and importantly, the age of the animal used (Gray et al., 2007; Asrar et al., 2009; 

Sanderson et al., 2016; Suyama et al., 2017). 

We further aimed to examine whether treatment of hippocampal slices with sAPPα would 

affect baseline responses. Here we found that sAPPα (1 nM, 30 min) did not significantly alter 

baseline responses from initial values (99.73 ± 5.35%, p = 0.4070). Importantly, these results indicate 

that sAPPα treatment alone does not involve the direct potentiation of synaptic transmission, 

indicating that translocation of AMPAR into the synapse may require additional stimulation.  
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Figure 5-1| Reduction in basal synaptic transmission following CP-AMPAR blockade. A) 

Representative schematic of the experimental design, values represent time points (min) of key 
events during the recording period. B) Data showing averaged fEPSP measurements as percentage 

from initial baseline values following 20 minutes of IEM-1460 (●) and an equivalent 20 minutes of 

aCSF (20 min aCSF; ●), or an additional 30 minutes IEM-1460 (●), and 30 minutes of sAPPα 

treatment (●), and an equivalent 30 minutes of aCSF (50 min aCSF; ●) in control (n = 8 slices), IEM-

1460 treated (n = 12 slices), sAPPα-treated (n = 6 slices) conditions from 6-8 animals. Data from 
multiple experiments following 20 min of IEM-1460 treatment were pooled. All data were measured 
as an average of the final 10 minutes of baseline stimulations at each interval, relative to percent of 
baseline in the presence of aCSF only. Normality was determined by Shapiro-Wilk normality test, 
and significance was calculated using an Student’s t-test. Asterisks (*) indicate significance between 
antagonist-treated and control, ***p ≤ 0.001. 
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 CP-AMPAR Do Not Contribute to LTP Following a Mild Theta-Burst 
Stimulation Protocol 

 
In order to establish whether CP-AMPAR are involved in the enhancement of LTP following sAPPα 

treatment and mild TBS, the contribution of CP-AMPAR to LTP elicited by our mild TBS protocol alone 

needed to be established. As previously described (refer section 2.5.1. Acute Hippocampal Slice 

Preparation), hippocampal slices were prepared from young adult male Sprague-Dawley rats (4-6 

weeks), maintained in an incubation chamber for 120 minutes, and transferred to a recording 

chamber. Following the establishment of a stable baseline for 20 minutes, acute hippocampal slices 

were treated with the CP-AMPAR antagonist IEM-1460 (100 μM; 50 min) to ensure extrasynaptic, 

perisynaptic and trafficked AMPAR were inhibited prior to TBS. Perfusion of IEM-1460 continued 10 

minutes post-TBS after which the recording chamber was switched back to standard aCSF for the 

remainder of the recording. Here we have examined the enhancement of synaptic transmission as an 

average of the first (early LTP) and final (late LTP) 10 minutes following TBS. 

 As shown by Figure 5-2., application of IEM-1460 (100 μM, 50 min) had no significant effect 

on the magnitude of either early (control: 52.10 ± 17.53% of baseline, n = 8; IEM-1460: 59.66 ± 

17.00% of baseline, n = 6, p = 0.9399) or late (control: 32.79 ± 17.39% of baseline; IEM-1460: 28.44 ± 

10.31% of baseline, p = 0.9873) potentiation following TBS, supporting past research (Adesnik and 

Nicoll, 2007; Gray et al., 2007; Asrar et al., 2009). Thus, we can conclude that CP-AMPARs do not 

normally play a significant role in the potentiation of synaptic transmission following a mild TBS 

protocol, and therefore conclusions drawn following treatment of slices with sAPPα may be attributed 

to mechanisms employed by sAPPα.  
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 CP-AMPAR Contribute to the Initial Enhancement of sAPPα-LTP 
 
Here, we aimed to first replicate previous observations that sAPPα (1 nM, 30 min) enhances both E- 

and L-LTP following TBS (Mockett et al., 2019), and further examine the role of CP-AMPAR in 

mediating this effect. LTP was elicited in area CA1 of hippocampal slices in the presence or absence of 

sAPPα (1 nM) 30 minutes before application of TBS. To examine the role of CP-AMPAR in sAPPα-

mediated LTP, slices were pre-treated with IEM-1460 (100 μM) for 20 minutes, in addition to co-

treatment with sAPPα (1 nM) for 30 minutes, and 10 minutes post-TBS stimulation in the absence of 

sAPPα. 

As shown in Figure 5-2, relative to control slices, pre-incubation with sAPPα (1 nM, 30 min) 

enhanced both early (control: 52.1 ± 17.53%, n = 8; sAPPα: 126.2 ± 33.20% of baseline, n = 6, p ≤ 

0.0001; Figure 5-2C,D) and late (control: 32.79 ± 17.39%; sAPPα: 90.33 ± 15.91% of baseline, p = 

0.0014; Figure 5-2C,E) phase LTP, confirming previously observed enhancements described by 

Mockett et al., (2019). Co-application of IEM-1460 with sAPPα significantly inhibited this sAPPα-

mediated early potentiation relative to sAPPα-treatment alone (84.19 ± 28.76% of baseline, n = 6, p = 

0.0334; Figure 5-2C,D). Wash-out of IEM-1460 resulted in the recovery of potentiation, returning 

potentiation to a level comparable to sAPPα-induced enhancement (69.39 ± 38.22% of baseline, p = 

0.4784; Figure 5-2C,E), which was significantly different from control slices (p = 0.0438). These results 

indicate that the initial potentiation of sAPPα-enhanced LTP is due to the rapid incorporation of 

functional CP-AMPAR at the synapse. The return of potentiation following washout may indicate that 

these AMPAR persist at the synapse throughout the recording duration, however these experiments 

do not rule out the possibility of potentiation mediated by GluA2-containing AMPAR.  
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Figure 5-2 | Early phase sAPPα-enhanced LTP is dependent on activation of CP-AMPAR. A) 

Representative schematic of transverse hippocampal slices showing positioning of stimulation and recording 
electrodes in area CA1. B) Representative field excitatory postsynaptic potential (fEPSP) traces taken at the end of 
baseline recording (1), upon TBS (2), and 60 min post-TBS (3). Scale bar = 1 mV, 5 s. C) Average traces of control 

slices, receiving only a mild TBS (5 bursts at 5 Hz, 5 pulses at 100 Hz/burst; ●, n = 8 slices), IEM-1460 (100 μM; ●, n 

= 6 slices), sAPPα (1 nM, ●, n = 6 slices) and sAPPα + IEM-1460-treated (●, n = 6 slices) conditions. All conditions 

are normalised to the average of baseline 10 minutes before application of IEM-1460, and all data are presented as 
mean % change ± SEM. Data shows summary histograms for D) early and E) late potentiation following TBS. Data are 
averaged from the first (D) and final (E) 10 minutes potentiation post-TBS for each experimental group relative to 
baseline, averaged 10 minutes before TBS. *p = 0.0334, #p = 0.0438, ##p = 0.0014, ####p ≤ 0.0001. Normality was 
detected by Shapiro-Wilk normality test. Significance was assessed by one-way ANOVA with Tukey’s multiple 
comparisons tests. Hashes (#) indicate significance between control and sAPPα-treated; asterisks (*) indicate 
significance between sAPPα- and antagonist-treated. SC = Schaffer collaterals, s. radiatum = Stratum radiatum. 
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5.2. Summary 
 
The results described in this chapter aimed to examine the contribution of CP-AMPAR to mild TBS-

induced LTP, as well as LTP enhanced by sAPPα treatment (1 nM, 30 min). Additionally, we aimed to 

assess the effect of the CP-AMPAR antagonist IEM-1460 on baseline responses, before the induction 

of LTP. Here, we found a small, but significant effect of IEM-1460 on baseline synaptic transmission in 

our acute hippocampal slices. Further, we have provided evidence for a dependency of CP-AMPAR 

activity during the induction of sAPPα-primed LTP. Conversely, LTP induced by mild TBS alone was not 

dependent on the expression of these AMPARs. These results support the hypothesis that sAPPα 

primes LTP through the expression of CP-AMPAR. Importantly, sAPPα treatment alone does not 

appear to enhance the synaptic expression of these AMPAR as baseline synaptic transmission 

remined unaltered. Thus, these results may indicate that that sAPPα sequesters CP-AMPAR at 

perisynaptic or extrasynaptic domains prior to the induction of LTP. Due to past observations that 

sAPPα (1 nM, 30 min) enhances trafficking of GluA1-containing AMPAR to the cell surface (Mockett et 

al., 2019), it is possible that the origin of these AMPAR may be from internal stores, but lateral 

diffusion from extrasynaptic sites cannot be ruled out. Regardless, these results describe a key role of 

CP-AMPAR in the induction of sAPPα-mediated LTP. 
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 Chapter 6 

 sAPPα Regulates the Dynamic Control of AMPA Receptors at the Cell 
Surface 

 

Previous work from our laboratory, using acutely prepared hippocampal slices, has shown that sAPPα 

(1 nM, 30 min) increases cell surface expression of GluA1- but not GluA2- containing AMPAR in a 

manner dependent on protein synthesis (Mockett et al., 2019). Additionally, work from primary 

hippocampal cultures has provided evidence that sAPPα (1 nM, 120 min) enhances cell surface GluA1 

in a protein synthesis-dependent manner (Elder, et al., 2017). Further, in Chapter 5 (refer section 5.1.3. 

CP-AMPAR Contribute to the Initial Enhancement of sAPPα-LTP) we have provided evidence that these 

GluA1-containing AMPAR are Ca2+-permeable and facilitate the induction of LTP. This chapter aims to 

expand these observations with specific examination of somatic and dendritic cell surface AMPAR 

populations. In addition to this, we have extended the treatment window in order to observe the 

occurrence and persistence of cell surface AMPAR populations across time. In order to investigate both 

total and de novo populations of cell surface AMPAR, we employed the newly developed techniques 

FUNCAT-PLA and BioPLAy (Elder, 2017) with fluorescence microscopy. 

 

 sAPPα Promotes the Rapid and Persistent Expression of Cell Surface 
GluA1 in the Soma and Dendrites of Primary Hippocampal Neurons 

 
We first aimed to examine total populations of cell surface GluA1-containing AMPAR using BioPLAy 

(refer section 2.3.5. Detection of Cell Surface Proteins Using BioPLAy). This technique allows for isolation 

of proteins present at the cell surface via biotinylation and subsequent PLA. Using BioPLAy, cell surface 

GluA1 was found to increase in the soma following 30-minute sAPPα treatment (4.41 ± 4.73; p ≤ 0.0001) 

compared to control, followed by a small increase 2 hours later (1.65 ± 1.44; p = 0.0199; Figure 6-1A). 

Conversely, dendritic cell surface GluA1 was found to significantly increase within 30 minutes (2.60 ± 

1.84; p ≤ 0.0001), and increase to a greater extent following 2-hour sAPPα treatment (6.64 ± 8.99; p ≤ 

0.0001; Figure 6-1B). Together, these data suggest that sAPPα promotes rapid cell surface expression 

of GluA1 subunits at the soma and dendrites. These AMPAR, with time, may be trafficked to dendrites 

via surface diffusion. Alternatively, rapid somatic cell surface expression may be followed by 

internalisation, transport to dendrites and exocytosis at the dendritic cell surface. While these 

experiments do not address whether these subunits are newly made or derived from activation of 

internal pools, these observations extend the results from acute tissue, with an additional level of 

temporal and spatial resolution.   
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Figure 6-1 | sAPPα enhances cell surface expression of GluA1. Representative images showing cell 

surface GluA1 levels in the soma (top panels) and dendrites (lower panels) from 30 minute (left) and 120 minute 
(right) controls and sAPPα treated conditions. A) Average data showing 1 nM sAPPα (30, 120 min) promotes an 
increase in the soma (n = 30 cells), B) Average data showing 1 nM sAPPα (30, 120 min) promotes an increase in 
the dendrites (n = 104-128 dendrites). Outliers were removed from each experiment prior to amalgamation 
using Grubb’s tests, and normality was detected by D’Agostino and Pearson omnibus normality tests. All data 
are expressed relative to control, as mean ± SEM from 3 experiments. Significance was assessed by student’s t-
test, ∗p = 0.0199, ∗∗∗∗p ≤ 0.0001. Representative images show neuronal soma (upper panels) and dendrites (lower 
panels); MAP2; ■, GluA1; ■, DAPI; ■) Scale bars = 10 µm. 
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 sAPPα Promotes the Rapid and Transient Trafficking of de novo GluA1-
Containing AMPAR to the Somatic and Dendritic Cell Surface 

 

Previous work in acute hippocampal slices has shown that the rapid increase in cell surface expression 

of GluA1, following sAPPα-treatment is dependent on protein synthesis (Mockett et al., 2019). This 

finding suggests the dependence on protein synthesis may arise from either the need to rapidly 

synthesize GluA1 subunits for subsequent trafficking to the cell surface, or the synthesis of chaperone 

or scaffolding proteins to aid the trafficking and anchoring of pre-existing, GluA1-containing AMPAR at 

the cell surface. Alternatively, the protein synthesis component of this may require aspects of both. 

Therefore, we hypothesised that sAPPα may enhance the rapid synthesis and cell surface expression of 

GluA1-containing AMPAR in primary hippocampal cultures. To address this, we utilized FUNCAT-PLA 

under detergent-free conditions.  

We found that 30 minutes of sAPPα treatment (1 nM) significantly increased cell surface de 

novo GluA1 in the soma (2.018 ± 2.60; p = 0.0039; Figure 6-2A) and dendrites (3.97 ± 10.62; p = 0.0009; 

Figure 6-2B) of cultured hippocampal neurons. However, following 2 hours of sAPPα treatment, there 

was no detectable change in de novo somatic (0.83 ± 1.11; p = 0.265; Figure 6-2A) or dendritic (0.86 ± 

3.51; p = 0.673; Figure 6-2B) GluA1. Indeed, GluA1 was significantly decreased relative to 30 minutes 

of sAPPα treatment in both the soma (p = 0.0058) and dendrites (p = 0.0005). These results suggest 

that sAPPα rapidly induces de novo synthesis of GluA1 subunits, which are trafficked to the cell surface 

by 30 minutes, but are later internalized within 2 hours of treatment.  

Of note, is the large standard deviation especially apparent within the dendrites. As a vast 

majority of the data points for both control and sAPPα-treated groups were zero, the data were not 

normally distributed (as assessed by D'Agostino & Pearson normality test). However, as all groups 

expressed a median value of zero, a non-parametric test was deemed an inaccurate representation of 

the data. Thus, the use of parametric student’s t-test is considered appropriate when the sample size 

is large (Girard et al., 2007; Dieterich et al., 2010; Boos and Stefanski, 2013; Zhang et al., 2015; tom 

Dieck, et al., 2015). Additionally, calculated variance of our data appears extremely high, however the 

similar means of experimental groups supports the similar spread of data generated following statistical 

analysis (CV: control (30 min): 401.3%, sAPPα (30 min): 267.2%, control (120 min): 302.6%, sAPPα (120 

min): 406.8%). The variance in our data may be explained by the heterogeneous nature of neuronal cell 

types present in the primary cell cultures. While we focused on MAP2-positive neurons, this level of 

analysis does not distinguish between excitatory or inhibitory neurons or indeed pyramidal cells vs. 

granule cells. Thus, our data may reflect the intrinsic cell-to-cell variability in factors including gene 

expression, synapse number, receptor abundance, and excitability (Nusser et al., 1998; McAllister et 

al., 2000; Cullen et al., 2010; Biffi et al., 2013; Pelkmans et al. 2013; Zoli et al., 2018; Osorio et al., 2019).  
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Figure 6-2 | Rapid increase in cell surface de novo GluA1 following treatment.  Representative images 

showing cell surface de novo GluA1 levels in the soma (top panels) and dendrites (lower panels) from 30 minute 
(left) and 120 minute (right) control and sAPPα-treated conditions. A) Average data showing 1 nM sAPPα 
promotes an increase in the soma (n = 50-71 cells) following 30- but not 120-min. B) Average data showing 1 nM 
sAPPα (30 min) promotes an increase in de novo GluA1 at the dendritic cell surface follow 30- but not 120- minute 
treatments (n = 104-128 dendrites). Outliers were removed from each experiment prior to amalgamation using 
Grubb’s tests, and normality was detected by D’Agostino and Pearson omnibus normality tests. All data are 
expressed relative to control, as mean ± SEM from 3 experiments. Significance was assessed by student’s t-test. 
∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001. Representative images show neuronal soma (upper panels) and dendrites (lower panels; 
MAP2; ■, GluA1; ■, DAPI; ■) Scale bars = 10 µm. 
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6.1.2.1. sAPPα Enhances the Extrasynaptic, but not the Synaptic Population 
of de novo Cell Surface GluA1 

 

Following the observations that sAPPα (1 nM, 30 min) significantly increases de novo cell surface GluA1, 

we further sought to determine the synaptic localization of these AMPAR. Here, we have used the 

presynaptic marker synapsin-1 to determine the proportion of synaptic, extrasynaptic, and non-

synaptic de novo GluA1-containing AMPAR identified by FUNCAT-PLA at the cell surface (Figure 6-3A, 

B).  

Synaptic overlap of GluA1 puncta was determined using Mander’s overlap coefficient (MOC, 

Figure 6-3C). Here, we found no significant difference between control and sAPPα-treated (1 nM, 30 

min) conditions (control: 0.35 ± 0.29, sAPPα: 0.31 ± 0.23; p = 0.7038; Figure 6-3C), indicating that sAPPα 

treatment does not increase the proportion of synaptic GluA1, reflecting the observed lack of effect of 

sAPPα on basal synaptic transmission in acute hippocampal slices (refer section 5.1.1. CP-AMPAR 

Contribute a Small Fraction of Basal Synaptic Transmission). Due to this, we next sought to determine 

the proportion of synaptic, extrasynaptic and non-synaptic cell surface de novo GluA1 puncta relative 

to the proximity of synapsin-1-positive synapses. Here, we have defined synaptic, extrasynaptic, and 

non-synaptic PLA as 0-2, 2-4, and > 4 μm from the closest synapsin-1 centre of mass, respectively (refer 

section 2.6.3. Image analysis and Appendix 1.4. Quantifying Colocalization of PLA Signal Within 

Synapses). Here, we observed a shift in the frequency of de novo GluA1 present at synapses following 

sAPPα treatment, increasing the proportion of GluA1 puncta 2-4 μm proximal to the synapse (Figure 

6-3D). Expanding on this, we found a significant increase in the number of de novo GluA1 at 

extrasynaptic sites (control: 1.22 ± 0.089; sAPPα: 1.92 ± 0.14; p = 0.0003), however no change was 

detected at synaptic (control: 1.28 ± 0.10, sAPPα: 1.34 ± 0.12; p = 0.9872), or non-synaptic (control: 

1.52 ± 0.094, sAPPα: 1.44 ± 0.10; p = 0.9655) sites (Figure 6-3E). These results suggest that sAPPα rapidly 

enhances the extrasynaptic pool of de novo GluA1-containing AMPAR within the dendrites.  
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Figure 6-3 | sAPPα enhances de novo GluA1 at the extrasynaptic membrane. Representative images 

showing de novo cell surface GluA1 in A) control and B) sAPPα-treated conditions Representative images show 

dendrites (50 μm; synapsin-1; ■, GluA1; ■). Scale bar = 10 µm. C) No significant difference was observed In 

the Mander’s overlap coefficient following sAPPα-treatment (1 nM, 30 min; n = 20 cells, 58-65 dendrites). 
Significance was assessed by Mann-Whitney two-tailed u-test. D) Frequency histogram of the distribution of 
de novo GluA1 puncta in relevance to synapsin-1 immunofluorescence. Distances were calculated for individual 
PLA puncta with respect to the closest synapsin-1 centre of mass. Synaptic PLA showed overlapping centres 
within 0-2 μm, puncta within 2-4 μm were considered extrasynaptic, and puncta beyond 4 μm were considered 
non-synaptic (n = 58-65 dendrites, 130-205 puncta). E) Quantification of GluA1 puncta abundance at the 
synaptic, extrasynaptic, and non-synaptic membrane (n = 58-65 dendrites, 130-205 puncta). Normality was 
determined by Shapiro-Wilk normality test. Significance was assessed by two-way ANOVA and Šidák’s multiple 
comparisons, ∗∗∗p ≤ 0.0005.  
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 Rapid Decrease in Dendritic de novo Cell Surface GluA2 Following 
sAPPα Treatment 

 

So far, we have shown that sAPPα (1 nM, 30 min) enhances the cell surface population of de novo 

GluA1. Previously we have shown that expression of total de novo GluA2 decreases within the dendrites 

of neurons following sAPPα treatment, in primary hippocampal neurons (1 nM, 120 min; Elder, 2019), 

while cell surface GluA2 is unaffected by treatment in acute hippocampal slices (30 min; Mockett et al., 

2019). Together, these observations indicate that sAPPα may enhance the cell surface expression of de 

novo GluA1 homomeric receptors, in a manner which may restrict the synthesis or trafficking of GluA2. 

