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[1] A state‐of‐the‐art ensemble of regional climate model (RCM) simulations provided by
the European Union–funded project ENSEMBLES is used to test the ability of RCMs to
reproduce the mean and extreme precipitation regimes over Spain. To this aim, ERA‐40–
driven simulations at 25 km resolution are compared with the 20 km daily precipitation
grid Spain02, considering the period 1960–2000. This gridded data set has been interpolated
from thousands of quality‐controlled stations capturing the spatial variability of precipitation
over this RCM benchmark‐like area with complex orography and influence of both Atlantic
and Mediterranean climates. The results show a good representation of the mean regimes
and the annual cycle but an overestimation of rainfall frequency leading to a wrong
estimation of wet and dry spells. The amount of rainfall coming from extreme events is also
deficient in the RCMs. The use of the multimodel ensemble improves the results of the
individual models; moreover, discarding the worst performing models for the particular area
and variable leads to improved results and reduced spread.

Citation: Herrera, S., L. Fita, J. Fernández, and J. M. Gutiérrez (2010), Evaluation of the mean and extreme precipitation
regimes from the ENSEMBLES regional climate multimodel simulations over Spain, J. Geophys. Res., 115, D21117,
doi:10.1029/2010JD013936.

1. Introduction

[2] Dynamical downscaling of a global climate model
(GCM) using a regional climate model (RCM) is a widely
used technique to obtain high‐resolution information about
projected climate change scenarios [Leung et al., 2003;Wang
et al., 2004; Laprise, 2008]. Basically, this technique consists
of solving the governing equations of the atmosphere at
high resolution in a particular region (e.g., Europe) using the
coarse GCM output as boundary conditions. In this way,
it is expected that the RCM dynamics will provide highly
resolved climatic information that the coarse resolution GCM
cannot obtain [Elía and Laprise, 2002; Vidale et al., 2003;
Castro et al., 2005]. High‐resolution climatic information is
demanded by end users to analyze the impacts produced in
different sectors by changes in the mean or extreme regimes
of a variety of meteorological variables [Fronzek and Carter,
2007]. Precipitation is a key variable in sectors such as
agriculture and hydrology and it is one of the variables with
the largest uncertainty in RCMs, due to the large number
of parameterized processes involved in its determination.
The present study analyzes the performance of several
RCMs from the European Union (EU)–funded project

ENSEMBLES [van der Linden and Mitchell, 2009] nested in
a common global reanalysis to reproduce the observed mean
and extreme regimes of precipitation over Spain. The com-
bined use of the ensemble of RCMs (multimodel ensemble)
is compared with the individual RCM results.
[3] Since RCMs are limited to the quality of the GCM

information [Déqué et al., 2007], the evaluation of the skill
of an RCM in reproducing the observed climate should be
done by providing reanalysis data (as a surrogate of a perfect
GCM) as boundary conditions. Even though different RCMs
can be compared when forced by the same GCM boundaries
[Jacob et al., 2007], this kind of experiment makes difficult to
discern whether the observed biases arise from the global or
the regional model.
[4] ENSEMBLES is the latest in a series of EU‐funded

projects dealing with multimodel dynamical downscaling of
large‐scale climate information over Europe: Regionalization
(1993–1994), RACCS (1995–1996) [Machenhauer et al.,
1998], MERCURE (1997–2000), and PRUDENCE (2001–
2004) [Christensen et al., 2007]. These projects paved the
way for ENSEMBLES, where the latest‐generation RCMs
downscaled with unprecedented resolution a set of GCM
simulations (for present control and the future scenario A1B)
and also “perfect” boundaries from reanalysis. The perfect
boundary approach was missing in the predecessor project
PRUDENCE, where RCMs where only nested into GCMs.
Thus, ENSEMBLES enables, one decade after MERCURE,
a direct comparison of the performance of different state‐of‐
the‐art RCMs over Europe.
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[5] Several works deal with the performance of ensembles
of RCM simulations over Europe [Frei et al., 2003; Jacob
et al., 2007; Boberg et al., 2009, 2010]. Frei et al. [2003]
performed a detailed evaluation of the precipitation from
MERCURE RCMs over the Alps, stressing the need for very
dense station networks in the evaluation of RCM results over
complex terrain. Boberg et al. [2010] evaluates daily pre-
cipitation distributions in ENSEMBLES RCMs and com-
pares them with observations. Their analyses were performed
over large European subregions, as in several other studies
[Christensen and Christensen, 2007; Jacob et al., 2007].
They found a poor performance in reproducing the precipi-
tation PDF over the Iberian Peninsula region. However, this
region is not climatically homogeneous [De Castro et al.,
2007] and, additionally, the station coverage used in previ-
ous studies over this area is poor and not spatially uniform.
Then, analyses of variables averaged over the whole Iberian
Peninsula should be taken with caution.
[6] In this work, an analysis at basin scale is performed to

assess the usefulness of RCMs in different regions of interest
for hydrological studies (and also for many other fields since
the river basins correspond to climatically uniform regions
in this area). The evaluation of the model performance is
done against a new 0.2° × 0.2° gridded interpolated data
set (Spain02) [Herrera et al., 2010] for the region, which
includes thousands of stations (as compared with a few tens
used in previous studies).
[7] Section 2 briefly describes the data used and the indices

and techniques considered for verification. Section 3 gives a
short description of precipitation regimes in Spain. Section 4
analyzes the observed and RCM simulated mean precipita-
tion regime in terms of total accumulated amounts and the
monthly annual cycle on the river basins. Section 5 analyzes
the extreme regimes in terms of extreme precipitation indices.
Section 6 summarizes the conclusions of the study.

