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Role of delay in the stochastic creation process

L. F. Lafuerza and R. Toral
IFISC, Instituto de Fı́sica Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus UIB, E-07122 Palma de Mallorca, Spain

(Received 7 June 2011; published 18 August 2011)

We develop an approximate theoretical method to study discrete stochastic birth and death models that include
a delay time. We analyze the effect of the delay in the fluctuations of the system and obtain that it can qualitatively
alter them. We also study the effect of distributed delay. We apply the method to a protein-dynamics model that
explicitly includes transcription and translation delays. The theoretical model allows us to understand in a general
way the interplay between stochasticity and delay.
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I. INTRODUCTION

Fluctuations play an important role in many areas of
science, and their study has become a well-defined discipline
[1]. Delay in the interactions is also a common phenomenon in
natural and artificial systems, and it is well known that it can al-
ter qualitatively the dynamical behavior, for example, inducing
oscillations or even chaos [2]. In particular, both fluctuations
and delay are relevant in gene-regulation systems, where a lot
of research effort, both theoretical and experimental, has been
recently carried out [3–7].

The combined effect of stochasticity and delay is not
completely understood. In this context, many studies have
focused on delayed stochastic, Langevin, differential equations
or Fokker-Planck equations [8,9] that assume continuous
variables or random walks in discrete time [10]. Stochastic
models with continuous time but discrete variables are the
natural description of many systems, such as chemical reac-
tions, population dynamics, epidemics, etc. In some cases this
discreteness is a major source of fluctuations [11].

In this work, we study some general stochastic birth and
death processes that include delay. We follow a master equation
approach that considers discrete variables in continuous time.
We present an analytical treatment that allows us to study the
effect of delay and show that the delay can alter qualitatively
the character of the fluctuations. We also consider the situation
with distributed delay and study how the fluctuations change
as the delay distribution becomes wider.

This paper is organized as follows: In Sec. II we present the
theoretical approach, applying it to a general one-step birth-
death model, and discuss the influence of the delay in the
fluctuations of this system. In Sec. III we consider the effect of
distributed delay. In Sec. IV we study a two-step transcription-
translation model, which is more relevant to gene regulation.
We finish in Sec. V with some conclusions and comments.

II. STOCHASTIC CREATION WITH DELAY

Let us start by considering a simple one-step stochastic
process in which the number of units (e.g., molecules) n of
some compound X can only increase or decrease by 1:

∅
C

−→ X, X

D

−→ ∅. (1)

The creation, C(n), and annihilation, D(n), rates depend, in
general, on n. The probability P (n,t) that there are n molecules
at time t follows a master equation [1]:

∂P (n,t)

∂t
= (E − 1)[D(n)P (n,t)]

+ s(E−1 − 1)[C(n)P (n,t)], t � 0, (2)

with E being the step operator, Ek[f (n)] = f (n + k).
Our main aim in this paper is to consider that the creation of

an X particle takes a finite amount of time τ . More specifically,
we consider that the creation is a stochastic process initiated at
a rate C(n) but, once initiated, it takes a finite amount of time
τ to be completed. Schematically,

∅
C

−→ X∗, X∗ =⇒
τ

X, X

D

−→ ∅. (3)

Here X∗ is considered to signal the beginning of the process
that, after a time τ , will lead to X. The creation of X∗ is
a stochastic process, but the step leading from X∗ to X is
deterministic, requiring a constant time τ for completion (this
is indicated by a double arrow, while a single arrow denotes
a stochastic event). We consider that the stochastic variable
n takes into account just the number of X molecules (not
including X∗). Similar, although not identical, processes have
been considered before in the context of protein synthesis
[12,13]. In a very simple manner, we can think that X∗
indicates the beginning of the transcription process of a protein
from a gene but that, once initiated, the transcription plus
translation steps take a time τ to be completed. In this case,
the creation rate C(n) depends on n if there is autoinhibition
or autoactivation, leading to a negative or positive feedback
loop, respectively.

Due to the presence of delay, the master equation of the
process involves now the two-time probability distribution
P (n,t ; n′,t ′) as

∂P (n,t)

∂t
= (E − 1)[D(n)P (n,t)]

+(E−1 − 1)

[ ∞∑
n′=0

C(n′)P (n′,t − τ ; n,t)

]
, (4)

valid for t � 0. As written, this is an equation for the
one-time probability P (n,t) and has to be supplemented with
the appropriate initial conditions. The conditional probability
P (n,t |k,t0) follows an equation such as (4) but conditioning all
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appearing probabilities to k at t0. Due to the non-Markovian
character, these equations are not closed. The creation term
takes into consideration that the probability that a particle is
created at time t is the sum of all contributions in which there
were n′ particles at time t − τ and an X∗ particle was created
at that time, at a rate C(n′), leading necessarily at time t to an X

particle. This equation is the basis of our subsequent analysis.
We will eventually consider, for the sake of concreteness, that
the annihilation of particles occurs through independent events
at individual rate γ and, hence, D(n) = γ n. Formally, Eq. (4)
can be written in the form

∂P (n,t)

∂t
= (E − 1)[D(n)P (n,t)]

+ (E−1 − 1)[C̃(n,t)P (n,t)], (5)

with an effective time dependent rate

C̃(n,t) = 〈C(n′),t − τ |n,t〉, (6)

where we have introduced the notation for the condi-
tional average 〈f (n1),t1|n2,t2〉 = ∑

n1
f (n1)P (n1,t1|n2,t2).