To further these findings, we sought to examine the expression of de novo GluA2 on the cell surface 

across time, in both somatic and dendritic compartments. Here, we provide evidence that de novo cell 

surface GluA2 remains unaffected by sAPPα-treatment at the soma, following both 30-minute (0.86 ± 

1.08, p = 0.654) and 120-minute (1.32 ± 1.22, p = 0.148; Figure 6-4A) treatments. Interestingly, 30-

minute treatments showed an early decrease of de novo cell surface GluA2 at the dendritic cell surface 

(0.54 ± 1.45, p = 0.009), returning to control levels within 120 minutes (1.92 ± 9.13, p = 0.395; Figure 

6-4B). From this, we can infer that sAPPα may inhibit or otherwise restrict the early expression of de 

novo GluA2 from the cell surface while specifically upregulating the expression of de novo GluA1. 

Previous research has shown that the restriction of GluA2 trafficking by auxiliary proteins such as PICK1 

permits the expression of GluA1-containing CP-AMPAR (Hanley et al., 2002; Hanley, 2007; Makuch et 

al., 2011). Further, we have previously shown that sAPPα (1 nM, 15 min) promotes the expression of 

the microRNA (miRNA) mir-30 (Ryan et al., 2013), which has been linked to the downregulation of GluA2 

in the hippocampus (Song et al., 2019). Together, these results indicate that sAPPα may act to 

upregulate extrasynaptic de novo GluA1-containing homomeric AMPAR in a manner which does not 

require the association with de novo GluA2, further supporting our hypothesis that sAPPα enhances 

the expression of homomeric GluA1-containing CP-AMPAR. 

 Similar to data described in section 6.1.2. sAPPα Promotes the Rapid and Transient Trafficking 

of de novo GluA1-Containing AMPAR to the Somatic and Dendritic Cell Surface, a vast majority of the 

data points within the dendrites for both control and sAPPα-treated groups were zero. Due to the large 

sample size, a parametric student’s t-test is considered appropriate (Girard et al., 2007; Boos and 

Stefanski, 2013; Zhang et al., 205; tom Dieck, et al., 2015). Calculated variance of our data showed a 

similar variance across treatment groups (control (30 min): 100.8%, sAPPα (30 min): 178.3%, control (2 

hr): 108.0%, sAPPα (2 hr): 92.1%), indicating that while the data were not normally distributed, data 

were similarly variable across treatment conditions.  
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Figure 6-4 | Rapid decrease in de novo cell surface GluA2 following treatment. Representative 

images showing cell surface de novo GluA2 levels in the soma (top panels) and dendrites (lower panels) from 
30 minute (left) and 120 minute (right) controls and sAPPα treated conditions. A) Average data showing 1 nM 
sAPPα does not affect somatic (n = 25-31 cells) de novo GluA2. B) Average data showing 1 nM sAPPα (30 min) 
significantly decreases dendritic de novo GluA2 (n = 71-76 dendrites). All data are expressed relative to 
control, as mean ± SEM from 3 experiments. Outliers were removed from each experiment prior to 
amalgamation using Grubb’s tests, and normality was detected by D’Agostino and Pearson omnibus normality 
tests. Significance was assessed by student’s t-test, ∗∗p ≤ 0.01. Representative images show neuronal soma 

(upper panels) and dendrites (lower panels; MAP2; ■, GluA1; ■, DAPI; ■) Scale bars = 10 µm. 
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 Accell™ Arc siRNA Inhibits Somatic and Dendritic sAPPα-Dependent, 
but not Basal, Arc Expression  

 

As described above, we have shown that de novo GluA1 increases rapidly at the cell surface within 30 

minutes of sAPPα treatment, however returning to baseline levels within 2 hours. These results infer a 

mechanism through which sAPPα promotes the delayed removal of de novo GluA1-containing AMPAR 

previously delivered to the cell surface. Further, we have previously shown that that sAPPα (1 nM, 120 

min) enhances Arc protein expression in primary hippocampal neurons (refer section 4.1.2. sAPPα 

Facilitates an Increase in Arc Protein Expression; Livingstone et al., 2019). Due to Arc’s close relationship 

to the internalization of GluA1-containing AMPAR (Shepherd et al., 2006), we hypothesised that Arc 

may be responsible for the removal of de novo GluA1 from the cell surface at a later time-point. In order 

to examine the expression of de novo GluA1 following treatment with the Accell™ Arc antisense siRNA, 

we first aimed to assess Arc protein expression using immunocytochemistry following treatment of 

cultures with the Arc siRNA during both basal and sAPPα-stimulated conditions (refer section 2.3.10. 

Treatment of Cultures With siRNA and Appendix 3. Accell™ siRNA Specificity). Additionally, we have used 

the control non-targeting (NT) siRNA with no homology to any known rat gene to assess specificity of 

the Arc siRNA. In order to ensure effective uptake of siRNA and inhibition of ongoing synthesis, cultures 

received pre-treatment of siRNA in addition to co-treatment alongside sAPPα. 

Following pre-treatment with siRNA (1 μM, 60 min), primary hippocampal cultures were co-

treated with either Arc or NT siRNA (1 μM, 120 min), in the presence or absence of sAPPα (1 nM). 

Treatment of Arc or NT siRNA alone had no significant effect on Arc protein expression in either the 

soma (Arc siRNA: 0.78 ± 0.53, p ≥ 0.99; NT siRNA: 1.11 ± 0.48, p = 0.0509; Figure 6-5A) nor dendrites 

(Arc siRNA: 1.26 ± 0.67, p = 0.8774; NT siRNA: 1.28 ± 0.47, p = 0.7561; Figure 6-5B) relative to control. 

As shown in 1.3 sAPPα facilitates an increase in Arc protein expression, sAPPα treatment (1 nM, 120 

min) enhanced both somatic (2.05 ± 1.43, p = 0.0306; Figure 6-5A) and dendritic (2.33 ± 1.39, p = 

0.0010; Figure 6-5B) Arc protein expression. This effect was consistent following co-treatment with 

sAPPα and the NT siRNA (soma: 1.59 ± 1.003, p = 0.0198; dendrites: 1.98 ± 0.81, p = 0.0022), and no 

significant difference was detected between sAPPα-treated and sAPPα + NT siRNA in either the soma 

(sAPPα: 2.05 ± 1.43, sAPPα + NT siRNA: 1.59 ± 1.003, p ≥ 0.9999 or dendrites (sAPPα: 2.33 ± 1.39, sAPPα 

+ NT siRNA: 1.98 ± 0.81, p ≥ 0.9999). However, co-treatment of sAPPα with the Arc siRNA significantly 

reduced Arc protein expression in both the soma (0.72 ± 0.27, p = 0.0100) and dendrites (1.16 ± 0.68, 

p = 0.0066) relative to sAPPα-treatment alone, and was not significantly different from control in either 

compartment (p ≥ 0.99). Together, these results indicate that the Accell™ siRNA system effectively 

inhibits de novo Arc synthesis in our primary hippocampal cultures.  
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It is interesting to note that application of the Arc siRNA did not affect basal Arc protein levels. Arc 

transcription and translation is low under basal conditions (Korb et al. 2011), and therefore small 

changes from baseline may not be detected by our analyses.   
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Figure 6-5| sAPPα-promoted Arc expression is affected by Accell™ Arc siRNA. 
Representative images show Arc protein levels the soma (upper panels) and dendrites (lower panels) 
in control and sAPPα-treated primary hippocampal neurons ± co-treatment with Arc siRNA or non-
targeted (NT) control siRNA. In both the A) soma and B) dendrites (n = 19-30 cells), sAPPα treatment 
significantly enhanced Arc expression in sAPPα-only and sAPPα + NT siRNA conditions. This effect 
was inhibited by co-treatment with the Arc siRNA. Outliers were removed from each experiment 
prior to amalgamation using Grubb’s tests, and normality was detected by D’Agostino and Pearson 
omnibus normality tests. Significance was calculated using a Kruskal–Wallis one-way ANOVA with 
Dunn’s multiple comparisons test on raw data, and expressed as fold change relative to the 
experimental control from 3 experiments. Hashes (#) denote significant difference from control, 
asterisks (*) denote significant difference from sAPPα-treated. #/*p = ≤ 0.05 **/##p ≤ 0.005. 

Representative images show neuronal soma, dendrites (MAP2; ■), Arc protein (■), nuclei (DAPI; ■

). Scale bars = 10 μm. 
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 Internalization of de novo GluA1 is Dependent on Arc Expression 
 

Following the confirmation that treatment of hippocampal cultures with Accell™ siRNA inhibits 

sAPPα-stimulated Arc protein expression, we have employed siRNA knockdown of de novo Arc protein 

to assess whether inhibition of Arc protein synthesis results in the persistence of de novo cell surface 

GluA1 expression, as labelled by FUNCAT-PLA, in hippocampal neurons grown in primary hippocampal 

cultures. 

Firstly, as expected, sAPPα treatment for 2 hours resulted in no change in either somatic (0.73 

± 0.88, p = 0.118) nor dendritic (0.85 ± 1.56, p = 0.374) expression of de novo cell surface GluA1, relative 

to control conditions (see section 6.1.2. sAPPα Promotes the Rapid and Transient Trafficking of de novo 

GluA1-Containing AMPAR to the Somatic and Dendritic Cell Surface). However, in the presence of Arc 

siRNA (preincubation: 1 μM, 60 min, followed by co-incubation with sAPPα: 1 nM, 120 min), we 

observed a significant increase in the expression of de novo GluA1 at both the somatic (1.55 ± 2.010, p 

= 0.0043; Figure 6-6A) and dendritic (4.14 ± 6.67, p ≤ 0.0001; Figure 6-6B) cell surface, relative to sAPPα-

only conditions. These results suggest that following the rapid expression of de novo GluA1 at the cell 

surface, de novo GluA1-containing AMPAR are endocytosed as a result of Arc synthesis.  
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Figure 6-6| sAPPα-induced de novo GluA1 persist at the cell surface following siRNA-mediated 
knockdown of Arc protein. Representative images of somatic (upper panels) and dendritic (lower panels) 

of control and sAPPα-treated conditions ± treatment with the Arc siRNA. A) Average data showing treatment 
with sAPPα (1 nM, 120 min) and Arc siRNA (1 μM, pre-treatment: 60 min, co-treatment 120 min) promotes an 
increase in somatic (n = 28-35 cells) and dendritic (n = 79-132 dendrites) de novo cell surface GluA1. Outliers 
were removed from each experiment prior to amalgamation using Grubb’s tests, and normality was detected 
by D’Agostino and Pearson omnibus normality tests. All data are expressed relative to control. Data assessing 
the effect of siRNA are expressed as mean ratio of sAPPα + Arc siRNA/Arc siRNA alone ± SEM from 3 
experiments. Significance between control and treatment was assessed by student’s t-test, significance 
between sAPPα-treated and siRNA-treated was assessed by Mann-Whitney two-tailed u-test, ∗∗p ≤ 0.001, 

∗∗∗∗p ≤ 0.0001. Representative images show neuronal soma (upper panels) and dendrites (lower panels; MAP2; 
■, GluA1; ■, DAPI; ■). Scale bars = 10 µm. 
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 Non-Targeting siRNA has no Significant Effect on de novo Cell Surface 
GluA1 

 
In order to assess the specificity of the effects observed following treatment of cultures with Arc siRNA, 

cultures were similarly treated with the non-targeting (NT) siRNA and processed for FUNCAT-PLA 

(preincubation: 1 μM, 120 min, followed by coincubation with or without sAPPα: 1 nM, 120 min), in 

order to examine non-specific effects due to the addition of small nucleotides.  

Treatment of cultures with the NT siRNA alone had no observable effect on the levels of de 

novo cell surface GluA1 at the soma ( 0.94 ± 0.72, p = 0.7247; Figure 6-7A), or dendrites (1.083 ± 2.069, 

p = 0.7050; Figure 6-7B). While past experiments have shown a small, non-significant reduction in de 

novo GluA1 at the somatic cell surface following sAPPα treatments (1 nM, 120 min; see section 6.1.2. 

sAPPα Promotes the Rapid and Transient Trafficking of de novo GluA1-Containing AMPAR to the Somatic 

and Dendritic Cell Surface), here, co-incubation of sAPPα with the NT siRNA showed a small but 

significant decrease in somatic de novo GluA1 soma (0.69 ± 0.50, p = 0.0224; Figure 6-7A), however 

dendritic levels remained unchanged (1.63 ± 2.84, p = 0.2844; Figure 6-7B) relative to control 

conditions. Therefore, the observed effects on cell surface de novo GluA1 following Arc siRNA 

treatment were specific to the addition of Arc siRNA and subsequent knockdown of Arc protein 

expression, and not as a result of non-specific siRNA-mediated effects.  
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Figure 6-7| Non-targeting siRNA does not affect de novo cell surface GluA1. Representative 

images show cell surface de novo GluA1 in the soma (upper panels) and dendrites (lower panels) 
following treatment with NT siRNA in the presence or absence of sAPPα. Application of NT siRNA 
alone did not significantly affect expression of cell surface de novo GluA1, while NT siRNA in the 
presence of sAPPα resulted in a small but significant decrease in the A) soma (n = 23-24 cells) but not 
B) dendrites (n = 89-98 dendrites) cell surface GluA1. All data are expressed relative to the 
experimental control from 3 experiments. Data assessing the effect of siRNA are expressed as mean 
ratio of sAPPα + NT siRNA/NT siRNA alone ± SEM. Normality was detected by D’Agostino and Pearson 
omnibus normality tests and significance was calculated using by student’s t-test, ∗p = 0.0224. 

Representative images show neuronal soma, dendrites (MAP2; ■), Arc protein (■), nuclei (DAPI; ■

). Scale bars = 10 μm. 
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 sAPPα Promotes the Delayed Expression of Cell Surface GluA1/2-
Containing AMPAR 

 

While previous research examining acute (30 min) sAPPα treatments (Mockett et al., 2019), as well as 

the current work described above, has found no evidence for an increase in de novo GluA2 synthesis in 

response to sAPPα, this does not exclude the possibility that sAPPα additionally promotes the trafficking 

of pre-existing GluA2 subunits to the cell surface. Indeed, in response to synaptic activity (Bagal et al., 

2005; Kopec et al., 2006; Guire, et al., 2008; Tanaka and Hirano, 2012; Park et al., 2016; Pandya et al., 

2018), behavioural learning (Whitlock et al., 2006; Fachim et al., 2016), and neuromodulators 

(Leonoudakis et al., 2008; Jourdi and Kabbaj, 2013), cell surface or synaptic accumulation of GluA2-

containing AMPAR has been shown to occur. The insertion of these receptors typically follows the 

incorporation of GluA1-containing homomers. For example, GluA1/2-containing AMPAR have been 

shown to replace homomeric AMPAR in order to consolidate synaptic potentiation and long-term 

memories (Shi et al., 2001; Guire et al., 2008; Hong et al., 2013; Park et al., 2016). Therefore, we 

extended our analysis to examine cell surface populations of GluA1- and GluA2-containing (GluA1/2) 

AMPAR within somatic and dendritic compartments.  

Here we utilized PLA to detect the coincident proximity and expression of GluA1 and GluA2 

AMPAR at the cell surface (refer section 2.3.6. Detection of Cell Surface Receptor Subunit Dimers (PLA). 

Using this technique, we found no significant increase in GluA1/2-containing AMPAR at the cell surface 

following 30 minute sAPPα treatment, in the soma (0.81 ± 0.58; p = 0.709; Figure 6-8A), nor dendrites 

(1.056 ± 0.92; p = 0.54; Figure 6-8B) of cultures primary neurons. However, the cell surface expression 

of GluA1/2-containing AMPAR significantly increased in both the soma (2.15 ± 1.65; p = 0.0013; Figure 

6-8A), and dendrites (2.28 ± 1.56; p ≤ 0.0001; Figure 6-8B) by 120 minutes. These results indicate that 

GluA1/2-containing AMPAR are expressed at the cell surface following prolonged sAPPα treatment in a 

manner which adds to, or replaces cell surface GluA1-containing homomers. 
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Figure 6-8 | sAPPα enhances cell surface GluA1/2-containing AMPAR following prolonged 
treatment. Representative images showing cell surface GluA1/2 levels in the soma (top panels) and 

dendrites (lower panels) from 30 minute (left) and 120 minute (right) controls and sAPPα treated 
conditions. A) Average data showing 1 nM sAPPα promotes an increase in the A) soma (n = 28-31 cells) 
and B) dendrites (n = 98-142 dendrites) following 120- but not 30-minute treatment. All data are 
expressed relative to control, as mean ± SEM from 3 experiments. Normality was detected by D’Agostino 
and Pearson omnibus normality tests and significance was assessed by student’s t-test, ∗∗p ≤ 0.001, ∗∗∗∗p ≤ 
0.0001. Representative images show neuronal soma (upper panels) and dendrites (lower panels; MAP2; 

■, GluA1/2; ■, DAPI; ■). Scale bars = 10 µm. 
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 sAPPα Promotes the Rapid and Sustained Internalization of GluA2/3-
Containing AMPAR 

 

Following the above findings that sAPPα (1 nM) is able to promote the cell surface expression of 

heteromeric GluA1/2-containing AMPAR, we sought to further examine cell surface populations of 

GluA2- and GluA3-containing (GluA2/3) AMPAR; those which comprise the second largest majority of 

hippocampal AMPAR. The presence of GluA2/3 AMPAR is thought to denote synaptic maturity, with 

expression increasing throughout development and acting to replace GluA1/2 AMPAR at the synapse 

via constituent recycling (Zhu et al., 2000; Shinohara and Hirase, 2009). Interestingly, past research has 

shown that GluA3-containing AMPAR are regulated by in vivo synaptic potentiation (Williams et al., 

2007), ex vivo synaptic depression (Holman et al., 2007), and following in vitro growth factor treatment 

(Narisawa-Saito et al., 1999). Curiously, GluA3-containing AMPAR do not appear to directly regulate the 

expression of LTP or context fear memory formation (Meng et al., 2003; Humeau et al., 2007), but their 

removal from the synapse may be an essential step required for LTD (Holman et al., 2007). Regardless, 

their synaptic expression is considered essential for basal synaptic transmission (Meng et al., 2003).  

