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Abstract

Neural networks are very powerful computational models, capable of out-

performing humans on a variety of tasks. However, unlike humans, these

networks tend to catastrophically forget previous information when learn-

ing new information. This thesis aims to solve this catastrophic forgetting

problem, so that a deep neural network model can sequentially learn a num-

ber of complex reinforcement learning tasks. The primary model proposed

by this thesis, termed RePR, prevents catastrophic forgetting by introduc-

ing a generative model and a dual memory system. The generative model

learns to produce data representative of previously seen tasks. This gener-

ated data is rehearsed, while learning a new task, through a process called

pseudo-rehearsal. This process allows the network to learn the new task,

without forgetting previous tasks. The dual memory system is used to split

learning into two systems. The short-term system is only responsible for

learning the new task through reinforcement learning and the long-term

system is responsible for retaining knowledge of previous tasks, while being

taught the new task by the short-term system.

The RePR model was shown to learn and retain a short sequence of rein-

forcement tasks to above human performance levels. Additionally, RePR

was found to substantially outcompete state-of-the-art solutions and pre-

vent forgetting similarly to a model which rehearsed real data from previ-

ously learnt tasks. RePR achieved this without: increasing in memory size

as the number of tasks expands; revisiting previously learnt tasks; or di-

rectly storing data from previous tasks. Further results showed that RePR

could be improved by informing the generator which image features are

most important to retention and that, when challenged by a longer sequence
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of tasks, RePR would typically demonstrate gradual forgetting rather than

dramatic forgetting. Finally, results also demonstrated RePR can success-

fully be adapted to other deep reinforcement learning algorithms.
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Chapter 1

Introduction

1.1 Continual Learning

The ability to persistently learn over time, integrating new knowledge with previ-

ously learnt knowledge, is known as continual learning (or alternatively lifelong learn-

ing) (Parisi, Kemker, Part, Kanan, and Wermter, 2019; Thrun and Mitchell, 1995).

In particular, new information should be consolidated into long-term memory without

forgetting previously learnt knowledge.

One of the common continual learning tests used in machine learning is sequential

learning. This requires the model to learn a number of tasks in order, where the model

only has access to data from the task currently being learnt. After learning all of

the tasks, the model should be able to perform well on all of those tasks. Although

this problem seems relatively trivial, neural network models severely struggle as they

tend to only remember what they have most recently learnt. This thesis focuses on

overcoming this limitation so that neural networks can continuously learn.

Achieving continual learning in neural networks is important as experts believe it

is one of the conditions which need to be satisfied for accomplishing machine intelli-

gence (Legg and Hutter, 2007). Not only does human intelligence demonstrate the need

for continual learning but so does animal intelligence. For example, when observing

how cats learn by trial and error to escape from a puzzle box, Thorndike (1898) found

that the cats could recall the appropriate set of actions needed to escape the box even

after they had not been exposed to the task for months. Although it appears that

biological forms of intelligence avoid forgetting, this is not entirely the case because

the human brain still undergoes graceful forgetting of information which is deemed

irrelevant. For example, Pallier, Dehaene, Poline, LeBihan, Argenti, Dupoux, and
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Mehler (2003) discovered that Korean adults, adopted into French families as children,

showed no residual knowledge of the Korean vocabulary. Together, these psychological

results suggest that continual learning is an important hurdle to overcome for machine

intelligence, although it is acceptable for a continual learning system to demonstrate

small amounts of forgetting over long time periods.

Continual learning comes with a number of potential benefits for machine intelli-

gence; complex tasks could be made easier to learn when important building blocks

for the task have already been learnt, and information about multiple tasks could be

compressed into a single model by allowing it to share similar computations. There-

fore, achieving continual learning in neural networks is an instrumental step towards

effective machine intelligence.

1.2 Catastrophic Forgetting

Artificial neural networks are a very powerful computational model with the potential

to perform comparably to and in some instances better than biological brains. Neural

networks comprise a number of distributed units, connected by weights. These units

are usually arranged in a layered, feedforward structure where the presence of multiple

layers define a deep neural network. Neural networks learn by using backpropagation

to iteratively update their weights so that their performance on the current task is

improved. Due to the network’s distributed structure, knowledge of a task is stored

across all of the weights in the network. This means that when these weights are

updated while learning a new task, the knowledge of previously learnt tasks is quickly

overwritten. The neural network’s tendency to forget previous knowledge while learning

new knowledge is known as catastrophic forgetting (McCloskey and Cohen, 1989).

Carpenter and Grossberg (1988) suggested the analogy of a person moving city. The

person has learnt a lot of knowledge specific to the city they came from, such as optimal

routes between the city’s popular landmarks. When moving to the new city, they must

learn similar information specific to the new city. If the person went back to visit their

old home city, they should still remember how to navigate it. However, if catastrophic

forgetting had occurred, the person would have forgotten all previous knowledge of

their old home town and be lost in what should be a familiar city.

Neural networks generally rely on the training data being independent and identi-

cally distributed (i.i.d.). When training data is not i.i.d., catastrophic forgetting can

occur as the network will prefer recently learnt knowledge. In many training scenarios,
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using i.i.d. training data is easy, but there are still numerous instances where this

is difficult. For example, an autonomous agent which interacts with its environment

is required to learn from recent experiences. Without storing and reusing these ex-

periences, it is extremely unlikely for a stream of experiences to be i.i.d. This thesis

primarily focuses on solving catastrophic forgetting in reinforcement learning as it is

also difficult to ensure training data is i.i.d in this domain.

Ratcliff (1990) was one of the first to extensively examine the catastrophic forgetting

problem in neural networks. He trained small feed-forward networks to reproduce four-

element orthogonal vectors. The neural networks were trained on a subset of these

vectors to near perfect recall and then trained on a different subset of the vectors

to a similar standard. Following this, the neural network demonstrated very poor

reproduction of the initial set of vectors, thus catastrophically forgetting. Recall of

the initial items was generally a blend of the initial vectors with ones that had been

more recently learnt, demonstrating that the recent learning had interfered with the

network’s ability to reproduce those earlier vectors.

One simple but effective solution to catastrophic forgetting is to train a neural

network on all information (new and old) from scratch. However, the aim in continual

learning is to persistently learn overtime without guaranteeing that all previously learnt

data will be available when learning new knowledge.

1.3 Motivations

This thesis aims to solve the catastrophic forgetting problem in neural networks, al-

lowing the network to successfully learn new tasks without substantially forgetting

previously learnt ones. The thesis will predominantly focus on solving this problem in

the reinforcement learning domain. A further objective is to achieve this:

• with a consistent memory size that does not expand with the number

of tasks learnt - otherwise the model will not scale well to increasing task sizes.

• without revisiting previously learnt tasks - because this is not possible in

many domains. For example, in a real world reinforcement learning situation it

is unrealistic to assume the model can always control when it revisits previously

seen environments.

• without directly storing data from the previous tasks - because there

might be reasons (e.g. privacy, space requirements and biological realism) which
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do not allow data from previous tasks to be stored.

1.4 Proposed Approach and Contributions

This thesis works toward solving the catastrophic forgetting problem, so that continual

learning can be attained by deep neural networks. This research begins in the image

classification domain, later shifting into the more difficult reinforcement learning do-

main. Achieving continual learning in the reinforcement domain is a particular goal

of this thesis as it is a generic learning algorithm which could establish machine in-

telligence by having an agent learn beneficial behaviours through interacting with the

world and observing its effects, rather than another entity (e.g. a human) telling it how

it should behave, as occurs in supervised learning.

Continual learning is achieved in this thesis by extending earlier work in pseudo-

rehearsal (Robins, 1995). Pseudo-rehearsal is where prior knowledge is protected by

continuing to rehearse it while learning new information. Instead of rehearsing real

data from the previous tasks, pseudo-rehearsal suggests that this data can be usefully

approximated by sampling the outputs of the network in response to random inputs.

This approximated data is commonly referred to as pseudo-data or pseudo-items. While

effective in shallow networks (Robins, 1995), this pseudo-rehearsal method alone does

not counteract catastrophic forgetting in deep neural networks because the generated

data is not representative of complex, previously learnt tasks and therefore, does not

promote their retention.

The main contributions this thesis makes for solving the catastrophic forgetting

problem in deep neural networks are:

• Extending pseudo-rehearsal to deep neural networks by introducing a genera-

tive network. The training of this generative network is adapted so that it

also uses pseudo-rehearsal, resulting in a generator that can produce pseudo-

data that is representative of all previously learnt tasks. This method, termed

Pseudo-Recursal (Atkinson, McCane, Szymanski, and Robins, 2018a), prevents

catastrophic forgetting to a similar standard to rehearsing real data from previ-

ously learnt tasks and is designed so that it achieves the objectives specified in

Section 1.3 while sequentially learning image classification tasks.

• Extending pseudo-rehearsal and Pseudo-Recursal further so that it can still achieve

the objectives specified while sequentially learning reinforcement tasks. This is
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attained by incorporating a dual memory model with specific loss functions for

promoting the new task to be learnt successfully while still preventing forgetting

in this domain. This method, termed RePR (Atkinson, McCane, Szymanski, and

Robins, 2018b), is experimentally demonstrated to prevent catastrophic forget-

ting while sequentially learning reinforcement tasks.

• Extending RePR from learning with Deep Q-Learning to Actor-Critic meth-

ods along with experimental results demonstrating similar success in preventing

catastrophic forgetting.

• Providing experimental results demonstrating when a continual learner should

retain the value function so that it can further learn familiar tasks.

• Providing a method for improving the generative network used in RePR so that it

is specialised for continual learning. This is achieved by using information from

the continual learner to encourage the generator to produce pseudo-data that

promotes effective rehearsal (Atkinson, McCane, Szymanski, and Robins, 2019).

• Providing experimental results demonstrating RePR’s shortcomings while learn-

ing an extended series of tasks.

A git repository containing code which can be used to recreate the majority of this

thesis’ experimental findings can be found at https://bitbucket.org/catk1ns0n/

repr_public/src/master/.

1.5 Layout

The remainder of this thesis consists of the following five chapters:

• Chapter 2 introduces neural networks and how they are trained for continual

learning in both image classification and reinforcement learning. Then existing

methods are presented for preventing catastrophic forgetting in these two learning

domains. This research includes the basic pseudo-rehearsal method as well as

other competing methods. These methods are then compared to theories about

how continual learning is achieved in the human brain.

• Chapter 3 specifies how pseudo-rehearsal can be adapted for image classification

with deep neural networks. The importance of these improvements are experi-

mentally shown along with results demonstrating how this method compares to

other common approaches.
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• Chapter 4 outlines how this thesis’ pseudo-rehearsal method can be further

adapted into the reinforcement learning domain, along with results demonstrating

the method solving the catastrophic forgetting problem in reinforcement learning

and comparisons to other state-of-the-art approaches.

• Chapter 5 further investigates pseudo-rehearsal’s capabilities in the reinforce-

ment domain and further extends the model to improve its performance. This

chapter contains research on; how effective pseudo-rehearsal is for another pop-

ular type of deep reinforcement learning known as Actor-Critic methods; how

pseudo-rehearsal can be used to continue learning a task that has been partially

learnt; how the generative model can be designed specially for improving pseudo-

rehearsal; and how pseudo-rehearsal performs on longer task sequences.

• Chapter 6 concludes the thesis, giving some final remarks and suggesting future

work that could be done in this field.
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Chapter 2

Background

2.1 Neural Networks

2.1.1 Architecture

Artificial neural networks are a computing model loosely based upon the neuronal sys-

tem in the human brain. They are powerful models capable of achieving extraordinary

performance in a wide variety of challenging tasks including large scale image recog-

nition (He, Zhang, Ren, and Sun, 2016) and strategy board games like Go (Silver,

Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Pan-

neershelvam, Lanctot, et al., 2016). Neural networks are a distributed model made

from artificial neurons (Rosenblatt, 1957). Each artificial neuron takes a vector of

input values and returns a single output value determined by the weights, bias and

activation function of the unit. Mathematically, the output of an artificial neuron is

defined as:

o = σ(w · x+ b), (2.1)

where x is a vector of input values, w a vector of trainable weights with the same

length as x, b a single trainable bias weight and σ the activation function of the neuron.

There are many activation functions that may be used for these units, one of the most

common of these being the ReLU (Glorot, Bordes, and Bengio, 2011) function where

σ(a) = max(a, 0).

Separately these neurons are relatively weak. However, when organised into a single

model they become very powerful. Generally they are organised into fully-connected

layers, where each layer is made up of a number of artificial neurons and the input to
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each neuron is the output values from all of the previous layer’s neurons (or in the case

of the first layer, the model’s input values). All layers, besides the final output layer,

is known as a hidden layer, because it is hidden between the input and output of the

model. Input is fed forward through the layers of the network to the final output layer.

Even a two layer architecture (i.e. with one hidden layer), is powerful enough to solve

any non-linearly separable problem (Cybenko, 1989). This architecture is commonly

known as an artificial neural network (or neural network for short) and a neural network

with more than two layers becomes a deep neural network.

A special class of these networks which will be used extensively in this thesis is the

Convolutional Neural Network (CNN). This model was developed by LeCun, Bottou,

Bengio, and Haffner (1998) to resemble the visual system in biological brains, where

the brain processes the visual field by detecting small simple features from which larger

more complicated features are detected. These CNNs take spatial information, such as

an image, as input and process it through a number of layers. At first, the layers are

generally convolutional and max-pooling layers and then simple fully-connected layers

are usually used to map onto the output units. A diagram demonstrating the layers in

a CNN can be found in Figure 2.1.

Each neuron in a convolutional layer has trainable weights (also known as a filter)

connecting it to a localised area in the previous layer (or the input). Each neuron shares

the same trainable weights with a group of other neurons with the only difference being

the area of the previous layer the neuron is locally connected to. This means that the

groups of neurons that share weights are essentially looking for the same feature over

different localised areas of the input. There are multiple groups of neurons in each layer,

each group detecting a different feature and the output from each of these groups make

up a feature map. The feature maps are fed to the next layer as input so that more

complex features can be detected upon them. In practice, convolutional layers also use

activation functions and trainable bias weights which are shared within feature maps

and simply added to each of the feature map’s values.

Max-pooling layers often come after blocks of convolutional layers. These layers

simply downsample the feature maps outputted by the previous convolutional layer

by applying a window across each of the feature maps, outputting the largest value

found in each application of the window. Max-pooling layers downsample the feature

maps when their stride parameter (how far the windows move after each application) is

greater than 1 unit. Downsampling can similarly be achieved by a convolutional layer

by using a filter stride greater than 1 unit.
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Input Convolutional ConvolutionalMax-pooling Max-pooling Fully-connected Output

Figure 2.1: Diagram displaying the typical layout of a Convolutional

Neural Network. Each square in the convolutional layers represents a

feature map and the values of this feature map are calculated by ap-

plying the same filter across different spatial locations in the previous

layer. Each square in the max-pooling layers represents a downsam-

pled version of the corresponding feature map in the previous convo-

lutional layer and this is calculated by using the maximum value in

a window applied to different spatial locations in the previous layer.

The fully-connected and output layers are made of a number of units

which have weighted connections to every value outputted by the pre-

vious layer.

The first fully-connected layer has a number of units each connected by trainable

weights to every output value in the previous layer’s feature map. Later layers use

the typical fully-connected structure where each unit is connected to all units in the

previous layer.

2.1.2 Optimisation

The trainable weights in a neural network are initialised to random values. To solve

a problem, these weights need to be changed so that the network learns to output

desirable values. This is achieved by changing the weights to minimise a loss function.

More specifically, back-propagation is used to calculate the gradients for each weight

in the network with respect to the network’s loss on the training data (Rumelhart,

Hinton, and Williams, 1986). These gradients inform the network in which direction

the weights should be changed to minimise the loss function and thus, they are changed

very slightly in that direction. This process, termed stochastic gradient descent, is

repeated until the loss function has converged at either a global or a local minimum.
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Supervised Learning

In supervised learning, the goal of the neural network is to learn a training dataset

which contains input examples along with each of the desired outputs for these exam-

ples. A common example of supervised learning is image classification. Image clas-

sification has a neural network model learn to categorise which class a data example

belongs to. Let {X, Y } denote a dataset of input images and target output pairings.

The classification neural network is a decision function h(x; θ) and the weights of the

network θ are learnt by minimising a loss function, usually cross-entropy:

CE(ŷ, y) = −
C∑
i

yi log ŷi, (2.2)

where the target output y is a vector of C values, with each value representing the

probability of being in its corresponding class. ŷ = h(x; θ) for some input image x.

There are various continual learning scenarios which cause catastrophic forgetting to

occur in image classification; expanding a model by learning data from one or more new

classes or expanding the model’s knowledge of existing classes by learning different data

within the classes. The experiments in this thesis explore how to prevent catastrophic

forgetting when expanding the model by learning a number of new classes at once. The

new classes are from a different task which can be either similar to or dissimilar from

previously learnt tasks. This scenario will be referred to as sequential task learning

and is more specifically defined as learning a sequence of datasets D1, D2, ..., DT of

length T , where, during each learning session, the network can only directly train on

the current dataset. Each dataset Dt = {XCt
t , Y

Ct
t } contains only data from a set of

classes Ct not included in previous datasets, this is (C1 ∪ C2 ∪ ...Ct−1) ∩ Ct = ∅.

Reinforcement Learning

A reinforcement learning task is generally framed as a Markov Decision Process where

there is an agent learning to maximise its reward by interacting with an environment.

At each time step t, the agent receives the current state of the environment st ∈ S

and then selects an action to take from the set of all possible actions at ∈ A(st)
1.

This action is selected subject to the agent’s policy, which is a mapping between the

environment’s states and the action the agent has learnt to take when observing the

state. Based on this action and previously taken actions, the agent receives a reward

rt from the environment (either positive, negative or neutral) and is informed whether

1When the set of possible actions is consistent across all states this can be simplified to at ∈ A.
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Figure 2.2: Summary of the interaction between the agent and the

environment in a Markov Decision Process.

or not this action caused the environment to be terminal (end) dt. If the environment

was not terminal, it then transitions to a new state st+1. A diagram summarising the

interaction between the agent and the environment in a Markov Decision Process can

be found in Figure 2.2.

In this thesis, reinforcement learning is extended into a continual learning problem

by requiring the agent to learn a sequence of environments E1, E2, ..., ET of length

T , where, during each learning session, the agent’s network can only directly train on

the current environment. The difference between these environments can be simple, for

example, flipping the rules for receiving positive and negative rewards, or the difference

can be major, such as having completely different observable states and different rules

for receiving rewards.

Q-learning is a reinforcement learning algorithm which maps each possible state-

action pair to a Q-value which represents the expectation of the discounted reward of

taking that action. This is,

Q : S × A→ R, (2.3)

Rt =
T∑
t′=t

γt
′−trt′ , (2.4)

where S is the collection of possible states and A is the collection of possible actions.

Rt is the discounted reward for time t, rt is the reward received at that time, T is the
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time step that the episode terminates at and γ is a discount factor where 0 ≤ γ ≤ 1.

In Q-learning, the Q function is represented with a lookup table. However, Q-

learning does not scale effectively when the number of actions or possible states is very

large. Deep Q-learning (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves,

Riedmiller, Fidjeland, Ostrovski, et al., 2015) avoids this limitation by replacing the

lookup table with a non-linear function approximator. This non-linear function ap-

proximator is a deep neural network and is referred to as a Deep Q-Network (DQN).

The loss function used in deep Q-learning is:

LDQN = E(st,at,rt,dt,st+1)∼U(B)

[(
yt −Q(st, at; θt)

)2
]
, (2.5)

yt =


rt, if dt

rt + γmax
at+1

Q(st+1, at+1; θ
−
t ), otherwise

(2.6)

where there exist two Q functions, a deep predictor network and a deep target network

with the weights θt and θ−t respectively. The weights of the predictor are continuously

updated by stochastic gradient descent and the weights of the target network are

infrequently updated with the values of θt. (st, at, rt, dt, st+1) ∼ U(B) is the state,

action, reward, terminal and next state that is drawn uniformly from a large record

of previous experiences, known as an experience replay. Drawing samples from this

experience replay allows the network to be learning from i.i.d. data and thus, prevents

it from forgetting how to respond in less recent states.

Off-policy learning is where a policy is improved with data that is generated from

a different policy; in this case, the next action in the loss function is selected greedily

from the target network, whereas the agent selects actions (generating the data) using

an ε-greedy policy (Sutton and Barto, 2017). In deep Q-learning, an ε-greedy policy

selects a random action with the probability of ε, and otherwise selects the action by

passing the current state through the predictor network and selecting the action with

the highest Q-value associated with it. Bootstrapping is where an update is made using

an estimated value; in this case, the estimated Q-value of the resulting state (Sutton

and Barto, 2017).

A reinforcement algorithm that uses function approximation, bootstrapping and

off-policy learning together (known as the deadly triad (Sutton and Barto, 2017)) is in

danger of instability and divergence. To counter the effects of this, deep Q-learning uses

the addition of experience replay, infrequently updating the target network and clipping
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error gradients between [−1, 1] to achieve Q-learning in a deep network. The original

DQN paper (Mnih et al., 2015) demonstrated the model individually learning a large

number of Atari 2600 games, many of them to a standard above human expertise.

There have also been many variations of DQNs such as Double DQN (Van Hasselt,

Guez, and Silver, 2016), Prioritised Experience Replay (Schaul, Quan, Antonoglou,

and Silver, 2016) and the Dueling Architecture (Wang, Schaul, Hessel, van Hasselt,

Lanctot, and de Freitas, 2016). However, these improvements are for learning a single

task more effectively and thus, they all suffer from catastrophic forgetting.

2.2 Catastrophic Forgetting

This section will focus on existing methods for preventing catastrophic forgetting in

neural networks. Many of these methods rely on keeping a copy of the neural network

before it learns the new task (often referred to as the previous network), as this copy

should be a reasonable example of how to retain previously learnt tasks. There are

two main strategies for avoiding catastrophic forgetting. The first strategy is to restrict

how the network is optimised. Generally this involves either constraining the network’s

weights to yield similar values compared to when the network had learnt previous tasks

(i.e. methods that use weight constraints) or introducing units trained only on specific

tasks (i.e. methods that use task specific weights). The second strategy is to amend

the training data to be more representative of previous tasks. This thesis builds upon

pseudo-rehearsal which falls into the latter category of amending the training dataset.

Lopez-Paz and Ranzato (2017) proposed that a measure called forward transfer

and backward transfer should be taken into account in continual learning experiments.

Backward transfer measures what effect learning the current task has on previously

learnt tasks. When backward transfer is positive, performance in previous tasks is

increased due to learning the new task. However, when it is negative, performance

on previously learnt tasks is decreased and this decrease is otherwise known as catas-

trophic forgetting. Forward transfer measures what effect previously leant tasks have

on learning the current task. Positive forward transfer increases performance in the

current task and negative forward transfer decreases performance in the current task.

Forward transfer is also important when attempting to overcome catastrophic forget-

ting as it is possible to retain complete knowledge of previously learnt tasks by simply

not learning anything from later tasks. However, this is not an acceptable solution as a

continual learner must be able to consolidate new knowledge into its current knowledge
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and thus, it is important to be able to learn new tasks while also retaining previous

ones.

2.2.1 Preventing Catastrophic Forgetting by Restricting the

Optimisation of the Network

Knowledge is retained in a neural network across all of the network’s weights so

that the network’s output is the contribution of all weights rather than a select few.

Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov, 2014) was

proposed to increase the capability of a neural network to generalise to unseen input

examples by compensating for noise in the network’s activation patterns. This was

achieved by multiplying intermediate layers’ activations by a binary mask so that a

proportion of the units’ outputs were set to zero regardless of the input. This binary

mask was set randomly for each input and therefore, it forced the neural network to

compensate for noise, relying less heavily on specific neurons in the network provid-

ing useful information about the task. Goodfellow, Mirza, Xiao, Courville, and Bengio

(2014) have used dropout to prevent catastrophic forgetting by introducing redundancy

into a neural network. They found that, regardless of the task, it was always beneficial

to use dropout to limit catastrophic forgetting. Goodfellow et al. (2014) also investi-

gated how the choice of activation function resulted in catastrophic forgetting but did

not identify a single activation function which best prevented catastrophic forgetting

across multiple tasks.

Learning without Forgetting (Li and Hoiem, 2018) is another method for preventing

catastrophic forgetting which utilises dropout and knowledge distillation. Knowledge

distillation teaches a student network how to solve a task by training it to produce the

same output patterns as a teacher network does on input examples from the task (Hin-

ton, Vinyals, and Dean, 2015). The teacher network has already been trained on the

task and thus, it is a method for passing its knowledge to another neural network. This

method was originally used for compressing knowledge of a task from a large teacher

network to a smaller student network.

In Learning without Forgetting, a continual learning network learns the new task

while retaining knowledge from previous tasks with knowledge distillation. Before

learning the new task, the continual learning network is copied and this copied network

is used as the teacher. Distillation is used to teach the continual learner (i.e. the

student) to produce similar output patterns as the teacher on certain input examples,
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while the network also learns the new task. In sequential learning, the network should

not have access to the previous dataset and thus, the input examples used for knowledge

distillation are actually examples from the new task. More specifically, the continual

learner is taught to produce the real target outputs for the training examples, along

with additional output patterns (corresponding to previous tasks) given by the teacher.

Effectively, this constrains the network’s weights to learn the new task while trying to

retain its computations on previous tasks. However, this is only effective when the

new task’s dataset is similar to the previous tasks, so that the output patterns used in

knowledge distillation are meaningful. In Learning without Forgetting, there is a set of

output units which learns the current task, along with a set of separate output units for

each previously learnt task. This is disadvantageous because it means that the model

must increase in size as the number of tasks increases2. However, Kim, Kim, and Lee

(2018) addressed this by manipulating the model so that it only has two sets of output

units, one for all previous tasks and another for the task currently being learnt.

Similar to Learning without Forgetting, Jung, Ju, Jung, and Kim (2018) have at-

tempted to overcome catastrophic forgetting by restricting the network to have similar

hidden layer activation patterns to the previous network. More specifically, the fi-

nal linear layer of the neural network is frozen after learning the first task and then

subsequent tasks are taught by constraining the neural network’s final hidden layer

activations to be similar to the previous network’s activations for the new task’s input

examples. This constrains the network to learn the new task while reusing features

that the previous network has already learnt to detect. The main disadvantage with

this method is that it assumes that the new task can be effectively learnt while reusing

the last linear layer in the network along with similar features detected by the last

hidden layer of the previous network.

The research presented so far has been predominantly tested on image classifica-

tion problems, but Elastic Weight Consolidation (EWC) (Kirkpatrick, Pascanu, Rabi-

nowitz, Veness, Desjardins, Rusu, Milan, Quan, Ramalho, Grabska-Barwinska, et al.,

2017) is arguably the most popular method in this category that has been tested in

supervised learning (notably image classification) and reinforcement learning. EWC is

a weight constraint method that evaluates the importance of each weight in a neural

2This is acceptable when sequentially learning tasks whose outputs represent different concepts (e.g.

new classes) across the tasks. However, when sequentially learning tasks whose outputs represent the

same concepts across the tasks, a model should ideally be capable of sharing its output units across

all tasks, remaining a constant size.
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network for determining its output. If the weight can change the output of the net-

work drastically, it is considered important to the task. Important weights should be

changed as little as possible when learning the new task, so that previous tasks can be

retained. Less important weights can be changed more significantly so that the new

task can be learnt.

EWC implements its weight constraint by penalising the loss function for changing

the network’s weights from the values learnt in the previous task. This weight change

is multiplied by the weight’s importance value so that important weights are penalised

more. More specifically, the final loss function is:

L = LN +
λ

2
LEWC (2.7)

LEWC =
∑
j

Fj(θj − θ∗j )2, (2.8)

where LN is the loss for learning the new task (e.g. cross-entropy), λ is a scaling factor

determining how important the constraint is, the current network’s weights are θ, the

previous network’s weights after learning the previous task are θ∗ and j iterates over

each of the weights in the network. Fj is an approximation of the importance of each

weight in the network to the network’s output; these are the diagonal elements in a

Fisher information matrix.

For a network with a linear output layer, such as a DQN, the Fisher information

matrix is calculated by approximating the posterior as a Gaussian distribution using

the optimal weights after learning a previous task θ∗j as the mean and β = 1 as the

standard deviation. The precise calculation of this matrix is taken from Pascanu and

Bengio (2014):

F = β2Ex∼q̃[JT
y Jy], (2.9)

where an expectation is calculated by drawing inputs x from some distribution q̃. Jy

is the Jacobian matrix ∂y
∂θ

for the output activation y.

When the standard EWC implementation is extended to more than two tasks, a

separate penalty is added for every task. This means the current network weights are

constrained to be similar to the weights after learning the first task and the weights

after sequentially learning the second task and so on.

MNIST (LeCun, Cortes, and Burges, 1998) is an image classification dataset con-

taining images of small handwritten digits from 0 to 9. Each of the images are labelled
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with a class representing which digit is written. In continual learning, a variation of

this dataset known as permuted-MNIST is used. This is where a model is iteratively

taught to classify the images into the 10 classes. At each iteration, the pixels in the im-

ages are scrambled into a random order, consistent between all images, and the model

is required to remember how to classify the task into the same 10 output units for all

previously learnt permutations. EWC was found to perform very well on this task, even

on 10 different permutations of MNIST, whereas dropout’s performance deteriorated

drastically. However, Kemker, McClure, Abitino, Hayes, and Kanan (2018) found that

EWC did not perform as well when tasks were very similar or in an incremental class

learning setup where new tasks mapped onto different output units than previous tasks.

EWC has also been investigated in the reinforcement learning domain. Here, the

model is sequentially taught to play a number of old arcade style Atari games where an

increase or decrease in the arcade game’s score translates to the reward or punishment

received in reinforcement learning. EWC has been tested in this domain by training

a single DQN (Mnih et al., 2015) to play a total of 10 games, only ever training the

network on a single game at a time but allowing the network to revisit previously seen

games and further train on them. In these experiments, the network used by EWC

was further restricted by giving the network an additional two weights per unit which

were specific to the task being learnt/tested, such that the training of the network was

restricted to only optimising the weights specific to the current task along with weights

shared across all tasks. Although EWC prevented some catastrophic forgetting, it still

clearly suffered from it, as many games had sharp dips in performance which were only

recovered by further training on the game.

EWC is a very popular method which many researchers have suggested improve-

ments for. For example, Chaudhry, Dokania, Ajanthan, and Torr (2018) found that, at

a local minimum, gradients are very small and thus, so are the Fisher values and there-

fore, a very large λ hyper-parameter is necessary to mitigate catastrophic forgetting.

Therefore, authors suggested that EWC could be combined with Path Integral (Zenke,

Poole, and Ganguli, 2017) so that the algorithm was less dependant on this hyper-

parameter selection. Furthermore, Hong, Li, and Shin (2019) found that if the network

learnt only images from the new task which were being classified the most incorrectly,

this had the potential to reduce training time and further minimise the catastrophic

forgetting problem.

One major disadvantage with EWC is that the weights after learning each of the

previous tasks must be stored to calculate how much the current set of weights differ
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from these values. Therefore, a better and less complex solution to this problem would

be to have a separate set of weights for every single task. Furthermore, either data from

previously learnt tasks needs to be stored so that the Fisher information matrix can be

calculated for each of the previous tasks or a precomputed matrix needs to be stored for

each previously learnt task. However, the Progress and Compress algorithm (Schwarz,

Luketina, Czarnecki, Grabska-Barwinska, Teh, Pascanu, and Hadsell, 2018) suggests

that EWC can be modified so that the aforementioned space requirements do not scale

with each new task. This modification, known as online-EWC, stores only the most

recently learnt network’s weights along with a discounted sum of previously calculated

Fisher information matrices. Inherently, this prefers the retention of more recently

learnt tasks, encouraging the gradual forgetting found in biologic neuronal systems.

Online-EWC replaces the LEWC constraint in Equation 2.7 with:

LOEWC =
∑
j

F ∗j (θj − θ∗j,i−1)2, (2.10)

where the optimal weights after learning the most recent previous task are θ∗i−1 and

the single Fisher information matrix F ∗ is updated by:

F ∗ = γF ∗i−1 + Fi, (2.11)

where γ is a discount parameter (0 ≤ γ ≤ 1) and i represents the index of the current

task. Min-max normalisation is used on the Fisher information matrices before addition

so that the importance of the weights are not affected by the differing reward scales of

the games.

The Progress and Compress algorithm was also improved by introducing a dual

memory system where two neural networks exist; one which focuses solely on learning

the new task and the second which learns the new task while also retaining knowledge

of the previous tasks. The second network is taught to perform the new task by the

first network using distillation, while also being constrained to remember previous tasks

through online-EWC. When the new task is being learnt by the first network, there

are layer-wise connections from it to the second network which aim to encourage it to

utilise features which have already been learnt in previous games.

Progress and Compress has been taught how to play Atari 2600 games similar to

the previously mentioned EWC. It was taught to play 6 Atari games with a schedule

that also restricted it to learning from one game at a time but allowing previously

learnt games to be revisited for further learning. No task specific weights were added
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to the network, but the network was only required to remember the policy function.

A policy function describes only how the agent should act in a game, which is less

complex to learn than the Q-values learnt in the EWC paper. Progress and Compress

showed promising retention of previous tasks, suggesting it could be used to overcome

some of the limitations of EWC.

Other weight constraint methods (Kaplanis, Shanahan, and Clopath, 2018; Kobayashi,

2018) have been proposed and tested in reinforcement learning. However, these meth-

ods have only been tested on relatively simple reinforcement learning tasks compared

to the set of Atari 2600 games and therefore, do not demonstrate as promising results.

The previously mentioned methods have primarily focused on constraining weights

to remain similar to their previous values. Solutions to catastrophic forgetting have

also focused on optimising selective weights depending on the current task. This can

be done by applying hard restrictions, like using task specific weights, but can also be

achieved through weaker restrictions. For example, Coop, Mishtal, and Arel (2013)

suggested adding a Fixed Expansion Layer between the hidden layer and the output

layer of a neural network. This layer was designed so that only a select number of its

units would be activated for a particular learning example. This restricted the input

to the hidden layer and reduced how drastically the hidden layer weights updated in

response to new information, as only a portion of the error signal was passed backward

through back-propagation. When combined with ensemble learning, this method was

found to counteract catastrophic forgetting in incremental image classification.

Wen and Itti (2019) present a method which uses hard restrictions, this is the

addition of task specific weights, so that selective weights are only optimised for a

particular task. More specifically, the network includes neurons called memory units

which have weights specific to each image classification task taught. These weights are

trained with a method inspired by adversarial attacks3 so that they bias the network

toward classifying the examples within that task correctly. Furthermore, authors use

EWC in this method to constrain non-task specific weights to retain some knowledge

of previous tasks.

Progressive Neural Networks (Rusu, Rabinowitz, Desjardins, Soyer, Kirkpatrick,

Kavukcuoglu, Pascanu, and Hadsell, 2016) are a well-known method for overcoming

3An adversarial attack is where a small amount of noise is added to an input example (e.g. image).

Although this noise is not detectable by a human, it can fool a neural network into being very certain

that the example is from an incorrect class and, without the noise, the network is very certain of its

correct class.
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catastrophic forgetting in complex reinforcement learning tasks including Atari games.

This model begins with a typical neural network which learns the first task. When a

new task appears, the current network is frozen and a new network is initialised. Each

layer in this new network has weights connecting its units to those in the previous

layer along with units in the respective layer of all previously learnt neural networks.

Essentially, this creates a structure whereby a new network can learn the new task,

while also making use of processing done by the previous tasks’ networks. Because

optimisation is restricted to weights in the current network, the previous network’s

weights do not change and thus, cannot catastrophically forget the previous tasks.

The main disadvantage of this network is that its memory requirements dramatically

grow as further networks are required with the addition of each new task.

Although it is well-known that in infants the brain rapidly creates new neurons,

research suggests that in adulthood the production of neurons in areas related to mem-

ory slows to undetectable levels (Sorrells, Paredes, Cebrian-Silla, Sandoval, Qi, Kelley,

James, Mayer, Chang, Auguste, et al., 2018). Therefore, human intelligence appears to

be capable of avoiding catastrophic forgetting while learning new knowledge without

an abundance of new neurons needing to be incorporated into its network. This fur-

ther supports that machine intelligence should be capable of overcoming catastrophic

forgetting without requiring these task specific neurons.

2.2.2 Preventing Catastrophic Forgetting by Amending the

Training Data

Perhaps one of the simplest solutions to catastrophic forgetting is what is known as

rehearsal (Ratcliff, 1990). This is where the training datasets of previously learnt tasks

are either fully or partially kept so that their previous examples can be interleaved with

examples from the new task. Continuing to learn previous examples forces the network

to retain its previously learnt knowledge when integrating the new task. There are

many variations of rehearsal methods which have been used in both image classification

and reinforcement learning. One of these variations is the pseudo-rehearsal approach

which is used in this thesis. This section will begin by introducing a variety of rehearsal

approaches in image classification and then reinforcement learning. Following this,

several pseudo-rehearsal approaches will be described in both image classification and

reinforcement learning.

It is also popular to use Knowledge Distillation in rehearsal methods, although it is
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used to remember the previous task rather than teach the new task. This is achieved

by storing input examples from previous tasks and then passing them through the

previous network to attain the desired output values. The new network is then taught

to produce the desired outputs from the input examples. Typically, a variation of

the cross-entropy loss function is used with Knowledge Distillation. However, Kim,

Bae, Jo, and Choi (2019) suggested that it was beneficial to use the Maximal Entropy

Regulariser. This loss function does not overfit as severely to the data and, because the

previous model’s output on the examples can be incorrect, the network should avoid

over-optimising on incorrectly classified data. Authors further extend their method by

excluding examples from the new task’s dataset from being learnt. This begins in a

random manner but is later done by excluding high certainty samples so that uncertain

samples can be focused on during later training.

The major disadvantage with rehearsal methods is that they require data from

the previous tasks to be stored. Zhang, Zhang, Ghosh, Li, Tasci, Heck, Zhang, and

Kuo (2020) argued that this was not necessary if generic, diverse and related data

could be collected for consolidation, for example, by trawling the internet. In this

model, a new neural network is initialised and taught the new task. After training,

distillation is used to teach the new task to another newly initialised network, while also

transferring knowledge from another teacher neural network which contains knowledge

of all previously learnt tasks. This is done without using any real data but rather, a

large number of unlabelled examples classified by the teacher networks. This results

in the student network containing knowledge of the current task along with previously

learnt tasks. Surprisingly, authors found distillation with the L2 loss function to be

more successful than typical cross-entropy variations.

Another way to minimise the main disadvantage of rehearsal methods is to only

store a subset of the data from previously learnt tasks. For example, Lopez-Paz and

Ranzato (2017) exploit the gradients from previously learnt samples while picking a

subset of examples that best represents the learnt datasets. This idea has also been

utilised in reinforcement learning. Isele and Cosgun (2018) explored different strate-

gies for selecting samples to later use in rehearsal. The strategies investigated were:

favouring surprise, favouring reward, matching the global training distribution and

maximising the coverage of the state space. In general, catastrophic forgetting was

most consistently prevented by selecting samples which matched the global training

distribution, which was achieved by simply selecting samples randomly from the train-

ing data/stream.
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Another popular rehearsal algorithm in reinforcement learning is PLAID (Berseth,

Xie, Cernek, and Van de Panne, 2018). In PLAID, two neural networks are used; one

for learning the new task and the other for remembering all previously learnt tasks.

When a new task is presented, the first network is initialised with the weights from

the latter network and then taught the new task. It does not matter that this network

will forget previously learnt tasks, as long as it can learn the new task while preferably

reusing some of the knowledge from past tasks that it was initialised with. After

this, the policy learnt by the two networks is merged via distillation so that the new

network contains the policy from each task seen so far. This distillation step requires

data from previously learnt tasks and is therefore, preventing catastrophic forgetting

with rehearsal. Rehearsal methods have also been combined with optimisation based

meta-learning so that transfer is maximised and interference is minimised, reducing

catastrophic forgetting (Riemer, Cases, Ajemian, Liu, Rish, Tu, and Tesauro, 2019).

Similar distillation methods have also been applied to a set of Atari games in multi-

task learning. In multi-task learning, the goal is to teach a neural network multiple

reinforcement learning tasks using a number of pre-trained neural networks each spe-

cialised in an individual task (Rusu, Colmenarejo, Gulcehre, Desjardins, Kirkpatrick,

Pascanu, Mnih, Kavukcuoglu, and Hadsell, 2016; Parisotto, Ba, and Salakhutdinov,

2016). However, in multi-task learning the network is being taught the games simul-

taneously and therefore, catastrophic forgetting is not an issue.

CLEAR (Rolnick, Ahuja, Schwarz, Lillicrap, and Wayne, 2019) is a rehearsal method

which could overcome catastrophic forgetting in sequential reinforcement learning where

the task boundaries are not known. This algorithm was tested on the same set of Atari

games used by the Progress and Compress algorithm. The method used a data store,

containing an even distribution of previously seen samples. A reinforcement loss func-

tion was used so that the network learnt how to maximise its reward on new samples

from the current task as well as stored samples from the current and previous tasks.

To further prevent catastrophic forgetting, two more loss functions were introduced.

The first loss function used KL divergence to constrain the network to produce similar

policy values for a stored sample that it had historically been given by the continual

learner. The second used L2 loss to constrain the network to produce similar state

values for a stored sample that it had historically been given by the continual learner.

These state values were the cumulative reward expected to be gained by the current

policy for a given input state. The authors’ CLEAR method was found to perform

comparably against the more complicated Progress and Compress algorithm on the set
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of Atari games.

Robins (1995) proposed pseudo-rehearsal, a method which did not store data from

previous tasks4 and instead rehearsed pseudo-items which were generated when re-

quired. Similar to examples in a training dataset, pseudo-items contain an input pat-

tern to be passed to the network and a desired output pattern which the network should

learn to return from the given input. A pseudo-item’s input pattern is generated with

a simple random number generator so that it represents the whole distribution of real

input examples. The pseudo-item’s output pattern is calculated by passing the pseudo-

input pattern through the network before it begins learning the new task. A collection

of these pseudo-items can then be rehearsed while learning the new task so that the

network is encouraged to learn the new task without severely changing its output on

other inputs.

More specifically, pseudo-rehearsal can be formularised as:

L = LN + LPR (2.12)

LN = L(h (x; θi), y) , (2.13)

LPR = L (h(x̆; θi), y̆) , (2.14)

where the final loss function L is the sum of the loss function used for learning the new

task LN and the loss function used for retaining previous tasks with pseudo-rehearsal

LPR. Furthermore, L is a loss function, such as cross-entropy, which is used to learn

and retain each task. h is a neural network with weights θi while learning task i. x, y

is the input-output pair for an item from the current task, whereas x̆ is a pseudo-

item generated by a random number generator (e.g. U(0, 1)) and its target output is

calculated by y̆ = h(x̆; θi−1).

Pseudo-items are generated so that they cover the space of possible inputs for

previous tasks. Therefore, pseudo-items represent the network’s function across the

whole input space. When the network is changed to accommodate a new task, these

changes are made as local as possible to the input space of the new task so that it

is learnt without disrupting how the network responds to the remaining areas of the

input space, including areas belonging to previously learnt tasks (Robins and Frean,

4Early work focused on remembering/reproducing input patterns (or small sets of patterns) taught

iteratively to the network, but for simplicity these will be referred to as separate tasks.
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1998). In linear networks, this has been proven (under fairly general conditions) to be

achieved by pseudo-items ‘orthogonalising’ weight changes so that updating weights

for a new training item does not tend to change the outputs of the network for other

inputs (Frean and Robins, 1999).

Early research around pseudo-rehearsal has proposed dual memory approaches to

the problem, similar to the aforementioned Progress and Compress method. In French

(1997), two neural networks exist. The first network learns examples from the new

task along with learning pseudo-items produced by passing random inputs through the

second network during training. After learning the new task and pseudo-items to a

criteria, the weights of the network are then copied across to the second network so

that the first network is available for learning future tasks. Authors also showed that

this copy and paste of weights could be replaced by generating pseudo-items from the

first network and using these to teach the new information to the second long-term

network, a technique similarly used in Ans and Rousset (1997).

Silver, Mason, and Eljabu (2015) developed a context-sensitive Multiple Task Learn-

ing (csMTL) network which extended previous works (Fowler and Silver, 2011; Silver

and Poirier, 2004; Silver and Mercer, 2002) by aiming to more efficiently retain previ-

ously learnt classification tasks through pseudo-rehearsal. The csMTL neural network

is a feedforward network which shares its output with all tasks being learnt and has

its input split into two parts. One part is the standard input variables from the task.

The second part is a set of context variables, which are used to identify the task being

learnt. When learning a new task, the model uses pseudo-rehearsal to retain knowledge

from previous tasks. Pseudo-inputs are generated using a random number generator

and statistics on the probability distribution of each of the previous task’s input vari-

ables. Importantly, these statistics are used to improve the quality of the pseudo-items

being rehearsed. Silver et al. (2015) improved the efficiency of the csMTL network by

applying the sweep rehearsal method, originally developed by Robins (1995). Sweep

rehearsal suggests that when using large batches of training data to learn a new task,

it is only necessary to rehearse a very small batch of items from previous tasks to

retain them. To achieve this, the small batch of previous items needs to be dynamic,

such that over the course of training, the network has still rehearsed a large number

of unique items from the previous tasks. Consequently, Silver et al. (2015) found their

csMTL model could more efficiently learn various task sequences, including a synthetic

dataset consisting of 20 tasks.

In Section 3.3 we demonstrate that using simple random number generators does not
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result in effective pseudo-items when the input space is large and complex5. This is be-

cause the curse of dimensionality (Bellman, 1966) means there is a negligible probability

of generating a pseudo-input example within the subspace of previously learnt tasks.

Therefore, random number generators cannot realistically be used to collect enough

data representative of previous tasks to achieve retention with pseudo-rehearsal. This

becomes a major problem in sequential image classification and reinforcement learning

because the tasks learnt often have large, complex input spaces. Improving the quality

of pseudo-items is one of the problems overcome in this thesis.

Draelos, Miner, Lamb, Cox, Vineyard, Carlson, Severa, James, and Aimone (2017)

overcame a similar problem while incrementally learning to reconstruct digits from the

MNIST dataset using an auto-encoder. When a new class was detected, their model

could expand by adding neurons into the architecture to facilitate learning the new

class. They also generated pseudo-items which could be rehearsed alongside the new

items to prevent forgetting. This was achieved through a process they called intrinsic

replay, which randomly generates input for the auto-encoder based on prerecorded

statistics about the encoder’s output for previous classes. Passing this through the

decoder produced an image representative of a previously learnt class.

