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Abstract
Cognitive Impairment and Conversion to Dementia in Parkinson’s Disease:

An Imaging Study of Amyloid PET and Diffusion MRI

by Megan Rebecca Stark

Objective

To investigate the association between amyloid deposition or white matter degeneration

with cognitive impairment and conversion to dementia in Parkinson’s disease (PD).

Background

Cognitive decline and dementia are common in Parkinson’s disease, however the patho-

physiological basis of cognitive impairment in PD is unresolved. The time-course from

diagnosis to development of dementia is highly variable, and imaging biomarkers are ur-

gently needed to assist estimation of long-term cognitive outcomes, and enable targeted

therapeutic interventions in early disease. Misfolded beta-amyloid protein aggregates,

or amyloid plaques, are a significant pathology in Alzheimer’s disease, and may play a

part in future cognitive decline in PD. Measures of cerebral blood flow and white mat-

ter micro- and macro-structural degeneration may correlate more directly with current

cognitive impairment, and may interact with amyloid to affect cognitive decline in PD.

This thesis comprehensively investigates these measures in PD and aims to differentiate

pathology and age-related effects, using both cross-sectional and longitudinal (three-year)

study designs.

Methods

We acquired [18F]-Florbetaben (FBB) amyloid PET, arterial spin labelling perfusion MRI,

and structural MRI in 115 patients with Parkinson’s disease, recruited from the Movement

Disorders clinic at the New Zealand Brain Research Institute. Movement Disorders Soci-

ety level II criteria were used to classify PD patients as having normal cognition (PDN,

n=23), mild-cognitive impairment (PD-MCI, n=76), or dementia (PDD, n=16), at study

baseline and over the course of three-year neuropsychological follow-up. The relationship

between amyloid deposition and cognitive classification, global cognitive ability, cerebral

blood flow, and conversion to dementia during the three-year follow-up was assessed us-

ing both Bayesian regression and whole-brain voxel-wise analysis. High angular resolution

diffusion imaging (HARDI) MRI was acquired in a wider cohort of 123 PD participants

and 37 controls, for the investigation of white matter integrity in PD across the cogni-

tive spectrum (PDN, n=46; PD-MCI, n=66; PDD, n=11). Cross-sectional fixel-based
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analysis investigated measures of fibre density, fibre cross-section, and combined fibre-

density-cross-section across PD, controls, and PD cognitive subgroups. Clinical measures

of global cognitive ability and motor impairment were also assessed for association with

these fixel-based metrics.

Results

We observed significantly higher cortical amyloid accumulation in our PDD group relative

to other cognitive subgroups, but model comparison indicated this was due to an effect of

age. Cortical amyloid was seen to be present in PD at levels comparable to healthy ageing.

Longitudinal assessment identified that, while increased cortical and subcortical amyloid

was associated with conversion to dementia within three years, this did not represent

a clinically relevant effect. There was no evidence of an interactive effect of amyloid

with cerebral blood flow to affect cognition. Reduced fibre density in the substantia nigra

correlated with disease, however age exhibited the most widespread association with white

matter metrics in this cohort.

Conclusions

This thesis investigated the effect of amyloid on cognitive impairment within a large,

well-characterised, longitudinal PD cohort, and subsequently challenged existing charac-

terisations of regional amyloid deposition relating to cognitive decline. This work also

represents the largest application to-date of fixel-based analysis for the investigation of

white matter degeneration across the cognitive spectrum in PD.
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Chapter 1

Introduction

1.1 Overview

Idiopathic Parkinson’s disease (PD) is the second most common neurodegenerative dis-

order behind Alzheimer’s disease (AD). The clinical features of PD are dominated in the

early disease stages by motor symptoms of rigidity, postural instability, bradykinesia and

resting tremor. In addition to the characteristic motor features of PD, non-motor features

are also common. Cognitive impairment and dementia eventuate in over 80% of 20-year

survivors (Hely et al., 2008) and are significantly detrimental to patient quality of life,

necessitating full-time care in many cases. The path of cognitive decline in PD is highly

variable, and biomarkers are urgently needed (1) to characterize brain changes which may

underlie cognitive impairment and (2) to act as surrogate outcome measures to assess

treatment effectiveness.

The neuropathological basis for PDD is unclear, and may involve aspects of Alzheimer’s

disease pathology, such as misfolded beta-amyloid and tau proteins. Recent developments

using positron emission tomography (PET) now allow in vivo imaging of abnormal beta-

amyloid and tau, which were previously detectable only at autopsy or via biopsy. In this

thesis, a large sample of PD patients, representative of the full cognitive spectrum, will

undergo amyloid PET and MRI imaging. In-depth assessment of misfolded amyloid will

contribute to a more complete understanding of dementia in Parkinson’s, and may reveal

shared neurodegenerative pathways with other diseases, e.g. Alzheimer’s.

1
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Many neurological disorders exhibit reduction or disruption of brain connectivity due to

pathological changes to the number and density of white matter axons, or fibres. Diffusion

weighted MRI allows inference of white matter microstructure based on the movement of

water molecules through ordered tissues in the brain. At the voxel level, diffusion signal

is complicated by the presence of multiple orientations of fibre bundles. Early modelling

of DW signal lacked the directional information to resolve these crossing fibres; however,

High Angular Resolution Diffusion Imaging (HARDI) acquisitions enable the estimation of

multiple fibre orientations in a single voxel, through the use of many diffusion acquisition

directions. In this thesis, HARDI data was obtained in an expanded cohort including

both PD and healthy control participants. I focused on changes in white matter micro-

and macro-structural integrity in PD, investigated using fixel-based analysis (FBA).

1.2 Aims of this thesis

This thesis aims to comprehensively investigate various imaging techniques in relation to

cognitive decline and conversion to dementia in a large, well characterised Parkinson’s

disease cohort, followed over three years at the New Zealand Brain Research Institute.

Part One of this thesis investigates amyloid PET measures in relation to baseline cogni-

tive assessments and measures of brain health obtained from magnetic resonance imaging

(MRI). I will establish if there exists any correlation between cortical levels of misfolded

protein accumulation and (i) current cognitive performance, (ii) global grey matter atro-

phy obtained from T1 structural MRI, and (iii) cerebral blood flow obtained from arterial

spin-labeling (ASL) MRI.

Part Two revisits the cross-sectional PET cohort at three years follow-up, to investigate

whether amyloid load at baseline is associated with accelerated development of dementia

in PD. Cerebral blood flow is also examined for association with conversion to dementia

during follow-up.

Finally, Part Three utilises high angular resolution diffusion imaging (HARDI) MRI,

obtained in an expanded cohort of both PD and controls, to investigate white matter

structural integrity differences in PD that may correlate with current cognition.
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1.3 Hypotheses

1. Amyloid deposition may not correlate with current cognition, but may be a predictor

of future dementia risk.

2. Patients with higher levels of amyloid will have lower cognitive scores and higher

risk for the development of dementia over three years.

3. PD with mild cognitive impairment and dementia will exhibit reduced white matter

structural integrity compared with PD with normal cognition and controls.

1.4 Thesis structure

Chapters 2-4 give an overview of Parkinson’s disease, methods of imaging cognitive im-

pairment, a technical background to the imaging methods used in this thesis, and a

background to pre-processing and analysis in neuroimaging. These chapters are intended

to provide a comprehensive overview of necessary concepts.

Chapters 5-7 present the results of each of the arms of this study. Work presented in

Chapter 5 was published in Frontiers of Neurology (Melzer et al., 2019). I was co-first

author on this publication with Tracy Melzer; the contributions of all listed authors are

described in the Authorship Attribution Statement. This paper is presented in stand-

alone format in Chapter 5, and thus necessarily repeats some information contained in

the backgound chapters. The published supplementary material has been included in the

body of the chapter, and two additional sub-analyses investigating grey matter volume

and cerebral blood flow have been added. Certain aspects of the methods described in

Chapter 5 also apply to future chapters, and are not reproduced. Instances of this will be

noted in the body of the chapter.

Chapter 8 summarises the key findings of this thesis, and discusses research impact,

important considerations and avenues of future research in the imaging of cognition in

PD.
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Chapter 2

Background to Parkinson’s

Disease

The typical motor features of Parkinson’s disease (PD) were first described by James

Parkinson in An essay on the shaking palsy (Parkinson, 2002), published in 1817. In

subsequent years, the essential features of parkinsonism have remained more or less con-

stant, with the description of the disease widening to include both motor and non-motor

features. This chapter gives an overview of the disease in terms of epidemiology, disease

characteristics, motor and non-motor pathology, diagnosis, treatment, and imaging of

cognition in PD.

2.1 Epidemiology

PD is a multi-system neurodegenerative disorder that currently affects around 12,000

individuals in New Zealand. That number is projected to quadruple by 2050 as a result

of increasing lifespan (Bach et al., 2011; Myall et al., 2017). PD is a disease of later life,

with less than 4% of sufferers developing clinical symptoms before the age of 50, while

approximately 5% of the population over 85 develop PD (Alves et al., 2008).

5
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2.1.1 Prevalence and incidence

A New Zealand study utilising pharmaceutical data found a 2013 prevalence of 191 per

100,000 population (95% CI 187-194), and an incidence of 29 per 100,000 person-years

(95% CI 29-30)(Myall et al., 2017). Incidence rates were found to remain steady from 2006

to 2013, while prevalence increased between these two time points (6440; 95% CI, 6320-

6550] to 8470; 95% CI, 8310-8620]). This indicates that disease duration is increasing,

likely as a result of the ageing population.

Most European community-based studies report prevalence rates of around 100-200 per

100,000 inhabitants, although differences in methodology, diagnostic criteria and popula-

tion age distribution cause this figure to vary considerably between studies (von Campen-

hausen et al., 2005). There are few studies investigating annual incidence, which ranged

from 5 to 346 per 100,000 in the 2005 review by von Campenhausen et al. It is difficult to

compare studies across research groups and countries as there is no formal framework for

conducting epidemiological studies in PD, although both New Zealand and international

estimates indicate a relatively common disease that is increasing as the population ages.

Recent recommendations by the International Parkinson and Movement Disorders Society

(MDS) for a new PD diagnostic criteria may help improve comparability across future

epidemiology studies (Berg et al., 2014).

2.1.2 Risk factors

PD is a predominantly idiopathic disease, with familial forms estimated to account for

less than 10% of all clinically diagnosed cases (Alves et al., 2008). As well as genetic

risk factors, there are many other suspected risk factors related to gender, ethnicity, diet,

environment, occupation, and many more.

Genetic factors

Genetic risk factors have been investigated for many years due to the observation that

family members of those with PD are 3 to 4 times more likely to develop the disease

than controls (Kurz et al., 2003). There have been at least 18 specific chromosomal loci

found to be associated with PD (PARK1-18 ), with 6 of these linked to heritable, mono-

genic PD (C. Klein & Westenberger, 2012). Of these, autosomal dominant inheritance
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has been attributed to mutations in SNCA (PARK1 ) and LRRK2 (PARK8 ), while au-

tosomal recessive inheritance is linked to the genes Parkin (PARK2), PINK1 (PARK6),

DJ-1(PARK7) and ATP13A2 (PARK9). PARK1,2,4,6,7 manifest as juvenile or early

onset, while PARK8 appears clinically the same as idiopathic PD.

The apolipoprotein E (APOE ) gene ε4 allele has been consistently associated with both

increased risk and earlier onset of Alzheimer’s disease (AD) (Pankratz et al., 2006), mainly

by driving formation of β-amyloid pathology (Tachibana et al., 2019). The expression of

APOE-ε4 has been associated with the development of dementia in Parkinson’s disease

(Williams-Gray et al., 2009; Huertas et al., 2017), and deficits in memory and verbal

fluency (Nombela et al., 2014; Mata et al., 2014). The mechanistic aspect of APOE-ε4

as a risk factor for PD is largely unclear, however a recent study found that α-synuclein

pathology was exacerbated in APOE-ε4 carriers independent of amyloid deposition, which

may accelerate cognitive decline in Lewy Body dementias (Zhao et al., 2020).

Gender

Gender has been well investigated as a potential risk factor, although the ratio of incidence

in males to females (M:F) appears to vary based on ethnicity. In New Zealand, age-

standardised incidence rates are higher in the male population, at a ratio of 1.7:1(Myall

et al., 2017). A meta-analysis of 17 incidence studies across various Western and Asian

populations found a pooled estimate for age-adjusted M:F ratio of 1.46:1 (95% CI, 1.24-

1.72), with overall larger M:F ratios in Western than Asian populations (Taylor et al.,

2007). Of 14 Western studies, only two reported a M:F incidence ratio of less than 1:1,

while incidence rates in men and women in Asia were almost equal (pooled M:F ratio of

0.95:1 from 3 studies, 95% CI 0.78-1.16). Pooled M:F ratio was significantly higher in

those studies with a mean age of onset greater than 70 years (M:F 1.67 in age ≥ 70 and

1.23 in age <70), suggesting that the ratio increases with age of onset. The reason for this

remains unclear, although the possible protective effect of oestrogen or hormonal changes

in post-menopausal women may be an avenue of investigation.

Tobacco smoking

Cigarette smoking has been investigated as potentially protective against the development

of PD (de Lau & Breteler, 2006). Most studies have been of case-control design, although

these results have been confirmed by larger prospective cohort studies (Hernan et al.,
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2002). A large meta-analysis (Li et al., 2015) obtained a pooled relative risk (RR) of

PD of 0.59 (95% CI, 0.56-0.62) for ever smokers compared with never smokers, from

61 case-control and 8 cohort studies. Consistent findings of a protective effect across

many studies argue against bias from selective mortality of smokers, poor methodology

or broad eligibility criteria (de Lau & Breteler, 2006). It is now generally accepted that

smoking confers some protective effect against developing PD, although the mechanism

that may achieve this is poorly understood. Current theories generally centre around

nicotine (Hernan et al., 2002) as a possible dopamine stimulant, antioxidant, or inhibitor

of monoamine oxidase B (MAOB), an enzyme that damages neurons through oxidative

stress (Jenner & Olanow, 1996). Nicotine and derivatives such as cotinine may be useful

in therapeutic treatment of levodopa-induced dyskinesias, and may slow down further

neurodegeneration by inhibiting fibrillation of α-synuclein and β-amyloid (Barreto et al.,

2014).

Occupational exposures

Occupational and environmental exposures to toxic substances, such as herbicides and

pesticides, may be related to increased risk of PD. It is thought that such toxins cause

neuronal degeneration by inhibition of complex 1 (reduced nicotinamide adenine dinu-

cleotide [NADH] coenzyme Q 1 reductase) in the mitochondrial energy cycle (Chaudhuri et

al., 2011). Intravenous injection of the drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) was found in 1983 to cause parkinsonian symptoms through complex 1 inhibi-

tion, selectively damaging dopaminergic cells in the substantia nigra pars compacta (SNc)

(de Lau & Breteler, 2006). Similarly, the pesticide rotenone and herbicide paraquat are

complex 1 inhibitors and have been shown to induce dopamine depletion in animal stud-

ies (Betarbet et al., 2000), and pesticides have been observed to confer increased risk of

PD in long time plantation workers (Petrovitch et al., 2002). Additionally, inhalation of

heavy metals has been suggested as a risk factor; exposure to welding fumes containing

manganese has been implicated in a few rare cases of parkinsonism (Chaudhuri et al.,

2011), however epidemiological studies have failed to reveal any significant risk associated

with welding (Jankovic, 2005).
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2.2 Neuropathology and treatment of motor symptoms

PD is a multi-system disorder, however it is typically characterised by the presence of

particular forms of motor dysfunction. These include but are not limited to bradykinesia,

postural instability, rigidity and resting tremor (Docherty & Burn, 2010), and collectively

comprise the ‘Parkinsonian’ clinical syndrome. Parkinsonism may present in a number

of different neurodegenerative diseases, such as dementia with Lewy Bodies (DLB), pro-

gressive supranuclear palsy (PSP), multiple system atrophy (MSA), and many more, thus

complicating diagnosis of PD from the clinical picture. A definitive diagnosis of PD is

therefore performed at autopsy, where PD is characteristically accompanied by degenera-

tion or loss of dopaminergic neurons in the ventral region of the pars compacta, located in

the substantia nigra (Dickson, 2012). The primary motor symptoms of PD are attributed

to this cell death and reduced production of dopamine in the nigrostriatal pathway.

2.2.1 Nigrostriatal pathway

The nigrostriatal pathway is a dopaminergic pathway that connects the substantia nigra

pars compacta (SNc) to the dorsal striatum. The dorsal striatum controls movement

through the expression of D1 and D2 dopamine receptors, that mediate the direct and

indirect pathways, respectively, to the basal ganglia output nuclei (Niccolini et al., 2014).

The direct pathway is responsible for facilitation of conscious movement, while the indirect

pathway inhibits unwanted movement. The loss of dopaminergic neurons in the SNc

results in a decrease in the excitatory function of the D1 receptors in the direct pathway,

and an increase in the inhibitory function of the D2 receptors in the indirect pathway.

The result is excess activation of the output nuclei, which manifests as the characteristic

features of parkinsonism, namely bradykinesia and rigidity.

2.2.2 Neurodegeneration, Lewy Bodies and α-synuclein

While the consequences of dopaminergic neurodegeneration in the SNc are clear, the

mechanism by which this occurs in PD is somewhat less so. Neuronal injury may result

from a variety of pathological insults including oxidative stress, neuroinflammation, or

dysfunction of protein degradation (Segura-Aguilar et al., 2014). Widely-held theories at-

tribute SNc dopaminergic neuronal loss to mitochondrial dysfunction, or to the presence
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of Lewy body pathology, commonly observed in the SNc alongside dopaminergic death in

PD (J., 2018). PD is one of two dementia syndromes, the other being DLB, that present

with pathological inclusions of Lewy bodies containing aggregated α-Synuclein (α-Syn)

protein (Mor & Ischiropoulos, 2018). α-Syn is an abundant, inherently disordered presy-

naptic protein, existing in a number of conformations that may interact to cause neuronal

damage in different ways. For example, early stages of aggregation involving oligomeric

forms of α-Syn may influence neuronal damage by disruption of membranes, mitochondrial

depolarization, cytoskeleton changes, impairment of protein clearance pathways, and en-

hanced oxidative stress (H. L. Roberts & Brown, 2015). There is also increasing evidence

of a synergistic effect of α-Syn and Alzheimer pathology on cognitive decline, wherein

the presence of both misfolded beta-amyloid and Lewy bodies at autopsy was correlated

with more rapid decline and shorter survival times compared to AD without lewy-bodies

(Marsh & Blurton-Jones, 2012). Work is ongoing to develop methods for imaging α-Syn

in vivo, such that anti-α-Syn interventions may be targeted to those at high risk of devel-

oping Lewy Body dementias (Mathis et al., 2017), in order to slow or stop progression.

While this work continues, treatment of the motor symptoms of PD commonly focuses

on dopamine replacement therapy.

2.2.3 Treatment

Around 80% of PD patients experience significant initial improvement of motor symp-

toms with dopamine therapies such as levodopa, particularly rigidity and bradykinesia

(Macphee & Stewart, 2012). However, as the disease progresses the brain loses the abil-

ity to store dopamine, and relief of motor symptoms with dopaminergic drug treatments

becomes increasingly short-term. Patients often experience fluctuations in motor control

at random times within a dosage interval, known as the ‘on-off’ phenomenon. Increas-

ing dose to manage motor symptoms inevitably decreases the treatment window until the

amount of levodopa required to give smooth motor control also triggers dyskinesia, as well

as other side-effects such as hallucinations, psychosis, dopamine dysregulation syndrome

(affecting impulse-control), and skin reactions (Chaudhuri et al., 2011). Combining or

replacing levodopa with other drug therapies in early disease has been shown to decrease

late motor fluctuations, and is still an area of enquiry. The individuals within our study

were not required to be on or off their parkinsonian medication at the time of scanning.
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2.3 Non-motor features

With careful dose management in early disease, control of motor symptoms and treatment-

associated side-effects causes the burden of other PD related non-motor symptoms to

become increasingly evident. The recognition of these non-motor symptoms has led to

the expansion of the definition of PD as a multi-system disorder, involving not just the

dopaminergic system but also the noradrenergic, serotonergic, and cholinergic systems

(Grinberg et al., 2010).

PD is known to present with a large number of non-motor symptoms (NMS), which

greatly impact the quality of life of individuals and often lead to full-time or institutional

care. Some of these symptoms are directly disease-related and some may arise as a

side-effect of treatment. The range of NMS in PD include olfactory loss, autonomic

disturbances (gastrointestinal, urogenital, cardiovascular, respiratory), sleep disturbances,

sensory and visual dysfunctions, and a range of neuropsychiatric disorders (K. A. Jellinger,

2015) (see table 2.1). The wide range of NMS in PD make it difficult to evaluate the

total disease burden and prevalence of NMS in PD as a group. Many studies focus

on examining the prevalence of specific NMS, such as depression (van der Hoek et al.,

2011). Some holistic studies involving large national and international cohorts have been

conducted that employ a self-completed non-motor questionnaire, notably the PRIAMO

study (Barone et al., 2009) and the NMSquest study (Chaudhuri et al., 2006).

The PRIAMO study evaluated 1,072 patients diagnosed with Parkinson’s disease, and

found that 98.6% of participants reported at least one NMS (from 12 domains) with an

average of 7.8 NMS per participant. Most patients included in this study were in the

early PD stages. The NMSquest study of 123 PD and 96 age-matched controls reported

an average of 10-12 NMS per patient, increasing in number with disease duration and

severity. They also found that NMS were highly prevalent in PD patients compared

with controls, but were unreported in over 50% of clinical consultations. The focus is

now shifting to address NMS in PD and their impact on quality of life. Of particular

importance is the impact of changing cognition and dementia on daily living (Kulisevsky

et al., 2013). Dementia is present in over 80% of 20-year PD survivors and is known

to have a major effect on quality of life, with greatly varying time from PD diagnosis

to dementia onset (Anderson, 2013). Patients with worsening cognition in the category

of PD with mild cognitive impairment (PD-MCI) are considered to have high risk of
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Non-motor domain Symptom

Olfactory Hyposmia/smell loss

Circadian rhythm

REM sleep behaviour disorder
Insomnia
Drowsiness
Restless leg syndrome

Gastrointestinal

Dysphagia
Constipation
Swallowing difficulties
Hypersalivation

Genitourinary

Urgency
Nocturia
Increased frequency
Impotence

Cardiovascular
Orthostatic hypotension
Syncope

Skin
Seborrhoea
Hypo/hyperhidrosis

Respiratory
Dyspnea
Stridor

Sensory
Pain
Abnormal sensations

Visual

Diplopia
Blurred vision
Reading difficulties
Dry eyes

Neurospychiatric

Anxiety
Depression
Behavioral disorder
Dysexecutive disorder
Visuospatial deficit
Psychosis
Apathy, aggression
Disinhibition
Hallucinations
Cognitive impairment (dementia)

Others

Light-headedness
Fatigue
Micrographia
Deafness

Table 2.1: Non-motor features in Parkinson’s disease (K. A. Jellinger, 2015)

conversion to PDD (Litvan et al., 2012; Wood et al., 2016), however dementia onset is

still variable within this group. It is possible that those at greater risk of conversion

within the PD-MCI group may display certain pathological differences, such as vascular

changes or protein aggregation.
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2.4 Diagnosis

There are currently no specific tests for the diagnosis of PD, and probable diagnosis

remains clinical. Initial diagnosis is primarily made based on the patient’s history, clinical

symptoms, and a neurological and physical examination to exclude other parkinsonian

disorders. Determining the appropriate diagnosis is complicated by disease co-morbidity

and the difficulty in separating causes of parkinsonism that share symptomatology and

structural abnormalities.

As previously mentioned, parkinsonian features are often present in a variety of neurode-

generative diseases (Chaudhuri et al., 2011). In particular, Parkinson’s disease dementia

(PDD) is often confused with DLB due to the similarities in clinical, morphological and

pathological features. In the past, DLB has been diagnosed preferentially over PDD if

the patient presented with significant cognitive impairment within 1 year of developing

parkinsonian symptoms.

In response to significant advances to our understanding of PD (Berg et al., 2014), the

International Parkinson and Movement Disorder Society (MDS) recently presented revised

clinical diagnostic criteria for Parkinson’s disease (Postuma et al., 2015). The MDS-PD

diagnostic criteria retains motor parkinsonism as the core feature of the disease, with

diagnosis defined at two levels of certainty based on absolute exclusion criteria that argue

against a diagnosis of PD, and supportive criteria that support PD diagnosis. The MDS-

PD criteria are intended for use in clinical research, but may also be used to aid clinicians

and improve reproducibility between centers.

The MDS-PD criteria recommends diagnosis through a two step process:

1. Patient parkinsonism is defined as bradykinesia in combination with either rest

tremor, rigidity or both;

2. The MDS-PD criteria are then applied to establish if the patient’s symptoms may

be attributed to PD.

Researchers may apply the criteria to either maximise specificity at the expense of sen-

sitivity (clinically established PD), or balance specificity and sensitivity (probable PD),

depending on the study requirements.
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The new MDS-PD criteria removes dementia as an exclusion criteria, instead offering the

option to qualify the patient as 'PD (DLB subtype)'. The aim is to clarify the features

that fall under the PD umbrella and simplify diagnosis when a patient presents with

dementia within one year of meeting the clinical criteria for PD (Berg et al., 2014).

2.4.1 Diagnosis in this thesis

The ongoing longitudinal study reported in this thesis commenced prior to the establish-

ment of the new MDS-PD criteria. In this work, PD was diagnosed using the UK PD

Society Brain Bank criteria (UKPDSBB) for idiopathic PD (Hughes et al., 1992). Under

this criteria, patients fitting PD (DLB subtype) were excluded from participation in the

study.

2.4.1.1 Cognitive subgroup classification

Following inclusion in the study, all participants are further classified by cognitive status

using the MDS Task Force Level II criteria (Wood et al., 2016) (Litvan et al., 2012). This

criteria examines five cognitive domains (executive function; attention, working memory

and processing speed; learning and memory; visuospatial/visuoperceptual function; and

language) in order to diagnose normal cognitive function, mild cognitive impairment, or

dementia in PD (see Chapter 5, section 5.4.1 for methodology). The tests included within

each domain can be found in table B.1; the cognitive domain scores and global cognitive

scores for each participant at baseline can be found in table B.2.

2.4.1.2 Mild cognitive impairment - a risk factor for PDD

Mild cognitive impairment in PD (PD-MCI) is considered to confer higher risk of con-

version to PDD, with patients fulfilling the MDS Level II criteria for PD-MCI having a

50% likelihood of developing dementia within four years (Wood et al., 2016). However the

time of dementia onset is also variable within this group, indicating that some individuals

may have a natural preservation of cognition. Ideally, all PD-MCI would be offered the

opportunity for inclusion in trials for preventative therapies, however this is obviously im-

practical at early trial stages, and inclusion of those with preserved cognition may mask

trial results. The goal thus becomes the elucidation of any core neuropathological features
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driving conversion to PDD, that may be preserved in those PD-MCI subjects exhibiting

sustained cognitive status. This thesis is but one part of a wider HRC funded study with

the New Zealand Brain Research Institute (NZBRI) that aims to identify genetic, clinical

and imaging biomarkers to this effect (Anderson, 2013).

2.5 Imaging cognitive impairment in PD

One of the most significant non-motor symptoms that occur in PD is that of cognitive

impairment and dementia. Elucidating the cause of cognitive decline in PD has driven

a large amount of research, and has led to developments in the way we categorise and

diagnose PD. Imaging has a significant role in evaluating pathological changes, enabling

quantification of such measures as protein deposition, cerebral metabolic rate, blood flow,

cerebral atrophy, white matter structural integrity and many others. Links drawn between

these measures and changes in cognition may play a vital part in future classification and

staging of disease, or identification of high risk individuals for therapeutic intervention.

2.5.1 Amyloid plaques

The aggregation of misfolded β-amyloid (Aβ) proteins into plaques within the brain is a

diagnostic hallmark of Alzheimer’s disease (AD). Aβ accumulation has been implicated

particularly in early AD as a potential precursor to neuronal damage and cortical atrophy

(Nordberg, 2004), and may continue to accumulate as subjects move into the disease stage,

developing memory loss, cerebral atrophy and dementia (Villain, 2012). Recent work has

shown that amyloid deposition may contribute to the neuropathology underlying PD-MCI

and PDD (Petrou et al., 2015). However, the causal role of amyloid in cognitive impair-

ment is somewhat contested, as Aβ has been found to be present in 30% of cognitively

normal individuals, associated with normal ageing (C. Rowe et al., 2010). This thesis

will investigate the potential link of Aβ deposition with cognition in PD over a three year

longitudinal study at NZBRI, which may provide another indication of dementia risk in

PD.
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2.5.1.1 Amyloid PET radiotracers

Historically, the radiopharmaceutical of choice for imaging amyloid deposition has been

[11C]-Pittsburgh Compound B (PiB) (Klunk et al., 2004). For most practical applications,

imaging Aβ plaques using PiB PET is unfeasible due to the short half life of carbon-11

(∼ 20 minutes), necessitating an in-house cyclotron for tracer production. Longer-lived

fluorine-18 labeled radiotracers (half-life ∼ 110 minutes) have been developed that achieve

comparable levels of binding to Aβ plaques, and may be produced commercially off-site

and delivered to the PET-scanning facility. There have been three such tracers labelled

with fluorine-18 approved by the US Food and Drug Administration (FDA) for imaging

Aβ plaques: florbetapir, flutemetamol and florbetaben (Jeffrey, 2014). [18F]-Florbetaben

(FBB) in particular displays excellent linear correlation with global PiB standard uptake

value ratio (SUVR) in AD (r=0.97, p< 0.0001) with a similar effect size to PiB (Cohen’s

d, Pib: 3.3; FBB: 3.0)(Villemagne et al., 2012). FBB tracer binding matches well with

Aβ distribution given by post-mortem biopsy (Anderson, 2013). We have chosen to use

FBB as our amyloid PET tracer in this study, due to these promising characteristics.

2.5.1.2 [18F]-Florbetaben

[18F]-Florbetaben is a fluorine-18 (18F) labeled stilbene derivative developed for use in

the clinical visualisation of Aβ plaques in Alzheimer’s disease. FBB was produced and

transported from Cyclotek Pty Ltd in Melbourne, for use in PET scanning at Southern

Cross Hospital, Christchurch.

Pharmacokinetics

Uptake within the brain is rapid, reaching a maximum 18F radioactivity concentration of

∼6% injected dose/L at 10 minutes post intravenous bolus injection of 300 MBq of FBB.

FBB is eliminated from blood plasma with a mean biological half-life of ∼1 hour, and is

completely eliminated from the body within 24 hours post injection.

Dosimetry

18F has a mean half-life of 110 minutes, resulting in a physical decay of the original activity

of 99.99% at 24 hours post-inection. The mean effective radiation dose a typical patient
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Figure 2.1: High-resolution emulsion autoradiography using [3H]-Florbetaben (black grains) in
combination with immunohistochemical staining (red) for Aβ plaques (left), tau aggregates (middle)
and α-synuclein Lewy Bodies (right). FBB demonstrates high specificity for Aβ plaques over tau
and α-synuclein lesions, as shown by the density of grains in the centre of the stained Aβ plaques,
compared with the lack of such clusters in the tau and α-synuclein immunoreactive aggregates. Figure

adapted from (Fodero-Tavoletti et al., 2012), Copyright © 2012, with permission from Elsevier.

will receive from administration of 300 MBq FBB is 5.8 ± 0.42 mSv, which has been

shown to be well tolerated (Sabri, Seibyl, et al., 2015).

Binding characterisitics

Florbetaben has demonstrated high binding affinity to Aβ plaques in the brain of AD

patients (Sabri, Seibyl, et al., 2015). Importantly, FBB demonstrates high specificity for

Aβ plaques over tau and α-synuclein lesions, as demonstrated by (Fodero-Tavoletti et al.,

2012) using high-resolution emulsion autoradiography in combination with subsequent

immunohistochemical staining in brain tissue sections (figure 2.1). FBB binds highly to

plasma proteins, with an unbound fraction of 1.6%, making this radiotracer well suited

for imaging arterial blood supply.

The optimal scanning time window for visual assessment has been shown to be 90–110

minutes post-injection, based on blinded assessment of PET data from 25 AD subjects

and 25 healthy controls by three expert readers (Tiepolt et al., 2012). Scans of three

different durations (5, 10 and 20 minutes beginning at 90 minutes post-injection) were

assessed in terms of diagnostic confidence, sensitivity and specificity, and inter- and intra-

reader agreement. All scan durations yielded similar results, such that while a 20-minute

scan duration is optimal, a reduction of time spent in the scanner can be justified without

loss of diagnostic accuracy. This can be a significant advantage when scanning patient

populations who have difficulty tolerating extended time in the scanner, as can be the

case in patients with dementia.
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2.5.2 Tau protein and neurofibrillary tangles

In a similar manner to amyloid aggregates, hyperphosphorylated tau protein is another

pathological hallmark of AD, and has been hypothesised to be one of the primary drivers

of neurodegeneration in AD and other disorders. In its native form, tau is an unfolded

protein that is critical for maintaining structural integrity and function of axons. Alternate

mRNA splicing at exons 2, 3 and 10 of the microtubule associated protein tau (MAPT)

gene on chromosome 17 generate 6 isoforms of tau, present in equal proportions in the

healthy adult brain. These isoforms are characterised by the presence of either three-

(3R) or four-repeat (4R) sequences in the C-terminal part of the molecule (Sergeant et

al., 2005). Interestingly, the relative expression of 3R or 4R isoforms has been seen to

vary between tauopathies upon post-mortem examination; FTD, CBD and PSP show

a relative overexpression of 4R isoforms, while all six may be found in AD (Y. Wang

& Mandelkow, 2015). Both 3R and 4R isoforms bind to microtubules within the cell

cytoskeleton, and assist cell stability by shifting the phase of the microtubules towards

polymerisation instead of depolymerisation. Tau phosphorylation reduces the affinity of

tau protein for microtubules, shifting microtubule dynamics towards depolymerisation and

resulting in impaired axonal transport. This eventually leads to neuronal dysfunction and

cell death. Hyperphosphorylated tau proteins aggregate to form neurofibrillary tangles

(NFTs), thus the presence and number of these structures are a useful metric in the

evaluation of neuronal damage and disease progression.

Examination of tau has previously been limited to post-mortem and CSF studies due to

the difficulty in developing an in vivo PET tracer. An effective tau tracer must be able

to cross the blood-brain-barrier and plasma cell membrane to bind to intracellular tau,

placing restrictions on the maximum molecular size and lipophilicity of the ligand. Sites

for ligand binding are further complicated by the existence of six different tau isoforms,

forming fibrous polymers which may present in twisted or straight structural conforma-

tions. With the focus steadily shifting from amyloid plaques to tau NFTs, there has been

a concerted effort to develop effective tau tracers for in vivo PET imaging (Okamura et

al., 2018). The first generation of tau PET tracers (e.g. [18F ]THK5317, [18F ]THK5351,

[18F ]AV1451, [11C]PBB3) have been used extensively in research studies (Leuzy et al.,

2019), however the presence of off-target binding compromised the utility of many of these

tracers for clinical use as a diagnostic tool. A second generation of tau PET tracers (e.g.
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[18F ]MK-6240, [18F ]RO-948, [18F ]PI-2620, [18F ]GTP1, [18F ]PM-PBB3) were developed

in response to this problem (Y. T. Wang & Edison, 2019). While funding was awarded

for use of [18F ]PI-2620 in this study, substantial delays in tracer production precluded

inclusion of tau PET imaging in this thesis. It is possible that tau PET imaging in PD

will be conducted in future at the NZBRI.

2.5.3 Cerebral blood flow

Perfusion refers to the capillary blood supply delivering oxygen and nutrients to brain

tissue, in units of ml/min/100g (Detre et al., 1992). While technically a measure of

simple flow rate (ml/min), the term CBF is somewhat synonymous with perfusion in the

literature. Measuring regional CBF is a useful method of inferring neuronal function,

such that decreases in ATP production and consumption due to neuronal damage are

concomitant with changes in cerebral perfusion. Blood flow to the damaged region may

decrease, while other regions may see compensatory increases. This same effect may also

indicate disease- or age-related deficits, thus subject age is often an important factor in

the analysis of perfusion data.

Imaging regional CBF (rCBF, ml/min/100g) using PET or single-photon emission com-

puted tomography (SPECT) does not yield absolute, quantitative values, but rather rel-

ative values normalised to a reference region or global mean. This can introduce bias if

there is a systematic increase or reduction in blood flow across the subject group, either

globally or in the chosen reference region. Arterial spin labeling MRI (ASL MRI) pro-

vides an alternative method of imaging CBF that yields absolute perfusion values in a

completely non-invasive manner (Melzer et al., 2011), and has been shown to accord well

with rCBF perfusion studies using H15
2 O PET (Ye et al., 2000).

2.5.3.1 Arterial spin labelling MRI

ASL MRI offers several advantages as a cost effective, non-invasive alternative to the more

invasive H15
2 O PET imaging of cerebral blood flow. The ASL imaging protocol offers faster

scan times over PET tracer techniques and is an easily repeatable addition to existing

MRI routines (Melzer, 2011). Magnetic resonance imaging deposits no radiation dose to

the patient, and the required processing to extract absolute perfusion values from these



Chapter 2 - Parkinson’s Disease 20

data is relatively straightforward. The resulting images are less susceptible to bias as they

are not calculated based on normalisation to a global mean or reference region.

A previous study conducted at the NZBRI explored the efficacy of ASL MRI data in the

construction of a disease-related covariance network in PD, relating to motor and cogni-

tive aspects of the disease (Melzer et al., 2011). Network analysis revealed characteristic

decreases in posterior and lateral-posterior parietal areas and dorsolateral prefrontal cor-

tex, with preserved perfusion in globus pallidus. Areas of decreased perfusion indicated

by the network were found to be significantly related to cognition as measured by MoCA

score (P=0.001, β = 0.41), but no other variables.

2.5.4 Metabolic changes

Deficiencies in both dopaminergic and non-dopaminergic neurotransmitters, such as sero-

tonin, norepinephrine, and acetylcholine, are frequently implicated in the pathogenesis

of non-motor features in PD, notably cognition (Scatton et al., 1983; Hasselmo, 2006;

J. Klein et al., 2010). As such, these possible biomarkers of cognition in PD have pro-

vided the impetus for several pharmacological interventions for the treatment of cognitive

impairment and mood (Diaz & Waters, 2009). Underlying the deficiencies in these neu-

rotransmitters is neuronal dysfunction. A properly functioning neuron utilises cerebral

glucose in the production of ATP, which is in turn used by the cell in neuronal maintenance

and production of neurotransmitters (Mergenthaler et al., 2013). Thus, measuring the re-

gional cerebral metabolic rate of glucose (rCMRglc) provides a useful measure of neuronal

function. Imaging rCMRglc with 18F-fluorodeoxyglucose (FDG) PET has therefore been

heavily explored as an avenue of disease severity assessment in neurodegenerative disorders

(Eidelberg et al., 1995; Eidelberg, 2009; Eckert et al., 2007). Cortical hypometabolism

has been linked to cognitive changes in PD in several independent studies using FDG

PET (Huang, Mattis, et al., 2007; Ma et al., 2007; Liepelt et al., 2009). Areas known to

display relative reductions in metabolic activity in PD include the lateral premotor cor-

tex, supplementary motor area and posterior parietal association areas, while increases

are seen in the globus pallidus, thalamus and pons (Eidelberg, 2009).