 Using PLA to label cell surface GluA2/3-containing AMPAR, we showed that sAPPα (1 nM) 

significantly decreases the cell surface expression of GluA2/3-containing AMPAR within the dendrites 

of cultured neurons (Figure 6-9A,B). Within 30 minutes, sAPPα (1 nM) significantly decreased cell 

surface GluA2/3 AMPAR expression in the dendrites (0.63 ± 1.28, p = 0.0033; Figure 6-9B), which 

remained decreased by 2 hours (0.57 ± 1.18, p = 0.0002). Interestingly, somatic levels of GluA2/3 

AMPAR remained unaffected following both 30-minute (0.72 ± 1.30, p = 0.255; Figure 6-9A), and 120-

minute (1.19 ± 1.81, p = 0.557) treatments. These results may indicate that GluA3-containing AMPAR 

are removed from the dendritic cell surface to permit the insertion of GluA1- and GluA2-containing 

AMPAR (Shi et al., 2001; Diering et al., 2017). Alternatively, the removal of GluA3-containing AMPAR 

may reflect homeostatic processes, maintaining synaptic activity within a physiological range (Rial 

Verde et al., 2006; Diering et al., 2014; Tan et al., 2015). 
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Figure 6-9 | sAPPα decreases cell surface GluA2/3-containing AMPAR expression. Representative 

images showing cell surface GluA2/3 levels in the soma (top panels) and dendrites (lower panels) from 30 
minute (left) and 120 minute (right) controls and sAPPα treated conditions. A) Average data showing sAPPα (1 
nM) does not affect somatic GluA2/3 following 30- and 120-minute treatment (n = 30-32 cells). B) Average 
data showing sAPPα (1 nM; 30, 120 min) promotes a decrease in the dendrites (n = 109-111 dendrites). All 
data are expressed relative to control, as mean ± SEM from 3 experiments. Normality was detected by 
D’Agostino and Pearson omnibus normality tests and significance was assessed by student’s t-test, ∗∗p = 
0.0033, ∗∗∗p = 0.0002. Representative images show neuronal soma (upper panels) and dendrites (lower panels; 

MAP2; ■, GluA1/2; ■, DAPI; ■). Scale bars = 10 µm. 
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 Summary 
 

The work described in this chapter aimed to further examine the trafficking dynamics, and cell surface 

expression of GluA1-, GluA2-, and GluA3-containing AMPAR. Further, we aimed to examine the specific 

expression characteristics of de novo cell surface GluA1- and GluA2-containing AMPAR, with the hopes 

of identifying the possible AMPAR composition of newly-synthesised cell surface receptors. 

Interestingly, we found that sAPPα (1 nM) increased total cell surface GluA1 protein following 30-

minute and 2-hour treatments. As well as this, we found a rapid increase in de novo GluA1-containing 

AMPAR within 30 minutes, at extrasynaptic but not synaptic sites. These AMPAR were found to be 

decreased within 2 hours, possibly indicating a preferential targeting of de novo AMPAR over existing 

AMPAR for endocytosis. In fact, the endocytosis of de novo GluA1 was found to be dependent on the 

synthesis of Arc protein, as incubation of hippocampal cultures with Accell™ siRNA targeting Arc mRNA 

inhibited Arc protein expression, and promoted the persistence of de novo GluA1 following prolonged 

sAPPα treatment. Importantly, while de novo GluA1 increased in a time-dependent manner, de novo 

GluA2 did not, supporting the hypothesis that sAPPα promotes the rapid synthesis and trafficking of 

homomeric GluA1-containing CP-AMPAR to the cell surface. In addition to this we aimed to examine 

cell surface populations of GluA1/2- and GluA2/3-containing AMPAR. Here we found a delayed increase 

in GluA1/2 AMPAR at the dendritic cell surface, but a rapid and persistent decrease in GluA2/3 AMPAR. 

These results may indicate a removal of GluA2/3 AMPAR from the synapse in order to incorporate firstly 

GluA1-containing CP-AMPAR, and secondly GluA1/2-containing AMPAR.  
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 Chapter 7: Discussion 

7.1. Aims and Objectives  
 
Dynamic changes in AMPA receptor expression govern changes in neuronal synaptic efficacy, and 

promote synaptic plasticity. In turn, these changes are thought to underlie information coding and 

storage in learning and memory processes (Anggono and Huganir, 2012). Of importance, is the 

regulated synthesis and trafficking of AMPAR to and from the synapse, under strict, activity-regulated 

guidance (Rumpel et al., 2005). Importantly, many of the mechanisms which govern these processes 

are negatively affected in neuropsychiatric and neurodegenerative disorders including schizophrenia 

(Hammond et al., 2010; Corti et al., 2011), major depressive disorder (Maeng et al., 2008; Autry et al., 

2011; Sossin et al., 2019), stress and anxiety (Kiselycznyk et al., 2013; Kabir et al., 2017), Parkinson’s 

disease (Chartier-Harlin et al., 2011; Cortese et al., 2016; Zhu et al., 2018), and AD (Langstrom et al., 

1989; Ding et al., 2005; Chang et al., 2006; Garcia-Esparcia et al., 2017; Guntupalli et al., 2017; Li et 

al., 2019). Therefore, much research has been undertaken in order to understand the role of 

synthesis and trafficking of AMPAR in both health and disease.  

This thesis aimed to understand the mechanisms through which sAPPα may regulate LTP and 

memory, by investigating cell surface AMPAR expression and Arc protein expression within cultured 

hippocampal neurons, and acute hippocampal tissue. Previously, sAPPα has been shown to enhance 

LTP (Taylor et al., 2008; Hick et al., 2015), increase cell surface GluA1 (Mockett et al., 2011), 

upregulate synaptodendritic protein synthesis (Claasen et al., 2009), enhance gene expression (Ryan 

et al., 2013), and protect against Aβ-related impairments in learning and memory (Seabrook et al., 

1999; Xiong et al., 2017; Tan et al., 2018; Morrissey et al., 2019a). Based on these findings, we 

hypothesised that sAPPα would regulate the enhancement of LTP, in part through the insertion of 

newly synthesised GluA1-containing CP-AMPAR to the cell surface. Moreover, it was hypothesised 

that the expression of these AMPAR would be regulated by the expression and function of the IEG 

Arc. Using a combination of electrophysiology, immunohistochemistry, and FUNCAT-PLA and BioPLAy 

techniques, we have shown that the enhancement of LTP by sAPPα occurs primarily through the 

insertion of cell surface and synaptic CP-AMPAR. Further, we have shown that sAPPα enhances the 

early expression of extrasynaptic de novo GluA1- but not GluA2-containing AMPAR at the cell surface, 

and that their expression is regulated by Arc. Simultaneously, cell surface GluA1/2-containing AMPAR 

were found to increase at the cell surface within 2 hours, while GluA2/3-containing AMPAR showed a 

rapid and persistent decrease in response to treatment. Through this, sAPPα appears to utilize the 

expression and regulation of Arc and AMPAR similar to that of canonical NMDAR- or mGluR-driven 

LTP, as well as the strengthening of synapses by previously identified growth factors and 
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neuromodulators, such as BDNF (Caldeira et al., 2007; Kuipers et al., 2016) and dopamine (Sgambato-

Faure et al., 2005; Bellone and Lüscher, 2006), however likely through distinct signalling cascades and 

mechanisms of action. The results discussed within this thesis provide possible explanations and 

describe critical mechanisms through which sAPPα regulates protein synthesis, Arc expression and 

AMPAR expression in unique concert to enhance synaptic plasticity within hippocampal neurons.  

 

7.2. sAPPα Mediates LTP Through the Expression of Ca2+-Permeable AMPA 
Receptors 

 

Experience-dependent learning and memory require multiple forms of plasticity at hippocampal 

synapses (Edelmann et al., 2017). While both NMDAR- (Lüscher and Malenka, 2012) and mGluR-

dependent (Bortolotto et al., 1999) LTP comprise much of the our understanding of synaptic 

plasticity, emerging evidence indicates that GluA1-containing CP-AMPAR may contribute significantly 

to the expression of certain forms of LTP (Man, 2011).  

 Here, we sought to examine the contribution of CP-AMPAR to the enhancement of LTP by 

sAPPα, following the induction of a weak LTP protocol in hippocampal area CA1 of Sprague Dawley 

rats. Through these experiments, we validated previous research finding that sAPPα enhanced both 

the induction and persistence of LTP following a mild TBS protocol (Mockett et al., 2019). Importantly, 

the enhancement of LTP induction following sAPPα treatment was found to be dependent on the 

synaptic expression of CP-AMPAR (refer section 5.1.3. CP-AMPAR Contribute to the Initial 

Enhancement of sAPPα-LTP). Washout-of IEM-1460 showed a recovery of enhancement indicating 

that the persistence of potentiation may also be dependent on CP-AMPAR. Interestingly, the 

induction of LTP following mild TBS alone was found to not comprise a significant CP-AMPAR 

dependent component (refer section 5.1.2. CP-AMPAR do not Contribute to LTP Following a Mild 

Theta-Burst Stimulation Protocol). These results support the hypothesis that sAPPα mediates the 

enhancement of LTP induction through the incorporation of CP-AMPAR at the synapse within area 

CA1 of the adult rat hippocampus.  

 

Although much research has shown an involvement of CP-AMPAR recruitment during LTP (Table 

7-1), significant controversy still exists from evidence to the contrary. Importantly, with mounting 

experimental evidence, it has become apparent that the contribution of CP-AMPAR to LTP is 

influenced by a number of variables, including most prominently the age (Jensen et al., 2003; Lu et al., 

2007b), and species (Gray et al., 2007) of the animals, the recording methods (Plant et al., 2006; 

Adesnik and Nicoll, 2007), and the induction protocol used (Guire et al., 2008). Previously, CP-AMPAR 
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dependent LTP has been shown following spaced, but not compressed TBS-induced stimulation (Park 

et al., 2016) as well as patch-clamp, pre- and post-synaptic pairing protocol (Plant et al., 2006). 

Notably, both groups found a dependence on CP-AMPAR specific to the induction of LTP, such that 

application of CP-AMPAR antagonists during spaced tetanisation (Park et al., 2016), or the initial 10 

minutes of LTP induction (Plant et al., 2006) impaired both the induction and persistence of LTP. 

Conversely, application of CP-AMPAR antagonists 20- or 60-minutes post LTP induction did not affect 

the maintenance of established LTP, indicating that the role of CP-AMPAR in these paradigms 

transient, yet necessary for LTP induction. 

Contrasting this, additional groups have provided evidence that CP-AMPAR are not involved 

in the induction of LTP. Both Adesnik and Nicoll, (2007) and Gray et al., (2007) have used patch clamp 

electrophysiology in area CA1 of Sprague Dawley and C57BL/6 mice, respectively, finding an 

insensitivity to CP-AMPAR antagonists, and no alteration in the rectification index. Importantly, Gray 

et al., (2007) have shown that the same patch clamp pairing protocol used by Plant et al., (2006) in 

rats, does not induce a CP-AMPAR dependent LTP in C57BL/6 mice. These results may be explained by 

anatomical and electrophysiological differences between species, affecting the expression of LTP 

(Routh et al., 2009; Cao and Harris, 2014). However, these differences are also further influenced by 

the age of each species. The expression of CP-AMPAR dependent LTP has been linked to mechanisms 

which enhance the activity of PKA (Park et al., 2016) and CaMKII (Derkach et al., 1999; Terashima et 

al., 2004). In rodents, PKA dominates early in development (≤ 2 weeks; Yasuda et al., 2003), while a 

CaMKII-dependent component develops beyond 2 weeks (Wikström et al., 2003). Conversely PKA-

dependent LTP may predominate in older, not younger mice (Lu et al., 2007b). Together, these results 

indicate that the expression of CP-AMPAR is highly regulated, with expression characteristics 

depending on stimulation type, frequency and pattern, as well as animal model, and thus may reflect 

the observations from our experiments, such that application of mild TBS alone was not sufficient to 

induce an IEM-1460-sensitive component of LTP. 

 

Importantly, it is possible that regulation of CP-AMPAR during plasticity events may also require input 

from other systems (i.e. hormones, neurotrophins, neuromodulators) in some instances. In fact, CP-

AMPAR dependent potentiation has been further observed following manipulations in vivo including 

HFS (Williams et al., 2007), brief restraint stress (Whitehead et al., 2017), single-whisker stimulation 

(Clem and Barth, 2006; Clem et al., 2008; Wen and Barth, 2012), high-fat diet exposure (Suyama et 

al., 2017), food restriction (Ouyang et al., 2017), irritable bowel syndrome (Liu et al., 2015a), chronic 

itch (Zhang et al., 2016b), addiction (Conrad et al., 2008), auditory and context fear conditioning 

(Clem and Huganir, 2010; Hong et al., 2013; Takemoto et al., 2017), as well as some aspects of spatial 
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memory (Torquatto et al., 2019). In line with this, many molecules that have been investigated have 

shown diverse roles in regulating AMPAR expression, with the primary aim of enhancing CP-AMPAR 

expression. These include serotonin (Jitsuki et al., 2011), nicotine (Tang et al., 2015), dopamine 

(Bellone and Lüscher, 2006; Gao et al., 2006), norepinephrine (Clem and Huganir, 2013), estrogen 

(Tada et al., 2013; Tada et al., 2015), tumour necrosis factor-α (TNF-α; Leonoudakis et al., 2008), 

glycine (Jaafari et al., 2012), BDNF (Caldeira et al., 2007; Nakata and Nakamura, 2007; Li and Wolf, 

2011; Fortin et al., 2012), as well as drugs such as cocaine (Lee et al., 2013; Ma et al., 2014b; Ma et 

al., 2016; Wright et al., 2020), methamphetamine (Scheyer et al., 2016) and Δ(9)-

tetrahydrocannabinol (THC; Good and Lupica, 2010). The presence of these many regulatory systems 

governing CP-AMPAR expression may indicate endogenous control of CP-AMPAR by neurotrophic 

support. Therefore, the application of sAPPα in the current experiments is one of importance. Here, 

we establish sAPPα as a likewise neurotrophic molecule, capable of modulating synaptic activity 

through the incorporation of CP-AMPAR. 

 

Following the observation that sAPPα involves a CP-AMPAR dependent component of LTP, an 

important distinction to be made is the comparison between the mechanism harnessed by sAPPα 

with those of canonical CP-AMPAR dependent LTP. Past research has shown that the insertion of CP-

AMPAR at the cell surface is PKA-dependent (Lu et al., 2007b; Park et al., 2016), while translocation of 

these AMPAR from the perisynaptic membrane to the synapse is PKC-dependent (Yang et al., 2010). 

Further, CAMKI has been shown to regulate the trafficking of CP-AMPAR (Guire et al., 2008), while 

CaMKII governs phosphorylation of GluA1 AMPAR subunits at s831 to enhance Ca2+-permeability or 

trafficking of CP-AMPAR to the cell surface (Derkach et al., 1999; Terashima et al., 2004). 

With relevance to our current observations, previous work has shown that sAPPα enhances LTP 

through a trafficking-dependent mechanism. The induction of sAPPα-primed LTP is reduced, but not 

fully eliminated by inhibition of endoplasmic reticulum–Golgi transport, while the maintenance of LTP 

and expression of cell surface GluA1 is fully eliminated (Mockett et al., 2019). Further, washout of 

endoplasmic reticulum–Golgi transport inhibitor, BFA, before the application of TBS restored the 

induction of LTP, indicating that some trafficking was able to occur following sAPPα treatment and 

before TBS. Additionally, inhibition of endoplasmic reticulum–Golgi transport, de novo translation, as 

well as CaMKII and PKG significantly impair the cell surface expression of GluA1, while inhibition of 

both CaMKII and endoplasmic reticulum–Golgi transport also significantly reduced the sAPPα-induced 

increase in s831. Conversely, sAPPα treatment did not affect s845 phosphorylation at the cell surface.  

Phosphorylation of s831 has been previously linked to enhancements in single channel 

conductance (Derkach et al., 1999), likely through the addition of higher conductance CP-AMPAR (Kim 
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and Ziff, 2014; Yang et al., 2018; Park et al., 2019b; Summers et al., 2019), primarily by CaMKII-

mediated signalling. On the other hand, s845 phosphorylation has been associated with increased 

single-channel open probability as well as promoting GluA1 targeting or retention of AMPAR at the 

cell surface (Oh et al., 2006; Man et al., 2007; Diering and Huganir, 2018). Interestingly, a PKG-

dependent increase in s831 phosphorylation has been found necessary for cocaine-induced increases 

in locomotor activity (Yang et al., 2018), while cGMP-dependent s831 phosphorylation has been 

shown to mediate GluA1- but not GluA2 cell surface expression (Cabrera-Pastor et al., 2017). 

Therefore, these results may imply a mechanism of CaMKII- or PKG-mediated trafficking of s831-

phosphorylated CP-AMPAR to the cell surface. Compared to s845, phosphorylation of s831 is 

enriched in the postsynaptic density (PSD), suggesting that s831 may play a role in targeting to the 

PSD or stabilization within the PSD (Diering et al., 2017). Together, these results indicate that the 

priming of LTP by sAPPα is fully dependent on the trafficking of AMPAR to the cell surface and partly 

dependent on the synthesis of new proteins, while the maintenance of sAPPα-primed LTP is 

dependent on both mechanisms. Importantly, in both the results observed by (Mockett et al., 2019) 

and those presented within this thesis, application of sAPPα alone or in conjunction with IEM-1460 

did not significantly alter baseline recordings. These observations indicate that sAPPα does not 

enhance the direct synaptic incorporation of CP-AMPAR but instead increase the extra- or peri-

synaptic population of AMPAR to be translocated to the synapse following TBS.  

With this in mind, observations from (Park et al., 2019a) have described a similar two-step 

model for the induction of LTP by CP-AMPAR. Here, it is proposed that initial TBS stimulation activates 

NMDARs and drives CP-AMPAR from extrasynaptic sites into the synapse to induce the induction of 

LTP. Simultaneously, NMDAR activation also activates PKA to promote further trafficking of internal 

CP-AMPAR to the extrasynaptic membrane. Subsequent synaptic activity then drives these AMPAR 

into the synapse where basal synaptic transmission is able to trigger protein synthesis through the 

increased influx of Ca2+ (Asrar et al., 2009). It has been further proposed that these AMPAR lower the 

threshold for plasticity at independent, heterosynaptic pathways by promoting the translocation of 

CP-AMPAR, and local synthesis through PI3K and MAPK activation, ultimately priming synapses for 

further plasticity.  

These results indicate two possibilities; firstly, sAPPα may promote the early synthesis and 

trafficking of CP-AMPAR to the cell surface. Following TBS stimulation these AMPAR may translocate 

to the synapse to potentiate the induction of LTP. Alternatively, sAPPα may enhance the trafficking of 

pre-existing CP-AMPAR from extrasynaptic sites towards the synapse to promote the induction of LTP. 

Activity at these AMPAR may directly potentiate postsynaptic currents as well as promote activation 

of downstream Ca2+-sensitive processes including protein synthesis, which may include the trafficking 
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of de novo CP-AMPAR to repopulate extrasynaptic sites. Indeed, it is possible that sAPPα may induce 

both the trafficking of CP-AMPAR to the cell surface as well as simultaneous movements from 

perisynaptic sites to synaptic sites to enhance the induction of LTP. Further, while we have shown 

that sAPPα enhances LTP in a manner dependent on the activation of CP-AMPAR, as discussed above 

these AMPAR have been shown to regulate a protein synthesis-dependent component of LTP (Park et 

al., 2018). Therefore, in order to fully understand the role of CP-AMPAR in sAPPα-mediated LTP, 

future experiments should aim to examine the link between CP-AMPAR and protein synthesis 

following sAPPα treatment.  