Intrinsic replay has been used in FearNet (Kemker and Kanan, 2018) to achieve

continual learning in image classification and audio classification. Their model splits

learning into a dual memory system. The short-term component stores data from new

tasks which are later consolidated into the long-term component alongside previously

learnt information. The long-term component contains an auto-encoder which is part

of the classification network but is also used to generate pseudo-items representative

of previous tasks through intrinsic replay. These pseudo-items are learnt alongside

new items to prevent forgetting. The long-term component is trained by minimising

the classification error along with the reconstruction loss between each layer in the

encoder and its corresponding layer in the decoder. When the model is queried about

a particular input example, a third component is used to decide whether to use the

short-term or long-term component for classification.

Mellado, Saavedra, Chabert, and Salas (2017) used pseudo-rehearsal to prevent

catastrophic forgetting while a convolutional neural network learnt the first 5 digits

5Recently, Silver and Mahfuz (2020) showed that using pseudo-items produced by simple random

number generators can also impair pseudo-rehearsal in tasks with as few as 3 input variables. However,

the resulting CF shown in this small input space is substantially less than the CF this thesis finds in

a large input space.
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from the MNIST dataset, followed by the remaining 5 digits. A recurrent auto-encoder

was used to randomly generate pseudo-items which were representative of the first 5

digits so that they could be rehearsed while learning the later digits. For each of the

first 5 digits, the mean and standard deviation of each pixel location is stored. When

generating a pseudo-item from a class, the class’s mean and standard deviation for

each pixel location is used to construct an image from a normal distribution. This

image is inputted to the recurrent model, which then refines the input into an image

representative of that class. A similar idea had been employed on a much simpler

task by Ans and Rousset (1997), who had connections so that they could pass back

and forward random inputs within their model to improve their representability. One

disadvantage with Mellado et al. (2017)’s model is that it grows in size when a new

class is learnt because a new mean and standard deviation must be stored for each

pixel location in the new class’s images. The variation between a class’s images in

MNIST is relatively small compared to real world tasks and many other popular image

classification datasets and therefore, using the mean and standard deviation for each

pixel location is unlikely to be effective in more complicated problems. Also, the

authors’ model spends time checking and discarding any pseudo-image generated which

the network is less than 95% confident belongs to a learnt class.

Prior to the work presented in this thesis, pseudo-rehearsal had been scarcely ap-

plied to reinforcement learning, especially in sequential learning. Outside of sequential

learning, however, a form of catastrophic forgetting usually occurs when a network

learns a single reinforcement task. This is because the states the network are presented

with are typically not i.i.d. as the state returned from the environment is usually

more closely related to the state from the previous time step than much earlier states.

Therefore, a reinforcement learning algorithm will often optimise to recently seen states,

catastrophically forgetting what it has learnt about less recent states. One common

solution to this problem is to store the states in a large buffer and randomly sample it.

However, some researchers have overcome this problem with pseudo-rehearsal, where

the neural network learns the new state while rehearsing pseudo-items generated from

some simple distribution (e.g. uniform distribution) (Marochko, Johard, and Mazzara,

2017; Baddeley, 2008; Marochko, Johard, Mazzara, and Longo, 2018). However, these

methods have only been applied to simple reinforcement tasks where states could be

represented by simple methods of random sampling.

Given the previously stated motivations, this thesis accepts the Progress and Com-

press method to be the state-of-the-art solution to catastrophic forgetting, particularly
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in the reinforcement domain. Therefore, this thesis will compare Progress and Com-

press with pseudo-rehearsal. Other methods which restrict the optimisation of the

network either underperform compared to the Progress and Compress method or over-

come catastrophic forgetting by adding units to the architecture, scaling its memory

requirements as the number of tasks increases. Therefore, these methods are not com-

pared in this thesis, except for EWC because of its similarity to the Progress and

Compress method.

Before this thesis’ work, there was no available research using pseudo-rehearsal

to solve complex reinforcement learning problems to compare to. Instead, there was

only research amending the dataset with real data from previously learnt tasks for

rehearsal. While these methods will presumably outperform pseudo-rehearsal, they

require the storage of real data and therefore, this thesis will not compare pseudo-

rehearsal to a range of such methods. Instead, this thesis will only compare pseudo-

rehearsal to the generic rehearsal strategy to provide a baseline demonstrating how

well pseudo-rehearsal could perform if its generator could produce pseudo-items which

are indistinguishable from real data.

2.2.3 Synaptic Stability vs. Synaptic Plasticity

In real neuronal circuits it is unknown whether memory is retained through synap-

tic stability or synaptic plasticity (Abraham and Robins, 2005; Gallistel and Matzel,

2013; Abraham, Jones, and Glanzman, 2019). The synaptic stability hypothesis states

that memory is encoded by the weights between units and therefore, these weights

should be fixed to retain knowledge. This implies that it is also important to retain

the same activation patterns being passed throughout the whole neural network to its

output layer. The synaptic plasticity hypothesis states that it does not matter how the

memory is encoded, as long as the correct output pattern is still produced after chang-

ing the weights between units. Therefore, the synaptic plasticity hypothesis assumes

that activation patterns between input and output units do not have to remain similar

to retain knowledge. Methods restricting the optimisation of the network (includ-

ing weight constraint methods) align with the synaptic stability hypothesis, whereas

methods amending the training dataset with more representative samples (including

pseudo-rehearsal methods) align with the synaptic plasticity hypothesis.

For example, EWC pressures the important weights in a neural network to remain

similar. This aligns with the synaptic stability hypothesis as this pressure forces con-

nections in the network to remain the same so that they pass similar activation patterns
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through the layers, eventually reaching the output layer. In contrast, pseudo-rehearsal

aligns with the synaptic plasticity hypothesis because it only constrains the output of

the neural network to remain similar for inputs representative of the previous tasks.

This results in the network having the freedom to change the network’s weights and

thus, activations of intermediate layers, to whatever best encodes the new information

alongside previous information.

Methods that align with the synaptic stability hypothesis are very rigid and can be

thought of as splitting the network into separate pathways, where different subsets of

weights are important for performing different tasks. Although some sharing may exist,

there is arguably little difference with training separate networks on each task. The

major advantage of methods aligning with the synaptic plasticity hypothesis is that

they give the network the flexibility to restructure its weights and compress previous

representations to make room for new ones. This is significant because neural networks

are inherently a distributed model and therefore, knowledge is, to a degree, encoded

across all the network’s weights and so a drastically different encoding needs to be found

to truly incorporate new knowledge without forgetting. Effective sharing of weights

could also importantly lead to more generalisable features, improving the network’s

ability to learn new tasks quickly and to a higher standard.

In other works (Silver et al., 2015; Silver, Yang, and Li, 2013; Fowler and Silver,

2011), the idea of synaptic stability vs. plasticity has been similarly referred to as

functional stability and representational plasticity. Functional stability describes one

of the goals of a model in continual learning as having its function remain stable for

previously learnt tasks. Representational plasticity describes the other goal as allowing

its internal weights (or representation) to change so that new tasks can also be learnt.

This definition stresses the importance of a continual learner retaining knowledge, while

also being able to change its internal representation to learn new knowledge.
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Chapter 3

Pseudo-Rehearsal in Deep Neural

Networks for Continual Image

Classification

3.1 Extending Pseudo-Rehearsal to Deep Neural

Networks

This chapter extends pseudo-rehearsal to deep neural networks to solve catastrophic

forgetting in image classification. As previously stated, standard pseudo-rehearsal

cannot prevent catastrophic forgetting in complex tasks because its randomly generated

pseudo-items are not representative of previously learnt tasks. Therefore, this chapter

proposes Pseudo-Recursal which overcomes this limitation by introducing a generative

network which is trained to produce images which are representative of all previously

learnt tasks. This procedure recursively applies pseudo-rehearsal to both the classifier

network and the generator, so that the model’s memory requirements do not scale with

each new task, and thus, the process is termed Pseudo-Recursal

Firstly, let’s formalise the loss functions used in Pseudo-Recursal. Let x ∈ Rd and

a neural network of a chosen architecture with its function given as h : Rd 7→ Rk and

weights θi, while learning task i. Let y be a one-hot encoded vector indicating the

assignment of one of the task’s classes from k possible classes, with zero elements for

all other classes.

Given the set of weights θi−1, which minimise some loss function

L (h(xi−1, θi−1), yi−1) for the previously learnt task i − 1, we next want to train the
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network on task i and find the optimal values for the weights θi that minimise the

new task’s loss L (h(xi; θi), yi) while still performing well on the previous task, that is

h(xi−1; θi) ≈ h(xi−1; θi−1). Now, if we were to rehearse all previous tasks while learning

task i we would need to minimise the following:

L =
i∑

j=1

L (h(xj; θi), yj) (3.1)

As mentioned in Section 2.2.2, this is problematic because it requires data from all

previous tasks.

In Pseudo-Recursal, the same can be achieved by minimising:

L = LN + LPRec (3.2)

LPRec = L (h(x̃; θi), ỹ) , (3.3)

where LN is the network’s loss while learning the current task, as specified in Equa-

tion 2.13. x̃ is a randomly generated pseudo-input pattern representative of a previously

learnt task (i.e. task 1 to i− 1) and ỹ = h(x̃; θi−1) is the previous network’s output on

this pattern1, before learning the current task i. These randomly generated pseudo-

items are supplied by a generative model. The generative model has been trained on

the same sequence of tasks as the classifier, such that it can generate items which

are representative of all previously learnt tasks. Details of the generative model and

its training procedure will be outlined in the following subsections. The actual loss

function L used in this chapter’s experiments is cross-entropy (CE) from Equation 2.2.

3.1.1 Generative Adversarial Network

A Generative Adversarial Network (GAN) (Goodfellow, Pouget-Abadie, Mirza, Xu,

Warde-Farley, Ozair, Courville, and Bengio, 2014) is a neural network model which

uses unsupervised learning to generate random images which are representative of the

input dataset. This is achieved by creating two network models; a discriminative model

and a generative model. The goal of the discriminative model is to identify whether

an input image is a real image or a generated/fake image, whereas the goal of the

1In practice this output pattern was one-hot encoded because it was assumed the generator suc-

cessfully produces images which predominantly represent a single class.
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generative model is to create images which fool the discriminator. This results in the

generator learning to create images that represent the training images.

A Variational Auto-Encoder (Kingma and Welling, 2014) was also considered as

the generative model in Pseudo-Recursal. However, a Variational Auto-Encoder learns

to generate images with a reconstruction loss function that struggles to produce fine

details. Pilot tests confirmed that GANs generated images with superior detail com-

pared to the Variational Auto-Encoder, particularly on datasets, like CIFAR10, that

have high variation between images. Therefore, a GAN was used throughout this thesis

as the generator, but could easily be replaced by other unsupervised generative models.

The GAN used in this section is based upon the Deep Convolutional Generative

Adversarial Network (DCGAN) (Radford, Metz, and Chintala, 2016) which improves

the training stability of GANs through various architectural changes. The loss functions

for the discriminator (LDiscPRec) and generator (LGenPRec) are defined as:

LDiscPRec = CE(D(x̃;φ), 0) + CE(D(x;φ), 1), (3.4)

LGenPRec = CE(D(x̃;φ), 1), (3.5)

where x is an input item from the training data. x̃ is an item produced by the current

generative model (x̃ = G(z;ϕ)). z is an array of latent variables, where z = U(−1, 1).

D and G are the discriminator and generator networks with the weights φ and ϕ

respectively. The final layer of the discriminator uses a sigmoid activation function so

that a probability is returned relating to how certain the network is that the input item

is real. During a training iteration, the discriminator’s weights are updated once and

then the generator’s weights are updated twice using their corresponding loss functions.

A diagram summarising the layout of a GAN can be found in Figure 3.1.

3.1.2 Overcoming Catastrophic Forgetting in a Generative Ad-

versarial Network

In the first stage of training, only data from the first task is available. This means that

there are no previous tasks for the classification network to retain and therefore, it can

simply be trained on the first task’s data without any pseudo-items, this is using only

the new task’s loss LN from Equation 2.13. While data from the first task is available,

it is also important for the GAN to learn to generate images representative of the first

task. This is done by simply training the GAN with images from the task so that it can

later be used to generate pseudo-images which are representative of that task, without
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Figure 3.1: Diagram displaying the typical layout and information

flow in a GAN. Solid lines represent the information flow of real data

and dashed lines represent the information flow of generated data.

storing the actual dataset. When the first task is no longer available, but the second

task is, the classification network can be trained on images from the second task along

with pseudo-images generated by the GAN (which are representative of the first task),

using the loss defined in Equation 3.2.

The main complication arises when a third task is introduced. To retain knowledge

of both the first and second tasks, pseudo-items must now be representative of both

tasks. A simple solution is to train a second GAN to generate images from the second

task. This is effective, but requires a new allocation of memory for each task. A

more elegant solution is to do pseudo-rehearsal on the GAN as well. This allows the

GAN to produce pseudo-items from both the first and second tasks, without requiring

extra memory per task. Pseudo-rehearsal on the GAN model can easily be achieved

by generating pseudo-images from the GAN before training it on the new task and

mixing them with the new task’s images. All of these images can then be taught to

a randomly initialised GAN, so that it learns to generate images representative of the

new task and all previously learnt tasks. This procedure can be repeated recursively,

every time a new task is presented. More specifically, the images used to train the

GAN are defined by:

x =

xi, if r < 1
T

x̃j, otherwise
(3.6)

where r is a random number uniformly drawn from [0, 1) and xi is a randomly selected

item from the dataset of the new task i. T is the number of tasks learnt (including the
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new task) and x̃j is a randomly generated item from the GAN before learning the new

task. This item could represent an image from task 1 to i− 1.

Typically, pseudo-rehearsal methods are used on a network initialised with the

weights it has learnt to solve previous tasks. This is beneficial because the network

then only needs to learn how to map the new inputs to their corresponding outputs,

while retaining mappings for previously learnt inputs. However, when using pseudo-

rehearsal on a GAN, its generator is learning to map the same inputs it has previously

been taught to a different/extended set of output images. Therefore, the mapping of

previously learnt inputs must be changed and thus, it is not beneficial to initialise the

GAN with its previous weights2.

In summary, continuous learning is achieved by applying pseudo-rehearsal to both

a classification model and a GAN model. This allows the classifier to overcome the

catastrophic forgetting problem without requiring extra memory when a new task is

presented. The connectivity between components within the Pseudo-Recursal model

while training the classifier and the GAN is outlined in Figure 3.2 and Figure 3.3 respec-

tively. Pseudo-code demonstrating the basic training procedure for Pseudo-Recursal

can also be found in Appendix A as Algorithm 1.

Pseudo-Recursal was developed at approximately the same time as Deep Generative

Replay (Shin, Lee, Kim, and Kim, 2017). However, Deep Generative Replay is an

analogous method, published first, which also uses a GAN to produce pseudo-items

for rehearsal. Although these two methods are comparable, this thesis extends Shin

et al. (2017)’s research by investigating the method’s ability to learn dissimilar tasks

without forgetting, as well as conducting experimental comparisons against methods

predominantly used to overcome catastrophic forgetting in the reinforcement learning

domain - namely, EWC and Progress and Compress.

3.1.3 Biological Similarities

Psychological research suggests that mammal brains could be preventing catastrophic

forgetting by consolidating memories through a method analogous to pseudo-rehearsal.

Two important areas of the brain involved in memory consolidation are the hippocam-

pus and the cortex (McClelland, McNaughton, and O’Reilly, 1995). The hippocampus

is responsible for short-term knowledge, whereas the cortex is responsible for long-term

knowledge. Research indicates that the hippocampus and sleep are both important

2This was confirmed by preliminary tests.
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Figure 3.2: Summary of the connectivity between Pseudo-Recursal’s

components while training the classifier. Solid lines represent the

information flow of real data (for learning the new task) and dashed

lines represent the information flow of generated data (for retaining

previous tasks with pseudo-rehearsal). Mathematical notation relates

to the previously specified loss functions LN and LPRec.

components for retaining previously learnt information (Gais, Albouy, Boly, Dang-Vu,

Darsaud, Desseilles, Rauchs, Schabus, Sterpenich, Vandewalle, et al., 2007). While

sleeping, the hippocampus can be seen to replay activation patterns that occurred

over the day (Louie and Wilson, 2001). This demonstrates that the brain can re-

play previously learnt experiences similar to the way in which Pseudo-Recursal uses a

GAN to generate items representative of previous experiences. Due to the similarity

between artificial neural networks and the biological brain, the above suggests that

pseudo-rehearsal methods could be an effective solution to the catastrophic forgetting

problem.

Unfortunately, there are still key differences between the brain’s memory consolida-

tion process and Pseudo-Recursal, some of which are addressed by the RePR model in-

troduced in the next chapter. For example, the memory consolidation process involves

transferring knowledge from a short-term system to a long-term system. However,

Pseudo-Recursal does not contain a system which is dedicated to short-term knowl-

edge and thus, new information is incorporated directly into its “long-term” network.
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Figure 3.3: Summary of the connectivity between Pseudo-Recursal’s

components while training the GAN. Solid lines represent the infor-

mation flow of real data (for learning the new task) and dashed lines

represent the information flow of generated data (for retaining pre-

vious tasks with pseudo-rehearsal). Mathematical notation relates

to the previously specified loss functions LDiscPRec and LGenPRec (i.e.

LGAN).

This is resolved in RePR by introducing a short-term system which is trained solely

on the current task. Knowledge is later transferred from the short-term system to

the long-term system through distillation. This distillation process incorporates the

knowledge into the long-term system without copying it directly through a biologically

implausible mechanism.

3.2 Methodology

The remainder of this chapter experimentally investigates the effectiveness of Pseudo-

Recursal as a solution to the catastrophic forgetting problem. The first experiment

aims to convey the shortcomings of standard pseudo-rehearsal methods with a deep

neural network on complex tasks and demonstrate how a generative network can over-

come these shortcomings. The second experiment compares Pseudo-Recursal to some

baseline methods, these being a simple rehearsal strategy and where no effort to pre-

35



vent catastrophic forgetting is made. The final experiment compares Pseudo-Recursal

to EWC, online-EWC and rehearsal (where rehearsal has a limited number of previ-

ous input examples stored, equal to the memory size of the generative model used in

Pseudo-Recursal).

3.2.1 Datasets

Throughout this chapter’s experiments, a classifier model is sequentially trained on the

CIFAR-10, SVHN and MNIST datasets3. These datasets have been chosen because

they all comprise similar sized images, the same number of classes and a range of

similarities and differences between the datasets’ tasks. CIFAR-10 contains images of

animals and types of transport which are dissimilar to images found in SVHN and

MNIST which both contain images of the digits 0-9. The SVHN dataset contains

coloured images of numbers from houses as seen from the street, whereas the MNIST

dataset contains greyscale images of handwritten digits. MNIST images are converted

to colour (RGB) and zero-padded so that they are the same size as the other datasets’

images (32× 32). All datasets are divided up so that there are 37,500 training, 12,500

validation and 10,000 testing items.

For the classification network, all the tasks’ and pseudo-datasets’ validation and

test images are center cropped to 24 × 24 and then standardised. For the training

images, distortions are applied every epoch by randomly cropping the 32× 32 images

down to 24×24, flipping images left or right (only for CIFAR-10), adjusting brightness

between −63 and 63, adjusting contrast between 0.2 and 1.8 and then standardising

the images.

3.2.2 Network Architectures

The classification network used is based on Krizhevsky, Sutskever, and Hinton (2012)

and its architecture can be found in Table 3.1. Each of the 3 task’s datasets contains

10 classes and therefore, the classification network has a total of 30 output units. The

datasets are one-hot encoded so that only 1 of the 30 output units is trained to be

active for any given input example. The GAN used in this thesis is based on DC-

GAN (Radford et al., 2016). The only differences are the use of pseudo-rehearsal with

a pseudo-dataset size of 50,000 items and a mini-batch discrimination layer (Salimans,

Goodfellow, Zaremba, Cheung, Radford, and Chen, 2016). The mini-batch discrimi-

3Other variations of this order were also tested and similar results were found.
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Table 3.1: Classification network architecture for Pseudo-Recursal,

where CONV is a convolutional layer, MAXPOOL is a max-pooling

layer and FC is a fully connected layer.

Classifier

Input: 24× 24× 3

layer # units/filters filter/window shape filter/window stride activation

CONV 128 3× 3 1× 1 ReLU

CONV 128 3× 3 1× 1 ReLU

MAXPOOL 3× 3 2× 2

CONV 256 3× 3 1× 1 ReLU

CONV 256 3× 3 1× 1 ReLU

MAXPOOL 3× 3 2× 2

FC 512 ReLU

FC 384 ReLU

FC 30 Softmax

nation layer provides the discriminator with information about the whole mini-batch

of real or fake samples to further inform its decision. This reduces the training time

needed for the generator to produce visually appealing images and helps stop the net-

work from converging at a point where it only outputs the same image. The GAN’s

discriminator and generator architecture can be found in Table 3.2 and Table 3.3 re-

spectively.

3.2.3 Training and Evaluation

The classifier is trained using the hyper-parameters specified in Table 3.4. When the

first task is being trained, all of the mini-batch’s training examples come from the

task’s dataset. However, for later tasks, half of the examples come from the current

task’s dataset and the remaining are from the pseudo-dataset.

The validation error is recorded after each epoch on both the current task’s dataset

and the pseudo-dataset (if one exists). After training is completed, the network’s

weights at the epoch with the lowest validation loss are reloaded into the network and

it is evaluated on real test items from the current task and all previously learnt tasks.
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Table 3.2: The GAN’s discriminator network architecture for Pseudo-

Recursal, where CONV is a convolutional layer, mBATCH is a mini-

batch discrimination layer and FC is a fully connected layer. Layers

which use batch normalisation (Ioffe and Szegedy, 2015) before the

activation function are marked with an ’x’.

Discriminator

Input: 32× 32× 3

layer # units/filters filter shape filter stride batch-norm activation

CONV 64 5× 5 2× 2 Leaky ReLU

CONV 128 5× 5 2× 2 x Leaky ReLU

CONV 256 5× 5 2× 2 x Leaky ReLU

CONV 512 5× 5 2× 2 x Leaky ReLU

mBATCH

FC 1 Sigmoid

The GAN is trained using the hyper-parameters specified in Table 3.5. When the

first task is being trained, all of the mini-batch’s training examples come from the task’s

training and validation portion of its dataset. However, for later tasks, examples are

taken from both the current task’s dataset and the pseudo-dataset (using Equation 3.6)

so that each task is fairly represented. Images passed to the discriminator are rescaled

between −1 and 1 by applying f(x) = 2( x
255
− 0.5) to each raw pixel value so that they

are in the same output space as the Tanh activation function used by the generator.

The GAN is trained for 25 epochs and then the final generator weights are used for

generating pseudo-items. Pseudo-images are rescaled back to the pixel space before

being used for pseudo-rehearsal.

3.2.4 Experimental Conditions

Each experimental condition underwent 3 trials and results were averaged. The main

experimental conditions are as follows:

• std: Learns the datasets sequentially, without using methods to prevent catas-

trophic forgetting. This is the lower bound on performance.

