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Abstract 

Ocean acidification will affect calcifying organisms as calcium carbonate saturation levels 

decrease due to climate change. Echinoids are important components of the coastal 

ecosystem and use magnesium in their skeletal calcification. Magnesium-calcite is highly 

susceptible to dissolution and the effects of lowered pH on the skeletal system of echinoids 

could be severe. This thesis examines the differences in allometry (shape and size), biomineral 

composition and flexural strength of Evechinus chloroticus skeletal components from six 

separate populations around New Zealand, including Whakaari White Island as a proxy for 

future ocean acidification conditions.  

I measured 20 parameters for 64 individuals from six different locations. Individual skeletal 

elements within individuals and populations exhibited little variation in size and shape, 

particularly in those elements comprising the Aristotle’s lantern. Using a standardised 

measurement to compensate for size of the individual, there was no obvious trend noted 

amongst locations except for weight of Aristotle lantern components, demonstrating a linear 

trend of increasing weight with increasing latitude.  

Evechinus produces skeletons formed of magnesium-calcite (range=3.2–11.9, 

average=8.6 wt % MgCO3 in calcite ± 2.01 SD, N=90); here I compared magnesium content 

in skeletal elements, which showed little variation within and between individuals of the same 

population. Variation among populations was also minimal. Magnesium content in test plates 

and Aristotle's lantern components was 9.5 wt % MgCO3 (± 0.4 SD, N=54), whereas spines 

were in general lower in magnesium (4.9, ± 0.23 SD, N=18). 

Flexural strength of primary spines, measured by a two-point bending test was 

(average=112.0, ± 37.0 SD, N=640). The data exhibited a broad latitudinal trend with strength 

increasing with latitude, presumably linked to temperature. Spines from Fiordland, however, 

were weaker than expected; and those from White Island were stronger, likely due to the 

influence of seawater chemistry and/or growth rate. 

Skeletal elemnts of Evechinus chloroticus around New Zealand exhibit minimal variations in 

response to different abiotic conditions. Tight morphological constraints on parameters, for 

example the Aristotle’s lantern minimise variations exhibited by individuals and populations, 

while other parameters like spine morphology are thought to result from biotic pressures. 

Individual variation in biominerals are minimal and differences observed in magnesium content 

are expected to arise from different chemical pathways being utilised to offset conditions each 

calcium structure is exposed to. Strength is the ultimate result from differences in morphology 
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and biominerlisation, affecting the locomotion and defence mechanisms of Evechinus 

chloroticus. Latitude, and subsequent temperature is linked to spine strength; however, using 

White Island specimens as a proxy for individuals in future climate change scenarios, there 

was not an expected decrease in strength below what is anticipated from temperature 

differences. It is accepted that individuals and populations of Evechinus chloroticus around 

New Zealand have adapted to maintain skeletal conditions. 

Keywords: Evechinus chloroticus ▪ Ocean acidification ▪ Skeletal allometry ▪ Spine strength ▪ 

Carbonate mineralogy ▪ Echinoid 
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Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  1 

1 Introduction 

1.1 Climate Change 

Climate change is one of the most important perturbations facing the natural world, gaining 

momentum in scientific research and public awareness in recent years. Acceleration of climate 

change by human activities since the Industrial Revolution is prompting extensive investigation 

and inter-disciplinary research in science, history, policy, and even art (Vink et al. 2013). 

Climate change affects the world’s oceans as a result of increased atmospheric carbon dioxide 

emissions, global warming and changes in ocean circulation (Harley et al. 2006; Przeslawski 

et al. 2008; Byrne 2012), all of which contribute to changes in an exhaustive list of abiotic and 

biotic factors.  

Marine life is thought to be especially vulnerable to climate change because many marine 

environmental parameters may vary beyond current norms (Byrne et al. 2009). Mass 

mortalities, coral bleaching, species invasion, ecosystem shifts, physiological limitations and 

deviations to food web structures in a range of habitats over the 20th century have all been 

attributed to climate change (O’Connor et al. 2007; O’Connor 2009; Wernberg et al. 2011; 

Pörtner 2010; Byrne 2012; Hoegh-Guldberg & Bruno 2010; Crowley 2000). Coastal regions 

are likely to be one of the first areas to exhibit responses to ocean acidification, with episodic 

upwelling events pushing physiological limits of organisms near their limits, especially for 

calcifying marine organisms (Hauri et al. 2009; Hoffman et al. 2010). Fossil-fuel combustion, 

agriculture run-off, freshwater inputs, coastal developments and sediment disturbance can all 

impact the marine system, pushing the environment towards a “stressed” state (Doney et al. 

2007; Salisbury et al. 2008; Gattuso et al. 1998; Hoffman et al. 2010). 

Preliminary research has focused on single stressors beyond expected levels under future 

current climate change models, typically presented by International Panel of Climate Change 

(IPCC) (Byrne et al. 2009), but due to the multi-dimensional, multi-stressor state of the ocean, 

manipulated multi-factor experiments are becoming more common. Riebesell & Gattuso 

(2015) postulated a conceptual model (Figure 1.1), suggesting that by comprehending and 

studying small changes in a species under a single stressor, we can extrapolate to ecosystems 

acclimation and climate change adaptation under multiple stressors as our understanding of 

the small scale and fine detail of the environment expands.  
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Figure 1.1 Schematic diagram of the current research and the direction we need to head for 
evidence-based policy making. Red arrow depicts areas needing expansion. Lower left 
corner is the current research on a single species under one stressor and the upper 
right corner is adapted responses to multiple stressors on a whole ecosystem. Figure 
originally presented in Riebesell & Gattuso (2015) 

 

Small changes to one abiotic factor may, and typically do, have consequential effects on other 

physical conditions (temperature, ocean currents etc.), or abiotic connections (predation, 

competition etc.). Single-factor scientific experiments can be overly simple, unrealistic, short-

term, or heavily controlled, unlike those conditions likely to be experienced by marine 

organisms. Frequently there is little consideration of the acclimation of individuals, or 

adaptation over generations to the oceanic conditions that are expected to occur. 

Compounding this small-scale rationale there can often be little consideration to the rate of 

climate change that may occur in a local area, with known hotspots already demonstrating 

faster warming than other comparable locations. Investigating ecologically-relevant and 

regional climate variation and subsequent effects under realistic near-future conditions would 

be more representative and may prove vital to understanding key questions such as: 
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biogeographical distributions, phenotypic plasticity, morphological variability, population 

connectivity, survival and extinction, larval dispersal, behaviour, and skeletal mineralogy.  

 

1.2 Ocean Acidification 

Since the start of the Industrial Revolution, rapidly increasing volumes of carbon dioxide are 

being produced by large factories, technological advancement and increasing urbanisation; all 

increasing CO2 levels that are ultimately taken up by the ocean, one of the world’s biggest 

carbon sinks (Caldeira & Wickett, 2005; Menon et al. 2007; Feely et al. 2004; Sabine et al. 

2004, Doney et al. 2020). Atmospheric carbon dioxide (CO2) is continuously absorbed into the 

world’s oceans where it combines with seawater, changing the ocean chemistry. Increased 

levels of CO2 mixed with seawater result in a higher concentration of free hydrogen ions (IPCC 

2007; Harley et al. 2006, Terhaar et al. 2020). The increase in hydrogen ions decreases ocean 

pH, a phenomenon commonly called ‘ocean acidification’. As pH decreases, carbonate ion 

availability also decreases, decreasing the saturation state of calcium carbonate, and 

ultimately, increasing the amount of calcium carbonate that is dissolved (Hofmann et al. 2010). 

In Ω values greater than one, when seawater is supersaturated, marine biocalcification is 

promoted, whereas Ω values less than one indicates undersaturated seawater, and 

biocalcification may be slowed or inhibited. The pH of the world’s oceans is varied, depending 

on latitude, distance from shore, habitat type, and depth, ranging in pH from 7.8 – 8.2 (IPCC 

2001; 2007; 2013; 2020). Future ocean conditions are predicted to decrease in pH a further 

0.3 – 0.4 by 2100 (Caldeira & Wickett 2005; IPCC 2020) (Figure 1.2), forcing marine organisms 

to cope with a changing environment at an unprecedented rate. pH is not expected to change 

uniformly around the world; there is a strong need for research on specific regions and their 

corresponding biota.  

Ocean acidification affects individuals, populations and species differently based on the ability 

to cope with reduced pH and increased CO2 (hypercapnia) (Guinotte & Fabry 2008). The 

effects of ocean acidification on marine organisms and ecosystems are measurable under 

changes already exhibited in the present day, and likely to be exacerbated as CO2 emissions 

continue to rise (Gattuso et al. 2015). Lowered production of calcium carbonate, difficulty in 

maintenance of calcified structures, and depressed metabolic activity in marine organisms that 

calcify (at any point during their life cycle) could lead to metabolic stress and potentially death 

(Kurihara 2008). For example, the blue mussel, Mytilus edulis exhibited significantly reduced 

growth of planktonic stages in pH expected to occur before the turn of the century (Gazeau et 

al. 2010). Decreased pH negatively impact fertilisation, cleavage, and settlement in 

invertebrate species such as the echinoids Hemicentrotus pulcherrimus, Echinonerta mathaei 
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and Anthocidaris crassipina, in bivalves Crassostrea gigas and Mytilus galloprovincialis, and 

in the copepod Acartia erythraea (Kurihara 2008), or increase mortality due to an inability to 

calcify in the bivalve Chamelea gallina (Bressan et al. 2014). Depressed calcification has been 

observed in corals, coccolithophores, foraminiferans and bivalves when CO2 is increased 

(Gattuso et al. 1998, Riebesell et al. 2000; Bijma et al. 2002; Kleypas et al. 2006; Gazeau et 

al. 2007; Kurihara 2008). As pH is expected to continue decreasing, even under best-case 

scenarios for the near future, the effects of increased CO2 on marine organisms will accumulate 

on top of effects already being displayed.  

 

Figure 1.2 (Left graph) IPCC projected ocean acidification from models under representative 
concentration pathway (RCP) 8.5 (solid line) and mean model results from (RCP) 2.6 
(dashed lines). RCP 2.6 models with peak CO2 emissions in 2020, while RCP 8.5 
models continuous CO2 emissions. Time series of surface pH shown as the mean (solid 
line) and range of models (shaded area), given as area-weighted averages over the 
Arctic Ocean (green), the tropical oceans (red), and the Southern Ocean (blue). (Right 
graph) Map of the median model’s change in surface pH from 1990s. Over most of the 
Ocean, gridded data products of carbonate system variables are used to correct each 
model for its present-day bias by subtracting the model-data difference at each grid cell 
following (Orr et al. 2005). Figure originally presented in IPCC 2013 WGI (Figure 6.28). 

1.3 Echinoid Responses to pH 

Echinoderms are often important keystone species, with global representatives found in almost 

every marine habitat. They are sub-divided into five classes: crinoids (sea lilies), asteroids 

(starfish), ophiuroids (brittle stars), echinoids (sea urchins and sand dollars), and holothuroids 

(sea cucumbers). Echinoids, in particular, are important throughout coastal marine systems as 

they are commonly classified as habitat engineers, determining the structure of surrounding 

flora. Equally urchins can overgraze macroalgal communities on reef systems, causing a 

habitat shift from dense macroalgal beds to sparse barren zones. An urchin-induced phase-
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shift (from macroalgae to barren areas) is hard to reverse to the original state and requires 

extensive reductions in urchin densities which can be difficult, or simply unrealistic, to achieve. 

Even though their main food source of macroalgae is missing when barren zones are formed 

in the system, urchins can continue to feed on microalgae, coralline species, and floating algae 

(Johnson & Mann 1982). After the establishment of these barrens, habitat complexity, 

biodiversity and productivity suffer rapid reductions (Ling & Johnson 2009; Ling & Johnson 

2012, Ling et al. 2015) as structural complexity in the environment is minimised (Aroldi et al. 

2008). 

Changes in the function of echinoids as a consequence of pH varies, depending on exposure 

time, pH levels and species (Dupont et al. 2010). Echinoids are robust to ocean acidification, 

in both larval and adult life stages but noted that impacts are species-, or even population-

specific. Free-spawning populations, such as echinoderms, may already be demonstrating 

natural selection to current fluctuations in pH through gametic and early life stages. Schlegel 

et al. (2012) reported that acidification decreased the density of motile sperm yet had no effect 

on sperm speed in Heliocidaris erythrogramma. Schelegel et al. (2012) commented that the 

survival of individuals was resilient to ocean acidification, and those traits (if they were 

heritable), would lead to adaptive effects, affecting direct offspring and subsequent 

generations. Martin et al. (2011) suggested that gene expression levels were plastic after 

observing that Paracentrotus lividus larvae development was slowed, but normal in lowered 

pH. The genes involved in development and biomineralization were upregulated by a factor of 

up to 26 times, suggesting that the urchin’s molecular composition could compensate for the 

changes in ocean acidification. Most work on the effects of climate change has focused on 

three species: Stongylocentrotus purpuratus, Arbacia punctulata and Dendraster excentricus, 

yet there are approximately 7,000 extant echinoid species globally.  

Echinoids have become of increasing interest with respect to ocean acidification as their 

skeletal components are formed of magnesium calcite, a calcium carbonate mineral that is 

more vulnerable to dissolution as pH decreases (Shirayama & Thornton, 2005; Byrne et al. 

2014). Most marine invertebrate calcifers use calcium carbonate (CaCO3) either in the form of 

calcite or aragonite; some, such as echinoderms, use magnesium (Mg2+) as a substitute for 

some of the calcium (Ca2+) creating crystals of MgCO3 within the calcite lattice. Magnesium 

content has previously been related to Ca2+/Mg2+ ratio present in seawater, carbonate mineral 

saturation states and temperature (e.g., Byrne et al. 2014). Magnesium content in echinoids 

as a group ranges from 1.5 to 16.4 wt % MgCO3 (average = 7.5 ± 3.23, N=643) (Smith et al. 

2016). The addition of MgCO3 makes magnesium-calcite stronger but more soluble than plain 
calcite (Stephenson et al. 2011), which may be biomechanically important, especially to 

organisms living in the active coastal zone. 
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1.4 Evechinus chloroticus (Study Organism) 

Evechinus chloroticus (Valenciennes 1846) is a New Zealand endemic echinometrid echinoid, 

commonly found around shallow rocky reefs (Dix 1970). E. chloroticus is found throughout 

New Zealand in both intertidal and subtidal localities, from Three Kings Island in the north to 

the Snares in the south, ranging from the Chatham Islands in the east, and South Island fiords 

in the west. Adult E. chloroticus can dominate the subtidal landscape, with populations as 

dense as 50 per m2, but are rarely found below 15m (Barker 2001; 2013). Andrew (1988) 

boldly stated that E. chloroticus is the main species determining the characteristics of rocky 

reefs where they are found due to their intense herbivory rates, high recruitment and the ability 

to sustain a large diversity of organisms that predate upon the urchins. Juvenile E. chloroticus 

have predators among the benthic fish and invertebrates, including the commercially important 

blue cod (Parapercis colias) and crayfish (Jasus edwardsii). E. chloroticus graze primarily on 

large brown algae species, indirectly affecting invertebrate and fish diversity, abundance, and 

distribution (Andrew 1988). How this species responds to predicted climate conditions will be 

important in their respective population success and overall species continuity. 

1.5 Aims and Scope of this Thesis 

With ocean acidification predicted to increase there is growing concern for calcifying marine 

organisms, particularly those that are susceptible; how will they adapt and what will be the 

consequences of those adaptations? Evechinus chloroticus in New Zealand has all the 

characteristics we need to investigate the effects of environment, including ocean acidification, 

on calcification. This species is widespread throughout New Zealand, covering a range of 

water temperature and pH, and its skeleton consists of different elements with different roles 

(e.g., teeth, spines, test). The metabolic response of E. chloroticus larvae, juveniles and adults 

to ocean acidification is well known (Stumpp et al. 2011). 

This project investigates how individual urchins calcify in different environments. Evechinus 

chloroticus was collected from six different locations in New Zealand (including the CO2-rich 

waters around Whakaari White Island), and abiotic factors at each location were discerned 

and described (Chapter 2). E. chloroticus skeletons were investigated in three ways: allometric 

relationships within and among skeletal elements (Chapter 3), carbonate mineralogy of 

skeletal elements (Chapter 4), and consequent variations in strength of spines (Chapter 5). 

This thesis aims to develop along a natural progression as indicated by Figure 1.3 and Figure 

1.4. Each chapter tries to compare within an individual, amongst individuals in a population 

and amongst populations (Figure 1.5) This combination of approaches allows discussion of 
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the whole picture of environmental effects on calcification in an important New Zealand 

ecosystem engineer (Chapter 6). 

 

Figure 1.3 Schematic think-scape of thesis and the progression of factors that influence an urchin’s 
phenotype. 

 

 

 

Figure 1.4 Schematic flow of abiotic conditions impacting the size and biomineralisation of spines 
which will affect the strength of spines.
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2 Location and Collection Methods 

2.1 Specimen Collection Locations 

New Zealand is a temperate country that sits in the southwest of the Pacific Ocean. Its coastal 

and marine environment are extensive being the 4th largest exclusive economic zone (EEZ) in 

the world. New Zealand’s coastal habitat are varied and made from three main islands: North 

Island, South Island and Stewart Island, although there are a considerable number of smaller 

offshore islands (Blezard 1980). Coastal waters exhibit wider variations in salinities, pH, 

temperature, contaminants, dissolved organic carbonates, Ω calcite and Ω aragonites both 

within locations and between locations when compared to more stable oceanic waters. This is 

primarily due of latitudinal differences, currents, climates, anthropogenic inputs, and 

oceanographic differences.  

For this study, six locations were chosen ranging the length of coastal New Zealand (from 

46.56 to -35.23 ° South). These locations sampled covered a wide variety of coastal habitats 

with consideration to locations monitored by New Zealand Ocean Acidification Observing 

Network (NZOA-ON) monitoring stations were, as they are currently collecting regular 

measurements of abiotic factors (Vance et al. 2019). Figure 2.1 shows the position of the study 

areas around New Zealand and the NZOA-ON monitoring sites that provided environmental 

data.  

Locations for sample collection were: Army Bay, Auckland; White Island, Bay of Plenty; 

Scorching Bay, Wellington Harbour; Whenuanui Bay, Picton; Doubtful Sound, Fiordland; and 

Port Pegasus, Stewart Island. More details including the closest NZOA-ON monitoring sites 

are provided in Table 2.1 and detailed description of sites are below.  
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Table 2.1 Location, latitude, longitude, depth of collection and number of samples collected, and 
the NZOA-ON locations used as proxies for long-term monitoring of abiotic conditions. 
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White Island 37.52°S 177.19°E Bay of Plenty 3-5 10 

Wellington 41.28°S 174.77°E Wellington 4-6 14 

Picton 41.29°S 174.00°E Marlborough Sounds 6-7 10 

Fiordland 45.32°S 166.99°E Jackson Bay, West Coast 4-5 10 

Stewart Island 46.93°S 167.83°E Stewart Island 2-3 10 

 

Table 2.2  Location, latitude, longitude, depth of collection and number of samples collected, and 
the NZOA-ON locations used as proxies for long-term monitoring of abiotic conditions. 
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Figure 2.1 Schematic map showing surface circulation around New Zealand. Colours reflect the 
temperature of the flows with red as warm, and blue as cold. Ocean currents are East 
Auckland Current (EAUC), West Auckland Current (WAUC) East Australia Current 
extension (EAC), D’urville Current (DC), Westland Current (WC), Subantarctic front 
(SAF), Subtropical front (STF), East Cape Current (ECC) and Antarctic Circumpolar 
Current (ACC). Figure originally presented in Thomas 2012. 
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2.1.1 Auckland 

Auckland is the biggest city in New Zealand with over 32% of the New Zealand population 

living in its boundary. Annual rainfall is 1280mm in the city and its surrounding districts (New 

Zealand, 2019). There is a six to eight-week delay between the low temperatures of land and 

sea. Average water temperature is 17°C, with lows of 11°C and highs of 24.1°C (climate-

data.org, 2019). The East Australian current considered one of the most globally energetic 

western boundary currents (Ridgway & Hill, 2012) makes its way across the Tasman sea 

where it significantly contributes to the East Auckland current. The East Auckland current 

(EAUC) flows South-East along the North-East coast, moving at speeds up to 50cm per 

second (Stevens & Chiswell, 2019) until it hits 34° South, becoming the East Cape current 

(ECC). Due to the tropical water origins and the high latitudes, some tropical fish and 

invertebrates are found in this area and its surrounding offshore islands. The urchins collected 

from this area were sourced from Army Bay, Auckland. The area compromises of hard bed 

rock in intertidal and subtidal zones with large brown algae dominating the area, although 

notably absent from E. chloroticus associated patches. Low numbers of E. chloroticus are 

present in large intertidal pools from the same area, although these individuals were not 

included for this study. 

2.1.2 White Island (Whakaari) 

White Island (Whakaari) is a submarine stratovolcano (Tait & Tait, 2001) and is New Zealand’s 

most active volcano, getting its namesake for the continuous expulsion of white smoke. It is a 

small island, with an area of approximately 288km2, about 50km off the coast of North Island. 

Both the East Auckland and East Cape currents, both subtropical in their origin run past the 

Island, fostering seawater temperatures approximately 0.5 to 1.3°C warmer than mainland 

coastal waters. White Island/ Whakaari has underwater volcanic vents, reducing the pH and 

further increasing the temperatures found adjacent to those vents. Previous studies have found 

that as proximity to vents increase, pH can be as low as 7.49 (Brinkman 2014); a pH more 

acidic than those values predicted for 2100 (Caldeira & Wickett 2005). The results collected 

from multiple investigations into vents has identified these unique systems as naturally 

occurring scenarios of impacts that may arise from ocean acidification and are crucial for 

predicting outcomes to marine specimens, populations, and species. Grace (1975) noted 55 

fish taxa, many invertebrate and algae species although brown algae was absent and this may 

be a result of grazing from the native urchin, Evechinus chloroticus.  
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2.1.3 Wellington 

Wellington is at the southernmost tip of the North Island and is exposed to a raft of currents. 

The East Cape Current flows south-east along the east coast until it hits the Chatham Rise 

where it heads East however some of that water current is expected to add to the currents 

around Wellington. Westland current from the South Island flows northwards and splits at the 

top of the South Island, one part continuing northwards and the second part turning eastwards 

where it is renamed the D’urville current. Th D’urville current flows South-East and through 

Cook Strait where it heads out to the Chatham Rise. The Southland current flowing northwards 

from the South Island also contributes to the water body around Wellington. Urchins collected 

for this study were collected from the harbour of Wellington, specifically Scorching Bay. 

2.1.4 Picton 

Marlborough Sounds has an average water temperature of 15°C, with a range of 11.6°-20.3°C. 

Picton has an annual average rainfall of 1435 mm. Between March and September, average 

air temperatures are lower than average sea surface temperatures. However, in the warmer 

months, average air temperatures are higher than average sea surface temperatures. The 

Southland Current, coming along the East coast of the South Island is a main contributor to 

the water body around Picton as well as the D’urville current coming through the Cook Strait. 

Whenuanui Bay is to the north west of Picton and receives the same currents and rainfalls as 

Picton due to the proximity, approximately 5km between Whenuanui Bay and Picton.  

2.1.5 Fiordland 

New Zealand fiords are typical of global fiords, narrow and steep-sided ranging along the 

Western side of the lower South Island, from Milford sound to Preservation Inlet (Stanton & 

Prickard 1980). Westerly winds in combination with the mountainous geography of the land, 

result in heavy rainfall (5300-6300 mm/year (Villouta et al. 2001)), and strong freshwater 

inputs, so much so that power dams have been built to utilise the waters energy coming into 

the system. They have strong gradients in their physical properties, such as salinity, 

temperature, light quality, and wave action (Wing & Jack 2010). Saltwater wedge, typical of 

estuaries exist in this area. A permanent low salinity layer (~30ppt) is present throughout the 

fiords and increases in depth when heavy rainfall occurs (Villouta et al. 2001). High tannin in 

the freshwater layer reduces intensity of light, in conjunction with the spectral quality available 

to the marine environment below. Doubtful sound is about 40km long with three primary arms, 

and ranges in depth up to 421m at the deepest point. Samples were collected at the innermost 

area of Doubtful Sound at Deep Cove.  
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2.1.6 Stewart Island 

Stewart Island is the southernmost main island in New Zealand. Pristine forests grow down to 

the sea edge, stopped only by the marine environment at high tides. Water temperatures vary 

around the year from 10°C in winter months to 16°C in January and February (MacKenzie 

1991). The Southland current is the primary current in the area, made from subtropical water; 

flowing down the westerly side of the South Island from the Tasman front, and sub Antarctic 

Australasian water; coming up from the south. The Tasman front hits the west coast of the 

South Island and part of it heads south, wrapping around the southern side of Stewart Island, 

and cutting through Foveaux Strait and back up the east side of the South Island. The sub 

Antarctic water makes up 90% of the southland current, working its way up the east side of 

Stewart Island and South Island, eventually heading out to the Chatham rise (Chiswell 1996; 

Sutton 2003) Paterson Inlet is the primary bay, situated on the north-east of the Island, with a 

total area of 65km2 (Willan 1981). Three islands, Ulva island, Native island, and Bradshaw 

island as well as the direction of the inlet protect the area from heavy seas. Port Pegasus is at 

the south-eastern end of Stewart Island and specimens were collected from this area. 

2.2 NZOA-ON Monitoring and Data 

Long term monitoring of oceanic chemistry is vitally important to understand natural 

fluctuations and patterns as well as use for future predictions and models. The National 

Institute of Water and Atmospheric Research (NIWA) has been actively monitoring ocean 

carbon chemistry since 1998 around Otago, however a more in-depth understanding around 

New Zealand was required. NIWA joined the Global Ocean Acidification Observing Network 

(GOA-ON) programme to provide spatially and temporally biogeochemical data from two 

locations: Dunedin and Firth of Thames sites. The same methodology has been set up for a 

further 12 different locations to create the New Zealand Ocean Acidification Observing Network 

(NZOA-ON). Water samples are taken fortnightly for analysis and data is available on a free 

open-access website (Vance et al. 2020).  

Locations sampled for Evechinus chloroticus were chosen for their relative proximity to NZOA-

ON sites. Table 2.2 provides information on latitude, longitude, the closest NZOA-ON site, 

water depth and number of urchins collected from each location included in this survey. Figure 

2.2 and Figure 2.3 shows data from some of the NZOA-ON sites 

(https://marinedata.niwa.co.nz/nzoa-on/). 

Water temperature typically decreases with increasing latitude as the climate turns from 

tropical-temperate to temperate down the length of New Zealand. As observed in Figure 2.2, 

when temperature is lower, pH is generally reduced. The pH reduction associated with warmer 
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temperatures is attributed to the quantity of active hydrogen bonds. Further to this, present-

day average ocean surface pH is 8.1, a decrease of 0.1 pH units lower than pre-industrial 

values (Doney et al. 2009; Orr, 2011). It is expected that pH will be noted in warmer tropical 

waters prior to colder regions.  

Salinity (ppt) was relatively constant at all NZOA-ON locations except for West Coast, a 

commonly accepted phenomena in the area resulting from heavy rainfall. The southern west 

coast of New Zealand is the wettest region because of westerly airflow over the country in 

conjunction with the orographic effects of the Southern alps; frequently seeing more than 

10,000 mm of rainfall annual. Due to saline and freshwater chemical properties, freshwater 

often remains on top of marine water creating a freshwater wedge or intrusion. As the NZOA-

ON samples are collected from the water surface, it is natural that the salinity is heavily reduced 

at the west coast site.  

Carbonate is an important compound for marine organisms. A decrease in carbonate ion 

availability results in increased metabolic cost to from calcium carbonate structures while also 

increasing the rate of dissolution of these structures. All sites showed a degree of variability 

with the largest range at the West Coast. As pH is lowered to a more acidic state, carbonate 

ions become less abundant although this correlation is not displayed in the data due to the 

high variability. 

Dissolved inorganic carbon (DIC) is the total amount of carbon dioxide (CO2), bicarbonate 

(HCO3
−) and carbonate (CO3

2−) in seawater, and as it increases in the ocean, it drives a 

decrease in oceanic pH to more acidic conditions as chemical equilibrium is sustained. 

Dissolved inorganic carbon is relatively stable at all locations, except for West Coast which 

shows a large range.  
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2.3 Collection Methods 

Ten or more adult Evechinus chloroticus were collected from subtidal regions by SCUBA or 

free divers at each location site (see Table 2.1). Urchins were given a unique identifying 

number, always starting with “Evchl” for the species names (Evechinus chloroticus), the next 

three letters were for their location e.g., “Pic” for Picton, followed by a number relating to the 

order of collection, for example “Evchl-Pic-6”. All specimens were shipped alive, packed in 

saltwater-dampened newspaper and ice packs, by overnight courier to the Portobello Marine 

Laboratory, University of Otago. If specimens required storage in the laboratory before 

dissection, they were held in filtered saltwater circulating aquariums without food.  

Specimens were killed and dissected for analysis in the following chapters on allometry 

(Chapter 3), mineralogy (Chapter 4), and strength (Chapter 5). 
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3 Allometry 

3.1 Introduction 

Allometry is the study of size and its relationship with other biological traits such as 

morphology, physiology, and behaviour. Allometry can be separated into three different types; 

during growth (ontogenetic allometry), among individuals of similar developmental levels 

(static allometry), or among populations or species (evolutionary allometry) (Pelabon et al. 

2014). Size relationships have been of interest to biological scientists since first outlined by 

Otto Snell (1892), particularly focusing on the allocation of resources and consequent effects 

on function, ecology and ultimately, evolution. Peters (1983) noted that predictions of 

morphology based on models can be imprecise due to small data sets and without 

consideration of outliers or shifts under selective pressures. Allometry now encompasses 

research into any relationship between body parts of an individual, normally described as a 

monotonic relationship. In echinoderms, for example, a relationship between Aristotle’s lantern 

components and body mass in relation to feeding properties has been documented in five 

different Strongylocentrotus species (Lawrence et al. 1995), though the cause is unclear. It is 

theorised that allometric relationships constrain phenotypes, forcing evolution along a fixed 

path with low evolvability chances (Pelabon et al. 2014). The flipside to this theory is that 

allometry in individuals, populations and species may exhibit patterns of natural selection and 

functional optimisation to the environment, following abiotic and biotic pressures. Considering 

climate change, understanding the responses from biological organisms to ocean acidification, 

warming and ecosystem function has renewed (Riebesell & Gattuso 2014; Howes et al. 2015; 

Cramer et al. 2018). 

The number of experimental studies providing evidence for adaptive differentiation in a wide 

selection of marine invertebrates has increased recently, particularly those with a focus on 

strong gradients and interactive conditions. Many these marine invertebrates demonstrating 

local adaptation have planktonic dispersal that can range in spatial scales, from meters to 

many kilometres (Sanford & Kelly, 2011), indicating the flow of genes and selection pressure 

trade-offs.  

Marine invertebrates require energy to perform essential processes such as digestion, 

metabolism and respiration and for those marine invertebrates possessing a hard calcium 

carbonate skeleton or structure, calcification. Energy is divided to each essential process, 

ensuring an organism’s survival. When energy is abundant, organisms allocate some of that 

energy to reproduction, ensuring the continuation of their genes and future population survival. 

If individuals are exerting tremendous amounts of energy to maintain essential processes, 
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such as calcification, reproduction efforts tend to be reduced (Llodra 2002). As we face climate 

change and predict future scenarios likely to occur within the next 100 years, it is reasonable 

to predict resource allocation towards reproduction, calcification and growth to change as a 

result of shifts in the ocean environment. Decreasing oceanic pH may result in organisms 

investing into processes to prevent dissolution or maintain skeletal structure for example, that 

might reduce the resources available for growth or reproduction. Conversely, if increasing 

temperatures increase metabolic rate, how will that affect growth and calcification? 

Understanding variation in morphometry and allometry in species undergoing changing 

oceanic and coastal conditions will be crucial to predicting the fate of species, their overall 

ecology and evolution over the next century or so.  

What is needed here is a systematic approach, investigating a single important species in 

detail, looking at the size variation in skeletal elements in relation to overall growth of the 

individual in several different environments. The ‘natural laboratory’ provided by volcanic vents 

(Brinkman & Smith 2015; Zitoun et al. 2020), provides a useful proxy for morphometry and 

allometry under predicted climate change models. Here I investigate the size of skeletal 

elements of the common subtidal echinoid Evechinus chloroticus from six different locations 

around New Zealand, including an active CO2 vent. 

3.2 Methods 

Ten to fourteen Evechinus chloroticus urchins were collected from six locations around New 

Zealand (see Chapter 2). Urchins were collected from the subtidal environment using SCUBA, 

packed in chilly bins upside down with cooler pads and shipped overnight to Portobello Marine 

Laboratory, Dunedin 

For each urchin, test diameter was measured along two perpendicular lines, using digital 

calipers with a precision of 0.1 mm, ensuring caliper edges were placed between spines. 

Average test diameter was calculated as !"#$%&%'	)	*	!"#$%&%'	++ . Test height was measured from 

oral to aboral surface as close to the centre (greatest height) using digital calipers. The 

approximate volume (V) of each urchin was calculated assuming an oblate spheroid, using the 

formula ! = ,
- #$	(

!"#$%&%'	)
+ )(!"#$%&%'	++ )(.%"/0&+ ) in mm3. Each whole urchin was blotted dry with 

paper towels to remove excess surface water and wet weight was recorded to the nearest 

0.1 g. Each urchin was killed and dissected. Aristotle’s lanterns were removed; they and tests 

were scraped clean of excess tissue and wet weighed to the nearest 0.1 g. Individual tests and 

associated Aristotle’s lanterns were placed in 7% sodium hypochlorite (bleach) for three days, 

rinsed with freshwater twice, dried at 60 °C for three days in a drying oven before being cooled 

to room temperature (approx. 16 °C ) for three days.  
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3.2.1 Allometric Methods 

Cleaned and dried tests and Aristotle’s lantern for each urchin were weighed to the nearest 

0.1 g to give total dry skeletal weight. Ten test plates were randomly selected, and the 

thickness was measured using digital calipers to the nearest 0.1 mm. The ten largest primary 

spines as determined by sight were selected from each individual, and measured for length, 

distal radius and proximal radius to calculate volume, assuming a truncated cone, given the 

formula ( = )
-)ℎ(+

+ +	-+ + +-) where R = proximal radius and r is distal radius. Spines were 

weighed to the nearest 0.01 g and spine density (g/cm3) was calculated as weight (g) / volume 

(cm3).  

Cleaned and dried Aristotle’s lanterns were weighed, then disassembled. All intact demi-

pyramids and rotulas and were measured to the nearest 0.1 mm and weighed to the nearest 

0.01 g. Demi-pyramid length was measured from oral tip to the epiphysis junction (Kirby et al. 

2006), width was measured at the widest point near the epiphysis junction and weighed. 

Rotulas were measured for length at the longest axis, width perpendicular to length at the 

narrowest section near the centre and weighed. Epiphysis were not measured but were 

weighed. In total, 23 measurement types were taken from each of the 64 urchins.  

3.2.2 Statistical Analysis 

Analysis was completed using R-studio software to perform one-way ANOVA and data 

graphing. For each parameter, average, maximum, minimum and standard deviation were 

calculated.  

Variation of an individual’s elements was calculated as standard deviation while correlation 

within an element’s measurements and amongst the elemental measurements were analysed 

using a one-way ANOVA to determine statistical significance of means. The coefficient of 

determination (r2) were calculated and used for interpretation of linear correlations. Variations 

of elements amongst locations was analysed using a one-way ANOVA and a Tukeys test was 

utilised for post-hoc analysis to determine locations statistically different from each other.  
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3.3 Results 

Twenty three parameters were measured for each urchin, giving a total of 9,785 

measurements; some measurements could not be made due to broken skeletal structures. 

Measurements made from the whole organisms (diameter 1, diameter 2, average diameter, 

height, test volume, total wet weight, scraped test weight, scrapped Aristotle’s weight, cleaned 

test weight and cleaned Aristotle’s lantern weight) are provided in Appendix A. Measurements 

compiled from the five different skeletal elements (test, primary spine, demi-pyramid, rotula 

and epiphysis) are provided in Appendix B. A summary of descriptive statistics from all urchins 

taken all together, without consideration of location are given in Table 3.1. These 

measurements have provided a very large and cumbersome dataset. I will approach 

subsequent analysis by first examining variance associated with each skeletal element – 

natural variations that occurs within individuals. Then I will examine relationships within and 

among skeletal elements – do they co-vary in animals of different sizes? In order to make 

sensible comparisons among measurements from individuals of varying size, a new 

standardised measurement was calculated as !"#$%&!"'(	*
#+"&#,"	-.#!"("& where measurment x is any of 

the parameters to be investigated.   
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Table 3.1 Average, standard deviation and number of samples for each parameter measured from 
64 Evechinus chloroticus specimens collected around New Zealand. 

Component Measurement Average Standard deviation N 

Whole Test 

Height (mm) 42.28 9.01 64 

Diameter One (mm) 79.03 16.27 64 

Diameter Two (mm) 77.72 16.06 64 

Average Diameter (mm) 78.37 16.14 64 

Total wet weight (g) 194.22 119.6 64 

Test Thickness (mm) 0.37 0.70 640 

Primary Spine 

Length (mm) 21.91 4.95 640 

Proximal diameter (mm) 1.58 0.21 640 

Distal diameter (mm) 0.72 0.12 640 

Weight (g) 0.04 0.01 640 

Volume (cm3) 0.02 0.01 640 

Density (g/cm3) 1.65 0.25 640 

Demi-pyramid 

Length (mm) 14.61 2.36 602 

Width (mm) 7.15 1.19 602 

Weight (g) 0.17 0.07 602 

Rotula 

Length (mm) 7.36 1.14 317 

Width (mm) 2.76 0.42 317 

Weight (g) 0.05 0.02 317 

Epiphysis Weight (g) 0.03 0.01 608 

 

3.3.1 Variations in Elements Within an Individual 

Size range of skeletal elements within individuals was investigated to quantify the variance 

within-individual variability. The average for each skeletal parameter measured within an 

individual was plotted against the test average diameter, with standard deviation plotted as 

error bars, graphing the variation seen in each measurement. It should be noted that primary 
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spines, demi-pyramids, and epiphysis were calculated from ten measurements per individual, 

while rotulae were calculated from five measurements per individual. 

3.3.1.1 Test thickness 

Measurements of test thickness had small variations with the 64 individuals measured (Figure 

3.2, Appendix B). Standard deviation for test thickness ranged from 0.002 to 0.011 mm with 

an average standard deviation of 0.004 mm (N=64). 

 

Figure 3.2 Test thickness variation from 64 Evechinus chloroticus specimens collected from six 
locations around New Zealand (N=64). 

3.3.1.2 Primary Spine 

Measurements of primary spines presented differing degrees of variation with individuals 

(Figure 3.3, Appendix B). Standard deviation for primary spine length ranged from 0.18 to 

0.71 mm with an average standard deviation of 0.36 mm (N=64); a figure of ± 0.3 SD is a 

reasonable estimate of “variance” for this variable. Standard deviation for proximal radius and 

distal radius of the spine were much larger in comparison when plotted, but due to the small 

values of proximal and distal radius, they both present an average standard deviation of 0.01. 

Spine weight deviation ranged from 0.0004 to 0.004 g with an average of 0.001g. The error 

associated with volume calculated for a truncated cone ranged in deviation from 0.0002 to 

0.004 cm3 with an average of 0.001 cm3. Spine density, calculated from volume and weight, 

incorporates both their associated deviation and thus the standard deviation ranged from 0.018 

to 0.106 g/cm3 with an average deviation of 0.046 g/cm3. Graphical presentation of standard 

deviation relative to the measurement is a much better representation of associated deviation.  
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Figure 3.3 Variation of primary spine measurements in 64 Evechinus chloroticus individuals 
compared against average test diameter for the corresponding individual, error bars are 
standard deviation. Specimens were collected from six locations around New Zealand, 
each graph N=64. Top left: Spine length; Top right: Spine proximal radius; Middle left: 
Spine distal radius; Middle right: Spine weight; Bottom left: Spine volume; Bottom right: 
Spine density. 

3.3.1.3 Demi-pyramid 

Demi-pyramid measurements showed little variation with individuals (Figure 3.4, Appendix B). 

Demi-pyramid length had an average standard deviation of 0.04 mm and ranged from 0.02 to 

0.12 mm; a low amount of natural variance for this element is expected. Similarly, demi-

pyramid width standard deviation ranged from 0.008 to 0.09 mm; with an average demi-

pyramid width standard deviation of 0.03 mm. Standard deviation of weight was very small in 

value but was similar to length and width when compared to the respective averages.  



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  20 

 

Figure 3.4 Variation of demi-pyramid measurements in 64 Evechinus chloroticus individuals 
compared against average test diameter for the corresponding individual, error bars are 
standard deviation. Specimens were collected from six locations around New Zealand, 
each graph N=64. Top left: Demi-pyramid length; Top right: Demi-pyramid width; Bottom 
left: Demi-pyramid weight. 

 

3.3.1.4 Rotula and Epiphysis 

Rotula and epiphysis variations within individuals was extremely small for all measurements 
presented in this study (Figure 3.5, Appendix B). Rotula length ranged for the urchins 

presented in this study with an average standard deviation of 0.042 mm. Similarly, rotula width 

standard deviation ranged from 0.003 to 0.095 mm; with an average standard deviation of 

0.02 mm. Rotula weight ranged in deviation from 5.95 x10-5 to 0.005 g with an average 

deviation of 0.0006 g per individual. Epiphysis weight standard deviation for individuals, was 

slightly lower than any rotula measurement, with an average of 0.0003 g. Standard deviation 

for all these variables is very low, indicating a small amount of variation occurring within 

individuals.  



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  21 

 

Figure 3.5 Variation of rotula and epiphysis measurements in 64 Evechinus chloroticus individuals 
compared against average test diameter for the corresponding individual, error bars are 
standard deviation. Specimens were collected from six locations around New Zealand, 
each graph N=64. Top left: Rotula length; Top right: rotula width; Bottom left: Rotula 
weight; Bottom right: Epiphysis weight. 

 

Variation among skeletal elements within individuals is generally small, with low standard 

deviation for first measurements. As expected, standard deviation increases when calculations 

combine measurements. Average standard deviation was very low relative to the 

corresponding measurement for all but proximal radius and distal radius of the spines.  

3.3.2 Correlations Within Elements 

It is likely that various parts of the skeleton are strongly correlated, growing as the animal does. 

I would expect the parts of the Aristotle’s lantern to develop in tandem. Here I examined all the 

possible cross-correlations among elements, irrespective of individual and location. 

3.3.2.1 Whole Test Measurements 

Two diameter measurements were taken per individual to further calculate the volume for an 
oblate spheroid so an assessment of the circular nature of the urchins is important to validate 

the assumption. The two perpendicular diameter measurements are compared for each 

individual (Figure 3.6) showing little difference between two measurements on the same 

individual. Data presented in this study indicates that there is a strong linear relationship 

between each diameter measured, indicating a circular shape, with at least bilateral symmetry, 
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however it is likely that the shape is moving towards an infinite number of symmetries, as is 

such with circles. The average test diameter was calculated for each urchin and is used for 

further comparisons for the whole test.  

Test thickness was replicated ten times per individual and are presented against the 

corresponding individual’s average diameter (Figure 3.7). The r2 of the test thickness against 

average test diameter was 0.86 with a linear equation defined as: y=0.054 + 0.004X + εi where 

ε ~ N (0, 0.0262). Test thickness was relatively consistent between individuals with the largest 

and smallest difference observed within an individual as 0.13 mm and 0.02 mm respectively. 

Due to the natural variance that can occur, there is some messiness in Figure 3.7 and the 

average test thickness for each individual was subsequently calculated and plotted against the 

average diameter and presented in Figure 3.8. When compared with the r2 of all test thickness 

measured, the r2 for average test thickness is higher (0.90), although the equation is very 

similar (y=0.054 + 0.004X + εi where ε ~ N (0, 0.0222)).  

All test measurements (average diameter, height, weight, and volume) had strong positive 

correlations with each other as defined by r2 values above 0.80 (Figures 3.9 – 3.14). Height 

had consistently lower r2 values when compared to all other correlations presented in Table 

3.2 (Height + measurement r2 = < 0.90, not-height-measurement + not-height-measurement r2 

= > 0.90). It should be noted that this is a rather arbitrary cut off, as height vs. volume had a r2 

value of 0.89. The higher r2 of height + volume is likely because of height when calculating 

volume. As height was not as strongly correlated compared to other measurements, it provides 

evidence for differing flatness and roundness of an oblate spheroid. For all test measurements 

(diameter, height, weight, and volume), as one measurement increases in size, the others 

increase as well, with a strong linear relationship as determined by the high r2 values.   
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Figure 3.6 Correlation of test diameter 1 and test diameter 2 (perpendicular to test diameter 1) for 
64 Evechinus chloroticus collected around New Zealand (N=64, r2=0.98).  

 

 

 

Figure 3.7 Correlation of 10 test thickness for average diameter of 64 Evechinus chloroticus 
species collected around New Zealand from six locations (N=640).  
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Figure 3.8 Correlation of average test thickness for each individual against the individuals average 
diameter for 64 Evechinus chloroticus collected around New Zealand from six locations 
(N=64).  