2. Data and Methodology

[8] In this study we used RCM data from the
ENSEMBLES project and the Spain02 data set (interpolated
observations), which are described next. The indices and
validation measures used in the paper are also briefly
described here.

2.1. ENSEMBLES RCM Data Set

[9] The EU‐funded project ENSEMBLES (http://www.
ensembles‐eu.org) is a collaborative effort of different

European meteorological institutions focused on the genera-
tion of climate change scenarios over Europe. ENSEMBLES
studies climate change from different perspectives and
includes a large variety of communities and state‐of‐the‐art
methodologies and techniques. In particular, dynamical
downscaling of GCM simulations was performed using nine
different RCMs run by different institutions (see a list in
Table 1) over a common area covering the entire continental
European region and with a common resolution of 25 km.
[10] Within ENSEMBLES, an initial RCM verification

experiment was carried out using the reanalyses from the
European Centre for Medium Range Weather Forecasts
(ECMWF) (ERA‐40 [Uppala et al., 2005]) as boundary
conditions for the RCMs. All RCMs were run over the
common 30 year period 1961–1990 (although some of them
simulated longer periods). A second experiment for climate
change studies was done nesting the RCMs into different
GCM simulations for a control climate (forced with the
20C3M scenario) and future projections (forced with the A1B
scenario). These runs were used to produce regional climate
change scenarios over Europe with different weighting tech-
niques [van der Linden and Mitchell, 2009].
[11] In this paper we used a total of 9 RCM simulations

(shown with an asterisk in Table 1) taken from the RCM
verification experiment. These 9 models were those provid-
ing (by the end of summer 2009) the daily precipitation output
required in our study. Thus, we evaluated the performance
of the RCMs with realistic (reanalysis) boundary conditions.
To this aim, we could use the 25 km gridded interpolated
observations data constructed within ENSEMBLES using
observations all over Europe (EOBS [Haylock et al., 2008]).
Unfortunately, the station density over Spain is only of a few
tens and, thus, it does not appropriately represent the spatial
precipitation variability in this area. In section 2.2 we describe
an alternative gridded precipitation data set focused on Spain
and based on thousands of stations, which were used in this
paper to test the performance of the RCMs.

2.2. Spain02 Gridded Observations Data Set

[12] Spain02 is a regular 0.2° (approximately 20 km) daily
gridded precipitation data set obtained from 2772 quality‐
controlled surface stations from the Agencia Estatal de
Meteorología (AEMET, Spanish Meteorological Agency),
covering continental Spain and the Balearic Islands during
the period 1950–2003. This data set was obtained following
a two‐step process. First, the occurrence was interpolated

Table 1. Summary of the RCM Simulations Nested in ERA‐40 Data Produced for the ENSEMBLES Projecta

Acronym Institution Model Reference

CNRM* Centre National de Recherches Meteorologiques ALADIN‐Climat Radu et al. [2008]
DMI* Danish Meteorological Institute HIRHAM Christensen et al. [2006]
ETHZ* Swiss Institute of Technology CLM Jaeger et al. [2008]
KNMI* Koninklijk Nederlands Meteorologisch Instituut RACMO van Meijgaard et al. [2008]
HC* Hadley Center/UK Met Office HadRM3 Q0 Collins et al. [2006]
ICTP Abdus Salam International Centre for Theoretical Physics RegCM3 Pal et al. [2007]
METNO* The Norwegian Meteorological Institute HIRHAM Haugen and Haakensatd [2005]
MPI* Max Planck Institute for Meteorology M‐REMO Jacob et al. [2001]
SMHI* Swedish Meteorological and Hydrological Institute RCA Kjellström et al. [2005]
UCLM* Universidad de Castilla la Mancha PROMES Sánchez et al. [2004]

aThe columns are the acronym used in the paper, the institution running the simulation, the model used, and a reference publication. Only the simulations
highlighted with an asterisk were used in the study.

HERRERA ET AL.: EVALUATION OF RCM PRECIPITATION OVER SPAIN D21117D21117

2 of 13



applying a binary kriging and, in a second step, the amounts
were interpolated using ordinary kriging for the occurrence
outcomes. Thus, both precipitation frequencies and amounts
are properly represented in this gridded data set (see Herrera
et al., submitted manuscript, 2010 and http://www.meteo.
unican.es/datasets/spain02 for more details). Moreover, since
the kriging methodology performs weighted averages of
station data, it is more comparable to the grid point average
given by an RCM than the individual observations, which
can be affected by very local features not represented by the
models [Osborn and Hulme, 1998].
[13] In this work, Spain02 was used to obtain a reference

climatology for the 30 year period 1961–1990 suitable for
the validation of RCMs. To this aim, RCM outputs were
bilinearly interpolated from their respective native grids at
25 km resolution to the Spain02 resolution (0.2° × 0.2°).