Due to the substantial variability in metabolic activity between brain regions, it is difficult

to use regional estimates of metabolism to adequately describe response to treatment in

a clinical setting. A more clinically relevant measure has been provided by network
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analysis, wherein the principle components of variance in the data may be analysed to

form patterns of abnormal metabolic activity that occur in PD distinct from controls.

Independent patterns of metabolic activity, constructed from principle component analysis

(PCA), that correlated significantly with motor dysfunction and the results of neurological

testing have provided unique insight into the areas of the brain implicated in PD (Huang,

Tang, et al., 2007).

2.5.5 Diffusion imaging of white matter structure

Nuclear imaging methods such as PET offer great insight into neuronal health by way

of metabolic and pathologic imaging, however inherent limitations to spatial resolution

inhibit the investigation of micro- and macro-structural architecture. Developments in

the field of diffusion MRI offer this utility.

Many neurological disorders exhibit reduction or disruption of brain connectivity due to

pathological changes to the number and density of white matter axons, or fibres (D. A. Raf-

felt et al., 2016). Diffusion weighted imaging aims to infer microstructure based on the

movement of water molecules through ordered tissues. Diffusion tensor imaging (DTI)

models the displacement of water molecules as a rotationally invariant tensor (Lanskey

et al., 2018), which may be deconstructed into a number of structure-dependent metrics.

These local metrics have been shown to correlate with performance on a range of motor

and non-motor tasks (Danielmeier et al., 2011; Forstmann et al., 2010; Liston et al., 2005;

R. E. Roberts et al., 2010, 2013; Tuch et al., 2005), and may correlate with cognitive de-

cline in PD (Melzer et al., 2013). On a larger scale, tractography is often applied to DTI

data to determine the trajectories of white matter tracts in order to infer the underlying

connectome of the human brain (R. E. Roberts et al., 2013).

While DTI offers potentially powerful estimations of local structural metrics, the single

tensor model suffers from a lack of multi-directional information in voxels that contain

crossing fibres (Tournier, 2004). This shortcoming confounds interpretation of apparent

local differences in these voxels and prohibits the successful implementation of larger scale

structural analyses, such as deterministic and probabilistic tractography. High Angular

Resolution Diffusion Imaging (HARDI) acquisitions enable estimation of multiple fibre

orientations in a single voxel, through the use of many diffusion acquisition directions



Chapter 2 - Parkinson’s Disease 22

(Descoteaux, 2015). The rationale and development of HARDI is discussed in greater

detail in Chapter 7.

2.5.6 Cortical thickness and grey matter atrophy

Structural T1-weighted imaging has consistently shown evidence of reduced cortical thick-

ness and cortical grey matter volume in PD, correlating with cognitive decline in both

cross-sectional (Hong et al., 2014; Mak et al., 2014; Segura et al., 2014; Zarei et al., 2013;

Gerrits et al., 2016) and longitudinal studies (Mak et al., 2015; Hanganu et al., 2016).

Previous work conducted at the NZBRI investigated grey matter volume in a cognitively

well-characterised cohort, examining group differences in healthy controls, PDN, PD-MCI

and PDD (Melzer et al., 2012). Grey matter atrophy was found to be significantly es-

tablished in PD-MCI, with more extensive loss in patients with dementia, compared to

PDN and controls. Global measures of grey matter volume will be included as part of the

longitudinal arm of this thesis, but are not a main focus of this study.



Chapter 3

Imaging Principles of PET and

MRI

This chapter covers the operational and physical principles underlying the imaging modal-

ities used in this study, namely positron emission tomography and magnetic resonance

imaging. I discuss important factors affecting image quality in both modalities, and con-

siderations for image acquisition, reconstruction, and quantification.

3.1 Positron Emission Tomography

Positron emission tomography (PET) is an imaging modality based on the detection of an-

nihilation coincidence photons, following injection of a positron-emitting tracer substance.

Here, I discuss the main principles of operation of PET imaging, including scientific basis,

detector system components, data acquisition, image reconstruction, and quantification.

The scanner used in this study is a GE Discovery 690 PET-CT scanner.

3.1.1 Principles of operation

The general workflow of a PET image study is depicted in figure 3.1. Annihilation coin-

cidence photons are produced when a positron emitted from the decay of a proton-rich

radionuclide interacts with an electron, causing annihilation. This annihilation converts

23
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Figure 3.1: Flowchart of a PET imaging study. A radionuclide is injected into the patient and the
emission of coincidence 511-keV annihilation photons is measured by the detector ring. Emission
data are stored in a sinogram, where each line of response ( is plotted as a function of angular orien-
tation versus displacement from the gantry centre (not marked). The sinograms are reconstructed
into image space to form the image volume. The image of the sinogram and reconstructed brain
was originally published in JNMT. Fahey, F. H., Data Acquisition in PET Imaging. J Nucl Med

Technol. 2002;30(2):39-49. © SNMMI.

the entire mass of the electron-positron pair into two 511-keV photons, travelling in nearly-

opposite directions. Positrons travel only very short distances in matter before annihi-

lation occurs, thus detection of the position of the interaction provides the approximate

location of the tracer substance within the patient at the time of emission. Transverse

images of the activity distribution within the patient may then be reconstructed from the

acquired data by the PET system computer. Annihilation photons must escape the pa-

tient to be detected, and are thus affected by attenuation and scatter that serve to reduce

image quality. Modern PET scanners are almost always coupled with x-ray CT systems

to allow on-board attenuation correction, while energy-discrimination and timing circuits

attempt to separate true coincidences from random coincidences and those affected by

scatter (Bushberg, Seibert, Jr., & Boone, 2012, Chapter 19).
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3.1.1.1 PET Detector System

A typical PET detector system consists of several rings of detectors surrounding the

patient. Scintillation detectors are used in PET systems over gas-filled or semi-conductor

detectors, as these have comparatively low intrinsic efficiency for the detection of 511-

keV photons. Scintillation detectors generally consist of large scintillator crystals coupled

to several photomultiplier tubes (PMTs). Scintillation materials absorb the energy of

incident ionising radiation and re-emit it in the form of visible or ultraviolet light in a

process known as luminescence (Bushberg et al., 2012, Chapter 17). Luminescence occurs

as an electron drops from an excited energy state, provided by the incident 511-keV

photon, to a lower energy state, ideally releasing a photon of light with energy equal to

the transition. The emitted photon is converted into electrical current and amplified by

the PMT electronics. This signal is rejected or accepted according to an acceptable energy

window around the 511-keV annihilation energy, and passed through timing circuits which

generate a time signal for each pulse. The time signal is used in coincidence circuitry to

determine coincidence pairs and LOR’s, and projection data are stored in sinograms.

The PMTs operate in pulse-mode such that each scintillation interaction is processed

separately from other interactions, yielding the time signal, deposited energy, and location

of each interaction. High detection and conversion efficiency of the scintillator material for

511-keV photons is particularly important in order to accurately determine these factors,

particularly in high count rates.

GE Discovery 690 PET/CT detector components

The PET detector system used in this thesis is the GE Discovery 690 PET/CT. This sys-

tem consists of 24 concentric detector rings 81 cm in diameter, with a total detector width

along the z-axis of 40 mm. 64 image slices may be obtained simultaneously across a 157

mm axial field of view (FOV). The entire detector system contains 13824 cerium-doped

lutetium yttrium oxyorthosilicate (Lu2Y2−xSiO4O, abbreviated LYSO) scintillation crys-

tals. LYSO is an inorganic scintillation material of high density and detection efficiency,

with a very short dead time (the time taken for an excited electron to decay to the ground

state, during which no new interactions can be detected). The coincidence time window

for this system is 4.9ns, allowing corrections for time-of-flight. This has an important

effect on final image quality, which will be discussed in a later section.
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3.1.2 True annihilation coincidence detection

The detector geometry encircles the patient and is designed to detect annihilation photons

produced at approximately the same time. The line connecting these detected photons is

termed the line of response (LOR), along which an annihilation interaction is presumed

to have occurred. Annihilation coincidence detection (ACD) thus establishes the trajec-

tories of detected photons without the use of collimation, avoiding the loss of sensitivity

and reduced spatial resolution that occurs with collimated detector systems. However,

the detected LOR’s may provide inaccurate information as a result of scatter and random

coincidence detection. Figure 3.2 depicts true, scatter and random coincidence detection.

A true coincidence is given by the nearly simultaneous detection of two annihilation pho-

tons resulting from a single interaction, and gives the correct LOR. A scatter coincidence

is a true coincidence resulting from a single interaction, but gives an incorrect LOR as

a result of photon scatter within the patient shifting the apparent origin of the anni-

hilation photons. A random coincidence detection gives a false LOR as a result of the

nearly simultaneous detection of two annihilation photons produced from separate inter-

actions, mistakenly identified as coincidence photons. Scatter and random coincidences

thus reduce image contrast and increase statistical noise in PET data; to combat this,

PET systems use detectors capable of energy discrimination and highly accurate timing

circuits to detect true coincidence pairs, while CT attenuation correction accounts for

signal loss or scatter from attenuation effects.

3.1.3 Attenuation correction

In addition to scatter and random coincidence, annihilation photons may be prevented

from reaching the detectors due to attenuation within the patient tissues. Attenuation

correction accounts for the loss of measured signal arising from interactions between the

emitted photons and patient tissue, primarily by Compton scatter. Compton scattering

is an inelastic collision, where photon interactions with unbound or valence shell electrons

result in both a change in direction of the photon path (scatter) and a loss of photon

energy. Primary loss of signal in PET arises as a result of scatter outside the detector

ring, while detected attenuated photons contribute to noise and inhomogeneous bias in

estimated tracer distribution. The effect of photon attenuation on detected signal is
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Figure 3.2: (A) True coincidence. Two annihilation photons, emitted from same annihilation
event, travel in opposite directions without interaction with body, and are detected by opposing
detectors. (B) Scatter coincidence. One photon from annihilation travels without interaction, and
other annihilation photon is deflected because of scattering in body. (C) Spurious true coincidence.
Single γ-photon is detected simultaneously with annihilation photon (or another single γ-photon),
both emitted from same decay event. (D) Random coincidence. Two annihilation photons (or single
γ-photons) emitted from 2 separate decay events are detected by chance within coincidence time
window. (E) Attenuation. One (or both) annihilation photons is (are) not detected as result of
scattering or absorption within body. In scatter, spurious, and random coincidences, LOR drawn
between 2 detectors is not representative of annihilation location (B–D). Three or more photons
(multiples) detected in coincidence are rejected by PET coincidence electronics. This figure was
originally published in JNMT. Verel, I., The Promise of Immuno-PET in Radioimmunotherapy. J

Nucl Med Technol. 2005;46(2):39-49. © SNMMI.

dependent on the linear attenuation coefficient µ and thickness L of a tissue or material,

following the exponential relationship:

I/I0 = e−µL (3.1)

where I is the non-attenuated signal, and I0 is the attenuated signal (Chen & An, 2017).

Estimating the linear attenuation coefficient of each voxel throughout the image volume

thus allows for corrections to be made according to the magnitude of the effect I/I0. This

can be achieved using a 511 keV transmission scan, performed prior to PET acquisition

using an integrated CT imaging unit. The CT scan provides an image of the radiodensities

of tissues within the patient volume, where voxel intensity is quantified in Hounsfield Units
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(HU):

HU = 1000× µ− µwater
µwater − µair

(3.2)

Here, µ is the linear attenuation coefficient at each voxel, and µwater and µair are the

linear attenuation coefficients of water and air. The CT scan is downsampled to PET

resolution, transformed from HU to µ at 511 keV photon energies, and forward projected

into projection space to map directly onto detector LORs. All measured emission data is

corrected according to the estimated effect I/I0, based on the value for µ at the location

of each measured event, prior to image reconstruction.

3.1.4 Image noise and time-of-flight

The rate of random coincidence detection is dependent on the coincidence time win-

dow τ and the actual count rates S1 and S2 at the corresponding detectors, given by

Rrandom = τS1S2. At higher count rates, the rate of random coincidence detection in-

creases and will decrease the signal-to-noise (SNR) ratio of the resulting images. This is a

particular problem in older PET systems; in conventional PET, the probability of inter-

actions within each voxel along the LOR is assumed to be uniform, and SNR is already

reduced by the presence of noise correlations between detected events (figure 3.3 B). More

modern PET systems reduce noise correlations - and improve SNR at high count rates -

by spatially localising events along the LOR using time-of-flight information (Surti, 2015)

(see figure 3.3). Sufficiently sensitive timing circuits are able to differentiate the arrival

times t1 and t2 of the annihilation photons, giving an emission distance from the machine

along the LOR from the scanner centre of d = c × (t2 − t1)/2, where c is the speed of

light. The uncertainty of this measurement follows a Gaussian distribution of width ∆x,

and is dependent on the coincidence timing resolution ∆t1 of the detector system:

∆x = c× (∆t)/2

Thus an incremental probability of event occurrence is ascribed to each voxel along the

LOR, and noise correlations between separate events are removed outside of the area ∆x.

Given a ∆x that is equal to or less than the detector resolution (typically 4-5mm), it

1The coincidence timing resolution ∆t of a PET detector system is given by the full-width-half-
maximum (FWHM) of the histogram of TOF measurements from a point source (Surti, 2015).
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Figure 3.3: (A) An annihilation event at a distance d from the machine centre is detected, with
coincidence photons arriving at the detectors at times t1 and t2. (B) In systems with no TOF
capability, each point along the LOR is assumed an equal probability of having produced the an-
nihilation. Where LOR cross, portions of the image may appear to have increased signal where
no event has occurred, producing noise correlations in the image. (C) TOF information allows the
probabilistic localisation of the interaction defined by width ∆x, following a Gaussian distribution.

(D) Noise correlations between the two events are reduced or removed by TOF localisation.

would theoretically be possible to produce a complete PET image by direct detection of

localised events. In reality, ∆x is generally 10 times that of the detector resolution, thus

image reconstruction must be achieved through more sophisticated methods in order to

produce a quality image.

3.1.5 Image reconstruction

Each LOR in a detector system gives a line of projection data, containing the sum of

all detected activities within each voxel through the depth of the image volume. The

projection data is stored in a sinogram, comprised of rows and columns of angular and

radial samplings, respectively (Saha, 2015). Conventional image reconstruction methods

‘unfold’ the projection data from this polar coordinate system and translate it to a volu-

metric image matrix, using a direct analytical approach known as filtered back-projection

(FBP). Simply, FBP assumes that the count density distribution along an LOR through

the volume is equal to the line integral of the measured projection in the sinogram, and

count density along the line is thus obtained through inverse mathematical operations.

Counts from all LORs are projected back along the original path and summed to form
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a complete PET image of tracer retention in the volume. Analytical methods are com-

putationally inexpensive but also prone to noise and artifacts, due to being based on a

simplistic model of PET that ignores the probabilistic nature of the data (see figure 3.3)

and other physical factors of the detector system. Accounting for these factors requires

a great number of additional equations, and solving for tracer retention through direct

inversion is not realistic. Obtaining the solution through iterations of reconstruction en-

ables the inclusion of system modeling, while being within the computational ability of

most on board scanner systems.

Iterative reconstruction

As an alternative to FBP, iterative reconstruction (IR) instead looks to forward project

the data, first obtaining an estimated image from a system model algorithm and com-

paring the computed sinogram with the measured sinogram. Discrepancies from the

measured projections are corrected, and a new estimate for the next iteration is created

by back-projection. This continues until an acceptable agreement between the estimated

and measured sinograms is reached. IR methods vary primarily in the model algorithms

used to estimate the image, the nature of the discrepancies being corrected, and the order

in which corrections are applied within the full iteration (Saha, 2015). Reconstruction

algorithms commonly used in PET imaging studies have two main parts; a statistical

criterion estimating the image, and a numerical algorithm for convergence to the solu-

tion prescribed by the criterion. As PET is an image modality with inherently limited

spatial resolution (Moses, 2011), most IR algorithms focus on optimising SNR within an

acceptable convergence time.

Many IR algorithms exist that take different approaches to this problem, for example by

maximum likelihood expectation maximisation (MLEM), space-alternating generalized

expectation maximisation (SAGE), single-slice rebinning (SSRB) or Fourier rebinning

(FORE) (see (Iriarte et al., 2016) for a thorough review). These are often used in conjunc-

tion with additional correction algorithms to inform the model, such as TOF information,

or point-spread functions (PSFs) - algorithms based on the measurement of a point source

at several million points across the FOV, designed to correct for detector geometry- and

patient-based scatter effects. In this thesis, reconstruction is performed using General

Electric’s VUE Point FX + SharpIR algorithm, employing a variation of MLEM that



Chapter 3 - Imaging Principles 31

achieves faster convergence by dividing the data into ordered subsets (OSEM) in com-

bination with PSF modeling, with additional correction using TOF information (a.k.a.

OSEM + PSF + TOF). Images produced by this combination have been shown to im-

prove SNR and contrast over pure OSEM and OSEM + TOF reconstruction algorithms

(Vennart et al., 2017).

3.1.6 Quantification of PET image data

The raw reconstructed images output by the PET system represent the voxelwise ra-

dioactivity concentration in the image volume. Images in this form are sufficient for the

purposes of clinical evaluation by visual read, however quantitative analysis between sub-

jects or across longitudinal measurements requires that the activity be normalised for

session-specific and individual variation. This is provided by the standard uptake value

ratio (SUVR).

The image is initially converted into standard uptake value (SUV), given by:

SUV =
cimg(t0)

ID ×BW
(3.3)

where cimg(t0) is the activity concentration in the image voxel at time t post-injection, de-

cay corrected to the time of injection, t0; ID is the injected dose, calculated from activity

in the syringe before and after injection; and BW is the body weight of the individual. The

SUV gives a unit-less semi-quantitative measure of the activity per voxel to the activity in

the whole body volume. In order to compare activity levels across subjects in an imaging

study, the SUV must be further normalised to account for non-displaceable radiotracer

binding. This is accomplished by normalising global values of SUV to values within a cho-

sen reference region in the image, giving a SUV ratio (SUVR). In Aβ PET imaging, the

reference region chosen must display the same level of non-displaceable binding (free plus

non-specific binding) as the region of interest (ROI), show little to no variation in signal

for the full duration of the scan, and be free of Aβ pathology. In this thesis, the cerebel-

lum is chosen as the reference region for use with [18F]-Florbetaben for these favourable

characteristics (S. et al., 2017), and as recommended by the Centiloid Working Group for

conversion of SUVR to centiloids (Klunk et al., 2015). Semi-quantitative evaluation of Aβ
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PET by SUVR allows the direct comparison of tracer uptake across subjects in a study,

either voxelwise or by ROI.

3.1.6.1 The Centiloid scale

The use of SUVR in quantitative analysis is prevalent in the field of PET imaging research,

however considerable variation in procedure exists between studies conducted by different

research groups, such that direct numerical comparison of SUVR between studies is not

always valid. The centiloid (CL) scale was developed by the Centiloid Working Group

(Klunk et al., 2015) in order to facilitate direct comparison of amyloid deposition across

imaging centres, using different amyloid ligands (incorporating 11C- and 18F-based lig-

ands), pre-processing pipelines, analysis methods and diseases. The centiloid represents a

standardised quantitative amyloid imaging measure following a zero to 100 scale, anchored

by young controls (displaying little to no Aβ pathology) and typical Alzheimer’s disease pa-

tients. The CL scaling method was initially defined for standardisation of [11C]-PiB PET,

acquired using a defined ‘standard’ study method; groups wishing to adopt the CL scale

using a non-standard tracer could do so by calibrating against PiB PET, also acquired

in the same group, with additional calibration required if a non-standard method is used.

Subsequent work by (C. C. Rowe et al., 2017) removed the need for comparison against

PiB PET with regards to FBB PET imaging studies, and scaling from FBB SUVR to CL

now only requires calibration to account for a non-standard method. Method calibration

is done by processing a free-to-access FBB PET dataset (Global Alzheimer’s Association

Interactive Network [GAAIN:http://www.gaain.org]), and comparing resultant cortical

SUVR values against published standard values using a linear model. Provided the values

agree within an accepted level of variation, this gives linear method scaling factor. Scaled

SUVR acquired in the study dataset can then be converted directly into CL, following

the equation defined by Rowe et. al. (2017):

CL = 153.4× SUV RFBB − 154.9 (3.4)

This is known as level 3 calibration, within the framework designed by the working group.

The methodology and outputs of this procedure are given in greater detail in Chapter 5,

section 5.6.4. The CL scale is a relatively recent addition to the field of amyloid PET

GAAIN:http://www.gaain.org]
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imaging, and this study represents the first to employ the CL scale for evaluation of

amyloid deposition in Parkinson’s disease.

3.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging technique based on the magnetic prop-

erties inherent to the nucleus of an atom. Protons and neutrons within a nucleus possess

nuclear ‘spin’, which can be understood as magnetic dipoles. In stable nuclei containing

equal numbers of protons and neutrons, these magnetic dipoles sum to zero and cancel

out. When there are uneven numbers of protons and neutrons, a nuclear magnetic mo-

ment exists about the nucleus, often visualised as an arrow vector with magnitude and

direction. Under the influence of an external magnetic field B0, a large number of nuclei

possessing random magnetic orientation will assume a non-random alignment resulting

in a small net magnetisation parallel to the external magnetic field. By convention, the

magnetic field B0 is applied in the z-direction of a three-dimensional cartesian coordinate

system; the net magnetisation in the direction of the applied magnetic field is thus de-

noted Mz and is known as the longitudinal magnetization. This magnetisation is maximal

under equilibrium conditions and is denoted M0, the equilibrium magnetisation.

An applied external magnetic field B0 also causes a magnetic spin to have a certain

precessional frequency about its axis, proportional to the strength of the magnetic field

and determined by the gyromagnetic ratio unique to each element. This relationship may

be written as:

ω = γB0 (3.5)

where ω is the resonant or Larmour frequency and γ is the gyromagnetic ratio (for hydro-

gen, ω = 127.7 MHz at 3T, γ = 42.57 MHz T−). Equation 2.1 describes the behaviour

of a magnetic spin within an external magnetic field, and is thus the key relationship

underpinning MRI (Bushberg et al., 2012).

The net magnetisation of spins within a magnetic field is not sufficient to produce signal in

MR. To obtain signal, the net longitudinal magnetisation must be tipped into the trans-

verse plane. Application of a radio frequency (RF) electromagnetic pulse perpendicular
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to B0 and tuned to the resonant frequency causes the net magnetisation to rotate away

from the longitudinal plane. This results in a perpendicular magnetisation vector rotating

at the applied RF frequency, known as the transverse magnetisation Mxy. Immediately

following a 90◦ RF pulse, Mz is at a minimum and Mxy is at a maximum. The gradual

return to equilibrium (loss of Mxy and regrowth of Mz) ensues, and receiver coils detect

the change in this rotating magnetisation as MR signal. The rate at which the transverse

and longitudinal magnetisation decay occur are dependent on the structural and magnetic

characteristics of the sample, and enable the large amount of tissue selectivity available

using MR. These characteristics determine the so-called T1 and T2 relaxation times of

tissues, and relate to longitudinal magnetisation recovery and transverse magnetisation

decay respectively.

3.2.1 T1 and T2 relaxation

T1: spin-lattice

Immediately following the excitation pulse, longitudinal magnetization Mz will begin to

recover as a result of excitation energy being released from the spin back to the lattice of

molecules surrounding it; it is thus termed spin-lattice relaxation. T1 is the time taken

for the exponential recovery of Mz to reach 63% of equilibrium following a 90◦ excitation

pulse. Spin-lattice relaxation is highly dependent on the molecular structure and com-

position of tissue; long T1 times are given by dense structures and watery fluids, while

viscous fluids possess the shortest T1 times. The recovery of longitudinal magnetisation

may be described by the following equation (Brown et al., 2014):

Mz = Mz(0)e
− t/T1 +M0[1− e− t/T1] (3.6)

where Mz(0) is the longitudinal magnetisation at the time of the excitation pulse and t

is the elapsed time from the excitation pulse.

T2: spin-spin

The initial transverse magnetisation Mxy induces a sinusoidal signal in the receiver coil

that becomes damped as Mxy relaxes, known as the free induction decay (FID) envelope

(figure 3.4). The T2 relaxation time of a tissue is the time taken for the FID envelope to
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Figure 3.4: (a) Precession of the flipped magnetization in the transverse plane. (b) Signal induced
in the receiver coil – the Free Induction Decay (FID) envelope. Figure reused with permission from

(McRobbie et al., 2002).

exponentially decay to 37% of the peak level following the excitation pulse. Transverse

magnetisation decay occurs due to macromagnetic inhomogeneities in the local magnetic

field of the tissue causing spin ensembles to lose phase coherence, thus earning the moniker,

spin-spin relaxation. The decay of transverse magnetisation due to T2 effects may be

described by the following equation (Brown et al., 2014):

Mxy = Mxy(0)e
− t/T2 (3.7)

Loss of phase coherence occurs faster in tight structures able to support local magnetic

field variations, and slower in free moving amorphous structures. Thus, dense structures

such as bone exhibit very short T2, while fluids such as cerebrospinal fluid (CSF) exhibit

long T2. Dephasing may also be caused by inhomogeneities in the applied magnetic field

B0, characterised by the time constant T’. The transverse magnetisation decay constant

due to both intrinsic and extrinsic inhomogeneities is termed T2*, and is always shorter

than T2. T2* is related to T2 and T’ by

1

T2∗
=

1

T2
+

1

T2′
(3.8)

T1 is typically on the order of 5 to 10 times longer than T2 (see table 3.1); the difference

in decay time of longitudinal and transverse magnetisation in the same tissue is depicted

in 3.5. While both longitudinal recovery and transverse decay occur simultaneously, Mxy

decreases significantly faster.
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Figure 3.5: T1 and T2 decay for the same tissue. T1 recovery is on the order of 5-10 times longer
than T2, although they both occur simultaneously. Figure reused with permission from (McRobbie

et al., 2002).

The tuning of various imaging parameters in an MR pulse sequence makes use of these

differences in the T1 and T2 constants of different tissues in order to obtain the desired

tissue contrast.

Tissue T1 (ms) T2 (ms)

Grey matter 1820 100
White matter 1084 70
Cerebrospinal fluid 4163a 500b

Fat 371 133
Blood 1932 275

a. Value retrieved from (Lin et al., 2001)
b. Value retrieved from (Piechnik et al., 2009)

Table 3.1: Approximate values for T1 and T2 at B0 =3T and 37◦ (Stanisz et al., 2005).

3.2.2 MRI pulse sequence parameters

There are many different pulse sequences used in MRI to emphasise differences in proton

density, T1 times, and T2 times of tissues. There are several important parameters

employed to this effect that vary depending on the imaging objective.

The repetition time (TR) is the period of time between excitation pulses, during which T1

recovery and T2 and T2* decay occur. The length of TR varies depending on the pulse

sequence employed, and may be on the order of milliseconds to thousands of milliseconds.

The echo time (TE) is the time between the excitation pulse and the peak amplitude of

the FID echo. The echo is produced by applying a 180◦ inversion pulse at TE/2, causing
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Figure 3.6: Spin echo pulse sequence diagram, demonstrating the repetition time TR between
excitation pulses and the echo time TE. A 180◦ pulse is applied at time TE/2 to produce the echo

at TE.

rephasing of the spins and subsequent regrowth of the FID envelope, producing an ‘echo’

with peak amplitude at time TE. This is known as a spin echo pulse sequence (figure

3.6). Some pulse sequences use magnetic field gradients in place of an inversion pulse to

produce an echo; in these sequences, a negative magnetic field gradient applied directly

after the 90◦ RF pulse causes rapid loss of phase coherence, which is then reversed by

switching the polarity of the applied gradient. When the effects of the negative gradient

have been completely reversed by the positive gradient, an echo is produced; however,

this and subsequent echoes will decay exponentially according to T2*, as the gradients

do not correct for the effects of intrinsic and extrinsic magnetic field inhomogeneities (T2

and T2* effects). This sequence is known as a gradient echo sequence.

The inversion time (TI), employed in inversion recovery sequences, is the time between

the 180◦ inversion pulse and a 90◦ readout pulse that converts the recovered longitudinal

magnetisation to transverse magnetisation. Subsequently, an additional 180◦ pulse is

required at TE/2 to refocus the transverse magnetisation and generate the echo of the

readout pulse. Careful selection of the TI may be used to nullify the signal of certain

tissues, and is selected according to the T1 relaxation time of the undesired tissue.

3.2.3 Spatial localisation

MR signal localisation is achieved through the use of magnetic field gradients superim-

posed over the main field B0, that induce position-dependent changes in precessional

frequency and phase of the spins within that gradient. Magnetic field gradients are pro-

duced within the magnet bore by a 3-axis gradient system, wherein three magnetic coils

directed along each of the x, y and z directions produce magnetic gradients Gx, Gy and

Gz, which spatially modify the magnetic field within the bore. The magnetic field strength
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Figure 3.7: Gradient echo pulse sequence diagram, demonstrating the creation of an echo using
reversed polarity magnetisation gradients. The magnetisation gradients decrease or increase the
precessional frequency of the spins depending on their spatial position within the gradient, causing
rapid loss of phase coherence. Phase coherence is re-established using a magnetic field gradient of

reversed polarity applied for an equal amount of time, producing an echo.

in the z-direction experienced by a spin at position (x,y,z) within this net gradient is thus

(Brown et al., 2014):

B̄ = (B0 +Gxx+Gyy +Gzz)ẑ (3.9)

There are three gradients applied over the course of a pulse sequence; the slice select

gradient (SSG), the frequency encode gradient (FEG) and the phase encode gradient

(PEG).

Slice select gradient - Gz

The slice select gradient is applied concurrently and in the same direction as the RF

excitation pulse to select an imaging slice in the z-direction. Application of Gz causes a

shift in resonant frequency of the spins in the z-direction following the linear variation of

the gradient. Given that the RF pulse confers energy only to those spins precessing at

the defined centre frequency, the frequency shift will result in spin excitation limited to a

specific slice within the gradient. The following equation describes the spatial dependency

of the spin resonant frequency (MHz T−1) within Gz (McRobbie et al., 2002):

f(z) = γB(z)

= γ(B0 + z ·Gz) (3.10)
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The width of the slice is determined by the strength of the magnetic gradient across the

FOV and the bandwidth (BW) of the excitation pulse:

width =
BW

γGz
(3.11)

Thus the same slice width may be achieved using a narrow BW as a wide BW, by altering

the SSG strength accordingly. A narrow bandwidth is generally desired, due to the inverse

relationship of bandwidth with signal to noise ratio (SNR ∝ 1√
BW

). However, the wide

slice widths required to image a desired volume would necessitate a low gradient strength,

which may result in chemical shift artifacts (Bushberg et al., 2012). The width of the SSG

is thus a matter of trade-off between the desired SNR and the propensity for chemical

shift artifacts in the image volume.

Frequency encode gradient - Gx

The frequency encode gradient, or readout gradient, is applied perpendicular to Gz during

the growth and decay of the induced echo. Either of the orthogonal directions may be

chosen, but here it is defined in the x-direction as Gx. The frequency encode gradient

causes the precessional frequency of the spins within the selected slice to vary according

to their position on the x-axis. Acquiring the signal of the echo simultaneously with

application of the readout gradient thus assigns spatial information in the x-direction to

detected signal intensities.

Phase encode gradient - Gy

Lastly, the phase encode gradient induces a frequency shift in the y-direction, resulting in

a spatially dependent phase-shift when the gradient is turned off and all spins revert to

the resonant frequency. Applied prior to signal acquisition, this enables readout of spatial

information in y based on the degree of phase shift experienced by the spins. A ‘rewinder’

gradient of opposite polarity is generally applied after signal acquisition to re-establish

phase conditions prior to the next excitation.

Multiple phase and frequency encode steps are applied with incremental changes in field

strength to acquire the MR signal produced by different tissues, the frequency of which will

be dependent on the parameters used in the sequence. This method of image construction

is known as filling k -space.
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3.2.4 Image encoding in k-space

The encoding of MR signal into an image is dependent on the frequency and phase encode

gradients (Gx and Gy). The phase shift θ accumulated by the spins over time is dependent

on the position (x, y) within the applied gradients, and is proportional to the integrated

area of Gx and Gy, such that (Pipe, 2009):

θ = 2π(kx + ky) (3.12)

where

kx = γ

∫
Gx(t)dt (3.13)

ky = γ

∫
Gy(t)dt (3.14)

The net magnetisation across a slice as a result of the frequency and phase encode gradients

may be represented as a function f(x, y). Thus, the signal s(t) measured by the receiver

coil is the integrated signal from all excited spins within the slice, expressed as the Fourier

transform:

s(t) = F (kx, ky) =

∫
f(x, y)ei2π[kxx+kyy]dxdy (3.15)

The signal is dependent on the net magnetisation f(x, y), and the variables kx and ky, and

may be written F (kx, ky). Taking the inverse fourier transform of F for a sufficient variety

of kx and ky allows the function f(x, y) to be recovered - this function then produces the

MR image. Sampling signal frequencies F as a function of kx and ky is known as filling

k -space.

The sampling of signal for different values of kx and ky is accomplished by manipulating

the gradient strength while the receiver coil current is being measured, populating signal

measurements in k -space relating to the selected slice. In an image f, low values of k

represent the lower spatial frequencies (making up most of the image), while high values

of k reflect high frequencies (found at edges and details). The filling of k -space follows
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measurement trajectories determined spatially by the sequence in which kx and ky are

varied, with acquisition speed dependent on gradient amplitude.

The k -space trajectory forms an important parameter affecting final image quality and

resolution, with different pulse sequences approaching this in different ways to obtain the

desired contrast with minimal artefacts, while optimising scanning efficiency. A standard

approach in most clinical MR sequences is to fill one line of k -space (a single ky position)

per TR by changing the area of Gy, requiring a number of ‘shots’ to produce an image.

Fast sequences such as echo-planar imaging (EPI) fill multiple or even all lines of k -

space in a single shot by oscillating the frequency encoding gradient Gx, while slowly

moving along ky. While this method greatly reduces the time to acquire a full image, the

necessarily long TR makes EPI sequences vulnerable to image artefacts from magnetic

field inhomogeneities. These effects are discussed later in the chapter in the context of

diffusion-weighted imaging, a widely used application of EPI.

3.2.5 Relevant MRI techniques

3.2.5.1 Structural T1 weighted MRI

T1-weighted acquisitions, such as 3D spoiled gradient recalled echo acquisition (3D SPGR),

maximise the differences in T1 characteristics of tissues and minimise the differences in T2

characteristics (see figure 3.1) using short TR and TE. Due to the short TR, T2* effects

dominate and allow a build up of transverse magnetisation to occur in tissues with long

T2 times. These steady-state contributions are prevented in 3D SPGR by introducing a

semi-random phase change in subsequent RF excitation pulses in the acquisition. This

shifts the residual transverse magnetisation components out of phase, preventing build

up of the transverse steady-state signal and effectively removing T2* effects from the

acquisition(Bushberg et al., 2012, Chapter 12). This leaves a T1-weighted image with 1

mm isotropic resolution and good contrast rendition of grey and white matter acquired

over a very short TR, with very low contribution from CSF.

Grey matter volume from T1-weighted MRI

The good contrast between grey matter and white matter offered by T1-weighted MRI

allows the estimation of several measures pertaining to grey matter morphology, namely
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cortical thickness, cortical surface area and grey matter volume. These measures are cal-

culated in this thesis using the surface-based parcellation package offered by FreeSurfer

(FreeSurfer, 2017; Fischl et al., 1999; Dale et al., 1999). Following initial pre-processing,

the structural image is parcellated into its constituent tissues using a series of algorithms

and atlases, wherein the skull is stripped, white matter segmented and grey matter bound-

aries with white matter (white surface) and cerebrospinal fluid (pial surface) defined.

Cortical thickness is calculated as the shortest distance from the white surface to the pial

surface at each vertex across the cortical mantle, measured in millimeters. To measure

cortical surface area, the natural folds of the cortical ribbon are inflated and mapped onto

a spherical coordinate system, and registered to a surface atlas of 68 regions-of-interest

(34 ROI per hemisphere) based on the geometry of the inflated gyri. The pial surface area

(in mm2) of each ROI is automatically calculated at this step. The grey matter volume

is estimated as the product of the cortical thickness and the pial surface area, which may

be obtained for each ROI or summed to give a global estimate of cortical grey matter

volume (mm3). This measure of grey matter volume is applied in cross-sectional analysis

in relation to cortical amyloid deposition in this thesis.

3.2.5.2 Proton density weighted MRI

Proton density weighted MR imaging highlights the differences in the number density

of protons in magnetised tissues. This is done by minimising the differences in signal

caused by the T1 and T2 characteristics of the different tissues in the imaging slice (3.1).

Choosing a long TR allows the longitudinal magnetisation to recover for all tissues, thus

reducing the effect of T1 characteristics. Choosing a short TE minimises T2 and T2*

effects as it does not allow enough time for significant transverse magnetisation decay to

occur.

3.2.5.3 Arterial Spin Labelling

Arterial spin labelling (ASL) is a non-invasive method for quantitative measurement of

perfusion, eliminating the need for potentially harmful exogenous or intravenous radio-

tracers such as those used in PET imaging (Dai et al., 2008).
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Figure 3.8: A very simple representation of the ASL quantification process. Subtracting the
difference image (tagged blood water - no tag) given by ASL from the control (proton density
weighted M0) image given yields a quantified measure of perfusion, cut to include only the brain
volume. This process includes the consideration of many factors not represented in this graphic (see

equation 3.16).

ASL methods acquire perfusion data through the use of external RF and magnetic field

gradient pulses applied across a chosen labelling plane. The RF and gradient pulses invert

the magnetic spins of water molecules in the feeding arteries within the labelling plane,

which then flow into the imaging volume. The longitudinal magnetisation of the tagged

blood water entering the image volume acts in the opposite direction to the non-labelled

tissue magnetisation, causing a reduction of the longitudinal magnetisation in that region.

Areas of high perfusion thus see a greater reduction in signal, captured by the so-called

difference image. Subtracting the difference image from a proton-density weighted image

acquired without any labelling (M0) is used to produce a quantified measure of the cerebral

blood blow through the volume.

Methods of ASL acquisition usually fall into the ’pulsed’ and ’continuous’ categories,

depending on how the blood water is labeled - pulsed ASL (PASL) inverts spins using a

single applied RF pulse, while continuous ASL (CASL) inverts spins as they pass through

a continuous RF field, applied across the labelling plane. PASL has the advantage of

increased efficiency and multi-slice imaging capability, while CASL is able to achieve a

higher signal-to-noise ratio (SNR), however specialist hardware is required to operate

RF pulses in continuous mode (Dai et al., 2008). Pseudo-continuous ASL (P-CASL),

a combination of the two strategies using both pulsed RF and gradient fields, is able

to achieve the flow-driven adiabatic inversion strategy without the need for specialist

hardware. This is the acquisition mode used in this study.