 

 

 

Figure 3.9 Urchin height for each individual against the individuals average diameter for 64 
Evechinus chloroticus collected around New Zealand from six locations (N=64). Linear 
regression is added and presented as a solid line (ŷi=9.26218 + 1.63420 xi + έi where 
ε ~ Ɲ (0,6.5432)  
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Figure 3.10 Urchin weight for each individual against the individuals average diameter for 64 
Evechinus chloroticus collected around New Zealand from six locations (N=64). Linear 
regression is added and presented as a solid line (ŷi=9.26218 + 1.63420 xi + έi where 
ε ∼ Ɲ (0, 6.5432)). 

 

	

Figure 3.11 Test volume (cm3) for each individual against the individual’s average diameter for 64 
Evechinus chloroticus collected around New Zealand from six locations (N=64). Linear 
regression is added and presented as a solid line (ŷi=51.5682 + 0.1758 xi + έi where ε 
∼ Ɲ (0,3.5952)). 
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Figure 3.12 Weight for each individual urchin against the individual’s height for 64 Evechinus 
chloroticus collected around New Zealand from six locations (N=64). Linear regressions 
presented as a solid line (ŷi=28.99396 + 0.06846 xi + έi where ε ∼ Ɲ (0,0.82372)). 

 

 

Figure 3.13 Test volume (cm3) for each individual against the individual’s height for 64 Evechinus 
chloroticus collected around New Zealand from six locations (N=64). Linear regressions 
presented as a solid line (ŷi=27.786876 + 0.095079 xi + έi where ε ∼ Ɲ (0,2.9572)). 
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Figure 3.14 Test volume (cm3) for each individual against the individual’s wet weight for 64 
Evechinus chloroticus collected around New Zealand from six locations (N=64). Linear 
regression is added and presented as a solid line (ŷi=−6.418953 + 1.315569 xi + έi 
where ε ∼ Ɲ (0,20.792)). 

  

 

Table 3.2 Test measurements (average diameter, height, weight, volume) compared against each 
other. r2 value for each comparison is presented in the bottom left section and figure 
reference is provided in top right of the table;  r2 greater than 0.80 are highlighted in 
yellow. 

 Average diameter Height Weight Volume 

Average diameter  Figure 3.9 Figure 3.10 Figure 3.11 

Height r2= 0.83  Figure 3.12 Figure 3.13 

Weight r2=0.95 r2=0.82  Figure 3.14 

Volume r2=0.84 r2=0.89 r2=0.96  

 

3.3.2.2 Primary Spine 

Primary spines were measured from 64 Evechinus chloroticus collected around New Zealand. 

The length, proximal diameter, distal diameter, and weight of ten primary spines per individual 
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were measured and the volume and density were subsequently calculated. The relationship 

between each primary spine measurement was investigated and presented in Table 3.3 and 

Figure 3.15 – Figure 3.29. Length was positively correlated with weight and volume with r2 

values above 0.80 (0.84 and 0.85 respectively). Proximal diameter of primary spines was also 

positively correlated, although not as strongly (r2= 0.67) and distal diameter showed no obvious 

relationship with primary spine length (r2= 0.02). Primary spine density was negatively 

correlated with length, although this did not exhibit a strong relationship (r2= 0.29). Distal 

diameter of primary spines was not correlated with primary spine proximal diameter. As 

primary spine proximal diameter increases, primary spine weight also increases as shown in 

Figure 3.21 and has a r2 value of 0.76. Proximal diameter was also strongly positively 

correlated with primary spine weight (r2=0.85). Primary spine density and primary spine 

proximal diameter was negatively correlated with a moderately relationship (r2= 0.41), although 

this is the strongest correlation of any primary spine measurement to density. Distal diameter 

had a very low relationship (r2 < 0.20) for weight, volume, and density (0.16, 0.17 and 0.07 

respectively). Weight had a strong correlation with volume, giving the highest r2 value of any 

primary spine component correlation (r2 = 0.91). Volume and distal diameter were only 

marginally correlated on a linear relationship with a r2 value of 0.38. 

 

Figure 3.15 Spine length compared vs. proximal diameter for ten spines from each individual of 64 
Evechinus chloroticus specimens collected around New Zealand (N=640). ). Linear 
regressions presented as a solid line (ŷi=−7.2391 + 18.4131 xi + έi where ε ∼ Ɲ (0, 
2.8272)). 
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Figure 3.16 Spine length vs. distal diameter for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640).  Linear regressions 
presented as a solid line (ŷi=17.453 + 6.192 xi + έi where ε ∼ Ɲ (0, 4.8562)). 

 

Figure 3.17 Spine length compared vs. spine weight for ten spines from each individual of 64 
Evechinus chloroticus specimens collected around New Zealand (N=640). Linear 
regressions presented as a solid line (ŷi=9.8126+ 302.26153 xi + έi where ε ∼ Ɲ 
(0,2.0642)). 
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Figure 3.18 Spine length vs. spine volume for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 12.1106 + 386.4249 xi + έi where ε ∼ Ɲ (0,1.8622)). 

 

 

Figure 3.19 Spine length vs. spine density for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 39.7761 – 10.8171 xi + έi where ε ∼ Ɲ (0,4.1132)). 
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Figure 3.20 Proximal diameter vs. distal diameter for ten spines from each individual of 64 
Evechinus chloroticus specimens collected around New Zealand (N=640). Linear 
regressions presented as a solid line (ŷi= 1.19073 + 0.54432 xi + έ where ε ∼ Ɲ (0, 
0.20712)).  

 

 

Figure 3.21 Proximal diameter vs. spine weight for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 1.067008 + 12.89712 xi + έi where ε ∼ Ɲ (0,0.10732)). 
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Figure 3.22 Proximal diameter vs. spine volume for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 1.146549 + 17.219943 xi + έ where ε ∼ Ɲ (0,0.081552)). 

 

Figure 3.23 Proximal diameter vs. spine density for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 2.56321 - 0.59344 xi + έi where ε ∼ Ɲ (0,0.16082)). 
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Figure 3.24 Distal diameter vs. spine weight for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi=0.58405 + 3.45512 xi + έi where ε ∼ Ɲ (0,0.11882)).  

 

Figure 3.25 Distal diameter vs. spine volume for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi=0.60675 + 4.55766 xi + έi where ε ∼ Ɲ (0,0.11762)). 
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Figure 3.26 Distal diameter vs. spine densitty for ten spines from each individual 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 0.97859 - 0.15519 xi + έi where ε ∼ Ɲ (0,0.12342)).  

 

Figure 3.27 Spine weight vs. spine volume for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 0.0097107 + 1.1954705 xi + έi where ε ∼ Ɲ (0,0.0044582)). 
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Figure 3.28 Spine weight vs. spine density for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi= 0.079517 - 0.023900 xi + έi where ε ∼ Ɲ (0,0.013522)).  

 

Figure 3.29 Spine volume vs. spine density for ten spines from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=640). Linear regressions 
presented as a solid line (ŷi=0.074095 - 0.029509 xi + έi where ε ∼ Ɲ (0,0.0091992)). 
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Table 3.3  Primary spine measurements (length, proximal diameter, distal diameter, weight, 
volume and density) for 64 Evechinus chloroticus from six locations around New 
Zealand. r2 values for each linear model are presented in the bottom left section; figure 
reference is provided in top right of the table. r2 greater than 0.80 are highlighted in 
yellow. 

 Length 
Proximal 
diameter 

Distal 
diameter 

Weight Volume Density 

Length  Figure 3.15 Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.19 

Proximal diameter r2=0.67  Figure 3.20 Figure 3.21 Figure 3.22 Figure 3.23 

Distal diameter r2=0.02 r2=0.10  Figure 3.24 Figure 3.25 Figure 3.26 

Weight r2=0.82 r2=0.75 r2=0.15  Figure 3.27 Figure 3.28 

Volume r2=0.85 r2=0.86 r2=0.17 r2=0.90  Figure 3.29 

Density r2=0.30 r2=0.45 r2=0.08 r2=0.16 r2=0.39  

 

3.3.2.3 Aristotles Lantern 

Three components of the Aristotle's lantern were measured from each of the 64 Evechinus 

chloroticus collected around New Zealand. These were demi-pyramids, rotula and epiphyses. 

Only complete components were measured so there are differences in the number sampled 

in this data set.  

3.3.2.4 Demi-pyramid 

Ten demi-pyramids were measured from each of the 64 Evechinus chloroticus collected 
around New Zealand. The length, width and weight of demi-pyramids were measured for all 

that were complete; 602 actual measurements from the possible 640. The relationship 

between each demi-pyramid measurement was investigated and presented in Table 3.4; 

Figure 3.30 – Figure 3.32. The correlation between length, width and weight were all strongly 

positively with r2 values above 0.90 amongst the components measured for all individuals in 

this study. Length and weight had the strongest correlation, with a r2 value of 0.95. The 

correlation between weight and width was only slightly less in terms of r2 values (0.94) and 

only marginally higher than the correlation between length and width (0.93). Variation in 

measurements increased with increasing sizes for all measurements as seen by the wider 

spread of data points.  



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  37 

 

Figure 3.30 Demi-pyramid length vs. demi-pyramid width from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=601). Linear regressions 
presented as a solid line (ŷi= 0.99328 + 1.90329 xi + έi where ε ∼ Ɲ (0,0.61082)). 

 

 

 

Figure 3.31 Demi-pyramid length vs. demi-pyramid weight from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=601). Linear regressions 
presented as a solid line (ŷi= 9.01522 + 32.59098 xi + έi where ε ∼ Ɲ (0,0.4942)). 
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Figure 3.32 Demi-pyramid length vs. demi-pyramid weight from each individual of 64 Evechinus 
chloroticus specimens collected around New Zealand (N=601). Linear regressions 
presented as a solid line (ŷi= 4.33295 - 16.43324 xi + έi where ε ∼ Ɲ (0,0.28732)). 

 

Table 3.4 Demi-pyramid measurements (length, width, and weight) for 64 Evechinus chloroticus 
collected from six locations around New Zealand. r2 values for each linear model are 
presented in the bottom left section and figure references is provided in the top left. r2 

greater than 0.80 are highlighted in yellow. 

 Length Width Weight 

Length  Figure 3.30 Figure 3.31 

Width r2=0.93  Figure 3.32 

Weight r2=0.95 r2=0.94  

 

3.3.2.5 Rotula 

Five rotulas were measured from each of the 64 Evechinus chloroticus collected around New 
Zealand. The length, width, and weight of rotulas were measured for all that were complete; 

317 actual measurements from the theoretically possible 320. The relationship between each 

rotula measurement was investigated and presented in Table 3.5 and Figure 3.33 – Figure 

3.35. Rotula length had a higher correlation to weight than width (0.94 and 0.82 respectively). 

Rotula width also had a stronger association to rotula weight (r2=0.87).  
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Figure 3.33 Rotula length vs. rotula width from each individual of 64 Evechinus chloroticus 
specimens collected around New Zealand (N=317). Linear regressions presented as a 
solid line (ŷi= 0.56396 + 2.46218 xi + έi where ε ∼ Ɲ (0,0.48282)). 

 

 

Figure 3.34 Rotula length vs. rotula weight from each individual of 64 Evechinus chloroticus 
specimens collected around New Zealand (N=317). Linear regressions presented as a 
solid line (ŷi= 4.97660 + 43.23080 xi + έi where ε ∼ Ɲ (0,0.26642)). 
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Figure 3.35 Rotula width vs. rotula weight from each individual of 64 Evechinus chloroticus 
specimens collected around New Zealand (N=317). Linear regressions presented as a 
solid line (ŷi= 1.91545 + 15.33091 xi + έi where ε ∼ Ɲ (0,0.14892)). 

 

Table 3.5 Rotula measurements (length, width, and weight) for 64 Evechinus chloroticus collected 
from six locations around New Zealand. Graphs and linear models are presented in the 
bottom left section, linear model equations and r2 values for each, N=317; r2 greater 
than 0.80 are highlighted in yellow. 

 Length Width Weight 

Length  Figure 3.33 Figure 3.34 

Width r2=0.82  Figure 3.35 

Weight r2=0.94 r2=0.87  

 

3.3.2.6 Epiphysis 

Ten epiphyses were weighed from each of the 64 Evechinus chloroticus collected around New 
Zealand. There were no other measurements made on epiphysis so correlation within 

epiphysis could not be undertaken.  

In summary, primary spine measurements varied in their correlation with the measurements 

presented here, with r2 values from 0.02 (length + distal diameter) to 0.90 (weight + volume). 

Spine length, weight and volume were all positively correlated with r2 values > 0.82. As 

expected, related measurements within elements in the Aristotle's lantern are strongly 

correlated, with r2 values greater than 0.80 for all correlations within a single structure. Demi-
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pyramid measurements were strongly positively correlated with all correlations above 0.93. 

Rotula length, width and weight were positively correlated with r2 values above 0.82.  

 

3.3.3 Correlation Amongst Elements 

The relationship of skeletal component measurements against non-related skeletal component 

measurements was investigated. This was used to explore if skeletal elements measurements 

were dependent on each other regardless of the differences in element. The coefficient of 

determination (r2) values for all comparisons analysed are presented in Table 3.6.  

Primary spine measurements did not correlate with demi-pyramid, rotula or epiphysis 

measurements in this study, all with low r2 values (r2 <0.70). Primary spine density consistently 

had a lower correlation to any other skeletal element measurement, with the largest r2 value 

given as 0.22 for rotula weight. When primary spine length, weight and volume was compared 

with the demi-pyramid measurements, the r2 values were the largest observed but were still 

considerably low.  

Demi-pyramid, rotula and epiphysis measurements, when compared with each other produced 

very high r2 values, with 11 of the 15 possible interactions ≥0.90, and the remaining 4 

interactions >0.80. The lowest r2 value was given for Aristotle's lantern comparative element 

measurements with demi-pyramid width and rotula width (r2=0.82), while the largest value was 

between rotula weight and epiphysis weight (r2=0.95).  
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3.3.4 Elements Amongst Locations 

Urchins were collected from six different locations around New Zealand: Auckland, White 

Island, Wellington, Picton, Fiordland and Stewart Island. The average, standard deviation and 

number for each specimen from each location is presented in the Table 3.7. Fiordland 

specimens typically had the largest spines (average=30.59 mm, SD=3.09), proximal diameter 

(average=1.89 mm, SD=0.14) and weight (average=0.06 g, SD=0.01). Samples from Picton 

had the largest distal diameter (average=0.83 mm, SD=0.11), however the White Island 

specimens had the largest spine density compared to other locations in this study 

(average=1.89 g/cm3, SD=0.24). Samples from Stewart Island had the largest average for all 

internal components: demi-pyramids (length, width, and weight), rotula (length, width, and 

weight) and epiphysis (weight). When investigating the smaller averages for skeletal 

components measured in this study, the results were less consistent. North Island specimens 

tended to have the smallest averages; however, it was spread between the three locations:’ 

Auckland, White Island and Wellington. There were two component measurements that had 

the same average for all three locations: primary spine weight and epiphysis weight. Auckland 

specimens had the smallest average for primary spine proximal diameter (average =1.42 mm, 

SD=0.02), demi-pyramid length (average =12.40 mm, SD=1.09), demi-pyramid weight 

(average=0.10 g, SD=0.02), rotula height (average=6.20 mm, SD=0.49) and rotula weight 

(average=0.03 g, SD=0.01). White Island specimens had the smallest average primary spine 

length (average=16.96 mm, SD=1.83), primary spine weight (average=0.03 g, SD=0.01), and 

rotula width (average=2.35 mm, SD=0.12). Samples from Wellington had the smallest primary 

spine distal diameter (average=0.61 mm, SD=0.10) and demi-pyramid weight 

(average=6.38 g, SD=0.41). Fiordland had the smallest primary spine density with an average 

of 1.43 g/cm3 (SD=0.16). I investigated the differences between locations for the median, upper 

quartile, lower quartile, and range excluding outliers from different locations for each skeletal 

element measurement as depicted by the boxplots in Figure 3.36. 

Average body diameter demonstrated variability between individuals within a location as can 

be seen in Figure 3.36. White Island samples had the smallest variability of average body 

diameter within the individuals sampled (range 71.43 –75.05 mm), whereas Fiordland had the 

largest variability (range 74.86 –113.07 mm) as well as the largest specimen (maximum 

diameter 113.07 mm). Specimens collected from the South Island (Stewart Island, Fiordland 

and Picton) were larger than the specimens from the North Island (Wellington, White Island 

and Auckland). Picton and Fiordland had one outlier each, although these specimens were not 

outside of the observed specimens when compared on a national scale.  
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Primary spine length was largest in Fiordland in both average (30.58 mm) and individual length 

of one spine (36.36 mm), although it had a large range. White Island specimens had a smaller 

difference between its 25% and 75% quantile, yet Auckland organisms had the smallest 

variability in primary spine length as determined by standard deviation of 0.11 mm, while 

Stewart Island specimens had a large variability (2.12 SD) and second largest average primary 

spine length (25.23 mm). When observing the median value (indicated by the thick black line) 

as latitude increases, primary spine length increases, however White Island has a small dip 

relative to Auckland, and Fiordland is an obvious exception to this trend.  

Primary spine weight was relatively consistent between the North Island sites (Auckland-

0.02 g; White Island-0.03 g; Wellington-0.03 g) and were observably smaller than the South 

Island sites (Picton-0.04 g; Fiordland-0.06 g; Stewart Island-0.04 g). Primary spine weight 

demonstrates a similar pattern in the South Island sites as the primary spine length; Picton has 

the smallest average primary spine weight in the South Island, followed by Stewart Island with 

the heaviest individual specimen obtained from Fiordland (0.08 g).  

Primary spine volume was largest at Fiordland with an average volume of 0.045 cm3, while 

White Island and Auckland samples had the smallest averages, both with 0.016 cm3. Spine 

volume for Auckland, White Island, Wellington and Picton all presented a small difference 

between 25 and 75% quantile, While Fiordland had the largest distribution of data.  

Average spine density for locations were very similar, with only 0.45 g/cm3 difference between 

the largest (White Island-1.87 g/cm3) and smallest (Fiordland-1.42 g/cm3) average for spine 

density. Median primary spine density appears to decrease from Northern sites to Southern 

sites except for Fiordland which is only slightly larger than Stewart Island specimens. The 

figure for primary spine density has many outliers for all locations, except for Picton and ranges 

overlap for all locations. There was no significant difference amongst locations when a post-

hoc analysis was performed.  

Median demi-pyramid length steadily increased from the most northern site (Auckland) to the 

most southern site (Stewart Island). Demi-pyramid length had the largest variability within the 

Fiordland samples, primarily because of the outliers included in the data while samples from 

Stewart Island had the smallest variability in length (range = 16.69 – 18.94 mm). Samples from 

White Island had several outliers; however, these were all close to the 25 and 75% quantiles.  

The same trend of increasing size from North to South was observed in the demi-pyramid 

width, however the Stewart Island specimens had a smaller median width than the Fiordland 

median width, even though Fiordland is at a lower latitude. Demi-pyramid width had more 

outliers than the demi-pyramid length, with the largest difference from the median to the 
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outliers occurring in the Fiordland samples. Samples from White Island had the smallest 

variability in demi-pyramid width (range = 5.88 – 6.96 mm).  

The median weight for demi-pyramids again increased with increasing latitude, however White 

Island and Wellington samples were very similar, with Fiordland marginally heavier than 

Stewart Island. Stewart Island had a large range that was not present when comparing the 

length and width of the demi-pyramids. Samples from Fiordland again had a large range due 

to the outliers and samples from White Island had one outlier in the figure. Samples from 

Wellington had the smallest variability (range=0.15 – 0.08 mm), with a similar range occurring 

at both Auckland and Picton (0.14 – 0.06 mm and 0.24 – 0.15 mm respectively).  

Rotula length did not present any obvious trend in the parameters presented in the graphs. 

Samples from White Island had the smallest variability, while samples from Fiordland had large 

outliers, increasing the variability for that location. Samples from Picton and Stewart Island had 

outliers, although the difference was not as noticeable as that of outliers for samples from 

Fiordland.  

Rotula width showed a clear trend of increasing median as latitude increases, although there 

is a small dip for the White Island samples. Variability was relatively similar across the 

locations, except for Fiordland.  

Rotula weight was less variable for North Island specimens relative to South Island specimens 

and were also lighter in weight compared to the North Island samples. Stewart Island was 

significantly different for median and quantiles (25 and 75%) from all other locations except for 

Fiordland which overlap.  

Epiphysis weight was one of the few components presented in this study that did not show a 

large separation between North and South Island populations. Picton specimens had a smaller 

median than the lower latitude Wellington specimens. Samples from Fiordland had a very large 

range between 25 and 75% quantiles, and Stewart Island had a large range as well. There 

were many outliers for Picton, while there was only one outlier for both White Island and 

Stewart Island.  
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Table 3.7 Average, standard deviation and number of samples for each measurement of a 
skeletal element per location. 

   LOCATION 
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Primary 
Spine 

Length  
(mm) 

Average 17.88 16.96 20.21 21.28 30.59 25.24 

Standard deviation 1.11 1.83 1.89 1.32 3.09 2.13 

Number 100 100 140 100 100 100 

Prox 
Diameter 

(mm) 

Average 1.42 1.43 1.46 1.58 1.89 1.78 

Standard deviation 0.11 0.12 0.15 0.08 0.14 0.12 

Number 100 100 140 100 100 100 

Distal 
Diameter 

(mm) 

Average 0.69 0.77 0.61 0.83 0.77 0.71 

Standard deviation 0.11 0.1 0.1 0.11 0.12 0.1 

Number 100 100 140 100 100 100 

Weight  
(g) 

Average 0.03 0.03 0.03 0.04 0.06 0.05 

Standard deviation 0.00 0.01 0.01 0.01 0.01 0.01 

Number 100 100 140 100 100 100 

Volume  
(cm3) 

Average 0.016 0.016 0.018 0.025 0.04 0.033 

Standard deviation 0.003 0.003 0.005 0.003 0.010 0.006 

Number 100 100 140 100 100 100 

Density  
(g/cm3) 

Average 1.78 1.89 1.70 1.60 1.43 1.51 

Standard deviation 0.20 0.24 0.28 0.15 0.16 0.15 

Number 100 100 140 100 100 100 

Demi-
pyramid 

Length  
(mm) 

Average 12.4 12.94 13.03 15.02 17.19 17.62 

Standard deviation 1.09 0.51 0.77 0.88 1.67 2.73 

Number 96 98 135 87 99 90 

Width  
(mm) 

Average 6.52 6.44 6.38 7.39 8.53 8.55 

Standard deviation 0.46 0.20 0.41 0.48 0.92 1.36 

Number 96 96 135 87 99 90 

Weight 
 (g) 

Average 0.10 0.13 0.12 0.19 0.25 0.26 

Standard deviation 0.02 0.02 0.02 0.02 0.06 0.04 

Number 96 98 135 87 100 96 
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Rotula 

Height  
(mm) 

Average 6.2 6.75 6.56 7.58 8.60 8.83 

Standard deviation 0.49 0.23 0.42 0.55 0.97 0.51 

Number 49 49 70 50 49 50 

Width  
(mm) 

Average 2.39 2.35 2.56 2.93 3.11 3.33 

Standard deviation 0.20 0.12 0.16 0.15 0.35 0.25 

Number 49 49 70 50 49 50 

Weight  
(g) 

Average 0.03 0.04 0.04 0.06 0.08 0.09 

Standard deviation 0.01 0.00 0.01 0.01 0.02 0.01 

Number 49 49 70 50 49 50 

Epiphysis 
Weight  

(g) 

Average 0.02 0.02 0.02 0.03 0.05 0.05 

Standard deviation 0.01 0.02 0.00 0.01 0.01 0.01 

Number 98 96 127 98 100 95 
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Figure 3.36 Skeletal com
ponents of 64 E

vechinus chloroticus plotted as determ
ined by location from

 6 different locations around N
ew

 Zealand. Akl: 
Auckland; W

hI: W
hite Island; W

lg: W
ellington; Pic: Picton; Frd: Fiordland; StI: Stew

art Island.  
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I calculated a new measurement to account for the differences in urchin size within and 

amongst locations and term this the “standardised” measurement. I investigated the 

differences between locations for the median, upper quartile, lower quartile, and range 

excluding outliers from different locations for each skeletal element measurement as 

depicted by the boxplots in Figure 3.37. When reassessed using standardised height, there 

appears to be no obvious latitudinal trend. When a post hoc analysis was used, all locations 

apart from Fiordland presented a similar average, however Fiordland’s low average 

separates it from the other locations. Analysing the standardised wet weight of specimens, 

there are some differences notable, with White Island having a larger weight than either of 

the two surrounding locations (Auckland and Wellington). Standardised test volume showed 

huge variation amongst locations. White Island again, had a larger volume than what would 

be expected following the locations nearest it (Auckland and Wellington) and showed very 

small variation within the test volume. Sampled from Fiordland and Stewart Island had very 

similar test volume median, although samples from Fiordland had a much larger lower 

minimum and samples from Stewart Island had a slightly higher maximum, with very similar 

25 and 75% quantiles between the two locations. Test thickness when standardised 

showed little difference among locations and when post-hoc analysis was undertaken, 

showed no significant difference amongst locations. Standardised spine length showed a 

no obvious trend with latitude, with similarity occurring amongst samples from Auckland, 

Wellington, and Fiordland; while White Island, Picton and Stewart Island showed a similar 

grouping to each other. Spine length showed a large variance at all locations as indicated 

by the large box and whiskers. Interestingly, there appeared to be a more similar median 

amongst all locations except Fiordland. A similar pattern is clear when standardised spine 

volume is plotted for the locations in this study, with a grouping of Auckland, White Island, 

Wellington, Picton and Stewart Island. There does appear to be some indication of 

latitudinal trend emerging, however a post hoc analysis indicated no significant difference 

between the locations aforementioned. Standardised spine density showed the inverse 

relationship, with decreasing density occurring at Fiordland and Stewart Island, with the 

largest density at Auckland and Wellington. White Island showed a much smaller 25 and 

75% quantiles than the locations nearest to it, Auckland, and Wellington. 
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3.4 Allometry Discussion 

3.4.1 Variations Within Elements 

This is the largest and most comprehensive study on Evechinus chloroticus to consider the 

effects of location on urchin morphometry and allometry. It allowed a detailed examination of 

variations in skeletal structures within and amongst individuals, as well as within and amongst 

populations from different locations, with focus to those in areas of identified unusual seawater 

chemistry.  

As oceanic regions will face changes in ocean chemistry because of climate change at different 

degrees, velocities, and paces; understanding how regional and local populations will react is 

crucial to developing an understanding of long-term effects of climate change. Important 

structural parts of an organism must be maintained and repaired for survival, with changes in 

oceanic chemistry likely to impact on an organism’s ability to build, maintain and repair 

structures. Energy allocation to undertake the essential processes of life is also likely to change 

because of changes in oceanic chemistry and less-essential processes such as reproduction 

and continuous growth may be foregone.  

My results are one of the first and most comprehensive to provide detailed information about 

variability within an urchin’s individual elements and from our results I have demonstrated 

different levels of consistency within a single element. Primary spine measurements (length, 

weight, volume, and density) showed a large degree of variability for a single individual than 

those of the Aristotle's lantern components.  

The larger range of variability within a primary spine measurement is likely a result of the 

overall large number of spines available to measure. In this study, the ten largest spines were 

selected as judged by the naked eye and subsequently measured, however there were more 

than 200 spines available to measure for each individual. It is possible for an error to occur 

when selecting the ‘largest’ spines and this must be taken into consideration when giving 

thought to overall consistency in the individual. Primary spines are biological important for 

locomotion, sensing and protection from predators and can be limited by the energy state of 

the surrounding environment. Spines are frequently broken in a high energy environment 

where wave exposure or currents are particularly strong, or when collected by divers from the 

environment. The adaptive nature of spines, designed to absorb energy and prevent failure to 

the test by either breaking along the shaft or tissue connecting the spine to the test is torn or 

stretched (Strathmann 1981). Further to this, the nature of the break, and the state of 

regeneration if started will contribute to the variability observed in this study. It is most likely 

spines are correlated to the abiotic and biotic factors directly impacting on an individual, as 
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well as the state of repair or growth currently experienced by each individual spine. In this 

instance, spines demonstrate large variability in all measurements presented in this study and 

are poor indicators of morphometric growth.  

There was very low variability in measurements of the Aristotle's lantern components 

regardless of location. The demi-pyramid, rotula and epiphysis demonstrated minimal 

differences within an individual and standard deviation was considerably lower than would be 

expected for random or uneven growth. Aristotle's lantern displays strict radial symmetry, an 

obvious requirement for function essential to overall individual survival. Deviations from the 

model will create irregularities to a complex system that could lead to issues with skeletal 

ossicles, muscles and ligaments with the addition of the teeth wearing unevenly. Repeat 

measurements of each demi-pyramid, rotula and epiphysis are unnecessary within a single 

individual due to the very low standard deviations displayed and it would be sufficient to 

measure only one of the components mentioned above. 

This is the first study to investigate in detail the consistency of elements within an individual 

urchin with few studies have focusing on urchin allometry. The available data already published 

have typically focused on the demi-pyramids, while rotulas and epiphysis have remained 

largely absent from the literature. In this study, I have demonstrated that there are minimal 

differences between replicate sampling within an individual.  

3.4.2 Correlations Within Wlements 

When comparing different measurements from an element, there are consistent results for 

almost all elements regardless of individual or location. As an element gets larger, either in 

length or width, weight increases in almost a linear fashion with minimal deviations from the 

model. As different measurements were taken for different elements, discussions are detailed 

below. 

3.4.2.1 Test and Test Plate 

As test diameter increases in one direction, the perpendicular diameter also increases, with 

little variation. It has long been assumed that the urchin, Evechinus chloroticus presents itself 

as an oblate spheroid, with dihedral symmetry of the organs. When compared to the average 

diameter (!"#$%&%'	)*!"#$%&%'	++ ) height also increases with a linear model, although there is 

more variation to this model than when compared to the diameter comparisons. Ebert 1988 

found that during E. chloroticus growth, changes in height were relative to the diameter until 

individuals converged towards !"#$%&%' = ℎ%"*ℎ& × 2. Some of the variation exhibited in this 

model might be a result of the urchins sampled converging towards the model predicted by 

Ebert (1988). Habitat complexity has also been demonstrated to influence the described shape 
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and relative changes in urchins. Elliot et al. (2012) found that the purple sea urchin 

(Strongylocentrotus purpuratus) exhibited different shapes (height: diameter) dependent on 

the substrate that individuals were inhabiting. S. purpuratus that were living in pits had a larger 

height: diameter ration than those that were dwelling on flat surfaces. Two urchin species 

(Echinus esculentus and Tripneustes ventricosus) have also demonstrated variation in 

height: diameter ratio with variations attributed to wave action (Moore 1935 and McPherson 

1965 respectively); rounder tests were apparent in calmer waters and flatter tests in more 

turbulent waters. Habitat complexity data was omitted from this study, but it should be noted 

that E. chloroticus inhabit a wide range of environments around New Zealand (see Section 1.4 

for further detail).  

Test thickness of Evechinus chloroticus increased with average diameter. It is encouraging 

that our detailed and well-supported data confirm conclusions reached in other studies, 

primarily Dix (1970). When describing the morphometry of the urchin Echinus esculentus, 

Moore (1935) found that the cube root of volume was sufficient for describing the relationship 

with test thickness, noting that older organisms typically had thinner shells and locality 

impacted the observed trends. Dix (1970) also found the same effect of locality on the study 

species Evechinus chloroticus, between 3 areas in Kaikoura and one area in Nelson. An 

increase of test thickness disproportionate to the expected increase as a result of test diameter 

has previously been correlated to increased nutrient availability and favourable environmental 

conditions (Dix 1970; Moore 1935). Growth rate has also been demonstrated to affect test 

thickness relative to test diameter in the urchin Strongylocentrotus droebachiensis (Lang & 

Mann 1976). Lang and Mann (1976), found those urchins that grew at a slower rate had a 

thinner test compared to faster growing individuals of the same age. Growth was heavily reliant 

on the abundance of food, and those individuals in kelp barrens grew slower. The function of 

food on growth rates and subsequently, on test thickness was not consistent between studies 

on different urchins. Test thickness of Paracentrotus lividus was found to be strongly correlated 

with test diameter; supporting the results discussed above for E. chloroticus; however, diet 

was not correlated with test thickness (Asnaghi et al. 2014). Tegner & Levin (1983) found that 

test thickness also varied dependent on the size class of test diameters in the urchin, S. 

franciscanus, supporting the evidence provided by Moore (1935). Urchins that were in the size 

class of 50-70 mm for test diameter had a slower rate of growth in test thickness, then 

increased in test thickness when urchins were above 70 mm diameter. This would indicate that 

the correlation of test thickness to diameter maybe not linear and could be logistic growth, 

dependent on age and overall size of the organism (Tegner & Levin 1983).  
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3.4.2.2 Primary Spine 

This is the first study to quantify the relationship among measurements of the primary spine. 

Of the primary spines measured in this study, length, proximal diameter, distal diameter, 

weight, volume, and density had different correlations and strength of relationships amongst 

the measurements. Length of primary spines increased with average diameter, however there 

was a large variability within the data compared to the model. Previously, Dix (1980) found that 

spines differed with locality, from short, thick and blunt spines in organisms found at Wakatu 

Point, Nelson compared to long, thin and sharp spines from organisms at Kaiteriteri, with a 

range between these two shapes found in different locations (Seal Reef, Kaikoura and St Kilda 

Rocks, Kaikoura). Distal diameter showed a poor relationship to other measurements of a 

single spine and it is hypothesised to be a result of differences in the state of the spine (broken 

or whole). High energy environments, predators, and human disturbances can all impact the 

state of the spine when sampled. This is due to the adaptive nature of the spine by absorbing 

energy and breaking under pressure, protecting the important test and innards, and ultimately, 

the survival of the organism. It has been suggested, spine breakage leads to a difference in 

allocation of resources as calcite is directed to spine repair, cascading onto a slower rate of 

overall growth (Ebert 1968). Weight and volume had the largest r2 value for any primary spine 

relationship presented in this study (r2=0.90); although this is not particularly expected due to 

the low correlation between some of the measurements, most notably the distal diameter, but 

as the overall spine shape is described using length, proximal diameter and distal diameter, 

maybe it is not such an unexpected result that weight would be closely correlated. Volume was 

also highly correlated with primary spine length and proximal diameter, a likely effect that 

length and proximal diameter appeared consistent within an individual.  

3.4.2.3 Aristotles Lantern 

3.4.2.4 Demi-pyramid 

Length, width, and weight of demi-pyramids all demonstrated strong correlations in those 

organisms measured in this study as all r2 values were greater than 0.94. There has been little 

investigation into the relationship and shape of demi-pyramids in any urchin species. Some 

attention has been given to the relationship of pyramid length and test diameter and deemed 

to be isometric, or close to (Pomory & Lares 2011). It is believed that as the demi-pyramid is 

the largest component of the Aristotle's lantern, and this structure takes up a vast amount of 

space in the internal cavity, that the jaw scales proportionally. From the linear model presented 

in this study, the length of demi-pyramid scales to the demi-pyramid width with a 2:1 ratio, and 

it may be possible to hypothesis that the demi-pyramid scales proportionally, as suggested by 

Pomory & Lares (2011). There is very little variation in this model, and it is more likely that the 
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variation seen is attributed to human deviation in measurement. The ratio of either the length 

or the width to the demi-pyramid weight does not follow the same predictable model, based on 

the data provided in this study. It is possible that the difference from the expected ratio may 

be dependent on location and the direct effects of the environment (see Chapter 2). Thickness 

of the demi-pyramid was not measured and may contribute to the differences observed in 

weight. Density of the structure resulting from the oceanic chemistry, may also directly affect 

the weight observed and further investigation into this relationship is required.  

3.4.2.5 Rotula and Epiphysis 

Rotula measurements had strong r2 values for the data provided in this study. Rotula length 

and width typically had a linear relationship consisting of a 2.5: 1 ratio, with small variations. 

As the rotula is an integral part of the Aristotle's lantern, it is expected that the rotula exhibits 

minimal variation and stable scaling within the Aristotle lantern. The rotulae are located 

between jaws (two demi-pyramids and tooth) on the aboral side, perpendicular to the jaw and 

acting as joint hinges for the rotular joint (Trogu 2015). This joint enables the mouth to open 

and close by using lateroradial rotations of the jaws (Carnevali et al. 1992). Because this is an 

integral part comprising of the Aristotle's lantern function there is seldom room for variations. 

Within this study, there were variations from the calculated linear model, which is beyond what 

I expected. Currently, there is limited published literature on shape and allometry of rotulae in 

echinoderm species, or rather any echinoid species at all. Epherra et al. (2014) has described 

changes in rotulae shape for Arbacia dufresnii; specifically, as dimeter increased, the length 

of the rotulae increased disproportionally to the width. The data presented in this study does 

not support those findings by Epherra et al. (2004) but this could be due to a range of factors. 

One of these could be the order of species differ between this study and in Epherra et al. 

(2004) (Echinoida and Arbacioida respectively).  

Each rotulae, rest on two epiphyses, each originating from either side of the rotula and are 

attached to the epiphysis by rotular muscles. The epiphyses act as attachment points for 

muscles, specifically the lantern protractors. As the epiphyses and rotulae are heavily 

interlinked, it is expected that the relationship between rotulae measurements and epiphysis 

weight demonstrates a strong correlation. When r2 values are given, rotula length, width and 

weight strongly correlate with epiphysis weight (r2 = 0.91, 0.83 and 0.95 respectively). Further 

studies wishing to omit epiphysis measurements would be justified in doing so as there is little 

additional data that can be gleaned from epiphysis weight that would not be adequately 

inferred from rotula measurements. Epiphysis weight to rotula measurements appear to be 

strongly allometric in their relationship to each other.  
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3.4.3 Correlations Amongst Elements 

When comparing measurements from different elements, there are some expected 

correlations and there are also some interesting results. As a result of growth, as an organism 

increases in overall size its body components also increase and this is termed isometric 

growth. This isometric growth is demonstrated in this study, as skeletal components increase 

in length, width, and weight when diameter increases. Ebert (1988), stated that during growth, 

the sea urchins test, lantern, and gut take up smaller fractions of the total weight whereas the 

gonads and coelomic fluid increase in their percentage of total weight. The data presented 

contain some deviations from the linear model offered and is likely a result of individual 

variation, genetic predisposition and potential, an impact of the immediate local environment. 

The allometric parameters may be adaptive and reflect an optimization of allocation to 

maximize fitness. However, they also might be exptations (Gould & Vrba 1982), epigenetic, or 

associated with general plasticity and hence reflect features that promote current fitness but 

not the result of direct selection.  

The relationship of function and variations in the Aristotle's lantern components has generally 

rarely discussed. Published literature has considered feeding habits and nutrient availability to 

the overall size of the Aristotle's lantern, and some components, with focus on the jaw / demi-

pyramid size. This is the first comprehensive study to consider three parts of the Aristotle’s 

lantern and has provided a scope for further studies. The data indicates that classic 

measurements (length, width and weight) for the feeding apparatus are strongly correlated 

within components and within the Aristotle's lantern and is likely a result of capacity availability 

and structural constraints to ensure functionality within an individual.  

 

3.4.4 Elements Amongst Locations 

This study investigated the effects of location by sampling from six different areas along the 

length of New Zealand, from Stewart Island in the South to Auckland in the North. When 

element measurements were presented as a factor of their location, I saw interesting results.  

Average body diameter demonstrated variability amongst individuals, as I would expect within 

a population. Natural genetic diversity, age, health of organism, reproductive state and small-

scale environmental influences are likely to contribute to those expected patterns of variability 

of a crucial phenotypic trait such as size. Interestingly, samples from White Island had the 

smallest variability in average body diameter. This is noteworthy, as White Island is an active 

volcano with hydrothermal vents, changing the water chemistry and temperature in the 

immediate vicinity, likely affecting organisms in the area, and those in this study collected from 
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that location. Since organisms collected from White Island have been exposed for the duration 

of their lives, it is possible that the conditions resulting from volcanic activity may influence 

urchin size. A reduction in pH produces a decline in carbonate ion concentrations and calcium 

carbonate saturation, increasing energy expenditure for calcium carbonate synthesising 

organisms, such as this study organism E. chloroticus. When acidification occurs as a result 

of anthropogenic effort, or by natural occurrence such as that exhibited at White Island due to 

the volcanic activity, the saturation sate of the environment is altered, making calcium 

carbonate and its other forms (magnesium carbonate, aragonite carbonate) more difficult to 

extract from the water itself, and dissolving skeletal structures of carbonates as well. When 

carbonate sub-saturation occurs and more energy is required to synthesise carbonate and 

magnesium structures, less energy is available to the organism in terms of growth and 

reproduction as energy is directed maintaining and repairing existing skeletal structures to 

ensure organism survivability. Not only would I expect a smaller variability as organisms 

conform to the challenging conditions, I may have also expected a smaller test diameter as 

well. Many species exhibiting smaller body size correlated with climate change, and as 

conditions are exacerbated by continuous and potentially increasing anthropogenic effects, 

other species may demonstrate size reduction due to the current understanding of metabolic 

laws (Sheridan & Pickford 2011). In this study, I did not see smaller organisms occurring at 

White Island as I would expect based on the hypothesis by Sheridan & Pickford (2011). 

Instead, both Auckland and Wellington have smaller median test diameter even though the 

variability is larger than White Island. Smaller test diameter at both sites may be a result of 

younger organisms or environmental conditions such as food availability, intra- and 

interspecific competition, predation, or wave action. I did not age the organisms in this study 

however there are some studies that have related age to average diameter (e.g., Lamare & 

Mladenov 2000; Ebert et al. 1999). Habitat complexity, abiotic and biotic factors were not 

recorded for this study so inferences and trends should be considered with caution. Linse et 

al. (2006) found variation in test size of the Antarctic echinoid, Sterechinus neumayeri was 

correlated with food and competition, rather than latitude, as I have assumed here.  

Based on the data collected in this study, it appears that test thickness generally increases 

with latitude (movement towards the poles) however there are two slight deviations from this 

model from the six locations presented in this study; White Island and Fiordland. Samples from 

White Island had thicker test plates than organisms from the two other North Island locations, 

Auckland, and Wellington. White Island with its volcanic properties, has demonstrated both 

warmer waters and lowered pH. It has long been expected that carbonate sub-saturation 

because of increased pH, would weaken shells, skeletal components, and carbonate 

structures through dissolution. Slightly elevated temperatures have shown to increase growth 
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and development in urchin’s species. This study provides some evidence that the interactive 

effects of temperature and pH are not simple and the urchins in this study, benefit greater from 

the warmer waters than the decreased pH. This provides evidence like Byrne et al. (2014); the 

urchin Tripneustes gratilla demonstrated increasing temperatures increased shell thickness 

while decreased pH reduced shell thickness.  

 

Primary spine length, weight and volume increased with increasing latitude, with minor points 

of interest. Spine length showed no significant difference between the three North Island 

locations, including White Island, suggesting that conditions may be similar. Spines are used 

primarily in defence and locomotion, with wave action impacting the morphology of the spines 

presented in the wild. If abiotic and biotic conditions impacting spine length are similar, I would 

expect spine length for the organisms to be similar. Conversely, the combination and pressure 

of conditions affecting the spine length may be such that it elicits the same response in length. 

Fiordland and Stewart Island organisms demonstrated much larger spine length than those for 

the other locations, with Fiordland spines greater than Stewart Island spines. This is unusual 

if I was expecting that latitude alone effected the spine length. Picton, White Island, Fiordland 

and Stewart Island were collected from relatively sheltered areas with minimal wave 

turbulence. Both Fiordland and Stewart Island contain the two main predators of Evechinus 

chloroticus; Jasus edwardsii (crayfish) and Parapercis colias (blue cod). If I were to hypothesis 

that larger spines in Fiordland specimens was in defence against predators, I may expect to 

see a larger abundance of predators in the Fiordland region. A 2008 summary of Rock Lobster 

(NRLMG 2008) indicates Stewart Island and Fiordland have similar estimates of crayfish 

populations and is therefore an unlikely cause for the difference observed.  

 

All Aristotle lantern measurements produced the same trend for each location, with increasing 

size correlated with increasing latitude. Previously published data has indicated that Aristotle's 

lantern demonstrates morphological plasticity and scaling is governed by food type and 

availability (Ebert 1988). Smaller demi-pyramids indicate high food abundance, whereas larger 

demi-pyramids, are correlated with low food, urchin barren zones and an increased allocation 

of resources to the Aristotle’s Lantern (Ebert 1980b; Black et al. 1984; Levitan 1991). Levitan 

(1991) went further and provided evidence for D. antillarum, increasing demi-pyramid size 

compared to the test diameter due to uneven growth in the two structures, showing rather than 

a relative decrease in test size as was previously hypothesised, demi-pyramid growth 

decreases on an absolute scale. This indicates the ratio of energy allocation is higher towards 

Aristotle's lantern growth as energy availability becomes limited while test size remains stable. 
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Black et al. (1984) also demonstrated the morphological plasticity of the Aristotle's lantern in 

the species Echinometra mathaei, relating an increase of jaw size to a decrease in gonad and 

spine weight, providing further evidence of the trade-off that organisms may utilise under 

limited nutrient availability. A decrease in reproductive effort could negatively impact the quality 

and quantity of eggs and sperm, resulting in a negative feedback loop for population 

prevalence and species dynamics of E. chloroticus. Ebert et al. (2014) hypothesised that 

differences in jaw allometry arising from differences to resource allocation, is relatively 

energetically inexpensive than the other option to an organism, consisting of reabsorbing 

calcium structures to conserve and obtain energy. Resorption has been described in sea 

urchin ossicles within the endoskeleton but has not been presented in literature to occur within 

the test plates, or demi-pyramids of the Aristotle’s lantern (Ebert et al. 2014). As described 

earlier, due to the high level of regularity and tight geometry occurring in the Aristotle's lantern, 

I hypothesis that resorption is unlikely to occur in the epiphysis and rotulae as well.  

