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Abstract 

Breast cancer is a complex disease that, once developed, progresses in response to 

multiple environmental factors, including local microenvironmental factors within the breast 

and systemic markers in circulation. Obesity affects one third of all New Zealand adults and 

is known to negatively impact breast cancer outcomes. Epidemiological studies have shown 

obese women with breast cancer have increased risk of recurrence and metastasis, poorer 

pathological response rates to chemotherapy, and worse overall survival. The biological 

mechanisms underlying these associations are complex and not yet completely understood. 

Cancer associated adipocytes (CAA) are fat cells located within close proximity to 

breast tumour cells. In vitro, CAA promote breast cancer cell migration, invasion, and 

resistance to therapy. Analysis of gene expression in breast cancer cells co-cultured with CAA 

has identified a number of genes which may be supporting disease progression. To further 

assess the influence of CAA on breast cancer cells, we identified and quantified changes in 

global protein abundance induced in breast cancer cells co-cultured with human breast 

adipocytes (CAA), and evaluated these changes by identifying key molecules and pathways 

that were significantly altered. Global differences in relative protein expression in MCF-7 

(ER+, PR+, HER2-) and MDA-MB-231 (ER-, PR-, HER2-) breast cancer cells co-cultured 

with, or without, mature breast adipocytes in a transwell co-culture system, were measured 

using isobaric tags for relative and absolute quantification (iTRAQ) labelling and liquid 

chromatography tandem mass spectrometry (LC-MS/MS). In both control and co-cultured 

samples, a total of 1,126 proteins and 1,218 proteins were identified in MCF-7 and MDA-

MB-231 breast cancer cells, respectively. Relative to controls, 85 proteins in MCF-7 cells (32 

upregulated, 53 downregulated) and 63 proteins in MDA-MB-231 cells (51 upregulated, 12 

downregulated) were differentially abundant by 1.5-fold or greater in co-cultured cells. Co-

culture with CAA caused an enriched upregulation of tricarboxylic acid (TCA) cycle proteins 

in MCF-7 cells and glycolysis proteins in MDA-MB-231 cells. The glycolytic protein, 

phosphoglycerate kinase 1 (PGK1), was the only protein that was upregulated by more than 

1.5-fold in both MCF-7 and MDA-MB-231 cells co-cultured with CAA. 

PGK1 is a kinase enzyme that plays an important role in the glycolytic pathway. In 

women with breast cancer, increased PGK1 expression in the tumour has been identified as a 
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predictor of poor patient survival and marker of resistance to paclitaxel. As metabolic co-

operation between adipocytes and breast cancer cells is a key mechanism promoting breast 

tumour progression, we investigated PGK1 overexpression in vitro. The transient transfection 

model for in vitro PGK1 overexpression utilised in this study induced differential effects in 

MCF-7 and MDA-MB-231 breast cancer cells. PGK1 overexpression increased sensitivity to 

chemotherapy in MCF-7 cells. Whereas, cell proliferation and viability were decreased, and 

conditioned media lactate concentrations were increased, in GFP and PGK1 expressing 

plasmid transfected MDA-MB-231 cells. In silico analysis showed PGK1 expression was 

higher in HER2 enriched compared to triple negative breast cancer cells, and was upregulated 

in HER2 overexpressing (HER2+) compared to HER2- breast tumours, suggesting that PGK1 

expression may be particularly relevant to HER2+ breast cancers.  

Obesity is characterised by a state of low-grade chronic systemic inflammation. Breast 

cancer chemotherapies are predominantly metabolised in liver hepatocytes by cytochrome 

P450 (CYP) drug metabolising enzymes. Inflammatory cytokines have been shown to 

downregulate expression and activity of CYP enzymes in vitro. Additionally, CYP genotype-

phenotype discordance has been observed in patients with advanced cancer. To investigate 

whether obesity-associated circulating inflammatory cytokines influence in vivo activity of 

CYP enzymes in women receiving chemotherapy for breast cancer, we carried out an 

exploratory patient study that recruited seven non-obese and five obese women receiving 

adriamycin-cyclophosphamide (AC) and paclitaxel chemotherapy for stage II or III breast 

cancer. During chemotherapy, serum levels of B-cell activating factor (BAFF), growth and 

differentiation factor 15 (GDF-15) and monocyte chemoattractant protein 1 (MCP-1) 

increased, whereas interleukin 10 (IL-10) levels decreased. Importantly, changes in the levels 

of circulating inflammatory cytokines during chemotherapy were not associated with 

differences in body morphometry or voluntary physical activity levels. Activity of the CYP 

enzymes (CYP2C9, CYP2C19, CYP2D6, and CYP3A4), measured using the ‘Inje’ probe 

drug cocktail, were largely unchanged over the course of chemotherapy, although varied 

between participants. However, increased serum MCP-1 levels correlated with decreased 

CYP3A4 activity during chemotherapy, and this finding provides preliminary evidence that 

circulating inflammatory cytokines may negatively influence CYP-mediated chemotherapy 

metabolism in women undergoing treatment for breast cancer. 

This study has provided, for the first time, an extensive list of breast cancer cell protein 

abundance alterations induced by co-culture with CAA, which can be used as a 
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comprehensive platform for future investigations. Moreover, this study has validated, for the 

first time, the feasibility of using the ‘Inje’ cocktail to measure CYP activity in women 

receiving chemotherapy for breast cancer, and in doing so, has provided preliminary evidence 

to support the concept that changes in circulating inflammatory cytokines during 

chemotherapy treatment may impact CYP activity, and thus, chemotherapy metabolism in 

some patients. 
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Chapter 1  

 

Introduction 

 

1.1 Obesity 

1.1.1  Obesity epidemic 

According to the world health organization (WHO) being overweight or obese is 

defined by abnormal or excessive fat accumulation that poses a risk to health 1. Alarmingly, 

the global prevalence of overweight and obesity is increasing at an extraordinary rate in all 

ages and both sexes, with incidence more than doubling since 1980 in over 70 countries 

(developing and developed) and increasing in many others 2,3. In a recent epidemiological 

study, the global prevalence of the overweight and obesity categories was 39% in adults older 

than 20 years, and the absolute incidence of obesity was consistently higher in women than 

men 4. Furthermore, based on the continuation of the current trends it has been estimated that 

by 2030, the global prevalence of the overweight and obesity categories will be 57.8% 5. New 

Zealand (NZ) is not an exception to the global obesity epidemic, as one in three NZ adults are 

considered obese, with a further 35% considered overweight 6,7. Most commonly, obesity is 

attributed to an imbalance between energy consumption, energy expenditure, and the resultant 

behavior of the body’s weight regulation systems generating a constant positive energy 

balance 3,8,9. 

Clinically, obesity is classified as having a body mass index (BMI) equal to or greater 

than 30 1, where BMI is calculated as a person’s body weight in kilograms divided by their 

squared height in meters (kg/m2). BMI has been employed as the most common and efficient 

tool for measuring obesity, however, there has been growing interest in the critical differences 

that exist between BMI and overall body adiposity, as BMI does not distinguish fat mass from 

fat-free mass, such as muscle and bone 10–13. General consensus across a number of studies 
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comparing BMI with measures of body fat percentage suggest that BMI underestimates the 

prevalence of obesity, although the degree of difference between BMI and body fat percentage 

was often sex and age-group dependent 12,14–17. In addition, differences have been reported 

between ethnicities when comparing body fat percentage across individuals that have the 

same BMI 18,19, and consequently, it has been suggested that in New Zealand, BMI thresholds 

separating normal, overweight, and obese groups should be increased for Māori and Pacific 

Island women, and decreased for Asian women 19.  

 

1.1.2 Obesity and adipose tissue heterogeneity  

Obesity is associated with the expansion of adipose tissue depots throughout the body. 

Adipose tissue, essential for mammalian life, is a highly complex tissue composed mostly of 

lipid-laden mature adipocytes and pre-adipocytes, but also many stromal vascular fraction 

(SVF) cells including endothelial cells, blood cells and macrophages 20,21. Heterogenic 

qualities of obesity such as the presence and difference between white adipose tissue (WAT) 

and brown adipose tissue 22, and topographical location of adipose depots throughout the body 

are now widely recognised 23. The main WAT depots in the human body are intra-abdominal 

and subcutaneous fat. Sub-groups identified within these depots, including visceral fat, have 

differentially expressed genes and specialised roles for controlling metabolism and the 

immune system 21,24. 

WAT is of particular interest in obesity as it has the ability to expand with increasing 

adiposity, is the body’s major supply of FFA (free fatty acids), and represents the largest 

percentage of total body adipose tissue 21. Research has shown that WAT acts not only as a 

lipid storage facility, but it functions as an endocrine system through the release of an 

assortment of bioactive molecules including chemokines, cytokines and hormone-like factors 

25–27. Through the release of such endocrine molecules, WAT communicates with other 

adipose depots and organs around the body to maintain energy balance and regulate 

metabolism, adipocyte differentiation, insulin sensitivity and inflammatory responses, and 

therefore instigates pathogenesis of metabolic and inflammatory conditions occurring during 

obesity 20,26,28–30 (Figure 1.1). Visceral fat accumulating within the abdominal cavity is 

notorious for its association with metabolic syndrome, and for its role in providing increased 

levels of circulating inflammatory cytokines under obese conditions 31. Taken together, these 

findings suggest that adipose tissue heterogeneity has the ability to differentially implicate 
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obesity in diverse clinical disease outcomes. It is therefore important not only to recognise 

and measure obesity as a multifactorial pathological condition, but to assess the relevant 

biological characteristics of excess adiposity when performing research concerned with 

obesity.  

 

 

Figure 1.1. White adipose tissue (WAT) in obesity.  

Through the release of endocrine acting molecules, WAT communicates with other adipose 

depots and organs around the body to maintain energy balance and regulate adipose 

metabolism, adipocyte differentiation, insulin sensitivity and inflammatory responses, and 

therefore instigates pathogenesis of the myriad metabolic and inflammatory perturbations 

occurring during obesity. From Vázquez-Vela et al (2008) 32. Reprinted with permission from 

Elsevier.  

 

1.1.3 Obesity and inflammation 

Obesity is commonly characterised by a state of sub-clinical, chronic inflammation 

that resembles a low-level version of an acute high-grade inflammatory response such as 

would normally occur after pathogen infection or tissue damage 33. A large body of literature 

describing studies in murine and human adipose tissue agree that major responsibility for the 

increase in inflammation evident in obesity falls on expanding WAT 20,26,28.  
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1.1.3.1 Obese adipose tissue and inflammation  

Research suggests that inflammatory signalling from adipose tissue originates in 

enlarged or hypertrophic adipocytes due to the continued oversupply of nutrients in the obese 

state initiating adipocyte cell stress and damage, and occasionally cell death 33–35. Although 

the exact mechanisms triggering inflammatory signalling by hypertrophic adipocytes remain 

incompletely understood, proposed models include endoplasmic reticulum stress, oxidative 

damage and tissue hypoxia 34,35. Initiation of adipocyte endoplasmic reticulum stress is likely 

due to the substantial quantities of autocrine acting free fatty acids (FFAs) ‘spilling out’ of 

hypertrophic adipocytes. In support of this, murine and human studies have shown that 

adipocyte and macrophage membrane bound toll-like receptor 4 (TLR4) can bind 

extracellular FFA, inducing a cascade of signalling within the cells, involving NF-κB, that 

promotes inflammation 36,37. During obesity, the demand for oxygen in expanding adipose 

tissue has been shown to exceed supply, inducing hypoxia related changes in adipokine gene 

expression and secretion, namely an increase in leptin and a decrease in adiponectin 35,38.  

Extensive reviews on the role of infiltrating macrophages, and other immune cells, in 

expanding adipose tissue during obesity, imply that upregulation of pro-inflammatory 

cytokine and chemokine production occurs in response to a positive feed-forward paracrine 

interaction between adipocytes and macrophages (Figure 1.2) 20,39,40. In the mid 1990s, obese 

adipose tissue from pre-menopausal women was discovered to yield increased levels of the 

pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) 41. Since this study, a more 

recent investigation has reported that stimulation of human adipocytes with TNF-α rapidly 

and substantially elevates the production of TNF-α and several other pro-inflammatory 

cytokines and chemokines, such as, monocyte chemoattractant protein-1 (MCP-1 or CCL2), 

interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) 42. MCP-1 is the key 

chemokine implicated in the recruitment of macrophages, and secretion of MCP-1 from 

human adipose tissue has been positively correlated with adipocyte size 43,44. Furthermore, a 

DNA microarray analysis suggested that interleukin-8 (IL-8), another monocyte chemotactic 

protein, is expressed at higher levels in larger compared to smaller adipocytes from the same 

adipose tissue sample 45. In addition to adipocytes, research suggests that TNF-α is produced 

by macrophages resident within obese human adipose tissues 46, and that macrophage secreted 

TNF-α can induce adipocytes to further increase expression of MCP-1 47. Taken together, 

these studies suggest an important role of immune cell recruitment in adipose tissue expansion 

and local inflammation.  
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Macrophage infiltration is upregulated in mice adipose tissue during weight gain, with 

similar increases in macrophage numbers seen in human adipose tissue during obesity 48,49. 

Classically, adipose tissue macrophage phenotypes have been defined based on the array of 

markers they express and inflammatory cytokines they secrete, and are commonly referred to 

as M2-like and M1-like to describe more anti-inflammatory or pro-inflammatory functions, 

respectively 50,51. However, owing to their plasticity, macrophages are now known to express 

an array of phenotypes that span the M2-like to M1-like spectrum, depending on 

environmental cues. In addition to the classical M1-like and M2-like divisions, lean and obese 

adipose tissue macrophages are traditionally referred to as distinct subpopulations, with M1-

like or pro-inflammatory phenotypes predominating during obesity 40,52 (Figure 1.2). 

However, more recently it has been suggested that, during obesity, adipose tissue 

macrophages express markers that belong to neither the M2-like or M1-like subgroups, but 

rather are characterised by the simultaneous expression of both M2-like and M1-like markers 

that are induced in response to metabolic stimuli, rather than cytokine insults 53,54. Additional 

evidence also shows that M2-biased CD206+ (anti-inflammatory) macrophages dominate the 

interstitium of obese adipose tissue and, alike M1-like CD11c+ (pro-inflammatory) 

macrophages, are involved in the formation of crown-like structures (CLSs) 55. 

 

 

Figure 1.2. Transition of adipose tissue from lean to obese mass. 

This schematic highlights the role of adipocyte hypertrophy, macrophage infiltration and the 

adipocyte-macrophage crosstalk in fostering the development of low-grade chronic 

inflammation in adipose tissue during obesity. Reprinted from Corrêa et al (2019) 56 under 

the Creative Commons Attribution License. 
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 Crown-like structures 

There are increased numbers of dead adipocytes in obese WAT 57. Interestingly, 

events during weight gain that induce adipocyte cell death have been shown to precede 

increases in adipose tissue macrophage infiltration and pro-inflammatory cytokine expression 

upregulated during obesity 58. Research suggests that hypertrophic dead adipocytes are 

cleared by resident adipose tissue macrophages that form crown-like structures (CLSs) around 

the dead adipocytes 57,59,60 (Figure 1.3). The frequency of dead adipocytes in adipose tissue of 

high-fat diet fed mice was positively correlated with an increase in CLS involved 

macrophages, and an increase in the expression of pro-inflammatory cytokines TNF-α and 

IL-6 60. Furthermore, the presence of CLSs in human mammary adipose tissue has been 

associated with increasing BMI and adipocyte size 55,61. This suggests that adipocyte 

hypertrophy and subsequent death, along with adipose tissue remodelling to form CLSs are 

important aspects of resident macrophage involvement in the development of inflammation 

seen in obese WAT(s). 

 

Figure 1.3. Crown-like structures (CLSs) in lean and obese adipose tissue.  

Hypertrophic dead adipocytes are cleared by resident adipose tissue macrophages that form 

CLSs around the dead adipocytes. The presence of CLSs is lower in lean (A) compared to 

obese (B) WAT. From Cinti et al (2005) 57. Reprinted with permission from American Society 

for Biochemistry and Molecular Biology.  

 

1.1.3.2 Obesity and low-grade systemic inflammation  

Although the extent to which obese adipose tissues are quantitatively contributing to 

elevations in systemic inflammation are unclear, a well-established hallmark of obesity is the 

chronically elevated levels of circulating pro-inflammatory adipokines, cytokines and 
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chemokines, in which key players include leptin, resistin, TNF-α, IL-1β, IL-6, and MCP-1 

28,29,62,63. In addition, obesity is associated with raised circulating levels of acute-phase 

proteins, including C-reactive protein (CRP), serum amyloid A (SAA), and alpha 1 acid 

glycoprotein (AGP) 25,62.  

Circulating IL-6 is recognised as one of the primary pro-inflammatory mediators in 

obesity. Elevated levels of systemic IL-6 can elicit endocrine effects including increased 

synthesis and secretion of CRP by liver hepatocytes 64, and adipose tissue derived IL-6 can 

increase systemic CRP in obese humans 31. In addition to IL-6, adipose tissue levels of TNF-

α and leptin are shown to be positively correlated with circulating CRP concentration in obese 

women 62. A large meta-analysis of 51 cross-sectional studies measuring obesity by 

anthropometric measures such as BMI, waist-to-hip ratio and waist circumference, 

established that obesity was associated with increased levels of serum CRP regardless of age 

or sex 65. These studies together provide evidence for the use of CRP as prognostic marker in 

obesity-associated systemic inflammation.  

Taken as a whole, the above findings suggest that pro-inflammatory cytokine 

production by hypertrophic adipocytes and pro-inflammatory macrophages within obese 

adipose tissues can act in a paracrine manner to intensify the local inflammatory response, or 

equally, act systemically in endocrine fashion to stimulate inflammatory cytokine production 

in other adipose depots or in other organs and cells. Although low-grade chronic systemic 

inflammation itself is a pathology associated with obesity, it is primarily a condition that leads 

to secondary pathologies, thus indirectly linking the obese phenotype with a number of 

inflammation-induced co-morbidities such as diabetes mellitus, insulin resistance, 

atherosclerosis, psoriasis, renal disease and cancer 28.  

 

1.1.4 Obesity and cancer burden 

Excess weight gain and adiposity are associated with an increased risk of developing 

other health related co-morbidities including but not limited to type II diabetes, cardiovascular 

diseases, hypertension, stroke, premature death and certain types of cancer 3,66,67. Evidence 

suggests that in males and females, 14% and 20% of all cancer associated deaths could be 

attributable to patients having excess adiposity, respectively 68, and in cancers commonly 

associated with obesity, including breast, colorectal and prostate, elevated adiposity predicts 

poorer survival 69. Moreover, numerous studies have found that BMI is positively correlated 
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with an increase in cancer risk and mortality, in cancers of the kidney, post-menopausal breast, 

pancreas, endometrium, liver, and oesophagus 70–74.  

In opposition, other studies have found that excess weight, measured as elevated BMI, 

is associated with better overall cancer survival; notably in colon, kidney and advanced cancer 

patients 75–82. Discussion surrounding the discordance in the BMI-cancer survival relationship 

centres on the crudeness of BMI as a measure of adiposity and physiological variance in the 

metabolic activity of adipose tissues 83–85, and thus, highlights the importance for obesity-

related research to incorporate measures of total body fat mass in conjunction with BMI, 

ideally accounting for the type, location and amount of adiposity. Regardless of the 

discordance, obesity remains a modifiable effector of susceptibility and progression in some 

prevalent cancer types, and therefore provides an advantageous field for cancer research.  

The precise mechanisms that are causing increased risk of cancer and worse outcome 

for cancer patients, during accumulation of excess fat mass, are less well understood. Four 

distinct mechanisms that have emerged in endeavouring to explain the epidemiological link 

between obesity and the pathophysiology of cancer include the manifestation of obesity 

related inflammation, development of insulin resistance and hyperinsulinemia, expression of 

adipose secreted adipokines such as leptin and adiponectin, and enhanced oestrogen signalling 

86–90. As discussed above, obesity is associated with a condition of low-grade chronic systemic 

inflammation stemming from the secretion of inflammatory cytokines and chemokines from 

obese adipose tissue that elicit endocrine effects on other organs and further exacerbate 

inflammation 91. Obese adipose tissue has been shown to upregulate the secretion of 

adipokines such as leptin, cytokines such as IL-6, TNF-α, IL-1β, and chemokines such as 

MCP-1 and IL-8, that are directly or indirectly involved in cancer pathogenesis 92,93. 

Circulating leptin levels are positively correlated with adipose tissue mass, and under such 

conditions are generally responsible for stimulating inflammatory signalling within adipose 

tissue, generating a proliferating positive feed-back loop 94. In addition to inflammation, leptin 

has been implicated in the regulation of aromatase activity 95 and results in higher 

concentrations of serum oestrogen levels, where elevated oestrogen signalling is associated 

with increased cancer risk in certain cancer types, including breast, ovarian and endometrial 

cancers 96. Extended periods of excess adiposity can promote a chronic increase in circulating 

concentrations of insulin, indicating insulin resistance or hyperinsulinemia. During 

hyperinsulinemia, levels of bioavailable insulin-like growth factor (IGF-1) become elevated 

in blood due to blocked production of the insulin-like growth factor binding protein (IGFBP), 
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whereby IGF-1 (a powerful activator of cell mitosis and survival) can favour tumour 

production and promotion 97,98. Due to the complex local and systemic effects of obesity, each 

mechanism is likely playing a role in both tumour initiation and tumour progression, and 

different cancer types with diverse aetiology are likely influenced by each mechanism in 

unique ways 91,94.  

Understanding the biological underpinnings linking obesity with cancer are important 

for the development and implementation of future treatment strategies. Currently proposed 

treatment strategies targeted against adiposity in attempts to negate tumour initiation and 

metastasis are focused on lifestyle, pharmacological and surgical interventions. Such 

interventions include improvements in exercise and dietary behaviours, medications that 

block the inflammatory and hyperinsulinemia signalling pathways (e.g. pioglitazone and 

metformin), and bariatric surgeries including gastric bypass as a method to rapidly reduce 

excess adiposity 89,91,99.  

1.2 Breast cancer 

According to global WHO statistics, 2,088,849 diagnoses of breast cancer were 

recorded for females and males of all ages in 2018; making up 11.6% of all new cancer cases 

100. Breast cancer is the third most prevalent cancer type in NZ, with 3,294 women being 

diagnosed in 2017 and more than 600 deaths registered each year 101. Breast cancer is the 

aberrant and uncontrolled growth of normal breast cells into a cancerous tumour, that has the 

potential to spread to lymph nodes and metastasise to form secondary tumours in other 

locations around the body; reducing survival rates as stages progress 102. 

Based on differences in gene expression profiles, breast tumours have been grouped 

into five main molecular subtypes including luminal A, luminal B, HER2 enriched, claudin-

low and basal-like; with a small percentage of ‘normal-breast-like’ tumours expressing 

genetic signatures similar to that of breast adipose tissues 103,104 (Figure 1.4). Pathologists 

currently determine breast tumour subtypes by assessing important clinical biomarkers such 

as the presence or absence of oestrogen receptor (ER) and progesterone receptor (PR) 

expression, and the presence or absence of human epidermal growth factor 2 (HER2; Erbb2) 

overexpression. Generally, luminal A and B breast tumours are ER positive (+) and/or PR+ 

and HER2 negative (-), and luminal B tumours tend to grow slightly faster as they are 

categorised by their higher levels of the cellular proliferation protein Ki-67 103–105. Most HER2 

enriched tumours are ER-, PR- and overexpress HER2, whereas, claudin-low and basal-like 
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breast tumours are ER-, PR- and HER2- (triple negative) but can be distinguished by low 

expression of claudin-3, -4, and -7 genes in claudin-low tumours 103,104,106.  

Clinical management of early stage breast tumours often involves treatments tailored 

to the molecular subtype of the tumour, for example recombinant antibodies, such as 

Herceptin (trastuzumab), targeting HER2 in tumours overexpressing HER2 107,108. Despite 

being classed as one of the most significant advancements in the treatment of breast cancer, 

70% of patients with HER2+ tumours do not seem to benefit from Herceptin 109. The causal 

mechanisms responsible for the both de novo and acquired resistance to Herceptin are still 

unclear 110. Equally, treatment of basal-like tumours with non-dependence on hormone 

receptors, or HER2 expression, relies predominantly on carefully devised chemotherapy 

regimens, as they cannot respond to targeted anti-HER2 or endocrine therapeutics, and 

unfortunately, despite initial chemo-sensitivity early relapse is common in triple negative 

breast cancers 111,112. Taken together, these studies highlight the need for the development of 

novel therapeutic agents along with better treatment strategies to overcome therapeutic 

resistance in breast cancer. In addition to clinical approaches, research assessing different 

lifestyle intervention strategies have become popular in both the prevention and treatment of 

breast cancer. Such interventions are mainly focused on improving the health consequences 

of excessive adiposity in women with breast cancer, largely through improving diet and 

implementing regular physical activity.  

 

 

Figure 1.4. Breast cancer molecular subtypes.  

Based on differences in gene expression profiles, breast tumours have been grouped into five 

main molecular subtypes including luminal A, luminal B, HER2 enriched, claudin-low and 

basal-like; with a small percentage of ‘normal-breast-like’ tumours expressing genetic 

signatures similar to that of breast adipose tissues. From Gautam et al (2010) 113. Reprinted 

with permission from Taylor & Francis.  
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1.2.1 Breast cancer and obesity 

As discussed above, obesity is known to influence the risk and prognosis of a number 

of cancer types, and this includes breast cancer.  

1.2.1.1 Obesity and breast cancer susceptibility  

Large epidemiological studies and meta-analyses recognise that obese post-

menopausal women have an increased risk of developing breast cancer, whereas high BMI 

seems to have a protective effect on the risk of developing breast cancer in pre-menopausal 

women 70,114,115. In post-menopausal women, susceptibility to breast cancer was shown to 

increase by approximately 40% for every 10 unit increase in BMI 70, although another study 

reported breast cancer risk increasing in a non-linear fashion with increasing BMI 114. A clear 

inverse relationship was previously determined between obesity and risk of breast cancer in 

pre-menopausal women 115, however more recent investigations determined that the influence 

of obesity on breast cancer susceptibility in pre- and post-menopausal women differed 

depending on breast tumour subtypes 116,117. In post-menopausal women, obesity was 

associated with a higher susceptibility to ER positive breast cancer, but had little to no impact 

on the risk of ER negative breast tumours 116,117. Whereas, obesity in pre-menopausal women 

had conflicting effects, showing increased risk of triple negative breast tumours and lowered 

risk of ER positive breast cancer in one study 116, but no association between BMI and 

susceptibility to any tumour subtype in the other investigation 117. It is unclear exactly what 

biological mechanisms are causing differences in obesity associated pre- and post-

menopausal breast cancer risk, but it is likely that metabolic and hormonal changes resulting 

from menopause dependent differences in total body and visceral adiposity are playing a role 

118–120.  

1.2.1.2 Obesity and breast cancer outcomes 

The association between obesity and breast cancer outcome was first studied in the 

late 1970’s, indicating that obese women had a greater chance of presenting with clinically 

advanced staged tumours and lymph node metastasis, and had a notably increased likelihood 

of death over the five year follow up period 121. These early results are now well supported 

by more recent and much larger investigations establishing that obesity is related to having 

more advanced disease at diagnosis, increased risk of recurrence and metastasis, and poorer 

overall survival in breast cancer patients 122–125. In support of these studies, two meta-analyses 

with large populations of breast cancer patients concluded that obesity reduces overall 

survival rates by 33% and 41% 126,127. Although prior reporting suggests that reduced overall 
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survival is likely resulting from co-morbidities arising during obesity 128, opposing data from 

large meta-analyses have shown similar reductions in both overall and breast cancer specific 

survival rates in obese women with breast cancer 126,129; providing evidence for direct effects 

by obesity-associated factors.  

Associations between obesity and poorer survival in ER positive breast tumours 123,125 

and pre-menopausal women 125 have been previously reported, yet in contrast, large meta-

analyses established that the association between obesity and poorer survival rates is 

independent of the hormone receptor status of the breast tumour or menopausal status of the 

patient at diagnosis 116,127,129, indicating that breast cancer susceptibility and breast cancer 

outcomes are impacted by obesity by different mechanisms.  

Individual studies and investigations of pooled data across studies, has revealed that 

increasing BMI at diagnosis lowers pathological complete response rates in breast cancer 

patients treated with neoadjuvant chemotherapies 122,130–133. These findings suggest that the 

detrimental effects of obesity on breast cancer patient outcome could be preceded by reduced 

efficacy of chemotherapy on breast tumour regression in obese patients. Hypotheses 

explaining the causal mechanisms for lesser impact of chemotherapy and reduced survival in 

obese breast cancer patients are focused on two main propositions: firstly, the under treatment 

of obese breast cancer patients based on body surface area (BSA) dose-capping 134; and 

secondly, the biological interaction of obese adipose tissue with breast tumour cells leading 

to the development of more aggressive tumours 116.  

 Dose-capping chemotherapy in obese patients 

Previous findings suggest that overweight and obese women with breast cancer are 

more likely to receive intentionally reduced doses of chemotherapy 135,136, despite very little 

evidence for beneficial reductions of chemotherapy related toxicities in obese patients 

receiving capped doses based on BSA 134,137,138. Although it has been shown that normal 

weight breast cancer patients receiving higher doses of chemotherapy had better compliance 

to chemotherapy, suggestive of a lower frequency of chemotherapy-related toxicities 

compared to obese patients 122, opposing evidence from a recent investigation of obese breast 

cancer patients receiving uncapped and no dose reductions of neoadjuvant chemotherapy 

revealed no difference in treatment related toxicities, and intriguingly, longer progression free 

survival in obese compared to normal weight patients 139. Overall, these studies suggest that 
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the current dose-capping of overweight and obese breast cancer patients is not required, and 

may even be playing a role in reducing the survival rates of obese breast cancer patients.  

 Proposed biological mechanisms  

Despite a well-established epidemiological connection between obesity and breast 

cancer progression, the precise biological mechanisms underlying this relationship are less 

clear. Proposed explanations for the link between obesity and breast cancer pathogenesis vary 

from systemic effects such as increased levels of chronic low-grade inflammation (described 

earlier in Section 1.1.3.2), elevated bioavailable oestrogens, and insulin resistance or 

hyperinsulinemia, to local in-breast effects including breast adipocyte release of inflammatory 

adipokines and cytokines, enhanced hormone signalling, and alterations in extracellular 

matrix (ECM) 91,94,116,140–143 (Figure 1.5).  

Obesity is associated with the development of systemic conditions due to the 

dysfunction of expanding adipose tissues, such as chronic inflammation, insulin resistance, 

adipokine dysregulation, and elevated bioavailable oestrogens- all of which have been 

implicated in poorer breast tumour prognosis 144–147. Several pro-inflammatory cytokines 

increased in circulation during obesity are overexpressed in primary breast tumours that have 

poorer outcomes 148. In particular, IL-6 is shown to stimulate inflammatory signalling in 

breast cancer cells 149, and increases in levels as tumour size and lymph node involvement 

increases 150. Obesity is associated with decreased adiponectin and increased leptin levels in 

serum, which is a trend similarly measured in breast cancer patients 140,146,151. The leptin 

receptor OB-R shows positive expression in 83% of breast tumours, and the upregulated 

expression of leptin is associated with a greater chance of distant metastasis and poorer 

survival in breast cancer patients 151. Leptin is known for its role in upregulating both insulin 

and oestrogen signalling in patients with breast cancer 152. Systemic insulin levels remain 

elevated during obesity, leading to the increased production of the insulin-like growth factor-

1 (IGF-1), and during obesity IGF-1 contributes to breast cancer cell growth through binding 

of its receptor, IGF-1R, that is commonly overexpressed in breast tumours 153–155. Circulating 

levels of oestrogens are higher in obese post-menopausal women compared to their normal 

weight counterparts 156, and due to the expression of oestrogen receptors in many breast cancer 

cells, elevated bioavailability of oestrogen during obesity is a well-established risk factor for 

breast tumour development and progression 157,158. Taken together, the effects of systemic 

obesity on breast cancer progression are suggested to result from direct endocrine signalling 

between obese adipose tissues and breast tumour cells. Interestingly, far less attention has 
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been focused on the possible indirect effects of obesity-associated conditions that may be 

influencing biological processes in non-tumour organs and tissues. Notably, alterations in 

liver drug metabolism is likely influenced by higher levels of circulating inflammatory 

cytokines 159. This may potentially alter chemotherapy pharmacokinetics, and may explain 

the poorer pathological response rates to chemotherapy for breast tumours from obese 

patients. Liver metabolism of breast cancer chemotherapies is discussed later in Section 1.4.  

Human breasts are known to harbour relatively large volumes of WAT, and during 

obesity, dysregulation in local breast WAT is suggested to play a role in breast cancer 

pathogenesis 91,94. Levels of breast adipose tissue inflammation, measured as the degree of 

CLS content in women with breast cancer, is positively correlated with markers of systemic 

inflammation evident during obesity, such as CRP, IL-6, and leptin 160. This is suggestive of 

a convergence between systemic and local breast adipose tissue inflammatory signalling 

occurring during obesity. IL-6 is shown to stimulate inflammatory signalling between breast 

cancer cells and nearby adipocytes in the tumour microenvironment, which has been shown 

to influence breast tumour progression in vitro and in vivo 150,161. Moreover, oestrogen 

synthesis occurs mostly in adipose tissues following menopause, where aromatase converts 

androgens to bioavailable oestrogens 156. Increased aromatase expression has been identified 

in breast adipose tissue of obese post-menopausal women with breast cancer; where 

aromatase expression is upregulated by pro-inflammatory mediators released by CLSs 160,162–

164. In contrast however, recent findings show expression of breast WAT inflammation (CLS 

content) in 39% of normal weight women with breast cancer (determined by a BMI < 25 

kg/m2), and inflammation in these women was also associated with more hypertrophic 

adipocytes, higher systemic inflammation and elevated aromatase expression 165. Thus, 

upregulation of breast WAT inflammation, rather than BMI, is a significant determinant of 

aromatase activity in the breast, and may provide a meaningful target blocking the local 

effects of breast adipocytes on breast tumour progression. This is just one way in which breast 

adipose tissue is influencing breast cancer pathogenesis during obesity. The full extent to 

which biological interactions between breast cancer cells and local stromal adipocytes are 

influencing breast tumour progression is still unravelling, and is discussed further in Section 

1.3 below.  

Overall, the relationship between obesity and poor breast cancer prognosis and 

survival is complex and dynamic, and it is understood that multifaceted interactions between 

biological systemic and processes localised to the breast are likely influencing obese breast 
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cancer patient outcomes (Figure 1.5). Further analysis investigating aspects of both the local 

and systemic effects of obesity on breast cancer progression will hopefully reveal novel 

mechanistic links and therefore inform rational development of novel treatment strategies.  

 

Figure 1.5. Local and systemic effects of adipose tissue on breast cancer progression.  

Proposed explanations for the link between obesity and breast cancer pathogenesis vary from 

systemic effects such as increased levels of chronic low-grade inflammation (see Section 

1.1.3.2), elevated bioavailable oestrogens, and insulin resistance or hyperinsulinemia, to local 

effects including release of inflammatory adipokines and cytokines by breast adipocytes, 

enhanced hormone signalling, and alterations in extra cellular matrix (ECM). From Iyengar 

et al (2015) 94. Reprinted with permission from ANNUAL REVIEWS.  

 

1.2.2 Breast cancer and physical activity 

1.2.2.1 Physical activity and breast cancer susceptibility 

The association between physical activity and breast cancer prevention was first 

acknowledged in 1985 166, and better understanding of this relationship has developed over 

the past 30 years. A systematic review of a large number of studies conducted up until 2007 

reported a well-established and robust consensus that increased levels of physical activity 
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reduces the risk of developing breast cancer in a dose-dependent manner 167. In addition, a 

more recent meta-analysis comprising over 63,000 cases from 31 studies concluded that the 

risk of breast cancer declined significantly in a dose-response manner by 5% for every 

incremental 2 hour per week increase in moderate to vigorous recreational physical activity 

168.  

1.2.2.2 Physical activity and breast cancer outcomes 

A considerable number of studies, including both observational and clinical 

interventions, have investigated the association of pre- and post-diagnosis physical activity 

with breast cancer recurrence and survival. Five well designed meta-analyses, all published 

since 2011, have pooled data across studies to assess the overall effects of physical activity 

on breast cancer patient outcomes 169–173. These meta-analyses consistently concluded that 

breast cancer specific and all-cause mortality were sufficiently reduced by elevated levels of 

pre-diagnosis and post-diagnosis physical activity, however, the association between 

increased post-diagnosis physical activity and improved survival was more pronounced than 

pre-diagnosis physical activity 169–173. Non-linear dose-response relationships between post-

diagnosis physical activity levels and breast cancer survival were reported in two meta-

analyses 170,171, whereas, Schmid et al. concluded that the risk of mortality in breast cancer 

survivors decreased in a linear manner, reducing by 24% for every 10 metabolic equivalent 

of task (MET) hour per week increase in post-diagnosis physical that was performed 172. In 

addition to survival outcomes, the meta-analysis by Lahart et al. concluded that increased 

levels of pre-diagnosis and post-diagnosis physical activity were associated with lowered 

risks of breast tumour-related events such as progression, additional primaries, and 

recurrences 173. Although recommendations regarding the optimal type, dose and schedule of 

physical activity are made difficult by the considerable heterogeneity in the measurement 

modalities and exercise interventions implemented across previous studies, it was concluded 

in the most recent meta-analysis by Li et al. that a minimum of 2.5 hours per week of moderate 

intensity recreational physical activity was enough to confer protection against cancer 

mortality among cancer survivors 171; a proposal that meets the current WHO 

recommendations for physical activity in adults 174.  

Despite the growing support for exercise-associated improved breast cancer 

outcomes, the precise biological mechanism responsible for better outcomes in more active 

breast cancer patients is less understood. A number of possible mechanisms have been 
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proposed, ranging from intratumoural changes such as enhanced vascularisation (decreasing 

hypoxia, and increasing blood perfusion and drug delivery) and immune cell infiltrate, to 

systemic adaptations including decreased levels of circulating sex hormones, leptin, insulin 

and inflammatory cytokines 116,175–177. The most studied systemic adaptation of physical 

activity in breast cancer survivors is the levels of circulating inflammatory cytokines, most 

probably due to the already existing and robust evidence for physical activity-induced 

reductions in systemic inflammation in individuals without cancer 178.  

 Post-diagnosis physical activity and systemic inflammation 

Investigations of the effects of physical activity on systemic markers of inflammation 

in breast cancer survivors have been conflicting, with some earlier studies suggesting a 

reduction in circulating CRP levels in exercising breast cancer survivors 145,179, whereas, more 

recent investigations have suggested that 2 month and 6 month aerobic exercise interventions 

had no beneficial effect on the levels of circulating inflammatory cytokines such as CRP, 

TNF-α, and IL-6 180,181. Meta-analyses are in support of the former 182–184. One meta-analysis 

showed significant decreases in the levels of the pro-inflammatory cytokines IL-6, IL-2, IL-

8, and TNF-α in exercising compared to non-exercising breast cancer survivors 182, and 

another concluded a meaningful reduction in CRP levels for breast cancer survivors 

participating in greater levels of physical activity 183. Most recently, a meta-analysis 

concluded that aerobic plus resistance training was most effective at reducing circulating CRP 

and TNF-α in breast cancer survivors 184. In breast cancer survivors, the variation in the 

duration, dose and type of exercise interventions that have been investigated are likely 

differentially influencing the inflammatory responses observed, and thus may help explain 

the discordant results observed in these studies. Evidence for this comes from a recent 16 

week aerobic plus resistance exercise study, which reported significantly reduced levels of 

the systemic pro-inflammatory cytokines CRP, IL-6, IL-8 and leptin, and increased 

concentrations of the circulating anti-inflammatory marker, adiponectin, in breast cancer 

survivors 185; alterations that were not observed in the previous study investigating the shorter 

duration study with only an aerobic exercise intervention 181. This suggests that exposures to 

physical activity, for longer duration, may be required for systemic reductions to materialise 

in breast cancer survivors, and that aerobic exercise alone may not be enough to decrease 

markers of systemic inflammation.  
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Direct biological links between physical activity, regulation of systemic inflammation, 

and improved breast cancer outcomes have yet to be experimentally demonstrated in vivo. 

However, in vitro findings have shown that systemic alterations occurring during acute bouts 

of physical activity in breast cancer survivors, such as serum increases in muscle secreted 

cytokines (myokines), were able to inhibit growth of MCF-7 and MDA-MB-231 breast cancer 

cells 186. In contrast, systemic changes occurring over time in these patients were not able to 

inhibit breast cancer cell growth, despite marked reductions in serum cytokine levels of IL-6 

and TNF-α 186. Since these findings, it has been suggested that the control of tumour growth 

by physical activity in breast cancer patients is effected more by pronounced systemic changes 

occurring during each bout of acute training, as opposed to less pronounced systemic 

adaptations in response to training over time 187 (Figure 1.6). This highlights the potential 

importance that each exercise training session may have on breast tumour progression, even 

in the short term directly following diagnosis and during chemotherapy treatment. 

 

 

Figure 1.6. Control of tumour growth by physical activity in breast cancer patients.  
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This schematic shows that tumour growth is affected more by pronounced systemic changes 

occurring during each bout of acute training, as opposed to less pronounced systemic 

adaptations in response to training over time. From Dethlefsen et al (2017) 187. Reprinted with 

permission from Springer Nature.  

 

During Chemotherapy 

It has been suggested that aerobic and resistance exercise implemented during 

adjuvant chemotherapy can improve treatment responses, particularly in women who were 

overweight or obese 188. Breast cancer patients performing high doses of approximately 50-

60 minutes of combined aerobic and resistance training has been proven to be achievable 

during treatment, causes no harm to the patient, and does not affect their rate of chemotherapy 

completion 189,190, although higher-intensity doses of physical activity during chemotherapy 

was tolerated better by women that were younger, fitter and had a healthy weight BMI (BMI: 

18.5 – 24.9) 191. A recent extensive review has highlighted a number of factors hypothesised 

to explain how physical activity interacts with chemotherapy to improve treatment efficacy, 

tolerability and completion without the need for dose-reductions, including stimulation of 

immune cell signalling, improved drug delivery to the tumour, and regulation of body 

composition 177. Yet, despite evidence for beneficial effects of post-diagnosis physical activity 

on breast cancer outcomes, only a single investigation has assessed the effects of physical 

activity on markers of systemic inflammation during chemotherapy; reporting no effect of 

exercise on serum levels of IL-6 or IL-1 192. The authors suggested that the inflammatory 

response associated with chemotherapy was not counteracted by increased levels of combined 

aerobic and resistance exercise training, although only two markers of inflammation were 

assessed. Thus, further research assessing the effects of physical activity on circulating 

inflammatory cytokines during chemotherapy for breast cancer may benefit from measuring 

cytokine array panels, for example, in order to highlight novel cytokines responsible for the 

mechanistic link between physical activity, altered systemic inflammation and improved 

breast cancer outcomes.  

 Physical activity, weight change and systemic inflammation 

Interestingly, the systemic adaptations that have been proposed to explain the 

biological link between increased physical activity and improved breast cancer survival, 

including reductions in circulating levels of sex hormones, leptin, insulin and inflammatory 

cytokines 140,142, are the same systemic markers that are associated with poorer breast cancer 

outcomes when circulating levels are increased (see Section 1.2.1.2.3). Thus, it is not 
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surprising that associations between physical activity and improved breast cancer outcomes 

are suggested to be driven by reductions in patient adiposity 116,175 (Figure 1.7). In research 

performed after patients have completed chemotherapy, exercise and calorie restriction in a 

group of early stage breast cancer survivors resulted in modest body weight and waist-to-hip 

ratio reductions, and these body compositional changes were positively correlated with 

markers of inflammation 193. Moreover, aerobic and resistance exercise training reduced 

circulating levels of pro-inflammatory cytokines in breast cancer survivors when 

accompanied by significant decreases in body weight, body fat percentage, waist-to-hip 

circumference, and adipose tissue IL-6 and anti-inflammatory macrophage concentrations 185. 

Conversely, however, another study did not measure the same level of change in circulating 

inflammatory cytokines in response to a moderate intensity exercise and dietary advice 

intervention in survivors of triple negative breast cancer, despite a notable decrease in body 

fat percentage in the intervention group 194. Therefore, when assessing the impact of post-

diagnosis physical activity on systemic adaptations in breast cancer patients it is important 

that alterations in body composition are also considered.  

 

Figure 1.7. Biological mechanisms linking improved breast cancer survival to increased 

physical activity.  

The majority of the systemic adaptations proposed as biological mechanisms for improved 

breast cancer survival with increased physical activity are systemic markers that are 

commonly elevated during obesity, such as sex hormones, leptin, insulin and inflammatory 

cytokines. The associations between increased physical activity and improved breast cancer 

outcomes are proposed to be driven by reductions in patient adiposity. From McTiernan et al 

(2008) 175. Reprinted with permission from Springer Nature.  
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1.2.2.3 Measuring physical activity in cancer patients  

When measuring physical activity in cancer patients many studies include survey 

and/or questionnaire based assessments. However, as more modern technology driven 

assessments are now more readily available, it is possible to include objective measures of 

physical activity through the use of pedometers, accelerometers, or global positioning satellite 

(GPS) data. Objective measures of physical activity offer several advantages over the 

traditional survey or questionnaire based assessments including reduction of recall bias, 

continuous physical activity data, and objective measurement of adherence 195, although it has 

been established that objective measures are best used in combination with self-reported 

measures of physical activity 196. Several commercially available accelerometers have been 

used in clinical studies (RT3, activePAL, Actigraph, Qstartz, Yamax) to determine free range 

physical activity in both children and adults, with and without the addition of global 

positioning satellite data 197–199. Accelerometer data measured using FitBit One® devices, has 

been validated as a measure of physical activity in studies using questionnaires as well as 

objective validation against observed activity, such as treadmill walking 200. Furthermore, a 

number of studies have validated the use of FitBitTM devices for measuring physical activity 

in breast cancer patients during chemotherapy treatment 196,201,202, as well as in other solid 

malignancies 203. Interestingly, a pilot study in 16 cancer patients provided evidence that 

showed patients naturally separating themselves into more physically active and less 

physically active cohorts without any intervention in place (Unpublished Data; Dr Matthew 

Strother, 2015) (Figure 1.8). Taken together, these studies support the use of FitBitTM devices 

in both observational and intervention studies for objectively assessing physical activity in 

participants receiving chemotherapy for cancer.  
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Figure 1.8. Measuring physical activity levels in breast cancer patients during 

chemotherapy.  

A pilot study showed that it is possible to measure physical activity (cumulative steps) in 

breast cancer patients (n= 16) during chemotherapy using FitBit One® devices, and patients 

naturally separate into more physically active and less physically active cohorts without any 

intervention (data unpublished).  

 

1.3 Tumour microenvironment 

Tumours predominantly consist of a heterogeneous population of cancer cells, but 

are also home to an assortment of other residential and invading stromal and immune host 

cells, vasculature components, extracellular matrix (ECM), and a milieu of secreted 

factors; collectively referred to as the tumour microenvironment 204,205 (Figure 1.9). Other 

than cancer cells, cell types commonly found in the tumour microenvironment include 

fibroblasts, neutrophils, macrophages, endothelial cells, lymphocytes, natural killer cells 

and adipocytes 204,206. Interactions between cancer cells and the tumour microenvironment 

are constantly changing over time, vary between different tumour types, and have been 

suggested to play a role in all stages of tumourigenesis, including tumour initiation, 

progression and metastasis 207,208. Furthermore, the tumour microenvironment has been 

implicated in modulating responses to chemotherapy, radiotherapy, and other targeted 

therapies; favouring tumour survival 209.  

Foundations for explaining the role of the tumour microenvironment in tumour 

formation and progression were first laid in the late 1880s by Paget’s ‘seed and soil’ 

hypothesis, which proposes that for a ‘seed’ to grow the ‘soil’ must be liveable and 
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nurturing; contextually meaning cancer cells need a hospitable environment to grow 210. 

Paget’s ‘seed and soil’ theory was initially used as an explanation for why particular organs 

are more likely to become home to cancer cell metastases, and since then the theory has 

been expanded to explain not only cancer cell metastasis, but also the importance of the 

tumour microenvironment in cancer progression prior to metastasis 211.  

The crucial role of the ECM modulating gene expression differences between 

malignant and normal tissues in early microenvironment research highlighted the ability of 

the cancer cell to continually respond to, and modify, its surrounding microenvironment; 

a collaboration that was befittingly termed ‘dynamic reciprocity’ 212. Since then, it has been 

debated whether reciprocal interactions between cancer cells and the tumour 

microenvironment are initiated by alterations to the microenvironment that cause the 

promotion of carcinogenesis, or by tumours that initially grow independently and 

eventually signal to the microenvironment to begin supporting its growth 213. It is likely 

that both occur, and regardless of how the reciprocal interactions are being initiated, it is clear 

that co-operation between breast cancer cells and the tumour microenvironment aids breast 

tumour progression 214,215.  

 

 

Figure 1.9. Cell types found in the tumour microenvironment.  

Tumours predominantly consist of a heterogeneous population of cancer cells, but are also 

home to an assortment of other residential and invading stromal and immune host cells, 

vasculature components, extracellular matrix (ECM), and a milieu of secreted factors; 

collectively referred to as the tumour microenvironment. From Mittal et al (2018) 215. 

Reprinted with permission from Taylor & Francis.  
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1.3.1 Breast tumour microenvironment  

Development and differentiation of normal mammary glands requires specific 

communication between stromal and epithelial cells, and pathophysiological alterations in 

these interactions can enable tumour growth and progression 216. Although the exact 

mechanisms behind the tumour microenvironment’s role in malignant epithelial activation in 

the breast are unclear, the transition between normal epithelium to invasive breast carcinoma 

has been hypothesised to occur through two models - both involving the tumour 

microenvironment: the ‘escape’ model by which genetic and epigenetic changes give rise to 

clonal malignant epithelial and stromal populations that favour tumour proliferation; and the 

‘release’ model where decreased myoepithelial and increased fibroblast populations in the 

tumour microenvironment disrupt the basement membrane allowing stromal invasion of 

malignant epithelial cells, enabling further microenvironmental interactions 216. In 1973, 

breast carcinoma cells were seen losing their malignant phenotype when grown away from 

an active tumour microenvironment; providing an early argument for the importance of the 

tumour microenvironment in breast cancer progression217. Since these findings, the breast 

tumour microenvironment has become the focus of an increasing number of studies, and is 

now a well appreciated facilitator of the growth, survival and metastasis of breast cancer cells 

214,215,218.  

Numerous different cell types within the tumour microenvironment have been shown 

to play a role in breast cancer, including but not limited to, macrophages, neutrophils, 

fibroblasts and adipocytes 215. One way in which the tumour microenvironment may be 

impacting breast cancer progression is through genetic and epigenetic changes in stromal cells 

219,220. Research suggests that breast tumour macrophages are associated with invasion, 

metastasis, and ultimately poorer patient survival 221. Tumour associated macrophages have 

been shown to induce breast cancer cell epithelial to mesenchymal transition (EMT) 222, as 

well as increase breast cancer metastasis through the secretion of the glycoprotein chitinase-

3-like protein 1 (CHI3L1) 223. Breast cancer progression can be promoted by infiltrating 

neutrophils secreting factors that stimulate tumour vasculature 224. Moreover, an important 

regulator of tumour inflammation is the neutrophil-to-lymphocyte ratio (NLR), where an 

increased NLR is correlated with adverse survival outcomes in breast cancer patients 225. 

Probably the most studied and highly abundant stromal player in the breast tumour 

microenvironment is the fibroblast. Compared to normal fibroblasts, cancer associated 

fibroblasts (CAF) from primary breast tumours show differential mRNA and protein 
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expression profiles despite having similar morphology 226. CAF have been implicated in the 

promotion of breast cancer cell EMT, therapy resistance and, through secretion of leptin, 

breast tumour invasion 227–229.  

Until recently, cross-talk between breast tumour related adipocytes, known as cancer 

associated adipocytes (CAA) and breast cancer cells was largely understudied. In the breast, 

invading tumours are likely to encounter adipose tissue microenvironments, resulting in direct 

proximity of breast cancer cells to a milieu of adipocytes and other adipose tissue stromal 

cells. Thus, as the incidence rates increase and the negative biological consequences of 

obesity and adipose tissue adipocyte dysfunction become more apparent, attention has 

become focused on the active role of adipocytes in facilitating breast tumour progression 

143,230–232. It has been suggested that obesity can differentially modulate the microenvironment 

to favour tumour progression 91,233, and the effects of breast adipocyte dysfunction, such as 

pro-inflammatory and hormonal signalling, have been associated with breast cancer 

pathogenesis 150,162. Therefore, it is likely that reciprocal interactions between CAA and breast 

cancer cells are influencing obesity-associated poorer breast cancer outcomes.  

1.3.1.1 Cancer associated adipocytes (CAA) and breast cancer progression 

Recent reviews have emphasised the important actions of proximal adipocytes within 

and surrounding the breast tumour stroma during disease progression 143,230,232,234. Breast 

tissue is particularly rich in WAT adipocytes 91, and these adipocytes can function as 

autocrine, paracrine and endocrine cells, exerting biological effects through the secretion of 

cytokines, growth factors, hormones and other adipokines 235. CAA at the invasive edge of 

human breast tumours exhibit a modified phenotype, in which they become delipidated with 

enlarged interstitial spaces, display a decrease in late adipocyte differentiation markers and 

overexpress inflammatory cytokines including IL-6 and IL-1β 150 (Figure 1.10). This modified 

CAA phenotype is similarly exhibited by mature adipocytes co-cultured with breast cancer 

cells in vitro 150.  
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Figure 1.10. Cancer associated adipocytes (CAA) at the invasive margin of a breast 

tumour. 

CAA (black arrows) at the invasive front (IF) of human breast tumours display a modified 

phenotype, in which they become delipidated with enlarged interstitial spaces, display a 

decrease in late adipocyte differentiation markers and overexpress inflammatory cytokines 

including IL-6 and IL-1β. Ad: Adipose; C: tumour centre. From Wang et al (2012). Reprinted 

with permission from Elsevier.  

 

In addition to breast cancer cells promoting the CAA phenotype, it has been shown 

that direct stimulation of breast cancer cells with factors known to be secreted by mature 

adipocytes, such as leptin and IL-6, is capable of supporting and promoting breast 

tumorigenicity in both oestrogen responsive and unresponsive breast cancer cells 161,236. 

However, cell-cell interactions in vivo are complex, and adipocytes are unlikely to alter breast 

cancer cell behaviour through a single secreted molecule. In vitro studies using conditioned 

media from 3T3-L1 derived murine adipocytes showed upregulation of anti-apoptotic 

transcriptional programs in MCF-7 breast cancer cells 237. Similarly, conditioned media from 

breast adipocytes induced migration in non-cancerous normal breast epithelial cells 238, and 

increased migration, proliferation, viability and invasion in a variety of oestrogen receptor 

(ER) positive and ER negative breast cancer cell lines 239–245.  

In vitro studies, using transwell (non-contact) co-culture of CAA with breast cancer 

cells, have established that CAA promote breast cancer cell proliferation, viability, migration 

and invasion 150,240,245–250. In addition, breast cancer cells co-cultured with CAA undergo a 

partial epithelial to mesenchymal transition (EMT) 150, and become more resistant to 

radiotherapy 251, chemotherapy 252,253, and other breast cancer therapies 254,255. During co-
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culture, treatment with aspirin, an anti-inflammatory drug, blocked cross-talk between breast 

cancer cells and adipocytes by inhibiting MCP-1 adipocyte secretion, reducing breast cancer 

cell proliferation and migration 256. These in vitro findings are further supported by in vivo 

xenograft studies, where human breast cancer cells co-cultured with CAA and subsequently 

implanted in mice or zebrafish show increased tumour growth and metastasis 248,250,257,258.  

Although the precise biological processes responsible for CAA driven breast cancer 

progression remain unclear, investigations assessing the bidirectional communication 

between these two cells has recently highlighted the role of altered breast cancer cell and 

stromal adipocyte metabolism, enhancing breast tumour growth, survival and invasion 259. 

Under certain nutrient or growth hormone signals, adipocytes undergo lipolysis, increasing 

secretion of free fatty acids (FFA) and glycerol 260. Co-culturing ovarian carcinoma cells with 

CAA showed enhanced rates of lipolysis in adipocytes, and elevated rates of β-oxidation and 

cytosolic lipid accumulation in ovarian cancer cells 261. Although, this study by Nieman et al., 

mainly focused on ovarian cancer cells, breast cancer cells also showed increased levels of 

cytosolic lipids following co-culture with CAA 261. Recent evidence suggests that cross talk 

with CAA induces breast cancer cell invasiveness, in part, through metabolic remodelling of 

the breast cancer cell, promoting a shift towards increased mitochondrial fatty acid oxidation 

249,262. Taken together these studies suggest that reciprocal cross-talk between breast cancer 

cells and CAA induces lipolysis in CAA, which provides lipids as a fuel source for breast 

cancer cell proliferation and invasion (Figure 1.11).  
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Figure 1.11. Interactions between CAA and breast cancer cells.  