 

 
Table 7-1 | Summary of literature examining CP-AMPAR in LTP and behavioural paradigms 

Author Animal 

Species 

Age  

(weeks) 

Stimulation protocol CP-AMPAR 

Antagonist 

CP-AMPAR 

dependent? Trains Bursts 

 

Interburst 

(Hz) 

Pulse 

Count  

Pulse 

(Hz) 

Park et al., 

(2016) 

Sprague 

Dawley 

3–12  cTBS 3 (1/10s) 5 20 5 0.01 IEM1460 (30 

μm), NSAPM 

(30 μm), 

PhTx433 (5–

10 μm) 

☓ 

sTBS 3 

(1/10min) 

5 20 5 0.01 ✓ 

Guire, et 

al., (2008) 

Rats 4-6  HFS 3  5 1 100 IEM1460 (30 

μM) 

☓ 

TBS 5  5 4 100 ✓ 

Sanderson 

et al., 

(2016) 

C57BL6 

mice 

2  LTD 1 1 100 100 1 IEM1460 

(70 μM) 

✓ 

3  ☓ 

Adesnik et 

al., (2007) 

Sprague 

Dawley 

2–3  4 5 100 100 20 PhTx433 

(10uM) 

☓ 

Lu et al., 

(2007) 

C57BL6 

mice 

2, 8   2 1  1 100 PhTx-433 (2.5 

μM), 

NASPM (20 

μM) 

✓ 

3-4  ✓ 

2, 8   1 1  1 100 ☓ 

3-4  ☓ 

Asrar et al., 

(2009) 

CD1 

GluR2+/+ 

12–24  4 5 100  100 IEM1460 

(100uM) 

☓ 

CD1 

GluR2-/- 

✓ 
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Yang et al., 

(2010) 

Sprague 

Dawley  

2-3 2 5 5 5 100 PhTx433 (10 

μM), IEM-

1460 (50 μM) 

✓ 

+ postsynaptic depolarisation 

Gray et al., 

(2007) 

C57BL6 

mice 

8-12 2 1 10 100 100 IEM1460 

(100-200uM) 

☓ 

2-3,  

3-4,  

 

Pairing Protocol IEM1460 

(100uM) 

☓ 

Membrane potential Pulses Hz 

−10 mV 100 2 

Plant et al., 

(2006) 

Sprague 

Dawley 

3-4 −10–0 mV 50–100 0.5–2 Hz PhTx 

433 (10uM) 

✓ 

Yamanaka 

et al., 

(2017) 

C57BL6 

mice 

6–14  + 30 mV 80 2 Hz NASPM (50 

μM) 

✓ 

Purkey et 

al., (2018) 

C57BL6 

mice 

2–8  0 mV 2 100 NASPM (20 

μM) 

☓ 

0mV 270 3 ✓ 

Cepeda-

Prado et 

al., (2019) 

C57BL6 

mice 

4 Pairing Protocol NASPM (100 

µM) 

✓ 

Repeats Action 

Potential 

Count 

Hz 

6 1, 4 0.5 

In vivo Behavioural Paradigms 

Clem and 

Barth, 

(2006) 

C57BL6 

mice 

1-2   

Single-whisker stimulation protocol 

Joro spider 

toxin (10–20 

μM) 

✓ 

Clem et al., 

(2008) 

C57BL6 

mice 

1-2  Single-whisker stimulation protocol Assessed by 

rectification 

✓ 

Wen and 

Barth, 

(2012) 

C57BL6 

mice 

2  Single-whisker stimulation protocol NASPM (50 

μM), PhTx (10 

μM) 

✓ 

Clem and 

Huganir, 

(2010) 

C57BL6 

mice 

4-7  Context fear conditioning NASPM (50 

µM) 

✓ 

Whitehead 

et al., 

Wistar 

rats 

4-5  Brief restraint stress Spermine (100 

mM), IEM: 

100 mM 

✓ 
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(2017) 

Suyama et 

al., (2017) 

C57BL6 

mice 

3–5  High-fat diet exposure IEM 1460 (100 

µM) 

✓ 

Ouyang et 

al., (2017) 

Sprague 

Dawley 

rats 

 Food restriction  NASPM (200 

µM) 

✓ 

Zhang et 

al., (2016) 

Sprague 

Dawley 

rats 

3–5  Chronic itch Assessed by 

rectification  

✓ 

Conrad et 

al., (2008) 

Sprague 

Dawley 

rats 

Unknown Cocaine addiction NASPM (100-

200 µM) 

✓ 

Takemoto 

et al., 

(2017) 

C57BL6 

mice 

4  Context fear conditioning  Assessed by 

rectification 

✓ 

8  ✓ 

Hong et al., 

(2013) 

Sprague 

Dawley 

rats 

4-5  Auditory fear condition NASPM (50 

μM) 

✓ 

Torquatto 

et al., 

(2019) 

Wistar 

rats 

2-3  Auditory fear condition NASPM (0.4 

µM, 4 µM, 40 

µM) 

✓ 

Contextual fear memory NASPM (0.4 

µM) 

✓ 

Object location task NASPM (0.4 

µM) 

☓ 

Spatial memory test NASPM (0.4 

µM) 

✓ 
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7.3. sAPPα regulates the Trafficking of Existing and Newly-Synthesized AMPAR 
Receptors 

 

 GluA1-containing AMPA Receptors 
 
As discussed previously, past research has shown that sAPPα (1 nM, 30 min) enhances cell surface 

GluA1 expression in a protein synthesis-dependent manner, in acute hippocampal slices (Mockett et 

al., 2019). Throughout this thesis, we have further described the requirement of CP-AMPAR at the 

synapse for the induction of sAPPα-primed LTP (refer section 5.1.3. CP-AMPAR Contribute to the 

Initial Enhancement of sAPPα-Mediated LTP). This evidence suggests either a dependence on the 

synthesis of GluA1 proteins directly, or synthesis of chaperone or scaffolding proteins to aid the 

trafficking and anchoring of pre-existing, GluA1-containing AMPAR to the cell surface. Alternatively, 

the protein synthesis component of this may indeed require aspects of both. To address this, we first 

sought to determine whether sAPPα (1 nM) enhances cell surface GluA1 in our primary hippocampal 

neurons.  

Using BioPLAy, we found that GluA1 expression at the cell surface was enhanced following 

sAPPα treatment for both 30 minute and 2-hour incubations (refer section 6.1.1. sAPPα Promotes the 

Rapid and Persistent Expression of Cell Surface GluA1 in the Soma and Dendrites of Primary 

Hippocampal Neurons). Data from these experiments indicates an early enhancement of GluA1 at the 

somatic surface, followed by a later increase in the dendrites. While this may indicate distinct 

mechanisms of somatic and dendritic exocytosis of GluA1-containing AMPAR, it may also result from 

lateral diffusion from somatic to dendritic compartments (Cognet et al., 2006; Earnshaw and 

Bressloff, 2008). Of interest, work from Adesnik et al., (2005) has made comparisons between the 

recycling rates of somatic and dendritic recycling pools, finding that intracellular dendritic AMPAR 

cycle to the synapse on the scale of hours, while trafficking from internal stores to extrasynaptic 

somatic sites occurs on the scale of minutes. These newly inserted AMPAR are then capable of lateral 

travel along dendrites to reside at synapse. Given a coefficient of Brownian diffusion of 0.01–0.5 

μm2/s (Tardin et al., 2003), an AMPAR at the cell body could take up to 1.5 hours to travel 50 μm, 

placing it in the timescale of our experiments. Of consideration is the saturating nature of the mean 

square displacement, such that with time roughly 25% of freely diffusing extrasynaptic receptors 

display spatially restricted diffusion within a domain size of ~300 nm, or the equivalent of a PSD 

(Kusumi et al., 1993; Tardin et al., 2003). Thus, diffusion from the soma follows an exponential fit as 

laterally diffusing AMPAR track towards and are captured by, or reside within, perisynaptic and 

synaptic spaces. Regardless of the mechanism of action, we can conclude that in vitro treatments of 



   

 171 

sAPPα increase the cell surface population of GluA1-containing AMPAR in a manner similar to 

previous ex vivo experiments (Mockett et al., 2019).  

Similarly, using FUNCAT-PLA we have also shown that cell surface populations of de novo 

GluA1 are dynamically regulated following sAPPα treatment (refer section 6.1.2. sAPPα Promotes the 

Rapid and Transient Trafficking of de novo GluA1-Containing AMPAR to the Somatic and Dendritic cell 

surface). Here, we found that short (30 minute) but not long (2 hour) treatments of sAPPα 

significantly increased newly synthesised GluA1-containing AMPAR at both the somatic and dendritic 

cell surface. Interestingly, de novo GluA1 at 2 hours was significantly reduced in both compartments 

returning to control levels. These results may be explained through a few different possibilities. While 

direct exocytosis of de novo GluA1 may occur at the somatic cell surface (Yudowski et al., 2007), we 

cannot rule out 3 possible routes for the expression of de novo GluA1 at the dendritic cell surface. 

Firstly, as previously mentioned, somatic de novo GluA1 may diffuse along the plasma membrane. 

However, given the time constraints of AMPAR present within 50 μm of proximal dendrites within 30 

minutes, it is unlikely. Secondly, de novo dendritic GluA1 may be translated and packaged into vesicles 

within the somatic Golgi apparatus and trafficked anterogradely along the dendrites at a previously 

identified mean speed of 1.5 μm/s−1 (Hangen et al., 2018). This active transport is ten-fold faster than 

Brownian diffusion at the cell surface, placing the trafficking of de novo GluA1 in the dendrites, and 

the delivery to the cell surface, within our time constraints. Thirdly, while we have not directly 

assessed the role of local dendritic synthesis in the formation and trafficking of these AMPAR, 

previous evidence has shown that sAPPα is able to stimulate synaptodendritic protein synthesis 

(Claasen et al., 2009), and APP has been shown to directly bind the RNA binding protein cytoplasmic 

polyadenylation element binding protein (CPEB) at the cytoplasmic surface (Cao et al., 2005; 

Savtchouk et al., 2016). Activation of CPEB has been shown to be important for the local synthesis of 

GluA1 and GluA2 AMPAR subunits (Si et al., 2003; Pavlopoulos et al., 2011), and the stabilization and 

persistence of LTP and long-term memory (Fioriti et al., 2015). Therefore, it may be possible that 

these AMPAR are synthesised locally and inserted directly.  

Interestingly, in the current experiments cell surface de novo GluA1-containing AMPAR were 

found to be expressed primarily at extrasynaptic sites (refer section 6.1.2.1. sAPPα Enhances the 

Extrasynaptic, but not Synaptic Population of de novo Cell Surface GluA1). GluA1-containing AMPAR 

are essential for the formation of extrasynaptic pools of AMPAR, such that GluA1-/- mice show little to 

no extrasynaptic AMPAR populations (Andrásfalvy et al., 2003; Lisman and Raghavachari, 2006), and 

the expression of extrasynaptic AMPAR has been deemed necessary for the induction of LTP (Oh et 

al., 2006; Penn et al., 2017), while increasing the proportion of extrasynaptic AMPAR primes synapses 
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for LTP (Oh et al., 2006). These results may further support the role of sAPPα in the priming of LTP, 

through the expression of de novo GluA1-containing AMPAR at extrasynaptic domains.  

These results are further corroborated by observations of similar neurotransmitters and 

neuromodulators, including glutamate, dopamine, BDNF, and the mGluR agonist DHPG, all of which 

have been shown to stimulate local protein synthesis (Kacharmina et al., 2000; Ju et al., 2004; Smith 

et al., 2005; Claasen et al., 2009; Leal et al., 2014). Of interest, glutamate, dopamine and BDNF have 

been found to promote the local synthesis and trafficking of GluA1, but not GluA2-containing AMPAR 

and their trafficking to the cell surface within 30 minutes (Smith et al., 2005; Sutton et al., 2006; 

Caldeira et al., 2007; Mameli et al., 2007; Li and Wolf, 2011; Fortin et al., 2012). Interestingly, in 

response to dopamine, GluA1-containing AMPAR have been shown to traffic directly to the synapse 

of AMPA-silent synapses in DIV 14-21 cultured hippocampal neurons (Smith et al., 2005), as well as 

enhance the extrasynaptic population of GluA1-containing AMPAR in DIV 14-21 cortical neurons (Gao 

et al., 2006). In the latter of these experiments, subsequent NMDAR activation was found to promote 

the trafficking of these extrasynaptic AMPAR to the synapse. Importantly, application of both BDNF 

(Akaneya et al., 1997; Ying et al., 2002; Ji et al., 2010) and dopamine (Shetty et al., 2017) to acute 

hippocampal slices potentiates the EPSP in the absence of tetanic stimulation. Interestingly, 

subsequent induction of LTP is impaired following BDNF-induced enhancement of baseline synaptic 

transmission, indicating that these AMPAR are susceptible to removal by depotentiation-like 

mechanisms, or saturation of AMPAR responses. These observations distinguish both BDNF and 

dopamine from sAPPα, such that application of sAPPα to acute hippocampal slices has no effect on 

baseline synaptic transmission (refer section 5.1.1. CP-AMPAR Contribute a Small Fraction of Basal 

Synaptic Transmission; Richter et al., 2018; Mockett et al., 2019), indicating that the trafficking of 

these AMPAR occurs at primarily extrasynaptic sites, and requires the induction of LTP to promote 

their synaptic localization. Therefore, while sAPPα appears to employ distinct mechanisms to that of 

BDNF and dopamine, the induction of protein synthesis and CP-AMPAR trafficking may be a common 

underlying factor of these neuromodulators  

 

 Regulation of de novo GluA2-containing AMPA Receptors 
 
Following the observation that de novo GluA1-containing AMPAR increased at the cell surface and 

that CP-AMPAR provide a significant contribution to sAPPα-enhanced LTP, we further sought to 

determine the identity of these AMPAR by likewise examination of de novo cell surface GluA2. Here, 

we found no significant increase in cell surface de novo GluA2 following 30 minute or 2-hour 

incubations with sAPPα, indicating these AMPAR are GluA1 homomers. In fact, we found a small but 

significant decrease in de novo GluA2 at the dendritic cell surface, within 30 minutes of treatment. 
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These results support earlier observations from our lab that de novo GluA2 is decreased in the 

dendrites following 2-hour treatments (Elder et al., 2019). This may indicate one of two possible 

mechanisms. Firstly, GluA2 synthesis may be directly inhibited during this time. As previously 

mentioned, CPEB has been shown to bind APP and regulate the local synthesis of GluA1 and GluA2, 

however, CPEB3 has been shown to bind and inhibit translation of GluA2 mRNA (Huang et al., 2006). 

Additionally, sAPPα (1 nM, 15 min) has been previously shown to upregulate miR-30 (Ryan et al., 

2013), a miRNA which has been linked to the downregulation of GluA2 in the hippocampus (Song et 

al., 2019). Of note, the upregulation of miR-30 is transient, and was not found to be significantly 

upregulated following 2 hours of sAPPα treatment (Ryan et al., 2013), reflecting the transient 

decrease in GluA2 in the current experiments. This observation adds an additional possible level of 

control over the synthesis and formation of AMPAR following sAPPα treatment. Alternatively, active 

processes may govern the restriction of GluA2 proteins from trafficking to the cell surface. Under 

basal conditions N-ethylmaleimide-sensitive factor (NSF) inhibits PICK1-mediated intracellular GluA2 

retention (Hanley et al., 2002; Hanley, 2007; Makuch et al., 2011), permitting the constitutive cycling 

of GluA2-containing AMPARs. However, following glycine-induced LTP, increased PICK1-GluA2 

interaction within the endosomal compartment inhibits forward trafficking of GluA2, permitting the 

expression of primarily GluA1-containing CP-AMPAR at the cell surface (Terashima et al., 2004; 

Bellone and Luscher, 2006; Jaafari et al., 2012). Together, it is possible that either the dendritic 

translation of GluA2 or the export of de novo GluA2 from the soma may be regulated as such to 

favour export of GluA1-containing AMPAR to the cell surface. Therefore, we can conclude that the 

rapid synthesis of GluA1-containing AMPAR likely involves the formation of Ca2+-permeable GluA1 

homomers.  

 

 GluA1/2-containing AMPA Receptors 
 
The expression of GluA1/2-containing AMPAR is closely related to the expression and persistence of 

LTP (Isaac et al., 2007; Díaz-Alonso et al., 2017; Penn et al., 2017; Zhou et al., 2018), and found to be 

crucial for the maintenance of hippocampal LTP (Penn et al., 2017). Therefore, we have utilized PLA 

for coincident detection of GluA1 and GluA2 protein at the cell surface of cultured hippocampal 

neurons, finding a delayed increase in the proportion of GluA1/2-containing AMPAR following 2 hours 

of sAPPα treatment, at both the somatic and dendritic cell surface. Importantly, GluA2-containing 

AMPAR have previously been thought to contribute to the switch of GluA1-containing CP-AMPAR to 

GluA2-containing Ca2+-impermeable (CI)-AMPAR (Shi et al., 2001; Bellone and Lüscher, 2005b; Sutton 

et al., 2006; Mameli et al., 2007). As previously mentioned, many electrophysiology experiments have 

described a sensitivity of LTP to CP-AMPAR antagonists during early but not late potentiation (Guire et 
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al., 2008; Park et al., 2016), likely implicating a switch from CP-dependent to CP-independent 

potentiation, indicating that early activity at CP-AMPAR is necessary for the expression of later 

potentiation (Park et al., 2016). This process appears to require interactions between GluA2 and NSF, 

GRIP, or PICK1, as inhibition of these interactions results in prolonged expression of cell surface CP-

AMPAR and LTP governed solely by CP-AMPAR (Clem and Huganir, 2010; Yang et al., 2010).  

During memory formation, the incorporation of CP-AMPAR at synapses is thought to place 

the synapse into a less stable, and more ‘labile’ state (Hong et al., 2013). Activity at these AMPAR has 

been found to be required for the reconsolidation of memories, and promote the later exchange for 

GluA2-containing CI-AMPAR. Interestingly, the initial insertion of synaptic CP-AMPAR may also be 

dependent on the initial removal of existing CI-AMPAR from the cell surface, as inhibition of CI-

AMPAR endocytosis blocked the initial exchange for CP-AMPAR. This may support the idea that 

synaptic domains contain limited spaces, or ‘slots,’ for the addition of AMPAR (MacDougall and Fine, 

2013). 

 Interestingly, impairing Arc protein degradation and increasing Arc protein expression in 

hippocampal cultures results in a dramatic decrease in GluA1-containing AMPAR at the cell surface 

and a small but significant increase in GluA2-containing AMPAR (Wall et al., 2018), following 

activation of mGluR. Here, the authors discuss the possibility that mGluR activation promotes the 

removal and replacement of CP-AMPAR with GluA1/2-containing AMPAR in an Arc-dependent 

manner. In the current experiments, it is possible that the Arc-dependent removal of de novo GluA1-

containing AMPAR also permits the trafficking of GluA1/2-containing AMPAR to the cell surface. Such 

observations warrant further experiments to clarify Arc’s role in this mechanism. 

 

 GluA3-containing AMPA Receptors 
 
GluA2/3-containing AMPAR are the next major heteromer within the hippocampus (Wenthold et al., 

1996), and PSD (Pandya et al., 2017). While under certain conditions these AMPAR contribute to LTP 

(Renner et al., 2017), for the most part GluA3-containing AMPAR exist in low-conductance states, 

contributing solely to basal transmission (Meng et al., 2003). Due to this, we extended our 

experiments to cover the quantification of GluA2/3 levels at the cell surface following sAPPα 

treatment. Unexpectedly, we found an early and prolonged reduction in GluA2/3-containing AMPAR 

in the dendrites, while somatic GluA2/3 remined unchanged.  