 

Based on the data presented in this study, I can determine that variations within an individual’s 

components are minimal, especially in those of the Aristotle's lantern. Correlations within 

measurements of a single structure were very high, with the lowest correlations observed 

between spine measurements and the highest within all structures of the Aristotle's lantern. 

When comparing measurements of structures amongst each other, again, I see a high 

correlation between Aristotle's lantern components, with no correlation to any spine 

measurement. I can safely verify that minimal measurements are needed for Aristotle's lantern 

components and inferences based on the relationships can be made safely. Variations 

amongst populations were most notable in the Aristotle's lantern with a latitudinal trend clearly 

visible in the graphs provided. White Island and Fiordland showed deviations to the models 

predicted and is likely a result of the latitude, from temperature, carbonate sub-saturation 

levels, or a combination of these three things. A more in-depth study factoring biotic and abiotic 

factors in these two locations may be required to thoroughly understand the likely impacts 

climate change will have on populations currently inhabiting these areas.  
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4 Biomineralisation 

4.1 Introduction 

Echinoderms have a hard endoskeleton, comprising the test and spines, and a complex 

feeding apparatus called the Aristotle's lantern (see Figure 3.1), all made from calcite (CaCO3), 

which is produced and maintained by the mesoderm. Urchins generally substitute some 

magnesium for calcium during calcification and create a magnesium-calcite skeleton. This 

becomes problematic in the face of climate change as adding magnesium to calcite increases 

solubility. The rate of dissolution increases with magnesium content, those with a high 

magnesium content being more susceptible to dissolution. In some organisms, overall 

calcification rates decrease as carbonate becomes limited due to ocean acidification (Gattuso 

et al. 1999; Wood et al. 2008).  

The level of magnesium incorporated into the skeletal components is dependent on the amount 

of magnesium present in the surrounding water, carbonate mineral saturation states, genetics, 

and latitude, as well as physiological and biochemical limitations. The magnesium: calcite ratio 

in skeletal components can be used as a proxy (with caution) for seawater chemistry, 

correlated with abiotic factors that ultimately affect the skeletal concentrations, at least in some 

organisms. For example, echinoderm skeletons in lower latitudes have demonstrated a higher 

magnesium content than those of species from the temperate and polar regions (Byrne et al 

2014; Smith et al. 2016).  

 

4.2 Methods 

Three specimens from six locations (Auckland, White Island, Wellington, Picton, Stewart Island 

and Fiordland) were randomly selected. Each specimen had three replicates from five different 

skeletal elements (primary spines, test plate, rotula, epiphysis and demi-pyramids) analysed 

in the Phillips X-Ray diffractometer (XRD). Each whole skeletal component was analysed 

separately, and equipment was washed with water and 95% ethanol between samples to 

prevent contamination. Following previous studies (e.g. Smith et al. 2016), approximately 0.5 g 

of each sample and about 0.02 g of analytical- grade halite (NaCl) was ground to a fine uniform 

powder. A 95% ethanol solution was added to the sample + NaCl mix to form a slurry before 

it was smeared evenly on a clean sterilised glass slide and left to air dry. Each prepared sample 

was scanned by a Phillips X-Ray diffractometer (XRD) in the spectrum between 26° and 32° 

2θ. The count time was 1s with 1 count per degree and the internal standard halite peak was 

used to correct the calcite peak location after the scan was completed. A machine-specific 
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calibration for determining magnesium content from relative peak position was applied: y=30x 

– 882, where y= wt % MgCO3 in calcite and x= calcite peak position in °2θ (after Gray & Smith 

2004). 

Statistical analysis was completed using R-studio software to perform one-way ANOVA and 

data graphing.  

 

4.3 Results 

In total, there was 270 measurements of Evechinus chloroticus mineralogy from six locations 

around New Zealand and from five different skeletal elements (Appendix B). Taken as a 

collective without consideration for different skeletal elements or location, the average 

carbonate mineralogy for Evechinus chloroticus was 8.6 wt% MgCO3 in calcite (± 2.0 SD, 

range=3.2–11.9, N=270) for those samples analysed. Weight percentage of magnesium 

carbonate varied between skeletal components and locations and the relationship between 

the variations is described below. The average wt % MgCO3 in calcite, standard deviations, 

and number of samples for each skeletal component and location are given in Table 4.1. 

Magnesium content was largest in the demi-pyramid element, both in a single specimen and 

as a skeletal component group (Individual= 11.8, group= 9.9). This was closely followed by the 

epiphysis, test plate and rotula respectively in decreasing wt % MgCO3 but there was very little 

apparent difference in mineralogy between the internal structures. Spines had significantly less 

magnesium content, and the average weight percentage of magnesium carbonate in the 

spines was at least 40% less compared to the other skeletal components and could be as 

much as 54% less. 

Primary spines had the lowest quantity of magnesium for all locations with an average of 

4.9 wt % MgCO3, while rotula, epiphysis, demi-pyramid, and plate had an average of 9.1, 9.8, 

9.9 and 9.4 wt % MgCO3, respectively. However, under a pairwise comparison however, only 

the spines and demi-pyramids, and rotula and demi-pyramids were significantly different; 

p<0.05, (Table 4.2). Variation of wt % MgCO3 within individuals in a single skeletal component 

from the location can be high for the relative quantity of MgCO3 found. Spines from both 

Wellington and Auckland samples had the largest range and standard deviation (Wellington 

range 3.2 and standard deviation 1.0; Auckland range 2.9 and standard deviation 1.1 (Table 

4.1)). 

Magnesium content of three replicate samples of a skeletal elements within an individual is 

relatively stable. In all the individuals measured, the range of magnesium content in calcite 

within each set of three replicates per skeletal element varied from 0.2 to 3.2 wt % MgCO3 (SD 
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0.11-1.62 wt % MgCO3). Variation within an individual were smaller than variations between 

individuals of the same location; range 1.2–3.2 wt % MgCO3 (SD 0.38-1.10 wt % MgCO3). 

Variations between skeletal elements (4.5–10.3) were also larger than variations within the 

same skeletal element (e.g. 3.2–6.9 for spines). A pairwise comparison was performed on the 

skeletal elements irrespective of location and P values are given in Table 4.2. Furthermore, a 

pairwise comparison for location on each skeletal element was completed and P-values are 

presented in Table 4.3.  

Table 4.1 Number of samples, standard deviation, and average weight percentage of magnesium 
carbonate in skeletal elements at each location measured. For each measurement, 
N=9. 
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Test plate 
Average 9.8 9.4 9.1 9.3 9.5 8.8 

Standard deviation 0.81 0.63 0.38 0.68 0.73 0.43 

Primary Spine 
Average 4.5 5.1 4.9 5.1 4.9 4.8 

Standard deviation 1.1 0.86 0.99 0.42 0.92 0.67 

Demi-pyramid 
Average 9.7 10.3 9.8 9.5 10.1 10.1 

Standard deviation 0.65 0.86 0.94 0.49 0.63 0.67 

Rotula 
Average 8.9 9.6 9.1 8.8 9 9.3 

Standard deviation 0.84 0.76 0.46 0.46 0.79 0.4 

Epiphysis 
Average 9.7 9.7 9.9 10.1 9.5 9.8 

Standard deviation 0.55 0.92 0.47 0.44 0.48 0.82 
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Figure 4.1 Weight percentage of MgCO3 in the skeletal elements of Evechinus chloroticus from 
six different locations; Auckland, White Island, Wellington, Picton, Fiordland, Stewart 
Island, New Zealand (N=21 for each graph). 

 

Table 4.2 P values for pairwise comparison amongst skeletal elements regardless of location. 
Significant values (P<.05) are highlighted in yellow. 

 Spine Rotula Epiphysis Demi-pyramid Test plate 

Spine      

Rotula 0.84     

Epiphysis 0.53 0.73    

Demi-pyramid 0.04** 0.04** 0.51   

Test plate 0.06 0.54 0.64 0.98  

 

  

White Island 

Weight % of MgCO3 

Auckland 

Wellington 

Picton 

Fiordland 

Stewart Island 

Test plate Spine Demi-pyramid  Rotula Epiphysis 
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Table 4.3 P-values for pairwise comparisons amongst location for test plates. Significant values 
(P<0.05) are highlighted in yellow. 

Test plate Auckland White Island Wellington Picton Fiordland Stewart Island 

Auckland       

White Island 0.20      

Wellington 0.02** 0.28     

Picton 0.06 0.57 0.61    

Fiordland 0.22 0.94 0.25 0.52   

Stewart Island 0.00** 0.02** 0.22 0.08 0.02**  

 

 

Table 4.4 P-values for pairwise comparisons amongst locations for primary spines. Significant 
values (P<0.05) are highlighted in yellow. 

Primary Spine Auckland White Island Wellington Picton Fiordland Stewart Island 

Auckland       

White Island 0.14      

Wellington 0.35 0.57     

Picton 0.12 0.94 0.52    

Fiordland 0.29 0.66 0.90 0.60   

Stewart Island 0.52 0.39 0.77 0.35 0.68  
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Table 4.5 P-values for pairwise comparisons amongst locations for demi-pyramids. Significant 
values (P<0.05) are highlighted in orange. 

Demi-pyramid Auckland White Island Wellington Picton Fiordland Stewart Island 

Auckland       

White Island 0.08      

Wellington 0.86 0.12     

Picton 0.51 0.02** 0.41    

Fiordland 0.18 0.68 0.24 0.05   

Stewart Island 0.27 0.52 0.35 0.08 0.08  

 

 

Table 4.6 P-values for pairwise comparisons amongst locations for rotulae. Significant values 
(P<0.05) are highlighted in orange. 

Rotulae Auckland White Island Wellington Picton Fiordland Stewart Island 

Auckland       

White Island 0.02**      

Wellington 0.49 0.11     

Picton 0.85 0.01** 0.39    

Fiordland 0.62 0.07 0.85 0.50   

Stewart Island 0.20 0.31 0.54 0.11 0.42  
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Table 4.7 P-values for pairwise comparisons amongst locations for epiphysis. Significant values 
(P<0.05) are highlighted in orange. 

Epiphysis Auckland White Island Wellington Picton Fiordland Stewart Island 

Auckland       

White Island 0.82      

Wellington 0.52 0.67     

Picton 0.16 0.23 0.44    

Fiordland 0.51 0.38 0.19 0.04**   

Stewart Island 0.69 0.85 0.80 0.31 0.29  

 

 

4.4 Discussion 

In this study I collected data from five skeletal elements in 18 different specimens of Evechinus 

chloroticus from six different locations around New Zealand, providing a detailed and 

comprehensive picture of the mineralogical variation that occurs in this species (Appendix C). 

Overall average magnesium content in Evechinus chloroticus was 8.6 wt% MgCO3, with a 

range from 3.2 to 11.9 wt% MgCO3. This is similar to data reported elsewhere; Smith et al. 

(2016) found that Evechinus chloroticus ranged from 3.4 to 11.7 wt% MgCO3 with an average 

of 7.1 wt% MgCO3 from three different components (test plate, mouth parts and spines).  

4.4.1 Magnesium Content Amongst Elements 

Differences in skeletal components within a single individual are the most noticeable 

regardless of location. Spines contain at least 40% less magnesium than the test plate and 

mouthparts. LaVigne et al. (2013) noted that Strongylocentrotus purpuratus, a sea urchin in 

the South Pacific near Mexico and Canada exhibited magnesium content approximately 43% 

more in test components compared to the spine. Localised differences within a single spine 

have been demonstrated despite the single-crystal structure of the spines. Moureaux et al. 

(2010) surmised the spine is made up of two different morphological parts; the base and the 

shaft and these present different magnesium concentrations in the species Paracentrotus 
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lividus, although this was not statistically recognized (Magdans & Gies, 2004). The shaft 

contains a central core of meshwork stereo and a longitudinal plain septum, each differing in 

their magnesium content relative to the other part of the shaft. The outer septum is lower in 

magnesium content than the inner septa. This is hypothesised to be a result of early spine 

development, the inner septa contain a cyclic pattern of magnesium which may result in 

observed differences in stiffness and hardness of the septa. Magnesium content within spine 

tips is also correlated to regeneration in S. purpuratus, with the highest magnesium 

concentration occurring at maturity of the tip (Davies et al. 1972). The magnesium content in 

the spines of S. purpuratus was in the low magnesium-calcite range (<4% MgCO3), while test 

components had high magnesium-calcite (>4% MgCO3) (LaVigne et al. 2013). This is one of 

the few species studied to span both categories of magnesium-calcite. The results presented 

here suggest that Evechinus chloroticus can occasionally contain both high and low 

magnesium-calcite classification within a single individual, for example in the Fiordland 

specimen #7, magnesium content was 3.82 wt% MgCO3, while the plate had magnesium 

levels of 10.52 wt% MgCO3. This suggests that at least these two species, S. purpuratus and 

E. chloroticus utilises distinct calcification pathways for precipitation dependent on the 

endoskeleton structure made and maintained (Ebert 2007).  

All components of the Aristotle's lantern have a very similar average wt % of MgCO3 which is 

sensible, as a weaker component could weaken the whole Aristotle's lantern and jeopardise 

the functionality and reliability of a crucial structure. This similarity in wt % of MgCO3 in all 

Aristotle's lantern components has also been demonstrated in Smith et al. (2016). Teeth were 

not included in this mineralogy study however Smith et al. (2016) obtained an average 

magnesium content in of 4.5 wt% MgCO3 (SD 0.7), which leads further evidence that those 

skeletal constituents that extend into the water column may resist dissolution due to the lower 

magnesium content. Those skeletal elements that are crucial for feeding, such as those 

comprising the Aristotle's lantern could incorporate a higher percentage of magnesium to 

strengthen the element and are protected from dissolution due to the enclosed area within the 

animal. This is further supported by Ma et al. (2009) and Killian et al. (2011) reporting higher 

magnesium in the tip of the tooth where damage is likely to occur due to the grinding of the 

tooth against a hard substrate. To date, there has been no research to investigate localised 

differences in magnesium content of the epiphysis, demi-pyramid and rotula. There has been 

some research into differences along the length of test plates and spines, however this has 

not extended to include specimens of E. chloroticus, and I cannot confirm if this occurs in every 

species or is unique to those studied in Moureaux et al. (2010). 

There has been limited research into localised differences of magnesium content in plates and 

requires exploration for most species throughout the marine environment. Sumich & McCauley 
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(1972) published reports of heterogeneity in magnesium content of Allocentrotus fragilis plates; 

the highest magnesium content found in plates near the peristome and decrease in content as 

proximity to the periproct increases. It should be noted that the plates near the peristome are 

also the oldest, and slowest growing plates compared to the others.  

Due to differences of magnesium content exhibited within skeletal elements of a single 

individual, it is likely that the amount of magnesium incorporated into the body is not the result 

of passive assimilation from the environment, suggesting active physiological modification of 

magnesium integration. 

The solubility of a biomineral increases substantially when magnesium is substituted instead 

of calcium in the calcite structure, as well, as crystal size, surface area and surrounding 

seawater chemistry (Morse et al. 2007; LaVigne et al. 2013). Although being more impervious 

to dissolution, low magnesium elements, such as spines are theorised to have a reduced 

strength relative to other components and are comparatively easier to break under stress 

(Nickel et al. 2018). Published literature such as Moureaux et al. (2010) support this theory 

due to the meshwork base, containing less magnesium, has a lower stiffness and hardness 

than the septa, and the differences related to cyclic patterns of magnesium in the septa results 

in differences between the transverse and longitudinal sections. Increasing magnesium 

content, to increase hardness and stiffness, produces complications of its own. This could be 

an important trade-off for E.s chloroticus, yet the magnesium content in the protruding and 

exposed elements may have to reduce further to prevent dissolution which could jeopardise 

the functional strength of the important carbonate structures. Differences observed in 

magnesium concentrations between spines, test plates and Aristotle's lantern elements may 

have evolved as a function of the exposure to the ambient seawater and better reflects the 

trade-offs for strength and precipitation.  

 

4.4.2 Magnesium Content Amongst Locations 

Magnesium content varies in the same skeletal element between species. Heterocentrotus 

trigonarius, an urchin found in the tropical regions of the Indo-pacific, which has an average of 

14.6 wt % MgCO3 in calcite (Chave 1954; Ebert 2007), compared to Echinarachnius parma, a 

sand dollar from North America, British Columbia, Alaska, Siberia and Japan with a 5.6 wt % 

MgCO3 in calcite (Smith et al. 2016). Differences observed between species has generally 

been associated with differences in latitude, depth, and coastal proximity.  

The most measured skeletal element, the spine, vaires from ~2 to 13 wt % MgCO3 and is 

correlated with water temperature (Nickel et al. 2018). Increasing latitude is strongly correlated 
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with decreasing temperature and can often be used in published literature as a proxy for 

temperature. There exists a linear correlation between magnesium content and water 

temperature, although Chave (1954) noted the regression analysis was not as high when 

compared to relationships of magnesium content and water temperature for foraminifera, 

corals, and sea pens. In contrast, Reis (2004), published results of echinoids demonstrating 

direct non-linear relationships of magnesium content and seawater in artificial conditions. Ebert 

(2007) stated that magnesium content is correlated with the Brody–Bertalanffy growth 

constant, resulting in more magnesium being deposited in the test of slow growing species 

compared with fast growing species (Ebert 2007). Slower growth rates, and therefore less 

magnesium, is thought to arise from decreasing sea-water carbonate saturation states as 

latitude increases (Andersson et al. 2008). Ossicles are embedded in the dermis body wall 

that form part of the endoskeleton and have been shown to increase in magnesium content as 

temperature increases (Chave 1954; Weber 1969; Davies et al. 1972; Ebert 2007). As noted 

above, ossicles also exhibit interspecies differences at a single location (Raup 1966; Weber 

1969; Ebert, 2007). 

As latitude increases, not only is temperature reduced, affecting the amount of magnesium 

present due to growth rates, but the saturation levels of calcite also decrease as acidity 

increases. A lower saturation state of seawater carbonate has been shown to slow growth 

rates, which as mentioned above, also correlates with reduced magnesium. Reduced growth 

rates will have ecological consequences, as predation and competition pressures are thought 

to increase (e.g., Kletpas et al. 1999, 2006; Andersson et al. 2008; Kuffner et al. 2008).  

McClintock et al. (2011) demonstrated that the levels of magnesium content were similar 

between individuals, which are similar to those presented in this study. Research presented in 

Andersson et al. (2008) and Weber (1973), exhibit data that suggest not only those organisms 

that have high magnesium-calcite skeletons, but those populations at high latitudes and colder 

waters are also more susceptible to shifts in seawater carbonate saturation states. There is 

some preliminary research in the ability for echinoids typically producing high magnesium 

elements, to switch to low magnesium endoskeletons. This was described in Reis (2004) when 

the Echinoid Eucidaris tribuloides; a typically high magnesium organism was grown for 160 

days in artificial seawater of 1 mol Mg/Ca. The mineralogy of spines and test plates changed 

to a low magnesium state (less than 4%). The ability of Eucidaris tribuloides to change its 

biomineralogy ratio under in magnesium deficient systems, may mean that some echinoids 

could persist in an oceanic environment with low saturation states such as those in the 

cretaceous period (145.5-66 mya). It is likely that those species and populations with high 

magnesium content, occupying areas in the higher latitudes and colder waters will begin to 

exhibit markedly lower magnesium content if they are able to adapt as the results from Reis 
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(2004) suggest. Those organisms that continue to inhabit areas that are undersaturated in 

regards to magnesium and calcite due to ocean acidification are likely to become smaller as 

calcification rates are hypothesised to become noticeably slower, impacting predation, and 

intraspecific competition from those non-calcifying organisms inhabiting the same space (e.g. 

Kleypas et al. 1999; 2005; Andersson et al. 2008; Kuffner et al. 2008; De Villiers 2004). The 

physiological cost of maintaining and building an endoskeleton under future conditions, is yet, 

still unknown (Pörter, 2010). It is also possible, that those organisms with external fertilisation 

could spread towards the equator as conditions in the higher latitudes become unfavourable 

(Andersson et al. 2008). Predictions about when these possible changes from high magnesium 

calcifers to low magnesium is unknown due to the relatively unknown kinetic behaviour and 

solubility of the active skeleton in the natural environment when additional variables like 

temperature are considered.  

Coastal regions are also likely to exhibit responses to ocean acidification episodic upwelling 

events, pushing calcifying marine organisms near their physiological limits (Hofmann et al. 

2010). Fossil-fuel combustion, agriculture run-off, freshwater inputs, coastal developments, 

and sediment disturbance can all impact the carbonate system, pushing the environment 

towards an undersaturated condition (Hofmann et al. 2010).  

LaVigne et al. (2013) compared the carbonate composition of Strongylocentrotus purpuratus, 

from four diverse regions (Oregon, Northern California, Central California, and Southern 

California) and determined that there were no statistically significant differences of individuals 

between the locations studied. The results presented in this study for E. chloroticus conforms 

with those in LaVigne et al. (2013) although there are some differences between locations 

such as Stewart Island-Auckland and Stewart Island-Fiordland for test plates.  

Sanford & Kelly (2011) summarised that organisms may already display local adaptation to 

environmental conditions that are beyond the “normal” and are likely to occur under future 

climate change scenarios presented by the IPCC. It is theorised that organisms will present 

differences in morphology, physiology, or behaviour to provide an advantage under those 

specific local conditions. These may include areas that are of differing latitudes, such as 

Stewart Island compared with Auckland, differences in pH, such as White Island, and 

differences in proximity to major industrial developments, such as Wellingtons larger 

population compared with the isolation of Fiordland. How populations respond will likely be 

dependent on the genetic variation with populations and the rate of mutation with individuals.  

Oceanic volcanic vents have been viewed as a natural long-term experiment on the effects of 

ocean acidification arising from climate change on the community diversity, density and on 

individuals. However oceanic vents are not perfect indicators as climate change will impact 
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temperature, global currents, and sea level, they do provide a good indicator on the preliminary 

responses to pH. Hall-Spencer et al. (2008) demonstrated that urchin abundance, specifically 

Paracentrotus lividus and Arbacia lixula, reduces along a pH gradient from normal (8.1-8.2) to 

lowered pH (7.8-7.9) as a result of volcanic carbon dioxide vent. The results presented within 

this study do not appear to differ regarding magnesium concentration in skeletal elements of 

individuals collected at White Island; a volcanic Island with a lowered pH when compared to 

other locations. Data presented in Brinkman & Smith (2015) demonstrate the same results for 

Evechinus chloroticus when comparing the magnesium concentration of elements from 

individuals close to volcanic vents to those individuals removed from the impacts of vents. Due 

to the lack of statistically significant results, it is hypothesised that the pH content does not 

affect the minerology in those individuals sampled. As the endoskeleton is protected by a layer 

of epidermis, this may add to the ability of E. chloroticus to regulate and cope with the pH 

differences from those under “normal” conditions (Gibson et al. 2011; Dupont et al. 2010; Miles 

et al. 2007). Miles et al. (2007) exhibited results that sea urchin physiological processes were 

affected when pH was lowered, such as inability of the coelom pH to regulate when ambient 

water was decreased by more than 0.5 units. As Evechinus chloroticus can persist in the 

waters surrounding the volcanic vents near White Island and do not demonstrate differences 

in magnesium content, there exists evidence that Evechinus chloroticus may be resilient to the 

future conditions predicted by IPCC. 

4.4.3 Magnesium Content in Future Scenarios 

Smith et al. (2016) collated data from published research and found that those elements from 

echinoids containing 12 wt % MgCO3 or greater were more susceptible to dissolution. This 

means that in our current climate, due to direct contact with seawater, spines are required to 

have less than 12 wt % MgCO3. However, as business as usual models predict, the changes 

in seawater chemistry as a result of increased anthropogenic CO2 will likely reduce the average 

magnesium composition throughout the whole organism as precipitation of magnesium calcite 

becomes increasingly difficult. As climate change continues, there are multiple variables that 

will be affected. IPCC predicts in conjunction with ocean acidification, sea surface 

temperatures will also increase around the globe. Saturation state has been correlated with 

increases in temperature. It has been noted however, that although the warmer oceanic 

temperatures may increase the possibility of carbonate minerals, the saturation state is likely 

to remain insufficient due to the amount of anthropogenic carbon dioxide emissions and the 

uptake by the ocean (Andersson et al. 2008). Although there remains uncertainties around the 

solubility of magnesium calcite in the natural environment, many scientists believe that high 

magnesium calcite secreting organisms, that inhabit high latitude, deep, sulpher and nitrogen 
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enriched, coastal waters may exist, or are soon to exist close to the metastable equilibrium 

with the surrounding seawater medium in terms of carbonate minerology. When the seawater 

in an environment becomes deficient in calcite mineral phases, unprecedented changes are 

probable, impacting structure, integrity, function and distribution of organisms that produce 

magnesium carbonate, and subsequently, other carbonate states such as aragonite or pure 

calcite. Unless local adaptation, genetic variation or mutation play a sustainable role, it is likely 

that the diversity and density of calcifers will decrease (Andersson et al. 2008). Species with 

calcite, aragonite and low magnesium calcite are proposed to dominate the oceans if high 

magnesium calcite organisms are unable to modify the physiological and biomineral pathways. 

Some urchins such as the purple sea urchin S. purpuratus, currently make use of a range of 

biominerals and biomineralization pathways and do not fall into a single mineralogical category 

(Ebert, 2007; Andersson et al. 2008. LaVigne et al. 2013). It is likely that organisms have 

altered their physiological capacity to compensate for localised changes due to repeat 

exposure by increasing or decreasing gene expression related to biomineralization, cellular 

stress response and metabolism (Todgham & Hofmann 2009). This may already be occurring, 

as positive responses to acidification have previously been reported, (e.g. Gooding et al. 2009; 

Todgham & Hofmann 2009; Hofmann et al. 2010).  

Understanding trends within species, within populations, within individuals and particularly 

between generations will be crucial to understanding and predicting the impacts of ocean 

acidification on the endemic sea urchin, Evechinus chloroticus. Population responses as a 

function of locality and geography will become more important as ocean acidification affects 

regions differently and due to the nature of New Zealand crossing multiple latitude lines, 

development of cities, protection of isolated regions, offshore islands, and coastal marine 

sectors all compound or alleviate the effects of ocean acidification differently. As it has been 

shown that some urchins can biomineralise through different pathways to make elements of 

different magnesium content, it is hypothesised that the calcification may demonstrate 

plasticity to prevent total dissolution in the water (Ebert 2007; Andersson et al. 2008; LaVigne 

et al. 2013). The cost of shifting current calcification pathways to minimise solubility in future 

oceans is not known and may come at a price for other life-sustaining activities (Wood 2008; 

McCintock 2011).  

 

There is an abundance of research still to be completed to understand the variations of 

magnesium content in calcite within a single species, populations, individuals, and skeletal 

components. Most of the literature focuses on short-term, isolated environment, manipulated 

experiments, and frequently uses extreme future case scenarios without regard to adaptation, 
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evolution, and plasticity. Often, experiments are not comparable due to the range of conditions 

selected differing between experiments. Inferences about how individuals, populations and 

species will develop and react to ocean acidification in their local environment is hypothesised 

rather than firm conclusions derived (Hofmann et al. 2010). As Evechinus chloroticus is a long-

lived organism; reaching approximately 15 years (Dix 1972) it is important that the changes 

are put into the relative context and rate of change that these organisms are likely to 

experience. For example, altering the amount of magnesium incorporated into the skeleton 

may shift the solubility limits, or an organism may increase the production of calcite to maintain 

the skeleton but neither has been proven as the way forward for E. chloroticus facing ocean 

acidification. The results presented in this study further illustrates the complexities involved in 

predicting the responses likely to occur for an important endemic marine calcifier because of 

anthropogenic ocean acidification. (LaVigne et al. 2013.)  
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5 Biominerlisation 

5.1 Introduction 

Echinoids have a skeleton of fused plates (the test) containing essential internal organs, with 

a large number of spines covering the outside of the test acting as the first defence against 

predators. There are two types of spines: the obvious larger primary spines, and smaller 

secondary spines. Primary spines are not only for defence but are used for locomotion and 

sensing of physical surroundings as well (Tsafnat et al. 2012). Spines and the associated 

attaching tissues protect the test from impact by absorbing energy, spreading the load over a 

broader area (Strathmann 1981). Spines are connected to the skeleton at the base using a 

“ball and socket” arrangement and muscles (Su et al. 2000). When a spine is impacted at the 

distal tip, whether by a predator, hard substrate, moving objects, or rough, abrupt wave action, 

the spine normally breaks by brittle fracture occurs via bending (Tsafnat et al. 2012). No matter 

the direction of impact on the spine, the spine receives the energy from impact and protects 

the test from force that could otherwise be detrimental to the individual. Even though spines of 

some echinoderm species can be centimetres long, under X-rays or polarised light they 

behave as single crystals of magnesium-rich calcite (Su et al. 2000). 

Urchin spines are remarkably strong despite being single crystals with high levels of porosity 

(Tsafnat et al. 2012). The strength of skeletal carbonate has long been suggested to correlate 

with biomineralization strategies including mineral polymorphs present, incorporation of 

organic material, and magnesium concentration (Currey 1975), but as regards urchin spines, 

there is little or no evidence to support these theories. Magnesium ion incorporation into the 

calcite structure has been reasoned to increase hardness, though it is also the mineral 

polymorph most vulnerable to dissolution (for example in future anthropogenically-induced 

ocean acidification). The consequences of dissolution on the mechanical properties of the 

skeletal system could increase successful predation, increase the likelihood of abiotic damage 

from wave force, limit mobility if spines break during locomotion and decrease growth if energy 

allocation is directed to maintenance and repair of spines.  

Using laboratory equipment to test the bending and fracture characteristics of brittle material 

such as spines can help with understanding the factors that influence strength. Bending tests 

describe flexural stress under impact. Comparing the strength of spines from an individual, 

amongst individuals in the same location and amongst locations allows an understanding of 

the natural variation that may occur in Evechinus chloroticus around New Zealand. 

Investigating spine strength from a wide range of environments, including naturally occurring 

lower-pH environments, may help scientists predict potential effects resulting from ocean 
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acidification. Current research on spine strength in urchins and the changes that may occur 

under climate change models have focused on laboratory-based experiments and fail to 

account for acclimation, adaptation and even the possibility of evolution in lower-pH 

environments. One might reasonably hypothesise that spines from naturally-occurring lower-

pH conditions due to volcanic activity, such as at Whakaari White Island, could be less robust 

and thus break at a lower stress than those spines that are from more ‘normal’ pH conditions.  

5.2 Methods 

Ten spines from each of 64 Evechinus chloroticus specimen collected (refer to Chapter 2 for 

details) were used to perform 2-point-bending tests to measure flexural stress. Whole 

organisms, and subsequently, spines used in this experiment were soaked in 7% sodium 

hypochlorite (bleach) for three days, rinsed twice in freshwater and dried in a drying oven at 

60 ºC for 72 hours before cooling to room temperature. The ten largest spines as determined 

by sight, (Chapter 3.2) were individually bagged and labelled to describe the species, location, 

individual number, body part and replicate letter. Each spine was placed on supports (span of 

3.5mm) in an Instron 3369 machine where a tip (radius 0.25 mm) would press down at a 50 N 

load cell, speed of 1 mm/min, until the spine broke. The length of the spine was measured, 

and ½ the length was marked on the spine using marker pen to indicate where the loading tip 

would be positioned. The displacement and force were recorded at a frequency of 10 Hz until 

breaking, after which, the diameter at the fracture point was measured using digital callipers 

(to the nearest 0.5 mm). Using a concentrated tip load, the formula is calculated as follows: 

 -$#, = -.
/!
∗ )
'" 	-0'	' < 1.5 

Where 50 = 1
2+ 	!0

2 and ' = !#
!!

 

fmax= maximum bending strength P= load   

L= length    SA= Section modulus 

DA= tip diameter   DB= butt diameter  

r= ratio of butt diameter to tip diameter 

 

Analysis was completed using R-studio software to perform one-way ANOVA and data 

graphing. Errors are presented as standard deviations for individual variation and populations, 

while standard deviation was used for comparing within and amongst populations.  
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5.3 Results 

5.3.1 Spine Strength of Evechinus chloroticus 

In total, there were 640 measurements of Evechinus chloroticus spine flexural strength from 

64 individuals from six locations around New Zealand (Appendix D). Taken all together, without 

consideration of location, the average spine strength for Evechinus chloroticus is 111.98 MPa 

(±1.95, N=640). The flexural strength of all spines measured was plotted against the reciprocal 

spine length (Figure 5.1). As seen in Chapter 3, an urchin’s spines exhibit variation in length, 

diameters, density, weight and volume so an average spine length and flexural strength was 

calculated for each urchin and plotted (Figure 5.2). Overall, shorter spines had greater flexural 

strength compared to longer spines.  

 

Figure 5.1 Flexural strength of Evechinus chloroticus primary spines compared to primary spine 
length from specimens collected around New Zealand, (N=640) 
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Figure 5.2 Average flexural strength of 10 primary spines compared to the relevant average 
primary spine length from 64 individual Evechinus chloroticus collected around New 
Zealand, (N=64). 

 

To make sensible comparisons among spines that were of variable length, a new measure of 

strength-for-length was calculated: MPa/mm. This should take account of test size, (see 

Chapter 2 where test size and spine size are shown to be correlated).  

 

5.3.2 Variation in Spine Strength Within an Individual 

Firstly, it is important to define variation of spine flexural stress within an individual. The 

average strength compared to spine length with error bars as standard deviations for each 

urchin is presented in Figure 5.3. Most noticeable of the variation within individuals was the 

larger standard deviations in Auckland and White Island, with minimal variations within 

individuals typically occurring in Stewart Island and Fiordland specimens. The largest variation 

within a specimen was for Auckland, individual #1 with an average flexural stress of 

149.88 MPa and standard deviation of 33.07. The smallest variation of flexural stress in a 

single specimen, was within Fiordland, individual #5, presenting an average stress of 

59.83 MPa and standard deviation of 6.89. This creates a 79% difference between the largest 

and smallest variation of flexural stress between individuals.  
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Using our new measure of strength-for-length, the average and standard deviation for each 

individual urchin was calculated and is presented in Figure 5.3. The relative variation within 

individuals is smaller than Figure 5.4, with reduced error bars for individuals. As strength-for-

length is dependent on flexural stress and spine length, the same phenomena is evident, with 

larger variation in Auckland and White Island specimens, and smaller variation within Fiordland 

and Stewart Island individuals. The largest variation is for Auckland, Individual #1, with an 

average of 8.317 mPA / mm and standard deviation of 2.04. The smallest variation was for 

individual Fiordland, #5 having an average of 1.93 MPa / mm and standard deviation of 0.22. 

It should be noted that the difference in variation between these two individuals is larger than 

for flexural stress alone, with a 89% difference in strength-for-length compared to 79% for 

flexural stress alone. The average strength for length of an individuals is 5.60 with a standard 

deviation 0.83.  

 

Figure 5.3 Average flexural strength of 10 primary spines for 64 Evechinus chloroticus compared 
to the relevant average primary spine length, with error bars as ±  one standard 
deviation. Colours indicate populations; Auckland=yellow, Whakaari White Island=red, 
Wellington=cyan, Picton=purple, Stewart Island=navy, Fiordland=green (N=64). 
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Figure 5.4 Average strength for length of 10 primary spines for 64 Evechinus chloroticus compared 
to the relevant average primary spine length, with error bars as ± one standard 
deviation. Colours indicate populations; Auckland=yellow, Whakaari White Island=red, 
Wellington=cyan, Picton=purple, Stewart Island=navy, Fiordland=green (N=64). 

 

5.3.3 Variations Within and Amongst Locations 

Flexural strength of primary spines varied within and among locations; a summary of average 

flexural strength, standard deviation, minimum, maximum, and number of samples is given in 

Table 5.1. Samples from Fiordland had the lowest average flexural strength (60.37 MPa ± 1.07 

SD), while samples from Whakaari White Island had the largest, almost 3 times larger than 

samples from Fiordland at 168.12 MPa ± 1.22 SD. The largest standard deviation for flexural 

stress within a population occurred at Auckland (22.24), while the smallest standard deviation 

was from Fiordland samples, a similar trend to that seen within an individual. Samples from 

Wellington, White Island and Picton had very similar standard deviations although only the 

samples from Wellington and Picton had similar maximum and minimums (166.47 – 67.7 and 

167.56 – 73.60 respectively). The smallest range was presented from samples collected at 

Fiordland, while Whakaari White Island’s samples range was the largest and almost double of 

the Fiordland range. All sites were statistically different from each other except for samples 

from Wellington and Picton when a post-hoc Tukeys test was performed. When presented as 

a graph, there is some indication of a latitudinal trend, however Whakaari White Island and 

Fiordland exhibit a variance to the latitudinal trend that is expected (Figure 5.5).   
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Table 5.1 Average flexural stress (MPa) , minimum, maximum, standard deviation and number of 
samples for each location on primary spines (n=640). 

C
al

cu
la

tio
n 

A
uc

kl
an

d  

W
hi

te
 Is

la
nd

 

W
el

lin
gt

on
 

P
ic

to
n  

Fi
or

d l
an

d 

S
te

w
ar

t I
sl

an
d 

Average 136.06 168.12 107.66 109.88 60.37 91.53 

Standard deviation 22.24 18.00 18.60 17.00 11.90 13.64 

Max 199.85 245.20 166.47 167.56 89.15 160.23 

Min 81.00 121.01 67.07 73.60 27.03 63.72 

Number 100 100 140 100 100 100 

 

 

 

Figure 5.5 Flexural strength of Evechinus chloroticus primary spines from six locations around New 
Zealand. Akl=Auckland, WhI=White Island, Wlg=Wellington, Pic=Picton, Frd=Fiordland, 
StI=Stewart Island, (N=100 at each location except Wlg where N=140). 
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A summary of our new measurement, strength for length is presented in Table 5.2 for average, 

standard deviation, minimum, maximum, and number of samples for each location. Samples 

from Fiordland had a very low average flexural strength (1.99 Mpa:mm ± 1.19 SE), while 

samples from Whakaari White Island had the largest, almost five times larger than Fiordland 

at 9.94 Mpa:mm ± 1.8 SE. The largest standard deviation for strength for length occurred at 

Whakaari White Island (1.47 SD), a difference from the flexural stress results. The smallest 

standard deviation was again, at Fiordland, while the average standard deviation for all 

specimens was 0.83 with an average strength for length of 5.62 Mpa:mm. Samples from 

Wellington and Picton had very similar maximums and minimums (8.4-3.19 and 8.66-3.49 

respectively). This measurement of strength for length was plotted for each location and results 

are presented in Figure 5.6. The results presented are similar to that presented in Figure 5.5, 

with some indication of a latitudinal trend with the exception of White Island and Fiordland. All 

sites were statistically different from each other except for Wellington and Picton when a post-

hoc Tukeys test was performed.  

 

Table 5.2 Average strength for length (Mpa:mm) , minimum, maximum, standard deviation and 
number of samples for each location on primary spines (n=640). 
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Average 7.65 9.94 5.39 5.19 1.99 3.65 

Standard deviation 1.38 1.47 1.13 0.90 0.43 0.65 

Max 10.80 14.57 8.43 8.66 3.12 6.93 

Min 4.14 6.81 3.19 3.49 0.75 2.46 

Number 100 100 140 100 100 100 
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Figure 5.6 Flexural strength : spine length ratio for Evechinus chloroticus primary spines from six 
locations around New Zealand. Akl=Auckland, WhI=White Island, Wlg=Wellington, 
Pic=Picton, Frd=Fiordland, StI=Stewart Island, (N=100 at each location except Wlg 
where N=140). 

 

5.4 Discussion 

This is the largest and most comprehensive study ever to consider the effects of seawater 

chemistry (using location as a proxy) on urchin spine strength. It allows us to look in detail at 

the variations in spine strength at different scales, with relevance to changing seawater 

chemistry. 

As inshore and offshore oceans undergo changes in ocean chemistry at different rates and 

amplitudes, understanding how localised populations will react is crucial to developing an 

understanding of long-term effects of climate change and specifically, ocean acidification. 

Important structures of an organism must be maintained for survival, and in the face of climate 

change the energy required to build, maintain and repair the structures will ultimately dictate 

the amount of available energy for less-essential resources such as reproductive organs. 

Spines, used for locomotion, defence and tactile reception will be of importance for an urchin’s 

survival. If organisms are unable to compensate for chemistry changes in the marine 

environment by substituting or altering their calcified structures, then weakness may occur 

through dissolution. The common blue mussel (Mytilus edulis), for example, has demonstrated 

the formation and maintenance of the shell coating can reduce the energy available to the 
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organism for other uses (Dery et al. 2017). Echinoderms have been identified as being 

especially susceptible to ocean acidification due to low metabolism, restricted regulation 

abilities, and high-magnesium calcite skeletal structures that are particularly soluble (Dery et 

al. 2017).  

The magnesium calcite structure of echinoderms is not uniform throughout the echinoid’s 

skeletal structure, with higher amounts of magnesium found in the test relative to the spines 

(Smith et al. 2016). This means that spines are, in theory, less susceptible to dissolution from 

acidification due to the lower magnesium concentration. Yet, the thinner epidermal layer on 

the spines compared to the test, and abrasion creating lesions in the epidermal layer, can 

increase the direct exposure of spine calcite to seawater (Dery et al. 2017). Previous research 

has found that when some echinoid species are exposed to reduced pH seawater, they are 

able to compensate for the change in oceanic chemistry by changing the chemistry of their 

internal fluid (coelomic fluid); specifically increasing the bicarbonate concentration (Holtman et 

al. 2013; Moulin et al. 2014). The buffered coelomic fluid is, however, contained within the test, 

and does not benefit the spines. It seems likely that climate change will affect spines first, 

causing changes such as reduced size or density (refer to Chapter 3), different composition 

(refer to Chapter 4) or brittleness and reduced strength.  

Calcium carbonate in marine calcifers is composed of mineral polymorphs including aragonite, 

calcite (<4 wt % MgCO3) and/or magnesium-calcite (>4 wt % MgCO3). It has been well 

documented that as the amount of magnesium in calcite increases, solubility increases, and 

calcified structures thus become less resistant to dissolution in low pH conditions (Andersson 

et al. 2008). Magnesium in calcite in biogenic carbonate ranges from 0 to 28 wt % MgCO3 

(Andersson et al. 2008; Chave 1954). Strength of calcified structures appears to change in 

inverse proportion to the solubility of polymorphs, with increasing solubility associated with 

higher strength, but there remains a large gap in the scientific evidence for this phenomenon. 

Previous published literature states calcified structures are strengthened by the substitution of 

calcium for magnesium (e.g., Tsafnat et al. 2012), yet to date, there has been no extensive or 

robust research to investigate this matter. Some research has investigated the effects of 

strength as a result of anthropogenic climate change such as Hoegh-Guldberg (2007) on coral 

skeletons, and Gaylord et al. (2011) on the bivalve, M. californianus, yet there remains no 

literature directly comparing strength in biominerals of different polymorphs.  

Strength of skeletal biominerals has been tested using nanoindentation, crushing tests, 

Vickers hardness, elastic modulus, macroindentation, fracture toughness, snap test, two-point 

bending, three-point bending and penetrometry; there is no currently accepted standard 

method and comparing results is thus extremely difficult. Even testing within a single method, 
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such as nanoindentation, can vary greatly for example due to the machine used, embedding 

techniques such as in resin (Fitzer et al. 2015) vs. no resin (Dell’Acqua et al. 2019), load force 

used (e.g. 500-7000 µN in San Chan et al. 2012 vs. 1000 µN in Dell’Acqua et al. 2019), 

nanoindentation tip used (Berkovich tip vs. conical tip) and analysis software. With the lack of 

comparable research, I am only able to theorise that, if magnesium conveys strength as well 

as solubility, high magnesium calcifers would be using the strongest polymorph. As indicated 

in Chapter 4, spines are not as high in magnesium as in test plates or mouthparts, but due to 

the lack of coelomic-fluid balancing oceanic chemistry and the thinner layer of epidermis 

covering the spines compared to the test, I may reasonably predict that spines are likely to be 

influenced by climate change first (Holtman et al. 2013, Moulin et al. 2014), and that variations 

in their composition, and thus solubility and strength, will have significant implications for the 

urchins who depend on them. 

Strength data on ten spines from each of 64 specimens of Evechinus chloroticus from six 

different locations around New Zealand (Appendix D) provide the largest study of strength in 

an echinoid species. Spines of Evechinus chloroticus demonstrated a high flexural stress, 

which means that they are very strong for their size. It is not uncommon for biominerals to be 

especially strong when compared with abiotic materials (see abalone literature for example). 

Often it is postulated that a combination of protein layers and crystal ultrastructure delivers this 

extra resilience. Most urchins, however, form the spine of a single crystal of magnesium calcite 

(Donnay & Pawson 1969; Berman et al. 1990). In more detail, echinoid spines are 

systematically structured mesocrystals comprising sub-micrometer domains (Presser et al. 

2009). Lauer et al. (2018) suggested that the internal structures and porosity of spines may be 

important in providing strength. 

Longer spines in E. chloroticus have lower flexural stress point than shorter ones, so it appears 

that larger spines are weaker, breaking under a lower load. As shown in Chapter 3, 

E. chloroticus specimens with a larger diameter have proportionately larger spines, indicating 

that larger and older individuals in general have lower spine strength than smaller and younger 

ones. This result is consistent with the Weibull theory for brittle materials: as size increases 

(for example, spine length) average experimental strength decreases (Dery et al. 2017). While 

our results follow the Weibull trend, it does not appear to be the case for all echinoid species. 