Reciprocal cross-talk between breast cancer cells and CAA induces lipolysis in CAA which 

provides lipids as a fuel source for breast cancer cell proliferation and invasion. CAA release 

an assortment of other factors such as cytokines, growth factors, hormones and other 

adipokines, which can influence breast cancer cell behaviour.  

 

The majority of CAA and breast cancer cell co-culture studies have focused on 

assessing the altered production of specific adipocyte derived factors, such as CCL5, IL-6, 

IGF-1 and IGFBP-2, that promote breast cancer cell pro-tumour behaviour via paracrine 

actions 150,240,246–248. In addition to altered expression of adipocyte secreted factors, some of 

these studies have observed modified expression of targeted genes and proteins in breast 

cancer cells following co-culture with CAA, including IL-6, IL-8, CCL5, MCT2, CPT1A and 

MMP-2. A number of genes and pathways have been identified by cDNA microarray analysis 

to be differentially expressed in breast cancer cells after co-culture with CAA 245,250,263 or 

CAA-conditioned media 237,242.  

Despite these studies investigating gene expression changes in breast cancer cells 

interacting with CAA, the expression of translated proteins is not necessarily predicted by this 

mRNA expression data, and to date, the global regulation of cell protein abundance in breast 

cancer cells following co-culture with CAA has not been assessed. Thus, further analysis 

investigating the local effects of CAA on the proteome expression of human breast cancer 

cells will identify novel proteins and cellular pathways that are potentially important for breast 
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cancer progression, and provide an informative platform for future research to develop novel 

treatment strategies that target CAA-breast cancer cell interactions. 

 

1.4 Breast cancer chemotherapy metabolism 

The response of breast cancer patients to chemotherapy treatments is variable and 

currently largely unpredictable, and it has been suggested that differences in chemotherapy 

metabolism may play a role in regulating response to chemotherapeutics, both between 

patients and within an individual over time 264–266. The majority of chemotherapy drugs used 

to treat cancer patients are metabolised by cytochrome P (CYP) 450 enzymes in liver cells 

(hepatocytes) 267. CYP enzymes are a family of mixed-function oxidases often referred to as 

drug metabolising enzymes (DME), which modify functional groups and contribute to a 

significant proportion of all drug metabolism in the human body 268. CYP enzymes are 

predominantly localised to the endoplasmic reticulum of hepatocytes, although, they are also 

found at lower numbers in extrahepatic tissues such as kidney, lung and gut 269. As a result, 

chemotherapy drug metabolism in cancer patients, via CYP enzymes, occurs mostly in the 

liver, although can occur to a lesser extent in these extra-hepatic tissues, including tumours 

265. An important quality of CYP enzymes is that they are substrate selective, for example, 

CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5 make major contributions to the 

metabolism of breast cancer therapeutics, including tamoxifen, cyclophosphamide, docetaxel, 

doxorubicin and paclitaxel 265,266. Breast cancer chemotherapies and hormone therapies (in 

common with drugs used to treat other cancers), have specific properties such as sharp dose-

toxicity curves and narrow therapeutic indexes, such that even minor alterations in the 

expression or activity of CYP DME(s) may affect anti-cancer efficacy, or toxicity to the host 

264.  

CYP bio-activated prodrugs used to treat breast cancer patients, such as tamoxifen 270 

or cyclophosphamide 271, would likely exhibit reduced efficacy under conditions where CYP 

activity is down-regulated, due to an unexpected decrease in exposure of the tumour to the 

active metabolite 265,266. Alternatively, pharmacologically active breast cancer drugs that 

become deactivated after CYP metabolism, such as doxorubicin 272 or paclitaxel 273, may 

induce increased toxicity when CYP activity is reduced, due to an unexpected increase in the 

patient’s exposure to the active chemotherapeutic compound 265,266. In response to 

chemotherapy related toxicities, treatments are usually dose-reduced or even ceased, and what 
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we have learnt from the dose-capping of obese cancer patients is that chemotherapy dose-

intensities are a critical determinant of tumour response rates and patient outcomes, both of 

which seem to be negatively affected by reducing dose intensity (see Section 1.2.1.2.2). 

Therefore, regardless of whether a breast cancer drug is delivered as a pharmacologically 

active compound or not, reduced CYP activity may participate in the manifestation of 

chemotherapy resistance (poorer response to chemotherapy and worse patient outcomes 

following chemotherapy treatment) by slowing down hepatic cancer chemotherapy 

metabolism. 

 

1.4.1 CYP genotypes 

Multiple factors may influence the expression, and thus, activity of hepatic CYP 

enzymes, including age, sex, environmental exposures, epigenetic events, co-morbid diseases 

and use of concurrent medications, but most widely studied are genetic polymorphisms within 

the CYP genes 274. Many genetic polymorphisms have been identified across different CYP 

enzymes, providing a source of inter-individual pharmacokinetic variability 275. The 

observation that clinical phenotypes (or patient responses) are associated with the presence or 

absence of particular genetic polymorphisms has led to a number of large scale association 

studies classifying CYP genotypes into one of three distinct functional subpopulations, 

including the extensive metabolisers (EMs), poor metabolisers (PMs) or intermediate 

metabolizers (IMs) 274,276. A fourth unique genotypic subgroup of ultra-rapid drug 

metabolisers (UM) has also been classified for CYP2C19 and CYP2D6 276–278. Breast cancer 

patients with a particular variant in the CYP3A4 metabolising gene showed higher blood 

concentrations of non-metabolised cyclophosphamide, and this was associated with a median 

survival rate of 1.3 years in comparison to 2.7 years for those patients without the CYP3A4 

variant 279. These studies suggest that inter-patient differences in CYP genotypes could be 

used to dictate individualised dosing schedules specific to a cancer patient’s metabolic 

genotype. However, upon review, results from large genotype-association studies classifying 

CYP alleles into distinct genotypic groups based on patient responses, were often found to be 

inconsistent, and at times conflicting 280,281. In the pharmacokinetics landscape, this 

discordance between CYP genotypes and phenotypes is often referred to as 

‘phenoconversion’, and is of particular concern in the current pursuit for personalised 

medicine 280,281.  
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1.4.2 Phenotyping CYP enzymes in vivo 

Clinical outcomes following drug administration may be better predicted by 

combining CYP genotyping with metabolic phenotyping. Therefore, to complement the 

wealth of genotype data that is available for human CYP enzymes, metabolic phenotyping 

approaches have been developed to measure the activity of CYP enzymes in vivo. Whether in 

whole animal models or human subjects, CYP activity can be studied through use of probe 

drugs. Probe drugs are medications determined to be predominantly metabolised by a single 

CYP enzyme, thus, by administering the probe drug and then sampling and measuring the 

concentration of that probe drug and its metabolites, investigators are able to gain insight into 

the activity of the studied CYP enzyme in vivo 282. An example of this is use of omeprazole, 

a proton pump inhibitor, to study CYP2C19 activity. By administering omeprazole and 

subsequently sampling the systemic circulation (plasma) to measure the parent compound 

(omeprazole) and metabolite (5-hydroxyomeprazole), it is possible to phenotype the activity 

of CYP2C19 by analysing the parent to metabolite ratio 283. This probe drug methodology can 

be used to study specific CYP enzymes in relative isolation, or through combinations of 

multiple probe drugs (frequently called “cocktails”) to phenotype multiple CYP enzymes 

concurrently 284,285. 

The cocktail approach to CYP phenotyping was first proposed by in the late 1980s by 

Schellens et al. 286, and later became revitalised by Frye et al. in 1997 287. Now used in both 

academia and the pharmaceutical industry, phenotyping cocktails are designed to limit the 

potential for interactions between the components, exhibit adequate specificity of agents to 

allow accurate CYP phenotyping, and minimize observable clinical effects 288. Specifically, 

with regards to the latter point, many probe drugs have either been selected because of limited 

potential for harm at standard dosing (even in the setting of intentional increased exposure 

such as in CYP-inhibition studies), or reduction in dosing to sub-therapeutic ranges (micro-

dosing). Examples of CYP phenotyping cocktails include the “Pittsburgh” cocktail 287, the 

“Basel” cocktail 289, and the “Inje” cocktail 290; their respective constituent components and 

sampling schedules are presented in Table 1.1.  

  



 

32 
 

 

Table 1.1. Examples of phenotyping cocktails. 
 

Cocktail 
Components 

(Enzymes/Transporters Assessed) 
Sampling Schedule 

Pittsburgh 

 Caffeine (CYP1A2) 

 Chlorzoxazone (CYP2E1) 

 Phenytoin (CYP2C19) 

 Debrisoquin (CYP2D6) 

 Dapsone (CYP3A4) 

 Plasma sample at baseline, 4 and 8 hours 

 Urine sample 0-8 hours (inclusive) 

 

Basel 

 Caffeine (CYP1A2) 

 Efavirenz (CYP2B6) 

 Omeprazole (CYP2C19) 

 Metoprolol (CYP2D6) 

 Losartan (CYP2C9) 

 Midazolam (CYP3A4) 

 Plasma samples at 0.25, 0.5, 0.75, 1, 2,3, 4, 

6, 8, 12, 24, 48, and 72 hours 

 

 

Inje 

 Caffeine (CYP1A2) 

 Omeprazole (CYP2C19) 

 Dextromethorphan (CYP2D6) 

 Losartan (CYP2C9) 

 Midazolam (CYP3A4) 

 Plasma sample at 4 hours 

 Urine sample at 8 hours 

 

 

1.4.3 CYP phenoconversion 

Although an individual may be classed as an EM or IM, based on their CYP genotype, 

this genotype does not always reflect or accurately predict the observed drug metabolising 

phenotype (or patient response) 291,292. This phenomenon has been recently been termed 

‘phenoconversion’, describing the conversion of a drug metabolising enzyme from a 

genotypic IM or EM, to a phenotypic PM, and therefore, individuals with PM genotypes are 

largely immune to the possibility of phenoconversion 281. Consequently, phenoconversion has 

the potential to alter drug pharmacokinetics in ways that are unexpected when accounting for 

CYP genotype alone 280,281. 

Although the exact biological mechanisms responsible for phenoconversion are yet to 

be elucidated, two main hypotheses have emerged to explain the CYP genotype-phenotype 

discordance. The proposed biological mechanisms include drug-drug interactions inhibiting 

the functional capacity of a particular CYP enzyme 293, and circulating inflammatory 

cytokines down-regulating hepatocyte gene expression of CYP enzymes 159,281.  

Drug-drug interactions can affect the efficacy of the drugs, as some drugs can induce 

or inhibit particular CYP enzymes 293. During co-administration of a drug that inhibits the 

activity of a CYP enzyme, the metabolising phenotype of that enzyme would mimic that of a 
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genotypic poor metaboliser 293. When interactions between drugs are well understood they 

can also become advantageous, as they can be used in combinations to purposefully achieve 

interactions that induce or inhibit a metabolising enzyme 264,293. An example of this is dosing 

with cyclosporine to enhance the oral bioavailability of paclitaxel 294. Although research has 

extensively investigated an array of drug-drug interactions in cancer patients, drug 

interactions causing phenoconversion in oncology are an ongoing concern 264,295. Data 

describing the extent of the clinical implications for drug interactions in cancer patients is 

limited, however, a systematic review was able to conclude that approximately 33% of cancer 

patients visited by ambulances are recorded to be at risk of effects from drug-drug interactions 

296.  

In comparison to drug interactions, much less is known about the effects of systemic 

inflammation on phenoconversion in cancer patients. Non-clinical and clinical findings have 

pointed towards an association between inflammatory cytokines and reduced CYP expression 

and activity 159, however, the biological mechanisms for the concentration-inhibition 

relationship between inflammatory cytokines and CYP activity is incompletely understood. 

Amongst proposed explanations, the predominant mechanism is the hepatocyte cell surface 

binding action of pro-inflammatory cytokines causing intracellular signalling events that 

suppress transcription of CYP coding genes 297. In vitro evidence has been presented for IL-

6 mediated downregulation of CYP3A4 activity in hepatocytes, as IL-6 induces translation of 

the CCAAT-enhancer-binding protein β (C/EBPβ) isoform LIP, an antagonist of C/EBP 

transcription factors that constitutively promote the expression of CYP3A4 298,299 (Figure 

1.12). 

In addition to biological mechanisms, limitations associated with genotyping studies 

have also been highlighted for their role in phenoconversion 280,281. In most cases, genotype-

association studies have only interrogated the known and generally most prevalent alleles 

when assigning CYP genotypes to particular patient response. Furthermore, one allele often 

displays an array of different patient responses making it difficult to genotype that allele into 

a single discrete group, and therefore, there are a number of identified single nucleotide 

polymorphisms that have not been assigned to a functional genotypic group, which may 

account for a portion of the phenoconversion that is being reported.  

Further analysis assessing both the presence of CYP phenoconversion and the factors 

causing it, would help in the development of newer treatment strategies that can negate inter-
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patient variability and better regulate patient response. Although the biological mechanisms 

are still under investigation, associations between inflammatory cytokines and CYP 

phenoconversion have been documented in human hepatocytes and in patients with 

inflammatory diseases 159.  

 

 

Figure 1.12. IL-6 mediated downregulation of CYP3A4 in the liver.  

Schematic showing the proposed mechanism by which IL-6 induces translation of C/EBPβ-

LIP in hepatocytes, an antagonist of C/EBP transcription factors that constitutively promote 

the expression of CYP3A4. From Aitken et al (2006) 297. Reprinted with permission from 

ANNUAL REVIEWS.  

 

1.4.4 Inflammation induced CYP phenoconversion 

There have been a number of studies that have investigated the influence of 

inflammatory markers on the expression and activity of CYP enzymes in vitro and in vivo, 

with the intention of increasing our understanding of the influence of inflammation induced 

phenoconversion in the treatment of subjects presenting with inflammatory diseases. 

1.4.4.1 In vitro evidence of human hepatocyte CYP phenoconversion 

There are a few prominent in vitro studies that have investigated the effects of pro-

inflammatory cytokines on the expression of different CYP genes using human hepatocytes. 
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Human hepatocytes dosed with physiologically relevant concentrations of IL-1, TNF-α and 

IL-6 were assessed for CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19 and CYP3A4 

mRNA expression. IL-1 mediated a reduction in CYP2C8 and CYP3A4 gene expression by 

75% and 95%, respectively, TNF-α suppressed the transcription of CYP2C8 and CYP3A4, 

and IL-6 reduced mRNA levels of all CYPs studied expect CYP2C18 300. Analysis of CYP 

protein expression supported mRNA results, although translation was not identical 300. In 

support of these findings, further investigations with human hepatocytes have identified an 

IL-6 and IL-1β mediated downregulation of CYP1A2 and CYP3A4 301,302, with anti-IL-6 

monoclonal antibody at least partially blocking the IL-6 mediated suppression 301. This 

investigation was not able to identify a synergistic effect of combining IL-6 and IL-1β 

treatment on suppression of human hepatocyte CYP gene expression, however, they did 

conclude that IL-6 delivers a more potent effect on transcriptional repression 302. Lastly, 

human hepatocytes co-cultured alongside Kupffer cells, treated with either IL-6 or IL-1β, 

upregulated expression of pro-inflammatory cytokines and acute phase proteins, and 

intensified the suppression of CYP3A4 transcription 303. IL-1β lowered CYP3A4 mRNA 

levels more in hepatocytes that were co-culture with Kupffer cells compared to hepatocytes 

grown alone, however, the transcriptional suppression of CYP3A4 after IL-6 treatment 

remained consistent regardless of co-culture 303.  

Taken together, these studies show that suppression of CYP genes by pro-

inflammatory cytokines in hepatocytes in vitro is largely gene specific, with different 

cytokines influencing CYP gene expression in a unique manner. Moreover, IL-6 is likely a 

predominant inflammatory cytokine involved in regulating CYP gene expression in humans. 

It could be argued that these in vitro investigations of the effects of a small number of 

individual inflammatory cytokines on CYP expression and activity is not physiologically 

relevant, and rather the combined influence of a panel of inflammatory cytokines would better 

represent the effects of inflammatory diseased states on liver CYP metabolism. This has yet 

to be investigated in vitro, however, clinical studies have investigated in vivo CYP activity in 

patients experiencing conditions of systemic inflammation.  

 

1.4.4.2 Clinical evidence of inflammation induced CYP phenoconversion 

In the mid-1990’s, a cohort of 12 healthy male volunteers had significantly reduced 

CYP1A2 and CYP2C19 mediated clearance of probe drugs, theophylline and hexobarbital, 

after receiving low doses of intravenous lipopolysaccharides (LPS) over two consecutive 
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mornings 304; where LPS stimulates secretion of pro-inflammatory cytokines by various cell 

types. The reduction in CYP1A2 and CYP2C19 mediated drug clearance was paralleled with 

increases in the circulating inflammatory cytokines, IL-6 and TNF-α, and serum acute phase 

response proteins, CRP and AGP; however, this correlation was not significant 304. Shortly 

after, in 1997, the same effect was established in a population of healthy female participants 

305. Subsequent clinical studies have continued to support these earlier findings, however, 

instead of LPS induced inflammation, more recent investigations have assessed effects of 

inflammatory states associated with clinical diseases. Direct evidence of CYP 

phenoconversion occurring in inflammatory-related diseases including HIV and hepatitis C 

infection, liver disease and cancer have been published for CYP2C19 and CYP2D6 283,306–310. 

However, no comparable clinical investigations of phenoconversion have been carried out for 

other important CYP enzymes such as CYP2C9 or CYP3A4, or in different prevalent 

inflammatory diseases including rheumatoid arthritis, diabetes, chronic kidney diseases, other 

cancer types and obesity.  

1.4.5 Cancer and inflammation induced CYP phenoconversion 

Increased levels of systemic inflammation have become a well-recognised hallmark 

of cancer progression 311. The initiation and development of elevated peripheral inflammation 

is consistently associated with poorer patient prognosis and outcome in both early and late 

stage cancer patients, and is associated with poorer patient responses to chemotherapy 

treatment 312,313. Cancer-associated systemic inflammation has been suggested to interact with 

hepatocytes in the liver, downregulating expression and activity of CYP enzymes important 

for chemotherapy metabolism and clearance (Figure 1.13). 
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Figure 1.13. Systemic inflammation may influence liver drug metabolism during cancer.  

This schematic shows cancer-associated systemic inflammation interacting with the liver, 

downregulating expression and activity of CYP enzymes important for chemotherapy 

metabolism and clearance, and potentially causing reductions in chemotherapy efficacy and 

increases in chemotherapy related toxicities. From Kacevska et al (2008) 314. Reprinted with 

permission from Taylor & Francis.  

 

Phenoconversion has been suggested to occur in breast cancer patients. A study of 80 

breast cancer patients observed large inter-patient variability in circulating endoxifen 

(tamoxifen metabolite) concentrations that were not explained by four CYP2D6 null alleles, 

nor by the concomitant administration of medications known to inhibit or induce CYP2D6 

activity 315. Similarly, a more recent study has reported a CYP2D6 genotype and phenotype 

discordance in a number of breast cancer patients, where low or absent formation of the 

dextromethorphan metabolite (inferring poor metabolism by CYP2D6), was not explained by 

CYP2D6 null activity genotypes 316. In conjunction with the fact that circulating inflammatory 

cytokine levels were not assessed in either of these investigations, results from these studies 

are only suggestive of phenoconversion, as other known, but not yet, genotyped 

polymorphisms of CYP2D6 were not investigated.  

In patients with advanced cancers, the acute phase inflammatory response has been 

associated with reduced CYP activity, but not phenoconversion directly. Specifically, 
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decreased CYP3A4 dependent metabolism of erythromycin, measured by breath testing, was 

correlated with increased levels of circulating CRP, and CRP levels were significantly 

positively correlated with plasma IL-6 levels 317. However, this study did not address the 

potential effect of drug-drug interactions which could be influencing CYP3A4 metabolism. 

In contrast to CYP3A4, mismatch between CYP2C19 genotype and phenotype, and thus 

phenoconversion, has been documented in a number of advanced cancer patients 283,309,310. 

Although the levels of systemic inflammatory cytokines were measured in two out of three of 

these investigations, concentrations of IL-6, TNF-a, IL-1, TGF-β and CRP were not 

significantly associated with CYP2C19 phenoconversion 283,310.  

Variation in the results across in vivo studies assessing CYP activity in inflammatory 

conditions is postulated to be influenced by the relatively small study numbers restricting 

statistical power, but also the consequence of different types and concentrations of 

inflammatory cytokines occurring across a variety of acute and chronic inflammatory 

responses and pathologies 318. Differences in levels of circulating inflammatory cytokines 

between advanced and early stage breast cancer patients is likely to exhibit differential effects 

on CYP activity, but in addition to cancer-associated inflammation, obesity-associated 

inflammation may be influencing CYP mediated chemotherapy metabolism in these patients. 

Obesity is a co-occurring pathology that is strongly associated with poorer outcomes in a 

number of different cancers including breast cancer 69,126, and thus, it could be speculated that 

obesity-related systemic inflammation is influencing CYP mediated chemotherapy 

metabolism, contributing to the poorer pathological response rates to chemotherapy seen in 

obese women with breast cancer.  

1.4.5.1 Obesity, inflammation and CYP activity 

Despite obesity being a well-established condition of chronic low-grade systemic 

inflammation, very little research has investigated the effects of obesity-associated 

inflammation on CYP activity in vivo in humans. In 1999, a review was published that 

assessed the differences in pharmacokinetics of a number of drugs between non-obese and 

obese subjects, in which CYP3A4 activity was found to be decreased, and CYP2E1 exhibited 

increased activity during obesity; yet, the association between obesity and other CYP 

enzymes remained inconclusive 319. The majority of the research since this review has been 

performed in animal models of obesity, and an extensive review of these studies concludes 

that aside from CYP2C and CYP2E1, obesity is associated with reduced CYP activity 320. 
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Thus, obesity may play a role in regulating CYP activity (and phenoconversion) in obese 

breast cancer patients.  

Further clinical trials assessing CYP activity and its association with systemic 

inflammation in breast cancer patients receiving chemotherapy will hopefully highlight key 

inflammatory markers influencing CYP activity in these patients, and thus, provide targets 

for future interventions. These studies would benefit from considering the influence of other 

co-occurring inflammatory conditions known to influence breast cancer patient response to 

chemotherapy, such as obesity. 

 

1.5 Hypotheses and aims 

Cancer associated adipocytes (CAA) within the breast tumour microenvironment and 

obese white adipose tissue depots throughout the body have both been associated with breast 

tumour progression 116,150. Although previous research has attempted to assess the 

mechanisms by which local CAA and systemic obesity influences breast cancer progression, 

the precise local and systemic mechanistic properties that are supporting breast cancer 

development during obesity, are still under investigation.  

1.5.1 Local effects of CAA on breast cancer cells 

In the same way that past explorations have used transwell co-culture and microarray 

analysis to identify CAA-induced alterations in breast cancer cell gene expression 250,263, it 

could be postulated that research investigating regulation of global breast cancer cell protein 

abundance caused by proximal CAA may reveal novel mechanistic links relevant to breast 

cancer cell phenotypes. Thus, the first hypothesis for this thesis was that in vitro co-culture 

with CAA differentially regulates protein abundance in breast cancer cells, and consequent 

alterations in key molecules and pathways are responsible for promoting a progressive breast 

cancer cell phenotype. To investigate this, the aims were to: 

1) Perform proteomic profiling on ER positive (MCF-7) and hormone receptor negative 

(MDA-MB-231) human breast cancer cells cultured alone or co-cultured with CAA 

isolated from human breast adipose tissue. 

2) Identify differentially regulated molecules and enriched pathways potentially playing 

an important role in CAA-induced breast cancer cell growth, survival and metastasis 

that can inform further investigations.  
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1.5.2 Systemic effects of obesity on breast cancer chemotherapy 

metabolism 

Elevated BMI is associated with the presence of low-grade chronic systemic 

inflammation, and lower pathological complete response rates to neoadjuvant chemotherapy 

in breast cancer patients 63,122. Breast cancer chemotherapy drugs are mostly metabolised by 

CYP enzymes whose expression in the liver are susceptible to regulation by inflammatory 

cytokines 159,317, and in breast cancer survivors levels of inflammatory cytokines can be 

decreased by increased levels of physical activity 182,183. Based on these associations, it could 

be speculated that unexpected alterations in the metabolism of chemotherapies could be 

playing a role in the poorer pathological response to treatment in obese breast cancer patients. 

Furthermore, the systemic effects of inflammation on the metabolism of clinically important 

breast cancer chemotherapy agents that operate under very narrow therapeutic windows, is 

largely overlooked in breast cancer patients. Therefore, the hypotheses for this part of the 

thesis were, firstly, that circulating inflammatory cytokines in obese breast cancer patients 

alter CYP enzyme activity in women receiving chemotherapy for breast cancer, and secondly, 

that concentrations of circulating inflammatory markers in these same women are influenced 

by levels of physical activity. To investigate these hypotheses an exploratory clinical study 

was carried out recruiting non-obese (BMI<30) and obese (BMI≥30) women being treated 

with chemotherapy for stage II or III breast cancer, with the aims to: 

1) Assess whether differences in body morphometry and levels of physical activity are 

associated with concentrations of circulating inflammatory cytokines throughout 

chemotherapy.  

2) Explore the relationship between in vivo activity of CYP enzymes important in the 

metabolism of breast cancer chemotherapy and the concentrations of circulating 

inflammatory cytokines, throughout chemotherapy. 

3) Assess whether such studies are feasible in patients undergoing chemotherapy 

treatment for stage II and III breast cancer.  

 



 

 

 
 

 

 

Chapter 2  

 

Methods and Materials 

 

2.1 Breast adipocyte collection, isolation and culture 

Ethics and sample collection 

Breast adipose tissue samples were collected by the Cancer Society Tissue Bank 

Christchurch (CSTBC), using standard operating procedures 321. Ethical approval for the 

study was obtained from the University of Otago Human Ethics Committee (Health) 

(reference number 12/319). All patients gave informed written consent for the use of their 

samples for research purposes and access to their medical records. Māori consultation was 

completed with Elizabeth Cunningham, the Māori Research Advisor of the University of 

Otago Christchurch. This study is of particular interest and potential benefit to Māori.  

2.1.1 Breast adipose tissue samples 

All breast adipose tissue samples used in this study were donated by female patients 

undergoing surgery at Christchurch Hospital for therapeutic or prophylactic mastectomy 

between March 2016 and March 2017. Adipose tissue was sampled by a pathologist from 

macroscopically normal breast tissue with maximal margins to any tumour deposit. Patient 

characteristics and breast cancer pathology were assembled from pathology reports and 

medical records by the CSTBC.  

2.1.2 Isolation of pre-adipocytes 

Pre-adipocytes were isolated from breast adipose tissue within 1 hour of surgical 

resection. The pre-adipocyte isolation protocol was adapted from Lee et al. (2012) and is 

described in detail below 322. All breast adipose cells used for this study were adherent and 

maintained in a 37 °C incubator with 95% oxygen and 5% CO2 atmospheric conditions.  
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At collection, breast adipose tissue samples were de-identified and given an adipose 

tissue (AT) sample number (eg. AT 076) before being weighed. Surgical and pathological 

dyes were washed from the sample using serum free media (Table 2.1) and preheated to 37 

°C. Fibrous and vascular areas were excised from the adipose tissue and discarded. The 

refined sample was minced and digested using 1 mg/mL collagenase type I enzyme in Hanks’ 

Balanced Salt Solution (HBSS; Life Technologies, Carlsbad, CA, USA) by incubation for 2 

hours at 37 °C with regular agitation. 2 mL of collagenase was used for every 1 gram of 

adipose tissue. Collagenase was stored at -80 °C and defrosted immediately before use in a 

37 °C water bath. The digested adipose tissue was diluted with 10 mL growth media (Table 

2.1). Samples were passed through a metal 250 µM mesh sieve to remove remaining fibrous 

tissue, transferred to a fresh 50 mL tube (BD FalconTM), and centrifuged at room temperature 

for 10 minutes at 2500 x g. Fibrous tissue collected during filtering was combined with the 

initial discarded vasculature and fibrous waste tissue, and weighed. The total weight (grams) 

of waste tissue removed was subtracted from the weight of the original breast adipose tissue 

(grams) specimen, in order to calculate the weight of adipose tissue from which pre-

adipocytes were extracted. Following centrifugation, all fractions apart from the cell pellet 

were discarded, the pellet was resuspended in 10 mL of growth media, and the sample was 

filtered through a sterile 70 µM cell sieve (In Vitro Technologies, Melbourne, Australia). 

Samples were re-pelleted by centrifugation for 10 minutes at 25000 x g, and the supernatant 

was discarded. The pellet (containing the stromal vascular fraction, enriched for pre-

adipocytes and red blood cells (RBC)) was resuspended in 1 mL of normal adipose growth 

medium per 0.6 grams adipose tissue. 1 mL of the cell suspension was plated into each well 

of a 12 well cellBIND® plate (In Vitro Technologies, Melbourne, Australia), and incubated 

at 37 °C. Approximately 24 hours after plating, medium was removed from each well of 

adherent pre-adipocytes and was replaced with 1 mL of sterile 1X Phosphate Buffered Saline 

(PBS). Non-adherent red blood cells were gently washed away from the adherent pre-

adipocytes using the PBS. The PBS wash step was repeated at least 2 times until complete 

removal of RBC, and replaced with 1 mL per well of growth media.  

2.1.3 Culturing of pre-adipocytes 

The pre-adipocytes were cultured in normal adipose growth medium, replaced every 

2-3 days, until they were observed under light microscopy to reach 100% confluency. 

Treatment for pre-adipocyte differentiation was performed two days after the pre-adipocytes 

reached confluency. 
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2.1.4 Differentiation of pre-adipocytes into mature adipocytes 

Pre-adipocytes were supplemented with 1 mL per well of differentiation media (Table 

2.1) for 5 days. Then differentiation media was replaced with 1 mL per well of fresh 

differentiation media minus IBMX supplementation, and incubated for a further 5 days. 

Differentiation media was replaced with maintenance media (Table 2.1), and maintenance 

media was replaced every 3-4 days until adipocyte maturation (approximately 14-21 days). 

Light microscopy was used to determine the differentiation of pre-adipocytes to mature 

adipocytes, as measured by the accumulation of lipid droplets filling the adipocytes (Figure 

2.1). Differentiated adipocytes were considered ready for use in experiments when mature 

adipocytes covered ≥ 70% confluence. Differentiation and maintenance media were made 

fresh and sterile filtered through Millex-GV 0.22 µM PVDF syringe filter units (Sigma-

Aldrich, St. Louis, MA, USA) immediately before use.  

 

Table 2.1. Adipocyte culture media used in this study. 

Name Media Supplements 

Serum free media 

DMEM/F12 medium [+] L-

Glutamine [+] 2.438 g/L 

sodium bicarbonate (Life 

Technologies, Carlsbad, CA, 

USA) 

1% A/A (Life Technologies, Carlsbad, CA, USA) 

Growth media 

DMEM/F12 medium [+] L-

Glutamine [+] 2.438 g/L 

sodium bicarbonate 

10% FBS (Life Technologies, Carlsbad, CA, USA), 

1% A/A 

Differentiation 

media 

DMEM/F12 medium [+] L-

Glutamine [+] 2.438 g/L 

sodium bicarbonate 

1% A/A, 0.5 mM IBMX (Sapphire Biosciences, 

Redfern, NSW, Australia), 100 nM insulin (Life 

Technologies, Carlsbad, CA, USA), 100 nM 

dexamethasone (Sapphire Biosciences, Redfern, 

NSW, Australia), 2 nM triiodothyronine (Sigma-

Aldrich, St. Louis, MA, USA), 10 µg/mL transferrin 

(Sigma-Aldrich, St. Louis, MA, USA), 1 µM 

rosiglitazone (Sapphire Biosciences, Redfern, NSW, 

Australia), 33 µM biotin (Sigma-Aldrich, St. Louis, 

MA, USA), and 17 µM pantothenic acid (Sigma-

Aldrich, St. Louis, MA, USA) 

Maintenance media 

DMEM/F12 medium [+] L-

Glutamine [+] 2.438 g/L 

sodium bicarbonate 

10% FBS, 1% A/A, 10 nM insulin, and 10 nM 

dexamethasone 

A/A: antibiotic-antimycotic (containing amphotericin B, streptomycin and penicillin); FBS: foetal bovine serum; 

DMEM/F12: Dulbecco’s Modified Eagle’s Medium Nutrient Mixture F-12; IBMX: 3-isobutyl-1-methylxanthine 
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Figure 2.1. Adipocyte differentiation in vitro.  

Representative image of adipocytes before (pre-adipocytes) and after (differentiated 

adipocytes) the differentiation procedure (adipogenesis). Images are 10X magnification. 

 

2.2 Breast cancer cell culture 

2.2.1 Cell lines 

Human breast cancer cell lines HCC70, HCC83, HCC1954, MCF-7, MDA-MB-231, 

MDA-MB-468, and SKBR3 were purchased from American Tissue Culture Collection 

(ATCC; Manassas, VA, USA). BT20 and T47D human breast cancer cell lines were obtained 

as historical specimens. All cell lines were adherent and maintained in a 37°C incubator with 

95% oxygen and 5% CO2 atmospheric conditions. BT20, MCF-7, MDA-MB-231, and MDA-

MB-468 cell lines were grown in high glucose Dulbecco’s Modified Eagle Medium 

(GlutaMAX™ DMEM) with 10% foetal bovine serum (FBS) and 1% antibiotic-antimycotic 

(A/A; containing amphotericin B, streptomycin and penicillin) solution (all from Life 

Technologies, Carlsbad, CA, USA). HCC70, HCC83, HCC1954, and T47D cell lines were 

grown in high glucose Roswell Park Memorial Institute (GlutaMAX™ RPMI) 1640 Medium 

(Life Technologies, Carlsbad, CA, USA) with 10% FBS and 1% A/A solution. SKBR3 cells 

were grown in McCoy’s 5A (modified) Medium (Life Technologies, Carlsbad, CA, USA) 

supplemented with 10% FBS and 1% A/A solution.  

MCF10A wild type breast cell line was purchased from Horizon (HorizonTM Inspired 

Cell Solutions, Cambridge, UK), and grown in DMEM/F12 medium [+] L-glutamine [+] 15 



 

45 
 

mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; Life Technologies, 

Carlsbad, CA, USA) supplemented with 5% horse serum (Life Technologies, Carlsbad, CA, 

USA), 10 µg/mL insulin (Life Technologies, Carlsbad, CA, USA), 20 ng/mL EGF, 100 

ng/mL cholera toxin, and 500 ng/mL hydrocortisone (all from Sigma-Aldrich, St. Louis, MA, 

USA), and was used as a non-cancer control. 

Human breast cancer cell lines were routinely tested for mycoplasma following the 

polymerase chain reaction (PCR) protocol previously described by Timenetsky et al. (2006) 

323, using a positive control sample and the GPO-3 and MGSO primers for the generic 

detection of Mollicutes (type of bacteria lacking a cell wall). Cell lines were free of 

contamination (Supplementary Figure A.1).  

2.2.1.1 Cell line storage and maintenance 

All cell line experiments were performed within the first 30 passages. For passaging 

cells were detached from flasks using TrypLE dissociation reagent (TrypLETM Express; Life 

Technologies, Carlsbad, CA, USA), diluted with fresh culturing media and re-seeded into 

new flasks. For long term cell storage, breast cancer cells were frozen to -80°C in media 

containing 20% FBS and 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MA, 

USA), and MCF-10A cells were frozen to -80°C in complete culturing media also containing 

7.5% DMSO, before being transferred to the liquid nitrogen phase. For cell recovery from 

liquid nitrogen, cells were rapidly thawed in a 37 °C water bath and immediately transferred 

to flasks containing culturing media. DMSO containing media was replaced with fresh media 

following cell adherence to the flask.  

2.2.2 Cell counting  

All cell concentrations were determined using the Countess™ Automated Cell 

Counter (Life Technologies, Carlsbad, CA, USA). 10 µL of cells suspended in media were 

combined at a 1:1 ratio with 0.4% trypan blue stain (Life Technologies, Carlsbad, CA, USA), 

mixed, and incubated at room temperature for 2 minutes. After staining, 10 µL of cells were 

pipetted into a disposable Countess™ cell counter chamber slide (Life Technologies, 

Carlsbad, CA, USA) and inserted into the Countess™ Automated Cell Counter instrument for 

cell number assessment. CountessTM parameters were set at cell size of 5-60 µM, and cell 

circularly of 95% roundness.  
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2.2.3 Basal expression of PGK1 in a panel of breast cancer cell lines 

To assess the basal expression of PGK1 in a panel of human breast cancer cell lines, 

cells were seeded into 6 well plates at 2 x 105 cells/well in triplicate wells, and incubated for 

48 hours until 70-90% confluency. Protein was extracted from adherent cells following the 

protocol outlined in Section 2.2.4.2, and the protein supernatant was stored at -80°C until use 

in Western Blot (Section 2.8).  

Breast cancer cell lines included human epidermal growth factor receptor 2 enriched 

(HER2+; SKBR3 and HCC1954), oestrogen receptor positive (ER+; MCF-7 and T47D), and 

triple negative/ basal-like (TNBC; MDA-MB-231, MDA-MB-468, HCC70, BT20 and HC38) 

cell lines. PGK1 expression levels in the MCF-10A breast cell line (a non-tumorigenic 

mammary epithelial cell line) served as a non-cancer control, and was used to standardise 

expression across blots.  

2.2.4 Cell lysis for Western blot analysis 

2.2.4.1 Protein extraction from cell pellets 

Protein was extracted from breast cancer cell pellets by lysis on ice using RIPA buffer 

(50 mM Tris (pH 8.0), 150 mM NaCl, 1 % NP-40, 0.5% sodium deoxycholate, 0.1% SDS; 

all from Sigma-Aldrich, St Louis, MO, USA) with 1X cOmplete Protease Inhibitor Cocktail 

(Roche, Basel, Switzerland) added fresh on the day of lysis. Cell lysates were then transferred 

to pre-cooled microtubes, incubated on ice for 5 minutes, and centrifuged at 12,000 x g for 10 

minutes at 4 °C to pellet any insoluble cell debris. Supernatants were collected in pre-cooled 

microtubes and stored at -80 °C until use.  

2.2.4.2 Protein extraction from adherent cells 

Protein was extracted from breast cancer cells cultured in 6 well plates by lysing the 

cells on the plate. Cells were washed with cold PBS, lysed by adding RIPA buffer with 1X 

cOmplete Protease Inhibitor Cocktail added fresh on the day of lysis, and collected using a 

cell scraper before transfer into pre-cooled microtubes. Cell lysates were incubated on ice for 

5 minutes, and centrifuged at 12,000 x g for 10 minutes at 4 °C to pellet any insoluble cell 

debris. Supernatants were collected in pre-cooled microtubes and stored at -80 °C until use.  

2.2.5 Protein quantification 

2.2.5.1 BCA assay 

Total protein concentration of cell lysates prepared for Western blot analysis (Section 

2.2.4) were determined using the PierceTM BCA (bicinchoninic acid) Protein Assay Kit 
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(Thermo Fisher Scientific, Rockford, IL, USA). Briefly, a bovine serum albumin (BSA: Life 

Technologies, Carlsbad, CA, USA) standard curve (0-2000 µg/mL) was constructed 

following the microplate procedure, and 200 µL of BCA assay reagent (50:1 ratio of BCA 

Reagent A to BCA Reagent B) was added to 25 µL of standard or cell lysate, and incubated 

for 30 minutes at 37 °C protected from light. Absorbance was measured at 565 nm on the 

Multiskan GO plate reader (Thermo Fisher Scientific, Rockford, IL, USA), and protein 

concentrations were calculated by extrapolation from the standard curve.  

2.2.5.2 Bradford assay 

Total protein concentrations were measured in breast cancer cell lysates prepared by 

filter aided sample preparation (FASP) prior to digestion into peptides (Section 2.4.1). Total 

protein concentration of cell lysates were determined using a Bradford Protein Assay 

(BioRad, Hercules, CA, USA) following the manufacturer’s instructions. A bovine serum 

albumin (BSA) standard curve (0-1000 µg/mL) was constructed. 1 µL of protein sample or 

standard, diluted in 799 µL of Milli-Q water, was combined with 200 µL of Protein Assay 

Dye Reagent and incubated at room temperature for 5 minutes. Solutions were then 

transferred to cuvettes and absorbance was read at 595 nm using the Ultrospec 2000 

Spectrophotometer (Amersham, Little Chalfont, UK). Protein concentrations were calculated 

by extrapolation from the standard curve. All protein standards and samples were measured 

in duplicate.  

 

2.3 Transwell co-culture of mature adipocytes with human 

breast cancer cell lines 

2.3.1 Setting up of transwell co-culture 

Transwell co-culture of mature breast adipocytes and human breast cancer cells was 

performed using 12 mm transwell® permeable support inserts with 0.4 µm polyester 

membranes (In Vitro Technologies, Melbourne, Australia) pre-soaked in DMEM/F12 

medium with 10% FBS, at 37 °C for a minimum of 1 hour. Adipocytes were gently washed 

with PBS, and maintenance media was replaced with 1 mL per well of normal growth media 

on the mature adipocytes. Breast cancer cells were detached using TrypLE dissociation 

reagent and counted using The CountessTM Automated Cell Counter (Life Technologies, 

Carlsbad, CA, USA) (Section 2.2.2). Transwell inserts were gently transferred into the mature 
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adipocyte wells. 500 µL per insert of breast cancer cells were added at a final concentration 

of 1.2x105 cells per insert for MCF-7 and 1x105 cells per insert for MDA-MB-231, and 

incubated at 37 °C for 72 hours. Control breast cancer cells (MCF-7 and MDA-MB-231) were 

cultured without mature adipocytes in adipocyte growth media (Table 2.1). 

2.3.2 Harvesting breast cancer cells from transwell co-culture  

Following transwell co-culture, media was aspirated from the inserts containing breast 

cancer cells, inserts were carefully removed and placed in fresh 12 well plates with 1 mL per 

well of TrypLE dissociation reagent. A further 500 µL per insert of dissociation reagent was 

added and inserts were incubated at 37 °C for 5 minutes. Dissociated cells were collected and 

pelleted by centrifugation at 225 x g for 4 minutes. Breast cancer cells co-cultured with mature 

adipocytes from the same breast adipose donor were combined together prior to 

centrifugation. The pellets were washed by adding 1X ice cold PBS and centrifugation at 507 

x g for 4 minutes. After removing the supernatant the breast cancer cell pellets (co-culture 

and control) were either frozen at -80 °C until protein preparation for discovery mass 

spectrometry by filter aided sample preparation (FASP; Section 2.4.1), or immediately treated 

with RIPA buffer to lyse cells and extract protein for Western blotting (Section 2.8).  

 

2.4 Discovery mass spectrometry of breast cancer cells 

Discovery mass spectrometry analysis was completed at the Centre for Protein 

Research (Department of Biochemistry, University of Otago, NZ) under guidance from Dr 

Torsten Kleffmann.  

2.4.1 Filter Aided Sample Preparation (FASP) and enzymatic digestion 

Filter aided sample preparation (FASP) with in solution enzymatic digestion was used 

to prepare breast cancer cells for mass spectrometry. Cell pellets were lysed in a buffer 

including, 20 mM HEPES pH 7.5, 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM 

Triethylene glycol diamine tetraacetic acid (EGTA), 0.2 % sodium dodecyl sulfate (SDS), 5 

mM tris(2-carboxyethyl)phosphine (TCEP) and protease inhibitor (complete mini EDTA 

free; Roche, Basel, Switzerland), and sonicated for short intervals totalling a period of 2 

minutes. The insoluble fraction was pelleted by centrifugation at 16,000 x g for 60 minutes. 

For detergent depletion, the supernatant was loaded onto Amicon Ultra-0.5 mL Centrifugal 

Filter Units with a membrane molecular weight cut off of 3 kDa (Merck Millipore, Billerica, 
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MA, USA) at a 1:1 ratio with 0.2 M triethylammonium bicarbonate (TEAB) containing 8 M 

urea, and centrifuged for 15 minutes at 14,000 x g. Two repetitions of 400 µL 0.2 M TEAB 

were loaded and centrifuged at 14,000 x g for 15 minutes to exchange urea containing buffer. 

Proteins were then reduced using 10 mM triethylammonium bicarbonate (TCEP) for 30 

minutes at room temperature, followed by alkylation of reduced cysteines by incubation with 

30 mM iodacetamide (IAA) (Sigma Aldrich, St. Louis, MA, USA) for10 minutes at room 

temperature in the dark. Samples were buffer exchanged into 0.5 M TEAB by two consecutive 

centrifugation steps, and recovered in new collection tubes by inverting the filter and briefly 

spinning the sample. Total protein concentrations were normalised using a Bradford assay 

(Section 2.2.5.2) and proteins were digested overnight at 37 °C using 1 µg of mass 

spectrometry grade trypsin (Promega Corporation, Madison, WI, USA) that was reconstituted 

in Milli-Q water immediately prior to use. All chemicals used in this section are from Sigma-

Aldrich (St. Louis, MA, USA) unless otherwise stated.  

2.4.2 ITRAQ labelling and solid phase extraction (SPE) 

Peptides were labelled with isobaric tags for relative and absolute quantification 

(iTRAQ) labels from the iTRAQ® Reagents 8-plex Kit (Sciex, Framingham, MA USA), 

following manufacturer’s instructions. Peptides from MCF-7 and MDA-MB-231 breast 

cancer cells were analysed in separate 4-plex experiments. iTRAQ reagents were activated 

with 50 µL of room temperature isopropanol and combined with the peptide samples 

according to the labelling schedule in Table 2.2, and incubated at room temperature for 2 

hours. For each cell line, a test sample of pooled aliquots containing 2 µL of each labelled 

peptide digest, was dried using the Savant SpeedVac SC100 with a -100°C refrigerated vaper 

trap (Thermo Fisher Scientific, Waltham, MA, USA), reconstituted in 10 µL of 5% 

acetonitrile and 0.2% formic acid, and analysed by LC-coupled LTQ-Orbitrap tandem MS (as 

outlined in Section 2.4.4) to verify the individual reagents labelling efficiency. Samples were 

normalised according to the total iTRAQ labelling efficiency by dilution with Milli-Q water 

to quench the labelling reaction. Following normalisation, samples were pooled together, 

concentrated to an approximate 40 µL final volume using the Savant SpeedVac SC100, and 

Milli-Q water to a total of 1 mL was added to ensure a final isopropanol concentration ≤ 10%. 

The pooled sample was desalted by Sep-Pak C-18 (Waters, Milford, MA, USA) solid phase 

extraction (SPE) with 2% and 80% acetonitrile eluting the salts and peptides, respectively. 

Cartridges were washed three times with 1 mL of 80% acetonitrile, followed by equilibration 

three times with 1 mL of 2% acetonitrile before the sample was loaded. Following peptide 
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binding, cartridges were washed a further two times with 1 mL of 2% acetonitrile. The sample 

was eluted in 1 mL 80% acetonitrile, split into two 500 µL aliquots, and concentrated to an 

approximate 100 µL final volume using the Savant SpeedVac SC100.  

Table 2.2. Scheme of the isobaric tags for relative and absolute quantification (iTRAQ) 

labelling. 

Cell Line Sample iTRAQ Label 

MCF-7 Control 1 117 

MCF-7 Control 2 118 

MCF-7 Co-culture 1 119 

MCF-7 Co-culture 2 121 

MDA-MB-231 Control 1 114 

MDA-MB-231 Control 2 115 

MDA-MB-231 Co-culture 1 116 

MDA-MB-231 Co-culture 2 117 

 

2.4.3 OFFGEL Isoelectrical Focusing (OFFGEL IEF) 

Prior to mass spectrometry analysis, iTRAQ labelled peptides were pre-fractionated 

by OFFGEL isoelectric focusing (OFFGEL IEF) to reduce sample complexity and improve 

peptide identification. OFFGEL IEF was performed over the pH gradient (pH 3-10) into 12 

individual fractions, using the OFFGEL fractionator (Agilent Technologies, Santa Clara, CA, 

USA), following the manufacturer’s instructions. 1.44 mL of prepared 1.25X Peptide 

OFFGEL Stock Solution, including thiourea, dithiothreitol (DTT), glycerol and OFFGEL 

buffer, was combined with the peptide samples (approximately 100 µL) and volume adjusted 

to 1.8 mL with Milli-Q water. The impedance plethysmography (IPG) strip was set flat in the 

groove of the tray and covered in Peptide IPG Strip Rehydration Solution to swell the gel. 

Electrode pads submerged in Peptide IPG Strip Rehydration Solution were placed at either 

end of the IPG strip before 75 µL of prepared peptide OFFGEL sample was loaded into each 

of the 24 wells. The IPG strip was submerged in Cover Fluid, electrodes were locked in place 

at either end of the IPG strip and the fractionation was run at 4500 V until the current reduced 

from 50 µA to approximately 30 µA. Electrode pads were replaced and Cover Fluid reapplied 

after 24 hours. The sample was collected as 12 liquid fractions by pooling together every 

second fraction from the 24 well IPG strip. Each fraction was desalted following the C-18 

SPE protocol previously described in Section 2.4.2, evaporated to dryness using the Savant 

SpeedVac SC100, and reconstituted in 20 µL of mass spectrometry loading buffer (5% 

acetonitrile and 0.2% formic acid).  
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2.4.4 Mass spectrometry 

Each fraction was subjected to liquid chromatography coupled tandem mass 

spectrometry (LC-MS/MS) using the Ultimate 3000 RSLC-system fitted inline to the 

nanospray ionisation source of a LTQ-Orbitrap XL Mass Spectrometer (Thermo Fisher 

Scientific, Waltham, MA, USA). Separation of peptides was achieved by reversed phase high 

performance liquid chromatography (RP-HPLC) on an in-house fused silica emitter tip 

column (15 cm in length with 75 µm inner diameter) packed with C-18 beads (3 µm diameter, 

100 Å pore size), under a flow rate of 400 nL per minute. Technical triplicates were measured 

for each sample over three distinct RP-HPLC gradients established in three linear stages from 

5-25 %, 25-45 % and 45-99 % acetonitrile in aqueous 0.2 % formic acid. The timing of each 

gradient run differed across sample triplicates between 40, 65, and 90 minutes for stage one, 

9, 10, and 9 minutes for stage two, and 6, 5, and 6 minutes for the stage three. The column 

was washed and re-equilibrated between each sample. The orbitrap analyser recorded full 

precursor ion scans in a mass range of m/z (mass to charge ratio) 400-2000, and at a resolution 

of 60,000 at m/z 400. The highest four peptide signals for replicate one, and highest five 

peptide signals for replicate two and three, were selected for both collision induced 

dissociation (CID) at a normalised collision energy of 35% in the LTQ ion trap for protein 

identification. The same precursors selected for CID were selected again for high-energy 

collision induced dissociation (HCD) at a normalised collision energy of 55% for reporter ion 

detection and quantification in the Orbitrap at a resolution of 15,000 at m/z 400. For replicate 

one, dynamic exclusion allowed for two repeated MS/MS measurements of the same 

precursor ion before a 90 second exclusion duration, and for replicate two and three, dynamic 

exclusion allowed for two repeated measurements before a 150 second exclusion duration. 

2.4.5 Data analysis and calculation of relative expression 

For peptide identification, the raw spectra were handled under default peak processing 

settings by Proteome Discoverer 1.4 (Thermo Fisher Scientific, Waltham, MA, USA) by 

searching the lists of peaks against the human reference amino acid sequence with the Sequest 

HT (Thermo Fisher Scientific) search engine. Oxidised methionine, methylthiocysteine, 

deamidation of asparagine and glutamine, and iTRAQ labelling on lysines, tyrosines and the 

peptide N-terminus were selected as variable modifications. Using the Percolator node, the 

score threshold was altered to an estimated false discovery rate (FDR) of <1% to reduce false 

positive identifications. Only those proteins with two or more significant peptide hits were 

accepted for quantification. The iTRAQ quantification node was used to determine relative 
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protein abundances, based on iTRAQ reporter ion intensities (i.e. 116/114, 116/115, 117/114, 

and 117/115 for the MDA-MB-231 4-plex experiment), and the ratios were normalised 

against the control/control protein ratio median. Observed co-culture/control ratios were 

modelled on a log2 scale in order overcome the original lack of symmetry around 1.  

2.4.5.1 Analysis of differentially regulated proteins 

To be selected for further analysis, proteins had to reach the following criteria; have 

two or more unique peptide hits, two or more ratio counts, and match against the reviewed 

Swiss-Prot database. Proteins with control/control ratios greater than 1.3 were disregarded to 

ensure the list of remaining proteins were identified due to the effect of the co-culture with 

breast adipocytes.  

 

2.5 Bacterial Cell Culture and Plasmid Preparation 

2.5.1 Plasmids 

An agar stab of DH5α cells containing the pFRT/TO/HIS/FLAG/HA-PGK1 vector 

backbone (6765 bp; Figure 2.2), created by Markus Landthaler, was obtained from Addgene 

(Addgene plasmid # 38071; http://n2t.net/addgene:38071; RRID: Addgene_38071; 

Watertown, MA, USA). pFRT/TO/HIS/FLAG/HA-PGK1 encodes phosphoglycerate kinase 

1 (PGK1; NM_000291.4) tagged at the N-terminus with the HIS/FLAG/HA, under the control 

of a human cytomegalovirus (CMV) immediate early promoter. The PGK1 vector also 

contains the bla (β-lactamase) and aph(4)-Ia (aminoglycoside phosphotransferase from E. 

coli) genes conferring resistance to ampicillin (bacterial) and hygromycin (mammalian), 

respectively.  

A 1 µg/µL solution of pEGFP-n1 (GenBank accession: U55762; Figure 2.2), encoding 

GFPmut1, an enhanced green fluorescent protein under the control of a CMV promoter, and 

the neo gene allowing selection under kanamycin (bacterial) and G418 (mammalian), was 

kindly gifted by Associate Professor Gabi Dachs (Mackenzie Cancer Research Group, 

University of Otago Christchurch), and used as control for optimising and observing breast 

cancer cell transfection efficiency. The pEGFP-n1 plasmid was originally obtained from 

ClonTech (Palo Alto, CA, USA), but is now discontinued.  

The inducible DharmaconTM TRIPZTM Lentiviral vector (pTRIPZ; HorizonTM Inspired 

Cell Solutions, Cambridge, UK, Figure 2.2) was obtained from Dr Paul Pace (Centre for Free 

http://n2t.net/addgene:38071
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Radical Research, University of Otago Christchurch) as a 2 µg/µL solution with the 259 bp 

shRNAmir insertion site replaced with a ~30 bp non-sense DNA sequence. pTRIPZ tightly 

regulates the expression of a target gene in response to doxycycline treatment. In this study 

pTRIPZ was used as a backbone for the insertion of the HIS/FLAG/HA/PGK1 amplicon in an 

attempt to create breast cancer cell lines that stably overexpress the PGK1 enzyme.  
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Figure 2.2. Plasmid maps.  

A) pFRT/TO/HIS/FLAG/HA-PGK1 (Addgene plasmid #38071), B) pEGFP-n1 (discontinued 

ClonTech plasmid) and C) pTRIPZ (DharmaconTM Lentiviral vector). Unique cutting 

restriction enzymes are shown for pFRT/TO/HIS/FLAG/HA-PGK1 and pTRIPZ. The maps 

were downloaded and modified using SnapGene Version 4.3.6. 

A) 

B) 

C) 
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2.5.2 Bacterial streaking and inoculation  

All bacterial cell handling was performed under standard microbiological aseptic 

techniques. For plating, an agar stab of DH5α cells containing the pFRT/TO/HIS/FLAG/HA-

PGK1 vector backbone was streaked onto Luria-Bertani (LB) agar plates containing 100 

µg/mL ampicillin and incubated overnight at 37 °C. For inoculation, single LB agar colonies 

were transferred to inoculation tubes containing 5 mL of antibiotic LB and incubated 

overnight with sufficient aeration at 37 °C in an orbital shaker at 200 rpm. Negative controls 

were antibiotic LB without bacterial cells. For storage, 500 µL of the cell inoculation culture 

was combined with 500 µL of 50% sterile glycerol in a cryovial, and cells were frozen for 

long term storage at -80 °C. Streaking directly from frozen glycerol stock was performed 

when further plasmid was required.  

2.5.3 Plasmid extraction  

Plasmids were isolated from bacterial cells using the NucleoSpin® Plasmid kit 

(Macherey-Nagel, Bethleham, PA, USA) for mini preparations of 5 mL LB cultures, and the 

NucleoBond® Xtra Midi kit (Macherey-Nagel, Bethleham, PA, USA) for midi preparations 

of 100 mL LB cultures. Mini preparations, used for molecular cloning experiments (Section 

2.6), were performed on DH5α and Stbl3 bacterial cells, isolating the 

pFRT/TO/HIS/FLAG/HA-PGK1 and the pTRIPZ-pFRT/TO/HIS/FLAG/HA-PGK1 

plasmids, respectively. Midi preparations isolating the pFRT/TO/HIS/FLAG/HA-PGK1 

plasmid, used for transfecting breast cancer cell lines (Section 2.7), was performed on DH5α 

bacterial cells.  