2.3. Comparison Measures

[14] All the statistics computed were compared using the
standard Pearson’s correlation of the spatial patterns. This
measure is insensitive to biases and focuses on the ability of
the models to reproduce the geographical details and con-
trasts. Thus, even assuming that RCM results have biases, the
correlation will represent the degree of agreement between
the position and shape of the simulated precipitation areas and
the observed ones. We also computed the Spearman’s rank
correlation, which is less sensitive to the underlying distri-
bution of the data, and the results obtained were fairly similar
to those shown for the Pearson’s correlation. Additionally,
quantile‐quantile plots (q‐q plots) were used to compare the
whole probability density function. Quantile‐quantile plots
represent on a Cartesian plane the quantiles of the simulated
distribution versus the quantiles of the observed distribution.
Given the large amount of data available, we used percentiles
on the q‐q plots. We considered only the distribution of the
precipitation on rainy days. Otherwise, the dry days would
dominate the PDF on most regions and the ability of the
RCMs to represent the occurrence of precipitation would mix
with their ability to represent the intensity distribution. The
ability of the models to represent the occurrence of precipi-
tation can be observed in the wet day frequency maps (also
shown).

3. Precipitation Regimes in Spain

[15] Different studies devoted to the Spanish climatological
features show the complexity and variability of precipitation
all over the region [Esteban‐Parra et al., 1998; Muñoz‐Díaz
and Rodrigo, 2004]. A significant northwest‐southeast pre-
cipitation gradient is observed with characteristic Atlantic
and Mediterranean precipitation regimes, respectively.
Broadly speaking, Spain can be divided into 5 main climat-
ically homogeneous precipitation regions [Muñoz‐Díaz and
Rodrigo, 2004]: a dry desert‐like southern region (precipi-
tation amounts less than 100 mm/yr in the southeastern area)
with an upland wet region due to the Sierra Nevada moun-
tains; the southwestern region is influenced by Atlantic winds
(rainfall about 900 mm/yr). The eastern coast is characterized
by low annual amount of precipitation (less than 700 mm/yr),
but with a large variability including significant frequency
of severe events (24h precipitation larger than 200 mm).
This specific pattern is elongated all over the Ebro River

basin (northeast) due to intrusions of wet and warm air from
the Mediterranean Sea [García‐Ortega et al., 2007]. The
Balearic Islands have a low regime of precipitation (less than
500 mm/yr) except in the mountain ranges ofMallorca (about
900 mm/yr). The central part of continental Spain contains
low precipitation amounts (less than 500mm/yr) except in the
Tajo River basin (with 900 mm/yr) along which wet and cold
air masses fromAtlantic frontal systems can reach on Spanish
territory. Finally, almost all of the North Atlantic coast of
the peninsula has large amounts of precipitation (from 900
to 2500 mm/yr) with remarkable climatological regularity,
mainly due to the continuous arrival of Atlantic frontal
systems.
[16] Due to the strong spatial variability of precipitation,

this is a challenging area for RCMs, since models must be
able to simulate very different precipitation regimes in a
relatively small area with remarkable topographic complex-
ity (Figure 1a). The 25 km resolution topography of the
RCMs (Figure 1c) provides a realistic picture of the real
topography (Figure 1a), distinguishing the main orographic
barriers leading to the precipitation regimes described above.
The Spain02 data set provides a similar representation of
the orography (see Figure 1d) in order to compare the results
with those of the RCMs (see Figure 1c). Finally, note that the
ERA‐40 resolution (Figure 1b) misses most of the orographic
details.
[17] In order to study different regional aspects, river basins

were used to divide Spain into eleven regions (shown in
Figure 1d). The mountain ranges on the basin borders act as
natural barriers modifying the distribution of precipitation.
For instance, the Cantabrian mountain range near the North
Atlantic coast blocks the moist Atlantic air leading to
enhanced precipitation in the North basin yielding to a dif-
ferent precipitation regime downwind. In this paper we shall
present results both at a grid point scale and at a basin scale;
in the latter case we assume a uniform precipitation regime
within each basin and aggregate the corresponding grid
points. Although this assumption is not exact (e.g., in the
North basin there is a west‐east precipitation gradient), we
consider this division more sensible than a subjective recti-
linear division. Additionally, basin averaged results provide
useful information for hydrological impact studies.

4. Verification of the Mean Precipitation Regime

[18] Here we analyze the skill of the different RCMs in
reproducing themean precipitation regime, the seasonal cycle
and the distributions of daily precipitation (using q‐q plots).