Lauer et al. (2018) demonstrated that the spines of Heterocentrotus mamillatus and H. 

trigonarius had spine stress that was not correlated with the specimen size, though they used 

three-point bending, and their results are not directly comparable to our two-point bending 

tests. 
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Lauer et al. (2018) suggested that the internal porous structure of spines is important in 

determining spine failure and elastic properties. They described struts of similar size in both 

large and small spines of H. mamillatus and H. trigonarius, which could mean that the potential 

for failure increases as size increases because the struts offer less support for a larger spine 

due to scaling incompatibility. Presser et al. (2009) described differences in pore size, 

arrangement and distribution between species and individuals, but even between spines of a 

single individual. This could explain the variation seen in the results of this study, not only 

within those of the same location but within the same individuals sampled. It would be useful 

to examine variations in porosity, pore size, pore arrangement and pore distribution in 

E. chloroticus spines. Magdans & Geis, (2004), demonstrated magnesium content differences 

along the length of a primary spine for five different echinoid species (Sterechinus antarcticus, 

Echinus esculentus, Paracentrotus lividus, Lytechinus variegatus and Heterocentrotus 

mammilatus), decreasing in magnesium towards the tip. As larger spines are likely to have a 

larger area where this magnesium content is reduced, it is also probable that the larger spines 

will break under lower loads as demonstrated by the spines in our study. It may be that spine 

strength is less necessary in larger urchins, so that further investment is energetically unwise. 

Spines used in defence impale a predator and break off, regenerating quickly. It is possible 

that as urchins grow, the number of possible predators decreases so energy to maintain spine 

strength is sacrificed. 

In general, urchin strength relative to length was found to increase with water temperature. 

The strongest spines were found in the North Island, weakening further south. The strongest 

spines were from White Island and the weakest from Fiordland. There are several possible 

explanations for this trend: magnesium content, growth rate, and seawater chemistry. 

It is widely documented that, in many marine invertebrate taxa, the amount of magnesium in 

biomineral calcite decreases with decreasing temperature (Chave 1954; Stanley et al. 2006), 

which may be affecting the strength of the spines. As explained in Chapter 4, magnesium 

substitution into the calcite structure increases strength, decreases brittleness, and increases 

solubility. Smith et al. (2016) undertook a comprehensive review of sea urchin skeletal 

mineralogy from 72°N to 77°S, assessing latitudinal effects on magnesium content from 73 

different echinoid species; describing a strong relationship of latitude (using SST proxy) and 

magnesium content. It is encouraging that our results presented in this study contribute to the 

trend described in Smith et al. (2016) although our latitudinal differences are much smaller 

across locations (46-35°S).  
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Differences of magnesium content in echinoid skeletal structures has been credited to 

differences in temperature, but also growth rates as a result of temperature (McClintock et al. 

2011; Weber 1973). The role of growth influencing skeletal composition may be the underlying 

principal behind the correlation observed, rather than a dependence of temperature for 

magnesium incorporation (Weber 1973). Physiological processes such as respiration, 

digestion and calcification all increase in rate with increasing environmental temperatures. 

Byrne et al. (2014) clearly demonstrated the role of temperature on magnesium content for the 

echinoid urchin, Tripneustes gratilla in the absence of confounding variables, providing some 

of the simplest evidence for a direct relationship of calcification rates on magnesium 

incorporation. However increasing growth rate is not always correlated with warming 

temperature, as shown by Hermans et al. (2010) for the echinoid Paracentrotus lividus; with 

no significant effect of increased temperature on growth, but a significant effect on Mg/Ca ratio 

for individuals. Further species-specific experiments are required to understand the effect of 

temperature on calcification rates, growth rates and magnesium content. 

Notably weak spines in the Fiordland population may be exhibiting a strength trade-off 

associated with sea-water composition. Salinity dissolved inorganic carbon, saturation states 

of aragonite and calcite, total alkalinity and carbonate concentration are all significantly lower 

in Fiordland waters than in the other locations included in this study (refer to Chapter 2). 

Fiordland has a large intrusion of freshwater from heavy localised rainfall and large sills, 

retaining large freshwater quantities, components that alter the seawater chemistry within a 

small area. Ferguson et al. (2008) reported a strong salinity - Mg/Ca ratio correlation in 

Mediterranean foraminiferal skeletons and Malone & Dodd (1967) found that calcification rates 

increased with increasing salinity for Mytilus edilus over 20-37 ‰ at a constant temperature of 

18.5°C. For echinoderms, Richter & Bruckschen (1998) analysed the tests of Echinocyamus 

pusillus from a wide salinity and temperature range in 15 locations, and stated that changes in 

salinity did not correlate with changes in magnesium content; while Borremans et al. (2009) 

discovered that salinity had a strong correlation with Mg/Ca ratios, to the same extent of 

temperature effects on Mg/Ca ratios in the starfish, Asterias rubens.  

The carbonate saturation state of seawater is important for marine calcifers. In Ω values 

greater than one, when seawater is supersaturated, marine biocalcification is promoted, 

whereas Ω values less than one indicates undersaturated seawater, and biocalcification may 

be slowed or inhibited. Although Ω of both calcite and aragonite are greater than one near 

Fiordland, it is substantially lower than those for the other five locations and could therefore 

have an impact on the ability for a marine calcifier to form calcium carbonate and its 

polymorphs. Associated sea-water values (total alkalinity, DIC, pH, carbonate concentration) 

are also unusually low in Fiordland, presumably increasing the dissolution pressure on 
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calcification. Fiordland urchins might have lower strength in their spines because they are 

unable to calcify robustly in their seawater conditions, or because they do so but subsequent 

dissolution weakens the spines over time. 

Urchin spines grown at Whakaari, White Island are exceptionally strong, having a larger 

average strength-for-length than expected and indeed, presents the largest single value of 

strength-for-length. The oceanic environment immediately surrounding White Island is different 

than what a latitudinal trend of temperature would indicate due to the extensive undersea 

volcanism in the area. CO2 vents around White Island not only reduce the pH of the immediate 

water from 8.1 to 7.9, but also increase the temperature, with seawater warming analogous to 

future climate change scenarios (Grace 1975). The stronger spines found here could be a 

result of the warmer temperatures increasing magnesium availability. Alternatively, the 

lowered pH seawater could stimulate urchins to invest in their protective spines, resulting in 

more robust spines. 

It is well known that echinoids can compensate for changing sea-water conditions. Collard et 

al. (2016), for example, combined laboratory-manipulated experiments with naturally-occurring 

ranges for temperature and pH in areas inhabited by the urchin, Paracentrotus lividus. P. 

lividus was found to have no significant differences in fracture force, Young’s modulus, second 

moment of area, material nanohardness, and specific Young’s modulus of sea urchin test 

plates due to low pH and/or increased temperature.  

In crushing tests of the urchin, Tripneustes gratilla, Byrne et al. (2014) determined that those 

individuals reared for 146 days in low pH conditions (pH 7.8 and 7.6) crushed under a lesser 

force than those in normal seawater (8.1) but more force was required to crush those reared 

in warmer waters (25°C and 28°C); likely a result of increased urchin size from warmer waters. 

Hazan et al. (2014) also found no differences in skeletal dissolution, widened stereom pores 

or non-smoothed structures when Echinometra sp. were incubated for 11 months under two 

different pH conditions, 7.7 and the control of 8.1. Dery et al. (2017) found that a cidaroid 

echinoderm, Eucidaris tribuloides showed no difference in spine mechanical properties when 

live specimens were placed in pH conditions of 7.4, 7.7, and 8.1 for five weeks; whereas an 

euechinoid species, Tripneustes ventricosus showed a reduction in fracture force of 16% when 

specimens were incubated at pH 7.7 and reduced by 35% when incubated at pH 7.4 for five 

weeks compared to the control of pH 8.1.  

If urchins can up-regulate calcification under lowered-pH conditions, it must come at some 

cost. Resource allocation to calcification by the individual could reduce investment in somatic 

and reproductive growth. Haag et al. (2016) has already demonstrated reduced gonad indices 

in the urchin Strongylocentrotus purpuratus when spines are damaged and regenerated. The 
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energetic effect of growing robust spines in lowered pH seawater could be the subject of future 

research: a detailed, long-term culture experiment under different sea-water conditions 

examining somatic, reproductive and skeletal growth parameters would assist our 

understanding of how anthropogenic climate change might affect these important marine 

invertebrates. 

 

Our findings demonstrate variation amongst spines of the same individual, within populations 

and amongst populations along the coast of New Zealand. The results presented in this study 

clearly establish a relationship of size on the flexural stress of Evechinus chloroticus spines, 

with larger spines breaking at a lower load than smaller spines, a trend observed in other 

studies and confirming the Weibull theory of brittle materials. Together with the well-described 

latitude trends of magnesium content in echinoids, I provide some understanding and future 

implications of sensitivity to breaking loads of this species important calcite structure, primary 

spines, to global climate change predicted for the coming decades.  
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6 Summary and Conclusion 

6.1 Introduction 

This study examined the effects of environment on resource allocation in an important 

marine calcifier. By taking a holistic approach, the results allow us to look at both size and 

composition of skeletal elements, and the consequent variations in strength (in spines). As 

pH decreases, so too does carbonate availability. Authors have found that in acidic 

conditions, metabolic activity is lowered, reducing growth, and affecting allometry (e.g. 

Michaelidis et al. 2005). Other authors have also documented ocean acidification reducing 

calcification and increasing shell dissolution. (e.g. Gattuso et al. 1999, Feeky et al. 2004). 

The interaction between these two responses, either synergistically or antagonistically may 

impact other functions and may influence the effectiveness of an organism’s response.  

6.2 Allometry 

Allometry from adult Evechinus chloroticus demonstrated minimal variation within elements, 

particularly those of the Aristotle's lantern. Measurements within elements are strongly 

proportional, particularly so in the Aristotle's lantern. Due to the spine’s purposes for 

defence and locomotion, it is likely that the lower correlations of spine measurements noted 

in the data presented are due to spines breaking and regenerating over the duration of the 

urchin’s life. I suggest that spines are a poor indicator measurement for the individual’s size, 

population phenotypes and other morphometric inferences. Tight regularity, rigid geometry 

and the strict interconnections of the Aristotle's lantern components resulted in a high 

correlation of measurements of all components that comprise the feeding structure.  

Latitude appears to affect the morphometry of the Aristotle's lantern and test components, 

but not spine parameters. Test thickness increased with latitude, as too did demi-pyramid, 

rotulae and epiphysis measurements. Most notably, White Island and Fiordland were 

exceptions to the predicted model; both locations had larger averages and medians than 

would be predicted based on latitude/temperature. One of the most interesting observations 

occurred when data was standardised to control for size differences of individuals, the only 

measurement to demonstrate the same latitudinal trend was the weight of the Aristotle's 

lantern components (demi-pyramids, rotulae, and epiphysis).  
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6.3 Biomineralogy 

Biomineralogy of the skeletal elements in Evechinus varies in the amount of magnesium 

incorporated into calcium carbonate structures. E. chloroticus can produce calcite ranging 

from 3.2 to 11.9 wt % Mg, with an average of 8.6 (SD=2.01), suggesting that calcite 

formation is not the result of passive assimilation from the environment, but is actively 

synthesised and managed. Magnesium incorporation into skeletal components varies 

within an individual’s different components, with 40% less magnesium incorporated in the 

spines compared to the test plates or Aristotle's lantern. Magnesium content in the 

Aristotle’s lantern components were fairly consistent, and is likely a result of the highly 

organised, interconnected nature of the feeding apparatus. Ensuring there is no “weak link” 

by incorporating components of a similar magnesium content, and therefore strength in the 

Aristotle's lantern is crucial to ensure continuous functionality. Spine magnesium has been 

shown to vary from ~2 to 13 wt % MgCO3, correlated with water temperature (Nickel et al. 

2018), but in E. chloroticus, spine calcite contained from 3.2 to 6.9 wt % MgCO3, without a 

latitudinal trend.  

6.4 Strength 

Strength of spines exhibited variation amongst spines of the same individual, amongst 

individuals of the same location, and amongst individuals of different locations. Larger 

spines demonstrated a lower flexural stress point than spines of a shorter length. White 

Island specimens were the strongest, with the highest flexural load level, while Fiordland 

samples were the weakest. It is possible that seawater conditions affect these spines: in 

White Island the lower pH may cause increased investment in mineralisation, whereas in 

Fiordland the high amounts of freshwater could compromise calcification.  

6.5 Calcification (Allometry + Biomineralogy) 

It has been proposed that more magnesium is deposited into calcium carbonate structures 

in slow-growing organisms and species. Ebert (2007) summarised correlation between the 

number of magnesium producing ossicles with temperature, and the rate of growth with 

temperature as determined by the Brody–Bertalanffy growth constant. Faster growth rates 

and increased magnesium content are present in species with warmer habitats, likely a 

result of increased metabolic activity. Andersson et al. (2008) proposed slower growth rates 

and less magnesium as carbonate saturation states are lowered with latitude patterns 

currently observed. These changes, related to latitude, are also likely to occur as ocean 

acidification and climate change alters seawater chemistry throughout the world’s oceans. 

Under proposed conditions as set by the IPCC it is probable that organisms will exhibit 
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smaller size, slower metabolic rates and reduced calcification, all expected to cascade to 

changes in predation and intraspecific competition, especially those organisms that do not 

calcify. Calcifying organisms will have difficulty both forming and creating calcified 

structures as carbonates become limited, but also in repairing and maintaining structures 

as dissolution becomes favoured. Due to recent increases in carbon dioxide since the 

Industrial Revolution, it may be feasible that populations and species have already adapted 

to local changes under a relatively short time frame and are demonstrating a possibility for 

them to further adapt in the face of exacerbated conditions.  

6.6 Spines (Allometry + Biomineralogy + Strength) 

The spines of the urchin Evechinus chloroticus are crucial to ensuring the survival of the 

individual, protecting the valuable innards contained within the easily broken test. Primary 

spines are the ultimate defence mechanism for the slow-moving organism, reducing the 

probability of becoming prey from species such as NZ rock lobster (Jasus edwardsii) and 

blue cod (Parapercis colias). From the results presented in this study, I can confidently 

conclude longer spines have a lower flexural stress point than shorter ones; and I was able 

to determine larger individuals of E. chloroticus had larger spines. From this connection, I 

can confidently say that larger organisms had comparatively weaker spines than spines 

from smaller individuals. It is possible that the purpose of the spine in larger organisms is 

to act as deterrent to predators, with increasing spine length increasing the risk of impaling 

a predator; while smaller organisms may require stronger spines to increase the damage 

as a predator attempts to crush the individual. Low magnesium calcite structures (<4 

wt % Mg) are more chemically stable than elements with higher magnesium content (>4 

wt % Mg); so that low-magnesium components are more resistant to dissolution than 

components containing high magnesium (Andersson et al. 2008). Spines have a lower 

magnesium content than the feeding apparatus, decreasing the solubility of the structure to 

the surrounding marine environment, since spines don’t have the coelom buffering 

Aristotle’s lantern components (demi-pyramids, rotulae and epiphysis). The teeth, which 

are formed and mostly encased within the Aristotle's lantern demonstrate an intermediate 

level of magnesium content, providing further evidence that the coelom offers a buffer 

against the seawater exposure. Magnesium content in structures has been used as a proxy 

for strength. Substitution of magnesium for calcium in the carbonate structure increases 

strength and decreases brittleness, all while increasing the solubility of the structure. I was 

unable to make this association between strength and magnesium content, due in part to 

the small sample size, and since both tests are destructive. I did not see variations in 

magnesium content between locations that clearly demonstrated differences in strength. 
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The difference observed in magnesium concentrations between spines and other skeletal 

components may have evolved as a function of preventing dissolution to ambient seawater, 

reflecting the trade-offs for strength and calcification. Due to the exposed nature of the 

spine, in conjunction with a thinner epidermal layer on the spines relative to the epidermal 

layer on the test, it is likely that the spines will demonstrate changes as a result of ocean 

acidification first. Abrasions on the spine during locomotion or defence, and spine breakage 

from defence, all unavoidable activities will additionally expose the spines to risk from 

climate change before any other calcium carbonate structure.  

As magnesium content within a single individual ranges from low magnesium to high 

magnesium incorporation in different structures, it is thought that magnesium substitution 

into the calcite structure is actively managed through multiple pathways. It may be possible 

for magnesium content in spines to reduce further, however, magnesium reduction in 

spines could cause cascading effects to other components of the urchin’s life. Reducing 

magnesium incorporation into the spine would decrease the strength, increasing brittleness 

and increasing predation risk, however reducing the length of the spine at the same time 

could compensate for the loss of strength as smaller spines are stronger. This would create 

a feedback loop of reducing magnesium as calcification is hindered and dissolution is 

favoured, to a smaller spine length, compensating for strength. I have no doubt that there 

would be a point where spine length could not be reduced further as the risk of predation 

becomes too great.  

Another option to compensate for reduced magnesium incorporation into calcification is 

reduced to growth for an individual. Ebert et al. (2007) asserted slower growing organisms 

had a higher quantity of magnesium in their structures compared to faster growing urchins. 

A point to mention is that climate change, will not only increase the acidification of the 

world’s oceans, but also increase oceanic temperatures, a trend already observed into 

today’s scientific literature. Increased temperature increases the metabolic activity, 

increasing growth rates and size of organisms until thermal and acidification limits are 

reached, whereas metabolic activity is strained. Uthicke et al. (2014) has demonstrated that 

under strained metabolic activity, gonad development and investment suffer, reducing 

investment to offspring and further generations, ultimately impacting population 

maintenance. 

6.7 Conclusion 

This study provides the first investigation into positive and negative feedbacks on 

Evechinus chloroticus allometry, biomineralogy and strength. These three components 

contribute to the skeletal effectiveness and resilience, and differences amongst populations 
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will contribute to their success in changing sea water. A cascade of changes, both predicted 

and unknown, may arise as we stare into the face of climate change, with conditions 

predicted to worsen. Using populations inhabiting atypical locations, such as Fiordland and 

White Island, I have demonstrated some fine scale changes compared to other locations 

and can use inferences about the changes that may occur in the light of climate change, 

using these locations and the individuals there as proxies.  

Evechinus chloroticus, an important ecosystem engineer appears to have adapted to a 

range of conditions throughout New Zealand, constrained in their Aristotle’s lantern 

morphology, with differences in their biomineralogy obvious in their skeletal structures, 

ultimately combining to result in individual and population variation.  
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Appendix A Raw Data for Whole Measurements 

Table 7.1 Raw data measurements for whole Evechinus chloroticus collected from six locations 
around New Zealand 

ID Location Height Diameter 1 Diameter 2 Average Diameter Wet Weight Wet Volume 
(mm) (mm) (mm) (mm) (g) (cm3) 

EvChl-StI-1 Stewart Island 64.15 101.08 100.68 100.88 389.10 341.82 
EvChl-StI-2 Stewart Island 51.09 93.60 100.43 97.02 281.20 251.46 
EvChl-StI-3 Stewart Island 49.45 92.88 88.13 90.51 267.30 211.94 
EvChl-StI-4 Stewart Island 55.86 87.42 87.33 87.38 267.80 223.29 
EvChl-StI-5 Stewart Island 48.13 94.50 93.90 94.20 300.00 223.62 
EvChl-StI-6 Stewart Island 50.60 90.41 91.15 90.78 282.50 218.33 
EvChl-StI-7 Stewart Island 55.86 97.70 96.12 96.91 355.90 274.67 
EvChl-StI-8 Stewart Island 59.89 100.50 96.79 98.65 384.10 305.03 
EvChl-StI-9 Stewart Island 63.95 96.38 97.11 96.75 386.20 313.39 
EvChl-StI-10 Stewart Island 49.64 85.93 86.48 86.21 255.00 193.15         
EvChl-Frld-1 Fiordland 46.02 97.45 96.15 96.80 341.70 225.78 
EvChl-Frld-2 Fiordland 55.20 108.25 107.61 107.93 451.60 336.68 
EvChl-Frld-3 Fiordland 51.62 114.70 111.44 113.07 446.50 345.48 
EvChl-Frld-4 Fiordland 42.95 90.68 88.10 89.39 250.00 179.66 
EvChl-Frld-5 Fiordland 46.03 97.65 96.66 97.16 318.40 227.49 
EvChl-Frld-6 Fiordland 48.07 100.40 98.80 99.60 367.50 249.67 
EvChl-Frld-7 Fiordland 49.80 108.33 102.94 105.64 387.00 290.78 
EvChl-Frld-8 Fiordland 54.76 112.54 109.54 111.04 485.90 353.46 
EvChl-Frld-9 Fiordland 56.20 101.90 99.30 100.60 372.60 297.75 
EvChl-Frld-10 Fiordland 34.80 75.15 74.58 74.87 158.00 102.12         
EvChl-Pic-1 Picton 46.65 85.99 83.42 84.71 206.80 175.21 
EvChl-Pic-2 Picton 46.64 89.10 88.86 88.98 191.40 193.35 
EvChl-Pic-3 Picton 49.99 89.24 87.20 88.22 255.80 203.68 
EvChl-Pic-4 Picton 42.59 81.34 81.12 81.23 207.50 147.14 
EvChl-Pic-5 Picton 39.29 77.14 71.28 74.21 166.00 113.12 
EvChl-Pic-6 Picton 45.88 87.24 85.47 86.36 238.90 179.12 
EvChl-Pic-7 Picton 44.72 86.38 83.97 85.18 226.40 169.84 
EvChl-Pic-8 Picton 47.90 88.87 88.77 88.82 267.10 197.86 
EvChl-Pic-9 Picton 47.11 90.82 87.30 89.06 263.90 195.57 
EvChl-Pic-10 Picton 44.26 88.82 85.12 86.97 228.20 175.21         
EvChl-Akl-1 Auckland 30.86 57.71 57.22 57.47 51.00 53.36 
EvChl-Akl-2 Auckland 30.51 60.04 59.45 59.75 59.00 57.02 
EvChl-Akl-3 Auckland 41.07 71.63 71.50 71.57 88.00 110.13 
EvChl-Akl-4 Auckland 34.90 62.33 62.28 62.31 58.00 70.94 
EvChl-Akl-5 Auckland 37.65 67.66 67.31 67.49 106.00 89.78 
EvChl-Akl-6 Auckland 31.09 57.69 56.69 57.19 43.00 53.24 
EvChl-Akl-7 Auckland 29.55 55.51 54.04 54.78 46.00 46.41 
EvChl-Akl-8 Auckland 29.48 55.58 54.94 55.26 55.00 47.13 
EvChl-Akl-9 Auckland 42.60 76.91 75.71 76.31 114.00 129.88 
EvChl-Akl-10 Auckland 31.85 59.90 59.36 59.63 59.00 59.30         
EvChl-WhI-1 White Island 41.65 76.18 71.68 73.93 148.30 119.08 
EvChl-WhI-2 White Island 40.24 72.67 72.07 72.37 135.40 110.35 
EvChl-WhI-3 White Island 38.47 73.79 72.39 73.09 138.20 107.60 
EvChl-WhI-4 White Island 40.83 71.57 71.30 71.44 128.70 109.09 
EvChl-WhI-5 White Island 41.62 74.02 72.83 73.43 159.40 117.48 
EvChl-WhI-6 White Island 38.39 75.83 74.27 75.05 151.10 113.21 
EvChl-WhI-7 White Island 44.55 74.61 74.23 74.42 168.00 129.19 
EvChl-WhI-8 White Island 42.19 75.27 74.68 74.98 186.30 124.18 
EvChl-WhI-9 White Island 42.12 74.60 73.08 73.84 151.80 120.23 
EvChl-WhI-10 White Island 40.11 72.79 71.39 72.09 144.10 109.13         
EvChl-Wlg-1 Wellington 36.24 67.64 66.31 66.98 106.47 85.11 
EvChl-Wlg-2 Wellington 33.92 65.64 65.63 65.64 93.44 76.51 
EvChl-Wlg-3 Wellington 27.76 54.65 52.70 53.68 56.77 41.86 
EvChl-Wlg-4 Wellington 33.33 63.18 61.33 62.26 91.09 67.62 
EvChl-Wlg-5 Wellington 29.05 51.35 50.71 51.03 53.32 39.61 
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ID Location Height Diameter 1 Diameter 2 Average Diameter Wet Weight Wet Volume 
(mm) (mm) (mm) (mm) (g) (cm3) 

EvChl-Wlg-6 Wellington 36.37 67.74 67.30 67.52 111.59 86.82 
EvChl-Wlg-7 Wellington 32.63 65.93 63.07 64.50 88.95 71.04 
EvChl-Wlg-8 Wellington 31.19 64.05 64.04 64.05 93.38 66.99 
EvChl-Wlg-9 Wellington 34.70 66.24 64.32 65.28 97.26 77.41 
EvChl-Wlg-10 Wellington 27.66 56.34 53.33 54.84 63.41 43.52 
EvChl-Wlg-11 Wellington 37.28 69.11 68.99 69.05 107.68 93.07 
EvChl-Wlg-12 Wellington 33.44 59.72 58.14 58.93 74.67 60.79 
EvChl-Wlg-13 Wellington 33.04 59.97 59.48 59.73 80.83 61.71 
EvChl-Wlg-14 Wellington 40.64 67.72 67.00 67.36 121.04 96.55 

 

 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand 
B-1 

Appendix B 
R

aw
 D

ata for Skeletal Elem
ents 

Table 7.2 
R

aw
 data for skeletal elem

ents of E
vechinus chloroticus collected from

 Stew
art Island, N

ew
 Zealand 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-StI-1-A 
Stew

art Island 
0.45 

23.65 
1.76 

0.63 
0.048 

0.029 
1.684 

18.37 
9.24 

0.290 
9.88 

3.54 
0.104 

0.065 
EvC

hl-StI-1-B 
Stew

art Island 
0.45 

25.26 
1.93 

0.64 
0.057 

0.036 
1.608 

18.93 
9.11 

0.301 
9.46 

3.71 
0.099 

0.063 
EvC

hl-StI-1-C
 

Stew
art Island 

0.47 
24.02 

1.84 
0.67 

0.051 
0.032 

1.591 
18.81 

9.23 
0.299 

9.84 
3.47 

0.104 
0.061 

EvC
hl-StI-1-D

 
Stew

art Island 
0.48 

24.49 
1.85 

0.54 
0.051 

0.030 
1.694 

18.86 
9.22 

0.291 
9.50 

3.56 
0.101 

0.063 
EvC

hl-StI-1-E 
Stew

art Island 
0.46 

23.54 
1.63 

0.74 
0.048 

0.027 
1.773 

18.44 
9.40 

0.292 
9.52 

3.42 
0.099 

0.065 
EvC

hl-StI-1-F 
Stew

art Island 
0.47 

23.78 
1.76 

0.61 
0.048 

0.028 
1.693 

18.65 
9.36 

0.301 
 

 
 

0.066 
EvC

hl-StI-1-G
 

Stew
art Island 

0.46 
25.95 

1.94 
0.67 

0.053 
0.037 

1.413 
18.50 

9.43 
0.297 

 
 

 
0.062 

EvC
hl-StI-1-H

 
Stew

art Island 
0.47 

23.94 
1.84 

0.85 
0.059 

0.036 
1.646 

18.69 
9.42 

0.299 
 

 
 

0.065 
EvC

hl-StI-1-I 
Stew

art Island 
0.46 

23.29 
1.68 

0.66 
0.038 

0.027 
1.408 

18.89 
9.41 

0.300 
 

 
 

0.064 
EvC

hl-StI-1-J 
Stew

art Island 
0.46 

23.10 
1.71 

0.85 
0.053 

0.031 
1.702 

18.18 
9.16 

0.291 
 

 
 

0.061 
EvC

hl-StI-2-A 
Stew

art Island 
0.45 

24.07 
1.84 

0.95 
0.057 

0.038 
1.509 

17.41 
8.46 

0.221 
9.09 

3.33 
0.088 

0.049 
EvC

hl-StI-2-B 
Stew

art Island 
0.47 

27.22 
1.82 

0.74 
0.055 

0.037 
1.482 

17.46 
8.64 

0.216 
8.96 

3.34 
0.086 

0.050 
EvC

hl-StI-2-C
 

Stew
art Island 

0.44 
25.03 

1.72 
0.69 

0.050 
0.030 

1.635 
17.49 

8.43 
0.217 

8.92 
3.27 

0.086 
0.051 

EvC
hl-StI-2-D

 
Stew

art Island 
0.45 

24.18 
1.78 

0.65 
0.046 

0.030 
1.544 

17.38 
8.69 

0.219 
9.21 

3.46 
0.089 

0.050 
EvC

hl-StI-2-E 
Stew

art Island 
0.45 

24.08 
1.81 

0.84 
0.051 

0.035 
1.470 

17.33 
8.45 

0.211 
8.87 

3.31 
0.083 

0.049 
EvC

hl-StI-2-F 
Stew

art Island 
0.43 

24.76 
1.97 

0.53 
0.060 

0.034 
1.775 

17.35 
8.70 

0.221 
 

 
 

0.050 
EvC

hl-StI-2-G
 

Stew
art Island 

0.46 
24.34 

1.76 
0.80 

0.056 
0.033 

1.714 
17.49 

8.64 
0.221 

 
 

 
0.050 

EvC
hl-StI-2-H

 
Stew

art Island 
0.46 

23.69 
1.65 

0.54 
0.038 

0.024 
1.548 

17.58 
8.51 

0.215 
 

 
 

0.050 
EvC

hl-StI-2-I 
Stew

art Island 
0.43 

25.30 
1.96 

0.70 
0.053 

0.038 
1.403 

17.27 
8.67 

0.219 
 

 
 

0.050 
EvC

hl-StI-2-J 
Stew

art Island 
0.47 

25.12 
1.75 

0.71 
0.052 

0.032 
1.654 

17.39 
8.76 

0.218 
 

 
 

0.049 
EvC

hl-StI-3-A 
Stew

art Island 
0.45 

27.97 
1.56 

0.63 
0.045 

0.028 
1.612 

16.91 
8.32 

0.227 
8.47 

2.99 
0.086 

0.045 
EvC

hl-StI-3-B 
Stew

art Island 
0.45 

24.93 
1.66 

0.70 
0.044 

0.029 
1.516 

16.90 
8.41 

0.228 
8.07 

2.98 
0.080 

0.045 
EvC

hl-StI-3-C
 

Stew
art Island 

0.46 
25.99 

1.54 
0.79 

0.044 
0.029 

1.546 
16.96 

8.24 
0.227 

8.05 
2.98 

0.081 
0.045 

EvC
hl-StI-3-D

 
Stew

art Island 
0.47 

22.86 
1.58 

0.68 
0.039 

0.024 
1.616 

16.87 
8.36 

0.230 
8.08 

3.00 
0.080 

0.047 
EvC

hl-StI-3-E 
Stew

art Island 
0.43 

24.68 
1.58 

0.47 
0.038 

0.022 
1.709 

16.94 
8.29 

0.229 
8.03 

3.01 
0.081 

0.046 
EvC

hl-StI-3-F 
Stew

art Island 
0.44 

27.17 
1.66 

0.84 
0.052 

0.035 
1.503 

16.69 
8.34 

0.223 
 

 
 

0.045 
EvC

hl-StI-3-G
 

Stew
art Island 

0.47 
26.22 

1.67 
0.63 

0.043 
0.029 

1.464 
16.85 

8.67 
0.231 

 
 

 
0.047 

EvC
hl-StI-3-H

 
Stew

art Island 
0.42 

26.44 
1.78 

0.78 
0.051 

0.036 
1.415 

16.88 
8.34 

0.229 
 

 
 

0.045 
EvC

hl-StI-3-I 
Stew

art Island 
0.43 

26.02 
1.89 

0.70 
0.051 

0.037 
1.396 

17.22 
8.44 

0.229 
 

 
 

0.044 
EvC

hl-StI-3-J 
Stew

art Island 
0.44 

24.65 
1.84 

0.76 
0.046 

0.035 
1.324 

16.94 
8.35 

0.230 
 

 
 

0.045 
EvC

hl-StI-4-A 
Stew

art Island 
0.41 

26.35 
1.75 

0.65 
0.047 

0.032 
1.477 

18.28 
8.73 

0.256 
8.91 

3.40 
0.094 

0.055 
EvC

hl-StI-4-B 
Stew

art Island 
0.42 

27.32 
1.80 

0.58 
0.053 

0.033 
1.598 

18.33 
8.87 

0.267 
8.95 

3.51 
0.095 

0.054 
EvC

hl-StI-4-C
 

Stew
art Island 

0.43 
26.54 

1.75 
0.59 

0.049 
0.031 

1.587 
18.34 

8.76 
0.258 

8.80 
3.43 

0.090 
0.054 

EvC
hl-StI-4-D

 
Stew

art Island 
0.42 

27.20 
1.63 

0.70 
0.046 

0.031 
1.520 

18.21 
8.72 

0.262 
8.85 

3.47 
0.091 

0.058 
EvC

hl-StI-4-E 
Stew

art Island 
0.43 

24.46 
1.84 

0.83 
0.039 

0.036 
1.084 

18.45 
8.84 

0.273 
9.06 

3.36 
0.093 

0.058 
EvC

hl-StI-4-F 
Stew

art Island 
0.42 

26.16 
1.73 

0.71 
0.056 

0.032 
1.737 

18.37 
8.52 

0.264 
 

 
 

0.056 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-2 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-StI-4-G
 

Stew
art Island 

0.45 
25.73 

1.86 
0.63 

0.050 
0.034 

1.488 
18.39 

8.82 
0.255 

 
 

 
0.054 

EvC
hl-StI-4-H

 
Stew

art Island 
0.41 

22.97 
1.85 

0.93 
0.047 

0.036 
1.295 

18.21 
8.87 

0.258 
 

 
 

0.058 
EvC

hl-StI-4-I 
Stew

art Island 
0.42 

22.71 
1.84 

0.67 
0.046 

0.030 
1.524 

18.4 
8.72 

0.270 
 

 
 

0.056 
EvC

hl-StI-4-J 
Stew

art Island 
0.42 

26.66 
1.79 

0.70 
0.052 

0.035 
1.515 

18.4 
8.92 

0.266 
 

 
 

0.053 
EvC

hl-StI-5-A 
Stew

art Island 
0.44 

23.46 
2.11 

0.59 
0.044 

0.037 
1.177 

17.89 
8.26 

0.269 
8.21 

3.47 
0.088 

0.049 
EvC

hl-StI-5-B 
Stew

art Island 
0.45 

25.88 
1.70 

0.56 
0.048 

0.028 
1.705 

17.88 
8.44 

0.279 
8.11 

3.53 
0.086 

0.051 
EvC

hl-StI-5-C
 

Stew
art Island 

0.47 
25.73 

1.78 
0.57 

0.046 
0.030 

1.512 
18.02 

8.30 
0.274 

8.54 
3.52 

0.088 
0.052 

EvC
hl-StI-5-D

 
Stew

art Island 
0.46 

25.29 
1.75 

0.71 
0.059 

0.032 
1.859 

 
 

 
8.51 

3.54 
0.091 

0.042 
EvC

hl-StI-5-E 
Stew

art Island 
0.43 

23.45 
1.73 

0.76 
0.046 

0.030 
1.520 

18.27 
8.29 

0.273 
8.28 

3.46 
0.088 

0.053 
EvC

hl-StI-5-F 
Stew

art Island 
0.42 

23.20 
1.59 

0.4 
0.030 

0.020 
1.501 

17.85 
8.18 

0.268 
 

 
 

0.050 
EvC

hl-StI-5-G
 

Stew
art Island 

0.46 
25.81 

1.61 
0.64 

0.046 
0.027 

1.677 
18.22 

8.48 
0.280 

 
 

 
0.052 

EvC
hl-StI-5-H

 
Stew

art Island 
0.47 

24.74 
1.74 

0.68 
0.044 

0.030 
1.464 

17.8 
8.41 

0.275 
 

 
 

0.052 
EvC

hl-StI-5-I 
Stew

art Island 
0.48 

25.17 
1.81 

0.69 
0.049 

0.033 
1.487 

18.94 
8.34 

0.269 
 

 
 

0.053 
EvC

hl-StI-5-J 
Stew

art Island 
0.46 

22.96 
1.91 

0.59 
0.038 

0.031 
1.224 

18.11 
8.3 

0.264 
 

 
 

0.051 
EvC

hl-StI-6-A 
Stew

art Island 
0.45 

21.83 
1.65 

0.69 
0.042 

0.025 
1.690 

17.68 
8.52 

0.218 
8.46 

3.08 
0.082 

0.046 
EvC

hl-StI-6-B 
Stew

art Island 
0.43 

21.11 
1.57 

0.71 
0.035 

0.023 
1.542 

17.71 
8.34 

0.229 
8.66 

3.15 
0.086 

0.044 
EvC

hl-StI-6-C
 

Stew
art Island 

0.44 
22.76 

1.65 
0.66 

0.038 
0.025 

1.498 
 

 
 

8.53 
3.14 

0.084 
0.043 

EvC
hl-StI-6-D

 
Stew

art Island 
0.44 

22.96 
1.59 

0.58 
0.041 

0.023 
1.788 

 
 

 
8.48 

3.09 
0.083 

0.047 
EvC

hl-StI-6-E 
Stew

art Island 
0.43 

24.28 
1.83 

0.66 
0.043 

0.032 
1.358 

 
 

 
8.43 

3.14 
0.082 

 
EvC

hl-StI-6-F 
Stew

art Island 
0.43 

23.68 
1.88 

0.72 
0.040 

0.034 
1.187 

 
 

 
 

 
 

0.043 
EvC

hl-StI-6-G
 

Stew
art Island 

0.45 
19.89 

1.78 
0.62 

0.035 
0.024 

1.431 
 

 
 

 
 

 
0.049 

EvC
hl-StI-6-H

 
Stew

art Island 
0.41 

25.44 
1.76 

0.55 
0.048 

0.029 
1.657 

 
 

 
 

 
 

0.046 
EvC

hl-StI-6-I 
Stew

art Island 
0.42 

21.57 
1.69 

0.66 
0.037 

0.025 
1.475 

 
 

 
 

 
 

0.045 
EvC

hl-StI-6-J 
Stew

art Island 
0.41 

21.22 
1.74 

0.82 
0.044 

0.028 
1.531 

 
 

 
 

 
 

 
EvC

hl-StI-7-A 
Stew

art Island 
0.43 

23.74 
1.69 

0.79 
0.050 

0.030 
1.667 

18.10 
8.53 

0.243 
8.61 

2.99 
0.077 

0.046 
EvC

hl-StI-7-B 
Stew

art Island 
0.42 

26.10 
1.89 

0.85 
0.058 

0.040 
1.441 

17.82 
8.51 

0.241 
8.64 

3.10 
0.077 

0.047 
EvC

hl-StI-7-C
 

Stew
art Island 

0.46 
27.22 

1.70 
0.83 

0.062 
0.036 

1.735 
17.96 

8.70 
0.243 

8.58 
2.98 

0.077 
0.048 

EvC
hl-StI-7-D

 
Stew

art Island 
0.45 

27.94 
1.91 

0.72 
0.061 

0.041 
1.500 

18.18 
8.49 

0.241 
8.66 

3.15 
0.076 

0.047 
EvC

hl-StI-7-E 
Stew

art Island 
0.45 

27.53 
1.86 

0.69 
0.059 

0.038 
1.571 

18.07 
8.56 

0.243 
8.75 

2.96 
0.077 

0.046 
EvC

hl-StI-7-F 
Stew

art Island 
0.47 

29.68 
1.94 

0.79 
0.061 

0.046 
1.326 

17.98 
8.47 

0.240 
 

 
 

0.047 
EvC

hl-StI-7-G
 

Stew
art Island 

0.42 
28.22 

1.90 
0.81 

0.066 
0.043 

1.532 
17.71 

8.81 
0.241 

 
 

 
0.046 

EvC
hl-StI-7-H

 
Stew

art Island 
0.45 

27.19 
1.73 

0.68 
0.063 

0.033 
1.917 

17.90 
8.69 

0.238 
 

 
 

0.049 
EvC

hl-StI-7-I 
Stew

art Island 
0.45 

27.93 
2.00 

0.77 
0.069 

0.045 
1.528 

18.20 
8.79 

0.238 
 

 
 

0.047 
EvC

hl-StI-7-J 
Stew

art Island 
0.46 

28.81 
1.84 

0.79 
0.063 

0.041 
1.539 

18.1 
8.71 

0.243 
 

 
 

 
EvC

hl-StI-8-A 
Stew

art Island 
0.45 

24.80 
2.03 

0.80 
0.055 

0.041 
1.327 

18.79 
8.87 

0.301 
8.57 

3.47 
0.102 

0.060 
EvC

hl-StI-8-B 
Stew

art Island 
0.45 

23.90 
1.90 

0.77 
0.053 

0.035 
1.506 

18.52 
8.6 

0.303 
8.51 

3.49 
0.104 

0.064 
EvC

hl-StI-8-C
 

Stew
art Island 

0.43 
23.12 

1.67 
0.60 

0.036 
0.025 

1.441 
18.8 

8.79 
0.314 

8.68 
3.45 

0.103 
0.064 

EvC
hl-StI-8-D

 
Stew

art Island 
0.47 

25.14 
1.95 

0.72 
0.055 

0.038 
1.452 

18.72 
8.78 

0.307 
8.90 

3.44 
0.106 

0.061 
EvC

hl-StI-8-E 
Stew

art Island 
0.48 

25.51 
1.80 

0.70 
0.058 

0.033 
1.752 

18.61 
8.89 

0.311 
8.65 

3.43 
0.106 

0.064 
EvC

hl-StI-8-F 
Stew

art Island 
0.46 

25.16 
1.76 

0.88 
0.057 

0.036 
1.582 

18.38 
8.54 

0.305 
 

 
 

0.063 
EvC

hl-StI-8-G
 

Stew
art Island 

0.48 
24.29 

1.81 
0.90 

0.048 
0.036 

1.312 
18.61 

8.53 
0.305 

 
 

 
0.061 

EvC
hl-StI-8-H

 
Stew

art Island 
0.46 

24.54 
2.01 

0.82 
0.057 

0.041 
1.402 

18.60 
8.61 

0.308 
 

 
 

0.059 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-3 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-StI-8-I 
Stew

art Island 
0.47 

25.19 
2.07 

0.73 
0.056 

0.042 
1.342 

18.57 
8.50 

0.306 
 

 
 

0.062 
EvC

hl-StI-8-J 
Stew

art Island 
0.45 

23.12 
1.54 

0.72 
0.040 

0.024 
1.665 

18.56 
8.50 

0.301 
 

 
 

0.059 
EvC

hl-StI-9-A 
Stew

art Island 
0.45 

27.28 
1.93 

0.68 
0.051 

0.039 
1.286 

18.06 
8.89 

0.294 
8.75 

3.03 
0.086 

0.060 
EvC

hl-StI-9-B 
Stew

art Island 
0.47 

28.31 
1.87 

0.83 
0.061 

0.043 
1.423 

18.26 
8.87 

0.300 
8.56 

3.36 
0.087 

0.063 
EvC

hl-StI-9-C
 

Stew
art Island 

0.46 
30.55 

1.94 
0.73 

0.071 
0.046 

1.554 
18.31 

8.79 
0.291 

8.93 
3.01 

0.087 
0.060 

EvC
hl-StI-9-D

 
Stew

art Island 
0.43 

28.88 
1.77 

0.81 
0.065 

0.039 
1.636 

18.21 
8.73 

0.289 
8.64 

3.07 
0.091 

0.061 
EvC

hl-StI-9-E 
Stew

art Island 
0.45 

29.15 
1.93 

0.69 
0.062 

0.042 
1.457 

18.40 
8.83 

0.297 
8.79 

3.37 
0.090 

0.060 
EvC

hl-StI-9-F 
Stew

art Island 
0.46 

29.1 
1.77 

0.83 
0.060 

0.040 
1.494 

18.42 
8.88 

0.299 
 

 
 

0.060 
EvC

hl-StI-9-G
 

Stew
art Island 

0.47 
29.68 

1.93 
0.67 

0.063 
0.042 

1.485 
18.45 

8.89 
0.300 

 
 

 
0.058 

EvC
hl-StI-9-H

 
Stew

art Island 
0.45 

29.14 
2.06 

0.7 
0.065 

0.047 
1.371 

18.45 
8.81 

0.301 
 

 
 

0.060 
EvC

hl-StI-9-I 
Stew

art Island 
0.44 

28.93 
1.87 

0.71 
0.056 

0.040 
1.390 

18.29 
8.93 

0.294 
 

 
 

0.061 
EvC

hl-StI-9-J 
Stew

art Island 
0.45 

28.28 
1.83 

0.85 
0.062 

0.042 
1.488 

18.28 
8.85 

0.297 
 

 
 

0.063 
EvC

hl-StI-10-A 
Stew

art Island 
0.42 

22.95 
1.6 

0.67 
0.037 

0.025 
1.505 

18.17 
9.75 

0.273 
9.62 

3.81 
0.112 

0.072 
EvC

hl-StI-10-B 
Stew

art Island 
0.42 

22.79 
1.68 

0.79 
0.041 

0.028 
1.429 

 
 