To grow a 100 mL LB culture, 100 µL of the 5 mL LB culture was added to 100 mL 

of LB media containing the equivalent antibiotic, and incubated overnight at 37 °C in an 

orbital shaker at 200 rpm. Bacterial cells were pelleted by centrifugation at 5,000 x g for 10 

minutes. Kit protocols were followed for plasmid extraction from cell pellets. 

2.5.3.1 NucleoSpin® Plasmid Mini Preparations 

Cell pellets were resuspended in 250 µL of refrigerated Buffer A1 (containing RNase 

A), lysed with 250 µL of Buffer A2, and neutralised with 300 µL of Buffer A3. Precipitated 

protein, genomic DNA, and cell debris were pelleted by centrifugation for 5 minutes at 11,000 

x g, and the pellet discarded. The supernatant was spun through NucleoSpin® Plasmid column 

by centrifugation at 11,000 x g for 1 minute. Columns were washed with 2 x 600 µL of Buffer 

A4. Pure plasmid DNA was eluted under low ionic strength conditions using 2 x 15 µL of 5 
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mM tris hydrochloride (Buffer AE, pH 8.5), incubated on the column for 2 minutes at 70 °C 

before centrifugation at 11,000 x g for 1 minute. Plasmid DNA was stored at -20 °C until use.  

2.5.3.2 NucleoBond® Xtra Midi Preparations 

Cell pellets were resuspended in 8 mL of 4 °C RES Buffer (with RNase A) and lysed 

with 8 mL of LYS Buffer by gentle inversion of the tube and incubation at room temperature 

for 5 minutes. NucleoBond® Xtra Columns were equilibrated by wetting the entire filter with 

12 mL of EQU Buffer. Cell lysates were neutralised with 8 mL of NEU Buffer and filtered 

through the column by gravity flow. 5 mL of EQU Buffer was filtered by gravity flow to wash 

the filter and the filter was removed. 8 mL of Buffer WASH was filtered through the column 

by gravity flow. Pure plasmid DNA was eluted under high salt concentrations, and a shift of 

pH from 7.0 to 9.0, using 5 mL of pre-heated (50 °C) ELU Buffer filtered through the column 

by gravity flow. Plasmids were precipitated to remove excess salt contaminants by adding 3.5 

mL of room temperature isopropanol to the eluted plasmid DNA, vortexing thoroughly, and 

centrifuging at 5,000 x g for 20 minutes at room temperature. The pellet was washed using 2 

mL of room temperature 70% ethanol, centrifuged again at 5,000 x g for 5 minutes, air-dried 

at room temperature for 15 minutes and reconstituted in 100 µL of Milli-Q water. Plasmid 

DNA was stored at -20 °C until use.  

2.5.3.3 DNA quantification  

The yield and purity of the plasmid extractions was determined by measuring the 

A260/A280 absorbance ratio on a NanoDrop ND-8000 spectrophotometer (NanoDrop 

Technologies, Rockland, DE, USA).  

2.5.4 Transformation 

A strain of competent E.coli (Stbl3) used for transformation of foreign plasmids and 

ligation products was kindly gifted by Associate Professor Logan Walker (Mackenzie Cancer 

Research Group, University of Otago Christchurch). To maintain competence E.coli (Stbl3) 

cells were stored at -80 °C.  

Competent Stbl3 bacterial cells were thawed on wet ice for 25-30 minutes. 100 µL of 

the cells were mixed with 5 µL of ligation reaction product (generated in Section 2.6.3), gently 

mixed, and incubated on ice for 30 minutes. Samples were heat shocked for 1 minute at 42 

°C and immediately placed back on ice for 2 minutes. 1 mL of room temperature LB media 

was added to the transformed cells and incubated at 37 °C for 1 hour in an orbital shaker at 

200 rpm. Transformed cells were pelleted by centrifugation at 50 x g for 90 seconds, the 
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supernatant was decanted, and residual media was used for cell pellet resuspension. 100 µL 

of the cell suspension was spread evenly across pre-heated (37 °C) LB agar plates containing 

appropriate antibiotics. Plates were inverted and incubated overnight at 37 °C for colony 

formation. Negative control plates were Stbl3 cells after heat shock, with no additional DNA.  

 

2.6 Molecular cloning of PGK1 into the pTRIPZ vector 

2.6.1 Polymerase chain reaction (PCR) and sequencing 

PCR was used to amplify the full length PGK1 gene from the 

pFRT/TO/HIS/FLAG/HA-PGK1 plasmid isolated from DH5α bacterial cells.  

2.6.1.1 Primer Design 

Primers were designed using Primer3web version 4.1.0. The National Centre for 

Biotechnology Information (NCBI) Primer-BLAST tool was used to assess the specificity of 

the primer sets. Primers were synthesised by Integrated DNA Technologies (IDT; Singapore), 

reconstituted in Milli-Q water to a concentration of 100 µM, and stored at -20 °C until use. 

Primer pairs designed for the amplification of PGK1 from the 

pFRT/TO/HIS/FLAG/HA-PGK1 plasmid included homology with the plasmid sequence (17 

bp), XhoI or MluI restriction enzyme cut sites (6 bp), and a 5’ overhang (4 bp) (Table 2.3). 

An overhang with ≥ 4 bp was required for optimal restriction enzyme binding and cleavage.  

Primer pairs designed for the amplification of the PGK1 insert from the pTRIPZ-

HIS/FLAG/HA/PGK1 ligated plasmid included 17 bp homology with the plasmid sequence. 

Primers designed to sequence the pTRIPZ-HIS/FLAG/HA/PGK1 ligated plasmid 

over the insertion sites and result in sequences spanning the full length of the PGK1 gene, had 

complete homology to the binding sequence (17 bp) (Table 2.4).   
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Table 2.3. PCR primers. 

Name Sequence (5’ to 3’) Tm (°C) Amplicon Length (bp) 

PGK1.For GCAACTCGAGACCATGCACCACCACCA 70.73 
1403 

PGK1.Rev GCGCACGCGTGGGTCTAGATCCTAAAT 68.63 

TRIPZ.Seq* GGAAAGAATCAAGGAGG 48.5 
1758 TRIPZ.Seq.Rev* TCTTATGAGCAGCGGGC 56.0 

Tm: primer melting temperature; bp: base pairs. Bold: Restriction enzyme cut site sequence. Underline: Overhang sequence. 

*Primers were also used for sequencing.  

 

Table 2.4. Sequencing primers. 

Name Sequence (5’ to 3’) Tm (°C) 

TRIPZ.Seq* GGAAAGAATCAAGGAGG 48.5 

PGK1.Seq GACCTAATGTCCAAAGC 47.4 

TRIPZ.Seq.Rev* TCTTATGAGCAGCGGGC 56.0 

Tm: primer melting temperature. *Primers were also used as a primer pair for PCR.  

 

2.6.1.2 PCR and agarose gel visualisation 

PCR amplification was carried out using the Taq-Ti Heat-activated DNA Polymerase 

(Fisher Biotec, Wembley, WA, Australia) in a final reaction volume of 25 µL including, 2.5 

µL of 10X PCR buffer, 2 µL of 25 mM MgCl2, 1 µL of 10 mM deoxynucleotide triphosphates 

(dNTPs), 1 µL of each primer (PGK1.For and PGK1.Rev) at 10 µM, 0.25 µL of Taq DNA 

polymerase enzyme, 2 µL of 25 ng/µL plasmid DNA and 15.25 µL of Milli-Q water. For 

negative control reactions plasmid DNA was replaced with an equal volume of Milli-Q water. 

Thermal cycling conditions, performed by the Mastercycler pro PCR system (Eppendorf, 

Hamburg, Germany), included an initial denaturation step at 95°C for 2 minutes, followed by 

35 cycles of denaturation (95°C, 15 seconds), annealing (60°C, 15 seconds) and extension 

(72°C, 30 seconds). The size of the amplicon was determined according to the Kapa Universal 

DNA ladder (Kapa Biosystems, Boston, MA, USA) by combining 2.5 µL of PCR product 

with 1 µL of DNA loading dye. Products were loaded on to a 1.5% agarose gel (0.75 g 

agarose, 50 mL 1X TAE buffer and 1.5 µL of SYBRTM Safe DNA Gel stain (Life 

Technologies, Carlsbad, CA, USA)), and run for 45 minutes at 90 V. Visualisation of the gel 

was performed under UV light on the Alliance 4.7 imaging system (Uvitec Cambridge, 

Cambridge, UK). 

If the PCR was successful, the remaining PCR product was purified using the 

NucleoSpin® PCR and Gel Clean-up kit (Macherey-Nagel, Bethleham, PA, USA), following 

kit protocol. Briefly, reaction volumes were increased to 50 µL with Milli-Q water, mixed 
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with 50 µL of Buffer NTI and bound to the silica membrane of the NucleoSpin® PCR and Gel 

Clean-up Column by centrifugation at 11,000 x g for 30 seconds. For washing, 2 x 700 µL of 

Buffer NT3 were centrifuged at 11,000 x g for 30 seconds through the column, and DNA was 

eluted under low salt conditions in 2 x 15 µL 5 mM tris hydrochloride (Buffer NE, pH 8.5), 

incubated on the column for 5 minutes at 70 °C, and centrifuged at 11,000 x g for 1 minute. 

Purified DNA was immediately digested as described in Section 2.6.2. 

2.6.1.3 Sequencing 

To confirm successful ligation of the pTRIPZ plasmid vector with the 

HIS/FLAG/HA/PGK1 insert sequence the pTRIPZ-HIS/FLAG/HA/PGK1 plasmids were 

sequenced. pTRIPZ-HIS/FLAG/HA/PGK1 plasmid was purified from Stbl3 cultures using 

the NucleoSpin® Plasmid mini preparation spin columns (Macherey-Nagel, Bethleham, PA, 

USA) (Section 2.5.3.1). 5 µL sequencing reactions were prepared with 1 µL of primer 

(TRIPZ.Seq or PGK1.Seq) at 3.2 µM, 1 µL plasmid DNA (approximately 300 ng total DNA) 

and 3 µL Milli-Q water. Sequencing was completed by the Genetic Analysis Service 

(University of Otago, Dunedin) on the ABI 3730xl DNA Analyser. Sequences were assessed 

on SnapGene Viewer 4.3.6 for alignment with the predicted pTRIPZ-HIS/FLAG/HA/PGK1 

sequence. 

2.6.2 Restriction digestion 

PCR amplification of the HIS/FLAG/HA/PGK1 sequence was performed using a 

specifically designed primer set with XhoI and MluI restriction enzyme cut sites positioned 4 

bp from each 5’ end (Table 2.3). All XhoI and MluI restriction sites within the 

HIS/FLAG/HA/PGK1 PCR product and pTRIPZ plasmid were resolved using SnapGene 

Version 4.3.6 (Figure 2.2). The XhoI and MluI restriction enzymes were chosen because they 

do not cleave elsewhere within the HIS/FLAG/HA/PGK1 PCR product. Each enzyme cleaves 

the pTRIPZ plasmid at a single site in order to linearize the vector, and are compatible for 

simultaneous digestion.  

The XhoI enzyme (20,000 U/mL; New England BioLabs®, Ipswich, MA, USA) cuts 

at 5’- C|TCGAG -3’, and the MluI enzyme (10,000 U/mL; New England BioLabs®, Ipswich, 

MA, USA) cuts at 5’- A|CGCGT -3’. Digests were performed in 40 µL reaction volumes with 

NEBufferTM 3.1 (New England BioLabs®, Ipswich, MA, USA). Components of each reaction 

are listed in Table 2.5. DNA digests were incubated for 2 hours at 37 °C. To dephosphorylate 

the 5’ end of the plasmid preventing religation of the DNA, 2 µL of calf intestinal phosphatase 
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(CIP) and 3.5 µL of 10X CutSmart® Buffer (both from New England BioLabs®, Ipswich, MA, 

USA) were added directly into the pTRIPZ digest reaction, and incubated at 37 °C for 30 

minutes. Finally, the temperature was increased to 80 °C for 20 minutes to denature enzymes. 

 

Table 2.5. Reaction conditions for DNA digests with XhoI and MluI restriction enzymes. 

Reagents PCR Product (µL) pTRIPZ (µL) Uncut pTRIPZ (µL) 

Milli-Q Water 4 31 34 

10X NEBufferTM 3.1 4 4 4 

PCR Product 29 - - 

pTRIPZ DNA - 2 2 

XhoI Enzyme 1 1 - 

MluI Enzyme 2 2 - 

 

2.6.2.1 Gel Purification 

For visualisation and purification, DNA digests were mixed with 10% (v/v) DNA 

loading dye and separated on a 0.8% agarose gel (0.4 g agarose, 50 mL 1X TAE buffer, and 

1.5 µL of SYBRTM Safe DNA Gel stain) for 90 minutes at 70 V. Under UV illumination, 

DNA bands were excised with a scalpel blade. DNA was purified from the agarose gel using 

the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, Bethleham, PA, USA), 

following the recommended protocol. Briefly, the agarose gel was band weighted and 

dissolved by adding 200 µL of Buffer NTI per 100 mg of agarose and incubated 50 °C for 10 

minutes. The dissolved gel was bound to the silica membrane of the NucleoSpin® Gel and 

PCR Clean-up Column by centrifugation at 11,000 x g for 30 seconds. Contaminants were 

removed by centrifugation at 11,000 x g for 30 seconds with 2 x 700 µL of Buffer NT3 

washes. Pure DNA was eluted under low salt conditions in 2 x 15 µL 5 mM tris hydrochloride 

(Buffer NE, pH 8.5), incubated on the column for 5 minutes at 70 °C before a 1 minute 

centrifugation at 11,000 x g. DNA concentration and purity was determined using the 

NanoDrop ND-8000 spectrophotometer as described in Section 2.5.3.3. Purified DNA was 

stored at 4 °C until use.  

2.6.3 Ligation 

Ligation of the HIS/FLAG/HA/PGK1 insert containing the full length PGK1 gene with 

the linearised pTRIPz lentiviral vector was performed in 25 µL reaction volumes using T4 

DNA ligase (New England BioLabs®, Ipswich, MA, USA) and a 1:3 ratio of pTRIPZ (vector) 

to PGK1 (insert), calculated using the Promega Biomath Calculator, determining the molar 
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ratio of insert to vector (https://worldwide.promega.com/resources/tools/biomath/). Reactions 

contained 10X ligase buffer (with 10 mM ATP; New England BioLabs®, Ipswich, MA, USA), 

T4 DNA ligase enzyme, pTRIPz plasmid (~200 ng total DNA), HIS/FLAG/HA/PGK1 

amplicon (~65 ng total DNA), and Milli-Q water. Negative control reactions replaced 

HIS/FLAG/HA/PGK1 DNA with equivalent volume of Milli-Q water. An uncut (circular) 

pTRIPZ vector reaction, excluding HIS/FLAG/HA/PGK1 DNA, was performed as a positive 

control for transformation. Ligation reactions were gently mixed, spun and incubated 

overnight at 16 °C. Reactions were stored at 4 °C until transformation into competent Stbl3 

(E.coli) bacterial cells. 

 

2.7 Transfection of human breast cancer cells 

Oestrogen receptor positive MCF-7 and oestrogen receptor negative MDA-MB-231 

breast cancer cells were transfected with full length PGK1 to characterise the effect of PGK1 

overexpression on chemotherapy response and lactate production.  

2.7.1 Verification of plasmid DNA  

The identity and purity of the pFRT/TO/HIS/FLAG/HA-PGK1 and pEGFP-n1 

plasmids were validated by separation on a 1% agarose gel (0.5 g agarose, 50 mL 1X TAE 

buffer, and 1.5 µL of SYBRTM Safe DNA gel stain) according to the HighRanger Plus 100 bp 

DNA Ladder (Norgen Biotek, Thorold, ON, Canada). 8 µL of 10 ng/µL plasmid DNA was 

mixed with 1 µL of DNA loading dye and run for 45 minutes at 90 V. Visualisation of the gel 

was performed under UV light on the Alliance 4.7 imaging system (Uvitec Cambridge, 

Cambridge, UK). 

2.7.2 Transient transfection of MCF-7 and MDA-MB-231 cells 

To assess transfection efficiency, MCF-7 and MDA-MB-231 breast cancer cells were 

transfected with the pEGFP-n1 plasmid (containing the gene for enhanced green fluorescent 

protein (GFP); Figure 2.2B), using the jetPRIME® (Polyplus-transfection, Illkirch, France) 

reagent. MCF-7 and MDA-MB-231 cells were seeded into 6-well plates at a density of 1.6 x 

105 cells/well and grown until they reached 60-70% confluence. Media was replaced 

(GlutaMAX™ DMEM with 10% FBS, without A/A), and a 1:2 ratio of plasmid DNA (2 µg) 

to reagent (4 µL) was added to the cells. After 6 hours, cells were washed with GlutaMAX™ 

DMEM with 10% FBS, without A/A. Transfection efficiency was determined 54 hours post 

https://worldwide.promega.com/resources/tools/biomath/


 

62 
 

transfection using fluorescence-activated cell sorting (FACS; Cytomics FC500 MPL Flow 

Cytomter, Beckham Coulter, Brea, CA, USA; data analysis with the CXP software) and 

visualisation with live-cell microscopy (Olympus IX-81, Tokyo, Japan) to quantify cells 

expressing EGFP.  

For transfection experiments, MCF-7 and MDA-MB-231 breast cancer cells were 

seeded in 6 well plates at 2.4 x 105 cells/well for PGK1 transfection, 2 x 105 cells/well for 

GFP transfection, and 1.6 x 105 cells/well for the transfection reagent only and cell only 

controls. Media was replaced 24 hours after seeding, and MCF-7 and MDA-MB-231 breast 

cancer cells were transfected with the pFRT/TO/HIS/FLAG/HA-PGK1 plasmid at a ratio of 

1:2 plasmid (2 µg) to jetPRIME® reagent (4 µL). DNA was excluded from negative controls, 

and the pEGFP-n1 plasmid at a ratio of 1:2 plasmid (2 µg) to jetPRIME® reagent (4 µL) was 

used as a vehicle control. Transfection media was replaced with GlutaMAX™ DMEM with 

10% FBS after 6 hours. The expression of PGK1 in the cells after 54 hours was assessed using 

Western blot (Section 2.8). 

If the transfection was successful (EGFP expression visualised by live-cell 

microscopy), the effect of PGK1 overexpression was assessed using the experimental schema 

depicted in Figure 2.3, and the assays described below.  
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Figure 2.3. Experimental schema for transfection of MCF-7 and MDA-MB-231 breast 

cancer cells with pFRT/TO/HIS/FLAG/HA-PGK1.  

A) Protocol for lactate production and live cell number analysis, and B) analysis of cell 

proliferation, PGK1 overexpression, and cell viability in response to breast cancer 

chemotherapies. 

 

2.7.2.1 Lactate quantification 

The effect of PGK1 protein overexpression on lactate production by breast cancer cells 

after 48 hours was measured using the colourimetric L-Lactate Assay Kit (Abcam, 

Cambridge, MA, USA), following manufacturers guidelines. Sample preparation was 

performed on ice. Briefly, conditioned media was transferred into microtubes and cells were 

washed with 1 mL of cold PBS. 100 µL of Lactate Assay Buffer was added per well and cells 

were lysed and harvested into microtubes by scraping. Conditioned media and lysates were 

centrifuged at 11,000 x g for 5 minutes at 4 °C, and the supernatant collected into pre-cooled 

microtubes. Cell lysates, and 150 µL of conditioned media samples, was deproteinised with 

the Deproteinizing Sample Preparation Kit- TCA (Abcam, Cambridge, MA, USA), following 

manufacturer’s instructions, to remove lactate dehydrogenase and limit the degradation of 

lactate. In 96 well plates, total reaction volumes were 100 µL per well comprising, 50 µL of 

standard, lysate or conditioned media, 46 µL of Lactate Assay Buffer, 2 µL of Lactate 
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Substrate Mix and 2 µL of Lactate Enzyme Mix. Lactate Enzyme Mix was replaced with 

Lactate Assay Buffer for background control. Sample controls included deproteinised Lactate 

Assay Buffer and media (GlutaMAX™ DMEM with 10% FBS) cultured without cells. 

Reactions were mixed and incubated at room temperature for 30 minutes. Absorbance was 

measured at 450 nm on the Multiskan GO plate reader (Thermo Fisher Scientific, Rockford, 

IL, USA). L-lactate concentration was calculated by extrapolation from the standard curve 

(ranging from 0 µM to 2000 µM using the L-Lactate Standard supplied with the kit) and 

normalisation to live cell number. Live cell number was determined using the Countess™ 

Automated Cell Counter (Section 2.2.2).  

2.7.2.2 Chemotherapy response  

Breast cancer cells transfected with PGK1 in 6 well plates, were moved to 96 well 

plates 24 hours after transfection (Figure 2.3). Cells were collected in 500 µL of TrypLE 

dissociation reagent, centrifuged at 610 x g for 4 minutes, and resuspended in 200 µL of 

GlutaMAX™ DMEM with 10% FBS for counting (Section 2.2.2). Cells were plated in 96 

well plates (100 µL/well) at 1.1 x 104 cells/well for MCF-7 and 1 x 104 cells/well for MDA-

MB-231, and incubated for 6 hours until cell adhesion occurred. Remaining cells were plated 

back into 6 well plates for protein extraction and validation of PGK1 transfection using 

Western blot (Section 2.8; Figure 2.3).  

Cell proliferation and viability assays were performed in parallel. For cell 

proliferation, the 96 well plate was supplemented with another 100 µL per well of 

GlutaMAX™ DMEM with 10% FBS (no A/A), and incubated at 37 °C for 24 hours until 

sulforhodamine B (SRB) analysis (Section 2.7.2.2.1). For cell viability, the 96 well plate was 

treated for 24 hours with previously determined IC50 concentrations of paclitaxel (SANDOZ, 

Princeton, NJ, USA) and 4-hydroperoxycyclophosphamide (Cayman Chemical, Ann Arbor, 

MI, USA) (Table 2.6). The paclitaxel used was a clinical grade paclitaxel solubilised in 

ethanol to 6 mg/mL, and stored at room temperature. 4-hydroperoxycyclophosphamide was 

a crystalline solid that was stored at -80 °C until solubilisation with dimethyl sulfoxide 

(DMSO) prior to use. Paclitaxel (in ethanol) and 4-hydroperoxycyclophosphamide (in 

DMSO) were diluted in GlutaMAX™ DMEM with 10% FBS (no A/A) for use in viability 

assays. 4-hydroperoxycyclophosphamide is spontaneously converted in aqueous solution to 

4-hydroxycyclophosphamide, the latter of which is believed to be the active metabolite of 

cyclophosphamide in vivo. Cell viability was measured using an 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Section 2.7.2.2.2).  
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Table 2.6. IC50 concentrations of breast cancer chemotherapies. IC50 concentrations of 

paclitaxel and 4-hydroperoxycyclophosphamide were used to treat control and transfected 

MCF-7 and MDA-MB-231 human breast cancer cells. 
 Paclitaxel 4-hydroperoxycyclophosphamide 

MCF-7 62 µM 25 µM 

MDA-MB-231 20 µM 23 µM 

 

2.7.2.2.1 SRB 

The sulforhodamine B (SRB) assay is a colourimetric assay which can assess cell 

proliferation based on the binding of SRB to cell proteins allowing measurements of protein 

content 324. Breast cancer cell proliferation was measured in 96 well plates using the 

Sulforhodamine B Cell Cytotoxicty Assay Kit (Abcam, Cambridge, MA, USA), following kit 

protocol. Briefly, cells were fixed adding 50 µL per well of Fixative Solution for 1 hour at 4 

°C. After fixation, cells were gently washed three times with Milli-Q water, dried at 50 °C for 

30 minutes, and stained with 50 µL per well of SRB Solution for 15 minutes in the dark at 

room temperature. SRB Solution was removed by washing four times 1X Washing Solution. 

Cells were dried at 50 °C for 30 minutes and solubilised with 200 µL of 1X Solubilisation 

Solution per well. Absorbance was measured at 565 nm using the Multiskan GO plate reader 

(Thermo Fisher Scientific, Rockford, IL, USA). Each assay was performed with blank wells 

containing medium without cells, for background correction.  

2.7.2.2.2 MTT 

The conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) to purple formazan crystals by mitochondrial dehydrogenases is a colourimetric assay 

used to quantify cell viability as a function of mitochondrial activity in metabolically active 

cells 325. The effect of PGK1 transfection on the viability of chemotherapy treated breast 

cancer cells was measured in 96 well plates using an MTT assay. MTT was reconstituted in 

1X PBS at 5 mg/mL, sterile filtered through a Millex-GV 0.22 µM PVDF syringe filter unit, 

and diluted to 0.5 mg/mL in RPMI 1640 Medium without phenol red (Life Technologies, 

Carlsbad, CA, USA). Media was aspirated, and the cells were incubated with 100 µL of 0.5 

mg/mL MTT per well for 3 hours at 37 °C. Formazan crystals were dissolved by adding 100 

µL of solubilisation solution (89% isopropanol, 10% Triton-X and 1% hydrochloric acid 

(1M)) per well and pipetting up and down. Absorbance was measured at 540 and 690 nm on 
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the Multiskan GO plate reader. Each assay was performed with blank wells containing 

medium without cells, for background correction.  

2.8 Western blotting 

2.8.1 SDS-PAGE 

Protein extracted from cell lysates was prepared for sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions; including final 

concentrations of 100 mM dithiothreitol (DTT; Sigma-Aldrich, St. Louis, MA, USA), 1X 

BlotTM LDS sample buffer (Life Technologies, Carlsbad, CA, USA), and Milli-Q water. 

Proteins were denatured by heating at 70 °C for 10 minutes. 5 µg of total protein was loaded 

per well.  

Depending on the molecular weight (MW) of the target protein, proteins were either 

resolved on BoltTM 4-12% Bis-Tris Plus or 12% Bis-Tris Plus SDS gels for 75 minutes at 125 

V in a Bolt Mini Gel Tank using BlotTM 3-(N-morpholino) propanesulfonic acid (MOPS) and 

2-(N-morpholino) ethanesulfonic acid (MES) SDS Running Buffers, respectively (all from 

Life Technologies, Carlsbad, CA, USA). Molecular mass of proteins was estimated using 4 

µL of the SeeBlueTM Plus2 Pre-stained Protein Standard (Life Technologies, Carlsbad, CA, 

USA).  

2.8.2 Transfer 

0.45 µm polyvinylidene difluoride (PVDF) membranes were activated in 100% 

methanol for 30 seconds and equilibrated in Milli-Q water prior to use. Separated proteins 

were transferred to the activated PVDF membranes using the Bolt Mini Blot Module in 1X 

BoltTM Transfer Buffer (Life Technologies, Carlsbad, CA, USA) with 10% methanol for 60 

minutes at 20 V. Following transfer, membranes were blocked with 5% skimmed milk powder 

in Tris-buffered saline with 0.1% Tween®20 (TBST) for 60 minutes at room temperature.  

2.8.3 Antibodies 

PVDF membranes were incubated with primary antibodies in 5% skimmed milk in 

TBST at 4 °C overnight. Primary antibodies were optimised to the concentrations specified 

in Table 2.7.  
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Table 2.7. Antibodies for Western blotting.  
Primary 

Antibody 

Predicted 

band (kDa) 
Source, dilution Company (product code) 

FLAG 48 Monoclonal mouse, 1/1000 
Sigma-Aldrich, St Louis, MO, USA 

(F1804) 

NDRG1 43 Monoclonal rabbit, 1/5000 
Abcam, Cambridge, MA, USA 

(ab124689) 

PGK1 44 Polyclonal rabbit, 1/1000 
Abcam, Cambridge, MA, USA 

(ab38007) 

TFF1 14 Monoclonal rabbit, 1/1000 
Abcam, Cambridge, MA, USA 

(ab92377) 

β-actin 42 Monoclonal mouse, 1/10000 
Sigma-Aldrich, St Louis, MO, USA 

(A5316) 

kDa: kilodaltons 

 

Membranes blotted for NDRG1, PGK1 and FLAG were stripped with mild stripping 

buffer (1.5 g glycine, 1 mL 10% SDS and 1 mL Tween20; made up to 100 μL and adjusted 

to pH 2.2), washed 3 times with TBST for 5 minutes each, blocked with 5% skimmed milk 

powder in TBST for 60 minutes at room temperature, and re-probed for β-actin. Membranes 

probed for TFF1 were cut to separate the TFF1 and β-actin bands before probing with primary 

antibodies. 

Membranes were washed with TBST 3 times for 5 minutes each and incubated for 60 

minutes at room temperature with suitable horseradish peroxidase (HRP) conjugated 

secondary antibodies diluted in TBST. Secondary antibodies included polyclonal goat anti-

rabbit immunoglobulins/HRP (Dako, Glostrup, Copenhagen, Denmark) at 1/5000 for 

NDRG1, PGK1 and TFF1, and goat anti-mouse polyclonal immunoglobulins/HRP (Dako, 

Glostrup, Copenhagen, Denmark) at 1/5000 for FLAG and β-actin. Membranes were washed 

with TBST 3 times for 5 minutes each, and incubated with Amersham ECL primer Western 

blotting detection reagents (GE Healthcare, Little Chalfont, Buckinghamshire, UK ) for 3 

minutes at room temperature before being imaged by chemiluminesence on the Alliance 4.7 

(Uvitec Cambridge, Cambridge, UK). The same samples were measured on multiple 

membranes from different SDS-PAGE gels (n= 3) to ensure reproducibility of the Western 

blot assay.  

2.8.4 Relative expression 

Membranes were quantified using ImageJ software (Version 1.49). The NDRG1, 

PGK1, and TFF1 densitometry values were compared to their respective β-actin bands to 

calculate relative protein expression values. A control sample was run on each gel to 

normalise relative protein expression across repeated gels.  
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2.9 Bioinformatics 

2.9.1 Overrepresented cellular components and pathways in breast 

cancer cell proteomes 

The iTRAQ ratios, generated in Section 2.4, were averaged and log transformed for 

each identified protein. Two different lists of proteins for each cell line were uploaded into 

the protein annotation through evolutionary relationship (PANTHER) classification system 

(Version 12.0; http://www.pantherdb.org/) for cellular component and pathway analysis using 

gene list analysis 326,327. The first list was analysed for overrepresented cellular components 

(PANTHER GO-Slim cellular components) 328, and included all the proteins that were 

identified by proteomic profiling in MCF-7 (n= 1126) and MDA-MB-231 (n= 1218) breast 

cancer cells. The second list was analysed for over-represented PANTHER pathways 329, and 

included only those proteins that had an average fold change ≥ 1.1 compared to controls, to 

indicate potentially meaningful pathways enriched in CAA-MCF-7 (n= 576) and CAA-MDA-

MB-231 (n= 554). Statistical over-representation testing by PANTHER was performed using 

the human genome as the reference list, and the binomial statistic p-values were corrected for 

multiple testing using the Bonferroni correction method. 

2.9.2 In vitro PGK1 expression in breast cancer cell lines 

PGK1 expression data (RNAseq) was retrieved from the Broad Institutes’ Cancer Cell 

Line Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle) for 57 different breast 

cancer cell lines and was utilised to assess the association between PGK1 expression and 

breast cancer molecular subtypes. Transcriptional characteristics of 48 breast cancer cell lines, 

including the presence or absence of the oestrogen receptor (ER), progesterone receptor (PR) 

and ERBB2 overexpression (human epidermal growth factor receptor 2; HER2) status were 

used to categorise the breast cancer cell lines into molecular subtypes, including luminal (ER+ 

and/or PR+, HER2+/-), HER2 enriched (ER-, PR-, HER2+) and triple negative (ER-, PR-, 

HER2-), and the difference in PGK1 mRNA levels was compared between the breast cancer 

cell line subtypes.  

Furthermore, utilising the Broad Institute’s Cancer Dependency Map (DepMap; 

https://depmap.org/portal/depmap/), the CCLE gene expression data was used to correlate 

PGK1 expression in different breast cancer cell lines with sensitivity (AUC) to paclitaxel and 

cyclophosphamide (breast cancer chemotherapies).  

http://www.pantherdb.org/
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2.9.3 In vivo PGK1 expression in breast tumours 

Data from The Cancer Genome Atlas (TCGA)104 and Molecular Taxonomy of Breast 

Cancer International Consortium (METABRIC)330 retrieved from cBioPortal 

(http://www.cbioportal.org/) was utilised to assess gene expression of PGK1 and its 

association with clinicopathological features, including ER, PR and ERBB2 (HER2) 

expression status, of the 825 and 2,000 breast tumours in these cohorts, respectively. The 

difference in PGK1 mRNA expression (microarray z-scores) was compared between the 

breast tumours based on presence or absence of the clinical biomarkers ER, PR and HER2. In 

addition, the METABRIC study has reported molecular subtypes of the breast tumours 

including luminal A, luminal B, HER2 enriched, basal, and claudin-low, and therefore, 

difference in PGK1 gene expression between different subtypes was evaluated. Gene 

expression data for hypoxia inducible factor 1 (HIF-1) and solute carrier family 16 member 

3 (SLC16A3; protein name monocarboxylate transport 4 [MCT4]) (microarray z-scores) were 

also retrieved from METABRIC and correlated with PGK1 expression. TCGA and 

METABRIC do not have BMI data associated with the patient tumours, and therefore 

differences in PGK1 (mRNA or protein) expression between obese and normal weight were 

not assessed. 

 

2.10 Patient study 

2.10.1 Ethics and participant recruitment 

Ethical approval for the ‘Clinical Protocol’ (Appendix B) and ‘Participant Information 

Sheet and Consent Form’ (PIS/CF; Appendix C) was obtained on 2/9/2016 through the Health 

and Disability Ethics Committees (HDEC) Full Review Pathway by the Central Committee 

(reference number 16/CEN/116/AM01) under the study title ‘An Exploratory Study to Assess 

the Impact of Obesity-Related Inflammatory Markers on Breast Cancer Drug Metabolism in 

Response to Regular Moderate Exercise during Chemotherapy’. Locality was approved for 

Christchurch Hospital by the CDHB Research Office, and recruitment began on 1/3/2017. A 

post-approval amendment to the original ‘Clinical Protocol’ to recruit both neoadjuvant and 

adjuvant breast cancer patients receiving chemotherapy at Christchurch Hospital was 

accepted on 7/6/2017. On 1/3/18 an application to extend recruitment until 31/12/2018 was 

submitted and approved. The study was closed to recruitment on 25/12/18. All patients gave 

http://www.cbioportal.org/
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informed written consent for their participation in the study, the use of their samples for 

research purposes, and access to their medical records.  

Māori consultation was completed with Karen Keelan, the Māori Research Advisor 

of the University of Otago Christchurch. This study is of particular interest and potential 

benefit to Māori.  

2.10.2 Participant selection  

Full inclusion and exclusion criteria are listed in Appendix B, and the following is a 

brief description. Eligible participants were women aged 18 or over, with clinically defined 

stage II or III breast cancer receiving neoadjuvant or adjuvant combined Adriamycin 

(doxorubicin)-cyclophosphamide (AC) and paclitaxel chemotherapy as treatment. Further 

inclusion criteria were: ability and willingness to take oral medications; willingness to wear 

a FitBit One® device periodically throughout chemotherapy; adequate end-organ function 

(see Appendix B; ‘Clinical Protocol’ Inclusion Criteria); no known sensitivity or 

contraindications to any of the cocktail components. Relevant exclusion criteria included: 

urinary incontinence or current use of a urinary catheter; impaired mobility due to disability 

or medical illness; known cirrhosis of the liver or active infection with viral hepatitis, 

currently taking medications known to be strong inhibitors or inducers of the cytochrome 

P450 (CYP) enzymes being studied (see Appendix B; ‘Clinical Protocol’ Exclusion Criteria). 

Weak CYP inducers or inhibitors were accepted (see Appendix B). Patients matching the 

above criteria that were not already enrolled in a conflicting trial, were identified and 

approached by CDHB medical oncologists, and were required to understand and give 

informed written consent for their participation in the study.  

2.10.3 Basic study design 

The design of the study is comprehensively outlined in the ‘Clinical Protocol’ 

available as Appendix B, and depicted here in Figure 2.4. In brief, a medical oncologist 

presented the study and informed consent document during an initial appointment, and then 

performed informed consent following the participant’s chemotherapy education session, 

which typically was within 2 weeks of the initial appointment with no additional delay to 

treatment initiation. Participants received planned standard of care chemotherapy including 

four 21-day cycles of AC, followed by administration of paclitaxel for twelve 7-day cycles 

(weekly). All chemotherapy was administered intravenously as per standard-of-care, with 
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standard pre-medication, and adjunctive medications as clinically indicated. Dose delays, 

reductions, and modifications were made as per routine care indicators.  

In the 2 weeks leading up to cycle 1 day 1 of AC, participants had body morphometry 

measured (including body mass index (BMI), waist to hip ratio (WHR) and body fat 

percentage using bioelectrical impedance analysis (BIA); Section 2.10.4)), and were given 

the probe drug cocktail with subsequent pharmacokinetic sampling of blood (4 hour post-

administration) and urine (0-8 hour post-administration collection) (Section 2.10.8). FitBit 

One® devices were worn (unless specified in a device removal journal) following cycle 1 day 

1 AC for 21 days, dose 1 day 1 of paclitaxel for 7 days, and dose 6 day 1 of paclitaxel for 7 

days. Blood samples were taken at the end of each FitBit cycle, and were processed to collect 

serum (Section 2.10.6) for inflammatory cytokine analysis (Section 2.10.7). Following dose 

6 day 7 of paclitaxel, participants had body morphometry re-measured and were given the 

second probe drug cocktail with subsequent blood (4 hour) and urine (0-8 hour) sample 

collection.  

 

 

Figure 2.4. Schedule for the patient study.  

Neoadjuvant and adjuvant chemotherapy patients are outlined by separate timelines (purple 

horizontal arrows). Body morphometry and cocktail administration are indicated by light grey 

vertical arrows, and physical activity monitoring periods are shown by dark grey vertical 

arrows. Blood and urine sampling are represented by vertical black and white arrows, 

respectively. 

 

2.10.4 Body morphometry measurements 

Body morphometry measurements were recorded by the study nurse prior to the 

participants starting chemotherapy, and the same measurements were repeated following dose 
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6 of weekly paclitaxel, as outline in Figure 2.4. Measurements included height (cm), weight 

(kg), waist and hip circumference (cm), and fat, muscle and bone composition (%) using the 

Tanita Body Composition Analyser (Wedderburn, Hornby, Christchurch, NZ). Intra-patient 

differences were calculated by comparison to pre-chemotherapy measurements. Body mass 

index (BMI) was calculated from height and weight, by dividing a participant’s weight in 

kilograms by their height in meters squared (BMI= kg/m2). Waist to hip ratio (WHR) was 

calculated as the waist circumference divided by the hip circumference.  

2.10.5 Physical activity monitoring 

Participants wore FitBit One® devices for a total of 35 days during their chemotherapy 

treatment, including 21 days following cycle 1 day 1of AC, and 7 days following paclitaxel 

dose 1 and dose 6. Participants were required to record a daily journal documenting when 

they removed the FitBit One® device, for how long the device was removed and what activity 

was performed during this time. Each time the participant returned to clinic after wearing the 

FitBit One®, physical activity data, including daily step count was retrieved from the device.  

2.10.6 Patient blood samples 

All blood samples were collected from study participants by Christchurch Oncology 

Research Unit (CORU) research nurses (CDHB staff) in the oncology day ward. Blood was 

collected in red top plain tubes (BD CAT coagulation) for serum, and lavender top EDTA 

tubes (lavender top; K2E 7.2 mg) for plasma. Lavender top EDTA tubes were centrifuged 

within 30 minutes of collection, and red top plain tubes were incubated at room temperature 

for 30 minutes before centrifugation; centrifugation was 1000 x g for 15 minutes at 4 °C. 

Supernatant was collected in cyrovials and stored at -80 °C until use.  

Plasma and serum purity was validated using serum protein electrophoresis on all 

collected samples prior to use. Serum protein electrophoresis is a common diagnostic 

procedure and was performed by Catherine Rollo (and team) at the Protein Chemistry 

Laboratory (Canterbury Health Laboratories). The complete absence of a fibrinogen band 

between the beta and gamma globulins indicates a pure serum sample (Supplementary Figure 

A.2).  

2.10.7 Serum concentrations of inflammatory cytokines 

2.10.7.1 Human cytokine array 

The relative expression of 105 human cytokines were measured in patient serum taken 

at baseline and following paclitaxel dose 6, using the Human XL Cytokine Array Kit (R&D 
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Systems, Minneapolis, MN, USA) following manufacturer’s instructions. Briefly, 4 x 25 µL 

aliquots of serum were pooled together from non-obese patients, and obese patients, taken at 

baseline and again following dose 6 of paclitaxel, yielding 4 x 100 µL samples (Samples 1-4; 

Table 2.8). Nitrocellulose membranes with duplicate antibody spots were blocked with 2 mL 

of Array Buffer 6 for 1 hour at room temperature. Samples were diluted in 1400 µL of Array 

Buffer 6 and incubated with membranes at 4°C with gentle rocking overnight. Membranes 

were washed with 1X Wash Buffer 3 times for 10 minutes each and incubated individually 

with 1500 µL of Detection Antibody Cocktail (30 µL of Detection Antibody diluted in 1470 

µL of 1X Array Buffer 4/6) for 1 hour at room temperature. Using 1X Wash Buffer as before, 

the membranes were washed and incubated with 2 mL of 1X Streptavidin-HRP for 30 minutes 

at room temperature with gentle shaking. Membranes were washed again with 1X Wash 

Buffer 3 times for 10 minutes each and incubated with 1 mL Chemi Reagent Mix (1:1 volume 

of Chemi Reagents 1 and 2) for 1 minute at room temperature protected from light. The 

membranes were imaged by chemiluminesence on the Alliance 4.7 (Uvitec Cambridge, 

Cambridge, UK).  

2.10.7.1.1 Relative expression  

Membranes were quantified using ImageJ software. The densitometry values on each 

membrane were averaged across duplicate spots and compared to the average of the negative 

control spots to remove background. Positive control spots on each membrane were used to 

normalise across membranes. The relative difference in cytokine expression was determined 

by comparing signals across membranes.  
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Table 2.8. Serum samples pooled together for their use in human cytokine array. 

Sample Patient BMI Collection time Obesity status 

1 

4 20.7 Baseline Non-obese 

9 22.2 Baseline Non-obese 

11 25.5 Baseline Non-obese 

5 26.6 Baseline Non-obese 

2 

2 33.1 Baseline Obese 

6 34 Baseline Obese 

1 34.1 Baseline Obese 

7 39.4 Baseline Obese 

3 

4 21.8 Paclitaxel dose 6 Non-obese 

9 22.1 Paclitaxel dose 6 Non-obese 

11 26.4 Paclitaxel dose 6 Non-obese 

10 27.9 Paclitaxel dose 6 Non-obese 

4 

2 33.6 Paclitaxel dose 6 Obese 

5 34 Paclitaxel dose 6 Obese 

1 34.1 Paclitaxel dose 6 Obese 

6 36.5 Paclitaxel dose 6 Obese 

 

2.10.7.2 Enzyme-linked immunosorbent assay (ELISA) 

Cytokine concentrations in patient serum were measured using Quantikine® ELISA 

kits for human angiopoietin-2 (ANG2), B-cell activating factor (BAFF), C-reactive protein 

(CRP), growth differentiation factor 15 (GDF-15), interleukin 1β (IL-1β), interleukin 4 (IL-

4), interleukin 10 (IL-10), monocyte chemoattractant protein 1 (MCP-1) and tumour necrosis 

factor-α (TNF-α) (R&D Systems, Minneapolis, MN, USA), according to manufacturer’s 

instructions. Specifically, 96 well plates pre-coated with appropriate antibodies were 

incubated with standards (in duplicate) and samples; as indicated by serum volume and 

incubation time in Table 2.9. Incubations were at room temperature with gentle shaking, and 

if required, serum was diluted in Calibrator Diluent provided with the kit (Table 2.9). Wells 

were then washed 4 times with 1X Wash Buffer. 200 µL of the conjugate antibody was added 

per well and incubated at room temperature for 1 or 2 hours with gentle shaking (Table 2.9). 

Next, plates were washed 4 times with 1X Wash Buffer. Colour Reagents A and B were mixed 

at a 1:1 ratio, and 200 µL of the resulting Substrate Solution was added per well. Plates were 

incubated at room temperature for 20 or 30 minutes protected from light (Table 2.9). 50 µL 

of Stop Solution was added per well, and absorbance was measured on the Multiskan GO 

plate reader at 450 nm and 570 nm to assess the colour change from blue to yellow. 

Absorbance values at 450 nm were subtracted from background absorbance at 570 nm, and 

cytokine concentrations were extrapolated from the standard curve using the protein standard 

supplied with each kit.  
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Table 2.9. Enzyme-linked immunosorbent assay (ELISA) volumes, dilutions and 

incubation times. Quantikine® ELISA kits were used to measure the concentrations of 

different human cytokines in patient serum samples. 

Cytokine 

Standard 

and Serum 

Volumes 

(µL/well) 

Serum 

Dilution 

Serum 

Incubation 

(hours) 

Conjugate 

Antibody 

Incubation (hours) 

Substrate Solution 

Incubation 

(minutes) 

ANG2 50 1:5 2 2 30 

BAFF 50 1:2 3 1 30 

CRP 50 1:100 2 2 30 

GDF-15 50 1:4 2 1 30 

IL-1β 200 - 2 2 20 

IL-4 50 - 2 2 20 

IL-10 200 - 2 2 30 

MCP-1 200 1:2 2 2 30 

TNF-α 50 - 2 2 30 

 

2.10.8 Liver enzyme activity 

2.10.8.1 Cocktail administration 

This study utilised a modified ‘Inje’ probe drug cocktail, adapted from Ryu et al. 

(2007)290, to assess the in vivo function of cytochrome P450 (CYP) liver enzymes. The probe 

drug cocktail was comprised of the following medications and doses, assessing the following 

CYPs, respectively: CYP1A2, 100 mg caffeine tablet (Key Pharmaceuticals, Pty Ltd, Port 

Macquarie, NSW, Australia; Batch: P60064); CYP2C9, 25 mg losartan tablet (Actavis, NJ, 

USA; Batch: GXM016002); CYP2C19, 20 mg omeprazole tablet (Mylan, PA, USA; Batch: 

ZC16064B); CYP2D6, 30 mg of dextromethorphan syrup (Pfizer, Sydney, NSW, Australia; 

Batch: 17RDX10A); and CYP3A4, 1 mg of midazolam syrup (Claris Injectables Ltd, 

Ahmedabad, India; Batch: B5A0219). Syrups were diluted in 50 mL of plain water, and the 

used cups were rinsed and rinsing water swallowed to ensure the whole midazolam and 

dextromethorphan dose was administered. This cocktail was selected because these drugs, at 

the lower doses, have minimal risk of causing clinical effect, even in the context of 

significantly delayed clearance of drugs. Study participants were administered with the 

cocktail medications on two separate occasions, prior to beginning chemotherapy, and again 

following dose 6 of paclitaxel. Any concomitant medications taken in the 24 hours preceding 

the cocktail administration were recorded by study nurses.  

2.10.8.2 Pharmacokinetic sampling 

Study participants fasted from midnight on the study day and were requested to refrain 

from consuming caffeine containing beverages for 24 hours prior to cocktail administration. 
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Blood samples were taken at baseline (prior to administration of cocktail) and 4 hours after 

the administration of the cocktail (Figure 2.4). Blood samples were processed (Section 2.10.6) 

for the collection of serum and plasma. Up to 50 mL of urine was obtained before the cocktail 

was administered. Total urine was collected for 8 hours after the cocktail was administered, 

and following mixing, 50 mL aliquot of this urine was taken. Plasma, serum, and urine 

samples were stored at -80°C until use in pharmacokinetic analysis.  

2.10.8.3 Cocktail drug and metabolite concentrations 

Measurements of the phenotyping cocktail drugs and metabolite concentrations in 

serum and urine samples were performed using two in-house LC-MS/MS methods developed, 

validated and performed by Mei Zhang and Associate Professor Matthew Doogue from 

Clinical Pharmacology (Department of Medicine, University of Otago Christchurch) and 

Toxicology (Department of Specialist Biochemistry, Canterbury Health Laboratories) 331. 

Briefly, serum was used to assess the concentrations of caffeine, paraxanthine, omeprazole, 

5-hydroxyomeprazole, midazolam and α-hydroxymidazolam, and urine was needed for the 

measurement of losartan, E-3174, dextromethorphan and dextrorphan concentrations. The 

measurements were performed by the Agilent 6460 LC-MS/MS system for midazolam and 

α-hydroxymidazolam, and the API 4000 LC-MS/MS system for dextromethorphan, 

dextrorphan, caffeine, paraxanthine, losartan, E-3174, omeprazole, 5-hydroxyomeprazole and 

paracetamol. The limits of the quantification in serum and urine were 0.2 ng/mL for 

midazolam and α-hydroxymidazolam, 1.25 ng/mL for dextromethorphan, and 5.0 ng/mL for 

caffeine, paraxanthine, losartan, E-3174, omeprazole, 5-hydroxyomeprazole, dextrorphan and 

paracetamol. The intra- and inter-day coefficients of variation (CVs) over the analysed 

concentration ranges for all the compounds were <10%. 

2.10.8.4 CYP phenotypic activity 

Phenotypic activity was calculated from the probe parent drug to metabolite 

concentration ratio (metabolic ratio) for each cocktail component administered prior to 

beginning chemotherapy (‘before chemotherapy’) and again following dose six of paclitaxel 

(‘after chemotherapy’). The phenotyping indices used in the current study were: 0-8 hour 

urine concentration ratio of losartan/ E-3174 and dextromethorphan/dextrorphan in order to 

assess CYP2C9 and CYP2D6 activity, respectively, and the 4 hour serum concentration ratios 

of omeprazole/5-hydroxyomeprazole and midazolam/α-hydroxymidazolam in order to assess 

CYP2C19 and CYP3A4 activity, respectively.  
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Changes in CYP enzyme activity during chemotherapy was assessed by measuring 

the difference between the metabolic ratios from after chemotherapy to before chemotherapy. 

Differences greater than 1.25-fold for each individual participant, were categorised as 

clinically meaningful changes in CYP activity; as guided by the United States (US) Food and 

Drug Administration (FDA) in vivo drug metabolism and drug interaction study 

recommendations 332. 

2.11 Statistical analysis 

Data analysis was performed in GraphPad Prism Version 5.01. Normal distribution of 

data was assumed for cell culture studies (Chapter 3 and Chapter 4), as normality testing is 

not able to be performed on low replicate numbers. Non-normal distribution of patient study 

data (Chapter 5) was assumed based on the inherent variability associated with clinical data, 

and thus, non-parametric testing was performed. Statistical significance was considered as a 

p-value < 0.05. 

2.11.1 Cell culture analysis  

Mean and standard error of the mean (SEM) were calculated for data from 

independent replicate experiments. Statistical significance between control and manipulation 

experiments were tested by paired and unpaired two-tailed T-testing, One-way ANOVA with 

Tukey’s Multiple Comparison Testing, and Two-way ANOVA with post-hoc Bonferroni 

correction. Correlations were evaluated using the Pearson’s correlation coefficient. IC50 

concentrations of chemotherapeutic agents were determined from non-linear fit dose-response 

curves that were fitted using the four parameter variable slope model.  

2.11.2 Patient study analysis 

Median values were calculated for patient study data. Statistical significance between 

paired data was determined by Wilcoxon matched-pairs signed rank testing. Mann Whitney 

U testing was used for the comparison of unpaired data. Serum cytokine concentrations 

throughout chemotherapy were compared to baseline using the Kruskal-Wallis test. 

Correlational data was evaluated using the Spearman’s correlation coefficient.  



 

 

 
 

 

 

Chapter 3  

 

Transwell co-culture with human breast adipocytes alters 

the proteome of human breast cancer cells 

 

Results presented in this chapter have been published in: 

Crake, RLI., Phillips, E., Kleffmann, T., and Currie, MJ. Co-culture with human breast 

adipocytes differentially regulates protein abundance in breast cancer cells; Cancer Genomics 

& Proteomics 16: 319-332, 2019 

 

3.1 Introduction 

Cancer associated adipocytes (CAA) within the breast tumour microenvironment have 

been shown to promote breast cancer cell migration, invasion and resistance to therapy 116,150. 

Previous research has assessed potential mechanisms by which local CAA may be influencing 

breast cancer progression 245,248,250, however, the precise mechanisms by which the CAA-

breast cancer cell crosstalk supports breast cancer development has not yet been determined.  

Transwell co-culture and microarray analyses assessing CAA-induced alterations in 

breast cancer cell gene expression have identified a number of important gene alterations 

245,263. Yet, regulation of global breast cancer cell protein abundance caused by proximal CAA 

remains to be investigated. Assessment of protein abundance changes in breast cancer cells 

interacting with CAA may introduce novel mechanistic links, not evident in microarray 

analyses, with more relevance to clinically advancing breast cancer phenotypes. Therefore, it 

was hypothesised that in vitro co-culture with CAA differentially regulates protein abundance 
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in breast cancer cells, and alterations in key molecules and pathways may highlight 

mechanisms responsible for the CAA-induced promotion of progressive breast tumours.  

Global protein abundance differences have been previously determined in four human 

breast cancer cell lines grown alone in vitro, using isobaric tags for relative and absolute 

quantification (iTRAQ) labels and tandem mass spectrometry (MS/MS) 333. Relative 

expression changes were determined by comparing protein expression to a normal breast cell 

line, identifying a total of 1,020 proteins from which potential biomarkers and pathways 

associated with breast cancer were identified 333. The main advantage for the use of iTRAQ 

labelling in discovery mass spectrometry is the identification and quantification of cell or 

tissue lysate proteomes in up to eight samples simultaneously 334.  

iTRAQ labelling and tandem mass spectrometry were utilised in the current 

investigation to identify and quantify differential global protein abundance in MCF-7 and 

MDA-MB-231 breast cancer cells co-cultured with CAA in vitro, compared to control breast 

cancer cells cultured alone. To account for disease heterogeneity associated with breast 

tumour molecular subtypes, this study utilised breast cancer cell lines from two different 

molecular subgroups. 

 

3.1.1 Aims 

The aim of this chapter was to profile global protein abundance differences in ER 

positive (MCF-7) and hormone receptor negative (MDA-MB-231) human breast cancer cells 

cultured alone or co-cultured with CAA isolated from human breast adipose tissues, and 

identify key molecules and pathways regulated by CAA. This was approached by: 

1) Culturing MCF-7 and MDA-MB-231 breast cancer cells in transwell co-culture with 

or without mature breast adipocytes (CAA) that were differentiated from 

preadipocytes isolated from human breast adipose tissue samples (Section 3.2.1).  

2) Determining CAA-induced protein abundance differences in MCF-7 and MDA-MB-

231 breast cancer cells by measuring protein levels using iTRAQ labelling and mass 

spectrometry in co-cultured and control breast cancer cells (Section 3.2.2).  

3) Assessing differentially regulated proteins to identify enrichment of particular cellular 

components and pathways in MCF-7 and MDA-MB-231 breast cancer cells co-

cultured with CAA, using bioinformatic analysis (Section 3.2.3).  
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4) Validating protein abundance differences quantified by mass spectrometry in selected 

candidate proteins using Western blotting analysis (Section 3.2.4). 

 

3.1.2 Experimental approach 

The isolation and differentiation of human breast adipocytes is shown in Figure 3.1, 

and the overall experimental workflow for this study chapter is depicted in Figure 3.2. 

Effect of CAA co-culture on enrichment of cellular components and pathways in 

MCF-7 and MDA-MB-231 cells, were assessed using protein annotation through 

evolutionary relationship (PANTHER) classification systems by gene list analysis of the co-

culture/control iTRAQ ratios (Section 3.2.3; detailed methodology described in Chapter 2; 

Section 2.9.1).  

For all Western blotting in this study chapter, samples were normalised to total protein 

by BCA assay (Chapter 2; Section 2.2.5.1). Relative protein levels were determined by 

measuring band densities with ImageJ (Version 1.49), normalising the densities to a loading 

control, and comparing the normalised densities to controls. 
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Figure 3.1. Transwell co-culture of human breast cancer cells and human breast 

adipocytes. 

A) Human breast adipose tissue was processed to isolate pre-adipocytes. Specialised media 

was used to promote adipogenesis (differentiation into mature adipocytes) in vitro, over 14-

21 days (described in detail in Chapter 2; Section 2.1). B) Schematic of MCF-7 or MDA-MB-

231 human breast cancer cells (purple; inside insert) that were either cultured alone (control) 

or with mature breast adipocytes (yellow; bottom well; co-culture) for 72 hours, then breast 

cancer cells were isolated for analysis using LC/MS/MS and Western blotting.  
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Figure 3.2. Workflow used to assess global protein abundance in MCF-7 and MDA-MB-

231 breast cancer cells cultured alone or in co-culture with mature breast adipocytes 

(cancer associated adipocytes [CAA]).  