• reh: Learns the datasets sequentially, while still rehearsing all of the real items
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Table 3.3: The GAN’s generator network architecture for Pseudo-

Recursal, where DECONV is a deconvolutional layer and FC is a

fully connected layer. Layers which use batch normalisation (Ioffe

and Szegedy, 2015) before the activation function are marked with an

’x’.

Generator

Input: 100 latent variables

layer # units/filters filter shape filter stride batch-norm activation

FC 512× 2× 2 x ReLU

DECONV 256 5× 5 2× 2 x ReLU

DECONV 128 5× 5 2× 2 x ReLU

DECONV 64 5× 5 2× 2 x ReLU

DECONV 3 5× 5 2× 2 Tanh

from previously learnt datasets. This is the upper bound on performance.

• pseudo-rec: Learns the datasets sequentially with the Pseudo-Recursal method,

rehearsing pseudo-items representative of the previously learnt datasets.

• ewc: Learns the datasets sequentially, while retaining past knowledge with EWC

and using task specific weights4. EWC uses a λ parameter which is set to

81,000 (rounded to the nearest thousand) after doing a random search between

[0, 100000) with 10 trials.

• online-ewc: Learns the datasets sequentially, while retaining past knowledge

with online-EWC. Schwarz et al. (2018) found that the Progress and Compress

method performed competitively against its online-EWC component alone and

therefore, only the online-EWC component is used in this condition so that the

network’s architecture is kept consistent with the other conditions in this section.

Online-EWC uses a λ parameter which is set to 40,000 (rounded to the nearest

thousand) and a γ parameter which is set to 0.99 after doing a random search

for λ between [0, 100000) with 10 trials for each of the γ values [0.9, 0.95, 0.99].

4The network is correctly told which task it is classifying so that the correct task specific weights

are always applied. This gives EWC the best possible chance at outperforming Pseudo-Recursal.
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Table 3.4: Hyper-parameters for Pseudo-Recursal’s classification

model.

Parameter Value Description

initial learning rate 1× 10−3
Learning rate used when the network is training only

on the first task’s dataset.

later learning rate 1× 10−4
Learning rate used when the network is being

trained on any later task.

mini-batch size 512
The number of items trained from during each

mini-batch.

patience 10

Training is stopped when the network has not

improved in its validation error for this number of

epochs.

β1 0.9 First moment decay rate for the Adam optimiser.

β2 0.999 Second moment decay rate for the Adam optimiser.

ε 1× 10−8 Epsilon value for the Adam optimiser.

pseudo train size 37,500
Number of pseudo-items in the training portion of

the pseudo-dataset.

pseudo valid size 12,500
Number of pseudo-items in the validation portion

of the pseudo-dataset.

• ewc-c10: In some sequential classification problems it makes sense for the output

units learning the new task to be shared with the output units used to learn

previous tasks (i.e. when the classes they represent are the same). However, in

this sequential classification problem it does not make sense, as if the output

units were shared between tasks, a single output unit would represent multiple

classes (e.g. a digit and an animal). EWC will likely be less effective when the

output units are not shared because the output units for previous tasks will be

trained to never activate on the current data, potentially resulting in forgetting of

the previous tasks. Therefore, this condition investigates whether EWC is more

effective when the same output units are shared between tasks and as such this

condition has only 10 shared output units. EWC’s λ parameter is set to 81,000.

• online-ewc-c10: This condition investigates whether online-EWC is more effec-
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Table 3.5: Hyper-parameters for Pseudo-Recursal’s GAN model.

Parameter Value Description

mini-batch size 100
The number of items trained from during each

mini-batch.

learning rate 2× 10−4 Learning rate for the Adam optimiser.

β1 0.5 First moment decay rate for the Adam optimiser.

β2 0.999 Second moment decay rate for the Adam optimiser.

ε 1× 10−8 Epsilon value for the Adam optimiser.

decaybn 0.9 Decay value for batch normalisation.

εbn 1× 10−5 Epsilon value for batch normalisation.

leak 0.2 Leakage value for Leaky ReLU.

mbatch nkernels 100
Number of kernels used in the mini-batch

discrimination layer.

mbatch kernel dim 5
Size of the kernels used in the mini-batch

discrimination layer.

tive when the same 10 output units are shared between tasks. Online-EWC’s λ

parameter is set to 40,000 and the γ parameter to 0.99.

• reh-limit: The generator in Pseudo-Recursal is capable of generating a wide va-

riety of images (pseudo-items) without having a very large memory footprint.

Therefore, it is likely that using the generator to produce pseudo-items for re-

hearsal is more effective than using the same sized allocation of memory to store a

limited subset of items from previous tasks for rehearsal. This condition tests this

hypothesis by rehearsing a subset of real items limited by the memory footprint

of the generator. The number of free parameters/weights in the generative model

is approximately 4.5m and thus, 1,500 images5 (and their true labels) were ran-

domly selected to be stored from past tasks. This condition learns the datasets

sequentially, while still rehearsing the stored items. The images are split between

the training and validation sets in the same 3:1 ratio as all other datasets and

distortions are also applied to the training images at each epoch.

5These images are stored as 32 × 32. This is because, each epoch, training images are randomly

cropped down to a different 24× 24 image.
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Figure 3.4: Pseudo-images generated by a uniform distribution

[0, 255]. These images are labelled by the classification network. Im-

ages are black when no instances of that class occurred after 2,048

randomly generated images.

3.3 Results and Discussion

The first experiment aims to demonstrate the shortcomings of using the standard

pseudo-rehearsal method (Robins, 1995) in deep learning. Typically, this method will

use a simple random distribution to generate pseudo-items for rehearsal. However, in

deep learning, the problems are much harder and thus, pseudo-vectors generated purely

at random are not likely to be good representations of the training data. This is partic-

ularly obvious for images because generating pseudo-images with a uniform distribution

produces static images which do not represent natural images (see Figure 3.4). Fur-

thermore, these static images poorly represent the distribution of classes. For example,

after 2,048 randomly generated images, the network believed almost all static images

were either birds or frogs and when these static images are used in pseudo-rehearsal,

the network retains little knowledge of its previously learnt tasks (see Figure 3.5).

To confirm that a GAN can be used to generate pseudo-images which look similar

to real images, the GAN was applied to the CIFAR-10 dataset. Figure 3.6 (B) illus-

trates that the generated images look similar to real CIFAR-10 images from a distance,

although differences emerge on close inspection. Nevertheless, the generated images

still contain class specific features which the network can learn to retain.

To confirm that pseudo-rehearsal can be used on the GAN to still generate pseudo-
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CIFAR-10 83.56% 13.12% 1.54%
SVHN 92.85% 0.00%
MNIST 99.27%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Te
st

 A
cc

ur
ac

y

Task Learnt

CIFAR-10 SVHN MNIST

Figure 3.5: Average accuracy of a classification network when using

pseudo-rehearsal with pseudo-images generated by a uniform distri-

bution [0, 255]. The x-axis represents the task that has just been

learnt and the lines represent the network’s test accuracy on the var-

ious tasks trained so far. Error bars represent the standard deviation

of each data point across the 3 trials. Non-visible error bars have

smaller standard deviations than their data point.

images that look similar to real images, the GAN is trained on CIFAR-10 and then

SVHN while rehearsing generated images that represent CIFAR-10 (i.e the training

method used in Pseudo-Recursal). Figure 3.6 and Figure 3.7 illustrates that using

pseudo-rehearsal on the GAN causes it to generate images that represent the recent

task (SVHN) and the previously trained task/s (CIFAR-10). Furthermore, in the case

of SVHN, the pseudo-images do not appear to be noticeably different from real SVHN

images. Images generated by the GAN after learning MNIST are not shown because

these images are never used in pseudo-rehearsal (as there is no fourth task to learn).

Although the classification network tested is not the state of the art network for

any of these datasets, it can still be trained to very respectable accuracy on all of the

tasks (e.g. over 83% on CIFAR-10) without using any special tricks. The results of

all the experimental conditions are displayed in Figure 3.8. The std condition clearly

shows catastrophic forgetting because once a new task is learnt, the network does not
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Figure 3.6: A: Real CIFAR-10 images. B: Pseudo-images generated

by a GAN trained on CIFAR-10 images. C: Pseudo-images generated

by a GAN trained on images from CIFAR-10, followed by images

from SVHN along with pseudo-images representing CIFAR-10. These

images are labelled by the classification network. The GAN from C

generates images representing both SVHN and CIFAR-10, but only

images representing (this is labelled by the classifier as) CIFAR-10

are included in this figure.

correctly classify any of the previous tasks’ images. The fact that the accuracy drops

straight to 0% on previous tasks seems dramatic. However, it is very logical for a

classification network that trains using cross-entropy because when training on a new

task, the previous tasks’ images do not appear at all and thus, the output neurons

representing those classes quickly learn that they should never activate.

As expected, the reh condition does not demonstrate catastrophic forgetting, as

the final task accuracies increased slightly from their initial values. This condition

demonstrates that the network has the capacity to learn all three tasks to a high

accuracy without needing any additional units.

The pseudo-rec condition also overcomes the catastrophic forgetting problem as
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Figure 3.7: D: Real SVHN images. E: Pseudo-images generated by

a GAN trained on images from CIFAR-10, followed by images from

SVHN along with pseudo-images representing CIFAR-10. These im-

ages are labelled by the classification network. The GAN from E

generates images representing both SVHN and CIFAR-10, but only

images representing (this is labelled by the classifier as) SVHN are

included in this figure.

it too does not experience a dramatic drop in the previous tasks’ accuracy when it

learns a new task. In fact, it loses no more than 1.32% accuracy each time a new task

is presented and loses only 1.67% of CIFAR-10 test accuracy after learning both the

other tasks. These differences in accuracy are absolute differences, which will remain

consistent throughout this section. For SVHN, Pseudo-Recursal resulted in a 0.24%

increase in accuracy after learning MNIST. This conveys that the network has the

capability to retain almost all knowledge of previous tasks without needing to store

previous data, but rather by generating approximations of it as required.

The ewc condition is barely resistant to the catastrophic forgetting problem, man-

aging to correctly classify 7.11% and 9.82% of the CIFAR-10 and SVHN datasets after

all three tasks have been learnt. The online-ewc condition does not use task specific
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Figure 3.8: Average accuracy of the classification network for the

std, reh, pseudo-rec, ewc, online-ewc, ewc-c10, online-ewc-c10 and

reh-limit conditions. The x-axis represents the task that has just

been learnt and the lines represent the network’s test accuracy on

the various tasks trained so far. Error bars represent the standard

deviation of each data point across the 3 trials. Non-visible error

bars have smaller standard deviations than their data point.
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weights and thus, it demonstrates as severe catastrophic forgetting as the std condition.

The EWC variants’ poor results are likely because each task’s classes are represented

by separate output units. Output units which represent the first task are never active

for later tasks and thus, the pressure on these units to never activate on later tasks

is likely greater than the pressure on these units to remember the previous task (from

(online-)EWC). Therefore, in the ewc-c10 and online-ewc-c10 conditions the networks

share their output units between multiple classes so that all output units are active

during a training phase, regardless of the task being learnt. This led to a dramatic

improvement in the EWC variants’ ability to retain knowledge of previous tasks such

that the ewc-c10 condition could classify CIFAR-10 and SVHN to 31.67% and 44.93%

accuracy and the online-ewc-c10 condition to 12.64% and 15.19% accuracy after learn-

ing all tasks. This suggests that the EWC variants are ineffective for learning tasks

which do not share their output representations but are moderately effective when

they do. This is especially the case when task specific weights are used with EWC.

However, findings still show that Pseudo-Recursal clearly outperforms the EWC vari-

ants as it loses only 1.67% of CIFAR-10’s accuracy compared to EWC’s 52.73% and

online-EWC’s 71.14%.

The results for the reh-limit condition convey that the classifier can retain the

majority of its knowledge of past tasks. However, Pseudo-Recursal still clearly outper-

forms it, retaining 9.6% more accuracy on CIFAR-10 and 13.11% more on SVHN. This

demonstrates that using the GAN model is more effective than simply remembering

an equivalent subset of past items. The subset used in the reh-limit condition was

built by simply randomly selecting items from the previous task’s datasets. Although

more inventive strategies exist, random selection is effective and at least presents the

best results in reinforcement learning when compared to a variety of other selection

strategies (Isele and Cosgun, 2018).

Compared to the EWC variants and standard pseudo-rehearsal, the main disadvan-

tage of Pseudo-Recursal is that a generative network is required for pseudo-rehearsal to

work on this deep network. However, pseudo-rehearsal is also applied to the generative

model so that the size of this network is constant. Another disadvantage of Pseudo-

Recursal is that it takes considerably more training time because the generator must

also be trained. Furthermore, training in the classifier is done by pairing the same

number of pseudo-items as novel task’s items in each mini-batch, doubling the total

number of items trained on. While no attempts were made in this thesis to experiment

with the number of pseudo-items required in each mini-batch, experiments using sweep
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rehearsal (Silver et al., 2015; Robins, 1995) suggest that such a large number may not

be necessary, provided that the pseudo-items are dynamic.

As previously mentioned, one of the major advantages of pseudo-rehearsal methods

is that they do not constrain the network’s weights to retain similar values. The weights’

values can be freely changed as long as the input-output mapping remains similar for

previous tasks. Originally, pseudo-rehearsal was applied to simple tasks where the

pseudo-items generated by a random distribution covered the whole input space. This

means that the pseudo-items represent the network’s function over the whole input

space such that changes that are made to accommodate the new task are as local as

possible to the input space of the new task (Robins and Frean, 1998). However, a

GAN generates pseudo-items near the actual inputs of previous tasks in a much larger

and sparser space. Therefore, Pseudo-Recursal is advantageous over standard pseudo-

rehearsal as the network is only constrained to retain similar input-output mappings

around the space of previous inputs. In other parts of the space, the network is free to

vary so that it can accomodate new information with even fewer restrictions.

Pseudo-Recursal requires a significant amount of temporary storage to hold either

a separate copy of the neural network before training or the population of labelled

pseudo-items for rehearsal. It seems implausible that the biological cognitive system

would have the mechanisms to implement a storage system that could either directly

copy weights to a separate but identical neural architecture or quickly and accurately

store these pseudo-items. Robins (1997) suggested a more plausible implementation

could have two separate weights for every connection in the network wo and wn. wo

holds the weights that retain knowledge of all previously learnt tasks, whereas wn

represents how these weights should be changed to learn the new task while retaining

the previous tasks. Therefore, the output of the network while learning the new task is

determined by the weights wo +wn, where weight updates are only applied to wn, and

pseudo-inputs are labelled by the network with weights wo. When the new task has

been successfully learnt, the weights wo are updated with the values of wo + wn and

then wn is reinitialised to 0. Robins (1997) found that this implementation performed

indistinguishably from the basic pseudo-rehearsal method, suggesting that it would

be just as effective in Pseudo-Recursal. Although the biological system is useful for

hypothesising how to achieve machine intelligence, this thesis is not concerned with

biological plausibility of the implementation and thus, is satisfied by simply using

temporary storage.
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3.4 Conclusions

This chapter has demonstrated that combining GANs with pseudo-rehearsal is an ef-

fective method for solving the catastrophic forgetting problem. Pseudo-Recursal has

major advantages over other methods such as EWC because it does not require the

network to grow for each new task and the network does not have any hard constraints

on how individual neurons should learn the new task. Furthermore, Pseudo-Recursal

was found to perform very similarly to rehearsing datasets stored from previous tasks.

Given this solution was so effective in image classification, the remainder of this thesis

will investigate its potential in the reinforcement learning domain.
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Chapter 4

Pseudo-Rehearsal in Deep Neural

Networks for Continual

Reinforcement Learning

4.1 Extending Pseudo-Rehearsal to Reinforcement

Learning

This chapter extends pseudo-rehearsal to deep neural networks to solve catastrophic

forgetting in the reinforcement learning domain. Section 2.1.2 briefly discussed that

the deadly triad causes many deep reinforcement learning methods to become unstable,

including DQNs. This chapter proposes the Reinforcement-Pseudo-Rehearsal (RePR)

model which further extends pseudo-rehearsal so that it can be successfully applied to

reinforcement learning while still preventing instability. RePR achieves this by using

a dual memory system to segregate short and long-term learning alongside replacing

the cross-entropy loss functions with ones which are more suitable for continual rein-

forcement learning.

A dual memory system separates learning into two stages. The first stage in-

volves the short-term memory (STM) system learning new information and, in the

second stage, this information is consolidated into the long-term memory (LTM) sys-

tem alongside previously learnt information. This dual memory system is biologically

similar to the roles of the mammalian hippocampus and cortex previously discussed in

Section 3.1.3. Dual memory systems have also been utilised in early research on catas-

trophic forgetting (Ans and Rousset, 1997, 2000; French, Ans, and Rousset, 2001) and
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are still successfully applied in recent methods including FearNet (Kemker and Kanan,

2018), Deep Generative Dual Memory Network (Kamra, Gupta, and Liu, 2017) and

Progress and Compress (Schwarz et al., 2018).

4.1.1 Short-Term Memory System

Short-Term DQN

In RePR, the STM system is comprised of a DQN along with its experience replay.

Each time this system is given a task to learn, it reinitialises its DQN and experience

replay and learns the task as it would in Deep Q-Learning (i.e. by minimising the

loss function specified in Equations 2.5-2.6). A summary of how the components in

this system interact with the environment can be found in Figure 4.1. Pseudo-code

demonstrating the basic training procedure for the STM system can also be found in

Appendix B as Algorithm 2.

The STM system makes the acquisition of the new task simple as it can be learnt

with the standard Deep Q-Learning loss function, which has already proven successful

in deep reinforcement learning. Importantly, this allows the new task to be learnt

without interference from previously learnt tasks. In future work, it would be sensible

to replace the experience replay in the STM system with a generative model. This

generative model would learn to generate samples from the current task that could be

used to prevent the agent from forgetting how to act in less recent states. This exten-

sion was not investigated in this thesis because the generator would need to be trained

alongside the agent and this would have dramatically increased the already extensive

training times which are inevitable in deep reinforcement learning. Importantly, using

the experience replay in the STM system does not invalidate any of the objectives pre-

viously outlined in Section 1.3, because the experience replay is a fixed size throughout

learning and only contains data from the current task (not previous tasks).

4.1.2 Long-Term Memory System

The LTM system is comprised of a DQN and a GAN. The role of the DQN is to

consolidate knowledge from the STM system about how to act in the new task while

retaining knowledge about previous tasks. The GAN’s role is to learn to generate items

which are representative of the new task while retaining the ability to generate items

which are representative of previous tasks. The GAN is also used to support the DQN

in retaining knowledge of previous tasks through pseudo-rehearsal. A summary of how
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Figure 4.1: Illustration of the training procedure for RePR’s STM

system. The system is trained while the model is simultaneously

interacting with the environment, collecting transitions in its experi-

ence replay (Exp). Mathematical notation relates to the previously

specified loss function LDQN .

the components in this system interact with the environment and each other can be

found in Figure 4.2. Pseudo-code demonstrating the basic training procedure for the

LTM system can also be found in Appendix B as Algorithm 2.

Long-Term DQN

Before training, the long-term DQN is initialised to the weights of the previous long-

term DQN. The long-term DQN uses knowledge distillation1 to learn the current task.

More specifically, the long-term DQN interacts with the current environment, collecting

states in the experience replay. These states are passed through the short-term DQN to

obtain target Q-values (representing how the short-term agent has learnt to act in the

environment). The output of the long-term DQN is then dragged toward replicating

these target Q-values.

1In this case, the short-term DQN is the teacher and the long-term DQN is the student.
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Figure 4.2: Illustration of the training procedure for RePR’s LTM sys-

tem. Solid lines represent the information flow of real data (for learn-

ing the new task) and dashed lines represent the information flow of

generated data (for retaining previous tasks with pseudo-rehearsal).

In practice, the experience replay (Exp) is not stationary while train-

ing the long-term DQN. Instead, the experience replay is storing re-

cent transitions from the long-term DQN interacting simultaneously

with the environment. The DQN and GAN are independently trained.

Mathematical notation relates to the loss functions LD and LRePR, as

well as LDiscRePR and LGenRePR (i.e. LGAN).
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The long-term DQN also uses pseudo-rehearsal to retain knowledge of previous

tasks. This is achieved by generating pseudo-items from the previous GAN2, calculating

their desired Q-values by passing them through the previous long-term DQN and then

training the new long-term DQN to continue outputting these values for the given

items.

The specific loss functions for training the long-term DQN are:

LLTM =
1

N

N∑
j=1

αLDj
+ (1− α)LRePRj

, (4.1)

LDj
=

A∑
a

(
Q(sj, a; θi)−Q(sj, a; θ+i )

)2
, (4.2)

LRePRj
=

A∑
a

(
Q(s̃j, a; θi)−Q(s̃j, a; θi−1)

)2
, (4.3)

where LDj
is the distillation loss for teaching a new task and LRePRj

is the pseudo-

rehearsal loss for retaining previously learnt tasks. A state sj is drawn from the current

task’s experience replay. θi are the weights of the long-term DQN while learning the

current task, θ+i are the weights of the short-term DQN after learning the current

task and θi−1 are the weights of the long-term DQN after learning the previous task.

Pseudo-states s̃j are representative of previously learnt tasks and are generated by

the previous GAN. N is the mini-batch size, A is the set of possible actions and α

is a scaling factor weighting the importance of learning the current task compared to

retaining previous tasks via pseudo-rehearsal (0 ≤ α ≤ 1). A large α value gives high

importance to learning the current task and vice versa for a low value. α = 0.5 weights

the importance evenly. In complex sequential learning tasks, α should be set to a low

value so that new knowledge is slowly consolidated into the long-term DQN, without

substantially disrupting previously learnt knowledge. However, setting α too low can

dramatically increase the time required to train the long-term DQN on the new task.

Long-Term GAN

The general training procedure for the GAN is identical to Pseudo-Recursal. That

is, the GAN is trained to produce items from the current task, along with pseudo-

items which are representative of previous tasks, as generated by the previous GAN.

2This GAN is trained on the previously learnt tasks and thus, its pseudo-items are representative

of these tasks.
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The only exception is that the GAN’s training procedure is improved by changing

the loss functions so that the WGAN-GP (Gulrajani, Ahmed, Arjovsky, Dumoulin,

and Courville, 2017) loss function is used with a drift term (Karras, Aila, Laine, and

Lehtinen, 2018) added to it. This drift term stops the discriminator’s output from

drifting too far away from zero for both real and fake inputs.

The GAN’s training items are drawn such that:

x =

sj, if r < 1
T

s̃j, otherwise
(4.4)

where r is a number randomly drawn from U [0, 1) and sj is a randomly selected item

in the current task’s experience replay. T is the number of tasks learnt (including the

new task) and s̃j is an item generated randomly from the previous GAN. This item

could represent an item from task 1 to i− 1.

These items are learnt using the following loss functions for the discriminator

(LDiscRePR) and generator (LGenRePR):

LDiscRePR = D(x̃;φ)−D(x;φ) + λ(‖∇x̂D(x̂;φ)‖2 − 1)2

+εdriftD(x;φ)2 + εdriftD(x̃;φ)2,
(4.5)

LGenRePR = −D(x̃;φ), (4.6)

where x is a training item specified by Equation 4.4. x̃ is an item produced by the

current generative model (x̃ = G(z;ϕ)). z is an array of latent variables z = U(−1, 1).