 
9.67 

3.64 
0.114 

0.068 
EvC

hl-StI-10-C
 

Stew
art Island 

0.42 
24.69 

1.65 
0.74 

0.041 
0.029 

1.399 
17.75 

9.93 
0.278 

9.83 
3.69 

0.111 
0.061 

EvC
hl-StI-10-D

 
Stew

art Island 
0.42 

23.8 
1.63 

0.73 
0.033 

0.027 
1.224 

18.02 
9.80 

0.279 
9.54 

3.62 
0.109 

0.070 
EvC

hl-StI-10-E 
Stew

art Island 
0.42 

26.81 
1.71 

0.8 
0.054 

0.035 
1.545 

17.71 
9.72 

0.277 
10.00 

3.87 
0.123 

0.068 
EvC

hl-StI-10-F 
Stew

art Island 
0.41 

25.12 
1.63 

0.77 
0.043 

0.030 
1.445 

17.93 
9.82 

0.281 
 

 
 

0.061 
EvC

hl-StI-10-G
 

Stew
art Island 

0.43 
24.25 

1.96 
0.91 

0.051 
0.041 

1.242 
17.96 

9.75 
0.273 

 
 

 
 

EvC
hl-StI-10-H

 
Stew

art Island 
0.44 

24 
1.70 

0.68 
0.037 

0.028 
1.313 

18.01 
7.47 

0.268 
 

 
 

 
EvC

hl-StI-10-I 
Stew

art Island 
0.43 

25.53 
1.66 

0.79 
0.043 

0.031 
1.384 

 
 

 
 

 
 

 
EvC

hl-StI-10-J 
Stew

art Island 
0.43 

23.3 
1.88 

0.74 
0.044 

0.033 
1.330 

 
 

 
 

 
 

 

 

Table 7.3 
R

aw
 data for skeletal elem

ents of E
vechinus chloroticus collected from

 Fiordland, N
ew

 Zealand 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Frld-1-A 
Fiordland 

0.47 
25.36 

1.85 
0.67 

0.044 
0.034 

1.291 
18.20 

8.74 
0.270 

8.79 
3.32 

0.0807 
0.0491 

EvC
hl-Frld-1-B 

Fiordland 
0.48 

29.47 
1.98 

0.73 
0.055 

0.046 
1.204 

18.07 
8.82 

0.270 
8.63 

3.36 
0.0868 

0.0471 
EvC

hl-Frld-1-C
 

Fiordland 
0.46 

26.83 
1.90 

0.85 
0.061 

0.042 
1.458 

18.21 
8.75 

0.267 
8.76 

3.22 
0.0820 

0.0473 
EvC

hl-Frld-1-D
 

Fiordland 
0.47 

24.25 
1.89 

0.76 
0.043 

0.035 
1.212 

18.02 
8.74 

0.271 
8.91 

3.21 
0.0840 

0.0472 
EvC

hl-Frld-1-E 
Fiordland 

0.46 
26.53 

2.06 
0.85 

0.055 
0.047 

1.177 
17.95 

8.77 
0.276 

 
 

 
0.0465 

EvC
hl-Frld-1-F 

Fiordland 
0.47 

24.86 
1.74 

0.75 
0.043 

0.032 
1.362 

17.98 
8.90 

0.269 
 

 
 

0.0472 
EvC

hl-Frld-1-G
 

Fiordland 
0.45 

26.49 
1.77 

0.74 
0.046 

0.035 
1.318 

18.27 
8.84 

0.277 
 

 
 

0.0476 
EvC

hl-Frld-1-H
 

Fiordland 
0.49 

26.59 
2.01 

0.70 
0.058 

0.041 
1.413 

18.14 
8.91 

0.278 
 

 
 

0.0471 
EvC

hl-Frld-1-I 
Fiordland 

0.47 
24.73 

2.04 
0.81 

0.049 
0.042 

1.172 
18.3 

8.80 
0.277 

 
 

 
0.0468 

EvC
hl-Frld-1-J 

Fiordland 
0.44 

22.43 
1.82 

0.82 
0.043 

0.032 
1.346 

18.3 
8.74 

0.273 
 

 
 

0.0478 
EvC

hl-Frld-2-A 
Fiordland 

0.54 
33.89 

1.89 
0.90 

0.070 
0.054 

1.291 
17.22 

9.34 
0.288 

9.30 
2.88 

0.0950 
0.0603 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-4 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Frld-2-B 
Fiordland 

0.53 
31.61 

1.86 
0.93 

0.068 
0.050 

1.351 
17.47 

9.14 
0.286 

9.41 
2.98 

0.0957 
0.0572 

EvC
hl-Frld-2-C

 
Fiordland 

0.55 
33.05 

1.87 
0.64 

0.065 
0.044 

1.472 
17.62 

9.11 
0.289 

9.30 
2.94 

0.0949 
0.0652 

EvC
hl-Frld-2-D

 
Fiordland 

0.47 
36.10 

1.87 
0.64 

0.071 
0.048 

1.462 
17.5 

9.13 
0.288 

9.30 
2.89 

0.0928 
0.0606 

EvC
hl-Frld-2-E 

Fiordland 
0.54 

34.39 
1.82 

0.78 
0.063 

0.048 
1.302 

17.43 
9.13 

0.285 
9.40 

2.89 
0.0949 

0.0582 
EvC

hl-Frld-2-F 
Fiordland 

0.56 
35.45 

1.78 
0.93 

0.071 
0.053 

1.341 
17.61 

9.20 
0.291 

 
 

 
0.0610 

EvC
hl-Frld-2-G

 
Fiordland 

0.52 
32.91 

1.81 
0.94 

0.070 
0.050 

1.380 
17.52 

9.23 
0.289 

 
 

 
0.0634 

EvC
hl-Frld-2-H

 
Fiordland 

0.54 
34.64 

1.81 
0.79 

0.071 
0.048 

1.471 
17.24 

9.13 
0.291 

 
 

 
0.0595 

EvC
hl-Frld-2-I 

Fiordland 
0.54 

34.18 
1.97 

0.84 
0.072 

0.056 
1.291 

17.40 
9.21 

0.290 
 

 
 

0.0657 
EvC

hl-Frld-2-J 
Fiordland 

0.54 
33.38 

1.78 
0.95 

0.073 
0.050 

1.456 
17.55 

9.26 
0.287 

 
 

 
0.0627 

EvC
hl-Frld-3-A 

Fiordland 
0.51 

35.10 
2.05 

0.67 
0.073 

0.055 
1.313 

18.13 
9.10 

0.268 
9.17 

3.22 
0.0974 

0.0522 
EvC

hl-Frld-3-B 
Fiordland 

0.51 
33.49 

1.99 
0.79 

0.076 
0.054 

1.399 
17.9 

8.89 
0.263 

9.42 
3.51 

0.1010 
0.0524 

EvC
hl-Frld-3-C

 
Fiordland 

0.50 
33.20 

1.84 
0.70 

0.075 
0.045 

1.669 
17.83 

9.03 
0.264 

9.31 
3.30 

0.0976 
0.0526 

EvC
hl-Frld-3-D

 
Fiordland 

0.52 
35.02 

2.04 
0.78 

0.076 
0.058 

1.296 
18.34 

8.95 
0.280 

9.38 
3.22 

0.0971 
0.0530 

EvC
hl-Frld-3-E 

Fiordland 
0.53 

33.43 
2.00 

0.86 
0.067 

0.057 
1.187 

18.05 
9.01 

0.268 
9.26 

3.36 
0.0968 

0.0523 
EvC

hl-Frld-3-F 
Fiordland 

0.49 
33.69 

2.09 
0.67 

0.074 
0.055 

1.351 
18.07 

9.12 
0.281 

 
 

 
0.0528 

EvC
hl-Frld-3-G

 
Fiordland 

0.48 
36.36 

1.89 
0.77 

0.074 
0.053 

1.374 
18.02 

9.03 
0.273 

 
 

 
0.0528 

EvC
hl-Frld-3-H

 
Fiordland 

0.50 
32.18 

1.84 
0.56 

0.077 
0.040 

1.920 
18.12 

9.17 
0.282 

 
 

 
0.0526 

EvC
hl-Frld-3-I 

Fiordland 
0.51 

34.20 
1.91 

0.81 
0.056 

0.052 
1.065 

17.96 
9.14 

0.273 
 

 
 

0.0520 
EvC

hl-Frld-3-J 
Fiordland 

0.51 
31.98 

1.58 
0.53 

0.065 
0.030 

2.141 
17.99 

8.90 
0.265 

 
 

 
0.0531 

EvC
hl-Frld-4-A 

Fiordland 
0.46 

27.20 
1.74 

0.71 
0.049 

0.034 
1.429 

15.9 
7.61 

0.197 
7.53 

2.72 
0.0574 

0.0360 
EvC

hl-Frld-4-B 
Fiordland 

0.46 
26.63 

1.60 
0.60 

0.036 
0.027 

1.338 
15.93 

7.61 
0.194 

7.64 
2.69 

0.0588 
0.0354 

EvC
hl-Frld-4-C

 
Fiordland 

0.46 
27.79 

1.92 
0.72 

0.050 
0.041 

1.223 
15.92 

7.77 
0.198 

7.71 
2.90 

0.0600 
0.0369 

EvC
hl-Frld-4-D

 
Fiordland 

0.44 
28.84 

1.77 
0.63 

0.056 
0.035 

1.588 
15.95 

7.62 
0.199 

7.64 
2.70 

0.0589 
0.0374 

EvC
hl-Frld-4-E 

Fiordland 
0.46 

28.60 
1.83 

0.84 
0.052 

0.042 
1.240 

16.02 
7.55 

0.196 
7.77 

2.86 
0.0574 

0.0367 
EvC

hl-Frld-4-F 
Fiordland 

0.47 
26.02 

1.88 
0.82 

0.051 
0.039 

1.313 
15.89 

7.63 
0.196 

 
 

 
0.0357 

EvC
hl-Frld-4-G

 
Fiordland 

0.47 
28.93 

1.73 
0.59 

0.049 
0.033 

1.489 
16.05 

7.71 
0.199 

 
 

 
0.0362 

EvC
hl-Frld-4-H

 
Fiordland 

0.43 
29.03 

1.71 
0.7 

0.050 
0.035 

1.435 
16.05 

7.71 
0.199 

 
 

 
0.0363 

EvC
hl-Frld-4-I 

Fiordland 
0.42 

28.99 
1.91 

0.71 
0.054 

0.042 
1.292 

16.04 
7.71 

0.201 
 

 
 

0.0368 
EvC

hl-Frld-4-J 
Fiordland 

0.44 
28.33 

1.78 
0.75 

0.053 
0.038 

1.408 
15.99 

7.68 
0.198 

 
 

 
0.0349 

EvC
hl-Frld-5-A 

Fiordland 
0.48 

30.55 
2.16 

1.17 
0.079 

0.068 
1.158 

17.31 
8.42 

0.241 
8.33 

3.02 
0.0735 

0.0410 
EvC

hl-Frld-5-B 
Fiordland 

0.48 
34.74 

2.14 
1.12 

0.077 
0.075 

1.025 
17.54 

8.75 
0.249 

8.12 
3.03 

0.0715 
0.0414 

EvC
hl-Frld-5-C

 
Fiordland 

0.42 
28.98 

1.87 
0.88 

0.059 
0.045 

1.323 
17.46 

8.50 
0.244 

8.34 
2.99 

0.0730 
0.0409 

EvC
hl-Frld-5-D

 
Fiordland 

0.47 
30.59 

1.95 
0.65 

0.067 
0.044 

1.516 
17.42 

8.41 
0.243 

8.27 
3.07 

0.0727 
0.0395 

EvC
hl-Frld-5-E 

Fiordland 
0.46 

32.81 
1.89 

0.68 
0.072 

0.046 
1.582 

17.19 
8.39 

0.238 
8.19 

2.99 
0.0722 

0.0415 
EvC

hl-Frld-5-F 
Fiordland 

0.43 
28.08 

1.66 
0.63 

0.052 
0.031 

1.678 
17.40 

8.52 
0.240 

 
 

 
0.0409 

EvC
hl-Frld-5-G

 
Fiordland 

0.44 
27.91 

1.83 
0.65 

0.050 
0.036 

1.368 
17.24 

8.34 
0.237 

 
 

 
0.0398 

EvC
hl-Frld-5-H

 
Fiordland 

0.47 
33.04 

1.91 
0.69 

0.077 
0.047 

1.625 
17.34 

8.47 
0.240 

 
 

 
0.0397 

EvC
hl-Frld-5-I 

Fiordland 
0.48 

31.69 
2.01 

1.05 
0.078 

0.060 
1.300 

17.49 
8.51 

0.245 
 

 
 

0.0402 
EvC

hl-Frld-5-J 
Fiordland 

0.49 
32.01 

2.10 
0.88 

0.078 
0.059 

1.315 
17.28 

8.53 
0.244 

 
 

 
0.0402 

EvC
hl-Frld-6-A 

Fiordland 
0.48 

28.18 
2.05 

0.84 
0.069 

0.049 
1.407 

16.89 
8.89 

0.258 
8.91 

3.12 
0.0860 

0.0547 
EvC

hl-Frld-6-B 
Fiordland 

0.49 
32.48 

2.08 
0.75 

0.080 
0.055 

1.457 
16.76 

8.81 
0.257 

8.79 
3.09 

0.0850 
0.0489 

EvC
hl-Frld-6-C

 
Fiordland 

0.48 
30.58 

2.00 
0.52 

0.062 
0.043 

1.463 
17.19 

9.00 
0.267 

9.13 
3.35 

0.0864 
0.0489 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-5 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Frld-6-D
 

Fiordland 
0.49 

31.70 
1.99 

0.89 
0.078 

0.054 
1.444 

17.35 
8.92 

0.257 
8.83 

3.14 
0.0887 

0.0524 
EvC

hl-Frld-6-E 
Fiordland 

0.49 
27.73 

1.75 
0.53 

0.046 
0.031 

1.477 
17.20 

8.91 
0.261 

8.91 
3.30 

0.0873 
0.0490 

EvC
hl-Frld-6-F 

Fiordland 
0.50 

34.10 
2.22 

0.83 
0.088 

0.067 
1.318 

17.17 
8.95 

0.266 
 

 
 

0.0521 
EvC

hl-Frld-6-G
 

Fiordland 
0.51 

32.29 
1.96 

0.83 
0.085 

0.052 
1.625 

16.96 
8.98 

0.261 
 

 
 

0.0501 
EvC

hl-Frld-6-H
 

Fiordland 
0.47 

30.84 
2.09 

0.76 
0.077 

0.053 
1.454 

17.00 
8.89 

0.256 
 

 
 

0.0516 
EvC

hl-Frld-6-I 
Fiordland 

0.48 
29.66 

1.99 
0.77 

0.070 
0.047 

1.484 
17.38 

8.85 
0.263 

 
 

 
0.0497 

EvC
hl-Frld-6-J 

Fiordland 
0.49 

29.00 
2.20 

0.82 
0.075 

0.056 
1.356 

17.01 
9.13 

0.267 
 

 
 

0.0490 
EvC

hl-Frld-7-A 
Fiordland 

0.49 
33.30 

2.16 
0.82 

0.079 
0.062 

1.268 
18.05 

8.47 
0.303 

9.09 
3.27 

0.0980 
0.0654 

EvC
hl-Frld-7-B 

Fiordland 
0.49 

31.70 
1.85 

0.85 
0.082 

0.047 
1.722 

18.84 
8.40 

0.302 
9.05 

3.37 
0.0886 

0.0558 
EvC

hl-Frld-7-C
 

Fiordland 
0.50 

34.07 
1.99 

0.96 
0.078 

0.061 
1.283 

18.2 
8.80 

0.293 
9.20 

3.42 
0.1059 

0.0710 
EvC

hl-Frld-7-D
 

Fiordland 
0.48 

31.05 
1.95 

0.93 
0.082 

0.053 
1.564 

18.29 
8.43 

0.288 
8.73 

3.77 
0.0828 

0.0646 
EvC

hl-Frld-7-E 
Fiordland 

0.52 
31.83 

1.75 
0.78 

0.058 
0.042 

1.385 
18.71 

8.33 
0.327 

8.81 
3.23 

0.0825 
0.0560 

EvC
hl-Frld-7-F 

Fiordland 
0.48 

32.36 
1.77 

0.77 
0.062 

0.043 
1.431 

18.43 
8.56 

0.283 
 

 
 

0.0573 
EvC

hl-Frld-7-G
 

Fiordland 
0.49 

31.61 
1.91 

0.81 
0.072 

0.048 
1.479 

18.39 
8.58 

0.284 
 

 
 

0.0566 
EvC

hl-Frld-7-H
 

Fiordland 
0.49 

30.84 
1.72 

0.74 
0.059 

0.039 
1.527 

18.59 
8.33 

0.296 
 

 
 

0.0577 
EvC

hl-Frld-7-I 
Fiordland 

0.46 
32.30 

1.88 
0.81 

0.060 
0.048 

1.234 
18.13 

8.43 
0.317 

 
 

 
0.0607 

EvC
hl-Frld-7-J 

Fiordland 
0.51 

30.25 
1.94 

0.79 
0.069 

0.047 
1.465 

18.53 
8.96 

0.309 
 

 
 

0.0565 
EvC

hl-Frld-8-A 
Fiordland 

0.52 
32.73 

2.05 
0.93 

0.081 
0.060 

1.362 
18.86 

9.22 
0.329 

9.56 
3.68 

0.1043 
0.0642 

EvC
hl-Frld-8-B 

Fiordland 
0.50 

32.14 
1.79 

0.75 
0.068 

0.043 
1.579 

18.90 
9.42 

0.323 
9.43 

3.57 
0.1032 

0.0606 
EvC

hl-Frld-8-C
 

Fiordland 
0.50 

29.98 
1.71 

0.79 
0.065 

0.038 
1.683 

18.82 
9.52 

0.325 
9.40 

3.57 
0.1027 

0.0645 
EvC

hl-Frld-8-D
 

Fiordland 
0.47 

28.80 
1.70 

0.82 
0.060 

0.037 
1.611 

18.68 
9.49 

0.333 
9.40 

3.55 
0.1032 

0.0646 
EvC

hl-Frld-8-E 
Fiordland 

0.52 
31.78 

1.94 
0.78 

0.072 
0.049 

1.464 
18.95 

9.44 
0.322 

9.43 
3.50 

0.1037 
0.0654 

EvC
hl-Frld-8-F 

Fiordland 
0.51 

31.72 
1.75 

0.61 
0.060 

0.037 
1.594 

18.92 
9.53 

0.330 
 

 
 

0.0649 
EvC

hl-Frld-8-G
 

Fiordland 
0.52 

31.56 
2.00 

0.77 
0.067 

0.051 
1.324 

18.81 
9.54 

0.322 
 

 
 

0.0645 
EvC

hl-Frld-8-H
 

Fiordland 
0.47 

31.70 
2.02 

0.74 
0.072 

0.051 
1.423 

19.04 
9.61 

0.335 
 

 
 

0.0655 
EvC

hl-Frld-8-I 
Fiordland 

0.52 
32.94 

1.71 
0.63 

0.064 
0.038 

1.679 
18.93 

9.64 
0.321 

 
 

 
0.0646 

EvC
hl-Frld-8-J 

Fiordland 
0.55 

31.07 
1.68 

0.70 
0.060 

0.037 
1.632 

19.03 
9.63 

0.329 
 

 
 

0.0637 
EvC

hl-Frld-9-A 
Fiordland 

0.46 
30.09 

1.99 
0.68 

0.072 
0.045 

1.580 
17.76 

9.15 
0.274 

9.10 
3.25 

0.1000 
0.0548 

EvC
hl-Frld-9-B 

Fiordland 
0.46 

30.35 
1.82 

0.80 
0.064 

0.043 
1.480 

17.99 
9.13 

0.276 
9.16 

3.24 
0.1007 

0.0551 
EvC

hl-Frld-9-C
 

Fiordland 
0.48 

33.61 
2.08 

0.68 
0.071 

0.055 
1.299 

17.80 
8.87 

0.266 
9.19 

3.21 
0.0996 

0.0538 
EvC

hl-Frld-9-D
 

Fiordland 
0.45 

33.04 
2.22 

0.78 
0.086 

0.063 
1.368 

17.68 
9.03 

0.271 
9.30 

3.23 
0.0983 

0.0526 
EvC

hl-Frld-9-E 
Fiordland 

0.46 
29.26 

1.64 
0.79 

0.055 
0.035 

1.552 
17.88 

9.12 
0.277 

9.01 
3.29 

0.0986 
0.0554 

EvC
hl-Frld-9-F 

Fiordland 
0.45 

30.06 
1.68 

0.62 
0.051 

0.033 
1.528 

17.69 
9.04 

0.279 
 

 
 

0.0542 
EvC

hl-Frld-9-G
 

Fiordland 
0.43 

33.99 
1.97 

0.90 
0.080 

0.058 
1.382 

17.66 
8.98 

0.270 
 

 
 

0.0524 
EvC

hl-Frld-9-H
 

Fiordland 
0.46 

33.62 
1.93 

0.80 
0.081 

0.052 
1.561 

17.65 
8.96 

0.263 
 

 
 

0.0541 
EvC

hl-Frld-9-I 
Fiordland 

0.46 
33.24 

2.00 
0.86 

0.084 
0.056 

1.500 
17.55 

9.03 
0.264 

 
 

 
0.0533 

EvC
hl-Frld-9-J 

Fiordland 
0.47 

35.00 
1.99 

0.87 
0.084 

0.059 
1.413 

 
 

 
 

 
 

0.0539 
EvC

hl-Frld-10-A 
Fiordland 

0.48 
27.18 

1.80 
0.74 

0.054 
0.036 

1.488 
12.73 

6.19 
0.109 

6.19 
2.30 

0.0324 
0.0184 

EvC
hl-Frld-10-B 

Fiordland 
0.44 

29.37 
1.82 

0.59 
0.057 

0.036 
1.560 

12.89 
6.30 

0.113 
6.24 

2.41 
0.0320 

0.0187 
EvC

hl-Frld-10-C
 

Fiordland 
0.44 

26.79 
1.79 

0.84 
0.050 

0.038 
1.312 

12.73 
6.32 

0.113 
6.27 

2.42 
0.0327 

0.0186 
EvC

hl-Frld-10-D
 

Fiordland 
0.46 

25.98 
1.72 

0.58 
0.042 

0.029 
1.442 

12.90 
6.20 

0.111 
6.20 

2.35 
0.0319 

0.0188 
EvC

hl-Frld-10-E 
Fiordland 

0.45 
25.32 

1.69 
0.57 

0.040 
0.027 

1.463 
12.87 

6.24 
0.111 

6.29 
2.34 

0.0328 
0.0185 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-6 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Frld-10-F 
Fiordland 

0.46 
28.11 

1.82 
0.66 

0.050 
0.036 

1.365 
12.78 

6.19 
0.112 

 
 

 
0.0193 

EvC
hl-Frld-10-G

 
Fiordland 

0.44 
27.98 

1.70 
0.84 

0.055 
0.037 

1.500 
12.73 

6.18 
0.110 

 
 

 
0.0191 

EvC
hl-Frld-10-H

 
Fiordland 

0.43 
26.77 

1.80 
0.76 

0.055 
0.036 

1.511 
12.81 

6.27 
0.112 

 
 

 
0.0189 

EvC
hl-Frld-10-I 

Fiordland 
0.44 

24.90 
1.68 

0.70 
0.045 

0.029 
1.528 

12.85 
6.20 

0.123 
 

 
 

0.0187 
EvC

hl-Frld-10-J 
Fiordland 

0.43 
27.04 

1.75 
0.79 

0.052 
0.036 

1.455 
12.87 

6.15 
0.109 

 
 

 
0.0192 

 

Table 7.4 
R

aw
 data for skeletal elem

ents of E
vechinus chloroticus collected from

 Picton, N
ew

 Zealand 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Pic-1-A 
Picton 

0.37 
22.51 

1.54 
0.83 

0.045 
0.026 

1.765 
 

 
 

6.98 
2.60 

0.0504 
0.0255 

EvC
hl-Pic-1-B 

Picton 
0.36 

22.86 
1.58 

0.94 
0.046 

0.029 
1.567 

14.01 
6.75 

0.157 
6.94 

2.65 
0.0500 

0.0256 
EvC

hl-Pic-1-C
 

Picton 
0.35 

23.59 
1.65 

0.88 
0.047 

0.031 
1.551 

13.39 
6.75 

0.153 
6.89 

2.62 
0.0507 

0.0258 
EvC

hl-Pic-1-D
 

Picton 
0.36 

20.83 
1.58 

0.78 
0.043 

0.024 
1.830 

13.76 
6.60 

0.156 
6.99 

2.67 
0.0507 

0.0255 
EvC

hl-Pic-1-E 
Picton 

0.37 
20.71 

1.54 
0.71 

0.037 
0.022 

1.732 
13.85 

6.74 
0.154 

6.93 
2.81 

0.0505 
0.0255 

EvC
hl-Pic-1-F 

Picton 
0.37 

21.77 
1.57 

0.92 
0.042 

0.027 
1.535 

13.81 
6.60 

0.155 
 

 
 

0.0261 
EvC

hl-Pic-1-G
 

Picton 
0.36 

21.03 
1.63 

0.65 
0.039 

0.023 
1.723 

13.87 
6.68 

0.153 
 

 
 

0.0255 
EvC

hl-Pic-1-H
 

Picton 
0.37 

20.50 
1.63 

0.91 
0.039 

0.027 
1.466 

13.87 
6.71 

0.156 
 

 
 

0.0259 
EvC

hl-Pic-1-I 
Picton 

0.35 
22.15 

1.65 
0.94 

0.042 
0.030 

1.415 
 

 
 

 
 

 
0.0259 

EvC
hl-Pic-1-J 

Picton 
0.36 

22.30 
1.55 

0.92 
0.045 

0.027 
1.640 

 
 

 
 

 
 

0.0256 
EvC

hl-Pic-2-A 
Picton 

0.40 
21.04 

1.59 
0.88 

0.042 
0.026 

1.631 
13.82 

7.08 
0.169 

7.42 
3.03 

0.0552 
0.0330 

EvC
hl-Pic-2-B 

Picton 
0.42 

20.19 
1.65 

0.81 
0.041 

0.025 
1.647 

14.21 
7.43 

0.171 
7.47 

2.96 
0.0550 

0.0332 
EvC

hl-Pic-2-C
 

Picton 
0.42 

21.94 
1.61 

0.82 
0.044 

0.026 
1.672 

14.3 
7.26 

0.169 
7.17 

2.99 
0.0543 

0.0326 
EvC

hl-Pic-2-D
 

Picton 
0.43 

22.03 
1.59 

0.83 
0.045 

0.026 
1.737 

14.14 
7.09 

0.172 
7.29 

3.01 
0.0553 

0.0333 
EvC

hl-Pic-2-E 
Picton 

0.41 
20.83 

1.62 
0.84 

0.041 
0.026 

1.620 
14.25 

7.13 
0.171 

7.33 
3.00 

0.0545 
0.0332 

EvC
hl-Pic-2-F 

Picton 
0.42 

22.31 
1.58 

0.72 
0.043 

0.024 
1.759 

14.22 
7.31 

0.172 
 

 
 

0.0326 
EvC

hl-Pic-2-G
 

Picton 
0.44 

20.63 
1.62 

0.93 
0.043 

0.027 
1.577 

 
 

 
 

 
 

0.0334 
EvC

hl-Pic-2-H
 

Picton 
0.41 

21.07 
1.53 

0.78 
0.039 

0.023 
1.689 

 
 

 
 

 
 

0.0330 
EvC

hl-Pic-2-I 
Picton 

0.40 
20.94 

1.64 
0.90 

0.044 
0.027 

1.622 
 

 
 

 
 

 
0.0329 

EvC
hl-Pic-2-J 

Picton 
0.41 

21.68 
1.60 

0.85 
0.045 

0.026 
1.719 

 
 

 
 

 
 

 
EvC

hl-Pic-3-A 
Picton 

0.42 
22.92 

1.71 
0.84 

0.047 
0.030 

1.558 
16.00 

8.37 
0.238 

8.84 
3.21 

0.0890 
0.0484 

EvC
hl-Pic-3-B 

Picton 
0.41 

22.12 
1.75 

0.86 
0.045 

0.031 
1.464 

16.12 
8.44 

0.236 
8.94 

3.15 
0.0910 

0.0483 
EvC

hl-Pic-3-C
 

Picton 
0.40 

20.01 
1.67 

0.94 
0.046 

0.027 
1.687 

15.91 
8.36 

0.230 
8.88 

3.10 
0.0901 

0.0479 
EvC

hl-Pic-3-D
 

Picton 
0.40 

22.82 
1.56 

0.64 
0.041 

0.023 
1.766 

15.80 
8.34 

0.235 
8.86 

3.26 
0.0902 

0.0491 
EvC

hl-Pic-3-E 
Picton 

0.41 
20.36 

1.57 
0.79 

0.036 
0.023 

1.576 
15.93 

8.44 
0.233 

8.88 
3.17 

0.0890 
0.0497 

EvC
hl-Pic-3-F 

Picton 
0.39 

22.68 
1.66 

0.90 
0.050 

0.030 
1.655 

16.29 
8.44 

0.242 
 

 
 

0.0488 
EvC

hl-Pic-3-G
 

Picton 
0.38 

22.13 
1.56 

0.80 
0.048 

0.025 
1.925 

15.95 
8.24 

0.233 
 

 
 

0.0483 
EvC

hl-Pic-3-H
 

Picton 
0.42 

22.49 
1.61 

0.93 
0.050 

0.029 
1.709 

15.73 
8.50 

0.240 
 

 
 

0.0490 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-7 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Pic-3-I 
Picton 

0.40 
19.34 

1.42 
0.64 

0.029 
0.017 

1.722 
15.81 

8.40 
0.237 

 
 

 
0.0509 

EvC
hl-Pic-3-J 

Picton 
0.41 

21.90 
1.75 

0.67 
0.039 

0.027 
1.436 

15.22 
8.43 

0.234 
 

 
 

0.0468 
EvC

hl-Pic-4-A 
Picton 

0.36 
21.93 

1.67 
0.98 

0.037 
0.031 

1.204 
14.33 

7.15 
0.172 

7.48 
2.93 

0.0515 
0.0247 

EvC
hl-Pic-4-B 

Picton 
0.35 

19.91 
1.62 

0.86 
0.034 

0.025 
1.352 

14.40 
7.20 

0.171 
7.42 

2.93 
0.0518 

0.0239 
EvC

hl-Pic-4-C
 

Picton 
0.34 

18.53 
1.55 

0.99 
0.032 

0.024 
1.338 

14.49 
7.14 

0.170 
7.46 

2.87 
0.0519 

0.0256 
EvC

hl-Pic-4-D
 

Picton 
0.36 

20.81 
1.62 

0.87 
0.034 

0.026 
1.294 

14.50 
7.45 

0.171 
7.36 

2.86 
0.0509 

0.0237 
EvC

hl-Pic-4-E 
Picton 

0.35 
20.79 

1.57 
0.94 

0.034 
0.026 

1.291 
14.33 

7.06 
0.171 

7.48 
2.84 

0.0522 
0.0248 

EvC
hl-Pic-4-F 

Picton 
0.36 

21.42 
1.58 

0.93 
0.035 

0.027 
1.277 

14.38 
7.17 

0.175 
 

 
 

0.0252 
EvC

hl-Pic-4-G
 

Picton 
0.34 

18.50 
1.52 

0.87 
0.032 

0.021 
1.524 

14.39 
7.22 

0.174 
 

 
 

0.0241 
EvC

hl-Pic-4-H
 

Picton 
0.36 

20.75 
1.58 

0.71 
0.031 

0.022 
1.391 

14.51 
7.13 

0.172 
 

 
 

0.0249 
EvC

hl-Pic-4-I 
Picton 

0.34 
19.11 

1.57 
0.99 

0.037 
0.025 

1.483 
 

 
 

 
 

 
0.0243 

EvC
hl-Pic-4-J 

Picton 
0.35 

19.02 
1.51 

1.01 
0.035 

0.024 
1.451 

 
 

 
 

 
 

 
EvC

hl-Pic-5-A 
Picton 

0.33 
21.56 

1.51 
0.80 

0.038 
0.023 

1.619 
13.81 

6.88 
0.159 

6.92 
2.79 

0.0463 
0.0253 

EvC
hl-Pic-5-B 

Picton 
0.32 

21.75 
1.53 

0.73 
0.038 

0.023 
1.666 

13.96 
6.84 

0.156 
7.06 

2.76 
0.0477 

0.0264 
EvC

hl-Pic-5-C
 

Picton 
0.34 

21.83 
1.51 

0.87 
0.042 

0.025 
1.679 

13.82 
6.73 

0.155 
6.87 

2.75 
0.0468 

0.0257 
EvC

hl-Pic-5-D
 

Picton 
0.35 

22.08 
1.50 

0.82 
0.042 

0.024 
1.755 

13.84 
6.75 

0.157 
6.84 

2.71 
0.0462 

0.0257 
EvC

hl-Pic-5-E 
Picton 

0.32 
20.48 

1.56 
0.71 

0.036 
0.022 

1.676 
13.83 

6.77 
0.155 

6.95 
2.77 

0.0467 
0.0251 

EvC
hl-Pic-5-F 

Picton 
0.34 

19.93 
1.56 

0.68 
0.032 

0.021 
1.534 

13.94 
6.88 

0.159 
 

 
 

0.0252 
EvC

hl-Pic-5-G
 

Picton 
0.35 

22.68 
1.54 

0.72 
0.041 

0.024 
1.719 

13.87 
6.74 

0.156 
 

 
 

0.0254 
EvC

hl-Pic-5-H
 

Picton 
0.36 

18.17 
1.55 

1.02 
0.037 

0.024 
1.560 

13.85 
6.89 

0.157 
 

 
 

0.0251 
EvC

hl-Pic-5-I 
Picton 

0.34 
19.09 

1.49 
0.86 

0.033 
0.021 

1.567 
 

 
 

 
 

 
0.0254 

EvC
hl-Pic-5-J 

Picton 
0.35 

17.78 
1.42 

0.93 
0.031 

0.020 
1.589 

 
 

 
 

 
 

0.0254 
EvC

hl-Pic-6-A 
Picton 

0.41 
22.41 

1.54 
0.76 

0.034 
0.024 

1.399 
15.97 

7.62 
0.190 

8.03 
3.02 

0.0605 
0.0287 

EvC
hl-Pic-6-B 

Picton 
0.42 

21.60 
1.60 

0.68 
0.036 

0.023 
1.535 

15.77 
7.65 

0.187 
7.96 

3.01 
0.0595 

0.0289 
EvC

hl-Pic-6-C
 

Picton 
0.40 

20.52 
1.57 

0.76 
0.036 

0.023 
1.586 

15.99 
7.69 

0.195 
7.87 

2.91 
0.0581 

0.0292 
EvC

hl-Pic-6-D
 

Picton 
0.38 

22.74 
1.72 

0.65 
0.037 

0.027 
1.384 

16.01 
7.59 

0.190 
7.92 

3.01 
0.0596 

0.0291 
EvC

hl-Pic-6-E 
Picton 

0.39 
22.54 

1.52 
0.83 

0.044 
0.025 

1.732 
15.98 

7.80 
0.200 

7.84 
2.85 

0.0582 
0.0291 

EvC
hl-Pic-6-F 

Picton 
0.34 

20.14 
1.45 

0.88 
0.034 

0.022 
1.575 

15.76 
7.22 

0.184 
 

 
 

0.0284 
EvC

hl-Pic-6-G
 

Picton 
0.39 

20.69 
1.58 

0.81 
0.038 

0.024 
1.592 

16.01 
7.80 

0.192 
 

 
 

0.0290 
EvC

hl-Pic-6-H
 

Picton 
0.41 

22.39 
1.66 

0.76 
0.037 

0.027 
1.379 

15.79 
7.65 

0.187 
 

 
 

0.0293 
EvC

hl-Pic-6-I 
Picton 

0.42 
21.48 

1.57 
0.77 

0.034 
0.024 

1.417 
15.9 

7.86 
0.193 

 
 

 
0.0284 

EvC
hl-Pic-6-J 

Picton 
0.40 

20.19 
1.55 

0.90 
0.037 

0.024 
1.502 

 
 

 
 

 
 

0.0286 
EvC

hl-Pic-7-A 
Picton 

0.39 
23.17 

1.60 
0.89 

0.048 
0.029 

1.653 
14.35 

7.00 
0.182 

7.13 
2.95 

0.0556 
0.0321 

EvC
hl-Pic-7-B 

Picton 
0.39 

22.12 
1.50 

0.89 
0.043 

0.025 
1.707 

14.35 
7.04 

0.179 
7.15 

2.89 
0.0562 

0.0307 
EvC

hl-Pic-7-C
 

Picton 
0.34 

20.98 
1.61 

0.94 
0.036 

0.027 
1.317 

14.51 
7.17 

0.182 
7.14 

2.85 
0.0563 

0.0307 
EvC

hl-Pic-7-D
 

Picton 
0.36 

19.30 
1.30 

0.78 
0.029 

0.017 
1.744 

14.46 
7.01 

0.182 
7.23 

2.87 
0.0560 

0.0318 
EvC

hl-Pic-7-E 
Picton 

0.40 
20.16 

1.50 
0.72 

0.037 
0.020 

1.820 
14.47 

7.27 
0.183 

7.07 
 

 
0.0310 

EvC
hl-Pic-7-F 

Picton 
0.38 

20.57 
1.57 

0.94 
0.042 

0.026 
1.625 

14.38 
7.15 

0.184 
 

 
 

0.0311 
EvC

hl-Pic-7-G
 

Picton 
0.36 

22.63 
1.54 

0.90 
0.044 

0.027 
1.634 

14.4 
7.11 

0.180 
 

 
 

0.0318 
EvC

hl-Pic-7-H
 

Picton 
0.30 

20.36 
1.53 

0.61 
0.035 

0.019 
1.789 

14.37 
7.30 

0.182 
 

 
 

0.0315 
EvC

hl-Pic-7-I 
Picton 

0.36 
19.24 

1.53 
0.99 

0.042 
0.024 

1.724 
14.33 

7.15 
0.181 

 
 

 
0.0310 

EvC
hl-Pic-7-J 

Picton 
0.37 

21.52 
1.52 

1.00 
0.041 

0.027 
1.511 

14.4 
7.32 

0.185 
 

 
 

 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-8 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Pic-8-A 
Picton 

0.38 
23.52 

1.57 
0.80 

0.042 
0.027 

1.575 
16.02 

7.43 
0.205 

7.77 
3.02 

0.0618 
0.0326 

EvC
hl-Pic-8-B 

Picton 
0.39 

22.38 
1.55 

0.81 
0.041 

0.025 
1.613 

16.04 
7.52 

0.202 
7.71 

3.07 
0.0619 

0.0333 
EvC

hl-Pic-8-C
 

Picton 
0.37 

22.36 
1.52 

0.94 
0.049 

0.027 
1.799 

15.54 
7.23 

0.201 
7.71 

2.98 
0.0600 

0.0330 
EvC

hl-Pic-8-D
 

Picton 
0.39 

23.27 
1.60 

0.92 
0.049 

0.030 
1.638 

16.01 
7.49 

0.207 
7.64 

3.01 
0.0615 

0.0326 
EvC

hl-Pic-8-E 
Picton 

0.39 
22.47 

1.63 
0.76 

0.043 
0.026 

1.639 
15.56 

7.46 
0.205 

7.67 
2.99 

0.0602 
0.0330 

EvC
hl-Pic-8-F 

Picton 
0.40 

22.54 
1.62 

0.97 
0.047 

0.030 
1.554 

15.95 
7.33 

0.202 
 

 
 

0.0331 
EvC

hl-Pic-8-G
 

Picton 
0.37 

21.67 
1.63 

0.80 
0.042 

0.026 
1.592 

15.85 
7.51 

0.205 
 

 
 

0.0331 
EvC

hl-Pic-8-H
 

Picton 
0.42 

20.20 
1.62 

0.95 
0.043 

0.027 
1.605 

15.92 
7.38 

0.206 
 

 
 

0.0340 
EvC

hl-Pic-8-I 
Picton 

0.41 
21.30 

1.42 
0.68 

0.036 
0.019 

1.867 
15.98 

7.40 
0.204 

 
 

 
0.0329 

EvC
hl-Pic-8-J 

Picton 
0.39 

21.01 
1.44 

0.63 
0.033 

0.019 
1.801 

15.55 
7.30 

0.203 
 

 
 

0.0340 
EvC

hl-Pic-9-A 
Picton 

0.40 
24.98 

1.59 
0.68 

0.050 
0.027 

1.863 
16.11 

7.65 
0.203 

7.65 
2.97 

0.0579 
0.0331 

EvC
hl-Pic-9-B 

Picton 
0.40 

23.62 
1.68 

0.73 
0.039 

0.028 
1.392 

16.08 
7.64 

0.198 
7.70 

2.88 
0.0579 

0.0339 
EvC

hl-Pic-9-C
 

Picton 
0.41 

20.50 
1.47 

0.62 
0.032 

0.019 
1.726 

16.03 
7.60 

0.198 
7.70 

2.83 
0.0573 

0.0338 
EvC

hl-Pic-9-D
 

Picton 
0.42 

21.00 
1.73 

0.90 
0.042 

0.029 
1.418 

16.16 
7.66 

0.201 
7.66 

2.89 
0.0586 

0.0334 
EvC

hl-Pic-9-E 
Picton 

0.41 
21.06 

1.69 
0.91 

0.046 
0.029 

1.583 
16.03 

7.44 
0.196 

7.82 
2.81 

0.0585 
0.0336 

EvC
hl-Pic-9-F 

Picton 
0.40 

22.71 
1.76 

0.82 
0.045 

0.031 
1.465 

16.11 
7.32 

0.202 
 

 
 

0.0335 
EvC

hl-Pic-9-G
 

Picton 
0.43 

21.18 
1.61 

0.80 
0.045 

0.025 
1.781 

15.81 
7.41 

0.199 
 

 
 

0.0331 
EvC

hl-Pic-9-H
 

Picton 
0.41 

19.92 
1.47 

0.64 
0.029 

0.018 
1.606 

16.06 
7.64 

0.199 
 

 
 

0.0330 
EvC

hl-Pic-9-I 
Picton 

0.41 
23.76 

1.60 
0.81 

0.044 
0.028 

1.554 
16.02 

7.58 
0.205 

 
 

 
0.0340 

EvC
hl-Pic-9-J 

Picton 
0.42 

21.01 
1.63 

0.70 
0.043 

0.024 
1.831 

16.18 
7.53 

0.200 
 

 
 

0.0335 
EvC

hl-Pic-10-A 
Picton 

0.39 
20.88 

1.62 
0.86 

0.038 
0.026 

1.478 
14.91 

7.37 
0.176 

7.70 
3.05 

0.0612 
0.0322 

EvC
hl-Pic-10-B 

Picton 
0.38 

21.66 
1.53 

0.88 
0.043 

0.025 
1.707 

14.79 
6.93 

0.179 
7.77 

3.10 
0.0617 

0.0319 
EvC

hl-Pic-10-C
 

Picton 
0.37 

22.21 
1.61 

0.97 
0.046 

0.030 
1.566 

14.86 
7.37 

0.175 
7.69 

3.08 
0.0617 

0.0311 
EvC

hl-Pic-10-D
 

Picton 
0.38 

20.56 
1.61 

0.95 
0.043 

0.027 
1.591 

15.19 
7.39 

0.178 
7.76 

3.05 
0.0613 

0.0310 
EvC

hl-Pic-10-E 
Picton 

0.39 
20.55 

1.59 
0.96 

0.044 
0.027 

1.632 
15.09 

7.49 
0.179 

7.86 
3.15 

0.0630 
0.0314 

EvC
hl-Pic-10-F 

Picton 
0.38 

21.11 
1.53 

0.65 
0.037 

0.021 
1.793 

14.93 
7.52 

0.175 
 

 
 

0.0311 
EvC

hl-Pic-10-G
 

Picton 
0.37 

20.83 
1.65 

0.78 
0.038 

0.025 
1.508 

14.28 
7.64 

0.188 
 

 
 

0.0320 
EvC

hl-Pic-10-H
 

Picton 
0.36 

21.74 
1.51 

0.74 
0.036 

0.022 
1.605 

14.97 
7.58 

0.180 
 

 
 

0.0314 
EvC

hl-Pic-10-I 
Picton 

0.38 
19.47 

1.65 
0.94 

0.040 
0.026 

1.505 
14.67 

7.58 
0.164 

 
 

 
0.0306 

EvC
hl-Pic-10-J 

Picton 
0.37 

20.09 
1.58 

1.00 
0.040 

0.027 
1.509 

 
 

 
 

 
 

0.0321 

 

Table 7.5 
R

aw
 data for skeletal elem

ents of E
vechinus chloroticus collected from

 Auckland, N
ew

 Zealand 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Akl-1-A 
Auckland 

0.29 
17.66 

1.51 
0.63 

0.029 
0.017 

1.740 
11.84 

5.55 
0.092 

5.91 
2.32 

0.0252 
0.0152 

EvC
hl-Akl-1-B 

Auckland 
0.28 

19.41 
1.47 

0.59 
0.030 

0.017 
1.765 

11.95 
5.59 

0.093 
5.72 

2.31 
0.0254 

0.0154 
EvC

hl-Akl-1-C
 

Auckland 
0.29 

19.69 
1.41 

0.56 
0.028 

0.016 
1.746 

12.08 
5.56 

0.091 
5.76 

2.30 
0.0260 

0.0158 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-9 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Akl-1-D
 

Auckland 
0.26 

18.70 
1.34 

0.56 
0.026 

0.014 
1.844 

12.09 
5.49 

0.091 
5.70 

2.28 
0.0256 

0.0151 
EvC

hl-Akl-1-E 
Auckland 

0.30 
17.43 

1.53 
0.63 

0.029 
0.017 

1.696 
12.18 

5.58 
0.088 

5.74 
2.31 

0.0249 
0.0158 

EvC
hl-Akl-1-F 

Auckland 
0.31 

18.89 
1.24 

0.67 
0.027 

0.014 
1.948 

12.14 
5.53 

0.090 
 

 
 