Initially, human breast adipose tissues were processed to isolate pre-adipocytes, and pre-

adipocytes were differentiated in vitro to mature adipocytes (orange boxes). Mature breast 

adipocytes were used in transwell co-culture with MCF-7 and MDA-MB-231 breast cancer 

cells (depicted here by blue boxes, and described in detail in Chapter 2; Section 2.3). Protein 

was extracted from breast cancer cells from two separate experiments; one experiment 

assessed global protein abundance using iTRAQ labelling and mass spectrometry (depicted 

here by green boxes, and described in detail in Chapter 2; Section 2.4), and the second used 

Western blotting analysis to validate candidate proteins (depicted here by grey boxes, and 

described in detail in Chapter 2; Section 2.8).  
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3.2 Results 

3.2.1 Clinicopathological data associated with human breast adipose 

tissue samples used in this study 

Overall, this study used breast adipose tissue isolated from seven donors (Table 3.1). 

The donors ranged in age from 35-81 years, ranged in BMI from 23.3-41.4, and stated their 

ethnicity as NZ European (n= 5), Māori (n= 1), or Russian (n= 1) (Table 3.1). All seven donors 

had a mastectomy for breast cancer (Table 3.1). All donors were diagnosed with stage II or 

III invasive ductal carcinoma (IDC), and two received neoadjuvant chemotherapy prior to 

surgery (Table 3.1). All breast adipose tissues were sampled from the same breast as the 

tumour (Table 3.1).  

For assessment of global protein abundance by mass spectrometry, mature adipocytes 

from four separate breast adipose tissue samples were co-cultured with human breast cancer 

cells (n= 2 with MCF-7 cells, and n= 2 with MDA-MB-231 cells) (Table 3.1). The remaining 

three breast adipose tissue samples had mature adipocytes co-cultured with both breast cancer 

cell lines (n= 3 with MCF-7, and n= 3 with MDA-MB-231 cells), and relative expression of 

candidate proteins were measured by Western blotting analysis (Table 3.1). 

Mature adipocytes differentiated from breast adipose tissue samples are depicted in 

Figure 3.3. Microscopic examination of these adipocytes showed that the mature adipocytes 

used in the co-culture experiments were mostly multilocular, containing multiple lipid 

vacuoles per cell (Figure 3.3). A number of unilocular (cells with a single lipid vacuole) 

mature adipocytes were present in breast adipose tissue samples from donors 076 and 078 

(Figure 3.3).  
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Table 3.1. Clinicopathological data for the donors and breast adipose tissue samples used for co-culture with human breast cancer cells. 

Sample Age Ethnicity BMI Surgery 
Previous 

Treatment 

Breast 

Cancer* 
Histological Type  Stage Experiment (Cell line**) 

AT 076  61 Russian 27.8 Mastectomy None Yes IDC NST IIB 
Mass spectrometry  

(MDA-MB-231) 

AT 078  35 Maori 41.4 Mastectomy None Yes IDC NST IIB 
Mass spectrometry 

(MDA-MB-231) 

AT 079  76 NZ European 28.8 Mastectomy None Yes IDC NST  IIIC 
Mass spectrometry  

(MCF-7) 

AT 080  75 NZ European 31.8 Mastectomy 
Neoadj 

chemo 
Yes IDC NST  IIIC 

Mass spectrometry 

(MCF-7) 

AT 086  43 NZ European 23.3 Mastectomy 
Neoadj 

chemo 
Yes IDC NST  IIB 

Western validation 

(MCF-7 & MDA-MB-231) 

AT 087  72 NZ European 25 Mastectomy None Yes IDC Basal-like  IIA 
Western validation  

(MCF-7 & MDA-MB-231) 

AT 089  81 NZ European 25.8 Mastectomy None Yes IDC NST  IIIA 
Western validation  

(MCF-7 & MDA-MB-231) 

AT: adipose tissue; BMI: body mass index; DCIS: ductal carcinoma in situ; IDC: invasive ductal carcinoma; NST: no special type; Neoadj chemo: Neoadjuvant chemotherapy (chemotherapy 

given before breast cancer surgery).  

*Breast tumour was located in the same breast as the adipose tissue was sampled from (Yes/No).  

**Human breast cancer cell line used for co-culture with the breast adipose tissue sample.
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Figure 3.3. Mature breast adipocytes used for co-culture experiments.  

Representative images of mature adipocytes differentiated from human breast adipose tissue 

pre-adipocytes (10X magnification) from each of the breast adipose tissue (AT) samples used. 

Images were taken prior to transwell co-culture with MCF-7 and/or MDA-MB-231 human 

breast cancer cell lines.  
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3.2.2 Effect of co-culture with CAA on MCF-7 and MDA-MB-231 breast 

cancer cell protein abundance 

For the MCF-7 mass spectrometry experiment, the 118 iTRAQ label signal (control 

MCF-7 cells) was much higher than the 117 (control MCF-7 cells), 119 (co-cultured MCF-7 

cells), and 121 (co-cultured MCF-7 cells) label signals. In addition, searching peak lists on 

Sequest HT observed similar co-culture/control ratios for 119 and 121 (co-culture) against 117 

(control), whether or not the 118 label peaks were considered in the search (data not shown). 

As a consequence, the 118 tag signals were removed from the analysis to avoid interference 

with data normalisation.  

 

3.2.2.1 Distribution of protein abundance changes for all identified proteins  

In total, 1,126 proteins and 1,218 proteins were identified in both control and co-

cultured MCF-7 and MDA-MB-231 breast cancer cells respectively, by using iTRAQ labelling 

and discovery mass spectrometry (Supplementary data provided at 

https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html).  

Relative protein abundance differences or fold change values between co-cultured and 

control cells for each identified protein were quantified by assessing all of the co-

culture/control iTRAQ ratio combinations for each cell line, including 119/117 and 121/117 

for MCF-7 cells, and 116/114, 116/115, 117/114, and 117/115 for MDA-MB-231 cells.  

Comparing the distribution of the average fold change for each identified protein 

showed that the majority of the identified proteins were similarly expressed in CAA co-cultured 

MCF-7 and MDA-MB-231 cells compared with controls (Figure 3.4). The median of the 

average fold change values for all proteins identified in MCF-7 and MDA-MB-231 cells were 

-0.029 and -0.003, respectively (data not shown). Similar fold changes between co-culture and 

control were reported for MCF-7 and MDA-MB-231 co-culture experiments using adipocytes 

isolated from individual breast adipose tissue samples (p>0.05; Figure 3.5), suggesting that the 

effects of CAA activity on protein abundance was not likely to be adipose tissue/patient 

specific.  

  

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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Figure 3.4. Distribution of the iTRAQ ratios identified and quantified by mass 

spectrometry in co-cultured compared to control MCF-7 and MDA-MB-231 breast 

cancer cells.  

The average co-culture (CC; co-cultured with CAA for 72 hours) versus control (Con; cultured 

alone for 72 hours) ratios (log2) for all the proteins identified in A) MCF-7 cells (1,126 

proteins) and B) MDA-MB-231 cells (1,218 proteins) with each black vertical bar representing 

an identified protein, and horizontal dotted lines representing fold change (FC) values of 1.5 

(log2). 
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Figure 3.5. Fold change values for each protein identified by iTRAQ mass spectrometry 

in co-cultured compared to control breast cancer cells.  

Fold change values were the change in protein abundance between CAA co-cultured and 

control A) MCF-7 and B) MDA-MB-231 breast cancer cells (log2), for the 1,126 and 1,218 

proteins that were identified, respectively. Horizontal black dotted line represents no difference 

in protein abundance between co-culture and control. Red error bars represent mean ± SEM. 

Statistical significance was evaluated by paired t-tests; p-values < 0.05 were considered 

statistically significant.  
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3.2.2.2 Differentially abundant proteins  

To determine the proteins that were differentially regulated by co-culture with CAA in 

MCF-7 and MDA-MB-231 breast cancer cells this study selected those proteins that had at 

least one iTRAQ ratio that was 1.5-fold or greater (upregulated or downregulated) in co-

cultured compared to control cells; co-culture/control ratios are presented as the log base 2 

(log2) of the fold change. 

Eighty five out of 1,126 (7.55%) proteins in MCF-7, and 63 out of 1,218 (5.17%) 

proteins in MDA-MB-231, were differentially expressed in co-cultured compared to control 

cells (Figure 3.6). Of these differentially expressed proteins, more were downregulated (n= 53) 

than upregulated (n= 32) in MCF-7 cells (Figure 3.6A), whereas more were upregulated (n= 

51) than downregulated (n= 12) in MDA-MB-231 cells (Figure 3.6B).  

Three proteins, phosphoglycerate kinase 1 (PGK1), lysosomal protective protein 

(PPGB), and vacuolar protein sorting-associated protein 35 (VPS35) were differentially 

regulated in co-cultured versus control cells by 1.5-fold or greater in both MCF-7 and MDA-

MB-231 cell lines (Table 3.2). However, PGK1 was the only upregulated protein in both cell 

lines, whereas PPGB and VPS35 were downregulated in MCF-7 cells but upregulated in MDA-

MB-231 cells (Table 3.2).  
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Figure 3.6. Distribution of differentially regulated proteins identified and quantified in 

co-cultured compared to control MCF-7 and MDA-MB-231 breast cancer cells.  

The average co-culture (CC; co-cultured with CAA for 72 hours) versus control (Con; cultured 

alone for 72 hours) ratios (log2) for all the proteins quantified as having at least one CC/Con 

ratio greater than 1.5-fold (either upregulated or downregulated) in A) MCF-7 cells (85 

proteins) and B) MDA-MB-231 cells (63 proteins). Of the differentially expressed proteins, n= 

53/85 were downregulated in MCF-7, whereas n= 51/63 proteins were upregulated by more 

than 1.5-fold in MDA-MB-231 cells. Vertical black bars represent different proteins and 

horizontal dotted lines represent fold change values of 1.5 (log2). 

 

 

 

Table 3.2. Proteins with an abundance difference of 1.5-fold or greater in both MCF-7 

and MDA-MB-231 cells after co-culture with CAA. 

UniProt ID Protein Name 
MCF-7 CC/Con 

(FC log2)* 

MDA-MB-231 

CC/Con (FC log2)* 

P00558 
Phosphoglycerate Kinase 1 

(PGK1) 
0.532 0.565 

P10619 
Lysosomal Protective Protein 

(PPGB) 
-0.662 0.466 

Q96QK1 
Vacuolar protein sorting-

associated protein 35 (VPS35) 
-0.344 0.365 

CC: Co-culture, Con: Control; FC: Fold change.  

*Average difference in relative protein abundance (log2) between co-culture and control MCF-7 and MDA-MB-

231 breast cancer cells.  

  



 

91 
 

3.2.2.3 Top 20 most differentially abundant proteins 

Lists of the top 20 most differentially regulated proteins (excluding keratin proteins) in 

MCF-7 and MDA-MB-231 cells following transwell co-culture with CAA are presented in 

Table 3.3 and Table 3.4. Of the 20 most differentially regulated proteins, 17 were 

downregulated in MCF-7 cells (Table 3.3), whereas 16 were upregulated in MDA-MB-231 

cells (Table 3.4).  

In MCF-7 cells, trefoil factor 1 (TFF1) exhibited the largest increase of all the identified 

proteins (log2 fold change= 1.410), and the S100 calcium-binding proteins A4 and A6 (S100-

A4 and S100-A6) were the two most downregulated proteins (log2 fold change= -2.199 and -

2.995, respectively) (Table 3.3). Three of the top 20 most differentially regulated proteins in 

MCF-7 cells were annexin proteins, including annexin A2 (ANXA2; log2 FC= -1.041), 

annexin A5 (ANXA5; log2 FC= -1.218), and annexin A6 (ANXA6; log2 FC= -1.054); all 

downregulated by co-culture with CAA (Table 3.3).  

The most upregulated and downregulated proteins in MDA-MB-231 cells co-cultured 

with CAA were myeloid-associated differentiation marker (MYADM; log2 fold change= 

1.118) and 4F2 cell-surface antigen heavy chain (4F2; log2 fold change= -0.952), respectively 

(Table 3.4). PGK1, upregulated in both MCF-7 and MDA-MB-231 cells (Section 3.2.2.2), was 

one of the top 20 differentially regulated proteins in MDA-MB-231 cells, upregulated on 

average by 1.48-fold (log2 fold change: 0.565) (Table 3.4).  
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Table 3.3. The top 20 proteins organised from most upregulated to most downregulated based on fold change (FC) in MCF-7 cells co-

cultured with mature breast adipocytes. 

UniProt ID Protein Protein Description Lengtha Unique Peptidesb logFCc Abundance Variabilityd 

P04155 TFF1 Trefoil factor 1 (Breast cancer oestrogen-inducible protein) 84 2 1.410 30.8 

P16615 AT2A2 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 1042 2 1.291 100.35 

Q5JPE7 NOMO2 Nodal modulator 2 1267 3 0.980 18.4 

Q03135 CAV1 Caveolin-1 178 4 -0.962 33.2 

Q99439 CNN2 Calponin-2 309 3 -1.008 85.45 

P07355 ANXA2 Annexin A2 339 19 -1.041 9.95 

P08133 ANXA6 Annexin A6 673 17 -1.054 37 

Q15417 CNN3 Calponin-3 329 2 -1.071 95.4 

P09211 GSTP1 Glutathione S-transferase P 210 5 -1.108 54.1 

P08758 ANXA5 Annexin A5 320 15 -1.218 3.3 

P48509 CD151 CD151 antigen (Membrane glycoprotein SFA-1) 253 2 -1.23 24.6 

Q9H299 SH3L3 SH3 domain-binding glutamic acid-rich-like protein 3 93 5 -1.438 34.7 

P84074 HPCA Neuron-specific calcium-binding protein hippocalcin 193 2 -1.48 28.75 

P21980 TGM2 Protein-glutamine gamma-glutamyltransferase 2 687 10 -1.519 40.35 

P50453 SPB9 Serpin B9 (Cytoplasmic antiproteinase 3) 376 2 -1.586 47.4 

P16070 CD44 CD44 antigen (Extracellular matrix receptor III) 742 4 -1.653 44.8 

P09382 LEG1 Galectin-1 135 7 -1.656 22.15 

P08670 VIME Vimentin 466 22 -2.003 60.7 

P26447 S10A4 Protein S100-A4 (Calvasculin) (Metastasin) 101 4 -2.199 109.15 

P06703 S10A6 Protein S100-A6 90 3 -2.995 26.5 
a Amino acid residues; b Number of unique peptides identified based on a FDR of < 1%; c Log of the average co-culture / control ratios (fold change); d Variability of the 

peptide ratios as a percentage (normalised measure of the peptide ratio spread). 
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Table 3.4. The top 20 proteins organised from most upregulated to most downregulated based on fold change (FC) in MDA-MB-231 cells 

co-cultured with mature breast adipocytes. 

UniProt ID Protein Protein Description Lengtha Unique Peptidesb logFCc Abundance Variabilityd 

Q96S97 MYADM Myeloid-associated differentiation marker 322 3 1.118 6.33 

Q92597 NDRG1 Protein NDRG1 (Differentiation-related gene 1 protein) 394 5 1.093 9.87 

Q04941 PLP2 Proteolipid protein 2 152 2 0.996 16.95 

O15427 MOT4 Monocarboxylate transporter 4 465 3 0.804 19.47 

O75976 CBPD Carboxypeptidase D 1380 6 0.74 16.21 

P48651 PTSS1 Phosphatidylserine synthase 1 473 2 0.739 22.57 

O95479 G6PE GDH/6PGL endoplasmic bifunctional protein 791 2 0.656 9.28 

P04233 HG2A HLA class II histocompatibility antigen gamma chain (CD74) 296 3 0.628 9.43 

P40261 NNMT Nicotinamide N-methyltransferase 264 5 0.624 29.75 

Q99961 SH3G1 Endophilin-A2 368 3 0.604 17.95 

Q8IV08 PLD3 Phospholipase D3 490 5 0.59 24.16 

P13674 P4HA1 Prolyl 4-hydroxylase subunit alpha-1 534 7 0.576 21.21 

P14854 CX6B1 Cytochrome c oxidase subunit 6B1 86 2 0.573 5.07 

Q9Y237 PIN4 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 131 2 0.567 35.36 

P00558 PGK1 Phosphoglycerate kinase 1 417 24 0.565 4.25 

P26885 FKBP2 Peptidyl-prolyl cis-trans isomerase FKBP2 142 3 0.546 7.41 

Q15003 CND2 Condensin complex subunit 2 741 2 -0.544 15.76 

Q9Y570 PPME1 Protein phosphatase methylesterase 1 386 6 -0.62 12.6 

O00622 CYR61 Protein CYR61 (Cysteine-rich angiogenic inducer 61) 381 3 -0.795 28.47 

P08195 4F2 4F2 cell-surface antigen heavy chain 630 6 -0.952 13.22 
a Amino acid residues; b Number of unique peptides identified based on a FDR of < 1%; c Log of the average co-culture / control ratios (fold change); d Variability of the 

peptide ratios as a percentage (normalised measure of the peptide ratio spread).
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3.2.3 Effects of CAA on pathway and cellular component enrichment in 

MCF-7 and MDA-MB-231 breast cancer cells  

3.2.3.1 Enriched pathways 

There were 584 proteins (from 1,126 proteins in total) and 554 proteins (from 1,218 

proteins in total) differentially regulated by 1.1-fold or greater in MCF-7 and MDA-MB-231 

cells co-cultured with CAA compared to controls, respectively (data not shown). The 

enrichment of pathways relating to proteins that were differentially regulated by 1.1-fold or 

greater, the direction of regulation (upregulated or downregulated), and the corresponding 

proteins associated with these pathways, are presented for MCF-7 and MDA-MB-231 cells in 

Table 3.5 and Table 3.6, respectively.  

Three pathways were significantly enriched for differential regulation in MCF-7 cells 

including tricarboxylic acid (TCA) cycle, ubiquitin proteasome, and Huntington Disease 

(Table 3.5). MDA-MB-231 cells exhibited significant enrichment of four pathways, including 

glycolysis, de novo purine biosynthesis, ubiquitin proteasome, and Parkinson Disease (Table 

3.6).  

The enriched TCA cycle in MCF-7 cells, and glycolysis pathway in MDA-MB-231 

cells, were the only pathways with all associated proteins upregulated by co-culture with CAA 

(Table 3.5 and Table 3.6). Abundance of glycolytic and TCA cycle proteins in CAA co-

cultured MCF-7 and MDA-MB-231 cells are depicted in Figure 3.7; determined from full 

protein identification and quantification lists (Supplementary data provided at 

https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html). Increased 

expression of TCA cycle proteins in MCF-7 cells co-cultured with CAA included citrate 

synthase (CS), isocitrate dehydrogenase 2 and 3G (IDH2, IDH3G), 2-oxoglutarate 

dehydrogenase (OGDH), dihydrolipoyllysine-residue succinyltransferase component of 2-

oxoglutarate dehydrogenase complex (DLST), succinate dehydrogenase B (SDHB), fumarate 

hydratase (FH) and malate dehydrogenase (MDH2) (Figure 3.7). Upregulated expression of 

glycolytic proteins in MDA-MB-231 cells co-cultured CAA included ATP-dependent 6-

phosphofructokinase liver type (PFKL), ATP-dependent 6-phosphofructokinase platelet type 

(PFKP), fructose-bisphosphate aldolase A (ALDOA), triosephosphate isomerase (TPI1), 

phosphoglycerate kinase 1 (PGK1) and enolase 2 (ENO2) (Figure 3.7). 

The ubiquitin proteasome pathway was commonly enriched in both MCF-7 and MDA-

MB-231 cells co-cultured with CAA, in which the majority of the associated proteins were 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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26S proteasome subunit proteins, and were downregulated during co-culture. The component 

of the eukaryotic translation initiation factor 3 complex (EIF3F) required for initiation of 

protein synthesis was downregulated in both cell lines. MCF-7 cells predominantly 

downregulated the 19S regulatory particle subunit proteins, whereas MDA-MB-231 decreased 

expression of both 19S and 20S subunit proteins. Proteins involved in de novo purine 

biosynthesis were differentially regulated in MDA-MB-231 cells co-cultured with CAA, with 

upregulation and downregulation occurring within this pathway.  
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Table 3.5. Enriched cellular pathways in the complement of proteins that were found 

differentially regulated in MCF-7 cells co-cultured with CAA. 

PANTHER Pathway* Upregulated Proteinsa** Downregulated Proteinsb** 

TCA Cycle FH, OGDH, CS, DHTKD1 - 

Ubiquitin Proteasome PSMD14, UCHL5 

EIF3F, PSMC4, PSMD8, 

PSMD1, PSMD6, PSMD12, 

PSMD9, UBE2D3, UBE2N 

Huntington Disease 
ARF5, CYC1, GAPDH, 

CLTB 

DCTN1, CLTA, BAX, ARF6, 

ARPC5, CAPN1, CAPN2, 

VAT1, TUBB6 
a Proteins increased by 1.1-fold or greater in MCF-7 and MDA-MB-231 cells following transwell co-culture 

with mature adipocytes; b Proteins decreased by 1.1-fold or greater in MCF-7 and MDA-MB-231 cells 

following transwell co-culture with mature adipocytes; *PANTHER pathways recognised as significantly 

enriched (p<0.05). **Proteins are represented by gene names as reported by UniProtKB. 

 

 

Table 3.6. Enriched cellular pathways in the complement of proteins that were found 

differentially regulated in MDA-MB-231 co-cultured with CAA. 

PANTHER Pathway* Upregulated Proteinsa** Downregulated Proteinsb** 

Glycolysis 
ALDOA, PGK1, ENO2, 

TPI1, PFKL 
- 

De novo purine 

biosynthesis 
AK4, AK2, CMPK1 

ADSL, PPAT, GART, NME2, 

IMPDH2 

Ubiquitin proteasome UBE2L3 

EIF3F, PSMC1, PSMC4, 

PSMC3, PSMD11, PSMD13, 

PSMD7 

Parkinson disease 

YWHAG, NDUFV2, 

UBE2L3, YWHAZ, GRP78, 

PSMB10, YWHAB, SFN 

MAPK1, PSMA5, PSMD13, 

PSMB3, CSNK2A1, FYN, 

PSMA3, PSMA6, HSPA8, 

PSMB7 
a Proteins increased by 1.1-fold or greater in MCF-7 and MDA-MB-231 cells following transwell co-culture 

with mature adipocytes; b Proteins decreased by 1.1-fold or greater in MCF-7 and MDA-MB-231 cells 

following transwell co-culture with mature adipocytes; *PANTHER pathways recognised as significantly 

enriched (p<0.05). **Proteins are represented by gene names as reported by UniProtKB. 
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Figure 3.7. Schematic showing that MCF-7 and MDA-MB-231 breast cancer cells 

upregulate enzymes of glycolysis and TCA cycle after co-culture with CAA.  

iTRAQ LC-MS/MS protein abundance data and bioinformatic analysis indicated an enriched 

upregulation of TCA cycle and glycolysis pathway proteins in MCF-7 and MDA-MB-231 

breast cancer cells after co-culture with CAA. Up and down arrows represent enzymes with 

abundance changes greater than 10%, and the direction of regulation (increased or decreased) 

compared to control breast cancer cells. White circles show enzymes that were detected but 

not differentially regulated following co-culture. White circles with black lines are enzymes 

undetected in this study. *Complex comprising three subunits: OGDH, DLST and DLD, 

respectively. **Complex comprising four subunits: SDHAF2, SDHB, SDHC and SDHD, 

respectively. Complex subunits are gene names as reported by UniProtKB. 
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3.2.3.2 Cellular components 

To assess cellular components from which proteins were enriched, this study included 

all proteins identified in CAA co-cultured and control MCF-7 (n= 1,126 proteins) and MDA-

MB-231 (n= 1,218 proteins) cells.  

Similar cellular components were enriched in both MCF-7 and MDA-MB-231 cells 

co-cultured alone or with CAA, mostly pertaining to intracellular cytoplasmic, organelle and 

macromolecular complexes (Figure 3.8). Enriched components within these orders were 

proteins from the nucleus and nuclear structures, as well as cell cytoskeletal, ribosomal and 

protein complexes. 

 

 

 

Figure 3.8. Cellular components significantly enriched in breast cancer cells after 

transwell co-culture with adipocytes.  

Cellular components significantly enriched from the lists of identified proteins in A) CAA-

MCF-7 and B) CAA-MDA-MB-231 are grouped under the parent classifications; 

macromolecular complexes (red), cell parts (green), and organelles (blue). Component 

hierarchy runs from top to bottom within each parent classification. Identification of cellular 

components using bioinformatic analysis was performed using the PANTHER classification 

system (Version 12.0) and statistical over-representation testing (p<0.05). 
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3.2.4 Validation of mass spectrometry results by Western blot analysis  

To validate mass spectrometry results, Western blot analysis was used to determine 

the relative protein abundance of n-myc downstream regulated 1 (NDRG1), phosphoglycerate 

kinase 1 (PGK1) and trefoil factor 1 (TFF1) in CAA co-cultured compared to control MCF-7 

and MDA-MB-231 cells. These three candidate proteins were selected based on differential 

abundance in either or both MCF-7 and MDA-MB-231, their relevance to breast cancer and 

the availability of well-characterised primary antibodies. In MCF-7 cells co-cultured with 

CAA, the densitometry for NDRG1 represents the sum of both bands.  

In concordance with the iTRAQ quantification, PGK1 and TFF1 showed increased 

expression in MCF-7 cells, when measured by Western blotting (fold change: PGK1= 1.551 

and TFF1= 2.856) (Figure 3.9A and C). Similarly, NDRG1 and PGK1 were increased in CAA-

MDA-MB-231 cells, validating the iTRAQ results (fold change: NDRG1= 4.632 and PGK1= 

1.547) (Figure 3.9B and D). However, the NDRG1 upregulation was more than 2-fold higher 

when measured by Western blot analysis compared to the iTRAQ quantification (NDRG1= 

2.137) (Figure 3.9B and D). As expected, mass spectrometry did not detect TFF1 expression 

in hormone receptor negative MDA-MB-231 cells, and this was validated by Western blot 

analysis (Figure 3.9B and D). The only discordance was NDRG1 fold change measured in 

MCF-7 cells, showing an upregulation by Western blot analysis (fold change: 2.193), but no 

change in expression by iTRAQ quantification (fold change: 0.952) (Figure 3.9A and C). 

Furthermore, in accordance with the findings of the iTRAQ measurements, the fold changes 

measured by Western blot analysis for PGK1 and TFF1 candidate proteins remained consistent 

across the replicates, whereas the fold changes for NDRG1 were more variable (Figure 3.9A 

and B). 
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Figure 3.9. Validation of candidate protein abundance by Western blot analysis.  

A and B) The average fold change in protein abundance in co-culture (CC) compared to 

control (Con) MCF-7 and MDA-MB-231 cells, for each candidate protein (NDRG1, PGK1 

and TFF1) as measured by iTRAQ LC-MS/MS (white; 4-plex experimental with n= 2 co-

culture and n= 2 controls) and Western blot analysis (grey; n= 3 co-culture/control). Data is 

presented as mean ± SEM. C and D) Representative Western blots for the abundance 

measurement of PGK1, TFF1 and NDRG1 in MCF-7 and MDA-MB-231 cells grown alone 

or in co-culture with CAA for 72 hours.  
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3.3 Discussion  

The complex reciprocal communication between breast cancer cells and mature breast 

adipocytes has pro-tumorigenic consequences 150,251. However, the processes causing CAA-

related breast cancer pathogenesis have not been fully elucidated. Thus, studies investigating 

proteomic and phenotypic changes in breast cancer cells interacting with CAA are necessary 

and clinically meaningful.  

Differential regulation of rationally targeted proteins following co-culture with CAA 

has been investigated in previous studies 246,249,250. As a point of difference, the current study 

is novel in that it has identified and quantified the changes in global protein abundance in two 

well-characterised breast cancer cell lines, MCF-7 and MDA-MB-231, in response to a 72 

hour transwell co-culture with mature human breast adipocytes. Using discovery mass 

spectrometry, protein abundance changes were identified and quantified for a similar number 

of proteins in both breast cancer cell lines, however, the proteome distribution profiles were 

unique to each cell line. Moreover, the majority of the proteins identified in both breast cancer 

cell lines remain unchanged by cross-talk with CAA. 

 

3.3.1 Differential protein abundance in CAA co-cultured breast cancer 

cells  

Differential protein abundance of 1.5-fold or greater was quantified for a relatively 

small proportion of the total number of proteins identified in both MCF-7 and MDA-MB-231 

breast cancer cell lines following co-culture with mature breast adipocytes.  

MCF-7 and MDA-MB-231 breast cancer cell lines represent two distinct molecular 

subtypes of breast cancer. Oestrogen and progesterone responsive MCF-7 cells, categorised 

as having luminal A phenotype 335,336, showed predominant downregulation of all the highly 

differentially regulated proteins during co-culture with CAA. In contrast, MDA-MB-231 

hormone receptor negative cells that are categorized as having a claudin-low phenotype 335,336 

and are considered to be a more metastatic and invasive breast cancer cell model than MCF-7 

cells, mainly demonstrated upregulation of highly differentially regulated proteins in response 

to CAA co-culture. These trends in protein abundance regulation remained consistent in the 

top 20 most differentially expressed proteins for each cell line.  
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Breast cancer cells with distinct molecular subtypes show diverse protein expression 

profiles 337, and therefore, basal protein expression heterogeneity between MCF-7 and MDA-

MB-231 breast cancer cells is a likely explanation for the unique distribution patterns of 

protein abundance changes occurring in response to interactions with CAA. In addition to 

protein expression differences, previous studies provide evidence for varying effects of CAA 

on the pro-tumorigenic behavior of different breast cancer cell lines in vitro 249,250. Increased 

colony formation of human breast cancer cell lines MCF7, MDA-MB-361, MDA-MB-231 

and MDA-MB-157 has been demonstrated after co-culture with CAA, but not for MDA-MB-

468 and SK-BR3 cells 250. In addition, transwell co-culture with mature murine adipocytes 

significantly increased the proliferation and migration of MCF-7 and MDA-MB-231 cells, 

however, co-culturing with ‘obese’ mature adipocytes (that have greater lipid content) further 

augmented proliferation and migration of MDA-MB-231 cells, but not MCF-7 cells 249. 

Therefore, future research utilising differential abundance data from this study should consider 

the molecular subtype of the breast cancer cells, as cell line specific protein expression profiles 

may play a role in determining how the carcinoma cells communicate with and gain survival 

advantage from stromal CAA.  

Abundance of the S100 calcium-binding proteins A4 and A6 (S100-A4 and S100-A6), 

and annexin A2, A5 and A6 (ANXA2, ANXA5 and ANXA6) proteins were notably decreased 

in MCF-7 cells during co-culture with CAA. S100 proteins bind calcium, and through this 

interaction sense fluctuations in intracellular and extracellular calcium concentrations and 

translate this into cellular responses 338. Annexins bind both calcium and membrane 

phospholipids, in which phospholipid binding is regulated by calcium binding 339. It could be 

speculated that concentrations of calcium are depleted during co-culture with CAA, resulting 

in downregulated expression of breast cancer cell calcium binding proteins. Interestingly, the 

intracellular and extracellular concentrations of calcium have not yet been investigated in the 

context of adipocyte-breast cancer cell crosstalk. Moreover, interactions between S100 and 

annexin proteins have been previously associated with breast cancer cell-endothelium 

adhesion and plasma membrane repair 340,341. Thus, the complex interaction between S100 and 

annexin proteins, and calcium concentrations in breast cancer cells interacting with nearby 

CAA may be important regulators of breast tumour progression, and thus require further 

investigation.  

Myeloid-associated differentiation marker (MYADM) was the most upregulated 

protein in CAA co-cultured MDA-MB-231 cells. Although the function of MYADM is 



 

 

103 
 

unknown, it has been suggested to play a role in cell spreading and migration during co-

localisation with Ras-related C3 botulinum toxin substrate 1 (Rac1) in cell membrane 

protrusions 342, and myeloid differentiation 343. In the current study, Rac1 was similarly 

expressed in co-cultured and control MDA-MB-231 cells (Supplementary data provided at 

https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html). The only 

association reported for MYADM in cancer, is the upregulation in hepatocellular carcinoma 

(HCC) compared to adjacent normal liver, measured by iTRAQ quantitative proteomics 344. 

MYADM expression levels, its impact on prognosis and its mechanistic function in breast 

cancer, is yet to be determined. 

In response to co-culture with CAA, MDA-MB-231 cells showed the greatest 

downregulation in 4F2 cell-surface antigen heavy chain (4F2), previously recognised for its 

role in integrin-dependent cell signalling leading to cell spreading and migration, and 

apoptotic defence 345. 4F2, also known as solute carrier family 3 member 2 (SLC3A2) or 

CD98, was recently associated with the development of resistance to the doxorubicin 

chemotherapy agent 346. However, in contrast with the CAA-induced 4F2 reduction measured 

in the current analysis, SLC3A2 was observed to be dramatically upregulated during the 

development of doxorubicin resistance; although this was assessed in hormone responsive 

MCF-7 cells rather than the hormone unresponsive MDA-MB-231 cells 346. Thus, 4F2 could 

be involved in chemotherapy resistance pathways in triple negative breast tumours with CAA 

interactions, but the direction of regulation requires further investigation.  

Since the aim of the current study was to obtain proteomic profiles from two disparate 

breast cancer cell lines after exposure to CAA for lead generation purposes, the subsequent 

application of additional independent methods to confirm protein fold change values, such as 

Western blotting, should be considered as the next step in any further investigation of 

candidate protein(s). 

 

3.3.2 Western blotting validation of mass spectrometry  

Three proteins identified by mass spectrometry were selected for validation by 

Western blot analysis, including n-myc downstream regulated 1 (NDRG1), phosphoglycerate 

kinase 1 (PGK1) and trefoil factor 1 (TFF1). Western blot analysis validated the iTRAQ results 

for all but NDRG1 protein abundance in MCF-7 cells. 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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These three candidate proteins were chosen because they appeared in the top 20 most 

differentially regulated proteins in either MCF-7 (Table 3.3) or MDA-MB-231 (Table 3.4) 

cells, all upregulated by co-culture with CAA. In addition, expression of NDRG1, PGK1 and 

TFF1 has been previously associated with poor breast cancer outcomes and, in some cases, 

increased resistance to anti-tumour therapeutics 347–349, underlining the clinical relevance of 

the current study’s findings in breast cancer progression.  

The NDRG1 gene is upregulated by hypoxia in a number of human tumours 350. The 

role of NDRG1 expression in breast cancer remains controversial, most likely due to its 

pleiotropic functions involving cell growth and differentiation, immune and stress responses, 

and lipid biosynthesis 351. Increased expression of NDRG1 has been associated with 

suppression of breast tumour metastasis 352, yet elevated NDRG1 expression has also been 

observed in invasive compared to non-invasive breast tumours and in ER+ tumours that were 

associated with poorer clinical outcomes 353,354. The functional role of TFF1 in breast cancer 

has not been fully elucidated. In breast tumours, TFF1 mRNA levels are positively and linearly 

correlated with the levels of ER and PR proteins 355. Moreover, increased TFF1 expression 

has been associated with chemotherapy resistance and increased cell migration and invasion 

348,356, but conversely, has shown inverse associations with tumour development, and tumour 

size and grade 355,357. Thus, further research is required to fully elucidate the roles of increased 

NDRG1 and TFF1 in breast tumours in adipocyte rich environments. PGK1 expression and 

its association with breast tumour progression and outcome is discussed below (Section 3.3.3).  

The potential for iTRAQ measurements to underestimate fold change may explain the 

smaller fold change values reported here by iTRAQ compared to Western blot analysis, 

particularly for NDRG1 expression in MCF-7 cells 358. Additionally, investigation of NDRG1 

expression in MCF-7 cells has previously observed double banding at 43 and 44 kDa, which 

was replicated in the current study by MCF-7 cells co-cultured with CAA 359. It has been 

suggested that additional 44 kDa bands represent different isoforms of NDRG1 due to post-

translational modifications, such as phosphorylation 351,359. Therefore, it could be speculated 

that the smaller fold changes quantified using iTRAQ analysis were due to CAA induced 

NDRG1 phosphorylation at sites that interfered with the calling of the NDRG1 peptides 

measured during mass spectrometry, but did not interfere with the recognition sequence for 

the anti-NDRG1 antibody used for Western blotting. The anti-NDRG1 antibody target 

sequence is not publicly available, and thus, this theory remains speculative. Further 

investigation assessing the difference in peptide identification and antibody binding 
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sequences, as well as the analysis of post-translational NDRG1 phosphorylation may help 

explain the discordance observed in the current study.  

 

3.3.3 Increase in breast cancer cell PGK1 expression  

Phosphoglycerate kinase-1 (PGK1) was the only protein to be similarly differentially 

upregulated by more than 1.5-fold in both cell lines after adipocyte co-culture with CAA, 

highlighting a potential mechanism by which CAA may promote breast cancer cell migration, 

invasion and resistance to therapy in breast cancer cells with different molecular subtypes.  

PGK1 is overexpressed in a variety of cancers 349,360–364, and high PGK1 protein 

expression in tumours is associated with increased metastatic dissemination 365,366, a multidrug 

resistant phenotype 349,367,368 and poor patient survival outcomes 349,363,364. In breast cancer, 

PGK1 mRNA and protein are more highly expressed in breast tumour than in normal breast 

tissue 349, and elevated tumour PGK1 protein expression is associated with high histologic 

grade, positive ER, HER2 and p53 status, and poor overall survival in patients treated with 

paclitaxel 349. Therefore, it could be speculated that CAA-induced increases in PGK1 protein 

expression measured in the current study, may be promoting the more aggressive phenotypes 

evident in breast cancer cells co-cultured with CAA in previous studies 150,245–251,253.  

PGK1 is more highly expressed in breast cancer cell lines and human breast tumours 

with HER2 amplification 369, yet is not significantly associated with any particular breast 

cancer molecular subtype 349. The MCF-7 and MDA-MB-231 breast cancer cell lines used in 

the current co-culture study are known to be negative for HER2 overexpression 335,336. Thus, 

it would be interesting for future studies to assess PGK1 expression following transwell co-

culture with mature breast adipocytes in HER2 overexpressing breast cancer cells. 

PGK1 catalyzes the reversible conversion of 1,3-diphosphoglycerate to 3-

phosphoglycerate, and is the first ATP generating enzyme in the glycolytic pathway 370. 

Interestingly, knockdown of PGK1 in MCF-7 and MDA-MB-231 breast cancer cells, reduced 

cell invasiveness, and decreased the expression of proteins associated with the mesenchymal 

phenotype 371. Moreover, decreased expression of PGK1 in MCF-7 and MDA-MB-231 cells 

has been associated with suppressed cell metabolism, measured as a decrease in cytoplasmic 

and mitochondrial ATP production 372. In addition to its function as a glycolytic enzyme, 

recent evidence shows that PGK1 has a number of other mechanistically distinct functions that 
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are determined by post-translational modification and subcellular localisation 373–376. For 

example, PGK1 can function as a protein kinase to reduce mitochondrial pyruvate metabolism 

and initiate cellular stress-induced autophagy 374–376. Therefore, based on its different cellular 

functions, PGK1 has the potential to co-ordinate aerobic glycolysis, mitochondrial metabolism 

and autophagy, to maintain cellular homeostasis and promote proliferation during 

tumourigenesis. The current study did not address the metabolic phenotypes of breast cancer 

cells after transwell co-culture with CAA. Therefore, future studies are required to better 

understand the subcellular localisation and function of PGK1 in breast cancer cells exposed to 

CAA, and its role in co-ordinating metabolic pathways with other cellular processes critical to 

breast cancer cell survival, growth and metastasis. 

 

3.3.4 Pathways regulated in co-cultured breast cancer cells 

Pathway analysis showed that transwell co-culture with CAA induced both MCF7 and 

MDA-MB-231 breast cancer cell lines to upregulate a number of proteins involved in 

glycolysis and the tricarboxylic acid (TCA) cycle (Figure 3.7). MCF-7 cells co-cultured with 

CAA upregulated more proteins involved in the tricarboxylic acid (TCA) cycle, whereas, 

MDA-MB-231 cells co-cultured with CAA primarily upregulated proteins involved in 

glycolysis.  

In line with a metabolic shift towards enhanced glycolysis, MDA-MB-231 cells also 

showed upregulated abundance of lactate dehydrogenase subunits LDHA and LDHB, and 

monocarboxylate transporter 4 (MCT4) (Supplementary data provided at 

https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html), which are involved 

in the interconversion of pyruvate and lactate 377,378, and transport of cellular lactate 379, in and 

from breast tumour cells, respectively.  

The ‘Warburg effect’ describes the metabolic shift to aerobic glycolysis cancer cells 

undergo to fulfil their energetic requirements, even under conditions of adequate oxygen 

supply 380, and triple negative breast cancer cells and tumours are characterised by elevated 

glycolysis 381. More recently, the two-compartment energy model has been proposed to 

explain the unique metabolic relationships occurring between cancer cells and stromal cells 

within the tumour microenvironment. According to this model, cancer cells act as metabolic 

parasites that stimulate catabolic pathways in proximal stromal cells to gain an energetic 

advantage that fuels cancer cell metabolism and tumour progression 260. Previous studies have 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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shown that ovarian, prostate, and breast cancer cells induce lipolysis in stromal adipocytes, 

and that the resulting metabolites (glycerol, free fatty acids) are secreted and transferred to 

cancer cells where they induce proliferation, migration and invasion 249,261,262,382. Furthermore, 

these studies showed that adipocyte co-culture enhances breast cancer cell progression by 

stimulating fatty acid uptake, storage and mitochondrial fatty acid oxidation in both MCF7 

and MDA-MB-231 breast cancer cells 249,262. Carnitine palmitoyltransferase 1 (CPT1) is the 

rate-limiting enzyme in mitochondrial fatty acid oxidation 383, and basal levels of CPT1 and 

fatty acid oxidation are higher in MCF-7 than MDA-MB-231 breast cancer cells 249. In the 

current study, global proteome analysis identified an upregulation of CPT1A in both MCF-7 

and MDA-MB-231 breast cancer cells co-cultured with CAA (Supplementary data provided 

at https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html). Together with the 

observed enrichment for increased expression of TCA cycle proteins in MCF-7 breast cancer 

cells, these results suggest that mitochondrial fatty acid oxidation is likely an important source 

of metabolites for the TCA cycle in MCF-7 cells within an adipocyte rich environment. 

Differences in metabolic responses to CAA may be driven in part by oncogenic 

mutations characteristic to each breast cancer cell line 384. For example, MCF-7 cells are 

PIK3CA mutant but carry a wildtype TP53 gene, whereas, the more invasive MDA-MB-231 

cells have a mutant TP53 gene but are wildtype for PIK3CA 384. Both of these genes are 

recognized as prognostic markers in breast cancer 385,386, and may also influence the unique 

protein expression profiles exhibited by MCF-7 and MDA-MB-231 breast cancer cells 

following co-culture with CAA. It has been shown that by inhibiting PDH kinase 2 (PDK2), 

functional p53 upregulates the activity of pyruvate dehydrogenase (PDH) 387. This promotes 

the conversion of pyruvate to acetyl-CoA, which subsequently enters the TCA cycle, and may 

contribute to the upregulation of TCA cycle proteins in MCF-7 cells during co-culture. 

In addition to metabolic pathways, this study identified downregulation of ubiquitin 

proteasome pathway proteins in both MCF-7 and MDA-MB-231 breast cancer cells, 

upregulation of proteins involved in de novo purine biosynthesis in MDA-MB-231 cells, and 

downregulation of a component of the eukaryotic translation initiation factor 3 complex 

(EIF3F) in both cell types. These adipocyte co-culture induced changes may represent shifts 

in protein degradation and DNA synthesis that aid in promoting breast cancer cell proliferation 

and migration. Taken together, these diverse pathway enrichments demonstrate the complex 

nature of the breast cancer cell proteomic heterogeneity and interplay between breast cancer 

cells and stromal CAA.  

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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3.3.5 Transwell co-culture model  

Similar to previous investigations 150,240,246,249,250,253,255,263, this study used a 2D 

transwell co-culture model that physically separates CAA and breast cancer cells, yet allows 

reciprocal cross-talk between the two cell populations via secreted factors. In comparison to 

previous co-culture studies, a major strength of the current investigation is the use of 

adipocytes isolated and differentiated from human mammary adipose tissue, whereas, most 

other studies have used murine pre-adipocyte cell lines or human abdominal adipose tissue 

pre-adipocytes 150,240,246,249,253,255,263.  

Mature breast adipocytes used in the in vitro co-culture experiments were mostly 

multilocular, as they contained multiple lipid vacuoles per cell. In humans, multilocular 

adipocytes are characteristic of brown adipose tissue in vivo, whereas uniloculated adipocytes 

with singular lipid vacuoles are usually characteristic of white adipose tissue 21 (Figure 3.10). 

In human breast cancer, the browning of mammary adipose tissues has been observed to be 

greater in adipocytes surrounding breast tumours compared to adipocytes near benign lesions 

388. Although the diversity between unilocular and multilocular adipocytes was not addressed 

in the current study, future in vitro and in vivo investigations might need to consider the 

difference that lipid vacuole content may be having on nearby breast cancer cell phenotypes.  

 

 

Figure 3.10. Brown versus white adipose tissue adipocytes.  

Morphological appearance of white (unilocular adipocytes) and brown (multilocular 

adipocyte) adipose tissue in a 46 year old women. Reproduced with permission from 

Lichtenbelt et al 389, Copyright Massachusetts Medical Society.  
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The transwell co-culture model used in the current investigation used breast adipocyte 

and cancer cell monolayers, whereas breast tumours in vivo are 3-dimensional (3D) and have 

potential for direct CAA and breast cancer cell contact 150. Interestingly, previous studies using 

3D collagen gel matrixes allowing direct as well as indirect interactions between CAA and 

breast cancer cells, have all observed similar, although more pronounced, effects of CAA on 

breast cancer cell growth, migration and invasion, in comparison to cell monolayer models 

241,244,390. Concordance between previous monolayer and 3D models supports the possible 

translation of this studies in vitro protein abundance results to breast tumours with adipocyte 

rich environments in vivo.  

Lastly, this study measured a snapshot of protein expression in a population of breast 

cancer cells after a 72 hour adipocyte co-culture, whereas the expression of proteins in vivo is 

likely to be dynamic and to fluctuate over time. Thus, further studies are required to better 

understand how CAA affect breast cancer cell phenotype and function by measuring 

abundance of proteins and their associated pathways over varying time points.  

 

3.4 Summary 

This study has, for the first time, shown global differences in relative protein 

abundance and identified a number of protein abundance changes in breast cancer cells co-

cultured with human mature breast adipocytes in an in vitro transwell system. Hormone 

receptor positive (MCF7) and triple negative (MDA-MB-231) breast cancer cells showed 

predominant downregulation and upregulation of highly differentially regulated proteins, 

respectively, supporting the concept that reciprocal communication between breast cancer 

cells and CAA is heterogeneous, and likely breast cancer cell type specific. Analysis showed 

that the regulated molecules participate in pathways related to metabolism, protein 

ubiquitination and purine synthesis, and identified PGK1 as the only commonly up-regulated 

protein in both cell lines. Overall, by assessing global protein abundance, this investigation 

aids in better understanding the molecular mechanisms by which CAA regulate breast cancer 

cell phenotype and function, and provides a platform for future research to explore novel 

protein targets involved in breast cancer cell-CAA crosstalk. 



 

 

 
 

 

 

Chapter 4  

 

Overexpression of PGK1 in breast cancer  

 

4.1 Introduction 

Reciprocal interactions between adipocytes and breast cancer cells through soluble 

factors within the breast tumour microenvironment are known to contribute to breast tumour 

progression 150,246,391. Recent discoveries suggest that the key mechanism promoting tumour 

progression is the metabolic co-operation between adipocytes and breast cancer cells in the 

tumour microenvironment 249,259,262. In the previous chapter (Chapter 3), discovery mass 

spectrometry identified phosphoglycerate kinase 1 (PGK1) to be the only protein upregulated 

by more than 1.5-fold in both MCF-7 and MDA-MB-231 human breast cancer cells co-

cultured with mature breast adipocytes (Chapter 3; Section 3.2.2.2). PGK1 plays an important 

role in cell metabolism, generating the first ATP molecule at step 7 of the glycolytic pathway 

by catalysing the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate 370. 

Thus, this finding highlights increased PGK1 expression as a potential regulator through 

which breast adipocytes in the tumour microenvironment may be promoting breast cancer cell 

migration, invasion, and resistance to therapy. 

PGK1 mRNA expression is regulated by transcription factor hypoxia inducible factor 

1α (HIF-1α) 392, the chief regulator of the hypoxic response. HIF-1α has an established role 

in the reprogramming of cancer cell metabolism, to preferentially perform aerobic glycolysis 

over oxidative phosphorylation, overcoming fluctuations in oxygen tension and driving 

tumour growth and invasion 311,393,394; a phenomenon referred to as the ‘Warburg Effect’ 380. 

Aerobic glycolysis in tumour cells is associated with an increase in glucose consumption, a 

reliance on glycolysis via the inhibition of oxidative phosphorylation, and an enhanced 
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production and secretion of lactate that is converted from cytosolic pyruvate, the product of 

glycolysis 380,395,396.  

A variety of cancers exhibit increased mRNA and protein expression of PGK1, 

including endometrial, pancreatic, prostate, colon, hepatocellular, astrocytoma, and breast 

349,360–364,397,398. Higher PGK1 expression in these cancers is associated with radio-, chemo-, 

and multidrug resistance phenotypes 349,362,367,368,398, enhanced metastatic spread 365,366,398, and 

poorer survival outcomes for patients 349,363,364,397. In breast tumours, elevated PGK1 protein 

expression is associated with larger and higher stage tumours 371, worse histologic grade, and 

ER, HER2 and p53 expression 349. Furthermore, higher expression of PGK1 in breast tumours 

correlates with poorer overall and disease free survival 371, and worse overall survival in 

patients treated with paclitaxel 349. Interestingly, of all the glycolytic proteins, PGK1 was the 

most upregulated in primary breast tumours from patients with associated metastases when 

compared to primary breast tumours from patients without metastases 371. 

In human breast cancer cells, knockdown of PGK1 reduced cell invasiveness and 

decreased expression of proteins associated with mesenchymal phenotype 371. Decreased 

expression of PGK1 is also associated with suppressed cell metabolism, measured as a 

decrease in cytoplasmic and mitochondrial ATP production 372. What has yet to be 

investigated is whether increased expression of PGK1 promotes breast cancer cell growth and 

survival through its influence on metabolism.  

 

4.1.1 Aims 

The first aim of this chapter was to produce hormone receptor positive MCF-7 and 

hormone receptor negative MDA-MB-231 human breast cancer cells overexpressing PGK1 

protein. This was approached by:  

1) Cloning a PGK1 expressing lentiviral vector (Section 4.2.1). 

2) Transiently transfecting MCF-7 and MDA-MB-231 breast cancer cell lines with a PGK1 

expressing vector (Section 4.2.2 and 4.2.3). 

 

The next aim of this chapter was to investigate the effect of PGK1 overexpression on 

metabolism, growth, and chemotherapy response in MCF-7, and MDA-MB-231 breast cancer 

cells. This was done by: 
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3) Measuring the concentration of lactate produced by MCF-7 and MDA-MB-231 cells in 

response to increased PGK1 expression (Section 4.2.4). 

4) Assessing the rate of cell proliferation in MCF-7 and MDA-MB-231 cells overexpressing 

PGK1 (Section 4.2.5).  

5) Investigating the effect of increased PGK1 levels on the sensitivity of MCF-7 and MDA-

MB-231 breast cancer cells to paclitaxel and cyclophosphamide chemotherapies (Section 

4.2.6). 

 

Lastly, this chapter aimed to characterise PGK1 expression in breast cancer cells in vitro 

and breast tumours in vivo, and to better understand the regulation of PGK1 by clinically 

important breast cancer phenotypes. This was approached by: 

6) Measuring basal PGK1 levels in a panel of breast cancer cell lines and relating this to the 

presence or absence of the clinical biomarkers ER, PR and HER2 (Section 4.2.7). 

7) Assessing PGK1 mRNA expression in breast cancer cell lines and associating this with 

the presence or absence of the clinical biomarkers ER, PR and HER2, and with sensitivity 

to breast cancer chemotherapies (Section 4.2.8). 

8) Investigating the expression of PGK1 mRNA in large publicly available breast tumour 

cohorts and associating this with clinical biomarkers, tumour subtypes, and expression of 

other regulatory and metabolism related genes (Section 4.2.9).  

 

4.1.2 Experimental approach 

4.1.2.1 Overexpressing PGK1 in human breast cancer cells 

This study initially planned to use lentiviral transduction to stably overexpress PGK1 

in MCF-7 and MDA-MB-231 human breast cancer cells using the Inducible DharmaconTM 

TRIPZTM Lentiviral Collection, and HEK239T cell line for viral packaging. Therefore, 

molecular cloning experiments were designed to insert the PGK1 genetic sequence into the 

pTRIPZ lentiviral vector backbone (detailed methodology described in Chapter 2; Section 2.5 

and Section 2.6). Plasmid DNA containing HIS/FLAG/HA-tagged PGK1 was purified from 

DH5α bacterial cells. The PGK1 sequence was amplified using PCR, the PCR product 

digested with restriction enzymes, the digested DNA purified by gel electrophoresis, and the 

purified DNA sequence ligated into the pTRIPZ vector backbone. The ligation products were 

transformed into competent Stbl3 bacteria, and colonies growing under ampicillin selection 

were inoculated. Plasmid DNA was extracted from inoculated bacterial cultures, and 
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sequencing was performed to validate the insertion of the full PGK1 gene sequence into the 

pTRIPz vector backbone. Unfortunately, sequencing could not validate the insertion of the 

full length PGK1 gene into the pTRIPZ vector. This necessitated a change in experimental 

approach, with the new strategy using transient overexpression of PGK1 in MCF-7 and MDA-

MB-231 human breast cancer cells.  

Transfection efficiency of MCF-7 and MDA-MB-231 breast cancer cells with the 

commercially available jetPRIME® transfection reagent was determined using a GFP-

encoding plasmid. The jetPRIME® transfection reagent was used to transfect MCF-7 and 

MDA-MB-231 breast cancer cells with the HIS/FLAG/HA-tagged PGK1 expressing plasmid, 

and overexpression of PGK1 was validated by measuring the relative PGK1 levels using 

Western blot analysis after 54 hours. Breast cancer cells were lysed with RIPA buffer for 

protein analysis. Transfection reagent and plasmid DNA were excluded from control cells. 

Transfection reagent treated cells were used to assess toxicity caused by the transfection 

reagent, and transfection with the GFP expressing plasmid was used as a vehicle control 

(detailed methodology described in Chapter 2; Section 2.7). 

4.1.2.2 Investigating effects of PGK1 overexpression in human breast cancer cells 

The influence of increased PGK1 expression on the production of lactate in MCF-7 

and MDA-MB-231 cells was investigated by measuring the intracellular and extracellular 

concentrations of lactate in cell lysates 54 hours after transfection and in media conditioned 

for 48 hours by transfected cells, respectively (detailed methodology described in Chapter 2; 

Section 2.7.2.1). Cell lysates and conditioned media were deproteinised to remove lactate 

dehydrogenase enzymes that can degrade lactate, and lactate was quantified using an L-lactate 

assay kit. Lactate concentrations were standardised to the number of live cells present 54 

hours after transfection, determined using an automated cell counter.  

Effects of PGK1 overexpression on cell proliferation and sensitivity to chemotherapy, 

54 hours after transfection, was evaluated in MCF-7 and MDA-MB-231 cells reseeded into 

96 well plates 24 hours after transfection. Cell proliferation in PGK1 overexpressing MCF-7 

and MDA-MB-231 cells, relative to controls, was measured by SRB assay 30 hours after 

moving the cells to 96 wells plates. Chemotherapy response was investigated in PGK1 

overexpressing MCF-7 and MDA-MB-231 cells by assessing cell viability after a 24 hour 

treatment with IC50 doses of paclitaxel and 4-hydroperoxycyclophosphamide, using an MTT 

assay. IC50 doses were determined by dose-response curves evaluating cell viability, using 
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MTT assay analysis, in response to paclitaxel and 4-hydroperoxycyclophosphamide over a 

range of concentrations (0-100µM) for 24 hours (detailed methodology described in Chapter 

2; Section 2.7.2.2). 

4.1.2.3 Regulation of PGK1 expression by breast cancer phenotypes 

Western blot analysis was used to identify basal levels of PGK1 protein in a panel of 

breast cancer cell lines grown under standard cell culturing conditions, including hormone 

receptor positive (n= 2), HER2 enriched (n= 2), and triple negative (n= 5) cell lines. Breast 

cancer cells were lysed with RIPA buffer for protein analysis (detailed methodology described 

in Chapter 2; Section 2.8). The MCF10A (mammary epithelial) breast cell line was used to 

standardise PGK1 protein expression across blots.  