4.1. Yearly Climatology

[19] The yearly precipitation climatology for the period
1961–1990 for each of the nine RCMs is shown in
Figures 2d–2l; for the sake of comparison, Figures 2a and 2c
show the Spain02 and ERA‐40 climatologies. Figure 2 shows
that the RCMs present a great diversity of results as compared
with Spain02, although all of them represent the north–south
precipitation gradient and exhibit signatures of the most
influential mountain ranges in the area.
[20] The lowest spatial correlation with the Spain02 cli-

matology is shown by the CNRM model (r = 0.55), whereas
the largest correlation is obtained with KNMI model (r =
0.85). KNMI used a wider boundary relaxation zone for the
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wind than the rest of the models. This helps keeping the
circulation inside the RCMdomain closer to the forcing fields
[Lenderink et al., 2003] and could be responsible for the
better performance. CNRM overestimates precipitation over
most of continental Spain (except on the northern coast where
it is underestimated). SMHI shows longitudinal patterns all
over Spain and DMI has a climatology with overestimation of
both maximum and minimum annual precipitation. METNO
climatology shows very strong spatial precipitation gradients
with low spatial continuity (this effect is even stronger on
the native noninterpolated grid, not shown). The rest of the
models (HC, MPI, ETHZ, UCLM and KNMI) show similar
spatial patterns to those shown in Spain02, with large spatial
correlations.
[21] The ensemble mean of the nine members (Figure 2m)

shows a relatively good agreement with Spain02 in terms of
amounts and spatial distributions (spatial correlation of 0.83).
The ensemble mean also has the signature of the main
mountain ranges and a north‐south precipitation gradient as
observed. However, the standard deviation of the ensemble
(Figure 2n) has a large spread; the spread is larger in the areas
where the precipitation is larger (a small relative error in an
area with large precipitation gives rise to an absolute devia-
tion much larger than in dryer areas). To avoid that effect,
Figure 2o shows the value of the standard deviation relative
to the mean precipitation (the coefficient of variation). In

most places, this coefficient of variation has values around
25%.
[22] According to the individual spatial correlations of the

ensemble members with respect to Spain02, the results from
the RCMs can be grossly divided in two groups. First, a group
of four members with spatial correlations around 0.6. Second,
five members with values over 0.75: ETHZ, HC,KNMI, MPI
and UCLM. This clear difference (there is a gap in the cor-
relations from 0.64 to 0.77) between the ensemble members
leads us to consider a second ensemble using only a set of five
members. We will refer to this ensemble as ENS2, while the
ensemble composed of all nine members will be referred to as
ENS1. The Ensemble ENS2 mean (Figure 2p) is comparable
to that of ENS1, but the variability (uncertainty) is reduced
(Figures 2o–2r).
[23] ENS2 mean presents a good agreement with Spain02.

However, it still has some deficiencies in representing the
yearly climatology. Although, in general, the spatial pattern
is similar to the observed one, the amounts are smaller.
[24] Note that when comparing models against observa-

tions, the uncertainties in the later must be taken as part of
the analysis. Therefore, we estimated the uncertainty of the
kriging gridded data set applying the method introduced by
Yamamoto [2000] to the yearly accumulated values. Then, we
analyzed the impact in the above spatial correlation values by
means of a Monte Carlo simulation. We performed 1000

Figure 1. Topography of the Iberian peninsula and the Balearic Islands as given by (a) GTOPO30
(approximately 1 km) and as represented by (b) ERA‐40 reanalysis at 1.125°, (c) RCM members at
25 km resolution, and (d) Spain02 at 0.2°. River basins are shown in Figure 1d. Basin names and number
of grid points are as follows: 0, Catalana (57 grid points); 1, North (178 grid points); 2, Duero (225 grid
points); 3, Tajo (150 grid points); 4, Guadiana (159 grid points); 5, Guadalquivir (163 grid points); 6, South
(59 grid points); 7, Segura (56 grid points); 8, Levante (127 grid points); 9, Ebro (234 grid points); B,
Baleares (37 grid points). All panels show the area from 10°W to 5°E in longitude and from 35°N to
44°N in latitude.
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realizations of the observations by adding normal random
errors with standard deviation given by the uncertainty
computed before (and shown in Figure 2b). The results
obtained (Figure 3) show a small impact of the uncertainty on
the resulting correlation values, with standard deviations
lower than 0.01 in most of the cases and still showing a robust
correlation gap between the models in ENS2 and the rest.

4.2. Annual Cycle

[25] The previous analysis showed the ability of the models
to represent the spatial pattern of precipitation. Yearly pre-
cipitation was accumulated and the seasonal variability was
disregarded. Seasonal variability is important because in this
area rainy seasons differ from region to region. To account for
this seasonal variability, we analyze here the monthly annual
cycle averaged over each of the basins defined in Figure 1d.
[26] The different seasonal precipitation regimes are illus-

trated in Figure 4. The black line in Figure 4 shows the
observed monthly (spatially averaged) climatologies for each
of the basins according to Spain02. For a better comparison,