As mentioned above, past research has indicated a necessity of GluA2-containing CI-AMPAR 

internalization before the addition of GluA1-containing CP-AMPAR (Bellone and Lüscher, 2005; 

Bellone and Luscher, 2006; Hong et al., 2013). Here, it is thought that the number of receptors in a 

given synapse may be limited by 'slots,' determined by the number of available anchoring proteins of 
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the PSD (MacDougall and Fine, 2013). Preventing the removal of GluA2-containing AMPAR by 

inhibiting the GluA2-PICK1 interaction prevents cocaine-induced expression of CP-AMPAR and 

transition of the synapse into a labile state (Bellone and Luscher, 2006). Importantly, the GluA2-PICK1 

interaction is necessary for the endocytosis and lysosomal targeting of GluA2/3-containing AMPAR 

(Koszegi et al., 2017). Live cell imaging studies reflect these observations, however on shorter time-

scales. Total internal reflection fluorescence (TIRF) live-cell microscopy has shown that while GluA1-

containing AMPAR increase at the cell surface within 5–15 minutes post LTP induction, GluA2/3-

containing AMPAR show a marked decrease within 5 minutes and a gradual recovery upon 15 

minutes (Tanaka and Hirano, 2012). While these timescales perhaps do not reflect the results 

presented here, this may be due to differences in the mechanisms involved between electrical field 

stimulation and treatment with exogenous neurotrophins, including sAPPα. Similarly, in vivo research 

has shown that HFS stimulation upregulates GluA1 and GluA3 at the cell surface within 20 minutes of 

stimulation, of which GluA1, but not GluA3 is likewise upregulated in the synapse. Within 20 minutes 

GluA3 is decreased at the cell surface, persisting until at least 4 hours post-tetanus (Williams et al., 

2007). These results may indicate a shift in receptor subunit composition following synaptic activity, 

such that synaptic priority is given to GluA1-containing AMPAR. 

Previously, we have shown that the trafficking of GluA1-containing AMPAR, synaptic protein 

synthesis, and expression of Arc protein is dependent on the activity of PKG and MAPK (Claasen et al., 

2009; Mockett et al., 2011; Livingstone et al., 2019), and may involve cGMP (Ishida et al., 1997). 

Interestingly, the NO-cGMP-PKG and MAPK pathways have been found to be involved in the 

declustering of GluA2/3-containing AMPAR (Endo and Launey, 2003), an event which is typically 

associated with subsequent internalization of receptors (Matsuda et al., 2000), indicating that these 

processes may be linked through a similar mechanism. Additionally, while sAPPα treatment has been 

shown to reliably protect against Aβ-induced impairments in LTP (Morrissey et al., 2019b), spine 

morphology (Tackenberg and Nitsch, 2019), and memory (Tan et al., 2018), these impairments appear 

to be mediated through the removal of cell surface GluA3-containing AMPAR at the synapse (Reinders 

et al., 2016), and transgenic APP/PS1 mice lacking GluA3 do not show increased mortality or memory 

deficit, like APP/PS1 mice. Here, the authors note that chronic downregulation of GluA3-containing 

AMPAR, without compensatory or activity-dependent increases in GluA1- or GluA2-containing AMPAR 

permit the disintegration of the synapse, ultimately leading to impairments in LTP and memory. This 

may suggest that sAPPα acts in one manner to protect neurons through the rapid and persistent 

internalization of GluA3-containing AMPAR and filling of these available slots with AMPAR that 

promote synaptic strengthening.  
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Importantly, it has been shown that the endocytosis of GluA2/3-containing AMPAR is Arc-

dependent in cultured hippocampal slices (Rial Verde et al., 2006), and during conditioned morphine 

withdrawal (Liu et al., 2012). We have previously shown that the endocytosis of de novo GluA1-

containing AMPAR is dependent on the synthesis of Arc protein (refer section 6.1.5. Internalization of 

de novo GluA1 is Dependent on Arc Expression), therefore it may also be possible that Arc has dual 

roles in targeting both GluA1- and GluA2/3-containing AMPAR. While we have provided evidence that 

Arc mRNA levels remained unchanged at 15- and 30-minute treatments, it is possible the early 

endocytosis of GluA2/3-containing AMPAR is mediated by the synthesis of Arc protein from local 

mRNA pools, independent of de novo transcription (Steward et al., 2015). Alternatively, endocytosis 

of GluA2/3-containing AMPAR may be under the influence of other endocytosis-related proteins, such 

as candidate plasticity gene 2 (CPG2), found to regulate both constitutive and LTD-dependent 

removal of GluA2-containing AMPAR from the cell surface (Loebrich et al., 2013; Cottrell et al., 2004).  

 

7.4. A Role for Arc Expression and Function 
 

Within the past 10 years, the immediate early gene Arc has been well characterised as a reliable and 

easily detectable marker of plasticity in both in vitro and in vivo applications (Link et al., 1995; Lyford 

et al., 1995; Minatohara et al., 2016). Arc expression is highly regulated, showing high signal-to-noise 

expression in both somatic and dendritic compartments following synaptic activity (Huang et al., 

2007; Chawla et al., 2018; Janz et al., 2018). Here, we have shown that sAPPα treatment promotes 

the expression Arc mRNA and protein, in the soma and dendrites of cultured primary neurons. 

Notably, Arc expression was dependent on CaMKII, MAPK, and PKG activity, which is consistent with 

previous reports of signalling pathways which promote Arc expression during synaptic activity. 

Further these kinases have been shown to be essential for sAPPα’s facilitation of local protein 

synthesis in hippocampal synaptoneurosomes and AMPAR trafficking in acute hippocampal slices 

(Claasen et al., 2009; Mockett et al., 2011). Additionally, we have identified a crucial relationship 

between NMDA and α7nAch receptors in triggering this effect. These findings provide evidence of a 

coordinated and overlapping set of signalling mechanisms through which sAPPα regulates the 

expression of plasticity-related proteins, including Arc, and thus regulates synaptic plasticity. 

 

The regulation of Arc transcription and translation has been shown to be highly regulated, such that it 

has been hypothesized that there may exist separate pools of translating and non-translating Arc 

mRNA (Steward et al., 2014). Arc mRNA may be located and translated within the soma and serve to 

regulate gene transcription (Korb et al., 2013), while separate, translationally repressed pool is 
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trafficked throughout the dendrites, to be translated at synapses locally (Link et al., 1995). A third 

pool may govern rapid transcription-independent translation of Arc mRNA already associated with 

polyribosomes throughout the dendrites (Bagni et al., 2000; Na et al., 2016).  

Early experiments provided evidence that nanomolar amounts of sAPPα promote the 

expression of Arc and Zif268 mRNA in a time-dependent manner (refer section 4.1.1. sAPPα 

Facilitates an Increase in Arc and Zif268 mRNA Expression). Importantly, this was corroborated though 

observations that sAPPα increases Arc protein expression in a concentration-dependent manner, such 

that both 0.1 nM and 1 nM treatments of sAPPα for 2 hours significantly increased Arc protein 

expression in the dendrites, however only 1 nM treatment of sAPPα significantly enhanced somatic 

Arc protein (refer section 4.1.2. sAPPα Facilitates an Increase in Arc Protein Expression). This may be 

explained by the relative abundance of receptors necessary for sAPPα’s activity. As described in 

section 4.1.6. Dendritic Arc Protein Expression is Dependent on Activation of NMDA- and α7nACh 

Receptors, we have shown that the full complement of dendritic Arc protein expression is dependent 

on the dual activity of NMDAR and α7nAChR. While both α7nAChR (Klein and Yakel, 2006; Fayuk and 

Yakel, 2007; Pidoplichko et al., 2013) and NMDAR (Dodt et al., 1998; Köhr, 2006) have been shown to 

be expressed at both somatic and dendritic membranes, it has been shown that α7nAChR-dependent 

Ca2+ signals are significantly larger in the dendrites than in the soma (Fayuk and Yakel, 2007), while 

the density of NMDAR is much greater in dendritic spines than in dendritic shaft and somatic 

membrane (Köhr, 2006). Therefore, the required signals for Arc expression may be reduced in 

response to 0.1 nM sAPPα within the soma.  

Importantly, both the somatic and dendritic expression of Arc protein was found to be 

dependent on both transcription and translation (refer section 4.1.4. Arc Protein Expression is 

Transcription- and Translation-Dependent), further validating the observed increase in Arc mRNA, and 

likewise an increase in Zif268 mRNA. Together these data provide evidence to suggest that sAPPα 

enhances the de novo transcription, synthesis and dendritic localization of Arc. 

 

Of note, the concentration-dependent effects appeared to be specific to the treatment of sAPPα, as 

the closely related APP metabolite sAPPβ did not show similar effects. While previous reports indicate 

that sAPPα is able to rescue morphological and plasticity-related deficits observed in APP and APP-like 

protein 2 (APPL2) knockout mice (Ring et al., 2007; Fol et al., 2016) and conditional APP/APPL2 

NexCre knockdown mice (Li et al., 2010; Hick et al., 2015), sAPPβ is unable to ameliorate these 

deficits. sAPPβ differs from sAPPα by a 16 amino-acid truncation at the C-terminus (CTα16). Due to 

this sAPPβ adopts a completely different structure to sAPPα (Peters-Libeu et al., 2015). Interestingly, 

application of CTα16 alone has been found to enhance LTP to a similar degree as sAPPα, in a manner 
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dependent on protein synthesis and activation of α7nAchRs (Morrissey et al., 2019b). The 

preservation of these amino acids in the sAPPα protein, and the common mechanisms employed by 

sAPPα and CTα16 stress a unique ability of these amino acids in mediating these effects. Therefore, 

the physiological differences between sAPPα and sAPPβ may underlie a divergence in each molecules 

ability to bind appropriate receptors, initiating different signalling cascades between the two sAPP 

metabolites, further distinguishing their distinct biological functions. Interestingly, treatment of 

cultures with 1 nM sAPPβ significantly reduced basal Arc protein in the soma but remained 

unaffected in the dendrites. Both sAPPα and sAPPβ have been found to bind GABAB receptors at high 

concentrations (250 nM; Rice et al., 2019) and enhanced GABAB activity has been tied to a reduction 

of Arc protein (Terunuma et al., 2014). Thus, sAPPβ may negatively modulate the expression of Arc 

protein by activation or modulation of GABAB receptors. 

 

While previous work has described a multitude of signalling pathways mediating sAPPα-induced 

neuroprotection and plasticity, of particular interest is sAPPα’s ability to increase cGMP and MAPK 

activity (Furukawa et al., 1996; Gakhar-Koppole et al., 2008). Interestingly, in previous studies using 

isolated synapses, sAPPα has been show to enhance de novo protein synthesis in a manner partially 

dependent on CaMKII and MAPK, and fully depending on PKG (Claasen et al., 2009). Likewise, 

trafficking of GluA1-containing AMPA receptors to the cell surface requires CaMKII and PKG, as well as 

protein synthesis (Mockett et al., 2011). In the present experiments, inhibition of CaMKII significantly 

impaired both somatic and dendritic Arc expression, while inhibition of MAPK and PKG significantly 

reduced Arc expression in the dendrites alone (refer section 4.1.5. Arc Protein Expression is 

Dependent on CaMKII/MAPK/PKG Signalling). Thus CaMKII, MAPK, and PKG may mediate distinct 

aspects of sAPPα-induced functions throughout each neuronal compartment.  

Indeed, evidence suggests that PKG may act to facilitate trafficking of Rab11-positive vesicles. 

Rab11 is a protein primarily associated with recycling endosomes, and can mediate anterograde 

trafficking from the trans-Golgi network and perinuclear endosome (Chen et al., 1998; Takahashi et 

al., 2003; Ang et al., 2004; Lock and Stow, 2005). This trafficking is achieved through close association 

with the Ca2+-sensitive motor protein myosin Vb (Wang et al., 2008). Interestingly, PKG has been 

linked to the nitric oxide (NO)-dependent stimulation of anterograde trafficking of Rab11A-positive 

recycling endosomes (Zhai et al., 2017) and has been shown to directly bind Rab11B (Reger et al., 

2014). Both Arc protein and mRNA colocalize with Rab11 (Wu et al., 2011) and inhibition of Rab11 

activity impairs postsynaptic expression of Arc protein in Drosophila motor neurons (Ashley et al., 

2018). Thus, PKG may play an important role in the activity-dependent transport of Arc-containing 

vesicles throughout the dendrites. Additionally, PKG has been previously shown to be necessary for 
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the induction and persistence of protein synthesis-dependent LTP (Son et al., 1998; Kleppisch et al., 

2003; Liu et al., 2003; Paul et al., 2008). Specifically, Liu et al., (2003) have shown that application of 

the PKG inhibitor Rp-8-Cl-cAMPS 5 minutes prior to, and 5 minutes following the induction of LTP by 

TBS, significantly attenuated the induction of LTP and fully eliminated its persistence. This may be 

explained through the PKG-dependent trafficking of GluA1 and the incorporation of CP-AMPAR at the 

synapse (Incontro et al., 2013) and the induction of IEGs, including Arc (Ota et al., 2010; Gallo and 

Iadecola, 2011). Therefore, it may be possible that PKG signals both the early insertion of CP-AMPAR 

as well as the trafficking of Arc protein, necessary for the conversion of early- to late-phase LTP (Plath 

et al., 2006).  

 

The role of CaMKII and the regulation of Arc is intriguing. Arc protein is expressed in glutamatergic 

CaMKII-positive neurons and interacts with both CaMKIIα and CaMKIIβ to varying degrees. The 

interaction between CaMKIIα has been shown to be weaker than that of CaMKIIβ, however is able to 

regulate neurite extension (Donai et al., 2003). Interestingly, Arc protein shows stronger correlations 

with the inactive form of CaMKIIβ at inactive synapses following BDNF application in vitro or in the 

primary visual cortex in vivo (Okuno et al., 2012). While BDNF treatment alone was found to increase 

cell surface GluA1 expression, following BDNF treatment with the synapse specific application of the 

sodium channel blocker tetrodotoxin resulted in a downscaling of AMPAR at inactive synapses 

specifically (Okuno et al., 2012). These results indicate that while Arc is upregulated strongly with 

synaptic activity, and appears to localise to active synapses, preferential targeting to inactive synapses 

may govern control of Arc actions. In this sense, Arc may elicit non-Hebbian ‘inverse synaptic-tagging’ 

to maintain differences between synaptic weights during Hebbian plasticity. Interestingly, single 

synapse inactivation, as utilized by Okuno et al., (2012), has also been shown to promote synapse 

specific upscaling of CP-AMPAR in a manner dependent on the expression of Arc protein, however on 

a much longer timescale of hours to days (Béïque et al., 2011). Therefore, it may be possible that Arc 

acts as an inverse tag during synaptic activity at inactive sites in order to produce a reserve pool of 

GluA1-containing AMPAR to be utilized during synaptic upscaling following longer periods of activity.  

Our results show that inhibition of CaMKII inhibits both dendritic as well as somatic Arc 

protein expression. In many cases, the expression of Arc is under control of CREB expression (Ying et 

al., 2002; Lv et al., 2015; Chen et al., 2017). In the current studies, we have shown that sAPPα 

enhances Arc protein expression in area CA1 of acute hippocampal tissue and within the dendrites of 

cultured hippocampal neurons, in a manner dependent on NMDAR and α7nAchR activation. 

Importantly, this increase occurs subsequent to an increase in pCREB (refer 4.2. sAPPα Increases CREB 

Phosphorylation and Arc Protein in Acute Hippocampal Slices). The Arc gene contains a binding site for 



   

 180 

CREB protein located within a unique cluster of synaptic activity-responsive elements (SARE; 

Kawashima et al., 2009). Importantly, PKG (Gudi et al., 1999; Chen et al., 2003) and CaMKII have been 

shown to regulate CREB-dependent transcription or Arc mRNA transcripts (Sheng et al., 1991; 

Wheeler et al., 2008; Wheeler et al., 2012; Yan et al., 2016), with CaMKII likely mediating CREB 

phosphorylation via a mechanism which requires retrograde synapse to nucleus signalling (Ma et al., 

2014a). Alternatively, once present at the synapse, PKG, in concert with MAPK (Huang et al., 2007; 

Bramham et al., 2010) and CaMKII may also regulate protein synthesis of synaptic proteins including 

Arc (Kleppisch et al., 2003; Claasen et al., 2009; Mockett et al., 2011), in a manner which may include 

direct phosphorylation of p38 MAPK (Browning et al., 2000; Michel et al., 2011) or CPEB (Atkins et al., 

2004). 

 

A crucial, yet outstanding question in the literature is the identity of the sAPPα receptor or receptors 

through which sAPPα may act to promote these downstream mechanisms. Previous evidence has 

described a role of GABAB (Rice et al., 2017; Rice et al., 2019), Na+/K+ ATP’ase (Dorard et al., 2018), 

α7nAch (Richter et al., 2018) and NMDA receptors (Gakhar-Koppole et al., 2008; Mockett et al., 2019) 

in mediating sAPPα’s neurotrophic and plasticity-enhancing effects. To understand the receptors 

contributing to the facilitated Arc expression, we investigated the possible contributions of these and 

other candidate receptors, including mGluRI/II and TrkB, due to their similar neuromodulatory or 

plasticity-promoting properties (Raymond et al., 2000; Mockett et al., 2011). Of note, is the observed 

lack of dependence of TrkB, the receptor responsible for mediating the plasticity-enhancing effects of 

BDNF (Minichiello et al., 1999), indicating that the enhancement of Arc protein by sAPPα is distinct 

from that of BDNF. 

Importantly, our data suggest a synergistic effect between activation of NMDARs and 

α7nAChRs (refer section 4.1.6. Dendritic Arc Protein Expression is Dependent on Activation of NMDA- 

and α7nACh Receptors). Sole inhibition of either receptor alone led to a partial impairment in the 

sAPPα-mediated expression of Arc protein, whereas simultaneous inhibition of both receptors fully 

eliminated the enhancement of Arc protein expression in the dendrites. Further, we have extended 

our studies to the more complex biological system of acute hippocampal slices (refer section 4.2. 

sAPPα Increases CREB Phosphorylation and Arc Protein in Acute Hippocampal Slices). Here, our 

findings closely reflected that of the primary hippocampal culture work, as sAPPα significantly 

enhanced Arc protein expression in area CA1 of the hippocampus in a manner dependent on 

activation of NMDA and α7nACh receptors. This finding was corroborated by an increase in pCREB 

expression. Interestingly, this effect was specific to area CA1, as likewise analysis of area CA3 showed 
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no significant change in Arc protein expression, while a small but non-significant increase in both 

pCREB and Arc protein was observed in the dentate gyrus.  