An estimate of the CBF within each voxel is quantified from ASL signal based on the

equation:
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cbf = 6000 ·

(
λ ·
(
1− e( − 2/1.2)

)
· e(w/T1)

2 · T1 ·
(
1− e( − 1.5/T1)

)
· ε

)
·

(
diff

(g · nex) · cont

)
(3.16)

where λ is the brain-blood partition coefficient of water, set to the whole brain average

of 0.9; w is the post-labelling decay time, which is 1.525 seconds in this study; T1 is the

spin-lattice relaxation time of blood, set to 1.6 seconds at 3T; ε represents the combined

efficiency of labelling and suppression in the acquisition sequence, defined as 0.8*0.75;

the constants 1.5 and 2 represent the labelling and background saturation/suppression

time in seconds respectively, with the suppression time corrected for the T1 time of grey

matter (1.2 seconds); diff and cont are image matrices containing the voxel values of the

difference (tagged - no tag) and control (M0) images; NEX is the number of excitations

or signal averages, set to 5. The quantified perfusion values are scaled by a factor of 6000

to convert L/kg/s to ml/100g/min.

3.2.5.4 Diffusion weighted MRI

Diffusion-weighted imaging makes use of the variation in T2* signal that arises in differ-

ently structured tissues, that is, the rate of decay of water signal due to extrinsic and

intrinsic field inhomogeneities. The diffusion of water molecules in neural tissue, while

essentially isotropic in nature, is influenced by the presence of cell membranes, cytoskele-

ton, and macro-molecules (Basser & Özaslan, 2009), such that movement through tissue

architecture is hindered in recognisable ways. As a water molecule diffuses through neural

tissue during an MR sequence, T2* signal will be lost proportional to the ease of that

diffusion, thus very little signal will remain in watery tissues such as CSF, and high signal

will remain in complex or dense structures such as white matter or bone.

This thesis uses a spin echo EPI (SE-EPI) sequence to acquire diffusion images. This can

be considered a modified spin echo sequence (figure 3.6), with the addition of a bipolar

diffusion weighting gradient following initial excitation, and a series of oscillating phase

and frequency encoding gradients at readout following the 180◦ echo pulse. Diffusion signal

is obtained in an MR acquisition by first acquiring at least one T2* weighted image with no

diffusion weighting applied, known as the b=0s/mm2 image (b quantifies the strength and

duration of diffusion weighting). Diffusion weighting is applied in subsequent acquisitions

using a bipolar field gradient, oriented in a different direction for each repetition.
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Diffusion weighting

Immediately following the excitation pulse, all spins are in phase. The positive gradient

causes the precessional frequency of spins on one side of the gradient to experience a

stronger magnetic field than spins on the other side, inducing a phase shift proportional

to their position within the gradient field. When the positive gradient is turned off, the

spins precess at the same frequency, but retain the phase change. With the application

of an equal (but opposite) negative field gradient, the direction of the induced phase-

change is reversed, again proportional to the spin’s position within the gradient field. If

a spin has changed location between the first and second gradient lobes, there will be a

net loss of magnetisation from b=0 due to loss of phase, proportional to the magnitude

of displacement. T2* signal is preserved in tissues where spin motion is constrained,

and lost from freely diffusing tissues. It is important to remember that the magnitude

of this signal loss only relates to movement in the direction of the applied gradient.

For standard diffusion tensor imaging, the diffusion signal must be sampled in at least 6

different directions to ensure sufficient angular resolution, however it is common to acquire

many more - in fact, the HARDI protocol used in this thesis acquired 64 unique diffusion

directions.

Image distortion in diffusion MRI

Fast data acquisition methods are required in order to capture the decay of T2* following

diffusion weighting, therefore most diffusion imaging studies employ EPI sequences for

signal readout. As previously mentioned, these sequences are vulnerable to image arti-

facts associated with local field perturbations due to the long repetition time for each

sequence. These include: signal variation and geometric distortion in the phase-encode

direction (known as EPI distortion) due to variations in magnetic susceptibility, usually

around tissue/air boundaries or metal implants; spatial distortion or ghost images due to

field perturbations from the build up of induced eddy currents in the main or gradient

fields; and signal loss from spin dephasing over the length of the acquisition, reducing

the signal contribution from high frequencies acquired later in the readout trajectory,

causing image blur. Modern MR hardware operates parallel arrays of receiver coils to

reduce the time taken to traverse k -space in acquisition, helping to mitigate these effects.

Additionally, re-phasing gradients are commonly applied at the end of each frequency

encoding gradient oscillation to prevent the build-up of phase-incoherence. While modern
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acquisition methods have reduced the magnitude of common EPI artifacts, it is always

necessary and beneficial to apply corrections in pre-processing to minimise the impact of

these well known artifacts. Notably, the diffusion acquisition used in this thesis includes

at least one image taken in the reverse phase-encoding direction, used to correct for the

EPI distortion that occurs in the direction of phase-encoding (Andersson & Sotiropoulos,

2016; Andersson et al., 2003). Other corrections include denoising (Tustison et al., 2010),

bias field correction (Tustison et al., 2010) and removal of ring artifacts (Kellner et al.,

2016).



Chapter 4

Pre-Processing and Analysis

Methods

The field of neuroimaging research has greatly expanded as new and more sophisticated

technologies become available, with almost countless ways to examine brain structure,

function and pathology through the use of MRI, PET, diffusion imaging, single-photon

emission computerized tomography (SPECT), functional MRI (fMRI), electroencephalog-

raphy (EEG), and magnetoencephalography (MEG), among others. Different imaging

methods offer unique opportunities to probe characteristics of the human brain in vivo,

however each presents its own challenges in the path from raw image to meaningful infer-

ence. This chapter will discuss key steps from the MRI and PET pre-processing pipeline

used in this thesis, and describe approaches to analysis of neuroimaging data.

As pre-processing and analysis of high angular resolution diffusion imaging (HARDI) MRI

data required a highly specialised approach, this will be discussed in the HARDI chapter

(Chapter 7).

4.1 Pre-processing of neuroimaging data

Pre-processing of PET and MR image data in this study was carried out using using

CAT12 (r934, (Gaser, 2020)), a toolbox of Statistical Parametric Mapping (SPM12)

(v6685, (FIL, 2016)), in MATLAB (v9.0.0 [R2016a]), designed specifically for the analysis

of brain images.

47
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4.1.1 Coregistration and normalisation

In order for inter- or intra-subject voxel-wise analysis to take place, subject image data

must first be pre-processed to align all images into a common anatomical space, accounting

for individual differences in brain shape, size, and location in the scanner geometry. Spa-

tial alignment of image data is generally performed over several steps, known collectively

as co-registration and normalisation. Co-registration generally refers to the mapping of

within-subject data to a structural image of high anatomical resolution, while normali-

sation refers to the spatial warping of inter-subject data to a common anatomical space.

Both are required in order to extract robust comparisons across the whole brain from

image data spanning multiple modalities.

Co-registration

Within-subject co-registration to structural MRI is achieved using an iterative least

squares approach, optimising a 6 parameter rigid body (affine) spatial transformation

(Ashburner et al., 2015). Transformation parameters are estimated to best match the

input image to the structural reference image by convergence to selected matching crite-

rion, in this case mutual information (MI) of voxel pairs (Collignon et al., 1995). MI is a

measure of the mutual dependence of two variables and is assumed to be maximised when

the two images are in register. In order to obtain faster convergence, the images and the

histogram were smoothed slightly by the routine to make the cost function as smooth as

possible (Ashburner et al., 2015). This also reduced the chance of the algorithm getting

caught within local minima.

Normalisation

Spatial normalisation to standardised space is a multi-step process that involves some

initial processing of the structural image, in order to reduce the effect of noise and bias,

estimate tissue segments, and produce individual subject warp fields, that may then be

used in normalisation. Segmentation of the brain into the main tissue classes (grey matter,

white matter, cerebrospinal fluid and bone) is an important step in quantitative morphol-

ogy, as many brain structures are anatomically defined by the boundaries of these tissues.

It is important that warp fields are informed by these segments in order to accurately

warp specific structures, and retain individual anatomical characteristics in normalised

space.
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The CAT12 processing pipeline includes denoising, internal resampling, and bias correc-

tion, and obtains a starting estimate of tissue segments using unified tissue segmentation

(Ashburner & Friston, 2005). Unified segmentation is initialised using maximum like-

lihood (ML) estimation from standard tissue probability maps (TPMs). The output

segments from this step merely provide a starting point for more refined segmentation,

that will ultimately be performed independent of tissue priors. This has the benefit of

being less sensitive to tissue-specific noise, as can occur in segmentation via maximum

likelihood estimation.

The output from unified segmentation is first skull-stripped, parcellated into the left and

right hemisphere, subcortical regions and the cerebellum, and a local intensity normalisa-

tion applied within each parcel to reduce the effect of artifactual tissue-specific variation.

Final tissue segmentation is performed using an adaptive maximum a posteriori (AMAP)

model (Rajapakse et al., 1997), refined by partial volume estimation of the tissue fraction

within each voxel (Tohka et al., 2004). The AMAP segmentation method avoids the use

of tissue priors by applying an iterative conditional model, where initial model parameters

are estimated using local information from the image data, and the output segmentation

then informs the model parameters for the next iteration.

The segments are then spatially normalised to the corresponding segments in MNI space1

using DARTEL (Diffeomorphic Anatomical Registration using Exponentiated Lie algebra

(Ashburner, 2007)). The spatial deformations required to align an individual set of seg-

ments to MNI space are output by DARTEL as a subject-specific warp field, which may be

applied within SPM to any image that has been co-registered to subject structural space

to warp that image to standard space. This ensures voxel-level correspondence across the

study-dataset.

The normalisation of image data may be applied with or without modulation. This refers

to a rescaling of the spatially normalised image by the Jacobian determinant of the defor-

mation (Ashburner et al., 2015), in order to compensate for any dilution/concentration

of image intensity that may arise from spatial normalisation. It is a good idea to apply

this when normalising structural images such as the grey matter segments, so that total

tissue volume is preserved, however modulation of lower resolution or non-structural data

1The current standard MNI template used in this study is ICBM152, an average brain template of
152 MRI scans of normal brains registered by a 9-parameter affine transformation to the previous MNI
template, MNI305 (created from the average of 305 normal brains registered to the Talairach Atlas). MNI
space has largely replaced Talairach coordinates as the standard template for brain image normalisation.
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may result in a loss of disease-related image variance. In this thesis, grey matter images

are normalised to standard space with modulation, while quantified ASL MRI and FBB

PET are normalised without.

Note that the co-registration and normalisation methods described here are not applied

in the pre-processing of HARDI data for fixel-based analysis (FBA), as direct voxel-wise

comparisons are not being carried out between HARDI and the other imaging data-

sets. HARDI subject data are co-registered to a study-specific space without the use

T1-weighted MRI, which will be described in Chapter 7.

4.1.2 Quantification of PET image data

As discussed in the previous chapter (see section 3.1.6), PET images of the activity con-

centration within the brain must be normalised according to whole body activity and

individual variance in non-specific and unbound radiotracer fraction. Converting spa-

tially normalised PET image data to standard uptake value ratio (SUVR) allows between

subject comparison and inter-modality correlation analysis. Here the reference region was

chosen as the whole cerebellum (Bullich et al., 2017), as recommended by the Centiloid

Working Group for later conversion to centiloids (CL) (Klunk et al., 2015). This thesis

uses the Centiloid project whole cerebellum and standard centiloid cortical grey matter

masks for extraction of mean voxel values from the cerebellum and grey matter cortex

respectively.

The creation of SUVR images from spatially normalised images of FBB radioactivity is

carried out using SPM PET, and is relatively straightforward. Firstly, the average activity

concentration within the voxels defined by the whole cerebellum mask is extracted. All

other values within the PET image are then normalised to the mean within this reference

region, giving the SUVR image. Mean SUVR values in selected regional ROI may be

extracted following the same process used for the reference region, for analysis of regional

amyloid deposition.

The SUVR images are then converted to CL, by first applying a method-scaling factor

(derived in centiloid calibration, see section 5.6.4) to account for a non-standard acquisi-

tion and processing method, followed by scaling to CL using the FBB-to-CL conversion
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equation (C. C. Rowe et al., 2017). Mean cortical values of both SUVR and CL are ex-

tracted from the standard centiloid cortical region - these values are thereafter referred

to as global values for SUVR and CL respectively. In order to carry out whole-brain

voxelwise analysis, images must be smoothed to reduce the proportion of residuals ex-

hibiting non-normal distribution, and to reduce the effect of any remaining inter-subject

misalignment. The amount of smoothing applied is a matter of trade-off between spatial

resolution and normality of the data. Here, an 8 mm isotropic Gaussian kernel is used to

smooth images.

4.2 Statistical analysis in Neuroimaging

There are many ways to approach analysis of neuroimaging data, and methods must be

carefully considered based on the data type and analysis objectives. In neuroimaging, the

goal may be classification, prediction, treatment response, or determining the functional,

pathological or structural basis for a particular neurological disease or psychiatric disorder.

To that end, studies often investigate many aspects of the clinical disease picture, such

as cognition, learning and memory, structural connectivity, functional connectivity or

localisation through response to stimuli or task performance, resting state brain function,

language, or mood. Here, I investigate brain structure and pathology as it relates to

measures of cognition and risk of developing dementia, with the overall future objective

to be able to classify or predict cognitive impairment in PD from imaging data. Robust

statistical methods are required to extract meaningful inferences from highly complex and

often vast amounts of data, and in some cases facilitate inter-modality comparisons.

4.2.1 The general linear model

Statistical tests of association are typically based on variations of the general linear model

(GLM). The GLM refers to a group of statistical analysis methods centred on inferential

tests of hypothesis or analysis of variance (Friston et al., 2007). Analysis of variance and

multiple regression analysis are both implementations of the GLM. More generally, the

GLM also includes a number of types of analyses; these include simple t-tests, one-way

ANOVA or more complex correlation and linear regression analyses.



Chapter 4 - Pre-processing and Analysis Methods 52

4.2.1.1 Mathematical basis of the GLM

The core idea behind the GLM is that an observed response variable Y may be expressed

in terms of a linear combination of independent explanatory variables X, weighted by an

optimised coefficient β, plus a well behaved error term ε, usually representative of noise

in the dataset (Friston et al., 2007). The basic form of the GLM for the ith observation

in Y , in the case of p multiple regressors, is as follows:

yi = β0 + β1Xi,1 · · ·+ βpXi,p + εi (4.1)

where β0 is a dummy variable providing an intercept. This can be written in matrix form

as:

y = βTX + ε (4.2)

where the intercept and coefficients to be estimated are gathered within the transpose of

the weight matrix, βT . The goal of linear regression is to compute the coefficient values

βTX, or model parameters, that achieve the best fit of the model given by the design

matrix X to the observed set of data points y.

The GLM is heavily dependent on the form of the design matrix X, wherein the columns

of explanatory variables correspond to experimental confounds or covariates. Columns

are defined as confounds or components of interest by the form of the contrasts applied

within the GLM. For example, a multiple linear regression of the amyloid FBB PET data

with subject cognitive score may be performed by accounting for any variation in voxel

intensity related to age and sex, as these are known confounds in brain perfusion, and

testing for a positive association between FBB PET data and cognitive score. Significance

on this contrast would thus indicate a positive correlation of the data with cognitive score,

accounting for age and sex. The form that the design matrix of the GLM takes allows

for a wide variety of study designs, and is employed in this thesis to investigate group

differences, as well as association with continuous metrics.
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Methods of estimating the model parameters, and thus formulating statistical inferences

from the GLM, generally fall into either the ’frequentist’ or ’Bayesian’ category, which

are primarily distinct in terms of their treatment of probability.

4.2.2 Frequentist vs. Bayesian regression analysis

The choice of frequentist or Bayesian inference methods is one that must be made based

on the known properties and limitations of the data, with both providing advantages and

drawbacks in certain situations. It is useful to consider both approaches, and decide which

is appropriate.

Frequentist regression

The frequentist approach to linear regression is based on long-run sampling frequencies,

such that the probability of an event occurring is representative of the number of observa-

tions of that event within a population. In the context of multivariate regression analysis,

unknown parameters are assumed to have a fixed non-random value, and the model at-

tempts to obtain point-estimates of those values (with associated error estimates), given

knowledge about the population - that is, the probability of the data, given the model.

A frequentist may approach solving the GLM given by equation 4.2 by obtaining the

parameters βT that minimise the squared residual differences (SRD) between the known

data-points y and the estimated model outputs ŷ:

SRD(β) =
N∑
i=1

(yi − ŷ)2 =
N∑
i=1

(yi − βTxi)2 (4.3)

thus the summation is given by, and dependent on, the number N of training data points.

There is assumed to be one ‘true’ solution for the parameters β that minimise the error

- however, as this cannot be known exactly, we estimate the most probable β given the

inputs X and outputs y. The solution to equation 4.3, giving an estimate of the model

parameters β̂, takes the form:

β̂ = (XTX)−1XT y (4.4)
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This is known as ordinary least squares (OLS) estimation. This method thus gives a single

estimate for the model parameters, fitting the chosen design matrix, based only on the

training data points in y. New data points may then be estimated by simple application

of the predictive model, ŷ = β̂TX.

For sufficiently large sample sizes and relatively simple model designs, a frequentist ap-

proach is an efficient method of accurately estimating effects within the data. These

models are also relatively easy to interpret by way of generated p-values, where given

that the null hypothesis is true, the p-value represents the probability of obtaining results

as extreme as the observed results. Sufficient evidence to reject the null hypothesis is

assumed when p-values are less than a selected cut-off, by convention, p < 0.05, 0.01, or

0.001, such that there is 95%, 99% or 99.9% confidence in the result, respectively. How-

ever, this method assumes that all information required to accurately estimate the model

parameters is contained within the data, and in the context of small sample sizes (as in

many neuroimaging studies) or increasing model complexity, a frequentist approach can

lead to nonconvergence, inadmissible parameter solutions, or inaccurate estimates (Smid

et al., 2020).

In these instances, a better estimate may be obtained if the model is supplied with addi-

tional information. Bayesian regression achieves this with the use of prior information.

Bayesian regression

A Bayesian model instead assumes the model parameters to have a probability distribution

rather than a fixed value. For an observed set of data points, there exists a set of solutions

given by the so-called posterior probability distribution - the probability of the model,

given the data.

As an example, the observed data points y may be assumed to be generated by a normal

(Gaussian) distribution:

y ∼ N(βTX,σ2I) (4.5)

where the distribution is characterised by a mean (given by the product of the transpose

correlation matrix βT and the design matrix X) and a variance (given by the square of

the standard deviation σ in matrix form). Here, the goal is to determine the posterior
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distribution of the model parameters that best explains the probability distribution of

the data, given some prior knowledge about the form the posterior should take. Bayes

theorem states that the posterior distribution is equal to likelihood of the data, multiplied

by the prior probability of the posterior, and divided by a normalisation constant:

Posterior =
Likelihood× Prior
Normalisation

(4.6)

Or, more formally:

P (β|y,X) =
P (y|β,X)× P (β|X)

P (y|X)
(4.7)

The use of prior information is important for low numbers of data points, where the

probability distribution of the data contains less information to inform the model. De-

riving the full shape of the posterior distribution involves randomly sampling posteriors

in parameter space, and allowing the estimate to change as more evidence is gathered.

The prior estimate provides an original starting point for this process, and subsequent

posteriors are selected to improve the estimate through a method known as Markov chain

Monte Carlo (MCMC). MCMC algorithms sample random posteriors in parameter space,

selecting a posterior only if it improves upon the model estimation from the previous step,

thus a chain of posteriors is formed. All points have an equal chance of being sampled,

thus the density of accepted points in the estimated posterior distribution is more likely

to be proportional to the actual posterior distribution. Furthermore, as the number of

data points in the sample increases, the posterior estimation becomes less dependent on

priors and the solution converges to that given by the frequentist approach. However, if

one is confident in the chosen prior applied to the data, this can be a robust method of

estimating model parameters for small data sets.

The output of a Bayesian model fit is a distribution of possible parameters based on the

data and the prior, where the uncertainty in our estimation is quantified by the range of the

distribution, known as the credible interval (CI), somewhat analogous to the confidence

interval in frequentist statistics. Here, the 95% credible interval for a parameter is the

range of values for which the subjective probability of the parameter lying between those

values is 95%, considered in this context to convey strong evidence. Thus, a positive
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or negative net effect given by a parameter, where the 95% CI does not include zero,

conveys strong evidence for the existence of the effect (or is ’significant’ from a frequentist

approach), suggesting an association between the independent variable and the response

variable.

It should be noted that, while there may be a ‘significant’ effect associated with a vari-

able, the range of possible values within the 95% CI might be large, representing a large

uncertainty in our estimation of the effect. It is useful to evaluate predictive model fits to

the data using analytic methods, such as by evaluating leave-one-out information criterion

(LOOIC). In R, the output of leave-one-out cross validation gives the estimated predic-

tive accuracy of a Bayesian model fit (expected log predictive density, denoted elpdloo),

and the approximate standard error (SE). The LOOIC is simply -2*elpdloo (converted to

deviance scale). These values take on meaning when compared against the output from

another model - a lower LOOIC score, by at least twice the standard error of the estimated

difference between the two models, indicates a model with a better fit. This process will

be used to compare different models to determine the importance of individual predictors.

In this thesis

Both frequentist and Bayesian methods are used for statistical analysis in this thesis.

Simple group differences and voxel-wise analysis with minimal covariates are investigated

using a frequentist model, and a Bayesian method is used to generate more complex

predictive models, investigating the effect of multiple continuous variables.

Bayesian model estimation is performed in this thesis using the “brms” (v2.2.0) package

(Bürkner, 2017), and model comparison was carried out using the loo package (Vehtari

et al., 2015, 2016) in R (v3.4.4).

4.2.3 Parametric and non-parametric statistical inference

This study used both parametric and non-parametric methods for voxelwise statistical

inference. The difference between the two rests on certain distributional assumptions

(or lack thereof) made by each method, the fulfilment of which affects the power of each

method to obtain significant results. Parametric methods assume that the data and model

residuals come from a population that follows a known probability distribution, described
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by a fixed set of parameters. Non-parametric methods do not make distributional as-

sumptions and allow these parameters to change, and thus may supervene in terms of

sensitivity when distributional assumptions are violated. This may occur when degrees of

freedom are small and voxel sizes are large in relation to smoothness. Should the probabil-

ity distribution assumptions remain true, parametric methods yield greater accuracy and

sensitivity and require less computing power, but are regarded as somewhat less robust

in a general sense.

In this thesis, non-parametric methods are used in the voxel-wise analysis of image data,

performed using a permutation-based inference tool. For each contrast, the null distri-

bution is generated over 5000 permutations, corrected for multiple comparisons using a

family-wise error correction method known as threshold-free cluster enhancement (TFCE)

(Winkler et al., 2014).

4.2.4 Principal Component Analysis

Principal component analysis (PCA) is a data reduction method based on orthogonal

linear transformation, wherein a large number of correlated variables are transformed to

give a smaller number of uncorrelated principal components. The objective when using

PCA is to achieve useful dimension reduction by extracting a few principal components

that describe most of the variance with the least loss of information (Razifar et al., 2009).

The data is shifted onto an axis that best fits the variance, and a set of uncorrelated

eigenvectors are formed to describe the data according to this new axis. The eigenvectors

along which the variation in the data is maximal are known as the principal components

(PCs) (Ringnèr, 2008). The number of PCs will initially equal the number of samples in

the data, and the associated size of the eigenvalue represents the amount of unit variance

encompassed by that PC. The first few principal components usually account for much of

the variance within a data-set, thus the remaining principal components may be rejected

to reduce dimensionality without significant loss of information(Razifar et al., 2009). The

number of principal components chosen is often done based on the number of components

that represent a certain percentage of the variance. By convention, this is usually in the

range of 70%-90%, however in the case of high dimensionality of the sample this may

result in an overly large number of necessary PCs, and the percentage should be set

lower (Jolliffe, 2002). Another method is by selecting only those components that have
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an eigenvalue greater than 1, representing a non-trivial contribution of that PC in the

overall data variance. Both methods are somewhat arbitrary, and decisions should be

made based on the data and extracted PCs (Jolliffe, 2002).

This thesis aims to select the principal components of the baseline amyloid FBB data that

represent at least 70% of the total variance in the data. The relative expression of each

component within each subject is examined in Bayesian regression analysis to determine if

the variance they represent within each subject is statistically associated with the variable

of interest, in this case, conversion to dementia during longitudinal follow-up. Thus, PCA

represents another method of spatially analysing amyloid deposition, that may be more

sensitive to existing patterns within the data than direct voxel-wise methods.

4.2.5 Survival analysis

Survival analysis refers to a set of statistical models used to evaluate duration of time until

the occurrence of an event of interest. While the classic application of survival analysis

is concerned with survival to a time t after a disease diagnosis, one can also examine the

effect of variables of interest on the probability of an individual experiencing an event

(not necessarily death) at time t. This is known as the hazard probability, investigated

using Cox proportional hazards regression analysis, and can be applied to evaluate both

quantitative or categorical variables.

The Cox proportional hazards model is expressed by the hazard function, h(t), and is

similar in form to the GLM described previously. In the case of i covariates, the hazard

function may be given by:

h(t) = h0(t)× exp(b1x1 + b2x2 + ...+ bixi) (4.8)

Where t is the survival time to event, the coefficients bi of variables xi represent the effect

size of the covariates, and h0(t) is the baseline hazard, representing the risk of the event

occurring in the absence of the examined covariates.

The quantities exp(bi) are known as hazard ratios, and a value greater than 1 indicates

a positive association between the ith variable and the event hazard, and a negative

association with length of survival.
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The purpose of hazard regression in this thesis is to examine the relative risk presented by

amyloid positivity at baseline in the development of dementia over time, given observations

of conversion to dementia in our cohort over four years longitudinal follow-up. Survival

analysis was carried out using the survival (v2.44-1.1) package in R (v3.4.4).



Chapter 5

Beta Amyloid Deposition Is Not

Associated with Cognitive

Impairment in Parkinson’s

Disease

Please note

The following Chapter has been published in Frontiers of Neurology (Melzer et al., 2019),

and is presented here in journal format, with some modification. These include all sup-

plementary material and the addition of two sub-analyses that were not included in the

original publication.

The methods used for participant recruitment, neuropsychological assessment, image ac-

quisition and image processing described in Chapter 5 are also relevant to the longitudinal

arm of this study, detailed in Chapter 6.

5.1 Author Contributions

I performed the image processing, statistical analyses and interpretation of results in this

chapter, and produced the primary manuscript.
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TM and DJM contributed to image processing, statistical analyses, results interpretation,

and draft manuscript. All authors contributed to manuscript revision, read, and approved

the submitted version.

The NZBRI Study of Parkinson’s Disease

The larger study of Parkinson’s disease at the New Zealand Brain Research institute was

conceptualised and designed by TM, DJM, MM, TP, DHM, JD-A, and TA. TM, MM,

DHM, RK, DJM, LL, JD-A, and TA obtained funding for the study. RK, LL, DJM,

MM, TP, and SM provided administrative, technical, and material support. All authors

contributed to acquisition, analysis or interpretation of data.

5.2 Abstract

The extent to which Alzheimer neuropathology, particularly the accumulation of misfolded

beta-amyloid, contributes to cognitive decline and dementia in Parkinson’s disease (PD) is

unresolved. Here, we used [18F]-Florbetaben PET imaging to test for any association be-

tween cerebral amyloid deposition and cognitive impairment in PD, in a sample enriched

for cases with mild cognitive impairment. This cross-sectional study used Movement

Disorders Society level II criteria to classify 115 participants with PD as having normal

cognition (PDN, n = 23), mild cognitive impairment (PD-MCI, n = 76), or dementia

(PDD, n = 16). We acquired [18F]-Florbetaben (FBB) amyloid PET and structural MRI.

Amyloid deposition was assessed between the three cognitive groups, and also across the

whole sample using continuous measures of global cognitive status, average performance

in memory domain tests, and total grey matter volume (normalised by individual total

intra-cranial volume). Outcomes were cortical FBB uptake, expressed in centiloids and as

standardized uptake value ratios (SUVR) using the Centiloid Project whole cerebellum

region as a reference, regional SUVR measurements, and grey matter volume. Addition-

ally, arterial spin labelling (ASL) MRI of perfusion was investigated for association with

amyloid deposition using whole-brain analysis. FBB binding was higher in PDD, but this

difference did not survive adjustment for the older age of the PDD group. We established

a suitable centiloid cut-off for amyloid positivity in Parkinson’s disease (CLcut-off=31.3),

but there was no association between FBB binding and global cognitive or memory scores.
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The failure to find an association between PET amyloid deposition and cognitive impair-

ment in a moderately large sample, particularly given that it was enriched with PD-MCI

patients at risk of dementia, suggests that amyloid pathology is not the primary driver of

cognitive impairment and dementia in most patients with PD.

5.3 Introduction

Motor impairment is the cardinal feature of early Parkinson’s disease (PD), but pro-

gressive cognitive impairment and dementia (PDD) eventually become major debilitating

symptoms for patients (Aarsland et al., 2017). PDD arises in over 80% of 20-year sur-

vivors (Hely et al., 2008), leading to substantial caregiver and financial burden, reduced

quality of life, early institutionalization and premature death (Jones et al., 2017). Pro-

gression to PDD involves a complex, multisystem brain degeneration (Aarsland et al.,

2017; Irwin et al., 2013). Alzheimer’s disease (AD) neuropathology, including misfolded

beta-amyloid (Aβ), may influence the emergence of PDD by acting synergistically with

α-synucleinopathy (Compta et al., 2011; Irwin et al., 2013, 2018; P. T. Kotzbauer et al.,

2012; Lashley et al., 2008). Neuropathological investigations of Aβ suggest an association

with cognitive impairment and increased deposition in PDD, at least in a subset of pa-

tients (Compta et al., 2011, 2014; Irwin et al., 2013; Sabbagh et al., 2009; Shah et al.,

2016). Similarly, increased concentrations of Aβ in cerebrospinal fluid have been associ-

ated with cognitive dysfunction and dementia in PD (Buongiorno et al., 2011; Compta et

al., 2012; Goldman et al., 2018; McMillan & Wolk, 2016; Siderowf et al., 2010), although

some studies have not found this relationship (Dolatshahi et al., 2018; Kang, 2018). While

both neuropathological and CSF markers suggest an association with cognitive decline,

the cerebral deposition of amyloid is, however, not ubiquitous and the neuropathology

underlying the development of PDD remains heterogeneous (Compta et al., 2013; Adler

et al., 2010; K. Jellinger, 2012).

In vivo imaging of α-synuclein is currently not possible, but positron emission tomogra-

phy (PET) imaging allows an in vivo test of an association between amyloid deposits and

cognition in PD (Gomperts et al., 2013; Petrou et al., 2015). Amyloid PET imaging, how-

ever, has produced conflicting results in PD, especially with respect to cognitive decline.

Gomperts and colleagues (Gomperts et al., 2013), found no difference in amyloid accumu-

lation in the precuneus between a group of PD patients with mild cognitive impairment
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(PD-MCI) and cognitively normal patients at baseline, but the baseline presence of amy-

loid was weakly associated with cognitive decline an average of 2.5 years later, suggesting

that amyloid may be a better marker of future rather than current cognitive status in

PD. While Fiorenzato et al. (Fiorenzato et al., 2018), suggest a modest association with

cognitive decline, other in vivo amyloid imaging studies suggest that amyloid deposition

may occur in only a minority of PD patients, even in PDD (Akhtar et al., 2017; Edison

et al., 2013; Gomperts et al., 2012; Lee et al., 2018; Mashima et al., 2017; Petrou et al.,

2015, 2012; Winer et al., 2018). However, these previous PET studies have used relatively

small samples and the robustness of their findings may be compromised by low statistical

power, lack of thorough cognitive characterization, or not accounting for age.

We therefore investigated the relationship between amyloid deposition and cognitive im-

pairment in a cohort of PD participants using [18F]-Florbetaben (FBB) PET imaging.

Participants were recruited from a large, cognitively well-characterized clinical population

that included cases with normal cognition (PDN), mild cognitive impairment (PD-MCI)

and dementia (PDD). Patients meeting PD-MCI criteria are at a 7-fold higher risk of con-

version to PDD over a 4-year period compared to patients who do not meet these criteria

(Wood et al., 2016). Thus, the sample was enriched by recruiting a large proportion of

PD-MCI patients; this is a group in whom intervention to prevent progression to dementia

is particularly pertinent.

Since previous studies have suffered from inconsistent and variable standardization proce-

dures, we used centiloid scaling in the present investigation. The centiloid scale facilitates

direct comparison of amyloid deposition across different imaging centers, analysis meth-

ods, amyloid ligands (incorporating 11C- and 18F-based ligands), and diseases (Klunk et

al., 2015; C. C. Rowe et al., 2017). This is achieved by applying a linear scaling to amyloid

PET data to an average value of zero in high-certainty amyloid-negative subjects, and to

an average of 100 in typical AD subjects (Klunk et al., 2015). In this first application

of centiloid standardization in PD, we (1) investigated the relationship between amyloid

deposition and cognitive impairment in a group of well-characterized PD participants

representative of the broad cognitive spectrum, and (2) established the distribution of

centiloid values across the cognitive spectrum in PD.
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Additional sub-analyses

Cerebral blood flow measured by arterial spin labelling MRI (ASL MRI) has been reported

to show associations with cortical Aβ deposition in the context of Alzheimer’s disease and

mild cognitive impairment, in subjects ranging from cognitively normal (CN), to early

MCI, late MCI and AD (Mattsson et al., 2014). In a study of 182 participants from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Mattson et. al. reported a

reduction in CBF associated with higher amyloid load measured with [18F]-Florbetapir

within several ROI, independent of study subgroup, suggesting that amyloid deposition

and CBF may interact in healthy aging and early MCI. They noted a possible early

and late effect of elevated amyloid, with reductions in CBF occurring in early disease,

and loss of grey matter volume occurring in late MCI and dementia. Another study of

non-demented older adults (27 CN and 16 amnestic MCI) reported lower global CBF in

those displaying higher levels of amyloid measured using [11C]-PiB PET (Bangen et al.,

2017). These studies suggest that reduced CBF may be an important mechanism leading

to cognitive decline, and that this affect may be exacerbated by the presence of high

amyloid load. As our cohort is enriched for PD with mild cognitive impairment, it will be

of use to examine any possible interactive effect between CBF and amyloid that occurs in

early disease, ahead of development of dementia. I investigated both whole brain CBF,

measured with ASL MRI, and global grey matter volume in relation to abnormal amyloid

load in this cohort.

5.4 Materials and methods

As part of an ongoing longitudinal study, a convenience sample of 118 PD participants

meeting the UK Parkinson’s Disease Society’s criteria for idiopathic PD (35)(Hughes et

al., 1992) was recruited from volunteers at the Movement Disorders Clinic at the New

Zealand Brain Research Institute, Christchurch, New Zealand. We invited people rep-

resentative of the broad spectrum of cognitive status in PD to participate, i.e., from

normal cognition to dementia, although we particularly encouraged participation from in-

dividuals with PD-MCI. Exclusion criteria included atypical Parkinsonian disorders; prior

learning disability; previous history of other neurological conditions including moderate-

severe head injury, stroke, vascular dementia; and major psychiatric or medical illness

in the previous 6 months. Neuroradiological screening (RJK) excluded two participants
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with multifocal infarcts and one in whom part of the bolus injection extravasated into the

soft tissue. Participants completed a neuropsychological battery, MRI scanning session,

and [18F]-Florbetaben (FBB) PET imaging. MRI was not acquired for one subject due

to having titanium implants. A previous T1-weighted structural image obtained before

the injury was used in pre-processing. All participants gave written informed consent,

with additional consent from a significant other when appropriate. The study was ap-

proved by the regional Ethics Committee of the New Zealand Ministry of Health (No.

URB/09/08/037).

5.4.1 Diagnostic criteria and assessment

Comprehensive neuropsychological assessment fulfilling the Movement Disorders Society

(MDS) Task Force Level II criteria was used to diagnose PD-MCI (Wood et al., 2016; Lit-

van et al., 2012). Five cognitive domains were examined (executive function; attention,

working memory and processing speed; learning and memory; visuospatial/visuopercep-

tual function; and language; see table B.1 in the Appendix for tests included in each

domain) (Wood et al., 2016). Within each cognitive domain, standardized scores from

the constituent tests were averaged to provide individual cognitive domain scores; global

cognitive performance for each participant was then expressed as an aggregate z score

obtained by averaging four domain scores (language domain excluded). PD-MCI cases

had unimpaired functional activities of daily living, as verified by interview with a signif-

icant other, and scored 1.5 SD or more below normative data on at least two measures

within at least one of the five cognitive domains (Wood et al., 2016). Dementia was

defined using MDS criteria as significant cognitive impairments (2 SD below normative

data) in at least two of five cognitive domains, plus evidence of significant impairment in

everyday functional activities, not attributed to motor impairments (Emre et al., 2007).

Participants also completed the Montreal Cognitive assessment (MoCA). All assessments

and scans were performed with no disruption to participants’ usual medication regimen.

PD participants were classified as either cognitively normal (PDN, n = 23), with mild

cognitive impairment (PD-MCI; n = 76), or with dementia (PDD; n = 16). Assessors

were blinded to amyloid status.



Chapter 5 - Cross-Sectional Associations of Beta Amyloid with Cognition 66

Cognitive subgroup classification

Performance on each neuropsychological test is evaluated in terms of z-score, or the num-

ber of standard deviations (SDs) of the result from the mean in age, education and gender

normative data for that test. Normal cognitive performance is indicated by test scores

within 1.5 SDs of normative data. Failure to meet this threshold in two tests within a

single domain is sufficient to classify a patient as PD with mild cognitive impairment.

PD-MCI can also be diagnosed without this requirement, given noticeable deterioration

in cognition over time in serial neuropsychological testing, exceeding the reliable change

index (Litvan et al., 2012). In order to classify a patient as having PD with dementia,

an impairment of the participants’ ability to function in daily life unassisted must be

indicated by their significant other. A score of at least 2 SDs below normative data in any

single test within two of the five cognitive domains, in combination with impaired daily

living, is sufficient to classify an individual as PDD.

5.5 Image data acquisition

5.5.1 Magnetic Resonance Imaging

T1-weighted MRI

MR images were acquired on a 3T General Electric HDxt scanner (GE Healthcare, Wauke-

sha, USA) with an eight-channel head coil. A volumetric T1-weighted (inversion-prepared

spoiled gradient recalled echo (SPGR), TE/TR=2.8/6.6ms, TI=400ms, flip angle = 15

deg, acquisition matrix = 256 × 256 × 170, FOV = 250mm, slice thickness = 1mm) was

acquired to facilitate spatial normalization of FBB PET images. Additional T2-weighted

and T2-weighted fluid-attenuated inversion recovery (FLAIR) images were acquired to

enable a clinical read.