0.0154 
EvC

hl-Akl-1-G
 

Auckland 
0.39 

17.02 
1.39 

0.69 
0.026 

0.015 
1.753 

12.22 
5.49 

0.090 
 

 
 

0.0167 
EvC

hl-Akl-1-H
 

Auckland 
0.29 

18.07 
1.23 

0.60 
0.023 

0.012 
1.875 

12.03 
5.61 

0.093 
 

 
 

0.0154 
EvC

hl-Akl-1-I 
Auckland 

0.28 
17.43 

1.50 
0.57 

0.025 
0.016 

1.595 
12.11 

5.45 
0.090 

 
 

 
0.0158 

EvC
hl-Akl-1-J 

Auckland 
0.28 

17.10 
1.32 

0.62 
0.024 

0.013 
1.785 

 
 

 
 

 
 

 
EvC

hl-Akl-2-A 
Auckland 

0.31 
19.41 

1.33 
0.60 

0.028 
0.015 

1.891 
12.99 

6.10 
0.114 

6.28 
2.64 

0.0329 
0.0197 

EvC
hl-Akl-2-B 

Auckland 
0.31 

18.24 
1.47 

0.59 
0.029 

0.016 
1.781 

12.91 
5.99 

0.111 
6.38 

2.67 
0.0348 

0.0195 
EvC

hl-Akl-2-C
 

Auckland 
0.30 

16.55 
1.36 

0.73 
0.026 

0.015 
1.796 

12.97 
6.03 

0.111 
6.41 

2.48 
0.0342 

0.0199 
EvC

hl-Akl-2-D
 

Auckland 
0.29 

18.95 
1.48 

0.59 
0.032 

0.017 
1.879 

13.07 
6.20 

0.114 
6.35 

2.43 
0.0331 

0.0199 
EvC

hl-Akl-2-E 
Auckland 

0.31 
16.62 

1.42 
0.52 

0.027 
0.013 

2.042 
13.07 

5.90 
0.115 

6.32 
2.44 

0.0330 
0.0203 

EvC
hl-Akl-2-F 

Auckland 
0.29 

18.31 
1.58 

0.58 
0.029 

0.018 
1.613 

12.95 
6.02 

0.114 
 

 
 

0.0196 
EvC

hl-Akl-2-G
 

Auckland 
0.31 

17.42 
1.39 

0.81 
0.027 

0.017 
1.582 

12.76 
5.91 

0.114 
 

 
 

0.0191 
EvC

hl-Akl-2-H
 

Auckland 
0.30 

16.51 
1.49 

0.71 
0.025 

0.016 
1.544 

12.97 
6.02 

0.111 
 

 
 

0.0193 
EvC

hl-Akl-2-I 
Auckland 

0.29 
17.28 

1.27 
0.52 

0.025 
0.012 

2.215 
12.92 

6.03 
0.113 

 
 

 
0.0197 

EvC
hl-Akl-2-J 

Auckland 
0.29 

16.58 
1.43 

0.86 
0.030 

0.017 
1.744 

12.91 
6.14 

0.112 
 

 
 

0.0193 
EvC

hl-Akl-3-A 
Auckland 

0.31 
18.68 

1.59 
0.87 

0.037 
0.023 

1.611 
13.56 

6.70 
0.138 

6.84 
2.75 

0.0434 
0.0259 

EvC
hl-Akl-3-B 

Auckland 
0.33 

18.52 
1.64 

0.90 
0.037 

0.024 
1.547 

13.48 
6.67 

0.136 
6.78 

2.79 
0.0443 

0.0258 
EvC

hl-Akl-3-C
 

Auckland 
0.32 

19.57 
1.75 

0.67 
0.039 

0.024 
1.641 

13.63 
6.82 

0.135 
6.95 

2.67 
0.0437 

0.0263 
EvC

hl-Akl-3-D
 

Auckland 
0.35 

18.22 
1.54 

0.92 
0.038 

0.022 
1.735 

13.65 
6.72 

0.135 
6.99 

2.79 
0.0444 

0.0257 
EvC

hl-Akl-3-E 
Auckland 

0.34 
18.24 

1.49 
0.69 

0.036 
0.018 

2.038 
13.66 

6.63 
0.136 

6.88 
2.62 

0.0451 
0.0256 

EvC
hl-Akl-3-F 

Auckland 
0.35 

17.25 
1.46 

0.95 
0.037 

0.020 
1.858 

13.60 
6.60 

0.138 
 

 
 

0.0259 
EvC

hl-Akl-3-G
 

Auckland 
0.34 

18.03 
1.57 

0.97 
0.040 

0.023 
1.730 

13.47 
6.81 

0.138 
 

 
 

0.0260 
EvC

hl-Akl-3-H
 

Auckland 
0.33 

18.68 
1.33 

0.57 
0.026 

0.014 
1.845 

13.58 
6.77 

0.138 
 

 
 

0.0251 
EvC

hl-Akl-3-I 
Auckland 

0.33 
18.23 

1.45 
0.61 

0.036 
0.016 

2.259 
13.39 

6.74 
0.135 

 
 

 
0.0269 

EvC
hl-Akl-3-J 

Auckland 
0.34 

18.22 
1.54 

0.79 
0.035 

0.020 
1.757 

 
 

 
 

 
 

0.0258 
EvC

hl-Akl-4-A 
Auckland 

0.34 
17.41 

1.23 
0.63 

0.032 
0.012 

2.621 
12.55 

6.08 
0.103 

6.51 
2.34 

0.0310 
0.0181 

EvC
hl-Akl-4-B 

Auckland 
0.33 

18.87 
1.39 

0.76 
0.030 

0.018 
1.718 

12.55 
6.12 

0.107 
6.59 

2.18 
0.0296 

0.0182 
EvC

hl-Akl-4-C
 

Auckland 
0.31 

21.00 
1.53 

0.78 
0.036 

0.023 
1.572 

12.68 
6.11 

0.106 
6.27 

2.22 
0.0290 

0.0189 
EvC

hl-Akl-4-D
 

Auckland 
0.34 

19.14 
1.51 

0.73 
0.032 

0.020 
1.646 

12.58 
5.99 

0.105 
6.39 

2.18 
0.0295 

0.0188 
EvC

hl-Akl-4-E 
Auckland 

0.34 
18.39 

1.47 
0.77 

0.032 
0.019 

1.732 
12.70 

6.10 
0.107 

 
 

 
0.0180 

EvC
hl-Akl-4-F 

Auckland 
0.30 

18.94 
1.35 

0.93 
0.033 

0.020 
1.704 

12.54 
6.14 

0.105 
 

 
 

0.0183 
EvC

hl-Akl-4-G
 

Auckland 
0.31 

17.74 
1.26 

0.80 
0.029 

0.015 
1.902 

12.57 
5.97 

0.106 
 

 
 

0.0186 
EvC

hl-Akl-4-H
 

Auckland 
0.32 

18.64 
1.44 

0.87 
0.034 

0.020 
1.710 

12.48 
6.03 

0.103 
 

 
 

0.0182 
EvC

hl-Akl-4-I 
Auckland 

0.34 
17.90 

1.37 
0.60 

0.029 
0.014 

2.024 
 

 
 

 
 

 
0.0187 

EvC
hl-Akl-4-J 

Auckland 
0.33 

17.48 
1.41 

0.72 
0.032 

0.016 
1.963 

 
 

 
 

 
 

 
EvC

hl-Akl-5-A 
Auckland 

0.31 
18.61 

1.48 
0.57 

0.029 
0.016 

1.751 
12.97 

6.28 
0.111 

6.51 
2.33 

0.0365 
0.0202 

EvC
hl-Akl-5-B 

Auckland 
0.31 

17.95 
1.38 

0.73 
0.027 

0.016 
1.697 

12.99 
6.25 

0.111 
6.72 

2.32 
0.0352 

0.0200 
EvC

hl-Akl-5-C
 

Auckland 
0.32 

17.17 
1.38 

0.74 
0.026 

0.016 
1.637 

12.98 
6.15 

0.112 
6.53 

2.31 
0.0359 

0.0193 
EvC

hl-Akl-5-D
 

Auckland 
0.33 

18.07 
1.54 

0.72 
0.030 

0.019 
1.565 

13.02 
6.18 

0.111 
6.56 

2.38 
0.0356 

0.0193 
EvC

hl-Akl-5-E 
Auckland 

0.34 
16.80 

1.55 
0.65 

0.026 
0.017 

1.519 
12.93 

6.27 
0.111 

6.66 
2.41 

0.0369 
0.0204 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-10 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Akl-5-F 
Auckland 

0.34 
17.80 

1.43 
0.70 

0.028 
0.016 

1.705 
13.07 

6.25 
0.109 

 
 

 
0.0195 

EvC
hl-Akl-5-G

 
Auckland 

0.35 
15.75 

1.23 
0.65 

0.022 
0.011 

1.938 
13.00 

6.35 
0.111 

 
 

 
0.0196 

EvC
hl-Akl-5-H

 
Auckland 

0.34 
15.99 

1.46 
0.87 

0.026 
0.017 

1.522 
13.16 

6.21 
0.116 

 
 

 
0.0213 

EvC
hl-Akl-5-I 

Auckland 
0.35 

16.68 
1.31 

0.63 
0.024 

0.013 
1.885 

13.00 
6.24 

0.112 
 

 
 

0.0197 
EvC

hl-Akl-5-J 
Auckland 

0.33 
16.17 

1.36 
0.78 

0.026 
0.015 

1.769 
12.99 

6.18 
0.109 

 
 

 
0.0195 

EvC
hl-Akl-6-A 

Auckland 
0.31 

19.34 
1.25 

0.48 
0.025 

0.012 
2.071 

10.98 
5.56 

0.078 
6.02 

2.30 
0.0282 

0.0161 
EvC

hl-Akl-6-B 
Auckland 

0.30 
18.16 

1.43 
0.56 

0.025 
0.015 

1.632 
11.03 

5.57 
0.079 

5.90 
2.34 

0.0277 
0.0159 

EvC
hl-Akl-6-C

 
Auckland 

0.29 
17.66 

1.28 
0.52 

0.022 
0.012 

1.808 
11.05 

5.83 
0.081 

5.97 
2.30 

0.0284 
0.0159 

EvC
hl-Akl-6-D

 
Auckland 

0.28 
18.67 

1.43 
0.62 

0.026 
0.016 

1.594 
11.07 

5.47 
0.078 

5.99 
2.27 

0.0282 
0.0161 

EvC
hl-Akl-6-E 

Auckland 
0.30 

18.52 
1.31 

0.61 
0.023 

0.014 
1.669 

11.09 
5.58 

0.080 
5.89 

2.29 
0.0284 

0.0161 
EvC

hl-Akl-6-F 
Auckland 

0.30 
18.58 

1.39 
0.65 

0.024 
0.016 

1.499 
11.09 

5.64 
0.078 

 
 

 
0.0163 

EvC
hl-Akl-6-G

 
Auckland 

0.31 
18.13 

1.22 
0.67 

0.025 
0.013 

1.927 
11.11 

5.59 
0.078 

 
 

 
0.0159 

EvC
hl-Akl-6-H

 
Auckland 

0.29 
20.27 

1.39 
0.68 

0.028 
0.018 

1.581 
10.97 

5.60 
0.078 

 
 

 
0.0164 

EvC
hl-Akl-6-I 

Auckland 
0.27 

20.66 
1.32 

0.67 
0.028 

0.017 
1.685 

10.94 
5.74 

0.079 
 

 
 

0.0162 
EvC

hl-Akl-6-J 
Auckland 

0.31 
17.44 

1.37 
0.51 

0.021 
0.013 

1.643 
10.99 

5.42 
0.080 

 
 

 
0.0158 

EvC
hl-Akl-7-A 

Auckland 
0.27 

19.95 
1.61 

0.71 
0.031 

0.022 
1.418 

11.15 
5.12 

0.067 
5.37 

2.25 
0.0225 

0.0139 
EvC

hl-Akl-7-B 
Auckland 

0.27 
16.95 

1.35 
0.64 

0.022 
0.014 

1.616 
11.05 

5.20 
0.068 

5.31 
2.09 

0.0221 
0.0137 

EvC
hl-Akl-7-C

 
Auckland 

0.26 
17.90 

1.38 
0.59 

0.025 
0.014 

1.758 
11.02 

5.14 
0.069 

5.49 
2.16 

0.0224 
0.0139 

EvC
hl-Akl-7-D

 
Auckland 

0.27 
17.63 

1.38 
0.70 

0.027 
0.016 

1.717 
11.10 

5.47 
0.069 

5.39 
2.06 

0.0222 
0.0143 

EvC
hl-Akl-7-E 

Auckland 
0.27 

15.97 
1.39 

0.54 
0.022 

0.012 
1.775 

11.23 
5.20 

0.068 
5.43 

2.09 
0.0227 

0.0138 
EvC

hl-Akl-7-F 
Auckland 

0.26 
17.19 

1.35 
0.57 

0.022 
0.013 

1.684 
10.84 

5.23 
0.070 

 
 

 
0.0139 

EvC
hl-Akl-7-G

 
Auckland 

0.28 
17.20 

1.43 
0.69 

0.026 
0.016 

1.640 
10.97 

5.49 
0.068 

 
 

 
0.0138 

EvC
hl-Akl-7-H

 
Auckland 

0.28 
15.97 

1.53 
0.65 

0.023 
0.016 

1.477 
11.10 

5.11 
0.069 

 
 

 
0.0140 

EvC
hl-Akl-7-I 

Auckland 
0.24 

16.60 
1.48 

0.69 
0.024 

0.016 
1.482 

11.37 
5.53 

0.068 
 

 
 

0.0139 
EvC

hl-Akl-7-J 
Auckland 

0.26 
15.72 

1.34 
0.54 

0.021 
0.012 

1.807 
11.10 

5.16 
0.069 

 
 

 
0.0138 

EvC
hl-Akl-8-A 

Auckland 
0.26 

19.11 
1.51 

0.69 
0.030 

0.019 
1.567 

11.19 
5.36 

0.085 
5.81 

2.26 
0.0265 

0.0168 
EvC

hl-Akl-8-B 
Auckland 

0.27 
18.11 

1.37 
0.55 

0.029 
0.014 

2.054 
11.41 

5.40 
0.085 

5.84 
2.29 

0.0275 
0.0182 

EvC
hl-Akl-8-C

 
Auckland 

0.28 
18.68 

1.39 
0.64 

0.029 
0.016 

1.841 
11.22 

5.49 
0.084 

5.78 
2.28 

0.0269 
0.0185 

EvC
hl-Akl-8-D

 
Auckland 

0.29 
17.88 

1.38 
0.75 

0.031 
0.016 

1.900 
11.31 

5.15 
0.085 

5.84 
2.28 

0.0269 
0.0172 

EvC
hl-Akl-8-E 

Auckland 
0.31 

17.86 
1.28 

0.54 
0.027 

0.012 
2.214 

11.47 
5.37 

0.086 
5.91 

2.23 
0.0271 

0.0184 
EvC

hl-Akl-8-F 
Auckland 

0.31 
16.91 

1.24 
0.73 

0.026 
0.013 

1.983 
11.32 

5.32 
0.082 

 
 

 
0.0173 

EvC
hl-Akl-8-G

 
Auckland 

0.32 
17.06 

1.43 
0.77 

0.031 
0.017 

1.858 
11.26 

5.44 
0.085 

 
 

 
0.0173 

EvC
hl-Akl-8-H

 
Auckland 

0.29 
17.03 

1.30 
0.72 

0.029 
0.014 

2.084 
11.42 

5.34 
0.084 

 
 

 
0.0177 

EvC
hl-Akl-8-I 

Auckland 
0.28 

16.66 
1.24 

0.50 
0.024 

0.011 
2.265 

11.25 
5.47 

0.084 
 

 
 

0.0172 
EvC

hl-Akl-8-J 
Auckland 

0.31 
16.12 

1.37 
0.84 

0.027 
0.016 

1.707 
11.37 

5.50 
0.086 

 
 

 
0.0183 

EvC
hl-Akl-9-A 

Auckland 
0.33 

19.19 
1.63 

0.79 
0.038 

0.023 
1.675 

14.64 
6.55 

0.145 
6.82 

2.71 
0.0455 

0.0260 
EvC

hl-Akl-9-B 
Auckland 

0.34 
18.30 

1.52 
0.87 

0.036 
0.021 

1.727 
14.37 

6.46 
0.144 

6.74 
2.69 

0.0443 
0.0266 

EvC
hl-Akl-9-C

 
Auckland 

0.33 
17.64 

1.57 
0.79 

0.034 
0.020 

1.711 
14.62 

6.47 
0.144 

6.74 
2.71 

0.0443 
0.0265 

EvC
hl-Akl-9-D

 
Auckland 

0.31 
19.48 

1.52 
0.79 

0.036 
0.021 

1.703 
14.40 

6.49 
0.138 

7.01 
2.69 

0.0447 
0.0264 

EvC
hl-Akl-9-E 

Auckland 
0.33 

17.64 
1.53 

0.65 
0.035 

0.017 
2.008 

14.53 
6.54 

0.144 
7.04 

2.71 
0.0451 

0.0263 
EvC

hl-Akl-9-F 
Auckland 

0.34 
19.68 

1.43 
0.77 

0.039 
0.019 

2.016 
14.49 

5.99 
0.143 

 
 

 
0.0267 

EvC
hl-Akl-9-G

 
Auckland 

0.33 
17.62 

1.59 
0.88 

0.042 
0.022 

1.919 
14.41 

6.45 
0.144 

 
 

 
0.0266 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-11 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-Akl-9-H
 

Auckland 
0.34 

18.32 
1.47 

0.85 
0.036 

0.020 
1.824 

14.28 
6.52 

0.144 
 

 
 

0.0265 
EvC

hl-Akl-9-I 
Auckland 

0.32 
18.08 

1.41 
0.85 

0.033 
0.019 

1.765 
14.47 

6.46 
0.147 

 
 

 
0.0271 

EvC
hl-Akl-9-J 

Auckland 
0.33 

17.12 
1.72 

0.70 
0.033 

0.021 
1.592 

14.60 
6.56 

0.145 
 

 
 

0.0269 
EvC

hl-Akl-10-A 
Auckland 

0.32 
18.18 

1.48 
0.68 

0.032 
0.017 

1.842 
12.08 

5.51 
0.084 

5.93 
2.28 

0.0255 
0.0150 

EvC
hl-Akl-10-B 

Auckland 
0.31 

18.79 
1.47 

0.83 
0.033 

0.020 
1.642 

12.08 
5.74 

0.087 
5.91 

2.35 
0.0257 

0.0151 
EvC

hl-Akl-10-C
 

Auckland 
0.33 

18.26 
1.45 

0.73 
0.031 

0.018 
1.779 

12.15 
5.85 

0.085 
6.15 

2.26 
0.0255 

0.0150 
EvC

hl-Akl-10-D
 

Auckland 
0.32 

17.69 
1.44 

0.71 
0.024 

0.017 
1.458 

12.04 
5.82 

0.084 
5.96 

2.24 
0.0258 

0.0153 
EvC

hl-Akl-10-E 
Auckland 

0.33 
16.20 

1.39 
0.79 

0.028 
0.015 

1.777 
12.02 

5.67 
0.085 

5.86 
2.27 

0.0255 
0.0147 

EvC
hl-Akl-10-F 

Auckland 
0.33 

17.49 
1.40 

0.58 
0.027 

0.014 
1.865 

12.00 
5.82 

0.082 
 

 
 

0.0145 
EvC

hl-Akl-10-G
 

Auckland 
0.32 

17.91 
1.49 

0.62 
0.026 

0.017 
1.584 

11.87 
5.67 

0.085 
 

 
 

0.0147 
EvC

hl-Akl-10-H
 

Auckland 
0.31 

16.18 
1.25 

0.63 
0.024 

0.012 
2.032 

11.98 
5.64 

0.083 
 

 
 

0.0146 
EvC

hl-Akl-10-I 
Auckland 

0.30 
16.24 

1.47 
0.76 

0.029 
0.016 

1.742 
11.92 

5.65 
0.083 

 
 

 
0.0150 

EvC
hl-Akl-10-J 

Auckland 
0.31 

16.34 
1.23 

0.71 
0.024 

0.012 
1.944 

11.97 
5.77 

0.083 
 

 
 

0.0149 

 

Table 7.6 
R

aw
 data for skeletal elem

ents of E
vechinus chloroticus collected from

 W
hite Island, N

ew
 Zealand 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
hI-1-A 

W
hite Island 

0.35 
18.63 

1.57 
1.00 

0.041 
0.025 

1.681 
12.82 

6.32 
0.127 

6.78 
2.37 

0.0408 
0.0238 

EvC
hl-W

hI-1-B 
W

hite Island 
0.36 

20.33 
1.63 

0.84 
0.045 

0.025 
1.785 

12.9 
6.37 

0.129 
6.91 

2.32 
0.0430 

0.0230 
EvC

hl-W
hI-1-C

 
W

hite Island 
0.34 

20.14 
1.71 

0.92 
0.047 

0.028 
1.659 

12.81 
6.47 

0.129 
6.81 

2.36 
0.0409 

0.0225 
EvC

hl-W
hI-1-D

 
W

hite Island 
0.32 

19.45 
1.58 

1.00 
0.044 

0.026 
1.691 

12.90 
6.26 

0.130 
6.90 

2.38 
0.0430 

0.0229 
EvC

hl-W
hI-1-E 

W
hite Island 

0.34 
18.72 

1.47 
0.80 

0.037 
0.019 

1.889 
12.68 

6.40 
0.129 

6.78 
2.35 

0.0410 
0.0244 

EvC
hl-W

hI-1-F 
W

hite Island 
0.35 

18.74 
1.50 

0.83 
0.038 

0.021 
1.855 

12.73 
6.40 

0.130 
 

 
 

0.0233 
EvC

hl-W
hI-1-G

 
W

hite Island 
0.32 

18.65 
1.54 

0.87 
0.040 

0.022 
1.812 

12.61 
6.39 

0.127 
 

 
 

0.0238 
EvC

hl-W
hI-1-H

 
W

hite Island 
0.34 

19.27 
1.54 

0.78 
0.038 

0.021 
1.808 

12.85 
6.37 

0.128 
 

 
 

0.0234 
EvC

hl-W
hI-1-I 

W
hite Island 

0.35 
20.57 

1.47 
0.86 

0.041 
0.022 

1.817 
12.93 

6.41 
0.128 

 
 

 
0.0231 

EvC
hl-W

hI-1-J 
W

hite Island 
0.34 

16.50 
1.51 

0.95 
0.037 

0.020 
1.846 

12.39 
6.25 

0.126 
 

 
 

 
EvC

hl-W
hI-2-A 

W
hite Island 

0.35 
16.36 

1.33 
0.61 

0.024 
0.013 

1.932 
12.2 

6.31 
0.113 

6.40 
2.24 

0.0308 
0.0189 

EvC
hl-W

hI-2-B 
W

hite Island 
0.34 

17.23 
1.38 

0.83 
0.028 

0.017 
1.656 

12.29 
6.31 

0.115 
6.41 

2.23 
0.0307 

0.0190 
EvC

hl-W
hI-2-C

 
W

hite Island 
0.35 

17.48 
1.37 

0.73 
0.028 

0.016 
1.795 

12.05 
6.17 

0.113 
6.48 

2.23 
0.0309 

0.0192 
EvC

hl-W
hI-2-D

 
W

hite Island 
0.35 

17.98 
1.34 

0.77 
0.029 

0.016 
1.775 

11.95 
5.97 

0.114 
6.35 

2.19 
0.0298 

0.0187 
EvC

hl-W
hI-2-E 

W
hite Island 

0.36 
17.85 

1.33 
0.64 

0.027 
0.014 

1.897 
12.20 

6.19 
0.113 

6.38 
2.23 

0.0304 
0.0194 

EvC
hl-W

hI-2-F 
W

hite Island 
0.35 

17.65 
1.35 

0.72 
0.028 

0.015 
1.838 

12.24 
6.27 

0.111 
 

 
 

0.0185 
EvC

hl-W
hI-2-G

 
W

hite Island 
0.36 

15.51 
1.26 

0.96 
0.026 

0.015 
1.743 

12.15 
6.21 

0.114 
 

 
 

0.0187 
EvC

hl-W
hI-2-H

 
W

hite Island 
0.34 

16.02 
1.29 

0.74 
0.026 

0.013 
1.943 

12.31 
5.88 

0.112 
 

 
 

0.0191 
EvC

hl-W
hI-2-I 

W
hite Island 

0.33 
15.79 

1.29 
0.75 

0.024 
0.013 

1.837 
12.20 

6.07 
0.113 

 
 

 
0.0191 

EvC
hl-W

hI-2-J 
W

hite Island 
0.34 

14.92 
1.18 

0.63 
0.019 

0.010 
1.922 

12.38 
6.51 

0.113 
 

 
 

0.0190 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-12 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
hI-3-A 

W
hite Island 

0.35 
16.85 

1.33 
0.65 

0.030 
0.013 

2.240 
13.01 

6.42 
0.127 

6.93 
2.43 

0.0391 
0.0226 

EvC
hl-W

hI-3-B 
W

hite Island 
0.34 

16.95 
1.30 

0.55 
0.026 

0.012 
2.194 

12.99 
6.60 

0.129 
7.08 

2.42 
0.0392 

0.0237 
EvC

hl-W
hI-3-C

 
W

hite Island 
0.35 

16.17 
1.34 

0.72 
0.026 

0.014 
1.897 

12.82 
6.52 

0.127 
6.97 

2.39 
0.0375 

0.0226 
EvC

hl-W
hI-3-D

 
W

hite Island 
0.34 

17.30 
1.40 

0.77 
0.032 

0.016 
1.923 

13.05 
6.43 

0.128 
6.85 

2.42 
0.0386 

0.0242 
EvC

hl-W
hI-3-E 

W
hite Island 

0.32 
17.78 

1.29 
0.73 

0.032 
0.015 

2.194 
13.08 

6.66 
0.127 

6.90 
2.45 

0.0387 
0.0237 

EvC
hl-W

hI-3-F 
W

hite Island 
0.36 

17.03 
1.33 

0.72 
0.028 

0.014 
1.928 

12.94 
6.52 

0.128 
 

 
 

0.0230 
EvC

hl-W
hI-3-G

 
W

hite Island 
0.35 

16.83 
1.12 

0.52 
0.023 

0.009 
2.461 

13.15 
6.49 

0.129 
 

 
 

0.0237 
EvC

hl-W
hI-3-H

 
W

hite Island 
0.34 

18.67 
1.28 

0.63 
0.033 

0.014 
2.349 

12.90 
6.53 

0.131 
 

 
 

0.0231 
EvC

hl-W
hI-3-I 

W
hite Island 

0.33 
17.78 

1.51 
0.63 

0.032 
0.017 

1.895 
13.07 

6.44 
0.128 

 
 

 
0.0238 

EvC
hl-W

hI-3-J 
W

hite Island 
0.34 

16.00 
1.31 

0.59 
0.025 

0.012 
2.078 

12.93 
6.54 

0.128 
 

 
 

0.0230 
EvC

hl-W
hI-4-A 

W
hite Island 

0.34 
16.87 

1.15 
0.76 

0.028 
0.012 

2.325 
13.18 

6.45 
0.139 

6.89 
2.55 

0.0393 
0.0222 

EvC
hl-W

hI-4-B 
W

hite Island 
0.33 

17.75 
1.42 

0.83 
0.032 

0.018 
1.758 

13.18 
6.69 

0.138 
6.92 

2.57 
0.0403 

0.0233 
EvC

hl-W
hI-4-C

 
W

hite Island 
0.34 

18.24 
1.59 

0.84 
0.033 

0.022 
1.498 

13.15 
6.82 

0.142 
6.94 

2.61 
0.0404 

0.0230 
EvC

hl-W
hI-4-D

 
W

hite Island 
0.35 

16.51 
1.41 

0.77 
0.028 

0.016 
1.776 

13.14 
6.79 

0.139 
6.93 

2.50 
0.0406 

0.0230 
EvC

hl-W
hI-4-E 

W
hite Island 

0.34 
16.60 

1.52 
0.83 

0.032 
0.019 

1.711 
13.13 

6.61 
0.137 

6.71 
2.61 

0.0392 
0.0240 

EvC
hl-W

hI-4-F 
W

hite Island 
0.32 

17.10 
1.47 

0.84 
0.032 

0.018 
1.731 

13.19 
6.68 

0.137 
 

 
 

0.0225 
EvC

hl-W
hI-4-G

 
W

hite Island 
0.34 

14.80 
1.44 

0.89 
0.029 

0.016 
1.781 

13.06 
6.77 

0.140 
 

 
 

0.0227 
EvC

hl-W
hI-4-H

 
W

hite Island 
0.33 

15.83 
1.40 

0.85 
0.027 

0.016 
1.695 

13.42 
6.72 

0.138 
 

 
 

0.0223 
EvC

hl-W
hI-4-I 

W
hite Island 

0.32 
15.27 

1.36 
0.90 

0.027 
0.016 

1.709 
13.20 

6.57 
0.138 

 
 

 
0.0219 

EvC
hl-W

hI-4-J 
W

hite Island 
0.34 

14.52 
1.23 

0.78 
0.022 

0.012 
1.916 

13.27 
6.79 

0.140 
 

 
 

0.0222 
EvC

hl-W
hI-5-A 

W
hite Island 

0.38 
17.02 

1.30 
0.78 

0.031 
0.015 

2.077 
13.00 

6.40 
0.116 

6.79 
2.29 

0.0344 
0.0202 

EvC
hl-W

hI-5-B 
W

hite Island 
0.37 

17.76 
1.38 

0.71 
0.031 

0.016 
1.959 

12.67 
6.37 

0.115 
6.72 

2.25 
0.0343 

0.0199 
EvC

hl-W
hI-5-C

 
W

hite Island 
0.36 

18.29 
1.41 

0.75 
0.035 

0.017 
2.044 

12.97 
6.39 

0.115 
6.83 

2.34 
0.0353 

0.0197 
EvC

hl-W
hI-5-D

 
W

hite Island 
0.34 

16.73 
1.27 

0.81 
0.032 

0.014 
2.204 

12.81 
6.33 

0.117 
6.86 

2.24 
0.0349 

0.0198 
EvC

hl-W
hI-5-E 

W
hite Island 

0.36 
16.68 

1.57 
0.85 

0.034 
0.020 

1.720 
12.77 

6.41 
0.116 

6.62 
2.22 

0.0340 
0.0199 

EvC
hl-W

hI-5-F 
W

hite Island 
0.38 

18.15 
1.35 

0.72 
0.029 

0.016 
1.867 

12.69 
6.42 

0.115 
 

 
 

0.0196 
EvC

hl-W
hI-5-G

 
W

hite Island 
0.37 

16.03 
1.26 

0.68 
0.026 

0.012 
2.123 

12.99 
6.41 

0.118 
 

 
 

0.0199 
EvC

hl-W
hI-5-H

 
W

hite Island 
0.36 

16.31 
1.41 

0.75 
0.029 

0.015 
1.876 

12.9 
6.42 

0.116 
 

 
 

0.0198 
EvC

hl-W
hI-5-I 

W
hite Island 

0.37 
17.55 

1.27 
0.72 

0.031 
0.014 

2.195 
12.83 

6.39 
0.113 

 
 

 
0.0195 

EvC
hl-W

hI-5-J 
W

hite Island 
0.36 

16.12 
1.39 

0.81 
0.028 

0.016 
1.770 

12.68 
6.41 

0.115 
 

 
 

0.0198 
EvC

hl-W
hI-6-A 

W
hite Island 

0.37 
18.09 

1.47 
0.75 

0.037 
0.018 

2.068 
12.71 

6.27 
0.188 

6.74 
2.36 

0.0329 
0.0202 

EvC
hl-W

hI-6-B 
W

hite Island 
0.38 

19.01 
1.54 

0.79 
0.038 

0.021 
1.795 

12.56 
 

0.099 
6.64 

2.35 
0.0324 

0.0206 
EvC

hl-W
hI-6-C

 
W

hite Island 
0.37 

19.69 
1.30 

0.72 
0.037 

0.016 
2.291 

12.76 
6.23 

0.118 
6.61 

2.36 
0.0327 

0.0205 
EvC

hl-W
hI-6-D

 
W

hite Island 
0.36 

17.19 
1.26 

0.75 
0.028 

0.014 
2.032 

12.63 
6.28 

0.117 
6.56 

2.37 
0.0326 

0.0207 
EvC

hl-W
hI-6-E 

W
hite Island 

0.37 
18.50 

1.41 
0.75 

0.036 
0.017 

2.056 
12.80 

6.35 
0.118 

6.67 
2.32 

0.0329 
0.0217 

EvC
hl-W

hI-6-F 
W

hite Island 
0.37 

18.13 
1.59 

0.83 
0.037 

0.022 
1.704 

12.62 
6.40 

0.120 
 

 
 

0.0203 
EvC

hl-W
hI-6-G

 
W

hite Island 
0.36 

17.32 
1.35 

0.70 
0.029 

0.015 
1.996 

12.62 
6.37 

0.116 
 

 
 

0.0200 
EvC

hl-W
hI-6-H

 
W

hite Island 
0.37 

18.71 
1.54 

0.94 
0.042 

0.023 
1.803 

12.60 
6.28 

0.117 
 

 
 

0.0197 
EvC

hl-W
hI-6-I 

W
hite Island 

0.36 
16.81 

1.40 
0.73 

0.030 
0.015 

1.907 
12.65 

6.29 
0.118 

 
 

 
0.0202 

EvC
hl-W

hI-6-J 
W

hite Island 
0.36 

16.64 
1.43 

0.72 
0.029 

0.016 
1.824 

12.66 
 

0.103 
 

 
 

0.0197 
EvC

hl-W
hI-7-A 

W
hite Island 

0.36 
15.62 

1.30 
0.64 

0.024 
0.012 

2.005 
13.09 

6.22 
0.112 

6.39 
2.12 

0.0296 
0.0175 

EvC
hl-W

hI-7-B 
W

hite Island 
0.37 

15.67 
1.30 

0.7 
0.027 

0.013 
2.154 

12.84 
6.52 

0.113 
6.52 

2.25 
0.0297 

0.0179 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-13 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
hI-7-C

 
W

hite Island 
0.38 

14.67 
1.37 

0.74 
0.027 

0.013 
2.041 

12.83 
6.51 

0.113 
6.45 

2.21 
0.0298 

0.0177 
EvC

hl-W
hI-7-D

 
W

hite Island 
0.38 

14.56 
1.22 

0.75 
0.021 

0.011 
1.842 

13.00 
6.25 

0.114 
6.42 

2.24 
0.0297 

0.0171 
EvC

hl-W
hI-7-E 

W
hite Island 

0.37 
15.31 

1.39 
0.71 

0.028 
0.014 

2.013 
12.76 

6.28 
0.113 

6.48 
2.27 

0.0310 
0.0210 

EvC
hl-W

hI-7-F 
W

hite Island 
0.36 

16.30 
1.39 

0.81 
0.029 

0.016 
1.858 

12.89 
6.48 

0.115 
 

 
 

0.0192 
EvC

hl-W
hI-7-G

 
W

hite Island 
0.38 

15.32 
1.39 

0.78 
0.029 

0.015 
1.990 

13.13 
6.48 

0.114 
 

 
 

0.0181 
EvC

hl-W
hI-7-H

 
W

hite Island 
0.39 

16.12 
1.39 

0.81 
0.026 

0.016 
1.677 

12.89 
6.22 

0.121 
 

 
 

0.0181 
EvC

hl-W
hI-7-I 

W
hite Island 

0.40 
15.08 

1.23 
0.69 

0.023 
0.011 

2.075 
13.04 

6.17 
0.114 

 
 

 
0.0175 

EvC
hl-W

hI-7-J 
W

hite Island 
0.37 

14.72 
1.43 

0.74 
0.025 

0.014 
1.782 

12.86 
6.19 

0.116 
 

 
 

0.0152 
EvC

hl-W
hI-8-A 

W
hite Island 

0.36 
19.05 

1.59 
0.94 

0.042 
0.024 

1.702 
14.22 

6.86 
0.139 

7.04 
2.51 

0.0424 
0.0254 

EvC
hl-W

hI-8-B 
W

hite Island 
0.36 

18.05 
1.51 

0.83 
0.036 

0.020 
1.793 

14.25 
6.45 

0.141 
7.13 

2.53 
0.0425 

0.0264 
EvC

hl-W
hI-8-C

 
W

hite Island 
0.33 

17.95 
1.58 

0.55 
0.033 

0.017 
1.901 

14.20 
6.96 

0.141 
7.07 

2.46 
0.0421 

0.0260 
EvC

hl-W
hI-8-D

 
W

hite Island 
0.34 

19.03 
1.47 

0.52 
0.033 

0.016 
2.068 

13.98 
6.89 

0.143 
7.17 

2.43 
0.0425 

0.0256 
EvC

hl-W
hI-8-E 

W
hite Island 

0.36 
18.35 

1.59 
0.62 

0.029 
0.019 

1.574 
14.27 

6.61 
0.140 

 
 

 
0.0256 

EvC
hl-W

hI-8-F 
W

hite Island 
0.34 

17.46 
1.51 

0.63 
0.030 

0.017 
1.823 

14.20 
6.73 

0.141 
 

 
 

0.0258 
EvC

hl-W
hI-8-G

 
W

hite Island 
0.36 

17.20 
1.53 

0.81 
0.031 

0.019 
1.632 

14.07 
6.82 

0.141 
 

 
 

0.0266 
EvC

hl-W
hI-8-H

 
W

hite Island 
0.37 

18.20 
1.45 

0.63 
0.031 

0.016 
1.898 

14.42 
6.75 

0.142 
 

 
 

0.0260 
EvC

hl-W
hI-8-I 

W
hite Island 

0.35 
20.41 

1.46 
0.73 

0.040 
0.020 

1.991 
14.19 

6.79 
0.142 

 
 

 
0.0293 

EvC
hl-W

hI-8-J 
W

hite Island 
0.36 

17.25 
1.47 

0.78 
0.030 

0.018 
1.702 

14.24 
6.78 

0.142 
 

 
 

 
EvC

hl-W
hI-9-A 

W
hite Island 

0.37 
16.22 

1.49 
0.81 

0.029 
0.017 

1.664 
12.79 

6.37 
0.135 

6.87 
2.42 

0.0384 
0.0231 

EvC
hl-W

hI-9-B 
W

hite Island 
0.38 

18.33 
1.44 

0.81 
0.038 

0.019 
2.014 

12.80 
6.19 

0.136 
6.95 

2.29 
0.0378 

0.0227 
EvC

hl-W
hI-9-C

 
W

hite Island 
0.37 

18.52 
1.41 

0.83 
0.036 

0.019 
1.938 

12.64 
6.47 

0.134 
6.85 

2.30 
0.0387 

0.0231 
EvC

hl-W
hI-9-D

 
W

hite Island 
0.35 

17.63 
1.52 

0.86 
0.033 

0.020 
1.652 

12.60 
6.44 

0.136 
6.99 

2.37 
0.0383 

0.0234 
EvC

hl-W
hI-9-E 

W
hite Island 

0.38 
17.28 

1.57 
0.70 

0.032 
0.018 

1.736 
12.73 

6.42 
0.132 

7.13 
2.32 

0.0379 
0.0230 

EvC
hl-W

hI-9-F 
W

hite Island 
0.39 

16.21 
1.79 

0.81 
0.029 

0.023 
1.290 

12.71 
6.51 

0.134 
 

 
 

0.0224 
EvC

hl-W
hI-9-G

 
W

hite Island 
0.34 

16.81 
1.42 

0.85 
0.031 

0.017 
1.764 

12.86 
6.49 

0.135 
 

 
 

0.0234 
EvC

hl-W
hI-9-H

 
W

hite Island 
0.37 

18.44 
1.53 

0.72 
0.037 

0.019 
1.927 

12.85 
6.50 

0.135 
 

 
 

0.0232 
EvC

hl-W
hI-9-I 

W
hite Island 

0.36 
16.96 

1.45 
0.81 

0.031 
0.017 

1.769 
12.64 

6.54 
0.134 

 
 

 
0.0230 

EvC
hl-W

hI-9-J 
W

hite Island 
0.37 

16.93 
1.54 

0.79 
0.032 

0.019 
1.701 

12.62 
6.42 

0.135 
 

 
 

0.0232 
EvC

hl-W
hI-10-A 

W
hite Island 

0.34 
15.16 

1.35 
0.81 

0.025 
0.014 

1.761 
12.84 

6.37 
0.126 

6.57 
2.22 

0.0343 
0.0202 

EvC
hl-W

hI-10-B 
W

hite Island 
0.35 

15.28 
1.50 

0.76 
0.030 

0.016 
1.901 

12.97 
6.20 

0.126 
6.60 

2.46 
0.0343 

0.0198 
EvC

hl-W
hI-10-C

 
W

hite Island 
0.35 

15.64 
1.55 

0.78 
0.030 

0.017 
1.739 

12.9 
6.40 

0.126 
6.64 

2.19 
0.0337 

0.0199 
EvC

hl-W
hI-10-D

 
W

hite Island 
0.35 

16.71 
1.63 

0.81 
0.032 

0.020 
1.602 

12.97 
6.46 

0.126 
6.62 

2.41 
0.0340 

0.0202 
EvC

hl-W
hI-10-E 

W
hite Island 

0.34 
15.21 

1.64 
0.77 

0.032 
0.018 

1.758 
13.02 

6.42 
0.127 

6.62 
2.15 

0.0342 
0.0199 

EvC
hl-W

hI-10-F 
W

hite Island 
0.36 

15.19 
1.49 

0.87 
0.030 

0.017 
1.749 

12.90 
6.38 

0.127 
 

 
 

0.0200 
EvC

hl-W
hI-10-G

 
W

hite Island 
0.34 

14.61 
1.53 

0.67 
0.027 

0.015 
1.843 

12.90 
6.61 

0.126 
 

 
 

0.0197 
EvC

hl-W
hI-10-H

 
W

hite Island 
0.35 

14.77 
1.38 

0.69 
0.025 

0.013 
1.921 

12.62 
6.14 

0.123 
 

 
 

0.0170 
EvC

hl-W
hI-10-I 

W
hite Island 

0.36 
15.29 

1.61 
0.95 

0.033 
0.020 

1.648 
 

 
 

 
 

 
 

EvC
hl-W

hI-10-J 
W

hite Island 
0.35 

14.94 
1.50 

0.78 
0.024 

0.016 
1.552 

 
 

 
 

 
 

 

 
 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-14 

Table 7.7 
R

aw
 data for skeletal elem

ents of E
vechinus chloroticus collected from

 W
ellington, N

ew
 Zealand 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
lg-1-A 

W
ellington 

0.32 
22.77 

1.50 
0.58 

0.032 
0.021 

1.550 
13.67 

6.71 
0.144 

6.91 
2.75 

0.0444 
0.0254 

EvC
hl-W

lg-1-B 
W

ellington 
0.32 

20.88 
1.63 

0.61 
0.036 

0.022 
1.630 

13.98 
6.64 

0.141 
6.78 

2.77 
0.0437 

0.0261 
EvC

hl-W
lg-1-C

 
W

ellington 
0.32 

22.04 
1.45 

0.63 
0.027 

0.020 
1.360 

13.88 
6.71 

0.141 
6.84 

2.71 
0.0441 

0.0257 
EvC

hl-W
lg-1-D

 
W

ellington 
0.33 

20.14 
1.59 

0.60 
0.031 

0.020 
1.535 

13.92 
6.64 

0.146 
6.66 

2.72 
0.0440 

0.0259 
EvC

hl-W
lg-1-E 

W
ellington 

0.31 
21.16 

1.49 
0.50 

0.033 
0.018 

1.826 
14.02 

6.67 
0.142 

6.79 
2.83 

0.0457 
0.0254 

EvC
hl-W

lg-1-F 
W

ellington 
0.32 

20.11 
1.43 

0.59 
0.032 

0.017 
1.907 

13.88 
6.79 

0.141 
 

 
 

 
EvC

hl-W
lg-1-G

 
W

ellington 
0.34 

20.73 
1.50 

0.59 
0.032 

0.019 
1.671 

14.05 
6.73 

0.146 
 

 
 

0.0260 
EvC

hl-W
lg-1-H

 
W

ellington 
0.35 

20.04 
1.61 

0.43 
0.025 

0.018 
1.361 

13.99 
6.62 

0.144 
 

 
 

0.0261 
EvC

hl-W
lg-1-I 

W
ellington 

0.33 
20.03 

1.49 
0.57 

0.028 
0.018 

1.547 
14.05 

6.75 
0.148 

 
 

 
0.0255 

EvC
hl-W

lg-1-J 
W

ellington 
0.31 

20.23 
1.51 

0.49 
0.029 

0.017 
1.656 

13.87 
6.70 

0.146 
 

 
 