NMDA and α7nACh receptors show somatic and dendritic distribution throughout 

hippocampal pyramidal neurons (Dominguez del Toro et al., 1994; Rao and Craig, 1997), and in some 

cases form α7nAChR-NMDAR complexes (Li et al., 2012; Li et al., 2013). Importantly, the activation of 

α7nAChR has been shown to enhance the activation of NMDAR (Aramakis and Metherate, 1998; 

Aramakis et al., 2000), specifically at synapses lacking functional AMPAR expression, likely through 

greater permeability to Ca2+ than that of NMDAR (McGehee, 1999; Levy and Aoki, 2002). Such 

α7nAChR-enriched, AMPAR-lacking synapses may depend on α7nAChR to provide voltage dependent 

activation of NMDAR. Importantly, both NMDAR and α7nAChR promote the activation of the NO-

cGMP-PKG pathway (Contestabile, 2000; Serulle et al., 2007; Ota et al., 2010; Khan et al., 2016; 

Gulisano et al., 2019; Kusuda et al., 2020), as well as MAPK (Haddad, 2005; Gubbins et al., 2010; Yang 

et al., 2014; Ma et al., 2018) and CaMKII (Cammarota et al., 2000; Thalhammer et al., 2006; Gubbins 

et al., 2010), leading to the phosphorylation of CREB (Xia et al., 1996; Gubbins et al., 2010). Therefore, 

in order to transduce these signalling cascades, sAPPα may directly bind to these receptors. APP has 

been shown to co-immunoprecipitate with NMDAR subunits (Cousins et al., 2009; Innocent et al., 

2012) and is found present at synapses expressing α7nAChR (Li et al., 2010), while sAPPα itself has 

been proven to act as a high‐affinity, allosteric potentiator of α7nAChR (Forest et al., 2018; Richter et 

al., 2018). Importantly, Richter et al., (2018) have shown that application of the α7nAChR antagonist 

α-bungarotoxin (αBGT) following the application of sAPPα does not significantly affect the expression 

of sAPPα-enhanced LTP. However, co-application of sAPPα and αBGT before the induction of LTP 

significantly inhibits LTP expression. Importantly, these results indicate that sAPPα requires α7nAChR 

during the priming phase before the induction of LTP as α7nAChR do not appear to contribute directly 

to the induction or maintenance of LTP, likely indicating that α7nAChR activate downstream cascades 

and mechanisms which subsequently enhance LTP following TBS. 

 

Many of the reports describing sAPPα’s ability to enhance LTP have been shown in area CA1, including 

the dependence on NMDA (Mockett et al., 2019) and α7nACh receptors (Richter et al., 2018). 

Previous work has also shown that sAPPα enhances LTP within the dentate gyrus in vivo, however 

only occurring at concentrations no lower than 11 nM (Taylor et al., 2008), indicating that 

concentrations used in the current experiments may not be sufficient to drive the full complement of 

Arc expression. The dependence on NMDAR and α7nAChR in our primary hippocampal cultures, but 

the observed lack of effect within the dentate gyrus (refer section 4.2.1. Trend in CREB 

Phosphorylation and Arc Protein Expression in the Dentate Gyrus of Acute Hippocampal Slices) may in 
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fact be explained by the heterogeneity of our cultured neuron populations. While excitatory 

pyramidal neurons contain both NMDAR and α7nAChR (Perouansky and Yaari, 1993; Chung et al., 

2016), excitatory granule cells appear to only express NMDARs (Bernabeu, 2000; Dalby and Mody, 

2003; Wright and Jackson, 2014), and lack functional α7nACh receptors (Frazier et al., 2003; John et 

al., 2015). Interestingly, diverse populations of inhibitory neurons in CA1 and dentate gyrus 

subregions of the hippocampus contain both functional NMDAR and α7nAChR (McQuiston and 

Madison, 1999; Son and Winzer-Serhan, 2008; Carlén et al., 2012). In response to activity, Arc mRNA 

and protein expression has been noted within inhibitory neurons of both the hippocampus and cortex 

(Vazdarjanova et al., 2006; Wang et al., 2016). Therefore, within the mixed population of neurons 

analysed in our data set, it is possible that inhibition of NMDAR and α7nAChR during sAPPα treatment 

differentially targets distinct, but likely overlapping populations of dentate gyrus and CA-derived 

excitatory and inhibitory neurons expressing NMDAR, α7nAChR, or both. This interpretation may also 

be applied to acute hippocampal slices, such that sAPPα treatment may enhance Arc expression in 

both excitatory and inhibitory cells within area CA1, yet only affect interneurons within the dentate 

gyrus. Future experiments should aim to incorporate markers of inhibitory and excitatory neurons to 

aid analysis and further clarify the possible cell-type specific effects of sAPPα. 

Alternatively, additional receptors may be required for the full complement of Arc protein 

expression throughout the hippocampus. Previously, sAPPα has been shown to enhance the 

expression and activity of Na+/K+ ATP’ase (Dorard et al., 2018). Na+/K+ ATP’ase is a membrane-bound 

enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across 

the cell membrane. Importantly, Na+/K+ ATP’ase is found throughout the hippocampus, including in 

CA pyramidal and interneuron cells (Richards et al., 2007), as well as excitatory and inhibitory cells of 

the dentate gyrus (Ross and Soltes, 2000). While research has yet to provide a link between Na+/K+ 

ATP’ase activity and Arc protein expression, the activation of NMDAR- dependent cGMP-NO-PKG 

signalling has been previously linked to the regulation of Na+/K+ ATP’ase (Munhoz et al., 2005), and 

the activation and expression of Na+/K+ ATP’ase regulates MAPK and CaMK activity, CREB 

phosphorylation, and may regulate aspects of LTP persistence (Gloor, 1997; Glushchenko and 

Izvarina, 1997; Desfrere et al., 2009). Interestingly, Na+/K+ ATP’ase has been found to associate with 

GluA1- and GluA2/3-containing AMPAR, and inhibition of Na+/K+ ATP’ase suppresses EPSPs and 

downregulates cell surface GluA1 and GluA2/3, possibly implicating this surface-bound enzyme in the 

regulation of AMPAR trafficking or sequestering at the cell surface (Zhang et al., 2009). 

Regardless, these results indicate that concerted activity between NMDARs and α7nAChRs 

may act to promote sAPPα-mediated Arc expression through the synergistic activation of downstream 
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cascades involving CaMKII, PKG and MAPK. This activation of Arc protein may further regulate gene 

expression, expression of synaptic AMPAR, or modification of the actin cytoskeleton.  

 

 Arc regulates de novo GluA1 expression 
 

Unexpectedly, short (30 min) but not long (120 min) treatments of sAPPα increased cell surface de 

novo GluA1, with expression of these AMPAR showed a return of de novo GluA1 to basal levels, at 

both the somatic and dendritic cell surface. Given past observations that surface internalisation under 

basal conditions is low (Passafaro et al., 2001), it is unlikely this is governed by a mechanism of passive 

endocytosis. Interestingly, clathrin-mediated endocytosis has been found capable of internalizing 

roughly 58.9% of AMPAR within 1-hour following acute insulin treatment (Man et al., 2000), placing a 

similar mechanism within our treatment window. Therefore, we further hypothesised that this 

decrease of de novo GluA1-containing AMPAR may be due to processes of active endocytosis. To 

examine this, we employed Acell™ siRNA-mediated inhibition of de novo Arc synthesis and protein 

expression (refer section 6.1.4. Accell™ Arc siRNA Inhibits Somatic and Dendritic sAPPα-Dependent, 

but not Basal, Arc Expression). Here, we found an accumulation and persistence of de novo GluA1-

containing AMPAR following 2-hour co-incubation of siRNA with sAPPα (refer section 6.1.5. 

Internalization of de novo GluA1 is Dependent on Arc Expression), indicating that these AMPAR are 

internalised by Arc within the 2-hour treatment window, and inhibition of Arc expression prevents the 

observed reduction in these early expressed GluA1. 

 

Previous work has provided evidence that Arc expression may govern regulation of GluA1-

containing AMPAR. Knockout of Arc protein in primary hippocampal cultures has been shown to 

increase cell surface GluA1- but not GluA2-containing AMPAR, and occlude activity-dependent 

homeostatic scaling (Shepherd et al., 2006). Knockout of Arc expression in vivo shows a largely 

enhanced fEPSP during the initial 60 minutes following tetanisation, perhaps indicating an 

unregulated increase in CP-AMPAR at the synapse (Plath et al., 2006). Interestingly, this group found 

no increase in rectification during baseline stimulation, however this may be due to the activity-

dependent nature of CP-AMPAR insertion and thus may have only been uncovered had rectification 

been measured post-tetanisation or at extrasynaptic sites. Interestingly, knockout of Arc in the visual 

cortex further upregulates s831 phosphorylation on the GluA1 AMPAR subunit (Gao et al., 2010), a 

phosphorylation site likely involved in the regulation of CP-AMPAR (Kim and Ziff, 2014; Yang et al., 

2018; Park et al., 2019b; Summers et al., 2019). While these animals did not show enhanced cell 

surface GluA1 or GluA2 protein from total PSD homogenate, they did show enhanced mEPSC 

amplitude and impaired experience-dependent homeostatic plasticity. While enhancements in s831 
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phosphorylation did not alter rectification, this may indicate that absence of Arc protein leads to 

increased persistence of CP-AMPAR at the perisynaptic or extrasynaptic cell surface, and that this 

persistence occludes experience-dependent scaling. Further, in response to mGluR-mediated LTD, 

application of the mGluR agonist DHPG results in a decrease in rectification, alongside a decrease in 

cell surface GluA1 but not GluA2 protein. Given mGluR-LTD requires an increase in Arc protein 

synthesis (Waung et al., 2008) and removal of cell surface CP-AMPAR (Lanté et al., 2011; Scheyer et 

al., 2018), it is possible that this mechanism is governed through the actions of Arc. Conversely, 

overexpression of Arc protein has been previously shown to significantly increase the decrease 

rectification in neurons, in a manner effect dependent on Arc’s ability to bind the clathrin-associated 

protein AP2 (DaSilva et al., 2016). These observations likely support a role for Arc-dependent 

endocytosis in the regulation of de novo CP-AMPAR in the current experiments. The Arc-dependent 

removal of these AMPAR may thus facilitate the exchange for GluA1/2-containing AMPAR by 

increasing the availability of synaptic slots (McCormack et al., 2006).  

 Additionally, we have shown that the de novo GluA1-containing AMPAR are primarily 

extrasynaptic (refer section 6.1.2.1. sAPPα Enhances the Extrasynaptic, but not the Synaptic 

Population of de novo Cell Surface GluA1). This domain contains proteins necessary for the formation 

of the endocytic zone and clathrin-coated pits (Lu et al., 2007a). Therefore, this may indicate this may 

indicate that de novo AMPAR present at extrasynaptic domains are primed to be removed from the 

cell surface following treatment of cultures with sAPPα for 30 minutes. Previously, it has been shown 

that extrasynaptic AMPAR are removed rapidly from the cell surface following NMDAR activation, and 

preceded the removal of synaptic AMPAR (Ashby et al., 2004; Sanderson et al., 2011). In these 

experiments, extrasynaptic sites showed a recovery of AMPAR following NMDAR washout, indicating 

that extrasynaptic sites are repopulated with either synaptic AMAPR from adjacent regions of the 

plasma membrane, or rapid trafficking of AMPAR from internal recycling pools. This may indicate that 

extrasynaptic AMPAR are initially internalized to facilitate the removal of synaptic AMPAR, possibly 

through the formation of extrasynaptic ‘slots’ within the endocytic zone (Haucke et al., 2011). This 

likely promotes the return of AMPAR to an internal recycling pool to be utilized in subsequent 

plasticity events. Interestingly, past evidence has shown that application of NMDA to cortical cultures 

transiently increases the phosphorylation of GluA1 at s831, followed by the dephosphorylation of 

s845 and removal of cell surface GluA1. This was found to increase the endosomal pool of GluA1-

containing AMPAR and facilitate their reinsertion at the cell surface and later accumulation at 

synapses following both basal- and activity-dependent activity in primary cultures (Ehlers, 2000). 

Interestingly, BDNF has been shown to likewise regulate the expression of cell surface GluA1-

containing AMPAR, such that short-term (30 minute) BDNF treatments enhance cell surface AMPAR in 
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nucleus accumbens medium spiny neurons, while long-term (24 hour) treatments decrease cell 

surface AMPAR beyond control levels These results indicate that homeostatic processes may govern 

the regulation of AMPAR expression following both BDNF and sAPPα treatments. The current 

experiments may reflect similar mechanisms, such that treatment of hippocampal neurons with 

sAPPα may transiently enhance the cell surface expression of CP-AMPAR and s831 phosphorylation, 

while Arc-dependent internalization of these AMPAR may act increase the endosomal recycling pool. 

The current experiment did not detect a decrease in total cell surface GluA1, as assessed by BioPLAy, 

however, examining the de novo population of GluA1-containing AMPAR with FUNCAT-PLA provided 

evidence for this.  

 

7.5. Mechanism of Action 
 
So far, this chapter has aimed to assess the role of sAPPα in regards to existing literature, 

encompassing aspects of LTP and synapse strengthening by previously identified neurotrophins. In an 

attempt to further clarify how this literature has influenced how sAPPα regulates the synthesis, 

expression, and function of AMPAR and Arc, two likely mechanisms are posited.  

Firstly, the activation of NMDA and α7nACh receptors by sAPPα may promote NO, and cGMP 

signalling via Ca2+ influx, further promoting the activation of CaMKII, MAPK and PKG (Figure 7-1). 

These signalling cascades signal CREB phosphorylation and begin to enhance transcription of IEGs Arc 

and Zif268, and further upregulate miR-30 expression. During this time CAMKII, possibly in concert 

with PKG may promote the trafficking of pre-existing internal reserve pools of GluA1-containing CP-

AMPAR to the cell surface, and likely stimulate lateral movement of AMPAR from extrasynaptic to 

perisynaptic sites. Simultaneously, NMDAR and α7nACh signalling may promote both the removal of 

GluA2/3-containing AMPAR by endocytosis, increasing the number of available synaptic slots. These 

AMPAR may then be targeted towards either the lysosome for degradation or recycling endosomes. 

These signalling cascades further promote the synthesis of GluA1 subunits either locally or via 

trafficking from somatic ER, the formation of CP-AMPAR, and refilling of internal recycling endosome 

pools. Parallel to this, de novo GluA2 subunits may be restricted from ER exit via associations with 

PICK1. Alternatively, miR-30 expression may downregulate GluA2 expression by inhibiting synthesis or 

promoting mRNA degradation. Regardless of the mechanism, a reduction in GluA2 forward trafficking 

promotes the formation of GluA1 homomeric CP-AMPAR. Following TBS, perisynaptic CP-AMPAR are 

inserted into the synapse to potentiate the EPSP, while extrasynaptic CP-AMPAR translocate to 

perisynaptic domains. During this time, de novo AMPAR likely traffic to the cell surface to expand the 

extrasynaptic pool, possibly governed via signals from synaptic CP-AMPAR. By 2 hours, synaptic CP-

AMPAR may then diffuse back to the extrasynaptic membrane, and alongside de novo GluA1-
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containing AMPAR, are removed from the cell surface, possibly by an Arc-dependent mechanism. 

Internalization of CP-AMPAR may permit the trafficking and replacement with GluA1/2-containing 

AMPAR at synaptic or extrasynaptic sites. 

 Alternatively, in addition to promoting the lateral trafficking of pre-existing cell surface CP-

AMPAR, activation of NMDAR and α7nAChR may signal the rapid synthesis and exocytosis of de novo 

CP-AMPAR (Figure 7-2). Simultaneously, sAPPα promotes the removal of GluA2/3-contaning AMPAR, 

increasing the number of available synaptic slots. Following TBS stimulation in slices, these AMPAR 

may traffic to the synapse to enhance the EPSP and promote downstream signalling, returning to 

extrasynaptic sites to be removed during the maintenance of LTP. In culture, basal synaptic 

transmission may be sufficient to drive these AMPAR to the surface but not to the synapse (Oh et al., 

2006), thus these AMPAR may reside at extrasynaptic sites. Regardless of whether de novo GluA1-

containing AMPAR reach the synapse both pre-existing and de novo AMPAR return to, or reside at 

extrasynaptic sites, where Arc-dependent clathrin-mediated endocytosis occurs (Blanpied et al., 2002; 

Ashby et al., 2004; Tao-Cheng et al., 2011). The removal of these AMPAR likely permits the 

replacement of CP-AMPAR by GluA1/2-containing AMPAR. 
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Figure 7-1 | Regulation of cell surface AMPAR – Extrasynaptic Exocytosis model. A) Application of sAPPα promotes the i) activation of NMDAR and α7nAchR, 

allowing the influx of Ca2+, possible activation of NO and cGMP, and activation of CaMKII, MAPK, and PKG. Following this ii) GluA2/3-containing AMPAR are removed 

from the cell surface, possibly in a manner dependent on Arc or CPG2. These AMPAR are then targeted towards either the lysosome for degradation or recycling 

endosomes. During this time, iii) CP-AMPAR are trafficked towards the synapse by lateral diffusion. In addition to this, iv) CP-AMPAR are trafficked from existing 

internal stores to refill extrasynaptic domains. Downstream signalling may further v) enhance the early synthesis of GluA1 subunits for formation of de novo CP-AMPAR 

and refilling of recycling pools. Signalling from NMDAR and α7nAchR vi) also promotes CREB phosphorylation and induction of Arc, Zif268, and possibly miR-30 

transcripts. vii) sAPPα may further promote reductions in cell surface de novo GluA2 expression through associations with PICK1 or by suppression of translation by 

miR-30. B) Following synaptic activity, i) perisynaptic CP-AMPAR are incorporated at the synapse, while extrasynaptic CP-AMPAR translocate to perisynaptic domains, 

and ii) synaptic activity at synaptic CP-AMPAR may promote the iii) trafficking of de novo CP-AMPAR to extrasynaptic sites. iv) Additionally, activity through CP-AMPAR 

has been shown to promote the protein-synthesis component of LTP (Park, 2018; Park et al., 2018), and thus may provide the necessary signals for the synthesis of 

additional plasticity related proteins (PRPs). C) Within 2 hours of sAPPα treatment CREB signalling promotes the transcription of Arc mRNA and subsequent protein. i) 

Arc mRNA or protein is thus trafficked throughout the dendrites in a manner dependent on CaMKII, MAPK, and PKG. Alternatively, ii) Arc protein may be synthesised 

locally. iii) Synaptic CP-AMPAR, as well as extrasynaptic de novo CP-AMPAR are removed from the cell surface via Arc, and are either iv) directed towards the lysosome 

for degradation or more likely refill the recycling pool of AMPAR. The removal of these AMPAR likely permit v) the exocytosis of GluA1/2-containing AMPAR from 

internal stores. vi) Previous restrictions of cell surface de novo GluA2 by PICK1 or miR-30 may be relieved by this time. 
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Figure 7-2 | Regulation of cell surface AMPAR – Extrasynaptic Endocytosis model. Application of sAPPα promotes the i) activation of NMDAR and α7nAchR, 

allowing the influx of Ca2+, possible activation of NO and cGMP, and activation of CaMKII, MAPK, and PKG. Following this ii) GluA2/3-containing AMPAR are removed from 

the cell surface, possibly in a manner dependent on Arc or CPG2. These AMPAR are then targeted towards either the lysosome for degradation or recycling endosomes. 