ASL perfusion MRI

Quantified whole brain perfusion was acquired by removing background contributions

(proton density weighted images) from spiral, fast spin echo images prepared using pseudo-

continuous arterial spin labelling (repetition time = 6 s, echo spacing 9.2 ms, post-labelling

delay = 1.525 s, labelling duration = 1.5 s, eight interleaved spiral arms with 512 samples
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at 62.5 kHz bandwidth and 30 phase encoded 5mm thick slices, NEX = 5, total scan time

= 6 min 46 s, units: ml/100 g/min) (Dai et al., 2008). These images were acquired with

the subject at rest with their eyes closed.

5.5.2 Positron Emission Tomography

[18F]-Florbetaben (FBB) was manufactured in Melbourne, Australia, by Cyclotek Pty

Ltd, and transported by air freight to Christchurch, New Zealand, with sufficient radioac-

tivity for three participant doses, despite the passage of three half-lives in transit. After

receiving an intravenous injection of 300 MBq ± 20% FBB, participants were scanned

for 20 minutes in “list mode” on a GE Discovery 690 PET/CT scanner, at 90 minutes

post-injection. Images were reconstructed using an iterative time-of-flight plus SharpIR

algorithm. Standardized uptake value (SUV), defined as the decay-corrected brain ra-

dioactivity concentration normalized for injected dose and body weight, was calculated

at each voxel. A low dose CT scan was acquired immediately prior to PET scanning for

attenuation correction. Voxel size in the reconstructed 20 min PET image was 1.2 × 1.2

× 3.2 mm3.

5.5.2.1 Classification of FBB images

Visual classification of FBB scans as positive or negative is accurate and reliable for de-

tection of cases with histology-defined plaques (Seibyl et al., 2016). A neuroradiologist

(RJK, with both in-person and e-training), blinded to cognitive status, rated each scan

as amyloid-positive or -negative. That judgment was based on the assessment of FBB

uptake in gray vs. white matter in the lateral temporal, frontal, posterior cingulate/pre-

cuneus, and parietal lobes (in accordance with the NeuraCeqTM guidelines: https://www

.accessdata.fda.gov/drugsatfda docs/label/2014/204677s000lbl.pdf). Example

images of FBB positive and negative scans, displaying either very high or very low corti-

cal uptake of FBB, can be found in figure 5.1.

An additional approach using standardized uptake value ratios (SUVR) or centiloids (see

below) was also used to categorize FBB scans. An ROC analysis [using the R pack-

age “pROC” (Robin et al., 2011)] was used to identify the optimum centiloid cut-off to

separate positive and negative scans.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf
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Figure 5.1: Example FBB PET images given in standard uptake value ratio (SUVR) normalised
to the cerebellum, overlaid on skull-stripped T1-weighted structural MRI images. Visual assessment
by a trained neuroradiologist classified these subjects as either (A) FBB PET positive, or (B) FBB

PET negative.

5.6 Image processing

5.6.1 Structural MRI

CAT12 (r934, http://www.neuro.uni-jena.de/cat/), a toolbox of SPM12 (v6685, http://

www.fil.ion.ucl.ac.uk/spm/), running in Matlab 9.0.0 (R2016a), was used to process

T1-weighted structural images (figure 5.2[A]). Images were bias corrected, spatially nor-

malized via DARTEL (using the MNI-registered template provided within CAT12), mod-

ulated to compensate for the effect of spatial normalization, and classified into gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF), all within the same genera-

tive model (Ashburner & Friston, 2005) (figure 5.2). Estimated total grey matter volume

was extracted from the segmented grey matter images and normalised by the total intra-

cranial volume (TIV) of each subject (to account for individual head-size), giving a global

measure of grey matter volume (GMvol).

Figure 5.2: Tissue segmentation and normalisation to standard space in T1-weighted structural
MRI pre-processing. Raw T1-weighted images (A) display considerable anatomical variation between
subjects. Co-registration and normalisation aligns subject anatomy with standard MNI space, and
produces tissue segments of (B) grey matter, (C) white matter and (D) cerebrospinal fluid (CSF).

http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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5.6.2 Arterial Spin Labelling MRI

ASL perfusion images were first quantified to give absolute perfusion values at each voxel,

following the quantification process described in Chapter 3, using equation 3.16. The

quantified CBF images were then co-registered to subject T1-weighted structural images

and normalised to MNI space using the MRI-derived deformation fields. Mean cortical

CBF was extracted from the standard centiloid cortical region. Lastly, CBF images were

smoothed using an 8 mm isotropic Gaussian kernel for whole-brain analysis.

5.6.3 PET data

FBB PET images were coregistered to subject T1-weighted images and normalised to MNI

space using the MRI-derived deformation fields. We then created a standardized uptake

value ratio (SUVR) image in each individual by scaling to the mean radioactivity in the

Centiloid project whole cerebellum reference region of interest. Mean cortical SUVR was

extracted from the standard centiloid cortical region. SUVR images were also smoothed

using an 8 mm isotropic Gaussian kernel for whole-brain analysis (figure 5.1).

5.6.4 Centiloid calibration

We performed a level 3 centiloid (CL) calibration to verify agreement between the ‘stan-

dard’ CL processing method (which utilized SPM8) and our ‘non-standard’ processing

method (Klunk et al., 2015; C. C. Rowe et al., 2017), which utilized CAT12 normalisa-

tion.

FBB and structural MR images in 25 elderly subjects and 10 young controls (C. C. Rowe et

al., 2017), and standard CL regions (whole cerebellum and cortex), were downloaded from

the Global Alzheimer’s Association Information Network (GAAIN: http://www.gaain.org).

We created cortical SUVR values using our non-standard CAT12 normalization method-

ology for all FBB images, following the steps outlined above. We then compared our

‘non-standard’ cortical SUVR values to the published ‘standard’ cortical SUVR values

available from the GAAIN images using a linear model, per (Klunk et al., 2015). We

demonstrated that our non-standard processing pipeline does not introduce errors into

the data, as required for correct calibration (Klunk et al., 2015). A scatter plot is dis-

played in figure 5.3, showing the relationship and linear equation linking SUVRNS (our
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Figure 5.3: Scatterplot of published ‘standard’ cortical FBB SUVR values (FBB SUVRSTD) versus
our ‘non-standard’ cortical FBB SUVR values (FBB SUVRNS) using CAT12 normalization and from
25 elderly subjects and 10 younger controls described by Rowe and colleagues (C. C. Rowe et al.,
2017) and downloaded from the GAAIN website. SUVR values were created using the Centiloid
Project whole cerebellum reference region and cortical region. The calculated linear equation was
used to correct our SUVRNS values to the standard method described by (Klunk et al., 2015).

Previously produced in Supplementary material of (Melzer et al., 2019).

processing) and SUVRSTD (standard processing (Klunk et al., 2015; C. C. Rowe et al.,

2017)). This equation was then used to convert our cortical FBB SUVRNS values to

cortical FBB SUVRSTD values; these cortical SUVRSTD values were then converted into

CL units using the FBB-to-CL conversion equation (C. C. Rowe et al., 2017) (CL units

= 153.4 × SUVRFBB- 154.9). We then plotted calculated CL values obtained from our

non-standard processing against the published CL values (figure 5.4). The expectation is

that the slope will be between 0.98 and 1.02 (actual: 1.000), the intercept will be between

-2 and 2 CL (actual: -0.0357), and R2 > 0.98 (actual: 0.995). All parameters were well

within the expected values for level 3 calibration of a non-standard method; hence, CL

values reported in the current manuscript meet all specifications and can therefore be

interpreted as a standardized, quantitative measure of amyloid deposition.

5.6.5 Regions of interest

While our principal analysis focused on cortical Aβ deposition, a number of both patholog-

ical and imaging studies suggest a potential relationship between Aβ accumulation in the
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Figure 5.4: Scatterplot of the published CL values given by ‘standard’ processing (FBB CLSTD)
versus our calculated CL values (FBB CLNS) from the GAAIN dataset (C. C. Rowe et al., 2017).
The plot shows excellent agreement between the two processing streams. Previously produced in

Supplementary material of (Melzer et al., 2019).

striatum, thalamus, and globus pallidus and cognitive decline (Shah et al., 2016; Fioren-

zato et al., 2018; Dugger et al., 2012; Kalaitzakis et al., 2008; Chen et al., 2017). We

therefore specifically investigated a priori regions of interest (ROIs), including the cau-

date, putamen, thalamus, globus pallidus, and precuneus. The precuneus was included

as a representative cortical region that exhibits very high amyloid load in AD (Becker et

al., 2013). As standard centiloid regions do not exist for these structures, we calculated

average SUVR within these regions defined by the Harvard-Oxford cortical and subcorti-

cal atlases in MNI152 space (Makris et al., 2006; Frazier et al., 2005; Desikan et al., 2006;

Goldstein et al., 2007).

5.7 Statistical analysis

Bayesian models were fitted using the “brms” (v2.2.0) package (Bürkner, 2017) in R

(v3.4.4). In each model, four chains with 2,000 iterations each were used to generate the

posterior sample. Model comparison using LOOIC (leave-one-out information criterion)

was performed when models included correlated predictors or predictive performance was

being evaluated (Vehtari et al., 2017). A lower LOOIC score, by at least twice the

standard error of the estimated difference between the two models, indicated a model with

a better fit, and consequently whether a specific predictor significantly improved model fit.
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Baseline demographic and neuropsychological group differences were analyzed using linear

models (in brms). Analysis code and data are available at https://osf.io/5fqb9/.

5.7.1 ROI analysis

We investigated the relationship between FBB uptake and cognition in PD using Bayesian

regression models, including age and sex as covariates.

1. We first tested for evidence of varying cortical amyloid deposition (centiloid) across

the cognitive subgroups (PDN, PD-MCI, PDD).

2. We aimed to predict a continuous measure of global cognitive ability (aggregate

cognitive z score) as a function of age, sex, and cortical FBB binding (centiloid).

We evaluated the importance of predictors by model comparison, using LOOIC.

That is, we compared a model predicting global cognitive ability with and without

cortical FBB binding in order to determine whether cortical FBB binding improved

prediction of global cognitive ability. This same procedure was repeated for the

memory domain score.

3. Lastly, regional SUVR from the a priori ROIs was modeled as a function of age, age-

by-ROI, sex, and global cognitive ability-by-ROI interaction, in order to investigate

the relationship between FBB uptake and cognition in the different ROIs.

5.7.2 Whole-brain voxel-wise analysis

We used a standard, frequentist ANCOVA model (with age and sex as covariates) to

assess the spatial distribution of amyloid deposition across the cognitive subgroups (we

specifically investigated the contrasts: PDD > PD-MCI, PDD > PDN, and PD-MCI >

PDN). In addition, we ran three multiple linear regression models to investigate the as-

sociation between voxel-wise FBB SUVR and continuous measures of (1) global cognitive

ability (cognitive z score), (2) memory domain score, and (3) age. Age and sex were

included as covariates in the global cognitive ability and memory domain models; only

sex was included in the age model. Voxel-wise comparisons were performed using a gray

matter mask and a permutation-based inference tool for non-parametric thresholding (ran-

domise (Winkler et al., 2014) in FSL v5.0.9). For each contrast, the null distribution was

https://osf.io/5fqb9/
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generated from 5,000 permutations and the alpha level set at p< 0.05, corrected for mul-

tiple comparisons (family-wise error correction using threshold-free cluster-enhancement

(TFCE)).

Additional analyses

These analyses were not included in the original publication of this work (Melzer et al.,

2019).

A standard, frequentist ANCOVA model was used to assess the spatial distribution of dif-

ferences in voxel-wise CBF between the amyloid positive and amyloid negative subgroups

(testing the contrast, Aβ positive < Aβ negative). A multiple linear regression investi-

gated the voxel-wise association between CBF and global cognitive ability as a continuous

measure (cognitive z score). The association between voxel-wise SUVR and a continuous

measure of global grey matter volume (GMvol) was also investigated in multiple linear

regression. Age and sex were included as covariates in all models.

ASL MRI was not acquired for one subject due to the presence of titanium implants in

the skull, therefore the data set for analysis of CBF has one fewer subject (n=114) than

the primary analysis (n=115).

5.8 Results

Table 5.1 summarizes the demographic and clinical information for PD participants.

Twenty-one of 115 (18%) had positive FBB scans on visual assessment. We identified

a centiloid cut-off of 31.3 (equivalent SUVR = 1.21), which yielded sensitivity (to visually

assessed positive scans) = 100%, specificity = 92.6%, and AUC [95% confidence interval]

= 0.98 [0.97, 1.0]. We also identified a significant association between centiloid and age

(r = 0.011 [0.005, 0.017] SUVR/year, or 9.3% per decade).

5.8.1 Regional amyloid distribution in PD

With a simple model that only considered the discrete cognitive groups, we found evidence

of increased cortical amyloid accumulation in PDD relative to PDN and PD-MCI (Figure

5.5; Table 5.1). However, adding age as a covariate to the model and using LOOIC to



Chapter 5 - Cross-Sectional Associations of Beta Amyloid with Cognition 74

Demographics PDN PD-MCI PDD Linear model

n 23 76 16 -

Female, No. [%] 8 (35) 18 (24) 3 (19) -

Age, years 70 (6) 72 (6) 77 (6) PDD > PDN & PD-MCI

Education, years 12 (2) 13 (3) 12 (2) ∼

PD symptom duration, years 7.4 (5) 7.3 (4) 8.5 (5) ∼

MoCA 26 (2) 23 (3) 16 (5) PDN > PD-MCI > PDD

Cognitive Z score 0.28 (0.48) -0.81 (0.53) -1.89 (0.57)a PDN > PD-MCI > PDD

Memory Domain score 0.52 (0.86) -0.82 (0.85) -1.82 (0.67)a PDN > PD-MCI > PDD

Dose, MBq 294 (20) 300 (16) 290 (27) ∼

Aβ positive, No. [%]b 4 [17] 11 [14] 6 [38] -

Cortical SUVRNS 1.11 (0.13) 1.12 (0.18) 1.28 (0.30) PDD > PDN & PD-MCI

Cortical CL 16 (19) 18 (27) 42 (44) PDD > PDN & PD-MCI

Normalised GMvol 0.39 (0.02) 0.38 (0.02) 0.36 (0.02) PDN & PD-MCI > PDD

Cortical CBFc, ml/100g/min 494 (88) 440 (121) 320 (112) PDN & PD-MCI > PDD

Table 5.1: Values are mean (standard deviation) unless specified; aCognitive z scores and memory do-
main scores for seven PDD participants were imputed from restricted neuropsychological data due to
their inability to complete the full cognitive assessment; bVisual assessment of amyloid positive/negative
reported; c ASL MRI was not obtained in one subject, here n=114; ∼, no evidence of a difference; -–,
no statistical test applicable or was not performed. Pairwise group estimates were considered different
if 95% uncertainty intervals did not overlap. MBq, megabecquerel; MoCA, Montreal Cognitive Assess-
ment; Aβ, Amyloid beta; SUVRNS, Standardized uptake value ratio with “non-standard” processing (see

Supplementary Material); CL, centiloid.

compare models, showed that age, rather than cognitive group, was predictive of increased

cortical amyloid accumulation (Figure 5.6 B). When attempting to predict cognition from

cortical amyloid deposition, the addition of FBB uptake (centiloid) to the model resulted

in marginally worse out-of-sample prediction of global cognitive score [LOOIC (standard

error) = 1.8 (0.8), Figure 5.6 A] and memory score [0.7 (2.1), data not shown] than simpler

models, which only included age and an intercept. This indicates FBB uptake has little, if

any, relationship with cognitive impairment in our PD sample. In a priori ROIs, including

age and sex, we saw no evidence of association between FBB uptake (SUVR) and either

global cognitive or memory score (Figure 5.6 C).

We also considered the potential of using symptom duration as a model covariate in the

place of age, however this was found to have little effect on the results of the regression.

Similarly to the above comparison, the addition of global CL to a model containing only

symptom duration and an intercept gave a worse out-of-sample prediction, as indicated by

LOOIC [0.8 (0.4)]. Furthermore, we compared these two models directly (considering age
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or symptom duration in combination with amyloid) and found that there was no evidence

of a difference between the two models [LOOIC = 0.6 (1.3)].
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Figure 5.5: Cortical FBB uptake by cognitive group. We found evidence of increased cortical
amyloid accumulation in PDD relative to PDN and PD-MCI, however this was explained by the
older age of the PDD group (Table 5.1). The dashed line at CL = 31.3 indicates the ROC-defined
optimal centiloid cut-off in this sample, with sensitivity to clinically positive cases = 100%, specificity
= 92.6%, AUC [95% confidence interval] = 0.98 [0.97, 1.0]. Previously produced in (Melzer et al.,

2019).

5.8.2 Whole-brain voxel-wise amyloid distribution in PD

We identified no evidence of a difference in amyloid deposition across PD cognitive groups

(TFCE-corrected, p < 0.05). Furthermore, we identified no evidence of an association

between SUVR and either global cognitive ability or memory domain scores. There was,

however, a widespread positive association between SUVR and age over the cortex (figure

5.7).

5.8.3 CBF and grey matter volume sub-analyses

Using a simple frequentist model that only considered the discrete cognitive groups, pair-

wise group estimates found significantly reduced mean cortical CBF in PDD compared

to PDN and PD-MCI (table 5.1). However, voxel-level investigation is likely more ap-

propriate in the analysis of CBF than by investigation of extracted mean values, given

there is considerable variation associated with inter-subject values, as evidenced by large

standard deviations (table 5.1). Mean normalised GMvol was also significantly reduced in

PDD compared to PDN and PD-MCI.
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Figure 5.6: Associations between cortical amyloid deposition and global cognitive ability and age.
(A) Scatter plot showing no evidence of a significant association between global cognitive ability
(Cognitive z score) and cortical amyloid (CL; Table 5.1). (B) Scatter plot of cortical amyloid (CL)
vs. age (years). FBB uptake was associated with age (slope = 1.5 CL/year, 95% uncertainty
interval [0.6, 2.3], equivalent to SUVR of 0.011/year [0.005, 0.017]). The black line depicts the
estimate from the Bayesian model fit and the shaded area indicates the 95% credible interval. (C)
Cognitive performance as a function of mean FBB SUVR within a number of brain regions. While
different regions exhibited different levels of amyloid deposition, there was a clear lack of relationship
between cognitive performance (cognitive z score) and SUVR within all of the regions examined.
Color represents cognitive status: green - PDN, orange - PD-MCI, red - PDD. Previously produced

in (Melzer et al., 2019).
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Whole-brain voxel-wise analysis of CBF identified no evidence of an effect of amyloid

positivity on CBF, accounting for age and sex (TFCE-corrected, p < 0.05). Furthermore,

where SUVR showed no evidence of association with global cognitive ability, voxel-wise

analysis of CBF displayed a widespread positive association with cognitive z score, such

that reduced CBF across the cortex was correlated with poorer cognition in this sample

(figure 5.8).

Voxelwise analysis of FBB PET images revealed no evidence of an association with mean

cortical GMvol.

Figure 5.7: Red indicates voxels with a significant positive association between FBB uptake and age
(TFCE-corrected p < 0.05), overlaid on a study-specific average structural image. This association

was evident throughout the cortex and in the thalamus but not in the striatum.

Figure 5.8: Red indicates voxels with a significant positive association between quantified CBF
value from ASL MRI, and global cognitive z score (TFCE-corrected p < 0.05), overlaid on a study-
specific average structural image. There was evidence of sparing in select regions of the left frontal
lobe (juxtapositional lobule cortex, superior region of the paracingulate gyrus, medial region of the

superior frontal gyrus) and the cingulate gyrus.

5.8.4 Cognitive category and age: model comparison

As cognitive status and age are correlated (PDD are on average older than PD-MCI who

are on average older than PDN), care is required in interpreting a model that includes both

of these predictors. Comparing models using LOOIC allows the determination of relative

predictive information contained in variables. Adding cognitive category to a model with

only an intercept resulted in an increase in LOOIC of 5.5 ± 7.0. In comparison, adding

age to a model with only an intercept gave an increase in LOOIC of 10.6 ± 6.0. Adding

cognitive category to a model which included age resulted in a small increase of 1.5 ± 5.3.

The effects of age and cognitive category are small effects on the LOOIC scale, indicating

that neither has a large predictive ability. However, these results indicate that cognitive
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category has minimal predictive value once age is known, suggesting that age is more

likely the stronger predictor.

5.9 Discussion

Using FBB PET imaging in 115 PD patients across the cognitive spectrum, we observed

significantly higher cortical amyloid accumulation in our PDD group relative to other

cognitive subgroups, but model comparison indicated this was due to the older age of the

PDD group.

Visual assessment revealed amyloid positive proportions of 17%, 14%, and 38% in PDN,

PD-MCI, and PDD groups, respectively. The prevalence of amyloid positivity reported

in the literature is variable, ranging from 0 to 53% in PDN (Winer et al., 2018; Mashima

et al., 2017; Lee et al., 2018; Akhtar et al., 2017; Gomperts et al., 2016), 0 to 47% in

PD-MCI (Petrou et al., 2015; Winer et al., 2018; Mashima et al., 2017; Lee et al., 2018;

Akhtar et al., 2017; Gomperts et al., 2016), and an estimated point prevalence of 34% in

PDD (Petrou et al., 2015). Nevertheless, these proportions of amyloid positivity across the

cognitive spectrum in PD are substantially lower than levels seen in Alzheimer’s dementia

(88%) (Ossenkoppele et al., 2015) or amnestic MCI (69%) (Villemagne et al., 2011), and

are closer to levels seen in elderly controls (11.6% at age 60, 23.8% at 70, and 34.5%

at 80 years) (Ossenkoppele et al., 2015). The association we observed between amyloid

deposition and age (r = 0.011 [0.005, 0.017] SUVR/year, or 9.3% per decade) is similar

to that reported in the healthy elderly population ([11C]-PiB uptake increased at 0.016

SUVR/year, 10% per decade) (Villemagne et al., 2011), indicating that a PD-specific

influence on amyloid accumulation is unlikely. Although global SUVR measures obtained

from PiB and FBB PET in the same subjects have excellent linear correlation, the above

rates are not directly comparable as different reference regions were used to define SUVR

(for example, we used the whole cerebellum while Villemagne et al. (Villemagne et al.,

2011), used the cerebellar cortex). Nevertheless, amyloid load in our PD sample appears

to be consistent with levels seen in the general elderly population, as well as previous PD

studies (Hely et al., 2008; Petrou et al., 2015; Akhtar et al., 2017), and any increases in

our PDD group can be explained by their older age. Not accounting for age may help

explain the recent report of association between amyloid deposition and global cognition

in a subset of the Parkinson’s Progression Marker Initiative (Fiorenzato et al., 2018).
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Ideally we would have used a predefined centiloid threshold derived from a large pop-

ulation study to define amyloid positivity in our PD sample. However, to the best of

our knowledge, this is not currently possible. SUVR cut-off values are well established,

but recent work demonstrates that specific thresholds are, as expected, highly dependent

on the reference regions and processing methodology (Lashley et al., 2008; Su et al.,

2018). Therefore, a threshold derived using a particular method should not necessarily

be applied to a different processing methodology, even after centiloid standardization (Su

et al., 2018). Many potential thresholds are available: a phase III FBB study identi-

fied a histopathologically-confirmed amyloid positivity cut-off of SUVR = 1.478 (Sabri,

Sabbagh, et al., 2015); Jack et al. (Jack et al., 2017), report a Pittsburgh Compound

B-derived cut-off of SUVR = 1.42 and CL = 19; Bullich et al. (Bullich et al., 2017),

reported FBB thresholds using cerebellar cortex (SUVR = 1.43) and non-centiloid whole

cerebellum (SUVR = 0.96) as reference regions. However, it would be inappropriate to

apply these cut points to our current dataset as image processing and reference regions

differed from the standard centiloid SUVR method. Su et al. presented a centiloid cut-off

using standard reference regions (CL = 6.8) based on an ROC analysis to classify young,

amyloid negative participants from AD patients in the GAAIN dataset (Su et al., 2018).

This surprisingly low threshold may be driven by differences in non-specific binding and

tracer delivery differences between young and old participants. In any case, standardized

centiloid analyses of large cohorts are needed to establish appropriate centiloid thresholds,

which will lead to greater applicability of the centiloid scale.

In this study, we used a well-validated visual assessment to clinically rate scans as being

amyloid positive or negative (Seibyl et al., 2016). As there is not an accepted threshold

based on standardized centiloid reference regions, we defined an amyloid positivity cen-

tiloid cut-off threshold in our sample. Our cut-off (CL = 31.3, SUVR = 1.21) corresponds

well to the estimated value proposed by Rowe and colleagues (C. C. Rowe et al., 2017) in

the context of AD (CL = 25-30), however our estimated threshold may be biased by the

low number of Aβ-positive patients.

Our results suggest a lower prevalence of amyloid-positive PDD individuals than in de-

mentia with Lewy bodies (DLB); neither of these two conditions exhibit the proportions

of amyloid-positive cases reported in Alzheimer’s dementia (Petrou et al., 2015; Lee et

al., 2018; Donaghy et al., 2018; Gomperts et al., 2008). While some have reported an

association between cognitive ability and cortical SUVR in DLB (Gomperts et al., 2012),
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the largest study (including the most thoroughly profiled group of DLB to date) did not

find an association between amyloid deposition and clinical profile, despite showing in-

creased amyloid accumulation vs. controls (Donaghy et al., 2018). We confirm here a

similar lack of association in PD between amyloid deposition and cognitive impairment,

with age explaining the increased FBB-uptake observed in our PDD group.

Most of our PD patients were within the normal centiloid range (compared to control data

from the Global Alzheimer’s Association Information Network used for level 3 centiloid

standardization: http://www.gaain.org/centiloid-project), with few showing AD-like lev-

els of cortical amyloid. Hence Aβ pathology is unlikely to be a dominant causal factor in

the majority of individuals with PD or PDD.

PET measures of amyloid do not suggest plaques as a primary pathology for demen-

tia in PD, but amyloid may play a part in conjunction with other pathologies, such as

alpha-synuclein and hyper-phosphorylated tau. It is expected that tau deposition will cor-

relate more directly with current cognitive ability, due to its association with accelerating

neuronal injury. Initial tau PET imaging in PD and DLB demonstrates a spectrum of

deposition, with reports of both association (Lee et al., 2018; Gomperts et al., 2016) and

lack of association (Winer et al., 2018; Hansen et al., 2017) with cognitive impairments

in PD. Thus, consideration of amyloid, tau, and alpha-synuclein deposition in the same

individuals may ultimately provide a more complete description of how pathological pro-

cesses potentially interact to affect cognition in PD. A potential scenario for prediction of

future outcomes will most likely synthesize an array of biomarkers representative of these

and other pathologies (Compta et al., 2013; Lanskey et al., 2018).

I investigated two other potential pathological correlates of amyloid deposition, namely

cerebral blood flow and grey matter volume. Reductions in cerebral blood flow and grey

matter volume are known to correlate with cognitive impairment (Meyer et al., 2000),

and previous observations of interaction between CBF and amyloid load (Mattsson et

al., 2014; Bangen et al., 2017) in cognitively unimpaired individuals suggested a possible

exacerbating effect of amyloid in reducing cerebral blood flow, such that those with high

amyloid may experience greater risk of future cognitive impairment. In this PD group,

amyloid positivity was not seen to confer any additional risk of abnormal cerebral blood

flow, and higher amyloid load was not associated with reduced cortical grey matter volume.

We noted that levels of amyloid in this PD cohort were comparable to those seen in
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healthy ageing, thus it is interesting that the CBF/Aβ interaction effect seen in cognitively

unimpaired controls does not appear to occur in PD. While current cognitive ability was

strongly associated with reduced cerebral blood flow across the cortex, this effect did not

appear to be exacerbated by amyloid deposition in this group. Mattsson et al. found

that the interaction effect was significant independent of diagnostic group in several brain

regions, however was strongest in controls and MCI. It may be that the interaction effect is

small, and the power of this investigation doubly suffered from low prevalence of amyloid

positivity and conducting analysis independent of diagnostic group. However, as this

study is enriched with PD-MCI and the number of PDD is relatively small, it is unlikely

that the presence of PDD subjects in the analysis washed out this effect. Therefore,

cognitive decline associated with cerebral blood flow in this study is not likely tied to

amyloid deposition, however a more targeted approach including a higher proportion of

amyloid positive individuals is required to verify this finding in PD.

Our results suggest that amyloid deposition is neither necessary nor sufficient to explain

cognitive decline and dementia in PD. The current study cannot address the role that

amyloid accumulation plays in AD, but it does raise the question as to the fundamental

relationship between amyloid plaques and dementia. While the amyloid cascade hypothe-

sis remains the leading candidate to explain the pathophysiology of AD, it not universally

accepted (Herrup, 2015; Harrison & Owen, 2016). Amyloid beta may be a downstream

result, and not necessarily the cause, of AD (Drachman, 2014).

Limitations

Limitations of this study include the absence of a healthy control group. Analyses were

restricted to the effects of varying levels of cognitive impairment within PD. All compar-

isons to healthy controls were based on comparable reports from the literature. However,

the primary aim of this work was to investigate the relationship between amyloid deposi-

tion and cognitive impairment within a group of well-characterized PD participants. Even

when following level II criteria for PD-MCI, considerable variability exists across those

diagnosed as PD-MCI; some exhibit single domain and others multi-domain impairment

(Wood et al., 2016). It is possible that different subtypes may exhibit greater or lesser un-

derlying Aβ. Nonetheless, Aβ was not associated with global cognitive ability or memory

function.



Chapter 5 - Cross-Sectional Associations of Beta Amyloid with Cognition 82

Expression of the apolipoprotein E (APOE) gene ε4 allele has been shown to correlate

with amyloid deposition (Akhtar et al., 2017; Villemagne et al., 2011), and the devel-

opment of dementia in PD (Williams-Gray et al., 2009; Huertas et al., 2017). At the

time of writing, the APOE-ε4 genotype of our participants was not known. We also

did not have histopathological confirmation of amyloid plaque accumulation, although

recent work demonstrates tight agreement between visual assessment of amyloid PET

and histopathological evidence in AD (Bullich et al., 2017). Lastly, recent work suggests

that partial volume correction can improve the ability of FBB PET to discriminate be-

tween AD patients and healthy controls (Rullmann et al., 2016). We did not perform this

step because partial volume correction methods are still highly variable across centers,

with no consensus on optimal methods, and have not been incorporated into centiloid

standardization procedures yet (Klunk et al., 2015).

In this cross-sectional investigation of a large, cognitively well-characterized PD group,

we found increased cortical amyloid accumulation in PDD, but this was explained by

the older age of the PDD group. We found no associations between amyloid load and

continuous measures of cognitive performance. This suggests that Aβ accumulation is not

the primary cause of cognitive impairments in PD. Low levels of amyloid may, however,

still interact synergistically with other PD pathological processes, thereby accelerating

other pathways to dementia.

5.10 Data Availability

Analysis code and data are available on the Open Science Framework at https://osf.io/5fqb9/.

5.11 Supplementary material

The original Supplementary Material for this article has been added into the body of this

work. It may also be found online at:

https://www.frontiersin.org/articles/10.3389/fneur.2019.00391/full#supplementary-material



Chapter 6

Beta Amyloid Deposition and

Future Cognitive Outcomes

6.1 Author Contributions

I performed the image processing, study design, statistical analysis and results interpre-

tation in this study, with guidance from TM and DJM.

The NZBRI Study of Parkinson’s Disease

The larger study of Parkinson’s disease at the New Zealand Brain Research institute was

conceptualised and designed by TM, DJM, MM, TP, DHM, JD-A, and TA. TM, MM,

DHM, RK, DJM, LL, JD-A, and TA obtained funding for the study. RK, LL, DJM,

MM, TP, and SM provided administrative, technical, and material support. All authors

contributed to acquisition, analysis or interpretation of data.

6.2 Introduction

While many studies have been carried out over the nearly three decades since the dis-

covery of widespread amyloid deposits in AD, the field has yet to fully determine the

mechanism by which misfolded beta-amyloid may affect cognitive function, and interven-

tion studies aimed at reducing amyloid load in the early stages of AD have only shown

to be successful in slowing cognitive decline in one recent study (Swanson et al., 2018).

83



Chapter 6 - Longitudinal Associations of Beta Amyloid with Cognition 84

Amyloid accumulation in Parkinson’s disease is generally much less pronounced than in

AD; many cross-sectional studies of cortical amyloid across the cognitive spectrum, and

indeed the cross-sectional arm of this thesis, have largely found accumulation comparable

to age-matched healthy controls.

Cross-sectional analysis of misfolded beta-amyloid in this thesis identified increased corti-

cal amyloid accumulation in subjects with Parkinson’s disease dementia, but found that

this was explained by the older age of the PDD group. While cortical Aβ accumulation

does not appear to be the primary driver of cognitive impairments in this PD group,

low levels of amyloid may accelerate other pathways to dementia through synergistic in-

volvement of multiple pathologies (Mao & Reddy, 2011; Pascoal et al., 2017). A possible

mechanism of future cognitive impairment in those with high amyloid is induced fibrillary

changes in α-synuclein, leading to increased Lewy-body related pathology and thereby

accelerating development of dementia (Toledo et al., 2016). The presence of co-morbid

lewy-body pathology occurs in approximately 50% of AD cases, and is recognised to ac-

celerate cognitive decline and shorten survival time compared to AD without lewy-bodies

(Marsh & Blurton-Jones, 2012). The impact of cortical amyloid load on future cognition

in PD is less well characterised, as some longitudinal studies have found an association

between baseline amyloid load and future cognitive decline (Lee et al., 2018; Gomperts

et al., 2013), while others have not (Winer et al., 2018; Hansen et al., 2017). Notably,

Gomperts et al. found baseline amyloid accumulation to be positively associated with

cognitive decline at an average of 2.5 years follow-up, after having identified no difference

in precuneal or frontal amyloid between PDN and PD-MCI subjects in cross-sectional

analysis (a finding echoed here in the previous chapter). This suggests that early amyloid

load in PD may represent a better marker of future rather than present cognitive ability,

may provide useful information for clinicians in advising patients on long-term outcomes

and enable more targeted management of symptoms. However, the result reported by

Gomperts et al. was obtained from a relatively small sample (n = 46), thus validation

using a larger, well characterised cohort is required.

We therefore investigated the relationship between amyloid deposition and conversion to

dementia over a mean 3.2 years follow-up using [18F]-Florbetaben (FBB) PET imaging.

Subjects included all participants investigated in the cross-sectional arm of this thesis, for

which at least one follow-up neuropsychological assessment was acquired, and who were

not classified as having Parkinson’s disease dementia (PDD) at baseline. This sample
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was enriched for PD with mild-cognitive impairment (PD-MCI), and thus investigates

a particularly high-risk population (Wood et al., 2016). This study aims to clarify the

potential role of amyloid load in accelerating conversion to dementia within these subjects,

using robust statistical methods accounting for a range of risk factors implicated in the

development of PDD.

Additionally, cerebral blood flow measured using arterial spin-labelling MRI was assessed

for association with conversion to dementia. Previous studies have identified an interactive

effect between CBF and amyloid load, such that non-demented individuals classified as

amyloid-positive experienced greater reductions in CBF (Bangen et al., 2017), a known

correlate of cognitive impairment (Meyer et al., 2000). A voxel-wise interactive effect

between amyloid-positivity and cortical CBF was not identified in this sample at baseline,

however baseline cognition in this PD cohort was associated with widespread reductions

in CBF. It will be useful to also examine the role of early reductions in CBF in the

progression of cognitive decline in PD, given that lower CBF has similarly been implicated

in the acceleration of cognitive decline in AD (Benedictus et al., 2017).

6.3 Participants

This study follows a subset of participants originally included in the cross-sectional anal-

ysis of amyloid deposition in this thesis. All PD participants met the UK Parkinson’s

Disease Society’s criteria for idiopathic PD (Hughes et al., 1992). The original exclusion

criteria for recruitment in this study is detailed in the previous chapter. Participants who

fulfilled the criteria for a probable diagnosis of PDD at baseline were excluded from this

analysis, as were those for which no follow-up neuropsychological assessments had been

obtained. Of the original cross-sectional cohort (n=115), n=99 were non-demented. Two

participants were deceased before any follow-up assessments could be obtained, thus, the

final cohort included in this chapter consists of n=97 participants, having completed the

baseline neuropsychological battery (+1), baseline MRI scanning session, and baseline

[18F]-Florbetaben (FBB) PET imaging. As in the cross-sectional analysis, sub-analyses

investigating CBF were performed with one fewer subject (n = 96), due to no acquisition

of ASL MRI for that subject.
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6.3.1 Diagnostic criteria and assessment

As at baseline, Movement Disorders Society (MDS) Task Force Level II criteria was used

to classify PD participants as cognitively normal (PDN), with mild cognitive impairment

(PD-MCI), or with dementia (PDD) (Wood et al., 2016; Litvan et al., 2012). A global

measure of cognitive performance was created by averaging scores across the cognitive

domains (aggregate cognitive z score) measured in each full cognitive assessment session.

This method is described briefly in Chapter 5 (see Wood et. al. 2016 for a detailed

description). Assessors were blinded to amyloid status. Participants also completed the

Montreal Cognitive assessment (MoCA). All assessments and scans were performed with

no disruption to participants’ usual medication regimen.

6.3.2 Longitudinal protocol design

All subjects underwent comprehensive neuropsychological (NP) assessments at baseline

and annually thereafter, with an aim to obtain longitudinal cognitive data spanning at

least 3 years for each subject. A truncated assessment battery performed biannually was

used as a screening measure for dementia; a probable diagnosis of dementia prompted

a full NP assessment. Following a diagnosis of dementia, PDD subjects underwent only

short assessments due to inability to complete the full assessment. This truncated battery

included the MoCA as a measure of cognitive function, demonstrated in a recent study

of common cognitive screening measures (MoCA, Mattis Dementia Rating Scale (DRS-

2), and Mini Mental Status Examination (MMSE)) to offer the best overall diagnostic

accuracy for PD-MCI (AUC = 0.79, sensitivity = 76.4) and for PDD (AUC = 0.89,

sensitivity = 81.0)(Kim et al., 2019).

Where measures of global cognitive z score were missing due to short assessments, the score

for that session was imputed using the Multivariate Imputation via Chained Equations

(MICE, v3.6.0) package in R (v3.4.4), by predictive mean matching (PMM). Imputation

is a widely used method for providing plausible data points, drawn from a distribution

specifically designed for the missing variable. PMM is used to infer continuous values

based on an observed value from a donor with a similar predictive mean.
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6.4 Materials and methods

6.4.1 Image Acquisition and Processing

This study revisits the imaging measures acquired at baseline, and thus much of the

methodology described in Chapter 5 for the acquisition, pre-processing, and quantification

of image data was employed in this longitudinal investigation with no methodological

changes. Previously described imaging outputs of relevance to this chapter are:

◦ FBB PET amyloid-positive or amyloid-negative visual classification, performed by

a trained neuroradiologist;

◦ Standardised uptake value ratio (SUVR) images of [18F]-Florbetaben (FBB) PET

radiotracer activity, normalised by values in the Centiloid whole cerebellum region;

◦ Mean cortical SUVR, extracted from the standard centiloid cortical region of the

processed SUVR images;

◦ Mean regional SUVR, extracted from selected a priori brain regions for use in

region-of-interest (ROI) analysis, including the caudate, putamen, thalamus, globus

pallidus, and precuneus;

◦ Mean cortical centiloid (CL) values, extracted from the standard centiloid cortical

region of CL-converted SUVR images;

◦ Cortical grey matter volume (GMvol), extracted from T1-weighted structural MRI

and normalised by individual total intra-cranial volume;

◦ Quantified cerebral blood flow (CBF) images, given by arterial spin labelling (ASL)

MRI;

◦ Mean cortical CBF, extracted from the standard centiloid cortical region of the

quantified CBF images.