D and G are the discriminator and generator networks with the weights φ and ϕ

respectively. ε is a random number ε ∼ U(0, 1), x̂ = εx + (1 − ε)x̃, λ = 10 and

εdrift = 1e−6. During training, the weights of the discriminator and generator are

updated on alternating steps using their corresponding loss function.

4.1.3 Summary of the RePR Model

In short, the RePR model comprises two systems. The first system is the STM system

which contains a DQN and an experience replay. This STM system learns how to act

in a new task using Deep Q-Learning (reinforcement learning). The second system is

the LTM system which contains a DQN and a GAN. The short-term DQN is used to

teach the long-term DQN how to act in the new task, while pseudo-rehearsal is used

to remember previous tasks by rehearsing items generated from the GAN. This GAN
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Figure 4.3: Summary of the components that make up the RePR

model.

also uses pseudo-rehearsal so that it can learn to generate items representative of the

new task, while also retaining the ability to generate items representative of previously

learnt tasks. A summary of the components found in RePR is illustrated in Figure 4.3.

4.1.4 Related Work

The Deep Generative Dual Memory Network (Kamra et al., 2017) is the model which

most closely resembles RePR. It also incorporates a dual memory system alongside a

generative model and pseudo-rehearsal. The Deep Generative Dual Memory Network

has a number of short-term components, with each component comprising its own

learner model and generative model. Each of these short-term components is taught

one of the new tasks. One of the primary driving factors of this model is biological

plausibility and therefore, the network uses these generative models to produce samples

which are then taught to the long-term learner model and long-term generative model.

In contrast, RePR only uses a single short-term learner and transfers knowledge to

the LTM system using real samples from the current environment. As shown in this

chapter’s results (Section 4.3), real samples rather intuitively allow the new task to

be more accurately transferred to LTM, although it assumes that the network still

has access to the current task or, at least, its experience replay, when transferring

information. The Deep Generative Dual Memory Network was primarily developed

to prevent catastrophic forgetting in image classification where both the STM and

LTM systems are learning through the same cross-entropy loss function. RePR has

been developed for reinforcement learning and instead, changes these loss functions to

promote stability in reinforcement learning. More specifically, the short-term learner

uses a reinforcement learning loss function so that it can learn the new task in isolation,

56



whereas the long-term learner acquires the new task with mean squared error. In

reinforcement learning, target output values are constantly changing with the policy

of the network. Isolating reinforcement learning to the STM system is important as it

allows the LTM system to learn the new task through consistent target output values,

simplifying the LTM system’s learning process.

Before RePR there was very limited research using pseudo-rehearsal to prevent

catastrophic forgetting while sequentially learning reinforcement tasks. Caselles-Dupré,

Garcia-Ortiz, and Filliat (2018) combined pseudo-rehearsal with another generative

model (i.e. a Variational Auto-Encoder (Kingma and Welling, 2014)) to sequentially

learn two reinforcement tasks through State Representation Learning. The two rein-

forcement tasks were very simple. The agent navigated a 2D world from a small 64×3

input representing the colour of objects in front of the agent. The two tasks differed

only by the colour of objects the agent must collect. Authors’ successfully prevented

catastrophic forgetting while sequentially learning these tasks. The RePR model has

been developed to prevent catastrophic forgetting in much more challenging tasks with

much larger input spaces. These tasks require more powerful reinforcement learning

algorithms such as Deep Q-Learning, along with deep convolutional layers for both

learning how to act and generating representative inputs.

Since RePR, pseudo-rehearsal methods have also been used in models to retain; in-

formation relative to previously seen environments (Caselles-Dupré, Garcia-Ortiz, and

Filliat, 2019) and experiences from previously seen environments (Ketz, Kolouri, and

Pilly, 2019). However, these models do not attempt to prevent catastrophic forgetting

in a reinforcement learning agent.

4.2 Methodology

The remainder of this chapter experimentally investigates the effectiveness of RePR

as a solution to catastrophic forgetting while learning complex reinforcement tasks.

The first experiment compares RePR to relevant baselines and state-of-the-art meth-

ods on a sequence of tasks. The second experiment aims to further confirm RePR’s

capabilities by investigating its forgetting on the reversal of the task sequence used

in the first experiment. The final experiment analyses whether RePR’s weights are

multi-purposed such that weights which are important in the computation of one task

are also important in other tasks.
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4.2.1 Environments

In sequential reinforcement learning, each task is defined by a separate environment.

The environments used in this thesis come from the Atari 2600 home video game

console. This console contains 49 arcade style games which have become a test bed

for deep reinforcement learning because these games include a point system which

can easily be transferred into rewards given to an agent. These games are translated

to environments as per Mnih et al. (2015). When there is no change in the games’

points, this translates to a neutral reward 0. Gaining points translates to the positive

reward 1 and losing points (or in some cases the opponent scoring points against you)

translates to negative reward −1. The size of the action space is 18, which represents

different combinations of both joystick movements and pressing of the fire button.

If the agent selects an action from this space which is not allowed in the current

environment, its action is replaced by randomly selecting an action from the set of

valid actions. This keeps the size of the action space consistent and shared across all

games learnt by the agent. Each action chosen by the agent is repeated 4 times3 in the

game and if, the game gives the agent multiple lives, an episode (current game session)

terminates after a single life has been lost during training and terminates when all lives

are lost during evaluation stages. The states given to the agent by the environment

are representative of the 4 most recent observable frames4. These frames are then

preprocessed by rescaling them to 84× 84 and extracting the luminance. This results

in every state in the environment being 84 × 84 × 4, where the third channel now

represents time, rather than colour channels like in the previous image classification

experiments.

The Atari games used in this chapter were Road Runner, Boxing and James Bond.

These were selected from the pool of games in which the DQN could outperform human

performance by a wide margin (Mnih et al., 2015). These games were also selected as

games which the DQN implemented in this thesis could learn to a similar level as Mnih

et al. (2015). The DQN used in RePR was based upon Mnih et al. (2015) with a few

minor changes found to enhance the acquisition of individual tasks. These changes are

explained further in the following subsections.

3For example, if the agent selected the action left, this action is executed 4 times (left-left-left-left)

before the agent chooses another action.
4Observable frames exclude frames on which actions were repeated. However, some objects only

appear in every second frame of the game (due to a limitation of the console) and therefore, an observed

frame is actually the maximum colour value of the current frame and the previously excluded frame.
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Table 4.1: DQN architecture for RePR, where CONV is a convolu-

tional layer and FC is a fully connected layer.

DQN

Input: 84× 84× 4

layer # units/filters filter shape filter stride activation

CONV 32 8× 8 4× 4 ReLU

CONV 64 4× 4 2× 2 ReLU

CONV 64 3× 3 1× 1 ReLU

FC 512 ReLU

FC 18

The agent’s goal in Road Runner is to run to the left of the screen away from the

coyote while also collecting points and dodging a variety of hazards, including trucks.

Later, the agent should also learn to lead the coyote into these hazards so that it

is slowed down. In Boxing, the agent must learn to navigate a 2D boxing ring and

punch an opposition boxer in the face while also avoiding being punched in the face.

Positive rewards are given for landing a punch on the opponent and negative rewards

for receiving a punch. Finally, James Bond has the agent learn to control a vehicle,

avoid hazards and score points for shooting a particular object. In this task, the screen

is moving toward the right side, forcing the agent to move in that general direction.

4.2.2 Network Architectures

The architecture of the DQN networks used in this chapter remained the same as

Mnih et al. (2015) and can be found in Table 4.1. The architecture of the GAN’s

discriminator and generator can be found in Table 4.2 and Table 4.3 respectively.

4.2.3 Training and Evaluation

The primary difference between Mnih et al. (2015)’s DQN and the one used in this

chapter is that the DQN used by Mnih et al. (2015) was trained by the RMSProp

optimiser with gradients clipped between [−1, 1], whereas the DQN in this chapter

uses Tensorflow’s RMSProp optimiser (without centering) with gradients clipped to

their global norm. In addition, the DQN’s bias weights are initialised to 0.01 and
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Table 4.2: The GAN’s discriminator network architecture for RePR,

where CONV is a convolutional layer and FC is a fully connected

layer.

Discriminator

Input: 84× 84× 4

layer # units/filters filter shape filter stride activation

CONV 64 5× 5 3× 3 Leaky ReLU

CONV 128 5× 5 2× 2 Leaky ReLU

CONV 256 5× 5 2× 2 Leaky ReLU

FC 1

the weights are initialised with N (0, 0.01), where all values greater than 2 standard

deviations from the mean are re-drawn. The hyper-parameters used by the DQN are

shown in Table 4.4, with changes from Mnih et al. (2015) emphasised in bold.

The hyper-parameters used to train the GAN can be found in Table 4.5. The last

layer of the generator uses the Tanh activation function and therefore, the items the

GAN is trained on are rescaled to the same space (−1, 1) by applying f(x) = 2( x
255
−0.5)

to each raw pixel value. Pseudo-samples are rescaled back to the pixel space before

being used for pseudo-rehearsal. Random noise U(−10, 10) was also applied to real

and generated items before applying rescaling and giving them to the discriminator5.

Each time a new game is presented, the short-term DQN learns it for 20 million

frames before it is taught to the long-term DQN for 20m frames and the GAN for

200,000 iterations. The loss functions used for training these components are the func-

tions specified in Section 4.1. The one exception is that teaching the first game to

the long-term DQN is skipped and instead, the network is initialised to the weights of

the short-term DQN. When the LTM system is pseudo-rehearsing items from previous

games, the pseudo-items are drawn from a temporary array of 250,000 samples gen-

erated by the previous GAN. The importance of learning the new task vs. retaining

previous tasks is set to α = 0.55. Other values (α = 0.35 and α = 0.75) were also tried

and produced similar results.

After the short-term DQN is trained on a game, its final weights are set to the

5Applying random noise to the discriminator’s input is used to improve the stability of the GAN

during training (Arjovsky and Bottou, 2017).
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Table 4.3: The GAN’s generator network architecture for RePR,

where DECONV is a deconvolutional layer and FC is a fully connected

layer. Layers which use batch normalisation (Ioffe and Szegedy, 2015)

before the activation function are marked with an ’x’.

Generator

Input: 100 latent variables

layer # units/filters filter shape filter stride batch-norm activation

FC 256× 7× 7 x ReLU

DECONV 256 5× 5 3× 3 x ReLU

DECONV 128 5× 5 2× 2 x ReLU

DECONV 64 5× 5 2× 2 x ReLU

DECONV 4 5× 5 1× 1 Tanh

values which produced the largest average score over 250,000 observable frames. The

final weights after training the long-term DQNs are set to the values which produced

the lowest error over 250,000 observable frames. The final weights for the GAN are

just the weights at the end of training. While training the short-term and long-term

DQN, the network is evaluated on the current task and all previously learnt tasks

after every 1m observable frames. The evaluation procedure used is based on Mnih

et al. (2015), where the network plays each game for 30 episodes. The DQN selects its

actions using an ε-greedy policy with ε = 0.05. This is also the evaluation procedure

used when reporting the final network’s results on each of the tasks, where the mean

and standard deviations are calculated from the final scores in each of the 30 episodes.

4.2.4 Experimental Conditions

The first experiment compares RePR to the Deep Generative Dual Memory Network,

state-of-the-art EWC variants and other useful baselines. The experimental conditions

in this experiment are sequentially taught to play Road Runner, Boxing and James

Bond, in that order. All of the experimental conditions are trained 3 times on the

same set of seeds and results are averaged across these seeds. Unless stated otherwise,

all conditions use the same dual memory system so that they can be fairly compared.

The specific conditions are:
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Table 4.4: Hyper-parameters for RePR’s DQN model.

Hyper-parameter Value Description

mini-batch size 32
Number of examples drawn for calculating the

stochastic gradient descent update.

replay memory size 200,000
Number of frames in experience replay which

samples from the current game are drawn from.

history length 4
Number of recent frames given to the agent as an

input sequence.

update target hz 5,000
Number of frames which are observed from the

environment before the target network is updated.

discount factor 0.99 Discount factor (γ) for each future reward.

action repeat 4
Number of times the agent’s selected action is

repeated before another frame is observed.

update frequency 4
Frequency of observed frames which updates to the

current network occur on.

learning rate 0.00025
Learning rate used by Tensorflow’s RMSProp

optimiser.

momentum 0.0
Momentum used by Tensorflow’s RMSProp

optimiser.

decay 0.99 Decay used by Tensorflow’s RMSProp optimiser.

ε 1e−61e−61e−6 Epsilon used by Tensorflow’s RMSProp optimiser.

replay start size 50,000

The number of frames which the experience replay

is initially filled with (using a uniform random

policy).

no-op max 30

Maximum number of ”do nothing” actions

performed at the start of an episode

(U [1, no-op max]).

initial ε-greedy 1.0 Initial ε-greedy exploration rate.

final ε-greedy 0.1 Final ε-greedy exploration rate.

final ε-greedy frame 1,000,000

Number of frames seen by the agent before the

linear decay of the exploration rate reaches its

final value.
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Table 4.5: Hyper-parameters for RePR’s GAN model.

Hyper-parameter Value Description

mini-batch size 100
The number of items trained from during each

mini-batch.

learning rate 0.001 Learning rate for the Adam optimiser.

β1 0.0 First moment decay rate for the Adam optimiser.

β2 0.99 Second moment decay rate for the Adam optimiser.

ε 1× 10−8 Epsilon value for the Adam optimiser.

decaybn 0.9 Decay value for batch normalisation.

εbn 1× 10−5 Epsilon value for batch normalisation.

leak 0.2 Leakage value for Leaky ReLU.

• std: Learns the environments sequentially, without using methods to prevent

catastrophic forgetting. This is the lower bound of performance.

• reh: Learns the environments sequentially, while still rehearsing real items drawn

from the previous tasks’ experience replays. The targets for these rehearsal items

are produced by passing the items through the previous LTM system. This is

the upper bound of performance.

• RePR: Learns the environments sequentially with the RePR model, rehearsing

pseudo-items representative of the previously learnt environments.

• PR: Learns the environments sequentially with the same method as RePR, ex-

cept the dual memory system is removed and thus, the new task is learnt using

the Deep Q-Learning loss function while pseudo-items representative of previous

tasks are also being rehearsed.

• DGDMN : Learns the environments sequentially with the Deep Generative Dual

Memory Network. This condition uses a similar method to RePR, except that a

GAN (identical to the one used in the LTM system) is incorporated into the STM

system. This short-term GAN learns to generate data representative of only the

new task. The short-term GAN is then used to generate the data which teaches

both the long-term GAN and long-term DQN the new task.
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• reh-limit: Learns the environments sequentially, while still rehearsing real items

drawn from the previous tasks’ experience replays. However, in this case, the

number of real items available to rehearse is limited to 600 which is equivalent to

the number of items that could be stored using the same amount of memory6 as

RePR’s generative network (which has approximately 4m parameters/weights).

• ewc: Learns the environments sequentially, while retaining past knowledge with

EWC. To fairly compare the methods on the same network, EWC is used without

task specific weights. A grid search was used to selected the λ parameter for

EWC, searching the values λ = [50, 100, 150, 200, 250,300, 350, 400], where the

best parameter7 found is indicated in bold.

• online-ewc: Learns the environments sequentially, while retaining past knowl-

edge with online-EWC. Schwarz et al. (2018) found that the Progress and Com-

press method performed competitively against its online-EWC component alone.

Therefore, Progress and Compress’ connections between the STM and LTM sys-

tems (which presumably encourage weight sharing) were not used. This meant

that the network’s architecture remained the same as other experimental condi-

tions in this section and thus, could more fairly be compared. A grid search was

used to selected the λ and γ parameters for online-EWC, searching the values

λ = [25,75, 125, 175] and γ = [0.95,0.99], where the best parameters found are

indicated in bold.

In the second experiment RePR is compared to similar baselines while learning the

reverse sequence, i.e. James Bond, Boxing and Road Runner. These conditions are

identical to the RePR and reh conditions except the tasks are learnt in the reverse

order and therefore, they will be referred to as RePR-rev and reh-rev respectively.

Finally, the Fisher overlap score (Kirkpatrick et al., 2017) is calculated for RePR

while learning the two previously mentioned sequences of games. The Fisher overlap

6In the previous chapter, the number of rehearsal items was calculated by assuming that each free

parameter/weight used in the generative model was instead storing an input value from a real item. In

this chapter, the number of bits used by every parameter/weight in the generative model is calculated

and this is divided by the number of bits it would take to store a real item (i.e. the sequence of 4

images which make up a state). The latter calculation results in a larger number of stored images.
7The test scores for the final networks were min-max normalised using the minimum and maximum

values found across all the testing episodes played while learning the tasks in STM. The parameter

selected was the parameter associated with the network with the best average normalised test score

across the games.
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score measures the similarities between two tasks’ Fisher information matrices and

these similarities can then be used to estimate whether a similar set of the DQN’s

weights are important to the network’s output. The score is bounded between 0 and

1, where a high score suggests that the network uses similar weights for determining

its output on the two tasks and a low score suggests the network uses separate weights

for determining the two task’s outputs. The score is calculated by 1− d2, where:

d2(F̂1, F̂2) =
1

2
tr
(
F̂1 + F̂2 − 2(F̂1F̂2)

1
2

)
, (4.7)

given F̂1 and F̂2 are the two tasks’ Fisher information matrices which are normalised

to have a unit trace. Fisher information matrices are approximated by Equation 2.9

using 100 batches of samples drawn from each task’s experience replay.

4.3 Results and Discussion

The results for the first experiment are displayed in Figure 4.4 and Figure 4.5. The

std condition learns the 3 tasks without attempting to prevent catastrophic forgetting.

Unsurprisingly, the condition suffers dramatically from catastrophic forgetting as it

essentially forgets how to play the previously learnt games and thus, at the end of the

sequential learning sequence can only play the final task, James Bond, to a satisfactory

standard. On the contrary, the reh condition learns to play new games with essentially

no forgetting. This is effectively the upper bound on performance that RePR could

achieve. This is because the only difference between the reh and RePR conditions is

that the items rehearsed are real items from previous tasks, rather than items generated

by a GAN. Therefore, it is promising that the results show that the RePR condition

performs very similarly to the reh condition. The only subtle difference between these

two conditions is that RePR displays a gentle decline in performance on the first task

(Road Runner). After training, the final RePR model was evaluated on all of the

tasks it had previously learnt. This network achieved the scores 22042 (±5375), 82

(±12) and 468 (±155), which are on par with Mnih et al. (2015)’s results for DQNs

trained individually on the tasks, which were 18257 (±4268), 72 (±8) and 577 (±176),

and considerably above human expert performance levels (7845, 4, 407). Collectively,

these results convey that RePR can successfully prevent catastrophic forgetting in deep

reinforcement learning.

Figure 4.6 displays real images from the tasks alongside pseudo-images generated

by RePR’s GAN. It is relatively simple for humans to discriminate between these items.
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Figure 4.4: Results of the RePR model compared to the std and reh

conditions. Scores are recorded by evaluating the long-term DQN

after every 1m observable training frames. Task switches occur at

the dashed lines, in the order Road Runner, Boxing and then James

Bond.
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Figure 4.5: Results of the RePR model compared to the PR,

DGDMN , reh-limit, ewc and online-ewc conditions. Scores are

recorded by evaluating the long-term DQN after every 1m observ-

able training frames. Task switches occur at the dashed lines, in the

order Road Runner, Boxing and then James Bond.
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Real Images Generated Images

Figure 4.6: Images from states drawn randomly from the previous

tasks’ experience replays (real) and pseudo-states generated by a GAN

after being sequentially taught Road Runner, Boxing and then James

Bond. Images shown are the first image of each of the state’s four

frame sequence. Each row contains images from the same task.

However, the pseudo-images are still very representative of the previous games, with

important features such as characters and dangers visible. Furthermore, the above

results demonstrate that these features are enough to retain considerable knowledge of

previous tasks.

The PR condition in Figure 4.5 resembles an ablation study8 which demonstrates

the importance of the dual memory system used in RePR. Simply removing this dual

memory system prevents the model from learning new tasks to its full potential. More

specifically, the PR condition demonstrates that the first task, Road Runner, can

be learnt and retained similarly to RePR, but its potential to learn further tasks is

interfered with and consequently, the condition has lower performance and slower con-

vergence times. Deep Q-Learning is complicated, due, partially, to the fact that its

loss function uses a dynamic network to estimate the discounted reward associated

with future states. Therefore, this thesis hypothesises that the dual memory system

8An ablation study is used to measure the contribution of a particular component of a model by

removing it.
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is extremely beneficial for learning new tasks as it isolates the complex reinforcement

learning task to the STM system. This system does not attempt to retain knowledge

of previous games and therefore, the new task can be initially learnt through reinforce-

ment learning without the added pressure of retention. This knowledge can then be

simply transferred to the LTM system through distillation, where the target values do

not change as they do in reinforcement learning.

The Deep Generative Dual Memory Network was initially designed for continual

learning in image classification. This meant that extensive changes were necessary

to convert this algorithm from the image classification domain to the reinforcement

domain. Essentially, these changes made the model very similar to RePR with the

only addition being a short-term GAN, which was used to train the LTM system on

new tasks. The addition of the short-term GAN is a clear disadvantage of the Deep

Generative Dual Memory Network model as it means that the LTM system is being

trained with approximated data, which might not fully capture all of the intricacies

in the new task. Although approximated data is capable of being used for pseudo-

rehearsal, it is unlikely that its quality will be sufficient to teach the task from scratch.

Results from the DGDMN condition confirm this, as both Boxing and James Bond

were not learnt as successfully as the RePR condition, which teaches these tasks to the

LTM system using real data. Furthermore, Boxing also showed an observable decrease

in performance when James Bond was being learnt by the LTM system. Learning

and retaining Road Runner in the LTM system does not appear to be difficult in

the DGDMN condition. However, this is primarily because the short-term GAN

and short-term DQN had their networks copied to the LTM system after the STM

system had learnt the first task. Because these networks learn from real data in the

STM system, they are not affected by the disadvantages of learning the new task from

generated data. The decision to copy the networks to the LTM system was made to

keep the learning procedure as similar as possible to the other conditions for a fair

comparison. Overall, these results strongly illustrate the advantages of RePR over the

Deep Generative Dual Memory Network, as real data is shown to be more effective for

training the LTM system than data generated from a second GAN.

As previously mentioned, RePR relies on access to the current task, or at least its

experience replay, when transferring information to the LTM system, whereas the Deep

Generative Dual Memory Network does not. Retaining the current task’s experience

replay until after knowledge has been transferred to the LTM system is not a particu-

larly difficult constraint. Although the experience replay might be large, it only keeps
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data from the current task and therefore, its size is fixed and will not grow with the

addition of new tasks.

The reh-limit condition (which uses the same allocation of memory as the generator

to store and rehearse real items from previous tasks) performs substantially worse

than using RePR’s generator. More specifically, Road Runner is completely forgotten

and Boxing loses approximately half its score over the duration of training. This is

important as it demonstrates that, given limited storage, using a generative model is

more effective than directly storing a small sample of real items for rehearsal.

RePR was also compared to the state-of-the-art variants of EWC. The results clearly

display RePR outperforming both the ewc and online-ewc conditions, which demon-

strate substantial forgetting of previously taught tasks. Online-EWC was found to learn

new tasks more successfully compared to EWC which was slightly more successful at

retaining previous tasks. Both EWC and online-EWC showed similar catastrophic for-

getting to the std condition (which makes no effort to prevent forgetting), with the

exception of the EWC condition which noticeably attempts to retain Boxing, but over

time still forgets how to play the game.