Other, nonconditional averages will be denoted as 〈f (n)〉t =∑
n f (n)P (n,t). The conditional average 〈n,t |k,t0〉 satisfies

the evolution equation, valid for t � 0:

d〈n,t |k,t0〉
dt

= −γ 〈n,t |k,t0〉 + 〈C(n),t − τ |k,t0〉, (7)

with initial condition 〈n,t0|k,t0〉 = k. Higher order averages
obey a hierarchy of equations, which we do not need to write
down for the purposes of this paper. The resolution of this
hierarchy would allow one to compute the average value
〈f (n)〉t of any function f (n), which can be expanded as a
Taylor series of n.

We will be mostly interested in the steady state, where
the averages 〈f (n)〉st ≡ limt→∞〈f (n)〉t are time independent
and the conditional averages depend only on the time differ-
ence, 〈f (n1),t |n2〉st ≡ limt ′→∞〈f (n1),t + t ′|n2,t

′〉. They can
be computed, respectively, from the steady-state probabil-
ity distributions Pst (n) = limt→∞ P (n,t) and Pst (n1,t |n2) =
limt ′→∞ Pst (n1,t

′ + t |n2,t
′). Formally, the knowledge of

the steady-state value C̃st (n) ≡ limt→∞〈C(n′),t − τ |n,t〉 =
〈C(n′), − τ |n〉st allows the calculation of the steady-state
probabilities Pst (n), after imposing ∂P (n,t)

∂t
= 0 in Eq. (5), as [1]

Pst (n) = Pst (0)
n−1∏
k=0

C̃st (k)

D(k + 1)
= Pst (0)

γ nn!

n−1∏
k=0

C̃st (k), (8)

where Pst (0) is fixed by the normalization condition. In the
following sections, we will discuss two methods to obtain
the conditional averages needed for the calculation of C̃st (n).
This will allow us to obtain the steady-state probabilities as
well as the mean value 〈n〉st , variance σ 2

st , and correlations
K(t) = 〈n〈n′,t |n〉st 〉st − 〈n〉2

st .

A. The independent-times approximation

The first method assumes that the conditional aver-
age values do not depend on previous history or, equiva-
lently, that the two-times probability distribution factorizes
as P (n1,t1; n2,t2) = P (n1,t1)P (n2,t2). This implies that in
Eq. (6) we can set C̃(n,t) = 〈C(n′)〉t−τ , independent of n.

On empirical grounds, it is expected that this approximation
will be valid for large τ where the events at t and t − τ

can be considered to be independent, although we will show
later that this is not the case. In the steady state, this
assumption implies C̃(n,t) = 〈C(n)〉st , a constant. Replacing
this result in Eq. (8), we obtain that the steady-state follows
a Poisson distribution Pst (n) = e−χ χn

n! , with χ = 〈C(n)〉st
γ

. The
yet unknown steady-state average value is obtained through
the consistency relation 〈C(n)〉st = ∑

n C(n)Pst (n). Once this
equation is solved, the mean and variance of the distribution
follow: 〈n〉st = σ 2

st = 〈C(n)〉st
γ

.
The consistency relation can be explicitly solved in the

linear case C(n) = c − εn, with the result 〈n〉st = c
ε+γ

. In the
literature and in the field of protein transcription, it is usually
considered a negative feedback loop where the creation rate is
a decreasing, nonlinear function, for example, C(n) = c

1+εn
.

This corresponds to a gene repressed directly by the protein it
encodes for, in the limit where the binding and unbinding of
this protein is fast compared to the rest of time scales of the
system. The approximation is good if the unbinding rate of
the protein from the promotor is much greater (on the order of
ten times) than the degradation rate of the protein [14]. In this
case, the consistency relation reduces to

〈n〉st = c

γ

∫ ∞

0
dx exp[−x + 〈n〉st (e−εx − 1)], (9)

which, in general, needs to be solved numerically. In the
limit ε → 0 we can expand e−εx − 1 = −εx to derive 〈n〉st =

c/γ

1+ε〈n〉st , the mean-field result. Since at the steady state the

effective creation rate C̃(k,t) = 〈C(n)〉st is constant, the
process is a simple birth-death process, and the correlations
decay exponentially as K(t) = σ 2

st e
−γ |t |.