In addition to these outcomes, principal component analysis (PCA) gave the expression of

each principal component of variance within the FBB SUVR dataset for each individual.

The objective of PCA in this context is to identify independent patterns of amyloid

deposition, derived from variance in the data, and to test whether those spatially related
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patterns are associated with conversion to dementia. This method has been shown to be

sensitive in detecting patterns of amyloid deposition in AD compared to controls (Fripp

et al., 2008).

6.4.2 Calculation of principal components

PCA was performed to extract the principal patterns of spatial variance within the amy-

loid FBB PET (SUVR) dataset. The data were restricted to voxels within a study-specific

grey matter mask (created from averaging all subject grey matter segments) and twice

demeaned (subject followed by group demean). This yielded the subject residual profile, a

matrix representing the deviation of each subject from the subject and group mean image

matrices. Computing the covariance between each pair of rows, representing each subject

residual, yielded the covariance matrix for the SUVR dataset.

The eigenvectors and corresponding eigenvalues of the covariance matrix were calculated.

Scaling each eigenvector by the square-root of its corresponding eigenvalue produced com-

ponents of unit variance; these were the principal components of the dataset. The inverse

scaled eigenvectors indicated the expression (or loading) of each component within each

subject image, while the relative size of each eigenvalue quantified the total unit variance

encompassed by that particular spatially fixed principal component (Melzer et al., 2011).

The principal components were ordered by how much of the variance they represent, with

the first principal component capturing the most variance. The first few principal compo-

nents generally account for a large amount of the total variance in the data, in which case

the remaining components may be rejected to reduce dimensionality without significant

loss of data (Razifar et al., 2009).

We aimed to select the components that accounted for at least 70% of the variance -

however, the first two components were found to account for only 21% and 19.4% of

the variance respectively, with subsequent proportional contributions rapidly decreasing

thereafter to less than 5%. Thus the number of components required to reach 70% cu-

mulative variance was impractical for statistical analysis. This may occur when data

dimension is high, or when spatially-related variances in the data are low (Jolliffe, 2002).

The cut-off proportion was revised to a cumulative proportion of at least 50%. This re-

sulted in selection of the first five PCs for analysis, representing approximately 53% of

the variance (PC1 = 21%, PC2 = 19.4%, PC3 = 4.7%, PC4 = 4.5%, PC5 = 3.3%).
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6.5 Statistical analysis

This study focused on longitudinal conversion to dementia in PD. Only those that had

converted to dementia, and not to any other cognitive classification, were considered

‘converters’ in this study; all other subjects were classified as ‘non-converters’ for the

purposes of this analysis. A non-conversion classification provided the reference level for

the analyses, thus conversion to dementia was the predicted effect of each model.

6.5.1 Survival analysis

A survival curve was fitted using the survival (v2.44-1.1) package in R. Survival from

dementia over time was examined within the amyloid positive and the amyloid negative

groups, taking into account subject age and right-censoring of the data. A Cox propor-

tional hazards model assessed the relative risk conveyed by amyloid-positivity compared

with amyloid-negativity for conversion to dementia over the course of longitudinal follow-

up.

6.5.2 Whole-brain voxel-wise analysis

We used a standard, frequentist ANCOVA model (with age and sex as covariates) to

assess the spatial distribution of amyloid deposition across the convert and non-convert

subgroups, specifically testing Convert>Non-Convert. Images of quantified CBF were

analysed in the same manner (testing Non-Convert>Convert). Voxel-wise comparisons

were performed using a study-specific gray matter mask and a permutation-based in-

ference tool for non-parametric thresholding (randomise (Winkler et al., 2014) in FSL

v5.0.9). For each contrast, the null distribution was generated from 5,000 permutations

and the alpha level set at p < 0.05, corrected for multiple comparisons (family-wise error

correction using threshold-free cluster-enhancement (TFCE)). Corrected voxel-wise as-

sociation maps were displayed over a study-averaged structural T1-weighted image, and

associated brain regions were identified from the MNI structural atlas (Mazziotta et al.,

2001) (figure A.1).
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6.5.3 Predictors of conversion to PDD

Baseline demographic and neuropsychological group differences between converters and

con-converters were analyzed using simple frequentist linear models, considering no other

covariates.

We then used Bayesian multiple regression models to investigate potential predictors of

conversion to dementia in our sample, including baseline age, sex, and baseline cognitive

ability as covariates. Investigated predictors included continuous measures of (1) mean

cortical FBB SUVR, (2) regional FBB SUVR extracted from a priori ROIs, (3) principal

component expression, (4) baseline MoCA scores, (5) mean normalised grey matter volume

(GMvol), and (6) only the nuisance covariates, for the purposes of model comparison and

evaluation of primary predictors. I additionally investigated the effect of APOE-ε4 status

as a predictor of (1) mean cortical FBB SUVR, and (2) expression of the first principal

component, including baseline age and sex as covariates.

Bayesian models were fitted using the “brms” (v2.9.0) package (Bürkner, 2017) in R.

In each model, four chains with 2,000 iterations each were used to generate the posterior

sample. Resultant model parameters associated with each variable were considered to have

a predictive effect if the 95% credible interval did not include zero. Model comparison

using LOOIC (leave-one-out information criterion) was performed when models included

correlated predictors or predictive performance was being evaluated (Vehtari et al., 2017).

A higher expected log predictive density, by at least twice the standard error of the

estimated difference, indicated a model with a better fit, and consequently whether a

specific predictor significantly improved model fit.

6.6 Results

Table 6.1 summarizes the baseline demographic, clinical and imaging characteristics of

PD participants, stratified by conversion status.

6.6.1 Participant conversion between cognitive subgroups

At a mean of 3.2 ± 1 years follow-up (median 3.1 years, range 0.5 - 4.9 years), 46 par-

ticipants had remained stable at their baseline cognitive classification (PDN, n = 13;
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Demographics at study baseline PDD convert status

Total n=97 Non-convert Convert Linear model

n 65 32 -
PD-MCI, No. (%) 42 (65) 32 (100) -
Female, No. (%) 20 (30) 6 (19) -
Age, years 71 (6) 72 (5) ∼
Latest follow-up, years 3.2 (1) 3.2 (0.9) ∼
Education, years 13 (3) 13 (3) ∼
PD symptom duration, years 14 (5) 11 (5) Non-Convert > Convert
Hoehn and Yahr 2.5 (0.5) 3 (0.6) Convert > Non-Convert
MoCA 24 (4) 17 (4) Non-Convert > Convert
Cognitive Z score -0.33 (0.7) -1.03 (0.5) Non-Convert > Convert
UPDRS Part III 40 (12) 50 (12) Convert > Non-Convert
APOE-ε4 carrier, No. (%) 16 (25) 14 (44) -
Dose, MBq 300 (16) 301 (17) ∼
AB-positive, No. (%) 7 (11) 8 (25) ∼
Cortical SUVRNS

c 1.09 (0.1) 1.18 (0.2) Convert > Non-Convert
Cortical CL 13 (19) 27 (33) Convert > Non-Convert
Normalised GMvol 0.38 (0.02) 0.37 (0.02) Non-Convert > Convert

Cortical CBFd, ml/100g/min 478 (117) 410 (94) Non-Convert > Convert
Regional SUVR
Caudate 0.82 (0.1) 0.84 (0.1) ∼
Putamen 1.15 (0.09) 1.20 (0.1) ∼
Thalamus 1.08 (0.07) 1.08 (0.08) ∼
Globus pallidus 1.55 (0.1) 1.57 (0.1) ∼
Hippocampus 0.93 (0.06) 0.93 (0.07) ∼
Amygdala 0.85 (0.07) 0.85 (0.09) ∼
Precuneus 0.97 (0.13) 1.08 (0.23) Convert > Non-Convert

Table 6.1: Baseline demographics, clinical and imaging characteristics of the longitudinal follow-up
cohort. Values are mean (standard deviation) unless specified; aCognitive z scores for three PDD
participants were imputed from restricted neuropsychological data due to their inability to complete
the full cognitive assessment; bVisual assessment of amyloid positive/negative reported; cTested
using Fisher’s exact test; dASL MRI was not obtained in one subject, here n=96; ∼, no evidence of
a difference; -–, no statistical test applicable or was not performed. Pairwise group estimates were

considered different if 95% uncertainty intervals did not overlap.

PD-MCI, n = 33), 10 participants had converted from PDN to PD-MCI, and 32 partici-

pants had converted from PD-MCI to PDD. Nine participants had reverted from PD-MCI

to PDN; this may be due to the sensitivity of the PD-MCI criteria to small variations

in NP scores in those less-impaired, thus those that have reverted likely reflect the noise

inherent in the classification of these cases rather than a true improvement in cognition.

Only conversion to PDD was investigated in this study, thus there were a total of 65

participants in the non-convert subgroup, and 32 participants in the convert subgroup.

Of the 97 participants included in this analysis, 24 were lost to further follow-up over

the course of the study due to death, or following a diagnosis of dementia. Of these,

14 participants had converted to PDD during the period for which data was obtained,

and thus contribute to conversion statistics. Of the remaining 10 subjects, 6 were lost to

follow-up before three years, and therefore contribute to right censoring of the data in that
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respect. However, as this study is focused on identifying factors that influence conversion

to dementia during life, this effect has little impact on the overall interpretation of results.

These subjects were not removed from the analysis, to avoid introducing bias.

6.6.2 Survival from PDD by clinical amyloid subgroup

The proportion of participants classified as FBB amyloid-positive was 11% in the non-

convert subgroup, and 25% in the convert subgroup (figure 6.5). A Fisher’s exact test

of independence found no evidence of a difference between these proportions (p-value =

0.1) within the sample. This test does not take into account the time points at which

conversion occurred for each participant, thus survival analysis was used to gain a more

complete understanding of the role of amyloid positivity in the acceleration of cognitive

decline to dementia.

Figure 6.1: The survival curve depicts dementia-free survival over time within the amyloid-positive
and amyloid-negative subgroups, accounting for age. Clinically positive levels of amyloid load appear
to convey greater risk of conversion to dementia than clinically amyloid negative, however the
associated error of the amyloid-positive survival curve is inclusive of the amyloid-negative survival
curve throughout the course of follow-up. Points on the line indicate the last session for subjects

who had not converted to dementia.
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We found that Aβ-positive subjects displayed poorer survival from PDD over time, how-

ever the estimated survival of the Aβ-negative subjects was within the error estimates

of the Aβ-positive time-course (Figure 6.1). Survival analysis therefore did not support

that a clinically positive amyloid PET scan at baseline is a major contributing factor in

conversion to dementia in PD.

The Cox proportional hazard analysis similarly showed that neither greater age (hazard

ratio = 1.8, 95% confidence interval = 0.97 - 3.3; p = 0.06) nor amyloid positivity (haz-

ard ratio = 1.9, 95% confidence interval = 0.84 - 4.2; p = 0.1) at baseline accelerated

conversion to dementia in this subject group (Figure 6.2).

Figure 6.2: Cox proportional hazard ratios obtained from the model fit of the survival analysis
provided no evidence that amyloid positivity at baseline is related to an increased risk of conversion

to dementia within a mean of 3.2 years.

6.6.3 Predictors of Conversion to Dementia in PD

6.6.3.1 Voxel-wise associations with Amyloid and CBF imaging

Whole-brain non-parametric voxel-wise analysis examined the association between conver-

sion to dementia during follow-up with two baseline imaging data-sets: baseline amyloid

deposition, as given by FBB SUVR, and baseline cerebral blood flow (CBF), measured

with ASL MRI. Both baseline measures displayed voxel-wise associations with future con-

version to dementia (TFCE-corrected, p < 0.05), specifically, increased amyloid deposition

in the occipital lobe, parietal lobe (precuneus), lateral occipital cortex, and frontal lobe

(superior frontal gyrus, pre and post-central gyrus) (figure 6.3), and decreased CBF in the
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frontal lobe (paracingulate gyrus), insula, and temporal lobes (primarily right side) (fig-

ure 6.4). The cerebellum also demonstrated reduced CBF, however this region contained

spiral artifacts and thus is not reliable.

Figure 6.3: Whole-brain voxel-wise analysis found amyloid deposition in the occipital lobe, parietal
lobe (precuneus), lateral occipital cortex, and frontal lobe (superior frontal gyrus, pre and post-
central gyrus) to be positively associated with conversion to dementia during mean 3.2 years follow-

up.

Figure 6.4: Whole-brain voxel-wise analysis found cerebral blood flow within several cortical regions
at study baseline to be negatively associated with conversion to dementia within a mean 3.2 years
follow-up. Reductions were demonstrated in the frontal lobe (paracingulate gyrus), insula, and

temporal lobes (primarily right side).

6.6.3.2 Association with continuous clinical and imaging measures

Group differences between convert/non-convert

Pairwise group estimates given by a simple frequentist ANOVA model, without consid-

ering any other covariates, identified significant differences between the conversion sub-

groups in baseline Hoehn and Yahr (H & Y) score, MoCA score, global cognitive z score,

UPDRS Part III score, mean cortical amyloid load (FBB SUVR and CL (figure 6.5) mea-

sures), normalised GMvol, mean cortical CBF, and mean SUVR in the precuneus, such

that converters had worse baseline expression of these measures. There was no difference
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in age at baseline, years of education or APOE-ε4 status between convert and non-convert

groups. Converters to PDD had displayed PD symptoms for a shorter duration, indicating

a more rapid worsening of cognitive impairment in this group.

Figure 6.5 depicts the mean cortical CL values within the convert and non-convert sub-

groups, coloured by clinical amyloid classification.

Figure 6.5: Cortical FBB uptake in Centiloids by conversion status, stratified within group by
amyloid positivity. We found evidence of increased cortical amyloid accumulation at baseline in
converters relative to non-converters. Proportional amyloid positivity was not significantly different
between the two groups (Fisher’s exact test: p-value=0.1). The dashed line at CL = 31.3 indicates
the ROC-defined optimal centiloid cut-off in this sample defined in cross-sectional analysis, with
sensitivity to clinically positive cases = 100%, specificity = 92.6%, AUC [95% confidence interval]

= 0.98 [0.97, 1.0].

Predictive model analysis

In a Bayesian regression model estimating the potential predictive effects of select risk

factors (baseline age, sex, baseline cognitive ability), only baseline cognitive ability was

found to have an effect on conversion to dementia (estimate: −2.5, 95% CI: −3.8 - −1.4,

figure 6.6). This model formed the basis of comparison with the primary predictive model

fits.

Of the primary predictors applied in Bayesian regression model analysis, accounting for

potential predictive effects of the above risk factors, the predictors of interest to demon-

strate an effect on conversion to dementia within our sample were mean cortical SUVR

(estimate: 5.7, 95% CI: 2.0 - 9.9, figure 6.7[A]), mean SUVR within the caudate (estimate:

6.0, 95% CI: 1.1 - 11.3, figure 6.7[B]), mean SUVR within the putamen (estimate: 6.2,

95% CI: 0.7 - 12.3, figure 6.7[C]), mean SUVR within the precuneus (estimate: 5.30, 95%

CI: 2.0 - 9.2, figure 6.7[D]) and PC1 loadings (estimate: −17.4, 95% CI: −24.0 - −1.8,

figure 6.8[A]). Examined predictors that demonstrated no evidence of an association with
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Figure 6.6: Effect sizes of predictors of conversion to dementia, obtained by Bayesian regression
model (BRM) analysis. A model examining only the basic predictors found baseline global cognitive

ability to be a negatively associated predictor.

conversion to dementia were SUVR within the thalamus, globus pallidus, amygdala and

hippocampus, PCs 2-5, mean cortical CBF, and global grey matter volume. The respec-

tive figures depict the estimated effect of each of the parameters within the models, where

the error bars reflect the 95% credible interval. Global cognition at baseline remained a

negatively associated predictor within all models.

Figure 6.7: Effect sizes of predictors of conversion to dementia, obtained by Bayesian regression
model (BRM) analysis; Adding mean SUVR values (extracted from the cortex and a prior ROI)
into the model found SUVR to be associated with conversion to dementia within (A) cortex, (B)
caudate, (C) putamen and (D) precuneus. Global cognitive ability also remained a negatively

associated predictor in these models.
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Figure 6.8: Effect sizes of predictors of conversion to dementia, obtained by Bayesian regression
model (BRM) analysis; (A) Principal component 1 (PC1) was found to be an associated predictor.
(B) PC1 represents the highest proportion of variance in the data, where negative (blue) values
indicate regions of relative AB accumulation increase, which appear associated with conversion to

dementia (parietal lobe, including the precuneus, frontal lobe, and paracingulate gyrus).

Comparing SUVR model predictive accuracy by LOOIC

When compared with the model including only the standard covariates by leave-one-out

information criterion (LOOIC), there was no evidence that the cortical SUVR model im-

proved prediction of future development of dementia. This is reflected by the difference in

expected log predictive density (elpddiff) between the two models, where the elpd differ-

ence was within the standard error (elpddiff= −3.1 ± 3.6). Additionally, I compared the

predictive accuracy offered by the cortical SUVR model to the three ROI SUVR mod-

els. There was no evidence the ROI models performed better or worse than the cortical

model in the prediction of conversion to dementia (precuneus elpddiff= −0.3±1.3; caudate

elpddiff= −1.8± 2.2; putamen elpddiff= −2.3± 1.7).

6.6.3.3 APOE-ε4 association with amyloid load

One likely influence on SUVR is the expression of the APOE-ε4 allele, which has been

shown to correlate with amyloid deposition in PD (Akhtar et al., 2017; Villemagne et al.,

2011). Bayesian regression analysis investigating APOE-ε4 carrier status as a predictor of

mean cortical SUVR and PC1 loadings found evidence of a positive association between

APOE-ε4 expression and SUVR (estimate: 0.15, 95% CI: 0.08 - 0.22, figure 6.9A), and a

negative association with PC1 loadings (estimate: −0.05, 95% CI: −0.07 - −0.03, figure

6.9A).
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Figure 6.9: Effect sizes of APOE-ε4 status (carrier) and nuisance predictors of age and sex, obtained
from Bayesian regression investigating mean cortical SUVR and PC1 loadings. (A) APOE-ε4 was (A)
positively associated with mean cortical SUVR, and (B) negatively associated with PC1 expression.
This is in line with the same relationship found between these measures and conversion to dementia

given in figures 6.7[A] and 6.8[A].

6.7 Discussion

This longitudinal study analysed the role of beta-amyloid in conversion to dementia in

PD, investigating multiple different metrics relating to amyloid deposition, and taking

into account a number of known risk factors using sophisticated statistical methods. We

found that, while baseline amyloid load was associated with conversion to dementia within

a mean of 3.2 years follow-up, amyloid information likely provides limited predictive value

in estimating the likelihood of imminent conversion to dementia in PD, once cognitive

ability is known.

One rationale for pathophysiological involvement of amyloid in cognitive decline is based

on the observation of high levels of Aβ deposition in AD, such that early deposition is

followed by a cascade of pathological events leading to cognitive impairment and demen-

tia. In this PD group, the time course of conversion to dementia within this sample was

analysed with respect to amyloid classification. Unfortunately, the survival analysis was

affected by the low proportion of amyloid positive participants in this study, such that

estimated error on the survival trajectory of the amyloid-positive subgroup encompassed

the amyloid-negative trajectory. This became more apparent as time went on, and the

data became more right-censored. Observing the trajectories themselves, amyloid posi-

tive participants were seen to have shortened survival time over the course of the study,

however this does not constitute significant evidence to support improved long-term out-

comes in amyloid negative subjects with respect to conversion to dementia in PD. Given

the prevalence of amyloid at ‘positive’ levels in PD is comparable to that seen in healthy
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controls, retrospective studies targeting amyloid positivity may be better equipped to

determine the time-course of associated risk for conversion to dementia.

This study did find that cortical amyloid deposition, investigated both in bayesian regres-

sion analysis and whole-brain voxel-wise analysis, appears to have a stronger association

with future rather than current cognitive impairment, considering the results of cross-

sectional analysis in this thesis. Specifically, high amyloid load across the whole cortex,

and regionally in the precuneus, putamen and caudate, was associated with conversion to

dementia in this sample. However, the results of predictive model analysis argue against a

region-specific effect of amyloid deposition, as model comparison found no evidence of an

improvement in the prediction of conversion to dementia when these values were included

in the model. Furthermore, there was no evidence to suggest that amyloid deposition

in one region was more informative than any other. The parameter estimates for all

regions were similar in size, suggesting a global, rather than regional, effect of amyloid

accumulation on future cognition. We found that a basic model containing only baseline

age, global cognitive ability and sex was not significantly outperformed by the amyloid

models, when compared in out-of-sample tests. In addition, voxels found by whole-brain

voxelwise analysis of SUVR images to be positively associated with conversion were not

restricted to these regions, nor was the variance encompassed by the the first principal

component, where negative expression correlated with conversion. This result - finding an

associated effect of the parameter, but no evidence of an improvement in model predictive

performance - is not contradictory. This can result when there are correlated variables,

such as amyloid and age (Melzer et al., 2019). In this case, age can effectively provide

some of the information related to SUVR, with the addition of SUVR only providing a

marginal further improvement in predictive accuracy. These results do not fully confirm

those found previously in a similar longitudinal study of 46 non-demented PD patients,

where amyloid load in the precuneus did not distinguish PDN and PD-MCI at baseline,

but predicted conversion to a more severe diagnosis (Gomperts et al., 2013). Our investi-

gation of a much larger prospective cohort, where a high proportion converted to dementia

during follow-up, suggests that while amyloid accumulation in the precuneus does exhibit

an association with future dementia, this effect is not specific to the precuneus or any

other distinct region. If the ultimate goal of characterisation of amyloid in PD is to assist

clinicians in advising non-demented PD patients with regard to their expected outcomes,

the value of a model including this information is likely not sufficient to outweigh the cost
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of PET imaging, invasive nature of the procedure, and radiation dose imparted to the

patient.

We were able to identify a pattern of conversion-related variance within the amyloid

data, using principal component analysis. While informative with respect to analysing

regional and voxel-wise aspects of this data, the PC as a predictor had similarly large

associated error in the prediction as was found in the other models. Examining the

principal component revealed a pattern of negative voxel loadings within (but not limited

to) the precuneus, paracingulate gyrus, and large portions of the frontal lobe, such that a

negative association of the component relates to an over expression of this spatial pattern

in converters to dementia (figure 6.8[B]). Visually comparing this pattern to that obtained

by voxel-wise analysis with conversion to dementia (figure 6.3), it is apparent that much of

the variance encompassed by the image is unlikely to be related to conversion to dementia

alone. Subsequent investigation of PC1 loadings in association with APOE-ε4 carrier

status found that this PC captures variance associated with both conversion to dementia

and the expression of APOE-ε4. APOE-ε4 carrier status was associated with increased

levels of cortical amyloid in this cohort, but there was no evidence of a difference in the

number of APOE-ε4 carriers within the convert subgroups. A recent study of APOE-ε4

expression in a mouse model of synucleinopathy identified a possible facilitator effect of

APOE-ε4 on α-synuclein pathology and related toxicity, observed to be independent of

amyloid deposition, and correlating with faster cognitive decline in Lewy Body dementia

(Zhao et al., 2020). In contrast, APOE-ε4 status does not seem to accelerate cognitive

decline in the absence of β-amyloid in this cohort. It is possible that bias in our sample

weakened our ability to detect an effect of APOE-ε4 on conversion status, as the cohort was

originally enriched at baseline for PD-MCI, a known risk factor for conversion to dementia

in PD. Thus our low sample size of PDN at baseline may not be inclusive enough to detect

the effects of APOE-ε4 on cognitive decline in those not already classified as PD-MCI.

While we found evidence of reduced cortical cerebral blood flow in converters within

several brain regions using voxel-wise regression, there was no evidence of an effect when

examining mean cortical CBF in Bayesian regression analysis. Extracting mean values

of CBF may not be an appropriate method of examining group differences with this

type of data, in that regional or network based differences may be occluded by taking

the mean over a broad region. Analysis at the voxel level is more apt, and the results

here are in line with similar findings of reduced CBF in parietal areas associated with
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accelerated cognitive decline in AD (Benedictus et al., 2017). Previously, PD-related

networks of cerebral hypoperfusion at baseline have been shown to correlate with cognitive

impairment (Melzer et al., 2011) - these results perhaps support the application of this

method in deriving a conversion-related network of cerebral hypoperfusion in PD. The

evidence of reduced perfusion in converters at baseline may also provide an explanation

for the difference in duration of symptoms between converters and non-converters, with

converters seen to progress more rapidly along the disease course.

Limitations

Limitations of this study, in addition to those discussed in the previous chapter, include

a comparatively high number of PD-MCI participants compared to PDN (PD-MCI, n =

74; PDN, n = 23). Participants fulfilling the requirement for PD-MCI were preferentially

recruited at study outset, based on an observed increased risk of cognitive decline and

development of PD in those individuals. This represents one of the primary strengths

of this study, as this enabled comprehensive prospective investigation of a reasonably

large number of individuals who had converted to PDD during follow-up. However, it

is possible that our study lacked the strength to detect subtle changes occurring in the

cognitively normal stages of PD that influence future cognition. While we recruited across

the cognitive spectrum due to a particular interest in the pathological basis of cognitive

impairment at baseline, a future possible de novo design examining cognitive decline in

PD may recruit at diagnosis of PD, and follow through to conversion to dementia, thus

increasing sensitivity to true effects in the population.

Prospective analysis of survival from dementia during this longitudinal study, stratified

by amyloid positivity at baseline, was affected by the comparatively low prevalence of

amyloid positivity in PD, comparable to levels seen in healthy ageing (Ossenkoppele et al.,

2015). This increases the error associated with this analysis, particularly where amyloid

positive patients were lost to follow-up before progressing to dementia (first instance

at approximately 2 years from baseline scan). While an apparent increased risk was

detected, this does not represent evidence of improved long-term outcomes in PD in those

individuals exhibiting low levels of cortical amyloid load.

Low statistical power is an increasing concern in the field of neuroimaging research

(Poldrack et al., 2017). Where cognitive neuroscience benefits from a high degree of

reproducibility, many imaging studies face cost-restrictions that limit the availability of
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high sample sizes and multiple trials per subject. While this study represents one of the

largest of it’s type, our sample size was likely a primary factor increasing the error of our

cross-validation analysis, which can be as high as ±10% in studies containing 100 samples

(Varoquaux, 2018). This limitation is well-understood in this thesis, and care has been

taken in interpreting the results of these statistical models. Group-level voxel-wise analy-

sis employing permutation testing, as applied here in the voxel-wise analysis of SUVR and

CBF images, has been shown to provide good statistical control on prediction accuracy

(Stelzer et al., 2013). Considering these analyses in concert thus increases our confidence

in the interpretation of the results presented here.

This longitudinal analysis of a large, cognitively well-characterised PD cohort, found

evidence of increased cortical amyloid accumulation in PD that correlated with future

cognitive decline to dementia within approximately three years. However, the practical

merit of this measure in estimating the three-year probability of conversion to dementia

is likely minimal. The primary pattern of spatial variance of amyloid load was found to

be associated with both conversion to dementia and APOE-ε4 expression, suggesting that

involvement of other pathologies associated with this gene expression may affect patterns

of amyloid deposition in PD.
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Diffusion Imaging of White

Matter Degeneration - a

Fixel-Based Analysis

7.1 Author Contributions

I performed the image processing, study design, statistical analysis and interpretation of

results in this chapter. TM and MA acquired the MR image data for this study.

The NZBRI Study of Parkinson’s Disease

The larger study of Parkinson’s disease at the New Zealand Brain Research institute was

conceptualised and designed by TM, DJM, MM, TP, DHM, JD-A, and TA. TM, MM,

DHM, RK, DJM, LL, JD-A, and TA obtained funding for the study. RK, LL, DJM,

MM, TP, and SM provided administrative, technical, and material support. All authors

contributed to acquisition, analysis or interpretation of data.

7.2 Introduction

Parkinson’s disease is a neurodegenerative disorder characterised by the progressive for-

mation of alpha-synuclein aggregates and death of dopaminergic neurons in the substantia
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nigra, manifesting in a broad spectrum of motor and non-motor clinical features, includ-

ing progressive cognitive decline and dementia. Thus far this thesis has focused mainly

on the imaging of global and cortical pathological changes that may be associated with

cognitive decline in PD, such as beta-amyloid protein accumulation, grey matter atrophy

and cerebral perfusion. While investigation of amyloid accumulation has not identified

any major effect on current or future cognitive status within our cohort, it may be that the

primary driver of neurodegeneration (and thus, cognitive decline) in PD is alpha-synuclein

aggregate-related synaptic and neuronal dysfunction, in addition to organelle dysfunctions

(mitochondrial, lysosomal, and endoplasmic reticulum impairments) and metallomic im-

balances resulting in degenerative neurotoxicity (oxidative stress and neuroinflammation).

Modern imaging techniques enable changes in white matter to be quantified in vivo, of-

fering potential analogues of overall white matter health, including myelin damage and

axonal degeneration.

MR imaging offers perhaps the most potential for in vivo investigations of white matter

changes over the disease course in PD. For example, lesions in white matter are visible

on T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI as areas of increased

brightness, or white matter hyperintensities (WMH). Comorbid WMH’s are expected

to contribute to balance, gait, mobility and cognitive impairments, both in PD and in

otherwise normal elderly individuals (Bohnen & Albin, 2011). In recent years, diffusion-

weighted imaging, specifically diffusion tensor imaging (DTI), has garnered widespread

interest as a way to potentially quantify white matter microstructural integrity in vivo,

but has been plagued with difficulties including a lack of anatomical accuracy in small

subcortical structures, large potential for error over a long, complicated workflow, and

failure to model complex fibre orientations at the voxel level. Nevertheless, DTI has been

applied incredibly widely, reporting white matter integrity to be differentially reduced

in PD with dementia (PDD) compared with cognitively normal PD (PDN) (Atkinson-

Clement et al., 2017). DTI tractography revealed anterior cingulum fibre tracts to be

more affected in PDD compared with both healthy controls and PDN (Kamagata et

al., 2012), while another study has shown evidence of a possible sequential relationship,

wherein brain hypoperfusion precedes WM microstructural degeneration, grey matter

atrophy, and consequently cognitive decline (Hattori et al., 2012). This suggests that

WM changes imaged using diffusion MR may have potential as a biomarker of future

development of dementia in PD.
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However, there is a lack of consensus in the literature as to when in the PD disease course

microstructural changes become differentiable from age-matched controls; (Melzer et al.,

2013) observed increased WM structural abnormalities compared to controls, beginning

from PDN and increasing with severity of cognitive impairment; while (Hattori et al.,

2012) found WM to be detrimentally affected in PD-MCI, PDD and dementia with lewy

bodies (DLB), but not in PDN, compared to controls. Studies thus run the range of little

to no differences in WM at the cognitively normal stage, to showing extensive changes

that correlate with poorer cognitive performance at longitudinal follow-up (Auning et

al., 2014; Sterling et al., 2017). Some of this variation may be due to differences in the

characterisation of the cognitive groups, small sample sizes and the limitations inherent

to DTI imaging, requiring the use of more sensitive and accurate methods for modelling

subtle changes in early disease. In recent years, higher order methods of diffusion imaging

have been developed in an attempt to mitigate the aforementioned limitations associated

with DTI, which may help to define a clearer picture of WM changes that occur prior to

cognitive impairment.

7.2.1 Diffusion weighted imaging

It is useful at this point to discuss the primary tenets underlying DTI, in order to un-

derstand both the potential value and the limitations that can be addressed by improve-

ments in acquisition and modelling. DTI refers to a specific type of modelling of diffusion

weighted magnetic resonance imaging (DW MRI) that enables the quantification of tissue

architecture based on the movement of water (water diffusion) through those tissues. DTI

models the displacement of water molecules as a rotationally invariant tensor (Lanskey et

al., 2018), with the diffusion of water assumed to be essentially random, following Gaus-

sian free diffusion. Deconstruction of the diffusion tensor allows the estimation of water

diffusion in the directions sampled by the diffusion signal. This information is used to

estimate several main properties of interest within tissues, namely radial diffusivity (RD),

axial diffusivity (AD), mean diffusivity (MD) and fractional anisotropy (FA).

DTI metrics may be used to infer structure based on what we know of interactions of water

with cellular membranes, macromolecules and white matter fibres. Fractional anisotropy

(FA) in particular is often used as a summary measure of white matter integrity, and

quantifies the degree to which water diffusion is directionally restricted within a voxel,
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following a scale of zero (fully isotropic) to one (fully anisotropic). WM tends toward

anisotropy, consisting of parallel bundled axons, where diffusion perpendicular to the

axon is restricted in part by the myelin sheath. This facilitates preferential diffusion

along the main direction of the fibre bundle. In the ideal DTI case where unrestricted

diffusion of water is assumed, water diffusion through the brain will be completely direc-

tionally restricted in WM (but free to diffuse along the WM pathway), and essentially

free to diffuse in CSF. This is clearly an over-simplification, and one that impacts the

biological interpretability of DTI, both in terms of local metrics such as FA, and more

global tractographical analysis.

Tractography has been applied to DTI data to determine the trajectories of white matter

tracts, in order to infer the underlying connectome of the human brain (R. E. Roberts et

al., 2013). In theory, white matter fibres may be inferred where the principal direction

of diffusion is maintained through a number of contiguous voxels. In practice, both accu-

rate tractography and evaluation of the above DTI metrics suffer from the assumptions

underlying the model. The traditional diffusion tensor model is a poor fit to describe

voxels containing partial volumes, or multiple distinct fibre bundles oriented in different

directions, as DTI models only a single principal direction of diffusion within each voxel.

Crossing, kissing, fanning, or curving fibres are difficult for many diffusion reconstruction

algorithms to correctly distinguish, leading to incorrect estimation of fibre orientations

(Daducci et al., 2014). The ‘crossing fibre’ problem is expected to affect approximately

90% of voxels in a DW image (Jeurissen et al., 2013). This has severe implications for

interpretation of diffusion tensor modelled data, and strongly argues for a move away

from such simplified models.

High angular resolution diffusion imaging (HARDI) was introduced in part to address the

crossing fibre problem, particularly in the context of fibre tracking. Here, fibre orienta-

tion information is paramount, in order to effectively follow a single fibre as it curves and

intersects with other fibres through the brain. While diffusion signal can be improved in

many ways (for example, using multiple b-values, or ‘shells’, applied over the same direc-

tion, multiple repeats of the same direction, or any mixture of the two), HARDI primarily

focuses on improving directional information by sampling directional space as densely as

possible. Traditional DTI is acquired using as few as 6 unique diffusion directions plus

at least one image without diffusion weighting (b=0), while HARDI acquisition protocols
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sample over 50 unique directions for any one b-value (Berman et al., 2013). HARDI sig-

nal, acquired in this way, can be thought of as the spherical convolution of the amplitude

of directional responses of tissues within a voxel to an applied magnetic field gradient. It

follows that the fibre population in a voxel can be modelled by performing the spherical

deconvolution of the DW signal by the WM response function, constrained to non-negative

values (Tournier et al., 2007). This yields the fibre orientation distribution (FOD) of the

WM tissue within the voxel. Constrained spherical deconvolution (CSD) methods have

been shown to offer superior fibre tracking compared to conventional DTI methods, in

the context of neurosurgical planning (Farquharson et al., 2013; Mormina et al., 2015).

While effective in addressing the crossing fibre problem, voxels containing partial volumes,

particularly at the WM/GM border, require additional consideration. To address this,

specialised applications of CSD allow not only the FOD pertaining to WM and CSF to

be estimated, but also GM. Until recently, 3-tissue FOD estimation has been limited to

data acquired using multiple b-values, or ‘shells’. Dhollander and Connelly (2016) have

developed a method to obtain these 3-tissue FODs using only single-shell data (Single-

Shell 3-Tissue CSD [SS3T-CSD] (Dhollander & Connelly, 2016)), using MRtrix3Tissue

(https://2Tissue.github.io), a new branch of MRtrix3 (Tournier et al., 2019). The ability

to obtain multi-shell-like estimation from single-shell data presents highly desirable clin-

ical advantages, both in reduced scanning-time and cost. The SS3T-CSD method shows

clear improvements over standard single-shell CSD, as will be shown in this chapter.

7.2.2 Fixel-based analysis

Previous chapters in this work have employed voxel-based analysis (VBA) for investigating

whole-brain voxel-wise tests across and within our subject groups, using statistical para-

metric mapping (SPM). While VBA has the ability to identify local group differences and

test specific hypotheses, voxel-averaged metrics such as FA lack the within-voxel speci-

ficity required to compare specific fibre populations, especially in the context of crossing

fibres and partial volumes. In response to this limitation, fixel-based analysis (FBA) was

proposed (D. A. Raffelt et al., 2016) as a method that improves biological interpretability

in these areas by breaking down voxels into their composite fibre populations, represented

as ‘fixels’ (D. Raffelt et al., 2015). The fixel not only provides a representation of the po-

tentially multiple fibre population orientations within a standard voxel, but also may be

used to examine degeneration by way of reduced fibre density (FD) or fibre-cross-section
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(FC). Changes in fibre density may be interpreted as an alteration of the intra-axonal

volume of an axon, with a decrease in FD indicating axonal degeneration. Changes in

fibre bundle cross-section may occur as a consequence of atrophy, wherein a loss of extra-

axonal space may reflect a loss of axons (D. A. Raffelt et al., 2016) or hypomyelination

and disorganisation of axons (Malhotra et al., 2019). A combined measure of these two

processes, fibre-density-cross-section (FDC) may serve as an average measure of neuronal

health, much as FA does in voxel-based DTI analysis. These metrics are expected to

provide a more readily interpretable measure of neuronal health from DW imaging than

voxel-average metrics, and also allow tract-specific statistical testing.

To that end, this chapter investigates tract specific changes in FD, FC and FDC in an ex-

panded cohort of both Parkinson’s disease and controls. This cross-sectional application

of FBA represents one of the largest and most well-characterised PD cohorts examined

using this new technique, including subjects across the cognitive spectrum from normal

cognition, mild cognitive impairment, and dementia. The aim of this study was to (1)

identify specific fibre tracts affected in PD, (2) investigate the role of ageing in white mat-

ter changes, and (3) identify any tracts that relate specifically to cognitive performance.

Additionally, I restricted the cohort to those for which amyloid imaging was also acquired

(n=84) and (4) investigated if the presence of amyloid deposition was related to fibre tract

degeneration by these same metrics.