To determine which breast cancer phenotypes are associated with differences in PGK1 

regulation, PGK1 mRNA expression in breast cancer cell lines and breast tumour datasets 

was compared between clinically important breast tumour phenotypes (ER+ vs ER-; PR+ vs 

PR-; HER+ vs HER2-) and molecular subtypes (luminal; HER2 enriched; triple 

negative/basal) (detailed methodology described in Chapter 2; Section 2.9.2 and Section 

2.9.3).  

For all Western blotting in this study chapter, samples were normalised to total protein 

by BCA assay (detailed methodology described in Chapter 2; Section 2.2.5.1). Relative 

protein levels were determined by measuring band densities with ImageJ (Version 1.49), 

normalising the densities to a loading control, and comparing the normalised densities to 

controls.  
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4.2 Results 

4.2.1 Production of a PGK1 expressing lentiviral vector  

4.2.1.1 Preparation of the PGK1 insert and pTRIPZ vector for ligation  

pFRT/TO/HIS/FLAG/HA-PGK1 plasmid was purified from DH5-α bacteria. To 

verify the plasmid contained the full length PGK1 sequence, 1403 bp DNA fragments 

encoding the PGK1 sequence and upstream HIS/FLAG/HA tag were amplified from the 

pFRT/TO/HIS/FLAG/HA-PGK1 plasmid using PCR (Figure 4.1).  

Xho1 and Mlu1 restriction enzymes uniquely cut the pTRIPZ vector, producing an 

approximate 30 bp non-sense sequence (too small to visualise on an agarose gel), and a 

linearised 13061 bp vector fragment. To verify the restriction enzymes were optimally cutting, 

digestion of the pTRIPZ vector with Xho1 and Mlu1 restriction enzymes was confirmed by 

showing digested vector (linearised) running further through an agarose gel than uncut 

(circular) pTRIPZ plasmid (Figure 4.2).  

Digesting the PCR amplicon (PGK1 gene) with Xho1 and Mlu1 restriction enzymes 

cleaves off 5 bp DNA fragments from each end of the amplicon generating a 1393 bp insert 

encoding PGK1. The digested PGK1 insert and linearised pTRIPZ vector were separated on, 

and purified from, an agarose gel (Figure 4.3).  
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Figure 4.1. Amplification of the HIS/FLAG/HA-PGK1 sequence from the 

pFRT/TO/HIS/FLAG/HA-PGK1 plasmid.  

A) Plasmid map of the pFRT/TO/HIS/FLAG/HA-PGK1 plasmid (6765 bp) showing the 

PGK1 gene (light purple; 1254 bp), PGK1.For and PGK1.Rev primer pair binding sites (dark 

purple; each 17 bp), and the sequence amplified by PCR (yellow; 1403 bp). The map was 

downloaded from Addgene and modified with SnapGene. B) DNA gel of HIS/FLAG/HA-

PGK1 PCR products (1403 bp) amplified from the pFRT/TO/HIS/FLAG/HA-PGK1 plasmid. 

The PCR product (lane 2) was subjected to gel electrophoresis, and the size was confirmed 

according to a DNA ladder (L). For negative control (lane 3) no DNA was added to the PCR 

reaction, and a lane gap was left between the ladder and the PCR product (lane 1).  
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Figure 4.2. DNA gel of the pTRIPZ vector digested with the XhoI and MluI restriction 

enzymes.  

The pTRIPZ vector (13091 bp) was digested with XhoI (lane 1) and MluI (lane 2) separately, 

and in a double digest with both enzymes (lane 4). For the negative control (lane 5) no 

restriction enzymes were added to the digestion reaction (uncut pTRIPZ vector). The digests 

were subjected to gel electrophoresis and their sizes were confirmed according to a DNA 

ladder (L). A lane gap was used (lane 3) due to spill over during loading of lane 2.  

 

 

 

 

Figure 4.3. DNA gel of the PGK1 insert and pTRIPZ vector digested with the XhoI and 

MluI restriction enzymes.  

XhoI and MluI restriction enzymes digested the PGK1 insert (lane 1; 1393 bp) and pTRIPZ 

vector (lane 2; 13061 bp), and digestion products were subjected to gel electrophoresis and 

their sizes were confirmed according to a DNA ladder (L).  
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4.2.1.2 Validating the PGK1 insert and pTRIPZ vector ligation  

The digested and purified PGK1 insert and linearised pTRIPZ vector were ligated 

together using the DNA joining enzyme T4 DNA ligase; Figure 4.4 depicts the theoretical 

ligation of the fragments. Successful ligation was determined as the formation of colonies on 

ampicillin LB agar of Stbl3 (competent E.coli strain) bacteria transformed with the ligation 

product.  

A single colony (Clone 1) grew from an initial ligation experiment, seven colonies 

(Clone 2-8) grew from a second ligation experiment, and three colonies (Clone 9-11) grew 

from a third ligation experiment. Clones were inoculated, and plasmid DNA was extracted.  

To confirm the insertion of the PGK1 sequence into the pTRIPZ vector, Sanger 

sequencing was performed on plasmid DNA extracted from clone 1 using the two sequencing 

primers, TRIPZ.Seq and PGK1.Seq. Using the TRIPZ.Seq primer, an 1112 bp amplicon was 

sequenced. Sequencing with the PGK1.Seq primer was unsuccessful. Aligning the 

TRIPZ.Seq amplicon sequence with the pTRIPZ-HIS/FLAG/HA/PGK1 vector sequence 

revealed successful ligation of the pTRIPZ vector with the 5’ end of the PGK1 insert. 

However, only a partial insertion of the PGK1 gene was observed, as the sequence jumped 

from site 4548 to site 11024 on the pTRIPZ-HIS/FLAG/HA/PGK1 plasmid (Figure 4.5).  

 

Figure 4.4. Theoretical image of the ligation between the PGK1 insert with the linearised 

pTRIPZ vector to generate the pTRIPZ-HIS/FLAG/HA/PGK1 ligated plasmid.  

The PGK1 insert and pTRIPZ vector were digested with the XhoI and MluI restriction 

enzymes to generate matching sticky ends that were ligated together using the using the T4 

DNA ligase enzyme.   

C T C G A 

A G C T C 
5’ 3’ 

C G C G T 

T G C G C 
G 

A 
A 

G 
PGK1   

XhoI sticky ends   

MluI sticky ends   

pTRIPZ-PGK1  



 

 

120 
 

 

 

 

Figure 4.5. Plasmid map showing the primer binding sites and sequencing products of 

the pTRIPZ-HIS/FLAG/HA-PGK1 plasmid extracted from clone 1.  

Binding sites of the TRIPZ-Seq (3601-3617 bp site) and PGK1.Seq (4750-4766 bp site) 

primers (17 bp annealing; light purple text) are on the forward strand. Sequencing from the 

TRIPZ-Seq primer was successful, generating an 1112 bp amplicon sequence (pink plasmid 

feature). The sequence read from site 3601-4548, and then jumped to site 11024 reading for 

another 164 bp to site 11187; skipping 6475 bp of the plasmid sequence. Sequencing from 

the PGK1.Seq primer was unsuccessful. The pTRIPZ vector map was downloaded from 

Addgene and modified with SnapGene to include to PGK1 insert sequence (purple plasmid 

feature).  
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To determine which of the ten remaining clones represent the best candidates for 

sequencing, the extracted plasmids were subjected to PCR to amplify the PGK1 insert DNA 

fragment from the pTRIPZ-HIS/FLAG/HA/PGK1 ligated plasmid. Plasmid extracted from 

Clone 2 resulted in a PCR product band (Figure 4.6). Amplification of the PGK1 insert 

fragment from clones 1 and 3-11 was unsuccessful, and therefore sequencing of these clones 

was not performed.  

 

 

 

Figure 4.6. DNA gels of PGK1 PCR products amplified from the plasmid DNA extracted 

out of eleven different Stbl3 bacterial clones.  

The pTRIPZ-HIS/FLAG/HA/PGK1 ligated plasmid extracted from Stbl3 bacterial clones 1-

11 was subjected to PCR with the TRIP.Seq and TRIPZ.Seq.Rev primers to amplify the 

inserted PGK1 sequence (1758 bp). The PCR products were separated by gel electrophoresis, 

and the size was confirmed according to a DNA ladder (L). For negative control (N) no DNA 

was added to the PCR reaction.  
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To confirm the insertion of the full length PGK1 sequence in the plasmid extracted 

from clone 2, Sanger sequencing was performed using the sequencing primers TRIPZ.Seq 

and TRIPZ.Seq.Rev. An amplicon of 1138 bp read length was sequenced using the 

TRIPZ.Seq primer, and alignment with the pTRIPZ-HIS/FLAG/HA/PGK1 ligated plasmid 

vector sequence revealed successful ligation of the pTRIPZ vector with the 5’ end of the 

PGK1 insert. However, only a partial insertion of the PGK1 gene was observed, as the 

sequence jumped from site 3805 to site 9548 on the pTRIPZ-HIS/FLAG/HA/PGK1 plasmid 

(Figure 4.7). Thus, sequencing of the pTRIPZ-HIS/FLAG/HA/PGK1 plasmids extracted from 

Clone 1 and 2, could not validate the insertion of the full length PGK1 gene into the pTRIPz 

lentiviral vector. 

 

 

 

Figure 4.7. Plasmid map showing the primer binding sites and sequencing products of 

the pTRIPZ-HIS/FLAG/HA-PGK1 plasmid extracted from clone 2.  

Binding sites of the TRIPZ-Seq (3601-3617 bp site; forward strand) and TRIPZ.Seq.Rev 

(5342-5358 bp site; reverse strand) primers (17 bp annealing) are represented by light purple 

text. Sequencing from the TRIPZ-Seq primer was successful, generating an 1138 bp amplicon 

sequence (pink plasmid feature). The sequence read from site 3601-3805, and then jumped to 

site 9548 reading for another 825 bp to site 10372; skipping 5742 bp of the plasmid sequence. 

Sequencing from the TRIPZ.Seq.Rev primer was unsuccessful. The pTRIPZ vector map was 

downloaded from Addgene and modified with SnapGene to include to PGK1 insert sequence 

(purple plasmid feature). 
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4.2.2 Transfection efficiency of MCF-7 and MDA-MB-231 cells 

transfected with GFP  

Sequencing could not validate the insertion of the full length PGK1 gene into the 

lentiviral vector. Therefore, the strategy was shifted to transiently overexpress PGK1 protein 

in MCF-7 and MDA-MB-231 breast cancer cells to levels observed by co-culture with CAA 

(Chapter 3; Figure 3.9) and for long enough to perform endpoint analyses (54 hours; Chapter 

2; Figure 2.3).  

To test transfection efficiency, MCF-7 and MDA-MB-231 cells were transfected with 

green fluorescent protein (GFP) coding plasmids at a 1:2 ratio of µg DNA to µL of 

jetPRIME® transfection reagent. Transfection efficiency was determined as the percentage of 

GFP positive cells using fluorescent microscopy and FACS analysis (Figure 4.8).  

Microscopy counted, on average, 35.17% and 35.92% GFP positive cells for MCF-7 

(n= 3) and MDA-MB-231 (n= 3) transfections (complete data not shown). Visual inspection 

detected a slight shift towards rounder cell morphology, and more dead floating cells caused 

by transfection in both MCF-7 and MDA-MB-231 transfections (Figure 4.8A and C). FACS 

analysis calculated 40.6% and 46.9% GFP positive cells for MCF-7 and MDA-MB-231 

transfections, respectively, and detected a reduction in cell viability due to transfection; as 

evident in the lower cell counts compared to controls (Figure 4.8B and D). Of the GFP 

positive cells, FACS analysis demonstrated that some cells had higher GFP expression than 

others. Transfection efficiencies and conditions were deemed acceptable for subsequent 

transfection experiments. 
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Figure 4.8. Transfection efficiency in MCF-7 and MDA-MB-231 cells using jetPRIME® 

reagent.  

MCF-7 (A and B) and MDA-MB-231 (C and D) cells were transfected with the pEGFP-n1 

plasmid, and the GFP signal was quantified by live cell fluorescent microscopy and FACS. A 

and C) Representative microscopy images show GFP positive cells as green fluorescent signal 

measured using FITC at 10X magnification. B and D) Single parameter histograms show 

FACS data as GFP negative cells (left peak) and GFP positive cells (right peak); distinguished 

by the gate set at a maximum of 0.5% GFP signal in the control conditions. Figures on the 

left are control cells without transfection reagent or DNA. Figures on the right are transfected 

cells.   
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4.2.3 Transfection of MCF-7 and MDA-MB-231 cells to transiently 

overexpress PGK1 

MCF-7 and MDA-MB-231 cells were transfected with a plasmid encoding the PGK1 

gene (pFRT/TO/HIS/FLAG/HA-PGK1; Figure 2.2) using the jetPRIME® reagent at a ratio of 

1:2 (2 µg DNA: 4µL transfection reagent). Cells were lysed after 54 hours and lysates were 

measured for PGK1 protein expression by Western blot analysis with an antibody specific to 

PGK1. A full blot showing the specificity of the PGK1 antibody is depicted in Supplementary 

Figure A.3.  

Western blotting for PGK1 showed a double band in the cells transfected with the 

PGK1 encoding plasmid (Figure 4.9). In the pFRT/TO/HIS/FLAG/HA-PGK1 plasmid the 

PGK1 gene is located downstream of the poly-HIS-FLAG-HA tag sequence that is located 

between the PGK1 sequence and the CMV promoter (Chapter 2; Figure 2.2). Providing the 

poly-HIS (24 bp), FLAG (24 bp) and HA (27 bp) tags are being transcribed and translated 

onto the N-terminus of PGK1 enzyme, the additional amino acids would increase the 

molecular weight of the PGK1 protein by approximately 3.2 kDa. Western blotting for the 

FLAG epitope tag confirmed the expression of the tag within the increased molecular weight 

PGK1 band; measuring at approximately 48 kDa (determined by comparison to the protein 

ladder) (Figure 4.9). 

Western blot analysis confirmed that 54 hours post transfection, PGK1 protein 

expression was increased by 135.4% (2.35-fold) in MCF-7, and 49.4% (1.49-fold) in MDA-

MB-231 transfected cells. PGK1 expression included both the untagged and FLAG tagged 

protein (Figure 4.10). This data indicates that transient overexpression of PGK1 protein in 

MCF-7 and MDA-MB-231 cells was successful. 

PGK1 protein expression was increased in MDA-MB-231 cells to similar levels seen 

in response to transwell co-culture with CAA (1.48-fold; Chapter 3; Figure 3.9). After 

transfection MCF-7 cells increased PGK1 expression to levels greater than what was observed 

in response to co-culture with CAA (1.45-fold; Chapter 3; Figure 3.9). Western blot analysis 

shows greater expression of untagged PGK1 protein in MDA-MB-231 compared MCF-7 cells 

(Figure 4.10).  
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Figure 4.9. FLAG expression of transiently transfected MCF-7 and MDA-MB-231 cells 

54 hours post transfection.  

Western blot of MCF-7 and MDA-MB-231 cells transfected with the 

pFRT/TO/HIS/FLAG/HA-PGK1 plasmid encoding PGK1. Transfection showed double 

immunoreactive bands for PGK1 at the correct (44 kDa) and larger molecular size (48 kDa), 

and an immunoreactive band for FLAG at the larger molecular weight PGK1 band location 

(48 kDa). No FLAG expression was detected in control cells without transfection reagent or 

DNA (Con). β-actin was used as a loading control.  
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Figure 4.10. PGK1 expression of transiently transfected MCF-7 and MDA-MB-231 cells 

54 hours post transfection.  

A and B) PGK1 protein expression of transiently transfected MCF-7 (n= 6) and MDA-MB-

231 cells (n= 6). Transfection reagent and DNA were excluded from control (con) cells. DNA 

was excluded from transfection reaction only (TR) cells, and transfection with pEGFP-n1 was 

used as a vehicle control (GFP). PGK1 expression was normalised to control, and data are 

presented as mean ± SEM. Statistical significance was evaluated by One-way ANOVA with 

post-hoc Tukey’s Multiple Comparison Test; *p<0.05; **p<0.01; ***p<0.001. 

Representative Western blot of C) MCF-7 (n= 3) and D) MDA-MB-231 (n= 3) cells 

transfected with the pFRT/TO/HIS/FLAG/HA-PGK1 plasmid encoding PGK1 shows a 

double immunoreactive band for PGK1 at the correct (44 kDa) and larger molecular size (48 

kDa). β-actin expression was used as a loading control.  
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4.2.4 Effect of PGK1 overexpression on lactate production in MCF-7 

and MDA-MB-231 cells  

MCF-7 and MDA-MB-231 cells transfected with GFP and PGK1 encoding plasmids 

were seeded at higher densities than controls (cells grown alone or with jetPRIME® 

transfection reagent), to account for the observed reduced cell viability post-transfection with 

the GFP encoding plasmid (Figure 4.8; Section 4.2.2). Therefore, to account for cell seeding 

differences and to reassess viability, MCF-7 and MDA-MB-231 cell numbers (live and dead) 

were determined using an automated cell counter. Live cell number measurements were used 

to normalise lactate concentration data.  

To determine whether PGK1 protein overexpression alters the amount of lactate 

produced by MCF-7 and MDA-MB-231 cells, lactate concentration was measured using the 

L-Lactate Assay Kit in MCF-7 and MDA-MB-231 cells 54 hours after transfection, and in 

the media conditioned for 48 hours by PGK1 overexpressing MCF-7 and MDA-MB-231 

cells. Lactate concentrations were normalised to live cell numbers measured 54 hours after 

transfection.  

4.2.4.1 Measurement of live cell number in transiently transfected MCF-7 and MDA-

MB-231 cells 

The number of live MCF-7 cells did not significantly differ between transfection 

conditions 54 hours after transfection (Figure 4.11A). The number of live MDA-MB-231 cells 

transfected with PGK1 encoding plasmids was significantly lower than untreated and 

transfection reagent control live cell numbers (p<0.05; Figure 4.11B). There was no 

significant difference in live cell number between the GFP and PGK1 plasmid transfected 

MDA-MB-231 cells (p>0.05; Figure 4.11B). The live cell number and viability of MCF-7 

and MDA-MB-231 cells treated with jetPrime® transfection reagent only (TR) was not 

significantly different from live cell number and viability of control cells (Figure 4.11A-D). 

MCF-7 and MDA-MB-231 cell viability was lower in cells transfected with PGK1 or GFP 

encoding plasmids, compared to untreated and transfection reagent controls (Figure 4.11C 

and D, respectively). This suggests that reductions in MDA-MB-231 live cell number 

following plasmid transfection is not a consequence of transfection reagent toxicity, but rather 

the introduction of GFP and PGK1 expressing plasmids. Moreover, by using higher seeding 

densities this study was able to counteract the reduced viability caused by transfection in 

MCF-7, but not MDA-MB-231 cells.  
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Figure 4.11. Number of live cells after transfection with PGK1 in MCF-7 and MDA-

MB-231 cells.  

The number (106 live cells per mL) and viability (%) of MCF-7 (A and C; n= 3) and MDA-

MB-231 (B and D; n= 3) cells 54 hours after transfection with a PGK1 encoding plasmid was 

determined by automated cell counting. Transfection reagent and DNA were excluded from 

control (Con) cells. DNA was excluded from transfection reaction only (TR) cells, and 

transfection with pEGFP-n1 was used as a vehicle control (GFP). Statistical significance was 

evaluated by One-way ANOVA and post-hoc Bonferroni’s Multiple Comparison Test. Data 

are presented as mean ± SEM; *p<0.05.  
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4.2.4.2 Detecting lactate production in, and extracellular lactate secreted by, MCF-7 

and MDA-MB-231 cells overexpressing PGK1 protein 

Intracellular lactate levels (cell lysate) in MCF-7 and MDA-MB-231 cells were not 

significantly different in PGK1 overexpressing cells compared to untreated, transfection 

reagent, and GFP transfected controls (Figure 4.12A and B, respectively). Lactate 

concentrations in the conditioned media of PGK1 plasmid transfected MCF-7 cells was not 

significantly different to untreated, transfection reagent and GFP transfected controls (p>0.05; 

Figure 4.12A). Compared to PGK1 plasmid transfection, GFP expression in MDA-MB-231 

cells resulted in significantly higher concentration of lactate in the conditioned media 

(p<0.001; Figure 4.12B). Whereas, lactate concentrations were higher in the conditioned 

media of PGK1 plasmid transfected cells when compared to untreated controls (p<0.05; 

Figure 4.12B). Therefore, PGK1 overexpression did not alter lactate concentration in MCF-7 

cells, but may elicit an upregulation of lactate efflux by MDA-MB-2131 cells. However, this 

increase in lactate efflux is likely the consequence of introducing a foreign expressing 

plasmid, as evidenced by the significant increase in lactate accumulating in the conditioned 

media of GFP transfected MDA-MB-231 cells.  
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Figure 4.12. Production and secretion of lactate from MCF-7 and MDA-MB-231 cells 

overexpressing PGK1.  

Lactate concentrations were measured in A) MCF-7 (n= 3) and B) MDA-MB-231 (n= 3) cell 

lysates 54 hours after transfection, and in conditioned media from A) MCF-7 (n= 3) and B) 

MDA-MB-231 (n= 3) cells incubated for 48 hours. Transfection reagent and DNA were 

excluded from control (Control) cells. DNA was excluded from transfection reaction only 

(TR) cells, and transfection with pEGFP-n1 was used as a vehicle control (GFP). Lactate 

concentrations were normalised to live cell number, and data are presented as mean ± SEM. 

Statistical significance was evaluated by Two-way ANOVA with post-hoc Bonferroni 

correction.*p<0.05; ***p< 0.001. 
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4.2.5 Effect of PGK1 overexpression on MCF-7 and MDA-MB-231 

cell proliferation  

To assess cell proliferation, MCF-7 and MDA-MB-231 cells overexpressing PGK1 

were subjected to a sulforhodamine B (SRB) assay 54 hours after transfection. In this study, 

cell proliferation was extrapolated from protein content, as SRB binds to protein and SRB 

concentration can be measured in solution by reading absorbance at 565 nm.  

MCF-7 cells showed a trend toward reduced proliferation when transfected with 

PGK1 and GFP expressing plasmids (Figure 4.13A). MDA-MB-231 cells transfected with 

PGK1 encoding plasmids showed a significant reduction in proliferation compared to 

untreated controls (p<0.001; Figure 4.13B). Both MCF-7 and MDA-MB-231 cells showed no 

significant difference in proliferation between PGK1 and GFP plasmid transfection (p>0.05; 

Figure 4.13A and B, respectively). Treatment with the transfection reagent showed a small 

but insignificant increase in MCF-7 cell proliferation, and a small but insignificant decrease 

in MDA-MB-231 cell proliferation, when compared to control. This suggests that decreased 

proliferation in plasmid transfected cells is not a consequence of transfection reagent toxicity, 

but rather is likely the consequence of introducing GFP and PGK1 expressing plasmids.  
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Figure 4.13. Proliferation of MCF-7 and MDA-MB-231 cells overexpressing PGK1.  

Cell proliferation was measured using an SRB assay in A) MCF-7 (n= 6) and B) MDA-MB-

231 cells (n= 6) 54 hours post transfection. Transfection reagent and DNA was excluded from 

control (Con) cells. DNA was excluded from transfection reaction only (TR) cells, and 

transfection with pEGFP-n1 was used as a vehicle control (GFP). Cell proliferation was 

normalised to control, and data are presented as mean ± SEM. Statistical significance was 

evaluated by One-way ANOVA and post-hoc Bonferroni’s Multiple Comparison Test. ***p< 

0.001.  
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4.2.6 Effect of PGK1 overexpression on chemotherapy response in 

MCF-7 and MDA-MB-231 cells 

4.2.6.1 Calculating IC50 doses of breast cancer chemotherapies for MCF-7 and 

MDA-MB-231 cells 

To assess the dose-dependent effect of paclitaxel and 4-

hydroperoxycyclophosphamide (active metabolite of cyclophosphamide) on metabolic cell 

activity, MCF-7 and MDA-MB-231 cells were treated for 24 hours with paclitaxel 

concentrations ranging from 0.5-100 µM for MCF-7 and 0.5-200 µM for MDA-MB-231, and 

4-hydroperoxycyclophosphamide concentrations ranging from 1-100 µM for both MCF-7 

and MDA-MB-231 (Table 4.1). At the highest concentration of paclitaxel and 4-

hydroperoxycyclophosphamide, MCF-7 cells were exposed to 1.5% ethanol (paclitaxel) and 

0.29% DMSO (4-hydroperoxycyclophosphamide), respectively, and MDA-MB-231 cells 

were exposed to 0.75% ethanol (paclitaxel) and 0.29% DMSO (4-

hydroperoxycyclophosphamide), respectively (Table 4.1).  

 

 

Table 4.1. Paclitaxel and 4-hydroperoxycyclophosphamide concentrations used to 

determine dose-response of MCF-7 and MDA-MB-231 cells. 

MCF-7 MDA-MB-231 
MCF-7 and MDA-

MB-231 

Paclitaxel (µM) Paclitaxel (µM) 4-H-Cyclo (µM) 

0.5 0.5 1 

2 2 2 

10 10 5 

20 20 10 

50 40 20 

100 50 50 

200 (EtOH 1.50% ) 100 (EtOH 0.75%) 100 (DMSO 0.29%) 

EtOH: ethanol; Ethanol is used to solubilise paclitaxel. DMSO: dimethyl sulfoxide. DMSO is used to 

solubilise. 4-H-Cyclo: 4-hydroperoxycyclophosphamide.  
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MTT analysis demonstrated that, at increasing doses of paclitaxel and 4-

hydroperoxycyclophosphamide, the number of metabolically viable MCF-7 and MDA-MB-

231 cells decreased in a dose-dependent manner (R2>0.90; Figure 4.14). IC50s for paclitaxel 

and 4-hydroperoxycyclophosphamide were, 61.94 µM and 24.60 µM in MCF-7, and 20.23 

µM and 23.33 µM in MDA-MB-231, respectively (Figure 4.14). After 24 hours, 200 µM of 

paclitaxel reduced the number of viable MCF-7 cells to 1.5%, and 100 µM of paclitaxel 

completely eliminated viability in MDA-MB-231 cells. Additionally, there were no viable 

MCF-7 and MDA-MB-231 cells after 24 hour exposure to 100 µM of 4-

hydroperoxycyclophosphamide. The viability of MCF-7 and MDA-MB-231 cells was not 

affected by 1.5% or 0.75% ethanol, or 0.29% of dimethyl sulfoxide (DMSO) after 24 

hours(Figure 4.14); validating that the decrease in cell viability measured during paclitaxel 

and 4-hydroperoxycyclophosphamide treatment was not due to ethanol or DMSO present in 

the solution. 
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Figure 4.14. Dose-response curves of MCF-7 and MDA-MB-231 cells treated with 

paclitaxel and 4-hydroperoxycyclophosphamide.  

MTT assay analysis was used to measure cell viability in relation to untreated cells (100% 

viability) in MCF-7 and MDA-MB-231 cells (each with n= 3 biological replicates). Paclitaxel 

and 4-hydroperoxycyclophosphamide (4-H-Cyclo) concentrations were log transformed, and 

IC50 values were evaluated using non-linear fit dose-response curves constructed with 

variable slope modelling (four parameter). 
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4.2.6.2 Measuring cell viability in chemotherapy treated MCF-7 and MDA-MB-231 

cells overexpressing PGK1 

To assess the effect of PGK1 overexpression on chemotherapy response, MCF-7 and 

MDA-MB-231 cells overexpressing PGK1 were treated with IC50 doses of paclitaxel and 4-

hydroperoxycyclophosphamide for 24 hours. Cell viability measured by MTT assay was 

normalised to untreated controls for MCF-7 and MDA-MB-231 (Figure 4.15A and B, 

respectively).  

MCF-7 

In untreated (no chemotherapy) MCF-7 cells, increased expression of PGK1 did not 

significantly alter cell viability when compared to untreated, transfection reagent, and GFP 

transfected controls, although on average a 24.50% reduction was observed compared to 

untreated control (p>0.05; Figure 4.15A). Paclitaxel treatment significantly reduced MCF-7 

cell viability in control cells (white bars) by 36.22% (p<0.001) and PGK1 overexpressing 

cells (black bars) by 36.03% (p<0.001), when compared to their equivalent untreated control 

cells (Figure 4.15B). Similarly, 4-hydroperoxycyclophosphamide treatment significantly 

reduced viability by 24.78% in PGK1 overexpressing cells compared to untreated PGK1 

overexpressing MCF-7 cells (p<0.05; Figure 4.15B).  

MDA-MB-231 

PGK1 overexpression significantly reduced MDA-MB-231 cell viability by 46.58% 

in untreated (no chemotherapy) cells compared to untreated control (p<0.01; Figure 4.15B). 

In untreated (no chemotherapy) MDA-MB-231 cells, cell viability of PGK1 overexpressing 

cells was not significantly different to GFP expressing and transfection reagent controls 

(p>0.05; Figure 4.15B). When compared to equivalent untreated cells, paclitaxel treatment 

significantly reduced cell viability by 41.40% in control cells (white bars; p<0.05), and 

produced a small but not statistically significant reduction in cell viability of 18.68% for 

PGK1 overexpressing cells (black bars; p>0.05; Figure 4.15B). Treatment with 4-

hydroperoxycyclophosphamide caused non-significant reductions in cell viability in control, 

transfection reagent, GFP expressing or PGK1 overexpressing cells when compared to 

equivalent untreated cells (p>0.05; Figure 4.15B).  
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Figure 4.15. Chemotherapy response of MCF-7 and MDA-MB-231 cells overexpressing 

PGK1.  

Response to a 24 hour treatment with IC50 concentration paclitaxel and 4-

hydroperoxycyclophosphamide (4-H-Cyclo) was determined by comparing differences in A 

MCF-7 (n= 6) and B) MDA-MB-231 (n= 6) cell viability (measured by MTT assay) to 

untreated cells (medium without chemotherapy). Data was normalised to untreated control 

cells (horizontal black dotted line). Transfection reagent and DNA was excluded from control 

(Control) cells (white bars). DNA was excluded from transfection reaction only cells (light 

grey bars), and transfection with pEGFP-n1 was used as a transfection vehicle control (GFP; 

dark grey bars). Data are presented as mean ± SEM. Statistical significance was evaluated by 

Two-way ANOVA with post-hoc Bonferroni correction comparing PGK1 overexpression 

(black bars) to controls. *p<0.05; **p<0.01; ***p< 0.001.  
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4.2.7 Relative levels of PGK1 in a panel of breast cancer cell lines  

To assess whether differences in clinically important phenotypes are associated with 

differences in PGK1 expression in vitro, Western blot analysis was used to measure relative 

PGK1 protein levels in ER+ (n= 2), HER2 enriched (n= 2) and triple negative (n= 5) breast 

cancer cell lines cultured under standard growth conditions. The transcriptional 

characteristics, and the molecular and histological tumour subtypes, of the human breast 

cancer cell lines used in this study are described in Table 4.2.  

Expression of PGK1 protein did not significantly differ across the majority of the 

breast cancer cell lines studied, though PGK1 expression was significantly higher in the 

HCC38 cell line compared to all other cell lines except HCC70 (p<0.05, P<0.01, and 

p<0.001). BT20 cells also exhibited significantly lower PGK1 expression than HCC70 cells 

(p<0.05; Figure 4.16A). The largest difference in PGK1 expression was between two triple 

negative cell lines, HCC38 and BT20 (p<0.001; Figure 4.16A). In comparison to MDA-MB-

231 cells, MCF-7 cells exhibited higher PGK1 levels, although the difference was not 

significant (p>0.05; Figure 4.16A). On average, the relative levels of PGK1 did not 

significantly differ between breast cancer cell line subtypes, or between breast cancer 

subtypes and the MCF-10A normal breast cell line (Figure 4.16C). 

 

Table 4.2. Clinical and pathological features of breast tumours used to derive breast 

cancer cell lines used in this study. 

Cell Line ER PR HER2 TP53 Molecular subtype 
Histological 

tumour type 

BT20 - - - Mutant Basal-like IDC 

HCC1954 - - + Mutant HER2 enriched DC 

HCC38 - - - Mutant Basal-like DC 

HCC70 - - - Mutant Basal-like DCIS 

MCF-7 + + - Wild Type Luminal A IDC 

MDA-MB-231 - - - Mutant Basal-like AC 

MDA-MB-468 - - - Mutant Basal-like AC 

SKBR3 - - + Mutant HER2 enriched AC 

T47D + + - Mutant Luminal A IDC 

ER: Oestrogen receptor; PR: Progesterone receptor; HER2: human epidermal growth factor receptor 2; IDC: 

Invasive ductal carcinoma; DC: Ductal carcinoma; AC: Adenocarcinoma; +/-: positive/negative. 

ER/PR/HER2 and TP53 status: as indicated by Neve et al. 335. 
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Figure 4.16. PGK1 protein expression levels in breast cancer cell lines.  

A) Basal expression of PGK1 was measured using Western blot analysis in human epidermal 

growth factor receptor 2 overexpressing (HER2+; n= 2), oestrogen receptor positive (ER+; 

n= 2), and triple negative (TNBC; n= 5) breast cancer cell lines (n= 3, each cell line). B) 

Representative Western blot of PGK1 expression in a panel of breast cancer cell lines. C) 

PGK1 expression in breast cancer cell lines averaged across the HER2+, ER+, and TNBC 

subtypes. For normalisation, β-actin expression was used as a loading control, and relative 

protein levels of PGK1 were normalised to MCF-10A loaded on each gel (+, non-tumour 

control). Data are presented as mean ± SEM. Statistical significance was evaluated by One-

way ANOVA and post-hoc Tukey’s Multiple Comparison Test; *p<0.05; **p<0.01; 

***p<0.001.  
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4.2.8 PGK1 expression in Cancer Cell Line Encyclopedia (CCLE) 

breast cancer cell lines 

The hormone receptor (oestrogen and progesterone) and HER2 enrichment status of 

the breast cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) dataset, was used 

for categorisation into clinically important molecular subtypes including, luminal (ER+ 

and/or PR+, HER2+/-; n= 15), HER2 enriched/HER+ (ER-, PR-, HER2+; n= 8), and triple 

negative/basal-like (ER-, PR-, HER2-; n= 22) (Table 4.3). 

Gene expression analysis of this dataset showed that PGK1 mRNA exhibits significant 

difference between triple negative (ER-, PR- and HER2-) and HER2 enriched cell lines (ER-

, PR- and HER+), with higher expression in cell lines that show increased HER2 expression 

(p<0.05; Figure 4.17). No significant differences in PGK1 mRNA expression were observed 

between luminal and HER2 enriched, or between luminal and triple negative breast cancer 

cell lines. MCF-7 cells exhibited lower PGK1 mRNA expression compared to MDA-MB-231 

cells (Figure 4.17). According to the Cancer Dependency Map (DepMap), the sensitivity of 

breast cancer cell lines to paclitaxel and cyclophosphamide is not significantly associated with 

differences in PGK1 mRNA expression (Figure 4.18).   
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Table 4.3. Molecular characteristics, subtypes and PGK1 mRNA expression of breast 

cancer cell lines from Cancer Cell Line Encyclopedia (CCLE) assessed in this study.  

Cell Line 
ER 

status 

PR 

status 

HER2 

enrichment 
Subtype 

PGK1 expression 

(RNAseq) 

AU565_BREAST - - + HER2 7.622 

BT20_BREAST - - - TN 6.051 

BT474_BREAST + + + Lum 6.800 

BT483_BREAST + +/- - Lum 7.015 

BT549_BREAST - - - TN 6.735 

CAL120_BREAST - - - TN 6.840 

CAL148_BREAST - - - TN 6.738 

CAL51_BREAST - - - TN 6.083 

CAL851_BREAST - - - TN 7.375 

CAMA1_BREAST + +/- - Lum 6.512 

DU4475_BREAST - - - TN 6.141 

EFM19_BREAST + + - Lum 6.643 

EFM192A_BREAST + + + Lum 6.775 

HCC1143_BREAST - - - TN 6.879 

HCC1187_BREAST - - - TN 6.757 

HCC1395_BREAST - - - TN 6.324 

HCC1419_BREAST - - + HER2 6.795 

HCC1428_BREAST + + - Lum 7.073 

HCC1500_BREAST + + - Lum 7.175 

HCC1569_BREAST - - + HER2 7.455 

HCC1599_BREAST - - - TN 5.992 

HCC1806_BREAST - - - TN 5.245 

HCC1937_BREAST - - - TN 5.988 

HCC1954_BREAST - - + HER2 7.992 

HCC202_BREAST - - + HER2 6.524 

HCC2157_BREAST - - - TN 6.297 

HCC2218_BREAST - - + HER2 6.725 

HCC38_BREAST - - - TN 5.321 

HCC70_BREAST - - - TN 7.075 

HDQP1_BREAST - - - TN 5.769 

HS578T_BREAST - - - TN 7.677 

KPL1_BREAST + - - Lum 6.697 

MCF7_BREAST + + - Lum 7.103 

MDAMB134VI_BREAST + - - Lum 5.889 

MDAMB157_BREAST - - - TN 6.314 

MDAMB175VII_BREAST + - - Lum 6.268 

MDAMB231_BREAST - - - TN 7.876 

MDAMB361_BREAST + +/- + Lum 7.076 

MDAMB415_BREAST + +/- - Lum 6.433 

MDAMB436_BREAST - - - TN 7.545 

MDAMB453_BREAST - - + HER2 7.190 

MDAMB468_BREAST - - - TN 6.642 

SKBR3_BREAST - - + HER2 6.791 

Table continues on the next page 
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T47D_BREAST + + - Lum 6.236 

UACC812_BREAST + +/- + Lum 6.940 

UACC893_BREAST - - + HER2 7.616 

ZR751_BREAST + +/- - Lum 6.980 

ZR7530_BREAST + - + Lum 6.440 

ER: oestrogen receptor, HER2: Human epidermal growth factor receptor 2 (HER2 enriched subtype), Lum: 

Luminal subtype; PR: progesterone receptor; TN: triple negative/basal subtype; +/-: positive/negative. 
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Figure 4.17. PGK1 mRNA expression in breast cancer cell lines grouped by subtype.  

Gene expression analysis of PGK1 was reported by Cancer Cell Line Encyclopedia (CCLE). 

PGK1 expression is shown for n= 48 breast cancer cell lines categorised by molecular subtype 

including, HER2+/HER2 overexpressing (ER-, PR-, HER2+; n= 9), Luminal (ER+ and/or 

PR+, HER2+/-; n= 17), and triple negative/basal-like (ER-, PR-, HER2-; n= 22) breast cancer. 

Blue square represents the MCF-7 cell line, and green triangle represents the MDA-MB-231 

cell line. Error bars represent mean ± SEM. Statistical significance was evaluated by One-

way ANOVA and post-hoc Tukey’s Multiple Comparison Test; *p<0.05. ER: oestrogen 

receptor; PR: progesterone receptor, HER2: human epidermal growth factor receptor 2; 

RNAseq: ribonucleic acid sequencing.  

 

 

 

Figure 4.18. Correlation between PGK1 transcript expression and breast cancer cell 

sensitivity to chemotherapy.  

Breast cancer cell line sensitivity to A) paclitaxel (n= 33) and B) cyclophosphamide (n= 15) 

was determined by area under the curve (AUC), and is correlated with the expression of PGK1 

presented as transcripts per million (TPM); as reported by the Cancer Dependency Map 

(DepMap) project. Blue squares represent the MCF-7 cell line, and green triangles represent 

the MDA-MB-231 cell line. Statistical significance was evaluated by Pearson’s correlation.   
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4.2.9 Expression of PGK1 in breast tumours 

To assess whether PGK1 mRNA expression is associated with clinicopathological 

features and expression of other PGK1 related genes in breast tumours, this study utilised 

publically available breast tumour datasets; The Cancer Genome Atlas (TCGA) and 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). PGK1 

mRNA expression was compared with the presence or absence of the clinical biomarkers 

oestrogen receptor (ER), progesterone receptor (PR) and ERBB2 expression (human 

epidermal growth factor receptor 2; HER2) status, and with the expression of hypoxia 

inducible factor 1α (HIF-1α) and solute carrier family 16 member 3 (SLC16A3; encoding for 

monocarboxylate transporter 4 [MCT4] protein) genes. 

Gene expression analysis suggests that PGK1 mRNA displays significant differences 

between ER positive and negative (+/-), PR+/- and HER2+/- breast tumours, with higher 

expression in ER- (p<0.001; Figure 4.19A and B), PR- (p<0.001; Figure 4.19C and D) and 

HER2+ (p<0.01 and p<0.001; Figure 4.19E and F, respectively) breast tumours. PGK1 

mRNA expression was significantly differentially regulated in luminal A breast tumours, with 

lower expression in luminal A breast tumours compared to all other subtypes, including 

luminal B, HER2 enriched, basal, and claudin-low breast tumours (p<0.001;Figure 4.20). 

PGK1 mRNA expression is significantly positively correlated with both HIF-1 and SLC16A3 

expression (p<0.0001), although the correlations were weak (correlation coefficient < 0.40; 

Figure 4.21).  
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Figure 4.19. PGK1 mRNA expression in breast tumours from the TCGA and 

METABRIC datasets.  

There were a total of n= 521 TCGA (A, C and E) and n= 1904 METABRIC (B, D and F) 

breast tumours. Difference in PGK1 expression (microarray z-score) in breast tumours that 

are A and B) ER positive (n= 405 TCGA; n= 1459 METABRIC) and ER negative (n= 117 

TCGA; n= 445 METABRIC), C and D) PR positive (n= 344 TCGA; n= 1009 METABRIC) 

and PR negative (n= 177 TCGA; n= 895 METABRIC), and E and F) HER2 enriched (n= 53 

TCGA; n= 236 METABRIC) and HER2 negative (n= 181 TCGA; n= 1668 METABRIC). 

Error bars represent mean ± SEM (blue and pink). Statistical significance was evaluated by 

unpaired two-tailed t-test. ** p<0.01; ***p< 0.001.  
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Figure 4.20. PGK1 mRNA expression in METABRIC breast tumours grouped by 

subtype.  

Difference in PGK1 mRNA expression between breast tumour subtypes (total, n=1904) 

including luminal A (n= 679), luminal B (n= 461), HER2+ (n= 220), basal (n= 199), and 

claudin-low (n= 199). Statistical significance was evaluated by One-way ANOVA and post-

hoc Tukey’s Multiple Comparison Test. Error bars represent mean ± SEM (red bars). 

***p<0.001.  
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Figure 4.21. Correlation of PGK1 with HIF-1 and SLC16A3 mRNA expression in 

METABRIC breast tumours.  

PGK1 mRNA expression correlated with A) HIF-1 mRNA expression and B) SLC16A3 

mRNA expression in METABRIC breast tumours (n= 1904). Statistical significance was 

evaluated with Pearson’s correlation.   
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4.3 Discussion  

Phosphoglycerate kinase 1 (PGK1) was upregulated in breast cancer cells co-cultured 

with mature breast adipocytes in the previous study chapter (Chapter 3). PGK1 catalyses the 

reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate, the first ATP 

generating step of glycolysis 370, and has been observed to be more highly expressed in breast 

tumours compared to normal breast tissue 399. Moreover, increased PGK1 protein expression 

has been associated with breast cancer progression and poorer prognosis 349,371. However, the 

influence of elevated PGK1 expression on breast cancer cell metabolism, growth and response 

to chemotherapy has yet to be investigated in vitro.  

In this study, the PGK1 enzyme was transiently overexpressed in the molecularly 

distinct hormone receptor positive MCF-7 and triple negative MDA-MB-231 breast cancer 

cell lines. In MCF-7 cells, this overexpression led to increased sensitivity to chemotherapy, 

but made little to no difference in cell proliferation, viability or lactate production. 

Conversely, in MDA-MB-231 cells, transfection with PGK1 expressing plasmids resulted in 

reduced cell proliferation and viability, and significantly increased lactate in the conditioned 

media. However, transfection with GFP expressing plasmids induced similar effects in MDA-

MB-231 cells, suggesting phenotypic changes in MDA-MB-231 cells are likely to be in 

response to expression of plasmid DNA, rather than PGK1 overexpression specifically. From 

these data, we propose that overexpression of PGK1 in vitro could be promoting 

chemotherapy sensitivity in hormone receptor positive breast cancer cells in a glycolysis 

independent manner, and may be abrogating proliferation and viability in hormone receptor 

negative breast cancer cells, although this requires further investigation. 

In addition, analysis using publicly available data showed PGK1 mRNA expression 

to be significantly higher in HER2 enriched (HER2+) compared to HER2 negative (HER2-) 

breast cancers (Figure 4.17 and Figure 4.19), suggesting that gene expression of PGK1 in vivo 

may be associated with this clinically important breast tumour biomarker.  

 

4.3.1 Effect of PGK1 overexpression on MCF-7 and MDA-MB-231 

cell phenotypes in vitro 

Previous studies overexpressing PGK1 protein in hepatocellular and gastric cancer 

cell lines suggest that elevated PGK1 abundance is tolerated by non-breast tumour cells grown 
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in vitro 364,365. To the best of our knowledge, this study is the first to report overexpression of 

PGK1 in human breast cancer cells. 

4.3.1.1 Lactate production  

Cancer cells have been shown to reprogram their metabolism to preferentially perform 

aerobic glycolysis in order to fulfil their energetic requirements, a phenomenon referred to as 

the ‘Warburg effect’380. Aerobic glycolysis consists of an increase in the conversion of 

glucose into pyruvate, even under high oxygen conditions, in which cancer cells 

correspondingly exhibit increases in glucose uptake and production of lactate 380,396. In this 

study, intracellular lactate concentrations measured in MCF-7 and MDA-MB-231 cells, and 

extracellular lactate secreted by MCF-7 cells, was not altered by PGK1 overexpression. There 

was a notable increase in the concentration of lactate in the conditioned media of MDA-MB-

231 cells overexpressing PGK1 compared to untreated cells, although this increase was 

significantly lower than the lactate concentrations evident in the conditioned media of MDA-

MB-231 cells transfected with a GFP expressing plasmid, suggestive of a plasmid expression 

effect. Thus, exclusively upregulating PGK1 does not seem to notably encourage aerobic 

glycolysis in MCF-7 cells, but may be increasing the production and subsequent secretion of 

lactate in MDA-MB-231 cells, although further analysis of the transfection model would need 

to be performed to validate these findings.  

Altered expression of PGK1 in human breast cancer cells has been previously 

associated with changes in energy production, where knockdown of PGK1 decreased the 

concentration of ATP produced in both the cytoplasm and mitochondria of MCF-7 and MDA-

MB-231 cells 372. The decrease in cytosolic ATP reported following knockdown of PGK1 in 

MDA-MB-231 cells could suggest a reduction in the rate of aerobic glycolysis 372, which 

would support the elevated levels of lactate in the conditioned media of PGK1 overexpressing 

MDA-MB-231 cells measured in the current study (Figure 4.12). Moreover, the reduction in 

cytosolic and mitochondrial ATP measured after PGK1 expression was decreased 372, 

provides evidence to suggest that changes in lactate concentrations of PGK1 overexpressing 

MCF-7 cells were undetected because pyruvate produced via glycolysis was likely 

preferentially fuelling the TCA cycle in these cells, rather than being converted into lactate. 

Overall, these findings suggest that alterations in PGK1 mRNA and protein expression may 

be influencing breast cancer cell metabolism. Further research would benefit from more direct 

measures of the glycolytic and mitochondrial respiratory flux in human breast cancers with 

variable PGK1 expression. 
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Lactate levels in the conditioned media of MDA-MB-231 cells were higher than for 

MCF-7 cells, across all experimental conditions. Secretion of lactate from tumour cells occurs 

through the hypoxia-induced lactate transporter monocarboxylate transporter 4 (MCT4) 396, 

which has low affinity to pyruvate, and so in highly glycolytic tumour cells, upregulation of 

MCT4 expression promotes lactate dehydrogenase enzymes to convert pyruvate to lactate 400. 

MCT4 is commonly increased in tumour cells 401–403, including breast cancer cells 379. Under 

both normal oxygen and hypoxic conditions, MCT4 gene expression (known as solute carrier 

family 16 member 3, SLC16A3) is observed to be much higher in hormone receptor negative 

MDA-MB-231 cells than hormone receptor positive MCF-7 cells 379. In addition, triple 

negative breast tumours have been shown to basally express higher levels of MCT4 protein 

404, suggesting that triple negative tumours may be innately better equipped to secrete excess 

lactate produced during increased glycolytic flux. The current study did not assess MCT4 

expression in MCF-7 and MDA-MB-231 cells overexpressing PGK1 protein, but did observe 

a positive correlation between PGK1 and SLC16A3 gene expression in a large cohort 

(METABRIC) of breast tumours, in which 398 tumours had basal-like or claudin-low 

molecular phenotypes (Figure 4.21). Thus, it could be speculated that MCT4 expression may 

be elevated in PGK1 overexpressing MDA-MB-231 cells, facilitating enhanced lactate 

secretion, and thus quantification of MCT4 expression in future investigations of the effects 

of PGK1 overexpression would be worthwhile.  

Until recently, it was assumed that PGK1 primarily promoted tumourigenesis by 

catalysing a key step in the glycolytic pathway. However, evidence is accumulating to show 

that PGK1 has a number of other mechanistically distinct functions, which are determined by 

subcellular localisation 373–375. In the cytosol, PGK1 can phosphorylate Beclin 1 (BECN1) at 

S30 under hypoxia stimulation or glutamine deprivation, encouraging the initiation of 

autophagy 375. Under hypoxia PGK1 has been observed to translocate to the mitochondria, 

where it acts as a protein kinase phosphorylating pyruvate dehydrogenase kinase 1 (PDHK1) 

at T338. Phosphorylation of PDHK1 leads to the inhibition of the pyruvate dehydrogenase 

complex causing reduced mitochondrial pyruvate utilisation, and thus increased lactate 

production through promotion of aerobic glycolysis 374. Moreover, PGK1 has been shown to 

bind to DNA polymerases α and ε in the nucleus, upregulating the synthesis of DNA 405,406, 

and has recently been determined to translocate from the cytosol to the nucleus, where it co-

localises with HIV-Tat Specific Factor 1 (HTATSF1) 407. Another study suggests that PGK1 

expressed in the nucleus of brain cancer cells binds to CDC7 and promotes DNA helicase 
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recruitment, DNA replication and cell proliferation 408. Furthermore, PGK1 secreted by 

fibrosarcoma cells may be acting as a disulphide reductase by binding and reducing disulphide 

bonds of plasmin, thus permitting the cleavage of plasminogen and promoting formation of 

angiostatin in the extracellular compartment, inhibiting tumour angiogenesis 373,409. Taken 

together, these studies suggest that overexpression of PGK1 in the breast cancer cells used in 

this study may not be exclusively affecting metabolic activity, but rather influencing an array 

of cellular functions.  

In addition to playing a role in determining sub-cellular localisation, a number of 

reports show that post-translation modification of PGK1, including phosphorylation, 

acetylation and ubiquitination, may regulate the glycolytic and non-glycolytic activity of 

PGK1 in tumour cells 374,375,408,410–412. In liver cancer cells, acetylation of PGK1 at K323 

enhanced its metabolic activity, and was associated with poorer prognosis in clinical tumours 

412. Another study showed that it was acetylation of PGK1 at K388 that lead to its binding 

with, and phosphorylation of BECN1 375. The translocation of PGK1 into the mitochondria 

where it phosphorylates PDHK1 is reliant on it being phosphorylated at S203 374, and binding 

of PGK1 to CDC7 in the nucleus is dependent on it being phosphorylated at S256 408. 

Furthermore, non-small cell lung cancer (NSCLC) cell growth was suppressed following 

post-translation ubiquitin-mediated degradation of PGK1, regulated by Rab11-binding 

protein Rab11-FIP2 411. Therefore, to better understand the functional role of PGK1 shown to 

be upregulated in advanced breast cancers, future research would benefit from analysing both 

the post-translational modifications and the sub-cellular localisation of PGK1 in breast cancer 

cells in vivo.  

4.3.1.2 Cell proliferation 

PGK1 overexpression significantly reduced cell proliferation and live cell number in 

MDA-MB-231 cells, although this was concurrent with GFP induced reductions in MDA-

MB-231 cell proliferation and live cell number (Figure 4.11 and Figure 4.13). MCF-7 cells 

showed an insignificant decrease in cell proliferation following PGK1 overexpression (Figure 

4.13). If induced by PGK1 overexpression, reductions in live cell number and proliferation 

would be unexpected based on previous in vivo findings that suggest increased PGK1 

expression is associated with larger more advanced stage tumours and poorer survival 

outcomes in patients treated with paclitaxel 349,371. Moreover, in vitro observations have 

previously determined that the knockdown of 17beta-hydroxysteroid dehydrogenase type 5 
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(17β-HSD5) upregulated PGK1 expression and increased rates of proliferation in MCF-7 cells 

413, and that the activation of peroxisome proliferator-activated receptor γ (PPARγ) decreased 

PGK1 expression and initiated apoptosis in MCF-7 and MDA-MB-231 breast cancer cells 372. 

Thus, other than the likely influence of plasmid DNA transfection, it is possible that other 

factors associated with the cell lines may have influenced the lowered survival and replication 

of the breast cancer cells in this study.  

In comparison to MDA-MB-231 cells, MCF-7 cells seemed to better tolerate the 

expression of plasmid DNA. Importantly though, any reductions in breast cancer cell 

proliferation and live cell number were not associated with transfection reagent toxicity. It 

has recently been suggested that GFP expression in cells can induce oxidative stress that 

affects expression of genes involved in important biological pathways 414. Therefore, it is 

possible enforced GFP expression in this study may be inhibiting the proliferation and live 

cell number of the transfected breast cancer cells. However, this does not explain the reduction 

in proliferation evident in cells overexpressing PGK1. Thus, future investigations would 

benefit from the transfection of a similar sized ‘empty’ vector, to determine whether the 

expression of plasmid DNA is influencing the survival and replication of MCF-7 and MDA-

MB-231 cells.  

It is possible that differences in response to GFP and PGK1 transfection in MCF-7 

and MDA-MB-231 cells may be driven in part by differences in oncogenic mutations intrinsic 

to the breast cancer cell lines 384. P53 is a tumour suppressor that has well-established roles 

in protecting malignant cell development but also tumour progression 415. MCF-7 cells carry 

a wildtype TP53 gene, whereas the more invasive MDA-MB-231 cells have a mutant TP53 

gene 384. P53 is recognized for its use as a prognostic marker in breast cancer 385, and 

interestingly, can influence how cells respond to altered expression of certain genes and 

proteins 415,416. Thus, it may be interesting for further studies to consider the influence of 

PGK1 protein upregulation on p53 activity in cell lines with differing TP53 status.  

4.3.1.3 Chemotherapy response  

In this study, transient overexpression of PGK1 protein led to an insignificant decrease 

in the viability of MCF-7 cells. However, in combination with paclitaxel or 

cyclophosphamide, PGK1 overexpression in MCF-7 cells significantly reduced the viability 

of the cells. In comparison to MCF-7 cells, MDA-MB-231 cells showed a significant decrease 

in viability with PGK1 overexpression, but this decrease in viability was not exacerbated by 
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paclitaxel or cyclophosphamide treatment. To the best of our knowledge this is the first study 

to report on the association between PGK1 protein expression and sensitivity to both 

paclitaxel and cyclophosphamide in MDA-MB-231 cells. The current observations of reduced 

viability in chemotherapy treated PGK1 overexpressing MCF-7 cells are supported by a 

previous investigation that found PGK1 expression to be downregulated in adriamycin- and 

paclitaxel-resistant MCF-7 cells 417. Taken together, these findings suggest that increased 

expression of the PGK1 enzyme may make MCF-7 cells more susceptible to the cytotoxic 

effects of chemotherapy. 

Increased PGK1 expression has been observed in adriamycin-resistant leukaemia cells 

418, cisplatin-resistant ovarian carcinoma cells 419,420, and PGK1 overexpression has been 

associated with the induction of a multi-drug resistance phenotype in human osteogenic 

sarcoma cells 367. Furthermore, previous investigations have shown that by knocking down 

PGK1 protein expression in endometrial and gastric carcinoma cells, the inhibitory/cytotoxic 

effects of chemotherapy are enhanced 368,398. Thus, expression of PGK1 appears to play a key 

role in chemotherapy resistance in many cancer types. Based on in vitro findings in MCF-7 

cells417 and current study results (Figure 4.18), the role of PGK1 in breast cancer may not 

concord with other cancers. However, previous in vivo investigations in breast tumours 

suggest that the role PGK1 is similar to findings in other cancers. PGK1 expression was 

decreased in breast tumours that exhibited a response to chemotherapy treatment 421, and 

higher PGK1 expression in breast tumours from patients treated with paclitaxel resulted in 

worse overall survival 349; suggesting that PGK1 overexpression is prognostic of 

chemotherapy resistance in the clinical setting, particularly to paclitaxel. Thus, further 

research assessing the effects of PGK1 protein expression on breast tumour response to 

chemotherapies are warranted.  

Paclitaxel and cyclophosphamide were chosen for use in this study as they are 

currently utilised chemotherapeutics in the clinical treatment of patients with breast cancer. 