The results of the EWC variants were considerably poorer than the authors’ origi-

nally reported. However, this is due to the sequential learning environment used in the

current experiment being significantly more challenging than the experimental con-

ditions these methods were originally reported in. Most notably, the agents had to

retain the DQN’s Q-values for the tasks, rather than the agent’s policy. Furthermore,

tasks were only learnt by the agent in one interval, rather than being allowed to revisit

previously learnt tasks to relearn or continue learning them. To ensure that these al-

gorithms could still retain previously learnt tasks in less challenging conditions, EWC

and online-EWC were tested in less challenging experimental conditions. More specif-

ically, each task was only learnt by the long-term agent for 5m observable frames and

the agent had to only learn the policy from the short-term DQN by minimising cross-

entropy. The results from this test, shown in Figure 4.7, displayed that both EWC

(ewc-policy) and online-EWC (online-ewc-policy) could successfully retain previous

tasks under these less challenging conditions. This confirms that the added difficulty

of long retention times (without revisiting tasks), and requiring Q-values to be learnt,

results in a more difficult sequential learning task which can more comprehensively

explore the capabilities of the models.

The second experiment aims to demonstrate that RePR’s retention is not simply

limited to the particular sequence investigated in the first experiment. Figure 4.8
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Figure 4.7: Results of the (online-)EWC implementations when learn-

ing in less challenging experimental conditions. Scores are recorded

by evaluating the long-term DQN after every 1m observable training

frames. Task switches occur at the dashed lines, in the order Road

Runner, Boxing and then James Bond. Results were recorded with a

single, consistent seed.
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illustrates RePR’s and rehearsal’s learning on the reversed task sequence (James Bond,

Boxing and Road Runner). The results convey that both methods are capable of

retaining moderate knowledge of previously learnt games. RePR showed a noticeable

amount of forgetting in Boxing, whereas the reh-rev condition did not. Furthermore,

both conditions found it difficult to retain high performance in James Bond, with RePR

performing marginally lower than the reh-rev condition on this task.

Poirier and Silver (2005) suggest that for a given set of tasks, the order in which the

tasks are learnt will not affect the mean performance of the final model. However, the

results from this experiment contradict this because in the reverse ordering, the model

loses considerably more performance on previous tasks, without counterbalancing this

by attaining greater performance on the most recently learnt task. However, this is

likely because the tasks’ reward functions have different scales, which result in retention

of James Bond being weighted as much less important in the loss function compared to

learning and retaining other tasks. Therefore, considerably more knowledge of James

Bond is forgotten in the reverse ordering of tasks compared to when Road Runner

must be retained in the original ordering. This issue will be further investigated in

Section 5.3.

In the final experiment, RePR’s Fisher overlap score is calculated for all possible

task pairings when learning tasks in the order learnt in the first experiment (Road

Runner, Boxing and James Bond), along with the reversed order used in the second

experiment. These scores can be found in Table 4.6. When tasks were learnt in the

first order, the overlap score was relatively high between Road Runner and Boxing,

and relatively low between other task pairings. This suggests that the final network

learnt by RePR had more similar important weights between Road Runner and Boxing

than between other tasks. This could be due to either there being more similarity

between the optimal policy learnt to solve these two tasks compared to James Bond, or

that earlier learning is capable of sharing more computation than later task learning.

To confirm the former, the Fisher overlap scores are also calculated when learning

the reverse order of tasks. In this case, the score remained higher between Road

Runner and Boxing than other task pairs and thus, conveyed that RePR is sharing

more computation between these games due to their similarity and not due to the

order they were learnt in.

Similar to Pseudo-Recursal, RePR’s main advantage over popular weight constraint

methods, such as EWC, is that it gives the network the freedom to change its weights

as long as the resulting network still performs previously learnt games to a similar
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Figure 4.8: Results of the RePR model compared to the reh-rev con-

dition. Scores are recorded by evaluating the long-term DQN after ev-

ery 1m observable training frames. Task switches occur at the dashed

lines, in the order James Bond, Boxing and then Road Runner.
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Table 4.6: Fisher overlap scores between all possible task pairings.

Condition Road Runner & Boxing Road Runner & James Bond Boxing & James Bond

RePR 0.691 0.233 0.198

RePR-rev 0.753 0.192 0.110

standard. Therefore, RePR has more freedom than these other methods to restructure

itself when consolidating new knowledge. The results provided in this chapter, which

compare RePR to variants of EWC, experimentally verify that this freedom is beneficial

in reinforcement learning.

In this chapter and the previous one, it has been assumed that the model knows

when the task it is learning switches. In many situations, this might be an unfair

assumption and thus, a separate component would need to be included for detecting

this change. Another potential limitation is that the task sequence which RePR was

tested on was only 3 tasks long, which is relatively short compared to methods such as

Progress and Compress which tested a sequence of 6 Atari games. Consequently, the

above experiments do not evaluate the capacity of the GAN to identify when it fails and

whether it does so gradually or drastically. Some of these questions are investigated in

the following chapter.

4.4 Conclusions

RePR is the first method to apply pseudo-rehearsal to complex reinforcement learning

tasks which require powerful generative models such as GANs. RePR does not directly

store any data from previously learnt tasks or use task specific weights and thus, its

memory requirements do not change as the number of tasks increases. The results

in this chapter demonstrate RePR alleviating catastrophic forgetting for sequences of

3 reinforcement learning tasks and outperforming the popular variants of EWC used

in this domain. Furthermore, RePR is also shown to promote sharing of weights,

with such sharing being more prominent in similar tasks. Given the success of this

solution, the next chapter will investigate some of RePR’s limitations along with some

improvements to the method.
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Chapter 5

Further Evaluating and Improving

Pseudo-Rehearsal for Continual

Reinforcement Learning

This chapter aims to further evaluate and improve the RePR model. The first section

investigates the performance of RePR when applied to another popular type of deep

reinforcement learning known as Actor-Critic methods. The second section investigates

whether RePR’s LTM system needs to retain the value function, or if the policy function

alone is enough to allow learning to continue on partially learnt tasks. The third section

aims to improve the generator used in RePR by encouraging it to accurately reproduce

image features that are important to retention. The final section evaluates RePR’s

performance over an extended sequence of reinforcement learning tasks, identifying

whether challenging conditions result in either gradual or catastrophic forgetting.

5.1 Extending Pseudo-Rehearsal to Actor-Critic Meth-

ods

5.1.1 Actor-Critic Methods

Another very popular type of deep reinforcement learning is Actor-Critic methods (Sut-

ton and Barto, 2017), which split reinforcement learning into two learning functions.

The first is the policy function, which describes how the agent should act in an environ-

ment to maximise its reward. The other is the value function, which approximates the

expected cumulative reward the agent should be able to attain from a given state. The

75



value function is used to encourage the agent to change its policy so that it outputs

desirable actions.

Actor-Critic methods have advantages over DQNs, such as being able to be used

in continuous action spaces. Importantly, these methods might also have advantages

over DQNs in relation to continual learning. More specifically, separating the policy

function from the value function would allow the importance of retaining each of these

functions to be weighted relative to one another and in many circumstances, it may

only be necessary to retain the policy function, as this thesis explores in Section 5.2.

In Actor-Critics, the policy and value functions are usually implemented by two

neural networks. These two networks are not independent but, rather, share all but

the final few layers of their networks. The policy network (otherwise known as the

actor) takes a state as input and outputs a probability distribution over the possible

actions. This distribution represents how certain the network is that each action will

lead to large cumulative rewards from the given state. The action, which is taken

from a given state, is randomly chosen using this probability distribution. The value

network (otherwise known as the critic) takes a state as input and outputs a single

value representing how advantageous that state is for maximising cumulative reward.

The network representing the value function is updated using the loss function:

LAC-value =
(
yt − V (st; θ

v
t )
)2
, (5.1)

yt =

rt, if dt

rt + γV (st+1; θ
v
t ), otherwise

(5.2)

where dt represents whether the environment is terminal at time step t and V represents

the value function network with the weights θvt .

The network representing the policy function is updated using the loss function:

LAC-policy = − log π(at|st; θπt )
(
yt − V (st; θ

v
t )
)

+ β

A∑
ai

π(ai|st; θπt ) log π(ai|st; θπt ), (5.3)

where A is the set of possible actions and π is the network representing the policy

function, with the weights θπt (some of which are shared with θvt ). The first term in

this loss function uses an advantage function to measure how the cumulative reward

from taking an action compares to the value function of the policy. Actions that

perform better than the policy’s value function are reinforced (so that they are more
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likely to be taken) and those that perform worse are punished. The second term is a

regulariser which prevents the policy from deciding too quickly which action is best to

take in each state. This is important as it stops the policy from converging too quickly

on a local minimum. The regulariser is the entropy of the policy which is weighted

with a small hyper-parameter β.

Typically the Actor-Critic learns asynchronously, where multiple agents interact

with different copies of the environment and update a shared model. This makes an

asynchronous Actor-Critic’s learning on-policy and thus, only recent states, rewards

and terminals are used when updating the networks. Each agent is not in sync when

it is interacting with the environment and therefore, agents are generally at different

stages (time-steps) in the environment at any one time. This is advantageous because

collectively the recent data generated by the agents interacting with the environment is

close to i.i.d. Therefore, an experience replay is not necessary to prevent forgetting in

a single environment. However, this limits applications of the algorithm to situations

where multiple independent instances of the environment exist. In many real world

applications of continual learning this is not possible and therefore, this chapter opts

to incorporate an experience replay to sample st, at, rt, dt, st+1, resulting in off-policy

learning.

5.1.2 Applying Actor-Critic Methods to RePR

The previous chapter described how the RePR model could achieve sequential rein-

forcement learning when using DQNs as the reinforcement learner. By changing the

network architectures and loss functions used by RePR, sequential learning can also be

achieved with Actor-Critic methods. This specific variation of the learning model will

be referred to as AC-RePR. Similar to the previously proposed RePR model, AC-RePR

uses a dual memory model which contains the policy and value function networks of an

Actor-Critic in the STM system, along with the experience replay. The LTM system

also contains the policy and value function networks of an Actor-Critic, along with a

GAN (or other generative model). A summary of how the components in the STM

system and the LTM system interact with the environment and each other can be

found in Figure 5.1 and Figure 5.2 respectively.

In the STM system, the Actor-Critic networks are trained through the typical

reinforcement learning procedure set out in the loss functions described in Equation 5.1-

5.3. In the LTM system, the GAN is trained identically to RePR and the Actor-

Critic networks are trained on the new task through another adaption of knowledge
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Figure 5.1: Illustration of the training procedure for AC-RePR’s STM

system. The system is trained while the model is simultaneously in-

teracting with the environment, collecting transitions in its experience

replay (Exp). Mathematical notation relates to the previously speci-

fied loss functions LAC-value and LAC-policy.

distillation, along with pseudo-rehearsal to prevent forgetting of previous tasks. The

policy function is transferred and retained through cross-entropy and the value function

through mean squared error. More specifically, the loss functions for the long-term

networks are:

LAC-LTM =
1

N

N∑
j=1

αLAC-Dj
+ (1− α)LAC-RePRj

, (5.4)

LAC-Dj
= η
(
V (sj; θ

v
i )− V (sj; θ

v+
i )
)2

+ (1− η)CE
(
π(sj; θ

π
i ), π(sj; θ

π+
i )
)
, (5.5)

LAC-RePRj
= η
(
V (s̃j; θ

v
i )− V (s̃j; θ

v
i−1)
)2

+ (1− η)CE
(
π(s̃j; θ

π
i ), π(s̃j; θ

π
i−1)
)
, (5.6)
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Figure 5.2: Illustration of the training procedure for AC-RePR’s LTM

system. Solid lines represent the information flow of real data (for

learning the new task) and dashed lines represent the information

flow of generated data (for retaining previous tasks with pseudo-

rehearsal). In practice, the experience replay (Exp) is not stationary

while training the long-term Actor-Critic. Instead, the experience

replay is storing recent transitions from the long-term Actor-Critic

interacting simultaneously with the environment. The GAN is in-

dependently trained with the same procedure as RePR and thus, is

excluded from this figure. Mathematical notation relates to the loss

functions LAC-D and LAC-RePR.

where LAC-Dj
is the distillation loss for teaching a new task and LAC-RePRj

is the

pseudo-rehearsal loss for retaining previously learnt tasks. A state sj is drawn from

the current task’s experience replay. θvi and θπi are the weights of the long-term Actor-

Critic networks while learning the current task, θv+i and θπ+i are the weights of the

short-term Actor-Critic networks after learning the current task and θvi−1 and θπi−1 are

the weights of the long-term Actor-Critic networks after learning the previous task.

Pseudo-states s̃j are representative of previously learnt tasks and are generated by the

previous GAN. N is the mini-batch size, α is a scaling factor weighting the importance

of learning the current task compared to retaining previous tasks via pseudo-rehearsal

(0 ≤ α ≤ 1) and η is a scaling factor weighting the importance of retaining the value

function compared to the policy function (0 ≤ η ≤ 1). In practice, the target output

patterns the policy network learns through distillation are one-hot encoded.

In short, the AC-RePR model is identical to the RePR model, except the short-term
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model.

and long-term DQNs are each replaced with Actor-Critics. An Actor-Critic comprises

two networks each retaining either the policy or value function. The short-term Actor-

Critic learns a new task using the Actor-Critic method of reinforcement learning. The

long-term Actor-Critic learns the policy and value function of the new task by being

taught by the short-term Actor-Critic, while also using pseudo-rehearsal to remember

previous tasks’ policy and value functions. Policies are retained and taught to the

long-term Actor-Critic using a variation of the cross-entropy loss function, whilst value

functions are retained and taught to the long-term Actor-Critic through a variation of

mean squared error. Training of the GAN does not differ from RePR. A summary of

the components found in AC-RePR is illustrated in Figure 5.3.

5.1.3 Methodology

The remainder of this section will experimentally investigate whether the AC-RePR

model can also perform similarly to the previous RePR model. The experimental pro-

cedure is virtually identical to the previous chapter’s first experiment (see Section 4.2).

The only differences are the AC-RePR model’s network architecture and additional

hyper-parameters, as described below.

Network Architectures

The actor and critic network architectures used in the AC-RePR model are shown in

Table 5.1 and Table 5.2 respectively. The architecture of the GAN used in AC-RePR

is identical to RePR, as outlined in Section 4.2.2.
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Table 5.1: Actor architecture for AC-RePR, where CONV is a convo-

lutional layer and FC is a fully connected layer. Layers whose weights

are shared with the critic are marked with an ’x’.

Actor

Input: 84× 84× 4

layer # units/filters filter shape filter stride activation shared

CONV 32 8× 8 4× 4 ReLU x

CONV 64 4× 4 2× 2 ReLU x

CONV 64 3× 3 1× 1 ReLU x

FC 512 ReLU

FC 18 Softmax

Training and Evaluation

The training and evaluation procedure is identical to RePR. Actions are chosen using

the policy network’s learnt distribution, along with ε-greedy being used to allow further

exploration once the policy has converged. The weighting of the first term in the

policy’s loss function (LAC-policy) is halved to encourage the value function to converge

quicker than the policy function. The additional hyper-parameters used while training

AC-RePR are shown in Table 5.3. To ensure that AC-RePR is as similar as possible

to RePR, the n-step variation (Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver,

and Kavukcuoglu, 2016) of Actor-Critic methods is not used.

Experimental Conditions

The conditions in this experiment are taught the environments Road Runner, Boxing

and then James Bond as per the previous chapter. All of the experimental conditions

are trained 3 times on the same set of seeds and results are averaged across these seeds.

The AC-RePR condition learns these environments sequentially, with the Actor-Critic

variation of the RePR model. The RePR condition is identical to the previous chapter’s

condition and thus, its results remain the same. Finally, the RePR-policy condition

uses the RePR model to learn the tasks while only retaining the policy function in

the LTM system. Similar to the AC-RePR model, the policy function is taught to

and retained in the LTM system through a variation of cross-entropy, where the best
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Table 5.2: Critic architecture for AC-RePR, where CONV is a convo-

lutional layer and FC is a fully connected layer. Layers whose weights

are shared with the actor are marked with an ’x’.

Critic

Input: 84× 84× 4

layer # units/filters filter shape filter stride activation shared

CONV 32 8× 8 4× 4 ReLU x

CONV 64 4× 4 2× 2 ReLU x

CONV 64 3× 3 1× 1 ReLU x

FC 512 ReLU

FC 1

action in each state (as determined by the short-term DQN) is one-hot encoded before

being taught to the LTM system with distillation. In this condition it was necessary to

decrease α to 0.05, increasing the importance of retaining previous tasks over learning

new tasks. This value was changed because learning only the policy function removes

the effect the different tasks’ reward functions have on increasing the importance of

retaining the tasks Road Runner and Boxing compared to learning the task James

Bond.

5.1.4 Results and Discussion

Figure 5.4 compares the AC-RePR condition to the RePR condition. The results

convey the Actor-Critic variant of RePR performing very similarly to the DQN variant

of RePR, with both variants learning the tasks to a similar standard. However, the

AC-RePR model appears to retain Road Runner to a higher standard. This is likely

because the evaluation results for the AC-RePR model are produced by having the

actor network play the games. This network only retains the policy function which, as

shown in the previous chapter, suffers less substantially from forgetting. We confirm

this by introducing a further experimental condition called RePR-policy which uses a

DQN to learn the task in the STM system but only retains the policy function in the

LTM system. Consequently, this condition also retains Road Runner more successfully

than the RePR condition. This raises the question; if performance is improved by
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Table 5.3: Additional hyper-parameters for the AC-RePR model.

Hyper-parameter Value Description

η 0.8
Scaling factor weighting the importance of retaining

the value function compared to the policy function.

initial β 0.01 Initial weighting for the policy’s entropy.

final β 0.001 Final weighting for the policy’s entropy.

final β frame 8,000,000

Number of frames seen by the agent before the

linear decay of the weighting for the policy’s entropy

reaches its final value.

having a component that learns only the policy function, why should the continual

learner retain the value function at all? In Actor-Critic methods, the value function

is used to improve the policy. Therefore the next section will investigate whether it is

important for a continual learner to retain the value function so that it can continue

learning a previously seen task.

5.1.5 Conclusions

In conclusion, this section has demonstrated that the RePR model can easily be gener-

alised to other deep reinforcement algorithms. When RePR is applied to Actor-Critic

methods, the policy and value functions are learned separately by the LTM system.

Because the policy suffers less from catastrophic forgetting, a minor improvement can

be observed in the performance of the Actor-Critic variant compared to the previously

proposed DQN variant (RePR).

5.2 Continuing Learning a Partially Learnt Task

Both the long-term and short-term agents in the RePR model are DQNs. This means

that the STM system learns each game by learning each state’s Q-values. Then, this

knowledge is transferred to the LTM system so that it learns the Q-values from the

current game’s states, while also retaining the Q-values from the previous games’ states.

These Q-values represent both the policy and value function of the network. Therefore,
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Figure 5.4: Results comparing the AC-RePR condition to the RePR

and RePR-policy conditions. Scores are recorded by evaluating the

long-term agent after every 1m observable training frames. Task

switches occur at the dashed lines, in the order Road Runner, Boxing

and then James Bond.
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they include all the information learnt about an environment. If the model was required

to further learn one of the previously seen tasks, the model could use all the information

in the LTM system to continue learning from where it had stopped, rather than having

to relearn the majority of the task again.

In the previous section, the AC-RePR model uses Actor-Critic methods to separate

the agent’s policy and value functions. Both of these functions are then transferred to

the LTM system. Again this provides the LTM system with all the knowledge learnt

from previous tasks.

Some of the previously proposed algorithms in this field do not transfer both the

policy and value function to the LTM system. For example, Progress and Com-

press (Schwarz et al., 2018) also uses Actor-Critic methods so that the STM system

learns the policy and value function separately. However, the LTM system is only

taught the policy function. The value function is important for learning the policy

function, but if an optimal policy has already been learnt the value function is not re-

quired. The Progress and Compress algorithm assumes that if learning was to continue

on a previously seen task, the value function could be quickly relearnt. The experiment

in this section aims to investigate whether a continual learner can continue learning a

familiar task, without its LTM system retaining the task’s value function.

5.2.1 Methodology

Training and Evaluation

The models being trained and evaluated in this section are identical to the RePR and

AC-RePR model from previous sections. All of the hyper-parameters also remain the

same, except the ε-greedy value is only linearly decayed for the first 350,000 frames in

unseen environments and β (weighting the policy’s entropy) is only linearly decayed for

the first 5m frames in unseen environments. The other main differences to the previous

chapter’s methods are in the training procedure. More specifically, the STM system is

taught Road Runner for 1m frames, which is then copied to the LTM system. Next,

the STM system is reinitialised and Boxing is learnt for 5m frames. This knowledge is

then transferred to the LTM system for 10m frames. Finally, learning of Road Runner

is continued by reinitialising the STM system with the weights from the LTM system

and then further learning the game for 4m frames1. The STM system’s knowledge can

1As per usual, the STM system is only trying to learn the current game and thus, does not use

pseudo-rehearsal.
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then be transferred to the LTM system using another 10m frames of learning.

Experimental Conditions

All of the experimental conditions are trained 3 times on the same set of seeds and

results are averaged across these seeds. The conditions are as follows:

• RePR-partial: Learns the environments with the RePR model, retaining the

Q-values (representing both the policy and value function) in the LTM system.

• RePR-partial-policy: Learns the environments with the RePR model, retaining

only the policy function in the LTM system. The policy function is taught to and

retained in the LTM system through a variation of cross-entropy, where the best

action in each state (as determined by the short-term DQN) is one-hot encoded

before being taught to the LTM system with distillation. Before continuing learn-

ing Road Runner, all layers in the short-term DQN are reinitialised to the values

of the long-term DQN, except for the output layer.

• AC-RePR-partial: Learns the environments with the Actor-Critic variation of

the RePR model, retaining both the policy and value function in the LTM system.

• AC-RePR-partial-policy: Learns the environments with the Actor-Critic varia-

tion of the RePR model, retaining only the policy function in the LTM system.

This means that the non-shared layers in the short-term critic network are reini-

tialised to random values before further learning Road Runner.

5.2.2 Results and Discussion

In this experiment, all conditions successfully learnt Boxing to approximately the same

standard. The results of the conditions learning Road Runner are illustrated in Fig-

ure 5.5 for RePR and Figure 5.6 for AC-RePR. In the RePR-partial condition, the

LTM system retains the DQN’s Q-values. Results confirm that retaining this informa-

tion allows the short-term DQN to effectively continue learning Road Runner. However,

the RePR-partial-policy condition only retains the policy function in the LTM sys-

tem. This condition shows that retaining the policy function alone is not enough for

a DQN to continue learning a familiar task because further learning is hindered after

reinitialising the short-term DQN’s weights with the values in the LTM system. This is

unsurprising as the weights retaining the policy function are likely to be substantially
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Figure 5.5: Results illustrating the scores attained while learning

Road Runner in RePR’s STM system. Results are shown for RePR

when either the policy and value function is retained in the LTM sys-

tem or just the policy function is retained. Scores are recorded by

evaluating the short-term agent after every 500,000 observable train-

ing frames. Dashed lines indicate different learning intervals. In the

first interval, Road Runner is learnt for the first time by a newly

initialised network. In the second interval, the model is initialised

to the long-term network’s weights and learning on Road Runner is

continued.

different to the weights which had initially learnt the Q-values in the short-term DQN.