Previous results from cross-sectional analysis of amyloid load in these subjects identified

cognitive deficits to be primarily age rather than amyloid-driven. Given the close re-

lationship between cognitive decline and white matter degeneration, it will be of use to

investigate any association between amyloid load and measures of WM degeneration given

by FBA, which may further support our previous findings. Using the most up-to-date

techniques, we aim to construct a more accurate picture of WM degeneration in PD, and

elucidate the driving forces behind those changes.
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7.3 Materials and methods

7.3.1 Participants

A convenience sample of 171 participants, including both healthy controls and patients

representative of the full cognitive spectrum in PD, was recruited as part of an ongo-

ing longitudinal study of Parkinson’s disease at the New Zealand Brain Research Insti-

tute (NZBRI), Christchurch, New Zealand. Parkinson’s disease participants met the UK

Parkinson’s Disease Society’s criteria for idiopathic PD (Hughes et al., 1992), and were

recruited from volunteers at the Movement Disorders Clinic at the NZBRI. Exclusion cri-

teria included atypical Parkinsonian disorders; prior learning disability; previous history

of other neurological conditions including moderate-severe head injury, stroke, vascular

dementia; and major psychiatric or medical illness in the previous 6 months. Partici-

pants completed a comprehensive neuropsychological battery and MRI scanning session.

In addition to HARDI MRI, a subset of 84 also completed [18F]-Florbetaben (FBB) PET

imaging. Of the original sample, there were a number of exclusions; 2 due to patient

motion; 5 due to acquisition error; 2 due to a later diagnosis of progressive supranuclear

palsy (PSP); and 2 withdrew from the study. The final HARDI cohort included a total of

160 participants, including controls with normal cognition (CN; n=34), otherwise healthy

controls with MCI (C-MCI; n=3), cognitively normal PD (PDN; n=46), PD with mild

cognitive impairment (PD-MCI; n=66) and Parkinson’s disease dementia (PDD; n=11).

All participants gave written informed consent, with additional consent from a significant

other when appropriate. The study was approved by the regional Ethics Committee of

the New Zealand Ministry of Health (No. URB/09/08/037).

7.3.2 Image acquisition

MR images were acquired on a 3T General Electric HDxt scanner (GE Healthcare, Wauke-

sha, USA) with an eight-channel head coil. High angular resolution diffusion weighted

imaging (spin echo, echo planar imaging (SE-EPI) sequence, TE/TR=94.4/10000ms, flip

angle = 90 deg, acquisition matrix = 128 × 128 × 74, slice thickness = 2mm, voxel

size of 1.95 × 1.95 × 2 mm3, phase encoding = anterior-posterior) was performed over

64 uniformly distributed non-co-planar gradient-encoding directions (b = 2500 s/mm2).

Six volumes without diffusion weighting (b = 0s/mm2) were also acquired, for a total
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scan time of approximately 13 minutes. At least one scan with reversed phase encod-

ing (posterior-anterior) was also acquired (b=0 s/mm2), to be used in EPI distortion

correction.

PET images of [18F]-Florbetaben (FBB) uptake were also acquired in a subset of subjects.

These acquisition parameters are detailed in chapter 5, section 5.5.2.

7.3.3 Image preprocessing

Software used in this study for image preprocessing and statistical analysys included MAT-

LAB R2018b v9.5.0.1175774, SPM12 v6685 (http://www.fil.ion.ucl.ac.uk/spm/), FMRIB

Software Library (FSL) v5.0 (Jenkinson et al., 2012), MRtrix3 (https://www.mrtrix.org)

(Tournier et al., 2019), Mrtrix3Tissue v5.1.0 (https://2Tissue.github.io) and RStudio

v1.2.1335. Unless stated otherwise, the program used to perform image processing or

statistical analysis on diffusion-weighted data was MRtrix3.

7.3.3.1 Initial preprocessing

Diffusion weighted images underwent denoising (Veraart, Fieremans, & Novikov, 2016;

Veraart, Novikov, et al., 2016), removal of Gibbs ring artifacts (Kellner et al., 2016), cor-

rection for motion and distortion due to eddy currents and field inhomogeneities using

the acquisition with reverse phase encoding (Andersson & Sotiropoulos, 2016; Anders-

son et al., 2003), and bias field correction (Tustison et al., 2010). Voxel size was then

up-sampled to 1.3mm isotropic in order to increase anatomical contrast (Dhollander et

al., 2016). Brain masks were computed for these up-sampled images using FSL’s BET

(S. M. Smith, 2002), at a fractional intensity threshold value of f=0.25. Images were

visually inspected after each step.

7.3.3.2 Constrained spherical deconvolution

Tissue response functions were estimated for WM, GM and CSF for each subject using an

unsupervised method (Dhollander et al., 2019, 2016), and averaged to create a single set

of three study-specific tissue response functions. Single-Shell 3-Tissue CSD (SS3T-CSD)

was then performed within the brain mask to obtain WM-like FODs as well as GM-like
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Figure 7.1: Volume fraction images obtained through FOD estimation using a) MSMT-CSD b)
SS3T-CSD. Red is the volume of tissue estimated to be CSF, blue is estimated to be WM, and
green is estimated to be GM. MSMT-CSD is unable to estimate GM from a diffusion weighted data
consisting of a single b-value +b=0. SS3T-CSD performed on the same data yields multi-shell-like

estimation of tissue volume fractions.

and CSF-like compartments in all voxels (Dhollander & Connelly, 2016), using the group-

averaged response functions for each tissue. In brief, SS3T-CSD achieves multi-shell-like

FOD estimation by using an iterative approach in the estimation of tissue boundaries.

Firstly, WM is initialised to 0 and used as a prior constraint to fit a CSF+GM mixture,

yielding an underestimate of CSF; this underestimate is then used as a constraint to fit

a WM+GM mixture, which will also yield an underestimate of WM; this new estimate is

then applied as the WM constraint in the next iteration. This process, carried out over 3

iterations, avoids overestimation of WM and allows estimation of GM, which cannot be

estimated by simply applying the MSMT-CSD algorithm to single-shell data. Figure 7.1

shows the volume fractions estimated for each tissue using (a) MSMT-CSD and (b) SS3T-

CSD. The ability to estimate GM-FOD information greatly improves the spatial resolution

of WM in the generation of the study specific WM-FOD template, as evidenced in figure

7.2.

7.3.3.3 Study-specific template creation

The resulting 3-tissue FODs for each subject were then intensity-normalised in order to

make the FODs comparable between subjects. A study-specific unbiased FOD template
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Figure 7.2: Study-specific WM FOD template images created from a subset of 32 subjects, using
(a) WM FODs derived from MSMT-CSD, and (b) WM FODs derived using SS3T-CSD. The sagital
slice was placed directly in the midline of the brain. Image (a) is included here to demonstrate the

efficacy of SS3T-CSD over MSMT-CSD in distinguishing WM from GM in FOD generation.

was created from a subset of 32 subjects (8 each from CN, PDN, PD-MCI and PDD) by

first applying an affine registration, then applying an iterative non-linear registration to

bring all subjects into a common space (D. Raffelt et al., 2011). Figure 7.2(B) depicts

the output averaged FOD template image from SS3T-CSD derived 3-tissue FODs. The

2-tissue FODs output from employing the MSMT-CSD method with this data were also

used to generate a study-specific WM-FOD template (figure 7.2[A]), in order to compare

the efficacy of the two methods. There is a clear improvement in the delineation of

WM tissue using the SS3T-CSD method, with WM significantly over-estimated by the

MSMT-CSD method.

Non-linear, apodised point-spread reorientation was then used to coregister all subject

FOD images to the template image (D. Raffelt et al., 2011; D. Raffelt, Tournier, Crozier,

et al., 2012). Subject brain masks were then warped to template-space using the output

warp fields from this step, and a template mask computed from the intersection of all

subject masks. This defined areas in which all participants had usable data.
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Figure 7.3: A whole brain tractogram created from study specific WM FOD templates, given by
(A) the MSMT-CSD method, which estimates only WM and CSF-like compartments when used
with single-shell data, and (B) the SS3T-CSD method, which estimates WM, CSF and GM-like
compartments from single-shell data. 20 million tracts were originally generated, and filtered to 2
million by SIFT. For ease of display in this figure, streamlines were further reduced to 200 thousand.
Colour indicates the direction of streamline orientation: red indicates left-right; green indicates

anterior-posterior; blue indicates superior-inferior.

7.3.3.4 Probabilistic fibre tractography

A whole-brain tractogram including twenty million streamlines was then generated from

the FOD template, using probabilistic fibre tractography. Tracts were generated using the

WM-FOD template mask as both seed region and restrictive mask, ensuring all possible

WM voxels are included in fibre tractography estimation. The number of streamlines was

filtered to 2 million using spherical-deconvolution informed filtering of tractograms (SIFT)

(R. E. Smith et al., 2013), in order to reduce the effect of biases inherent to reconstruc-

tion. Figure 7.3 shows the output of fibre tractography and SIFT, colour-coded based on

streamline orientation, when performed using (A) the WM-FOD template generated from

employing MSMT-CSD with single-shell data, and (B) the WM-FOD template generated

from employing SS3T-CSD with the same data. This figure demonstrates the effect of

over-estimation of WM, leading to probabilistic tractography failing to accurately termi-

nate tracts at the GM/WM boundary, resulting in lack of delineation of WM tracts and

a diffuse loss of directional information.



Chapter 7 - White Matter Alterations in PD 114

Figure 7.4: The generated fixel mask, designating all fixels that will be examined in fixel-based
analysis. The magnified section (red, orange inset) contains crossing fibres. The fixels contain infor-
mation relating to multiple fibre orientations, rather than the single primary orientation that would
be given by DTI. The yellow inset depicts the estimation of two crossing fixels from segmentation of
the FOD lobe peaks and troughs for that voxel. Colour indicates the direction of fixel orientation:

red indicates left-right; green indicates anterior-posterior; blue indicates superior-inferior.

7.3.3.5 Fixel and apparent fibre density estimation

The template FOD was then segmented into fixels based on lobe peaks and troughs,

producing a ‘fixel mask’ (figure 7.4). This mask designates all fixels that will be included

in statistical analyses, and hence also which fixels’ statistics can contribute to others via

the mechanism of connectivity-based-fixel enhancement (CFE) (D. Raffelt et al., 2015).

Individual subject fixels were estimated by segmenting each FOD lobe to identify the

number and orientation of fixels in each voxel (figure 7.4: ODF display inset). This

step also provides the first estimate of apparent fibre density (AFD) within each fixel in

subject space. The resulting fixels were then reoriented based on the local warps used

previously, to ensure the fixel directions remain consistent with the surrounding anatomy

following a non-linear spatial transformation. Each subject’s individual fixel FD values

were then assigned to the corresponding fixels in the template fixel mask. Fixel-based

metrics computed for each subject will now correspond in space, and specific tracts can

be directly compared in statistical analysis.
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Figure 7.5: The principles of AFD. (A) A given voxel containing coherently ordered axons. (B)
Radial diffusion of water is restricted by the intra-cellular compartment (green circles) in the per-
pendicular plane. (C) Diffusion weighted signal is proportional to the intra-cellular compartment,
independent of axonal diameter. (D) The amplitude of the FOD in the radial direction is proportional
to the magnitude of the radial DW signal, and therefore also to the intra-axonal volume occupying
the perpendicular plane. Reprinted from (D. Raffelt, Tournier, Rose, et al., 2012), Copyright ©

2012, with permission from Elsevier.

7.3.4 Fixel-based metrics

Fixel-based metrics were computed for each subject across all white matter fixels, includ-

ing apparent fibre density, fibre-bundle morphology (cross-section), and a combined fibre

density and cross-section metric, following the methodology described by (D. A. Raffelt

et al., 2016). All three metrics provide different yet complimentary information relating

to white matter health, which will be summarised here.

Computation of AFD for any given coherently ordered fibre bundle is based on the as-

sumption that intra-axonal water is radially restricted within fibres (figure 7.5[A-B]), and

the observation that radial DW signal emanating from a restricted compartment is inde-

pendent of axonal diameter (D. Raffelt et al., 2011) (figure7.5[C]). As the FOD amplitude

is approximately proportional to the radial DW signal (figure7.5[D]), the integral of the

FOD lobe in any given direction will then be proportional to the intra-axonal volume

of axons aligned in that direction (Mito et al., 2018). Thus, the apparent fibre density

represents the volume of a bundle actually occupied by fibres (Figure 7.6[a]), providing

within-voxel specificity to microstructural changes in WM.

The AFD value of each subject fixel is mapped to a corresponding fixel in template space,

and thereafter referred to by the shortened acronym Fibre Density, FD. If no subject fixel

can be found that corresponds to a template fixel within a maximum angle of 30 degrees,

then a value of zero is assigned (D. Raffelt et al., 2015), as absent fixels most likely occur

due to a very low, or zero, FD.



Chapter 7 - White Matter Alterations in PD 116

7.3.4.1 Fibre-bundle cross-section

While FD is sensitive to microstructural changes in intra-axonal volume at the sub-voxel

level, it is independent of the macro-structural changes to the cross-sectional size, or

morphology, of the bundle. In certain cases, as in figure 7.6(b), a loss of axons may result

in a reduced overall macro-structural area of the fibre bundle, while FD is preserved.

Macro-structural morphology is evaluated in the fixel-based framework using the fibre-

bundle cross-section (FC) metric (D. A. Raffelt et al., 2016).

In short, FC is derived completely from the warp fields generated by the coregistration

of subject FODs to template space. In the plane perpendicular to the fixel direction,

the template-to-subject warp fields contain information about the local transformation

required to spatially normalise a given fibre bundle in template space to the corresponding

fibre bundle in subject space. FC is estimated as the overall factor of volume change (or

the expansion or contraction of a cross-sectional area) required to transform a template

fibre bundle to subject anatomy. Thus, a value greater than 1 implies the subject FC is

larger than the corresponding template fibre bundle, and likewise a value less than one

indicates a reduced subject FC. It is important to keep in mind that FC is a relative metric

- it is only valid to directly compare FC between subjects whose fixel data corresponds

to the same study-specific template. This precludes the comparison of tract specific FC

values with those obtained in other studies. It is valid, however, to compare the results of

Figure 7.6: Fixel-based metrics allow the varying manifestations of changes to the intra-axonal
volume of a fibre bundle to be differentiated. Each square represents a voxel, containing a certain
number of fibres. This figure originally appears in (D. A. Raffelt et al., 2016), Copyright © 2017,

Elsevier. Reused under Creative Commons licence.
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between-subject statistical analyses with results from other groups. For group statistical

analysis, the log of FC is computed such that the data are centered normally around zero.

7.3.4.2 Combined fibre density and cross-section

Both FD and FC are important factors affecting the total intra-axonal volume across

a bundle’s full cross-sectional extent (figure 7.6(c)), and hence both effect the overall

capacity of that fibre bundle to carry information. As all subjects fixels correspond to

the same set of template fixels, it is a simple matter to compute a combined measure for

each fixel, resulting in a fibre-density and cross-section metric (FDC). This metric can

be thought of as a more complete measure of intra-axonal volume, accounting for both

within-voxel density of fibres, and macro-structural area (D. A. Raffelt et al., 2016).

7.4 Statistical analysis

7.4.1 Connectivity-based fixel enhancement

Connectivity-based smoothing and statistical inference were performed using connectivity-

based fixel enhancement (CFE). CFE uses the study-specific tractogram output from

probabilistic tractography to structurally connect neighbouring fixels, identifying those

that likely share underlying anatomy. In smoothing, probabilistic connectivity informa-

tion is used to preferentially smooth values along structurally connected fixels (as opposed

to applying a standard isotropic Gaussian kernel), ensuring that smoothing occurs locally

with fixels belonging to the same fibre tract. Spatially restricting the Gaussian kernel

helps to prevent smoothing with neighbouring fixels that may belong to crossing fibres, or

remote fixels outside of the WM structure that may contain very different values. Here,

CFE smoothing was applied using the template-derived whole-brain tractogram, contain-

ing 2 million streamlines, using the default parameters (FWHM = 10mm, C = 0.5, E

= 2, H = 3) (D. Raffelt et al., 2015). CFE also applies probabilistic connectivity infor-

mation in statistical inference, to mimic conventional threshold-free cluster enhancement.

All P-values derived from FBA analysis were thus corrected for family-wise error using

non-parametric permutation testing over 5000 permutations (D. Raffelt et al., 2015).
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7.4.2 Whole-brain fixel-based analysis

Using CFE-supported whole-brain FBA, I first applied a standard ANCOVA model (with

age and sex as covariates) to assess fixel-wise differences in FD, log(FC) and FDC, specifi-

cally testing the following contrasts within the full PD/controls cohort: PD > CN, C-MCI

> CN, PD-MCI > CN, and PDD > CN. In the cohort restricted to those with amyloid

PET imaging, I investigated differences in these metrics between clinically amyloid posi-

tive and amyloid negative participants (Aβ-positive > Aβ-negative).

In addition, I ran three multiple linear regression models, restricted to PD, to investi-

gate the association between the fixel-wise metrics and continuous measures of (1) global

cognitive ability (cognitive z score), (2) motor impairment (UPDRS Part-III score), (3)

global Aβ load (average global FBB CL value), and (4) age. Age was included as a co-

variate in models (1-3); models (1) and (2) were assessed specifically in the HARDI only

cohort; model (3) was assessed specifically in the HARDI + Aβ cohort; Global Aβ load

was included as a covariate in model (4) for the HARDI + Aβ cohort; sex was included

as a covariate in all models. I tested for both a positive and negative association between

the HARDI metric and the variable of interest in all models.

The fixel-level statistical inference maps were corrected for family-wise error using non-

parametric permutation testing over 5000 permutations (D. Raffelt et al., 2015), and

thresholded at a FWE-corrected P-value < 0.05. The output statistical inference maps

for each contrast were mapped to associated streamline points in the whole-brain trac-

togram, and the resulting track scalar files displayed over the study-specific template

using the mrview tool in MRtrix3, cropped to the slice in view. Significant tracts (FWE-

corrected P-value < 0.05) were coloured by streamline orientation (red, left-right; green,

anterior-posterior; blue, superior-inferior). Significant tracts were visually matched to

corresponding anatomy defined by the John’s Hopkins University (JHU) ICBM-DTI-81

White-Matter Labels atlas (Oishi et al., 2008) and the JHU White-Matter Tractography

Atlas. Select axial slices of these atlases can be found in the appendix for reference (see

figures A.2 A.3) .
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7.5 Results

7.5.1 Demographics

Table 7.1 and table 7.2 summarize the demographic and clinical information for the

HARDI only cohort and the HARDI + Aβ PET cohort respectively, where control and

PD participants are grouped by cognitive status. No significant pairwise group differences

were found between the cognitive groups in education and duration of PD symptoms for

either cohort. Within the HARDI cohort: (1) CN were significantly older than PDN, oth-

erwise no group differences in age were observed; (2) significant decreases in MoCA score

by worsening cognitive status were observed across all groups; (3) significant decreases in

cognitive z score were observed across most cognitive groups, however C-MCI and PDN

showed similar cognitive z scores. Within the HARDI + Aβ PET cohort: (1) PDD were

significantly older than PDN; (2) significant decreases in MoCA score by worsening cog-

nitive status were observed across all groups; (3) significant decreases in cognitive z score

by worsening cognitive status were observed across all groups.

7.5.2 Whole brain FBA

Whole-brain CFE-supported analysis of fixel level associations with FD, FC and FDC

revealed widespread age-related reductions in all three metrics in PD, while reductions

in PD compared to controls were much more constrained. Fixel density was found to

increase with increasing age in the posterior commissure and left thalamic nuclei, but no

other positive associations were found.

The right ventral tegmental area (VTA), including the substantia nigra, showed reduced

FD and FDC in PD, an association that remained significant in PD-MCI and PDD com-

pared to controls, but was not significant in PDN. FC was not found to be reduced in PD

compared to controls, or within the cognitive subgroups.

Cognitive impairment was associated with reduced FD in the left fornix (cres) and stria

terminalis (FX-ST), while motor impairment (UPDRS Part III) was associated with re-

duced FD in the left splenium, left tapetum, and left sagittal stratum. No other metric

was found to show alterations associated with cognitive ability or motor control.
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HARDI (n=160) Control PD

CN C-MCI PDN PD-MCI PDD Linear models

n 34 3 46 66 11 -

Age, years 74 (7) 82 (9) 69 (7) 73 (6) 75 (7) CN > PDN

Female, No. (%) 10 (30) 3 (100) 16 (35) 21 (32) 2 (18) -

Education, years 14 (3) 15 (4) 13 (3) 13 (3) 13 (3) ∼

PD symptom dura-
tion, years

NA NA 11 (5) 10 (6) 10 (6) ∼

MoCA 27 (2) 22 (2) 26 (2) 23 (3) 17 (3) CN & PDN >
C-MCI & PD-
MCI > PDD

Cognitve Z score 0.69
(0.39)

0.15
(0.35)

0.21
(0.42)

-0.76
(0.44)

-1.91
(0.54)a

CN > C-MCI
& PDN > PD-
MCI > PDD

Table 7.1: Demographics table for the HARDI only cohort. Values are mean (standard deviation) unless
specified; aCognitive z scores for three PDD participants were imputed from restricted neuropsychological
data due to their inability to complete the full cognitive assessment; ∼, no evidence of a difference; -–,
no statistical test applicable or was not performed. Pairwise group estimates were considered different if

95% uncertainty intervals did not overlap. MoCA, Montreal Cognitive Assessment.

HARDI + Aβ PET (n=84)

PDN PD-MCI PDD Linear models

n 20 55 9 -

Age, years 70 (6) 73 (6) 76 (7) PDD > PDN

Female, No. (%) 6 (30) 15 (27) 2 (22) -

Education, years 13 (2) 13 (3) 12 (2) ∼

PD symptom duration,
years

10 (6) 9 (5) 10 (6) ∼

MoCA 26 (2) 23 (3) 16 (4) PDN > PD-
MCI > PDD

Cognitve Z score 0.073 (0.42) -0.75 (0.45) -2.01 (0.47)a PDN > PD-
MCI > PDD

Dose 296 (20) 301 (17) 288 (35) ∼

Aβ Positive, No. (%)b 4 (0.25) 8 (15) 1 (11) -

Mean cortical CL 15 (21) 18 (29) 27 (34) ∼

Table 7.2: Demographics table for the HARDI + amyloid PET cohort. Values are mean (standard
deviation) unless specified; aCognitive z scores for three PDD participants were imputed from restricted
neuropsychological data due to their inability to complete the full cognitive assessment; bVisual assessment
of amyloid positive/negative reported; ∼, no evidence of a difference; -–, no statistical test applicable or
was not performed. Pairwise group estimates were considered different if 95% uncertainty intervals did
not overlap. MBq, megabecquerel; MoCA, Montreal Cognitive Assessment; Aβ, Amyloid beta; SUVRNS,
Standardized uptake value ratio with “non-standard” processing (see Supplementary Material); CL, cen-

tiloid.
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There was no evidence of an association between amyloid positivity and alterations in

any FBA metric, when investigated within the HARDI + Aβ restricted cohort. A lin-

ear regression with mean cortical amyloid load as a continuous measure supported this

groupwise comparison. Age-related effects, independent of mean cortical amyloid load,

followed similar patterns as seen in the wider cohort however were less extensive. This

may suggest an amyloid-facilitated, age-related pattern in PD, encompassing some of the

variance seen in the larger group for whom amyloid status is not known. This hypoth-

esis was not verified within the current scope of this study, given the low proportion of

amyloid-positive subjects in this cohort.

7.5.2.1 Fixel density

PD versus healthy controls

In the fixel-wise comparison of FD between PD and CN participants, there were no

areas found to have increased FD in the PD group. Reduced FD in the PD group was

observed in the splenium of the corpus callosum, right ventral tegmental area (including

the substantia nigra [SN]), and bilateral tapetum (figure 7.7).
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Figure 7.7: Fixels identified by FBA to have reduced FD in PD participants compared to cog-
nitively normal controls, mapped to corresponding streamlines and coloured by direction. The
structures identified are the splenium of the corpus callosum, tapetum and right ventral tegmental

area, including the substantia nigra (SN).

Cognitive subgroups

When investigating the cognitive subgroups, I identified no evidence of any fixel-wise

differences in FD between CN and C-MCI or PDN. FD was found to be reduced in both

PD-MCI (figure 7.8) and PDD (figure 7.9) compared to CN, again within a small area of

the ventral tegmental area (including the SN).
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Figure 7.8: Fixels identified by FBA to have reduced FD in PD-MCI participants compared to
cognitively normal controls, mapped to corresponding streamlines and coloured by direction. The

structure identified is the right ventral tegmental area, including the SN.

Figure 7.9: Fixels identified by FBA to have reduced FD in PDD participants compared to cog-
nitively normal controls, mapped to corresponding streamlines and coloured by direction. The

structure identified is the right ventral tegmental area, including the SN.

Cognitive and clinical associations with PD

When restricted to the PD group, reduced FD in the left fornix (cres) and stria terminalis

(FX-ST) was significantly associated with global cognitive ability (global cognitive z score)

(figure 7.10). Reduced FD in the tapetum (extending slightly into the splenium), and in

a region of the inferior longitudinal fasciculus was associated with reduced motor function

in PD, as defined by performance on part III of the UPDRS (figure 7.11).

Age exhibited positive association with FD in the posterior commissure and thalamic WM

(figure 7.12), and a negative association in the forceps major, splenium, genu and body

of the corpus callosum, fornix, tapetum, saggittal stratum (including the inferior longi-

tudinal fasciculus and the inferior fronto-occipital fasciculus), external capsule, anterior

commissure and the anterior thalamic radiation (figure 7.13).
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Figure 7.10: Fixels identified by FBA to have reduced FD associated with cognitive impairment in
the PD participants, mapped to corresponding streamlines and coloured by direction. The structure

identified is the fornix (cres) and stria terminalis.

Figure 7.11: Fixels identified by FBA to have reduced FD associated with poorer motor control
in the PD participants, mapped to corresponding streamlines and coloured by direction. The struc-
tures identified are the left splenium and tapetum, and the sagittal stratum (inferior longitudinal

fasciculus).

Figure 7.12: Fixels identified by FBA to have increased FD associated with increasing age, mapped
to corresponding streamlines and coloured by direction. The structures identified are the posterior

commissure and thalamic WM.
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Figure 7.13: Fixels identified by FBA to have reduced FD associated with increasing age, mapped
to corresponding streamlines and coloured by direction. The structures identified are the forceps
major, splenium, genu and body of the corpus callosum, fornix, tapetum, saggittal stratum (includ-
ing the inferior longitudinal fasciculus and the inferior fronto-occipital fasciculus), external capsule,

anterior commissure and the anterior thalamic radiation.

7.5.2.2 Fixel cross-section

PD versus healthy controls

There was no evidence of any fixel-wise differences in FC between PD and cognitively

normal controls.

Cognitive subgroups

There was no evidence of any fixel-wise differences in FC between any of the groups

examined.

Cognitive and clinical associations with PD

When restricted to the PD group, there was no evidence of any fixel-wise association

between FC and global cognitive performance (cognitive z score) or motor performance

(UPDRS Part III score). FC showed reductions associated with increasing age in the

splenium and body of the corpus callosum, cingulate gyrus, corticospinal tract, sagittal
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stratum (including the inferior longitudinal fasciculus and inferior fronto-occipital fascicu-

lus), external capsule, anterior commissure, uncinate fasciculus, and forceps minor (figure

7.14).

Figure 7.14: Fixels identified by FBA to have reduced FC associated with increasing age, mapped
to corresponding streamlines and coloured by direction. The structures identified are the splenium
and body of the corpus callosum, cingulate gyrus, corticospinal tract, sagittal stratum (including
the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus), external capsule, anterior

commissure, uncinate fasciculus, and forceps minor.

7.5.2.3 Fixel density and cross-section

PD versus healthy controls

In the fixel-wise comparison of FDC between PD and CN participants, there were no

areas found to have increased FDC in the PD group. Reduced FDC in the PD group was

observed in the right ventral tegmental area, including the substantia nigra (figure 7.15).

Cognitive subgroups

There was no evidence of any fixel-wise differences in FDC between CN and C-MCI or

PDN. Fixel cross-section was found to be reduced in the right ventral tegmental area,

including the substantia nigra (SN) in the PD-MCI (figure 7.16) and PDD (figure 7.17)

cognitive groups, compared to CN. The reduction in FDC found in both PD-MCI and
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PDD encompassed a lesser extent than that given by the comparison of all PD versus

controls.

Figure 7.15: Fixels identified by FBA to have reduced FDC in PD participants compared to
cognitively normal controls, mapped to corresponding streamlines. The structure identified is the

right ventral tegmental area, including the SN.

Figure 7.16: Fixels identified by FBA to have reduced FDC in PD-MCI participants compared to
cognitively normal controls, mapped to corresponding streamlines. The structure identified is the

right ventral tegmental area, including the SN.

Figure 7.17: Fixels identified by FBA to have reduced FDC in PDD participants compared to
cognitively normal controls, mapped to corresponding streamlines. The structure identified is the

right ventral tegmental area, including the SN.
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Cognitive and clinical associations with PD

There was no evidence of any fixel-wise association between FDC and global cognitive

performance (cognitive z score) or motor performance (UPDRS part III score). FDC was

observed to decrease with increasing age in the sagittal stratum (including the inferior

longitudinal fasciculus and inferior fronto-occipital fasciculus), external capsule, uncinate

fasciculus, cingulum (hippocampus), forceps major and minor, fornix, tapetum, the cor-

pus callosum body, genu and splenium, hippocampus and anterior commissure (figure

7.18).

Figure 7.18: Fixels identified by FBA to have reduced FDC associated with increasing age, mapped
to corresponding streamlines. The structures identified are the sagittal stratum (including the
inferior longitudinal fasciculus and inferior fronto-occipital fasciculus), external capsule, uncinate
fasciculus, cingulum (hippocampus), forceps major and minor, fornix, tapetum, the corpus callosum

body, genu and splenium, hippocampus and anterior commissure.
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7.5.3 HARDI + Aβ cohort (within PD only)

Aβ+ versus Aβ-

I identified no evidence of a difference in FD, FC or FDC between Aβ-positive and Aβ-

negative subjects in this cohort.

Associations with amyloid load and age

There was no evidence of a fixel-wise association of any metric with CL (a continuous

measure of cortical amyloid deposition). Age association with all three metrics (FD,

figure 7.19; FC, figure 7.20; FDC, figure 7.21) showed a widespread pattern of positive

association, similar to the findings previously presented in the investigation of the full

cohort (see figures: FD, 7.13; FC, 7.14; FDC, 7.18). These associations were found

independent of amyloid load.

Fixel density

Figure 7.19: Fixels identified by FBA to have reduced FD associated with increasing age, inde-
pendent of amyloid load, and mapped to corresponding streamlines. The structures identified are
the fornix, tapetum, hippocampus, splenium and body of the corpus callosum, anterior corona radi-
ata, fornix cres/stria terminalis, sagittal stratum (including the inferior longitudinal fasciculus and

inferior fronto-occipital fasciculus), and putamen.
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Fixel cross-section

Figure 7.20: Fixels identified by FBA to have reduced FC associated with increasing age, inde-
pendent of amyloid load, and mapped to corresponding streamlines. The structures identified are
the anterior corona radiata extending into the posterior corona radiata, and thalamic white matter.

Fixel density and cross-section

Figure 7.21: Fixels identified by FBA to have reduced FDC associated with increasing age, inde-
pendent of amyloid load, and mapped to corresponding streamlines. The structures identified are
the splenium and body of the corpus callosum, tapetum, forceps minor and major, and the sagittal

stratum (including the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus).
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7.6 Discussion

This study undertook a whole-brain FBA of HARDI data to examine micro- and macro-

structural changes that occur in the white matter of PD patients, and investigated those

changes with respect to disease, amyloid pathology, and age. Overall, while there were

limited regions that exhibited changes related to PD or worsening cognitive performance,

those identified have been shown to have clinical relevance in PD, particularly in relation to

non-motor symptoms. Age was seen to be extensively associated with fixel-wise decreases

in all three metrics, representing a strong effect of subject age on tissue micro- and macro-

structure.

In the analysis of fixel-wise differences across the cognitive groups within the full cohort,

a decrease in FD and FDC was noted in the right ventral tegmental area (VTA), in-

cluding the substantia nigra (SN), in PD, PD-MCI and PDD, compared to cognitively

normal controls. Loss of dopaminergic neurons in the SN is one of the known patho-

logical hallmarks of PD (Dickson, 2012), while the tegmental midbrain and other deep

subcortical WM structures have been postulated to undergo an accelerated rate of loss of

microstructural integrity in nondemented PD patients compared to controls (Pozorski et

al., 2018). This pattern of WM change is consistent with Braak stage 3 and 4 of sporadic

PD (Braak et al., 2003), and precedes widespread cortical involvement at the later stages.

The VTA has been identified as being involved in PD, however the clinical contribution

of neuronal loss in the VTA is the topic of some speculation (Alberico et al., 2015). The

review by Alberico et al. hypothesised that PD patients exhibiting non-motor symptoms

of anxiety, depression and executive dysfunction are likely to show extensive VTA/medial

nigral loss of dopamine neurons, while other case studies of VTA lesions have indicated

an importance of the VTA in cognitive function (Adair et al., 1996; Nishio et al., 2007).

Structural changes in the VTA in this cohort appear to be driven by neuronal loss in

the absence of atrophy (FD rather than FC), distinguishable in PD versus controls and

becoming more extensive with severity of cognitive impairment. However, there was no

evidence of a fixel-wise association of any FBA metric with cognitive performance within

the VTA or SN, and other non-motor symptoms such as depression were not examined

with FBA. The clinical contribution of observed neuronal loss in the VTA is therefore

difficult to comment upon within the current scope of this research. While this study

was focused on WM damage associated with cognition in PD, future work may examine
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other non-motor aspects with respect to WM, or investigate each of the cognitive domains

separately. For example, WM integrity in the hippocampus may be more associated with

performance in the learning and memory domain than the visuospatial domain. It would

also benefit future studies to recruit a higher number of PDD participants, as the low

number included here (n=11) may have impacted the statistical power of the analyses,

especially when investigating subtle group differences.

We found no significant WM alterations in PD with normal cognition compared to con-

trols, a finding that is in line with previous DTI results from (Hattori et al., 2012), in a

cohort consisting of controls and PD, age- and sex- matched across the cognitive spectrum.

These results fall in the most conservative end of the spectrum concerning involvement of

WM degeneration in PDN, contrasting with studies showing mild involvement limited to

the corpus callosum (Melzer et al., 2013), or extensive involvement in the temporal, pari-

etal and occipital cortices (Auning et al., 2014), for example. In terms of group differences

from controls in PD-MCI and PDD, Hattori et al. found WM to be altered in the superior

longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus,

uncinate fasciculus, and cingulum - areas which (with the exception of the superior lon-

gitudinal fasciculus) we have identified in this study to show micro- and macro-structural

changes related to age in PD. While the Hattori et al. cohort was age-matched, and age

included as a covariate in statistical analysis of group differences, the authors did not

examine the possible effect of age as a variable of interest. In a recent study of age- and

disease- related WM changes in PD (de Schipper et al., 2019), the authors found DTI

measures (FA and MD) to be significantly associated with age in both PD and controls,

with no significant difference between the two groups in the spatial distribution of WM

changes. Our findings, taken with those of de Schipper et al., would appear to support a

conclusion that WM changes in PD have a strong association with age, perhaps suggesting

that they may be primarily driven by age and not disease presence or progression. How-

ever, the cross-sectional design of both studies may be a limitation in the assessment of

disease and age-related decline in WM, due to a reliance on between-person comparisons

rather than intra-individual change over time. Additionally, our cohort would benefit from

the inclusion of a larger number of control subjects, perhaps enabling greater statistical

power to detect disease-related differences in PD. The result here, while supported by

advanced diffusion imaging and analysis methods, would be strengthened by the addition

of individual longitudinal data.
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The potential of longitudinal FBA in identifying longitudinal WM degeneration in PD

has been demonstrated in a recent study of 50 non-demented PD and 76 healthy controls,

implementing both FBA and DTI (Rau et al., 2019). There are several key findings

to note from this study. Firstly, there was no evidence of group differences between

PD and controls in either set of metrics at baseline. All PD subjects followed by Rau

et al. were early in the disease course at study baseline, and while neuropsychological

metrics were not extensive enough to determine a cognitive subgroup classification, these

findings likely support the conservative estimate of WM changes in PDN as presented

here. The authors also identified a PD-facilitated pattern of age-related cognitive decline,

distinct from the age-related pattern seen in controls. However as controls were not

followed longitudinally, it was not known what interaction there might be between PD

and normal ageing in these metrics. Nevertheless, areas identified by Rau et al. to be

associated with age in PD that were also identified for the same metrics in our PD subjects

were: reductions in FD within the splenium and genu of the corpus callosum, tapetum,

bilateral fornix and sagittal stratum; reductions in FC in the bilateral cingulum and left

sagittal stratum; and reductions in FDC in the splenium of corpus callosum, bilateral

fornix and tapetum. The identification of these same regions may serve to validate the

findings of this study in regards to particular age associations. Also, the observation that

FBA may be able to discriminate healthy and disease related patterns of age-associated

degeneration would imply greater sensitivity to these effects, compared with the lack of

distinct differences in associated areas previously identified using DTI ((de Schipper et

al., 2019)). The identification of an age-related pattern of WM degeneration in healthy

controls was not a focus of this study, however this potential application of FBA warrants

further investigation.

In a recent large cross-sectional FBA study of healthy ageing, including 293 subjects

from ages 21 to 86 years old, widespread age-related alterations were identified in FD,

FC and FDC (Choy et al., 2020), demonstrating some similarity in affected regions with

those identified here. Notably, specific differences in some tracts showing reductions in

one metric but not another were also found here, with reductions in FC but not FD in

the cingulate gyrus, and reductions in FD but not FC in the fornix. The authors also

identified higher values of FC associated with age in tracts connecting the hippocampus to

the cingulum, postulating that this may be attributable to the benefits of exercise-induced

increase in brain neurotrophic factor (BDNF), linked to increased hippocampal volume



Chapter 7 - White Matter Alterations in PD 134

(Erickson et al., 2011). I identified an increase of FD in the posterior commissure and left

thalamic white matter associated with age in this PD cohort. This is somewhat difficult

to explain, but may be a consequence of FBA misinterpreting changes in thin white

matter structures (such as the commissural fibres), where insensitivity to macro-structural

changes in FC can sometimes present as micro-structural changes in FD (D. A. Raffelt et

al., 2016). This may also be exacerbated by partial volume effects in these thin structures

(D. A. Raffelt et al., 2016), thus the supposed increase in fibre density in this region may

not be a reliable interpretation.