Paclitaxel and cyclophosphamide achieve cytotoxicity by targeting cell replication processes. 

Paclitaxel inhibits mitosis, causing cell cycle arrest, by stabilising microtubules and 

preventing the reorganisation of the microtubule network that is essential during mitosis 

422,423. After rapid hepatic metabolism, metabolites of cyclophosphamide form crosslinks 

between and within DNA strands that are irreversible and interfere with DNA replication and 

transcription, resulting in cell apoptosis 271. In this study, the aim was to reduce control cell 

viability by approximately 50% during paclitaxel and cyclophosphamide treatment, yet 
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neither chemotherapy achieved this reduction. It is possible that variation in experimental 

design between the dose-response and PGK1 overexpression experiments altered the 

chemotherapeutic effects. Nevertheless, PGK1 overexpression was not able to protect the 

viability of the breast cancer cells from chemotherapy treatment, despite the cytotoxicity 

being lower than expected.  

Cyclophosphamide is a prodrug that in vivo undergoes hepatic metabolism into its 

main active metabolite, 4-hydroperoxycyclophosphamide. 4-hydroperoxycyclophosphamide 

exists in equilibrium with its tautomer, aldophosphamide, which can diffuse into cells. When 

cells are low in aldehyde dehydrogenase (ALDH) levels, aldophosphamide is converted into 

phosphoramide mustard which forms crosslinks between and within DNA strands at N7 

position of guanine, causing cellular apoptosis 271. ALDH is a well-established marker of 

breast cancer stem cells, and higher ALDH expression has been associated with poor clinical 

outcome, resistance to chemotherapeutic agents, and positive HER2 expression in breast 

cancer 424–426. The current study did not address the levels of ALDH expression in the breast 

cancer cells treated with 4-hydroperoxycyclophosphamide, and whether transfection with 

GFP or PGK1 encoding plasmids altered the ALDH levels. Interestingly, both breast cancer 

cell lines used in this study chapter are known to be negative for HER2 overexpression 335, 

which suggests inherently lower levels of ALDH are present in these cells. However, it is still 

possible that ALDH levels influenced the cytotoxic effects of 4-

hydroperoxycyclophosphamide, but this requires further investigation.  

4.3.1.4 Considerations of the PGK1 overexpression experimental model 

The current study initially selected the TRIPZ inducible lentiviral system for 

transducing PGK1 into the MCF-7 and MDA-MB-231 cell genomes based on its high 

transduction efficiency in non-dividing cell populations and its ability to stably integrate 

introduced material into the host genome. This study attempted the insertion of the 

HIS/FLAG/HA tagged PGK1 gene sequence into the TRIPZ vector backbone between the 

XhoI and MluI restriction sites, and was able to confirm successful ligation of the insert at 

XhoI. However, sequencing could not validate ligation of the insert at MluI despite successful 

insertion with this site in previous studies overexpressing catalase in human colon carcinoma 

cells and E-cadherin in human epidermoid carcinoma cells using the TRIPZ lentiviral system; 

achieved by replacing the shRNA cassette, between the AgeI and MluI restriction sites, with 

the coding sequences for these genes 427,428.  
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Instead of stable transduction, PGK1 expression in this study was upregulated in 

MCF-7 and MDA-MB-231 breast cancer cells by transfection with an established PGK1 

expressing vector using the JetPRIME® polymer-based transfection reagent. A major 

advantage of cationic polymer molecules, such as the JetPRIME® reagent, is they form 

polymer-DNA complexes that are taken up by the host cell via endocytosis 429,430, and 

therefore in comparison to viral transduction, polymer-based transfection has much lower 

cytotoxicity and promotes transfection efficiency by condensing the transfected DNA 429–431. 

Furthermore, by performing polymer transfection for transient upregulation of PGK1 protein, 

this study avoided the potential for host cell mutagenesis, which can occur with lentiviral 

vectors randomly integrating into the host genome, disrupting essential genes and potentially 

causing oncogene activation 432.  

The current analysis indicated that transfected breast cancer cells expressed two 

different forms of PGK1 protein, the endogenous PGK1 enzyme and a slightly larger variant 

determined as the PGK1 enzyme fused with an N-terminal poly-HIS-FLAG-HA tag. 

Transfected MDA-MB-231 cells mostly expressed the endogenous untagged PGK1 protein, 

whereas MCF-7 cells expressed more of the larger tagged PGK1 protein following 

transfection, and thus the analysis of PGK1 protein overexpression in MCF-7 cells may have 

been impacted by this. Although, the exact structure and function of the tagged PGK1 protein 

was not investigated in the current analysis, it was assumed that the small size of the tag was 

unlikely to obscure the conformational domains of the protein, and therefore both forms were 

considered to constitute active PGK1 enzymes in the analysis of results. 

According to microscopic images taken to assess EGFP transfection efficiency, the 

number of expressing vectors transfected into each MCF-7 and MDA-MB-231 cell varied 

across the cell populations. Thus, it was considered that non-transfected cells with basal levels 

of PGK1 protein expression may have influenced the measured effects of the PGK1 

overexpressing populations. However, the average expression of PGK1 protein across the cell 

populations was established to be increased in both cell lines, and for this reason, 

overexpression of PGK1 was analysed and interpreted for its effect over the cell population, 

rather than any potential impact at the single cell level. Selection for vector DNA expression 

to isolate only transfected cells could be considered for future research using this study’s 

transfection protocol 433. 
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The MCF-7 cells showed higher PGK1 expression following transfection than the 

MDA-MB-231 cells in this study, however, the MDA-MB-231 cells exhibited higher 

transfection efficiencies. It is well recognised that transfection efficiency differs between 

mammalian cell lines 434, and in agreement with this study the transfection efficiency of 

foreign DNA has been shown to be higher in MDA-MB-231 compared to MCF-7 cells using 

variety of different transfection reagents 435. Higher PGK1 protein expression in MCF-7 cells 

may be explained by the fact that transfection with encoding DNA (GFP and PGK1) resulted 

in a statistically significant reduction in MDA-MB-231 live cell number, proliferation, and 

viability, whereas, MCF-7 cells only exhibited a statistically significant reduction in viability 

following transfection with a GFP encoding plasmid. Taken together, these results suggest 

that plasmid DNA transfection into MDA-MB-231 cells may be easier than MCF-7 cells, yet 

MCF-7 cells seem to tolerate the introduction of the foreign DNA, and/or the subsequent 

expression of the plasmid encoded proteins better than MDA-MB-231 cells.  

Lastly, in this study, transfection with a GFP encoding plasmid was used as a vehicle 

control for PGK1 plasmid transfection, and interestingly, GFP expression exhibited a greater 

reduction in MCF-7 and MDA-MB-231 cell viability than PGK1 protein overexpression. 

Recently, GFP expression in cells was found to induce oxidative stress that affected the 

expression of genes involved in important biological pathways, including decreased 

stabilisation and activity of HIF-1α 414. HIF-1α is known to regulate the expression of genes 

associated with cell metabolism 393,394. Therefore, it could be hypothesised that GFP 

expression is causing an increase in oxidative stress that is leading to reduced HIF-1α activity, 

and subsequently decreased metabolic viability. MDA-MB-231 cells expressing GFP in this 

study showed elevated secretion of lactate. GFP expressing MDA-MB-231 cells increased 

lactate secretion more than PGK1 overexpressing MDA-MB-231 cells, suggesting that 

elevated lactate secretion may not be occurring in direct response to PGK1 overexpression. It 

is possible that the source of elevated lactate in MDA-MB-231 conditioned media is 

intracellular lactate released during cell death, which would correlate with the increased 

number of dead MDA-MB-231 cells observed after plasmid mediated expression of GFP and 

PGK1.  



 

 

157 
 

4.3.2 Association with clinical biomarkers and expression of PGK1 in 

breast cancer 

Molecular phenotypes of breast tumours are relevant to the clinical prognosis and 

treatment of the disease 104,105,107,111,112. PGK1 protein expression was previously determined 

to have no association with any particular breast tumour molecular subtype 349, and prior to 

the current analysis the association between PGK1 gene expression and breast cancer 

molecular subtypes had not been assessed. In this study, breast cancer cell lines showed 

significantly higher PGK1 expression in HER2 enriched compared to triple negative breast 

cancer cells, whereas, breast tumours showed no difference in PGK1 expression between 

HER2 enriched, luminal B, basal-like or claudin-low tumours (Figure 4.17), although did 

exhibit lower PGK1 expression in breast tumours characterised as being luminal A compared 

to all other breast tumour subtypes (Figure 4.20). Based on these findings, it could be 

speculated that mRNA and protein expression of PGK1 is not likely molecular subtype 

dependent, but rather responds predominantly to HER2 signalling in breast cancer.  

Analysis of PGK1 gene expression in large publicly available datasets (TCGA, 

METBRIC), determined that PGK1 was significantly upregulated in HER2 overexpressing 

(HER2+) compared to HER2- breast tumours (Figure 4.19). These results are supported by 

previous investigations, observing elevated expression of PGK1 in HER2 enriched tumours 

as measured by mass spectrometry 369,436 and immunohistochemistry 349, suggesting that 

mRNA and protein expression of PGK1 in breast tumours overexpressing HER2 are likely 

positively correlated; although this has yet to be addressed directly. Moreover, it has been 

shown that the monoclonal antibody Herceptin, through its partial blocking of the HER2 

signalling pathway, considerably decreased the expression of PGK1 in the HER2+ SKBR3 

breast cancer cell line 369, providing strong evidence for a direct association between HER2 

signalling and PGK1 regulation in breast cancer. PGK1 protein expression measured in a 

panel of breast cancer cell lines in this study was not differentially expressed between HER2+ 

and HER2- subtypes, however the sample numbers were small making results vulnerable to 

outliers, and thus these differences would likely change with larger sample sizes. Overall, 

results from this chapter along with investigations by others, suggests that PGK1 may 

represent a co-expressing HER2 related enzyme. As the majority of the work carried out in 

this study chapter was performed in HER2 negative breast cancer cell lines, further 
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investigation is required to better determine the biological and clinical implications of PGK1 

overexpression in HER2 enriched breast cancers.  

In the cohort of breast tumours assessed in this study (METABRIC), PGK1 expression 

was paralleled with an increase in SLC16A3 (encoding for MCT4 protein) and HIF-1α 

expression (Figure 4.21). PGK1 and MCT4 expression are well known to be regulated by 

hypoxia in a HIF-1α dependent manner 392,393,437, and this is true in breast cancer 371,404. Larger 

more aggressive tumours that show greater resistance to cancer therapeutics have been shown 

to be more hypoxic 438, and in breast cancer, larger more advanced stage tumours, poorer 

disease-free survival, and worse overall survival in patients treated with paclitaxel, have all 

been correlated with elevated expression of PGK1 349,371. An elevated hypoxic signature is a 

negative prognostic factor in breast cancer 439, where simultaneous presentation of HER2 

overexpression and HIF-1α reactivity has been linked with breast cancer aggression 440. 

Therefore, it is possible that the HIF-1α-PGK1 signalling axis is aiding in the promotion of 

HER2 overexpressing breast cancers, and thus, may be a potential target for future study and 

therapeutic development.  

4.4 Summary 

The data presented in this chapter showed that transfection of MCF-7 and MDA-MB-

231 breast cancer cells transiently upregulated expression of PGK1, however, overexpression 

of PGK1 did not promote cell growth or survival. Elevated PGK1 expression did not alter live 

cell number, proliferation, or lactate production in MCF-7 cells, yet increased sensitivity to 

chemotherapy. Moreover, despite overexpression of PGK1 increasing the level of lactate 

released by MDA-MB-231 cells into the media, elevated expression of PGK1 reduced cell 

proliferation and viability in these cells, and similar effects were evident in GFP transfected 

MDA-MB-231 cells, therefore implicating the expression of plasmid DNA, rather than PGK1 

overexpression, in the manifestation of these phenotypic alterations. Overall, the transient 

transfection model utilised for PGK1 overexpression in this study requires further 

optimisation. Thus, further research is still required to fully understand the biological role of 

PGK1 in breast cancer.



 

 

 
 

 

 

Chapter 5  

 

Influence of obesity-related systemic inflammation on 

hepatic cytochrome P450 activity in women with breast 

cancer: A patient feasibility study 

 

5.1 Introduction 

Obese women with breast cancer have increased levels of circulating obesity-related 

inflammatory cytokines, and poorer pathological response rates to chemotherapy 63,116,122. In 

contrast, combined aerobic and resistance exercise implemented during adjuvant 

chemotherapy has displayed a trend toward improved breast cancer disease free survival 

outcomes, particularly for women who were overweight or obese 188. Two systematic reviews 

have concluded there is biological relevance in the association between exercise and breast 

cancer outcome, as physical activity can positively alter levels of circulating inflammatory 

cytokines and other cancer-related biomarkers 441,442. A number of biological mechanisms 

have been proposed to explain the complex relationships between systemic inflammation and 

breast cancer outcome, with many of these focused around the direct interaction between 

inflammatory markers and breast tumour cells 148–150. To date, less attention has been directed 

toward the impact of systemic inflammation on the hepatic metabolism of clinically important 

breast cancer chemotherapy agents that operate under very narrow therapeutic windows. 

Thus, this study hypothesises that elevated circulating inflammatory cytokines decrease 

activity of drug metabolizing enzymes in obese women receiving chemotherapy for breast 

cancer, and secondly that concentrations of circulating inflammatory markers in these women 

are influenced by obesity and levels of physical activity. 
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A number of hepatic cytochrome P450 (CYP) drug metabolising enzymes, including 

CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, are involved in metabolism of 

currently utilised breast cancer chemotherapy, such as tamoxifen, cyclophosphamide, 

dexamethasone, doxorubicin and paclitaxel 264,266. Alteration in the activity of these CYP 

enzymes may lead to altered efficacy or toxicity in breast cancer patients being treated with 

chemotherapies 264,265,267. Evidence for inflammation-induced repression of hepatic CYP 

expression has been presented in vitro 300–303. Altered CYP activity has been observed in 

inflammatory-associated disease states, including HIV and hepatitis C infection, liver disease 

and cancer 283,306–310,316. However, only one study has observed alterations in CYP activity 

associated with levels of circulating inflammatory markers, in which decreased activity of the 

CYP3A4 was correlated with an increase in circulating C-reactive protein (CRP; a marker of 

inflammation associated with the acute phase response) expression in advanced cancer 

patients 317.  

Whether in whole animal models or human subjects, in vivo CYP activity has been 

studied using CYP-specific probe drugs. Using concurrent oral administration of five probe 

drugs in twelve healthy Korean males, Ryu et al. demonstrated that the activity of CYP1A2, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4 could be evaluated using only a 4 hour blood 

sample and a 0-8 hour urine collection 290. In vivo metabolic activity of CYP1A2, CYP2C9, 

CYP2C19, CYP2D6, and CYP3A4 after single administration of losartan and midazolam, or 

dosing with a well-known three drug cocktail of caffeine, omeprazole and dextromethorphan, 

was not significantly different from the metabolic activity exhibited after the administration 

of all five probe drugs concurrently, named the ‘Inje cocktail’; indicating no probe-drug 

component interactions 290. Subsequently, the use of the ‘Inje cocktail’ to assess metabolising 

activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 has been investigated in 

drug-drug interaction studies, by co-administering the probe drugs alongside other drugs of 

interest 443,444. However, to the best of our knowledge, the use of the ‘Inje cocktail’ to assess 

drug-drug or disease-drug interactions resulting in altered CYP activity has not yet been 

carried out in cancer patients. 

This study chapter carried out an exploratory patient study recruiting non-obese (BMI 

< 30) and obese (BMI ≥ 30) women being treated with chemotherapy for stage II or III breast 

cancer. In vivo activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was 

assessed using the ‘Inje’ probe drug cocktail and mass spectrometry analysis, and was 

subsequently related to serum concentrations of inflammatory cytokines quantified by 
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immunoassays. Differences in body morphometry and daily step counts were measured in 

order to assess whether alterations in CYP activity may be attributable to obesity or physical 

activity influencing the levels of circulating inflammatory cytokines.  

5.1.1 Aims 

The aim of this study chapter was to explore the association between body 

morphometry, physical activity, circulating inflammatory cytokines and metabolising 

activity of CYP enzymes in women being treated with chemotherapy for early stage II or III 

breast cancer. This was assessed by:  

1) Assessing body mass index (BMI), waist to hip ratio (WHR) and body fat percentage 

before chemotherapy (following diagnosis, and prior to starting neoadjuvant or adjuvant 

chemotherapy) and again after chemotherapy (following dose six of paclitaxel).  

2) Measuring daily step counts for the 21 days following adriamycin-cyclophosphamide 

(AC) cycle one, 7 days after both paclitaxel dose one and dose six, and relating step counts 

to body morphometry measures.  

3) Quantifying the concentration of selected circulating inflammatory cytokines in serum 

samples collected before chemotherapy, after AC cycle one, following paclitaxel dose one 

and dose six and relating these to body morphometry and step count measures.  

4) Investigating metabolising activity of CYP enzymes before and after chemotherapy and 

relating any changes in metabolising activity during chemotherapy with changes in 

circulating inflammatory cytokine concentrations. 

 

5.1.2 Experimental approach 

A schematic diagram outlining the study protocol is shown in Figure 2.4. The 

experimental approaches taken for this clinical study chapter are described in detail at the 

beginning of each relevant results section (see Sections 5.2.1.1, 5.2.2.1, 5.2.3.1, and 5.2.4.1).  
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5.2 Results 

5.2.1 Participant recruitment 

5.2.1.1 Experimental approach 

Recruitment took place between 1/3/2017 and 25/12/18. Patients were screened by 

study nurses based on a range of inclusion and exclusion criteria (Section 2.10.2 and 

Appendix B). Potential participants were then approached by medical oncologists at their first 

oncology appointment. Recruited participants gave informed written consent for their 

participation in the study, the use of their specimens (blood and urine) for research purposes, 

and access to their medical records.  

5.2.1.2 Recruitment rates 

Ethical approval for this study originally included recruitment of women with stage II 

and III breast cancer being treated with adjuvant adriamycin-cyclophosphamide (AC)-

paclitaxel chemotherapy. Based on slower than anticipated rates of recruitment, this study 

amended the protocol, approximately three months after recruitment started (on 7/6/2017), to 

include women with stage II and III breast cancer receiving neoadjuvant chemotherapy. 

Recruitment onto this study did not alter clinical treatment for the participant (see Figure 2.4 

for a schematic of the study schedule).  

Mosaiq electronic records (Elekta, Stockholm, Sweden) were used to determine the 

recruitment rates onto this study. There were 107 stage II or III breast cancer patients 

receiving AC and paclitaxel chemotherapy (neoadjuvant or adjuvant) registered on Mosaiq 

under the Canterbury Regional Cancer & Haematology Service at Christchurch Hospital 

(CDHB) between 1/3/2017 and 6/8/2018 (Figure 5.1). Over the same period (1/3/2017 and 

6/8/2018) eleven participants were recruited onto this study, a recruitment rate of 10.28% 

(11/107; Figure 5.1). 31.8% of the registered patients (34/107) were considered ‘not eligible’ 

for this study based on other exclusion criteria, and 57.9% of the registered patients (62/107) 

were considered ‘not recruited’ despite being eligible for this study (Figure 5.1). ‘Not eligible’ 

patients were excluded mostly because they lived out of Christchurch, and thus, were 

receiving a portion of their treatment at other oncology centres including Ashburton, 

Greymouth, and Timaru hospitals; making the additional clinical visits required to participate 

in this study unfeasible for those patients. Further factors rendering patients ineligible were, 

starting neoadjuvant chemotherapy prior to 7/6/2017, hepatitis C, and receiving paclitaxel 

dosing prior to AC cycles. Anecdotally, the most notable deterrent to consent for those 
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patients that were approached but were considered ‘not recruited’ was the additional time 

commitment; especially for full time workers and women with families (data not shown).  

Following assessment of recruitment rates, another study participant was recruited between 

6/8/2018 and 25/12/2018, and thus, the final number of participants recruited onto this study 

was twelve (n=12).  

 

 

 

Figure 5.1. Recruitment rates.  

Recruitment of women with stage II and II breast cancer receiving adriamycin-

cyclophosphamide (AC) and paclitaxel (neoadjuvant or adjuvant) who were registered on 

HCS under the Canterbury Regional Cancer & Haematology Service at Christchurch Hospital 

(CDHB) between 1/3/2017 and 6/8/2018 (total n= 107).  
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5.2.2 Demographics and body morphometry  

5.2.2.1 Experimental approach 

Body morphometry was measured using body mass index (BMI), waist to hip ratio 

(WHR) and body fat and muscle mass percentages calculated for each participant at baseline 

(before chemotherapy) and following dose six of paclitaxel (after chemotherapy) (Chapter 2; 

Section 2.10.3). BMI was calculated from height and weight, by dividing a participant’s 

weight in kilograms by their height in meters squared (BMI= kg/m2). WHR was calculated as 

the waist circumference divided by the hip circumference. Body fat and muscle mass 

percentages were determined using the Tanita Body Composition Analyser (Chapter 2; 

Section 2.10.4). Associations between BMI, WHR and body fat percentage before 

chemotherapy, and the change in body morphometry during chemotherapy, was assessed.  

Waist and hip circumference measures were missed from participant 1 following 

paclitaxel dose six, and therefore, changes in WHR during chemotherapy could not be 

calculated. Due to clinical complications participant 7 was only able to complete two out of 

the twelve (2/12) scheduled paclitaxel doses, and was withdrawn from the study. Therefore, 

participant 7 did not have body morphometry measures taken after chemotherapy, and thus, 

any change during chemotherapy could not be assessed.  

5.2.2.2 Participant demographics and body morphometry 

Overall, this study recruited twelve women with stage II or III breast cancer being 

treated with neoadjuvant or adjuvant chemotherapy at Christchurch Hospital (Table 5.1). 

Reported ethnicity of participants were NZ European (n= 9), NZ Māori (n= 1), English (n= 

1), and other (n= 1) (Table 5.1). At the time of recruitment (baseline), participants were aged 

from 40 to 68 years (Table 5.1). Six participants were aged 49 years or below (and were 

considered pre-menopausal), and six were aged 50 years or above (and were considered post-

menopausal). Half of the participants received neoadjuvant chemotherapy (n= 6), and half 

(n= 6) received adjuvant chemotherapy following surgery (Table 5.1). At baseline, BMI 

ranged from 20.7 to 39.4, WHR ranged from 0.770 to 0.938, body fat percentage ranged from 

20.5% to 51.7%, and muscle mass percentage ranged from 45.9% to 75.48% (Table 5.1). 

According to BMI at baseline, seven participants were non-obese (BMI < 30), and five 

participants were obese (obese; BMI ≥ 30), whereas, WHR measures suggest that five 

participants were non-obese (WHR < 0.85) and seven participants were obese (WHR ≥ 0.85) 

at baseline (Table 5.1).  
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None of the study participants had their adriamycin-cyclophosphamide or paclitaxel 

chemotherapy treatments dose-capped based on body surface area (BSA) (Table 5.2).  
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Table 5.1. Patient information and baseline body morphometry measurements for the study participants.   

Participant Age Ethnicity Chemo Regime Weight (kg) Height (cm) BMI WHR Body Fat % Muscle Mass % 

1 68 NZ European Adjuvant 86.1 159 34.1 0.938 43.3 53.77 

2 43 NZ European Adjuvant 84.8 161 33.1 0.915 42.2 54.83 

3 60 NZ European Adjuvant 73 163 27.5 0.914 43.4 53.7 

4 48 NZ Māori Neoadjuvant 56.4 165 20.7 0.840 27.6 68.62 

5 49 NZ European Adjuvant 68.4 160 26.6 0.871 37.9 58.91 

6 44 Other Neoadjuvant 94.7 167 34.0 0.840 43.1 54.05 

7 40 NZ European Neoadjuvant 112.4 169 39.4 0.860 51.7 45.90 

8 67 NZ European Adjuvant 64.7 154 27.3 0.880 34.1 62.40 

9 50 English Adjuvant 61.2 166 22.2 0.770 28.7 67.60 

10 50 NZ European Neoadjuvant 72.2 163 27.2 0.800 20.5 75.48 

11 42 NZ European Neoadjuvant 61.3 155 25.5 0.847 33.5 63.13 

12 65 NZ European Neoadjuvant 73 154 30.8 0.856 41.9 55.07 

BMI: Body mass index; WHR: Waist to hip ratio. 
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Table 5.2. Predicted doses based on BSA, and actual doses of adriamycin-cyclophosphamide and paclitaxel received by study participants.  

Participant 
BSA* 

(AC) 

Predicted A 

(mg) 

Actual A** 

(mg) 

Predicted C 

(mg) 

Actual C*** 

(mg) 

BSA* 

(Pac) 

Predicted 

Pac (mg) 

Actual**** 

Pac (mg) 

1 1.91 114 115 1140 1150 1.91 150 150 

2 1.9 114 115 1140 1150 1.9 150 150 

3 1.82 108 110 1080 1100 1.82 150 150 

4 1.64 98.4 100 984 1000 1.66 132 130 

5 1.74 104.4 105 1044 1050 1.84 145.6 140 

6 2.07 124.2 120 1242 1200 2.1 168 170 

7 2.2 132 135 1320 1350 2.2 176 180 

8 1.64 98.4 95 984 950 1.63 130 130 

9 1.72 103.2 100 1032 1000 1.71 136 140 

10 1.79 107.4 105 1074 1050 1.79 143 140 

11 1.6 96 95 960 950 1.62 130 130 

12 1.73 103.8 105 1038 1050 1.7 136 140 

BSA: body surface area; AC: adriamycin-cyclophosphamide; Pac: paclitaxel; mg: milligrams.  

*BSA is calculated by multiplying height (cm) by weight (kg), dividing by 3600, and then calculating the square root. 

**Adriamycin dosed based on BSA and rounded to the nearest 5mg 

***Cyclophosphamide dosed based on BSA and rounded to the nearest 50mg 

****Paclitaxel dosed based on BSA and rounded to the nearest 10mg 
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5.2.2.3 Correlation between different body morphometry measures before 

chemotherapy 

To determine whether the different body morphometry measures taken at baseline 

were correlated, this study compared BMI, WHR and body fat percentage measurements 

taken at baseline (n= 12 participants), and the associations are presented in Figure 5.2. 

In this group of women diagnosed with stage II or III breast cancer (n= 12 

participants), body fat percentage was significantly positively correlated with both BMI (R2= 

0.846) and WHR (R2= 0.639), in which both associations were significant (p<0.05; Figure 

5.2A and C). BMI and WHR measures were positively correlated, but not significantly (R2= 

0.530, p=0.076; Figure 5.2B).  
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Figure 5.2. Correlation between body morphometry measures at baseline.  

Participants had body mass index (BMI; n= 12), waist to hip ratio (WHR; n= 12) and body 

fat percentage (n= 12) measured before chemotherapy. A and C) Analysis showed a 

significant positive association of body fat percentage with BMI and WHR, and B) a positive 

association between BMI and WHR. Statistical analysis was performed using Spearman 

correlation analysis. Significance was determined as p<0.05.  
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5.2.2.4 Change in body composition during chemotherapy 

In order to examine changes in body morphometry during chemotherapy, this study 

compared BMI, WHR and body fat percentage measurements taken before and after 

chemotherapy. Individual changes in body morphometry are presented in Figure 5.3, and the 

average change in body morphometry across all participants is displayed in Figure 5.4. 

Muscle mass measurements are presented in Figure 5.5 and Figure 5.6. 

The largest change in BMI was a 28% increase (participant 5; 26.6 before 

chemotherapy to 34.0 after chemotherapy); indicating a transition from the overweight to 

obese category (Figure 5.3A). Only one participant had a decrease in BMI during 

chemotherapy (participant 12); BMI decreased from 30.80 before chemotherapy to 29.60 after 

chemotherapy (4% decrease; Figure 5.3A). All other participants displayed 0-7% increases in 

BMI during chemotherapy (Figure 5.3A).  

During chemotherapy, three participants displayed notable changes in body fat 

percentage, two participants showed increases of 53% (from 20.5% before chemotherapy to 

31.40% after chemotherapy; participant 10) and 15% (from 37.9% before chemotherapy to 

43.40% after chemotherapy; participant 5), and one participant exhibited a 16.4% decrease 

(from 34.10% before chemotherapy to 29.30% after chemotherapy; participant 8) (Figure 

5.3B). All other participants displayed 0-6% differences in body fat percentage during 

chemotherapy (Figure 5.3B). The largest difference in muscle mass percentage was 

participant 10, decreasing from 75.48% to 62.20% (Figure 5.5).  

The largest change in WHR was by participant 5, with a decrease from 0.87 before 

chemotherapy to 0.79 after chemotherapy (a 10.2% decrease); thus changing this participant 

from the obese to non-obese category (Figure 5.3C). All other participants displayed 0-7% 

differences in WHR during chemotherapy (Figure 5.3C).  

On average across all participants, BMI showed a significant increase from before to 

after chemotherapy (n= 11; p< 0.05), whereas, WHR (n= 10) and body fat percentage (n= 11) 

were not significantly different (Figure 5.4). Similarly, muscle mass did not change 

significantly during chemotherapy (n= 11; p>0.05; Figure 5.6).  
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Figure 5.3. Body morphometry measures recorded before and after chemotherapy.  

A) Body mass index (BMI) of the participants was measured at baseline (n= 12) and following 

dose six of paclitaxel (n= 11). B) Body fat percentage was assessed for each participant at 

baseline (n= 12) and following dose six of paclitaxel (n= 11). C) Waist to hip ratio (WHR) 

was determined for each participant at baseline (n= 12) and following dose six of paclitaxel 

(n= 10).  
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Figure 5.4. Change in body morphometry during chemotherapy.  

Body mass index (BMI; n= 11; circles), body fat percentage (n= 11; squares), waist to hip 

ratio (WHR; n= 10; triangles) measures taken before and after chemotherapy were used to 

assess the change in body morphometry during chemotherapy (∆Body Morphometry Log10 

Paclitaxel dose6/Baseline). Horizontal dotted line represents no change in body morphometry 

during chemotherapy. Solid black horizontal lines represent the median values. Statistical 

analysis was performed by Wilcoxon matched-pairs signed rank tests. *p<0.05 
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Figure 5.5. Muscle mass percentage before and after chemotherapy.  

Muscle mass percentage for each participant was recorded before chemotherapy (pink; n= 12) 

and following dose six of paclitaxel (purple; n= 11).  
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Figure 5.6. Change in muscle mass during chemotherapy.  

Muscle mass percentage (n= 11; triangles) measures taken before and after chemotherapy 

were used to assess the change during chemotherapy (∆ muscle mass log10). Horizontal 

dotted line represents no change during chemotherapy. Solid black horizontal lines represent 

the median values. Statistical analysis was performed by Wilcoxon matched-pairs signed rank 

tests, and p<0.05 was considered statistically significant.  
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5.2.3 Physical activity levels during chemotherapy 

5.2.3.1 Experimental approach 

To investigate physical activity levels, the number of steps walked each day by study 

participants was measured using FitBit One® devices for 21 days after AC cycle one, and 7 

days after both paclitaxel dose one and dose six (Chapter 2; Section 2.10.5). Average daily 

step counts were calculated for AC cycle one, paclitaxel dose one, paclitaxel dose six, and all 

three treatment periods combined (35 days). To assess whether variation in physical activity 

levels between participants was due to differences in treatment plans, body morphometry, or 

age, the average daily step count over all three measurement periods was compared between 

participants that had high and low body fat percentage (split by median), participants that did 

or did not have surgery prior to starting chemotherapy (adjuvant or neoadjuvant, respectively), 

and participants that were considered pre- or post-menopausal (split by age of 50 years). 

Adherence to wearing FitBIt One® devices was evaluated by considering the number of days 

that steps were recorded compared to the total number of possible days that steps could have 

been recorded. 

Due to technical complications, step count data for two participants (participants 9 and 

10) was lost during the 21 days of AC cycle one. One participant (participant 12) misplaced 

the FitBit One® and, therefore, another 21 days of data over AC cycle one was missed. As a 

result of clinical complications, participant 7 was only able to complete two out of the twelve 

(2/12) scheduled paclitaxel doses and was withdrawn from the study before paclitaxel dose 

six, and therefore did not have step counts measured over this time period of the study.  

 

5.2.3.2 Adherence to wearing the FitBit One® devices during chemotherapy 

To determine adherence to wearing the FitBit One® devices, the number of days that 

participants were scheduled to wear the device was compared to the number of days that the 

device had step count recorded.  

Of the 350 days that participants were scheduled to wear the FitBit One® devices, step 

counts were recorded for 328 of these days, and thus, the overall adherence rate for wearing 

the devices was 93.7% (328/350 days; Table 5.3). Adherence rates were highest for the 7 days 

over paclitaxel dose one (95.2%; 80/84 days; n= 12), when compared to the 21 days of AC 

cycle one (93.7%; 177/189 days; n= 9), and 7 days of paclitaxel dose six (92.2%; 71/77 days; 
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n= 11; Table 5.3). 10 out of the 22 missed days were by participant 4, and 9 out of the 22 days 

were by participant 2.  

 

Table 5.3. Adherence to wearing FitBit One® devices.  

 Days Counted Days Missed Total Days Adherence (%) 

AC Cycle 1 177 12 189 93.7 

Paclitaxel Dose 1 80 4 84 95.2 

Paclitaxel Dose 6 71 6 77 92.2 

Total 328 22 350 93.7 

AC: Adriamycin-cyclophosphamide 

 

5.2.3.3 Cumulative number of steps walked during FitBit One® wearing periods of 

chemotherapy  

To assess the variation in the number of steps walked by the study participants, the 

number of steps walked each day was measured over AC cycle one (21 days; n= 9 

participants), paclitaxel dose one (7 days; n= 12 participants), and paclitaxel dose six (7 days; 

n= 11 participants), and the cumulative step count for each participant is presented in Figure 

5.7.  

Over 21 days of AC cycle one, the median cumulative step count was 113,632 steps, 

and the cumulative step counts ranged from 77,411 (participant 4) to 324,158 steps 

(participant 8; Figure 5.7A). Participant 5 had the second highest cumulative step count over 

AC cycle one, with 242,694 steps in total (Figure 5.7A). Over 7 days of paclitaxel dose one, 

the median cumulative step count was 35,340 steps, and the cumulative step counts ranged 

from 10,970 (participant 4) to 54,494 steps (participant 9; Figure 5.7B). Participants 1 and 8 

had the second and third highest cumulative step counts over paclitaxel dose one, with 48,954 

and 48,373 steps, respectively (Figure 5.7B). Over 7 days of paclitaxel dose six, the median 

cumulative step count was 34,508 steps, and the cumulative step counts ranged from 6,145 

(participant 4) to 73,907 steps (participant 9; Figure 5.7C), and participant 6 had the second 

highest cumulative step count with 61,499 steps in total (Figure 5.7C). Participant 4 only wore 

the FitBit One® device for two days during paclitaxel dose six, walking 3,194 and 2,951 steps 

on each of these days (Figure 5.7C).  
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Figure 5.7. Cumulative step counts were assessed using daily step counts during 

chemotherapy.  

The number of steps walked by participants each day during A) AC cycle one (21 days; n= 9 

participants), B) paclitaxel dose one (7 days; n= 12 participants) and C) paclitaxel dose six (7 

days; n= 11 participants). Horizontal black dotted line represents the median cumulative step 

count at the end of AC cycle one, and paclitaxel dose one and six.  
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5.2.3.4 Number of steps walked on average each day during chemotherapy  

To determine whether the number of steps walked by participants changes during 

chemotherapy the number of steps walked each day was measured over AC cycle one (21 

days; n= 9 participants), paclitaxel dose one (7 days; n= 12 participants), and paclitaxel dose 

six (7 days; n= 11 participants), and the average daily step counts are presented in Figure 5.8.  

For all participants, the average daily step counts were 8,390 steps for AC cycle one, 

4,901 steps for paclitaxel dose one, and 5,716 steps for paclitaxel dose six (Figure 5.8). The 

average daily step count significantly decreased from AC cycle one to dose one of paclitaxel 

(p<0.05; Figure 5.8). Median values of the average daily step counts were 5546 steps for AC 

cycle one, 4913 steps for paclitaxel dose one, and 4940 steps for paclitaxel dose six.  
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Figure 5.8. Average number of steps walked each day during chemotherapy.  

Step counts were measured over AC cycle one (21 days; n= 9 participants; squares), paclitaxel 

dose one (7 days; n= 12 participants; diamonds) and paclitaxel dose six (7 days; n= 11 

participants; triangles). Horizontal solid line represents the median values. Statistical analysis 

was performed using Wilcoxon matched-pairs signed rank test. *p<0.05.  
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5.2.3.5 Effects of demographics and body morphometry on the number of steps 

walked during chemotherapy 

To determine whether the average daily step counts are effected by differences in 

participant demographics or body morphometry, the average daily step counts for AC cycle 

one (21 days; n= 9 participants), paclitaxel dose one (7 days; n= 12 participants), and 

paclitaxel dose six (7 days; n= 11 participants) were compared between participants with high 

and low body fat percentage at baseline (split by median= 39.90%), participants that were 

treated with either adjuvant or neo-adjuavnt chemotherapy, and participants that were pre-

menopausal (age < 50 years) or post-menopausal (age ≥ 50 years) at baseline (Figure 5.9).  

Variation in the participants average daily step counts over AC cycle one, paclitaxel 

dose one and paclitaxel dose six was not dependent on the body fat percentage of the 

participants (Figure 5.9A). To determine the effects of body morphometry on levels of 

physical activity this study compared body fat percentage, and not BMI, with average daily 

step counts due to the participants body fat percentage being significantly positively 

correlated with BMI and WHR (Section 5.2.2.3, Figure 5.2A and C), and the participants BMI 

significantly changing during chemotherapy, when body fat percentage did not (Section 

5.2.2.4, Figure 5.4). 

The difference in average daily steps counts during AC cycle one, paclitaxel dose one, 

and paclitaxel dose six was not significantly affected by whether the participant had surgery 

prior to chemotherapy (p > 0.05), although there was a trend towards lower step counts in 

neoadjuvant compared to adjuvant participants during AC cycle one (p=0.06; Figure 5.9B). 

Lastly, the menopausal status of the participants did not significantly influence the number of 

steps walked by the participants during chemotherapy (Figure 5.9C).   
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Figure 5.9. Effect of participant demographics and body morphometry on the average 

number of steps walked each day during chemotherapy.  

Daily step counts were recorded using FitBit One® devices and the average daily step counts 

were calculated for AC cycle one (n= 9; squares), paclitaxel dose one (n= 12; diamonds), and 

paclitaxel dose six (n= 11; triangles). Average daily step counts were compared between A) 

participants with low (solid points) and high (transparent points) body fat percentage (split by 

median= 39.90%) recorded before chemotherapy, B) participants that had either adjuvant 

(Adj; solid icons) or neoadjuvant (Neo-Adju; transparent icons) chemotherapy, and C) 

participants that were pre-menopausal (Pre; age<50; solid icons) or post-menopausal (Post; 

age ≥ 50; transparent icons) at baseline. Horizontal solid black lines represent median values. 

Statistical analysis was performed using Mann Whitney U tests, and significance was 

determined as p<0.05.  



 

 

180 
 

5.2.4 Circulating inflammation markers 

5.2.4.1 Experimental approach 

To investigate the effect of body morphometry and physical activity on circulating 

concentrations of inflammatory cytokines during chemotherapy, serum was collected from 

participants at baseline (before chemotherapy), following AC cycle one, and after paclitaxel 

dose one and dose six (Chapter 2; Section 2.10.3). Using a human cytokine array, relative 

expression of 105 inflammatory cytokines were compared between non-obese (BMI < 30; n= 

4) and obese (BMI ≥ 30; n= 4) participants by pooling together serum samples (4 x 25 µL = 

100 µL) taken before chemotherapy and again after paclitaxel dose six (after chemotherapy) 

(Chapter 2; Section 2.10.7).  

Enzyme linked immunoassays (ELISAs) were used to measure the concentration of 

circulating inflammatory cytokines (ANG2, BAFF, CRP, GDF-15, IL-1β, IL-4, IL-10, MCP-

1, and TNF-α) in each individual serum sample taken from study participants throughout 

chemotherapy (baseline, AC cycle one, paclitaxel dose one and paclitaxel dose six), using 

internal linear standards. The inflammatory cytokines of interest were selected for assessment 

for one of three reasons. First, for being previously associated with decreased CYP expression 

and/or activity in vitro and/or in vivo (CRP, IL-1β, IL-4, IL-10, and TNF-α) 159,304,317. Second, 

for showing an increase compared to baseline in obese participant serum throughout 

chemotherapy in this studies inflammatory cytokine array (ANG2, BAFF, and GDF-15) 

(Section 5.2.4.2). Last, for having a well-established relationship with elevated adiposity 

and/or obesity in the literature (CRP, MCP-1, and TNF-α) 29,63. Assessment of IL-6 was not 

performed in this part of the study due to restricted serum sample volumes. The change in 

cytokine expression during chemotherapy was compared between participants with high or 

low body fat percentage (measured before chemotherapy; split by median), and participants 

with high or low physical activity levels (split by the median average daily step count over all 

35 days).  

Participant 1 did not have circulating concentrations of ANG2, BAFF, CRP, and GDF-

15 measured before chemotherapy due to the small volume of serum collected from 

participant 1 at baseline. As a result of clinical complications, participant 7 was only able to 

complete two out of the twelve (2/12) scheduled paclitaxel doses and was withdrawn from 

the study before paclitaxel dose six, and therefore did not have circulating inflammatory 

cytokines measured over this time period of the study. 
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5.2.4.2 Effect of body morphometry on the relative levels of circulating inflammatory 

cytokines during chemotherapy 

To indicate whether differences in body morphometry influence the relative levels of 

circulating inflammatory cytokines during chemotherapy, the expression of 105 inflammatory 

cytokines were compared between the pooled serum samples collected from non-obese (BMI 

< 30) and obese (BMI ≥ 30) participants before and after chemotherapy, using a human 

cytokine array. The most differently expressed cytokines are presented in Figure 5.11 and 

Figure 5.12. Human XL Cytokine Array reference Full array images are depicted below in 

Figure 5.10, and the corresponding cytokines based on array co-ordinates are listed in  

Table 5.4. 

Of the top 30 most differentially expressed cytokines between non-obese and obese 

participants, leptin was the only cytokine that was increased in obese compared to non-obese 

participants both before chemotherapy (obese/non-obese= 3.56) and after chemotherapy 

(obese/non-obese= 1.95; Figure 5.11). Interleukin 3 (IL-3) showed the greatest difference in 

expression between obese and non-obese participants before chemotherapy; 12.62-fold in 

obese participants. Macrophage Inflammatory Protein-3 (MIP3a) exhibited the greatest 

difference in expression between obese and non-obese participants after chemotherapy; 7.13-

fold higher in non-obese participants. Before chemotherapy, all 30 of the most differentially 

expressed cytokines were more highly expressed in obese compared to non-obese participants 

(Figure 5.11A). After chemotherapy, 29 out of the 30 most differentially expressed cytokines 

showed lower expression in obese compared to non-obese participants (Figure 5.11B).  

The change in the relative levels of inflammatory cytokines from before to after 

chemotherapy was also evaluated, and the most differentially expressed cytokines are 

presented in Figure 5.12. In non-obese participants, all 30 of the most differentially expressed 

cytokines were higher after chemotherapy than before chemotherapy (Figure 5.12A), 

whereas, in obese participants 29 out of the 30 most differentially expressed cytokines were 

lower after chemotherapy than before chemotherapy (Figure 5.12B). B-cell activating factor 

(BAFF) was the only cytokine that showed higher levels after chemotherapy (compared to 

before chemotherapy) in obese participants (2.49-fold increase; Figure 5.12). 

In obese participants, 8 of the 105 cytokines showed a 1.1-fold or higher (log>0.1761) 

increase in expression after chemotherapy (compared to before chemotherapy), of which 
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BAFF, growth/differentiation factor 15 (GDF-15), growth hormone, and angiopoietin-2 

(ANG2) were the top four (Figure 5.13).  

 

 

Figure 5.10. Human XL Cytokine Array membrane images.  

A) Schematic of the membrane array analyte co-ordinates (not to scale), which included 

duplicate spots of 105 human cytokines, chemokines and acute phase response proteins. These 

duplicate spots were measured in the serum of study participants taken B and C) before 

chemotherapy, and D and E) after chemotherapy. B and D) Serum from four non-obese 

(BMI<30) participants, and C and E) four obese (BMI>30) participants were pooled together.
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Table 5.4. List of Human XL Cytokine Array analytes and the co-ordinates that they map to on the array membrane.  

Co-ordinates Analyte/Control Co-ordinates Analyte/Control Co-ordinates Analyte/Control Co-ordinates Analyte/Control 

A1, A2 Reference spots C13, C14 FGF-19 E23, E24 IL-18 BPa H5, H6 PDGF-AA 

A3, A4 Adiponectin/Acrp30 C15, C16 Flt-3 Ligand F1, F2 IL-19 H7, H8 PDGF-AB/BB 

A5, A6 Angiogenin C17, C18 G-CSF F3, F4 IL-22 H9, H10 Pentraxin 3/TSF-14 

A7, A8 Angiopoietin-1 C19, C20 GDF-15 F5, F6 IL-23 H11, H12 CXCL4/PF4 

A9, A10 Angiopoietin-2 C21, C22 GM-CSF F7, F8 IL-24 H13, H14 RAGE 

A11, A12 Apolipoprotein A1 D1, D2 CXCL1/GRO alpha F9, F10 IL-27 H15, H16 CCL5/RANTES 

A13, A14 BAFF/BLyS/TNFSF13B D3, D4 Growth Hormone F11, F12 IL-31 H17, H18 RBP4 

A15, A16 BDNF D5, D6 HGF F13, F14 IL-32 alpha/beta/gamma H19, H20 Relaxin-2 

A17, A18 CD14 D7, D8 ICAM-1/CD54 F15, F16 IL-33 H21, H22 Resistin 

A19, A20 CD30 D9, D10 IFN-gamma F17, F18 IL-34 H23, H24 SDF-1 alpha 

A21, A22 CD31/PECAM-1 D11, D12 IGFBP-2 F19, F20 CXCL10/IP-10 I1, I2 Serpin E1/PAI-1 

A23, A24 Reference spots D13, D14 IGFBP-3 F21, F22 CXCL11/I-TAC I3, I4 SHBG 

B3, B4 CD40 Ligand/TNFSF5 D15, D16 IL-1 alpha/IL-1F1 F23, F24 Kallikrein 3/PSA I5, I6 ST2/IL1 R4 

B5, B6 Chitinase 3-like 1 D17, D18 IL-1 beta/IL-1F2 G1, G2 Leptin I7, I8 CCL17/TARC 

B7, B8 Complement Factor D D19. D20 IL-1ra/IL-1F3 G3, G4 LIF I9, I10 TFF3 

B9, B10 C-Reactive Protein/CRP D21, D22 IL-2 G5, G6 Lipocalin-2/NGAL I11, I12 TfR 

B11, B12 Cripto-1 D23, D24 IL-3 G7, G8 CCL2/MCP-1 I13, I14 TGF-alpha 

B13, B14 Cystatin C E1, E2 IL-4 G9, G10 CCL7/MCP-3 I15, I16 Thrombospondin-1 

B15, B16 Dkk-1 E3, E4 IL-5 G11, G12 M-CSF I17, I18 TNF-alpha 

B17, B18 DPPIV/CD26 E5, E6 IL-6 G13, G14 MIF I19, I20 uPAR 

B19, B20 EGF E7, E8 IL-8 G15, G16 CXCL9/MIG I21, I22 VEGF 

B21, B22 Emmprin E9, E10 IL-10 G17, G18 CCL3/CCL4 MIP-1 alpha/beta J1, J2 Reference spot 

C3, C4 CXCL5/ENA-78 E11, E12 IL-11 G19, G20 CCL20/MIP-3 alpha J5, J6 Vitamin D BP 

C5, C6 Endoglin/CD105 E13, E14 IL-12 p70 G21, G22 CCL19/MIP-3 beta J7, J8 CD31 

C7, C8 Fas Ligand E15, E16 IL-13 G23, G24 MMP-9 J9, J10 TIM-3 

C9, C10 FGF basic E17, E18 IL-15 H1, H2 Myeloperoxidase J11, J12 VCAM-1 

C11, C12 KGF/FGF-7 E19, E20 IL-16 H3, H4 Osteopontin (OPN) J23, J24 Negative control 

  E21, E22 IL-17A     
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Figure 5.11. Effect of body morphometry on the relative levels of circulating 

inflammatory cytokines during chemotherapy.  

Serum samples were assessed by a human cytokine array (105 human cytokines) to measure 

the cytokines most differentially expressed between non-obese (BMI < 30; pooled sample 

from n= 4 participants) and obese (BMI ≥ 30; pooled sample from n= 4 participants) 

participants (top n= 30 cytokines) A) before chemotherapy and B) after chemotherapy 

(following paclitaxel dose six). Horizontal dotted lines represent a 1.5 fold change (log10 of 

1.5 = ± 0.1761). 
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Figure 5.12. The change in relative levels of circulating inflammatory cytokines from 

before to after chemotherapy.  

Serum samples were assessed by a human cytokine array (105 human cytokines) to measure 

the cytokines most differentially expressed between baseline and paclitaxel dose six (top n= 

30 cytokines) in A) non-obese (BMI < 30; pooled sample from n= 4 participants) and B) obese 

(BMI ≥ 30; pooled sample from n= 4 participants) participants. Horizontal dotted lines 

represent a 1.5 fold change (log10 of 1.5 = ± 0.1761). 
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Figure 5.13. The circulating inflammatory cytokines showing a relative increase from 

before to after chemotherapy in obese participants.  

Serum samples were assessed by a human cytokine array (105 human cytokines) to measure 

the cytokines most differentially expressed between baseline (pooled sample from n= 4 

participants) and paclitaxel dose six (pooled sample from n= 4 participants) in obese (BMI ≥ 

30) participants. Horizontal dotted lines represent a 1.1-fold change.   
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5.2.4.3 Change in circulating concentrations of selected inflammatory cytokines 

during chemotherapy 

To determine whether circulating inflammatory cytokines are changing during 

chemotherapy, concentrations of the inflammatory cytokines ANG2, BAFF, CRP, GDF-15, 

IL-1β, IL-4, IL-10, MCP-1, and TNF-α were measured in serum samples collected from each 

participant before chemotherapy (baseline), and again following AC cycle one, paclitaxel dose 

one and paclitaxel dose six, with the measured concentrations presented in Figure 5.14. 

Across all participants, the circulating concentrations of BAFF were significantly 

higher at paclitaxel dose one (median= 4064 pg/mL) and paclitaxel dose six (median= 3776 

pg/mL) compared to baseline (median= 1472 pg/mL; p<0.05; Figure 5.14B). Circulating 

concentrations of IL-10 were significantly lower at paclitaxel dose one (median= 12.53 

pg/mL) and paclitaxel dose six (median= 3.61 pg/mL) compared to AC cycle one (Median= 

14.0 pg/mL; p<0.05; Figure 5.14E). Paclitaxel dose six concentrations of IL-10 (median= 3.61 

pg/mL) were lower than baseline IL-10 concentrations (median= 9.75 pg/mL), but not 

significantly (p>0.05; Figure 5.14E). Across all participants, the circulating concentrations of 

ANG2, CRP, GDF-15, and MCP-1 did not significantly differ throughout chemotherapy 

(p>0.05; Figure 5.14A, C, D, and F). Median circulating concentrations of CRP and GDF-15 

increase from baseline to AC cycle one, and increase again from AC cycle one to paclitaxel 

dose one, and remain higher than baseline at paclitaxel dose six, but not significantly (p>0.05; 

Figure 5.14D). Circulating concentration of MCP-1 decreased from baseline (median= 397.7 

pg/mL) to AC cycle one (median= 365.8 pg/mL), but increased by paclitaxel dose six 

(median= 504.8 pg/mL) to levels higher than baseline, but not significantly (p>0.05). 

Expression of the IL-1β, IL-4, and TNF-α inflammatory cytokines were below the detectable 

range in serum from study participants. 

A separate investigation of the change in circulating inflammatory cytokine 

concentrations from before to after chemotherapy, by relating cytokine levels after paclitaxel 

dose six back to levels recorded before chemotherapy, showed a significant increase in the 

levels of BAFF, GDF-15, and MCP-1 (p<0.05), and significant decrease in IL-10 (p<0.05; 

Figure 5.15). 

Lastly, the concentrations of inflammatory cytokines before chemotherapy were not 

significantly different between participants treated with either neoadjuvant or adjuvant 
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chemotherapy (p>0.05; Figure 5.16), suggesting surgery prior to starting chemotherapy was 

not influencing the levels of circulating inflammatory cytokines in the adjuvant participants.  
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Figure 5.14. Circulating inflammatory cytokine concentrations measured during 

chemotherapy.  

Inflammatory cytokines. A) ANG2, B) BAFF, C) CRP, D) GDF-15, E) IL-10, and F) MCP-1 

were measured in participant serum using enzyme-linked immunosorbent assays at baseline 

(n= 11 for ANG2, BAFF, CRP and GDF-15, and n= 12 for IL-10 and MCP-1; circles), AC 

cycle one (n= 12; squares), paclitaxel dose one (n= 12; diamonds), and paclitaxel dose six (n= 

11; triangles). Black horizontal solid lines represent the median values. Statistical analysis was 

perform with the Kruskal-Wallis test using Dunn’s Multiple Comparison Testing *p<0.01; 

**p<0.01; ***p<0.001.  
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Figure 5.15. Change in circulating inflammatory cytokines measured during 

chemotherapy.  

Inflammatory cytokines ANG2, BAFF, CRP, GDF-15, IL-10, and MCP-1 were measured in 

participant serum using enzyme-linked immunosorbent assays before chemotherapy (n= 10), 

and after chemotherapy (after paclitaxel dose six; n= 10). Black horizontal solid lines represent 

median values. The black horizontal dotted line represents no difference in cytokine 

concentration from baseline to paclitaxel dose six, and points above or below the dotted line 

represent an increase or decrease in cytokine concentration during chemotherapy, respectively. 

Statistical analysis was performed using the Wilcoxon matched-pairs signed rank test. 

*p<0.05; **p<0.01.  
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Figure 5.16. Effects of surgery on concentrations of circulating inflammatory cytokines 

before chemotherapy.  

The concentration of A) ANG2, B) BAFF, C) CRP, D) GDF-15, E) IL-10, and F) MCP-1 were 

measured in serum samples collected from each participant before starting chemotherapy, and 

were compared between participants treated with neoadjuvant (n= 6; solid points) and adjuvant 

(n= 6; transparent points) chemotherapy. Black horizontal solid lines represent the median 

values. Statistical analysis was performed using Mann-Whitney U testing, and significance 

was determined as p<0.05.  
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5.2.4.4 Effect of body morphometry on changes in circulating concentrations of 

selected inflammatory cytokines during chemotherapy 

To determine whether the change in circulating inflammatory cytokines was affected 

by differences in body morphometry at baseline (prior to starting chemotherapy), and the 

change in BMI and body fat percentage during chemotherapy, the change in levels of 

inflammatory cytokines ANG2, BAFF, CRP, GDF-15, IL-10 and MCP-1 between baseline 

and paclitaxel dose six were compared between participants that had either low (n= 6) or high 

(n= 5) body fat percentage (split by median= 39.90%) at baseline (Figure 5.17), and correlated 

with the change in body fat percentage and BMI between baseline and paclitaxel dose six 

(Figure 5.18 and Figure 5.19).  

Change in concentrations of all six cytokines from baseline to paclitaxel dose six was 

not dependent on differences in body fat percentage at baseline (p>0.05; Figure 5.17). To 

determine the effects of body morphometry on the changes in circulating inflammatory 

cytokines during chemotherapy, this study compared baseline body fat percentage with the 

change in cytokine concentrations, as body fat percentage was significantly positively 

correlated with both BMI and WHR at baseline (Section 5.2.2.3, Figure 5.2A and C).  

Changes in IL-10 concentrations were significantly positively correlated with changes 

in body fat percentage (R2=0.685, p=0.025; Figure 5.18E). Whereas, changes in the remaining 

cytokines were not correlated with changes in body fat percentage or BMI (p>0.05; Figure 

5.18 and Figure 5.19).  
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Figure 5.17. Effect of body morphometry on the change in circulating inflammatory 

cytokines measured during chemotherapy.  

The change in concentration of ANG2, BAFF, CRP, GDF-15, IL-10, and MCP-1 

inflammatory cytokines from baseline to paclitaxel dose six, measured in serum using 

enzyme-linked immunosorbent assays, was compared between participants with low (n= 6) or 

high (n= 4 for ANG2, BAFF, CRP and GDF-15, and n= 5 for IL-10 and MCP-1) body fat 

percentage (split by median= 39.90%) recorded before chemotherapy. Black horizontal solid 

lines represent median values. The black horizontal dotted line represents no difference in 

cytokine concentration from baseline to paclitaxel dose six, and points above or below the 

dotted line represent an increase or decrease in cytokine concentration during chemotherapy, 

respectively. Statistical analysis was performed using Mann Whitney U testing, and 

significance was determined as p<0.05. 
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Figure 5.18. Correlation between the change in inflammatory cytokines and the change 

in body fat percentage during chemotherapy.  

