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Abstract 

 

Colorectal cancer (CRC) is a considerable health burden being the second highest cause of 

cancer deaths globally. While overall cases of CRC have been declining worldwide, there has 

been an increase in the incidence of the disease among patients under 50 years of age. The 

majority of these cancers are sporadic and the increase in incidence may reflect changing 

lifestyle, exposing young people to more and earlier pro-oncogenic factors.   

An early event in the development of CRC is the loss of normal structure of the epithelium and 

key to this is the loss of cell to cell contact. E-cadherin, encoded by the CDH1 gene, is a 

membrane-bound protein whose extracellular domains bind to E-cadherin of neighbouring 

cells forming adherens junctions as the primary event in intercellular contact. Loss of E-

cadherin leads to the breakdown of this organised epithelial structure and can lead to the 

development of cancer.  

The research detailed in this thesis looked at E-cadherin expression status and mutation of the 

CDH1 gene in two separate cohorts. Firstly tumours from young Pakistani patients with early-

onset colorectal signet-ring cell carcinomas (SRCCs), due to their histological similarity to 

SRCCs found in hereditary diffuse gastric cancers where mutation of CDH1 is a common 

causative factor and, secondly a local New Zealand cohort of early-onset CRC cases. 

E-cadherin was found to be absent or weak in the colorectal SRCC samples and in a small 

number of cases this corresponded to germline CDH1 mutation. However, the remaining SRCC 

samples had low levels of CDH1 mutation despite loss of E-cadherin expression, suggesting 

that while E-cadherin loss is common in colorectal SRCC it is not due to CDH1 mutation in 

most cases. Amongst the New Zealand samples, only one tumour, the sole SRCC case in the 

cohort, showed loss of E-cadherin but this was not correlated with CDH1 mutation which was 

not a common feature of this cohort. 

Additionally, APC sequencing was performed on the New Zealand cohort. APC is mutated in 

60-80% of sporadic CRC tumours but with reportedly lower levels in younger patients. 

However 72% of the New Zealand early-onset CRC cohort was found to have a mutation in 

APC, a higher proportion than expected. This may reflect a greater coverage of APC by the 

sequencing methodology employed in this study compared to previous studies with a high 

proportion of mutations occurring outside the commonly studied mutation cluster region of 



iii 
 

APC. Loss of heterozygosity at the APC locus was found in only three patients, all of whom 

had APC mutations occurring close to codon 1300, reflective of a previous studies in older-

onset CRC. 

While environmental and lifestyle factors are widely considered to have roles in the 

development of sporadic CRC, there is growing evidence of the gut microbiota being a factor 

in colorectal carcinogenesis. One well-studied toxin-producing bacteria is Enterotoxigenic 

Bacteroides fragilis (ETBF) that causes cleavage of E-cadherin in colonic epithelial cells. 

Study of the effect of the B. fragilis toxin (BFT) on colonic epithelial cells has focused on the 

cell line HT29 which shows a rapid morphological change upon incubation with BFT. 

However, HT29 cells only have truncated forms of APC. In the last part of this study one 

mutated APC allele in HT29 was corrected by genome editing in order to study the effects of 

BFT on a cell line expressing full-length APC, and thereby to increase our understanding of 

the role of APC in colorectal carcinogenesis.  

The rapid change in morphology upon exposure to BFT in HT29 cells has been attributed to 

the BFT-mediated cleavage of E-cadherin. However, edited HT29 cells containing full-length 

APC maintained their structure after 6 hours incubation with ETBF supernatant. Moreover, 

fluorescent immunohistochemistry showed that cell morphology was maintained despite the 

cleavage of E-cadherin, suggesting that the structural integrity of the edited cells was due to 

some internal function of APC rather than E-cadherin cleavage. 

In summary, this research found that E-cadherin loss was commonly found in colorectal 

SRCCs but predominantly occurred independently from CDH1 mutations. Furthermore, other 

than in SRCCs, E-cadherin loss was not a common feature of early-onset CRC. Conversely, 

APC mutation was very common, with many mutations being found outside the mutation 

cluster region of APC, suggesting APC sequencing strategies should be targeted more widely 

throughout the gene. These results suggest a role for the APC protein in stabilising the cellular 

morphology of HT29 cells exposed to bacterial toxin, which is independent of E-cadherin. The 

edited HT29 cell line is likely to be a useful tool in the study of bacterial and other 

environmental effects on colorectal carcinogenesis. 
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1 Introduction 

 

1.1 Colorectal Cancer 

Colorectal cancer (CRC) is a considerable health burden globally, being the second most 

diagnosed cancer in women and third in men (Ferlay et al., 2015). New Zealand ranks amongst 

the highest in the world for incidence (Gandhi et al., 2017) and CRC is the second highest cause 

of cancer-related death (Gandhi et al., 2017).  

CRC is influenced by both genetic and environmental factors. While hereditary syndromes 

predisposing patients to CRC, for example hereditary non-polyposis colorectal cancer (Lynch 

et al., 1991) and familial adenomatous polyposis (Groden et al., 1991; Nishisho et al., 1991) 

exist, the majority of CRC cases are sporadic.  

 

1.1.1 Hereditary colorectal cancer syndromes 

1.1.1.1 Hereditary Non-Polyposis Colorectal Cancer 

Hereditary non-polyposis colorectal cancer (HNPCC), also known as Lynch syndrome, is an 

autosomal dominant condition caused by mutations in DNA mismatch repair genes (Lynch et 

al., 1991). DNA damage can occur via errors in DNA replication or by the effects of exogenous 

factors, such as chemicals, cigarette smoke and radiation, or endogenous metabolites including 

reactive oxygen or nitrogen species (G. M. Li, 2008). To prevent such damage affecting the 

integrity of the genome, cells possess multiple mechanisms to repair this damage, an important 

one of which is DNA mismatch repair (MMR). Loss of activity of MMR proteins leads to rapid 

accumulation of DNA replication errors, including within key regulatory genes involved in cell 

control, apoptosis and DNA repair, increasing the potential for tumour formation (Boland et 

al., 2008). The four principal MMR genes mutated in HNPCC are MutL homolog 1 (MLH1), 

post-meiotic segregation 2 (PMS2), MutS homolog 6 (MSH6) and MutS homolog 2 (MSH2) 

(Al-Sohaily et al., 2012). Mutation of a further gene that encodes an epithelial cell adhesion 

molecule Ep-CAM (TACSTD1) has also been implicated in HNPCC due to its silencing effect 

on MSH2 (Ligtenberg et al., 2009).  

The accumulation of DNA replication errors in HNPCC is particularly apparent in 

microsatellites, short regions of repetitive sequences that can acquire losses or gains of the 
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repeated sequence. This manifests itself as microsatellite instability (MSI) and microsatellite 

testing can be performed by amplifying these short repetitive regions and looking for changes 

in the lengths of the amplicons due to the loss or gain of repeat sequences (Suraweera et al., 

2002). Alternatively, HNPCC can be diagnosed using immunohistochemistry by measuring the 

loss of expression of any of MSH2, MSH6, MLH1 or PMS2 (South et al., 2009). This will also 

be effective in the case of mutation of TACSTD1 as this also results in the loss of MSH2 

expression. 

HNPCC is the most common inherited form of CRC, accounting for 2-3% of all colorectal 

cancer cases (Desai & Barkel, 2008). Tumours occur at an earlier age in HNPCC patients than 

in the general population (Cunningham et al., 2010), and tend to be located on the right side of 

the colon and often occur with synchronous and metachronous colorectal tumours (Vasen, 

2007).  

 

1.1.1.2 Familial Adenomatous Polyposis 

Familial adenomatous polyposis (FAP) accounts for less than 1% of all CRC cases and, despite 

being less common than HNPCC, was the first familial colorectal cancer syndrome identified 

due to its striking clinical characteristics. The disease is typified by the early-onset of hundreds 

to thousands of adenomatous polyps within the colon, and if left untreated almost 100% of 

patients will develop colorectal cancer by the age of 40 years (Bisgaard et al., 1994). Cancer 

can be prevented by rigorous screening and surgical intervention. FAP is an autosomal 

dominant disease caused by mutations in the adenomatous polyposis coli (APC) gene (Groden 

et al., 1991). A detailed analysis of the role of APC in CRC is introduced below. 

Attenuated FAP is a less aggressive form of the disease with a later age of onset and fewer 

adenomatous polyps. While attenuated FAP is also caused by mutations in APC, the causal 

mutations appear confined to three regions of APC: the 5’ region comprising the first 5 exons, 

exon 9 and the 3’ region of the gene (Knudsen et al., 2003). It is estimated around 8% of FAP 

cases may present with an attenuated FAP phenotype (Nielsen et al., 2007). 
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1.1.1.3 Other inherited colorectal cancer syndromes 

A number of other conditions can result in rare inherited forms of CRC. MUTYH-associated 

polyposis is an autosomal recessive sub-type that occurs as a result of mutation of the MUTYH 

gene, which encodes the MYH glycosylase, which is involved in DNA base excision repair. 

Loss of MYH glycosylase leads to the accumulation of DNA mutations in the cell and 

subsequent tumour formation (Poulsen & Bisgaard, 2008). 

Peutz-Jeghers syndrome is an autosomal dominant condition caused by mutation of the 

serine/threonine kinase 11 gene (STK11, also known as LKB1) (Jenne et al., 1998) with an 

incidence of between 1 in 25,000 and 1 in 300,000 people. STK11 is a tumour suppressor gene 

that regulates cell polarity and promotes programmed cell death. Mutation of STK11 is 

associated with uncontrolled epithelial cell growth, leading to the formation of hamartomatous 

polyps and a 41-60% risk of malignant tumours (Vaahtomeri & Makela, 2011). 

Cowden syndrome, an inherited condition affecting approximately 1 in 200,000 people, is 

caused by mutation of the phosphatase and tensin homolog gene (PTEN), and manifests as an 

increased risk of multiple malignancies including colon cancer. Multiple hamartomatous 

polyps are a common feature in Cowden syndrome (Stanich et al., 2011). Interestingly the 

STK11 and PTEN genes implicated in the formation of hamartomatous polyposis syndromes 

in Peutz-Jeghers and Cowden syndromes, respectively, have been shown to interact with each 

other, suggesting these two syndromes may develop through similar pathways (Mehenni et al., 

2005). 

 

1.1.2 Sporadic colorectal cancer pathways 

Approximately 75% of colorectal cancer is sporadic, occurring in patients without a genetic 

predisposition or family history of CRC. Tumour formation is the result of an accumulation of 

genetic and epigenetic alterations (Yamagishi et al., 2016). Over the past few decades three 

pathways of carcinogenesis, comprising different but overlapping patterns of mutated or altered 

genes, have been proposed (Figure 1.1). 
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Figure 1.1 Sporadic colorectal cancer pathways. Diagram showing the key genetic and epigenetic 

events in each of the three pathways of colorectal cancer development. APC, adenomatous polyposis 

coli gene; KRAS, Kirsten rat sarcoma proto-oncogene; BRAF, v-RAF murine sarcoma viral oncogene 

homolog B; MSI, microsatellite instability; MSS microsatellite stable; CIMP, CpG island methylator 

phenotype. 

 

1.1.2.1 The adenoma-carcinoma pathway 

The genes mutated in familial CRCs are also key to sporadic CRC, with mutation of APC in 

particular being an early event in colorectal carcinogenesis. APC mutations are found in the 

earliest microscopic adenomas (Kinzler & Vogelstein, 1996) and APC mutations in sporadic 

tumours are found at the same rate as in early adenomas (Polakis, 2007). Additionally, both 

alleles of APC appear to require inactivation for carcinogenesis to occur, thereby fulfilling 

Knudsen’s two-hit hypothesis (Kinzler & Vogelstein, 1996). However, APC mutation alone is 

not sufficient in itself for CRC progression as not all adenomas will progress to carcinomas, as 

was evidenced by a study that found no significant difference in APC status between progressed 

and non-progressed adenomas (Hermsen et al., 2002). Those adenomas that do progress to 

CRCs acquire an accumulation of additional genetic aberrations such as mutations of the 

Kirsten rat sarcoma proto-oncogene (KRAS), V-RAF murine sarcoma oncogene homolog B1 
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(BRAF), SMA- and MAD-related proteins 2 and 4 (SMAD2/4), and tumour protein 53 (TP53), 

that occur over time as dysregulation continues (Sameer, 2013). These are often referred to as 

the adenoma-carcinoma sequence (Figure 1.2; (Fearon & Vogelstein, 1990)).  

 

Figure 1.2 The adenoma-carcinoma model of colorectal carcinogenesis. The sequential 

accumulation of genetic aberrations proposed by Fearon and Vogelstein starting with mutation of the 

APC gene. DCC, Deleted in colon cancer (Figure taken from Yalcin, 2014).  

 

An early event following APC mutation in the adenoma-carcinoma pathway is genetic 

disruption in the form of loss or gain of whole arms, or significant portions of arms of 

chromosomes in what is termed chromosomal instability (CIN) (Pino & Chung, 2010). This 

results in an imbalance in chromosome number (aneuploidy) and a high frequency of loss of 

heterozygosity (LOH). Common chromosomal anomalies in CIN include loss of chromosome 

18, partial loss of chromosomes 1, 5, 8 and 17, as well as gains and losses of large parts of 

various chromosomes (Sheffer et al., 2009; Thiagalingam et al., 2001). Of note, loss of 

chromosome 5q, the chromosome arm carrying the APC gene, is seen in 20-50% of colorectal 

cancers (Fearon & Vogelstein, 1990). 

 

1.1.2.2 The microsatellite instability pathway 

While mutation of the APC gene is a hallmark of the adenoma-carcinoma pathway, APC 

mutation per se is not an absolute requirement for CRC progression as alternative pathways of 

CRC exist, as evidenced by the finding that a minority of CRC tumours present with wild type 

APC. This group includes the 15 to 30% of CRC cases that develop from serrated polyps, 

characterised by their saw-tooth appearance (Bettington et al., 2013). Neoplastic lesions arising 

from serrated polyps rarely present with APC mutations but commonly have mutations in 
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BRAF and to a lesser extent KRAS (De Palma et al., 2019). Another common feature of the 

serrated pathway is microsatellite instability (De Palma et al., 2019). 

Microsatellite instability (MSI), the result of mutations in mismatch repair genes, manifests as 

the destabilisation of repetitive tracts of DNA and is the underlying cause of hereditary non-

polyposis colorectal cancer, as detailed above. MSI is also seen in approximately 15% of 

sporadic colorectal cancers (Boland & Goel, 2010). As with familial HNPCC, mutation of 

mismatch repair genes leads to the rapid accumulation of DNA errors, including aberrations in 

key genes that regulate the cell cycle, apoptosis and DNA repair (Boland et al., 2008).  

The presence of MSI in CRCs is associated with an improved prognosis compared to 

microsatellite stable (MSS) tumours (Popat et al., 2005). The reasons for this are unclear. 

Notably, tumours with MSI tend to have less loss of heterozygosity than tumours in the 

chromosomal instability pathway (Soreide et al., 2006). Furthermore, mutations or allele losses 

in KRAS, TP53 and DCC (Deleted in Colon Cancer) are associated with a poorer prognosis and 

mutations within these genes are uncommon in MSI tumours (Soreide et al., 2006). Conversely, 

BRAF V600E mutations are common in MSI tumours while they are not seen in HNPCC 

tumours (G. Deng et al., 2004). In addition, MSI tumours are observed to be associated with 

lymphocyte infiltration, and it is possible that this immune response may contribute to a better 

outcome (Linnebacher et al., 2010). 

 

1.1.2.3 The methylator phenotype pathway 

The discovery during the 1990’s, that multiple suppressor genes are silenced in colorectal 

tumours, led to the development that epigenetic aberrations can define tumour progression as 

a CpG island methylator phenotype (CIMP) (Toyota et al., 1999), where expression of key 

tumour suppressor genes are repressed by promoter methylation (Goel et al., 2007). This led to 

the assertion that CIMP could be used as a classifier and prognostic indicator in CRCs.  While 

the majority of colorectal tumours have genetic aberrations due to either MSI or CIN, the CIMP 

can occur alongside CIN and is often associated with MSI, but appears to arise from an 

independent mechanism of tumour progression (Cheng et al., 2008).  

Tumours exhibiting a CIMP account for about 15-20% of sporadic CRCs, are more common 

in women and older patients, and are often located in the proximal colon (Nosho et al., 2008).  
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CIMP-positive tumours are often associated with MSI and BRAF mutation (Weisenberger et 

al., 2006) and this may be due to methylation of the MLH1 promoter. 

Environmental factors such as smoking (Samowitz et al., 2006) and aging (Toyota & Issa, 

1999) have been shown to correlate with increased methylation. A detailed discussion of 

environmental and lifestyle factors, and their effect on epigenetics and carcinogenesis, is 

presented below (Section 1.7). 

 

1.2 The structure of the colonic epithelium 

The colorectal epithelium consists of a monolayer of polarised cells that act as a barrier, 

keeping the rich microbe community of the gut lumen from infecting the rest of the body. The 

formation of this barrier starts at the base of colonic crypts with continual division of a small 

population of stem cells. At each stem cell division, one cell becomes a transit amplifying cell 

that continues to proliferate, populating first the crypt and then starting to migrate up the crypt 

towards the villus (Boman & Fields, 2013). As numbers increase, cells migrate up the crypt 

where there is a reduction in proliferation as the cells polarise and then differentiate (Pinto & 

Clevers, 2005).  

Central to the establishment of this cell polarity is the formation of adherens junctions (Knust 

& Bossinger, 2002) between adjacent cells where the intracellular protein E-cadherin forms 

homocomplexes with its neighbouring cell (Figure 1.3). The binding of E-cadherin not only 

contacts neighbouring cells but also provides a structural link with intracellular structures via 

catenin proteins (Paredes et al., 2012). The resultant polarised cell monolayer moving up the 

crypt has clearly defined basolateral and apical membranes (Wodarz & Nathke, 2007). Tight 

junctions then form between adjacent cells and integrins bind the basal membrane to the 

basement membrane. The formation of this E-cadherin-mediated barrier not only provides 

structure to the cells, but also acts as a signal to suppress further cell proliferation (Mendonsa 

et al., 2018). 
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Figure 1.3 Binding of the extracellular domains of E-cadherin proteins from adjacent cells. E-

cadherin binds adjacent cells at adherens junctions while connecting intracellularly to the actin 

cytoskeleton via catenin molecules (Figure taken from Perry et al., 2009). 

 

The polarised cells continue to migrate up the crypt, gradually differentiating until they are 

shed from the surface of the villus into the lumen of the gut, after a crypt to villous migration 

of approximately five days (Potten et al., 1992).  

 

1.3 The cytoskeleton 

The intracellular domain of E-cadherin binds to β/γ-catenin in a complex with α-catenin which 

attaches to the actin cytoskeleton (Figure 1.3) (Takeichi, 1991). The cytoskeleton is a dynamic 

fibrous network throughout the cytoplasm that regulates cellular architecture as well as 

providing a scaffold for diverse biochemical pathways (S. Kim & Coulombe, 2010). 

Structurally the cytoskeleton is comprised of actin filaments and microtubules made from 

polymerised tubulin. As the cytoskeleton forms a dynamic network across the entire cell it is 

in contact with many cellular components such as the nucleus, various organelles, vesicles and 

proteins, many of which depend on the cytoskeleton for their function. Accordingly, the 

cytoskeleton is a regulator of many cellular processes including cell division, organelle 

positioning, vesicular trafficking, cell migration and adhesion (M. C. Kim et al., 2012). 
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The microtubule component of the cytoskeleton is stabilised by APC binding to its end with 

APC conferring a longer lifespan on microtubules (Kita et al., 2006). APC further strengthens 

the cytoskeleton by facilitating crosstalk between microtubules and actin filaments as a part of 

the cortical microtubule stabilisation complexes (Dogterom & Koenderink, 2019). The 

microtubule binding domain of APC is located near the C-terminal end of the protein which is 

usually lost in the truncated cancer-associated isoforms of APC. Thus disruption of the 

cytoskeletal stabilising role of APC may be one of the key mechanisms by which 

carcinogenesis is promoted by truncated APC (Nathke, 2006), in addition to its role in the 

regulation of Wnt signalling (Section 1.4.1).  

 

1.4 Wnt signalling 

Wnt (Wingless-related integration site) signalling is the dominant force driving epithelial cell 

proliferation in the colon. Wnt ligands bind to the transmembrane receptors Frizzled and 

LRP5/6 (X. He et al., 2004). Binding of the ligands stabilises β-catenin intracellularly which 

then moves to the nucleus where it binds to T-cell factor (TCF) family transcription factors. 

The DNA-binding specificity of TCFs and the transactivation domains of β-catenin allow 

transcription of Wnt target genes such as the MYC oncogene leading to cell proliferation (Pinto 

& Clevers, 2005).  

The effect of Wnt signalling on cell proliferation is desirable in the cells at the bottom of the 

colonic crypts where proliferation is key to the renewal of epithelial cells and cell turnover. 

However, as the cells move up the crypt and mature, Wnt-controlled cellular proliferation is 

less desirable and, accordingly, Wnt signalling becomes gradually inactive towards the top of 

the crypt in the normal epithelium (Daulagala et al., 2019). 

The key intracellular regulator of Wnt signalling is the tumour suppressor protein adenomatous 

polyposis coli (APC). Consequently, the loss of functional APC, as seen in FAP (Groden et al., 

1991) or in 70-80% of sporadic CRC (Fearon, 2011), is associated with dysregulated Wnt 

signalling (Figure 1.4). 
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1.4.1 APC function 

APC is a multi-functional protein in epithelial cells, having roles in Wnt signalling (Boman & 

Fields, 2013), cell structure through interactions with the actin cytoskeleton and microtubules 

(Munemitsu et al., 1994), epithelial cell polarity (Bellis et al., 2012) and apoptosis (Cristofaro 

et al., 2015). As such APC has a number of different binding partners. APC is an important 

regulator of Wnt signalling. In the absence of a Wnt ligand, APC forms a complex with axin 

and GSK3β, recruiting β-catenin to the complex for its phosphorylation by GSK3β, resulting 

in the ubiquitination and, ultimately, proteasomal degradation of β-catenin. This prevents 

excess β-catenin translocating to the nucleus and upregulating oncogenic target genes such as 

MYC (Figure 1.4). 

 

Figure 1.4 The Wnt signalling pathway. In the absence of Wnt ligand (left plate) β-catenin is 

phosphorylated by the APC complex and targeted for degradation. When Wnt ligand binds to its 

receptor (right plate), the phosphorylation of β-catenin is prevented, allowing nuclear translocation of 

β-catenin, its binding to TCF factor, and the transcription of target genes. This figure also highlights the 

interplay between the dual roles of β-catenin in Wnt signalling and intercellular binding via E-cadherin 

(Figure taken from Nathke, 2006). 
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The consequent effects of unrestricted upregulation of oncogenic Wnt target genes, caused by 

defects in APC, are exemplified in both hereditary familial adenomatous polyposis (FAP) and 

in sporadic CRCs (Miyoshi et al., 1992), which commonly carry mutations in the APC gene. 

 

Figure 1.5 Wnt and APC gradients in colonic crypts. APC and Wnt are both essential for the 

regulation of cell proliferation and epithelial homeostasis in the gut. Wnt signalling is highest in the 

cells at the bottom of the crypt while APC levels increase as the cells move up the crypt. A sweet spot 

exists where conditions are optimal for balanced growth and cell proliferation. In the case of mutated 

or lost APC, with either one allele (FAP crypt) or both (adenomatous crypt), the sweet spot is higher in 

the crypt leading to uncontrolled proliferation of crypt cells (Figure taken from Boman & Fields, 2013). 

 

The APC gene is located on chromosome 5q21-q22. Although it consists of 15 exons the final 

exon makes up more than 75% of the coding sequence of the gene. This is where the bulk of 

mutations occur, with a mutation cluster region between codons 1286 and 1513 (Miyoshi et 

al., 1992). Mutations in APC predominantly result in truncated proteins that retain some 

function and it appears that the retained functions are essential for the survival of the cells 

(Chandra et al., 2012). The second allele is either mutated as well or is silenced by loss of 

heterozygosity (Lamlum et al., 1999) or epigenetic mechanisms (Esteller et al., 2000). 

The location of the truncating mutation affects the properties of the resultant protein and the 

tumour phenotype (Christie et al., 2013). While familial APC mutations are scattered across 

the 5’ half of the gene, with notable hotspots at codons 1061 and 1309, sporadic mutations tend 
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to occur within the mutation cluster region (MCR). This region contains a number of 20-amino 

acid repeats that act as β-catenin binding sites. The location of a mutation within the MCR 

determines how many of these repeats are included in the truncated protein, with either 1, 2 or 

3 intact 20-amino acid repeats being left. This in turn affects the function of the truncated 

protein, as well as the type and location of the second hit to the APC gene (Christie et al., 2013). 

This is exemplified by evidence that APC mutations in the MCR that result in 2-3 intact 20-

amino acid repeats are more likely to be found in proximal tumours, while mutations leaving 

only 1 or no 20-amino acid repeats tend to be present in distal CRC (Christie et al., 2013). 

However, while the majority of sporadic APC mutations are found in the MCR, other hotspots 

have been found in the 5’ portion of the gene, including codons 213, 216, 232, 283, 876 and 

935, along with a splice-site mutation at c.835-8A>G (Christie et al., 2013). 

 

1.4.2 E-cadherin  

The development of dysplasia from normal epithelium is key to tumour formation in the gut 

(Tjalsma et al., 2012). An important early step is the loss of cell polarity of the epithelium. 

Loss of E-cadherin at the plasma membrane results in loss of intercellular contact at adherens 

junctions, and ultimately loss of cell polarity. This breakdown in the organised structure of the 

epithelium allows dysplastic growth of epithelial cells which can lead to the formation of 

adenomas (Figure 1.6).  
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Figure 1.6 Loss of E-cadherin binding results in changes to cellular architecture. A, The normal 

epithelium consists of a monolayer of polar cells joined to neighbouring cells by adherens (green) and 

tight junctions (black) on the lateral membrane. The binding of E-cadherin forms the adherens junctions 

in a ring around the cell (green lines). The apical layer (blue) faces the lumen. B, Loss of E-cadherin 

causes disintegration of the adherens junctions, reduced cell-cell adhesion, loss of cell polarity and 

results in heterogenous cell sizes and shapes (Figure taken from Wodarz & Nathke, 2007). 

 

A further consequence of the loss of cell polarity due to a loss of E-cadherin binding is 

enhanced Wnt signalling. This results in the transcription of pro-oncogenic Wnt target genes, 

in particular MYC, which encodes the transcription factor c-myc, whose upregulation is linked 

to stimulation of polyamine metabolism via upregulation of spermine oxidase (SMO) 

expression. This in turn leads to DNA damage via the production of reactive oxygen species 

(Goodwin et al., 2011). 

E-cadherin, encoded by the CDH1 gene, is a calcium-dependent mediator of cell to cell 

adhesion, facilitating the assembly of intercellular junctions (Gumbiner et al., 1988; Shiozaki 

et al., 1996), an essential step in forming an epithelial cell monolayer and induction of cell 
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polarity (Yap et al., 1995) as described above. Accordingly a loss of E-cadherin activity 

disrupts cell layers (Takeichi, 1990). 

Mutations in the CDH1 gene are rare in CRC but are commonly seen in hereditary diffuse 

gastric cancer (HDGC) (Guilford et al., 1998; Hakkaart et al., 2019). HDGC tumours are 

typified by the presence of diffuse foci of signet-ring cells (Charlton et al., 2004), where a large 

amount of intracellular mucin distorts the cell morphology, pushing the nucleus to the edge of 

the cell giving the classic signet-ring appearance to the cell. Loss of E-cadherin disrupts 

intercellular structure allowing the change in morphology seen in these tumours. Accordingly, 

signet-ring cells show a loss of E-cadherin protein expression (H. C. Kim et al., 2002). 

Loss of E-cadherin has been shown in colorectal cancer, although this is not always as a result 

of reduced expression but rather relocation from the membrane to the cytoplasm (Hiscox & 

Jiang, 1997). In a recent study lower expression of E-cadherin was found to be associated with 

tumour differentiation, stage, invasion depth and lymph node metastasis in advanced CRC 

patients (Gao et al., 2016) and accordingly E-cadherin has been proposed as a possible 

biomarker of CRC prognosis (Christou et al., 2017).  

 

1.5 Risk factors for colorectal cancer 

1.5.1 Gut bacteria 

The human gastrointestinal tract is home to tens of trillions of microbes, with each human 

carrying in excess of 1000 different species (Lozupone et al., 2012). This diverse population is 

acquired by babies from their mothers at birth (Dominguez-Bello et al., 2010) and from the 

environment where they spend the first few years of their life before stabilising (Kostic et al., 

2013). Each individual’s unique microbiome is essential in maintaining a healthy gut, with 

individual species complementing the host cells by digestion of complex carbohydrates (Flint 

et al., 2012), producing essential nutrients such as vitamin K (Conly & Stein, 1992), 

maintaining complex immunological interactions with host cells (Littman & Pamer, 2011), and 

protecting against disease by outcompeting pathogens (Wardwell et al., 2011). However, some 

commensal bacteria can, under the correct conditions, initiate disease.  

The oncogenic potential of bacteria has been known since the discovery of Helicobacter pylori 

as a cause of gastric cancer in the 1980s (Marshall et al., 1985). However, whereas H. pylori 
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inhabits the microbially sparse environment of the stomach and acts alone in carcinogenesis, 

the crowded, diverse microbial community of the colon makes associations and mechanisms 

of bacterial carcinogenesis harder to ascertain.  

The development of dysplasia is influenced by the inflammatory state of the gut, as clearly 

seen in Inflammatory Bowel Disease (IBD)-associated CRC (Beaugerie & Itzkowitz, 2015). 