the scale for precipitation is the same in all the plots (ranging
from 0 to 200 mm). In most of the basins, the seasonal cycles
present their minimum values in July; moreover, there is
almost no precipitation during this month in Sur, Guadiana,
and Guadalquivir river basins. The seasonal cycle in Segura,
Levante, Ebro, Catalana, and Baleares basins present two
peak precipitation periods (weakly in the Catalana basin), the
main one during autumn and a secondary one during spring
(note that the precipitation amounts are different in these
basins). This was defined as a typical feature of the western
Mediterranean seasonal precipitation climatology [Romero
et al., 1998]. Contrarily, in the basins under Atlantic influ-
ence (1–5) the main rainy season is winter; the secondary
maximum in spring is due to an anomalous low precipita-
tion in March. This phenomenon was related to anomalies in
the Atlantic circulation during this month [Paredes et al.,
2006].
[27] In general terms, the RCMs (shaded areas in Figure 4)

perform remarkably well in reproducing the monthly annual
cycle in every basin. Peak seasons are reproduced and even

Figure 2. Annual precipitation climatology of (a) the Spain02 grid and (b) its standard error (see text).
(c) ERA‐40 annual precipitation climatology. Annual precipitation climatologies interpolated to the
Spain02 grid of the models (d) CNRM, (e) DMI, (f) ETHZ, (g) KNMI, (h) HC, (i) METNO, (j) MPI,
(k) SMHI, and (l) UCLM. Results for two different ensembles showing the ensemble mean, standard devi-
ation, and coefficient of variation for (m–o) the nine‐member ensemble (ENS1) and (p–r) the five bestcor-
related members with Spain02 (ENS2). Values on the top of each panel, next to the labels, show spatial
correlation values of each individual panel with Spain02. The scale is linear in the square root of the pre-
cipitation (millimeters) to gain details on the low precipitation areas. All panels show the area from
10°W to 5°E in longitude and from 35°N to 44°N in latitude.
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the anomalous March precipitation is shown (this was also
found by Fernández et al. [2007] using the MM5 model on
this area). There is a tendency to overestimate precipitation on
nearly every basin, though (except in the North and Catalana
basins). The five‐member ensemble (ENS2), simply defined
in section 4.1 by means of the spatial correlation of the yearly
precipitation pattern, performs remarkably better than the full
ensemble (the dark shade corresponding to ENS2 is closer to
the Spain02 line). ENS2 shows a smaller bias on nearly every
month and region and the spread of the ensemble (i.e., the
uncertainty) is also noticeably smaller. This is apparent in
the reduced overestimation of spring precipitation in most of
the basins or on the more balanced estimation of the winter
precipitation in the North basin.
[28] Late spring precipitation (months 4–6) exhibits the

highest spread inmost of the basins for the whole ensemble of
RCMs. During this period precipitation is the mixture of two
different origins: last intrusions of Atlantic cold air fronts and
the beginning of convective activity in the area. The presence
of a thermal low due to solar radiation that dominates all of
the Iberian peninsula that might help to trigger convection is
almost constant during the summer season [Alonso et al.,
1994]. An analysis of the large‐scale and convective com-
ponents of the RCMs could provide insight into this problem
but this is out of the scope of this paper.

4.3. q‐q Plots

[29] The results presented in the previous sections show
that RCMs can consistently reproduce the yearly and seasonal
climatology of the observed precipitation in Spain. Here we
consider not only the mean values but the whole distribution
of daily precipitation provided by the RCMs and compare it
with the observed one using q‐q plots. As before, we proceed
separately on each basin. In this case, we used two different
methods to build the q‐q plots: (1) considering the sample
{xij; i, j} to estimate the empirical cumulative distribution
function (ECDF) and the percentiles for the q‐q plot, where i
stands for the different days within the period 1961–1990
and j stands for the different grid points within the basin, and

(2) averaging the daily precipitation of all grid points in the
basin, {yi = Sjxij; i}, to build the ECDF. The percentiles for
the q‐q plot are computed in both cases considering only wet
days from the RCM and for Spain02, respectively (a wet day
is defined by precipitation >1 mm).
[30] As shown in Figure 5, q‐q plots for the grid points in

the basins reveal an underestimation of the larger daily pre-
cipitation quantiles as compared with Spain02. Figure 5 also
shows a smaller spread for the five‐model ensemble ENS2
than for full‐ensemble ENS1, with no significant improve-
ment of the results, although in some particular basins the
ENS2 ensemble gets closer to the observed quantiles.
Figure 5 shows how the spread increases quasi‐linearly as
quantiles increase, showing the lack of consistency of RCMs
in correctly reproducing the extreme values of precipita-
tion. However, when considering spatially averaged values
(Figure 6) the RCMs better reproduce the observed quantiles,
particularly when considering the ENS2 ensemble. In this
case, the RCMs show a distribution similar to Spain02 in
almost all river basins. Note that the better results of the
spatially averaged values reflect a limitation of the RCMs in
simulating the intensity of precipitation at the small intrabasin
scales. This is not surprising since the Spain02 resolution is
slightly higher than that of the RCMs. It not clear whether the
RCM precipitation should be interpreted as the precipitation
on the center of the grid cell [Gutowski et al., 2007] or an
average precipitation for the grid cell [Osborn and Hulme,
1998]. Using the latter interpretation, the Spain02 averages
of station point values on smaller cells would lead naturally to
more extreme precipitation values than those provided by the
RCMs. In any case, the RCMs cannot be expected to be
skillful at their grid point scale [von Storch et al., 1993; Frei
et al., 2003]. The spatial average over several grid points
smoothes out the errors at the grid point scale leading to better
estimates. The smallest basin considered (Baleares) contains
37 Spain02 grid points, that is, around 23 grid points in the
native RCM grids.
[31] In general, the worst results are obtained for the

Mediterranean and Sur river basins. This is mainly due to the
large temporal and spatial variability of precipitation in these
regions. Section 5 will show the importance of the extreme
events to the total annual precipitation amount in these basins.