The efficacy of FBA over traditional voxel-based morphometry (VBM) in the investigation

of cognitive decline in PD is difficult to fully evaluate given the lack of existing research

using both methods. To the best of my knowledge, there have been no comprehensive

studies employing both FBA and VBM in the analysis of cognitive decline in PD. Rau and

colleagues compared the results offered by both FBA and DTI metrics over the course of

40-month follow-up, but did so in early PD, and did not investigate differences between

cognitive subgroups. In the comparison of FBA and DTI metrics, longitudinal follow-up

revealed increases of MD and decreases of FA consistent with alterations of FDC in the

same regions, with several additional areas showing changes in FDC not identified by DTI

analysis. The authors noted a potential increase in sensitivity to longitudinal WM changes

offered by the morphology metrics of FBA (FC and FDC) over traditional voxel-based

morphometry, in support of the initial hypotheses by (D. A. Raffelt et al., 2016). In a

study of mild cognitive impairment and AD (Mito et al., 2018), the authors demonstrated

the ability of FBA to distinguish subtle degeneration in the posterior cingulum of MCI

subjects, a region that has been implicated to show early functional disruption (Zhou et

al., 2012) and hypometabolism (Nestor et al., 2003) associated with later cognitive decline

and development of AD. Mito et al. additionally demonstrated misleading increases in

FA within the centrum semiovale in the direction of the corticospinal tract, that were

identified to be fixel specific decreases once appropriately resolved using CSD. These two

separate studies appear to support the use of FBA over DTI, with regards to improved

sensitivity to subtle changes in WM, detection of alterations that may predict future

cognitive decline, and proven efficacy in regions of large crossing fibre populations.

This study found no evidence of an association between amyloid positivity and reduced

FD, FC or FDC in any regions of the brain within the restricted HARDI + Aβ PET cohort.

This result adds to that observed by Mito et al. (2018), wherein amyloid-positive MCI
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subjects, representing prodromal AD, did not display any decreases in FDC compared to

AD, amyloid-negative MCI, amyloid-positive healthy subjects or amyloid-negative con-

trols, surviving correction for multiple comparisons. These results argue against an in-

teraction effect of amyloid in the pathogenesis of WM degeneration, in PD irrespective

of cognitive ability and in early AD. The age-related results obtained from investigation

within the restricted cohort were also significant independent of amyloid load, however

encompassed a less widespread extent than that found in the wider PD group. It is pos-

sible that some of the variance associated with age in the wider cohort was captured by

the presence of amyloid load in the restricted cohort. An amyloid-facilitated pattern of

age-related WM degeneration in PD could be identified by examining age effects within

amyloid-positive and amyloid-negative groups specifically and comparing the two, how-

ever this analysis was not judged to be viable in this study due to a low proportion of

amyloid positive subjects (15%).

Limitations

The results of groupwise ANCOVA investigating the PDD cognitive subgroup may have

suffered from low statistical power due to a low number of participants (n=11). Low

statistical power can arise as a result of small sample sizes, small statistical effects, or

large standard error, and may reduce the chance of detecting a true effect within the

sample, or conversely reduce the likelihood that a statistically significant result reflects

a true effect (Button et al., 2013). In this PDD subgroup, the significant result aligns

very closely with that observed in the larger PD-MCI subgroup (n=66), therefore it seems

unlikely that a false positive has arisen in this case. Rather, there may be small effects

in the PDD subgroup that have not been detected. Increasing the number of the PDD

participants to be more comparable with the other subgroups may reveal these subtle

affects, or otherwise will increase confidence in the result reported here.

While this study included controls, there was a significant difference in the age of the con-

trol group and the PD group with normal cognition, being 8 years older on average. While

age was included as a covariate in all relevant analyses, it is possible that this method may

not have entirely accounted for these differences. The increased age of the control group

may have the effect of obfuscating more subtle disease affects in PDN, due to the strong

dependence of WM integrity on advancing age. It is difficult to untangle age effects from

pathological disease effects in PD, as PD is inherently an age-related disease (Myall et al.,
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2017). This also makes obtaining a fully age-matched cohort across the cognitive groups

difficult, compared with larger retrospective studies of international cohorts. Future work

would nevertheless benefit from the inclusion of older PDN participants or younger con-

trols. Additionally, obtaining individual longitudinal data would reduce the reliance on

inter-subject comparison, and may mitigate the effect of such group differences.

Tract-specific statistical comparisons were not performed in this study. Comparative

analysis of mean FD, FC and FDC values within major associated fibre tracts may reveal

a more nuanced view of the extensive association with age found in this study.

The use of FBA, while offering distinct advantages over tensor-derived analysis methods,

is a relatively new technique, and as such there are few studies with which to compare our

findings. Direct comparison of FD, FC and FDC values with DTI metrics such as FA or

MD is inappropriate, as they do not always reflect the same pathological change. Here,

I have compared the results of FBA with those of DTI studies in terms of the authors’

interpretation of WM degeneration in their cohort. It would be beneficial to carry out

DTI with this same subject group in order to observe the points of difference given by

FBA, and perhaps replicate the increased sensitivity to morphological changes seen by

Rau and colleagues. DTI was not able to be performed using the single-shell HARDI

data acquired in this study, as the modeling of the diffusion tensor is not appropriate

for high b-value acquisitions (Hui et al., 2010); the diffusion tensor model assumes linear

decay of the magnetisation signal, which is true for low b-values (e.g. b=1000) but not

true for high b-values (b=2500). Thus, while this study has reaped the clinical benefits of

single-shell data in obtaining MSMT-like results using the SS3T-CSD method, a notable

benefit of acquiring true multi-shell data is being able to perform both DTI and CSD

from the same acquisition.

This cross-sectional study represents the largest application of FBA for the analysis of

white matter micro- and macro-structural changes in PD to date, investigating both

controls and cognitively well-characterised PD across the cognitive spectrum.
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Summary and Conclusions

8.1 Overview

Parkinson’s disease is now well recognised as a multi-system neurodegenerative disor-

der, with a broad range of clinical features that encompass both motor and non-motor

symptoms. Cognitive decline and dementia is expected to occur in over 80% of 20-year

survivors (Hely et al., 2008), however the pathological and physiological basis underlying

this is not well understood, and the time-course from diagnosis to development of demen-

tia is highly variable. Imaging biomarkers of cognitive decline are urgently needed, such

that individuals may be targeted for intervention therapies, or to improve prediction of

long-term cognitive outcomes. This thesis investigated misfolded beta-amyloid protein

deposition, imaged using [18F]-Florbetaben (FBB) positron emission tomography (PET),

in combination with multiple different imaging metrics that may correlate with cognitive

impairment, with the aim to characterise potential imaging biomarkers related to cogni-

tive decline in PD. White matter micro- and macro-structural changes occurring in PD

were also investigated, in the first large cohort study employing novel fixel-based analysis

methods for the analysis of cognition across the cognitive spectrum in PD.

Participants investigated in this thesis were well-characterised at study baseline, and rep-

resent the full cognitive spectrum in PD, including normal cognition (PDN), mild cognitive

impairment (PD-MCI) and dementia (PDD). While the primary analysis of beta-amyloid

in this thesis was focused on evaluating cognitive group differences and future conversion

to dementia in PD, control participants were additionally included in the analysis of white
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matter structural changes, enabling the comparison of PD subjects against healthy con-

trols. In the cross-sectional analysis of amyloid with respect to cognitive impairment in

PD, 115 participants were examined, in a cohort enriched for PD-MCI in recognition of the

increased risk of cognitive decline in these individuals. Subsequent longitudinal cognitive

assessments allowed the investigation of amyloid load in relation to conversion to demen-

tia over a mean of 3.2 years, within a subset of 97 participants who were non-demented

at study baseline. Investigation of white matter structural changes was performed in an

expanded cohort of 37 controls and 123 PD participants, for which high angular resolution

diffusion imaging was obtained as part of the larger longitudinal study of PD underway

within our research group. Within the subset of these participants that were also included

in the primary study of amyloid (n = 84), I was able to investigate a potential interactive

effect of amyloid in the pathogenesis of WM degeneration.

8.2 Key Findings

Part one of this study identified increased cortical amyloid accumulation in PDD in cross-

sectional analysis, however this was found to be due to an effect of older age of the

PDD participants. Amyloid load was found to increase in our cohort at a rate of 9.3% per

decade, comparable to the rate of increase identified in healthy ageing of 10% (Villemagne

et al., 2011), and was not found to correlate with cognitive impairment at baseline when

age was considered in the analysis. In contrast, longitudinal follow-up in Part two re-

vealed that higher levels of cortical and subcortical amyloid deposition at baseline were

associated with developing dementia within three years. However, comparison with sim-

pler predictive models did not endorse the use of cortical or regional amyloid information

in determining individual three-year outcomes in a clinical setting, as the value added

may not outweigh potential harm from radiation dose or the high cost of PET scanning.

The relatively small proportion of PD patients with significant amyloid load may benefit

from the anti-amyloid therapy trials currently underway, aiming to slow or halt cognitive

decline by reducing cortical amyloid load - however continued efforts in this field have

met with little success (Hardy & De Strooper, 2017). It is unlikely that amyloid load is

a primary driver of cognitive decline, particularly with respect to PD, however amyloid

may interact synergistically with other pathological processes in PD, thereby accelerating

other pathways to dementia.
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Cerebral blood flow (CBF), as measured using arterial spin labeling (ASL) MRI, was

investigated in this thesis as one potential correlate of amyloid deposition, given observa-

tions of greater reductions in CBF in the presence of amyloid at clinically positive levels

in non-demented or early MCI participants (Mattsson et al., 2014; Bangen et al., 2017).

There was no evidence of an interactive effect between amyloid deposition and CBF in

this sample at cross-sectional analysis, however baseline reductions in CBF within several

cortical areas were found to be associated with conversion to dementia over longitudinal

follow-up. Taken with our results from longitudinal analysis of amyloid deposition, this

suggests that the two pathologies may be concomitant in PD but act independently to

affect cognitive impairment.

The first two parts of this thesis focused on pathophysiological changes occurring within

the grey matter in PD. Part three expanded this investigation to include measures of

white matter micro- and macro-structural integrity, in this first large-cohort application

of fixel-based analysis (FBA) of high angular resolution diffusion imaging (HARDI) for the

evaluation of PD across the cognitive spectrum. Traditional diffusion imaging following

voxel-based methods, while widely used, suffer from a lack of anatomical and physiological

accuracy due in large part to inaccurately modeling crossing white matter fibres within

each voxel. FBA makes use of the high angular resolution offered by HARDI to estimate

multiple fibre orientations within each voxel using constrained spherical deconvolution

(CSD), by which process the fixel is created. A novel method of performing CSD, op-

timised for diffusion data acquired using a single b-value, was demonstrated to improve

fibre orientation estimation and probabilistic fibre tractography in this thesis.

Measures of fibre density (FD), fibre cross section (FC), and a combined measure of fibre-

density-cross-section (FDC), extracted from the subject fixel data, were investigated for

changes associated with PD, clinical features, amyloid pathology and age. Similarly to

the cross-sectional analysis of amyloid deposition, there was a widespread association be-

tween reduced values of these metrics and age in this cohort, representing a strong effect

of subject age on tissue micro- and macro-structure. Neuronal loss in the right ventral

tegmental area (VTA), including the substantia nigra (SN), was associated with disease,

beginning in PD-MCI and increasing the extent of the involvement in PDD. There were

no observations of reductions in these metrics in PDN compared to controls, consistent

with conservative estimates of white matter degeneration in PD with normal cognition.
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Additionally, amyloid positivity was not seen to be associated with white matter degener-

ation, indicating an age-related pattern of white matter axonal and morphological change

that occurs independent of amyloid deposition. There was no evidence of an associa-

tion between any HARDI metric and global cognitive ability as a continuous measure.

The results of cross-sectional analysis support a primary effect of age rather than disease

presence or amyloid pathology on observed white matter structural changes in PD.

In summary, this thesis comprehensively investigated the effect of amyloid on cognitive

impairment within a large, well-characterised PD cohort, and subsequently challenged ex-

isting characterisations of regional amyloid deposition relating to cognitive decline. This

work also represents the largest application to-date of fixel-based analysis for the investi-

gation of white matter degeneration across the cognitive spectrum in PD.

8.3 Impact of this research

The publication resulting from this thesis contributed to the literature concerning the

application of the Centiloid scale to amyloid imaging in PD and derived a potential

threshold value for amyloid positivity based on our sample. There is not yet widespread

application of the CL scale in PD studies of amyloid, and no standard threshold value yet

exists that has been validated in a large international PD cohort, as has been done in AD

(Salvadó et al., 2019). Our value provides a reference against which other research groups

may compare their own derived thresholds, until such time as a focused PD study can be

completed. Such a study may consider amyloid-PET visual classification in conjunction

with Aβ42, tTau, pTau and their ratios in cerebrospinal fluid in order to derive a potential

threshold from ROC analysis.

Deducing that PET imaging of amyloid is not necessary to characterise cognitive impair-

ment in PD has a number of benefits that impact both the patient in a clinical setting,

and those conducting research in this field. Chiefly, the patient would not be subjected to

an ultimately unnecessary imaging procedure that (a) necessitates exposure to harmful

ionising radiation, (b) may be stressful, painful or otherwise difficult to complete, and

(c) requires an extended time commitment compared to other modalities such as MRI.

Additionally, classification of an individual as ‘amyloid-positive’ comes with considerable

negative connotations, as a result of the focus and media coverage emphasising the role
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of amyloid pathology in Alzheimer’s disease. Knowledge of a positive amyloid PET scan

may be deeply affecting for the individual but have minimal real implications for their

expected future outcomes in PD.

From an economic standpoint, PET imaging is a costly endeavour and requires a number

of logistical considerations, both in research and clinical applications. Overall, the cost

of amyloid PET imaging in research is approximately three times that of research MRI,

which requires considerable investment on the part of the funding entity or research body.

Fluorine-18 based amyloid PET tracers are also not currently produced in New Zealand,

therefore there is a cost associated with sourcing the required tracer from Australia or

elsewhere. In addition, transport of radioactive materials requires care to reduce the risk

of radiation incidents and prevent exposures to the public or transport personnel. All

of these factors must be weighed against the potential for clinical application of amyloid

PET in PD, found here to be limited.

This thesis also applied a novel algorithm allowing the segmentation of multi-tissue ad-

mixtures from single-shell (+b=0) diffusion-weighted MRI, in one of the first applications

of this new technique in a large clinical population. Verification of this algorithm and its

effectiveness in crossing-fibre regions has great implications for future research utilizing

this diffusion MR protocol. Acquiring only single-shell data reduces the overall time re-

quired for the scan, a factor that has great benefit in reducing the costs associated with

research MRI, where cost is often dictated by the length of time set aside from clinical

use of the scanner. Reducing the time of one sequence also has the benefit of potentially

enabling other imaging sequences in the time allowed, improving cost-effectiveness and

expanding the research benefit obtainable from a single series of scans.

8.4 Important considerations

Parts One and Two

The study of amyloid in this thesis was limited by the absence of a healthy control

group. This necessitated restriction of the analysis to within-PD differences associated

with cognitive impairment and cognitive group classification. Thus, evaluating levels

of amyloid in PD with respect to healthy aging was performed by comparison with the

literature. However, the primary aim of parts one and two of this thesis was to investigate
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the association between amyloid deposition and cognitive impairment in a cognitively well-

characterised PD cohort. In this respect, the characterisation of PD-MCI is subject to

considerable variability, with both single-domain and multi-domain impairment subtypes

(Wood et al., 2016), and an observed sensitivity of the MDS level II criteria to small

variations in neuropsychological test scores in less-impaired individuals. PD-MCI subtypes

were not examined in this thesis, and it is possible that these subtypes may exhibit greater

or lesser Aβ pathology. In addition, several participants classified as PD-MCI at baseline

were seen to revert to PDN over the course of longitudinal follow-up, reflecting the noise

inherent in this classification in these borderline cases. The combination of these two

effects may have reduced the strength of our cross-sectional analysis of amyloid deposition

across the cognitive groups. Nonetheless, cortical amyloid deposition was not associated

with global cognitive ability or memory function across the wider cohort, so these effects

were likely negligible.

The enrichment of this cohort for PD patients fulfilling the criteria for mild cognitive im-

pairment represents both a strength and a limitation of this study. PD-MCI participants

are considered to be at higher risk of developing dementia, with an estimated conversion

rate of 50% within four years (Wood et al., 2016). This effect is apparent in our sample,

where all those who developed dementia during longitudinal follow-up were classified PD-

MCI at baseline. The enrichment of PD-MCI participants in our cohort thus benefited our

statistical power to examine correlates of conversion to dementia within a large subgroup

of the original cohort over three years. However, it is possible that there are pathological

changes occurring in cognitively normal PD related to conversion to dementia that were

not detected due to a comparatively low recruitment of PDN. The lack of any PDN sub-

jects in the convert subgroup may have introduced bias in some aspects of longitudinal

group comparison.

Expression of the apolipoprotein E (APOE) gene ε4 allele has been shown to correlate with

amyloid deposition (Akhtar et al., 2017; Villemagne et al., 2011), and the development

of dementia in PD (Williams-Gray et al., 2009; Huertas et al., 2017). The APOE-ε4

genotype of our participants was obtained subsequent to completion of cross-sectional

analysis, and the possible effect of APOE-ε4 expression on amyloid load in this PD group

was not examined in baseline analysis. Three subjects included in the cross-sectional

analysis were deceased before APOE genotyping could be performed. As these subjects

were also excluded from longitudinal analysis due to either a diagnosis of dementia at
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baseline or insufficient follow-up, APOE-ε4 carrier status was able to be investigated in

the longitudinal arm of this study without excluding any meaningful data.

This thesis examined amyloid deposition by quantification of FBB tracer retention, using

the standardised uptake value ratio (SUVR) and recently developed centiloid (CL) scale

(Klunk et al., 2015), as well as visual assessment as clinically positive or negative by a

trained neuroradiologist. Amyloid accumulation was not confirmed by histopathological

assessment, however there is evidence of a tight agreement between visual assessment of

amyloid PET and histopathological reports (Bullich et al., 2017). Amyloid load in this

study of PD was found to be approximately comparable to levels observed in healthy

ageing (Ossenkoppele et al., 2015), thus the analysis of survival from dementia in those

demonstrating high levels of amyloid had a large associated error. Over time, this error

increased as the data became right-censored. Thus, we were not able to definitively

conclude that a negative amyloid scan at baseline represents a greater probability of

improved long-term cognitive outcomes.

Part Three

While this investigation of white matter structural changes in PD was conducted within

an expanded cohort of PD participants, the number of participants classified as having PD

dementia was low compared to the other subgroups (PDN, n=46; PD-MCI, n=66; PDD,

n=11), potentially reducing the chance of detecting a true effect associated with PDD

due to low statistical power. Additionally, the lack of an association between cognitive

impairment and white matter degeneration may reflect a limitation of our cross-sectional

study design, in that analyses were reliant upon inter-subject comparisons and may have

reduced sensitivity to detect subtle differences in individual anatomy relating to cognitive

ability. Group comparison of PDN participants against controls may also have been

affected by the increased age of the control group, being 8 years older on average. There

is a strong dependence of white matter integrity on advancing age, thus this may have

had the effect of obfuscating more subtle disease effects in PDN. Extending the study to

include longitudinal data may increase the sensitivity of this analysis to identify white

matter structural changes, both with regards to group analysis and in association with

cognitive decline.
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HARDI acquisitions may be performed using multiple different diffusion weightings, in-

cluding both the high b-values required for spherical deconvolution and low b-values ap-

propriate for modeling with the traditional diffusion tensor (b=1000 s/mm2 or less) (Hui

et al., 2010). In this study, HARDI acquisition was performed at a single high value

of diffusion weighting (b=2500 s/mm2), chosen to give the best resolution capability for

crossing white matter fibres in the brain, while remaining clinically feasible (Xie et al.,

2015). As low b-value data were not acquired, I was not able to apply DTI methods in

the same subjects and thereby evaluate the points of difference between the two methods.

Fixel-based analysis is a relatively new and unproven technique compared to the widely

adopted diffusion tensor model, and it would be beneficial to demonstrate the benefit

offered by improved discrimination of crossing fibres compared with DTI within a large

PD subject group.

8.5 Future work

This work found that amyloid plaque deposition is likely not a primary pathology driving

cognitive decline in PD, but amyloid may act in conjunction with other pathologies,

thereby accelerating the pathway to dementia. Two such pathologies that may interact

synergistically with beta-amyloid to affect cognition are alpha-synuclein, in the form of

Lewy bodies, and hyper-phosphorylated tau. In AD, the presence of co-morbid beta-

amyloid and Lewy body pathology detected at autopsy has been demonstrated to shorten

survival times and accelerate disease progression, compared with AD patients without

comorbidity (Marsh & Blurton-Jones, 2012). Effective PET radiotracers able to selectively

bind to alpha-synuclein over amyloid and tau is a current unmet need in neuroimaging

of Lewy body disorders (P. Kotzbauer et al., 2017), and development of such would have

great benefit in diagnosis and staging of PD. Hyper-phosphorylated tau is expected to

correlate more directly with current cognitive ability, and second-generation tau PET

radiotracers show much improved specificity and reduced off-target binding compared to

first generation tracers (Okamura et al., 2018). Initial tau PET imaging in PD and DLB

demonstrates a spectrum of deposition, with reports of both association (Lee et al., 2018;

Gomperts et al., 2016) and lack of association (Winer et al., 2018; Hansen et al., 2017) with

cognitive impairments in PD. Tau PET imaging using a second generation radiotracer,

[18F ]PI-2620, was originally planned in this study, however substantial delays in tracer
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production prevented inclusion in this thesis. It is possible that imaging of tau using

this tracer may be conducted within the ongoing study of Parkinson’s disease within this

research group, in order to fully characterise the deposition of tau and effect on cognition

in PD.

This thesis verified the use of a novel method of constrained spherical deconvolution for ob-

taining multi-shell-like estimates from single-shell data, demonstrating clear improvement

over standard single-shell methods. However, future work incorporating multiple b-value

acquisitions (b=0, b=1000, b=2000, and b=3000 s/mm2 for example) would allow com-

parison with traditional DTI methods, as discussed above, and also allow validation of the

single-shell method against multi-shell data acquired in the context of PD. Multi-shell data

and CSD methods will offer improved characterisation of voxel-level fibre orientation dis-

tributions compared with the novel single-shell method, however the single-shell method

may represent an excellent compromise regarding acquisition efficiency. The single-shell

method has been verified against multi-shell data during development (Dhollander &

Connelly, 2016), however application in the context of imaging white matter degener-

ation associated with cognition in PD may verify its effectiveness in the elucidation of

subtle disease effects.



Appendix A

Anatomical Atlases

Figure A.1: The MNI structural atlas (Mazziotta et al., 2001), overlaid on a mean structural
image. Labelled regions defined by the atlas are: (1) cerebellum; (2) temporal lobe; (3) occipital

lobe; (4) insula; (5) putamen; (6) thalamus; (7) caudate; (8) frontal lobe; (9) parietal lobe.
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Figure A.2: Select axial slices from the JHU ICBM-DTI-81 White-Matter Labels atlas, overlaid on
the FMRIB58 FA 1mm mean FA image. Those regions identified as significant in whole brain fixel
analysis have been numbered: 1) Middle cerebellar peduncle; 2) Uncinate fasciculus; 3) Cingulum
(hippocampus); 4) Cerebral peduncle; 5) Sagittal stratum; 6) Fornix cres/stria terminalis; 7) Ante-
rior corona radiata; 8) Retrolenticular part of internal capsule; 9) Genu of the corpus callosum; 10)
Fornix (body); 11) Tapetum of the corpus callosum; 12) Posterior thalamic radiation; 13) Superior
fronto-occipital fasciculus; 14) Splenium of the corpus callosum; 15) Superior longitudinal fasciculus;

16) Body of the corpus callosum; 17) Posterior corona radiata; 18) Cingulate gyrus.

Figure A.3: Select axial slices from the JHU White-Matter Tractography atlas, overlaid on the
FMRIB58 FA 1mm mean FA image. Those regions identified as significant in whole brain fixel anal-
ysis have been numbered: 1) Inferior longitudinal fasciculus; 2) Inferior fronto-occipital fasciculus;
3) Cingulum (hippocampus); 4) Anterior thalamic radiation; 5) Forceps minor; 6) Forceps major;

7) Corticospinal tract; 8) Superior longitudinal fasciculus; 9) Cingulum (cingulate gyrus).



Appendix B

Neuropsychological Battery and

Participant Domain Scores

148



Appendix B. Neuropsychological Battery and Participant Domain Scores 149

E
x
ec

u
ti

ve
F

u
n
ct

io
n

A
tt

en
ti

on
&

w
or

k
in

g
m

em
or

y
E

p
is

o
d
ic

M
em

or
y

V
is

u
os

p
a
ti

a
l

L
a
n
gu

ag
e

S
tr

o
op

in
te

rf
er

en
ce

D
ig

it
s

fo
rw

ar
d
s/

b
ac

k
w

ar
d
s

C
al

if
or

n
ia

V
er

b
a
l

L
an

g
u
ag

e

T
es

t-
II

S
h
or

t
F

o
rm

;

ac
q
u
is

it
io

n
,

sh
or

t
a
n
d

lo
n
g

d
el

ay
s

J
u
d
ge

m
en

t
of

li
n
e

o
ri

en
ta

ti
o
n

(J
L

O
)

B
os

to
n

N
am

in
g

te
st

L
et

te
r

fl
u
en

cy
D

ig
it

or
d
er

in
g

R
ey

C
om

p
le

x
F

ig
u
re

te
st

;

sh
or

t
a
n
d

lo
n
g

d
el

ay
s

F
ra

gm
en

te
d

le
tt

er
s

te
st

D
em

en
ti

a
R

at
in

g
S
ca

le
-2

si
m

il
ar

it
ie

s
su

b
-t

es
t

C
at

eg
or

y
fl
u
en

cy
M

ap
se

ar
ch

ta
sk

P
ic

tu
re

co
m

p
le

ti
on

te
st

A
lz

h
ei

m
er

’s
D

em
en

ti
a

A
ss

es
sm

en
t

C
o
gn

it
iv

e
S
ca

le
;

o
b

je
ct

/fi
n
ge

r
n
am

in
g,

co
m

m
a
n
d
s,

co
m

p
re

h
en

si
on

,
sp

o
ke

n
la

n
gu

a
ge

,

w
or

d
fi
n
d
in

g
d
iffi

cu
lt

ie
s

C
at

eg
or

y
sw

it
ch

in
g

S
tr

o
op

co
lo

u
r

re
ad

in
g

R
C

F
-C

op
y

A
ct

io
n

fl
u
en

cy
S
tr

o
op

w
or

d
re

ad
in

g

T
ra

il
s

B
T

ra
il
s

A

F
ig
u
r
e
B
.1
:

T
h
e

n
eu

ro
p
sy

ch
ia

tr
ic

te
st

b
a
tt

er
y

co
n
si

st
s

o
f

a
se

ri
es

o
f

te
st

w
it

h
in

ea
ch

o
f

th
e

fi
v
e

co
g
n
it

iv
e

d
o
m

a
in

s.



Appendix B. Neuropsychological Battery and Participant Domain Scores 150

C
ro

ss
-s

ec
ti

on
al

F
B

B
P

E
T

a
m

y
lo

id
im

ag
in

g
co

h
or

t

A
n
on

ID
G

ro
u
p

C
o
gn

it
iv

e
g
ro

u
p

P
D

D
co

n
v
er

t
A

ge
S
ex

E
d
u
ca

ti
on

S
y
m

p
to

m
(y

rs
)

M
oC

a
H

&
Y

sc
or

e
U

P
D

R
S
-I

II
A

tt
en

ti
o
n

E
x
ec

u
ti

ve
V

is
u
o
sp

a
ti

a
l

L
ea

rn
in

g
L

a
n
g
u
a
ge

G
lo

b
a
l

C
o
g
n
it

iv
e

Z
A

m
y
lo

id

N
Z

0
0
06

8
1

P
D

P
D

-M
C

I
C

on
ve

rt
72

M
10

20
21

2
26

-1
.0

4
-1

.3
6

-1
.0

1
-2

.0
9

-0
.6

-1
.3

8
n
eg

N
Z

0
0
16

2
0

P
D

P
D

D
E

x
cl

u
d
ed

80
M

10
8

2
3

3
55

-2
.1

1
-1

.9
6

-1
.1

6
-2

.2
8

-1
.0

2
-1

.8
8

p
o
s

N
Z

0
0
19

3
9

P
D

P
D

-M
C

I
C

on
ve

rt
67

M
17

2
27

2
.5

36
-0

.6
3

-0
.8

3
-0

.2
4

-1
.2

4
0
.1

6
-0

.7
3

n
eg

N
Z

0
0
23

4
4

P
D

P
D

D
E

x
cl

u
d
ed

75
F

10
19

18
3

5
2

-1
.3

7
-1

.2
1

-1
.4

9
-0

.3
-1

.0
9

-1
.0

9
n
eg

N
Z

0
0
25

6
8

P
D

P
D

D
E

x
cl

u
d
ed

79
M

12
3

1
2

3
38

-2
.9

5
-2

.6
-1

.8
3

-1
.7

6
-2

.5
6

-2
.2

8
n
eg

N
Z

0
0
31

9
7

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
69

M
14

3
16

3
39

-2
.6

7
-2

.6
4

-2
.2

4
-2

.2
2

-2
-2

.4
4

n
eg

N
Z

0
0
32

8
3

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
65

M
10

7
24

2
36

-0
.8

5
-0

.6
6

-0
.0

9
-2

.3
2

-0
.1

5
-0

.9
8

n
eg

N
Z

0
0
40

5
0

P
D

P
D

-M
C

I
C

on
ve

rt
73

F
10

2
15

3
2
9

-0
.8

2
-1

.0
2

-1
.4

6
-2

.3
2

-0
.2

7
-1

.4
n
eg

N
Z

0
0
64

7
1

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
76

M
11

20
22

N
A

N
A

-0
.4

8
-0

.8
4

-1
.0

2
-0

.0
2

-0
.2

8
-0

.5
9

n
eg

N
Z

0
0
71

9
5

P
D

P
D

-M
C

I
C

on
ve

rt
80

M
15

1
21

2
2
1

-0
.7

6
-1

.0
6

0
.4

7
-0

.1
0
.2

-0
.3

6
p

os
N

Z
0
0
93

0
6

P
D

P
D

N
N

on
-c

on
ve

rt
62

M
12

6
25

2
.5

44
-0

.4
7

0.
14

-0
.6

-1
.1

-1
.3

-0
.5

1
n
eg

N
Z

0
1
10

9
8

P
D

P
D

-M
C

I
C

on
ve

rt
76

F
13

15
20

3
33

-0
.2

7
-1

.8
1

-1
.6

7
-0

.6
6

-0
.5

7
-1

.1
n
eg

N
Z

0
1
14

1
7

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
60

F
11

13
25

3
46

-0
.6

8
-1

.0
7

-1
.3

1
-0

.2
0
.1

6
-0

.8
2

n
eg

N
Z

0
1
20

4
6

P
D

P
D

-M
C

I
C

on
ve

rt
74

M
18

4
25

1
.5

19
-0

.3
6

-0
.7

5
0
.1

-1
.2

8
-0

.7
1

-0
.5

7
p

o
s

N
Z

0
1
25

8
0

P
D

P
D

-M
C

I
C

on
ve

rt
75

M
13

12
18

2.
5

3
7

-0
.8

-1
.8

8
-1

.9
2

-1
.5

8
-1

.8
9

-1
.5

4
n
eg

N
Z

0
1
27

6
1

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
74

F
11

17
27

3
49

-0
.9

2
-0

.0
5

-0
.6

-0
.8

4
0
.5

1
-0

.6
n
eg

N
Z

0
1
28

0
4

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
72

M
12

8
24

2.
5

41
0

-0
.8

4
-0

.2
0
.5

2
-0

.6
-0

.1
3

p
o
s

N
Z

0
1
28

9
9

P
D

P
D

-M
C

I
C

on
ve

rt
75

M
10

4
25

2
3
3

-0
.4

6
-0

.9
4

-1
.2

-0
.7

2
-0

.3
9

-0
.8

3
n
eg

N
Z

0
1
39

3
3

P
D

P
D

-M
C

I
C

on
ve

rt
74

M
10

10
23

2
52

-0
.6

4
-0

.7
8

0.
5
9

-0
.0

8
-1

.1
5

-0
.2

3
p

o
s

N
Z

0
1
41

5
7

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
63

M
10

20
23

2
56

-0
.9

1
-1

.3
8

-0
.9

7
-0

.8
8

-0
.7

-1
.0

3
n
eg

N
Z

0
1
60

4
4

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
70

F
10

10
26

3
50

-0
.3

9
0
.2

8
-0

.5
4

-0
.9

4
0
.4

8
-0

.4
n
eg

N
Z

0
1
63

9
7

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
81

F
10

10
21

2.
5

2
5

0.
34

0.
65

-0
.6

1
-1

.7
8

0
.0

5
-0

.3
5

n
eg

N
Z

0
1
75

2
6

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
63

F
12

11
26

4
65

-0
.7

2
-1

.0
7

-1
.2

9
-1

.3
6

-0
.2

6
-1

.1
1

n
eg

N
Z

0
1
80

6
0

P
D

P
D

-M
C

I
C

on
ve

rt
74

M
11

8
22

3
6
2

-1
.0

3
-0

.7
-0

.4
-0

.6
8

0
.5

1
-0

.7
n
eg

N
Z

0
1
81

5
5

P
D

P
D

N
N

on
-c

on
ve

rt
64

M
12

3
27

1
.5

25
-0

.4
3

-0
.5

4
0
.3

4
0
.8

4
0.

5
2

0
.0

5
n
eg

N
Z

0
2
03

9
5

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
78

M
17

12
23

2
45

-0
.3

6
-0

.7
1

0
.3

8
-0

.3
8

0
.5

4
-0

.2
7

n
eg

N
Z

0
2
17

4
8

P
D

P
D

-M
C

I
C

on
ve

rt
73

M
9

2
16

2
2
3

-2
.4

7
-2

.0
8

-1
.4

8
-1

.0
8

-1
.4

9
-1

.7
8

n
eg

N
Z

0
2
30

0
6

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
86

M
13

6
23

2.
5

43
-1

.4
9

-1
.3

8
0
.3

3
-1

.3
-0

.2
4

-0
.9

6
n
eg

N
Z

0
2
51

1
7

P
D

P
D

-M
C

I
C

on
ve

rt
59

M
10

5
21

2
2
0

-1
.2

9
-1

.6
8

-0
.7

7
-1

.6
2

0
.1

6
-1

.3
4

n
eg

N
Z

0
2
54

2
7

P
D

P
D

N
N

on
-c

on
ve

rt
71

F
11

11
27

2.
5

36
-0

.3
2

0.
66

0
.5

6
0
.8

4
0
.1

5
0
.4

3
n
eg

N
Z

0
2
55

2
2

P
D

P
D

N
N

on
-c

on
ve

rt
73

M
11

5
24

4
6
3

-0
.2

6
-0

.6
2

0
.0

2
0.

2
-1

.0
5

-0
.1

6
p

os
N

Z
0
2
69

0
9

P
D

P
D

N
N

on
-c

on
ve

rt
74

M
10

9
27

2
.5

36
-0

.0
3

0.
21

0
.9

9
2
.7

8
0
.5

1
0
.9

8
p

os
N

Z
0
2
74

9
5

P
D

P
D

D
E

x
cl

u
d
ed

77
M

12
8

2
0

N
A

N
A

N
A

N
A

N
A

-1
.5

N
A

-1
p

os
N

Z
0
2
81

6
7

P
D

P
D

-M
C

I
C

on
ve

rt
70

F
12

8
21

2
.5

51
-1

.5
2

-1
.1

5
-1

.2
8

-0
.6

4
-0

.3
1

-1
.1

5
n
eg

N
Z

0
2
94

2
5

P
D

P
D

-M
C

I
E

x
cl

u
d
ed

75
M

12
12

27
5

1
4

-0
.5

5
-1

.2
3

1
.0

2
1
.2

2
-0

.7
2

0
.1

2
n
eg

N
Z

0
3
02

7
8

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
70

M
15

10
21

2
35

-0
.7

4
-1

.4
9

-0
.7

2
-0

.9
8

-0
.9

-0
.9

8
n
eg

N
Z

0
3
03

7
3

P
D

P
D

-M
C

I
C

on
ve

rt
75

M
11

6
20

2
3
6

-0
.6

9
-0

.6
7

-1
.4

3
-1

.5
8

-1
.1

6
-1

.0
9

n
eg

N
Z

0
3
07

2
6

P
D

P
D

N
N

on
-c

on
ve

rt
84

M
13

12
25

2
.5

58
-0

.0
5

-0
.0

7
-0

.6
6

1
.5

4
0.

5
4

0
.1

9
n
eg

N
Z

0
3
09

0
7

P
D

P
D

N
N

on
-c

on
ve

rt
71

M
15

20
26

4
6
8

-0
.5

4
-0

.4
-0

.4
5

-0
.1

-0
.6

4
-0

.3
7

n
eg

N
Z

0
3
13

5
5

P
D

P
D

D
E

x
cl

u
d
ed

74
M

11
1
5

9
N

A
N

A
N

A
N

A
N

A
-1

.9
N

A
-2

.6
n
eg

N
Z

0
3
15

3
6

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
74

M
10

13
23

3
76

-0
.6

9
-0

.8
1

-0
.8

1
-0

.1
4

0.
5
1

-0
.6

1
n
eg

N
Z

0
3
17

6
0

P
D

P
D

N
N

on
-c

on
ve

rt
80

F
15

17
24

N
A

51
-0

.2
9

1.
35

0
.2

5
1
.0

4
0.

3
6

0
.5

9
n
eg

N
Z

0
3
24

8
4

P
D

P
D

-M
C

I
C

on
ve

rt
74

M
16

5
22

2
3
5

-1
.1

2
-0

.9
7

0
.0

8
-0

.9
-1

.5
6

-0
.7

3
n
eg

N
Z

0
3
26

1
3

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
69

M
13

20
19

2
.5

33
-1

.6
8

-1
.2

8
-0

.9
9

-1
.9

2
-0

.7
1

-1
.4

7
n
eg

N
Z

0
3
28

8
9

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
66

M
10

11
24

2
38

-1
.7

2
-1

.3
0
.4

3
0.

7
4

-0
.4

5
-0

.4
6

n
eg



Appendix B. Neuropsychological Battery and Participant Domain Scores 151

A
n
on

ID
G

ro
u
p

C
o
gn

it
iv

e
g
ro

u
p

P
D

D
co

n
v
er

t
A

ge
S
ex

E
d
u
ca

ti
on

S
y
m

p
to

m
(y

rs
)

M
oC

a
H

&
Y

sc
or

e
U

P
D

R
S
-I

II
A

tt
en

ti
o
n

E
x
ec

u
ti

ve
V

is
u
o
sp

a
ti

a
l

L
ea

rn
in

g
L

a
n
g
u
a
ge

G
lo

b
a
l

C
o
g
n
it

iv
e

Z
A

m
y
lo

id

N
Z

0
3
45

9
5

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
64

M
10

6
23

2
43

-1
.6

-1
.6

6
-0

.1
7

-0
.2

8
-1

.5
6

-0
.9

3
n
eg

N
Z

0
3
49

0
5

P
D

P
D

-M
C

I
C

on
ve

rt
76

M
19

15
26

2
32

-1
.0

2
-1

.3
1

0.
7
9

0
.6

6
-0

.0
2

-0
.2

2
n
eg

N
Z

0
3
52

2
4

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
66

M
18

5
19

2.
5

25
-0

.3
7

-0
.3

8
-0

.0
4

-0
.7

6
-0

.6
7

-0
.3

9
n
eg

N
Z

0
3
71

1
1

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
70

F
12

4
30

2
2
0

-0
.1

6
1.