Thus, sub-clinical inflammation may, over time, contribute to the development of dysplasia in 

an otherwise healthy colon. Moreover, long-term carriage of bacterial species that have the 

potential to cause chronic inflammation are increasingly considered to underlie the 

development of neoplasia (Armstrong et al., 2018). 

One model of microbial initiation of colorectal cancer proposes distinct roles for different 

bacterial species. Initially “driver” bacteria cause inflammation, cell proliferation and/or the 

production of genotoxins that cause mutations in key tumour suppressor genes involved in the 

adenoma-carcinoma pathway such as APC and, later, TP53 (Figure 1.7). The proliferation of 

cells and the breakdown of normal epithelial structure leads to changes in the local 

microenvironment which facilitate the replacement of these “driver” bacteria with other 

opportunistic “passenger” species with competitive advantages in the developing tumour 

(Tjalsma et al., 2012).  

 

 

Figure 1.7 The driver-passenger model of bacterial carcinogenesis. In this model a driver bacterium 

disrupts the epithelial cell monolayer and encourages dysplasia, creating the conditions for a passenger 

bacterium that ultimately outcompetes the initial driver bacterium as the tumour microenvironment 

evolves (Figure taken from Tjalsma et al., 2012). 



16 
 

An alternative model postulates that certain bacterial species with unique virulence traits are 

both directly pro-oncogenic and capable of remodelling the microenvironment and local 

microbial community to further induce pro-oncogenic immune responses that also favour its 

own survival. As these bacteria do not work alone but rather co-opt other species this model 

has been termed the alpha-bug model (Sears & Pardoll, 2011). 

A number of bacterial species have been associated with CRC by being found more commonly 

in the mucosa or stools of CRC patients than those of healthy controls, such as Fusobacterium 

nucleatum (Viljoen et al., 2015), colibactin-producing Escherichia coli (Buc et al., 2013) and 

enterotoxigenic Bacteroides fragilis (J. I. Keenan et al., 2016; Toprak et al., 2006). 

Fusobacterium nucleatum binds to colonic epithelial cells via FadA, an adhesin which 

recognises an 11-amino acid region of the extracellular domain of E-cadherin. Binding of FadA 

to E-cadherin upregulates β-catenin signalling leading to upregulation of transcription factors, 

oncogenes, Wnt genes and inflammatory genes (Rubinstein et al., 2013). The toxin produced 

by enterotoxigenic strains of B. fragilis is also associated with perturbation of E-cadherin and, 

while the overall effect is similar, the mechanism relates instead to toxin-mediated perturbation 

of intracellular signalling pathways (Wu et al., 2003). In contrast, strains of E.coli that contain 

a polyketide synthesis (pks) island are shown to cause enterocyte DNA damage in infected 

mice (Cuevas-Ramos et al., 2010). The pks island hosts a number of genes that encode the 

colibactin, a genotoxin that has been shown to promote tumour cell proliferation (Cougnoux et 

al., 2014). Interestingly, the FadA adhesin appears to be constitutively expressed by all F. 

nucleatum strains (Han et al., 2005). In contrast, only a subset of B. fragilis and E. coli strains 

express enterotoxin and colibactin respectively.  

Whether these bacteria, detected in patients with advanced cancer, are important in the 

initiation or progression of cancer, or present as a consequence of favourable conditions in the 

tumour environment, has been a matter of considerable discussion. For example, multiple 

studies have found an association of F. nucleatum with CRC based on an increased presence 

within colorectal tumours (Castellarin et al., 2012; Kostic et al., 2012; McCoy et al., 2013). 

Our research however finds that colonic carriage of F. nucleatum is not associated with the 

subsequent growth of neoplastic lesions (Aitchison, unpublished), suggesting that F. nucleatum 

is more likely to be a passenger rather than a driver of colorectal carcinogenesis (Tjalsma et 

al., 2012).  
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Conversely, in the same patient cohort, our group has shown that long-term carriage of 

enterotoxigenic B. fragilis (ETBF) predisposes patients to early-stage colorectal neoplasia, 

providing evidence of ETBF as an initiator of carcinogenesis (Purcell et al., 2017). 

Accordingly, understanding how these toxin-producing colonic bacteria have the potential to 

drive this process is integral to our ongoing research. 

 

1.5.1.1 Enterotoxigenic Bacteroides fragilis 

Bacteroides fragilis are obligate anaerobes that are commonly found in the healthy human 

colon where they are particularly good at adhering to the mucosa (Sears et al., 2014), 

constituting about 1-2% of the normal microflora (Moore et al., 1978). However, 

enterotoxigenic strains of B. fragilis (ETBF) are associated with human and animal disease. 

ETBF were initially identified in newborn lambs with diarrhoea (Myers et al., 1984) and 

subsequently identified in multiple animal species with diarrhoeal disease, including a report 

of a piglet with exfoliating colitis with severe neutrophilic mucosal infiltrate (Collins et al., 

1989), the first association of ETBF with inflammatory disease. In humans, ETBF was first 

isolated from eight patients with diarrhoea (Myers et al., 1987), while a later study of ETBF as 

a cause of diarrhoeal disease in children found that ETBF isolated from family members were 

genetically similar. Moreover, samples from the same patients taken months apart contained 

genetically similar ETBF, whether from diarrhoeal or normal stools, suggesting sustained 

infection (Sack et al., 1992).  

The ETBF virulence factor is a zinc metalloprotease enterotoxin, commonly referred to as the 

Bacteroides fragilis toxin (BFT). Metalloproteases are enzymes commonly produced by 

bacteria and BFT is structurally similar to other bacterial toxins important in human disease 

such as tetanus toxin and diphtheria toxin (Sears & Pardoll, 2011). 

BFT binds to a specific colonic epithelial cell membrane receptor, inducing γ-secretase-

dependent cleavage of E-cadherin (Wu et al., 2007). As detailed above, E-cadherin forms 

complexes with α-, β-, and γ-cadherins at the cell membrane. Consequently, BFT-mediated 

cleavage of E-cadherin releases β-catenin to translocate to the nucleus where it helps transcribe 

multiple tumour-promoting genes as a key component of the Wnt signalling pathway (Wu et 

al., 2003). 
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In vitro BFT-mediated E-cadherin cleavage causes increased permeability of colonic mucosa 

whereby the colonic submucosa is exposed to normally luminal bacteria (Riegler et al., 1999), 

while in vivo this results in disruption of the colonic epithelium, followed by a subsequent 

inflammatory response and colitis in mice (Rhee et al., 2009). Stimulation of immune cells by 

bacteria or bacterial antigens may create an inflammatory environment that leads to 

carcinogenesis. BFT affects the immune system in a number of ways, including regulatory T-

cell enhancement of IL-17 production (Geis et al., 2015), activation of the NF-кB pathway (J. 

M. Kim et al., 2002), generation of pro-tumoural myeloid-derived suppressor cells (Thiele 

Orberg et al., 2017) and increasing IL-8 secretion (Hwang et al., 2013).  

The B fragilis toxin is also linked to DNA damage via the induction of spermine oxidase 

(SMO), a polyamine catabolic enzyme that is highly inducible by inflammation. SMO produces 

reactive oxygen species such as superoxide and hydrogen peroxide, which in turn result in 

induction of stress response pathways and DNA damage. Intestinal SMO expression is elevated 

in mice infected with ETBF and, conversely, inhibition of SMO in ETBF-infected mice reduces 

chronic inflammation, decreases immune response upregulation and inhibits colon 

tumourigenesis (Goodwin et al., 2011). 

All these characteristics implicate ETBF in the early stages of colon carcinogenesis. Therefore, 

unsurprisingly, ETBF have been found more often in CRC patients than in healthy controls by 

multiple groups in multiple countries, providing a strong association of ETBF with CRC (J. I. 

Keenan et al., 2016; Merino et al., 2011; Ramamurthy et al., 2013; Toprak et al., 2006). Our 

findings support a direct role for ETBF in carcinogenesis (Purcell et al., 2017), and further 

evidence for ETBF involvement in colorectal carcinogenesis is found in the ability of ETBF to 

substantially increase the rate at which APCMin+/- mice develop tumours in their colons, 

compared to uninfected mice (Rhee et al., 2009). In the same study, ETBF-infected mice with 

wild type APC, while not developing tumours, developed inflammation of the colon. The 

finding that colonic carriage of ETBF causes colonic inflammation in normal mice and colonic 

tumours in mice with mutant APC, coupled with multiple findings of ETBF being positively 

associated with CRC in humans, suggest ETBF may both have a role in initiating 

carcinogenesis and be able to persist in the developing tumour environment, consistent with 

the alpha-bug model (Sears & Pardoll, 2011) described in Section 1.5.1.   

It should be noted however that asymptomatic colonic carriage of ETBF is common (J. I. 

Keenan et al., 2016; Odamaki et al., 2012). While it is currently unknown whether 
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asymptomatic carriers display any colonic inflammatory pathology, this suggests that ETBF-

mediated colon carcinogenesis occurs in a minority of carriers, and other environmental or 

lifestyle factors must be required.  

 

1.5.2 Lifestyle risk factors for CRC 

Multiple lifestyle factors may contribute to colorectal carcinogenesis; red meat consumption 

(Chan et al., 2011), smoking (Botteri et al., 2008), alcohol (Fedirko et al., 2011), obesity 

(Larsson & Wolk, 2007) and lack of physical activity (Pan & DesMeules, 2009) have all been 

associated with increased risk of CRC. However, elucidating the molecular mechanisms of 

individual risk factors is difficult as often multiple lifestyle factors such as smoking, alcohol 

and chronic inflammation are found in the same patient (Haas et al., 2012).  

Chronic alcohol consumption can result in nutritional deficiencies with reduced vitamins B1, 

B2 and B12 resulting in an increase in reactive oxygen species (Testino, 2011), while alcohol-

induced reduction in folic acid can alter the production of S-adenosyl methionine (SAM), a key 

methyl donor, leading to alterations in the epigenetic control of gene expression (Sauer et al., 

2010).  

Tobacco smoke contains numerous carcinogenic compounds that can affect multiple molecular 

pathways (Derry et al., 2013). In addition to conferring an additional risk for CRC, there is also 

evidence to suggest that smoking may be associated with a higher risk of proximal rather than 

distal cancer (Botteri et al., 2008). Smoking is also linked to microsatellite instability, CpG 

island methylator phenotype and BRAF mutant tumours (Limsui et al., 2010). This connection 

of smoking with the microsatellite instability pathway (Section 1.1.2) indicates smoking-

induced epigenetic changes may underlie smoking-associated CRC. Of particular interest, a 

recent study showed an association of smoking with hypermethylation of the APC promoter in 

colorectal cancer (Barrow et al., 2017).  

Obesity is another established risk factor for CRC (Moghaddam et al., 2007), particularly in 

men but with a lesser effect in women (Bardou et al., 2013). The mechanisms behind this 

association remain to be fully elucidated, but the association of chronic inflammation and 

obesity may increase the risk of CRC (John et al., 2007), and gut microbes may be involved in 

promoting inflammation in people with obesity (Cani et al., 2012). Additionally there is a 

strong link between diet and obesity, with diets high in rapid carbohydrates and fat being linked 
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to CRC risk in patients with obesity, while dietary fibre and polyunsaturated fats from fish 

appear protective (Johnson & Lund, 2007). 

The assertion that high levels of fibre in the diet may reduce the risk of CRC was postulated as 

far back as the 1970s, based on low rates of CRC in rural Africans who ate a high-fibre diet 

(Burkitt et al., 1974). More recent analyses have confirmed the reduced risk of CRC with 

dietary fibre intake (Aune et al., 2011).  

Another dietary risk factor for CRC is red meat intake, with high red meat consuming countries, 

including New Zealand having higher rates of CRC than countries with lower red meat intake 

(Chan et al., 2011). Although the mechanism(s) that increase CRC risk from red meat 

consumption have not been elucidated, the presence of heme iron, resulting in the production 

of nitroso compounds, has been postulated due to the lack of increased CRC risk in populations 

that eat poultry and other meats that do not contain heme iron (Bingham et al., 2002).  

 

1.5.3 Interplay of diet, gut bacteria and metabolites in CRC 

There is a growing awareness that the unique mix of different bacterial species have the 

potential to contribute to an individual’s risk of diseases through their breakdown of undigested 

food in the colon into a broad range of dietary metabolites (Louis et al., 2014). An individual 

eating a diet rich in fruit and vegetables is more likely to produce increased levels of butyrate, 

but when the same individual (colonised with the same gut microbiota) switches to a high fat, 

carbohydrate-rich diet, the types of dietary metabolites produced in the colon also change 

(O'Keefe et al., 2015).  

Fibre is fermented in the gut to produce short chain fatty acids such as butyrate and propionate 

by colonic bacteria (Louis & Flint, 2017). The short chain fatty acids may protect against CRC 

by a number of different mechanisms. Butyrate is an inhibitor of histone deacetylase, thereby 

maintaining histone acetylation, altering gene expression and arresting cell proliferation 

(Davie, 2003). Additionally, butyrate suppresses colonic inflammation by inhibition of the 

interferon-gamma and STAT1 pathways (Klampfer et al., 2003; Stempelj et al., 2007). 

In addition to the anti-tumourigenic properties described above, butyrate increases mucin 

production in colonic epithelial cells, strengthening the mucus layer of the colon, enhancing 

the adherence of beneficial Lactobacilli and Bifidobacteria, and helping to exclude pathogenic 

bacteria (Jung et al., 2015). This gains significance with evidence of a butyrate gradient in the 
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colon, with higher levels in the more proximal regions of the colon that reflect saccharolytic 

fermentation of available carbohydrate by bacteria at this site (Korpela, 2018).  

Under normal conditions protein fermentation mostly occurs in the distal colon. Many bacterial 

proteases are sensitive to acidic pH, and the more neutral pH of the distal colon favours 

digestion of protein at this site (Macfarlane et al., 1988). When present, dietary fibre decreases 

the requirement for amino acids as an energy source and reducing the pH through production 

of short chain fatty acids, thereby reducing the activity of bacterial proteases (Smith & 

Macfarlane, 1998). Conversely, diets lacking fermentable carbohydrate or diets high in protein 

can increase both the quantity and location of proteolytic fermentation in the colon (Diether & 

Willing, 2019; Korpela, 2018).  

The switch from fibre to protein fermentation is associated with a change in the relative 

abundance of fibre-degrading versus protein-degrading bacterial species of colonic bacteria. 

This is illustrated by one study, where human volunteers given an exclusively animal-based 

diet showed increased abundance of proteolytic bacteria, while those given an exclusively 

plant-based diet increased the abundance of species capable of metabolising plant 

polysaccharides (David et al., 2014). 

The significance of predominantly proteolytic fermentation in the colon is the increased 

production of metabolites with pro-oncogenic effects. Among these biologically active 

metabolites, hydrogen sulphide and nitroso compounds are toxic to intestinal cells and have 

been implicated in the development of CRC (Hughes et al., 2000). A further metabolite of 

proteolytic fermentation is p-cresol, a genotoxic compound that can cause DNA damage in 

colonocytes (Andriamihaja et al., 2015).  

Interestingly, proteolytic fermentation occurring primarily in the distal colon correlates with a 

higher incidence of CRC tumours in the distal colon, a particularly notable characteristic of 

early-onset CRC as described below, perhaps providing evidence for a link between diet, 

microbes and early-onset CRC. 

 

1.6 Early onset colorectal cancer 

In line with a worldwide increase in incidence of early-onset colorectal cancer (EOCRC) 

(Bailey et al., 2015; Hessami Arani & Kerachian, 2017), rates of the disease in patients under 
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50 years of age in New Zealand are increasing in contrast to an overall decline in CRC in recent 

years (Gandhi et al., 2017).  

In addition to the familial conditions mentioned above, other factors that may play a role in 

CRC in the young include inflammatory bowel disease, which confers a two- to three-fold 

increase in risk of CRC (Triantafillidis et al., 2009), and prior radiation therapy, such as for 

paediatric malignancies (Hill et al., 2007). However, the majority of early-onset CRC cases are 

sporadic (Connell et al., 2017) and this may, in part, reflect changing lifestyles (see Section 

1.7). 

Patients with EOCRC are not included in early screening initiatives that internationally start at 

ages between 50 and 65 years. Younger patients are less likely to seek medical advice for gut 

issues (Bleyer, 2009) and, when they do, often do not meet criteria for colonoscopy that might 

lead to a diagnosis. These factors partly explain why EOCRC patients more commonly present 

with symptomatic and late-stage cancers with poorly differentiated cancers when compared to 

CRC as a whole (26.3% vs 20%) (Chou et al., 2011; Fleming et al., 2012).  

The normal progression of colorectal cancer through the accumulation of multiple genetic 

abnormalities is a slow process, potentially taking decades. This has led to sporadic EOCRC 

being considered a specific subtype of CRC with distinct clinical and molecular features 

(Kirzin et al., 2014; Perea et al., 2014; Raman et al., 2014). Histologically, EOCRC cases more 

frequently present with mucinous tumours than older-onset CRCs, and a higher percentage of 

EOCRC tumours have presence of signet-ring cells than older-onset CRCs (Silla et al., 2014), 

both features that are common in hereditary cancers. Despite the majority of EOCRC patients 

not being found to have an inherited disorder, they are more likely than older patients to have 

a family history (Kirzin et al., 2014). 

The majority of EOCRC tumours do not show microsatellite instability and those that do are 

usually due to HNPCC. Therefore microsatellite instability in sporadic EOCRCs is relatively 

rare (Ballester et al., 2016). The V600E mutation in the BRAF gene is less common in EOCRC, 

with a large multi-cohort study finding increasing prevalence of BRAF V600E in older age 

groups, from less than 4% in under 30 year olds to 13% in over 70 year olds (Willauer et al., 

2019). The CpG island methylator phenotype is also found less in EOCRC patients than in 

older-onset CRC patients, with one study reporting the CIMP to be absent in all 47 EOCRCs, 

but present in 15/49 (31%) of CRCs in over 60 year olds (Kirzin et al., 2014). 
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Three decades ago biological differences were identified in tumours located in either the 

proximal (right-sided) or distal (left-sided) colon, leading to the proposal of distinct categories 

of colorectal cancer based on tumour location (Bufill, 1990). In particular, proximal tumours 

had characteristics similar to HNPCC, while left-sided tumours displayed characteristics more 

similar to FAP. EOCRC patients present more often with distal tumours than older CRC 

patients. One study had 32% of patients aged 35-39 diagnosed with having tumours in their 

rectum, with the percentage in subsequent age groups decreasing to 15, with 1% in those aged 

over 85 years. Conversely, only 9.3% of the 35-39 years age group had tumours in the caecum, 

rising to 23.2% in the over 85 year olds (Davis et al., 2011). Further to Bufill’s categorisation 

of CRC by tumour location, it has been suggested that EOCRC should be similarly categorised 

by location (Perea et al., 2015). 

  

1.6.1 Colorectal signet-ring cell carcinoma 

Colorectal signet-ring cell carcinoma (SRCC) is a rare form of CRC, accounting for 

approximately 1% of all cases (Kang et al., 2005). However, SRCCs are more common in 

younger patients, accounting for 3-13% of EOCRCs (Mauri et al., 2019). They are defined as 

tumours containing at least 50% of cells displaying signet-ring morphology, where large 

amounts of intracellular mucin push the nuclei to the edge of the cells (Bosman et al., 2010), 

with the subsequent loss of cell-cell contact increasing the invasiveness and metastatic potential 

of the disease. Colorectal SRCCs are associated with younger age than conventional CRCs 

(Foda et al., 2018; Hyngstrom et al., 2012), generally present at a later stage, with a worse 

tumour grade and a poorer prognosis (Barresi et al., 2017; Borger et al., 2007). Indeed the 

American Joint Committee on Cancer accept signet-ring histology as an independent 

prognostic factor for CRC (Compton et al., 2000). Moreover, there is evidence that a signet-

ring component of less than 50%, hence not enough to classify a tumour as SRCC, still has a 

negative effect on prognosis (Inamura et al., 2015; Tan et al., 2015). Colorectal SRCCs are, 

like EOCRCs in general, also predominantly found in the distal colon, particularly the sigmoid 

colon and rectum (Chang et al., 2012; Hyngstrom et al., 2012). 

The relative rarity of colorectal signet-ring cell carcinomas is reflected in a paucity of molecular 

studies, and those that have been published generally report a small number of cases. 

Accordingly, there are often conflicting conclusions regarding the characteristics of colorectal 

SRCC. This is illustrated by high rates of microsatellite instability reported in two studies 
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(Kakar & Smyrk, 2005; Ogino et al., 2006), whereas a third study found all colorectal SRCC 

samples were microsatellite stable (Nam et al., 2018). Moreover, when present, there is no 

evidence that microsatellite instability in colorectal SRCC confers an improved prognosis as 

reported for conventional colorectal adenocarcinoma (Kakar & Smyrk, 2005).  

As with HDGC, loss of E-cadherin is frequently found in colorectal SRCC (Borger et al., 2007; 

Wang et al., 2016). However, unlike HDGC, the presence of CDH1 mutations, or their role in 

the pathogenesis of colorectal SRCC, have not been established. E-cadherin loss, and 

subsequent loss of cell-cell interaction and morphology, may explain the increased 

invasiveness and metastatic potential of colorectal SRCC (Borger et al., 2007).  

 

1.7 Lifestyle factors in EOCRC 

Sporadic colorectal cancers generally emerge from an accumulation of genetic alterations that 

accumulate over many decades. However, by their very nature EOCRC cases develop in a 

shorter timeframe. It is likely that the development of tumours in this younger cohort is 

accelerated by the effects of lifestyle factors. While finding that the risk factors for CRC 

detailed above (Section 1.5.2), such as obesity and smoking, were also relevant for EOCRC, a 

recent study comparing patients diagnosed with CRC under the age of 50 with those aged over 

50, identified non-modifiable risk factors, such as sex, race, inflammatory bowel disease and a 

family history of CRC, distinguished EOCRC cases from late-onset CRC (Gausman et al., 

2019). Patients with EOCRC were more likely to be male and there were higher rates of 

EOCRC amongst African Americans and Asians. This reflects an earlier large-scale study of 

the Surveillance, Epidemiology and End Results (SEER) database that found higher rates in 

African Americans and Asians aged under 50 living in the USA, despite lower overall CRC 

rates for Asians (Rahman et al., 2015). This is in line with increasing rates of CRC in Asia, 

which is also hypothesised to be due to an increased uptake of a Western diet (Y. Deng, 2017).  

Similarly, a recent prospective study of young women found the risk of early-onset CRC in 

women with obesity (BMI>30) to be nearly double that of women with a BMI between 18.5 

and 22.9 (Liu et al., 2019), possibly reflecting earlier, and increasing exposure in recent 

decades, to Western diets and consequent risk factors such as obesity.  

Interestingly, in light of the higher risk of EOCRC in African Americans, highlighted by 

Gausman and colleagues, the large disparity in colon cancer between African Americans and 
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native Africans from South Africa has previously been noted (O'Keefe et al., 2007), and been 

associated with a high fat, low fibre diet, with African Americans displaying low levels of short 

chain fatty acids in their colons (O'Keefe et al., 2015). So, modifiable factors, such as a Western 

diet and the evidence of nutritional transition associated with an increasing uptake of Western-

style diets across the world in recent decades, may play a role in the increasing incidence of 

EOCRC.  

 

1.8 Cellular models of colorectal carcinogenesis 

While advances in genomic technologies, some of which are utilised in this thesis, have 

allowed a rapid evaluation of clinical samples and helped elucidate the molecular basis of 

disease, suitable in vitro models of disease are still required to further understand the aetiology 

of cancer, the effects of risk factors and to test possible therapeutic strategies. As such the 

cancer cell line remains a mainstay of cancer research. Many of the cell lines commonly used 

to study cancer date back 50 or more years and questions around their clinical relevance have 

arisen (Borrell, 2010).  

The resemblance of a cell line to the original tumour is not always strong. As early as the 1970s 

concerns were raised that cell lines can acquire additional modifications over time as they are 

cultured (Nelson-Rees et al., 1976). One commonly used colorectal cancer cell line, Caco-2, 

displays variability in growth characteristics with increasing passage number. Cells at passage 

number 72 reached a growth plateau quicker than passage number 22 and 33 cells and, after 21 

days growth, cells at passage 72 also had lower alkaline phosphatase expression (Briske-

Anderson et al., 1997).  

In light of these differences the clinical relevance of cell lines is an issue that needs to be raised 

when designing in vitro studies. An important consideration, is that cancer cell lines, by virtue 

of being derived from tumours, already have numerous genetic and epigenetic alterations and 

therefore likely do not represent the normal state of cells within non-neoplastic tissue. This is 

a particularly important consideration when investigating the early stages of carcinogenesis, 

where the failure to take into account the effects of stimuli on the cells, in light of the existing 

mutational background of the cells, may compromise conclusions made in relation to early 

events in carcinogenesis. This is exemplified by the response of cultured colonic epithelial cell 

lines to the B fragilis toxin. 
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Cellular approaches to research into ETBF-mediated CRC have primarily been focused on the 

HT29 cell line and its derivative, HT29/c1 (Huet et al., 1987). HT29 cells display an exquisitely 

sensitive response to BFT, with the cells rapidly losing their morphology and rounding up in 

response to toxin-mediated cleavage of E-cadherin (Sears, 2009) (Figure 1.8). This rapid 

response has led to HT29 being the cell line of choice for studying cellular reaction to the B. 

fragilis toxin (Hwang et al., 2013; J. M. Kim et al., 2002; Sears, 2009). However, our results 

show that this response is not universal amongst colon cancer cell lines, as seen in the failure 

of HCT116 cells to round up upon exposure to BFT (Figure 1.8).   

 

   

Figure 1.8 Colorectal cancer cell lines HCT116 and HT29 after incubation with B. fragilis toxin. 

A, HCT116 cells maintain their cellular morphology after addition of the toxin while, B, HT29 cells 

show characteristic rounding (arrowed) (Keenan, unpublished). 

The underlying cause of the rapid response by HT29 cells to BFT is likely to be mutations 

within critical genes that make HT29 cells particularly susceptible to the effects of ETBF. This 

illustrates the idea that the use of cells that are already highly susceptible to the effects of BFT 

may not represent the best model for studying any bacterially-induced induction of 

carcinogenesis.    

 

1.9 APC in HT29 cells 

As discussed earlier, the APC gene is mutated in the majority of sporadic colorectal cancers. 

Additionally, Miyoshi and colleagues found that 60% of colorectal tumours they studied with 

APC mutations had two mutations (Miyoshi et al., 1992). Similarly, HT29 cells contain two 
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truncated forms of the APC gene and as a result express no full length APC protein (Morin et 

al., 1996). Consequently, due to the central role of APC in the formation and maintenance of 

the cytoskeleton, it is possible that the lack of full-length APC is fundamental to the rounding 

up of cells, when E-cadherin is cleaved following exposure to BFT.  

In light of this, we sought to introduce wildtype APC into HT29 cells in order to produce a cell 

line that would be more informative when studying the effects of environmental factors such 

as bacterial toxin exposure on the early stages of colorectal carcinogenesis (Chapter 5). 

Wildtype APC has been expressed in HT29 cells previously using a plasmid containing an 

inducible APC gene (Morin et al., 1996). However, expression was under the control of a zinc-

inducible promoter. Unfortunately, given that BFT is a zinc metalloprotease (Moncrief et al., 

1995), using zinc to induce APC expression would have created uncertainty over whether 

observations were due to APC expression or the effects of zinc on BFT.  

Therefore we sought to edit an existing allele of APC in HT29 cells to correct the mutation to 

allow the expression of full-length protein. Additionally, the correction of the cell’s existing 

APC gene would allow for normal cellular expression of the protein rather than artificial 

induction of the gene, thereby better representing the natural in vivo situation. 

The CRISPR-Cas system, consisting of CRISPR (clustered regularly interspersed short 

palindromic repeats) and CRISPR-associated (Cas) genes is used by bacteria as part of their 

adaptive immunity. Briefly, viral or plasmid DNA entering a cell are recognised as foreign and 

digested into small fragments. Some of these small fragments are subsequently incorporated 

into the CRISPR array of the bacterial genome. The CRISPR array contains small fragments 

of DNA from previous infections. When the array is transcribed into RNA and subsequently 

cleaved into individual CRISPR RNAs (crRNAs) each individual crRNA will recognise a 

specific invading virus or plasmid and guide Cas nucleases that are complexed to the crRNA 

to digest the invading DNA upon re-exposure (Barrangou et al., 2007).  

Jinek and colleagues initially showed that the Cas9 nuclease could be programmed to target 

double-stranded DNA cleavage at specific DNA sites in vitro by the use of crRNAs with 

specific target sequences, known as guide RNAs (gRNAs) (Jinek et al., 2012). This 

CRISPR/Cas9 technique was subsequently used to edit genomes in mammalian cells (Cong et 

al., 2013; Mali et al., 2013). Also, in another innovation a nickase enzyme, Cas9n, was used to 

nick both strands of DNA at locations close to each other, using separate gRNA recognition 

sequences for each strand in order to minimise off-target effects, as both sites require nicking 
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for homology-directed repair to occur (Cong et al., 2013). The CRISPR/Cas9n system allows 

for the precise editing of mutated bases such as those found in the APC gene of HT29 cells. 

 

1.10 Aims of the study 

This study is divided into three parts: firstly determining the status of E-cadherin and CDH1 

mutation in a cohort of young colorectal SRCC patients; secondly investigating the CDH1 and 

APC mutation status of a New Zealand cohort of EOCRC patients, and finally correcting 

mutant APC in a CRC cell line to obtain a model for the study of factors initiating colorectal 

carcinogenesis. 

The first part of the study utilised a cohort of Pakistani early-onset colorectal SRCC samples, 

to look at the mutation status of the CDH1 gene using a next generation sequencing approach. 