Within this independent-times approximation, the steady-
state average value 〈n〉st and variance σ 2

st are equal (Poisson
distribution) and do not depend on the delay time τ . This is a
general result that does not depend on the specific functional
form for the creation rate C(n). As discussed before, this is
naively expected to hold in the case of a large delay τ . In
the numerical simulations, however, it is observed that the
fluctuations are sub-Poissonian (variance smaller than the
average value) for small τ and super-Poissonian (variance
larger than the average value) for large τ . The details of
the simulations for this stochastic process including delay are
given in Appendix A. Note that the case τ = 0 can be solved
(exactly) by a variety of methods. Within our treatment and
according to Eq. (6), for τ = 0 the conditional probability is
C̃(n,t) = 〈C(n′),t |n,t〉 = C(n), which leads to a steady-state
distribution Pst (n) = Pst (0)

γ nn!

∏n−1
k=0 C(k). In the nonlinear case

C(n) = c
1+εn

, this leads to

Pst (n) = v
1
ε
−1

I 1
ε
−1(2v)

v2n

n!�
(
n + 1

ε

) , (10)

〈n〉st = v
I 1

ε
(2v)

I 1
ε
−1(2v)

, (11)

σ 2
st = 〈n〉st − v2

[(
I 1

ε
(2v)

I 1
ε
−1(2v)

)2

−
I 1

ε
+1(2v)

I 1
ε
−1(2v)

]
, (12)
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where v =√
c

γ ε
. It is possible to show that σ 2

st � 〈n〉st , a
sub-Poissonian distribution in this case of τ = 0. In the next
section, we will introduce an approximation that will allow
us to explain that fluctuations can be amplified and become
super-Poissonian when we include time-delay terms in the
process.

B. The time-reversal invariance assumption

One of the difficulties with the calculation of C̃st (n) ≡
limt→∞〈C(n′),t − τ |n,t〉 = 〈C(n′), − τ |n〉st is that it is a
correlation backward in time, whereas Eqs. (4) and (7) are only
valid for t � 0. The approximation we propose in this section
is to use a time-reversal invariance assumption in the steady
state, namely, 〈C(n′), − τ |n〉st = 〈C(n′),τ |n〉st . A simple al-
gebra shows that a sufficient condition for this time-reversal
invariance to hold is that the stationary probabilities satisfy
Pst (n′,t |n)Pst (n) = Pst (n,t |n′)Pst (n′), valid for all t � 0. This
relation is correct in the limit t → 0, as Pst (n′,dt |n) = w(n →
n′)dt , the rate of going from n to n′ particles during time dt ,
and it then becomes w(n → n′)Pst (n) = w(n′ → n)Pst (n′),
the detailed balance condition, which is valid for any one-step
process, as can be derived from the master equation [1]. If the
process were Markovian, the detailed balance condition would
imply the time-reversal invariance for arbitrary, finite time t .
As the presence of a delay makes the process non-Markovian,
the time-reversal invariance is an assumption whose validity
and implications need to be checked. In Fig. 1 we plot the
correlations 〈n,τ |k〉st and 〈n, − τ |k〉st as a function of k, using
a negative feedback loop C(n) = c

1+εn
for two different sets

of parameters. In Fig. 1 we also plot the stationary probability
distribution Pst (k). As can be seen in Fig. 1, it is not true that
these two correlations are identical for all values of k. However,
it has to be noticed that the larger discrepancies occur for those
values of k that have a low probability of appearance.

Once this time reversal invariance assumption has been
adopted, to compute C̃st (n) = 〈C(n′),τ |n〉st , one could solve
the hierarchy of equations for the moments with the appro-
priate initial condition. This could be done, for instance, if
the creation rate C(n) were a linear function C(n) = c − εn.
However, as discussed before, most of the cases of interest
consider a negative feedback with a nonlinear rate C(n). In this
case, one cannot, in general, close that hierarchy of equations,
and one needs approximate methods to find C̃st (n), such as,
for example, the Gaussian closure [15]. In the following, and
in the spirit of van Kampen’s expansion [1], we will linearize
the equations assuming that the variable n has a deterministic
contribution of order 	 (a large parameter of the system,
typically the system volume) and a fluctuating part of order
	

1
2 , i.e., n = 	φ + 	

1
2 ξ . Although it is possible to deal with

the most general case, we will restrict ourselves to the case
where the creation rate satisfies the following scaling with
system size C(n) = 	ϕ( n

	
), so one can expand C(n) around

the macroscopic component:

C(n) = 	[ (φ) + 	−1/2′(φ)ξ + · · ·], (13)

so that

〈C(n′),t ′|n,t〉 = 	[φ(t ′)] + 	1/2′[φ(t ′)]〈ξ ′,t ′|ξ,t〉, (14)

with ξ = 	−1/2n − 	1/2φ.
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FIG. 1. (Color online) Conditional averages in the steady state,
〈n,τ |k〉st (pluses) and 〈n, − τ |k〉st (crosses), coming from numerical
simulations of the process with the delay schematized in Eq. (3) using
a creation rate C(n) = c0	

1+ ε0
	 n

, with τ = 10,ε0 = 1,c0 = 3, and two

different values of 	, (top panel) 	 = 50 and (bottom panel) 	 = 5.
The parameter 	 gives a measure of system size or volume. We
also plot with squares the (arbitrarily rescaled) stationary probability
distribution Pst (k). Note that the discrepancy between 〈n,τ |k〉st and
〈n, − τ |k〉st is larger in those cases that the particular value of k is
less probable and that this discrepancy decreases as the system size
increases.