0.0257 
EvC

hl-W
lg-2-A 

W
ellington 

0.30 
20.13 

1.41 
0.51 

0.028 
0.016 

1.821 
13.48 

6.68 
0.145 

7.05 
2.42 

0.0402 
0.0272 

EvC
hl-W

lg-2-B 
W

ellington 
0.31 

21.03 
1.38 

0.52 
0.028 

0.016 
1.787 

13.69 
6.81 

0.147 
6.91 

2.44 
0.0392 

0.0261 
EvC

hl-W
lg-2-C

 
W

ellington 
0.29 

18.86 
1.29 

0.55 
0.024 

0.013 
1.785 

13.75 
6.86 

0.149 
6.95 

2.43 
0.0390 

0.0260 
EvC

hl-W
lg-2-D

 
W

ellington 
0.30 

22.05 
1.49 

0.77 
0.035 

0.023 
1.538 

13.81 
6.90 

0.146 
6.91 

2.44 
0.0400 

0.0261 
EvC

hl-W
lg-2-E 

W
ellington 

0.30 
21.53 

1.45 
0.55 

0.033 
0.018 

1.817 
13.69 

6.77 
0.146 

6.85 
2.43 

0.0383 
0.0271 

EvC
hl-W

lg-2-F 
W

ellington 
0.29 

21.95 
1.39 

0.58 
0.031 

0.018 
1.747 

13.67 
6.94 

0.148 
 

 
 

0.0265 
EvC

hl-W
lg-2-G

 
W

ellington 
0.28 

18.77 
1.43 

0.58 
0.028 

0.016 
1.747 

13.77 
6.87 

0.146 
 

 
 

0.0264 
EvC

hl-W
lg-2-H

 
W

ellington 
0.32 

17.71 
1.42 

0.71 
0.030 

0.016 
1.826 

13.93 
6.89 

0.150 
 

 
 

0.0271 
EvC

hl-W
lg-2-I 

W
ellington 

0.30 
19.07 

1.17 
0.46 

0.023 
0.011 

2.152 
13.75 

6.95 
0.151 

 
 

 
0.0271 

EvC
hl-W

lg-2-J 
W

ellington 
0.31 

16.78 
1.23 

0.64 
0.021 

0.012 
1.745 

13.58 
6.89 

0.148 
 

 
 

 
EvC

hl-W
lg-3-A 

W
ellington 

0.30 
18.96 

1.43 
0.59 

0.022 
0.016 

1.391 
11.71 

5.52 
0.085 

5.69 
2.17 

0.0247 
0.0148 

EvC
hl-W

lg-3-B 
W

ellington 
0.34 

18.60 
1.36 

0.74 
0.031 

0.017 
1.846 

11.61 
5.57 

0.084 
5.74 

2.26 
0.0260 

0.0143 
EvC

hl-W
lg-3-C

 
W

ellington 
0.34 

21.39 
1.37 

0.50 
0.027 

0.016 
1.738 

11.65 
5.51 

0.085 
5.66 

2.32 
0.0251 

0.0141 
EvC

hl-W
lg-3-D

 
W

ellington 
0.33 

20.10 
1.42 

0.45 
0.027 

0.015 
1.817 

11.62 
5.47 

0.084 
5.67 

2.20 
0.0254 

0.0146 
EvC

hl-W
lg-3-E 

W
ellington 

0.31 
19.22 

1.16 
0.53 

0.022 
0.011 

1.981 
11.72 

5.51 
0.086 

5.68 
2.29 

0.0254 
 

EvC
hl-W

lg-3-F 
W

ellington 
0.30 

18.10 
1.43 

0.60 
0.028 

0.015 
1.815 

 
 

 
 

 
 

 
EvC

hl-W
lg-3-G

 
W

ellington 
0.31 

19.01 
1.33 

0.75 
0.028 

0.017 
1.708 

 
 

 
 

 
 

 
EvC

hl-W
lg-3-H

 
W

ellington 
0.31 

19.37 
1.37 

0.61 
0.029 

0.016 
1.845 

 
 

 
 

 
 

 
EvC

hl-W
lg-3-I 

W
ellington 

0.32 
18.38 

1.42 
0.60 

0.027 
0.016 

1.730 
 

 
 

 
 

 
 

EvC
hl-W

lg-3-J 
W

ellington 
0.33 

17.85 
1.35 

0.44 
0.021 

0.012 
1.704 

 
 

 
 

 
 

 
EvC

hl-W
lg-4-A 

W
ellington 

0.30 
21.27 

1.36 
0.58 

0.030 
0.017 

1.839 
12.91 

6.68 
0.119 

6.87 
2.52 

0.0400 
0.0216 

EvC
hl-W

lg-4-B 
W

ellington 
0.31 

21.67 
1.32 

0.74 
0.029 

0.019 
1.589 

12.88 
6.56 

0.117 
6.91 

2.51 
0.0393 

0.0223 
EvC

hl-W
lg-4-C

 
W

ellington 
0.29 

21.13 
1.44 

0.60 
0.032 

0.018 
1.748 

12.76 
6.60 

0.117 
6.86 

2.52 
0.0394 

0.0216 
EvC

hl-W
lg-4-D

 
W

ellington 
0.30 

21.66 
1.40 

0.57 
0.027 

0.017 
1.566 

12.96 
6.55 

0.117 
6.84 

2.53 
0.0393 

0.0228 
EvC

hl-W
lg-4-E 

W
ellington 

0.31 
21.57 

1.37 
0.47 

0.027 
0.015 

1.712 
12.72 

6.50 
0.115 

6.98 
2.52 

0.0417 
0.0219 

EvC
hl-W

lg-4-F 
W

ellington 
0.31 

20.86 
1.32 

0.49 
0.027 

0.014 
1.898 

12.88 
6.64 

0.118 
 

 
 

0.0221 
EvC

hl-W
lg-4-G

 
W

ellington 
0.29 

21.33 
1.35 

0.55 
0.025 

0.016 
1.554 

12.78 
6.60 

0.118 
 

 
 

0.0227 
EvC

hl-W
lg-4-H

 
W

ellington 
0.28 

19.88 
1.45 

0.67 
0.029 

0.018 
1.601 

12.74 
6.60 

0.121 
 

 
 

 
EvC

hl-W
lg-4-I 

W
ellington 

0.29 
20.32 

1.43 
0.67 

0.030 
0.018 

1.648 
12.93 

6.58 
0.118 

 
 

 
0.0218 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-15 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
lg-4-J 

W
ellington 

0.30 
19.91 

1.37 
0.71 

0.029 
0.017 

1.633 
12.74 

6.67 
0.119 

 
 

 
 

EvC
hl-W

lg-5-A 
W

ellington 
0.26 

16.20 
1.33 

0.51 
0.019 

0.011 
1.615 

12.2 
5.91 

0.098 
6.08 

2.21 
0.0294 

0.0182 
EvC

hl-W
lg-5-B 

W
ellington 

0.26 
16.76 

1.21 
0.56 

0.018 
0.011 

1.645 
12.19 

5.93 
0.095 

6.20 
2.41 

0.0297 
0.0187 

EvC
hl-W

lg-5-C
 

W
ellington 

0.27 
17.64 

1.35 
0.55 

0.022 
0.013 

1.649 
12.1 

6.00 
0.096 

6.29 
2.32 

0.0298 
0.0192 

EvC
hl-W

lg-5-D
 

W
ellington 

0.28 
17.49 

1.27 
0.54 

0.017 
0.012 

1.460 
12.27 

6.05 
0.098 

6.32 
2.37 

0.0299 
0.0185 

EvC
hl-W

lg-5-E 
W

ellington 
0.25 

16.80 
1.41 

0.60 
0.020 

0.014 
1.429 

12.24 
5.92 

0.098 
6.31 

2.32 
0.0302 

0.0186 
EvC

hl-W
lg-5-F 

W
ellington 

0.26 
17.06 

1.31 
0.57 

0.019 
0.012 

1.486 
12.31 

6.05 
0.096 

 
 

 
0.0182 

EvC
hl-W

lg-5-G
 

W
ellington 

0.27 
18.54 

1.36 
0.53 

0.021 
0.014 

1.520 
12.12 

5.89 
0.098 

 
 

 
0.0182 

EvC
hl-W

lg-5-H
 

W
ellington 

0.26 
15.47 

1.26 
0.58 

0.017 
0.016 

1.082 
12.30 

5.91 
0.096 

 
 

 
0.0189 

EvC
hl-W

lg-5-I 
W

ellington 
0.25 

16.48 
1.26 

0.56 
0.019 

0.011 
1.688 

12.14 
6.01 

0.098 
 

 
 

0.0183 
EvC

hl-W
lg-5-J 

W
ellington 

0.27 
15.99 

1.25 
0.53 

0.019 
0.010 

1.790 
12.18 

6.03 
0.096 

 
 

 
 

EvC
hl-W

lg-6-A 
W

ellington 
0.34 

18.62 
1.41 

0.72 
0.036 

0.017 
2.103 

13.88 
6.63 

0.135 
6.89 

2.68 
0.0439 

0.0260 
EvC

hl-W
lg-6-B 

W
ellington 

0.40 
19.50 

1.34 
0.56 

0.035 
0.015 

2.396 
13.86 

6.79 
0.137 

7.30 
2.73 

0.0480 
0.0268 

EvC
hl-W

lg-6-C
 

W
ellington 

0.34 
20.10 

1.40 
0.66 

0.038 
0.017 

2.151 
13.61 

6.61 
0.138 

6.87 
2.74 

0.0445 
0.0266 

EvC
hl-W

lg-6-D
 

W
ellington 

0.32 
17.87 

1.44 
0.68 

0.035 
0.016 

2.109 
14.09 

6.60 
0.139 

7.05 
2.75 

0.0446 
0.0264 

EvC
hl-W

lg-6-E 
W

ellington 
0.31 

19.90 
1.40 

0.49 
0.036 

0.015 
2.392 

14.03 
6.64 

0.142 
6.88 

2.68 
0.0440 

0.0262 
EvC

hl-W
lg-6-F 

W
ellington 

0.33 
19.22 

1.37 
0.55 

0.036 
0.015 

2.449 
13.95 

6.55 
0.134 

 
 

 
0.0276 

EvC
hl-W

lg-6-G
 

W
ellington 

0.30 
19.42 

1.40 
0.63 

0.034 
0.016 

2.094 
13.81 

6.84 
0.142 

 
 

 
0.0286 

EvC
hl-W

lg-6-H
 

W
ellington 

0.31 
18.70 

1.44 
0.57 

0.034 
0.016 

2.166 
13.80 

6.70 
0.140 

 
 

 
0.0274 

EvC
hl-W

lg-6-I 
W

ellington 
0.31 

16.49 
1.35 

0.61 
0.035 

0.013 
2.648 

13.96 
6.65 

0.136 
 

 
 

0.0273 
EvC

hl-W
lg-6-J 

W
ellington 

0.30 
18.30 

1.28 
0.54 

0.034 
0.013 

2.736 
13.82 

6.66 
0.138 

 
 

 
0.0261 

EvC
hl-W

lg-7-A 
W

ellington 
0.30 

18.93 
1.51 

0.52 
0.032 

0.017 
1.938 

12.90 
6.61 

0.130 
6.86 

2.71 
0.0408 

0.0257 
EvC

hl-W
lg-7-B 

W
ellington 

0.31 
19.44 

1.42 
0.44 

0.027 
0.014 

1.889 
13.00 

6.59 
0.127 

6.74 
2.73 

0.0402 
0.0248 

EvC
hl-W

lg-7-C
 

W
ellington 

0.30 
20.09 

1.53 
0.58 

0.033 
0.019 

1.761 
12.94 

6.71 
0.127 

6.77 
2.69 

0.0405 
0.0252 

EvC
hl-W

lg-7-D
 

W
ellington 

0.29 
20.21 

1.46 
0.60 

0.032 
0.018 

1.812 
12.92 

6.50 
0.127 

6.73 
2.68 

0.0395 
0.0252 

EvC
hl-W

lg-7-E 
W

ellington 
0.26 

18.46 
1.44 

0.74 
0.032 

0.018 
1.804 

12.89 
6.50 

0.130 
6.85 

2.66 
0.0414 

0.0301 
EvC

hl-W
lg-7-F 

W
ellington 

0.31 
18.97 

1.42 
0.61 

0.028 
0.016 

1.701 
12.78 

6.51 
0.128 

 
 

 
0.0245 

EvC
hl-W

lg-7-G
 

W
ellington 

0.31 
18.44 

1.42 
0.58 

0.031 
0.015 

2.011 
12.90 

6.47 
0.129 

 
 

 
0.0252 

EvC
hl-W

lg-7-H
 

W
ellington 

0.30 
18.59 

1.44 
0.62 

0.028 
0.016 

1.707 
12.96 

6.53 
0.127 

 
 

 
0.0261 

EvC
hl-W

lg-7-I 
W

ellington 
0.28 

17.63 
1.36 

0.43 
0.026 

0.012 
2.122 

12.89 
6.65 

0.127 
 

 
 

0.0246 
EvC

hl-W
lg-7-J 

W
ellington 

0.29 
16.88 

1.44 
0.63 

0.026 
0.015 

1.754 
12.94 

6.45 
0.127 

 
 

 
0.0244 

EvC
hl-W

lg-8-A 
W

ellington 
0.31 

19.04 
1.47 

0.62 
0.028 

0.017 
1.628 

13.87 
6.71 

0.133 
6.72 

2.76 
0.0412 

0.0255 
EvC

hl-W
lg-8-B 

W
ellington 

0.31 
18.84 

1.24 
0.59 

0.024 
0.013 

1.841 
13.87 

6.77 
0.136 

6.79 
2.62 

0.0413 
0.0304 

EvC
hl-W

lg-8-C
 

W
ellington 

0.29 
19.67 

1.25 
0.41 

0.020 
0.012 

1.745 
13.72 

6.58 
0.136 

6.91 
2.72 

0.0435 
0.0257 

EvC
hl-W

lg-8-D
 

W
ellington 

0.34 
19.91 

1.34 
0.66 

0.027 
0.016 

1.668 
13.68 

6.56 
0.130 

6.95 
2.87 

0.0464 
0.0259 

EvC
hl-W

lg-8-E 
W

ellington 
0.29 

21.08 
1.46 

0.52 
0.027 

0.017 
1.540 

13.66 
6.63 

0.131 
6.85 

2.72 
0.0430 

0.0285 
EvC

hl-W
lg-8-F 

W
ellington 

0.34 
21.75 

1.41 
0.56 

0.029 
0.018 

1.647 
13.73 

6.77 
0.134 

 
 

 
0.0256 

EvC
hl-W

lg-8-G
 

W
ellington 

0.31 
20.96 

1.37 
0.53 

0.027 
0.016 

1.711 
13.74 

6.83 
0.136 

 
 

 
0.0250 

EvC
hl-W

lg-8-H
 

W
ellington 

0.32 
21.61 

1.35 
0.52 

0.028 
0.016 

1.781 
13.66 

6.74 
0.136 

 
 

 
0.0240 

EvC
hl-W

lg-8-I 
W

ellington 
0.33 

20.38 
1.35 

0.61 
0.026 

0.016 
1.641 

13.57 
6.72 

0.135 
 

 
 

0.0248 
EvC

hl-W
lg-8-J 

W
ellington 

0.31 
22.18 

1.45 
0.59 

0.027 
0.019 

1.395 
13.92 

6.63 
0.135 

 
 

 
0.0254 

EvC
hl-W

lg-9-A 
W

ellington 
0.33 

19.55 
1.53 

0.67 
0.030 

0.020 
1.526 

12.85 
6.19 

0.124 
6.30 

2.53 
0.0367 

0.0242 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, N
ew

 Zealand  
B-16 

ID
 

Location 
Test 

Prim
ary Spine 

D
em

i-pyram
id 

R
otula 

Epiphysis 
Thickness 

Length 
Proxim

al D
iam

eter 
D

istal D
iam

eter 
W

eight 
Volum

e 
D

ensity 
Length 

W
idth 

W
eight 

Length 
W

idth 
W

eight 
W

eight 
(m

m
) 

(m
m

) 
(m

m
) 

(m
m

) 
(g) 

(cm
3) 

(g/cm
3) 

(m
m

) 
(m

m
) 

(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
lg-9-B 

W
ellington 

0.34 
21.47 

1.49 
0.49 

0.031 
0.018 

1.738 
13.07 

6.07 
0.125 

6.27 
2.53 

0.0651 
0.0224 

EvC
hl-W

lg-9-C
 

W
ellington 

0.34 
21.63 

1.55 
0.57 

0.035 
0.020 

1.728 
12.79 

6.06 
0.119 

6.26 
2.50 

0.0358 
0.0224 

EvC
hl-W

lg-9-D
 

W
ellington 

0.35 
22.39 

1.51 
0.56 

0.030 
0.020 

1.482 
12.81 

6.04 
0.123 

6.51 
2.53 

0.0369 
0.0248 

EvC
hl-W

lg-9-E 
W

ellington 
0.32 

21.03 
1.59 

0.57 
0.032 

0.021 
1.558 

12.92 
6.19 

0.127 
6.25 

2.52 
0.0352 

0.0228 
EvC

hl-W
lg-9-F 

W
ellington 

0.33 
20.44 

1.51 
0.69 

0.031 
0.020 

1.532 
13.01 

6.22 
0.126 

 
 

 
0.0230 

EvC
hl-W

lg-9-G
 

W
ellington 

0.32 
19.77 

1.55 
0.66 

0.031 
0.020 

1.551 
13.08 

6.06 
0.126 

 
 

 
0.0227 

EvC
hl-W

lg-9-H
 

W
ellington 

0.34 
20.10 

1.52 
0.53 

0.029 
0.018 

1.623 
13.00 

6.20 
0.127 

 
 

 
0.0231 

EvC
hl-W

lg-9-I 
W

ellington 
0.36 

20.79 
1.58 

0.66 
0.032 

0.022 
1.469 

12.84 
6.09 

0.122 
 

 
 

0.0245 
EvC

hl-W
lg-9-J 

W
ellington 

0.34 
19.47 

1.49 
0.65 

0.030 
0.018 

1.634 
12.88 

6.09 
0.122 

 
 

 
0.0227 

EvC
hl-W

lg-10-A 
W

ellington 
0.29 

17.60 
1.31 

0.63 
0.023 

0.014 
1.665 

11.37 
5.69 

0.084 
5.89 

2.46 
0.0283 

0.0161 
EvC

hl-W
lg-10-B 

W
ellington 

0.30 
19.87 

1.33 
0.43 

0.025 
0.013 

1.878 
11.38 

5.66 
0.083 

5.81 
2.46 

0.0284 
0.0166 

EvC
hl-W

lg-10-C
 

W
ellington 

0.31 
18.28 

1.21 
0.55 

0.023 
0.012 

1.994 
11.33 

5.60 
0.083 

5.85 
2.42 

0.0284 
0.0160 

EvC
hl-W

lg-10-D
 

W
ellington 

0.28 
18.09 

1.23 
0.53 

0.022 
0.012 

1.892 
11.06 

5.59 
0.085 

5.85 
2.47 

0.0280 
0.0163 

EvC
hl-W

lg-10-E 
W

ellington 
0.28 

18.91 
1.31 

0.51 
0.023 

0.013 
1.791 

11.25 
5.70 

0.086 
6.13 

2.34 
0.0282 

0.0157 
EvC

hl-W
lg-10-F 

W
ellington 

0.27 
18.58 

1.24 
0.50 

0.022 
0.012 

1.840 
11.26 

5.70 
0.088 

 
 

 
0.0159 

EvC
hl-W

lg-10-G
 

W
ellington 

0.28 
18.38 

1.32 
0.53 

0.024 
0.013 

1.829 
11.34 

5.63 
0.084 

 
 

 
0.0161 

EvC
hl-W

lg-10-H
 

W
ellington 

0.29 
16.66 

1.28 
0.56 

0.019 
0.012 

1.589 
11.18 

5.66 
0.085 

 
 

 
0.0160 

EvC
hl-W

lg-10-I 
W

ellington 
0.28 

18.74 
1.31 

0.48 
0.024 

0.013 
1.901 

11.48 
5.65 

0.084 
 

 
 

0.0156 
EvC

hl-W
lg-10-J 

W
ellington 

0.27 
18.15 

1.30 
0.62 

0.024 
0.014 

1.732 
11.43 

5.56 
0.083 

 
 

 
 

EvC
hl-W

lg-11-A 
W

ellington 
0.35 

22.20 
1.67 

0.70 
0.042 

0.026 
1.612 

12.94 
6.33 

0.121 
6.31 

2.69 
0.0349 

0.0225 
EvC

hl-W
lg-11-B 

W
ellington 

0.34 
21.21 

1.61 
0.57 

0.039 
0.021 

1.809 
12.92 

6.37 
0.122 

6.77 
2.62 

0.0367 
0.0218 

EvC
hl-W

lg-11-C
 

W
ellington 

0.34 
22.52 

1.53 
0.89 

0.043 
0.026 

1.629 
13.18 

6.39 
0.117 

6.40 
2.72 

0.0360 
0.0229 

EvC
hl-W

lg-11-D
 

W
ellington 

0.33 
22.31 

1.68 
0.55 

0.039 
0.024 

1.647 
12.94 

6.21 
0.116 

6.44 
2.66 

0.0354 
0.0234 

EvC
hl-W

lg-11-E 
W

ellington 
0.34 

22.67 
1.70 

0.63 
0.042 

0.026 
1.618 

13.08 
6.34 

0.119 
6.39 

2.55 
0.0363 

0.0223 
EvC

hl-W
lg-11-F 

W
ellington 

0.34 
21.47 

1.56 
0.69 

0.039 
0.022 

1.736 
13.36 

6.20 
0.117 

 
 

 
0.0223 

EvC
hl-W

lg-11-G
 

W
ellington 

0.31 
22.36 

1.63 
0.78 

0.042 
0.027 

1.571 
13.01 

6.29 
0.118 

 
 

 
0.0219 

EvC
hl-W

lg-11-H
 

W
ellington 

0.34 
23.22 

1.53 
0.63 

0.038 
0.023 

1.694 
13.01 

6.44 
0.119 

 
 

 
0.0230 

EvC
hl-W

lg-11-I 
W

ellington 
0.34 

22.47 
1.69 

0.53 
0.035 

0.031 
1.134 

12.92 
6.29 

0.116 
 

 
 

0.0229 
EvC

hl-W
lg-11-J 

W
ellington 

0.40 
21.30 

1.55 
0.77 

0.037 
0.023 

1.597 
12.92 

6.33 
0.121 

 
 

 
0.0226 

EvC
hl-W

lg-12-A 
W

ellington 
0.29 

23.50 
1.61 

0.71 
0.031 

0.026 
1.177 

12.57 
5.98 

0.116 
6.28 

2.47 
0.0338 

0.0194 
EvC

hl-W
lg-12-B 

W
ellington 

0.29 
23.03 

1.56 
0.60 

0.027 
0.022 

1.214 
12.74 

5.97 
0.117 

6.31 
2.48 

0.0338 
0.0194 

EvC
hl-W

lg-12-C
 

W
ellington 

0.29 
21.70 

1.68 
0.86 

0.032 
0.028 

1.117 
12.23 

6.08 
0.117 

6.34 
2.60 

0.0329 
0.0192 

EvC
hl-W

lg-12-D
 

W
ellington 

0.29 
22.19 

1.54 
0.68 

0.028 
0.023 

1.239 
12.54 

5.99 
0.119 

6.42 
2.43 

0.0335 
0.0192 

EvC
hl-W

lg-12-E 
W

ellington 
0.29 

23.42 
1.51 

0.68 
0.029 

0.023 
1.260 

12.63 
6.02 

0.118 
6.32 

2.53 
0.0345 

0.0188 
EvC

hl-W
lg-12-F 

W
ellington 

0.28 
22.91 

1.63 
0.65 

0.025 
0.025 

0.999 
12.65 

6.10 
0.120 

 
 

 
0.0189 

EvC
hl-W

lg-12-G
 

W
ellington 

0.27 
22.15 

1.61 
0.65 

0.028 
0.024 

1.197 
12.66 

6.01 
0.117 

 
 

 
0.0191 

EvC
hl-W

lg-12-H
 

W
ellington 

0.30 
20.95 

1.49 
0.86 

0.025 
0.023 

1.088 
12.7 

6.00 
0.115 

 
 

 
0.0202 

EvC
hl-W

lg-12-I 
W

ellington 
0.29 

21.37 
1.53 

0.63 
0.023 

0.021 
1.102 

12.82 
6.03 

0.121 
 

 
 

0.0193 
EvC

hl-W
lg-12-J 

W
ellington 

0.31 
23.34 

1.52 
0.54 

0.026 
0.021 

1.240 
12.63 

6.05 
0.117 

 
 

 
0.0194 

EvC
hl-W

lg-13-A 
W

ellington 
0.34 

23.00 
1.57 

0.61 
0.035 

0.023 
1.524 

13.31 
6.98 

0.143 
7.05 

2.55 
0.0453 

0.0262 
EvC

hl-W
lg-13-B 

W
ellington 

0.33 
22.76 

1.53 
0.62 

0.035 
0.022 

1.606 
13.57 

6.88 
0.147 

7.21 
2.56 

0.0461 
0.0270 

EvC
hl-W

lg-13-C
 

W
ellington 

0.31 
22.46 

1.55 
0.71 

0.035 
0.024 

1.496 
13.37 

6.96 
0.140 

7.13 
2.58 

0.0459 
0.0266 
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W
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Length 
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m
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m
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(g/cm
3) 

(m
m

) 
(m

m
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(g) 
(m

m
) 

(m
m

) 
(g) 

(g) 
EvC

hl-W
lg-13-D

 
W

ellington 
0.34 

20.92 
1.53 

0.76 
0.033 

0.022 
1.484 

13.3 
6.76 

0.142 
7.17 

2.57 
0.0451 

0.0268 
EvC

hl-W
lg-13-E 

W
ellington 

0.31 
21.28 

1.56 
0.78 

0.037 
0.024 

1.556 
13.34 

6.95 
0.141 

7.06 
2.53 

0.0459 
0.0276 

EvC
hl-W

lg-13-F 
W

ellington 
0.32 

21.83 
1.41 

0.6 
0.031 

0.018 
1.716 

13.30 
6.77 

0.140 
 

 
 

0.0260 
EvC

hl-W
lg-13-G

 
W

ellington 
0.34 

21.92 
1.47 

0.70 
0.034 

0.021 
1.591 

13.49 
7.04 

0.142 
 

 
 

0.0254 
EvC

hl-W
lg-13-H

 
W

ellington 
0.30 

20.89 
1.48 

0.67 
0.034 

0.020 
1.688 

13.31 
6.92 

0.141 
 

 
 

0.0267 
EvC

hl-W
lg-13-I 

W
ellington 

0.35 
20.46 

1.42 
0.85 

0.036 
0.021 

1.706 
13.48 

6.92 
0.145 

 
 

 
0.0254 

EvC
hl-W

lg-13-J 
W

ellington 
0.31 

20.42 
1.42 

0.57 
0.030 

0.017 
1.758 

13.31 
6.85 

0.145 
 

 
 

0.0258 
EvC

hl-W
lg-14-A 

W
ellington 

0.29 
21.83 

1.66 
0.79 

0.046 
0.027 

1.728 
13.74 

6.36 
0.135 

6.50 
2.71 

0.0422 
0.0253 

EvC
hl-W

lg-14-B 
W

ellington 
0.28 

22.57 
1.76 

0.74 
0.050 

0.029 
1.723 

13.57 
6.24 

0.136 
6.60 

2.74 
0.0419 

0.0261 
EvC

hl-W
lg-14-C

 
W

ellington 
0.29 

22.95 
1.74 

0.64 
0.047 

0.027 
1.734 

13.54 
6.32 

0.140 
6.48 

2.62 
0.0414 

0.0246 
EvC

hl-W
lg-14-D

 
W

ellington 
0.28 

21.05 
1.60 

0.77 
0.047 

0.024 
1.938 

12.86 
6.49 

0.137 
6.52 

2.73 
0.0420 

0.0256 
EvC

hl-W
lg-14-E 

W
ellington 

0.27 
21.61 

1.57 
0.83 

0.046 
0.025 

1.837 
13.73 

6.35 
0.138 

6.56 
2.74 

0.0428 
0.0259 

EvC
hl-W

lg-14-F 
W

ellington 
0.29 

23.00 
2.09 

0.69 
0.050 

0.038 
1.318 

13.65 
6.27 

0.137 
 

 
 

0.0256 
EvC

hl-W
lg-14-G

 
W

ellington 
0.27 

23.18 
1.73 

0.61 
0.050 

0.027 
1.846 

13.85 
6.32 

0.136 
 

 
 

0.0257 
EvC

hl-W
lg-14-H

 
W

ellington 
0.26 

20.89 
1.72 

0.92 
0.047 

0.029 
1.608 

13.65 
6.37 

0.137 
 

 
 

 
EvC

hl-W
lg-14-I 

W
ellington 

0.26 
21.12 

1.55 
0.63 

0.044 
0.021 

2.108 
13.86 

6.29 
0.138 

 
 

 
 

EvC
hl-W

lg-14-J 
W

ellington 
0.25 

23.06 
1.70 

0.62 
0.049 

0.026 
1.863 

13.65 
6.25 

0.138 
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Appendix C Raw Biomineralogy Data 

Table 7.8 Raw data for biomineralogy of skeletal elements from Evechinus chloroticus collected 
around New Zealand 

Sample ID Location Body Part Replicate # Wt% MgCO3 in calcite 
StI-6-spn-a Stewart Island spine a 4.64 
StI-6-spn-b Stewart Island spine b 4.51 
StI-6-spn-c Stewart Island spine c 4.03 
StI-6-rot-a Stewart Island rotula a 8.69 
StI-6-rot-b Stewart Island rotula b 9.18 
StI-6-rot-c Stewart Island rotula c 8.92 
StI-6-epi-a Stewart Island epiphysis a 8.84 
StI-6-epi-b Stewart Island epiphysis b 10.45 
StI-6-epi-c Stewart Island epiphysis c 8.65 
StI-6-demi-a Stewart Island demi-pyramid a 9.88 
StI-6-demi-b Stewart Island demi-pyramid b 10.64 
StI-6-demi-c Stewart Island demi-pyramid c 9.55 
StI-6-plate-a Stewart Island test plate a 8.01 
StI-6-plate-b Stewart Island test plate b 9.37 
StI-6-plate-c Stewart Island test plate c 8.72 
StI-2-spn-a Stewart Island spine a 4.46 
StI-2-spn-b Stewart Island spine b 5.23 
StI-2-spn-c Stewart Island spine c 4.19 
StI-2-rot-a Stewart Island rotula a 9.72 
StI-2-rot-b Stewart Island rotula b 9.60 
StI-2-rot-c Stewart Island rotula c 9.12 
StI-2-epi-a Stewart Island epiphysis a 9.15 
StI-2-epi-b Stewart Island epiphysis b 10.22 
StI-2-epi-c Stewart Island epiphysis c 9.41 
StI-2-demi-a Stewart Island demi-pyramid a 9.06 
StI-2-demi-b Stewart Island demi-pyramid b 9.56 
StI-2-demi-c Stewart Island demi-pyramid c 9.79 
StI-2-plate-a Stewart Island test plate a 8.70 
StI-2-plate-b Stewart Island test plate b 9.36 
StI-2-plate-c Stewart Island test plate c 8.93 
StI-5-spn-a Stewart Island spine a 4.47 
StI-5-spn-b Stewart Island spine b 6.21 
StI-5-spn-c Stewart Island spine c 5.19 
StI-5-rot-a Stewart Island rotula a 9.93 
StI-5-rot-b Stewart Island rotula b 9.20 
StI-5-rot-c Stewart Island rotula c 9.17 
StI-5-epi-a Stewart Island epiphysis a 10.12 
StI-5-epi-b Stewart Island epiphysis b 10.04 
StI-5-epi-c Stewart Island epiphysis c 11.12 
StI-5-demi-a Stewart Island demi-pyramid a 10.16 
StI-5-demi-b Stewart Island demi-pyramid b 10.63 
StI-5-demi-c Stewart Island demi-pyramid c 11.20 
StI-5-plate-a Stewart Island test plate a 8.54 
StI-5-plate-b Stewart Island test plate b 8.51 
StI-5-plate-c Stewart Island test plate c 9.06 
Frld-7-spn-a Fiordland spine a 4.22 
Frld-7-spn-b Fiordland spine b 3.82 
Frld-7-spn-c Fiordland spine c 4.47 
Frld-7-rot-a Fiordland rotula a 8.58 
Frld-7-rot-b Fiordland rotula b 8.54 
Frld-7-rot-c Fiordland rotula c 8.25 
Frld-7-epi-a Fiordland epiphysis a 8.43 
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Sample ID Location Body Part Replicate # Wt% MgCO3 in calcite 
Frld-7-epi-b Fiordland epiphysis b 9.89 
Frld-7-epi-c Fiordland epiphysis c 9.73 
Frld-7-demi-a Fiordland demi-pyramid a 10.40 
Frld-7-demi-b Fiordland demi-pyramid b 9.75 
Frld-7-demi-c Fiordland demi-pyramid c 9.21 
Frld-7-plate-a Fiordland test plate a 8.57 
Frld-7-plate-b Fiordland test plate b 10.52 
Frld-7-plate-c Fiordland test plate c 8.48 
Frld-3-spn-a Fiordland spine a 4.95 
Frld-3-spn-b Fiordland spine b 6.20 
Frld-3-spn-c Fiordland spine c 5.77 
Frld-3-rot-a Fiordland rotula a 8.78 
Frld-3-rot-b Fiordland rotula b 8.63 
Frld-3-rot-c Fiordland rotula c 8.84 
Frld-3-epi-a Fiordland epiphysis a 9.48 
Frld-3-epi-b Fiordland epiphysis b 9.01 
Frld-3-epi-c Fiordland epiphysis c 9.81 
Frld-3-demi-a Fiordland demi-pyramid a 10.24 
Frld-3-demi-b Fiordland demi-pyramid b 10.05 
Frld-3-demi-c Fiordland demi-pyramid c 9.53 
Frld-3-plate-a Fiordland test plate a 9.69 
Frld-3-plate-b Fiordland test plate b 10.16 
Frld-3-plate-c Fiordland test plate c 9.53 
Frld-5-spn-a Fiordland spine a 3.73 
Frld-5-spn-b Fiordland spine b 5.36 
Frld-5-spn-c Fiordland spine c 5.88 
Frld-5-rot-a Fiordland rotula a 10.84 
Frld-5-rot-b Fiordland rotula b 9.28 
Frld-5-rot-c Fiordland rotula c 9.61 
Frld-5-epi-a Fiordland epiphysis a 9.84 
Frld-5-epi-b Fiordland epiphysis b 9.64 
Frld-5-epi-c Fiordland epiphysis c 9.30 
Frld-5-demi-a Fiordland demi-pyramid a 10.01 
Frld-5-demi-b Fiordland demi-pyramid b 10.79 
Frld-5-demi-c Fiordland demi-pyramid c 11.25 
Frld-5-plate-a Fiordland test plate a 9.20 
Frld-5-plate-b Fiordland test plate b 10.32 
Frld-5-plate-c Fiordland test plate c 9.12 
Pic-2-spn-a Picton spine a 5.38 
Pic-2-spn-b Picton spine b 4.99 
Pic-2-spn-c Picton spine c 4.92 
Pic-2-rot-a Picton rotula a 8.65 
Pic-2-rot-b Picton rotula b 8.80 
Pic-2-rot-c Picton rotula c 9.33 
Pic-2-epi-a Picton epiphysis a 10.11 
Pic-2-epi-b Picton epiphysis b 10.31 
Pic-2-epi-c Picton epiphysis c 10.58 
Pic-2-demi-a Picton demi-pyramid a 8.55 
Pic-2-demi-b Picton demi-pyramid b 9.46 
Pic-2-demi-c Picton demi-pyramid c 9.69 
Pic-2-plate-a Picton test plate a 9.64 
Pic-2-plate-b Picton test plate b 8.90 
Pic-2-plate-c Picton test plate c 8.42 
Pic-9-spn-a Picton spine a 5.76 
Pic-9-spn-b Picton spine b 5.47 
Pic-9-spn-c Picton spine c 4.31 
Pic-9-rot-a Picton rotula a 8.69 
Pic-9-rot-b Picton rotula b 7.97 
Pic-9-rot-c Picton rotula c 9.13 
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Sample ID Location Body Part Replicate # Wt% MgCO3 in calcite 
Pic-9-epi-a Picton epiphysis a 9.40 
Pic-9-epi-b Picton epiphysis b 9.85 
Pic-9-epi-c Picton epiphysis c 9.52 
Pic-9-demi-a Picton demi-pyramid a 9.10 
Pic-9-demi-b Picton demi-pyramid b 9.95 
Pic-9-demi-c Picton demi-pyramid c 9.00 
Pic-9-plate-a Picton test plate a 10.08 
Pic-9-plate-b Picton test plate b 9.88 
Pic-9-plate-c Picton test plate c 8.44 
Pic-8-spn-a Picton spine a 5.01 
Pic-8-spn-b Picton spine b 5.36 
Pic-8-spn-c Picton spine c 5.09 
Pic-8-rot-a Picton rotula a 9.54 
Pic-8-rot-b Picton rotula b 8.81 
Pic-8-rot-c Picton rotula c 8.59 
Pic-8-epi-a Picton epiphysis a 10.63 
Pic-8-epi-b Picton epiphysis b 10.42 
Pic-8-epi-c Picton epiphysis c 9.94 
Pic-8-demi-a Picton demi-pyramid a 9.76 
Pic-8-demi-b Picton demi-pyramid b 9.51 
Pic-8-demi-c Picton demi-pyramid c 10.07 
Pic-8-plate-a Picton test plate a 8.75 
Pic-8-plate-b Picton test plate b 9.79 
Pic-8-plate-c Picton test plate c 9.99 
Akl-3-spn-a Auckland spine a 3.81 
Akl-3-spn-b Auckland spine b 5.79 
Akl-3-spn-c Auckland spine c 4.87 
Akl-3-rot-a Auckland rotula a 9.51 
Akl-3-rot-b Auckland rotula b 8.12 
Akl-3-rot-c Auckland rotula c 8.61 
Akl-3-epi-a Auckland epiphysis a 9.52 
Akl-3-epi-b Auckland epiphysis b 10.34 
Akl-3-epi-c Auckland epiphysis c 9.92 
Akl-3-demi-a Auckland demi-pyramid a 9.53 
Akl-3-demi-b Auckland demi-pyramid b 9.40 
Akl-3-demi-c Auckland demi-pyramid c 10.01 
Akl-3-plate-a Auckland test plate a 11.05 
Akl-3-plate-b Auckland test plate b 9.04 
Akl-3-plate-c Auckland test plate c 9.23 
Akl-4-spn-a Auckland spine a 3.17 
Akl-4-spn-b Auckland spine b 6.08 
Akl-4-spn-c Auckland spine c 5.28 
Akl-4-rot-a Auckland rotula a 10.18 
Akl-4-rot-b Auckland rotula b 8.65 
Akl-4-rot-c Auckland rotula c 8.04 
Akl-4-epi-a Auckland epiphysis a 10.64 
Akl-4-epi-b Auckland epiphysis b 9.50 
Akl-4-epi-c Auckland epiphysis c 9.42 
Akl-4-demi-a Auckland demi-pyramid a 9.24 
Akl-4-demi-b Auckland demi-pyramid b 9.69 
Akl-4-demi-c Auckland demi-pyramid c 9.64 
Akl-4-plate-a Auckland test plate a 9.28 
Akl-4-plate-b Auckland test plate b 10.31 
Akl-4-plate-c Auckland test plate c 9.54 
Akl-1-spn-a Auckland spine a 3.27 
Akl-1-spn-b Auckland spine b 4.76 
Akl-1-spn-c Auckland spine c 3.50 
Akl-1-rot-a Auckland rotula a 7.99 
Akl-1-rot-b Auckland rotula b 10.03 
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Sample ID Location Body Part Replicate # Wt% MgCO3 in calcite 
Akl-1-rot-c Auckland rotula c 8.87 
Akl-1-epi-a Auckland epiphysis a 8.90 
Akl-1-epi-b Auckland epiphysis b 9.15 
Akl-1-epi-c Auckland epiphysis c 9.53 
Akl-1-demi-a Auckland demi-pyramid a 9.26 
Akl-1-demi-b Auckland demi-pyramid b 9.10 
Akl-1-demi-c Auckland demi-pyramid c 11.24 
Akl-1-plate-a Auckland test plate a 10.93 
Akl-1-plate-b Auckland test plate b 10.45 
Akl-1-plate-c Auckland test plate c 9.06 
WhI-8-spn-a White Island spine a 31.68 
WhI-8-spn-b White Island spine b 31.68 
WhI-8-spn-c White Island spine c 31.69 
WhI-8-rot-a White Island rotula a 31.66 
WhI-8-rot-b White Island rotula b 31.59 
WhI-8-rot-c White Island rotula c 31.73 
WhI-8-epi-a White Island epiphysis a 31.70 
WhI-8-epi-b White Island epiphysis b 31.77 
WhI-8-epi-c White Island epiphysis c 31.72 
WhI-8-demi-a White Island demi-pyramid a 31.72 
WhI-8-demi-b White Island demi-pyramid b 31.73 
WhI-8-demi-c White Island demi-pyramid c 31.72 
WhI-8-plate-a White Island test plate a 31.77 
WhI-8-plate-b White Island test plate b 31.74 
WhI-8-plate-c White Island test plate c 31.64 
WhI-4-spn-a White Island spine a 31.60 
WhI-4-spn-b White Island spine b 31.67 
WhI-4-spn-c White Island spine c 31.72 
WhI-4-rot-a White Island rotula a 31.68 
WhI-4-rot-b White Island rotula b 31.53 
WhI-4-rot-c White Island rotula c 31.67 
WhI-4-epi-a White Island epiphysis a 31.76 
WhI-4-epi-b White Island epiphysis b 31.72 
WhI-4-epi-c White Island epiphysis c 31.74 
WhI-4-demi-a White Island demi-pyramid a 31.77 
WhI-4-demi-b White Island demi-pyramid b 31.70 
WhI-4-demi-c White Island demi-pyramid c 31.80 
WhI-4-plate-a White Island test plate a 31.54 
WhI-4-plate-b White Island test plate b 31.73 
WhI-4-plate-c White Island test plate c 31.66 
WhI-5-spn-a White Island spine a 31.67 
WhI-5-spn-b White Island spine b 31.72 
WhI-5-spn-c White Island spine c 31.70 
WhI-5-rot-a White Island rotula a 31.70 
WhI-5-rot-b White Island rotula b 31.71 
WhI-5-rot-c White Island rotula c 31.72 
WhI-5-epi-a White Island epiphysis a 31.62 
WhI-5-epi-b White Island epiphysis b 31.68 
WhI-5-epi-c White Island epiphysis c 31.67 
WhI-5-demi-a White Island demi-pyramid a 31.78 
WhI-5-demi-b White Island demi-pyramid b 31.77 
WhI-5-demi-c White Island demi-pyramid c 31.70 
WhI-5-plate-a White Island test plate a 31.67 
WhI-5-plate-b White Island test plate b 31.71 
WhI-5-plate-c White Island test plate c 31.73 
Wlg-1-spn-a Wellington spine a 5.45 
Wlg-1-spn-b Wellington spine b 6.86 
Wlg-1-spn-c Wellington spine c 3.63 
Wlg-1-rot-a Wellington rotula a 8.77 
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Sample ID Location Body Part Replicate # Wt% MgCO3 in calcite 
Wlg-1-rot-b Wellington rotula b 9.93 
Wlg-1-rot-c Wellington rotula c 8.94 
Wlg-1-epi-a Wellington epiphysis a 9.93 
Wlg-1-epi-b Wellington epiphysis b 9.59 
Wlg-1-epi-c Wellington epiphysis c 9.62 
Wlg-1-demi-a Wellington demi-pyramid a 10.49 
Wlg-1-demi-b Wellington demi-pyramid b 10.64 
Wlg-1-demi-c Wellington demi-pyramid c 9.85 
Wlg-1-plate-a Wellington test plate a 9.37 
Wlg-1-plate-b Wellington test plate b 8.80 
Wlg-1-plate-c Wellington test plate c 9.71 
Wlg-9-spn-a Wellington spine a 4.85 
Wlg-9-spn-b Wellington spine b 4.60 
Wlg-9-spn-c Wellington spine c 3.93 
Wlg-9-rot-a Wellington rotula a 8.73 
Wlg-9-rot-b Wellington rotula b 8.46 
Wlg-9-rot-c Wellington rotula c 9.53 
Wlg-9-epi-a Wellington epiphysis a 9.86 
Wlg-9-epi-b Wellington epiphysis b 10.13 
Wlg-9-epi-c Wellington epiphysis c 9.75 
Wlg-9-demi-a Wellington demi-pyramid a 9.12 
Wlg-9-demi-b Wellington demi-pyramid b 10.36 
Wlg-9-demi-c Wellington demi-pyramid c 9.81 
Wlg-9-plate-a Wellington test plate a 8.53 
Wlg-9-plate-b Wellington test plate b 9.50 
Wlg-9-plate-c Wellington test plate c 9.26 
Wlg-3-spn-a Wellington spine a 4.56 
Wlg-3-spn-b Wellington spine b 5.70 
Wlg-3-spn-c Wellington spine c 4.34 
Wlg-3-rot-a Wellington rotula a 9.07 
Wlg-3-rot-b Wellington rotula b 9.02 
Wlg-3-rot-c Wellington rotula c 9.43 
Wlg-3-epi-a Wellington epiphysis a 10.29 
Wlg-3-epi-b Wellington epiphysis b 10.57 
Wlg-3-epi-c Wellington epiphysis c 8.94 
Wlg-3-demi-a Wellington demi-pyramid a 7.73 
Wlg-3-demi-b Wellington demi-pyramid b 10.46 
Wlg-3-demi-c Wellington demi-pyramid c 9.17 
Wlg-3-plate-a Wellington test plate a 9.43 
Wlg-3-plate-b Wellington test plate b 9.03 
Wlg-3-plate-c Wellington test plate c 8.90 
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Appendix D Raw Data for Spine Strength 