This work was devised based on the similarity between colorectal SRCC and the presence of 

SRCC in hereditary diffuse gastric cancer, and the common finding of inherited CDH1 

mutations in HDGC. This was complemented by immunohistochemistry to identify expression 

of E-cadherin and mismatch repair genes. The results of this work are presented in Chapter 3. 

The second part of the study builds on Chapter 3 by looking at CDH1 mutation status in an 

archival New Zealand cohort of EOCRC patients, primarily with adenocarcinomas, using the 

same approach as in Chapter 3. Additionally we devised a similar approach to look at APC 

mutation within the same samples. Again we looked at E-cadherin expression in these samples, 

while their mismatch repair gene expression status was obtained from the pathology reports. 

Results obtained from this work were correlated with clinical data and are presented in Chapter 

4. 

The final part of the study used a CRISPR-Cas9n gene editing approach to correct one allele 

of the APC gene in HT29 cells. Correction of this gene will allow the expression of wild-type 

APC protein in these cells. The resultant cell line was then characterised in comparison to the 

parent HT29 cell line, including observation of its response to BFT. The results of these 

experiments are presented in Chapter 5. 
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Chapter 2 Materials & Methods 

 

2.1 Materials 

Key reagents and kits used in this research are listed in the tables below. 

 

Table 2.1 Primary antibodies  

Antibody Raised In Product 
code 

Supplier Analysis 

E-cadherin Mouse NCH-38 Dako (Glostrup, Denmark) IHC 
MSH6 Rabbit SP93 Roche (Basel, Switzerland) IHC 
PMS2 Mouse A16-4 Roche IHC 
MLH1  Mouse M1 Roche IHC 
     
E-cadherin Mouse ab76055 AbCam (Cambridge, UK) IF 
β-catenin Mouse ab22656 AbCam IF 
     
APC (N-terminal) Mouse ab58 AbCam WB 
APC (C-terminal) Rabbit ab15270 AbCam WB 

IHC, Immunohistochemistry; IF, Immunofluorescence microscopy; WB, Western blotting. 

 

 

Table 2.2 Secondary antibodies  

Antibody Product code Supplier Analysis 

Alexafluor 488-conjugated 
goat anti-mouse 
 

A11001 Invitrogen  
(Carlsbad, CA, USA) 

IF 

Alexafluor 488-conjugated 
goat anti-rabbit 
 

A11008 Invitrogen IF 

Alexafluor 594-conjugated 
donkey anti-mouse 
 

A21203 Invitrogen IF 

Horseradish peroxidase-
conjugated goat anti-mouse 
 

P 0447 DAKO WB 

Horseradish peroxidase-
conjugated goat anti-rabbit 

P 0448 DAKO WB 

IF, Immunofluorescence microscopy: WB, Western blotting. 
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Table 2.3 Kits used in this study 

Name Product Code Supplier 

QIAamp DNA FFPE Tissue Kit 56404 Qiagen (Hilden, Germany) 
DNeasy Blood & Tissue Kit 69504 Qiagen 
MiSeq 500-Cycle Reagent Kit MS-102-2003 Illumina (San Diego, CA, USA) 
NucleoBond Xtra Midi Kit 740410.50 Macherey-Nagel (Düren, Germany) 
PureLink Quick Gel Extraction Kit K2100-12 Invitrogen 
Qubit dsDNA High Sensitivity Assay Kit Q23854 Thermo Fisher (Waltham, MA, USA) 

 

 

Table 2.4 Cell processing and staining reagents  

Name Product Code Supplier Used for 

Cell Conditioning 1 retrieval solution 950-124 Roche Ventana (Oro Valley, AZ, USA) IHC 
UltraView DAB  760-500 Roche Ventana IHC 
Hematoxylin II  790-2208 Roche Ventana IHC 
Bluing Reagent  760-2037 Roche Ventana IHC 
Trypan blue T6146 Sigma (St Louis, MO, USA)  
Texas Red-X phalloidin T7471 Invitrogen  IF 
Hoechst 33342 H3570 Invitrogen IF 
Antifade mountant P36930 Molecular Probes (Eugene, OR, USA) IF 

IHC, Immunohistochemistry; IF, Immunofluorescence microscopy 

 

 

Table 2.5 Bacterial and cell culture reagents 

Name Product Code Supplier 

McCoy’s 5A medium 16600108 Life Technologies (Carlsbad, CA, USA) 
Fetal bovine serum 16000044 Life Technologies 
Penicillin/streptomycin solution (100x) 10378016 Life Technologies 
TrypLE Express Trypsin solution 12605010 Invitrogen 
Luria Bertani media CM0996B Oxoid (Basingstoke, UK) 
Brain Heart Infusion media CM1135 Oxoid 
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Table 2.6 Molecular reagents 

Name Product Code Supplier 

Kapa HiFi HotStart Readymix KK2602 Kapa Biosystems (Basel, Switzerland) 
SYBRSafe Gel Stain S33102 Invitrogen 
HighPrep magnetic beads AC-60005 MagBio (Gaithersburg, MD, USA) 
Phusion High Fidelity Polymerase F530S ThermoFisher 
T4 DNA ligase 
Hyperladder DNA size marker 
XhoI restriction endonuclease 
XbaI restriction endonuclease 
BpiI restriction endonuclease 
KpnI restriction endonuclease 
NotI restriction endonuclease 

15224090 
BIO33029 
R0146S 
R0145S 
R0539S 
R0142S 
R0189S 

ThermoFisher 
Bioline (Memphis, TN, USA) 
New England Biolabs (Ipswich, MA, USA) 
New England Biolabs 
New England Biolabs 
New England Biolabs 
New England Biolabs 

 

 

Table 2.7 Western blotting reagents 

Name Product Code Supplier 

Pierce ECL Plus Western Blotting Substrate 32132 Thermo Fisher 
Amersham Hybond-P polyvinylidene fluoride 
(PVDF) membrane 

10600023 GE Healthcare (Chicago, IL, USA) 

Mini-PROTEAN TGX pre-cast SDS-PAGE gels 456-1094 BioRad (Hercules, CA, USA) 
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2.2 Methods 

2.2.1 Human tissue samples 

2.2.1.1 DNA extraction from tissue  

DNA was extracted from up to three 10 µm sections of formalin-fixed paraffin-embedded 

samples using a QIAamp DNA FFPE Tissue Kit (Qiagen) according to the manufacturer’s 

protocol. Briefly, sections were placed in a 1.5 mL microcentrifuge tube and deparaffinised by 

the addition of 1 mL xylene with vigorous vortexing. Following centrifugation at 13,000 x g 

for 2 minutes, the xylene was removed and 1 mL ethanol added to remove residual xylene. 

After centrifugation at 13,000 x g for 2 minutes, removal of ethanol and air-drying of the pellet, 

lysis buffer and proteinase K were added and samples were incubated at 56°C for 1 hour. 

Further incubation at 90°C for 1 hour was done to reverse formaldehyde modification of DNA. 

Subsequently, 200 µL protein precipitation buffer and 200µl ethanol were added and mixed. 

The mixture was then centrifuged through a spin column, washed twice with wash buffers and 

eluted using a Tris-EDTA solution supplied with the kit. 

To extract DNA from frozen samples, up to 25 mg of tissue was added to 180 µL lysis buffer 

(Qiagen DNeasy Blood and Tissue kit) and homogenized in a Precellys Evolution homogenizer 

(Bertin Technologies, Montigny-le-Bretonneux, France) using 2.8 mm zirconium oxide beads 

in reinforced 2 mL microtubes for 4 x 15 s at 5800 rpm. DNA was then extracted according to 

the protocol provided with the kit. Briefly, 20 µL of proteinase K was added to the 

homogenised sample, mixed and incubated at 56°C overnight. Two hundred µL of protein 

precipitation buffer and 200 µL ethanol were then added and mixed. The mixture was 

centrifuged through a spin column, washed twice with wash buffers and eluted using a Tris-

EDTA solution. 

 

2.2.1.2 Histology  

Hematoxylin and eosin (H&E) stained sections were evaluated according to the WHO criteria. 

Adjacent sections were immunostained to identify the presence of E-cadherin, and to identify 

microsatellite markers MSH6, PMS2 and MLH1. Staining was carried out using the Roche 

Ventana BenchMark Ultra Platform stainer. Briefly, antigen retrieval for E-cadherin was for 

64 minutes at 95˚C, and for MSH6 was for 32 minutes at 100˚C. For MLH1 and PMS2, slides 

were immersed in Roche Ventana Cell Conditioning 1 (CC1) retrieval solution for 64 minutes 
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or 92 minutes respectively. Incubation in primary antibody was at 37˚C for 40 minutes (E-

cadherin), or 36˚C for 12 minutes (MSH6), 24 minutes (MLH1) or 32 minutes (PMS2). All 

sections were subsequently treated with Ventana UltraView DAB to visualise primary antibody 

staining. Counterstaining was with Roche Ventana Haematoxylin II (modified Mayer’s) for 

four minutes before the sections were blued with Roche Ventana Bluing Reagent, four minutes. 

E-cadherin staining of signet ring cells was graded as negative, weak positive or positive 

whereas microsatellite markers were assessed as positive or negative. All slides were scored 

by a pathologist blinded to the identity of the samples.  

 

2.2.2 Human cell lines 

2.2.2.1 Cell culture  

Two colonic epithelial cell lines, HT29 (ATCC HTB-38) and HCT116 (ATCC CCL-247) were 

used in this work. Both are adherent cell lines, isolated from a 44 year old Caucasian patient 

who presented with colorectal adenocarcinoma (Fogh, 1975) and an adult male diagnosed with 

colorectal carcinoma (Brattain et al., 1981), respectively.  

Both cell lines were grown in McCoy’s 5A medium supplemented with 10% (v/v) fetal bovine 

serum and 100 U/mL penicillin and 100 µg/mL streptomycin. The cells were cultured at 37°C 

and 5% CO2 in a humidified incubator, with the media changed every 72-96 hours. Cells 

nearing confluency were washed twice with PBS and lifted from the flask with 1 mL 0.25% 

TrypLE Express at 37°C and 5% CO2 for 10 minutes. Trypsinisation was stopped by the 

addition of 9 mL of medium and cells were centrifuged at 1500 x g for 5 minutes. The 

supernatant was removed and cells were either resuspended in fresh medium, or used for 

experimentation. 

 

2.2.2.2 Counting  

To count cells, 15 µL were taken from 10 mL of trypsinised cell suspension (see above) and 

added to 15 µL of trypan blue solution (0.25% w/v in PBS). Cell numbers were quantified 

using a haemocytometer. Dead cells stain blue with trypan blue, enabling the number of non-

viable cells to be calculated as a proportion of the total cell count (Chae, 2017). 
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2.2.2.3 Preservation  

For long term storage, cells were centrifuged at 1500 x g and the supernatant removed. 

Following a brief PBS wash, pelleted cells were resuspended in freezing medium (90% FBS, 

10% DMSO) to give a concentration of 1.5-3 x 106 / mL. One milliliter aliquots were frozen 

overnight in cryotubes at -80°C and then transferred to liquid nitrogen. 

 

2.2.2.4 Light microscopy  

Images of cells cultured in tissue culture plates were captured using an Olympus CK2 

microscope equipped with an Olympus DP21 digital camera (Olympus, Shinjuku, Japan). 

 

2.2.2.5 Immunofluorescence microscopy  

Cells were cultured on sterile glass coverslips (Paul Marienfeld GmbH, Lauda-Konigshofen, 

Germany) before being fixed in a pre-chilled (-20°C) 50:50 (v/v) solution of methanol:acetone 

for 45 minutes at 4°C. The cells were then washed 4 x 5 minutes with PIPES buffer (Appendix 

2) at room temperature before permeabilisation with PIPES buffer containing 0.5% (v/v) Triton 

X-100 for 15 minutes at room temperature. Following two further 5 minute washes in PIPES 

buffer, non-specific binding sites were blocked with 1% BSA in PIPES buffer for 45 minutes 

at room temperature with gentle agitation. Coverslips were then washed a further 2 x 5 minutes 

in PIPES buffer before being incubated in primary E-cadherin antibody (diluted 1:250 in PIPES 

buffer with 1% BSA) overnight at 4°C. Following four washes with PIPES buffer at room 

temperature, the coverslips were incubated for 90 minutes at room temperature in secondary 

antibody (Alexafluor conjugated secondary antibody diluted 1:1000 in PIPES with 1% BSA) 

before being washed four times with PIPES.  

Actin was detected using Texas Red-X phalloidin (5 µL/mL) by incubating overnight at 4°C 

in PIPES with 1% BSA. Nuclei were stained using Hoechst 33342 (Invitrogen) at 2.5 µg/mL 

in PIPES buffer for 30 minutes at room temperature. Coverslips were washed a further two 

times in PIPES before being mounted onto slides using antifade mountant (Molecular Probes). 

Fluorescent imaging was carried out using an AxioImager Z1 microscope (Zeiss, Oberkochen, 

Germany) with EC Plan-Neofluar lenses (Zeiss) and an Axiocam 506 color camera (Zeiss). 

Images were captured by Zen3 software (Zeiss). Exposure times for each channel (red, blue, 
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green) were kept constant in all images from each experiment to maintain an accurate 

comparison between variables. 

 

2.2.3 Next generation sequencing of CDH1 and APC 

2.2.3.1 CDH1 sequencing library construction  

All coding regions and the proximal promoter of the CDH1 gene were amplified using a two-

step PCR strategy previously described by Dr Chris Hakkaart (Hakkaart et al., 2019). Briefly, 

the targeted regions were amplified initially using primers specific to the region of interest, 

with 18 base pairs (bp) non-specific tails at 5’ ends, which acted as binding sequences for 

primers in the second round of PCRs (Figure 2.1). Seventeen different PCR reactions were 

required to provide coverage of all 16 exons and the proximal promoter sequence of CDH1. 

Each amplicon was designed to be less than 500bp to fit within the capabilities of a MiSeq 500-

cycle reagent kit (Illumina). Consideration was also given to the relative composition of 

nucleotides in the first four bases across all primers as during a MiSeq run the first four bases 

are used for fluorescence calibration. Thus, a bias toward any particular nucleotide at each base 

would result in suboptimal calibration. Primer sequences are detailed in Appendix 1. 

 

 

Figure 2.1 Two-step PCR strategy to generate amplicon sequencing libraries. A first round of PCR 

is carried out using locus-specific primers with 18bp 5’ ends as templates for second round PCR. The 

second round primers, used on pooled first round products for each sample, contain unique paired 

indices allowing identification of samples and binding sites for sequencing primers used by the Illumina 

MiSeq. 
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2.2.3.2 APC sequencing library construction  

PCR primers were designed to create amplicons spanning regions of the APC gene accounting 

for the vast majority of known mutations found in cancers. Regions of interest were identified 

using the COSMIC database of somatic mutations in cancer 

(https://cancer.sanger.ac.uk/cosmic). Fifteen amplicons were designed spanning multiple 

regions of the APC gene including the mutation cluster region. The same 18bp non-specific 5’ 

ends used for the CDH1 first round amplification primers were added to the sequences of APC-

specific first round primers. Primer sequences and target nucleotides are detailed in Appendix 

1. 

 

2.2.3.3 Primer design  

Where PCR was not performed using previously published primers, primer design was carried 

out using the Whitehead Institute web design page Primer3 (primer3.ut.ee/). Off-target binding 

was checked using the BLAST tool from the US National Center for Biotechnology 

Information (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

All primers were ordered from Integrated DNA Technologies Inc. (Singapore) and 

reconstituted to a concentration of 50 µM with Tris-EDTA (TE; Appendix 2). Working stocks 

were prepared by further dilution to 10 µM in H2O. 

 

2.2.3.4 First round amplicon generation  

Regions of interest within CDH1 and APC were amplified using amplicon-specific primers in 

10 µL reactions using Kapa HiFi HotStart Readymix (Kapa Biosystems) to maintain sequence 

fidelity. The reaction mixture is detailed in Table 2.8.  

 

Table 2.8 Mixture for amplicon-specific PCR 

Reagent Volume 

10 µM forward primer 0.6 µL 

10 µM reverse primer 0.6 µL 

Kapa HiFi HotStart 

Readymix 

5 µL 

Sterile MPW 1.8 µL 

DNA (15 ng) 2µL 

Total 10µL 

https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Amplification of PCR products was carried out in a Kyratec Supercycler thermal cycler 

(Kyratec, Mansfield, QLD, Australia) using the conditions detailed in Table 2.9. 3 µL of each 

amplicon was run on a 1.5% agarose gel to check for successful amplification (Section 2.2.3.5). 

The amplicons for each sample were then pooled and cleaned using HighPrep magnetic beads 

(MagBio) (see Section 2.2.3.6).  

 

Table 2.9 Thermocycler conditions for amplicon-specific PCR 

Step Temp 

(°C) 

Time  Cycles 

Initial Denaturation 95 3 min 1 

Denaturation 98 14 sec  

35 Annealing 64 14 sec 

Extension 72 14 sec 

Final Extension 72 1 min 1 

 

 

2.2.3.5 Agarose gel electrophoresis  

PCR products were resolved in 1.5% agarose gels prepared by dissolving agarose in 1x Tris 

Borate EDTA (TBE) (Appendix 2) and supplemented with 0.4 x SYBRSafe. Appropriate 

volumes of 6 x loading buffer (Appendix 2) were added to samples prior to running gels in 1 x 

TBE at 100V for up to an hour. Two µL of 100bp Hyperladder DNA marker were run alongside 

samples as a size marker. Gels were visualized under ultraviolet light using a Q9 Alliance 

Advanced transilluminator with Q9 Alliance software (Uvitec, Cambridge, UK). 

 

2.2.3.6 Magnetic bead clean-up of PCR products  

Pooled PCR products from first or second round amplification steps for sequencing library 

construction were cleaned using HighPrep magnetic beads to remove unused primers, excess 

dinucleotides and other contaminants. Samples were mixed with 1.8 x volumes of bead solution 

by pipetting up and down at least 10 times and left at room temperature for 5 minutes. Samples 

were placed on a magnet and the beads allowed to aggregate on the walls of the tubes. 

Supernatants were discarded and the bead aggregates washed twice with 200µl 70% ethanol. 

The beads were air dried for 15-20 minutes. Sample were removed from the magnet, and the 
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DNA eluted from the beads with 40µl of the elution buffer supplied with the kit. Samples were 

replaced on the magnet to aggregate the beads and the supernatants containing the cleaned 

DNA were recovered to clean tubes.  

 

2.2.3.7 DNA quantitation by Nanodrop  

DNA and PCR products were quantified by a Nanodrop 1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE, USA). TE, mqH2O or the respective elution buffer was used 

as a blank depending on the sample. One µL of sample was placed on the Nanodrop pedestal 

and the ratio between absorbances at 260 and 280nm used to determine the concentration and 

purity of the DNA. 

 

2.2.3.8 Adapter PCR  

Pooled and cleaned amplicons for each sample were amplified in a second reaction using 

primers with 18bp 3’ sequences complementary to the 18bp 5’ ends of the first round 

amplicons. The second round adapter primers also contain unique indices that identify 

sequences from individual samples in a pooled library, as well as sequences required to bind 

the amplicon to Illumina flow cells, and sequences for the binding of Illumina MiSeq extension 

primers (Figure 2.1). The same pairs of indexed primers were used for APC as for CDH1 for 

samples in which both genes were sequenced (NZ EOCRC cohort, Chapter 4). The reaction 

mixture is detailed in Table 2.10. Second round primer sequences are detailed in Appendix 1.  

 

Table 2.10 Adapter PCR mixture 

Reagent Volume 

10 µM forward primer 0.6 µL 

10 µM reverse primer 0.6 µL 

Kapa HiFi HotStart 

Readymix 

5 µL 

Sterile MPW 1.8 µL 

Pooled 1st rd DNA (2 ng) 2 µL 

Total 10 µL 

 

PCR conditions are detailed in Table 2.11. Adapter combinations were unique to each sample, 

allowing identification of sample for each sequence produced. It was ensured that there were 
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no similarities in adapter primers between tumour and normal tissue DNA for the same patient 

(NZ EOCRC cohort) to avoid cross-contamination and ensure that mutations common to both 

tumour and normal tissue were real. 

 

Table 2.11 Thermocycler conditions for adapter PCR 

Step Temp 

(°C) 

Time  Cycles 

Initial Denaturation 95 2 min 1 

Denaturation 98 14 sec  

10 Annealing 68 14 sec 

Extension 72 14 sec 

Final Extension 72 1 min 1 

 

 

Three µL of each reaction were run on a 1.5% agarose gel alongside the pre-amplification 

pooled input DNA to visualize the successful addition of adapter primers to the amplicons, 

evidenced by an increase in the size of the amplicons. Five µL of each adapter PCR product 

were pooled as a library in a single tube and cleaned by magnetic bead clean-up (Section 

2.2.3.6).  

 

2.2.3.9 Library preparation and sequencing in Illumina MiSeq  

Quantitation of sequencing libraries and sequencing of the libraries using MiSeq (Illumina, San 

Diego, CA, USA) were carried out by Dr Robert Day (Biochemistry Department, University 

of Otago. Dunedin), as previously described (Hakkaart et al., 2019). 

 

2.2.3.10 Quantitation of sequencing libraries  

Sequencing libraries were quantified using a Qubit dsDNA High Sensitivity Assay Kit prior to 

loading on an Illumina flow cell for sequencing. Qubit working solution was prepared freshly 

as a 1:200 dilution of Qubit reagent in Qubit buffer. Two µL of sample were added to 198 µL 

of working solution. Standards were made by adding 190 µL of working solution to 10 µL of 

each standard. Standards were run alongside samples to calibrate the Qubit fluorometer. 
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2.2.3.11. Sequencing, analysis and annotation  

DNA libraries were diluted to 4 nM and run on an Illumina Miseq using V2-500 cycle reagent 

kits (Illumina). Raw paired end reads were cleaned using Trimmomatic v.0.35 (Bolger et al., 

2014) then the cleaned reads were aligned to the human reference genome (GRCh37/hg19) 

using the Burrows-Wheeler Aligner v.0.7.10 (H. Li & Durbin, 2009). Minimum read depths 

were 40 reads. Single nucleotide variants, insertions and deletions were called using the 

Genome Analysis Toolkit (GATK) v.3.6 (McKenna et al., 2010). The effects of variants were 

predicted using SnpEff v.4.2 (Cingolani et al., 2012) and putative mutations were visualised 

using the Integrated Genomics Viewer (Robinson et al., 2011). The functional consequences 

of missense variants were predicted by a variety of online tools; Polyphen2 (Adzhubei et al., 

2013) (using both HumDiv and HumVar datasets), SIFT (Kumar et al., 2009), Provean (Choi 

et al., 2012) and Mutation Assessor (Reva et al., 2011).  

 

2.2.3.12 Sanger sequencing for confirmation of next generation sequencing 

results  

Purified PCR products were prepared for sequencing by combining 1 ng of PCR product per 

100bp with 3.2 pmol of primer and mqH2O in a total volume of 5 µL. Samples were then sent 

to the Genetic Analysis Service (Department of Anatomy, University of Otago, Dunedin) 

where they were sequenced on a capillary ABI 3700xl Genetic Analyser (Applied Biosystems) 

following a sequencing reaction using BigDye chemistry (Applied Biosystems). 

 

2.2.3.13 Loss of heterozygosity at APC locus 

The APC sequences obtained in Section 2.2.3 were used to detect loss of heterozygosity (LOH) 

by comparing levels of each allele at four single nucleotide polymorphisms (SNPs) within the 

APC gene. SNPs showing heterozygosity, by presence of both alleles, in normal tissue were 

considered to have LOH if the read count of one allele was reduced in relation to the alternate 

allele in tumour tissue. A low number of alleles present for the missing allele likely reflected 

non-tumour cells, such as lymphocytes, within the tumour tissue. The four SNPs analysed were 

rs2229992, rs351771, rs1801166 and rs41115.  If all the informative SNPs within the APC 

gene in a single patient showed loss of an allele in the tumour tissue then the tumour was 

considered to display LOH at the APC locus. 
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2.2.4 Using CRISPR-Cas9 to edit the human HT29 colorectal cancer 

cell line 

2.2.4.1 Design of gRNA sequences for editing of mutated APC in HT29 cells  

The APC gene in HT29 cells has compound heterozygous mutations, one of which, a 

c.2557G>T transition resulting in a premature stop codon at codon 853, was edited using the 

CRISPR-Cas9 nickase system.  

Two guide RNAs (gRNAs) were designed to target sequences around the mutation using the 

design tool on the Zhang lab website (crispr.mit.edu). This site has since been shut down 

although resources are available via the Zhang lab (https://zlab.bio/guide-design-resources). 

One gRNA overlapped the mutated base while the other was 40-60 bases upstream of the 

mutated base. 

The use of a nickase enzyme to nick individual strands of DNA at two points close to each 

other, rather than the conventional single site cutting of both strands, was done to increase the 

specificity of the process by limiting off-target effects as both gRNA molecules would need to 

bind to complementary sequences close to each other for the editing process to take place. The 

chances of this happening at non-target sequences is greatly diminished compared to systems 

requiring only one gRNA to bind as described in Section 1.9. 

 

2.2.4.2 Plasmids and bacteria used for CRISPR-Cas9n experiments  

gRNAs were generated in pSpCas9n(BB)-Puro PX642 plasmids (Addgene) containing the 

Cas9n gene and the puromycin resistance gene. pSpCas9n(BB)-2A-Puro (PX462) V2.0 was a 

gift from Feng Zhang (Addgene plasmid # 62987; http://n2t.net/addgene:62987; 

RRID:Addgene_62987) (Ran et al., 2013). pBluescript KS(+) (Stratagene) is a small plasmid 

that was used as an intermediary for manipulating the template DNA. Subsequently the 

template DNA was cut out of pBluescript KS(+) and ligated into pCDNA3.1 (Invitrogen), an 

expression vector carrying the neomycin resistance gene, to be used for the CRISPR-Cas9n 

editing. All three plasmids and subsequent engineered plasmids were amplified in and purified 

from E.coli DH5α cells. 

 

https://zlab.bio/guide-design-resources
http://n2t.net/addgene:62987
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2.2.4.3 Transformation of plasmids into bacteria  

Plasmids were transformed into E.coli DH5α bacteria by thawing 100 µL aliquots of 

chemically competent cells (a kind gift from Dr Paul Pace, made by a method based on the 

Hanrahan method for preparation and transformation of Escherichia coli (Green & Sambrook, 

2018)) on ice, adding approximately 10 ng of ligation reaction or 1 ng of plasmid DNA, mixing 

gently and incubating on ice for 30 minutes. The mixture was heat shocked at 42°C for 45 

seconds then returned to ice for 2 minutes. Pre-warmed Luria Bertani (LB) broth (900 µL) was 

added and the mixture incubated, shaking at 37°C, for 1 hour. Twenty to two hundred µL of 

the transformation mix were then plated onto LB agar plates and incubated at 37°C overnight. 

Colonies were subsequently picked, grown in LB broth and plasmids extracted according to 

Section 2.2.4.4.  

 

2.2.4.4 Plasmid purification  

Following transformation, bacteria containing pSpCas9n(BB)-2A-Puro, pCDNA3.1 or 

pBluescript KS(+) plasmids were grown overnight in LB broth with 100 µg/mL ampicillin and 

harvested to generate plasmid stocks for further use in the CRISPR-Cas9 editing process. 

Plasmids were isolated using NucleoBond Xtra kits (Macherey-Nagel, Düren, Germany) 

according to the manufacturer’s protocol. Briefly, 100 mL overnight cultures were centrifuged 

at 5000 x g for 10 minutes at 4°C and the pellets resuspended in buffer containing RNase A by 

vortexing. Equal volumes of an alkaline lysis buffer were added and the mixture inverted 

several times to mix. After a 5 minute incubation, neutralisation buffer was added and the tubes 

mixed by inverting. The mixture was added to an equilibrated DNA-binding column and 

allowed to flow through by gravity. Following two washes with wash buffer, the plasmids were 

eluted with elution buffer, precipitated with isopropanol and centrifuged at 5000 x g for 30 

minutes at 4°C. The resulting pellets were washed with 70% ethanol, centrifuged and air-dried. 

The plasmids were then resuspended in TE buffer and stored at -20°C until use. 

 

2.2.4.5 Design of APC template fragment used for editing mutant APC  

To enable CRISPR nickase directed mutagenesis of genomic APC, a plasmid was designed to 

provide a homologous recombination template that contained the relevant portion of APC 

carrying the mutation to be copied into the target genome.  Briefly, a fragment of the human 
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APC gene was amplified from pCMV-Neo-Bam-APC (Morin et al., 1996) and subsequently 

cloned into pBluescript KS(+) using KpnI and NotI restriction sites incorporated into the 

primers used to amplify the fragment (Appendix 1). This fragment covered the sequence 

encompassing the two gRNA recognition sequences and approximately 100 bp of flanking 

sequence either side of the recognition sites. The PCR mixture included Phusion High Fidelity 

Polymerase to minimise misincorporation of nucleotides during the reaction. The PCR mixture, 

thermocycler conditions and primers are detailed in Appendix 1. 

The resultant amplicon and the pBluescript KS(+) plasmid were independently digested with 

KpnI and NotI restriction enzymes. The enzymes were added consecutively as they have 

different salt requirements for optimal digestion. Briefly, 20 µL DNA were added to 5 µL NEB 

buffer 1, 0.5 µL 100 x BSA and 1 µL (10 units) KpnI in a total volume of 50 µL and incubated 

at 37°C overnight. 2.5 µL 2 M NaCl (final concentration = 100 mM) were added along with 1 

µL (10 units) NotI and the digests incubated for a further 2 hours at 37°C. Digested plasmid 

was treated with calf alkaline phosphatase to prevent self-ligation and PCR fragments were run 

on a 0.8% agarose gel, the relevant bands were cut out and the DNA fragments were purified 

using a gel extraction kit (Invitrogen).   