During this time, iii) CP-AMPAR are trafficked towards perisynaptic domains synapse by lateral diffusion. Downstream signalling may further enhance iv) the early 

synthesis of GluA1 subunits for formation of de novo CP-AMPAR and trafficking to the cell surface to refill extrasynaptic domains. Signalling from NMDAR and α7nAchR v) 

also promotes CREB phosphorylation and induction of Arc, Zif268, and possibly miR-30 transcripts. vi) sAPPα may further promote reductions in cell surface de novo 

GluA2 expression through associations with PICK1 or by suppression of translation by miR-30. B) Following synaptic activity, i) perisynaptic CP-AMPAR are incorporated at 

the synapse and ii) synaptic activity at CP-AMPAR may promote the iii) trafficking of de novo CP-AMPAR to synaptic sites. iv) Activity though CP-AMPAR has been shown to 

promote the protein-synthesis component of LTP (Park et al., 2018), and thus may provide the necessary signals for the synthesis of additional plasticity related proteins 

(PRPs), or the formation of existing GluA1/2 endosomal pools. Following this, CP-AMPAR including both pre-existing and de novo AMPAR may iv) return to extrasynaptic 

sites for endocytosis. C) Following 2 hours of sAPPα treatment CREB signalling promotes the transcription of Arc mRNA and subsequent protein. i) Arc mRNA or protein is 

thus trafficked throughout the dendrites in a manner dependent on CaMKII, MAPK, and PKG. Alternatively, ii) Arc protein may be synthesised locally. iii) Extrasynaptic pre-

existing CP-AMPAR, as well as iv) extrasynaptic de novo CP-AMPAR are removed from the cell surface via Arc, and are either directed towards the lysosome for 

degradation, or more likely to refill the recycling pool of AMPAR. The removal of these AMPAR likely permits v) the exocytosis of GluA1/2-containing AMPAR from internal 

stores. vi) Previous restrictions of cell surface de novo GluA2 by PICK1 or miR-30 may be relieved by this time. 
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7.6. A Possible Role for Silent Synapses 
 

In early postnatal development, the expression of NMDAR precedes that of AMPAR at glutamatergic 

synapses, acquiring AMPAR throughout later development (Petralia et al., 1999). These early AMPAR-

lacking synapses are termed ‘AMPA-silent’ or ‘silent’ synapses, and have been proposed as a likely 

mechanism underlying synaptogenesis during both development and learning-induced plasticity. The 

presence of NMDAR permits NMDAR-dependent LTP, assuming the voltage-dependent Mg2+ block of 

NMDAR is relieved either by direct depolarisation of the postsynaptic membrane (Isaac et al., 1995), 

or activation of non-AMPAR receptors (Smith et al., 2005; Lozada et al., 2012). Many mechanisms 

have been put forward as a means to determine how silenced synapses become ‘unsilenced,’ or 

active. The existence of silent synapses has previously been explained through both presynaptic and 

postsynaptic mechanisms, with presynaptic mechanisms describing a handicap of neurotransmitter 

release in response to action potentials, with LTP enhancing both the probability of release (Gasparini 

et al., 2000) or increases in neurotransmitter quanta (Kullmann and Nicoll, 1992). Alternatively, 

postsynaptic changes, including AMPAR trafficking have been proposed (Liao et al., 2001; Xiao et al., 

2004; Abrahamsson et al., 2007; Busetto et al., 2008; Huupponen et al., 2016).  

Importantly, many of these postsynaptic trafficking mechanisms implicate CP-AMPAR in 

mitigating the formation of intermediate ‘AMPA-labile’ synapses. Upon synapse awakening, these 

AMPARs are thought to be inserted at previously AMPA-silent synapses and promote the further 

insertion of CI-AMPAR. Conversely, this period of lability also means recently awakened synapses are 

susceptible to re-silencing through low frequency baseline stimulation or LTD (Xiao et al., 2004; 

Morita et al., 2014). The initial formation of AMPA-silent synapses appears to be under the guidance 

of CaMKIV and CREB, while the insertion of CP-AMPAR to AMPA-labile synapses has been shown to be 

dependent on s831 phosphorylation, CaMKII and PKA (Liao et al., 2001; Poncer et al., 2002; Zheng 

and Keifer, 2009). In the adult brain, few silent synapses exist at basal (Petralia et al., 1999), however, 

silent synapses have been found to exist within DIV 21-28 primary cell cultures (Liao et al., 1999; Xu et 

al., 2020). Notably, while synapses present on spines were primarily occupied by both AMPAR and 

NMDAR by DIV 11, many dendritic shaft synapses were AMPAR-lacking even at DIV 23. Importantly, 

following cLTP, many of these AMPAR-lacking synapses gained greater proportions of GluA1 than 

synapses present in spines, and thus were deemed more “potentiable” (Xu et al., 2020).  

In vivo, many mechanisms have been shown which enhance both the formation of AMPA-

silent and AMPA-labile synapses, as well as their conversion into mature synapses. Of note, cocaine-

induced drug addiction behaviour has been shown to enhance the proportion of silent synapses in 

adult rats (Brown et al., 2011), initially through the synthesis and insertion of GluN2B-containing 

NMDAR receptors (Huang et al., 2009), followed by insertion of CP-AMPAR (Lee et al., 2013; Ma et al., 
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2016; Wright et al., 2020), possibly in a manner involving dopamine- or BDNF-dependent local protein 

synthesis (Itami et al., 2003; Smith et al., 2005). Following the generation of silent synapses, 

withdrawal of cocaine or application of an enriched environment induces LTP-like mechanisms to 

enhance both the synthesis (Churchill et al., 1999) and synaptic expression (Boudreau and Wolf, 

2005) of GluA1-containing AMPAR, in a manner which occludes additional LTP (Goto and Grace, 2005; 

Moussawi et al., 2009; Ma et al., 2016). Interestingly, application of the mGluR5 agonist DHPG during 

the CP-AMPAR mediated AMPA-labile period also induces a removal of CP-AMPAR and replacement 

of CI-AMPAR (McCutcheon et al., 2011), while application of NMDAR-dependent LTD re-silences 

synapses by the removal of CP-AMPAR without replacement (Ma et al., 2016). Many systems which 

regulate local protein synthesis and trafficking of CP-AMPAR also regulate the expression and 

development of silent synapses, including both dopamine and BDNF (Smith et al., 2005; Caldeira et 

al., 2007; Li and Wolf, 2011; Fortin et al., 2012; Leal et al., 2014). Specifically, BDNF has been shown 

to play an important role in the maturation of silent synapses (Itami et al., 2003). Knockout of BDNF 

shows an increase in the proportion of silent synapses and an inability to convert these synapses 

following an LTP pairing protocol. Application of exogenous BDNF restores the ability to convert silent 

synapses to mature synapses, requiring rapid GluA1-dependent trafficking, followed by a GluA2-

dependent trafficking.  

 

With relevance to the current studies, we posit that one of the possible mechanisms through sAPPα 

may regulate synaptic plasticity is, in part, through the formation or maturation of silent synapses. 

Previously in this chapter, we have provided evidence that sAPPα may modulate synaptic plasticity at 

mature synapses, however these mechanisms may not be mutually exclusive (Figure 7-3). sAPPα has 

been shown to enhance the expression (Hoe et al., 2009; Mockett et al., 2011) and activation (Xiong 

et al., 2004) of NR1- and NR2B- containing AMPAR, a necessary step in the induction of AMPA-silent 

synapses (Nakayama et al., 2005; Xia et al., 2017). In addition to this, we have shown that sAPPα 

enhances the early expression of de novo GluA1-containing CP-AMPAR (refer section 5.1.3. CP-

AMPAR Contribute to the Initial Enhancement of sAPPα-LTP and 6.1.2. sAPPα Promotes the Rapid and 

Transient Trafficking of de novo GluA1-containing AMPAR to the Somatic and Dendritic Cell Surface), 

likely exchanging these with GluA2-containing AMPAR (refer section 6.1.7. sAPPα Promotes the 

Delayed Expression of Cell Surface GluA1/2-Containing AMPAR). In further support of this, we have 

also shown that Arc protein synthesis is, in part, regulated by α7nAchR as well as NMDAR (refer 

section 4.1.6. Dendritic Arc Protein Expression is Dependent on Activation of NMDA- and α7nACh 

Receptors), while others have shown that α7nAchR are necessary for sAPPα’s enhancement of LTP 

(Richter et al., 2018). Importantly, α7nAchR are found to be present at both AMPAR-positive and 
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AMPAR-negative synapses (Levy and Aoki, 2002), but also couple to (Li et al., 2012; Zhang et al., 

2016a) and regulate NMDAR (Delibas et al., 2005; Shen et al., 2016; Tang et al., 2018). It has been 

recently shown that nicotinic activation of α7nAchR enhances the frequency of postsynaptic AMPA-

mediated mEPSCs, typically associated with a decrease in the proportion of AMPA-silent synapses, 

and an increase in AMPAR-responses (Isaac et al., 1995; Tang et al., 2015). This effect was found to be 

dependent on the trafficking of CP-AMPAR, as well as phosphorylation mediated by CaMKII, PKC, and 

PKA (Tang et al., 2015). These results possibly implicate α7nAchRs in mediating an enhancement of 

AMPA-labile synapses and therefore may play a role in enhancing synaptic plasticity in response to 

sAPPα treatment by a similar means.  

 

Morphologically, the structural correlates of silent synapses are relatively unknown. Observations 

from cell culture indicate that AMPA-silent synapses exist primarily on the dendritic shaft (Xu et al., 

2020), with NR2B-containing NMDAR appear to predominate in young spines, and an increasing 

contribution of GluA1 as the synapse matures (Oray et al., 2005). Cocaine- and alcohol-dependent 

addiction behaviour studies further indicate that the formation of silent synapses may occur through 

the generation of new spines, finding that the number of spines increases by increasing the 

proportion of new immature thin and filopodia spines, with no change in the number of mature 

mushroom spines (Graziane et al., 2016; Beroun et al., 2018). Conversely, silent synapses have also 

been observed to occur at mushroom spines (Busetto et al., 2008), concluding that the morphology of 

silent synapses does not always predict the AMPAR content. Additionally, this may indicate that 

rejuvenation or elimination of existing synaptic contacts also occurs by mechanisms governing the 

trafficking of AMPAR and the silencing and unsilencing of these synapses (Dong, 2016).  

 We have further shown that the proportion of de novo cell surface GluA1-containing AMPAR 

are expressed within extrasynaptic domains (refer section 6.1.2.1. sAPPα Enhances the Extrasynaptic, 

but not Synaptic Population of de novo Cell Surface GluA1). Interestingly, it has been previously shown 

that extrasynaptic CP-AMPAR permit the formation of new synapses, by providing the necessary 

NDMAR voltage-dependent relief (Schmidt-Salzmann et al., 2014). These synapses appear capable of 

transducing presynaptic activity and integrating into the neural circuit (Kwon and Sabatini, 2011). 

Further, CP-AMPAR have been shown to be essential for the formation of synapses following 

repetitive LTP in culture (Tominaga-Yoshino et al., 2020), a stimulation paradigm which enhances 

synaptogenesis, increasing the proportion of immature synapses and the frequency of miniature 

EPSCs (Urakubo et al., 2006; Tominaga-Yoshino et al., 2008). Therefore, the presence of extrasynaptic 

CP-AMPAR following sAPPα treatment may not be a passive mechanism, and may instead contribute 

significantly to the formation of new spines and synapses.  
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 Lastly, APP, and specifically sAPPα have been implicated in the formation and maturation of 

synapses (Wang et al., 2009; Southam et al., 2019). Knockout of APP reduces spine density (Tyan et 

al., 2012), in a manner which is restored with viral expression of sAPPα, but not sAPPβ (Richter et al., 

2018). This knockout of APP preferentially increases the number of stubby spines, with a relative 

decrease in mushroom spines, while knock-in of sAPPα restores the proportion of mushroom spines, 

with relative decreases in stubby spines (Weyer et al., 2014). These results indicate that chronic 

expression of sAPPα may promote the conversion of young, possibly AMPA-silent, spines into mature, 

functional spines. Conversely, the Aβ domain of APP has been found necessary for activity-induced 

synaptic depression (Kamenetz et al., 2003), and the reduction of synaptic GluA1, s831 

phosphorylation, and CaMKII in vitro, further decreasing mEPSC frequency ex vivo (Gu et al., 2009). 

These characteristics were found to impair the conversion of silent synapses into functional synapses 

and correlated to impaired induction of LTP and performance on a spatial memory task (Bie et al., 

2018). Together, this evidence suggests that sAPPα and Aβ may play opposing roles in the generation 

and maintenance of silent synapses.  
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Figure 7-3 | Regulation of cell surface AMPAR at silent synapses. A) Application of sAPPα promotes the i) activation of NMDAR and α7nAchR, allowing the influx of 

Ca2+, possible activation of NO and cGMP, and activation of CaMKII and PKG. Following this, ii) GluA2/3-containing AMPAR are removed from the cell surface, possibly in a 

manner dependent on Arc or CPG2. These AMPAR are then targeted towards either the lysosome for degradation or recycling endosomes. During this time, iii) CP-AMPAR 

are trafficked towards the synapse by lateral diffusion (Ehlers et al., 2007). iv) This lateral diffusion may also supply the CP-AMPAR at silent synapses by diffusional trapping 

(Harrison et al., 1991; Ehlers et al., 2007). Alternatively, v) a pool of CP-AMPAR are trafficked to the cell surface by exocytosis. vi) MAPK signalling may then promote the 

rapid synthesis and refilling of these AMPAR at recycling pools. Signalling from NMDAR and α7nAchR vii) also promotes CREB phosphorylation and induction of Arc, Zif268, 

and possibly miR-30 transcripts. viii) sAPPα may further promote reductions in cell surface de novo GluA2 expression through associations with PICK1 or by suppression of 

translation by miR-30. B) At immature, AMPA-silent synapses, i) activation of NMDAR and α7nAchR promotes the activation of CaMKII, PKG, and MAPK signalling permitting 

the ii) trapping of cell surface AMPAR, supplied by neighbouring mature synapses, or iii) the synthesis and trafficking of de novo CP-AMPAR to the synapse, effectively 

converting a previously AMPA-silent synapses into a labile, awakened synapse. While it is possible that exocytosis of existing CP-AMPAR from recycling endosomes also 

occurs at silent synapses, this would likely only occur at synapses which had previously been unsilenced and have formed a local pool of endosomal AMPAR following 

silencing (Xiao et al., 2004). Alternatively, silent synapses may share endosomal compartments with neighbouring mature synapses, however, this appears rare (Cooney et 

al., 2002; English et al., 2015). Following synaptic activity these AMPAR may then integrate into the synapse and iv) further promote the influx of Ca2+ and downstream 

signalling cascades, as well as contribute to the EPSP. C) Within 2 hours of sAPPα treatment, CREB signalling promotes the transcription of Arc mRNA and subsequent 

protein. i) Arc mRNA or protein is thus trafficked throughout the dendrites in a manner dependent on CaMKII, MAPK, and PKG. Alternatively, ii) Arc protein may be 

synthesised locally. iii) Synaptic CP-AMPAR may be removed from the cell surface via Arc, and permit iv) the exocytosis of GluA1/2-containing AMPAR from internal stores. 

v) Previous restrictions of cell surface de novo GluA2 by PICK1 or miR-30 may be relieved by this time. 
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7.7. A Promising Role for sAPPα in Synaptic Disorders 
 
Many molecules and pathways are involved in the expression of both basal synaptic transmission, the 

induction of synaptic plasticity, and the maintenance of synaptic strength. These processes are 

controlled through concerted actions of transcription factors (Alberini, 2009; Liu et al., 2011), the 

synthesis, degradation, and synaptic distribution of Arc and AMPA receptors (Cajigas et al., 2010; Korb 

and Finkbeiner, 2011; Park, 2018; Pandey et al., 2020), the actions of secreted factors, including 

neurotrophins, cytokines, hormones, and growth factors (Sastry et al., 1988; Kelly et al., 1998; Moult 

and Harvey, 2008; Wang et al., 2012), and the activation of signalling cascades by Ca2+-sensitive 

kinases such as PKA, PKC, PKG, and CaMKII (Huang and Kandel, 1994; Wu et al., 2006; Giese and 

Mizuno, 2013). 

 Through this, research has aimed to target the modulation of these systems as a means 

towards manufacturing a therapeutic for neurodegenerative disorders including AD. Past research has 

focused on the delivery of neurotrophins and growth factors as a means to enhance downstream 

neuroprotective and neurotrophic signalling pathways (Aloe et al., 2012). However, the direct 

application of these molecules in clinical therapeutic use is limited, due to the insurmountable 

hurdles of unfavourable pharmacokinetic properties (plasma half-life <10 min; Wu, 2005), poor 

blood–brain barrier (BBB) permeability (Pardridge, 2002), and severe adverse effects (von Bartheld et 

al., 1994), including hyperinnervation of blood vessels (Isaacson et al., 1990), hypophagia (Williams, 

1991), increased hyperexcitability and the susceptibility to seizures (Xu et al., 2004), and off-target 

effects (Zhao et al., 2017). Through this, alternative means of enhancing the endogenous production 

of neurotrophins and growth factors have arisen, including small-molecule mimetics (Kazim and Iqbal, 

2016; Gupta and Sharma, 2017), botanicals (Sangiovanni et al., 2017), exercise (Rasmussen et al., 

2009; Griffin et al., 2011; Coelho et al., 2014), dietary supplementation (Martin et al., 2017), and 

caloric restriction (Maswood et al., 2004). A facet of these treatments is the application of molecules 

which directly and positively modulate AMPAR function and kinetics directly. Research into these 

drugs, labelled AMPAkines, stems from the growing realization that abnormalities in synaptic 

plasticity contribute to a wide range of neurological and cognitive disorders, most notably AD, but 

extending to autism, bipolar disorder, schizophrenia, addiction, multiple sclerosis, Parkinson’s disease 

and chronic pain (Bliss et al., 2013). AMPAkines include agonists (Black, 2005), positive allosteric 

modulators (Chappell and Witte, 2004), and treatments targeting signalling pathways regulating 

protein synthesis (Liu et al., 2015b), to facilitate AMPAR-mediated depolarization and mimic AMPAR 

insertion in LTP, increase depolarization-induced NMDAR Mg2+ relief, or enhance the induction of 

downstream neurotrophic factors to augment further signalling pathways. While some AMPAkines 

have shown promising results in clinical phase 2 studies in AD, Major Depressive Disorder (Bretin et 
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al., 2017), and Schizophrenia (Noorbala et al., 1999), they do so in the presence of side effects 

(Wezenberg et al., 2007; Urban and Gao, 2014). Due to this, research has begun to investigate 

alternative delivery methods of neurotrophins and growth factors into the CNS through means such 

as encapsulated cell bio-delivery devices (Eyjolfsdottir et al., 2016), viral vectors (Tuszynski et al., 

2005), receptor-mediated BBB transcytosis (Pardridge et al., 1994), and biodegradable microspheres 

(Aubert-Pouëssel et al., 2004). Most recently, small (40-100 nm) lipid-membrane bound extracellular 

vesicles (EVs) have been studied as a means of targeted drug delivery (Ha et al., 2016; Akuma et al., 

2019). These EVs, or exosomes, have the potential to package proteins of interest, as well as mRNA, 

cDNA, and miRNA (Statello et al., 2018), and are able to be delivered intranasally or intravenously 

(Haney et al., 2015), cross the BBB (Saint-Pol et al., 2020), and contain the specific expression of 

tetraspanins, which preferentially interact with ligands in a tissue- and cell- specific manner (Rana et 

al., 2012; Luan et al., 2017), thus decreasing off-target effects. 

The neurotrophic, neuroprotective, and memory enhancing effects of sAPPα cannot go 

understated. Indirect modulators of α-secretase activity, including the GABAR modulator Etazolate 

(Marcade et al., 2008), the 5-HT4 agonist PRX-03140 (Sabbagh, 2009), the green tea extract 

epigallocatechin-gallate (Obregon et al., 2006), or the cholinesterase inhibitor Rivastigmine 

(Maccecchini et al., 2012) have shown promising alleviation of pathology-related symptoms. 

However, in order to prevent off-target side effects, cell- and tissue-targeted viral- or EV-mediated 

application of sAPPα, or equally effective peptides derived from sAPPα, should be considered the gold 

standard method of delivery, and warrant future research.  