5. Verification of the Extreme Regimes

[32] In section 4.3 we showed some results concerning
the extremes of the precipitation distribution by means of
upper percentiles. Additionally, in section 5 we compute
standard indicators commonly used to account for extreme
events and other local features related to precipitation (e.g.,
rain frequency). In particular, we selected a subset of the
standard Intergovernmental Panel on Climate Change (IPCC)
indicators of extreme events [Sillman and Roeckner, 2008]
related to precipitation, listed in Table 2. For the sake of
simplicity, we show results from 6 of them (the results of
rx1day and r20 are similar to rx5day and r10, respectively,
and only the spatial correlation of the resulting values is
shown). All indices are computed using daily precipitation
data from each of the ENSEMBLES models, and compared
with that from Spain02. The suitability of this gridded data
set for the analysis of extreme events was tested by Herrera
et al. (submitted manuscript, 2010).

Figure 3. Spatial correlation between the yearly climatol-
ogy given by Spain02 and the different RCMs. Correlations
are sorted in decreasing order along the horizontal axis. The
error bars show the standard deviation obtained from aMonte
Carlo simulation (see text).
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[33] Figure 7 shows the results for the frequency of rain
occurrence and the dry and wet spells. Note the frequency
differences for the different basins in our area of study. These
differences are not only in the amounts as shown before, but
also in the way the precipitation is distributed. The observed
frequency ranges from the extreme dry conditions of southern
Spain, with less than 10% wet days per year, to the northern
coast where the precipitation is distributed among more than
50% of the days of the year. The different regimes can also
be shown in terms of the maximum number of consecutive
dry/wet days (cdd/cwd) in a year with mean values of about
100 days for cdd in southern Spain (Figure 7, top middle) and
up to 18 consecutive wet days (cwd) in the north as shown in
Figure 7 (top right).
[34] The ability of the RCMs to represent the frequency of

precipitation varies significantly from one RCM to another.
In general, the frequency is overestimated in the RCMs and
the region with frequencies around 50% span a larger area
than seen in observations. Apart from this apparent bias, the
spatial structure is, in general, well captured with spatial

correlations with Spain02 ranging from 0.67 to 0.91. Similar
patterns and conclusions can be obtained for the consecu-
tive wet days, with correlations ranging from 0.32 to 0.87.
The consecutive dry days show a different pattern, with the
southern half of the area exhibiting a clear dry season with
an average of 90 or more consecutive dry days; in this case
the correlation ranges from 0.79 to 0.92. Thus, in general all
RCMs have good correlations of rain frequency and dry spells
(cdd). However, they do not represent well the continuous
wet spells (cwd). This indicator is overestimated in almost
all models. This seems to be a contradictory result, since
models can deal with normal precipitation and drought peri-
ods, but they cannot maintain long periods of precipitation.
The too frequent light precipitation is a well‐known problem
of RCMs and GCMs.
[35] Figure 7 also shows the results for the full ensem-

ble (ENS1) and the ENS2 ensemble means, with a slight
improvement (in terms of spatial correlation) of the results
when using the latter. The deficiencies of the individual
models (excessive rain frequency and smaller values of cdd)

Figure 4. Monthly climatology of the spatially averaged precipitation for each river basin (in millimeters).
The thick black line shows the Spain02 (i.e., observed) climatology. The light shaded area spans the values
for all members (ENS1), while the dark shaded area spans the values for the five members of ENS2 (see
text). The basins correspond to those shown in Figure 1d.
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are, of course, present in both ensemble results since there is
no compensation of errors.
[36] Figure 8 shows the results for the indices accounting

for the maximum rainfall accumulated in a 5 day period
(rx5day), the number of days exceeding 10 mm (r10) and the
percentage of the total precipitation coming from events with
precipitation over the 95th percentile (r95p). In all cases, the
index is computed yearly and the 30 year average is shown.
The results for rx1day and r20 are very similar to rx5day and
r10, respectively. Although maps are not shown for these
indices, their spatial correlation is shown in parenthesis to the
right of the correlations for rx5day and r10. The indices

shown should be the most advantageous for RCMs, since the
5 day accumulation compensates small localization and time
shift errors commonly present in the models and the 10 mm
threshold is not very extreme so as to be reached by the model
underestimated precipitation.
[37] Concerning the observations, the rx5day climatology

resembles the mean precipitation climatology (Figure 2b),
mainly modulated by the orographic barriers. The number of
days exceeding 10 mm (r10) is similar to rx5day except for
the Mediterranean area, where the number of days is small.
This is explained by the r95p index, which clearly shows that
in the Mediterranean area, a large part of the annual rainfall