We replace ansatz (13) in the evolution for the first
moment (7) and equate the powers of 	 to find that the deter-
ministic (macroscopic) and stochastic contributions to n satisfy

dφ(t)

dt
= −γφ(t) + [φ(t − τ )], (15)

d〈ξ ′,t ′|ξ,t〉
dt ′

= −γ 〈ξ ′,t ′|ξ,t〉 + ′[φ(t − τ )]〈ξ ′,t ′ − τ |ξ,t〉.
(16)

Equation (15) for the macroscopic component is, in general, a
nonlinear delayed differential equation that might be difficult
to solve. However, the steady-state value φst is readily
accessible as the solution of γφst = (φst ). The stability of
this fixed point is found by linearization around it. A standard
analysis of the resulting linear delay differential equation tells
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us that a sufficient (but not necessary) condition for stability
is |α| < γ , where we have defined α ≡ −′(φst ).

Once in the steady state, we replace φ(t) by its stationary
value φst , and Eq. (16) becomes a delay linear differential
equation with constant coefficients, and we are looking for
the time-symmetric solution of this equation satisfying the
initial condition 〈ξ ′,t |ξ,t〉 = ξ . This can be written as 〈ξ ′,t +
�|ξ,t〉 = ξf (�), with f (t) being the symmetric solution
f (−t) = f (t) of the equation ḟ (t) = −γf (t) − αf (t − τ )
and f (0) = 1 (see Appendix B). From Eq. (14) we get the
effective creation rate C̃(n) = 	(φst ) + 	1/2′(φst )ξf (τ ) =
	φst [γ − ′(φst )f (τ )] + ′(φst )f (τ )n after replacing ξ =
	−1/2n − 	1/2φst and γφst = (φst ). From Eq. (8) one can
obtain the steady-state probabilities Pst (n). Their functional
form depends on the sign of ′(φst )f (τ ): (i) If ′(φst )f (τ ) <

0, the distribution is a binomial distribution Pst (n) =(M

n )pn(1−
p)M−n, with p = −′(φst )f (τ )

γ−′(φst )f (τ ) and M = 	(φst )(
γ

−′(φst )f (τ ) −
1) and 0 � n � M; (ii) if ′(φst )f (τ ) = 0, the distribution
has a Poisson form Pst (n) = e−χ χn

n! , with χ = 	(φst );
(iii) finally, if ′(φst )f (τ ) > 0, the distribution is a nega-
tive binomial, Pst (n) =(M+n−1

n )(1−q)Mqn, with q = ′(φst )f (τ )
γ

and
M = 	(φst )(

γ

′(φst )f (τ ) − 1). In all cases, however, they can

be approximated up to terms of order 	−1/2 by a Gaussian
distribution. Despite the differences in the functional form, in
all three cases the mean value and variance are given by

〈n〉st = 	φst , (17)

σ 2
st = 〈n〉st

1 − γ −1′(φst )f (τ )
, (18)

which is the main result coming out of this approximation.
An equivalent expression for the variance taking as a starting
point a linear Langevin differential equation including delay
was obtained in [9,16].

In the case of a negative feedback loop, it is α =
−′(φst ) > 0. It can then be seen from the expression in
Appendix B that f (τ ) monotonically decreases from the value
1 at τ = 0 to the value − γ−λ

α
< 0 at τ → ∞ (λ =

√
γ 2 − α2;

see Appendix B and recall that |α| < γ is a sufficient condition
for the stability of the fixed point φst ). In this case and in
agreement with the numerical simulations, the fluctuations are
sub-Poissonian if f (τ ) > 0 (small τ ) and super-Poissonian if
f (τ ) < 0 (large τ ). The threshold between the two cases is
the value τP at which f (τP ) = 0, or τP = −λ−1 ln ζ in the
notation of Appendix B. As explained before, the probability
distribution is binomial for τ < τP , Poissonian for τ = τP ,
and a negative binomial for τ > τP .

In the case of positive feedback, α = −′(φst ) < 0, f (τ )
monotonically decreases from 1 at τ = 0 to − γ−λ

α
> 0 at

τ → ∞, and in this case the fluctuations are always super-
Poissonian, but their magnitude is reduced as the delay is
increased. The steady-state probability distribution is always
a negative binomial distribution.

We conclude that the delay can have opposite effects: in a
negative feedback loop it enhances the fluctuations, whereas in
a positive feedback loop it reduces them. On the other hand, it is
well known that, in the nondelay scenario, a negative feedback
reduces the magnitude of the fluctuations [17] when compared
to the n-independent creation rate. We find it remarkable that

the presence of delay can reverse the usual fluctuation-reducing
effect of the negative feedback loop and, instead, enhance the
fluctuations.