The cleaned, digested fragment was then ligated into the cleaned, digested pBluescript KS(+) 

vector by incubating at an insert:vector ratio of 3:1 using 2 µL of 10 x ligase buffer and 1µl of 

T4 DNA ligase (Thermo Fisher) overnight at 16°C in a total volume of 20 µL. Ligated DNA 

constructs were then transformed into competent DH5α cells (see Section 2.2.4.3).  

Following growth of the transformed cells and extraction of the newly created template 

plasmid, XbaI and XhoI restriction sites were created within the gRNA recognition sequences 

that still existed on the template plasmid, so that they would no longer be recognised by the 

gRNAs, and to provide confirmation that the template mutant APC fragment had been copied 

into the target genome following transfection into HT29 cells. The mutation primers detailed 

in Appendix 1 introduce the base changes that create the restriction sites without altering the 

protein sequence. The XbaI site was introduced first, with the post-PCR mixture incubated with 

DpnI enzyme at 37°C for 1 hour to digest original methylated DNA, thereby removing 

unmutated plasmid, and to leave nascent unmethylated but mutated DNA. The mixture was 

transformed into DH5α cells (Section 2.2.4.3), individual colonies were cultured and the 

plasmid DNA from these were purified (Section 2.2.4.4). Restriction digest analyses identified 

positive incorporation of the XbaI site and then the XhoI site was introduced in the same 
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manner. Phusion High Fidelity DNA Polymerase was used to minimise misincorporation of 

nucleotides. The PCR mixture used for each mutation PCR along with thermocycler conditions 

are detailed in Appendix 1. Successful introduction of mutated bases was confirmed by Sanger 

sequencing. 

 

2.2.4.6 Gel extraction and clean-up of digested plasmids and PCR products  

DNA fragments run on 0.8% agarose gels were extracted using a PureLink Quick Gel 

Extraction Kit (Invitrogen) according to the manufacturer’s protocol. Briefly, the gel was 

solubilized at 50°C for 10 minutes in 3:1 (volume:weight) Solubilisation Buffer before 1 gel 

volume of isopropanol was added and the mixture centrifuged through a spin column at 12,000 

x g for 1 minute. The column was washed by centrifuging 500 µL Wash Buffer through at 

12,000 x g for 1 minute before drying the column and eluting with Elution Buffer by 

centrifugation. 

 

2.2.4.7 Insertion of template fragment into pCDNA3  

Following successful mutation of the template fragment in pBluescript KS(+), the fragment 

was cut out of the plasmid and ligated into pCDNA3, a larger plasmid that carries the neomycin 

resistance gene. This was to allow selection of HT29 cells that contain the template fragment 

by using geneticin, a drug that is toxic to mammalian cells but to which resistance is conferred 

by the neomycin resistance gene. Both pCDNA3 and the pBluescript KS containing the 

template fragment were digested with KpnI and NotI as previously (Section 2.2.4.5). Digested 

pCDNA3 was treated with calf alkaline phosphatase to prevent self-ligation. The template 

fragment was isolated after electrophoresis through a 0.8% agarose gel (Section 2.2.4.6) and 

ligated into the digested pCDNA3 by incubation with 1 µL T4 DNA ligase in T4 DNA ligase 

buffer in a total volume of 20 µL overnight at 16°C.  

 

2.2.4.8 Ligation of specific gRNA sequences into pSpCas9n(BB)-2A-Puro 

(PX462)  

Two separate gRNA plasmids were created to allow nicking of opposite strands of DNA either 

side of the mutated base in the APC gene.  In each case the annealed oligos, which were 
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designed to have ends compatible with BpiI cut restriction sites, were ligated into the BpiI-

linearized PX462 plasmid.  

Complementary oligonucleotides encoding the two guide RNAs required for CRISPR-Cas9 

editing of APC c.2557G>T, as detailed in Table 2.9, were annealed as follows. One µL forward 

oligonucleotide, 1 µL reverse oligonucleotide and 1 µL T4 DNA ligase were added to 7 µL 

H2O, heated to 95°C for 5 minutes then allowed to cool for 2 hours at room temperature to 

anneal together.  

The pSpCas9(BB)-2A-Puro plasmid (PX462) was digested with BpiI restriction enzyme for 2 

hours at 37°C, treated with 1 µL calf alkaline phosphatase at 37°C for 1 hour to prevent 

religation of the plasmid, the enzyme denatured at 65°C for 10 minutes, and the plasmid 

cleaned using magnetic beads (2.2.3.6). Then 2 µL of digested plasmid were separately mixed 

with 1 µL of annealed oligos for each gRNA construct, 1 µL ligase buffer, and 0.5 µL T4 DNA 

ligase in a 10 µL reaction.  They were incubated at 37°C for 1 hour, and then transformed into 

DH5α cells (Section 2.2.4.3) that were grown overnight on Luria-Bertani agar with 100µg/ml 

ampicillin. Single colonies were then grown in liquid media and plasmids were purified 

(Section 2.2.4.4). 

 

2.2.4.9 Puromycin and geneticin sensitivity of HT29 cells  

To determine the concentrations of puromycin and geneticin needed to select for HT29 cells 

containing the PX462 and template fragment plasmids, 24-well tissue culture plates were 

seeded with 5 x 104 HT29 cells/mL and grown in McCoy’s 5A medium containing 10% fetal 

bovine serum (FBS) and penicillin/streptomycin (P/S) with increasing concentrations of the 

relevant drug (see Appendix 2). Four wells were seeded for each drug concentration with cell 

numbers in one well measured each day to allow growth to be assessed (Section 2.2.2.2). Three 

replicate plates were tested for each drug.  

 

2.2.4.10 Transfection of plasmids into HT29 cells  

HT29 cells were transfected using Lipofectamine reagents (Invitrogen) according to the 

manufacturer’s protocols. Briefly, 7.5 x 105 HT29 cells were seeded in a 9.6 cm2 well of a 

tissue culture plate and grown overnight. After 24 hours the growth medium was changed to 
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growth medium without antibiotics, and 3.75 µg of template fragment plasmid and each of the 

two PX462-gRNA Cas9 plasmids were added to 500 µL lipofectamine and 11.25 µL PLUS 

Reagent, mixed gently and incubated at room temperature for 10 minutes. Then 55 µL LTX 

reagent were added, mixed gently and incubated at room temperature for 30 minutes to allow 

lipofectamine-DNA complexes to form. Subsequently, 500 µL of this complex were pipetted 

onto the cells and incubated at 37°C in 5% CO2 overnight. A control well of cells was treated 

with the transfection reagents without plasmids.  

The following day, the cells were washed with PBS, lifted with TrypLE Express and 

resuspended to 50 mL in McCoy’s medium containing 10% fetal bovine serum and 

penicillin/streptomycin. The cells were plated into three large 15 cm diameter tissue culture 

plates, topped up to 20 mL with growth medium, with a fourth plate used to grow the no 

plasmid control transfected cells. Following incubation at 37°C, in 5% CO2 for 5 hours (to 

allow the cells to adhere), a further 20 mL medium containing 1 µg/mL puromycin and 3 

mg/mL geneticin was added to each plate, and the cells were incubated for a further four days. 

The selective drugs, puromycin and geneticin, were removed by washing the cells with PBS 

and replacing the media with fresh drug-free media after approximately 90 hours of treatment. 

Following the removal of selective drugs, the cells were incubated for a further 10 days before 

96 individual colonies were each picked and transferred by pipette to a well of a 96-well tissue 

culture plate. The colonies were each incubated with 25 µL TrypLE Express for 10 minutes to 

disperse the cells, then 175 µL of medium were added and the plate was incubated at 37°C, in 

5% CO2 until the cells reached confluence. After washing, the cells were trypsinised and split 

into corresponding wells of three new 96-well plates and incubated for a further 2-3 days. Each 

plate was used for analysis of the clones, maintenance of the clones, or for freezing cells down 

for long-term storage. 

For analyses, the cells for each clone in one of the three plates were washed, trypsinised and 

recovered into a microcentrifuge tube. After pelleting (5 minutes at 1300 x g), the medium was 

removed and the cells were washed in 10 mM Tris-Cl, pH8 before being resuspended in 10 µL 

10 mM Tris-Cl and boiled for 15 min. Two microlitres of the cell suspension were then used 

in a PCR reaction to amplify a fragment encompassing the c.2557G>T mutation in the APC 

gene, using the primers used to generate the template fragment previously (Appendix 1). The 

PCR mixture and thermocycler conditions are detailed in Appendix 1. Following PCR, 10 µL 

of the PCR reaction were incubated with 0.5 µL XhoI at 37°C overnight. Digestion of the PCR 



47 
 

product into two fragments indicated successful incorporation of the template fragment into 

the genomic DNA of that clone. 

 

2.2.4.11 Immunoprecipitation of the APC protein  

Flasks of cells were washed and harvested by trypsinisation (2.2.2.1). The cells were pelleted 

by centrifugation at 3000 x g for 5 minutes and washed twice in ice-cold PBS before being 

resuspended in 2 mL of lysis buffer (Appendix 2) and sheared by passing through a 19-guage 

needle five times. The cell lysate was cleared by centrifuging at 13,000 x g for 20 minutes at 

4°C and the protein concentration of the supernatant was measured by Bradford assay. Two 

aliquots, each containing 1 mg of protein in 1 mL of volume for each lysate, were used for 

immunoprecipitation, using two antibodies, raised against the N- (ab58) and C- (ab15270) 

terminals of the APC protein respectively. 

Protein G-sepharose (GE Healthcare) was equilibrated by washing 500 µL of suspension three 

times in lysis buffer, before being resuspended in 1 mL lysis buffer to give a 50% suspension. 

For each immunoprecipitation, 40 µL of this suspension was added to 1 mL of cell lysate and 

rotated gently for 1 hour at 4°C, centrifuged at 3000 x g for 5 minutes, and the supernatant 

(cleared lysate) was transferred to a fresh microcentrifuge tube. One µg of antibody was added 

to the cleared lysate and incubated at 4°C for 1 hour.  Then 40 µL of the 50% protein G-

sepharose suspension was added and rotated at 4°C for 1 hour to capture the antibody and any 

attached immunoprecipitate to the sepharose. The lysate was centrifuged at 3000 x g at 4°C for 

5 minutes and the supernatant discarded. The sepharose was washed four times with 1 mL lysis 

buffer, centrifuged and the supernatant discarded t each time. Following the final wash, the 

sepharose was resuspended in 100 µL of SDS-PAGE loading buffer, boiled for three minutes 

and proteins were resolved on an SDS-PAGE gel for Western blotting (Section 2.2.4.12). 

 

2.2.4.12 Western blotting  

Proteins were first resolved by polyacrylamide gel electrophoresis using 4-20% 

polyacrylamide gels (Table 2.11) in a Mini-PROTEAN Tetracell tank (BioRad) at 200V for 45 

minutes, with top and bottom loading buffers as described in Appendix 2. Dual-coloured 

Precision Plus protein standards (BioRad) were run on each gel.  
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Separated proteins were transferred to polyvinylidene fluoride (PVDF) membrane (Table 2.11) 

using a Mini-Protean II transfer system (BioRad) with ice-cold transfer buffer (Appendix 2). 

Transfer was carried out at 100 V for 1 hour. A frozen plastic iceblock was added to the transfer 

tank directly from the freezer to prevent overheating during transfer. In addition, the transfer 

tank was placed on a magnetic stirrer with a magnetic flea ensuring continuous movement of 

the transfer buffer in the tank to maintain a cool temperature. Visualisation of the dual-coloured 

ladder on the PVDF membrane following transfer was used to confirm successful transfer of 

proteins. 

Non-specific binding of antibodies was blocked by incubation of the PVDF membrane with 

5% (w/v) non-fat milk in TBST (Appendix 2) for 1 hour at room temperature. After two five 

minute washes in TBST, the membrane was incubated overnight at 4°C in TBST with 2% (w/v) 

non-fat milk and primary antibody (directed against the N- or C-terminal of APC; both diluted 

1:1000; Table 2.5). Three further 5 minute washes with TBST were followed by incubation 

with an appropriate secondary antibody (anti-mouse or rabbit, both diluted 1:2,500; Table 2.6) 

in TBST with 2% (w/v) non-fat milk for 90 minutes at room temperature. After three more 5 

minute washes with TBST the membrane was exposed to chemiluminescent substrate (Table 

2.11). Protein bands were visualized using a UVITEC gel documentation system and images 

captured with Nine Alliance software (UVITEC, Cambridge, UK). 

 

2.2.5 Bacteroides fragilis toxin  

2.2.5.1 Culturing B. fragilis  

The enterotoxigenic Bacteroides fragilis (ETBF) strain 86-5443-2-2, originally isolated from 

a piglet with diarrhoeal disease and shown to produce the bft-2 toxin subtype (Franco et al., 

1997) was used for these experiments. A non-toxigenic B. fragilis (NTBF) strain NTC9343 

was used as a control. Both strains were kindly provided by Prof Cynthia Sears (Johns Hopkins 

University, Baltimore, USA).  

Both strains were maintained on sheep blood agar plates under microaerophilic conditions, 

generated using a commercial Anaero-Pouch (Mitsubishi Chemical Gas Co, Japan) added to a 

gas jar (Oxoid, Basingstoke, UK). The plates were incubated at 37°C and sub-cultured twice a 

week.  
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To harvest the B. fragilis toxin (BFT), the bacteria were sub-cultured into 200 mL volumes of 

B. fragilis broth (Appendix 1; Franco, 1997) and incubated in gas jars for three days at 37°C 

under constant rotation at 120 rpm. 

 

2.2.5.2 Concentrating the B. fragilis toxin (BFT)  

The B. fragilis toxin (BFT) is released from the surface of toxigenic strains of these bacteria 

during growth in broth culture (Sears, 2001). Accordingly, the three day broth cultures were 

centrifuged (2330 x g for 10 minutes), the resultant supernatant was passed through a 0.22 µm 

syringe filter (to remove any residual bacteria) and either frozen at -80°C for future use or the 

proteins were precipitated at 4°C in ammonium sulphate. Briefly, 500 µL aliquots of 

supernatant were precipitated by the addition of a saturated solution of ammonium sulphate to 

give a dilution series of ammonium sulphate concentrations ranging from 0 to 60%. Proteins 

were pelleted by centrifugation at 4°C for 30 minutes at 21,000 x g then resuspended in 1/50th 

volume PBS. Each fraction was diluted ten-fold in medium and exposed to semi-confluent 

HT29 cells. The ETBF fraction that resulted in more than 50% of cells rounding was used for 

future experiments. The corresponding fraction from NTBF was used as a negative control. 
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Chapter 3 CDH1 Gene Mutation in Early-Onset, Colorectal 

Signet-ring Cell Carcinoma 

 

3.1 Introduction 

Retrospective studies of colorectal cancer databases worldwide suggest that signet-ring cell 

cancers (SRCCs) account for around 1% of all primary colorectal cancers (Dozois et al., 2008; 

Hyngstrom et al., 2012; Inamura et al., 2015; Z. Liang et al., 2018; Nitsche et al., 2013; Wang 

et al., 2016; Wei et al., 2016). These tumours usually present at a later stage, have a worse 

grade and correspondingly poor prognosis (Hyngstrom et al., 2012). Colorectal SRCCs are 

defined as tumours exhibiting at least 50% of cells displaying signet-ring morphology (Bosman 

et al., 2010) although there is increasing evidence that even a small number of signet-ring cells 

can be detrimental to prognosis (Inamura et al., 2015; Sung et al., 2008; Tan et al., 2015).  

The unique features of these cancers suggest a different pattern of genetic alterations to 

conventional CRC (Inamura et al., 2015; Kakar & Smyrk, 2005; Ogino et al., 2006; Wei et al., 

2016) although a clear consensus on the molecular characteristics of colorectal SRCC is 

lacking. This is illustrated by conflicting evidence regarding the microsatellite instability status 

of these tumours (Nam et al., 2018; Ogino et al., 2006) that may, in part reflect the lack of 

published studies to date. 

Large epidemiological studies suggest colorectal SRCCs can develop at any age in males and 

females, and throughout the colon and rectum (Hyngstrom et al., 2012; Tan et al., 2015). 

However, in young people with colorectal tumours with a signet-ring component, occurrence 

is more frequent in males (Wang et al., 2016) and the tumour site is more distal, particularly in 

the sigmoid colon and rectum (Chang et al., 2012; Wang et al., 2016).  

There is mounting evidence that increasing numbers of young people presenting with early-

onset colorectal cancer (EOCRC) are likely to have evidence of signet-ring histology (Chang 

et al., 2012; Tan et al., 2015), and that these patients have a worse prognosis than similar-aged 

patients with conventional adenocarcinoma, even with a low (<50%) signet-ring component to 

their tumour (Huang et al., 2016; Tan et al., 2015). Unlike conventional carcinomas, colorectal 

SRCCs produce large amounts of intracellular mucus that acts to push the nucleus to the edge 

of the cell resulting in the classical signet-ring appearance to the cell. One consequence of this 

altered morphology is a loss of cell-cell adhesion that, in turn, fits with the ability of colorectal 
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SRCC to diffusely infiltrate the stroma, leading to increased invasion and metastasis, and a 

poorer prognosis (H. C. Kim et al., 2002).  

E-cadherin, encoded by the gene CDH1, is essential for maintaining intercellular stability in 

the intestinal epithelium via cell-cell adhesion and cell polarity. Accordingly, the loss of E-

cadherin is considered to contribute to early stage carcinogenesis (Hirohashi, 1998). Reduced 

E-cadherin expression has been reported as a feature of colorectal CRC (Borger et al., 2007), 

and while signet-ring cells can show markedly reduced expression of this protein (H. C. Kim 

et al., 2002), this is not always the case (Chang et al., 2012; Wang et al., 2016). 

Hereditary diffuse gastric cancer (HDGC) is typified by the presence of diffuse foci of signet-

ring cancer cells (Charlton et al., 2004), with mutations in the CDH1 gene identified in gastric 

(Guilford et al., 1998; Hakkaart et al., 2019; Norero et al., 2019) as well as in other 

malignancies (Xicola et al., 2019). Against this background, our colleague Prof. Frank Frizelle 

was intrigued to notice a large number of very young patients presenting with colorectal SRCC 

while working at the Aga Khan University Hospital in Karachi, Pakistan. In this chapter I 

describe the cohort of Pakistani colorectal SRCC patients diagnosed at or under 40 years of 

age, and investigate the possibility of mutation in the CDH1 gene playing a causative, and 

possibly familial, role in for colorectal CRC in these young patients.  

 

The objectives were to: 

1. Determine the levels of E-cadherin expression in these colorectal SRCC samples. 

2. Investigate the presence of CDH1 mutations, and to correlate these with E-cadherin 

expression.  

3. Establish the microsatellite stability status for each of the tumours.  

 

 

3.2 Methods 

Formalin-fixed, paraffin embedded (FFPE) tissues from 24 patients identified with colorectal 

SRCC at the Aga Khan University Hospital in Karachi, Pakistan were obtained, either as blocks 

or pre-cut sections. One sample that had no details with regards age and gender of the patient 

or location of the tumour was removed from the cohort. The study was granted ethics approval 

by the Ethics Review Committee, The Aga Khan University, Karachi, Pakistan. 
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One section from each tumour was stained with haematoxylin and eosin (H&E) for histological 

assessment by a pathologist (Section 2.2.1.2). Additional immunohistochemical staining was 

performed on sections of each sample for the mismatch repair proteins MSH6 and PMS2 in a 

2-stain method for microsatellite instability testing (Hall et al., 2010). Additionally, staining 

for MLH1, another mismatch repair protein, was carried out for samples that were negative for 

PMS2 (Section 2.2.1.2). Another slide from each tumour was also stained for E-cadherin 

(Section 2.2.1.2). 

DNA was extracted from up to three tissue sections (Section 2.2.1.1) and genomic DNA 

encompassing the promoter and all exons of the CDH1 gene was amplified by a 2-step PCR 

protocol followed by sequencing by Illumina MiSeq. All molecular and downstream analysis 

protocols are detailed in Section 2.2.3. 

 

3.3 Results 

3.3.1 Histological characterisation of the Pakistani colorectal cancer cohort 

Sections of tissue were received for nine of the 23 samples, while the remaining 14 samples 

arrived as FFPE blocks. Two and ten micron thick sections were cut from these blocks and 

used for staining of the tissues and extraction of DNA, respectively.  

The hematoxylin and eosin (H&E) stained section of each tumour was reviewed by a 

pathologist according to WHO criteria for SRCC (Bosman et al., 2010). Three samples were 

diagnosed as mucinous adenocarcinomas (MA) rather than SRCC as they exhibited 

extracellular mucin and the cells lacked the classical signet-ring appearance. Although both 

MA and SRCC overproduce mucin, they exhibit different biological behaviours and survival 

outcomes (Hyngstrom et al., 2012) therefore these three MA samples were excluded from 

further analysis. Sixteen of the remaining 20 samples met the criteria of signet ring cell cancer 

based on the finding that >50% of the tumour cells had typical signet ring morphology (Barresi 

et al., 2017), while the remaining four were classified as CRC with a partial signet ring 

component on the basis of having fewer than 50% signet rings. Males were over-represented 

in the cohort (n=16), the median age was 27.5 years (range 8-40) and, while the tumours in our 

study were found at sites throughout the colon, 75% (15 of 20) were found in or below the 

sigmoid colon (Table 3.1). This predominantly distal distribution was not gender-specific.   
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Table 3.1. Clinical characteristics of the 20 SRCC samples received as part of the Pakistani 

colorectal cancer cohort.  

 Total  

 N % 

Total 20  

Gender   

   Male 16 80 

…Female 

Age at diagnosis (years) 

  4 20 

   <21   6 30 

   21-30   6 30 

  31-40    8 40 

Tumour site   

   Proximal (right-sided)   5 25 

   Distal (left-sided) 15 75 

   

 

3.3.2 DNA extraction and amplification. 

DNA was extracted from the FFPE samples as described (Section 2.2.1.2) and the promoter 

and exons of CDH1 were amplified according to the methods described in Section 2.2.1.1. 

Nine samples sent as pre-cut sections had to be excluded due to poor DNA yields and quality 

as evidenced by inconsistent amplification resulting in only a few amplicons of varying 

intensity being visible per sample (Figure 3.1). Of note, the few amplifiable regions of CDH1 

in the samples supplied as tissue sections were similar across samples, perhaps reflecting the 

dynamics of those PCR reactions or the relative degradation of DNA at those regions of CDH1. 

In contrast the DNA extracted from the tissues received as blocks was of sufficient quality 

(Figure 3.1). This may, in part, reflect the amount of material available for extraction on the 

individual slides. Whereas ten micron sections were cut from those tissues received from 

Pakistan as blocks, the remaining nine tissues were received as pre-cut sections and were 

therefore likely to be considerably thinner. Only three sections per patient were available for 

DNA extraction for these nine samples, which meant only six microns thickness of material 

per sample was available for extraction. 

Accordingly, the number of samples available for analysis of the CDH1 gene expression was 

reduced to 11. This group consisted of nine males and two females, with a median age of 28 

years (range 15-40 years). 
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Figure 3.1 PCR amplification of CDH1 promoter and exons. Amplicons from PCR reactions to 

amplify promoter region and exons 1-16 of CDH1 gene from (A), DNA extracted from a sample 

supplied as a FFPE block and (B), DNA extracted from a sample supplied as cut sections. 

 

3.3.3 Immunohistochemical staining for E-cadherin 

The remaining 11 sections were immunostained to determine the presence of E-cadherin 

(Section 2.2.1.2), with staining of signet ring cells graded as negative, weak positive or positive 

(Wang et al., 2016). As with the H&E staining, the level of staining was scored by a pathologist 

blinded to the identity of the samples.  

Immunohistochemistry revealed E-cadherin staining was absent (n=6) or notably weak (n=5) 

at the membranes of the signet-ring cells in the 11 tumours when compared to adenocarcinoma 

cells or normal tissue within the same samples (Figure 3.2; Table 3.2). 
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Table 3.2 E-cadherin staining by signet ring cell component of the 11 SRCC samples included in 

the final analysis.   

Histology Age Gender Location E-cadherin 

staining 
Colorectal SRCC  15 F anal growth negative 

(>50% signet ring 

cells) 

24 M rectosigmoid negative 

 24 M anal canal weak positive 

 28 M rectal negative 

 37 M rectosigmoid weak positive 

 39 M rectum weak positive 

 21 F gut nodule weak positive 

 35 M hepatic flexure negative 

 40 M cecum negative 

     

     
CRC (with <50% signet  20 M cecum weak positive 
ring cell component) 30 M anus weak positive 

     

 

 

 

Figure 3.2 E-cadherin staining of signet ring cell cancer. Representative immunohistochemistry with 

(A) weakly staining positive and (B) negative E-cadherin staining of signet ring cells, and (C) 

adenocarcinoma cells showing typical E-cadherin staining, alongside sequential H&E staining of the 

same sections (D, E & F respectively). 
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3.3.4 Molecular analysis of the CDH1 gene 

The CDH1 gene sequence was determined by running pooled, indexed PCR products on an 

Illumina MiSeq instrument following the protocol described by Hakkaart et al. (Hakkaart et 

al., 2019). This approach involved the generation of dual-indexed amplicon sequencing 

libraries for each of the 11 samples with amplifiable DNA, that were diagnosed as either 

colorectal SRCC or CRC with signet-ring cell component, using a two-step PCR strategy 

(Section 2.2.3).  

Briefly, 17 target sites (16 exons and the promoter region) were amplified in separate PCR 

reactions and checked by electrophoresis on a 1.5% agarose gel (Figure 3.1). Following 

successful amplification, the PCR products for each sample were pooled and further amplified 

using unique pairs of primers containing indices that would allow for the identification of each 

sample within an Illumina MiSeq sequencing run.  

Raw paired end reads were cleaned with Trimmomatic v.0.35.25. Cleaned reads were aligned 

to the human reference genome (GRCh37/hg19) using the Burrows–Wheeler Aligner v.0.7.10 

(H. Li & Durbin, 2009).  Single nucleotide variants and insertion/deletion variants were called 

using ‘The Genome Analysis Toolkit’ (GATK) v.3.6 (McKenna et al., 2010).  The effects of 

variants were predicted using SnpEff v.4.2 (Cingolani et al., 2012). The trimming of reads, 

sequence alignments, variant calling and variant effect prediction were performed by Dr 

Christopher Hakkaart using a bioinformatics pipeline developed by him. All putative mutations 

were visually inspected using the Integrative Genomics Viewer (Robinson et al., 2011). The 

functional consequences of missense variants were predicted in silico using five different 

models that included SIFT (Kumar et al., 2009), Provean (Choi et al., 2012), Mutation Assessor 

(Reva et al., 2011) and PolyPhen2  (using both HumDiv and HumVar datasets) (Adzhubei et 

al., 2013). Mutations predicted to be deleterious by at least 3/5 predictive models were 

considered of interest.  

Raw sequencing data were cleaned and aligned to the reference genome (GRCh37/hg19) as 

explained in Section 2.2.3.11. Variants were called and their effects predicted as detailed in the 

same section, with all variants visually inspected using the Integrative Genomics Viewer 

(Robinson et al., 2011). Multiple in silico models were used to predict the pathogenicity of 

mutations with a mutation being considered of interest if at least 3/5 models predicted it to be 

pathogenic (Section 2.2.3.11). 
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This analysis of the data generated using next generation sequencing of the CDH1 gene 

revealed eight mutations meeting our inclusion criteria regarding absolute (>10) and relative 

(>20%) read depth in 7 of the 11 (64%) samples that yielded DNA of sufficient quality for 

analysis (Table 3.3). These samples included five signet-ring cancers and two CRCs with a 

partial signet-ring component. 

Mutation status was not associated with the histological classification of the cancer. In line 

with the spread of reported mutations in the COSMIC (Catalogue of Somatic Mutations In 

Cancer) database, the CDH1 mutations were spread throughout the gene with no clear hotspots 

(Figure 3.3), although three out of the eight mutations occurred in the third ectodomain. All 

mutations were classified as variants of unknown significance. Six mutations had not 

previously been described. Allele counts indicated that five mutations found in four of the 

seven samples were possibly germline (Table 3.3) where the mutant allele accounted for 50% 

or more of the reads. 

 

 

Figure 3.3 Distribution of CDH1 mutations within the SRCC cohort. The locations of the mutations 

found in this study are indicated by lollipops along the length of the CDH1 protein. The mutations 

occurred in multiple different domains throughout the protein: the pre-protein (green), ectodomains 

(red) and the intracellular domain (blue). The plot was generated using Mutation Mapper 

(www.cbioportal.org) and manually curated. 

 

 

 

 

 

 

http://www.cbioportal.org/
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Table 3.3 Characteristics of CDH1 mutations.  

Domain 
Mutation Allele 

Count1 

Mutation 

Assessment2 

E-

cadherin 

staining 

PMS2 

staining 
Histology 

DNA Protein 

 

Germline    
  

Cytoplasm c.2516G>A p.G839D 2,35 damaging negative  positive SRCC 

EC4 c.1724C>T p.A575V 25,25 damaging weak 

positive 
 positive SRCC 

EC4 c.1727C>T p.T576I 25,25 damaging 

EC3 c.1241C>A p.T414N 56,64 benign negative  positive SRCC 

EC3 c.1337C>T p.A446V 9,36 benign 
weak 

positive 
 negative mixed 

     
   

Somatic              

Cytoplasm c.2617G>T p.A873S 197,72 damaging negative  positive SRCC 

EC3 c.1322G>T p.G441V 42,14 damaging 
weak 

positive 
 positive SRCC 

Preprotein c.188G>A p.R63Q 37,18 benign 
weak 

positive 
 positive mixed 

1 (consensus allele, mutant allele), where mutant alleles present in at least 50% of reads were considered 

to be germline while those present in less than 40% of reads were determined to be somatic. 2 considered 

damaging if 3/5 or more software tools predicted the mutation to be possibly or probably damaging. 