Figure 5. Here q‐q plots for the daily distributions of Spain02 versus the RCM ensembles for the different
basins using percentiles are shown; the black dots indicate the percentiles of Spain02 drawn over the diag-
onal, whereas the light and dark shaded areas indicate the q‐q plots for ENS1 and ENS2, respectively. In all
cases the percentiles are estimated from the empirical distributions formed by gathering in a single sample
the daily values of the different grid points within the basin.
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comes from events exceeding the 95th percentile. Thus, the
total rainfall comes from a few days with strong precipitation.
Notice that this area includes the Ebro basin, which is also
exposed to intrusions of Mediterranean air.

[38] The RCMs capture the orographic features of rx5day
and r10 as shown by the large correlation values. However,
concerning the amount of rainfall arising from extreme events
(r95p), the models are not able to reproduce the marked

Table 2. IPCC Extreme Precipitation Indicatorsa

Label Description Units

Cdd consecutive dry days (<1 mm) day
Cwd consecutive wet days (>1 mm) day
rx1day maximum precipitation in 1 day millimeter
rx5day maximum precipitation in 5 days millimeter
r10 number of days with precipitation over 10 mm/d day
r20 number of days with precipitation over 20 mm/d day
r95p percentage over the total of precipitation due to 95th percentile events percent

aSee also ETCCDI (http://cccma.seos.uvic.ca/ETCCDI).

Figure 6. As in Figure 5 but for the spatially averaged values of each river basin.
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gradient due to the Atlantic/Mediterranean influences, with
values lower than 20% over all of continental Spain. A closer
look at small regions shows mixed results from the different
models, leading to a good performance of the ensemble mean,
which cancels out the differences and reinforces the overall
pattern. In this case, the spatial correlations of ENS1 and
ENS2 are larger than that of any of the members. For this

indicator the lowest spatial correlation is given by the MPI
member (r = 0.61) and the largest one by HC (r = 0.75).
[39] A cautionary remark must be made regarding the

extreme indicators computed from the daily gridded obser-
vations. In the case of the annual precipitation climatology,
we computed the associated errors in the mean, which yield
small values (Figure 2b). A similar analysis to get the error
associated to the extreme indicators would require the com-
putation of the error on a daily basis for the 50 year period,
followed by a Monte Carlo sampling. This is a very intensive

Figure 7. (left) Mean values of frequency of precipitation
occurrence (in percentage of days). (middle) Mean maximum
number of consecutive days without precipitation in 1 year
(cdd). (right) Mean maximum number of consecutive days
with precipitation in 1 year (cwd). From top to bottom:
Spain02, CNRM, DMI, ETHZ, KNMI, HC, METNO, MPI,
SMHI, UCLM, ENS1 mean, and ENS2 mean. The values
on top of each map correspond to the spatial correlation with
Spain02. All panels show the area from 10°W to 5°E in lon-
gitude and from 35°N to 44°N in latitude.

Figure 8. As in Figure 7 but for extreme indicators. (left)
Maximum of precipitation during 5 days (rx5day); values
in parentheses are spatial correlations for rx1day. (middle)
Number of days with a maximum precipitation over 10 mm/d
(r10); values in parentheses are spatial correlations for r20.
(right) Percentage of precipitation due to 95th percentile
events (r95p). All panels show the area from 10°W to 5°E in
longitude and from 35°N to 44°N in latitude.
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task which is being pursued at the moment to confirm the
robustness of the extreme indicators computed. In this case,
the errors are expected to be larger than in the climatology,
where the average tends to cancel out the daily errors. The
daily errors may affect more significantly extreme indicators
such as the duration of wet/dry spells.
[40] As a summary of all indices considered, Figure 9

shows the spatial correlation of each of the indices (col-
umns) for each of the RCMs and for the two ensembles
considered (rows). The correlations with the yearly precipi-
tation climatology from section 4.3 are also shown. In such a
plot, the good performance of a model in all indicators would
show up as a tendency to see dark horizontal lines. On the
contrary, the tendency of an indicator to be well represented
by all models would show dark vertical lines.
[41] From a subjective point of view, there are no clear

horizontal nor vertical lines in the plot, suggesting that there is
no best model or best reproduced indicator. The most clear
hint of a vertical line is that of the consecutive dry days. The
correlations of this indicator are all over 0.79. However,
despite the well represented spatial pattern, we just showed
that it suffers from an overall underestimation due to the
tendency of the models to overestimate rain frequency. On
the other hand, the indicator worst represented by all RCMs is
the amount of rainfall coming from extreme events (r95p); the
best correlation in this case is 0.75 (HC). Moreover, there are
models with varying skill for the indices; for instance theMPI
model is able to represent the frequency of precipitation (with
r = 0.91) and total amount (r = 0.83), but it does not represent
well extreme indicators (rrx5day = 0.50 and rr95p = 0.61).