The correlations in the steady state can be obtained from
K(t) = 〈n〈n′,t |n〉st 〉st − 〈n〉2

st as

K(t) = σ 2
stf (t). (19)

Note that, as can be seen from the alternative definition K(t) =
limt ′→∞〈n(t + t ′)n(t ′)〉 − 〈n〉2

st , the correlation function is a
time-symmetric function K(−t) = K(t). However, contrary
to previous assumptions [12], this does not imply that the
conditional expectation value 〈n′,t |n〉st has to be a symmetric
function. In fact, it is not for an arbitrary value of n, as shown
in Fig. 1.

We apply these results to specific functional dependences
of C(n). Let us first comment that, in the linear case C(n) =
c − εn, Eq. (7) is already a closed equation and our treatment,
not surprisingly, can be carried out without assuming the
expansion (13). However, we do not find this case very
interesting as it turns out that the problem is ill defined as
the rate C(n) might become negative when the number of
molecules n exceeds c/ε.

A more interesting case, used in the protein transcription
problem [18], is the rate C(n) = c

1+εn
, which we write in the

form C(n) = 	( n
	

) with (z) = c0
1+ε0z

and c0 = c/	, ε0 =
ε	, where 	 is a large parameter, typically proportional to
the cell volume. This corresponds to a negative feedback loop.
Note that the condition |α| < γ is always satisfied for such a
creation rate and the steady-state φst is always stable no matter
how large the delay time τ is.

In Fig. 2 we compare the average and variance obtained
from numerical simulations with those obtained from the
theoretical analysis. The agreement is, in general, very good
and improves as 	 becomes large. In Fig. 3 we compare the
correlation function obtained numerically with the analytical
expression (19). Its nonmonotonic character due to the delay
is apparent. The value of the correlation at t = τ is not
negligible, compromising the validity of the independent-
times approximation.

For C(n) = c0	

1+ε0( n
	

)l with l > 1 (negative feedback loop
with cooperativity), the equation for the macroscopic vari-
able (15) has a Hopf bifurcation in a limit cycle attractor.
For parameters below the Hopf bifurcation, the situation is
qualitatively similar to the previous case, and the discussion
applies. For parameters above the Hopf bifurcation, the system
becomes oscillatory, so the assumption of steady state is not
valid, and the results obtained here are not directly applicable.

III. DISTRIBUTED DELAY

In general terms, it is more realistic to consider that the
delay that each individual event takes to be completed is a
fluctuating quantity following some probability distribution
rather than taking a fixed value. This is definitely the case
in genetic networks, where transcription and translation times
can be broadly distributed [19]. In this section we exemplify
how to apply the method developed before in the case of a
stochastic delayed production process including distributed
delay.
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FIG. 2. (Color online) Steady-state average 〈n〉st and variance
σ 2

st , for the process defined in (3), as a function of the delay time
τ , for a creation rate C(n) = c0	

1+ ε0
	 n

with c0 = 3 (top part of each

panel) and c0 = 1 (bottom part of each panel), and two system sizes,
(top panel) 	 = 50 and (bottom panel) 	 = 5; ε0 = 1 in both cases.
In each case, we plot with symbols (see the legend) the results coming
from numerical simulations and with solid lines the corresponding
theoretical expressions, Eqs. (17) and (18).

We consider again the process schematized in (3), but now
we consider that the delay time τ is a stochastic variable with
some probability distribution p(τ ). For simplicity, we consider
that the delay times for all individual reactions are independent
and identically distributed. Now, the master equation for the
process is

∂P (n,t)

∂t
= (E − 1)[D(n)P (n,t)] + (E−1 − 1)

×
[ ∞∑

n′=0

∫
dτp(τ )C(n′)P (n′,t − τ ; n,t)

]

= (E−1)[D(n)P (n,t)]+(E−1 − 1)[C(n,t)P (n,t)],

(20)

with C(n,t)≡∫
dτp(τ )〈C(n′),t−τ |n,t〉=∫

dτp(τ )C̃(n,t ; τ ).
Hence, it is possible to follow formally the method in the last
section by simply replacing C̃ with C̄, and we skip the details
of the calculation. The mean value, variance, and correlation
function are given by

〈n〉st = 	φst , (21)

σ 2
st = 〈n〉st

1 − γ −1′(φst )
∫

dτp(τ )f (τ )
, (22)

K(t) = σ 2
stf (t), (23)

with f (t) being the solution of the integro-differential equation

df (t)

dt
= −γf (t) + ′ (φst )

∫
dτp(τ )f (t − τ ), (24)

satisfying f (−t) = f (t) and f (0) = 1.
There is no general method that can be applied to find

the solution of this complicated equation. A reduction to a
set of linear differential equations can be achieved if we
adopt the � probability distribution, p(τ ; k) = Aτk−1e− k