Nonsense or frameshift mutations were all considered damaging without predictive tools. 

 

3.3.5 Clinical characteristics of samples with predicted germline mutations 

Of the four samples with putative germline mutations, three were from patients diagnosed with 

colorectal SRCCs with the other case being a CRC with partial signet-ring morphology. 

Moreover, in silico analysis of the CDH1 gene in two of these tumours suggested the mutations 

are damaging (Table 3.3).  

Sequence analysis revealed that one SRCC tumour had a germline mutation (p.G839D) that 

was universally predicted by all in silico tools to have a deleterious effect on the E-cadherin 

protein. Additionally, nearly all the reads showed the mutated form, suggesting the mutation 

may be inherited. While mutations at codon 839 have not previously been described, all 

substitutions in the COSMIC database within ten codons either side of codon 839 are predicted 

to be pathogenic, likely due to the location within the intracellular catenin-binding domain 

(Figure 3.3). Disruption of catenin binding to the intracellular domain of E-cadherin would 
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likely destabilise the cellular architecture via loss of binding of the catenin complex to actin 

filaments (Mege & Ishiyama, 2017). There was no evidence E-cadherin staining of signet ring 

cells in this tumour. 

The other two possible germline deleterious CDH1 mutations occurred in the same sample. 

Two adjacent amino acids (p.A575V, p.T576I) were mutated on the same allele, in an area 

encoding an extracellular domain (Table 3.3, Figure 3.3). In silico, these adjacent mutations 

would be considered likely to affect the ability of the mutant E-cadherin to form effective 

junctions with adjacent cells. Weak E-cadherin staining of signet-ring cells in this sample may 

equate with this predicted loss of functional activity. 

Sequence analysis of the CDH1 gene in a further SRCC sample suggested evidence of a 

p.T414N substitution. In silico, this mutation was predicted to be benign, as was the p.A446V 

mutation found in a CRC with signet-ring cell component (Table 3.3). Signet-ring cells in the 

sample with the p.A446V mutation were weakly positive for E-cadherin staining. In contrast, 

the sample with the p.T414N mutation did not stain for E-cadherin. The p.T414N mutation has 

previously been identified and designated as of unknown significance and, currently, there is 

no evidence to suggest that or the p.A446V mutations have clinical significance. If not, the loss 

of E-cadherin in the sample with the p.T414N mutation may be due to other mechanisms, such 

as epigenetic modification (Darwanto et al., 2003). 

 

3.3.6 Clinical characteristics of samples with predicted somatic mutations  

The remaining CDH1 mutations were considered somatic, given the low relative allele counts 

(<40%; Table 3.3). This discovery of multiple somatic mutations is not surprising given the 

late stage at diagnosis of these tumours where there is increased likelihood of a high and 

heterogeneous mutational load of somatic mutations.  

One of the somatic mutations, p.R63Q, has been described previously as benign 

(https://www.ncbi.nlm.nih.gov/snp/rs587780117). Codon 63 is located within the pre-protein 

so is not part of the mature active protein. Therefore, providing the mutation does not affect 

the intracellular targeting of the protein, loss of E-cadherin staining in this sample may be due 

to another mechanism. However, in the absence of evidence of another mechanism R63Q 

cannot be ruled out as the cause of the loss of E-cadherin staining in this sample. 
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3.3.7 Microsatellite instability was not a common feature in this cohort 

Microsatellite instability (MSI) is found in 15-20% of sporadic colorectal cancer and 

considered to be a positive prognostic factor (F. A. Sinicrope et al., 2006). MSI is also reported 

in colorectal SRCC (Ogino et al., 2006; Rosty et al., 2014) although this is not universal (Nam 

et al., 2018) and, when present, may not have a role in cancer-related mortality (Inamura et al., 

2015). Accordingly, tissue sections were immunostained to identify microsatellite markers 

MSH6, PMS2 and, in the event of negative PMS2, MLH1 to better understand the potential 

contribution of MSI to SRCC prognosis in this cohort. Again, the stained sections were scored 

by a pathologist blinded to the identity of the samples. 

While it is standard practice in New Zealand diagnostic laboratories to stain for all four MMR 

proteins (MSH2, MSH6, MLH1 and PMS2), just MSH6 and PMS2 were stained in the first 

instance. This was for two reasons, namely cost and to maximize the number of slides available 

for DNA extraction, particularly for those samples that were only supplied as a limited number 

of pre-cut sections, and was on the advice of an anatomical pathologist although it has also 

been reported elsewhere (Hall et al., 2010). This approach is based on the observation that the 

MSH2 and MSH6 form a heterodimers during mismatch repair while PMS2 and MLH1 do 

likewise. While MSH2 can also partner with MSH3, MSH6 can only pair with MSH2 so lack 

of MSH2 staining would also lead to lack of MSH6 staining therefore MSH6 can be used as a 

proxy for MSH2. Similarly PMS2 can be used as a proxy for MLH1. Samples deficient in 

PMS2 or MSH6 staining would then have sections stained with MLH1 or MSH2 respectively, 

although all samples were MSH6 positive so no MSH2 staining was ultimately required for 

this study. This protocol is not, however, a full-proof method of assessing MMR deficiency as 

in a very small number of cases, MMR deficiency can be present despite positive MSH6 and 

PMS2 staining (Pearlman et al., 2018). However, due to the considerations mentioned above 

and the relative rarity of the 2-stain method failing to identify MMR deficiency it was decided 

to proceed with the 2-stain method.  

All of the 11 samples included in the sequence analysis above were positive for MSH6 staining, 

however two samples were negative for PMS2 (Figure 3.4), loss of which is associated with 

colorectal cancer. Interestingly, both samples (one SRCC and one CRC with signet-ring cell 

component) that stained negative for PMS2 showed staining for E-cadherin, albeit weak, 

suggesting perhaps that microsatellite instability and loss of E-cadherin represent different 

pathways of colorectal signet-ring cell development. This argument is further strengthened by 
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noting that one of these two samples had no CDH1 mutation while the other sample had a 

mutation that was predicted to be benign. Subsequent testing of these two samples for MLH1 

staining showed one sample lacking MLH1 while the other sample was inconclusive due to 

non-reactivity of the control tissue added to each slide holding a tumour section prior to 

staining.  

 

Figure 3.4. PMS2 staining of signet-ring cells. Immunohistochemistry showing (A) a sample with 

PMS2 negative signet-ring cells and (B) a contrasting sample with nuclear staining for PMS2 in signet-

ring cells. 

 

3.4 Discussion 

While the prevalence of colorectal SRCC in Pakistan is currently unknown, a growing number 

of studies show high incidences of early-onset CRC across the Asian continent (Chew et al., 

2009; Gupta et al., 2010; Laskar et al., 2014; Wang et al., 2016) including Pakistan where 

younger age and advanced stage of disease at diagnosis were identified in two unrelated studies 

(Amini et al., 2013; Bhurgri et al., 2011). While neither of the Pakistani studies specifically 

reported the percentage of young patients with SRCC, early-onset CRCs are more likely to 

demonstrate signet ring cell differentiation when compared to CRCs seen in patients aged over 

40 years (Chang et al., 2012; Q. Li et al., 2014). Collectively, these studies support anecdotal 

evidence of high rates of colorectal SRCC in young Pakistani people. Against that background, 

our colleague’s observance of high rates of colorectal SRCC in young Pakistani patients at a 

hospital in Karachi, provided us with an intriguing cohort in which to study this disease. 

Studies suggest the younger the age of the patient, the poorer the outcome (Huang et al., 2016; 

Poles et al., 2016). The youngest patient in the cohort was only eight years old and 35% (7 of 
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20) of the patients diagnosed with CRC with a signet ring cell component (irrespective of 

whether signet ring cells were a major (>50%) or minor (<50%) component of the tumour) 

were younger than 22 years of age, a cut-off which has been used to define CRC patient 

populations as paediatric (≤21 years) and early-onset adult (22-50 years), respectively (Poles 

et al., 2016). No family history was available for any patients in our study, but the early age of 

onset suggests that some of these cancers may be familial rather than sporadic (Wei et al., 

2016). E-cadherin loss is a well-documented feature of familial SRCC gastric cancer (Guilford 

et al., 2007), and while colorectal SRCC is far less studied, the loss of this adherens junction 

protein has been reported as a feature of this disease too (H. C. Kim et al., 2002), and may 

explain the increased invasiveness and metastatic potential of colorectal SRCCs. 

Eleven samples in our cohort of patients with colorectal SRCC had DNA of sufficiently good 

quality for molecular analysis by next generation sequencing. Using this technique, we found 

evidence of one or more mutations in the CDH1 gene in seven (64%) samples that included 

five predicted germline and three predicted somatic mutations. Unfortunately, neither matched 

normal tissue nor peripheral blood samples were available to confirm the germline status of the 

mutations. The use of allele counts to predict the germline status of is a crude and inaccurate 

method which may be affected by aneuploidy within tumour cells and the presence of non-

tumour cells. As such the assignment of possible germline status to any samples in this chapter 

is made due to the absence of normal tissue and is only speculative.  

The absence of any common mutation between patients suggests that if there are familial cases 

in our cohort it is not due to a single founder mutation within that population. It is possible 

however that multiple mutations may arise in a population, as evidenced by the discovery of 

multiple familial CDH1 mutations in New Zealand Māori (Hakkaart et al., 2019; Humar et al., 

2009). 

 It has been postulated that the occurrence of multiple germline CDH1 mutations in a 

population may reflect a selective advantage in these populations. One explanation revolves 

around Listeria monocytogenes, a food-borne pathogen causing gastroenteritis and, in serious 

cases, meningitis or miscarriage in pregnant women (da Silva Tatley et al., 2003). This 

bacterium internalizes into epithelial cells via the binding of the bacterial internalin-A protein 

to the N-terminal, extracellular domain of E-cadherin (Hamon et al., 2006). Potentially, mutant 

E-cadherin protein may interfere with the ability of L. monocytogenes to bind and internalise 
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in epithelial cells. However, whether or not there is (or was) a selective advantage conferred 

by these mutations remains to be determined. 

The low mutant allele count for some of the mutations may indicate that for some samples 

mutation of CDH1 is a late event in the development of colorectal SRCC. However, the two 

SRCC cases with seemingly deleterious germline mutations and others with high mutant allele 

counts suggest that E-cadherin loss is an important early step in a subset of SRCC. This is 

highlighted by our finding that all three paediatric patients (ranging in age from 15 to 21 y) in 

this group had evidence of mutations in their respective CDH1 genes. One tumour contained a 

predicted germline mutation, despite the signet ring cells staining weakly positive for E-

cadherin. The two other paediatric patients had tumours that were classified as colorectal 

SRCCs (>50% signet rings), each with evidence of predicted damaging somatic rather than 

germline mutations in the CDH1 gene, and again the signet ring cells in one of these tumours 

showed weak evidence of E-cadherin expression. Collectively, these findings suggest a lack of 

concordance between the molecular and phenotypic expression of E-cadherin although it is 

possible that weak E-cadherin immunoreactivity may not necessarily equate with functional 

activity (Becker et al., 1994). 

Microsatellite instability (MSI) has previously been associated with colorectal SRCC (Ogino 

et al., 2006; Rosty et al., 2014) but we found low levels (2/11, 18%) in our cohort. Furthermore, 

one of the two was identified as a mixed signet ring/mucinous adenocarcinoma sample, 

meaning the prevalence of MSI is even lower, with only one out of the seven samples (14%) 

classified as SRCC having microsatellite instability. It is to be noted, however, the evidence 

for MSI in colorectal SRCC is based on small scale studies and case reports and is not a 

universal conclusion in all studies. A recent study of five Korean SRCC patients found all cases 

were microsatellite stable (Nam et al., 2018).   

Microsatellite instability in sporadic colorectal cancer tends to be associated with proximal 

tumours (H. Kim et al., 1994; Thibodeau et al., 1993) and occurs in females more than males 

(F. Sinicrope et al., 2010), neither characteristic seen in our (admittedly small) cohort of SRCC 

patients. Additionally, MSI in sporadic CRC has a better prognosis than microsatellite stable 

(MSS) cancers, while colorectal SRCC has a very poor prognosis irrespective of MSI status. 

In light of these observations it may not be surprising that we find low levels of MSI in our 

young, predominantly male cohort with mostly distal tumours. Both our cohort and the MSS 

cohort in the Korean study of SRCC described above (Nam et al., 2018) had low median ages 



64 
 

(28y and 40y respectively) therefore it may be that our findings reflect a shift from lower to 

higher levels of MSI with increasing age and that MSI may not be a strong feature of early-

onset colorectal SRCC.  

A major limitation of this study was that clinical data for the cohort included only age, gender 

and tumour site. No other clinical variables were available and there was no follow-up or family 

history for any of the samples. The lack of this information meant that no assessment of 

outcome in relation to E-cadherin expression (Wang et al., 2016) and/or CDH1 mutation was 

possible. While limited follow-up was only ever going to be possible given the diagnoses 

ranged from 2015-2017, the poor prognosis associated with colorectal SRCC suggest that some 

useful conclusions may have been made had this information been available. 

Similarly, the lack of family history prevents any evaluation of genetic predisposition to SRCC. 

This would also be informed by access to matched normal tissue or peripheral blood samples 

that could have confirmed the germline status of any mutations found. As well as limiting this 

study, the inability to show germline mutation of CDH1 prevents any benefit to patient families 

that might be afforded by early screening or vigilance. 

Additionally, the poor quality of the samples limited the scope of the study in several ways. 

We were only able to report on 14 of the original 24 samples due to the poor quality of DNA 

recovered from tissue sections. This limited the power of the study, particularly with the small 

number of starting samples. Due to the rarity of colorectal SRCC, many of the existing studies 

have very small cohorts. Hence, a study with 24 SRCC patients had the potential to 

significantly increase current knowledge around colorectal SRCC. However, notwithstanding 

the smaller sample number, we still regard this study as a useful addition to the currently sparse 

data on this rare condition. 

In conclusion, we found E-cadherin expression to be absent (or at best very weak) in colorectal 

signet-ring cell carcinomas and that this corresponded in a small number of cases with germline 

mutation of the CDH1 gene. For these patients, testing of family members for germline 

mutation may allow screening and early detection of tumours. Other colorectal SRCC cases 

showed low levels of somatic CDH1 mutations. Collectively, these findings suggest that while 

loss of E-cadherin is a common feature of colorectal SRCC and colorectal cancers with a 

signet-ring cell component, mutation of the CDH1 gene is not an underlying cause in the 

development of all cases. 
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Chapter 4 CDH1 and APC Mutation in Early-Onset 

Colorectal Cancer 

 

4.1 Introduction 

Our finding, described in Chapter 3, that absent or weak E-cadherin expression coincided with 

multiple CDH1 mutations within the cohort of Pakistani SRCC samples, was intriguing.  

However our ability to further assess the implications of this within that cohort was limited by 

sample quality and a lack of access to further samples (such as matched normal tissue) and/or 

clinical data, including patient outcomes and family histories. Our inability to confirm the 

germline status of those mutations with high allele counts, due to lack of matched non-tumour 

tissue, prevented us from drawing any conclusions as to whether screening of family members 

may have been of benefit. In addition, the lack of any family history of affected individuals 

limits the insights that can be made from our findings.  

In light of these limitations we sought to investigate E-cadherin expression and CDH1 mutation 

in a local cohort of early-onset colorectal cancer (EOCRC) patients where clinical information 

would be more readily available and sample quality more consistent. In addition we also sought 

to determine the presence of mutations in the APC gene for two reasons. Firstly, APC mutations 

occur in 60-80% of sporadic CRCs (Rowan et al., 2000) and mutations in this gene have long 

been established as an early event in colorectal tumourigenesis (Powell et al., 1992). Secondly 

we were aware that the number of SRCC cases in our cohort of EOCRC patients was likely to 

be very low (Plunkett et al., 2014).  

 Interestingly, there are studies that report the rate of APC mutation in early-onset CRCs to be 

lower than the rate seen in older CRC patients (Kothari et al., 2016), although this is not always 

the case (Willauer et al., 2019). While this may reflect different pathways to tumourigenesis in 

these individuals, another possibility is that these differences may reflect the use of different 

methodologies to look for mutations in a gene that has a large coding sequence spanning 

multiple exons over more than 100 kilobases of genomic DNA (Luchtenborg et al., 2004).  

There have been many different approaches in assessing APC mutations, with different regions 

of APC investigated in each approach (Kothari et al., 2016; Luchtenborg et al., 2004). While 

there is a defined mutation cluster region within the final exon of the gene, there are many 

mutations occurring outside this region. Therefore, strategies that limit themselves to the 

mutation cluster region, or more widely to the final exon, will miss a proportion of mutations 
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found elsewhere in the gene. To address this we looked at regions of the APC gene 

encompassing the vast majority of mutations found in the COSMIC database. It is reasonably 

common for a tumour to have both APC alleles mutated. When this occurs there tends to be a 

3’ mutation in or near the mutation cluster region, plus a mutation further upstream on the other 

allele (Christie et al., 2013). Truncated APC proteins have different functionalities and so this 

distribution of mutations within tumour cells is not a random coincidence. Therefore screening 

for mutations upstream of the mutation cluster region is warranted and necessary for a fuller 

picture of APC-related colon carcinogenesis.  

Frozen tumours and off-tumour tissue samples, obtained from 25 patients identified with early-

onset CRC, were collected at Christchurch Hospital, New Zealand, between August 2005 and 

February 2019. None of the patients had treatment prior to surgery and known Hereditary Non-

Polyposis Colorectal Cancer (HNPCC, Lynch syndrome) or Familial Adenomatous Polyposis 

patients were not included.  

 

The objectives of this study were to: 

1. Investigate the presence of CDH1 and APC mutations in a cohort of early-onset CRC 

cases from New Zealand by next generation sequencing protocols.  

2. Determine by immunohistochemistry the level of E-cadherin expression in tumours 

from the early-onset CRC patients and compare this to the DNA sequence information. 

3. Use single nucleotide polymorphisms within the sequence obtained in objective 1 to 

assess any loss of heterozygosity within the CDH1 and APC loci. 

 

4.2 Methods 

Samples from 25 patients with early-onset colorectal cancer, diagnosed at or under the age of 

50, were obtained from the Cancer Society Tissue Bank New Zealand. The samples consisted 

of frozen tumour tissue as well as matched normal tissue taken at the same time of surgery. 

The study was granted ethics approval by the University of Otago Human Ethics Committee 

(H18/143).   

DNA was extracted from 25 mg of frozen tissue (Section 2.2.1.1) and regions of DNA 

encompassing the promoter and all exons of the CDH1 gene were amplified by a 2-step PCR 

protocol followed by sequencing on an Illumina MiSeq platform in the Department of 
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Biochemistry, University of Otago, Dunedin. All molecular and downstream analysis protocols 

are detailed in Section 2.2.3. 

FFPE tissue blocks were obtained for each sample, sections cut and one slide for each case was 

stained with haematoxylin (to reveal nuclei) and eosin (to stain the extracellular matrix and 

cytoplasm) (H&E) for histological assessment by a pathologist (Section 2.2.1.2). In addition, 

a slide from each tumour was immunostained for E-cadherin (Section 2.2.1.2). 

The microsatellite instability status of the samples, as determined by the expression of four 

mismatch repair genes, MSH2, MSH6, PMS2 and MLH1, was carried out as part of the clinical 

assessment of the tumours, using the same method detailed in Chapter 2 (section 2.2.1.2). This 

data was obtained from the clinical records.   

 

4.3 Results 

4.3.1 Characterisation of the cohort  

The cohort of 25 early-onset CRC cases consisted of 14 (56%) women and 11 (44%) men aged 

50 years or under at diagnosis (median 44 years, range 28-50 years) (Table 4.1). The tumours 

were predominantly distal and all but two were classed as adenocarcinomas by H&E staining, 

with an adenosquamous carcinoma, where tumours contain cells originating from both mucus-

producing glandular cells and flat squamous cells that line epithelia, and a signet-ring cell 

carcinoma completing the cohort (Table 4.1). While the tumours were predominantly distal 

this is likely an under-representation of the proportion of distal tumours in early-onset CRC. 

Due to protocols used by the tissue bank, following removal of the colon, the rectum is not 

opened up prior to formalin fixation in order to preserve the resection margins. Therefore it is 

not possible for the tissue bank to obtain fresh rectal tumour tissue. In addition, neoadjuvant 

therapy on rectal tumour patients prior to surgery would have excluded inclusion of many of 

the rectal samples from our cohort (if they were accessible).   
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Table 4.1: Clinical features of the early-onset CRC cohort. 

   

 Number % 

Total 25  

Gender   

   Male 11 44 

   Female 

Age at diagnosis (years) 

14 56 

   21-30 1 4 

   31-40 6 24 

   41-50  18 72 

Ethnicity   

   European 24 96 

   Filipino 1 4 

Stage at diagnosis   

   I                  9 36 

   II                  9 36 

   III                  6 24 

   IV                  1 4 

Tumour site      

   Caecum 1 4 

   Ascending colon 6 24 

   Hepatic flexure 1 4 

   Splenic flexure 1 4 

   Descending colon 3 12 

   Sigmoid colon 12 48 

   Rectosigmoid 1 4 

Pathology   

   Adenocarcinoma 23 92 

   Adenosquamous carcinoma 1 4 

   Signet-ring cell carcinoma 1 4 

  

 

4.3.2 Immunohistochemical staining for E-cadherin   

Sections of tumour tissue that were cut from FFPE blocks were immunostained for the E-

cadherin protein (Section 2.2.1.2) and were independently assessed by a pathologist. As with 

the Pakistani cohort (Chapter 3), the level of staining of the tumour cells was graded as 

negative, weak positive or positive.  

While frozen tissue was available for all 25 patients, FFPE blocks were not available for one 

patient, meaning that tumour tissue could not be stained for E-cadherin in this case. Of the 

remaining 24 samples only one tumour was classified as negative for E-cadherin, while a 

second sample stained weakly. Consistent with previous reports of E-cadherin status in 
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colorectal SRCC (Aitchison et al., 2020; Borger et al., 2007), the sample with negative E-

cadherin staining was the sole SRCC sample in the cohort. 

 

 

Figure 4.1. Representative immunohistochemistry for E-cadherin in EOCRC samples. A, 

positively-staining adenocarcinoma sample showing strong membrane-associated E-cadherin staining 

(brown) in tumour cells. B, an adenosquamous carcinoma sample showing weak E-cadherin staining at 

tumour cell membranes although the staining was consistent along the cell membrane. C, signet-ring 

cell carcinoma cells with small foci of E-cadherin at cell junctions within predominantly negatively 

staining cells showing classic signet-ring morphology. A pathologist classified this tumour as negative 

for E-cadherin due to the absence of E-cadherin along the membranes. Nuclei are stained blue. 

 

The sample with weak E-cadherin staining was the sole adenosquamous carcinoma, whereas 

all the 22 other tumours that stained positive for E-cadherin were adenocarcinomas. 

Interestingly, within the adenosquamous carcinoma it was the squamous cells that stained very 

weakly, whereas stronger staining was seen in the glandular cells. This suggests that the 

squamous proportion of the carcinoma contributed to the weakness of the E-cadherin signal in 

this sample. 

 

4.3.3 Molecular analysis of the CDH1 gene  

DNA was extracted from 25 mg of frozen tumour and matched normal tissue using a Qiagen 

DNeasy Blood & Tissue kit (Section 2.2.1.1). The CDH1 gene sequence was determined by 

running pooled, indexed PCR products on an Illumina MiSeq instrument following the protocol 

described in Section 2.2.3. Again, mutations predicted to be deleterious by at least 3/5 

predictive models were considered of interest while mutations with low absolute (<10) or 

relative (<20%) allele counts were excluded. 
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This analysis of the data revealed a single tumour sample from a 34 year old male that met the 

inclusion criteria. This sample yielded a c.88C>A variant in the CDH1 gene, a missense variant 

resulting in a p.P30T substitution. The proline residue encoded by codon 30 of E-cadherin is 

moderately conserved between species and is within a very conserved region of the E-cadherin 

sequence, between codons 28 and 32 (Figure 4.2). The c.88C>A variant is seen at low 

frequency in databases such as 1000Genomes (MAF 0.00040) and ExAc (MAF 0.00094), and 

multiple predictive tools suggest this variant to be deleterious. In contrast, ClinVar considers 

c.88C>A as likely benign (https://www.ncbi.nlm.nih.gov/clinvar/variation/127933/).  

 

 

Figure 4.2. Conservation of the proline residue at codon 30 of E-cadherin. A section of the E-

cadherin containing protein including the proline residue at codon 30 (red arrow) which is conserved to 

zebrafish (Danio rerio) and is adjacent to the strongly conserved glycine and phenylalanine residues at 

codons 31 and 32. Alignments created using Clustal Omega in Geneious Prime 2020.0.5 (Biomatters 

Ltd, Auckland, NZ). 

Interestingly the p.P30T substitution created by the c.88C>A variant is located in the pre-

protein, and therefore does not impact on the mature E-cadherin protein sequence. However it 

may play a role in the localisation of the protein to the cell membrane (Vogelaar et al., 2013) 

and, while proline and threonine are physiochemically similar, this change may subtly impact 

this potential targeting role.  

Sanger sequencing of tumour tissue confirmed the presence of the variant, and sequencing of 

the matched normal tissue confirmed the germline status of the variant (Figure 4.3).  
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Figure 4.3. Confirmation of germline status of CDH1 c.88C>A mutation. Sanger sequencing of the 

CDH1 c.88C>A (recognised as a heterozygous base, M, in the sequence) mutation, confirming its 

presence in both tumour and matched normal tissue. 

 

4.3.4 Molecular analysis of the APC gene 

As detailed in the introduction to this chapter, there are many different approaches to assessing 

APC mutations that can, in part, relate to the region of the gene in which they are located. 

Accordingly, an approach that is limited to investigating mutations within the defined mutation 

cluster region within the final exon of the gene is likely to miss a proportion of mutations found 

elsewhere in the gene. To address this we looked at regions of APC encompassing the vast 

majority of mutations found in the COSMIC database.  

Fifteen amplicons covering the APC sequences most commonly mutated in colorectal cancer 

were amplified for each of the 25 EOCRC samples, as detailed in Section 2.2.3 (Figure 4.4). A 

second round of PCR was performed using indexed primers as for the CDH1 sequencing 

detailed above. Pooled products for each tumour and matched normal tissue samples were then 

sequenced (Sections 2.2.3.9 to 2.2.3.11).  

Twenty four mutations meeting the inclusion criteria for absolute (>10) and relative (>20%) 

read number were found in 18/25 tumour samples. The mutations consisted of 14 nonsense 

mutations, 6 frameshift mutations, 3 missense mutations and one splice region variant (Figure 

4.5). Sequencing of matched normal tissues revealed that, while the majority of mutations were 

sporadic, two APC mutations were germline. 
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Figure 4.4. PCR amplification of APC sequences. Fifteen PCR reactions were used to amplify the 

regions of APC containing the most frequently mutated bases. Two amplicons each were required to 

span exons 9 and 11 while 6 amplicons spanned exon 15 up to and including the mutation cluster 

region.  

 

 

Figure 4.5. APC mutations found in EOCRC samples mapped to their position within the protein. 

Each lollipop represents the position of a mutation with the colours of the lollipop representing different 

types of mutation: black, nonsense mutations; green, missense mutation; pink, frameshift mutation; 

yellow, splice variant. While a high proportion of mutations occur within the mutation cluster region 

(MCR, black bar), mutations are found throughout the first 1600 codons of APC including some 

upstream of exon 15 (green bar). Protein domains: green, oligomerisation; red, armadillo repeats; blue, 

15 amino acid repeats; yellow, 20 amino acid repeats; purple, SAMP motif. The plot was generated 

using Mutation Mapper (www.cbioportal.org) and manually curated. 

http://www.cbioportal.org/
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4.3.5 The two germline APC Variants 

p.V1125A. A c.3374T>C variant, found in one sample in the current cohort, has a low 

frequency in the general population (ExAC MAF 0.00057). This variant results in a substitution 

at codon 1125 of a valine to an alanine, and is regarded as a conservative change as they are 

closely related amino acids. Coupled with the occurrence of the variant in the general 

population (F. F. Li et al., 2015), as well as its position in a poorly conserved region of the 

gene, the c.3374T>C variant is considered benign.  

 

p.E1317Q. A c.3949G>C mutation found in one patient resulted in a glutamic acid to 

glutamine change at codon 1317 of APC, in a region of the gene poorly conserved between 

species. The c.3949G>C variant is found at low frequency in the general population (ExAC 

MAF 0.00413; 1000Genomes MAF 0.003). ClinVar has conflicting interpretations of 

pathogenicity.  

In this study this mutation was found in a 36 year old female (Patient 15310) with a stage 2 

adenocarcinoma with no lymph node involvement or metastasis. There is no reported family 

history of bowel cancer. Interestingly, while the matched normal tissue showed the mutation 

to be heterozygous, the wild type allele was barely visible in the tumour. Moreover, this 

apparent loss of heterozygosity in the tumour occurred despite the positive staining of the 

tumour for all four mismatch repair proteins deeming the tumour microsatellite stable. It is 

reasonable to suggest that this second genetic hit is required for the pathogenicity of the 

p.E1317Q to occur. This might explain the lack of family history, as the single mutant allele 

alone may not be sufficient for carcinogenesis, and is an example of the damaging potential 

caused by of loss of heterozygosity (Figure 4.6). 
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Figure 4.6. Sanger sequencing of APC c.3949G>C mutation. The guanine base indicated by the red 

arrow in the wild type APC sequence is mutated to a cytosine in one allele in the normal tissue of the 

patient to give a heterozygous sequence. In the tumour tissue the wild type guanine allele is barely 

visible.  