The change in A) ANG, B) BAFF, C) CRP, D) GDF-15, E) IL-10 and F) MCP-1 cytokine 

concentrations from before to after chemotherapy (log10), was correlated with the change in 

body fat percentage from before to after chemotherapy (log10; n= 11). Black solid lines 

represent linear regression line of best fit. Horizontal black dotted lines represent no change 

in inflammatory cytokine concentration from baseline to paclitaxel dose six, and points above 

or below this represent an increase or decrease in inflammatory cytokine concentration, 

respectively. Statistical analysis was performed using Spearman correlation analysis, and 

significance was determined as p<0.05.  
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Figure 5.19. Correlation between the change in inflammatory cytokines and the change 

in body mass index (BMI) during chemotherapy.  

The change in A) ANG, B) BAFF, C) CRP, D) GDF-15, E) IL-10 and F) MCP-1 cytokine 

concentrations from before to after chemotherapy (log10), was correlated with the change in 

BMI from before to after chemotherapy (log10; n= 11). Black solid lines represent linear 

regression line of best fit. Horizontal black dotted lines represent no change in inflammatory 

cytokine concentration from baseline to paclitaxel dose six, and points above or below this 

represent an increase or decrease in inflammatory cytokine concentration, respectively. 

Statistical analysis was performed using Spearman correlation analysis, and significance was 

determined as p<0.05. 
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5.2.4.5 Effect of physical activity levels on the change in circulating concentrations of 

selected inflammatory cytokines during chemotherapy 

To determine whether the change in circulating inflammatory cytokines was affected 

by differences in physical activity levels during chemotherapy, the change in concentration of 

ANG2, BAFF, CRP, GDF-15, IL-10 and MCP-1 inflammatory cytokines from before to after 

(following paclitaxel dose six) chemotherapy was compared between participants that had 

either low (n= 5) or high (n= 5 for ANG2, BAFF, CRP and GDF-15, and n= 6 for IL-10 and 

MCP-1) average daily step counts (split by median= 5537 steps) recorded for AC cycle one, 

paclitaxel dose one, and paclitaxel dose six combined (Figure 5.20).  

The change in cytokine concentration from before to after chemotherapy was not 

significantly dependent on differences in physical activity levels measured during 

chemotherapy (p>0.05; Figure 5.20).  
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Figure 5.20. Effect of physical activity levels on the change in circulating inflammatory 

cytokines measured during chemotherapy.  

The change in concentration of ANG2, BAFF, CRP, GDF-15, IL-10, and MCP-1 

inflammatory cytokines from baseline to paclitaxel dose six, measured in serum using 

enzyme-linked immunosorbent assays, was compared between participants that had low (n= 

5) or high (n= 5 for ANG2, BAFF, CRP and GDF-15, and n= 6 for IL-10 and MCP-1) average 

daily step counts (split by median= 5537 steps) recorded during AC cycle one, paclitaxel dose 

one and paclitaxel dose six using FitBit One® devices. Black horizontal solid lines represent 

median values. The black horizontal dotted line represents no difference in cytokine 

concentration from baseline to paclitaxel dose six, and points above or below the dotted line 

represent an increase or decrease in cytokine concentration during chemotherapy, respectively. 

Statistical analysis was performed using Mann Whitney U testing, and significance was 

determined as p<0.05.  
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5.2.5 Metabolising activity of liver CYP enzymes during chemotherapy 

5.2.5.1 Experimental approach 

To determine the metabolising activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6 

and CYP3A4 in vivo, this study measured the concentration of probe drugs, including caffeine, 

losartan, omeprazole, dextromethorphan, and midazolam, and their phase I metabolites, 

paraxanthine, E-3174, 5-hydroxyomeprazole, dextrophan, and α-hydroxymidazolam, 

respectively, using mass spectrometry. Probe drugs were administered to participants as a 

single oral dose at baseline (before chemotherapy) and again following paclitaxel dose six 

(after chemotherapy), and probe drug concentrations were compared to metabolite 

concentrations at each time point. Caffeine, omeprazole, midazolam, and their associated 

metabolites, were measured in serum samples after 4 hours, and losartan, dextromethorphan, 

and their metabolites, were measured in urine collected for 8 hours following probe drug 

administration.  

To validate the use of serum samples for assessing probe drug and metabolite 

concentrations, rather than plasma (previously used by Ryu et al.290), participant 1 had 

caffeine, omeprazole, midazolam, and the metabolites paraxanthine, 5-hydroxyomeprazole, 

and α-hydroxymidazolam, quantified in both serum and plasma samples using mass 

spectrometry.  

To check whether participants had abstained from consuming caffeine prior to probe 

drug administration as requested, this study investigated the concentrations of caffeine, and its 

metabolite paraxanthine, in serum samples taken before probe drugs were administered (0h), 

both before and after chemotherapy.  

To investigate the change in metabolising activity of CYP enzymes during 

chemotherapy, the metabolic ratio of losartan, omeprazole, dextromethorphan, and 

midazolam, to their metabolites, were determined for each participant before and after 

chemotherapy, and the change in metabolic ratios from before to after chemotherapy was 

calculated. Moreover, to evaluate the effect of circulating inflammatory cytokines on changes 

in CYP metabolising activity during chemotherapy, the changes in inflammatory cytokine 

concentration from before to after chemotherapy were associated with the changes in 

metabolic ratios from before to after chemotherapy.  

Due to extra time commitments and additional clinical visits required for the ‘Inje’ 

probe drug component of this study, participant 10 only consented to having body 
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morphometry, physical activity and inflammatory cytokines measured, and therefore did not 

have CYP metabolising activity measured before or after chemotherapy. Owing to difficulties 

taking blood samples, participant 11 opted out of the probe drug component following dose 

six of paclitaxel, and therefore did not have CYP metabolising activity measured after 

chemotherapy. As a result of clinical complications, participant 7 was only able to complete 

two out of the twelve (2/12) scheduled paclitaxel doses and was withdrawn from the study 

before paclitaxel dose six, and therefore did not have CYP metabolising activity measured 

after chemotherapy. The urine specimen for participant 3 was not collected following the 

administration of the probe drug cocktail after paclitaxel dose six and therefore, metabolising 

activity of CYP2C9 and CYP2D6 were not measured after chemotherapy.  

 

5.2.5.2 Measuring the probe drugs and metabolites in serum and plasma  

To determine whether the probe drugs and metabolites can be measured in serum as 

well as plasma samples, the concentration (ng/mL) of caffeine, omeprazole, midazolam, and 

their metabolites, paraxanthine, 5-hydroxyomeprazole, α-hydroxymidazolam were quantified 

4 hours after cocktail administration in serum and plasma samples collected from participant 

1. 

The largest difference between serum and plasma concentrations was the α-

hydroxymidazolam metabolite, with a 10% higher concentration of α-hydroxymidazolam 

measured in serum than plasma (Table 5.5). Based on the successful detection of parent drugs 

and metabolites in these serum samples it was deemed acceptable to use serum for the 

subsequent quantification of caffeine, omeprazole, midazolam, and their metabolites, 

paraxanthine, 5-hydroxyomeprazole, α-hydroxymidazolam for the remaining study 

participants.  
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Table 5.5. Concentration of parent and metabolite components from the ‘Inje’ probe 

drug cocktail in plasma and serum samples. Plasma and serum samples were collected 4 

hours after cocktail administration from participant 1 following dose six of paclitaxel, 

and are used to measure metabolising activity of CYP1A2, CYP2C19 and CYP3A4 in 

vivo. 

CYP 

enzyme 
Parent and Metabolite 

Plasma 

(ng/mL) 

Serum 

(ng/mL) 
Serum/Plasma 

CYP1A2 
Caffeine 8306.70 8420.00 1.10 

Paraxanthine 1260.00 1350.00 1.07 

CYP2C19 
Omeprazole 204.00 198.20 0.97 

5-Hydroxyomeprazole 95.30 97.65 1.02 

CYP3A4 
Midazolam 0.36 0.39 1.08 

α-Hydroxymidazolam 0.20 0.22 1.10 
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5.2.5.3 Determining levels of caffeine and paraxanthine prior to cocktail 

administration 

To investigate whether participants were able to abstain from consuming caffeine prior 

to cocktail administration, this study investigated the serum concentrations of caffeine and its 

metabolite paraxanthine in study participants prior to probe drug cocktail administration (0 h), 

before chemotherapy and after chemotherapy (Table 5.6). 

Before chemotherapy, and prior to ‘Inje’ cocktail administration, only two participants 

(participant 4 and 6) had undetectable levels of caffeine, and participant 6 also had 

undetectable paraxanthine (<5.0 ng/mL; Table 5.6). After chemotherapy, but prior to ‘Inje’ 

cocktail administration, participants 4, 5 and 6 had undetectable levels of caffeine, and 

participant 4 had undetectable levels of paraxanthine (<5.0 ng/mL; Table 5.6). Before cocktail 

administration, caffeine concentrations ranged from <5.0 to 1876.7 ng/mL and <5.0 to 2066.7 

ng/mL in serum samples taken before and after chemotherapy, respectively (Table 5.6). Before 

cocktail administration, paraxanthine concentrations ranged from <5.0 to 2366.7 ng/mL and 

<5.0 to 1546.7 ng/mL in serum samples taken before and after chemotherapy, respectively 

(Table 5.6).  

In comparison to caffeine and paraxanthine, all other parent drugs (losartan, 

omeprazole, dextromethorphan, and midazolam) and their metabolites (E-3174, 5-

hydroxyomeprazole, dextrophan, and α-hydroxymidazolam) were below detectable 

concentrations prior to cocktail administration for the participants where changes in CYP 

phenotype during chemotherapy was assessed (Supplementary Table A.1).  

Based on the variable concentrations of caffeine and paraxanthine in serum samples 

prior to probe drug administration, it was deemed unacceptable for CYP1A2 metabolising 

activity to be assessed based on caffeine and paraxanthine measures in serum taken 4 hours 

after probe drug administration. 
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Table 5.6. Concentrations of caffeine and paraxanthine in serum samples taken from 

each participant before probe drug administration. 

 
Before Chemotherapy (ng/mL) After Chemotherapy (ng/mL) 

Participant 0h Caffeine  0h Paraxanthine 0h Caffeine  0h Paraxanthine 

1 1876.7 1066.7 791.85 610.5 

2 32.8 122.7 2066.7 1546.7 

3 92.6 261.0 1846.7 926.7 

4 < 5.0 91.5 < 5.0 < 5.0 

5 70.8 131 < 5.0 15.2 

6 < 5.0 < 5.0 < 5.0 55.3 

7 41.2 538 n/a n/a 

8 259.7 553.7 115.5 289 

9 1706.7 2366.7 63.3 289.3 

11 217.3 389 n/a n/a 

12 224.7 471.3 445.3 744 

<5.0: concentration of caffeine or paraxanthine was below the detectable limits of the assay. 

0h: blood samples were drawn from participants prior to receiving the probe drug cocktail, and serum was 

prepared for analysis.  
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5.2.5.4 Phenotype assessment of CYP enzymes before chemotherapy 

To determine metabolising activity of CYP enzymes at baseline, the participants were 

administered the ‘Inje’ probe drugs cocktail before starting chemotherapy, the concentrations 

of probe drugs and metabolites were measured in participant serum (n= 11) and urine (n= 11) 

samples, and parent drug concentrations were compared to the concentrations of their 

metabolites (Figure 5.21).  

The levels of midazolam (median= 0.68 ng/mL) was significantly higher than the α-

hydroxymidazolam (median= 0.31 ng/mL) metabolite measured in serum 4 hours after 

cocktail administration (p<0.001; Figure 5.21D). In urine samples, the E-3174 (median= 374.7 

ng/mL) metabolite levels displayed lower levels than losartan (median= 524.7 ng/mL; Figure 

5.21A), whereas, the dextrophan (median= 170.0 ng/mL) metabolite levels looked to be higher 

than dextromethorphan (median= 66.30 ng/mL; Figure 5.21C), however, neither difference 

was significant (p>0.05). Serum concentration of omeprazole (median= 118.30 ng/mL) and 

the 5-hydroxyomeprazole metabolite (median= 126.0 ng/mL) were not significantly different 

4 hours after cocktail administration (p>0.05), although participant 6 had much higher levels 

of omeprazole (781 ng/mL) than all other participants (Figure 5.21B).  
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Figure 5.21. Probe drug and metabolite concentration measured before chemotherapy.  

Prior to starting chemotherapy the concentration (ng/mL) of the probe drugs A) losartan 

(CYP2C9), B) omeprazole (CYP2C19), C) dextromethorphan (CYP2D6), and D) midazolam 

(CYP3A4), and their metabolites (paraxanthine, E-3174, 5-hydroxyomeprazole, dextrophan, 

and α-hydroxymidazolam) were determined using mass spectrometry in serum and urine 

samples (n= 11). Serum samples were taken 4 hours after probe drug administration, and urine 

samples were collected for 8 hours following probe drug administration. Horizontal solid 

black lines represent median values. Statistical analysis was performed using Wilcoxon 

matched-pairs signed rank testing. ***p<0.001. 
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5.2.5.5 Phenotype assessment of CYP enzymes after chemotherapy 

To determine metabolising activity of CYP enzymes after chemotherapy, the 

participants were administered the probe drugs following paclitaxel dose six and the 

concentrations of probe drugs and metabolites were measured in participant serum (n= 9) and 

urine (n= 8), and probe drug concentrations were compared to the concentration of metabolites 

(Figure 5.22).  

The concentration of midazolam (median= 0.64 ng/mL) was significantly higher than 

the α-hydroxymidazolam (median= 0.30 ng/mL) metabolite measured in serum 4 hours after 

cocktail administration (p<0.01; Figure 5.22D). Lower levels of the E-3174 (median= 250.2 

ng/mL) metabolite than losartan (median= 377.2 ng/mL) were displayed in urine samples, 

although not significantly (p>0.05;Figure 5.22A). Serum concentration of omeprazole 

(median= 82.60 ng/mL) and the 5-hydroxyomeprazole metabolite (median= 82.50 ng/mL) 

were not significantly different 4 hours after cocktail administration (p>0.05; Figure 5.22B). 

Dextrophan (median= 177.0 ng/mL) metabolite levels were not significantly different from 

the dextromethorphan (median= 71.85 ng/mL; p>0.05), however participant 4 showed much 

higher levels of dextrophan (3090 ng/mL) than the other participants (Figure 5.22C).  
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Figure 5.22. Probe drug and metabolite concentration measured after chemotherapy.  

Following paclitaxel dose six, the concentration (ng/mL) of the probe drugs A) losartan 

(CYP2C9), B) omeprazole (CYP2C19), C) dextromethorphan (CYP2D6), and D) midazolam 

(CYP3A4), and their metabolites (paraxanthine, E-3174, 5-hydroxyomeprazole, dextrophan, 

and α-hydroxymidazolam) were determined using mass spectrometry in serum (n= 9) and 

urine (n= 8) samples. Serum samples were taken 4 hours after probe drug administration, and 

urine samples were collected for 8 hours following probe drug administration. Horizontal solid 

black lines represent median values. Statistical analysis was performed using Wilcoxon 

matched-pairs signed rank testing. ***p<0.001. 
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5.2.5.6 Change in the metabolising activity of CYP enzymes during chemotherapy 

To assess whether metabolising activity of CYP2C9, CYP2C19, CYP2D6 and 

CYP3A4 changed during chemotherapy, this study calculated the baseline probe drug to 

metabolite ratio and the probe drug to metabolite ratio following dose six of paclitaxel, and 

compared the change in ratios from before chemotherapy to after chemotherapy. 

On average, there were no significant changes in CYP2C9, CYP2C19, CYP2D6 or 

CYP3A4 metabolising activity from baseline to paclitaxel dose six in this cohort of breast 

cancer patients (p>0.05; Table 5.7). For CYP2C9, n= 7 participants showed a greater than 

1.25-fold change in metabolising activity during chemotherapy, in which two showed an 

increase in metabolising activity (< -0.097) and five exhibited decreased metabolising activity 

(> 0.0969; Figure 5.23). Furthermore, for CYP2C19 and CYP2D6, n= 6 participants showed 

a greater than 1.25-fold change in metabolising activity during chemotherapy, with three 

displaying an increase in metabolising activity (< -0.097) and three exhibiting a decrease in 

metabolising activity (> 0.097; Figure 5.23). Lastly for CYP3A4, n= 5 participants showed a 

greater than 1.25-fold change in metabolising activity during chemotherapy, with two 

displaying an increase in metabolising activity (< -0.097) and three exhibiting a decrease in 

metabolising activity (> 0.097; Figure 5.23).  

 

Table 5.7. Changes in CYP metabolic ratios during chemotherapy for breast cancer.  

Enzyme Phenotyping n 

Before Chemo 

Phenotype 

Ratio* 

After Chemo 

Phenotype 

Ratio* 

After Chemo / 

Before Chemo 

Ratio (90% CI) 

p** 

CYP2C9 losartan/ E-3174 8 1.54  1.74  1.79 (0.79 - 2.78) 0.55 

CYP2C19 
omeprazole/ 

5-hydroxyomeprazole 
9 2.27  3.00  1.02 (0.78 - 1.26) 0.82 

CYP2D6 
dextromethorphan/ 

dextrorphan 
8 0.65  0.68  1.26 (0.64 - 1.87) 1.00 

CYP3A4 
midazolam/ 

α-hydroxymidazolam 
9 2.18  2.29  1.08 (0.81 - 1.35) 0.91 

CI: confidence interval 

*mean ratios; **statistical analysis was performed using Wilcoxon matched-pairs signed rank testing, and 

significance was determined as p<0.05. 
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Figure 5.23. Changes in CYP metabolising ratios during chemotherapy for breast 

cancer.  

The change in CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolising activity was 

determined by comparing the probe drug to metabolite ratios from after chemotherapy and 

before chemotherapy (log10). Horizontal black solid lines represent median values. Horizontal 

black dotted line represents no change in CYP metabolising activity from baseline to paclitaxel 

dose six, and points above or below the red dotted horizontal lines represent a decrease or 

increase, respectively, in CYP metabolising activity of 1.25-fold or greater (log10 of 0.80 - 

1.25= ± 0.097) from before chemotherapy to after chemotherapy. Statistical analysis was 

performed using Wilcoxon matched-pairs signed rank testing, and significance was 

determined as p < 0.05.  
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5.2.5.7 Effects of circulating inflammatory cytokines on the change in metabolising 

activity of CYP enzymes during chemotherapy 

To assess whether changes in metabolising activity of CYP2C9, CYP2C19, CYP2D6 

and CYP3A4 are affected by changes in circulating inflammatory cytokines during 

chemotherapy, this study correlated the changes in probe drug to metabolite ratio with changes 

in ANG2, BAFF, CRP, GDF-15, IL-10 and MCP-1 inflammatory cytokine concentrations 

from baseline to paclitaxel dose six. The correlations are presented in Figure 5.24, Figure 5.25, 

Figure 5.26, and Figure 5.27. 

The change in concentration of the MCP-1 cytokine during chemotherapy was 

significantly correlated with the change in CYP3A4 metabolising activity during 

chemotherapy (p= 0.05), in which the increase in MCP-1 was associated with a decrease in 

CYP3A4 metabolising activity during chemotherapy (R2= 0.683; Figure 5.27F). 

The change in CYP2C19 metabolising activity during chemotherapy showed a trend 

(p > 0.05) towards a significant correlation with a change in ANG2 (p= 0.121; R2= 0.567), 

BAFF (p= 0.067; R2= 0.650) and MCP-1 (p= 0.121; R2= 0.567) cytokine concentration during 

chemotherapy, suggesting that as these cytokines increased during chemotherapy, CYP2C19 

showed a trend towards decreased metabolising activity (Figure 5.25A, B and F). 
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Figure 5.24. Correlation between the change in inflammatory cytokines and the change 

in CYP2C9 metabolising activity during chemotherapy.  

The change in A) ANG, B) BAFF, C) CRP, D) GDF-15, E) IL-10 and F) MCP-1 cytokine 

concentrations from before to after chemotherapy (log10), was correlated with the change in 

CYP2C9 metabolising activity from before to after chemotherapy (log10; n= 8). Black solid 

lines represent linear regression line of best fit. Horizontal black dotted lines represent no 

change in CYP2C9 metabolising activity from baseline to paclitaxel dose six, and points above 

or below this represent a decrease or increase in CYP2C9 metabolising activity, respectively. 

Statistical analysis was performed using Spearman correlation analysis, and significance was 

determined as p ≤ 0.05. 
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Figure 5.25. Correlation between the change in inflammatory cytokines and the change 

in CYP2C19 metabolising activity during chemotherapy.  

The change in A) ANG, B) BAFF, C) CRP, D) GDF-15, E) IL-10 and F) MCP-1 cytokine 

concentrations from before to after chemotherapy (log10), was correlated with the change in 

CYP2C19 metabolising activity from before to after chemotherapy (log10; n= 9). Black solid 

lines represent linear regression line of best fit. Horizontal black dotted lines represent no 

change in CYP2C19 metabolising activity from baseline to paclitaxel dose six, and points 

above or below this represent a decrease or increase in CYP2C19 metabolising activity, 

respectively. Statistical analysis was performed using Spearman correlation analysis, and 

significance was determined as p ≤ 0.05. 
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Figure 5.26. Correlation between the change in inflammatory cytokines and the change 

in CYP2D6 metabolising activity during chemotherapy.  

The change in A) ANG, B) BAFF, C) CRP, D) GDF-15, E) IL-10 and F) MCP-1 cytokine 

concentrations from before to after chemotherapy (log10), was correlated with the change in 

CYP2D6 metabolising activity from before to after chemotherapy (log10; n= 8). Black solid 

lines represent linear regression line of best fit. Horizontal black dotted lines represent no 

change in CYP2D6 metabolising activity from baseline to paclitaxel dose six, and points above 

or below this represent a decrease or increase in CYP2D6 metabolising activity, respectively. 

Statistical analysis was performed using Spearman correlation analysis, and significance was 

determined as p ≤ 0.05. 
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Figure 5.27. Correlation between the change in inflammatory cytokines and the change 

in CYP3A4 metabolising activity during chemotherapy.  

The change in A) ANG, B) BAFF, C) CRP, D) GDF-15, E) IL-10 and F) MCP-1 cytokine 

concentrations from before to after chemotherapy (log10), was correlated with the change in 

CYP3A4 metabolising activity from before to after chemotherapy (log10; n= 9). Black solid 

lines represent linear regression line of best fit. Horizontal black dotted lines represent no 

change in CYP3A4 metabolising activity from baseline to paclitaxel dose six, and points above 

or below this represent a decrease or increase in CYP3A4 metabolising activity, respectively. 

Statistical analysis was performed using Spearman correlation analysis, and significance was 

determined as p ≤ 0.05. 
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5.3 Discussion  

Obese women with breast cancer are suggested to have poorer pathological response 

rates to chemotherapy 122. Alternatively, physical activity implemented during adjuvant 

chemotherapy has displayed a trend toward improved breast cancer disease free survival 

outcomes, particularly for women who were overweight or obese 188. Obesity and post-

diagnosis physical activity are associated with increases in, and lowered levels of circulating 

inflammatory cytokines, respectively 63,441,442. The biological mechanisms by which 

alterations in the levels of circulating inflammatory cytokines are influencing treatment 

outcomes for women with breast cancer are yet to be elucidated. Metabolism of breast cancer 

chemotherapy agents occurs primarily by hepatic cytochrome (CYP) P450 drug metabolising 

enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 264,266. 

Inflammatory cytokines are known to downregulate hepatic CYP expression in vitro, and 

circulating inflammatory cytokines in vivo may be causing discordance between CYP 

genotypes and phenotypes 283,300–305,309,310,316,317. Unexpected alterations in the metabolism of 

chemotherapies may be influencing the therapeutic efficacy of these drugs during treatment 

for breast cancer. Thus, this study determined whether alterations in CYP activity throughout 

chemotherapy are influenced by levels of circulating inflammatory cytokines in women with 

breast cancer. 

This exploratory patient study is the first to concurrently assess in vivo changes in both 

circulating inflammatory cytokine concentrations and activity of multiple CYP drug 

metabolising enzymes, during chemotherapy for breast cancer. This chapter presents data from 

seven non-obese (BMI < 30) and five obese (BMI ≥ 30) women receiving adriamycin-

cyclophosphamide (AC) and paclitaxel treatment for stage II or III breast cancer. Due to the 

small sample size, results from this exploratory study are reported as, and should be 

considered, preliminary findings. 

Results showed that the reduction in the activity of CYP3A4 during chemotherapy was 

correlated with increased serum concentrations of monocyte chemoattractant protein 1 (MCP-

1), although the in vivo activity of CYP enzymes across this cohort of women remained 

unchanged during chemotherapy. In addition, significant increases in serum levels of the pro-

inflammatory cytokines B-cell activating factor (BAFF), growth and differentiation factor 15 

(GDF-15) and MCP-1, and a decrease in the cytokine interleukin 10 (IL-10), were observed 

during chemotherapy. Finally, this study observed a significant increase in BMI throughout 
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chemotherapy, as well as a reduction in daily step counts in the early stages of treatment, 

however alterations in cytokine concentrations were not dependent on these differences in 

body morphometry and physical activity.  

5.3.1 Exploratory patient study feasibility 

5.3.1.1 Participant recruitment 

Success of clinical trials depends not only on robust trial designs and protocols, but 

also on sufficient participant recruitment. In this exploratory patient study, the evaluation of 

recruitment rates showed that approximately 10% of the stage II and III breast cancer patients 

receiving AC and paclitaxel chemotherapy at Christchurch Hospital were successfully 

recruited onto this study. The approximate 10% recruitment rate aligns well with participation 

rates reported internationally for cancer clinical trials, which sits around 7.7% 445. Moreover, 

the recruitment rate achieved here was well above the overall 2-5% enrolment rate reported 

for adult patients with colorectal and lung cancers 446. In agreement with survey findings 

regarding clinical trial participation of cancer patients 447,448, the majority of the patients 

approached in this exploratory study expressed a willingness to participate. Furthermore, 

similar to the recent survey reports 448, reasons for rejecting participation in the current study 

were largely related to the extra time commitment.  

Despite having comparatively high recruitment rates, this pilot study recruited lower numbers 

of participants than initially anticipated, an experience commonly reported for a large 

proportion of clinical trials in the UK 449. Moreover, like one third to half of previously 

assessed clinical trials, this study required an extension on the recruitment time in an attempt 

to meet the enrolment goal 449,450. With close to 20% of clinical trials failing due to insufficient 

participant enrolment 451, it is becoming increasingly important for researchers to assess and 

publish data on participant recruitment so that interventions that increase recruitment, and 

thus, the success of clinical trials can be implemented. Overall, the data on recruitment rates 

from this feasibility study provide valuable information for the clinical trial landscape in New 

Zealand.  

5.3.1.2 ‘Inje’ probe drug cocktail administration 

Concurrent assessment of in vivo CYP enzyme activity in this study was achieved by 

administering sub-therapeutic oral doses of five probe drugs, referred to as the ‘Inje’ cocktail, 
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and simultaneously assessing the concentration of the probe drugs and their metabolites in 

serum and urine samples taken 4 and 0-8 hours after cocktail administration, respectively.  

The ‘Inje’ probe drug cocktail was developed by Ryu et al., in which the simultaneous 

oral administration of caffeine, losartan, omeprazole, dextromethorphan, and midazolam 

probe drugs, and the single time point for blood and urine sample collection to measure probe 

drugs and metabolites, were validated for the concurrent assessment of in vivo activity of 

CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in which no evidence of any probe-

drug interactions or drug-associated adverse events were observed 290. The current study was 

the first to use a modification of the ‘Inje’ cocktail to assess the in vivo activity of these five 

CYP enzymes in women receiving chemotherapy for breast cancer. Prior to this study, 

numerous research investigations have used slight variations of the ‘Inje’ cocktail to assess 

CYP activity in healthy human subjects 452–456. Some were focused on developing analytic 

techniques for simultaneously assessing the cocktail’s probe drugs and metabolites in a single 

assay 452,454, whereas, others used the ‘Inje’ cocktail to investigate interactions between CYP 

activity and co-administered drugs, including rifampicin and belatacept 453,455. Heo et al., 

developed an assay that simultaneously determined the concentration of another substrate and 

its metabolite, as well as the ‘Inje’ probe drug cocktail substrates 456. In difference to these 

past studies, the ‘Inje’ cocktail was used as a tool in the current study to assess for the first 

time whether in vivo activity of the CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 

enzymes are affected by treatment with chemotherapy in women with breast cancer. 

The current study administered the same or lower doses of the probe drugs when 

compared to the doses from the original ‘Inje’ study 290; with the exception of caffeine which 

was higher. Other investigations using the ‘Inje’ cocktail were carried out in healthy 

volunteers, and used oral doses of the probe drugs that were either similar or higher than the 

original study 453–456. The only exception was a study that developed a high-sensitivity LC-

MS/MS methodology for simultaneously detecting 10-100 times lower administered doses of 

the probe drugs in human plasma 452. Despite inter-study differences in dosage, the ‘Inje’ probe 

drugs and metabolites were successfully measured in this, and prior, studies. Moreover, the 

oral administration of the probe drugs was pharmacologically and clinically well tolerated by 

the participants, as no probe-drug associated adverse events were documented.  

Serum samples collected prior to probe drug administration showed background 

contamination with both caffeine and its metabolite paraxanthine in the majority of the 
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participants, despite being asked to abstain from caffeine containing beverages for 24 hours 

prior to the cocktail visit (Section 5.2.5.3; Table 5.6). Based on this finding, the current 

investigation did not generate phenotype data for the CYP1A2 enzyme. In contrast, metabolic 

phenotype data was generated for CYP1A2 by previous studies utilising the ‘Inje’ probe drug 

cocktail, suggesting that similar findings of caffeine contamination were not observed 290,452–

456. Future research should consider dosing with mass-labelled caffeine molecules in order to 

prevent dietary interference. Yet, in comparison to the other CYP enzymes assessed in this 

study, the contribution of CYP1A2 to in vivo breast cancer chemotherapy metabolism is 

negligible 266, thus, the decision to omit caffeine and paraxanthine assessment, rather than 

attempting to control for the background levels, is supported.  

Intra-patient variability of CYP activity throughout chemotherapy for breast cancer 

was assessed in this study using the ‘Inje’ cocktail and pharmacokinetic sampling, performed 

prior to starting chemotherapy (neoadjuvant and adjuvant participants) and again following 

dose six of paclitaxel. Changes in CYP2C19 and CYP3A4 during breast cancer chemotherapy 

were assessed in nine women, with eight women also having changes in CYP2C9 and 

CYP2D6 activity measured. Despite being an exploratory study, the current study numbers 

align well with the number of participants investigated in previous ‘Inje’ cocktail studies, 

which ranged from four to twenty-two participants 290,452–456. The cocktail approach to 

simultaneously phenotyping multiple CYP enzymes, eliminates the need for multiple studies, 

and thus, reduces the pharmacokinetic variation that would usually be experienced between 

study populations 288. It could be argued that by removing the between study variation, it is 

justifiable to use smaller study numbers for cocktail probe drug phenotyping, particularly in 

exploratory analyses such as the current investigation.  

Overall, this exploratory study exhibited feasibility of the ‘Inje’ cocktail in cancer 

patients, as it was used safely and effectively for determining the in vivo activity of the 

CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzymes in breast cancer chemotherapy patients. 

Assessment of CYP1A2 activity was hindered by background caffeine contamination in this 

study’s serum samples.  

5.3.2 Assessing adiposity during breast cancer chemotherapy 

Overall, breast cancer patients in this exploratory study exhibited a small but 

significant increase in BMI during combination AC and paclitaxel chemotherapy, with no 

notable changes in WHR, or body fat and muscle mass percentage observed. In agreement 
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with this, a number of studies in the pre-anthracycline and modern chemotherapy eras, have 

reported an increase in weight during both adjuvant or neoadjuvant treatment for breast cancer 

457,458. Although, the current observation concluded that body fat and muscle mass percentages 

are maintained across the cohort as a whole, there was variation in fat and muscle mass 

changes between participants. Previous body composition analyses have shown that in breast 

cancer patients, chemotherapy has been associated with an increase in fat mass and a decrease 

in lean body mass, with or without any significant change in weight 458–460. In regards to patient 

outcome, it has been established that both increases and decreases in weight during 

chemotherapy can negatively impact rates of recurrence and mortality 458,461, suggesting that 

weight maintenance during chemotherapy may be important for patient outcomes. Therefore, 

the change in BMI and variation in body composition observed in this study may be of clinical 

significance. As the recruitment for this pilot study has recently ended, and follow-up is 

currently on-going, assessment of the association between chemotherapy induced changes in 

BMI and cancer outcomes of the participants will be of interest in the future. 

This exploratory study provided evidence of chemotherapy associated adipose tissue 

remodelling, particularly in participant 5. In this participant, BMI and body fat percentage 

were notably increased, yet this participant had the greatest decrease in WHR during 

chemotherapy. Based on these changes it is speculated that adipose tissue depots were 

remodelled throughout chemotherapy so that excess energy was stored around the hips rather 

than the abdominal/waist area. Alongside participant 5, participant 10 more than doubled their 

adiposity throughout chemotherapy, although based on a stable WHR, it was assumed that 

their weight gain was evenly distributed. It has been suggested that during weight gain, adipose 

tissue remodelling upregulates adipocyte lipolysis, which is the breakdown for stored 

triacylglycerides and increased secretion of free fatty acids 462. Fatty acids can bind to toll-like 

receptor 4 transmembrane proteins on macrophages resident within adipose tissues, activating 

intracellular signalling pathways that increase production of inflammatory cytokines, such as 

TNF-α and MCP-1 39. Moreover, most likely as a result of elevated lipolysis, transportation of 

fatty acids to the liver, and hepatic de novo fatty acid production, are increased during 

conditions of adipose tissue remodelling 463. Similar to adipose tissue, fatty acids can stimulate 

inflammatory cytokine production by hepatic macrophages, fuelling inflammatory signalling 

that may negatively impact liver function 464. Thus, by utilising different measures to 

determine body composition, this exploratory study was able to identify adipose tissue 

remodelling as a potential source of inflammatory cytokine production during chemotherapy.  
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A key strength of this exploratory study was the combination of anthropometric 

measurements and bioelectrical impedance analysis (BIA) for gathering information on 

multiple components of body morphometry. Classifications for grouping individuals as 

healthy, overweight and obese are historically based on anthropometric measures, such as 

BMI, however, other methods and tools have now been developed that can more accurately 

determine total body adiposity 10,11,465. One such modality is BIA, which measures resistance 

of the flow of electrical currents through the body in order to rapidly, painlessly, and non-

invasively generate muscle, adipose, bone and water composition data 466,467. Major benefits 

of BIA is that it is inexpensive, simple, and transportable; in that the instrument can be moved 

between sites and delivered to its users 466,467. The validity, accuracy, and reliability of BIA 

instruments has been extensively studied and reviewed, and despite sometimes conflicting 

results, consensus suggests BIA is useful when assessing and comparing adiposity within 

subgroups 468,469. 

Prior to starting chemotherapy, results from the current study showed body fat 

percentage measured by BIA was significantly positively correlated with BMI and WHR 

measurements. In agreement with this study, BMI has been previously reported as a good 

predictor of body fat percentage in a large population of otherwise healthy post-menopausal 

women 470. However, in the majority of studies investigating the association between body fat 

percentage and BMI, the prevalence of obesity in adult populations tends to be underestimated 

by BMI, although the degree of difference is usually dependent on sex, age and ethnic group 

14,16,17. Discordance between measures is likely due to the fact that anthropometric assessments 

lack the distinction between fat mass and fat free mass 10. Nevertheless, results from this study 

suggest that in this population of women with early stage breast cancer, BMI was a good 

indicator of patient adiposity. 

5.3.3 Assessing physical activity during breast cancer chemotherapy 

Based on average daily step count data, this study observed a significant decrease in 

physical activity levels over the first 12 weeks of chemotherapy, a reduction that remained 

throughout the following stages of treatment. Similar declines in physical activity levels 

during chemotherapy have been reported by previous studies in breast cancer patients. Total 

physical activity was shown to reduce by 8 hours each week over the first half of 

chemotherapy; with levels remaining low throughout the second half of treatment 202. Another 

study assessing activity during a 20 week home-based and supervised resistance training 
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programme, observed a decrease in physical activity from the early to late stages of 

chemotherapy 471. Interestingly, breast cancer patients reporting higher levels of physical 

activity prior to diagnosis were more inclined to remain physically active throughout 

chemotherapy 472. Furthermore, behaviours of reduced physical activity in the later stages of 

chemotherapy have been shown to continue into life post-treatment 473. Taken together, these 

findings suggest that chemotherapy patients would likely benefit from physical activity 

education and support implemented prior to commencing treatment, to help prevent activity 

declines in the early stages of therapy.  

Similar to previous investigations 196,201,202,474, this study used FitBitTM devices to 

objectively measure physical activity levels in women receiving chemotherapy for breast 

cancer; and the objectivity of accelerometer data is a major strength of the current 

investigation. Compared to FitBitTM measured physical activity levels during chemotherapy, 

self-reported activity has been shown to be biased, with 59% of participants over-reporting 

activity levels 196, validating the importance of objective assessment.  

In comparison to previous studies using FitBitTM devices, the current analysis achieved 

a higher rate of FitBitTM wearing adherence during chemotherapy. In this study step count data 

was recorded for 93.7% of the total FitBit One® wearing days, whereas, other studies reported 

FitBitTM recordings on an average of 44.5%, 79% and 84% of days where participants 

provided analysable FitBitTM data 201,202,474. In contrast to these previous studies 201,202,474, the 

current investigation had a smaller study population, recorded physical activity over fewer 

weeks, synced and charged the FitBitTM devices regularly in-house (omitting this as a 

requirement for study participants), and passively assessed physical activity without 

implementing an exercise intervention. Thus, it could be speculated that all, or some, of these 

differences may have contributed to the improved adherence rates to wearing the FitBitTM 

devices throughout the chemotherapy period in the current investigation.  

5.3.4 Change in serum levels of circulating inflammatory cytokines during 

chemotherapy for breast cancer 

Circulating levels of four inflammatory cytokines were significantly changed in the 

serum of breast cancer patients, over the course of AC and paclitaxel chemotherapy, including 

an increase in BAFF, GDF-15 and MCP-1, and a decrease in IL-10.  
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BAFF is a member of the tumour necrosis factor (TNF) ligand superfamily, and soluble 

forms of BAFF bind receptors mainly expressed on mature B lymphocytes and stimulate B-

cell production of immunoglobulins 475. Moreover, interaction between BAFF and the BAFF 

receptor (BAFF-R) has been shown to initiate nuclear translocation of NF-κB in mature B 

cells 476. BAFF is generally produced and released by myeloid lineage cells 477, although 

production and secretion of BAFF from adipocytes has also been observed and is enhanced 

through adipocyte interactions with macrophages and pro-inflammatory cytokines 478–480. 

Adipocytes also express BAFF receptors, and thus, in an autocrine manner BAFF has been 

exhibited to trigger adipocyte production of itself as well as other inflammatory cytokines 

479,480. Overexpression of BAFF in circulation has been associated with malignant B-cell 

proliferation and survival, initiation and enhancement of autoimmune diseases, and obesity-

related systemic inflammation and insulin resistance 476,479,481,482. Very little evidence has been 

presented for pathophysiological links between BAFF and breast cancer. What has been 

shown is that human breast tumours express BAFF 483, and expression of BAFF was increased 

in human breast cancer cells under hypoxic conditions 484. Moreover, treatment with BAFF 

upregulated migration of human breast cancer cell lines in a manner that was dependent on 

breast cancer cell NF-κB signalling 484. The current study was the first to investigate serum 

levels of BAFF in breast cancer patients, therefore, further research is required to unravel the 

biological significance of chemotherapy induced BAFF upregulation during treatment for 

breast cancer.  

GDF-15, also known as macrophage inhibitory cytokine-1 (MIC-1), is a transforming 

growth factor beta (TGF-β) superfamily member that was discovered due to its increased 

expression in activated macrophages 485,486. Under normal physiological conditions, the 

expression of GDF-15 is low in most human tissues, but has been shown to dramatically 

increase during inflammatory conditions, such as injury to organs and cancer 487. GDF-15 is 

overexpressed in a variety of tumours, including prostate, breast, and colon 487,488, and is 

suggested to have anti-tumoural effects in early stages of cancer but, pro-tumourigenic effects 

in the later stages of disease 487,488. GDF-15 has been exhibited to be both produced and 

secreted as an adipokine from subcutaneous and visceral adipose tissue 489, and was markedly 

increased in human breast tumours following treatment with neoadjuvant chemotherapy 490, 

suggesting these tissues as possible sources of elevated GDF-15 during chemotherapy in the 

current study. Elevated serum levels of GDF-15 in advanced prostate cancer patients has been 

strongly associated with the anorexia-cachexia phenotype 491, moreover adipose tissue GDF-
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15 levels are known to be negatively correlated with BMI and body fat percentage in healthy 

donors 489. Thus, it is plausible that the increases in GDF-15 seen during chemotherapy in this 

study were early signs of cancer associated cachexia developing in these women. Taken 

together, these studies suggest that systemic levels of GDF-15 may be a central regulator in 

the association between breast cancer, adiposity and inflammation. Further research is 

required to fully understand the biological role of enhanced GDF-15 expression in breast 

cancer patients during chemotherapy.  

MCP-1, also known as CCL2, is a C-C chemokine family member and a potent 

chemoattractant, regulating the recruitment and infiltration of monocytes to sites of 

inflammation 492. MCP-1 has been implicated for its roles in a number of inflammatory related 

human diseases, predominantly HIV, cardiovascular disease, cancer, and obesity 492,493. 

During obesity, MCP-1 concentrations are increased in inflamed adipose tissue and it has been 

observed that MCP-1 interacts with hypertrophic adipocytes and adipose tissue resident 

macrophages to upregulate production of itself and other inflammatory cytokines, such as 

TNF-α and IL-6; contributing to the low-grade systemic inflammatory condition characteristic 

of excessive adiposity 29,43,48. MCP-1 was increased throughout chemotherapy in this study, 

and although changes in body fat percentage were variable, body fat percentage was not 

significantly increased throughout chemotherapy in this cohort of women; as discussed earlier 

(Section 5.3.2). However, in agreement with the current study findings, paclitaxel has been 

shown to induce an increase in systemic MCP-1 concentrations in ovarian cancer patients 494. 

Moreover, treatment with a combination of neoadjuvant chemotherapeutic agents has been 

shown to induce monocytosis in breast cancer patients that consequently led to a monocyte 

secreted elevation of serum MCP-1 levels 495. Although further research is required to fully 

understand the biological significance of elevated circulating MCP-1 in women receiving 

chemotherapy for breast cancer, the above supports that it is likely occurring in response to 

chemotherapy rather than increases in patient adiposity; although it is plausible that 

interactions with already existing adipose tissues may aid in sustaining increased systemic 

levels. 

IL-10 is produced by almost all leukocytes, and is predominantly known for its role in 

immunosuppression and pro-inflammatory cytokine inhibition 496. However, IL-10 has 

pleiotropic functions in cancer where it has been observed exerting both proliferative and 

inhibitory effects 496. Numerous studies have assessed serum levels of IL-10 in breast cancer 

patients to find no significant difference between different stages of disease 497, or between 
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women with or without breast cancer 498,499. In agreement with this study, serum IL-10 levels 

were shown to reduce in advanced cancer patients who received paclitaxel chemotherapy 

500, whereas, in contrast to this study, transient increases in serum IL-10 have been observed 

in response to weekly paclitaxel treatments in breast cancer patients 501. Therefore, based on 

the results of this study it could be speculated that paclitaxel is supressing IL-10 production. 

However, circulating levels of IL-10 during chemotherapy are likely dynamic and 

multifaceted.  

Previous observations suggest that chemotherapy induced increases in circulating 

inflammatory cytokines may contribute to the flu-like symptoms, fatigue, depression, 

cognitive impairment, pain, cachexia, and importantly, poorer responses to chemotherapy and 

worse cancer related outcomes for the patients 502. Therefore, in order to better understand 

possible biological mechanisms causing chemoresistance and tumour progression, many 

studies have investigated the mechanisms by which tumours and their microenvironments are 

altering inflammatory signalling and cytokine expression in response to chemotherapy 503,504. 

Far fewer studies have directly assessed alterations in the circulating levels of inflammatory 

cytokines occurring during breast cancer chemotherapy. Therefore, to the best of our 

knowledge the current study has for the first time shown that concentrations of the 

inflammatory cytokines ANG2, BAFF, CRP, GDF-15, IL-10, and MCP-1 fluctuate 

throughout combination AC and paclitaxel chemotherapy for breast cancer. 

Consistent with findings from this study, previous observations have shown that 

treatment with paclitaxel alone can induce alterations in the levels of circulating inflammatory 

cytokines in breast and ovarian cancer patients, including IFN-γ, IL-2, IL-6, IL-8, GM-CSF, 

and MCP-1 494,501,505. Paclitaxel has been observed to enhance macrophage secretion of TNF-

α 506, lung cancer cell production of IL-8 507, and IL-1β expression in monocytes and breast 

cancer cells 508, suggesting that immune cells and cancer cells within the tumour 

microenvironment are a potential source for the circulating inflammatory cytokines that are 

being regulated during paclitaxel chemotherapy. Research investigating the impact of other 

chemotherapeutic agents, such as doxorubicin and cyclophosphamide, on alterations in 

systemic inflammation, is lacking. One study has shown that serum levels of Fas ligand, 

macrophage migration inhibitory factor (MIF), and epidermal growth factor receptor (EGFR) 

were increased in breast cancer patients that had pathological complete response to 

neoadjuvant doxorubicin and paclitaxel chemotherapy 509. Taken together, it is likely that 

serum concentrations of inflammatory cytokines can be altered by chemotherapy treatment, 
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however, knowledge regarding the specific milieu of circulating cytokines that are being 

regulated, and the exact origin of their production during chemotherapy, is still incomplete 

and requires further exploration. 

5.3.4.1 Effect of body morphometry and physical activity on circulating inflammatory 

cytokines in women receiving chemotherapy for breast cancer 

Changes in circulating inflammatory cytokine concentrations during chemotherapy 

were not dependent on differences in participant’s physical activity levels or body fat 

percentage; except for changes in serum IL-10 which were positively associated with body 

fat percentage.  

This study is the first to report on associations between physical activity and systemic 

alterations in the inflammatory cytokines ANG2, BAFF, CRP, GDF-15, IL-10, and MCP-1 in 

breast cancer patients during chemotherapy. Prior to this study, only a single investigation has 

assessed the effects of physical activity on markers of systemic inflammation during breast 

cancer chemotherapy, finding no effect of exercise on serum levels of IL-6 or IL-1 192. The 

majority of the studies that have assessed physical activity in breast cancer survivors, have 

investigated the effects of exercise interventions following the cessation of treatment. Meta-

analyses of these exercise intervention studies have consistently concluded that interventions 

induce reductions in circulating CRP and TNF-α, particularly when combined aerobic and 

resistance training was implemented 182–184. The current investigation passively assessed levels 

of physical activity, as opposed to implementing an exercise intervention. Thus, it is plausible 

that the decrease in physical activity levels during chemotherapy observed in this study would 

have been limited if an intervention had been implemented, and may also explain why there 

were no physical activity associated changes in the levels of circulating inflammatory 

cytokines. Based on this, future research investigating the influence of physical activity on 

systemic inflammation during cancer chemotherapy should consider investigating the effects 

of a defined physical activity program.  

Evidence suggests that physical activity with concurrent weight loss in women with or 

without breast cancer, decreases levels of circulating inflammatory cytokines and other 

biomarkers associated with obesity , such as IL-6, TNF-α, and leptin 185,193,510,511. Results from 

the current study are in agreement with these previous findings, as patients exhibited an 

increase in BMI, a reduction in physical activity, and an increase in the circulating pro-

inflammatory cytokines BAFF, GDF-15 and MCP-1 during chemotherapy for breast cancer. 
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The voluntary levels of physical activity performed by the women in this study may not have 

been great enough to prevent increases in BMI, and consequently were not able to prevent 

increases in systemic inflammation during chemotherapy. However, changes in inflammatory 

cytokine levels were not observed to be associated with differences in physical activity levels 

nor with the changes in body composition. Therefore, it is likely that during chemotherapy, 

systemic inflammation may be affected by factors other than exercise or obesity. 

IL-10 was found to be significantly reduced throughout chemotherapy and is discussed 

above in Section 5.3.4. In addition, smaller reductions in IL-10 were associated with greater 

increases in body fat percentage, suggesting that there may be more bioavailable IL-10 in the 

circulation to inhibit pro-inflammatory cytokines being produced by excess adipose tissue; 

endorsing the anti-inflammatory properties of IL-10 in cancer 496. Further research would 

benefit from investigating the association between IL-10 and body fat percentage in women 

receiving chemotherapy for breast cancer.  

5.3.5 Inflammatory associated changes in CYP activity during 

chemotherapy 

Changes in the in vivo activity of CYP2C9, CYP2C19, CYP2D6, and CYP3A4 drug 

metabolising enzymes during chemotherapy for breast cancer were variable between patients, 

but did not significantly differ from before to after chemotherapy in the current investigation. 

Inter-patient variation in the alterations of CYP3A4 activity during chemotherapy were 

significantly correlated with changes in MCP-1 serum concentrations. More specifically, 

increased circulating MCP-1 levels were associated with greater reductions in CYP3A4 

activity. Furthermore, alterations in activity greater than 1.25-fold were observed in 87.5% of 

patients where changes in CYP2C9 activity were assessed during chemotherapy. 

5.3.5.1 Correlation between circulating MCP-1 and in vivo CYP3A4 activity 

This is the first study to observe a correlation between increasing serum MCP-1 

concentrations and reduced CYP3A4 activity. Prior to the current investigation, one other 

study has documented an association between in vivo function of CYP3A4 and systemic 

inflammation, in which patients with advanced cancer that had elevated systemic CRP also 

exhibited decreased CYP3A4 activity; as measured by the erythromycin breath test 317. 

Previous in vitro investigations of inflammation-induced downregulated CYP activity have 

focused on the effects of interleukins, interferons, and TNF-α 159, and prior in vivo studies 
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assessing circulating inflammatory cytokines and CYP activity in cancer patients have 

concentrated on the levels of pro-inflammatory mediators IL-1β, IL-6, IL-8, TNF-α, TGF, and 

the acute phase response protein, CRP 283,310,317. In cancer patients, studies measuring in vivo 

activity of CYP enzymes have focused on CYP2C19 and CYP2D6 function 283,309,310,316, and 

the level of systemic inflammation was either not associated with CYP activity 283,310 or was 

not assessed 309,316. Thus, the current investigation has revealed a novel correlation between 

serum MCP-1 levels and CYP3A4 activity in breast cancer patients receiving chemotherapy. 

An association between elevated systemic MCP-1 and decreased CYP3A4 activity 

could have notable implications in the clinic, as optimal CYP3A4 activity is critical for 

patients receiving breast cancer chemotherapy. CYP3A4 is the most abundantly expressed 

member of the CYP3A subfamily, and accounts for approximately one third of total hepatic 

CYP activity 274. CYP3A4 is responsible for the metabolism of over 50% of the most widely 

administered breast cancer therapeutic agents including tamoxifen, cyclophosphamide, 

docetaxel, doxorubicin and paclitaxel; most of which are heavily utilised in New Zealand 

clinics 314. Due to the narrow therapeutic window associated with chemotherapeutic agents 264, 

altered metabolism of these drugs may have considerable impact on the pathological response 

to chemotherapy, and thus may influence clinical outcomes.  

Different polymorphisms in the CYP genes are known to contribute to inter-individual 

variation in drug-metabolism 274,276. However, in contrast to most other CYP drug 

metabolising enzymes, CYP3A4 exhibits an activity distribution in humans that is not 

associated with genetic polymorphisms 512–514. Four CYP3A4 allelic variants (CYP3A4*1B, 

CYP3A4*6, CYP3A4*17 and CYP3A4*18) with suspected functional importance were 

investigated in 134 cancer patients with solid tumours before beginning chemotherapy, and 

similar to the current study, these patients exhibited extensive inter-patient variability in 

CYP3A4 activity, but these differences were not associated with any of the single nucleotide 

polymorphisms measured 512. In another study that used the phenotypic probe drug 

midazolam, no functional effects of the genotypic variants CYP3A4*1B, CYP3A4*17, and 

CYP3A4*18A were observed in 58 cancer patients with solid tumours 513. Lastly, inter-patient 

variability in paclitaxel pharmacokinetics measured in 97 cancer patients was not explained 

by the presence of the CYP3A4*3 genetic variant 514. Taken together, these studies suggest 

that the CYP3A4 genotype is not likely to influence CYP3A4 mediated drug metabolism in 

cancer patients receiving chemotherapy treatment, and that alternative factors aside from 
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genotype may be mediating any changes in CYP3A4 activity that were observed in the current 

investigation; for example circulating bio-available inflammatory molecules such as MCP-1.  

Inter-patient variation in CYP3A4 observed in the current exploratory study suggests 

that further research is required to better understand the biological significance of the change 

in CYP3A4 activity, and that future investigations would benefit from regular assessment of 

systemic MCP-1 and in vivo activity of CYP3A4 in a larger cohort of women throughout 

chemotherapy.  

5.3.5.2 Alterations in in vivo CYP2C9 activity during chemotherapy 

In vivo CYP2C9 activity, determined using the phenotypic probe drug losartan, was 

altered by 25% or more throughout chemotherapy in seven out of the eight breast cancer 

patients investigated in the current investigation. CYP2C9 activity was decreased in five and 

increased in two of the breast cancer patients during chemotherapy, suggesting that CYP2C9 

activity may have worsened in some patients, but improved in others, during chemotherapy 

for breast cancer.  

Changes in CYP2C9 activity during chemotherapy were not associated with the 

alterations in circulating concentrations of the inflammatory cytokines assessed in this study. 

It is possible that other inflammatory cytokines that were not measured in the current 

investigation, may cause a decrease in CYP2C9 activity. CYP2C9 mRNA expression by 

hepatocytes in vitro has been shown to be downregulated by IL-6, however, expression was 

not affected by treatment with IL-1 or TNF-α in the same investigation 300. Interestingly, to 

date, there is no direct clinical evidence for CYP2C9 phenoconversion by cytokines in 

inflammatory related diseases. CYP2C9 mediated clearance of the metabolic probe 

tolbutamide has been observed to be similar between patients with, or without, cancer, and 

was not associated with serum levels of IL-6 and TNF-α which were notably elevated in the 

cancer patients 515. Therefore, based on results from the current investigation and previous 

findings, is it likely that changes in CYP2C9 activity occurring during cancer chemotherapy 

are not influenced by systemic inflammation but rather are affected by other in vivo factors. 

For example, tamoxifen has been observed to inhibit CYP2C9 activity in a study of thirteen 

breast cancer patients 516; although women in the current study were not receiving tamoxifen 

during the study period. Thus, in conjunction with in vivo CYP activity, further research would 

benefit from in depth assessment of prototypical inducers and inhibitors of CYP enzymes 

taken by patients during chemotherapy for breast cancer. 
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5.4 Summary 

In this exploratory patient study of twelve women receiving chemotherapy for breast cancer, 

circulating levels of the inflammatory cytokines BAFF, GDF-15 and MCP-1 were increased, 

and IL-10 was decreased over chemotherapy. Alterations in circulating inflammatory 

cytokines were not dependent on differences in physical activity levels or body fat percentage, 

suggesting that other factors, such as chemotherapy effects, are likely influencing the levels 

of systemic inflammation in breast cancer patients during chemotherapy. Analysis showed that 

increases in circulating MCP-1 levels were correlated with reductions in CYP3A4 activity 

during chemotherapy, supporting the concept that systemic inflammation may result in 

clinically meaningful alterations in liver CYP activity, and thus, chemotherapy drug 

metabolism. 

Results from this exploratory study show it is feasible to analyse CYP enzyme function and 

monitor physical activity in patients during treatment, and suggest that in vivo research 

investigating the biological mechanisms by which alterations in the levels of circulating 

inflammatory cytokines may be influencing treatment outcomes for women with breast cancer 

are clinically important. Data from this pilot study will form a useful basis for future studies 

investigating the biological mechanisms by which circulating MCP-1 and other inflammatory 

cytokines, may be inducing a decrease in in vivo CYP3A4 activity, and to address whether 

such affects are impacting chemotherapy metabolism and patient outcomes following 

treatment for breast cancer. 
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Chapter 6  

 

Discussion 

 

The aim of this study was to assess adipose-related biological mechanisms that may 

be contributing to breast tumour progression. A host of adipocyte-secreted factors including 

pro-inflammatory cytokines produced by cancer associated adipocytes (CAA) have been 

observed to promote a more aggressive phenotype in nearby breast cancer cells150,161,236,256. 