τ
τ ,

depending on two parameters: k and τ . The average value
is τ and the root-mean-square is στ = τ√

k
. Increasing k for

fixed τ decreases the fluctuations of τ , and in the limit
k → ∞ the distribution approaches a Dirac δ, and τ becomes
a deterministic variable (fixed delay, corresponding to the case
analyzed in the previous section). The alternative method to
solve Eq. (24), known as the linear-chain trick [20], begins
by defining a family of time-dependent functions Zl(t) =∫

dτp(τ ; l)f (t − τ ), l = 1, . . . ,k. After some algebra, one can
prove that (24) is equivalent to the following system of linear
ordinary differential equations:

df (t)

dt
= −γf (t) + ′ (φst ) Zk(t), (25)

dZ1

dt
= k

τ
(f (t) − Z1), (26)

dZl

dt
= k

τ
(Zl−1 − Zl), l = 2, . . . ,k, (27)

which, besides having f (0) = 1, require a set of initial condi-
tions for Zl(t = 0), l = 1, . . . ,k. These can be determined in a
self-consistent manner. First, note that the symmetry condition
f (t) = f (−t) implies

Zl(t = 0) =
∫

dτp(τ ; l)f (τ ), l = 1, . . . ,k. (28)

One then solves Eqs. (25)–(27) with arbitrary initial conditions
for Zl(t = 0) and imposes (28). This yields an algebraic
system of k linear equations for Zl(t = 0). The solution of
the linear differential equations (25)–(27) and the solution
of the algebraic equations (28) can be obtained, either

0 10 20 30 40 50 60t

-20
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80
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)
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FIG. 3. (Color online) Correlation function in the steady state for
the delayed process (3) with creation rate C(n) = c0	

1+ ε0
	 n

. Simulations

(circles) and theory [Eq. (19), solid line].
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FIG. 4. (Color online) Variance normalized to the mean value
σ 2

st /〈n〉st for the process with the distributed delay defined in (3) and
a creation rate C(n) = c0	

1+ ε0
	 n

, for a delay distributed according to a �

distribution p(τ ; k) = Aτk−1e− k
τ
τ , as a function of the relative size of

the fluctuations in the delay στ

τ
= k−1/2. Results are from numerical

simulations (circles) and from the theoretical method (crosses), as
explained in text.

analytically for small k or numerically, but with a very high
precision, for large k. Note that in order to compute the
variance, Eq. (22), all we need to know is

∫
dτp(τ ; k)f (τ ) =

Zk(t = 0).
In Fig. 4 we plot the ratio σ 2

st /〈n〉st as a function of στ

for fixed mean delay τ . We see that as the delay distribution
becomes wider (decreasing k), the fluctuations of the process
decrease, so that the effect of the delay becomes less important.
The results for the � probability distribution are qualitatively
equal to other distributions for the delay times, such as uniform
or Gaussian (truncated in order not to produce negative values).
These results suggest that a natural or artificial system should
have a rather precise delay if it is to make use of the effects that
delay induces in the fluctuations or it should have an irregular
delay to avoid those effects.

IV. TRANSCRIPTION-TRANSLATION MODEL

So far, we have considered simple one-step birth and death
processes. In the context of gene regulation, however, the
protein production involves two major steps (transcription and
translation), and it is well known that the combined effect of
the two steps can enhance significantly protein fluctuations
[17]. In this section we study the effect of delay in a more
elaborate model for protein levels than the one considered
previously, including explicitly the transcription (creation of
mRNA from DNA) and translation (creation of the protein
from the mRNA) steps. The process can be schematized as
follows:

∅
C

−→ Y ∗ =⇒
τ1

Y, Y

ωm

−→ X∗ =⇒
τ2

X, X

γnn

−→ ∅, Y

γmm

−→ ∅.

(29)

Now X corresponds to the protein (with n the current number)
and Y corresponds to the mRNA. We denote by m the

number of mRNA molecules at time t − τ2. In doing so, the
translational delays τ1 and τ2 can be absorbed in a total delay
τ ≡ τ1 + τ2. The master equation for the process is

∂P (m,n,t)

∂t

= (En − 1)[γnnP (m,n,t)] + (Em − 1)[γmmP (m,n,t)]

+ (
E−1

n − 1
)

[ωmP (n,m,t)]

+ (
E−1

m − 1
) [ ∞∑

n′=0

C(n′)P (n′,t − τ ; m,n,t)

]
, (30)

with En and Em being the step operators for the number of
proteins n and the number of mRNA m, respectively. As
before, we will allow for feedback loops by letting the creation
rate C to become a function on n. For simplicity, though, the
translation rate ω and the degradations rates γn and γm will be
considered to be constant.