17
0
.8

4
0
.9

4
-0

.0
9

0
.7

n
eg

N
Z

0
3
80

9
3

P
D

P
D

N
N

on
-c

on
ve

rt
74

F
16

10
27

2
25

0.
38

0.
72

1
.0

2
0
.3

4
0
.0

6
0
.6

2
n
eg

N
Z

0
3
82

7
4

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
69

F
12

18
26

3
53

-0
.8

4
-0

.3
6

-0
.5

2
-0

.8
4

0
.1

5
-0

.6
4

n
eg

N
Z

0
3
85

9
3

P
D

P
D

D
E

x
cl

u
d
ed

79
M

11
1
5

1
6

2.
5

61
-1

.4
7

-1
.7

6
-2

.2
2

-1
.7

2
-0

.8
-1

.7
9

p
o
s

N
Z

0
3
89

0
3

P
D

P
D

N
N

on
-c

on
ve

rt
70

F
11

10
28

2
31

0.
67

1.
34

0
.7

1
1
.8

4
0
.4

8
1
.1

4
p

os
N

Z
0
3
92

2
2

P
D

P
D

-M
C

I
C

on
ve

rt
76

M
11

5
25

3
6
2

-0
.5

2
-0

.8
1

-0
.2

2
0
.0

6
0
.1

8
-0

.3
7

p
os

N
Z

0
4
07

0
4

P
D

P
D

-M
C

I
C

on
ve

rt
74

M
11

9
19

2
.5

36
-1

.6
-2

.2
3

-1
.7

4
-1

.3
-1

.4
9

-1
.7

2
n
eg

N
Z

0
4
08

3
3

P
D

P
D

D
E

x
cl

u
d
ed

85
M

11
1
4

1
9

3
52

-2
.2

7
-1

.9
7

-1
.3

2
-1

.1
4

-0
.2

8
-1

.6
7

p
o
s

N
Z

0
4
10

1
4

P
D

P
D

N
N

on
-c

on
ve

rt
70

M
17

8
23

2
.5

35
0.

14
0.

55
0.

6
3

-0
.2

6
0
.4

8
0
.2

6
n
eg

N
Z

0
4
11

0
9

P
D

P
D

N
N

on
-c

on
ve

rt
76

F
10

6
26

2
19

1.
24

0.
96

0
.3

4
1
.2

2
0
.3

1
0
.9

4
n
eg

N
Z

0
4
24

9
6

P
D

P
D

D
E

x
cl

u
d
ed

74
M

16
1
4

1
9

N
A

N
A

N
A

N
A

N
A

-1
.6

N
A

-1
.7

n
eg

N
Z

0
4
25

9
1

P
D

P
D

-M
C

I
C

on
ve

rt
75

M
10

3
17

2
.5

51
-1

.5
1

-2
-1

.6
7

-0
.3

4
-0

.5
-1

.3
8

n
eg

N
Z

0
4
37

5
4

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
67

M
14

8
22

2
26

-1
.2

-0
.4

7
0
.1

7
-0

.0
4

-0
.6

7
-0

.3
8

n
eg

N
Z

0
4
43

8
3

P
D

P
D

N
N

on
-c

on
ve

rt
70

M
11

11
25

1
6

-0
.0

2
0.

87
0.

0
4

0
.3

4
0.

1
5

0.
3
1

n
eg

N
Z

0
4
51

0
7

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
75

M
11

9
22

3
54

-0
.8

2
-0

.0
6

-0
.4

4
-0

.9
8

0
.1

6
-0

.5
7

n
eg

N
Z

0
4
51

9
3

P
D

P
D

N
N

on
-c

on
ve

rt
70

M
11

17
28

2
.5

31
0.

25
0.

16
0.

1
5

-0
.0

6
-0

.1
8

0
.1

2
n
eg

N
Z

0
4
94

5
8

P
D

P
D

D
E

x
cl

u
d
ed

85
M

12
9

1
4

N
A

N
A

-1
.3

9
-1

.5
-1

.8
2

-2
.4

2
-2

.3
3

-1
.7

8
p

o
s

N
Z

0
5
01

8
2

P
D

P
D

-M
C

I
C

on
ve

rt
71

M
13

9
22

2
.5

44
-1

.5
1

-1
.4

8
0
.2

-2
.0

4
-0

.8
7

-1
.2

1
p

o
s

N
Z

0
5
24

7
4

P
D

P
D

D
E

x
cl

u
d
ed

75
F

11
4

18
3

57
-1

.7
8

-2
.0

9
-2

.4
3

-2
.4

8
-1

.0
9

-2
.1

9
n
eg

N
Z

0
5
26

9
8

P
D

P
D

D
E

x
cl

u
d
ed

84
M

13
3

2
0

3
65

-2
.6

1
-2

.0
6

-1
.7

1
-0

.6
2

-0
.8

3
-1

.7
5

n
eg

N
Z

0
5
35

5
1

P
D

P
D

-M
C

I
C

on
ve

rt
70

F
15

4
19

2
1
3

-2
.0

5
-1

.8
9

-1
.3

4
-1

.8
6

-0
.5

5
-1

.7
8

n
eg

N
Z

0
5
36

8
0

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
75

F
13

23
20

3
32

-1
.3

2
-1

.1
9

-2
.2

4
-1

.1
0
.1

6
-1

.4
6

n
eg

N
Z

0
5
45

8
5

P
D

P
D

N
N

on
-c

on
ve

rt
76

M
12

0
28

3
4
5

-0
.6

-0
.1

1
0
.8

0.
2
6

-0
.0

2
0.

0
9

n
eg

N
Z

0
5
46

7
1

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
78

M
13

5
21

2.
5

46
-0

.9
2

-1
-1

.0
4

-0
.9

2
-1

.0
5

-0
.9

7
n
eg

N
Z

0
5
54

3
8

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
73

M
18

12
20

2
.5

34
-0

.8
8

-0
.4

5
-0

.4
1

-1
.3

2
-0

.0
5

-0
.7

7
n
eg

N
Z

0
5
66

0
1

P
D

P
D

D
E

x
cl

u
d
ed

63
M

17
1
1

1
6

N
A

N
A

N
A

N
A

N
A

-2
.6

N
A

-2
.5

n
eg

N
Z

0
5
73

2
5

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
79

M
19

4
23

4
64

-1
.0

5
-0

.7
6

-0
.3

8
-0

.2
8

-0
.6

6
-0

.6
2

n
eg

N
Z

0
5
94

3
6

P
D

P
D

N
N

on
-c

on
ve

rt
66

M
12

3
23

2
.5

23
-0

.5
-0

.2
1

-0
.3

3
-0

.3
6

-0
.6

1
-0

.3
5

p
o
s

N
Z

0
5
96

6
0

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
68

M
10

10
28

3
56

-0
.8

6
-0

.5
4

-1
.1

8
-0

.6
-0

.0
6

-0
.7

9
n
eg

N
Z

0
5
97

8
9

P
D

P
D

N
N

on
-c

on
ve

rt
61

M
9

14
27

2
.5

61
-0

.0
3

0.
65

0
.3

4
0
.5

6
0
.4

9
0
.3

8
n
eg

N
Z

0
6
00

6
5

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
78

M
10

5
23

2.
5

42
-0

.8
2

-1
.2

1
0
.1

9
-1

.0
2

0
.2

-0
.7

1
p

o
s

N
Z

0
6
09

1
8

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
65

M
11

6
27

2
41

-0
.9

3
-0

.8
8

-0
.6

0.
1

-0
.7

-0
.5

8
n
eg

N
Z

0
6
14

5
2

P
D

P
D

-M
C

I
C

on
ve

rt
70

F
18

14
21

2.
5

3
7

-0
.9

-1
.5

3
-0

.5
3

-1
.6

2
-1

.3
3

-1
.1

5
p

o
s

N
Z

0
6
15

4
7

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
71

M
15

16
27

2
.5

46
-0

.1
9

-0
.2

1
-1

.1
6

-1
.4

4
0
.2

4
-0

.7
5

n
eg

N
Z

0
6
20

8
1

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
78

M
12

13
23

3
53

-0
.8

1
-0

.8
9

-0
.3

2
-0

.3
8

-0
.4

2
-0

.6
n
eg

N
Z

0
6
28

9
1

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
73

M
12

14
23

3
41

0.
53

0.
1

-0
.2

1
-1

.2
8

-0
.9

4
-0

.2
1

n
eg

N
Z

0
6
39

6
8

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
75

F
10

9
23

3
2
3

-0
.3

8
-0

.6
1

-0
.0

8
-1

.6
2

-0
.8

3
-0

.6
7

n
eg

N
Z

0
6
48

2
1

P
D

P
D

D
E

x
cl

u
d
ed

76
F

12
14

15
N

A
N

A
N

A
N

A
N

A
-2

.1
N

A
-1

.7
n
eg

N
Z

0
6
51

4
0

P
D

P
D

D
E

x
cl

u
d
ed

78
M

15
8

2
0

3
41

-0
.7

3
-1

.0
9

-0
.3

5
-1

.9
8

-0
.5

7
-1

.0
4

p
o
s

N
Z

0
6
68

0
3

P
D

P
D

-M
C

I
E

x
cl

u
d
ed

74
M

9
4

22
2
.5

38
-0

.9
2

-0
.4

3
-0

.2
8

-1
.7

4
-0

.0
4

-0
.8

4
n
eg

N
Z

0
6
70

2
7

P
D

P
D

N
N

on
-c

on
ve

rt
61

M
13

9
24

2
.5

36
-0

.6
9

0.
33

0
.0

7
-0

.1
6

-0
.0

6
-0

.1
1

n
eg

N
Z

0
6
76

5
6

P
D

P
D

N
N

on
-c

on
ve

rt
68

F
13

7
24

2
25

-0
.2

3
-0

.2
4

-0
.9

8
-0

.7
6

-0
.0

6
-0

.5
5

n
eg

N
Z

0
6
89

1
4

P
D

P
D

N
N

on
-c

on
ve

rt
72

F
10

21
26

2.
5

32
0.

6
0.

7
5

0
.8

7
0.

8
0
.5

1
0
.7

5
n
eg

N
Z

0
6
95

4
3

P
D

P
D

D
E

x
cl

u
d
ed

68
M

11
4

1
6

3
57

-1
.9

9
-2

.2
8

-2
.5

4
-2

.4
2

-1
.1

7
-2

.3
1

n
eg



Appendix B. Neuropsychological Battery and Participant Domain Scores 152

A
n
on

ID
G

ro
u
p

C
o
gn

it
iv

e
gr

ou
p

P
D

D
co

n
ve

rt
A

ge
S
ex

E
d
u
ca

ti
on

S
y
m

p
to

m
(y

rs
)

M
oC

a
H

&
Y

sc
or

e
U

P
D

R
S
-I

II
A

tt
en

ti
on

E
x
ec

u
ti

ve
V

is
u
o
sp

a
ti

al
L

ea
rn

in
g

L
a
n
g
u
a
ge

G
lo

b
a
l

C
og

n
it

iv
e

Z
A

m
y
lo

id

N
Z

07
07

0
6

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
7
1

F
10

7
23

N
A

N
A

0.
01

-0
.2

9
-0

.5
6

-1
.8

-1
.0

7
-0

.6
6

n
eg

N
Z

07
09

3
0

P
D

P
D

-M
C

I
C

on
ve

rt
78

F
11

10
26

2.
5

35
-0

.0
5

-0
.8

7
-0

.3
3

0
.7

8
0
.5

4
-0

.1
2

n
eg

N
Z

07
22

8
3

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
8
5

M
19

8
28

2.
5

32
0.

04
1
.0

8
-0

.1
7

1
.2

2
-0

.1
7

0
.5

4
n
eg

N
Z

07
29

1
2

P
D

P
D

N
N

on
-c

on
ve

rt
6
4

M
13

3
28

2
37

0.
74

1.
29

0
.9

5
0
.6

4
0
.1

9
0
.9

n
eg

N
Z

07
34

4
6

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
7
3

F
16

7
21

3
6

-1
.2

6
-0

.8
9

-0
.6

7
0
.3

-0
.0

5
-0

.6
3

n
eg

N
Z

07
42

9
9

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
5
9

M
14

10
23

2
35

-0
.7

1
-0

.0
3

-0
.5

-0
.8

2
-0

.1
4

-0
.5

1
p

o
s

N
Z

07
43

9
4

P
D

P
D

-M
C

I
C

on
ve

rt
76

M
16

7
28

2.
5

40
-1

.6
3

-1
.5

8
-0

.1
8

0
.2

4
0
.1

3
-0

.7
9

n
eg

N
Z

07
45

2
3

P
D

P
D

-M
C

I
C

on
ve

rt
66

M
11

10
23

2.
5

27
-0

.9
3

-1
.0

9
-0

.8
8

-0
.5

6
-0

.6
7

-0
.8

6
n
eg

N
Z

07
46

1
8

P
D

P
D

-M
C

I
C

on
ve

rt
68

M
12

11
24

2
39

-1
.1

7
-1

.1
7

0
.2

4
-0

.7
8

-0
.6

1
-0

.7
2

n
eg

N
Z

07
56

5
2

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
6
7

M
11

6
27

2.
5

35
-0

.6
7

-0
.2

5
-0

.0
8

-0
.2

6
-0

.3
3

-0
.3

2
n
eg

N
Z

07
58

7
6

P
D

P
D

-M
C

I
C

on
ve

rt
73

M
11

5
18

2.
5

49
-1

.2
1

-1
.9

3
-2

.0
3

-2
.1

6
-0

.6
-1

.8
3

n
eg

N
Z

07
65

0
5

P
D

P
D

-M
C

I
C

on
ve

rt
67

M
11

5
22

2
44

-1
.4

9
-1

.5
4

-0
.3

6
-0

.8
4

-0
.6

1
-1

.0
6

n
eg

N
Z

07
68

1
5

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
6
3

M
17

15
24

N
A

N
A

-0
.4

7
-0

.0
2

-0
.2

2
-0

.5
6

-0
.0

3
-0

.3
1

n
eg

N
Z

07
70

3
9

P
D

P
D

N
N

on
-c

on
ve

rt
7
3

M
12

11
27

2.
5

47
-0

.7
2

-0
.1

0
.9

3
0
.8

4
0
.5

1
0
.2

4
n
eg

N
Z

07
71

3
4

P
D

P
D

-M
C

I
C

on
ve

rt
65

M
12

10
20

2.
5

52
-0

.6
8

-1
.8

2
-1

.6
7

-1
.9

-1
.2

6
-1

.5
2

n
eg

N
Z

07
76

6
8

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
7
9

M
16

10
24

3
59

-1
.8

9
-1

.5
4

-1
.3

4
0
.2

2
-0

.0
2

-1
.1

4
n
eg

N
Z

07
84

3
5

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
7
8

F
8

9
24

3
52

-0
.4

2
-0

.7
3

-0
.1

2
-1

.1
8

0.
2

-0
.6

1
n
eg

N
Z

07
89

2
6

P
D

P
D

-M
C

I
C

on
ve

rt
74

M
10

9
16

2
49

-1
.5

6
-1

.7
3

-0
.9

4
-1

.1
8

-1
.2

6
-1

.3
5

p
o
s

N
Z

07
90

2
1

P
D

P
D

-M
C

I
C

on
ve

rt
82

M
17

5
20

3
41

-0
.5

5
-0

.2
6

-1
.2

7
-1

.6
2

-1
.3

7
-0

.9
2

p
o
s

N
Z

07
98

7
4

P
D

P
D

N
N

on
-c

on
ve

rt
5
9

F
13

4
30

2
.5

41
0.

37
0
.7

7
0.

1
4

0
.6

8
0
.4

9
0
.4

9
n
eg

N
Z

08
02

2
7

P
D

P
D

D
E

x
cl

u
d
ed

76
M

10
15

4
N

A
N

A
N

A
N

A
N

A
-2

.3
N

A
-3

n
eg

N
Z

08
23

9
0

P
D

P
D

-M
C

I
C

on
ve

rt
77

M
11

1
24

2.
5

35
-1

.0
8

-1
.5

3
-0

.6
4

-1
.4

8
-0

.0
6

-1
.1

8
n
eg

N
Z

08
44

0
6

P
D

P
D

-M
C

I
N

o
n
-c

on
ve

rt
7
4

M
11

17
24

3
24

-0
.8

6
0
.4

8
-1

.2
5

-0
.5

-0
.1

6
-0

.5
3

n
eg

A
d
d
it

io
n
al

su
b

je
ct

s
in

cl
u
d
ed

in
W

h
it

e
M

at
te

r
an

al
y
si

s

N
Z

00
10

3
4

C
on

tr
o
l

C
N

N
A

64
.8

M
11

N
A

27
N

A
N

A
0.

49
0
.6

7
1
.0

1
0.

8
2

0.
5
2

0
.5

9
N

A
N

Z
00

10
8
6

P
D

P
D

D
N

A
7
1.

4
M

1
7

12
.9

15
3

46
-2

.4
5

-2
.3

9
-1

.5
8

-2
.6

6
-0

.9
9

-2
.0

7
N

A
N

Z
00

17
1
5

P
D

M
C

I
N

A
67

M
1
7

6.
2

18
2.

5
42

-1
.8

8
-2

.2
1

0
-0

.8
4

-1
.7

2
-1

.5
8

N
A

N
Z

00
27

9
2

P
D

M
C

I
N

A
69

.5
F

1
5

26
.1

23
3

26
-0

.7
5

0
-1

.6
7

-0
.9

2
0.

4
8

-0
.5

7
N

A
N

Z
00

52
1
3

P
D

P
D

N
N

A
72

.8
F

14
16

.9
25

3
49

-0
.1

3
0
.5

7
0
.0

1
1
.3

2
0
.5

1
0
.3

4
N

A
N

Z
00

56
6
1

C
on

tr
o
l

C
N

N
A

72
.8

M
16

N
A

29
N

A
N

A
1.

26
0
.8

8
1
.1

3
2.

3
0.

5
1

1
.0

4
N

A
N

Z
00

92
1
1

P
D

P
D

N
N

A
65

.1
F

17
11

.6
29

2
31

0.
27

1
.0

8
0.

6
7

1
.5

6
0
.5

2
0
.6

9
N

A
N

Z
01

15
0
3

P
D

P
D

N
N

A
80

.4
F

16
7.

6
24

3
41

-0
.2

5
0
.7

3
0
.0

7
1
.4

8
-0

.0
2

0
.3

1
N

A
N

Z
01

17
7
0

C
on

tr
o
l

C
N

N
A

77
.1

F
11

N
A

26
N

A
N

A
-0

.1
7

0.
96

0
.8

4
0
.2

2
0
.1

6
0
.4

7
N

A
N

Z
01

21
7
5

C
on

tr
o
l

C
N

N
A

64
.5

M
17

N
A

30
N

A
N

A
-0

.1
0.

7
4

0.
7
1

2
.2

4
0
.5

2
0
.5

6
N

A
N

Z
01

30
2
8

P
D

P
D

N
N

A
78

.2
F

13
15

.1
28

N
A

N
A

0.
19

-0
.2

0
.0

3
1
.0

7
0
.5

4
0
.1

7
N

A
N

Z
01

30
2
8

P
D

P
D

N
N

A
80

.2
F

13
17

.1
29

N
A

N
A

0.
08

0.
34

0
.3

5
-0

.3
2

0
.5

4
0
.4

N
A

N
Z

01
62

1
6

C
on

tr
o
l

C
N

N
A

74
.2

F
10

N
A

28
N

A
N

A
-0

.2
3

0.
78

1
.4

5
2
.3

2
0
.5

1
0
.6

6
N

A
N

Z
01

72
0
7

P
D

P
D

N
N

A
61

.5
M

10
8.

1
26

2
32

-0
.1

3
0
.4

2
0
.2

1
.6

4
0
.4

9
0.

2
6

N
A

N
Z

01
80

1
7

C
on

tr
o
l

C
N

N
A

57
.1

M
18

N
A

30
N

A
N

A
0.

19
0
.5

3
0
.8

9
0.

3
8

0.
4
9

0
.4

4
N

A
N

Z
01

86
8
9

P
D

P
D

N
N

A
66

.9
F

12
9.

8
28

3
49

-0
.0

5
0
.1

4
0
.8

1
0
.3

8
0
.2

2
0
.3

N
A

N
Z

02
06

1
9

C
on

tr
o
l

C
N

N
A

82
.1

F
18

N
A

29
N

A
N

A
0.

81
0.

76
1
.5

1
2.

2
2

0
.5

4
0
.9

8
N

A
N

Z
02

21
0
1

C
on

tr
o
l

C
N

N
A

72
.2

M
15

N
A

25
N

A
N

A
-0

.0
3

0.
3
5

0.
7
9

1
.0

4
-0

.2
7

0
.3

1
N

A
N

Z
02

34
1
1

P
D

P
D

N
N

A
63

.1
M

11
9.

2
28

2
19

0.
15

0.
99

0
.5

1
-0

.3
6

-0
.5

9
0
.4

4
N

A
N

Z
02

45
7
4

C
on

tr
o
l

C
N

N
A

80
.8

F
13

N
A

29
N

A
N

A
0.

47
-0

.4
9

0
.3

2
2
.1

8
0
.5

4
0
.2

5
N

A
N

Z
02

50
2
2

C
on

tr
o
l

C
N

N
A

65
M

17
N

A
29

N
A

N
A

0.
26

0.
9

0
.7

1
.7

6
0
.5

2
0.

6
6

N
A

N
Z

02
50

2
2

C
on

tr
o
l

C
N

N
A

66
.9

M
17

N
A

28
N

A
N

A
0.

64
0
.7

9
0
.6

1
2.

0
8

0.
5

0
.7

4
N

A



Appendix B. Neuropsychological Battery and Participant Domain Scores 153

A
n
on

ID
G

ro
u
p

C
o
gn

it
iv

e
gr

ou
p

P
D

D
co

n
ve

rt
A

ge
S
ex

E
d
u
ca

ti
on

S
y
m

p
to

m
(y

rs
)

M
oC

a
H

&
Y

sc
or

e
U

P
D

R
S
-I

II
A

tt
en

ti
on

E
x
ec

u
ti

ve
V

is
u
o
sp

a
ti

al
L

ea
rn

in
g

L
a
n
g
u
a
ge

G
lo

b
a
l

C
og

n
it

iv
e

Z
A

m
y
lo

id

N
Z

02
54

7
0

C
on

tr
o
l

C
N

N
A

84
.9

M
18

N
A

25
N

A
N

A
0.

32
0
.7

9
0
.8

7
1.

9
6

0.
5
4

0
.7

2
N

A
N

Z
02

71
3
3

P
D

P
D

N
N

A
67

.1
M

15
25

.3
25

2
28

0.
72

0.
74

-0
.1

8
0
.0

8
0
.2

2
0.

4
7

N
A

N
Z

02
75

8
1

C
on

tr
o
l

C
N

N
A

76
.5

F
12

N
A

30
N

A
N

A
1.

44
1.

76
1
.2

8
2.

1
8

0
.5

1
.3

9
N

A
N

Z
02

88
3
9

C
on

tr
o
l

C
N

N
A

85
.2

M
13

N
A

20
N

A
N

A
-0

.2
9

0.
2
7

1.
3
5

1
.7

6
-0

.1
3

0
.2

7
N

A
N

Z
03

13
1
2

C
on

tr
o
l

C
N

N
A

75
.9

M
10

N
A

27
N

A
N

A
0.

18
1
.0

7
0
.7

7
0.

6
6

0.
5

0
.6

4
N

A
N

Z
03

22
0
8

C
on

tr
o
l

C
N

N
A

80
.5

F
15

N
A

23
N

A
N

A
0.

45
0.

65
0
.6

1.
8
6

-0
.3

2
0
.4

1
N

A
N

Z
03

23
8
9

C
on

tr
o
l

C
N

N
A

79
.4

M
15

N
A

29
N

A
N

A
0.

85
1
.0

3
1
.3

2
2.

5
0.

3
6

1
.0

1
N

A
N

Z
03

27
9
4

P
D

P
D

N
N

A
67

.1
M

14
8.

1
28

2
31

0.
66

1.
86

0
.8

9
1
.8

6
0
.5

1.
1
6

N
A

N
Z

03
47

2
4

P
D

P
D

N
N

A
57

.4
M

10
13

.7
25

3
55

-0
.7

-0
.5

9
0
.8

2
-0

.1
6

-0
.1

1
-0

.2
5

N
A

N
Z

03
55

7
7

C
on

tr
o
l

C
N

N
A

71
.5

M
16

N
A

27
N

A
N

A
1.

28
1
.7

5
1
.0

3
2.

0
6

0.
5
1

1
.3

1
N

A
N

Z
03

79
1
2

C
on

tr
o
l

C
N

N
A

78
.3

M
12

N
A

28
N

A
N

A
-0

.1
3

-0
.0

1
1.

0
3

1.
5

0
.3

6
0.

2
7

N
A

N
Z

03
79

6
4

P
D

P
D

N
N

A
62

.9
M

13
7.

3
23

2
31

-0
.9

8
-0

.0
3

0.
6
8

0
.2

4
-0

.1
5

-0
.2

1
N

A
N

Z
03

86
3
6

C
on

tr
o
l

C
M

C
I

N
A

71
.6

F
13

N
A

24
N

A
N

A
-0

.8
8

0.
05

0
.0

5
-0

.2
0
.5

1
-0

.1
6

N
A

N
Z

03
86

3
6

C
on

tr
o
l

C
N

N
A

73
.4

F
13

N
A

26
N

A
N

A
-0

.5
4

0.
61

-0
.0

2
0
.1

4
-0

.2
7

0
N

A
N

Z
04

29
4
4

C
on

tr
o
l

C
M

C
I

N
A

86
.1

F
12

N
A

21
N

A
N

A
0.

54
0.

23
0
.2

4
-1

.7
4

-0
.7

2
0
.0

8
N

A
N

Z
04

43
4
0

C
on

tr
o
l

C
N

N
A

80
.2

F
13

N
A

25
N

A
N

A
0.

52
1.

03
0
.0

6
0.

0
2

0
.2

0
.5

3
N

A
N

Z
04

54
6
0

P
D

P
D

N
N

A
61

.8
M

16
11

.5
29

2
32

0.
66

0.
52

0
.6

7
2
.4

2
0
.1

6
0.

6
6

N
A

N
Z

04
64

9
4

P
D

P
D

N
N

A
79

.6
M

18
12

.9
26

2
35

-0
.1

3
1
.2

4
0
.4

3
1
.2

2
0
.5

4
0.

5
1

N
A

N
Z

04
84

2
4

C
on

tr
o
l

C
N

N
A

84
.6

M
16

N
A

24
N

A
N

A
-0

.5
5

0.
7
8

0.
7

-0
.5

-0
.3

5
0.

2
1

N
A

N
Z

04
90

5
3

C
on

tr
o
l

C
N

N
A

53
.5

M
14

N
A

28
N

A
N

A
-0

.0
4

2.
0
4

1.
0
2

1
.6

6
0
.4

7
0
.9

7
N

A
N

Z
05

04
9
2

P
D

P
D

N
N

A
59

F
17

12
.8

26
2.

5
45

-0
.4

9
0.

47
0
.4

2
0
.3

4
-0

.1
4

0
.1

3
N

A
N

Z
05

45
3
3

C
on

tr
o
l

C
N

N
A

77
.5

M
12

N
A

26
N

A
N

A
0.

11
0
.4

1
0
.7

1
1.

5
0.

5
4

0
.4

7
N

A
N

Z
05

45
3
3

C
on

tr
o
l

C
N

N
A

79
.4

M
12

N
A

26
N

A
N

A
0.

17
-0

.1
1

0
.6

2
1
.9

-0
.0

2
0
.2

6
N

A
N

Z
05

48
0
9

P
D

P
D

N
N

A
67

.4
M

12
15

.5
28

2
37

-0
.4

2
-0

.0
6

0.
2
6

0
.3

6
-0

.1
1

-0
.1

4
N

A
N

Z
05

57
9
1

C
on

tr
o
l

C
N

N
A

70
M

19
N

A
30

N
A

N
A

1.
48

2.
16

1
.2

2
.6

2
0
.4

8
1.

5
3

N
A

N
Z

05
61

9
6

C
on

tr
o
l

C
N

N
A

82
.5

M
18

N
A

28
N

A
N

A
0.

37
0
.7

8
0
.1

9
2.

2
8

0.
5
4

0
.5

1
N

A
N

Z
05

68
2
5

P
D

M
C

I
N

A
81

.9
M

10
10

.6
26

3
66

-0
.1

6
-1

.2
-0

.7
8

0
.2

6
-0

.5
1

-0
.4

9
N

A
N

Z
05

79
0
2

C
on

tr
o
l

C
N

N
A

73
.9

F
11

N
A

28
N

A
N

A
0.

44
1.

41
-0

.2
2

0
.0

2
0
.5

1
0
.5

7
N

A
N

Z
05

99
7
0

P
D

P
D

N
N

A
65

.4
M

18
10

.2
26

2
27

0.
35

1.
07

1
.0

7
2
.4

8
-0

.1
5

0.
7
7

N
A

N
Z

06
02

8
9

P
D

P
D

N
N

A
62

.6
F

13
15

.1
26

2
29

-0
.4

-0
.1

4
-0

.8
-1

.4
-0

.0
3

-0
.3

8
N

A
N

Z
06

12
2
8

P
D

P
D

N
N

A
63

.4
M

13
7.

4
24

2.
5

35
0.

28
0
.4

7
-0

.7
6

-1
.1

8
0
.5

2
0
.1

3
N

A
N

Z
06

31
5
8

P
D

M
C

I
N

A
77

.7
F

1
5

16
19

4
49

-1
.2

5
-2

.2
7

-1
.2

-1
.3

4
-1

.0
4

-1
.5

6
N

A
N

Z
06

40
1
1

C
on

tr
o
l

C
N

N
A

74
.6

M
13

N
A

30
N

A
N

A
0.

9
2
.5

1
0
.9

4
2.

2
8

0.
5

1
.4

N
A

N
Z

06
46

4
0

C
on

tr
o
l

C
N

N
A

72
.4

F
10

N
A

27
N

A
N

A
0.

21
1.

08
0
.5

7
1.

1
6

0
.5

1
0
.6

1
N

A
N

Z
06

52
6
9

C
on

tr
o
l

C
M

C
I

N
A

87
.4

F
19

N
A

21
N

A
N

A
0.

02
1.

01
0
.3

1
1.

6
4

0
.2

6
0
.5

3
N

A
N

Z
07

21
8
8

P
D

P
D

N
N

A
55

M
18

9.
2

29
2

42
1.

32
1.

17
1
.0

7
0
.8

0.
4
7

1
.1

2
N

A
N

Z
07

21
8
8

P
D

P
D

N
N

A
53

.1
M

18
7.

3
29

1.
5

15
0.

84
0
.3

0
.9

9
0
.5

4
-0

.0
9

0
.5

9
N

A
N

Z
07

37
6
5

P
D

M
C

I
N

A
75

.7
F

1
0

16
.2

26
2.

5
34

-0
.4

-0
.5

-0
.8

1
-1

.3
2

-0
.0

6
-0

.5
2

N
A

N
Z

07
72

2
0

C
on

tr
o
l

C
N

N
A

77
.3

M
12

N
A

29
N

A
N

A
0.

86
1
.6

7
0
.7

1.
6
8

0.
5

1
.0

7
N

A
N

Z
07

72
2
0

C
on

tr
o
l

C
N

N
A

75
.3

M
12

N
A

27
N

A
N

A
1.

35
1
.9

8
1
.3

1
1.

8
-0

.0
6

1
.3

2
N

A
N

Z
08

06
3
2

P
D

P
D

N
N

A
75

.4
F

11
11

.7
27

2.
5

29
-0

.2
8

0
.8

7
0
.1

7
0
.5

2
0
.1

6
0
.2

6
N

A
N

Z
08

10
3
7

P
D

P
D

N
N

A
79

.2
M

12
10

.5
23

2.
5

28
-0

.4
7

-0
.4

0
.5

5
0
.6

6
0
.3

6
-0

.1
1

N
A

N
Z

08
16

6
6

P
D

M
C

I
N

A
62

.4
F

1
4

10
.3

24
2.

5
35

-0
.8

4
-0

.7
1

-1
.3

5
-1

.5
2

-0
.1

7
-0

.8
2

N
A

N
Z

08
29

6
7

C
on

tr
o
l

C
N

N
A

69
.7

M
11

N
A

27
N

A
N

A
0.

56
1
.0

7
0
.4

6
1.

0
4

0.
4
8

0
.7

8
N

A
N

Z
08

33
7
2

C
on

tr
o
l

C
N

N
A

74
.9

M
11

N
A

24
N

A
N

A
0.

21
-0

.3
7

1
.1

8
1
.3

4
0
.5

0.
3
3

N
A

F
ig
u
r
e
B
.2
:

A
ll

p
a
rt

ic
ip

a
n
t

n
eu

ro
p
sy

ch
o
lo

g
ic

a
l

co
g
n
it

iv
e

d
o
m

a
in

sc
o
re

s
a
n
d

d
em

o
g
ra

p
h
ic

s
a
t

st
u
d
y

b
a
se

li
n
e.

T
h
o
se

in
cl

u
d
ed

in
lo

n
g
it

u
d
in

a
l

fo
ll
ow

-u
p

h
av

e
P

D
d
em

en
ti

a
co

n
v
er

si
o
n

st
a
tu

s
sp

ec
ifi

ed
.

C
o
g
n
it

iv
e

g
ro

u
p
s

a
re

P
a
rk

in
so

n
’s

d
is

ea
se

w
it

h
n
o
rm

a
l

co
g
n
it

io
n

(P
D

N
),

m
il
d

co
g
n
it

iv
e

im
p
a
ir

m
en

t
(P

D
-M

C
I)

,
o
r

d
em

en
ti

a
(P

D
D

),
a
n
d

co
n
tr

o
l

w
it

h
n
o
rm

a
l

co
g
n
it

io
n

(C
N

)
o
r

m
il
d

co
g
n
it

iv
e

im
p
a
ir

m
en

t
(C

M
C

I)
.



References

Aarsland, D., Creese, B., Politis, M., Chaudhuri, K. R., ffytche, D. H., Weintraub, D.,
& Ballard, C. (2017). Cognitive decline in parkinson disease. Nature Reviews
Neurology , 13 (4), 217.

Adair, J. C., Williamson, D. J., Schwartz, R. L., & Heilman, K. M. (1996). Ventral
tegmental area injury and frontal lobe disorder. Neurology , 46 (3), 842-843.

Adler, C., Caviness, J., Sabbagh, M., Shill, H., Connor, D., Sue, L., . . . Beach, T. (2010).
Heterogeneous neuropathological findings in parkinson’s disease with mild cognitive
impairment. Acta Neuropathologica, 120 (6), 827-828. doi: 10.1007/s00401-010-0744
-4

Akhtar, R., Xie, S., Chen, Y., Rick, J., Gross, R., Nasrallah, I., . . . Weintraub, D. (2017).
Regional brain amyloid-β accumulation associates with domain-specific cognitive
performance in parkinson disease without dementia. PLOS ONE , 12 (5). doi: 10
.1371/journal.pone.0177924

Alberico, S. L., Cassell, M. D., & Narayanan, N. S. (2015). The vulnerable ventral
tegmental area in parkinson’s disease. Basal Ganglia, 5 (2-3), 51-55. doi: 10.1016/
j.baga.2015.06.001

Alves, G., Forsaa, E. B., Pederson, K. G., Gjerstad, M. D., & Larsen, I. P. (2008).
Epidemiology of parkinson’s disease. Journal of Neurology , 255 (5), 18-32. doi:
10.1007/s00415-008-5004-3

Anderson, T. J. (2013). Genetics, brain imaging, and cognitive decline in parkinson’s dis-
ease. Research Project Full Application (GA214F) to the Health Research Council
of New Zealand.

Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility dis-
tortions in spin-echo echo-planar images: application to diffusion tensor imaging.
NeuroImage, 20 (2), 870-888. doi: 10.1016/S1053-8119(03)00336-7

Andersson, J. L., & Sotiropoulos, S. N. (2016). An integrated approach to correction for
off-resonance effects and subject movement in diffusion mr imaging. NeuroImage,
125 , 1063-1078. doi: 10.1016/j.neuroimage.2015.10.019

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage,
38 (1), 95-113. doi: 10.1016/j.neuroimage.2007.07.007

Ashburner, J., Barnes, G., Chen, C. C., Daunizeau, J., Flandin, G., Friston, K., . . .
Zeidman, P. (2015). Spm12 manual [Computer software manual]. Retrieved from
http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf

154

http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf


Bibliography 155

Ashburner, J., & Friston, K. (2005). Unified segmentation. NeuroImage, 26 (3), 839-851.
doi: 10.1016/j.neuroimage.2005.02.018

Atkinson-Clement, C., Pinto, S., Eusebio, A., & Coulon, O. (2017). Diffusion tensor
imaging in parkinson’s disease: Review and meta-analysis. NeuroImage: Clinical ,
16 , 98–110. doi: 10.1016/j.nicl.2017.07.011

Auning, E., Kjærvik, V. K., Selnes, P., Aarsland, D., Haram, A., Bjørnerud, A., . . .
Fladby, T. (2014). White matter integrity and cognition in parkinson’s disease: a
cross-sectional study. BMJ Open, 4 (1). doi: 10.1136/bmjopen-2013-003976

Bach, J. P., Ziegler, U., Deuschl, G., Dodel, R., & Doblhammer-Reiter, G. (2011). Pro-
jected numbers of people with movement disorders in the years 2030 and 2050.
Movement Disorders, 26 (12), 2286-2290. doi: 10.1002/mds.23878

Bangen, K. J., Clark, A. L., Edmonds, E. C., Evangelista, N. D., Werhane, M. L., Thomas,
K. R., . . . Delano-Wood, L. (2017). Cerebral blood flow and amyloid-β interact to
affect memory performance in cognitively normal older adults. Frontiers in Aging
Neuroscience, 9 (181). doi: 10.3389/fnagi.2017.00181

Barone, P., Antonini, A., Colosimo, C., Marconi, R., Morgante, L., Avarello, T. P., . . .
Dotto, P. D. (2009). The priamo study: A multicenter assessment of nonmotor
symptoms and their impact on quality of life in parkinson’s disease. Movement
Disorders, 24 (11), 1641-1649. doi: 10.1002/mds.22643

Barreto, G. E., Iarkov, A., & Moran, V. E. (2014). Beneficial effects of nicotine, cotinine
and its metabolites as potential agents for parkinson’s disease. Frontiers in Aging
Neuroscience, 6 (340). doi: 10.3389/fnagi.2014.00340
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