 

4.3.6 Sporadic APC mutations 

As well as the two germline APC mutations, 22 sporadic mutations (20 unique plus one found 

in two samples) were found in the cohort (Table 4.2) and confirmed by Sanger sequencing. 

None of these mutations were seen in the matched normal tissue. All but two sporadic 

mutations were predicted to be damaging, as they caused premature truncation of the gene. The 

remaining two were missense mutations, both of which were predicted to be benign. Fifteen 

were previously discovered mutations (references in Table 4.2), with 7 novel mutations 

identified. 
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Table 4.2. Sporadic APC mutations found in tumour tissue but not in matched normal tissue of EOCRC patients. 

Patient 

Number 

Microsatellite 

Instability 

Mutation Mutational 

Outcome 

Mutational 

Assessment1 

 

Reference DNA rsID Protein 

10006 MSI c.2626C>T rs121913333 p.R876X Nonsense Damaging (Powell et al., 1992) 

10765 MSS c.835-8A>G rs1064793022 Splice variant Truncation2 Damaging (Fostira & Yannoukakos, 2010) 

12294 MSS c.1660C>T rs137854573 p.R554X Nonsense Damaging (Friedl & Aretz, 2005) 

12961 MSS c.2853T>G rs575406600 p.Y951X Nonsense Damaging (Friedl & Aretz, 2005) 

13046 MSS 
c.4488delT n/a p.P1497fsX Frameshift Damaging This Study 

c.2805C>A rs137854575 p.Y935X Nonsense Damaging (Simbolo et al., 2015) 

13501 MSS c.2636delA n/a p.Q879fsX Frameshift Damaging This Study 

13564 MSS c.4033G>T rs1211642532 P.E1345X Nonsense Damaging (Gomez-Fernandez et al., 2009) 

14459 MSS 
c.4463delT rs1114167577 p.L1488fsX Frameshift Damaging (Miyaki et al., 1994) 

c.3826delT n/a p.S1276fsX Frameshift Damaging This Study 

15310 MSS c.4216C>T rs587782518 p.Q1406X Nonsense Damaging (Lagarde et al., 2010) 

16993 MSS 
c.4717G>T rs878853217 p.E1573X Nonsense Damaging (Aceto et al., 2005) 

c.2821G>T n/a p.E941X Nonsense Damaging (Miyaki et al., 1994) 

17871 MSS 
c.4485delT n/a p.S1459fsX Frameshift Damaging This Study 

c.2626C>T rs121913333 p.R876X Nonsense Damaging (Powell et al., 1992) 

18090 MSS c.3925G>T n/a p.E1309X Nonsense Damaging (Luchtenborg et al., 2004) 

19199 MSS c.646C>T rs62619935 p.R216X Nonsense Damaging (Gomez-Fernandez et al., 2009) 

19513 MSS 
c.3740C>T n/a p.A1247V Missense Benign This Study 

c.3340C>T rs121913331 p.R1114X Nonsense Damaging (Aceto et al., 2005) 

20039 MSS c.4230C>A n/a. p.C1410X Nonsense Damaging This Study 

20085 MSI c.694C>T rs397515734 p.R232X Nonsense Damaging (Simbolo et al., 2015) 
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Table 4.2. (continued) Sporadic APC mutations found in tumour tissue but not in matched normal tissue of EOCRC patients. 

Patient 

Number 

Microsatellite 

Instability 

Mutation 
Mutational 

Outcome 

Mutational 

Assessment1 

 

Reference 
DNA rsID Protein 

21025 MSI c.2563_2564dupGA n/a p.R856fsX Frameshift Damaging This Study 

1, Missense mutations were considered damaging if 3/5 or more software tools predicted the mutation to be possibly or probably damaging. Nonsense or 

frameshift mutations were all considered damaging without predictive tools. 2, The splice variant c.835-8A>G results in a frameshift that ultimately leads to 

premature truncation of APC. MSS, microsatellite stable; MSI, microsatellite instability; n/a, these mutations have no rsID. 
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4.3.7 Microsatellite instability 

Of the 24 samples for which sections were available, 21 reportedly stained for all four mismatch 

repair proteins and were therefore considered microsatellite stable. All three of the remaining 

samples displayed microsatellite instability, with one negative for MSH6 staining and two 

negative for PMS2 staining. These three tumours did not cluster at any location in the colon, 

as they were found in the ascending colon, splenic flexure and the sigmoid colon respectively. 

Interestingly, one of the 21 samples that stained positively for all four mismatch repair genes 

was reported to have a BRAF mutation. This sample was the only adenosquamous carcinoma 

in the cohort and also stained weakly for E-cadherin. This combination of a BRAF mutation in 

a microsatellite stable adenosquamous colon cancer has been reported before (Ishida et al., 

2017). 

 

4.3.8 Loss of heterozygosity is associated with APC mutation near codon 1300 

Loss of heterozygosity was determined by the APC sequence data, when loss of one allele of a 

single nucleotide polymorphism was seen in the tumour sequence where two different alleles 

were seen in matched normal tissue (Section 2.2.3.13). Three out of the 25 samples in the 

cohort (12%) displayed a loss of heterozygosity. Of particular note was that these three samples 

all had APC mutations clustered around codon 1300, a phenomenon previously reported in 

sporadic CRC (Rowan et al., 2000).  

 

4.4 Discussion  

In contrast to the cohort of early-onset CRCs from Pakistan (Chapter 3) that were primarily 

characterised by the presence of signet rings, the local cohort predominantly carried colorectal 

adenocarcinomas. We found one tumour in our cohort of EOCRC tumours with evidence of a 

previously described CDH1 germline mutation. That, combined with evidence of E-cadherin 

staining in all but the single SRCC case within the cohort, leads to the conclusion that loss of 

E-cadherin is not a major factor in the pathogenesis of early-onset CRCs in New Zealand. This 

finding is in agreement with a recent study where commercially available 46- or 50-gene panels 

for Next Generation Sequencing also failed to find CDH1 to be commonly mutated in early-

onset CRCs, or indeed at any age of onset (Willauer et al., 2019). 
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The one tumour with evidence of a CDH1 germline mutation was found in a 34 year old male. 

This was a c.88C>A variant reportedly present at low frequency in the general population 

(https://www.ncbi.nlm.nih.gov/clinvar/variation/127933/). However, the very young age of 

diagnosis and the presence of mucin in the tumour suggests a similarity to hereditary diffuse 

gastric cancer patients, where CDH1 mutations are causative (Guilford et al., 1998). That, 

along with the co-occurrence of c.88C>A in other diseases such as lobular breast and gastric 

cancer (Masciari et al., 2007; Molinaro et al., 2014) and the observation  that c.88C>A affected 

the localisation of E-cadherin in vitro (Vogelaar et al., 2013), suggests that c.88C>A may be 

causative in this individual. Although the presence of strong E-cadherin staining at the cell 

membranes in the tumour reduces this possibility, the presence of this mutation may indicate 

familial risk and screening of family members should be considered. 

Only one sample was histologically classified as a SRCC and interestingly this was the same 

tumour that was classified negative for E-cadherin staining, providing further evidence that 

loss of this inter-cellular protein is an important step in the development of SRCC tumours. 

One other tumour also showed partial loss of E-cadherin. The absence of any CDH1 mutation 

in these two samples with reduced or absent E-cadherin expression suggests other forms of 

silencing of this gene are likely to have occurred. Methylation-induced silencing of CDH1 has 

been found in colorectal cancers (Lee et al., 2004; Wheeler et al., 2001), including SRCCs 

where loss of E-cadherin was associated with an increase in expression of MeCP2, a methyl-

binding protein (Darwanto et al., 2003). Promoter methylation of one allele as a second genetic 

hit may occur alongside genetic loss of the other allele as has been described for CDH1 in 

gastric cancer (Oliveira et al., 2009), providing additional argument for CDH1 methylation as 

a possible mechanism in the current cohort. Time constraints precluded methylation analyses 

of our cohort but this is considered a priority for future research. 

In contrast to the observed lack of mutations in the CDH1 gene, mutations of APC were 

identified in 18/25 (72%) of early-onset CRC cases in our cohort. This is higher than some 

other studies looking at APC mutation in early-onset CRCs (Kothari et al., 2016; Willauer et 

al., 2019) that may, in part, reflect the methodology used here. The APC gene is long, 

encompassing 8529 bases of coding sequence over multiple exons covering over 100 kilobases 

of chromosome 5, making sequencing strategies cumbersome and expensive. Therefore, many 

studies have focused on mutation hotspots in the gene, particularly the mutation cluster region 

between amino acids 1286 and 1513 (Miyoshi et al., 1992) or more widely within the final, 
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large exon which encompasses the majority of APC mutations. This has the potential to miss 

mutations that fall outside these regions.  

We developed a sequencing strategy to maximize the mutations identified while maintaining a 

manageable, cost-effective amount of sequencing. Firstly, regions of APC with very low rates 

of mutation in sporadic CRCs were identified using the Catalogue Of Somatic Mutation In 

Cancer (COSMIC) database, and excluded from our sequencing strategy. That left exons 5, 6, 

8, 9, 11, 12 and 13, as well as exon 15 from amino acids 788 to 1593. These exons encompass 

the vast majority of non-synonymous mutations of the APC gene in the COSMIC database, 

and each was sequenced. This approach identified 24 mutations in 18/25 (72%) tumour samples 

across these regions of the APC gene. Importantly, if we had only sequenced the mutation 

cluster region, this number would have dropped to 8/25 (32%). Likewise, mutations in the final 

exon of the gene were identified in only 14/25 (56%) of the samples. These findings 

convincingly highlight that protocols applied to study APC mutations are of critical importance, 

and that studies limited to “hotspot” regions of the gene may significantly under-report the 

mutation rate.  

A recent study investigating mutations in two separate cohorts of colorectal cancer gave 

considerably different rates of APC mutation between the cohorts (Willauer et al., 2019) that 

were investigated using different screening panels. For patients under 50 years of age, the APC 

mutation rates of the tumours were 41.6% and 65.2% for the two cohorts. The commercial 

panel that identified the lower rate of APC mutations only investigated mutations within the 

last exon of APC, mostly within the mutation cluster region. The second cohort was studied 

using a mixture of platforms, suggesting the method used to identify APC mutations and the 

amount of the gene covered has a large impact on the rate of mutations reported. In comparison, 

the rate of tumours with mutations in the final exon of APC within our cohort was 56% (14/25). 

Of further interest was that, with the exception of patients under 30 years old, the rates of APC 

mutation in the two cohorts detailed in the Willauer study were not very different between 

early-onset and late-onset CRCs (Willauer et al., 2019). Only one patient in our cohort was 

aged under 30, a male aged 28 with left sided adenocarcinoma. Of note this patient did not have 

an APC mutation. 

Of interest was our finding of two germline mutations in our cohort, despite familial 

adenomatous polyposis being one of the exclusion criteria. Perhaps unsurprisingly, while 21/24 

mutations were either nonsense or frameshift mutations resulting in truncated proteins, both 
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the germline variants were missense mutations. The p.V1125A variant appears to be benign, 

whereas the p.E1317Q variant that replaces a glutamic acid residue with a glutamine has 

previously been found to be significantly associated with cancer with an odds ratio of 11.17 in 

a study of 164 unrelated colorectal adenoma patients (Lamlum et al., 2000). While glutamic 

acid and glutamine are structurally similar, this alteration may have the potential to cause a 

change in the charge at that specific amino acid position that may affect folding or some other 

aspect of protein regulation or function.  

The finding that the wild type allele, while present in the patient’s normal tissue, was almost 

completely absent in the tumour of the patient with the germline p.E1317Q mutation, suggests 

that p.E1317Q acts as a susceptibility allele, only becoming pathogenic in the absence of its 

wild type partner.  

This is further evidenced in a study of a cancer-prone family in Scotland, where two family 

members with colon cancer carried the p.E1317Q mutation. In tumours from both those 

individuals, the wild type allele was lost (White et al., 1996). Interestingly, the patient in our 

cohort with evidence of this mutation presented with adenocarcinoma with adenoma, but no 

family history of adenomas, seemingly ruling out Familial Adenomatous Polyposis. However, 

a study that detailed the family histories of four unrelated CRC patients exhibiting the same 

p.E1317Q mutation, found a spectrum of risk that ranged from no known history of colorectal 

cancer or related disease in one patient, to two of the patients having a first-degree relative with 

rectal cancer (Frayling et al., 1998). This is further compounded by evidence that the number 

and rate at which polyps developed in these four patients was widely divergent, where two had 

17 and 5 metaplastic polyps respectively, while the other two had none but developed 1 and 3 

polyps in 14 and 15 years of follow-up, respectively (Frayling et al., 1998).  

These conflicting presentations suggest that p.E1317Q has wide phenotypic variation and may 

or may not indicate familial risk for relatives carrying the mutation. In light of this, screening 

of families identified with the p.E1317Q mutation may identify polyp formation or cancer at 

an earlier stage than otherwise likely.  

Furthermore, the finding of a total of three samples with loss of heterozygosity, by the loss of 

one APC allele in the tumour tissue, including the patient described above, was notable in that 

all three samples had APC mutations clustered near codon 1300, namely codons 1309, 1317 

and 1345. While this phenomenon was first identified in familial adenomatous polyposis 

patients (Lamlum et al., 1999) it was subsequently identified in sporadic CRC (Rowan et al., 
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2000). Similarly, the three samples we found with LOH associated with mutations near codon 

1300 include one germline and two sporadic mutations. Although we did not investigate the 

mechanism of LOH in these samples, whether due to specific loss of an APC allele or a wider 

loss of a chromosomal region or arm, our findings of LOH in samples with mutations around 

codon 1300 add further evidence to this intriguing observation and expand it to include early-

onset CRC. 

In a review of 1025 CRC patients under 50 years of age, tumours were found to be 

predominantly distal (49.1% rectal, 29.1% left-sided) with a minority (21.9%) being right sided 

(Dozois et al., 2008). Similarly, the current cohort was generally distal (68%) with almost half 

(48%) being located in the sigmoid colon. There were some gender differences in location with 

6/11 (54.5%) of males having distal tumours in contrast to 11/14 (78.6%) of females. Despite 

our cohort ranging in age from 28 to 50 there was no tendency for younger patients to have 

distal cancers with the mean age of those with proximal cancers being 40.7 years as opposed 

to 44.5 years for those with distal tumours. Interestingly, although 17/25 (68%) of the cohort 

had distal tumours, among those tumours with APC mutations, 11/18 (61.1%) were distal while 

6/7 (85.7%) of tumours lacking APC mutation were distal. 

Levels of microsatellite instability have been reported to be higher in early-onset CRC than in 

older patients with rates amongst patients aged under 50 years of age ranging between 19.8% 

and 31% (Cheong et al., 2019; Perea et al., 2010) while older patients display lower rates 

(Cheong et al., 2019). In our cohort we found only 3/25 (12%) of cases with microsatellite 

instability. The lower rate may be partly attributed to the exclusion of Lynch syndrome patients, 

in whom a germline mutation in a DNA mismatch repair gene results in a defective mismatch 

repair process. This is exemplified by an unrelated study of microsatellite instability in CRC 

patients aged under 45 years old, where 11 (24%) of the 45 patients had microsatellite 

instability but when patients with germline mutations in mismatch repair genes were removed, 

this reduced to 6/40 (15%) (Salovaara et al., 2000). We saw no association of microsatellite 

instability with tumour location, with the three microsatellite instability tumours being found 

in the ascending colon, splenic flexure and sigmoid colon respectively. 

 When EOCRC patients are further stratified by age, it is clear that the younger the age at 

diagnosis, the higher the likelihood of microsatellite instability. Studies looking at younger age 

groups show higher rates of microsatellite instability that include 40.5% in a cohort of under-

40s (J. T. Liang et al., 2003), 47.5% in under-30s (Farrington et al., 1998) and 72.7% in under-
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25s (Durno et al., 2005). The median age of the cohort in our study is 44 years which may 

additionally explain the lower microsatellite instability rate. In support of this hypothesis is the 

finding that two of the six patients (33%) under the age of 40 in the cohort displayed 

microsatellite instability. 

Like CDH1, APC promoter methylation has long been associated with colorectal cancer 

(Esteller et al., 2000). With the high rate of APC mutation in our cohort, it is possible that 

promoter methylation may be involved as the second-hit in some of these cases. Unlike CDH1, 

where most mutations are loss-of-function mutations, the truncated APC proteins that arise 

from many of the mutations still retain some functionality (Chandra et al., 2012; Christie et al., 

2013), and indeed the altered functionality of the truncated forms appears to promote 

carcinogenesis (Albuquerque et al., 2002). Promoter methylation, which results in loss of 

expression, would preclude a silenced allele from performing these altered functions, thus it 

may be that methylation of the APC gene occurs in cells where the other allele is already 

truncated and performing the oncogenic role required by the cells. Allelic loss of APC has been 

shown to occur more often in tandem with a truncation at around codon 1300 (Rowan et al., 

2000) and accordingly it may be that protein loss via promoter methylation may occur 

alongside similarly positioned APC truncations. 

 

4.4.1 Conclusions 

The absence of any pathogenic CDH1 mutations in all the adenocarcinoma samples in our 

early-onset CRC cohort suggests that, unlike the early-onset SRCC tumours from Pakistan, 

mutation of this gene is not a common cause of CRC in under 50 year-olds in New Zealand. 

This is further evidenced by the strong E-cadherin staining in all the adenocarcinoma samples 

tested. This includes strong E-cadherin staining in the sample with a p.P30T variant, which is 

in keeping with the bulk of evidence in the literature that p.P30T is not pathogenic. The 

negative E-cadherin staining in the sole SRCC sample concurs with our conclusions from the 

previous chapter that loss of E-cadherin is, however, a common factor in the development of 

colorectal SRCC, even when due to other mechanisms than CDH1 mutation. The weak E-

cadherin staining found in the only adenosquamous tumour in our cohort may indicate a 

different aetiology to the more common adenocarcinomas.  

The presence of a high number of APC mutations in our cohort compared to other studies of 

early-onset CRC may reflect the methodology used, particularly the extent of the gene that is 
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investigated in different studies and that, particularly with recent advances in sequencing 

technology, greater coverage of the APC gene is desirable when looking for possibly 

pathogenic APC mutations. Whereas the association of loss of heterozygosity at the APC locus 

with mutations around codon 1300 is not a novel discovery, it does add to existing evidence 

around this phenomenon and, importantly, expands it to include early-onset CRC.  
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Chapter 5 Gene editing of mutant APC in HT29 cells 

 

5.1 Introduction 

While Chapter 3 described a role for E-cadherin silencing in the development of early-onset 

colorectal signet-ring cell carcinomas, Chapter 4 showed that this was not as prevalent in the 

cohort of early-onset, colorectal adenocarcinomas, where only the sole SRCC case showed 

negative staining for E-cadherin. Instead, the finding of high rates of APC mutation in this 

cohort suggests that early-onset colorectal adenocarcinomas in our community may have 

similar aetiologies to tumours in older patients, where there is considerable existing evidence 

of APC mutation as an early event in carcinogenesis (Powell et al., 1992).  

While current thinking is that the development of sporadic cancers may be driven by 

environmental and/or lifestyle factors (J. Keenan et al., 2017; Richardson et al., 2016), there is 

also increasing evidence to suggest a role for an individual’s gut microbiota in the aetiology of 

these cancers. Specifically, long-term carriage of toxin-producing strains of gut bacteria is 

considered to have the potential to initiate colorectal carcinogenesis (Tjalsma et al., 2012).  

Bacteroides species are highly abundant in the gut microbiota (Wick & Sears, 2010) and are 

generally considered to contribute to human health (Mazmanian et al., 2005). However, select 

strains of B. fragilis can express a toxin capable of triggering colonic inflammation in mice 

(Rhee et al., 2009) and damaging cellular DNA (Goodwin et al., 2011). Carriage of these 

enterotoxigenic strains of B. fragilis (ETBF) is reportedly increased in patients with colorectal 

cancer (J. I. Keenan et al., 2016; Toprak et al., 2006), and long-term colonic carriage of ETBF 

is associated with significant risk of low-grade colonic dysplasia (Purcell et al., 2017). 

To date, in vitro studies of mechanisms that might underlie B. fragilis toxin (BFT)-mediated 

carcinogenesis have been performed using the human colonic cancer HT29 cell line or its 

derivative HT29/c1 (Huet et al., 1987). Numerous studies have demonstrated the ability of 

purified BFT to cause these cells to round up, reportedly as a result of toxin-mediated cleavage 

of extracellular E-cadherin (Sears, 2009). However, when BFT is added to the human 

colorectal carcinoma HCT116 cell line, these cells retain their normal morphology.  

The APC gene in HT29 cells carries mutations that allow expression of only truncated APC, 

whereas the gene in HCT116 cells expresses full length wild type APC (El-Bahrawy et al., 

2004) (Figure 5.1), raising the possibility that the reported “exquisite sensitivity” of HT29 cells 
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to BFT may reflect their APC genotype rather than toxin-mediated loss of E-cadherin per se. 

If so, using cell culture models where the cells are already partly along the pathway to cancer 

(and drawing conclusions regarding the effects of environmental factors on colonic epithelial 

cells) has the potential to misrepresent the risk long-term carriage of ETBF has on the 

development of carcinogenesis in an infected individual. As such, HT29 cells may not represent 

a useful cell line in which to model the effects of BFT on normal epithelial cells in the gut, in 

order to better understand how this bacterial toxin might drive colon carcinogenesis.  

 

 

Figure 5.1 APC functional domains and isoforms in HT29 cells. Top: Full length wild type APC 

protein with functional domains annotated. Middle and bottom: Truncated APC protein isoforms found 

in HT29 cells. The shortest truncated APC at the bottom is the isoform corrected in this chapter. MCR, 

mutation cluster region. 

 

One option is to study HCT116 cells as they carry an intact APC gene. HCT116 cells, however, 

also carry an activating mutation in the CTNNB1 gene, which encodes β-catenin and, like cells 

with mutated APC, also have a defective Wnt signaling pathway (El-Bahrawy et al., 2004).  

An alternative option is to express full-length APC protein in HT29 cells and use these cells to 

measure the effects of the toxin on colonic epithelial cells with correctly regulated Wnt 

signalling pathways. APC has been expressed in HT29 cells previously (Morin et al., 1996), 

with the inducible APC-expressing cells used to elucidate downstream targets of Wnt signaling 

(T. C. He et al., 1998). However, Morin and colleagues used a zinc-inducible promoter to 
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express APC. The B. fragilis toxin is a zinc metalloprotease (Moncrief et al., 1995), meaning 

the use of a zinc-inducible promoter was not an option for our study. Instead we sought to edit 

the APC gene in HT29 cells using a CRISPR-Cas9n (nickase) approach (Ran et al., 2013) as a 

means to enable wild type APC expression from the HT29 cells’ genomic DNA. 

While both APC alleles are mutated in HT29 cells it was felt that maintaining one mutant allele 

would be the prudent option in the first instance as truncated APC isoforms are known to be 

critical for the proliferation of CRC cells (Chandra et al., 2012). In other words the removal of 

both truncated forms may have been too detrimental to the cells. Editing of the second allele 

could be considered after the establishment of a stable cell line with one corrected APC allele. 

It was decided to correct the c.2557G>T mutation which would leave the c.4666_4667insA 

mutation unaltered, thereby leaving a truncated isoform with β-catenin binding domains that 

may be critical in the function of the truncated isoform (Figure 5.1).   

This chapter details the development of a derivative of the HT29 cell line expressing full-length 

APC as a model for investigating a role for BFT in the initiation of colon carcinogenesis. 

 The aims of the chapter were to: 

1. Edit genomic APC using a CRISPR-Cas9 system to allow endogenous expression of 

wild type APC from HT29 cells. 

2. Characterise the resultant cell line in comparison with the original HT29 cell line. 

3. Compare the effects of BFT on HT29 cells with and without full-length APC 

expression.  

 

5.2 Methods 

CRISPR-Cas9n editing of the mutated APC gene in HT29 cells was carried out using the 

methods described in Chapter 2.2.4. Briefly, plasmids carrying antibiotic resistance genes as 

well as containing the gene for the Cas9 nickase enzyme, targeted to the c.2557G>T mutation 

in the APC gene, and a template fragment encompassing the relevant genomic region of wild 

type APC to copy, were transformed into HT29 cells and cultured in the presence of selective 

antibiotics. Colonies of surviving cells were then tested to identify clones with APC 

successfully edited at the c.2557 locus. Putative edited clones were confirmed by both Sanger 

and next-generation sequencing. The other mutant allele, c.4666_4667insA, was not corrected. 
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The growth rate of a clone containing corrected APC was compared to those of the parent HT29 

cell line and the colonic epithelial cell line HCT116, both of which have defective Wnt 

signalling, caused by mutated APC (HT29) or β-catenin (HCT116). This was done by growing 

the cell lines in appropriate media for 96 hours at 37°C, and counting the number of cells per 

well at 24 hour intervals (Section 2.2.2.2).  

Immunofluorescence microscopy was used to show the expression and localization of E-

cadherin, β-catenin and actin, while protein expression was investigated by Western blotting 

of cell lysates, using materials (Table 2.7) and methods (Section 2.2.4.12) as described in 

Chapter 2.  

Immunoprecipitation of the APC protein in cell lysates was carried out using specific N- and 

C-terminal antibodies (section 2.2.4.11). Precipitated proteins were run on 4-20% gradient 

polyacrylamide gels and probed with antibodies raised against the C- and N-terminals of APC 

respectively.  

 

5.3 Results 

5.3.1 HT29 cells contain three alleles encoding truncated forms of the APC 

protein. 

A previous study utilizing spectral karyotyping to assess chromosomal abnormalities amongst 

commonly studied colonic epithelial cells found that there were three copies of the long arm of 

chromosome 5 in the HT29 cell line (Abdel-Rahman et al., 2001). HT29 cells are known to 

exhibit two truncated forms of APC, a single base pair change, c.2557G>T, introducing a stop 

codon resulting in a p.853X truncation, and a single base pair insertion, c.4666_4667insA, 

resulting in a p.T1556fsX3 frameshift and subsequent truncation.  

To date there are no reports of relative allelic ratios of these truncations in light of the additional 

chromosome. In the previous chapter, next generation sequencing was described as a way to 

screen the APC gene for evidence of mutations in patient samples (Section 2.2.3). Using a 

similar approach to sequence the APC gene in the HT29 cells allowed an assessment of the 

relative proportions of each mutant allele within HT29 cells. Accordingly, when HT29 cells 

were sequenced in this way, 1477/2166 (68%) of reads for the c.2557G>T mutation exhibited 

the G allele while the remaining 689/2166 (32%) displayed the mutant T allele. We concluded 
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therefore that 1/3 alleles contain the c.2557G>T mutated APC, while 2/3 alleles contain the 

c.4666_4667insA mutation.  

 

5.3.2 CRISPR-Cas9n editing can incorporate errors into target sequences. 

A CRISPR-Cas9n approach was used to correct the c.2557G>T mutation in the APC gene of 

HT29 cells. The CRISPR-Cas9n editing process can however result in both on (or near)-target 

and off-target errors. Accordingly, Next Generation Sequencing was used again to confirm that 

CRISPR-Cas9n editing of selected clones resulted in clones with just the c.2557G>T mutation 

corrected. The importance of including this step is highlighted by the finding that one of the 

selected clones had a 24 base pair deletion proximal to the mutated base in APC (Figure 5.2).  

 

 

 

Figure 5.2. Short deletion incorporated during CRISPR editing of APC gene. Sequence reads as 

viewed on the Integrative Genomics Viewer showing the failure of CRISPR-Cas9n to incorporate the 

correct sequence in one of the 96 selected clones. The top of the figure shows chromosome 5 with the 

highlighted region of 5q22.2 containing the APC gene. Below that the mutant thymine, highlighted on 

the right of the sequence reads, has not been edited while a 24 base pair sequence has erroneously been 

deleted upstream of the mutation.  
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5.3.3 Confirmation of APC editing in HT29 

Once individual clones from the CRISPR-Cas9n editing experiment (described above in 

Section 5.2) had grown to approximately 80% confluency in wells of a 96-well plate, the cells 

were harvested. For each clone some cells were seeded into a new plate, while others were used 

to confirm that editing of the APC gene had occurred. 

Cells from 96 individual CRISPR-Cas9n edited clones were centrifuged, washed and 

resuspended in 10mM Tris-CL pH8, boiled for 15 min and centrifuged. The supernatant was 

then used for PCR of the APC sequence spanning the mutated base at c.2557, with XhoI 

digestion of the PCR product (see Section 2.2.4.5) to confirm the incorporation of template 

DNA into the HT29 genome (Figure 5.3). Sanger sequencing of one clone, referred to as  Clone 

30, was carried out to confirm incorporation of the corrected base and restriction sites (Figure 

5.4). This was later confirmed by Next Generation Sequencing as described in Section 2.2.3 

(not shown).  Due to its confirmed genomic correction, Clone 30 was subsequently referred to 

as HT29 APC+/-. 

 

 

Figure 5.3. Digestion of PCR products from CRISPR-Cas9n edited clones. PCR products spanning 

the edited region of the APC gene were digested with XhoI. The undigested PCR product is indicated 

by the blue arrow, with the two XhoI digestion products obtained from Clone 30 indicated by red 

arrows. Template plasmid DNA was used as a positive control (+) and water was used as a no template 

control (-) in the PCR reactions.  
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Figure 5.4. Sanger sequence of APC confirming incorporation of template fragment correction of 

the c.2557G>T mutation. The APC sequence of Clone 30 shows incorporation of XbaI and XhoI sites 

indicating that the Cas9n enzyme has incorporated the template fragment DNA into the genomic APC 

DNA. Black arrows indicate bases altered to incorporate restriction sites; red arrow indicates the base 

edited from the mutant thymine to the wild type guanine base. 