The general formal expression for the stationary solution
of the master equation (30) is not known. To proceed in this
case, we will apply van Kampen’s expansion, which assumes
both n and m to be split in deterministic and stochastic
contributions as n = 	φn + 	1/2ξn and m = 	φm + 	1/2ξm.
Recently, this approach has been used in several studies
considering stochastic systems with more than one variable,
for example, [13,21–23]. The probability density function
�(ξn,ξm) for the stochastic variables satisfies a Fokker-Planck
equation that is found by expanding the master equation in
powers of 	 [13]:

∂�(ξm,ξn,t)

∂t

= ∂

∂ξm

({γmξm − f ′[φn(t − τ )]〈ξ ′
n,t − τ |ξm,ξn,t〉}�)

+ 1

2
{γmφm + f [φn(t − τ )]} ∂2

∂ξ 2
m

�

+ ∂

∂ξn

{[γnξn − ωξm] �} + 1

2
[γnφn + ωφm]

∂2

∂ξ 2
n

�.

(31)

The deterministic contributions φn, φm and the averages of
the fluctuation terms obey the following system of delayed
differential equations:

dφm

dt
= −γmφm + [φn(t − τ )], (32)

dφn

dt
= −γnφn + ωφm, (33)

d〈ξ ′
m,t ′|ξn,ξm,t〉

dt ′
= −γm〈ξ ′

m,t ′|ξn,ξm,t〉
+′[φn(t − τ )]〈ξ ′

n,t
′ − τ |ξn,ξm,t〉,

(34)
d〈ξ ′

n,t
′|ξn,ξm,t〉
dt ′

= −γn〈ξ ′
n,t

′|ξn,ξm,t〉 + ω〈ξ ′
m,t ′|ξn,ξm,t〉.

(35)

The solutions for the average of the fluctuations with ap-
propriate initial conditions, after replacing φm(t) and φn(t)
by their stationary values φn,st and φm,st coming from the
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FIG. 5. (Color online) Stationary values for the average 〈n〉st and
variance σ 2

st for the protein levels as a function of the total delay for
the transcription-translation model schematized in (29) for a creation
rate of the form C(n) = c0	

1+ ε0
	 n

. Values are from numerical simulations

(symbols) and theory [solid lines, Eq. (38)]. Values of the parameters
are at the top of the figure. The dashed line corresponds to the variance
of a system without feedback, with the same average.

fixed-point solution of Eqs. (32) and (33), can be solved under
the assumption of time-reversal invariance to obtain

〈ξ ′
n,t |ξm,ξn〉st = fn(t)ξn + fm(t)ξm (36)

[see Appendix B for explicit expressions of the functions fn(t)
and fm(t)]. We replace again φm(t) and φn(t) by φn,st and φm,st

and use the time reversal approximation 〈ξ ′
n, − τ |ξm,ξn〉st =

〈ξ ′
n,τ |ξm,ξn〉st to reduce Eq. (31) to a linear Fokker-Planck

equation whose solution is well known to be a Gaussian
distribution [1]. The corresponding steady-state values for the
average and fluctuations in protein levels are given by

〈n〉st = 	φn,st , (37)

σ 2
n,st

〈n〉st = 1 +
ω
γm

1 + γn

γm
+ α

γm
fm(τ )

1 − α
γn

fn(τ )
[
1 + α

γm
fm(τ )

]
1 + α

γm

[
ω
γn

fn(τ ) + fm(τ )
] .

(38)

In the case of no delay (τ = 0), this expression reduces to the
one obtained in [17]. In Fig. 5 we compare the average and
variance of this transcription-translation model as a function of
the delay for a creation rate of the form C(n) = c0	

1+ ε0
	

n
. Again,

in this negative feedback loop setting, the delay significantly
enhances the fluctuations, up to a level well over the value
without feedback (marked in Fig. 5 by a dashed line), leaving
the mean value 〈n〉st essentially unchanged. So again, in this
case, the delay reverts the effect of the negative feedback from
fluctuation reducing (for low values of the delay) to fluctuation
amplifying (for large values of the delay).

V. DISCUSSION

We have studied stochastic processes with discrete variables
in continuous time that include delay. We have shown that the
combined effect of feedback and delay gives rise to nontrivial
results. When a stochastic process has negative feedback,
the fluctuations are decreased; if this feedback is delayed,

the fluctuations can be actually enhanced, depending on the
magnitude of the delay. A positive feedback loop enhances the
fluctuations, but if the feedback is delayed, this enhancement
is decreased. We have also shown that this effect of the
delay is less apparent if the delay itself has relatively large
fluctuations, so for this mechanism to work, the delay has to
be controlled precisely. This may be relevant, for example,
in gene-regulatory networks, where delay times are typically
broadly distributed but several regulatory mechanisms may
act to control this [19]. The analytical theory allows us to
understand and predict this phenomenology in a general way.
We have also shown that the assumption of decorrelation of
times t and t − τ for large delays is not justified a priori
since the correlation function is typically nonmonotonically
decreasing, with peaks at, approximately, multiples of the
delay. Finally, we have pointed out that systems with delay
are not, in general, statistically invariant under time reversal
over the steady state, even if they fulfill the detailed balance
condition.
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APPENDIX A: NUMERICAL SIMULATIONS

To perform numerical realizations of the process, we use
the following modification of the Gillespie algorithm [24,25]:

(1) Initialize the state of the system, setting, e.g., n = 0.
(2) Compute the reaction rates C(n) and γ n. Obtain a num-

ber �t exponentially distributed with average 1/(C(n) + γ n),
i.e., set �t = − ln(u)/(C(n) + γ n), with u being a random
number uniformly distributed in the interval (0,1).