 

7.8. Future Directions 

 

While the results described within this thesis support a novel role of sAPPα in the synthesis, 

trafficking, and expression of both the IEG Arc, as well as cell surface AMPA receptors, questions 

remain regarding the nature of these changes. Firstly, we have shown that sAPPα enhances the cell 

surface expression of de novo GluA1-containing AMPAR at extrasynaptic domains and their 

internalization parallels the expression of cell surface GluA1/2-containing AMPAR. In order to clarify 

the role of these AMPAR in sAPPα-mediated plasticity, experiments should aim to determine GluA1/2-

containing AMPAR are synaptic, or likewise populate extrasynaptic sites. Additionally, due to sAPPα’s 

ability to enhances local protein synthesis, further experiments should aim to address this with 

relevance to the synthesis of AMPAR or Arc protein. Microfluidic local perfusion chambers are a 

readily available alternative to MatTek culture dishes and allow for the compartmentalization of 

dendrites from the soma, as well as the ability to apply treatments to discrete populations of 
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synapses (Taylor et al., 2010). Further, recent advances allow for the photo-uncaging of puromycin, 

capable of labelling newly synthesised proteins with a higher degree of spatiotemporal resolution 

(Elamri et al., 2018). The use of these techniques would increase the spatial resolution of observed 

protein synthesis, as well as allow for much finer temporal quantification of protein synthesis 

occurring locally at synapses. Further, part of the hypothesis that sAPPα regulates cell surface AMPAR 

trafficking relies on the assumption that pre-existing or de novo cell surface AMPAR translocate 

towards the synapse by lateral diffusion (see Figure 7-1,Figure 7-2). In order to examine this, previous 

research has employed the cell surface labelling of AMPAR by nanosized fluorophores called quantum 

dots, for the examination of AMPAR lateral diffusion (Howarth et al., 2005). In addition to this, 

examining the contribution of AMPAR lateral diffusion in the enhancement of sAPPα-mediated LTP 

has been made possible through the cross-linking and immobilisation of cell surface AMPAR during 

the induction of LTP (Penn et al., 2017). These techniques used separately or combined would further 

enhance our understanding of the role of AMPAR trafficking and mobility in LTP following sAPPα 

treatment. 

 Secondly, throughout this thesis I have made comparisons to the neurotrophic protein BDNF 

and the neuromodulator dopamine, on the basis of observations from supporting literature. Like 

sAPPα, BDNF and dopamine enhance cell surface GluA1 (Bellone and Lüscher, 2006; Gao et al., 2006; 

Caldeira et al., 2007), and strengthen synaptic transmission (Ying et al., 2002; Shetty et al., 2017), 

however in a manner distinct from sAPPα. Therefore, in order to understand the full complement of 

sAPPα’s neurotrophic support, and how these plasticity-enhancing proteins mediate the 

strengthening of synapses and formation of memories, biochemical and electrophysiological 

experiments should be made in order to compare the relative regulation of synaptic and cell surface 

AMPAR, contribution to LTP, and disparate or overlapping mechanisms of action.  

 Thirdly, as part of this thesis, we have proposed that sAPPα may act to strengthen synapses 

through the formation and awakening of AMPA-silent synapses. To further clarify this, examining the 

proportion of AMPAR-positive synapses by electron microscopy (Petralia et al., 1999) or the 

frequency of postsynaptic AMPA-mediated mEPSCs using in vitro by the use of multielectrode arrays 

(Arnold et al., 2005) or ex vivo field electrophysiology (Wasling et al., 2012), in the presence or 

absence of sAPPα, would be a worthy avenue to examine.  

Finally, in order for sAPPα to express any relevant clinical applicability, the observations made 

within this thesis, as well as those previously described, including neuroprotection (Furukawa et al., 

1996; Ryan et al., 2013; Tackenberg and Nitsch, 2019), neurogenesis (Demars et al., 2011), and 

morphological- and synaptic plasticity (Clarris et al., 1994; Taylor et al., 2008; Mockett et al., 2011), 

should be made through the use of cultured transgenic APP/PS1 mouse cultures as well as cultured 
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human neurons. As shown previously, the culturing of adult mouse neurons expressing mutations in 

APP/PS1 genes is possible (refer section 3.2. Observations from the Culturing of Adult Cortical Mouse 

Neurons). In addition this, recent research has established both induced pluripotent stem cell (IPSC) 

cultures (Konagaya et al., 2015), as well as the direct culturing of patient derived neural tissue (Lee et 

al., 2020), for the incomparable advantage of a direct representation of human neurons in culture. 

Ideally, these systems would be used in conjunction with delivery methods such as the incorporation 

of sAPPα into exosomes or viruses for the justification of these delivery methods in vivo, and allowing 

for the analysis of cell-specific effects, justifying any future clinical applicability. 

 

Many of the experiments and hypotheses described within this thesis examine the expression of 

AMPAR in primary hippocampal cultures. This system benefits from an increased spatial resolution to 

that of more complex biological systems, however limitations exist due to possible genetic (Bowling et 

al., 2016) and physiological (Szcot et al., 2010) differences between cultured neurons and acute 

hippocampal slices. It has recently been shown that FUNCAT-PLA is possible in ex vivo preparations 

(Evans et al., 2019), thus in combination with cell surface biotin-labelling techniques (Mockett et al., 

2019), it is possible that total de novo AMPAR as well as cell surface de novo AMPAR could be 

targeted for analysis by immunohistochemistry and western blot, respectively. This would add 

strength to the conclusions drawn from cultured neurons by examining AMPAR expression in intact 

tissue.  

 

7.9. Concluding Remarks 
 

This research aimed to examine the role of Arc protein expression and AMPAR trafficking in 

hippocampal neurons. The experiments in this thesis support previous work indicating that sAPPα 

enhances protein synthesis and AMPA receptor trafficking. Here, we have shown that sAPPα 

enhances LTP in a manner dependent on the synaptic expression of Ca2+-permeable GluA1-containing 

homomeric AMPAR. Further, we have shown that sAPPα enhances the expression of both pre-existing 

and newly synthesised GluA1 at the cell surface. Curiously, while an increase in GluA1 protein was 

found at the neuronal surface following both short-term and long-term treatments, the cell surface 

expression of de novo GluA1-containing AMPAR was short-lived, and found to be internalized from 

the cell surface in an Arc-dependent manner. Complementary to this, we have described a role for 

GluA1/2- and GluA2/3-containing AMPAR, finding a rapid and persistent decrease in cell surface 

GluA2/3-containing AMPAR specific to the dendrites, possibly as a means to increase available 

synaptic slots. Conversely, GluA1/2-containing AMPAR show a pattern of delayed cell surface 

expression and may act to replace homomeric GluA1-containing AMPAR.  
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The research described in this thesis describes a novel role of sAPPα in the regulation of key 

plasticity-related proteins, in line with similar neurotrophins, and describes sAPPα as a significant 

modulator of plasticity in hippocampal neurons. These observations further our understanding of 

synaptic plasticity in both health and disease and set a strong precedent for subsequent experiments 

regarding the functions and mechanisms of sAPPα.  
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 Appendix 

1. Image analysis 
 

1.1. Quantifying Arc Protein Expression in Primary Hippocampal Neurons 
 
To quantify Arc protein expression throughout somatic and dendritic compartments of cultured 

hippocampal neurons (refer section 4.1. Examining Arc Expression in Response to sAPPα), individual 

MAP2 and Arc channel images are first imported into ImageJ as .tif files. Here, neurons of interest are 

manually outlined and regions of interest (ROIs) are determined for measurements of neuronal area 

and integrated density (Figure A-1,2). These measurements are then accounted for by average 

measurements of mean gray value from close-by selections. 

 

 
 
 
 
 
 
 
 

Figure A-1 |Setting of MAP2 mask. Using the MAP2 channel as a guide, an identified neuron and 

individual soma is traced using the polygon selection tool (○), and is saved as regions of interest (ROIs). 

Representative image shows magnified (400%) window of a neuron of interest (left), and somatic 
compartment (300% magnification, right) with selected ROIs. 
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Figure A-2 | Measuring integrated density. Using the masks generated above, measurements 

including neuron area and integrated density (IntDen) are taken for both whole cell and somatic masks. 
Representative images show whole cell (75% magnification, left) and somatic (300% magnification, 
right). 

 

Figure A-3 | Accounting for background fluorescence. Following measurements of integrated 

density, in order to determined background fluorescence, three circular selections (○) of equal size are 

obtained adjacent to both dendritic and somatic compartments, from which the mean gray value is 
obtained. These values were averaged for each compartment, multiplied by neuron or soma area and 
subtracted from respective integrated density values for corrected total cell fluorescence (CTCF).  
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1.2. Quantifying pCREB Protein in Primary Hippocampal Slices 
 

To quantify pCREB expression in hippocampal slices (refer section 4.2. sAPPα Increases CREB 

Phosphorylation and Arc Protein in Acute Hippocampal Slices), a threshold image of the DAPI channel 

was generated and used to define a ROI within the CA1 area, specific to the cell body layer (Figure A-

4). This ROI was then used to define the area to be measured using the integrated density of pCREB 

signal (Figure A-5). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure A-4 | Setting the ROI of the cell body layer. The cell body layer of area CA1 is used to define the 
ROI, using the threshold tool in ImageJ. 

 

Figure A-5 | Measuring integrated density of the cell body layer. Representative image of pCREB 
fluorescence, measured using the defined ROI.  
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1.2.1. Quantifying Arc Protein Signal in Hippocampal Slices  
 
To quantify Arc protein expression, a region of interest was set which encompassed area 

CA1, CA3 or the DG of all slices quantified. This ROI was used to measure the integrated 

density of Arc protein fluorescence (Figure A-6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure A-6 | Measuring the fluorescence of the CA1 ROI. Representative image of Arc 
protein fluorescence, measured using the defined ROI 
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1.3. Quantifying PLA Signal in Primary Hippocampal Neurons 
 
To quantify PLA signal in cultured hippocampal neurons (refer section 6.1. sAPPα Regulates the 

Dynamic Control of AMPA Receptors at the Cell Surface), a custom-made ImageJ macro (Maximilian 

Heumüller, Schuman Laboratory, Max Planck Institute for Brain Research, as used in (tom Dieck et al., 

2015) was used. Using this, a MAP2 mask is generated to determine the area of PLA signal within a 

neuron of interest. In order to achieve this, the MAP2 mask generated is dilated by 1 pixel to ensure 

the inclusion of signal in dendritic spines (Figure A-7). RGB .tif files are composed from corresponding 

MAP2, PLA, and DAPI channels, and MAP2 and PLA signals are assigned as mask and signal channels, 

respectively (Figure A-7). Manually, a threshold for the PLA signal is defined by the average of all 

images and applied across conditions (Figure A-7). These parameters are thus used throughout the 

course of the macro in order to determine PLA signal per neuron of interest. 

Henceforth, the PLA macro is used to define a MAP2 mask (Figure A-8), isolate the neuron of 

interest from surrounding neurons (Figure A-9,10), and detection of PLA signal within the defined 

MAP2 mask (Figure A-10). This allows for quantification of PLA signal per neuron, normalized to the 

area of the neuron of interest. For the quantification of PLA within somatic and dendritic 

compartments, individual soma were isolated from dendrites and analysed. Similarly, the proximal 50 

μm of dendrites were isolated and straightened using the ImageJ ‘straighten’ function. Dendrites 

were then analysed using the PLA quantification macro.  

 
 
 

 

 

 

Figure A-7 | Running the PLA quantification macro. Before images are imported, parameters are set 

including (from left to right); mask signal dilations and appropriate optional steps, the number of channels 
comprising the RGB image, mask and signal channel assignment, and the previously determined PLA 
threshold value. 
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Figure A-9 | Isolation of the cell of interest from surrounding cells. Using the MAP2 mask, the 

processes and cell body belonging to the target cell are outlined (○) using the freehand selection tool. 

Following this, the selection was inverted to select surrounding non-target signal. This is saved as an ROI to be 
removed by the macro.  

Figure A-8 | Defining the MAP2 threshold and mask. The MAP2 signal threshold was manually 

defined to create a mask of the neuronal somato-dendritic compartments (■). The threshold signal is 

pictured on the left, the raw MAP2 and PLA signal channels are shown on the right. Representative images 
show the MAP2 mask (left), raw MAP2 signal (top right), and raw PLA signal (top right, bottom right) 
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Due to the low level of MAP2 in the somatic compartment, some neurons require the soma to be 

manually defined to create a solid mask, permitting measurement of PLA signal within the soma 

(Figure A-10,11).  

Figure A-10 | Isolated target neuron. Following isolation of the target neuron from all surrounding cells, the 

constraints of the somatic compartment are defined, where necessary as a ROI, using the raw MAP2 signal as a 
guide 

Figure A-11 | Detection and quantification of PLA signal. The final step includes verification of the PLA 

signal, and an option to delete any signal deemed as either noise or non-neuronal. Following this, the macro 
calculates the PLA signal area within the MAP2-defined mask, and is divided by the non-dilated MAP2 area. 
Representative images show the MAP2 mask (left, ■), PLA signal (■), and removed PLA puncta (○), defined MAP2 

mask (top right), raw PLA signal (far right), PLA signal mapped by ROI (bottom left), and ROI manager of identified 
PLA signal (bottom right). 
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1.4. Quantifying Colocalization of PLA Signal Within Synapses 
 
In order to quantify the PLA signal within synapses the ImageJ plugin ‘Just Another Colocalization 

Plugin’ (JACoP) was used (Figure A-12). Before analysis within ImageJ, the threshold value of both PLA 

and Synapsin-1 signal is generated to be using during JACoP analysis. As shown by Figure A-13, 

threshold values are entered into JaCoP and a Mander’s overlap coefficient is calculated, generating a 

value proportional to the level of B (PLA) overlapping A (synapsin-1). Following JACoP analysis, the 

centre of the PLA was determined as the brightest pixel and used to measure distance to the nearest 

synapsin-1 centre of mass (Figure A-14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-12 | Running JACoP. Synapsin-1 (upper panel) and PLA (lower panel) signal channels are 
split and JACoP is run with the settings pictured above (left panel).  

Figure A-13 | Setting of the threshold values. Previously determined threshold values were input 

into JACoP to generate a mask (■) for both PLA and synapsin-1 signal.  
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Figure A-14 | Measuring distance to synapse centre. JACoP generates a Mander’s Coefficient 
(fraction of B (PLA) overlapping A (synapsin-1; lower panel) and representative image of center of 
mass of Synapsin-1 and PLA signal (third panel). 
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2. Cell Health 
 
 
As described in section 3.1.3. Cellular Populations Within Primary Hippocampal Cell Cultures, the 

health of cells in culture can be determined by observation of MAP2 immunoreactivity. In response to 

insult, cultured neurons generate increased free radicals, which in turn promotes lipid peroxidation 

(Catlin et al., 2016). This presents as characteristic neuritic blebbing, fragmented dendrites, and 

swollen cell bodies as indicated in Figure A-15. 

 

  

Figure A-15 | Representative image of an unhealthy hippocampal neuron. 
Image shows MAP2 (■), and DAPI (■). Arrows (i) indicate sites of serious membrane 

fragmentation (blebbing) in the absence of strong continuous MAP2-positive staining, (ii) 
shows populations of condensed nuclei. Inset image shows magnified proximal dendritic 
segment, arrows indicate sites of blebbing. Scale bar = 50 μm (A), inset image = 10 μm. 
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3. Accell™ siRNA Specificity 
 
Within the last ten years, gene silencing by small interfering RNAs (siRNAs) has emerged as a 

promising method for inhibiting the expression of target genes and proteins (Akhtar and Benter, 

2007; de Fougerolles et al., 2007). Alternative to complete gene knockout animals (Bevan, 2010), 

siRNAs serve as an effective, inexpensive method for inhibiting gene expression both in vitro and in 

vivo (Mocellin and Provenzano, 2004). Unfortunately, naked siRNAs are relatively unstable due to the 

presence of endo- and exonucleases (Bartlett and Davis, 2007). Therefore, various delivery systems 

have been developed to circumvent this problem, including liposomes (Pulford et al., 2010), viruses 

(Dreyer, 2010), chemical modifications (Walton et al., 2010), electroporation (Zhao et al., 2005), 

exosomes (Alvarez-Erviti et al., 2011), and conjugation to lipid based reagents (i.e. Lipofectamine 

2000)(Chen et al., 2009). Recently, Thermo Scientific Dharmacon have developed Accell™ siRNA, a 

chemically modified siRNA which allows for passive delivery of antisense oligonucleotides in the 

absence of viral- or lipid-based transfection agents, increasing functionality and stability of the 

interfering RNA.  

Endogenous siRNA, and synthetic Accell™ siRNA both consist initially of a double stranded 

RNA oligonucleotide bearing both a 5' phosphate (on the antisense strand) and 3' double uracil (3'-

UU) overhang. When incorporated exogenously into the cell of interest, double-stranded siRNA is 

separated and the 5' antisense single-stranded RNA binds the multiprotein component complex RISC 

(RNA-induced silencing complex). Here, the antisense RNA guides and aligns the RISC complex on the 

target mRNA to allow for cleavage and degradation of the target mRNA (Bartel, 2009; Kim et al., 2009; 

Ketting, 2011; Horizon Discovery, 2014; Dana et al., 2017).  

 

In order to first assess the efficacy of Accell™ siRNA in our hippocampal cell cultures (refer sections 

6.1.4. Accell™ Arc siRNA Inhibits Somatic and Dendritic sAPPα-Dependent, but not Basal, Arc 

Expression, 6.1.5. Internalization of de novo GluA1 is Dependent on Arc Expression and 6.1.6. Non-

Targeting siRNA has no Significant Effect on de novo Cell Surface GluA1), we utilized fluorescent 

Accell™ red non-targeting control siRNA for visualization of siRNA expression by conventional 

epifluorescence microscopy. As shown by Figure A-16, treatment of cultures with the fluorescent 

Accell™ siRNA across an equivalent treatment duration of our experimental conditions, resulted in 

clear expression within MAP2-positive neurons in both the soma and dendrites. Interestingly, cells 

present in culture which appeared negative for MAP2 expressed the highest levels of fluorescent 

Accell™ siRNA. These populations may be indicative of glial cells, such as astrocytes, microglia, or 

oligodendrocytes.  
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Figure A-16 | Specificity of Accell™ siRNA expression. A) Immunocytochemistry 

showed populations of i) neurons (MAP2-positive, ■) expressing fluorescent Accell™ 

siRNA (■). ii) cells negative for MAP2 but positive for DAPI (■) also appear to express 

Accell™ siRNA. Lower panels (B & C) show magnified somatic and dendritic compartments, 
respectively, and corresponding black & white Accell™ siRNA signal. Scale bars = 50 μm 
(A), 10 μm (B & C). 
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4. Antibody Specificity 
 
Here we have utilized western blotting as a method to validate the specificity and reactivity of the 

antibodies used in a majority of the experiments described. Protein was extracted from primary 

cortical cultures and processed for western blot as described in section 2.4.3. Western Blot. The highly 

abundant protein αTubulin (55 kDa) was used as a loading control. We then probed for the proteins 

Arc (55 kDa), and GluA1 (100 kDa) using antibodies targeted towards both C- and N-terminal epitopes 

(Figure A-17). 
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Figure A-17 | Specificity of Primary Antibodies. 
Representative image of western blots showing 
immunoreactivity for the loading control anti-αTubulin 

(upper panel; 50 kDa; IRDye800, ■), anti-Arc (second 

panel, 45 kDa; IRDye680, ■), GluA1 detected using a C-

terminal antibody (third panel 100 kDa; IRDye800, ■), 

and GluA1 detected using an N-terminal antibody 

(lower panel, 100 kDa; IRDye680, ■). 

 
Tubulin and Arc western blots were provided by 
Honours student Maya Barrett. GluA1 western blots 
provided by Honours student Courteney Westlake. 
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