Therefore, reinitialising the short-term network with the majority of these weights

would start the network at a poorer point for continuing learning than if those weights

had been randomly initialised.

Surprisingly, there appears to be no difference between the AC-RePR-partial and

AC-RePR-partial-policy conditions, where both conditions could successfully continue

learning Road Runner to approximately the same standard. This means that in the

AC-RePR-partial-policy condition, the STM system was able to quickly relearn the

value function so that it could use it to further improve the network’s policy. Overall,

these results are important as they suggest that when using a reinforcement learning

algorithm that separates the policy function from the value function, it is only necessary
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Figure 5.6: Results illustrating the scores attained while learning

Road Runner in AC-RePR’s STM system. Results are shown for

AC-RePR when either the policy and value function is retained in

the LTM system or just the policy function is retained. Scores are

recorded by evaluating the short-term agent after every 500,000 ob-

servable training frames. Dashed lines indicate different learning in-

tervals. In the first interval, Road Runner is learnt for the first time

by a newly initialised network. In the second interval, the model is

initialised to the long-term network’s weights and learning on Road

Runner is continued.

to retain the policy function in the LTM system.

In this experiment, the tasks were learnt with relatively large amounts of train-

ing data over relatively long training intervals (a minimum of 1m observable frames).

O’Quinn, Silver, and Poirier (2005) found that continual learning, while repetitively

switching between two tasks, was more difficult when learning with a large number of

shorter intervals than the equivalent, smaller number of longer intervals. Therefore,

future work could extend the methods in this section to analyse the models’ ability

to continue learning (with and without retaining the value function), while switching

between tasks in shorter intervals.
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5.2.3 Conclusions

In conclusion, this section has shown that continual learning methods which use rein-

forcement algorithms that do not separate the policy and value function should retain

the joint function in the LTM system, so that it is possible for them to further learn

previous tasks. This section has also provided evidence confirming that in continual

learning methods which use reinforcement algorithms that do separate the policy and

value function, it is only necessary to retain the policy function. This is because the

value function can be quickly relearnt in the STM system so that the model is capable

of continuing to learn a familiar task without disruption.

5.3 Prioritising Generating Important Features for

Pseudo-Rehearsal

In the Atari 2600 games and many other environments, there are many features in

the input that are relatively redundant to the agent when learning how to perform.

For example, in Road Runner the repeating background pattern (road and desert with

cacti) is not as important as the positions of the road runner, coyote, points and

obstacles/dangers. Therefore, it is more important for the generator to accurately re-

produce important features than less important ones. This section aims to improve the

RePR algorithm by encouraging a GAN to produce pseudo-items designed specifically

for retention. When the agent is struggling to retain previous tasks, these improved

pseudo-items could provide more useful information about the previous task and thus,

reduce catastrophic forgetting. Furthermore, this information might be beneficial to

the generator because, when the GAN’s capacity to effectively learn a new task has

been exceeded, the generator can prioritise which features from already learnt tasks

do not need to be reproduced accurately, freeing some units to learn the important

features from the new task.

In sequential learning tasks, the goal is to retain the information learnt by the

long-term agent. In RePR, the generator is only necessary to provide the agent with

pseudo-data to help it retain this information. The generator is trained after the agent

and therefore, the agent can be used to inform the generator which features in the data

are important for it to reproduce.

The difficult question is; how can the agent inform the generator of important

features? When the agent is taught a task, it learns to recognise only features important
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to solving the task through stochastic gradient descent. This is achieved by changing

the network’s weights. Therefore, the activation patterns produced by these weights

can be used to inform the generator how the agent solves the task and thus, can be

used to encourage the generator to produce pseudo-items which give similar patterns.

When the generator learns with a reconstruction loss function (such as a Varia-

tional Auto-Encoder (Kingma and Welling, 2014)), the generator is directly learning

to reproduce tasks’ data. This means that each example from the training data can be

fed through the agent and then a simple regulariser can be used so that the generator

reconstructs examples that also produce similar activation patterns in the agent. How-

ever, when the generator is a GAN, this is not possible because training data is not

used to update the weights of the generator. Instead, this section introduces a second

discriminator into the GAN model which incorporates information from the agent into

the generator.

5.3.1 Improving the Generative Model

This section proposes the model Generating Representations using Importance for

Reinforcement-Pseudo-Rehearsal (GRIm-RePR) to improve the generator for continual

learning. This model introduces a second discriminator into RePR. The input to this

discriminator is the activation patterns from one of the early layers of the agent. These

activation patterns are produced by passing real and generated examples through the

agent’s network and thus, the discriminator must solely use these activation patterns to

distinguish between real and generated items. Figure 5.7 illustrates how the activation

patterns from the agent’s DQN are passed to the second discriminator.

The generative network in GRIm-RePR is updated so that it produces items which

fool both of the discriminators. Fooling the second discriminator is given a much higher

weighting in this loss function so that the generator is particularly encouraged to focus

on reproducing items relevant to retention. However, initial results showed that giving

some weight to the first discriminator was also important for producing realistic items.

The new loss function for the generator and the second discriminator are:

Lgen = −D(x̃;φ)− βD(ã; Φ), (5.7)

Ldisc2 = D(ã; Φ)−D(a; Φ) + λ(‖∇âD(â; Φ)‖2 − 1)2

+εdriftD(a; Φ)2 + εdriftD(ã; Φ)2,
(5.8)

where the weights of the second discriminator are Φ. A returns the activations from
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Figure 5.7: Illustration of how information (activation patterns) from

the long-term DQN is given to the GAN’s second discriminator in

GRIm-RePR. CONV is a convolutional layer and FC is a fully con-

nected layer.

the second layer of RePR’s long-term DQN, which has the weights θ. Using this,

a = A(x; θ), ã = A(G(z;ϕ); θ) and â = εa+ (1− ε)ã. β is set to 1000 in this section’s

experiments. The weights of both the discriminators and the weights of the generator

are updated on alternating steps.

In a neural network, the early layers will contain an abundance of low level features

important to the task, with many other irrelevant features filtered out (Zeiler and

Fergus, 2014; Yosinski, Clune, Nguyen, Fuchs, and Lipson, 2015). Therefore, it is

the activations from the second layer which have been chosen to be fed to the second

discriminator to help it generate useful items.

5.3.2 Related Work

Other methods that improve the generative capabilities of a model by providing it with

additional information do exist. For example, conditional GANs (Mirza and Osindero,

2014) extend both the generator and discriminator to accommodate a class label. For

the generator, this label informs the network which class it should be producing an

image from. For the discriminator, this label informs the network which class the
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image should be from. Therefore, the discriminator can learn to differentiate between

different classes’ images. An image which the discriminator thinks should be in a

different class than it was told is likely to be fake, such that this information can assist

it in categorising real and fake images. In a GAN, the discriminator competes against

the generator and therefore, improving the discriminator by providing this additional

information also improves the generator.

A modified Auxiliary Conditional GAN has been used to similarly improve GANs

in continual image classification (Rios and Itti, 2019). This is where the classifier

(continual learner) is incorporated inside of the GAN architecture. This results in the

discriminator having k + 1 output units, where there are k classes being classified and

an additional output representing whether the network believes an item is real or fake.

One disadvantage of this method is that it has the discriminator share weights with

the continual learning model. This can add unnecessary competition on the network to

solve both classification and discrimination in one model. Furthermore, the generator

in this model requires a class label to be sampled and then given as input. Given class

labels do not exist in reinforcement learning and that the output of the agent cannot

easily be sampled, this model cannot simply be applied to reinforcement learning.

In super-resolution, the resolution of an image is increased by passing it through

a network. GANs have been particularly successful in this task. For this, the gener-

ator learns to reconstruct a high resolution image from a low resolution input. SR-

GAN (Ledig, Theis, Huszár, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz,

Wang, et al., 2017) improves this GAN architecture by providing the generator with

additional information. The generative network is updated using training samples and

thus, the network can be regularised so that its reconstructed images produce similar

features to their real super-resolution ones. The features are compared by passing both

the reconstructed and real images through the VGG (Simonyan and Zisserman, 2015)

network (a deep classification network pre-trained on ImageNet) and then minimising

the Euclidean distance between their corresponding activation patterns. This addi-

tional constraint greatly improves the quality of the network’s reconstructions. This

idea has similarly been applied to the super-resolution of videos (Lucas, Katsaggelos,

Lopez-Tapia, and Molina, 2018).

Hou, Shen, Sun, and Qiu (2017) has used a similar method in Variational Auto-

Encoders (Kingma and Welling, 2014) to improve the quality of generated faces. This

model uses a small number of latent variables to produce random faces representative

of the CelebA dataset. Authors introduced a constraint so that their decoder/generator
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was encouraged to produce similar VGG (Simonyan and Zisserman, 2015) activation

patterns for reconstructed images than real ones, which consequently improved the

generative quality of their model. However, in this method, and the above super-

resolution ones, the generator is attempting to reconstruct real training examples.

This is not the case for the GAN used in RePR and therefore, similar methods cannot

be used to improve the GAN in RePR.

5.3.3 Methodology

The remainder of this section will experimentally investigate whether the GRIm-RePR

model can outperform RePR. As per the previous chapter, all experiments train DQN

agents and not Actor-Critics. The first experiment is identical to the previous chapter’s

first experiment (see Section 4.2), except: the task sequence is changed so that the

models now learn Pong and then Boxing; and the GRIm-RePR model is introduced

with its additional discriminator network (illustrated below). The second experiment

improves retention by simply normalising the environments’ Q-values that are being

taught to the LTM system. When normalisation is used, RePR is found to completely

retain Pong and thus, no difference between RePR and GRIm-RePR can be observed.

This prompts a third experiment to demonstrate that the quality of the generations

are still improved in GRIm-RePR when normalisation is used. This third experiment

trains a freshly initialised agent with either pseudo-items generated from RePR’s GAN

or GRIm-RePR’s GAN. Essentially, this experiment measures how much information

is contained in the GAN’s generations by having an agent learn the task from scratch.

In this experiment, the generated pseudo-items have their target output labelled by a

DQN agent which has already been taught the task. The GRIm-RePR model improves

its generations by using the activations from the same DQN to provide information

about which features are most important to generate correctly. To investigate whether

these features remain consistent across DQNs, another condition is added where a

separate DQN (pre-trained on the task) is used for labelling pseudo-items, such that it

does not match (mismatch) the DQN whose activation patterns provide GRIm-RePR’s

improved GAN with importance information.

Environments

The experiments in this section utilise the environment Pong which is another Atari

2600 video game. The agent’s goal in this game is to move its paddle so that it hits the
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Table 5.4: The GAN’s second discriminator network architecture for

GRIm-RePR, where CONV is a convolutional layer and FC is a fully

connected layer.

Discriminator 2

Input: 9× 9× 64

layer # units/filters filter shape filter stride activation

CONV 64 5× 5 1× 1 Leaky ReLU

CONV 128 5× 5 1× 1 Leaky ReLU

CONV 256 5× 5 1× 1 Leaky ReLU

FC 1

ball past the opponent’s paddle. Every time the ball gets past the opponents paddle,

the agent gets a point. Every time the ball gets past the agent’s paddle, the opponent

gets a point. This game is translated into a reinforcement learning environment through

the same procedure described in Section 4.2.1.

Network Architectures

The only additional network architecture in this section’s experiments is the second

discriminator’s network, which can be found in Table 5.4. Similar to the first discrim-

inator, noise is added to the second discriminator’s input. This involves applying the

function f(x) = max(0, x+N (0, 0.33σ)) to each of the input unit’s values, where σ is

the standard deviation of the input unit across the current mini-batch.

Training and Evaluation

The first experiment trains and evaluates the models in the same way as the previous

chapter’s first experiment. The only exception is that the tasks learnt are Pong and

then Boxing. Pong is introduced here as it appears to be a particularly difficult task

to retain. Presumably, this is because the components important for the generator to

learn to reproduce are relatively small (e.g. the ball).

The second experiment extends this by normalising the Q-values that the short-

term DQN is teaching to the long-term DQN. The mean and standard deviation used

in this normalisation is approximated using 1,000 batches from the experience replay,
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which is passed through the STM system before training the LTM system.

The third experiment teaches a new agent to play either Pong or Road Runner

using generated pseudo-items. This is achieved by firstly training a DQN to play the

game (for 20m frames) while collecting data in an experience replay. This data, and in

GRIm-RePR the DQN too, is then used to teach RePR or GRIm-RePR’s generative

model for 200,000 iterations, so that it can reproduce pseudo-items representative of

the task. Next, the generative model is used to produce 200,000 pseudo-inputs, which

are passed through the trained DQN so that their target Q-values are attained and

normalised. Distillation is then used to teach these Q-values to a newly initialised

DQN, so that it too can play the game.

Experimental Conditions

All of the experimental conditions are trained 3 times on the same set of seeds and

results are averaged across these seeds. The first experiment’s conditions are as follows:

• RePR: Learns Pong and Boxing sequentially with the RePR model, using the

standard GAN architecture to generate pseudo-items for rehearsal. This condi-

tion does not use Q-value normalisation.

• GRIm-RePR: Learns Pong and Boxing sequentially with the GRIm-RePR model,

utilising a second discriminator to improve the quality of the pseudo-items re-

hearsed. This condition does not use Q-value normalisation.

• reh: Learns Pong and Boxing sequentially, utilising real items for rehearsal. This

condition does not use Q-value normalisation.

The second experiment’s conditions are identical, except Q-value normalisation is

used. Therefore, the conditions are labelled as RePR-norm, GRIm-RePR-norm and

reh-norm. Finally, the third experiment investigates the quality of the RePR and

GRIm-RePR models’ generations by using their pseudo-items to train a task to a new

DQN. The experimental conditions for this experiment are:

• RePR-norm-scratch: Learns an environment from scratch using pseudo-data

generated by RePR’s standard GAN, which has been trained on data from the

task. This condition uses Q-value normalisation.

• GRIm-RePR-norm-scratch: Learns an environment from scratch using pseudo-

data generated by GRIm-RePR’s improved GAN, which has been trained on
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data from the task. In this condition, the DQN agent used to inject additional

information into the GAN is the same DQN agent used to teach the task to the

new agent. This condition uses Q-value normalisation.

• GRIm-RePR-norm-scratch-mismatch: Learns an environment from scratch us-

ing pseudo-data generated by GRIm-RePR’s improved GAN, which has been

trained on data from the task. In this condition, two DQN agents are originally

trained on the task. The first DQN is used to inject additional information into

the GAN, while the second DQN is used to teach the task to the new agent. This

condition uses Q-value normalisation.

5.3.4 Results and Discussion

The results of the first experiment are shown in Figure 5.8. When Boxing is being

learnt, the reh condition shows some initial forgetting of Pong, but most of this is

recovered through further rehearsal of Pong. Both the RePR and GRIm-RePR con-

ditions demonstrate substantial initial forgetting of Pong. Both conditions gradually

recover some of its ability to play the game, although the GRIm-RePR condition re-

covers to a much higher performance. This is important as it suggests that providing

additional information to the generator has improved the generative capabilities of the

GAN.

One interesting observation from the results was the initial forgetting present. This

was hypothesised to be due to the tasks’ Q-value functions interfering with one another.

More specifically, the average Q-value in Pong was observed to be approximately 2,

whereas in Boxing it was approximately 18. This results in Boxing being weighted as

about 9 times more important in the agent’s loss function2 and thus, Pong is immedi-

ately forgotten when Boxing is first being learnt. This prompted the second experiment

which investigated whether normalising the Q-values being taught to the LTM system

stopped the initial forgetting seen in Pong.

The results for the second experiment are illustrated in Figure 5.9. The results

conveyed no observable differences between conditions in both their retention of Pong

and their capability to learn Boxing. However, having the importance of these tasks

more evenly weighted appears to cost the network’s ability to learn Boxing to the same

2For a two task sequence this could be solved by changing the α value weighting the importance

between learning the new task and retention. However, for longer task sequences this solution is not

possible.
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Figure 5.8: Results of the GRIm-RePR condition compared to the

RePR and reh conditions, where all conditions do not use normalisa-

tion. Scores are recorded by evaluating the long-term DQN after ev-

ery 1m observable training frames. Task switches occur at the dashed

lines, in the order Pong and then Boxing.
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standard as the previous experiment. Most interestingly, none of the 3 conditions had

noticeably lower performance on Pong after learning the new task. Therefore, the

differing Q-value functions of the tasks were causing Pong to be initially forgotten in

the previous experiment. This shows that improving the generative model was not

necessary to remember Pong. However, the previous results still suggest that the

quality of GRIm-RePR’s generations are likely better than RePR, as they could be

used to relearn more forgotten knowledge of Pong. Therefore, it is likely that GRIm-

RePR will be especially beneficial in situations where it is particularly challenging for

the continual learner to retain knowledge.

Pilot tests also investigated whether interference between tasks could alternatively

be minimised by standard normalising their reward functions. However, the mean

and standard deviation of the rewards that the agent could eventually attain from

the environment is not known before training. Therefore, this normalisation must

be implemented by using the current mean and standard deviation of the rewards in

the experience replay buffer. This mean and standard deviation can then be used

to standard normalise the rewards sampled from the experience replay. However, as

the agent’s policy improves, it gets more rewards and thus, the mean and standard

deviation of the experience replay buffer changes. This constant changing does not

lend well to reinforcement learning, making some environments (e.g. Pong whose score

could not be improved from its pre-initialised state) particularly more challenging to

learn.

The third experiment more specifically investigates the quality of the models’ gen-

erations by using them to teach a task from scratch. This experiment was conducted

for both the Pong and Road Runner tasks and the results can be found in Figure 5.10

and Figure 5.11 respectively. For both of these tasks, the generative network used by

the GRIm-RePR model can be observed to outperform RePR, being able to teach the

task to a considerably higher standard on Pong.

One interesting observation made from the third experiment was that the

GRIm-RePR-norm-scratch-mismatch condition did not perform as well as the

GRIm-RePR-norm-scratch condition. More specifically, when the DQN used for

improving the GAN did not match the DQN used for teaching, the new agent did not

learn the task as well as when they did match. However, the GRIm-RePR-norm-

scratch-mismatch condition did appear to more quickly learn the task compared to

the RePR-norm-scratch condition, especially on Pong. It’s surprising that the

GRIm-RePR-norm-scratch-mismatch condition does not perform as well because this
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Figure 5.9: Results of the GRIm-RePR-norm condition compared to

the RePR-norm and reh-norm conditions, where all conditions use

normalisation. Scores are recorded by evaluating the long-term DQN

after every 1m observable training frames. Task switches occur at the

dashed lines, in the order Pong and then Boxing.
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Figure 5.10: Results of RePR compared to GRIm-RePR (with the

DQN used to train the new agent matching or mismatching the

DQN used to train the GAN), where all conditions use normalisa-

tion. Scores are recorded by evaluating the new DQN on Pong after

every 1m observable training frames.

suggests that the learnt features that are important to one DQN are different to the

features that are important to another DQN trained to play the same game under the

same training conditions. Although it is disappointing that the quality of generations

does not improve regardless of whether the DQNs match, this is not a limitation when

using GRIm-RePR for continual learning because the same DQN agent should be

accessible when training the generative model, as well as when doing pseudo-rehearsal.

There is significant room for future work in improving generative models for pseudo-

rehearsal. However, there was not enough time to investigate further in this thesis.

Such future work could include extending the GRIm-RePR model by feeding more

layers of information from the agent to the generative model, as well as investigating

other ways this information could be calculated and given to the generator. One

particular domain that could have interesting applications is network interpretability

methods. These methods hope to indicate how important each network’s input is to its

output. When these methods improve, they could be particularly helpful in providing

beneficial information to the generator.
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Figure 5.11: Results of RePR compared to GRIm-RePR (with the

DQN used to train the new agent matching or mismatching the

DQN used to train the GAN), where all conditions use normalisation.

Scores are recorded by evaluating the new DQN on Road Runner after

every 1m observable training frames.

5.3.5 Conclusions

In conclusion, this section proposed a method called GRIm-RePR which aims to im-

prove the quality of pseudo-items. This is achieved by providing information from the

agent to the generative model, referring to how important features in the input exam-

ples are to the agent’s policy. Learning of important features is encouraged by the loss

function of the network and thus, pseudo-items produced by the generative model are

more effective for retention. Experimental results confirm that GRIm-RePR is capable

of outperforming RePR, especially when forgetting occurs and relearning is necessary.

Furthermore, normalising Q-values was also found to prevent forgetting by minimising

the interference between tasks.
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5.4 Evaluating Pseudo-Rehearsal on a Larger Task

Sequence

So far, RePR and its variants have only been shown in relatively short, but still chal-

lenging, sequences of reinforcement learning tasks. GANs can be relatively unstable to

train due to vanishing gradients and mode collapse (Li, Madry, Peebles, and Schmidt,

2018). Therefore, the RePR model has the potential to catastrophically fail once the

model is under high load. This section challenges RePR further by extending the

sequence of learning tasks to 6 Atari 2600 games. The aim is to investigate the limi-

tations of RePR by more specifically investigating whether the model fails gracefully

or catastrophically once the generative model has reached its capacity. It is also hy-

pothesised that the advantages of the GRIm-RePR model over the RePR model will

be more observable under these difficult conditions.

Furthermore, the Maximum Mean Discrepancy (MMD) (Gretton, Borgwardt, Rasch,

Schölkopf, and Smola, 2012) value is computed to measure the similarity between the

distribution of real input items and RePR’s pseudo-items. MMD measures the similar-

ity between two distributions by computing the distance between samples within and

between the two distributions using kernels. The closer the MMD value is to zero3, the

more similarity there is between the distributions. More specifically, the MMD value

is calculated by:

MMD2 =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj),

(5.9)

where x and y are samples from the first and second distribution respectively. The

number of samples used from each distribution are m and n respectively and k(·, ·) is

a kernel (or sum of kernels).

5.4.1 Methodology

The first experiment in this section is identical to the experiment in the previous chapter

(see Section 4.2), except: an extended task sequence is learnt; a larger short-term and

long-term DQN is used; the long-term DQN is trained for longer, using normalised

3Negative MMD values are treated as zero.
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Q-values; and learning of the new task is set to be slower. These changes are described

in more detail below.

The second experiment compares the MMD value for batches of real items, RePR’s

pseudo-items and items generated by a normal distribution. An MMD value is calcu-

lated for each stage in the extended training sequence4, where the GAN used to produce

pseudo-items is the one trained in this section’s first experiment (i.e. the RePR-extend

condition below).

Environments

In the previous chapter, the environments learnt were Road Runner, Boxing and James

Bond. This sequence is further extended using the following Atari 2600 video games:

Pong (which has been described in the previous section), Atlantis and Qbert. All three

of these tasks are ones in which a DQN can outperform a human (Mnih et al., 2015).

In Atlantis, the agent is required to protect Atlantis city from enemy space ships by

choosing when to fire 3 stationary cannons at them. The ships move horizontally across

the screen and if they survive 4 passes, they will destroy one of the city’s bases (starting

with the central cannon). The game ends when all bases have been destroyed by the

invasion. In Qbert, the agent controls a character (called Qbert), who starts at the top

of a pyramid of cubes and must jump diagonally around the cubes, changing them all

to a certain colour to clear the level. Some levels require Qbert to jump on the cubes

multiple times to get them to the correct colour. In later levels, the cubes will cycle

through multiple colours when Qbert jumps on them, even once they have reached the

target colour. There are also several enemies that impede Qbert, most importantly

the enemy Coily which tries to catch Qbert and take a life from him. There are also

floating platforms which Qbert can jump on to temporarily escape enemies and return

to the top of the pyramid. These Atari games are translated into reinforcement learning

environments through the same procedure described in Section 4.2.1.