Table 7.9 Raw data for spine strength of Evechinus chloroticus collected around New Zealand 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-StI-1 Stewart Island 23.65 79.43 3.36 
EvChl-StI-1 Stewart Island 25.26 77.81 3.08 
EvChl-StI-1 Stewart Island 24.02 87.72 3.65 
EvChl-StI-1 Stewart Island 24.49 75.33 3.08 
EvChl-StI-1 Stewart Island 23.54 123.44 5.24 
EvChl-StI-1 Stewart Island 23.78 93.77 3.94 
EvChl-StI-1 Stewart Island 25.95 63.72 2.46 
EvChl-StI-1 Stewart Island 23.94 88.47 3.70 
EvChl-StI-1 Stewart Island 23.29 110.72 4.75 
EvChl-StI-1 Stewart Island 23.10 86.94 3.76 
EvChl-StI-2 Stewart Island 24.07 108.21 4.50 
EvChl-StI-2 Stewart Island 27.22 103.23 3.79 
EvChl-StI-2 Stewart Island 25.03 87.38 3.49 
EvChl-StI-2 Stewart Island 24.18 90.71 3.75 
EvChl-StI-2 Stewart Island 24.08 88.29 3.67 
EvChl-StI-2 Stewart Island 24.76 100.51 4.06 
EvChl-StI-2 Stewart Island 24.34 102.66 4.22 
EvChl-StI-2 Stewart Island 23.69 108.11 4.56 
EvChl-StI-2 Stewart Island 25.30 89.93 3.55 
EvChl-StI-2 Stewart Island 25.12 98.31 3.91 
EvChl-StI-3 Stewart Island 27.97 84.12 3.01 
EvChl-StI-3 Stewart Island 24.93 103.73 4.16 
EvChl-StI-3 Stewart Island 25.99 80.10 3.08 
EvChl-StI-3 Stewart Island 22.86 79.14 3.46 
EvChl-StI-3 Stewart Island 24.68 72.43 2.93 
EvChl-StI-3 Stewart Island 27.17 84.55 3.11 
EvChl-StI-3 Stewart Island 26.22 77.73 2.96 
EvChl-StI-3 Stewart Island 26.44 80.34 3.04 
EvChl-StI-3 Stewart Island 26.02 98.61 3.79 
EvChl-StI-3 Stewart Island 24.65 87.72 3.56 
EvChl-StI-4 Stewart Island 26.35 102.71 3.90 
EvChl-StI-4 Stewart Island 27.32 91.66 3.36 
EvChl-StI-4 Stewart Island 26.54 100.33 3.78 
EvChl-StI-4 Stewart Island 27.20 84.70 3.11 
EvChl-StI-4 Stewart Island 24.46 97.59 3.99 
EvChl-StI-4 Stewart Island 26.16 100.02 3.82 
EvChl-StI-4 Stewart Island 25.73 81.19 3.16 
EvChl-StI-4 Stewart Island 22.97 96.76 4.21 
EvChl-StI-4 Stewart Island 22.71 92.83 4.09 
EvChl-StI-4 Stewart Island 26.66 96.31 3.61 
EvChl-StI-5 Stewart Island 23.46 66.33 2.83 
EvChl-StI-5 Stewart Island 25.88 92.29 3.57 
EvChl-StI-5 Stewart Island 25.73 88.09 3.42 
EvChl-StI-5 Stewart Island 25.29 95.15 3.76 
EvChl-StI-5 Stewart Island 23.45 71.64 3.06 
EvChl-StI-5 Stewart Island 23.20 78.45 3.38 
EvChl-StI-5 Stewart Island 25.81 68.38 2.65 
EvChl-StI-5 Stewart Island 24.74 78.31 3.17 
EvChl-StI-5 Stewart Island 25.17 78.26 3.11 
EvChl-StI-5 Stewart Island 22.96 82.18 3.58 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-2 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-StI-6 Stewart Island 21.83 103.23 4.73 
EvChl-StI-6 Stewart Island 21.11 85.68 4.06 
EvChl-StI-6 Stewart Island 22.76 88.61 3.89 
EvChl-StI-6 Stewart Island 22.96 82.44 3.59 
EvChl-StI-6 Stewart Island 24.28 100.54 4.14 
EvChl-StI-6 Stewart Island 23.68 86.52 3.65 
EvChl-StI-6 Stewart Island 19.89 83.43 4.19 
EvChl-StI-6 Stewart Island 25.44 100.15 3.94 
EvChl-StI-6 Stewart Island 21.57 102.08 4.73 
EvChl-StI-6 Stewart Island 21.22 83.11 3.92 
EvChl-StI-7 Stewart Island 23.74 98.82 4.16 
EvChl-StI-7 Stewart Island 26.10 90.45 3.47 
EvChl-StI-7 Stewart Island 27.22 86.54 3.18 
EvChl-StI-7 Stewart Island 27.94 88.10 3.15 
EvChl-StI-7 Stewart Island 27.53 98.12 3.56 
EvChl-StI-7 Stewart Island 29.68 102.50 3.45 
EvChl-StI-7 Stewart Island 28.22 95.61 3.39 
EvChl-StI-7 Stewart Island 27.19 69.14 2.54 
EvChl-StI-7 Stewart Island 27.93 80.01 2.86 
EvChl-StI-7 Stewart Island 28.81 93.44 3.24 
EvChl-StI-8 Stewart Island 24.80 79.37 3.20 
EvChl-StI-8 Stewart Island 23.90 81.40 3.41 
EvChl-StI-8 Stewart Island 23.12 111.11 4.81 
EvChl-StI-8 Stewart Island 25.14 75.18 2.99 
EvChl-StI-8 Stewart Island 25.51 106.57 4.18 
EvChl-StI-8 Stewart Island 25.16 114.84 4.56 
EvChl-StI-8 Stewart Island 24.29 97.74 4.02 
EvChl-StI-8 Stewart Island 24.54 83.93 3.42 
EvChl-StI-8 Stewart Island 25.19 81.36 3.23 
EvChl-StI-8 Stewart Island 23.12 160.23 6.93 
EvChl-StI-9 Stewart Island 27.28 91.37 3.35 
EvChl-StI-9 Stewart Island 28.31 97.68 3.45 
EvChl-StI-9 Stewart Island 30.55 99.32 3.25 
EvChl-StI-9 Stewart Island 28.88 88.19 3.05 
EvChl-StI-9 Stewart Island 29.15 91.92 3.15 
EvChl-StI-9 Stewart Island 29.10 107.28 3.69 
EvChl-StI-9 Stewart Island 29.68 93.82 3.16 
EvChl-StI-9 Stewart Island 29.14 93.24 3.20 
EvChl-StI-9 Stewart Island 28.93 102.29 3.54 
EvChl-StI-9 Stewart Island 28.28 81.36 2.88 
EvChl-StI-10 Stewart Island 22.95 116.28 5.07 
EvChl-StI-10 Stewart Island 22.79 105.75 4.64 
EvChl-StI-10 Stewart Island 24.69 104.02 4.21 
EvChl-StI-10 Stewart Island 23.80 101.52 4.27 
EvChl-StI-10 Stewart Island 26.81 86.29 3.22 
EvChl-StI-10 Stewart Island 25.12 85.76 3.41 
EvChl-StI-10 Stewart Island 24.25 81.39 3.36 
EvChl-StI-10 Stewart Island 24.00 105.36 4.39 
EvChl-StI-10 Stewart Island 25.53 77.06 3.02 
EvChl-StI-10 Stewart Island 23.30 76.06 3.26 
EvChl-Frld-1 Fiordland 25.36 66.77 2.63 
EvChl-Frld-1 Fiordland 29.47 61.02 2.07 
EvChl-Frld-1 Fiordland 26.83 61.40 2.29 
EvChl-Frld-1 Fiordland 24.25 66.44 2.74 
EvChl-Frld-1 Fiordland 26.53 58.97 2.22 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-3 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Frld-1 Fiordland 24.86 43.91 1.77 
EvChl-Frld-1 Fiordland 26.49 50.31 1.90 
EvChl-Frld-1 Fiordland 26.59 63.60 2.39 
EvChl-Frld-1 Fiordland 24.73 52.34 2.12 
EvChl-Frld-1 Fiordland 22.43 53.13 2.37 
EvChl-Frld-2 Fiordland 33.89 85.31 2.52 
EvChl-Frld-2 Fiordland 31.61 85.91 2.72 
EvChl-Frld-2 Fiordland 33.05 81.75 2.47 
EvChl-Frld-2 Fiordland 36.10 53.67 1.49 
EvChl-Frld-2 Fiordland 34.39 63.25 1.84 
EvChl-Frld-2 Fiordland 35.45 47.54 1.34 
EvChl-Frld-2 Fiordland 32.91 70.72 2.15 
EvChl-Frld-2 Fiordland 34.64 46.92 1.35 
EvChl-Frld-2 Fiordland 34.18 68.22 2.00 
EvChl-Frld-2 Fiordland 33.38 65.47 1.96 
EvChl-Frld-3 Fiordland 35.10 81.65 2.33 
EvChl-Frld-3 Fiordland 33.49 74.02 2.21 
EvChl-Frld-3 Fiordland 33.20 49.49 1.49 
EvChl-Frld-3 Fiordland 35.02 44.15 1.26 
EvChl-Frld-3 Fiordland 33.43 68.49 2.05 
EvChl-Frld-3 Fiordland 33.69 27.03 0.80 
EvChl-Frld-3 Fiordland 36.36 27.43 0.75 
EvChl-Frld-3 Fiordland 32.18 42.65 1.33 
EvChl-Frld-3 Fiordland 34.20 64.57 1.89 
EvChl-Frld-3 Fiordland 31.98 79.80 2.50 
EvChl-Frld-4 Fiordland 27.20 59.27 2.18 
EvChl-Frld-4 Fiordland 26.63 47.61 1.79 
EvChl-Frld-4 Fiordland 27.79 71.23 2.56 
EvChl-Frld-4 Fiordland 28.84 67.68 2.35 
EvChl-Frld-4 Fiordland 28.60 89.15 3.12 
EvChl-Frld-4 Fiordland 26.02 60.91 2.34 
EvChl-Frld-4 Fiordland 28.93 44.99 1.56 
EvChl-Frld-4 Fiordland 29.03 63.01 2.17 
EvChl-Frld-4 Fiordland 28.99 71.41 2.46 
EvChl-Frld-4 Fiordland 28.33 77.21 2.73 
EvChl-Frld-5 Fiordland 30.55 65.94 2.16 
EvChl-Frld-5 Fiordland 34.74 69.70 2.01 
EvChl-Frld-5 Fiordland 28.98 64.24 2.22 
EvChl-Frld-5 Fiordland 30.59 50.20 1.64 
EvChl-Frld-5 Fiordland 32.81 51.68 1.58 
EvChl-Frld-5 Fiordland 28.08 55.99 1.99 
EvChl-Frld-5 Fiordland 27.91 57.06 2.04 
EvChl-Frld-5 Fiordland 33.04 63.39 1.92 
EvChl-Frld-5 Fiordland 31.69 66.32 2.09 
EvChl-Frld-5 Fiordland 32.01 53.78 1.68 
EvChl-Frld-6 Fiordland 28.18 56.12 1.99 
EvChl-Frld-6 Fiordland 32.48 52.52 1.62 
EvChl-Frld-6 Fiordland 30.58 62.04 2.03 
EvChl-Frld-6 Fiordland 31.70 77.64 2.45 
EvChl-Frld-6 Fiordland 27.73 44.59 1.61 
EvChl-Frld-6 Fiordland 34.10 62.22 1.82 
EvChl-Frld-6 Fiordland 32.29 64.39 1.99 
EvChl-Frld-6 Fiordland 30.84 48.09 1.56 
EvChl-Frld-6 Fiordland 29.66 69.66 2.35 
EvChl-Frld-6 Fiordland 29.00 47.54 1.64 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-4 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Frld-7 Fiordland 33.30 47.54 1.43 
EvChl-Frld-7 Fiordland 31.70 82.78 2.61 
EvChl-Frld-7 Fiordland 34.07 50.62 1.49 
EvChl-Frld-7 Fiordland 31.05 76.03 2.45 
EvChl-Frld-7 Fiordland 31.83 59.47 1.87 
EvChl-Frld-7 Fiordland 32.36 67.97 2.10 
EvChl-Frld-7 Fiordland 31.61 49.93 1.58 
EvChl-Frld-7 Fiordland 30.84 77.72 2.52 
EvChl-Frld-7 Fiordland 32.30 56.94 1.76 
EvChl-Frld-7 Fiordland 30.25 54.25 1.79 
EvChl-Frld-8 Fiordland 32.73 63.27 1.93 
EvChl-Frld-8 Fiordland 32.14 63.73 1.98 
EvChl-Frld-8 Fiordland 29.98 59.27 1.98 
EvChl-Frld-8 Fiordland 28.80 40.15 1.39 
EvChl-Frld-8 Fiordland 31.78 59.28 1.87 
EvChl-Frld-8 Fiordland 31.72 69.93 2.20 
EvChl-Frld-8 Fiordland 31.56 74.68 2.37 
EvChl-Frld-8 Fiordland 31.70 48.03 1.52 
EvChl-Frld-8 Fiordland 32.94 66.57 2.02 
EvChl-Frld-8 Fiordland 31.07 54.20 1.74 
EvChl-Frld-9 Fiordland 30.09 55.99 1.86 
EvChl-Frld-9 Fiordland 30.35 47.84 1.58 
EvChl-Frld-9 Fiordland 33.61 46.09 1.37 
EvChl-Frld-9 Fiordland 33.04 57.31 1.73 
EvChl-Frld-9 Fiordland 29.26 70.85 2.42 
EvChl-Frld-9 Fiordland 30.06 58.47 1.95 
EvChl-Frld-9 Fiordland 33.99 52.10 1.53 
EvChl-Frld-9 Fiordland 33.62 56.69 1.69 
EvChl-Frld-9 Fiordland 33.24 63.36 1.91 
EvChl-Frld-9 Fiordland 35.00 66.25 1.89 
EvChl-Frld-10 Fiordland 27.18 56.61 2.08 
EvChl-Frld-10 Fiordland 29.37 50.44 1.72 
EvChl-Frld-10 Fiordland 26.79 75.94 2.83 
EvChl-Frld-10 Fiordland 25.98 61.00 2.35 
EvChl-Frld-10 Fiordland 25.32 62.57 2.47 
EvChl-Frld-10 Fiordland 28.11 72.22 2.57 
EvChl-Frld-10 Fiordland 27.98 63.26 2.26 
EvChl-Frld-10 Fiordland 26.77 53.56 2.00 
EvChl-Frld-10 Fiordland 24.90 49.18 1.98 
EvChl-Frld-10 Fiordland 27.04 53.55 1.98 
EvChl-Pic-1 Picton 22.51 113.19 5.03 
EvChl-Pic-1 Picton 22.86 103.90 4.55 
EvChl-Pic-1 Picton 23.59 99.52 4.22 
EvChl-Pic-1 Picton 20.83 115.57 5.55 
EvChl-Pic-1 Picton 20.71 139.43 6.73 
EvChl-Pic-1 Picton 21.77 117.92 5.42 
EvChl-Pic-1 Picton 21.03 119.25 5.67 
EvChl-Pic-1 Picton 20.50 105.47 5.14 
EvChl-Pic-1 Picton 22.15 118.18 5.34 
EvChl-Pic-1 Picton 22.30 91.31 4.09 
EvChl-Pic-2 Picton 21.04 122.57 5.83 
EvChl-Pic-2 Picton 20.19 102.47 5.08 
EvChl-Pic-2 Picton 21.94 120.34 5.49 
EvChl-Pic-2 Picton 22.03 113.71 5.16 
EvChl-Pic-2 Picton 20.83 92.22 4.43 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-5 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Pic-2 Picton 22.31 141.83 6.36 
EvChl-Pic-2 Picton 20.63 137.45 6.66 
EvChl-Pic-2 Picton 21.07 73.60 3.49 
EvChl-Pic-2 Picton 20.94 142.53 6.81 
EvChl-Pic-2 Picton 21.68 88.71 4.09 
EvChl-Pic-3 Picton 22.92 92.89 4.05 
EvChl-Pic-3 Picton 22.12 97.39 4.40 
EvChl-Pic-3 Picton 20.01 91.62 4.58 
EvChl-Pic-3 Picton 22.82 109.17 4.78 
EvChl-Pic-3 Picton 20.36 107.23 5.27 
EvChl-Pic-3 Picton 22.68 110.98 4.89 
EvChl-Pic-3 Picton 22.13 101.98 4.61 
EvChl-Pic-3 Picton 22.49 125.04 5.56 
EvChl-Pic-3 Picton 19.34 167.56 8.66 
EvChl-Pic-3 Picton 21.90 103.33 4.72 
EvChl-Pic-4 Picton 21.93 94.29 4.30 
EvChl-Pic-4 Picton 19.91 108.50 5.45 
EvChl-Pic-4 Picton 18.53 117.87 6.36 
EvChl-Pic-4 Picton 20.81 121.40 5.83 
EvChl-Pic-4 Picton 20.79 106.90 5.14 
EvChl-Pic-4 Picton 21.42 119.12 5.56 
EvChl-Pic-4 Picton 18.50 103.48 5.59 
EvChl-Pic-4 Picton 20.75 128.12 6.17 
EvChl-Pic-4 Picton 19.11 101.78 5.33 
EvChl-Pic-4 Picton 19.02 129.59 6.81 
EvChl-Pic-5 Picton 21.56 115.13 5.34 
EvChl-Pic-5 Picton 21.75 110.26 5.07 
EvChl-Pic-5 Picton 21.83 91.77 4.20 
EvChl-Pic-5 Picton 22.08 125.55 5.69 
EvChl-Pic-5 Picton 20.48 118.08 5.77 
EvChl-Pic-5 Picton 19.93 102.00 5.12 
EvChl-Pic-5 Picton 22.68 92.57 4.08 
EvChl-Pic-5 Picton 18.17 112.57 6.20 
EvChl-Pic-5 Picton 19.09 104.75 5.49 
EvChl-Pic-5 Picton 17.78 90.54 5.09 
EvChl-Pic-6 Picton 22.41 98.91 4.41 
EvChl-Pic-6 Picton 21.60 106.46 4.93 
EvChl-Pic-6 Picton 20.52 110.69 5.39 
EvChl-Pic-6 Picton 22.74 96.34 4.24 
EvChl-Pic-6 Picton 22.54 94.37 4.19 
EvChl-Pic-6 Picton 20.14 111.20 5.52 
EvChl-Pic-6 Picton 20.69 114.10 5.51 
EvChl-Pic-6 Picton 22.39 107.22 4.79 
EvChl-Pic-6 Picton 21.48 112.74 5.25 
EvChl-Pic-6 Picton 20.19 119.81 5.93 
EvChl-Pic-7 Picton 23.17 87.29 3.77 
EvChl-Pic-7 Picton 22.12 114.66 5.18 
EvChl-Pic-7 Picton 20.98 88.15 4.20 
EvChl-Pic-7 Picton 19.30 132.79 6.88 
EvChl-Pic-7 Picton 20.16 112.68 5.59 
EvChl-Pic-7 Picton 20.57 112.99 5.49 
EvChl-Pic-7 Picton 22.63 124.84 5.52 
EvChl-Pic-7 Picton 20.36 125.33 6.16 
EvChl-Pic-7 Picton 19.24 94.28 4.90 
EvChl-Pic-7 Picton 21.52 126.96 5.90 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-6 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Pic-8 Picton 23.52 87.87 3.74 
EvChl-Pic-8 Picton 22.38 110.72 4.95 
EvChl-Pic-8 Picton 22.36 160.51 7.18 
EvChl-Pic-8 Picton 23.27 106.00 4.56 
EvChl-Pic-8 Picton 22.47 101.97 4.54 
EvChl-Pic-8 Picton 22.54 106.99 4.75 
EvChl-Pic-8 Picton 21.67 92.33 4.26 
EvChl-Pic-8 Picton 20.20 93.40 4.62 
EvChl-Pic-8 Picton 21.30 126.10 5.92 
EvChl-Pic-8 Picton 21.01 132.71 6.32 
EvChl-Pic-9 Picton 24.98 136.25 5.45 
EvChl-Pic-9 Picton 23.62 115.18 4.88 
EvChl-Pic-9 Picton 20.50 154.84 7.55 
EvChl-Pic-9 Picton 21.00 86.10 4.10 
EvChl-Pic-9 Picton 21.06 75.86 3.60 
EvChl-Pic-9 Picton 22.71 81.41 3.58 
EvChl-Pic-9 Picton 21.18 114.61 5.41 
EvChl-Pic-9 Picton 19.92 97.77 4.91 
EvChl-Pic-9 Picton 23.76 89.12 3.75 
EvChl-Pic-9 Picton 21.01 101.01 4.81 
EvChl-Pic-10 Picton 20.88 107.30 5.14 
EvChl-Pic-10 Picton 21.66 100.25 4.63 
EvChl-Pic-10 Picton 22.21 96.98 4.37 
EvChl-Pic-10 Picton 20.56 98.38 4.79 
EvChl-Pic-10 Picton 20.55 118.49 5.77 
EvChl-Pic-10 Picton 21.11 116.23 5.51 
EvChl-Pic-10 Picton 20.83 115.29 5.53 
EvChl-Pic-10 Picton 21.74 105.87 4.87 
EvChl-Pic-10 Picton 19.47 96.13 4.94 
EvChl-Pic-10 Picton 20.09 109.81 5.47 
EvChl-Akl-1 Auckland 17.66 170.41 9.65 
EvChl-Akl-1 Auckland 19.41 144.23 7.43 
EvChl-Akl-1 Auckland 19.69 152.21 7.73 
EvChl-Akl-1 Auckland 18.70 134.36 7.18 
EvChl-Akl-1 Auckland 17.43 114.94 6.59 
EvChl-Akl-1 Auckland 18.89 87.35 4.62 
EvChl-Akl-1 Auckland 17.02 180.49 10.60 
EvChl-Akl-1 Auckland 18.07 192.29 10.64 
EvChl-Akl-1 Auckland 17.43 138.74 7.96 
EvChl-Akl-1 Auckland 17.10 183.84 10.75 
EvChl-Akl-2 Auckland 19.41 159.38 8.21 
EvChl-Akl-2 Auckland 18.24 122.50 6.72 
EvChl-Akl-2 Auckland 16.55 137.92 8.33 
EvChl-Akl-2 Auckland 18.95 126.50 6.68 
EvChl-Akl-2 Auckland 16.62 127.24 7.66 
EvChl-Akl-2 Auckland 18.31 108.80 5.94 
EvChl-Akl-2 Auckland 17.42 151.27 8.68 
EvChl-Akl-2 Auckland 16.51 119.67 7.25 
EvChl-Akl-2 Auckland 17.28 186.68 10.80 
EvChl-Akl-2 Auckland 16.58 121.43 7.32 
EvChl-Akl-3 Auckland 18.68 116.81 6.25 
EvChl-Akl-3 Auckland 18.52 109.77 5.93 
EvChl-Akl-3 Auckland 19.57 81.00 4.14 
EvChl-Akl-3 Auckland 18.22 132.16 7.25 
EvChl-Akl-3 Auckland 18.24 118.62 6.50 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-7 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Akl-3 Auckland 17.25 137.93 8.00 
EvChl-Akl-3 Auckland 18.03 103.10 5.72 
EvChl-Akl-3 Auckland 18.68 199.85 10.70 
EvChl-Akl-3 Auckland 18.23 139.97 7.68 
EvChl-Akl-3 Auckland 18.22 108.59 5.96 
EvChl-Akl-4 Auckland 17.41 122.41 7.03 
EvChl-Akl-4 Auckland 18.87 153.12 8.11 
EvChl-Akl-4 Auckland 21.00 132.11 6.29 
EvChl-Akl-4 Auckland 19.14 118.26 6.18 
EvChl-Akl-4 Auckland 18.39 124.90 6.79 
EvChl-Akl-4 Auckland 18.94 141.73 7.48 
EvChl-Akl-4 Auckland 17.74 159.89 9.01 
EvChl-Akl-4 Auckland 18.64 140.30 7.53 
EvChl-Akl-4 Auckland 17.90 147.45 8.24 
EvChl-Akl-4 Auckland 17.48 148.09 8.47 
EvChl-Akl-5 Auckland 18.61 127.44 6.85 
EvChl-Akl-5 Auckland 17.95 119.14 6.64 
EvChl-Akl-5 Auckland 17.17 142.28 8.29 
EvChl-Akl-5 Auckland 18.07 102.46 5.67 
EvChl-Akl-5 Auckland 16.80 100.59 5.99 
EvChl-Akl-5 Auckland 17.80 124.04 6.97 
EvChl-Akl-5 Auckland 15.75 148.20 9.41 
EvChl-Akl-5 Auckland 15.99 120.50 7.54 
EvChl-Akl-5 Auckland 16.68 178.32 10.69 
EvChl-Akl-5 Auckland 16.17 157.28 9.73 
EvChl-Akl-6 Auckland 19.34 148.83 7.70 
EvChl-Akl-6 Auckland 18.16 148.24 8.16 
EvChl-Akl-6 Auckland 17.66 127.50 7.22 
EvChl-Akl-6 Auckland 18.67 136.11 7.29 
EvChl-Akl-6 Auckland 18.52 118.69 6.41 
EvChl-Akl-6 Auckland 18.58 117.75 6.34 
EvChl-Akl-6 Auckland 18.13 154.07 8.50 
EvChl-Akl-6 Auckland 20.27 124.78 6.16 
EvChl-Akl-6 Auckland 20.66 140.95 6.82 
EvChl-Akl-6 Auckland 17.44 163.01 9.35 
EvChl-Akl-7 Auckland 19.95 102.91 5.16 
EvChl-Akl-7 Auckland 16.95 161.50 9.53 
EvChl-Akl-7 Auckland 17.90 158.25 8.84 
EvChl-Akl-7 Auckland 17.63 157.43 8.93 
EvChl-Akl-7 Auckland 15.97 128.56 8.05 
EvChl-Akl-7 Auckland 17.19 176.53 10.27 
EvChl-Akl-7 Auckland 17.20 140.26 8.15 
EvChl-Akl-7 Auckland 15.97 113.18 7.09 
EvChl-Akl-7 Auckland 16.60 108.85 6.56 
EvChl-Akl-7 Auckland 15.72 135.03 8.59 
EvChl-Akl-8 Auckland 19.11 124.15 6.50 
EvChl-Akl-8 Auckland 18.11 127.88 7.06 
EvChl-Akl-8 Auckland 18.68 150.87 8.08 
EvChl-Akl-8 Auckland 17.88 155.09 8.67 
EvChl-Akl-8 Auckland 17.86 110.99 6.21 
EvChl-Akl-8 Auckland 16.91 119.29 7.05 
EvChl-Akl-8 Auckland 17.06 133.97 7.85 
EvChl-Akl-8 Auckland 17.03 133.28 7.83 
EvChl-Akl-8 Auckland 16.66 146.28 8.78 
EvChl-Akl-8 Auckland 16.12 130.36 8.09 



 

Size, shape, scope and strength of skeletons, Evechinus chloroticus, New Zealand  D-8 

Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Akl-9 Auckland 19.19 136.65 7.12 
EvChl-Akl-9 Auckland 18.30 130.84 7.15 
EvChl-Akl-9 Auckland 17.64 119.98 6.80 
EvChl-Akl-9 Auckland 19.48 124.16 6.37 
EvChl-Akl-9 Auckland 17.64 118.22 6.70 
EvChl-Akl-9 Auckland 19.68 146.22 7.43 
EvChl-Akl-9 Auckland 17.62 108.59 6.16 
EvChl-Akl-9 Auckland 18.32 130.65 7.13 
EvChl-Akl-9 Auckland 18.08 162.14 8.97 
EvChl-Akl-9 Auckland 17.12 126.06 7.36 
EvChl-Akl-10 Auckland 18.18 116.79 6.42 
EvChl-Akl-10 Auckland 18.79 147.32 7.84 
EvChl-Akl-10 Auckland 18.26 146.94 8.05 
EvChl-Akl-10 Auckland 17.69 134.72 7.62 
EvChl-Akl-10 Auckland 16.20 146.66 9.05 
EvChl-Akl-10 Auckland 17.49 130.24 7.45 
EvChl-Akl-10 Auckland 17.91 126.51 7.06 
EvChl-Akl-10 Auckland 16.18 157.63 9.74 
EvChl-Akl-10 Auckland 16.24 119.49 7.36 
EvChl-Akl-10 Auckland 16.34 164.57 10.07 
EvChl-WhI-1 White Island 18.63 154.24 8.28 
EvChl-WhI-1 White Island 20.33 150.53 7.40 
EvChl-WhI-1 White Island 20.14 158.86 7.89 
EvChl-WhI-1 White Island 19.45 140.87 7.24 
EvChl-WhI-1 White Island 18.72 167.78 8.96 
EvChl-WhI-1 White Island 18.74 152.82 8.15 
EvChl-WhI-1 White Island 18.65 144.73 7.76 
EvChl-WhI-1 White Island 19.27 149.81 7.77 
EvChl-WhI-1 White Island 20.57 173.34 8.43 
EvChl-WhI-1 White Island 16.50 157.62 9.55 
EvChl-WhI-2 White Island 16.36 153.71 9.40 
EvChl-WhI-2 White Island 17.23 144.21 8.37 
EvChl-WhI-2 White Island 17.48 167.88 9.60 
EvChl-WhI-2 White Island 17.98 180.17 10.02 
EvChl-WhI-2 White Island 17.85 168.09 9.42 
EvChl-WhI-2 White Island 17.65 162.22 9.19 
EvChl-WhI-2 White Island 15.51 166.40 10.73 
EvChl-WhI-2 White Island 16.02 188.63 11.77 
EvChl-WhI-2 White Island 15.79 166.40 10.54 
EvChl-WhI-2 White Island 14.92 199.38 13.36 
EvChl-WhI-3 White Island 16.85 160.79 9.54 
EvChl-WhI-3 White Island 16.95 194.18 11.46 
EvChl-WhI-3 White Island 16.17 161.96 10.02 
EvChl-WhI-3 White Island 17.30 152.97 8.84 
EvChl-WhI-3 White Island 17.78 193.20 10.87 
EvChl-WhI-3 White Island 17.03 167.08 9.81 
EvChl-WhI-3 White Island 16.83 245.20 14.57 
EvChl-WhI-3 White Island 18.67 192.20 10.29 
EvChl-WhI-3 White Island 17.78 121.01 6.81 
EvChl-WhI-3 White Island 16.00 177.79 11.11 
EvChl-WhI-4 White Island 16.87 168.17 9.97 
EvChl-WhI-4 White Island 17.75 172.86 9.74 
EvChl-WhI-4 White Island 18.24 152.94 8.39 
EvChl-WhI-4 White Island 16.51 184.89 11.20 
EvChl-WhI-4 White Island 16.60 154.43 9.30 
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Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-WhI-4 White Island 17.10 167.73 9.81 
EvChl-WhI-4 White Island 14.80 161.58 10.92 
EvChl-WhI-4 White Island 15.83 170.79 10.79 
EvChl-WhI-4 White Island 15.27 178.39 11.68 
EvChl-WhI-4 White Island 14.52 177.00 12.19 
EvChl-WhI-5 White Island 17.02 171.12 10.05 
EvChl-WhI-5 White Island 17.76 154.29 8.69 
EvChl-WhI-5 White Island 18.29 180.94 9.89 
EvChl-WhI-5 White Island 16.73 175.62 10.50 
EvChl-WhI-5 White Island 16.68 165.47 9.92 
EvChl-WhI-5 White Island 18.15 157.27 8.66 
EvChl-WhI-5 White Island 16.03 188.06 11.73 
EvChl-WhI-5 White Island 16.31 175.84 10.78 
EvChl-WhI-5 White Island 17.55 198.32 11.30 
EvChl-WhI-5 White Island 16.12 173.79 10.78 
EvChl-WhI-6 White Island 18.09 157.58 8.71 
EvChl-WhI-6 White Island 19.01 166.05 8.73 
EvChl-WhI-6 White Island 19.69 176.05 8.94 
EvChl-WhI-6 White Island 17.19 216.51 12.60 
EvChl-WhI-6 White Island 18.50 163.65 8.85 
EvChl-WhI-6 White Island 18.13 186.82 10.30 
EvChl-WhI-6 White Island 17.32 173.56 10.02 
EvChl-WhI-6 White Island 18.71 184.12 9.84 
EvChl-WhI-6 White Island 16.81 191.88 11.41 
EvChl-WhI-6 White Island 16.64 169.25 10.17 
EvChl-WhI-7 White Island 15.62 169.60 10.86 
EvChl-WhI-7 White Island 15.67 161.36 10.30 
EvChl-WhI-7 White Island 14.67 167.89 11.44 
EvChl-WhI-7 White Island 14.56 192.38 13.21 
EvChl-WhI-7 White Island 15.31 178.99 11.69 
EvChl-WhI-7 White Island 16.30 143.55 8.81 
EvChl-WhI-7 White Island 15.32 141.92 9.26 
EvChl-WhI-7 White Island 16.12 190.54 11.82 
EvChl-WhI-7 White Island 15.08 160.42 10.64 
EvChl-WhI-7 White Island 14.72 162.59 11.05 
EvChl-WhI-8 White Island 19.05 166.32 8.73 
EvChl-WhI-8 White Island 18.05 170.48 9.44 
EvChl-WhI-8 White Island 17.95 168.64 9.39 
EvChl-WhI-8 White Island 19.03 160.40 8.43 
EvChl-WhI-8 White Island 18.35 164.21 8.95 
EvChl-WhI-8 White Island 17.46 183.81 10.53 
EvChl-WhI-8 White Island 17.20 154.62 8.99 
EvChl-WhI-8 White Island 18.20 155.64 8.55 
EvChl-WhI-8 White Island 20.41 141.92 6.95 
EvChl-WhI-8 White Island 17.25 141.52 8.20 
EvChl-WhI-9 White Island 16.22 151.63 9.35 
EvChl-WhI-9 White Island 18.33 135.94 7.42 
EvChl-WhI-9 White Island 18.52 184.66 9.97 
EvChl-WhI-9 White Island 17.63 190.33 10.80 
EvChl-WhI-9 White Island 17.28 156.41 9.05 
EvChl-WhI-9 White Island 16.21 148.58 9.17 
EvChl-WhI-9 White Island 16.81 169.45 10.08 
EvChl-WhI-9 White Island 18.44 152.66 8.28 
EvChl-WhI-9 White Island 16.96 182.52 10.76 
EvChl-WhI-9 White Island 16.93 160.04 9.45 
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Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-WhI-10 White Island 15.16 160.73 10.60 
EvChl-WhI-10 White Island 15.28 160.44 10.50 
EvChl-WhI-10 White Island 15.64 150.44 9.62 
EvChl-WhI-10 White Island 16.71 165.74 9.92 
EvChl-WhI-10 White Island 15.21 157.55 10.36 
EvChl-WhI-10 White Island 15.19 160.81 10.59 
EvChl-WhI-10 White Island 14.61 182.16 12.47 
EvChl-WhI-10 White Island 14.77 205.57 13.92 
EvChl-WhI-10 White Island 15.29 162.45 10.62 
EvChl-WhI-10 White Island 14.94 168.14 11.25 
EvChl-Wlg-1 Wellington 22.77 95.71 4.20 
EvChl-Wlg-1 Wellington 20.88 104.92 5.02 
EvChl-Wlg-1 Wellington 22.04 100.15 4.54 
EvChl-Wlg-1 Wellington 20.14 119.24 5.92 
EvChl-Wlg-1 Wellington 21.16 107.20 5.07 
EvChl-Wlg-1 Wellington 20.11 165.14 8.21 
EvChl-Wlg-1 Wellington 20.73 112.20 5.41 
EvChl-Wlg-1 Wellington 20.04 67.07 3.35 
EvChl-Wlg-1 Wellington 20.03 113.68 5.68 
EvChl-Wlg-1 Wellington 20.23 81.96 4.05 
EvChl-Wlg-2 Wellington 20.13 101.23 5.03 
EvChl-Wlg-2 Wellington 21.03 90.96 4.33 
EvChl-Wlg-2 Wellington 18.86 114.50 6.07 
EvChl-Wlg-2 Wellington 22.05 83.38 3.78 
EvChl-Wlg-2 Wellington 21.53 142.58 6.62 
EvChl-Wlg-2 Wellington 21.95 115.47 5.26 
EvChl-Wlg-2 Wellington 18.77 116.64 6.21 
EvChl-Wlg-2 Wellington 17.71 109.53 6.18 
EvChl-Wlg-2 Wellington 19.07 97.93 5.14 
EvChl-Wlg-2 Wellington 16.78 107.28 6.39 
EvChl-Wlg-3 Wellington 18.96 112.93 5.96 
EvChl-Wlg-3 Wellington 18.60 112.94 6.07 
EvChl-Wlg-3 Wellington 21.39 140.32 6.56 
EvChl-Wlg-3 Wellington 20.10 154.85 7.70 
EvChl-Wlg-3 Wellington 19.22 162.07 8.43 
EvChl-Wlg-3 Wellington 18.10 73.91 4.08 
EvChl-Wlg-3 Wellington 19.01 158.02 8.31 
EvChl-Wlg-3 Wellington 19.37 102.74 5.30 
EvChl-Wlg-3 Wellington 18.38 102.21 5.56 
EvChl-Wlg-3 Wellington 17.85 112.39 6.30 
EvChl-Wlg-4 Wellington 21.27 126.17 5.93 
EvChl-Wlg-4 Wellington 21.67 108.35 5.00 
EvChl-Wlg-4 Wellington 21.13 120.70 5.71 
EvChl-Wlg-4 Wellington 21.66 120.16 5.55 
EvChl-Wlg-4 Wellington 21.57 133.55 6.19 
EvChl-Wlg-4 Wellington 20.86 107.26 5.14 
EvChl-Wlg-4 Wellington 21.33 124.15 5.82 
EvChl-Wlg-4 Wellington 19.88 107.14 5.39 
EvChl-Wlg-4 Wellington 20.32 127.90 6.29 
EvChl-Wlg-4 Wellington 19.91 119.72 6.01 
EvChl-Wlg-5 Wellington 16.20 124.71 7.70 
EvChl-Wlg-5 Wellington 16.76 106.00 6.32 
EvChl-Wlg-5 Wellington 17.64 106.37 6.03 
EvChl-Wlg-5 Wellington 17.49 97.76 5.59 
EvChl-Wlg-5 Wellington 16.80 121.27 7.22 
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Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Wlg-5 Wellington 17.06 124.95 7.32 
EvChl-Wlg-5 Wellington 18.54 117.60 6.34 
EvChl-Wlg-5 Wellington 15.47 107.71 6.96 
EvChl-Wlg-5 Wellington 16.48 117.44 7.13 
EvChl-Wlg-5 Wellington 15.99 118.79 7.43 
EvChl-Wlg-6 Wellington 18.62 129.74 6.97 
EvChl-Wlg-6 Wellington 19.50 149.46 7.66 
EvChl-Wlg-6 Wellington 20.10 122.70 6.10 
EvChl-Wlg-6 Wellington 17.87 115.03 6.44 
EvChl-Wlg-6 Wellington 19.90 166.47 8.37 
EvChl-Wlg-6 Wellington 19.22 95.70 4.98 
EvChl-Wlg-6 Wellington 19.42 116.68 6.01 
EvChl-Wlg-6 Wellington 18.70 109.56 5.86 
EvChl-Wlg-6 Wellington 16.49 116.91 7.09 
EvChl-Wlg-6 Wellington 18.30 106.44 5.82 
EvChl-Wlg-7 Wellington 18.93 120.63 6.37 
EvChl-Wlg-7 Wellington 19.44 140.56 7.23 
EvChl-Wlg-7 Wellington 20.09 133.95 6.67 
EvChl-Wlg-7 Wellington 20.21 133.65 6.61 
EvChl-Wlg-7 Wellington 18.46 94.21 5.10 
EvChl-Wlg-7 Wellington 18.97 133.75 7.05 
EvChl-Wlg-7 Wellington 18.44 95.68 5.19 
EvChl-Wlg-7 Wellington 18.59 111.00 5.97 
EvChl-Wlg-7 Wellington 17.63 109.90 6.23 
EvChl-Wlg-7 Wellington 16.88 104.74 6.20 
EvChl-Wlg-8 Wellington 19.04 101.84 5.35 
EvChl-Wlg-8 Wellington 18.84 116.40 6.18 
EvChl-Wlg-8 Wellington 19.67 88.03 4.48 
EvChl-Wlg-8 Wellington 19.91 104.77 5.26 
EvChl-Wlg-8 Wellington 21.08 85.81 4.07 
EvChl-Wlg-8 Wellington 21.75 100.45 4.62 
EvChl-Wlg-8 Wellington 20.96 105.75 5.05 
EvChl-Wlg-8 Wellington 21.61 94.52 4.37 
EvChl-Wlg-8 Wellington 20.38 107.83 5.29 
EvChl-Wlg-8 Wellington 22.18 117.20 5.28 
EvChl-Wlg-9 Wellington 19.55 87.83 4.49 
EvChl-Wlg-9 Wellington 21.47 101.86 4.74 
EvChl-Wlg-9 Wellington 21.63 101.60 4.70 
EvChl-Wlg-9 Wellington 22.39 71.96 3.21 
EvChl-Wlg-9 Wellington 21.03 78.04 3.71 
EvChl-Wlg-9 Wellington 20.44 92.66 4.53 
EvChl-Wlg-9 Wellington 19.77 91.02 4.60 
EvChl-Wlg-9 Wellington 20.10 74.33 3.70 
EvChl-Wlg-9 Wellington 20.79 107.44 5.17 
EvChl-Wlg-9 Wellington 19.47 78.64 4.04 
EvChl-Wlg-10 Wellington 17.60 78.85 4.48 
EvChl-Wlg-10 Wellington 19.87 109.64 5.52 
EvChl-Wlg-10 Wellington 18.28 95.24 5.21 
EvChl-Wlg-10 Wellington 18.09 107.02 5.92 
EvChl-Wlg-10 Wellington 18.91 84.75 4.48 
EvChl-Wlg-10 Wellington 18.58 105.37 5.67 
EvChl-Wlg-10 Wellington 18.38 88.94 4.84 
EvChl-Wlg-10 Wellington 16.66 100.80 6.05 
EvChl-Wlg-10 Wellington 18.74 104.89 5.60 
EvChl-Wlg-10 Wellington 18.15 113.05 6.23 
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Sample Location Spine length Flexural strength Strength:Length 
(mm) (Mpa) (Mpa:mm) 

EvChl-Wlg-11 Wellington 22.20 107.52 4.84 
EvChl-Wlg-11 Wellington 21.21 110.50 5.21 
EvChl-Wlg-11 Wellington 22.52 116.34 5.17 
EvChl-Wlg-11 Wellington 22.31 118.11 5.29 
EvChl-Wlg-11 Wellington 22.67 88.97 3.92 
EvChl-Wlg-11 Wellington 21.47 99.45 4.63 
EvChl-Wlg-11 Wellington 22.36 109.41 4.89 
EvChl-Wlg-11 Wellington 23.22 115.47 4.97 
EvChl-Wlg-11 Wellington 22.47 93.03 4.14 
EvChl-Wlg-11 Wellington 21.30 94.33 4.43 
EvChl-Wlg-12 Wellington 23.50 93.66 3.99 
EvChl-Wlg-12 Wellington 23.03 73.56 3.19 
EvChl-Wlg-12 Wellington 21.70 99.59 4.59 
EvChl-Wlg-12 Wellington 22.19 82.56 3.72 
EvChl-Wlg-12 Wellington 23.42 96.52 4.12 
EvChl-Wlg-12 Wellington 22.91 108.68 4.74 
EvChl-Wlg-12 Wellington 22.15 113.26 5.11 
EvChl-Wlg-12 Wellington 20.95 113.31 5.41 
EvChl-Wlg-12 Wellington 21.37 84.72 3.96 
EvChl-Wlg-12 Wellington 23.34 114.68 4.91 
EvChl-Wlg-13 Wellington 23.00 101.83 4.43 
EvChl-Wlg-13 Wellington 22.76 119.10 5.23 
EvChl-Wlg-13 Wellington 22.46 115.90 5.16 
EvChl-Wlg-13 Wellington 20.92 94.42 4.51 
EvChl-Wlg-13 Wellington 21.28 88.98 4.18 
EvChl-Wlg-13 Wellington 21.83 103.32 4.73 
EvChl-Wlg-13 Wellington 21.92 122.69 5.60 
EvChl-Wlg-13 Wellington 20.89 117.75 5.64 
EvChl-Wlg-13 Wellington 20.46 105.28 5.15 
EvChl-Wlg-13 Wellington 20.42 118.66 5.81 
EvChl-Wlg-14 Wellington 21.83 96.61 4.43 
EvChl-Wlg-14 Wellington 22.57 100.81 4.47 
EvChl-Wlg-14 Wellington 22.95 107.50 4.68 
EvChl-Wlg-14 Wellington 21.05 84.30 4.00 
EvChl-Wlg-14 Wellington 21.61 104.03 4.81 
EvChl-Wlg-14 Wellington 23.00 90.01 3.91 
EvChl-Wlg-14 Wellington 23.18 91.52 3.95 
EvChl-Wlg-14 Wellington 20.89 87.04 4.17 
EvChl-Wlg-14 Wellington 21.12 90.03 4.26 
EvChl-Wlg-14 Wellington 23.06 78.77 3.42 

 