 

5.3.4 Correction of the APC gene in HT29 cells slows their growth rate 

HT29 cells and HT29 APC+/- cells (derived from Clone 30 and shown to have one corrected 

APC allele) (5 x 104 cells) were grown in 1 mL of media in 24 well plates for four days. Their 

growth rate was assessed at 24 hour intervals by lifting and counting the number of cells per 

well. HT29 cells showed rapid growth as expected for poorly differentiated cancerous cells. 

However, the HT29 APC+/- cells showed a growth rate that was significantly slower than that 

of their parent cell line (Figure 5.5). 
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Figure 5.5. Growth rates of HT29 and HT29 APC+/-. Cell counts were measured over 96 hours at 24 

hour intervals for each cell line with the CRISPR-edited cell line showing a lower growth rate than its 

parent cell line HT29. The results shown are from three independent experiments, analysed using Two-

Way ANOVA with Sidak’s multiple comparisons test. ****; P<0.0001 

 

Interestingly, the number of non-viable cells, as determined by trypan blue staining (Section 

2.2.2.2), was significantly higher in HT29 APC+/- than in the parent HT29 cell line (Figure 5.6) 

suggesting that increased cell death may underlie the observed slower growth rate.  
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Figure 5.6. Percentage of non-viable cells during growth of cell lines. Dead cells stained with trypan 

blue were counted and were calculated as a proportion of total cells. A greater proportion of cells with 

corrected APC stain with trypan blue than HT29 cells. The results shown are from three independent 

experiments, analysed using Two-Way ANOVA with Sidak’s multiple comparisons test. *; P<0.05. 

 

5.3.5 HT29 APC+/- cells maintain morphology after incubation with BFT-enriched 

supernatant. 

Based on the growth curves in Figure 5.5, cells of each of the three cell lines (HT29, HT29 

APC+/- and HCT116) were seeded in 24 well plates at concentrations between 5 x104 and 1 x 

105 cells/well with the aim of reaching similar levels of confluence after 48 hours of growth. 

Concentrated enterotoxigenic B. fragilis broth culture supernatants, prepared by ammonium 

sulphate precipitation of broth following bacterial culture (Section 2.2.5.1) and demonstrated 

to have measureable toxigenic activity (Section 2.2.5.2) were then added to the cells. After 6 

hours of incubation with the BFT-enriched supernatant the HT29 cells showed distinctive 

rounding in response to the toxin, as reported elsewhere (Sears, 2009), while the concentrated 

NTBF supernatant (used as a negative control) had no effect on cell morphology over the same 

period of time (Figure 5.7).  

Likewise little to no rounding occurred in HT29 APC+/- cells in response to the concentrated 

ETBF supernatant, with the morphology of the toxin-treated cells observed to closely resemble 

that seen in HCT116 cells (Figure 5.7).  
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Figure 5.7. Cell morphology following incubation with BFT-enriched ETBF supernatant. The 

effect of BFT on HT29 cells can be seen by the rounding up of cells (arrowed), whereas no rounding 

up occurs with supernatant from NTBF. Cellular morphology is barely affected in both HT29 APC+/- 

and HCT116 cells. Images are representative of three independent experiments. BFT, B. fragilis toxin, 

ETBF, enterotoxigenic Bacteroides fragilis; NTBF, non-toxigenic Bacteroides fragilis. The cells were 

viewed under 40x magnification. 

 

5.3.6 Bacteroides fragilis toxin-mediated loss of E-cadherin occurs in HT29 

APC+/- cells  

HT29 and HT29 APC+/- cells were grown on coverslips for 48 hours (Section 2.2.2.5), after 

which ETBF or NTBF supernatant was added to the medium and the cells were incubated for 

a further 6 hours. The cells on coverslips were, fixed, permeabilised, washed and incubated 

with an anti-E-cadherin antibody overnight at 4°C, before incubation with an AlexaFluor-

tagged secondary antibody directed  to the E-cadherin antibody (Section 2.2.2.5) for 2 hours at 

room temperature. Cells were also incubated overnight in Texas-Red Phalloidin, a 

fluorescently-tagged toxin that binds to actin. Nuclei were then stained with Hoechst 33342 for 

30 minutes, and coverslips were washed and mounted on slides for fluorescence microscopy. 
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E-cadherin was cleaved in both HT29 and HT29 APC+/- cells after incubation with the toxin-

enriched ETBF supernatant but the loss of actin staining was much greater in HT29 cells than 

in HT29 APC+/- cells (Figure 5.8). This finding supports the idea that full-length APC has a 

role in maintaining the integrity of the actin cytoskeleton following exposure to BFT, via its 

association with the cytoskeleton (Moseley et al., 2007; Narayan & Roy, 2003) and thus cell 

morphology, as seen in Figure 5.7. 

Collectively these results support the hypothesis that toxin-mediated loss of epithelial cell 

morphology is largely due to the absence of full-length APC protein as opposed to simply loss 

of inter-cellular E-cadherin. 

 

Figure 5.8. Immunofluorescence staining of HT29, HT29 APC+/- cells with and without BFT-

enriched supernatant treatment. E-cadherin staining (green) is markedly reduced in both cell lines 

following incubation with BFT-enriched supernatant. Actin staining (red) reduces in HT29 cells with 

BFT-enriched supernatant but is maintained in HT29 APC+/- cells. Nuclei are stained blue. The cells 

were viewed under 40x magnification and the images are representative of three separate experiments. 
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5.3.7 Full length APC is not identifiable in Western blots of HT29 APC+/-. 

HT29, HT29 APC+/- and HCT116 cells were grown to confluency and Western blots were 

performed on cell lysates to identify the APC protein. Probing with an antibody raised against 

the N-terminal region of APC produced a band at the expected level in the HCT116 cell lysate 

but not in either the HT29 or HT29 APC+/- lysates, despite the expectation that it would be 

present in HT29 APC+/- (Figure 5.9). Instead, lower molecular weight bands were seen in HT29 

and HT29 APC+/- lysates at approximately 100 kDa and 200 kDa, which are the expected sizes 

of the truncated proteins in HT29 (Cristofaro et al., 2015). The 200 kDa protein in the HT29 

APC+/- lysate was of much lower intensity than in HT29 whereas the lower band at 100 kDa 

appeared stronger. This was unexpected, given that the more 5’ APC mutation was corrected, 

meaning the lower 100 kDa band should have been the one to disappear in the edited cell line. 

 

 

Figure 5.9. Expression of APC in CRC cell lines. Western blotting of cell lysates with an N-terminal 

antibody recognising APC. A long exposure was used to ensure any APC present in the lysates was 

seen thus there is considerable background. A band is seen in the HCT116 lane at the expected size of 

312 kDa (blue arrow) but is absent in both the HT29 and HT20 APC+/- cell lysates. Bands at 

approximately 200 kDa and 100 kDa (black arrows) represent the truncated versions of APC found in 

HT29 cells.  
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Cell lysates were also blotted and probed with an antibody against the C-terminal region of 

APC. In this case, only those cell lines with full-length APC would be expected to give a signal 

(Figure 5.10). However, all cell lysates showed a band above 250 kDa irrespective of their APC 

status. Similarly all cell lysates gave a signal just above the 150 kDa band, which was not 

expected for any APC isoform. Previously, C-terminal antibodies that recognize the APC 

protein have been found to bind to an unrelated protein of approximately 150 kDa (Davies et 

al., 2007). This may be what is occurring here and, if so, this suggests that the C-terminal 

antibodies may be prone to non-specific binding.   

 

Figure 5.10. Western blotting of cell lysates with a C-terminal APC antibody. All cell lines gave 

strong signals for a band in excess of 250 kDa irrespective of their expected APC genomic status. Non-

specific signal was also seen strongly in all lysates at about 150 kDa. Clone 50 was included as a 

possible APC-corrected cell line but was subsequently found to have suffered an eight amino acid in-

frame deletion upstream of the targeted mutation. 

 

5.3.8 Immunoprecipitation of proteins reveals specificity of APC antibodies. 

To ascertain the specificity of the antibodies being used for probing for APC, N-terminal and 

C-terminal APC antibodies were used to immunoprecipitate the proteins they bind to by 

incubating the antibodies with HT29, HT29 APC+/- and HCT116 cell lysates. The precipitated 
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proteins were then separated by SDS-PAGE, transferred to PVDF membrane and probed with 

APC-specific antibodies. When the C-terminal antibody was used, no signal was obtained from 

the proteins precipitated with the N-terminal antibody (not shown). When the blot was probed 

with the N-terminal antibody, there was evidence of a large band in the HCT116 cell line lane 

precipitated by the C-terminal antibody (Figure 5.11). However, the same antibody failed to 

precipitate bands in either of the other two cell lines suggesting that the C-terminal bands for 

HT29 and HT29 APC+/- seen in Figure 5.10 above are non-specific. Thus while the C-terminal 

antibody can recognize full-length APC, it also has strong association with something other 

than APC and is therefore not a good antibody to use in our research.  

It was also noted that there was only a faint band in the HCT116 cell line lane that was 

precipitated with N-terminal antibody, suggesting that the N-terminal antibody has reduced 

affinity for full-length APC (when compared to the strength of the band in the C-terminal 

precipitated HCT116). This also reflects the relative strengths of the bands seen in Figure 5.9 

where whole lysates were stained with N-terminal antibody. There the full-length APC band 

in the HCT116 cell line was markedly less intense than the bands for truncated APC in the 

other lanes. Thus the N-terminal antibody we used may not be an ideal antibody for identifying 

full-length APC. 

 

Figure 5.11. APC N-terminal probing of immunoprecipitated cell lysates. Proteins 

immunoprecipitated with either N-terminal or C-terminal antibodies were probed with the N-terminal 

antibody. Only HCT116 lysates show evidence of a single C-terminal-precipitated protein.  
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5.4 Discussion 

The use of colonic epithelial cell lines to study environmental factors affecting colon 

carcinogenesis is well established. For example, HT29 and its derivative HT29/c1 are the 

predominant cell lines used in the study of ETBF infection (Sears, 2009). However, HT29 cells 

have only truncated forms of the APC protein due to mutation of the gene and we hypothesised 

that the absence of full length APC in HT29 cells may play a part in the marked sensitivity of 

HT29 cells to BFT toxin, a reason these cells are attractive to researchers studying ETBF in 

CRC. If loss of APC is indeed a factor in the response of colonic epithelial cells to 

environmental factors in the development of CRC, then HT29 cells are not ideal for the study 

of the earliest events in colorectal carcinogenesis. 

We reasoned it would be intriguing to look at the same responses in the same cells with full 

length APC. To this end, we attempted to edit one allele of APC in HT29 cells using a CRISPR-

Cas9n system and to characterise the resultant cell line. We successfully corrected the 

c.2557G>T mutation in APC by inducing single strand breaks close to each other on each DNA 

strand around the mutated base with a nickase enzyme, and then incorporating correct DNA 

sequence via homology-directed repair from template DNA inserted into the cell in a plasmid 

(Ran et al., 2013). The use of a nickase enzyme to create two nearby nicks on opposite strands, 

rather than a single double-strand break created by conventional Cas9, is thought to limit the 

chance of off-target effects, due to the reduced likelihood of both guide RNA recognition 

sequences annealing close to each other at non-specific sites (Ran et al., 2013).  

The efficiency of the editing was low, with one successful clone being produced from 96 tested 

clones. This may be partly due to our use of separate Cas9n plasmids for each gRNA 

recognition site. These plasmids contain the same puromycin resistance gene for selection, 

potentially resulting in survival of cells containing one or both plasmids. Single strand nicks 

are readily fixed by repair processes in mammalian cells, and therefore the presence of only 

one guide RNA would result in Cas9n nicking one DNA strand, but this nick would be fixed 

by the cell in the absence of the second gRNA targeting Cas9 to create the second nick. Thus 

clones surviving antibiotic selection due to the presence of only one guide RNA encoding 

plasmid are unlikely to result in editing of APC, and this likely accounts for the high number 

of failed clones. An alternative strategy would be to include both guide RNA coding sequences 

in the same plasmid as has recently been done by others (Adikusuma et al., 2017).   
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We also encountered issues with the editing process where a clone (Clone 50) contained a 24-

bp in-frame deletion directly upstream of the mutant base. This is likely to have resulted 

following successful nicking of the APC gene followed by incorporation of the deletion during 

the homology-directed repair process (Figure 5.2). Mistakes like these are common during 

CRISPR-Cas9 gene editing (van Overbeek et al., 2016) and therefore sequence analysis of the 

DNA around the edited bases is essential.  

Our finding via Next Generation Sequencing that HT29 cells contain three copies of APC 

comprising two separate alleles, two copies of one allele with the c.4666-4667insA mutation 

and one copy of a second allele with the c.2557G>T mutation, while incidental to our project 

aims, is a noteworthy discovery. It fits with the previous finding that HT29 contains 3 copies 

of most of chromosome 5 (Abdel-Rahman et al., 2001) and will inform those working on APC 

in HT29 cells. Indeed with regard to the current project it is useful to know that the allele we 

attempted to correct represents only a third of the mutated APC alleles in HT29 cells, which 

may have relevance when considering the behaviour of successfully edited clones. Our finding 

that HT29 APC+/- cells have a markedly slower growth rate than the parent HT29 cells is in 

line with the study by Morin et al (Morin et al., 1996). This finding of a slower growth rate in 

cells expressing full length APC can be explained by the observation of a gradient of increasing 

APC expression levels in colonic epithelial cells undergoing crypt-to-villus differentiation, 

while highly proliferating cells at the bottom of the crypt express relatively little (Boman & 

Fields, 2013). APC mutation results in a shift in this gradient and a resulting dysregulation of 

cell proliferation up the crypt. The observed increase in the proportion of non-viable HT29 

APC+/- cells (as measured by trypan blue staining) likely reflects the turnover of fully-

differentiated cells occurring at the colonic epithelial surface.  

The most striking property of the CRISPR-edited HT29 APC+/- cell line was its apparent 

resistance to the toxin-mediated loss of morphology that is widely reported in the HT29 cell 

line (Sears, 2009). Instead, after 6 hours of incubation with the concentrated toxin-containing 

ETBF supernatant, the HT29 APC+/- cell line showed no evidence of cell rounding, retaining 

morphology that was similar to that seen in a similar number of HCT116 cells (that are APC+/+) 

(El-Bahrawy et al., 2004), treated with the same concentration of toxin and for the same length 

of time. Fluorescence microscopy confirmed that the resistance to morphological change upon 

exposure to ETBF supernatant exhibited by the edited HT29 APC+/- cell line was not due to 

any inability of BFT to cleave E-cadherin in these cells, suggesting that the mechanism by 

which HT29 cells round up following E-cadherin cleavage was prevented in the edited cells.   
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APC is a multi-functional protein and is known to interact with actin to stabilise the 

cytoskeleton (Moseley et al., 2007). Actin filaments are formed by the polymerisation of actin 

monomers in the cytoplasm. This process is started by specific proteins acting as actin 

nucleolators, an important one of which is APC. Actin filaments are polymerised by an 

interaction of APC and mDia1, a formin protein, with actin via the APC basic domain 

(Breitsprecher et al., 2012). APC is also key to maintaining the cytoskeleton through its binding 

to actin filaments via β-, and α-catenins (Narayan & Roy, 2003). Thus, while cells exposed to 

BFT have E-cadherin cleaved, the structure of the cells may be maintained in cells where APC 

can preserve the connections with the cytoskeleton, such as seen in BFT-treated HCT116 cells.  

The truncated versions of APC present in HT29 cells both lack the C-terminal half of the 

protein which contains the basic domain required for actin filament assembly as well as 

catenin-binding sites. In particular, the c.2557G>T APC mutation that we have attempted to 

correct results in a protein with no catenin binding sites. Therefore HT29 cells may be more 

susceptible to rounding up upon BFT-mediated E-cadherin cleavage due to the inability of 

truncated APC to form actin filaments, and the presence of a full-length APC protein may 

restore this function.  

In addition, APC forms a complex with EB1, via a binding site at the C-terminus of APC 

(Figure 5.1) and this APC/EB1 complex binds to the ends of microtubules which can then be 

coupled to the cell cortex (Mimori-Kiyosue et al., 2000). Reciprocal interaction between 

microtubules and the actin cytoskeleton has been shown to be necessary for the establishment 

and maintenance of cell shape (Akhmanova & Hoogenraad, 2015), and therefore the roles of 

the C-terminal half of APC in both of these interacting structures suggest the re-introduction 

of full-length APC to HT29 cells would likely have a stabilising effect on cell morphology 

(Figure 5.7) and actin cytoskeleton (Figure 5.8), even in the event of E-cadherin cleavage as 

seen in this study.  

Cleavage of E-cadherin by BFT leads to release of membrane-associated β-catenin into the 

cytoplasm, where it can migrate to the nucleus, bind the transcription factor TCF4 and 

dysregulate Wnt-signalling target genes (Clevers, 2006). This promotes epithelial-

mesenchymal transition (EMT) in the cell, a key step in colorectal carcinogenesis (Polyak & 

Weinberg, 2009). Where full-length APC exists in the cytoplasm, this excess β-catenin can be 

mopped up by the APC protein complex, phosphorylated, ubiquitinated and targeted for 

degradation (Clevers, 2006), thereby slowing the EMT process. In contrast, where full-length 
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APC is absent or partially absent (as in APCMin+/- mice), EMT and subsequent tumour 

development can occur rapidly following exposure to B. fragilis toxin (Rhee et al., 2009). Our 

finding of a slower growth rate of HT29 APC+/- cells, compared to the parent HT29 cells, also 

supports the assertion that APC slows down or reverses EMT within these cells, as the rate of 

proliferation is considerably decreased. 

The proportion of non-viable cells was also considerably higher in the edited cell line than 

either HT29 or HCT116 cells. While the reason for increased cell death was not investigated 

here, Morin and colleagues observed the same phenomenon when full-length APC was induced 

and, by visualising condensed chromatin or micronuclei with Hoechst 33258 stain in the 

floating cells, concluded that cell death was due to apoptosis (Morin et al., 1996). 

The failure to identify APC protein expression in the edited HT29 APC+/- cell line is 

concerning. The change in cell growth rate and the resistance of the edited cells to 

morphological change upon exposure to ETBF supernatant were predicted outcomes of 

successful expression of full-length APC  generated by the editing process. Induced expression 

of APC in HT29 led to a substantial decrease in the growth rate of the cells (Morin et al., 1996) 

and HCT116 cells are resistant to morphological change despite loss of E-cadherin. 

Accordingly, showing expression of full-length APC in the edited cell line will be critical to 

proving our hypothesis that BFT-mediated morphological change in HT29 cells is enabled by 

the lack of full-length APC, and the resistance to this shown by the edited cells is not due to an 

as yet unidentified factor. Despite the choice of antibodies in this chapter being based on a 

review of previously published research, there does seem to be a question mark over the 

reliability of both C-terminal and N-terminal APC antibodies (Davies et al., 2007). This lack 

of availability of APC antibodies that can consistently immunoprecipitate and immunoblot 

effectively may limit progress.  One additional way to investigate this could be to investigate 

expression of Wnt-signalling target genes such as MYC, which encodes the c-myc transcription 

factor, based on an early study that reports expression of full-length APC should result in a 

decrease in c-myc (T. C. He et al., 1998).  

Alternatively, or additionally, the inability to detect wild-type APC in the edited cell line could 

be due to the initial clone containing unedited HT29 cells, possibly protected from puromycin 

selection by surrounding edited cells. Upon removal of puromycin, the faster growth of these 

cells may have led to them be over-represented in subsequent culture and therefore making 

wild-type APC harder to find. Both next generation and Sanger sequencing of early cultures of 
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Clone 30 indicate successful editing of the APC gene and the growth and behaviour of the cell 

line seem to indicate that full-length APC is present. Later failure to show full-length APC 

protein may be due to poor antibodies, the presence of unedited HT29 cells or a combination 

of both. 

In conclusion, the editing of the c.2557G>T mutation in APC in HT29 cells resulted in a cell 

line that is apparently resistant to the BFT-mediated loss of cell morphology that is seen in 

toxin-treated HT29 cells. While our results suggest this may relate to the association of APC 

to E-cadherin via actin and the catenins, further experiments are necessary to prove this 

hypothesis. Nevertheless, the altered response of the edited cells to BFT-enriched supernatant 

indicates this newly derived cell line will be a useful tool in increasing our understanding of 

the role of BFT in colorectal carcinogenesis. 
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Chapter 6 Discussion and future directions 

 

6.1 General Discussion 

Early-onset CRC incidence is increasing worldwide despite a reduction in overall incidence of 

CRC, and New Zealand has among the steepest rises in incidence among young adults (Siegel 

et al., 2019). It has been postulated that early-onset CRC constitutes a separate subset of CRC 

(Silla et al., 2014), therefore a greater understanding about the aetiology of these cancers, 

including factors that potentially influence early-stage carcinogenesis, is paramount to 

treatment, detection and prevention strategies. 

To this end, the research detailed in this thesis comprised three distinct yet related studies. 

Firstly, the CDH1 gene was sequenced and the expression of its product, E-cadherin, was 

investigated by immunohistochemistry in a cohort of colorectal signet ring cell carcinomas 

from Pakistanis aged 40 years or under. The rationale for this was based on the similarities 

between colorectal SRCCs and SRCCs in hereditary diffuse gastric cancer, and the strong link 

between mutation of CDH1 and HDGCs (Guilford et al., 1998). While colorectal SRCCs make 

up approximately 1% of all primary CRCs (Kang et al., 2005), they are frequently found in 

younger patients with one study of 29 SRCC patients having 18 (62%) aged under 50 years old 

(Anthony et al., 1996). 

Secondly, this study was expanded to a local New Zealand cohort of early-onset colorectal 

tumours, primarily adenocarcinomas. In addition to CDH1 we also sequenced APC, a gene 

mutated in 60-80% of colorectal cancers but with reportedly lower levels in younger patients 

(Willauer et al., 2019). The early-onset CRC cohort contained only one SRCC and one 

adenosquamous carcinoma while the rest were conventional adenocarcinomas, suggestive of a 

lower level of CDH1 mutations and E-cadherin loss. Due to its frequent occurrence in CRC, 

APC mutation was likely to be present more frequently than CDH1 mutation. Moreover, the 

reported rate of APC mutation in EOCRC compared to older colorectal tumours made this an 

interesting gene to investigate.  

Finally, a mutated APC gene in a commonly used colorectal cell line, HT29, was edited using 

a CRISPR/Cas9n approach, to produce a cell line which expresses full length APC protein. The 

rationale for this was the growing awareness that early-life exposures potentially influence 

colon carcinogenesis (Siegel et al., 2019). To that end, we exposed the wild-type and 
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CRISPR/Cas9n edited cells to a bacterial toxin linked to the development of pre-cancerous 

lesions in the colon (Purcell et al., 2017), to better understand the role of APC in early colorectal 

carcinogenesis. 

 

6.1.1 CDH1 mutations in SRCC 

The finding, described in Chapter 1, of multiple CDH1 mutations in the colorectal SRCC 

samples from Pakistan (Aitchison et al., 2020), was not surprising due to the histological 

similarities between colorectal SRCC and HDGC, where CDH1 mutations are the predominant 

cause (Guilford et al., 1998). The loss of functional E-cadherin leads to loss of cell to cell 

contact and, coupled with the accumulation of large volumes of intracellular mucin, results in 

the classic signet-ring morphology where the nucleus is pushed to the edge of a rounded cell 

(Gopalan et al., 2011).  

With the samples coming from a region of the world where consanguineous marriages are 

common, the high rates of early-onset SRCCs observed may have suggested an autosomal 

recessive disorder involving CDH1. However, the presence of wild type alleles alongside the 

mutant forms suggested this was not the case. 

There was also no evidence of a founder mutation effect in the cohort, as no common mutations 

were seen in this cohort. This absence of a single founder mutation effect is also notable 

amongst New Zealand Māori, with high rates of HDGC caused by inherited CDH1 mutations, 

where many different mutations are found (Hakkaart et al., 2019), whereas a founder CDH1 

mutation has been identified in several Newfoundland families with HDGC (Kaurah et al., 

2007). The finding of multiple different CDH1 mutations in a population, if germline, as in the 

New Zealand Māori cohort, would suggest aberrant E-cadherin has offered a selective 

advantage at some point. The nature of any selective advantage is unknown. E-cadherin is 

however a target for adhesion of Candida albicans (Phan et al., 2007), Listeria monocytogenes 

(Mengaud et al., 1996) and Streptococcus pneumonia (Anderton et al., 2007). Thus aberrant E-

cadherin protein structure and/or expression may offer some resistance to adhesion of these 

(and potentially other) pathogenic microorganisms. 

Despite the lack of a founder effect or autosomal recessive inheritance, the possibility that some 

of the mutations found in the colorectal SRCC cohort were inherited was intriguing. However, 

the absence of family history for any of the Pakistani patients that could have provided evidence 
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of germline mutation in some of the cases precluded further investigation of this aspect of the 

study. Additionally, the lack of clinical follow-up data prevented assessment of any prognostic 

significance of loss of E-cadherin (Wang et al., 2016). 

It was noted that there was not a complete concordance of CDH1 mutation status with E-

cadherin expression in the SRCC samples. Tumours lacking CDH1 mutations, but also with 

weak or absent E-cadherin expression, represent alternative mechanisms of E-cadherin 

silencing, such as allelic loss or epigenetic silencing. Epigenetic silencing in the form of 

promoter methylation, where methyl binding proteins such as MeCP2 bind to methylated 

cytosine residues in the promoter preventing transcription factors from binding to the DNA, is 

a likely possibility as has been seen in HDGC either on its own or as a second-hit following 

CDH1 mutation (Grady et al., 2000). CDH1 promoter methylation in colorectal SRCCs has 

previously been shown in colorectal cancers (Darwanto et al., 2003) however methylation 

analysis of the Pakistani samples was not possible due to the poor yield and quality of DNA. 

Allelic loss at the CDH1 locus is another possibility for the two tumours showing a majority 

of alleles to be mutant. Loss of heterozygosity has been reported as a common feature of 

colorectal SRCCs (Kakar & Smyrk, 2005) and may account for the lack of wild type CDH1 

sequences for both the E-cadherin negative staining sample with a predicted damaging 

p.G839D mutation, and the weakly E-cadherin positive sample with a predicted benign 

p.A446V mutation. Unfortunately, as with methylation analyses, the yield and quality of the 

DNA recovered from the FFPE samples precluded an investigation of LOH in these samples. 

Similarly, PCR investigations of microsatellite instability would not have been possible in these 

samples. However, immunohistological assessment of MSI was possible by staining for the 

mismatch repair proteins MSH6 and PMS2. While some previous reports have suggested MSI 

may be a feature of SRCCs, there is no consensus on the association of MSI with SRCC (Nam 

et al., 2018; Ogino et al., 2006; Rosty et al., 2014). Interestingly, the finding of only two 

samples in this study having MSI, of which only one was a SRCC, the other being an 

adenocarcinoma with a signet ring component less than 50%, adds to the evidence of MSI not 

being a feature of SRCC (Nam et al., 2018). Furthermore, the two samples that lacked 

detectable PMS2 expression both showed positive, although weak, E-cadherin staining, 

suggesting that MSI and E-cadherin loss may represent different pathways of colorectal SRCC 

development. 
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The different levels of E-cadherin staining may also reflect differences in the phenotype 

associated with the particular mutation. A recent study looking at different CDH1 mutations 

suggested the location and type of CDH1 mutation may play a role in the phenotype displayed, 

with differences seen between patients with cleft lip or palate and those with HDGC 

(Selvanathan et al., 2020).  

Overall, the results detailed in Chapter 3 reinforce that E-cadherin loss is a key feature in 

colorectal SRCCs, but suggest that this loss can be due to a number of different factors 

including, in some but not all cases, CDH1 mutation. Further insight into potential causes, 

however, was precluded by two significant issues which were the quality of the FFPE samples 

and the lack of any data relating to the clinical outcome of each case, or to their individual 

family history of CRC. 

 

6.1.2 CDH1 and APC mutation in early-onset CRC 

Finding multiple CDH1 mutations in colorectal SRCC tumours from young people, we 

hypothesized that CDH1 mutation may contribute to the early-onset of colorectal cancer in 

young patients in New Zealand. However, this hypothesis did not stand up to testing as only 

one sample from our cohort was found to have a mutation and this was predicted to be benign. 

In addition E-cadherin staining was positive in all but one sample. Indeed the sample negative 

for E-cadherin was the only SRCC sample in the New Zealand cohort, reinforcing that loss of 

E-cadherin is a feature of colorectal SRCCs but not colorectal adenocarcinomas. Interestingly, 

this SRCC sample had no CDH1 mutation, was microsatellite stable and had no family history 

of cancers suggesting the lack of E-cadherin could be due to methylation of the CDH1 promoter 

(Darwanto et al., 2003). This remains to be investigated.  