Network Architectures

Pilot tests showed that the DQN architecture used in the previous chapter was too small

to effectively retain the extended sequence of tasks, even when rehearsing with real

data. Therefore, the DQN architecture used in this section was enlarged by doubling

both the number of filters used in convolutional layers and the number of units in

4Results after learning the sixth task (Qbert) are excluded because these pseudo-items are not used

to rehearse another task.
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Table 5.5: Enlarged DQN architecture for training on an extended

task sequence, where CONV is a convolutional layer and FC is a fully

connected layer.

DQN

Input: 84× 84× 4

layer # units/filters filter shape filter stride activation

CONV 64 8× 8 4× 4 ReLU

CONV 128 4× 4 2× 2 ReLU

CONV 128 3× 3 1× 1 ReLU

FC 1024 ReLU

FC 18

the fully connected layer. This resulted in the architecture shown in Table 5.5. The

architectures of the GANs used in RePR and GRIm-RePR remain the same as the

architectures described in the models’ corresponding sections.

Training and Evaluation

The training and evaluation procedure remains the same as the previous chapter, except

for a few minor differences. The first difference being the Q-values transferred from the

short-term DQN to the long-term DQN are normalised using the procedure described

in Section 5.3.3. Training of the long-term DQN on each task is extended from 20m

frames to 40m frames. Finally, assimilation of the new task into the LTM system is

slowed down by setting α, scaling the importance of learning the new task compared

to retaining previous tasks, to be 0.05.

Experimental Conditions

The first experiment’s conditions are as follows:

• std-extend: Learns the extended sequence of environments, without using meth-

ods to prevent catastrophic forgetting. This is the lower bound of performance.

• reh-extend: Learns the extended sequence of environments, utilising real items

for rehearsal. This is the upper bound of performance.
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• RePR-extend: Learns the extended sequence of environments with the RePR

model, using the standard GAN architecture to generate pseudo-items for re-

hearsal.

• GRIm-RePR-extend: Learns the extended sequence of environments with the

GRIm-RePR model, utilising a second discriminator to improve the quality of

the pseudo-items rehearsed.

Due to extensive training times, these conditions were only tested on a single, consistent

seed.

The second experiment’s conditions are as follows:

• Real: The MMD value when computing the similarity between two batches of real

items drawn from all currently learnt tasks’ experience replays. This condition

provides a baseline for what the MMD value is for batches of data from the same

distribution.

• GAN : The MMD value when computing the similarity between a batch of real

items drawn from all currently learnt tasks’ experience replays and a batch of

pseudo-items produced by a GAN which has learnt the current sequence of tasks.

• Norm: The MMD value when computing the similarity between a batch of real

items drawn from all currently learnt tasks’ experience replays and a batch of

items produced by a normal distribution. The normal distribution generates

items by using the mean and standard deviation for each input variable, ap-

proximated over 20,000 states drawn from all currently learnt tasks’ experience

replays.

Each condition in the second experiment is repeated for 10 trials using a batch size of

100. A large number of 1 dimensional Gaussian Radial Basis Kernels were used with

σ2 = [1× 10−6, 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1, 1, 5, 10, 15, 20, 25, 30,

35, 100, 1× 103, 1× 104, 1× 105, 1× 106].

5.4.2 Results and Discussion

The results of the first experiment are displayed in Figure 5.12. Consistent with pre-

vious experiments, the std-extend condition shows severe forgetting of all previously

learnt tasks, where the final performance of all these tasks is similar to if no learning

had occurred. This is except for the most recently learnt task, which is learnt to a
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high performance level. The reh-extend condition displays some gradual forgetting

of previously learnt tasks, with more recent tasks retained to a higher performance.

The final rehearsal trained model scored 17180, 59, 653, 17, 55813 and 7960 on the

learnt tasks respectively. Importantly, this result shows that the DQN model has the

capability to successfully learn the sequence of tasks without dramatic forgetting.

When the RePR model was challenged, it showed varying amounts of forgetting.

On Road Runner, forgetting became noticeable when the fourth task was being learnt,

with performance drastically decreasing and then partially recovering to a score of

around 18,000. However, once the fifth task was introduced, performance drastically

decreased again, but this time the quality of the pseudo-items for this task was not

high enough to recover from. While Qbert was being learnt, the reh-extend condition

also suffered from drastic forgetting of Road Runner, but in this case, the network was

able to partially recover from it. This suggests that Road Runner was particularly

difficult to retain over this extended sequence, regardless of the condition. RePR

conveyed less substantial forgetting on Boxing, with performance degrading over time

until the task was essentially forgotten after all tasks were learnt. James Bond did

not show forgetting until the fifth task, from which the network only gradually forgot

some of its ability to perform the task. Pong was the only task in which substantial

catastrophic forgetting could be immediately observed, with the agent’s performance

quickly dropping to around −5. In Atlantis, the RePR model displayed some gradual

forgetting, losing less than half of its performance while successfully learning the final

task Qbert.

Overall, the results of RePR showed that when the model is challenged beyond its

capabilities, forgetting is usually gradual. That is, the model only partially forgets

how to perform previously learnt tasks and thus, performance moderately decreases.

However, this was not the case for all tasks, especially Pong which displayed very little

retention. Although RePR displayed noticeable retention of previously learnt tasks,

the model still underperformed compared to rehearsal with real data. This means that

the generative model struggled to learn to produce data from new tasks, while retaining

previous tasks.

Results suggest that the generator particularly struggled to produce items from

certain games, mainly Road Runner and Pong. Images from both of these games were

likely difficult for the GAN to effectively produce as small objects are present in those

images. To attain a high score, it is extremely important for the agent to remember

how to respond to these small objects. In Road Runner, these are the small circles on
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Figure 5.12: Results comparing the RePR and GRIm-RePR models

to the std-extend and reh-extend conditions for an extended task

sequence. Scores are recorded by evaluating the long-term agent af-

ter every 1m observable training frames. Task switches occur at the

dashed lines, in the order Road Runner, Boxing, James Bond, Pong,

Atlantis and then Qbert.
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the ground which the Road Runner collects to attain reward. In Pong, this is the ball

which the agent must move the paddle towards. These objects are more difficult for

the generator to produce, due to them being small and difficult for the discriminator

to detect. Therefore, the quality of these tasks’ images for retention will be poorer

causing more substantial forgetting in these tasks when the model is challenged.

The GRIm-RePR model outperformed the RePR model, showing only gradual for-

getting when challenged beyond its capabilities. More specifically, the GRIm-RePR

model retained noticeably higher performance on all previously learnt games compared

to RePR, with the difference being most extreme in Road Runner and Pong. Overall,

this result suggests that injecting extra information into the GAN does improve the

quality of the images produced by the GRIm-RePR model and consequently increases

its retention capabilities. However, the GRIm-RePR model still underperformed com-

pared to the reh-extend condition, suggesting that further improvements to the GAN

would lead to additional increases in the model’s retention capabilities.

The generative model in RePR and GRIm-RePR uses pseudo-rehearsal to retain

its ability to produce data from previous tasks. The more times pseudo-rehearsal is

used on the GAN, the less realistic the data it produces. This is because the generator

rehearses pseudo-items, not real data, and thus, errors build up as the generator learns

from more and more abstracted data. This can explain why, on longer task sequences,

the RePR variants demonstrate a steeper deterioration in performance compared to

rehearsal of real items, which is much less noticeable when fewer tasks are learnt.

The results of the second experiment are displayed in Figure 5.13. This figure shows

that the MMD values for the Real and GAN conditions are relatively similar, whereas

the MMD value for the Norm condition is considerably higher. This suggests that the

pseudo-items produced by the GAN are similar to the real distribution, particularly

when compared to the similarity between items produced by a normal distribution

and the real distribution. However, it is surprising that the MMD value for the GAN

condition does not considerably increase with the number of tasks learnt. This contrasts

with the results of the first experiment, which clearly showed that the GAN struggled

to generate reasonable pseudo-items when increasing the number of tasks learnt. This

suggests that the MMD value is a poor measure of similarity between these distributions

and this is likely because the kernels are a poor measure of distance between items

(especially when 1 dimensional kernels are used on flattened 3 dimensional items). The

Inception score (Salimans et al., 2016) was also considered as a measure of similarity

(due to its prominence in GAN research). However, this score relies on real items being
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Figure 5.13: Results comparing the MMD values for the Real, GAN

and Norm conditions at each stage of learning the extended task

sequence. Error bars represent the standard deviation of each data

point across the 10 trials.

evenly distributed into classes, which is not the case for the actions (classes) in these

reinforcement learning tasks.

5.4.3 Conclusions

In conclusion, RePR was observed to gradually forget an extended sequence of tasks

more steeply than when real data is used in rehearsal. This was believed to be due

to the generative model using pseudo-rehearsal such that errors in generations com-

pounded over time. Furthermore, substantial catastrophic forgetting was also present

for RePR in tasks which were more difficult to generate items effective for retention.

Alternatively, the GRIm-RePR model demonstrated less gradual forgetting of previ-

ously learnt tasks compared to the RePR model and furthermore, did not display any

instances of severe catastrophic forgetting.
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Chapter 6

Conclusion

A key quality of biological intelligence is its ability to do continual learning, where

it can learn over time, integrating new knowledge, without catastrophically forget-

ting old knowledge. However, when artificial neural networks update to accomodate

new knowledge, they have the tendency to completely overwrite previously attained

knowledge and thus, catastrophically forget. This is disadvantageous to the model and

restricts its ability to continually learn in a real world environment. Overcoming this

catastrophic forgetting problem is important as it will allow neural networks to effec-

tively build upon and improve its current knowledge. Furthermore, knowledge in one

domain can often be applied to other domains. Therefore, overcoming this problem is

also beneficial as knowledge from multiple domains could be compressed into a single

model, which might also decrease the learning time for new information.

This thesis primarily aimed to solve the catastrophic forgetting problem in the rein-

forcement domain, where the neural network is challenged with a sequence of complex

reinforcement tasks to learn. This is an important domain in which to solve the catas-

trophic forgetting problem because it is through reinforcement learning that a neural

network has the capabilities to learn to positively interact in real world environments.

Another important objective was for the method to prevent catastrophic forgetting

without: increasing in memory size as the number of tasks expands; revisiting previ-

ously learnt tasks; or directly storing data from previous tasks.

Pseudo-rehearsal was identified as a promising solution to catastrophic forgetting,

which this thesis built upon while satisfying the above objectives. Pseudo-rehearsal uses

a random number generator to produce pseudo-inputs which can be passed through the

model to attain target outputs. These input-output pairings (pseudo-items) can repre-

sent what the network has learnt from previous tasks. This means that pseudo-items
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can be practiced alongside new tasks, so that new tasks are learnt without interfer-

ing with previously attained knowledge. Pseudo-rehearsal has major advantages over

many other methods for preventing catastrophic forgetting because it constrains the

overall function of the network to remain the same, without constraining the actual

weights of the network. This gives the network the freedom to change dramatically

and therefore, is less restrictive on how the network integrates new knowledge.

In more complex tasks, like those commonly learnt by deep neural networks, stan-

dard pseudo-rehearsal is no longer effective. This is because the pseudo-items do not

represent previous tasks and consequently, they do not represent what the network has

learnt about those tasks. Therefore, this thesis improves upon the ideas of pseudo-

rehearsal, so that it can be used to prevent catastrophic forgetting in deep neural

networks.

Initial work on improving pseudo-rehearsal was applied to the image classification

domain. The method, termed Pseudo-Recursal, extended pseudo-rehearsal by intro-

ducing a generative network. This generative network learnt to randomly produce data,

which was representative of previously learnt tasks, so that this data could be used as

pseudo-items. These pseudo-items could then be used to retain knowledge of previous

classification tasks. The pseudo-items could also be fed back to the generator so that

it could learn to produce data representative of new tasks, without catastrophically

forgetting how to produce data representative of previous tasks. Results showed the

Pseudo-Recursal method successfully preventing catastrophic forgetting, outperform-

ing the competing EWC methods and preforming similarly to when rehearsing real

data.

Pseudo-rehearsal was further extended to the reinforcement domain. The model,

termed RePR, split learning into two systems. The STM system contained a DQN

which only learnt the current task through reinforcement learning. The LTM system

contained a DQN and GAN, both of which were taught the new task by the STM sys-

tem, while retaining previous knowledge through pseudo-rehearsal. The GAN was the

generative model, which produced pseudo-items similar to Pseudo-Recursal. Isolating

reinforcement learning to the STM system was found to be particularly beneficial be-

cause it made the training procedure considerably easier for the LTM system. Results

from the RePR model demonstrated it was substantially more successful in preventing

catastrophic forgetting compared to the EWC and the Progress and Compress method,

along with performing very similarly to when the model rehearsed real items.

The later work in this thesis has further improved and evaluated the RePR model.
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Firstly, the model was successfully generalised to Actor-Critic methods (another pop-

ular deep reinforcement learning method). This separated the policy from the value

function, which consequently improved the policy retained by the model and meant the

LTM system did not have to learn the value function to be able to continue learning

from partially learnt tasks. GRIm-RePR was also proposed, which improved RePR by

informing the generator about which features in images were important to the agent’s

policy. Finally, the RePR and GRIm-RePR models were evaluated on an extended

sequence of tasks. Results confirmed that GRIm-RePR outperforms RePR but also

demonstrated the models moderately suffering from forgetting on this extended se-

quence. However, forgetting was predominantly gradual, with some severe forgetting

by the RePR model on tasks that were more difficult to generate important features

for.

This thesis aimed to prevent catastrophic forgetting in neural networks with a model

that used a consistent memory size (i.e. did not expand with the number of tasks learnt)

and did not revisit previously learnt tasks nor directly store data from those tasks. This

was achieved by introducing a generative network into previously established pseudo-

rehearsal methods. The generative network learnt to generate data representative of

previously seen tasks. This generated data was rehearsed so that previous tasks were

not revisited and did not have raw data stored from them. Furthermore, the models

proposed in this thesis did not scale as the number of tasks increased. More specifically,

the size of the networks, number of networks and training time were all fixed in each

experiment and thus, did not increase with the number of tasks currently learnt. Also,

the number of pseudo-items generated and used in pseudo-rehearsal did not change

throughout learning.

The goal of the generator is to produce items which are representative of the real

dataset. Therefore, storing real items for rehearsal should always be more successful at

preventing catastrophic forgetting. However, the proposed pseudo-rehearsal methods

have advantages over rehearsal. Firstly, results in this thesis demonstrate that given a

relatively small fixed memory allocation, it is more beneficial to use a generative model

to produce pseudo-items than it is to directly store real items for rehearsal. Secondly,

there might be legal/privacy reasons which do not allow the storage of real data (e.g.

in the medical profession). Finally, it is implausible that the brain hardcodes real data

to solve the catastrophic forgetting problem in human intelligence and therefore, the

development of biologically plausible methods can be more intriguing.

RePR relies heavily on the capabilities of its generative network. Therefore, future
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work improving generative models will be beneficial to pseudo-rehearsal and further

minimising catastrophic forgetting. These improvements could not only enhance the

overall quality of the data produced by these generative models, but also enhance the

quality specific to pseudo-rehearsal. This latter improvement has been touched on by

the GRIm-RePR model proposed in this thesis. However, there is still potential for an

abundance of research investigating other ways to calculate and pass information to

the generator so that it can be tailored specifically to pseudo-rehearsal.

Another avenue for future research is investigating whether pseudo-rehearsal can be

used to solve the catastrophic forgetting that occurs when a reinforcement agent learns

a single task. The stream of data a reinforcement agent is learning from is not i.i.d.

and therefore, it is currently necessary to prevent catastrophic forgetting by using an

experience replay or having multiple agents produce data by interacting with copies

of the environment. Alternatively, future work might investigate whether using both

pseudo-rehearsal and a generative model could also prevent this type of catastrophic

forgetting.

In summary, this thesis has investigated how pseudo-rehearsal could be used to pre-

vent catastrophic forgetting. This thesis found that introducing a generative model,

along with other components, allowed pseudo-rehearsal to successfully prevent catas-

trophic forgetting in both the image classification and deep reinforcement learning

domains. The proposed methods were found to out-compete state-of-the-art solutions.

However, the methods are primarily limited by the capability of their generator and

thus, if pseudo-rehearsal is to completely solve the catastrophic forgetting problem,

future research into improving this generator is necessary.
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Appendix A

Pseudocode for Pseudo-Recursal

foreach d in datasets do
net = train net(net, d, gan)
gan = train gan(gan, d)

end

def train net(net, d, gan):
new net = copy(net)
while new net is not converged do

update new net(new net, d, gan, net)
end
return new net

end

def update new net(new net, d, gan, net):
x, y = d.sample(batchsize)
LN = CE(new net.get outputs(x), y)
if gan is not initialised then

loss = LN
else

z = uniform sample(−1, 1, (batchsize, n latents))
prev x = gan.gen.get outputs(z)
prev y = net.get outputs(prev x)
LPRec = CE(new net.get outputs(prev x), prev y)
loss = LN + LPRec

end
new net.SGD step(loss)

end
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def train gan(gan, d):
new gan = initialise gan()
new gan.n tasks = 1
if gan is initialised then

new gan.n tasks = gan.n tasks
end
while new gan is not converged do

update new gan(new gan, d, gan)
end
new gan.n tasks = new gan.n tasks + 1
return new gan

end

def update new gan(new gan, d, gan):
x, y = d.sample(batchsize/new gan.n tasks)
if new gan.n tasks > 1 then

z = uniform sample(−1, 1, (batchsize− (batchsize/new gan.n tasks),
n latents))
prev x = gan.gen.get outputs(z)
x = concatenate(x, prev x)

end
z = uniform sample(−1, 1, (batchsize, n latents))
LDiscPRec = CE(new gan.disc.get outputs(new gan.gen.get outputs(z)),
zeros) + CE(new gan.disc.get outputs(x), ones)
new gan.disc.SGD step(LDiscPRec)
for i in range(2) do

z = uniform sample(−1, 1, (batchsize, n latents))
LGenPRec = CE(new gan.disc.get outputs(new gan.gen.get outputs(z)),
ones)
new gan.gen.SGD step(LGenPRec)

end

end
Algorithm 1: Pseudocode for training the Pseudo-Recursal model. datasets is a
list of the datasets to be learnt sequentially. net, gan.disc and gan.gen are the
classifier, discriminator and generator networks respectively. zeros and ones are
arrays of length batchsize containing either zeros or ones respectively. In practice,
the algorithm used for collecting Pseudo-Recursal’s results stores an array of pseudo-
items which are generated by the GAN before training on a new task rather than
generating them on the fly during training.
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Appendix B

Pseudocode for RePR

foreach env in environments do
stm agent = initialise stm agent()
stm agent.target net = copy(stm agent.pred net)
stm agent = train agent(stm agent, env, exp, stm max iter, None, None)
if ltm agent is not initialised then

ltm agent = copy(stm agent)
else

ltm agent = train agent(stm agent, env, exp, ltm max iter, ltm agent,
gan)

end
gan = train gan(gan, exp, gan max iter)

end

def train gan(gan, exp, gan max iter):
new gan = initialise gan()
new gan.n tasks = 1
if gan is initialised then

new gan.n tasks = gan.n tasks
end
iter = 0
while iter < gan max iter do

if iter is even then
update disc(new gan, exp, gan)

else
update gen(new gan)

end
iter = iter + 1

end
new gan.n tasks = new gan.n tasks + 1
return new gan

end
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def train agent(stm agent, env, exp, max iter, ltm agent, gan):
if ltm agent is None then

agent = stm agent
else

agent = ltm agent
prev ltm agent = copy(ltm agent)

end
exp.clear()
st = env.reset()
iter = 0
while iter < max iter do

at = agent.pred net.predict action(st)
rt, dt, st = env.take action(at)
exp.add(at, rt, dt, st)
if ltm agent is None then

update stm agent(stm agent, exp, iter)
else

update ltm agent(ltm agent, exp, stm agent, gan, prev ltm agent)
end
if dt then

st = env.reset()
end
iter = iter + 1

end
return agent

end

128



def update stm agent(stm agent, exp, iter):
a, r, d, s, s

′
= exp.sample(batchsize)

loss = 0

foreach at, rt, dt, st, st+1 in zip(a, r, d, s, s
′
) do

if dt then
yt = rt

else
yt = rt + γmax

at+1

stm agent.target net.get outputs(st+1)[at+1]

end
loss = loss + (yt − stm agent.pred net.get outputs(st)[at])

2

end
stm agent.pred agent.SGD step(loss)
if iter divisible by update target freq then

stm agent.target net = copy(stm agent.pred net)
end

end

def update ltm agent(ltm agent, exp, stm agent, gan, prev ltm agent):
a, r, d, s, s

′
= exp.sample(batchsize)

z = uniform sample(−1, 1, (batchsize, n latents))
s̃ = gan.gen.get outputs(z)
loss = 0
foreach sj, s̃j in zip(s, s̃) do

LD = sum((ltm agent.pred net.get outputs(sj)−
stm agent.pred net.get outputs(sj))

2)
LRePR = sum((ltm agent.pred net.get outputs(s̃j)−
prev ltm agent.pred net.get outputs(s̃j))

2)
loss = loss + αLD + (1− α)LRePR

end
ltm agent.pred agent.SGD step(loss)

end
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def update disc(new gan, exp, gan):
a, r, d, s, s

′
= exp.sample(batchsize/new gan.n tasks)

x = s
if new gan.n tasks > 1 then

z = uniform sample(−1, 1, (batchsize− (batchsize/new gan.n tasks),
n latents))
x̃ = gan.gen.get outputs(z)
x = concatenate(x, x̃)

end
z = uniform sample(−1, 1, (batchsize, n latents))
ε = uniform sample(0, 1, batchsize)
loss = 0
foreach xj, zj, εj in zip(x, z, ε) do

x̃j = new gan.gen.get outputs(zj)
x̂j = εjxj + (1− εj)x̃j
disc real = new gan.disc.get outputs(xj)
disc fake = new gan.disc.get outputs(x̃j)
disc xhat = new gan.disc.get outputs(x̂j)
gradient penalty = λ(‖grads(disc xhat, x̂j)‖2 − 1)2

loss = loss + disc fake− disc real + gradient penalty +
εdriftdisc real

2 + εdriftdisc fake
2

end
new gan.disc.SGD step(loss)

end

def update gen(new gan):
z = uniform sample(−1, 1, (batchsize, n latents))
x̃ = new gan.gen.get outputs(z)
loss = 0
foreach x̃j in x̃ do

loss = loss - new gan.disc.get outputs(x̃j)
end
new gan.gen.SGD step(loss)

end
Algorithm 2: Pseudocode for training RePR. environments is a list of the environ-
ments to be sequentially learnt and exp is an experience replay. stm agent contains a
predictor network and a target network, whereas the ltm agent uses only a predictor
network. gan.disc and gan.gen are the GAN’s discriminator and generator networks
respectively. α weights the importance of learning the new task vs. retaining previous
tasks. In practice, the algorithm used for collecting RePR’s results stores an array of
pseudo-items which are generated by the GAN before training on a new task rather
than generating them on the fly during training.
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