This might be due to the misrepresentation of deep con-
vection and/or other extreme precipitation related events.
Therefore, a selection of models should be carefully designed
for each particular application. Bear in mind that this study
has mainly focused on the reproduction of the spatial patterns
of the different statistics and several biases were quite
apparent and do not affect our scores. These biases may be
crucial for some applications and, moreover, usually several
variables (not just the precipitation considered in this study)
are used by the impact applications. Also, compensating
errors may lead to the right scores for the wrong reasons. For
instance, the reasonable reproduction of the total precipitation
(Figure 2) or the annual cycle (Figure 4) even though the
rainfall frequency is overestimated can only be explained by
compensation with the overall underestimation of precipita-
tion intensity. Similar results were found in other studies [e.g.,
Frei et al., 2003].
[42] Not all models selected for ENS2 keep good correla-

tion in all indices. KNMI and UCLM showed problems with
the consecutive wet days and the MPI model failed with the
5 day maximum. According to this measure (we are consid-
ering only the spatial structure and disregarding biases or
spatial variability) the RCMs from ETHZ and HC would be
the most skillful for our region and variable (precipitation).
Anyway, the consideration of all (or a selection of ) RCMs
seems to be the best option. Not just because the mean value
performs better than any single model, but mainly because
they provide information about the uncertainty. Disregarding
poor‐performing models for the region/variable also seems
beneficial, even if using a simple method such as the one used
in this study.

6. Summary and Conclusions

[43] We used a state‐of‐the‐art ensemble of RCM simula-
tions provided by the EU‐funded project ENSEMBLES to
test the ability of RCMs to reproduce the mean and extreme
precipitation regimes over Spain. The complexity of the
precipitation regimes over the area was described and illus-
trated using a gridded precipitation database built from
thousands of quality controlled stations. A northwest area
with large and frequent precipitation, a desert‐like southern
region and the infrequent and extreme precipitation along
the Mediterranean coastal area makes the Spanish territory
an ideal benchmark for RCMs.
[44] In general, the RCMs show a good agreement with

the observed mean precipitation regime. They capture the
north‐south gradient and the modulation of precipitation
by the orography. The total amounts are overestimated in
most areas, though. The monthly annual cycle is also well
captured, correctly reproducing the peak precipitation sea-
sons in each basin. The main deficiency is the overestimation
of spring precipitation by some of the models. However, the
frequency of days with precipitation is overestimated by all
models. This leads to a low number of consecutive dry days
and overestimated consecutive wet days. The spatial pattern
for consecutive dry days is well captured, though.
[45] The main limitation of the RCMs is the misrepresen-

tation of extreme regimes. In particular, upper percentiles are
underestimated and the amount of the total rainfall coming
from extreme events is especially poor, both in the amount
and the spatial distribution.

Figure 9. Spatial correlations of each indicator for each
RCM with respect to Spain02. Shaded values range from
0.3 to 1.
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[46] Ensemble means produce better results and provide an
estimation of the uncertainty. We selected 5 RCMs for their
good performance in the yearly precipitation climatology
to build a smaller ensemble that performed better than the
full ensemble in all indices. In some cases, this reduction of
the ensemble size by less than 50% (we removed 4 out of
9 RCMs) produced much larger reductions of the spread (i.e.,
uncertainty) while driving the new ensemble mean closer to
the observed values.
[47] The results found for these RCM simulations are likely

to be dependent on the region under study and the variable
considered. Thus, RCM simulations showing poor perfor-
mance in this region could possibly be well suited in other
regions or when considering other variables. However,
common features of the RCMs found in all of the precipita-
tion regimes in this region are likely to be of a general scope
(e.g., features such as the overestimation of rainfall frequency
or the ability to capture the seasonal cycle on different pre-
cipitation regimes). Also, our results may vary depending on
aspects not considered in this work such as the resolution,
or not considered within ENSEMBLES, such as the location
of the boundaries, the domain size, the reanalysis used as
boundary condition, the physical parameterizations or even
the models considered (e.g., non‐European models may
perform differently when used out of their “home domain”
[Takle et al., 2007]).
[48] The overestimation of the frequency of wet days

leading to the wrong duration of dry/wet spells is a critical
problem for impact studies. Given the biases found in these
critical indicators in the ENSEMBLES RCMs, impact
research fields such as agriculture may benefit from the use of
calibrated RCM precipitation. In this study we focused on
analyzing the raw RCM precipitation output, but simple
corrections such as the selection of an RCM‐dependent wet
day threshold to match the observed rainfall frequency
[Schmidli et al., 2006] may lead to improved dry/wet spell
durations and more useful precipitation input for impact
models. More sophisticated methods have proved useful in
correcting the raw RCM precipitation output [Piani et al.,
2010].
[49] This study is a first approach to the analysis of RCM

precipitation data from ENSEMBLES in Spain. Further
analyses such as a deeper analysis of the causes behind the
over/under estimation of certain features are out of the scope
of the present paper, but are interesting topics for future
research.
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