(3) If t + �t is larger than the time of the next scheduled
delayed reaction, go to step 4. Otherwise, update time t = t +
�t and obtain which kind of process (creation or degradation)
will take place. To do so, generate a uniform random number
between 0 and 1. If this number is smaller than γ n/(C(n) +
γ n), set n → n − 1; otherwise, add an entry in the list of
scheduled creation processes to happen at time t + τ . Go to
step 2.

(4) Update the time to that of the next scheduled reaction.
Set n → n + 1. Go to step 2.

We now show that, as with the original Gillespie algo-
rithm in the case of nondelayed reactions, this procedure is
statistically exact: In the case with delay, the time until the
next reaction is exponentially distributed, with the average
C(n) + γ n, only if the state of the system does not change
during this interval (due to a scheduled delayed reaction). This
happens with probability 1 − e−[C(n)+γ n]tτ (with t + tτ the time
of the next scheduled delayed reaction). The algorithm fulfills
this since the probability that step 3 is completed is precisely
1 − e−[C(n)+γ n]tτ . Once a reaction has taken place (delayed
or not), the time for the next reaction is again exponentially
distributed as long as no delayed reaction takes place, and the
procedure can be iterated.
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APPENDIX B: SOLUTION OF THE DELAY-
LINEAR EQUATIONS

We consider the following linear delayed differential
equation:

df (t)

dt
= −αf (t − τ ) − γf (t). (B1)

We are looking for a symmetric solution f (−t) = f (t). We
summarize here for completeness the treatment of Ref. [12].
We make the ansatz f (t) = aeλ|t | + be−λ|t |, valid only for
−τ � t � τ . Inserting in (B1), equating the coefficients of
eλt and e−λt , and imposing f (0) = 1, we obtain λ,a,b. Once
we know f (t) for |t | � τ , we can obtain f (t) for |t | > τ

iteratively integrating (B1). The solution for t � 0 is

λ ≡
√

γ 2 − α2, ζ ≡ γ − λ

α
,

f (t) ≡
{

e−λt−ζeλ(t−τ )

1−ζe−λτ , if 0 � t � τ,

e−γ (t−kτ )f (kτ ) − α
∫ t

kτ
dt ′ f (t ′ − τ )eγ (t ′−t), if kτ � t � (k + 1)τ,k = 1,2, . . .

(B2)

Note that f (τ ) = e−λτ −ζ

1−ζe−λτ . Using the symbolic manipulation
program MATHEMATICA [26] to perform the integrals of the
iterative process, we have been able to find explicit expressions
for f (t) up to |t | � 10τ .

We apply a similar approach to the case of two coupled
linear delayed differential equations:

dxm(t)

dt
= −γmxm(t) − αxm(t − τ ), (B3)

dxn(t)

dt
= −γnxn(t) + wxm(t). (B4)

Due to the linearity, the solution has the form

xn(t) = xn(0)fn(t) + xm(0)fm(t), (B5)

with fn(0) = 1, fm(0) = 0. To find this solution, we use
the ansatz xn(t) = a1e

λ+|t | + b1e
−λ+|t | + a2e

λ−|t | + b2e
λ−|t |,

xm(t) = c1e
λ+|t | + c2e

−λ+|t | + d1e
λ−|t | + d2e

λ−|t |, for −τ �
t � τ . Equating the coefficients of the exponentials and
imposing the initial condition, we obtain the expression valid

for 0 � t � τ :

fn(t) =
[
γn

1 − b−(t)

b(t)
+ λ−

1 + b−(t)

b(t)

]
[eλ+t − b+(t)e−λ+t ]

(B6)

−
[
γn

1 − b+(t)

b(t)
+ λ+

1 + b+(t)

b(t)

]
[eλ−t − b−(t)e−λ−t ],

(B7)

fm(t) = ω
1 − b+(t)

b(t)
[eλ−t − b−(t)e−λ−t ]

−ω
1 − b−(t)

b(t)
[eλ+t − b+(t)e−λ+t ], (B8)

λ± =
√

γ 2
m + γ 2

n

2
± 1

2

√(
γ 2

m − γ 2
n

)2 + 4ω2α2, (B9)

b±(t) = λ2
± + (γm + γn)λ± + γnγm

ωα
eλ±t , (B10)

b(t) = λ−[1 + b−(t)[1 − b+(t)]

− λ+[1 − b−(t)][1 + b+(t)]. (B11)

Functions fn(t) and fm(t) are used in Eq. (38).
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