While CDH1 mutation was not found to be a feature of early-onset CRC in this cohort, it should 

be noted that the ethnic make-up of the cohort was almost exclusively European except for a 

single Filipino patient. The lack of Māori in the cohort prevents the investigation of CDH1 

mutation as a cause of early-onset CRC in that group which gains significance in the light of 

CDH1 mutation as a cause of HDGC in Māori (Guilford et al., 1998). This may be remedied 

by studying a larger cohort including samples from regions of New Zealand where Māori 

populations are higher to create a cohort more representative of the New Zealand population 

as a whole. 
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An earlier study of 50 New Zealand colorectal cancer patients under the age of 25 years 

reported five tumours (10%) as SRCCs (Plunkett et al., 2014), whereas only one SRCC was 

found in the cohort detailed in chapter 4. This difference may, in part, reflect the ages of the 

two groups (median age 23.6 and 44 years, respectively).  A higher incidence of SRCC in a 

younger patient cohort may reflect the observation that the younger the patient, the poorer the 

outcome of CRC (Poles et al., 2016), as SRCC generally confers a poor prognosis (Barresi et 

al., 2017). A further distinction of CRC in patients of  a very young age is a reduced APC 

mutation rate only being found in the under 30 year age bracket, in a recent study looking at 

molecular differences in CRC at different age brackets (Willauer et al., 2019). These contrasts 

between age groups suggest the assertion, that early-onset CRCs are a subset of CRCs (Silla et 

al., 2014), may be particularly relevant for those patients under 30 years. 

The finding of APC mutations in the New Zealand cohort was not in itself surprising, but the 

rate of mutations (72%) was higher than previously reported in early-onset CRCs (Kothari et 

al., 2016; Willauer et al., 2019). This is likely to be due to the sequencing strategy used. Many 

studies have focused on the mutation cluster region as this is where the bulk of mutations are 

located, particularly in sporadic CRCs (Fearon, 2011). However, our strategy looked, and 

found, mutations at many locations upstream of the mutation cluster region. If only the 

mutations found in the mutation cluster region were considered then our rate of APC mutation, 

32% within the mutation cluster region and 56% within the final exon, would have been similar 

to previous reports. Two different cohorts investigated in one study had APC mutation rates 

for under 50 year olds of 41.6% and 65.2% respectively, with each cohort being studied using 

different protocols (Willauer et al., 2019). Accordingly, our high rate of APC mutations in 

upstream regions of the gene could be due to other studies confining their search. However, 

our finding also raises the possibility of an association between upstream APC mutations and 

early-onset CRCs. In FAP, germline APC mutations in the 5’ portion of the gene are associated 

with an attenuated form of the disease, whereas mutations within the mutation cluster led to 

conventional FAP, indicating phenotypic differences depending on the site of an APC mutation 

(Christie et al., 2013). These days modern sequencing techniques allow the investigation of 

large regions of DNA relatively cheaply. Accordingly, sequencing of the whole APC gene in 

future studies would ensure APC mutations were not missed, and expand the understanding of 

the full scale of APC mutations in early-onset CRCs. 

While the majority of APC mutations found in our cohort were sporadic and resulted in 

truncated proteins as expected, the discovery of a p.E1317Q missense mutation was of 
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particular interest. This mutation has been described before and appears to have incomplete 

penetrance of CRC (Frayling et al., 1998; White et al., 1996), suggesting environmental factors 

may determine whether individuals with p.E1317Q develop tumours. The patient in this study 

with the p.E1317Q mutation had a great aunt with bowel cancer, both parents had non-GI 

cancers and the patient was subsequently referred for testing for HNPCC. However, testing for 

FAP was not requested, presumably based on the absence of polyps.  The absence of polyps in 

this case may be due to the mutation being a missense mutation, rather than the more common 

truncating mutation observed in APC. As FAP is caused by mutations in the APC gene and 

codon 1317 is situated within the mutation cluster region, testing would have uncovered the 

mutation.  

 

6.1.3 Gene editing of mutant APC in HT29 cells 

The APC gene is mutated in most colorectal cancers (Kinzler & Vogelstein, 1996) and mutation 

is thought to be an early event in the adenoma-carcinoma pathway of colorectal carcinogenesis 

(Fearon & Vogelstein, 1990). The finding, described in Chapter 4, that 72% of early-onset CRC 

patients carried a mutation in APC, underlies the importance of understanding how the APC 

protein prevents carcinogenesis, and how mutation of APC is key to the cascade of changes 

that result in CRC. 

The HT29 colon cancer cell line has two truncated isoforms of APC and exhibits a strong 

response to the toxigenic bacterium ETBF, resulting in cell rounding. This has been attributed 

to the toxin-mediated loss of E-cadherin (Sears, 2009), but our observation that introducing 

full length APC protein to HT29 cells allowed the cells to maintain their structure after 6 hours 

of exposure to ETBF supernatant, suggests a role for APC in preserving cell structure. 

Fluorescent immunohistochemistry showed that E-cadherin was cleaved by the toxin in the 

edited cell line just as in the parent HT29 cells, so the maintenance of cell shape was due to 

some internal process involving APC and not resistance to E-cadherin cleavage. 

While the behaviour of the edited cell line suggested that full length APC was being expressed, 

and the sequence of the edited APC gene suggested successful correction of the mutated base, 

it was not possible to visualize full length APC. This may be due to non-specificity of APC 

antibodies. While the antibodies were chosen based on the literature they failed to work 

consistently in this study. The N-terminal antibody failed to consistently immunoprecipitate 
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and immunoblot (Figure 5.11), while the C-terminal APC antibody consistently picked up non-

specific protein, as reported elsewhere (Davies et al., 2007).  

 

6.2 Future Directions 

The increase in recent years in the number of people under 50 years of age in New Zealand 

(Gandhi et al., 2017) and around the world (Vuik et al., 2019) being diagnosed with sporadic 

CRC, while the rates of CRC in older patients decline, is an as yet unexplained phenomenon. 

The aim of this and future research is to better understand whether early onset CRC constitutes 

a subset with a unique biology, or whether it presents a continuum of older onset CRC, perhaps 

exacerbated by increasing and younger exposure to environmental and/or modern lifestyles (J. 

Keenan et al., 2017; Richardson et al., 2016). The worldwide increase in early onset CRC, 

coupled with the finding that a family history of CRC is not necessarily a risk factor for this 

disease, increasingly supports the idea that modifiable risk factors such as diet, obesity and lack 

of exercise are likely to have a role (Connell et al., 2017), and this is reinforced by studies on 

people who migrate from low- to high-risk areas of the world (Flood et al., 2000).  

Accordingly, considering lifestyle factors in conjunction with clinical factors and genetic 

analyses may help shed light on the reasons for the increase in early onset CRC. For example, 

patients with tumours exhibiting APC mutations have been found to have higher alcohol 

consumption, and red and processed meat consumption, than patients with APC wild type 

tumours (Gay et al., 2012). While the research described in this thesis compared APC mutation 

status with clinical data, such as tumour location and age, further research with access to 

lifestyle factors including diet, exercise, smoking and alcohol consumption, could provide 

important insights into environmental factors affecting cancer risk. 

An important factor not considered in this work, with regard to CDH1 and APC, is promoter 

methylation as a form of epigenetic silencing (Darwanto et al., 2003; Esteller et al., 2000). 

While the quality of the samples in Chapter 3 precluded study of methylation, the samples 

studied in Chapter 4 are suitable for methylation analysis and only time constraints prevented 

their inclusion in this thesis. Gene expression analysis of CDH1, APC and downstream targets, 

such as MYC and SMO in these tumours, will complement the methylation studies. In addition 

to the direct correlation of promoter methylation to gene expression, methylation analysis of 
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these and other genes may also link with lifestyle and the other environmental factors discussed 

above as a future area of research (Gay et al., 2012; Wong et al., 2007).  

The choice to investigate only CDH1 in the Pakistani cohort, and CDH1 and APC in the NZ 

cohort, rather than looking more widely throughout the genome was taken for a number of 

reasons. Firstly, there were solid hypotheses around looking at CDH1 and APC within these 

cohorts based on previous work by other groups. Secondly, there was an existing protocol for 

CDH1 sequencing (Hakkaart et al., 2019), which it was possible to use and adapt to sequence 

the APC gene as well. Thirdly, by using unique combinations of indexed primers for each 

sample, the number of flow cells run was kept to a minimum allowing the studies to be carried 

out at low cost. Despite the reducing costs of whole genome sequencing, and potential 

additional information that might have been obtained, that approach would have been 

prohibitively expensive in this case.  

The correction of one allele of APC by gene editing resulted in a colon cancer cell line (HT-

29) that showed resistance to morphological change when incubated with a B. fragilis toxin-

enriched supernatant, suggestive of the expression of full-length APC. However, the failure to 

detect APC protein in the edited cells leaves questions as to whether the stability of cell 

morphology is indeed due to the proposed mechanisms. Showing that full-length APC is indeed 

expressed will be an important first step in using these cells as a model of bacterially-induced 

carcinogenesis. Our finding that APC antibodies may not be reliable, reflecting previous 

findings (Davies et al., 2007), means that finding a robust APC antibody will be a priority for 

the next step in this research. An alternative antibody, FE-9, raised against the amino terminal 

of APC, was used successfully to detect full-length APC in HT29 cells containing a plasmid 

with an inducible APC gene (Morin et al., 1996). Additionally, sequencing of mRNA from the 

edited cell line should show no APC transcripts with the c.2557C>G mutation if the APC gene 

has been successfully edited. A further sequencing approach would be to use the long reads 

possible with Nanopore sequencing to show single DNA amplicons with both wildtype c.2557 

and wildtype c.4666 which would provide further proof that the editing has been successful. It 

was noted that in their paper discussing inducible expression of full-length APC in HT29 cells, 

Morin and colleagues mention that their attempts to constitutively express APC in HT29 cells 

were unsuccessful (Morin et al., 1996). This, combined with our inability to detect full-length 

APC in the edited cell line, suggests that HT29 cells may be unable to express APC, or that 

cells expressing APC are swiftly outgrown by cells with only truncated forms of APC. If this 
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were the case it might be expected that wildtype APC expression is being silenced, perhaps by 

some epigenetic mechanism. This is an area of ongoing investigation. 

APC has a key role in control of the Wnt/β-catenin signalling pathway, forming a complex 

with axin and glycogen synthase kinase 3β, to phosphorylate β-catenin and target it for 

ubiquitination and subsequent lysosomal degradation (Nathke, 2006). Expression of full-length 

APC in HT29 cells should therefore result in a reduction of Wnt-signalling target gene 

expression, particularly MYC, as seen when an inducible form of APC is expressed in HT29 

cells (T. C. He et al., 1998). Analysis of RNA expression will be an important future task, not 

just for MYC but also other genes. We would expect to see expression changes in the presence 

of full-length APC, such as reduced SMO, a mediator of DNA damage through generation of 

reactive oxygen species, that is frequently upregulated in CRC (Goodwin et al., 2011), and 

proteins in the Notch signalling pathway, which display crosstalk with Wnt signalling in the 

control of cell proliferation (Vinson et al., 2016).  

The epithelium of the colon consists of a polarised monolayer of cells that form along crypts. 

We have proposed using the HT29 APC+/- cells as a model of intestinal epithelial cells to study 

the role of ETBF in colorectal carcinogenesis. Colorectal neoplastic cells develop from 

differentiated epithelial cells before spreading along the crypt in a top-down morphogenetic 

process (Shih et al., 2001). However, HT29 cells, and the edited HT29 APC+/- cells are 

undifferentiated epithelial cells. HT29 cells can be differentiated by growth in glucose-free 

medium, where glucose is replaced as a carbohydrate source by galactose (Huet et al., 1987). 

These HT29 derivative cells, known as HT29/c1, grow as polarised differentiated cells. If the 

HT29 APC+/- cells can be similarly differentiated by growth in glucose-free media, the effects 

of ETBF on polarised monolayers containing full length APC can be studied. 

An alternative approach to CRISPR-editing of APC in HT29 cells that was considered involved 

using the approach of Huet and colleagues mentioned above to differentiate the HCT116 

colonic epithelial cell line that has full-length APC. Despite being able to reproduce the 

published differentiation in HT29 cells using this approach, we were unable to obtain the same 

results with HCT116 cells. A second approach using sodium butyrate to differentiate HCT116 

cells  (Fung et al., 2009) also failed, despite verifying the process in HT29 cells. These failures 

to differentiate HCT116 cells by methods successful in HT29 cells emphasise the differences 

between these CRC cell lines, and that understanding the mechanisms underlying the 

sensitivity of HT29 cells to BFT is critical to understanding any role of BFT in inducing 
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carcinogenesis. This gains significance when considering almost all cellular work on BFT-

induced carcinogenesis has been carried out on HT29 cells. 

Another alternative approach to studying the role of BFT in the initiation of CRC would be to 

grow primary colonic epithelial cells isolated from normal-looking mucosa of patients, and to 

assess the morphological, gene expression  and protein responses following exposure to BFT. 

BFT exposure of primary colonic tumour cells has been studied previously (Sanfilippo et al., 

1998) and adaptation of this protocol to study normal colonic cells as a model of normal 

epithelium could be a useful tool in investigating CRC initiation.  

In summary, disruption of E-cadherin was found to occur frequently in colorectal SRCC, 

whether by CDH1 mutation or by other mechanisms, but this was not the case with early-onset 

CRC, where all non-SRCC tumours expressed E-cadherin. Conversely, APC mutation is 

widespread in early-onset CRC, primarily sporadic but can be germline, even in a cohort where 

known familial cases have been excluded, suggesting that criteria for testing for familial 

syndromes may exclude some families.  

Rates of APC mutation were higher than other reports of early-onset CRC. Whereas this may 

be due to methodological difference, future strategies should look at the whole APC gene rather 

than just the mutation cluster region or other hotspots. This gains further significance with our 

novel observation that establishment of a derivative cell line of HT29 expressing full-length 

APC provided evidence that this protein appears to have an underappreciated role in stabilising 

cellular morphology. Accordingly, the derivative cell line is likely to prove a useful tool for 

studying many aspects of colorectal carcinogenesis. 
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Appendix 1 PCR Primer Sequences 

 

Table A1. CDH1 amplicon specific primers for next generation sequencing 

Name Sequence (5’-3’) Product 
Size (bp) 

CDH1 Prom F 

CDH1 Prom R 

CDH1 Exon 1 F 

CDH1 Exon 1 R 

CDH1 Exon 2 F 

CDH1 Exon 2 R 

CDH1 Exon 3 F 

CDH1 Exon 3 R 

CDH1 Exon 4 F        

CDH1 Exon 4 R 

CDH1 Exon 5 F 

CDH1 Exon 5 R 

CDH1 Exon 6 F 

CDH1 Exon 6 R 

CDH1 Exon 7 F 

CDH1 Exon 7 R 

CDH1 Exon 8 F 

CDH1 Exon 8 R 

CDH1 Exon 9 F 

CDH1 Exon 9 R 

CDH1 Exon 10 F 

CDH1 Exon 10 R 

CDH1 Exon 11 F 

CDH1 Exon 11 R 

CDH1 Exon 12 F 

CDH1 Exon 12 R 

CDH1 Exon 13 F 

CDH1 Exon 13 R 

CDH1 Exon 14 F 

CDH1 Exon 14 R 

CDH1 Exon 15 F 

CDH1 Exon 15 R 

CDH1 Exon 16 F 

CDH1 Exon 16 R 

ACGACGCTCTTCCGATCTTCGAACCCAGTGGAATCAGAAC 

CGTGTGCTCTTCCGATCTACAGGTGCTTTGCAGTTCCG 

ACGACGCTCTTCCGATCTGAACTGCAAAGCACCTGTGA 

CGTGTGCTCTTCCGATCTGTGACGACGGGAGAGGAAG 

ACGACGCTCTTCCGATCTTTTCGGTGAGCAGGAGGGAA 

CGTGTGCTCTTCCGATCTGGTGTGGGAGTGCAATTTCT 

ACGACGCTCTTCCGATCTCGCTCTTTGGAGAAGGAATG 

CGTGTGCTCTTCCGATCTCGGTACCAAGGCTGAGAAAC 

ACGACGCTCTTCCGATCTTGATTGGTCATTTTGGTGGA 

CGTGTGCTCTTCCGATCTGAATTAGTAAAGAAGGATCCCAAC 

ACGACGCTCTTCCGATCTAGTGTTGGGATCCTTCTT 

CGTGTGCTCTTCCGATCTCCCATCACTTCTCCTTAGCA 

ACGACGCTCTTCCGATCTCAGCAGCACATGTGTGAGAAAAGTC 

CGTGTGCTCTTCCGATCTGGAAGGATCAGCTTTAGTTACAC 

ACGACGCTCTTCCGATCTCCAGTCCCAAAGTGCAGCTTGTCT 

CGTGTGCTCTTCCGATCTCACCCTCTGGATCCTCCTGA 

ACGACGCTCTTCCGATCTGTTCCGTGCCTAGAAGACA 

CGTGTGCTCTTCCGATCTGCCATCTCAAGATGCTTGCT 

ACGACGCTCTTCCGATCTTGACACATCTCTTTGCTCTGC 

CGTGTGCTCTTCCGATCTAGAAGATACCAGGGGACAAGG 

ACGACGCTCTTCCGATCTAACCACAGTTACTTTTGCACC 

CGTGTGCTCTTCCGATCTAACCAGTTGCTGCAAGTCAG 

ACGACGCTCTTCCGATCTTTCTAAAAGCCAGAGCTTGTCC 

CGTGTGCTCTTCCGATCTGAGGGGCAAGGAACTGAACT 

ACGACGCTCTTCCGATCTACCACTGAAGAGCCAGGAC 

CGTGTGCTCTTCCGATCTGAAATTGAAAGGTGGGGATCT 

ACGACGCTCTTCCGATCTCGGGTGTCTTTAGTTCACTAGC 

CGTGTGCTCTTCCGATCTTGGGAGTCTCTTTCCCACAT 

ACGACGCTCTTCCGATCTGTGATAGCTGCTGCTTCTGG 

CGTGTGCTCTTCCGATCTTGTTTCAAATGCCTACCTC 

ACGACGCTCTTCCGATCTACATAGCCCTGTGTGTATGAC 

CGTGTGCTCTTCCGATCTAGAGATGAGCCATGCTTTGG 

ACGACGCTCTTCCGATCTGATGACAGGTGTGCCCTTC 

CGTGTGCTCTTCCGATCTCAGCAACGTGATTTCTGCAT 

300 

 

286 

 

291 

 

410 

 

460 

 

393 

 

440 

 

292 

 

452 

 

318 

 

445 

 

277 

 

444 

 

484 

 

324 

 

289 

 

363 

 

Amplicon-specific primers (black bases) designed with non-specific 18bp sequences at the 5’ end of 

primers (red bases). Two non-specific sequences used, one for forward primers, one for reverse primers. 

bp, base pairs. 



134 
 

Table A2. APC amplicon specific primers for next generation sequencing 

Name Sequence (5’-3’) Product 
Size (bp) 

APC Exon 5 F 

APC Exon 5 R 

APC Exon 6 F 

APC Exon 6 R 

APC Exon 8 F 

APC Exon 8 R 

APC Exon 9 F1 

APC Exon 9 R1 

APC Exon 9 F2 

APC Exon 9 R2 

APC Exon 11 F1 

APC Exon 11 R1 

APC Exon 11 F2 

APC Exon 11 R2 

APC Exon 12 F 

APC Exon 12 R 

APC Exon 13 F 

APC Exon 13 R 

APC Exon 15 F1 

APC Exon 15 R1 

APC Exon 15 F2 

APC Exon 15 R2 

APC Exon 15 F3 

APC Exon 15 R3 

APC Exon 15 F4 

APC Exon 15 R4 

APC Exon 15 F5 

APC Exon 15 R5 

APC Exon 15 F6 

APC Exon 15 R6 

ACGACGCTCTTCCGATCTCACCATGACTGACGTATTTGCT 

CGTGTGCTCTTCCGATCTAGAGCCAAAATAAACACAGCCTT 

ACGACGCTCTTCCGATCTCCTGAGCTTTTAAGTGGTAGCC 

CGTGTGCTCTTCCGATCTTGTAAACTGACAGCTAAAGTAAGGT 

ACGACGCTCTTCCGATCTTCTGCAGTTTAATGCTCATATGCAA 

CGTGTGCTCTTCCGATCTTGGCATTAGTGACCAGGGTTT 

ACGACGCTCTTCCGATCTTCATCACTTAATTGGTTTTTGGCTT 

CGTGTGCTCTTCCGATCTAAGGACTCGGATTTCACGCC 

ACGACGCTCTTCCGATCTGGAAATTCCCGGGGCAGTAA 

CGTGTGCTCTTCCGATCTTGAGTAGCACAAATGGCTGA 

ACGACGCTCTTCCGATCTGGGGTGGAGAAACTGGCATA 

CGTGTGCTCTTCCGATCTACCTTGTTGGCTACATCTCCAAA 

ACGACGCTCTTCCGATCTTAGGGGGACTACAGGCCATT 

CGTGTGCTCTTCCGATCTGCGAATGTGAAGCACAGGTT 

ACGACGCTCTTCCGATCTTGGCTTCAAGTTGTCTTTTTAATG 

CGTGTGCTCTTCCGATCTTGAGATACTAAATACTGAGCAACAA 

ACGACGCTCTTCCGATCTAGTGATAGGATTACAGGCGTG 

CGTGTGCTCTTCCGATCTGAAATTAGGGAATCTCATGG 

ACGACGCTCTTCCGATCTTCCCAAGGCATCTCATCGT 

CGTGTGCTCTTCCGATCTATGGCTGACACTTCTTCCATGA 

ACGACGCTCTTCCGATCTAGAAGCTCTGCTGCCCATAC 

CGTGTGCTCTTCCGATCTCCTTCCAGAGTTCAACTGCTCA 

ACGACGCTCTTCCGATCTTCCATACAGGTCACGGGGAG 

CGTGTGCTCTTCCGATCTTGGATGGAGCTGATTCTGCC 

ACGACGCTCTTCCGATCTAGCAGTGAGAATACGTCCACA 

CGTGTGCTCTTCCGATCTGCTTTGTGCCTGGCTGATTC 

ACGACGCTCTTCCGATCTGCAGACTGCAGGGTTCTAGT 

CGTGTGCTCTTCCGATCTGACCCTCTGAACTGCAGCAT 

ACGACGCTCTTCCGATCTAACAGCTCAAACCAAGCGAG 

CGTGTGCTCTTCCGATCTTTTGAAGCAGTCTGGGCTGG 

389 

 

458 

 

402 

 

397 

 

374 

 

406 

 

320 

 

511 

 

476 

 

387 

 

387 

 

436 

 

449 

 

470 

 

504 

Amplicon-specific primers (black bases) designed with non-specific 18bp sequences at the 5’ end of 

primers (red bases). Two non-specific sequences used, one for forward primers, one for reverse primers. 

bp, base pairs. 
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Table A3. Forward adapter primers for creating next generation sequencing libraries 

Name Sequence (5’-3’) 
FPI1 

FPI2 

FPI3 

FPI4 

FPI5 

FPI6 

FPI7 

FPI8 

FPI9 

FPI10 

FPI11 

FPI12 

FPI13 

FPI14 

FPI15 

FPI16 
 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC CGTGAT ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC ACATCG ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC GCCTAA ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC TGGTCA ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC CACTGT ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC ATTGGC ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC GATCTG ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC TCAAGT ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC CTGATC ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC AAGCTA ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC GTAGCC ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC TACAAG ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC TTGACT ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC GGAACT ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC TGACAT ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 

AAT GAT ACG GCG ACC ACC GAG ATC TAC AC GGACGG ACAC T CTT TCC CTA CAC GAC GCT CTT CCG ATC T 
  

Forward adapter primers with unique index sequences shown in red. 
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Table A4. Reverse adapter primers for creating next generation sequencing libraries 

Name Sequence (5’-3’) 

RPI1 

RPI2 

RPI3 

RPI4 

RPI5 

RPI6 

RPI7 

RPI8 

RPI9 

RPI10 

RPI11 

RPI12 

RPI13 

RPI14 

RPI15 

RPI16 

 
 

CAA GCA GAA GAC GGC ATA CGA GAT CGTGAT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT ACATCG GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT GCCTAA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT TGGTCA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT CACTGT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT ATTGGC GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT GATCTG GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT TCAAGT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT CTGATC GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT AAGCTA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT GTAGCC GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT TACAAG GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT TTGACT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT GGAACT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT TGACAT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 

CAA GCA GAA GAC GGC ATA CGA GAT GGACGG GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC 
 

Reverse adapter primers with unique index sequences shown in red.
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Table A5 Primers for generating template for CRISPR/Cas9n editing 

Name Sequence (5’-3’) Restriction site 
HT29_CRISPR_Template1F 

HT29_CRISPR_Template1R 

GCGGTACCTGTTTTTGACACCAATCG 

GCGCGGCCGCTTGGCAATCTGGGCTGCAG 

KpnI 

NotI 

Primers to amplify the region of APC surrounding the mutation to be corrected. Primers incorporate 

KpnI and NotI restriction sites, respectively (blue bases), for digestion to allow ligation into pBluescript 

KS+ plasmid. 

 

 

 

Table A6 Primers for mutating template for CRISPR/Cas9n editing 

Name Sequence (5’-3’) Restriction Site 
APC template1 mut1F 

APC template1 mut1R 

APC template1 mut2F 

APC template1 mut2R 

GCTCCTCTTCATCTAGAGG 

CCTCTAGATGAAGAGGAGC 

GAAGTCTCGAGAGAGAACG 

CGTTCTCTCTCGAGACTTC 

XbaI 

 

XhoI 

Primers designed to introduce XbaI and XhoI restriction sites, respectively, into the template plasmid 

(red bases differ from genomic sequence) without altering the protein code. 

 

 

 

Table A7 Primers for generating gRNA recognition sequences 

Name Sequence (5’-3’) 
HT29_APC_gRNAn1AF 

HT29_APC_gRNAn1AR 

HT29_APC_gRNAn1BF 

HT29_APC_gRNAn1BR 

CACCGTCCTCTTGATGAAGAGGAGC 

AAACGCTCCTCTTCATCAAGAGGAC 

CACCGAGAAGTTTGTAGAGAGAACG 

AAACCGTTCTCTCTACAAACTTCTC 

Pairs of primers with complementary sequences that anneal to form gRNA recognition sequences that 

recognise APC sequences in the region of the mutated base. Green bases denote sequences that 

recognize BpiI digested DNA, brown bases were added as the Cas9n system requires recognition 

sequences to start with a guanine nucleotide, red bases denote the mutated base. 
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Appendix 2 Buffers and Solutions 

 

2 x protein loading buffer (reducing): 0.4 g of sodium dodecyl sulphate (SDS) was dissolved 

in 7 mL of 0.125 M Tris solution (pH6.8). Two mL of glycerol and 0.002 g of bromophenol 

blue were added along with 1 mL of β-mercaptoethanol. The buffer was stored in 1 mL aliquots 

at -20°C. 

6 x DNA loading buffer: A 40 % (w/v) solution of sucrose was made with 0.25% (w/v) 

bromophenol blue and xylene cyanol. 1 mL aliquots were stored at -20°C. 

Phosphate Buffered Saline (PBS): A 10 x stock solution was made by dissolving 80 g sodium 

chloride, 2 g potassium chloride, 28.42 g di-sodium hydrogen phosphate and 2 g potassium 

dihydrogen phosphate in 1 L MPW. The stock was diluted 1:10 in mqH2O as required. 

PIPES buffer: 9.07 g of 1,4-piperazinediethanesulfonic acid (PIPES) were dissolved in 400 

mL MPW. The pH was adjusted to 6.8 with sodium hydroxide and the total volume adjusted 

to 500 mL.  

Polyacrylamide gel loading buffer (top): A 10 x stock solution was made by dissolving 60 g 

of Tris base, 286 g of glycine and 20 g of SDS in MPW to a total volume of 2 L. A working 

solution was made by diluting the stock 1:10 in MPW. 

Polyacrylamide gel loading buffer (bottom): A 2 L working solution was made up by 

dissolving 20 g of Tris base in MPW.  

Protein lysis buffer: A solution of 100 mM sodium chloride, 5mM EDTA, 1% (v/v) Nonidet 

P-40, 0.2% (w/v) SDS, 1 mM phenylmethanesulfonyl fluoride (PMSF), 1 mM sodium 

orthovanadate, and 0.5% (w/v) sodium deoxycholate was made in 50 mM tris-HCl to a total 

volume of 10 mL. One cOmplete mini protease inhibitor cocktail tablet was dissolved in the 

buffer which was then stored in 1 mL aliquots at -20°C until use. 

TBE (Tris Borate EDTA): A 10 x stock solution was made up by dissolving 108 g of Tris 

base 55 g of boric acid and 7.5 g of EDTA in MPW to a total volume of 1 L. The stock was 

diluted 1:10 in MPW as required.  

TBST: A 10 x stock solution of Tris buffered saline (TBS) was made by dissolving 15.125 g 

of Tris base and 44 g of sodium chloride in 450 mL of MPW, the pH adjusted to 7.5 with 

hydrochloric acid and the volume adjusted to 500 mL. The solution was diluted 1:10 in MPW 

and 1 mL Tween 20 detergent added to make a working solution. 

Transfer buffer: A 10 x stock solution was made by dissolving 60.4 g of Tris base and 288 g 

of glycine in MPW to a total volume of 2 L. Working solutions were made by adding 100 mL 

of 10 x stock solution to 800 mL of MPW and 100 mL of methanol. Working solution was 

stored at 4°C. 

Tris-HCl buffer: A 0.5M Tris solution was made up by dissolving 3 g of Tris base in 40 mL 

of mqH2O and the pH adjusted to 6.8 with hydrochloric acid. The final volume was adjusted 

to 50 mL with MPW. 
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Tris-EDTA buffer: Ten microliters of 0.5 M EDTA solution was added to 5 mL of 0.5 M 

Tris-HCl buffer (pH6.8) and the final volume adjusted to 50 mL to give final concentrations of 

10 mM Tris and 0.1 mM EDTA.  

 

 

 

Figure A1. Drug concentrations for selective drug sensitivity testing. To test the sensitivity of HT29 

cells to the selective drugs puromycin (A) and geneticin (B), cells were grown in wells of a 24-well 

culture plate in the presence of drugs at the above concentrations (Section 2.2.4.9). Note the differences 

in units between puromycin and geneticin.  

 