These same pro-inflammatory cytokines can be found in circulation in obese individuals 

28,29,62,63. Therefore, these inflammatory cytokines may have systemic effects on other organs 

and tissues that aid in promotion of breast tumour progression in obese women148,149.  

This study had two components: first, this study addressed the microenvironmental 

effects of CAA on global protein abundance changes in hormone receptor positive MCF-7 

and hormone receptor negative MDA-MB-231 breast cancer cells; and second, this study 

investigated the systemic effects of obesity-related circulating inflammatory cytokines on in 

vivo cytochrome (CYP) P450 enzyme activity in women receiving chemotherapy for stage II 

and III breast cancer.  

 

6.1 Local effects of CAA on breast cancer cell progression 

It was hypothesised that in vitro co-culture with CAA differentially regulates 

proteome abundance in breast cancer cells, and that the resulting alterations in key molecules 

and pathways are responsible for promoting a more aggressive breast cancer cell phenotype. 

Previous studies investigating the mechanisms by which CAA and breast cancer cells interact 

to promote breast cancer have focused on particular molecules and pathways 245,248,250,258, and 

prior to this study, global protein abundance changes in breast cancer cells co-cultured with 
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CAA have not been examined. By assessing global proteome expression differences of 

hormone receptor positive MCF-7 and hormone receptor negative MDA-MB-231 breast 

cancer cells co-cultured with CAA (Chapter 3), this study unbiasedly identified, for the first 

time, greater than 1.5-fold increased expression of the glycolysis enzyme PGK1 in both breast 

cancer cell lines (Chapter 3; Table 3.2). This finding highlighted PGK1 as a potential key 

regulator through which breast CAA in the tumour microenvironment may be promoting 

breast cancer cell progression, and prompted further research investigating the effects of 

PGK1 overexpression on breast cancer cell phenotypes in vitro (Chapter 4).  

Transient transfection with a PGK1 encoding plasmid increased PGK1 protein 

expression in hormone receptor positive MCF-7 cells by an average of 2.35-fold (Chapter 4; 

Figure 4.10); a higher increase than co-culture with CAA (Chapter 3; Figure 3.9). In contrast, 

transfection with the same PGK1 encoding plasmid increased PGK1 protein expression in 

hormone receptor negative MDA-MB-231 cells by an average of 1.49-fold (Chapter 4; Figure 

4.10), which was similar to the increase in PGK1 protein abundance following co-culture with 

CAA (Chapter 3; Figure 3.9). Thus, it could be speculated that, in comparison to transfected 

MCF-7 cells, the transfected MDA-MB-231 cells in this study were being influenced by the 

effects of PGK1 overexpression in a manner that was more comparable to the effects of co-

culture with CAA.  

Transient overexpression of PGK1 protein in breast cancer cells in vitro increased 

MCF-7 cells sensitivity to chemotherapy (Chapter 4; Figure 4.15) and decreased live cell 

number, proliferation, and viability in MDA-MB-231 cells (Chapter 4; Figure 4.11, Figure 

4.13, Figure 4.15), which were unexpected observations. Prior to this study, higher protein 

expression of PGK1 in breast tumours has been associated with resistance to paclitaxel and 

poorer patient survival 349,371. In addition, it is established that co-culture with CAA increases 

proliferation, viability, migration, and invasion, and promotes resistance to tamoxifen, 

radiotherapy, and doxorubicin chemotherapy in hormone receptor positive and hormone 

receptor negative breast cancer cells 150,240,245–251,253–255. Therefore, by investigating the 

overexpression of PGK1 protein in MCF-7 and MDA-MB-231 cells, it is posited here that, 

during cross-talk with CAA, upregulation of PGK1 may be contributing to, but not solely 

responsible for, promoting breast cancer chemotherapy resistance and progression. It is likely 

that breast tumours expressing higher levels of PGK1 in vivo express varying levels of other 

tumour promoting proteins. In addition, progressive breast cancer phenotypes observed 

during crosstalk with CAA are not likely to occur following single molecular changes, but 
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rather in response to a diverse and dynamic fluctuation of breast cancer cell proteome 

abundances over time. Thus, further research is still needed to fully elucidate the ambiguous 

role of PGK1 enzyme upregulation in breast cancer cells interacting with CAA. Fortunately, 

global protein abundance changes determined for MCF-7 and MDA-MB-231 breast cancer 

cells co-cultured with CAA in this study (Chapter 3), provide a valuable platform for the 

assessment of other proteins that may be associated with PGK1 upregulation.  

The potential impact of PGK1 overexpression on breast cancer migration, invasion, 

and metastasis, are important avenues of exploration in regard breast cancer progression not 

addressed in the current study. Increased PGK1 protein expression has been associated with 

tumour metastasis in a number of cancers 363,366,398, including breast cancer 371, and the 

overexpression of PGK1 protein in gastric cancer cells dramatically increased the cells’ 

invasive capabilities 365. Interaction with CAA is known to induce breast cancer cell migration 

and invasion 150,245,246,258, and PGK1 protein expression was upregulated in MCF-7 and MDA-

MB-231 breast cancer cells co-cultured with mature breast adipocytes (Chapter 3; Table 3.2). 

Based on this, research exploring the effects of PGK1 upregulation on breast cancer cell 

invasion in vitro and breast tumour dissemination in vivo would be an important and 

unexplored area for future investigations. 

Co-culture with CAA is suggested to promote human breast cancer cell growth and 

invasion via the upregulation of mitochondrial fatty acid oxidation 249,261,262. In addition to 

fatty acid oxidation, the breast tumour stroma has been recently implicated to play a role in 

promoting the ‘reverse Warburg’ effect, in which tumour cells induce an increase in stromal 

cell aerobic glycolysis, whereby lactate produced in glycolytic stromal cells is transferred to 

the tumour cells where it fuels oxidative phosphorylation 517–520. This is derived from the 

traditional ‘Warburg effect’, in which tumour cells themselves are suggested to upregulate 

aerobic glycolysis, increasing tumour cell secretion of lactate into the tumour 

microenvironment 380. In this study, MDA-MB-231 cells co-cultured with CAA showed an 

elevated abundance of a number of proteins involved in glycolysis (Chapter 3; Figure 3.7), 

the lactate dehydrogenase subunits LDHA and LDHB, and the lactate efflux transporter 

MCT4 (Supplementary data provided at https://www.otago.ac.nz/mackenzie-

cancer/research/otago715163.html), whereas, MCF-7 cells co-cultured with CAA increased 

the abundance of a number of TCA cycle proteins (Chapter 3; Figure 3.7). Based on these 

findings, it could be hypothesised that changes in protein abundance during cross-talk with 

CAA result in metabolic alterations promoting the ‘Warburg’ phenotype in triple negative 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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MDA-MB-231 cells, and the ‘reverse Warburg’ phenotype in hormone receptor positive 

MCF-7 cells. Depiction of this hypothesis is presented in Figure 6.1 below.  

Further results from the current study showed that lactate concentrations may be 

increased in the conditioned media of MDA-MB-231 cells transiently overexpressing the 

glycolytic protein PGK1, whilst the intracellular and extracellular concentrations of lactate 

remained stable in MCF-7 cells overexpressing PGK1 (Chapter 4; Figure 4.12). This supports 

the hypothesis that protein abundance changes influence metabolic phenotypes in a cell line 

dependent manner. Similar findings have been reported by Choi et al., showing that cancer 

and stromal cell expression of metabolic proteins reflected the Warburg’ phenotype in triple 

negative breast tumours, and the ‘reverse Warburg’ phenotype in luminal breast tumours 521. 

Additionally, mouse adipocyte conditioned media has recently been shown to promote the 

‘reverse Warburg’ phenotype in MCF-7 breast cancer cells 522. Overall, these findings suggest 

that in breast tumours, cross-talk with CAA may foster a symbiotic metabolic relationship, 

whereby, changes in breast cancer cell and stromal cell metabolism are likely driven by the 

molecular subtype of the tumour.  
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Figure 6.1. Schematic depicting the proposed hypothesis for the metabolic co-operation 

between cancer associated adipocytes (CAA) and the breast cancer cells studied.  

It is hypothesised that cross-talk between breast cancer cells and nearby CAA within the 

tumour microenvironment alters metabolic symbiosis to promote the ‘Warburg’ phenotype in 

triple negative MDA-MB-231 breast cancer cells (ER-, PR-, HER2-), and the ‘reverse 

Warburg’ phenotype in hormone receptor positive MCF-7 breast cancer cells (ER+, PR+, 

HER2-). In mammalian cells, lactate is secreted via the efflux transporter monocarboxylate 

transporter 4 (MCT4), and taken up through the influx transporter monocarboxylate transport 

1 (MCT1). Oxidative phosphorylation (OXPHOS) generates reactive oxygen species (ROS) 

that can stimulate the induction of transcription factors, thus, increasing the expression of 

proteins involved in a number of processes, including inflammatory signalling and altered 

metabolism; such as an upregulation of aerobic glycolysis and downregulation of oxidative 

phosphorylation.  

 

In the current study, intracellular and conditioned media concentrations of lactate were 

unchanged by PGK1 overexpression in MCF-7 cells (Chapter 4; Figure 4.12). As discussed 

earlier in Chapter 4, it is possible that additional PGK1 molecules in the transfected cells are 

moonlighting to perform non-glycolytic functions (Chapter 4; Section 4.3.1.1). However, it 

is also possible that the overexpression of PGK1 enzymes conferred an increase in glycolytic 
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flux, but instead of being converted to lactate, pyruvate from glycolysis was being converted 

to acetyl coenzyme A (acetyl-CoA) and was used to fuel the TCA cycle in the MCF-7 cells. 

Previous studies have shown that in well oxygenated tumours, aerobic breast tumour cells and 

stromal cells can exchange and use lactate to generate pyruvate to fuel mitochondrial 

oxidative phosphorylation 517–520. Thus, the hypothesised upregulation of the pyruvate to 

acetyl-CoA conversion could potentially explain the lack of change in lactate concentrations 

in PGK1 overexpressing MCF-7 cells (Chapter 4; Figure 4.12), and additionally, may provide 

a link between the upregulation of both PGK1 and TCA cycle proteins identified in MCF-7 

cells co-cultured with CAA under normoxic conditions (Chapter 3; Table 3.2 and Figure 3.7). 

Transient overexpression of PGK1 protein in MDA-MB-231 breast cancer cells may 

have induced metabolic alterations that, without the additional support of the CAA in the 

microenvironment, was not compatible with tumour cell growth and progression in vitro. 

Stromal fibroblasts have been shown to take up lactate derived from lung cancer cells, driving 

the production of factors that supported tumour cell viability and resistance to tyrosine kinase 

inhibitors 523. Thus, it could be speculated that the unexpected reductions in MDA-MB-231 

live cell number, proliferation and viability following transient PGK1 protein upregulation 

(Chapter 4; Figure 4.11, Figure 4.13, and Figure 4.15), may be due to the accumulation of 

lactate in the conditioned media (Chapter 4; Figure 4.12) poisoning these cells via lactate 

acidosis, as additional lactate was not being taken up by nearby stromal cells in this 

experimental model.  

This study compared proteome abundance changes in two well-characterised, HER2 

negative, breast cancer lines co-cultured with CAA (Chapter 3). Until now, there have been 

only three studies which investigated the effects of CAA on HER2 positive breast cancer 

cells, demonstrating that CAA induced an increase in SKBR3 (ER-, PR-, HER2+) cell 

migration 245, and BT-474 (ER+, PR+, HER2+) and MDA-MB-453 (ER-, PR-, HER2+) cell 

resistance to doxorubicin and Herceptin 253,254. Increases in migration and therapy resistance 

were similarly observed in HER2 negative breast cancer cell lines co-cultured with CAA in 

vitro 245,246,249,251–255. Interestingly, gene expression analysis performed using two large 

publicly available datasets (TCGA and METABRIC), demonstrated higher PGK1 mRNA 

expression in HER2 positive compared to HER2 negative breast tumours (Chapter 4; Figure 

4.19). In addition, a previous investigation showed a downregulation of PGK1 protein levels 

when HER2 signalling was partially blocked with trastuzumab (Herceptin) treatment 369, 

suggesting that HER2 signalling in breast cancer may be regulating PGK1 expression. 
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Therefore, when compared to the HER2 negative breast cancer cell lines used in the current 

analysis, HER2 positive breast cancer cells co-cultured with CAA may display unique 

proteome abundances profiles that could highlight important subtype dependent differences 

and novel therapeutic targets.  

In breast cancer cells, ALDH concentrations are thought to be an important contributor 

in the cytotoxicity of cyclophosphamide chemotherapy, as the formation of cytotoxic 

metabolites within the cell requires low, rather than high, levels of ALDH 271. According to 

the results from this study, co-culture with CAA increased expression of ALDH family 

members, including AL9A1, AL1B1, and P5CS in MCF-7 cells, and AL1B1 and ALDH2 in 

MDA-MB-231 cells (Chapter 3; supplementary data provided at 

https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html). Thus, it is possible 

that PGK1 overexpressing MCF-7 and MDA-MB-231 cells may have had elevated expression 

of ALDH proteins that could have influenced the conversion of aldophosphamide into 

phosphoramide, affecting DNA crosslinking and the rates of cellular death in cells treated 

with 4-hydroperoxycyclophosphamide (metabolite of cyclophosphamide). Concentrations of 

ALDH in experimentally manipulated breast cancer cells should be considered in future 

research assessing cytotoxicity of cyclophosphamide.  

 

6.1.1 Future directions 

The results from Chapters 3 and 4 have identified CAA-induced alterations in MCF-

7 and MDA-MB-231 breast cancer cell proteome abundance, whereby, the metabolic enzyme, 

PGK1, was notably upregulated in both cell lines. Before meaningful clinical implications 

can be inferred about the impact of increased PGK1 expression on breast cancer metabolism 

and progression, further in vitro and in vivo analyses are needed to validate and expand on 

this study’s findings.  

As an important first step for future research, it is recommended that proteome 

abundance alterations are assessed in additional breast cancer cell lines co-cultured with 

CAA. In order to validate whether the unique protein expression profiles identified in this 

study’s MCF-7 (ER+, PR+, HER2-; luminal subtype) and MDA-MB-231 (ER-, PR-, HER2-

; triple negative subtype) cell lines are subtype dependent, other breast cancer cell lines with 

matching molecular phenotypes, such as T47D (ER+, PR+, HER2-; luminal subtype) and 

MDA-MB-436 (ER-, PR-, HER2-; triple negative subtype), and different molecular 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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phenotypes, such as SKBR3 (ER-, PR-, HER2+; HER2 overexpressing subtype) and BT-474 

(ER+, PR+, HER2+; HER2 overexpressing subtype), should be investigated. The T47D, 

MDA-MB-436, SKBR3 and BT-474 cell lines have been previously co-cultured with CAA 

using the transwell co-culture model 245,248,253,263, and thus, represent examples of cell lines 

that would be suitable for future proteome abundance investigations. Both breast cancer cell 

lines used in the current analysis are known to be negative for HER2 overexpression, and 

consequently, global protein abundance alterations of a HER2 positive breast cancer cell line 

co-cultured with CAA is yet to be reported. As 15-20% of breast tumours are enriched for 

HER2 overexpression 524, it is of clinical importance to include the HER2 enriched subtype 

of breast cancer in future co-culture analyses.  

The current in vitro investigation quantified breast cancer cell proteome abundance 

after a 3-day transwell co-culture of breast cancer cells with CAA. Yet, within the tumour 

microenvironment, cross-talk with CAA is likely to regulate breast cancer cell protein 

abundance differentially over time. In previous studies, in vitro transwell co-cultures of breast 

cancer cells with CAA performed endpoint analyses at single time points, with co-culture 

duration most commonly ranging from 24-hours to 3-days 150,245–247,249–251,253–255. 

Consequently, knowledge regarding the dynamic effects of CAA on breast cancers over time 

is lacking. A time-course experiment, collecting lysates and measuring proteome abundances 

in breast cancer cells co-cultured with CAA over incrementally greater time periods, may 

provide evidence to better understand the biological mechanisms associated with CAA-

mediated breast cancer cell progression. Furthermore, the use of 3D models, whereby, breast 

cancer cells and CAA are in direct contact, may provide a platform in which co-culture 

between these two cell types can be extended for longer time periods 241,255,390,525, and thus, 

should also be considered as an experimental model for extended time course experiments; 

although extraction and isolation of the breast cancer cell component for proteome analysis 

would be challenging. 

To investigate the impact of PGK1 protein overexpression on breast cancer cell 

phenotypes, this study only considered proliferation, lactate production and cytotoxicity of 

chemotherapies as endpoints. Previously, however, increased PGK1 protein expression in 

primary breast tumours has been associated with the presence of metastatic lesions in human 

patients 371. Thus, future analyses could test whether increased PGK1 expression impacts on 

breast cancer cell migration and invasion in vitro, and/or breast tumour dissemination in vivo; 

perhaps using xenograft models. Interestingly, xenografts of human breast cancer cells co-
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cultured either with or without CAA and implanted into the mammary fat pad of mice, have 

shown that CAA increase breast cancer tumorigenesis and metastasis 248,250,257,526; however, 

the exact mechanisms responsible for this are still unclear. Therefore, comparison of the 

proteome abundance profiles between primary and metastatic tumours derived from human 

xenografts, cultured with or without CAA, may also help to elucidate mechanisms by which 

CAA are promoting breast cancer cell invasion and metastasis formation in vivo.  

MCT4 is the main lactate efflux transporter in mammalian cells. In the current 

analysis, PGK1 and MCT4 were proteins identified by mass spectrometry to be upregulated 

in MDA-MB-231 breast cancer cells co-cultured with CAA (Chapter 3; supplementary data 

provided at https://www.otago.ac.nz/mackenzie-cancer/research/otago715163.html) and 

lactate concentrations were increased in the conditioned media of PGK1 overexpressing 

MDA-MB-231 cells (Chapter 4; Figure 4.12). Validation of PGK1 protein upregulation, but 

not MCT4 protein expression, in the CAA co-cultured and PGK1 encoding plasmid 

transfected MDA-MB-231 cells, was performed using Western blotting, and therefore, similar 

validation for increases in MCT4 protein expression are also warranted. Furthermore, during 

co-culture with CAA, previous studies have documented the transfer of fatty acids from 

adipocytes to breast cancer cells, and then observed the use of these fatty acids to fuel breast 

cancer cell mitochondrial fatty acid oxidation, and possibly, cell replication and migration 

249,262. Therefore, in order to assess whether cross-talk with CAA results in metabolic 

alterations promoting glycolysis and lactate efflux in triple negative breast cancer cells (as 

discussed above in 6.1), it might also be possible to monitor the transfer of lactate from MDA-

MB-231 breast cancer cells to adipocytes during co-culture.  

Investigation of PGK1 overexpression in breast cancer cell lines in vitro showed that 

plasmid derived PGK1 proteins were fused with an N-terminal poly-HIS-FLAG-HA tag, but 

the implications of this tag on PGK1 enzyme function remain unexplained. The use of 

immunohistochemistry (IHC) to investigate PGK1 protein expression at the invasive margin 

of human breast tumours in vivo, would avoid the potential interference of plasmid derived 

tags on PGK1 protein function. Additionally, analysis using IHC would identify whether 

CAA interactions influence breast cancer cell PGK1 expression levels, and would enable the 

determination of PGK1 subcellular localisation within the tumour cell, providing insight into 

whether additional PGK1 molecules are involved in glycolysis or other mechanistically 

distinct, subcellular localisation dependent, functions 373,374,406,408. Furthermore, molecularly 

distinct subtypes of breast tumours could be selected for IHC analysis, and thus, the 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.otago.ac.nz%2Fmackenzie-cancer%2Fresearch%2Fotago715163.html&data=02%7C01%7Crebekah.crake%40postgrad.otago.ac.nz%7C248619ea1bac4710a71008d7109d40e4%7C0225efc578fe4928b1579ef24809e9ba%7C1%7C0%7C636996139929107577&sdata=f3B0BGbhQqT6gDM6ETJuKEs1gPfUcnAqSSNn7jVSh8w%3D&reserved=0
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relationship between HER2 enrichment and PGK1 protein expression in tumour cells 

interacting with CAA could also be assessed. Interactions between CAA and breast cancer 

cells at the invasive margin of human breast tumours have been examined using IHC, 

assessing the expression and localisation of a number of target proteins including IL-6, MMP-

2, MMP-9, S100A7, IGF-1, and IGFBP-2 150,245–248, and thus, similar analysis of PGK1 

protein expression could complement these previous investigations.  

PGK1 protein overexpression in breast cancer cell lines in vitro was determined by 

Western blotting, however, post-translational modifications were not addressed. Previous 

investigations have used either mass spectrometry or targeted antibodies to measure post-

translational modifications of PGK1 enzymes, including acetylation at K323 and K388, and 

phosphorylation at S203 and S256; modifications that were found to be associated with 

alterations in the activity and function of the enzyme 374,375,408,412. Therefore, testing the extent 

of post-translational modifications in breast cancer cells overexpressing PGK1 would help 

confirm the mechanistic functions associated with its upregulation.  

 

6.2 Systemic effects of obesity-associated inflammation on 

breast cancer chemotherapy metabolism 

It was hypothesised that high circulating concentrations of obesity-associated 

inflammatory cytokines downregulate in vivo activity of cytochrome P450 (CYP) enzymes in 

women receiving chemotherapy for breast cancer. Inflammatory cytokines have been shown 

to inhibit expression and activity of CYP enzymes in vitro 300–303, and a CYP genotype-

phenotype discordance has been recorded in a number of inflammatory pathologies in vivo 

283,306–310,316. In advanced cancer patients, elevated CRP (a marker of systemic inflammation) 

has been associated with CYP3A4 downregulation 317, however, prior to this study, the 

relationship between CYP activity and circulating inflammatory cytokines during breast 

cancer chemotherapy has never been examined. By concurrently assessing in vivo changes in 

both the circulating inflammatory cytokine concentrations and activity of multiple CYP 

metabolising enzymes in twelve women receiving chemotherapy for stage II and III breast 

cancer (Chapter 5), the current study identified for the first time a correlation between 

increases in serum MCP-1 levels and decreases in CYP3A4 activity during chemotherapy 

(Chapter 5; Figure 5.27). This finding highlighted MCP-1 as a potential regulator of CYP3A4-
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mediated breast cancer chemotherapy metabolism, and thus, when increased systemically, 

MCP-1 may be playing a role in the manifestation of chemotherapy resistance.  

Potential biological mechanisms by which MCP-1 may influence the activity of 

CYP3A4 in hepatocytes have never been investigated. MCP-1 mediates its chemoattractant 

properties through binding to its cell surface receptor, C-C chemokine receptor type 2 (CCR2) 

492. Expression of CCR2 is restricted to particular cell types, which includes resident and 

recruited Kupffer cells (hepatic macrophages), but excludes hepatocytes 492,527. Thus, MCP-1 

is unlikely to be directly influencing hepatocyte CYP3A4 expression and activity. Instead, it 

is hypothesised here that MCP-1 is indirectly downregulating hepatocyte CYP3A4 activity 

by binding CCR2 on Kupffer cell surfaces, increasing their production of inflammatory 

cytokines, such as IL-6 and TNF-α 528. IL-6 can bind membrane receptors on nearby 

hepatocytes and promote signalling cascades previously documented to downregulate 

CYP3A4 transcription 298,299. Depiction of this hypothesis is presented below in Figure 6.2. 

In order to test this hypothesis, the binding of MCP-1 to CCR2, and the subsequent release of 

inflammatory cytokines from liver Kupffer cells in breast cancer patients receiving 

chemotherapy, needs to be tested.  

In the current study, the increase in circulating levels of MCP-1 during chemotherapy 

was not associated with differences in adiposity or physical activity, suggesting an influence 

of additional factors on systemic MCP-1 concentrations (Chapter 5; Figure 5.17, Figure 5.18, 

Figure 5.19, and Figure 5.20). In the earlier discussion (Chapter 5; Section 5.3.4), it was 

postulated that increases in circulating MCP-1 are being induced by chemotherapy. 

Chemotherapy has been shown to activate the immune system in breast cancer patients by 

enhancing natural killer and lymphocyte-activated cytotoxic cell activity 505. In addition, 

increases in circulating monocyte levels (monocytosis) and elevated serum MCP-1 

concentrations have been associated with neoadjuvant chemotherapy treatment in breast 

cancer patients 495. It is possible that during repeated doses of chemotherapy, increases in 

serum MCP-1 levels are stimulated by the effects on immune cells, and over the course of 

chemotherapy, interaction between MCP-1 and its receptor, CCR2, may be intensified. 

Therefore, based on the hypothesis presented above (Figure 6.2), it is suggested that through 

an influence on the immune system, chemotherapy may be contributing to the development 

of a perpetuating cycle of monocyte/macrophage infiltration and inflammatory cytokine 

production in the liver; fostering an inflammatory microenvironment that may influence 

hepatocyte CYP3A4 expression and activity (Figure 6.2). 
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Figure 6.2. Schematic of the proposed hypothesis for monocyte chemoattractant protein 

1 (MCP-1) mediated decrease in CYP3A4 activity in the liver of human breast cancer 

patients.  

A) The liver of breast cancer patients is exposed to increased circulating levels of MCP-1 

during chemotherapy. Liver Kupffer cells (hepatic macrophages) express the MCP-1 cell 

surface receptor C-C chemokine receptor type 2 (CCR2), and thus, MCP-1 can bind and 

induce an increase in the production of other inflammatory cytokines, such as interleukin 6 

(IL-6) and tumour necrosis factor alpha (TNF-α), and further increase levels of MCP-1 

molecules. IL-6 and TNF-α bind their membrane receptors, interleukin 6 receptor (IL-6R) and 

tumour necrosis factor receptor 1 (TNFR1), on the surface of nearby hepatocytes, inducing 

inflammatory signalling cascades that regulate CYP3A4 transcription. B) Schematic of one 

of the mechanisms by which inflammatory cytokines inhibit CYP3A4 transcription; as 

reported by Jover et al, 298. Intracellular signalling, following IL-6 binding, induces translation 

of CCAAT-enhancer-binding protein beta isoform LIP (C/EBPβ-LIP), an antagonist of 

CCAAT-enhancer-binding protein alpha (C/EBPα); C/EBPα is a known transcription factor 

that constitutively promotes CYP3A4 expression in hepatocytes 298.  

 

6.2.1 Future directions and clinical implications 

The results from this exploratory patient study have identified a potential mechanistic 

relationship between circulating MCP-1 and activity of CYP3A4 in vivo, which may play a 

role in altering the rates of breast cancer chemotherapy metabolism. Additional studies are 

required to validate these findings, and assess the potential clinical impacts.  
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Gathering follow-up data for the study participants is an important first step in 

assessing whether clinical outcomes, such as disease free survival (DFS) and overall survival 

(OS), are associated with levels of circulating inflammatory cytokines and/or changes in CYP 

activity reported during chemotherapy. Poorer recurrence and survival rates have been 

previously associated with reduced cyclophosphamide and tamoxifen metabolism in breast 

cancer patients 279,529, however, participants in these studies were followed for 10-25 years in 

order to assess such endpoints. It is likely that the longitudinal nature required for clinical 

outcome assessments is what prevented reports on DFS and OS by the other studies that have 

observed reduced CYP activity in cancer patients 283,309,310,316,317. Therefore, it will be 

important to know whether recurrence and survival rates are affected by alterations in 

circulating inflammatory cytokines and CYP activity in breast cancer patients receiving 

chemotherapy, as this has yet to be assessed directly. Importantly, data from the current 

analysis showed that none of the participants had chemotherapy dose-capped based on BSA 

(Chapter 5; Table 5.2), and thus, dose-capping can be ruled out as a contributing factor 

towards the findings from the current analysis, and, clinical outcomes that may be assessed in 

the future. 

The correlation between circulating MCP-1 and in vivo CYP3A4 activity, and the 

change in circulating levels of BAFF, GDF-15, IL-10 and MCP-1, need to be validated in a 

larger population of participants, as this would generate more statistical power. As discussed 

earlier (Chapter 5; Section 5.3.1), the number of participants in the current study was suitable 

for determining the tolerability and feasibility of using the ‘Inje’ probe drug cocktail to 

measure in vivo CYP activity in breast cancer patients during chemotherapy. Yet, with the 

current study numbers, assessing the influence of other cancer-related co-morbidities and 

drug-drug interactions on systemic inflammation and CYP activity in vivo was not feasible. 

There are a number of cancer-related pathologies that are associated with an increase in the 

levels of circulating inflammatory cytokines 502, and, there are many prescribed, but also ‘over 

the counter’, drugs that have the potential to induce and inhibit CYP enzymes in vivo 293. 

Therefore, in order to validate the findings from this feasibility study and assess the impact 

of other confounding factors on circulating inflammation and in vivo CYP activity, a larger 

patient study is warranted.  

Previous studies have established a pro-tumourigenic role of MCP-1 in a number of 

solid tumours 530, and as such, early stage clinical trials have been carried out to assess the 

efficacy and safety of MCP-1 blockade using the human monoclonal antibody, CNT0888, 
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that inhibits MCP-1 binding to CCR2, for use in cancer patients with solid tumours 531,532. 

Despite binding to MCP-1 with high affinity in vitro, CNT0888 given in combination with 

standard of care chemotherapies was not able to achieve a pro-longed inhibition of serum 

MCP-1, and accordingly, was not associated with an anti-tumour response 531,532. CNT0888 

caused a number of adverse effects that included, neutropenia, anemia, nausea, and fatigue, 

but interestingly, did not alter the pharmacokinetics of the chemotherapeutic agents 531,532. 

Based on these trial findings and the fact that mechanisms by which MCP-1 may be 

downregulating CYP3A4 activity in hepatocytes has never been investigated, it is suggested 

here, that before assessing the effects of an MCP-1 blockade on CYP activity in breast cancer 

patients in vivo, the mechanistic relationship between circulating MCP-1 and CYP3A4 

activity should first be investigated in vitro.  

An in vitro transwell co-culture between human Kupffer cells and hepatocytes, a 

model previously established to assess the influence of pro-inflammatory cytokines on CYP 

enzymes 303, could be used to test for the mechanism of action proposed earlier (Section 6.2; 

Figure 6.2). Before co-culture with hepatocytes, Kupffer cells could be pre-treated with or 

without recombinant MCP-1 or serum collected from breast cancer patients during 

chemotherapy. The inflammatory cytokine profiles secreted into the co-culture conditioned 

medium could be compared between Kupffer cell pre-treatment with or without MCP-1, or 

with or without serum samples. Furthermore, hepatocytes could be collected following co-

culture to measure intracellular gene and protein expression of CYP3A4, in order to test 

whether interaction with Kupffer cells pre-treated with MCP-1 or serum differentially 

regulates hepatocyte expression of CYP3A4. It may also be possible to test rates of CYP3A4 

activity by measuring midazolam metabolism in this co-culture model.  

Exploring genotypes of the CYP2C9, CYP2C19 and CYP2D6 enzymes, and 

associating common variants with in vivo activity of the CYP enzymes measured in the 

current study, would identify whether functional variation observed between participants was 

dependent on genotypic differences. Genotyping CYP enzymes would allow us to assess the 

variation at a single time point, however, this study observed changes in CYP activity during 

chemotherapy that varied between participants, particularly in CYP2C9 and CYP2D6 

(Chapter 5; Figure 5.23), and it is unlikely that genotypic alterations are responsible for 

changing the activity of these enzymes over such a short time period. It is more likely that 

endogenous factors, such as circulating inflammatory cytokines and drug-drug interactions, 

are influencing CYP activity during chemotherapy. Yet, epigenetic changes, such as 
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hypermethylation of CYP promoters, cannot be ruled out and should also be considered in 

future investigations.  

Changes in circulating inflammatory cytokines during chemotherapy were not 

associated with differences in physical activity levels in this study. However, there was an 

observed reduction in the average daily step counts in the early stages of chemotherapy 

(Chapter 5; Figure 5.8). In addition to reducing adiposity and serum concentrations of 

circulating inflammatory cytokines, increased levels of physical activity have been shown to 

improve the quality of life, cardiorespiratory fitness, physical well-being, symptoms of fatigue 

and depression in breast cancer survivors 533. Thus, in order to try and counteract the early 

reductions in physical activity during treatment, it will be clinically important for future 

investigations in breast cancer patients to implement exercise education and physical training 

programmes prior to starting chemotherapy.  

 

6.3 Conclusion 

In summary, the current thesis describes experimental investigations of the local 

effects of CAA on breast cancer cell processes in vitro, and systemic effects of obesity-

associated inflammatory cytokines on cytochrome P450 (CYP) drug metabolising activity in 

breast cancer patients during chemotherapy.  

Firstly, global differences in relative protein abundance were identified and quantified 

in MCF-7 (ER+, PR+, HER2-) and MDA-MB-231 (ER-, PR-, HER2-) breast cancer cell lines 

co-cultured with cancer associated adipocytes (CAA) in an in vitro transwell system. 

Proteome abundance profiles indicated that CAA effects are likely to differ according to 

molecular subtypes. Co-culture with CAA induced an enriched upregulation of TCA cycle 

proteins in MCF-7 cells, and glycolysis proteins in MDA-MB-231 cells, highlighting the 

importance of metabolic pathways in breast cancer cells exposed to CAA in the tumour 

microenvironment. Moreover, the glycolytic protein phosphoglycerate kinase 1 (PGK1), was 

the only identified protein to be upregulated by more than 1.5-fold in both breast cancer cell 

lines co-cultured with CAA. In general, this hypothesis generating aspect of the thesis has 

provided, for the first time, a rich resource of proteome abundance alterations that can be used 

for future research assessing the role of CAA in breast cancer cell progression.  
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Secondly, transient overexpression of PGK1 in MCF-7 and MDA-MB-231 breast 

cancer cell lines in vitro exhibited cell-line specific effects, with reduced proliferation and 

increased lactate in the conditioned media of MDA-MB-231 cells, and increased sensitivity 

to paclitaxel and cyclophosphamide in MCF-7 cells. These results did not support our 

hypothesis that increased PGK1 expression is promoting breast cancer cell growth and 

survival through its influence on metabolism. However, findings did reveal that breast cancer 

cell viability was negatively affected by the experimental conditions imposed during PGK1 

plasmid transfection. Furthermore, in silico analysis of PGK1 expression provided evidence 

for an association between HER2 signalling and PGK1 regulation in breast cancer. Taken 

together, these findings may indicate a non-glycolytic role for PGK1 in high PGK1-

expressing breast cancers, and highlight the need for further research to develop a stably 

overexpressing model for PGK1 and to assess PGK1 overexpression in HER2+ breast cancer. 

Thirdly, results from an exploratory clinical trial showed that breast cancer patients 

receiving chemotherapy exhibited changes in serum levels of a number of circulating 

inflammatory cytokines that were not associated with adiposity or physical activity. However, 

increases in serum monocyte chemoattractant protein 1 (MCP-1) correlated with decreases in 

CYP3A4 activity during chemotherapy. Based on the participants that were assessed, findings 

from this exploratory study did not support our hypothesis that chronic low levels of obesity-

related inflammatory cytokines could inhibit in vivo CYP activity, altering chemotherapy 

metabolism, and that physical activity could mitigate this effect during treatment. However, 

findings from this study confirmed, for the first time, the feasibility of the ‘Inje’ cocktail to 

measure CYP activity in women having treatment for breast cancer, and showed that 

increased concentrations of circulating inflammatory cytokines are capable of altering CYP 

activity during chemotherapy. Further studies are required to understand the biological 

mechanisms by which circulating MCP-1 and other inflammatory cytokines, may be inducing 

a decrease in in vivo CYP3A4 activity, and to address whether such affects are impacting 

chemotherapy metabolism and patient outcomes following treatment.  

Overall, this thesis has, for the first time, generated an extensive list of breast cancer 

cell protein abundance alterations, induced by in vitro co-culture with CAA that may help 

guide future research targeted towards understanding and mitigating detrimental local 

interactions between CAA and breast cancer cells in vivo. In addition, this thesis has provided 

novel evidence confirming that it is feasible to analyse CYP function in women receiving 

chemotherapy for breast cancer using the ‘Inje’ probe drug cocktail. In this study the ‘Inje’ 
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cocktail generated individualised drug metabolising activity, suggesting that in the future 

similar methodologies could be used for precision chemotherapy drug dosing in order to 

improve patient outcomes.  
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A.1 Supplementary material for Chapter 2 

 

 

 

Supplementary Figure A.1.Representative image of human breast cancer cell lines 

tested for mycoplasma.  

PCR using primers designed for the generic detection of Mollicutes (270bp). GPO3 5' 

GGGAGCAAACACGAT AGATACCCT 3', MGSO 5' TGCACCATC 

TGTCACTCTGTTAACCTC 3'. Cell lines were free of contamination. 
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Supplementary Figure A.2. Representative image of serum protein electrophoresis 

performed on all blood patient plasma and serum samples.  

Complete absence of a fibrinogen band indicates a pure serum sample. Samples with 

fibrinogen bands were considered plasma.  
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A.2 Supplementary material for Chapter 4 

 

 
Supplementary Figure A.3. Representative image of a full Western blot for PGK1.  

Relative PGK1 expression was assessed in control and transfected MCF-7 and MDA-MB-

231 cells. Cells were transfected with the pFRT/TO/HIS/FLAG/HA-PGK1 plasmid encoding 

PGK1. Lane 1) control MCF-7, Lane 2) transfected (PGK1) MCF-7, Lane 3) control MDA-

MB-231, and Lane 4) transfected MDA-MB-231. Transfection showed double 

immunoreactive bands for PGK1 at the correct (44 kDa) and larger molecular size (48 kDa). 

β-actin was used as a loading control. 
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A.3 Supplementary material for Chapter 5 

Supplementary Table A.1.Concentrations (ng/mL) of probe drugs and metabolites in serum and urine samples collected from each 

participant before probe drug administration.  
 Before Chemotherapy (0Hr samples) 

Participant Losartan E-3174 Omeprazole 5-Hydroxyomeprazole Dextromethorphan Dextrorphan Midazolam α-Hydroxymidazolam 

1 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

2 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

3 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

4 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

5 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

6 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

8 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

9 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

12 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

 After Chemotherapy (0Hr samples) 

Participant Losartan E-3174 Omeprazole 5-Hydroxyomeprazole Dextromethorphan Dextrorphan Midazolam α-Hydroxymidazolam 

1 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

2 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

3 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

4 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

5 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

6 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

8 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

9 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

12 < 5.0 < 5.0 < 5.0 < 5.0 < 1.25 < 5.0 < 0.2 < 0.2 

<0.2, <1.25, and <5.0: concentration of probe drug or metabolite were below the detectable limits of the assay. 

0Hr: zero hour, serum and urine samples were collected from participants prior to receiving the probe drug cocktail
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Schema 

 

Schema. Initial blood sample collected by The Cancer Society Tissue Bank at the pre-admission visit (up to a week prior to beginning neoadjuvant chemotherapy OR up to 

a week prior to surgery for adjuvant chemotherapy patients). Patients will be approached during their first oncology visit, then given up to a week to consent. Following 

consent, and within the 21 days preceding cycle 1 AC (AC is the combination of doxorubicin and cyclophosphamide chemotherapy used together to treat breast cancer) 

neoadjuvant or adjuvant chemotherapy, patients will have body morphometry measured and be given the baseline cocktail (with pharmacokinetic sampling). Expected 

timeframe between neoadjuvant or adjuvant chemotherapy cycles is as follows: AC, 21 ± 2 days; Paclitaxel, 7 ± 2 days. FitBits will be expected to be worn after specified 

neoadjuvant or adjuvant chemotherapy cycles/doses for these timeframes (AC, 21 ± 2 days; Paclitaxel, 7 ± 2 days). After ‘FitBit wearing’ periods blood samples will be 

taken. The final cocktail will be administered 21 ± 7 days after Dose 6 of paclitaxel is given (with pharmacokinetic sampling).
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1. Objectives 

1.1 Primary Objectives  

1. To determine if cytochrome p450 3A4-mediated midazolam metabolism is different in 

obese cancer patients as compared to age-matched normal weight cohort. 

2. To examine the relationship between physical activity levels and cytochrome p450 3A4 

activity in patients treated for breast cancer; as measured by midazolam metabolism.  

 

1.2 Secondary Objectives 

1. To compare the concentrations of inflammatory cytokines in blood samples collected 

from obese and age-matched normal weight breast cancer patients at stipulated time-points 

during neoadjuvant or adjuvant chemotherapy treatment. 

2. To examine the relationship between body composition and cytochrome p450 3A4 

metabolism in patients treated for breast cancer.  

3. To explore the patterns of activity in obese and normal weight breast cancer patients over 

cycle one of AC (AC is the combination of doxorubicin and cyclophosphamide 

chemotherapy used together to treat breast cancer; see Appendix 11.3) chemotherapy and 

dose one & six of weekly paclitaxel (including patients on 3 weekly trastuzumab; see 

Appendix 11.4 and 11.5 for example charts) by objectively measuring physical activity 

using FitBit One® accelerometers. 

4. To examine the relationship between chemotherapy dosing and obesity, physical activity, 

drug metabolism, and measurements of systemic inflammation. 

 

1.3 Exploratory Objectives  

1. Collect blood samples for later analysis to determine if there is differential impact on the 

activity of other cytochrome P450 enzymes in obese and non-obese cancer patients. 

2. Perform secondary analysis of laboratory complete blood counts of neutrophil to 

lymphocyte ratio, measured under routine clinical practice to monitor saftey. 
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2. Background 

2.1 Breast Cancer: Obesity and Inflammation 

Obesity is prevalent worldwide and New Zealand (NZ) is not an exception, as one in three 

NZ adults are obese and a further 35% are overweight but not obese1,2. Epidemiologic 

studies strongly link obesity with increased risk of breast cancer as well an increased risk of 

breast cancer-associated mortality3,4. Obese women with breast cancer present with more 

advanced disease at diagnosis, have a higher rate of recurrence and have shorter survival 

times, when compared to normal weight patients4,5. Collectively, these observations suggest 

that obesity promotes breast cancer metastasis, and that chemotherapy may be less effective 

in obese patients. However, the reasons for this remain unclear. It is established that obese 

subjects have higher levels of circulating inflammatory markers6,7 and that this 

inflammation is a hallmark of cancer8. Thus, one possible hypothesis suggests that obesity-

associated chronic, low-grade, systemic inflammation has a negative impact on patient’s 

responsiveness to chemotherapy. Research suggests that obese women with breast cancer 

have increased levels of circulating obesity-related inflammatory cytokines (e.g. CRP, IL-6 

and TNF-alpha), and such increases promote breast cancer development and mortality9,10,11. 

 

2.2 Breast Cancer: Obesity, Exercise and Inflammation 

Patient obesity is generally concurrent with other characteristics associated with risk of 

mortality, such as decreased physical activity. A sedentary lifestyle pre-diagnosis has been 

associated with an increased risk of recurrence in oestrogen receptor(ER)/progesterone 

receptor(PR) negative breast tumours12. Similarly, reduced physical activity is an 

independent predictor of cancer-specific mortality, particularly in breast and colon 

cancers13,14,15. The literature suggests that aerobic and resistance exercise implemented 

during adjuvant chemotherapy displays a trend toward improved treatment responses and 

thus breast cancer outcomes, particularly for women who were overweight or obese16. 

Furthermore, breast cancer patients performing high doses of approximately 50-60 minutes 

of either aerobic, or aerobic and resistance training combined has been proven to be both 

achievable during treatment, and harmless for the patient and their rate of chemotherapy 

completion17. The mechanisms by which increased physical activity improves breast cancer 

outcome are not fully understood, yet one hypothesis includes the alleviation of obesity 
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associated systemic chronic low-grade inflammation by promoting anti-inflammatory 

environments.  

Two related systematic reviews analysed the relationship between exercise and biomarkers 

important in breast cancer, including inflammatory cytokines. They concluded that there is 

biological relevance in the association between exercise and breast cancer outcome as 

physical activity can positively alter levels of circulating inflammatory cytokines as well as 

other cancer-related biomarkers18,19. Since these reviews, additional research suggests that 

after chemotherapy, exercise and calorie restriction in a group of early stage breast cancer 

survivors resulted in modest body weight and waist-to-hip reduction and that these body 

compositional changes were positively correlated with markers of inflammation20. A more 

recent systematic review, with meta-analysis, further supports the positive influence of 

exercise in improving serum concentrations of chronic, low-grade inflammatory markers21. 

Conversely however, some studies have not seen the same level of change in circulating 

inflammatory markers as a response to exercise22,23.  

When measuring physical activity in cancer patients undergoing, or after, chemotherapy 

many studies include survey and/or questionnaire based assessments. However, as they are 

now more readily available, it has become possible to include objective measures of 

physical activity through the use of pedometers, accelerometers, or global positioning 

satellite (GPS) data. Objective measures of physical activity offer several advantages over 

the traditional survey- or questionnaire-based assessments including reduction of recall bias, 

continuous physical activity data, and objective measurement of adherence.  Several 

commercially available accelerometers have been used in clinical studies (RT3, activePAL, 

Actigraph, Qstartz, Yamax) to determine free range physical activity in both children and 

adults, with and without the addition of global positioning satellite data24,25,26. 

Accelerometer data has been validated as a measure of PA in studies using PA questionas as 

well as objective validation against observed activity, such as treadmill walking27.  

Preliminary studies have validated the use of accelerometers in cancer patients, during and 

following treatment28,29. Finally, a pilot study in 16 cancer patients provided feasibility in 

the use of Fitbit One® to measure exercise during chemotherapy (Unpublished Data; 

Matthew Strother, 2015). Furthermore, the same pilot study provided evidence that patients 

naturally separated themselves into more physically active and less physically active cohorts 

without any intervention in place (Fig 1). Several studies have validated products 
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manufactured by FitBit (San Francisco, USA), a consumer-oriented accelerometer 

commercially available in New Zealand27,30.  

 

2.3 Cytochrome P450 Enzymes in Breast Cancer: Inflammation and 

Chemotherapy Drug Metabolism 

Cytochrome (CYP) P450 enzymes are a family of mixed-function oxidases which can 

modify functional groups and contribute to a significant proportion of drug metabolism in 

the body31. CYP enzymes are predominantly localised to the liver, although they can be 

found in various tissues in the human body such as kidney, lung and gut. CYP enzymes are 

substrate specific- with CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5 

contributing considerably to the metabolism of breast cancer chemotherapy agents, 

including tamoxifen, cyclophosphamide, dexamethasone, doxorubicin and paclitaxel32. 

Clinical impact in terms of drug toxicity and efficacy can vary between patients due to 

variability in CYP activity. Interpatient variability in CYP activity stems from differences in 

genetic makeup, environmental exposures and/or epigenetic events. Similarly, drug 

metabolising enzyme polymorphisms can alter drug toxicity 

 

Figure 1. A pilot study showed that it is possible to measure physical activity (cumulative 

steps) in breast cancer patients during chemotherapy using FitBit One® devices.  
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and efficacy within an individual. Recently however, it has been established that although 

an individual may be classed as an extensive drug metaboliser because of their drug 

metabolising genotype, this genotype does not always reflect or accurately predict the 

observed drug metabolising phenotype33. In cytochrome P450 enzymes this phenomena has 

been extensively reviewed by Shah and Smith, who have termed this event 

‘phenoconversion’, and suggest that it can result from co-administration of medications 

inhibiting the functional quality of certain CYP enzymes34. Furthermore, Shah and Smith 

present evidence from non-clinical research over the last 20 years that shows elevated levels 

of pro-inflammatory cytokines can inhibit gene expression of P450 enzymes causing a 

transient down-regulation in their numbers and therefore drug metabolising capacity35. One 

clinical study of 16 cancer patients found evidence suggestive of a genotype-phenotype 

mismatch in CYP2C19 and ruled out interference by other drugs36, yet inflammatory 

cytokine involvement was not investigated. In the literature, analysis of circulating 

inflammatory cytokines has linked systemic inflammation with adverse breast cancer 

prognosis37. This link may be explained, at least in part, by the transient phenoconversion of 

CYP P450 enzymes by circulating inflammatory cytokines, hindering breast cancer drug 

metabolism.  

Whether in whole animal models or human subjects, CYPs activity is studied through use of 

probe drugs. Probe drugs are medications that have been determined to be predominantly 

metabolized by one CYP, thus allowing the clinical scientist to gain insight into the activity 

of that CYP in vivo38. An example of this is use of midazolam and its metabolites to study 

CYP3A4 – through administration of this drug and subsequent sampling from the systemic 

circulation to measure the parent compound (midazolam) and metabolites (4-OH 

midazolam), it is possible to phenotype the activity of CYP3A4. The probe drug 

methodology can be used to study specific CYPs in relative isolation, or through 

combinations of multiple probe drugs (frequently called “cocktails”) the phenotype of 

multiple CYPs can be assessed concurrently. 

The cocktail approach to CYP phenotyping is well-established in academia and the 

pharmaceutical industry.  Phenotyping cocktails are designed to limit the potential for 

interactions between components, exhibit adequate specificity of agents to allow accurate 

CYP phenotyping, and minimize observable clinical effects39. Specifically, with regards to 

the latter point, many probe drugs have either been selected because of limited potential for 

harm at standard dosing (even in the setting of intentional increased exposure such as in 
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CYP-inhibition studies), or reduction in dosing to subtherapeutic ranges. Examples of CYP 

phenotyping cocktails include the “Pittsburgh” cocktail40
, the “Basel” cocktail41, and the 

“Inje” cocktail42: their respective constituent components and sampling schedules are 

presented in Table 1.  

 

Table 1. Examples of Phenotyping Cocktails  

Cocktail 

Components 

(Enzymes/Transporters 

Assessed) 

Sampling Schedule 

Pittsburgh 

 Caffeine (CYP1A2) 

 Chlorzoxazone (CYP2E1) 

 Phenytoin (CYP2C19) 

 Debrisoquin (CYP2D6) 

 Dapsone (CYP3A4) 

 Plasma sample at baseline, 4 

and 8 hours 

 Urine sample 0-8 hours 

(inclusive) 

 

Basel 

 Caffeine (CYP1A2) 

 Efavirenz (CYP2B6) 

 Omeprazole (CYP2C19) 

 Metoprolol (CYP2D6) 

 Losartan (CYP2C9) 

 Midazolam (CYP3A4) 

 Plasma samples at 0.25, 0.5, 

0.75, 1, 2,3, 4, 6, 8, 12, 24, 

48, and 72 hours 

 

 

Inje 

 Caffeine (CYP1A2) 

 Omeprazole (CYP2C19) 

 Dextromethorphan (CYP2D6) 

 Losartan (CYP2C9) 

 Midazolam (CYP3A4) 

 Plasma sample at 4 hours 

 Urine sample at 8 hours 

 

 

2.4 Summary of Published Data 

Low grade, systemic inflammation is a well-established characteristic of chronic obesity and 

has been linked to the increased risk of and mortality from breast cancer. Based on previous 

research it could be speculated that obese breast cancer patients have worse outcomes after 

chemotherapy due to increased levels of circulating inflammatory cytokines inhibiting liver 

CYP enzymes, and thus, less effective metabolism of breast cancer chemotherapy drugs. It 

is therefore hypothesized that 1) clinical inflammation in obese breast cancer patients 

induces transient ‘phenoconversion’ and inhibits functional activity of liver CYP enzymes 

and 2) regular moderate exercise reduces obesity-related inflammation and improves 

chemotherapy outcome. We propose to elucidate the impact of exercise on breast cancer 
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chemotherapy drug metabolism via liver CYPs, and investigate the role that circulating 

inflammatory cytokines play in this process.  

 

 

3. Patient Selection 

3.1 Inclusion Criteria 

 Women of age ≥ 18. 

 Obese (BMI >30 kg/m2) or normal weight (18.5≤BMI≤24.9 kg/m2) at diagnosis, 

according to BMI scoring. 

 Ability to understand and give written informed consent. 

 Ability to take oral medications. 

 Clinically defined stage II or III breast cancer. 

 Planned neoadjuvant or adjuvant chemotherapy with AC-T (cyclophosphamide, 

doxorubicin, paclitaxel).  

 Willing to wear FitBit One® throughout the selected cycles/doses of chemotherapy. 

 Willing to take probe drug cocktail and provide subsequent blood/urine samples. 

 No known sensitivity or contraindications to any of the cocktail components, 

including: midazolam, losartan, caffeine, omeprazole and dextromethorphan. 

 Have adequate end-organ function, as measured by:  

 

 

 

 

 

 

3.2 Exclusion Criteria 

 Enrollment in any conflicting clinical trials. 

 Uncontrolled intercurrent illness including, but not limited to, on-going or active 

infection and psychiatric illness/social situations that would limit compliance with 

study requirements.  

 Patients that suffer from ongoing urinary incontinence and/or current use of a 

urinary catheter. 

 Cirrhosis as documented by liver biopsy, fibroscan, or a clinical history laboratory 

findings consistent with cirrhosis. 

 Impaired mobility due to disability or medical illness. For example: 

Creatinine ≤ 2x Upper Limit of Normal (ULN) 

Haemoglobin > 90 g/L  

Systolic Blood 

Pressure 

> 90 mmHg 

AST  ≤ 3x ULN 

ALT ≤ 3x ULN 

Bilirubin ≤ 2x ULN 
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o Amputation of either or both lower extremities 

o Restricted to a wheelchair 

 Are known to have active infection with a viral hepatitis (e.g. Hepatitis B or C). 

 Unwilling to comply with requirements for recording times when the FitBit One® is 

not worn. 

 Any abnormal laboratory value or medical condition that would, in the investigators’ 

judgement, make the patient a poor candidate for the study.    

 Use of concurrent medications known to be inhibitors or inducers of the cytochrome 

P450 enzymes being studied. Weak inducers or inhibitors will be acceptable for 

inclusion. Table 2, below, is derived from the FDA recommendations regarding in 

vivo CYP probes, inducers, and inhibitors43. This list is non-comprehensive, but 

covers the prototypical strong inhibitors and inducers.  This exclusion is specifically 

referencing chronic medications that cannot be stopped during period preceding 

cocktail administration, by at least 7 days.   This does not reference medications 

taken intermittently, especially those during chemotherapy.  An example of this is 

aprepitant, which is administered as part of the standard anti-emetic regimen for AC 

– however, the use of this medication is separated from any cocktail administration 

by > 7 days.  See Appendix 11.1 and 11.2 for a more comprehensive FDA derived 

guideline on strong inducers and inhibitors.  

 

Table 2. Prototypical Inducers and Inhibitors Prohibited by Study 

CYP Inducer Inhibitor 

1A2 Smoker Fluvoxamine 

2B6 Rifampin  

2C9 Rifampin Fluconazole, amiodarone 

2C19 Rifampin Omeprazole, fluvoxamine, moclobemide 

2D6  Paroxetine, quinidine, fluoxetine 

2E1 Ethanol Disulfiram 

3A4/5 
Rifampin, 

carbamazepine 

Atazanavir, clarithromycin, indinavir, 

itraconazole, ketoconazole, nefazodone, 

nelfinavir, ritonavir, saquinavir, telithromycin 

 

 

3.3 Accrual Targets 

This study strives to include a total of 40 breast cancer patients having neoadjuvant or 

adjuvant chemotherapy after breast cancer surgery. Potential patients will be approached 

during their first oncology visit and subsequently consented, prior to beginning neoadjuvant 

or adjuvant chemotherapy. Patients will be preferentially recruited to include obese (n=20; 

BMI >30 kg/m2) and age-matched normal (n=20; BMI 18.5-24.9 kg/m2) subjects. Time for 

recruitment is predicted to be 12 months, judging from current hospital data.  
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4 Clinical and Laboratory Evaluations 

4.1 Baseline Clinical and Laboratory Evaluations 

4.1.1 Baseline Clinical Examination 

Complete patient history will be taken, and a physical examination will be performed at first 

oncology appointment. 

Measurements of patients’ body morphometry (ie height, weight, BMI, waist circumference, 

triceps skin-fold and body composition analysis) will be taken within 21 days prior to 

starting cycle 1 of AC neoadjuvant or adjuvant chemotherapy or on the day of baseline 

cocktail administration (see Section 4.1.4).  

The Cancer Society Tissue Bank (CSTB) Christchurch will collect pre-administration 

(baseline) blood samples (5 mL) from all consenting cancer patients and records all tumour 

pathology data from each patient, and these will be available to this study to explore 

patients’ circulating inflammatory cytokines. 

4.1.2 Baseline Laboratory Evaluations 

All baseline laboratory evaluations will be performed either, prior to beginning neoadjuvant 

chemotherapy or, after breast cancer surgery prior to beginning cycle 1 of AC adjuvant 

chemotherapy. Baseline laboratory evaluations will be as per standard of care and will be 

comprised of complete blood count (including neutrophil to lymphocyte ratio) and full liver, 

electrolytes and renal function tests.  

4.1.3 Baseline Concomitant Medications 

All concomitant medications in the pre-chemotherapy period (and post-operative period for 

patients receiving adjuvant chemotherapy) will be recorded on the Concomitant 

Medications Form by study nurses. This list will be inclusive of medications administered 

or taken within the preceding 24 hours of cocktail drug administration, along with estimated 

time of administration. 

4.1.4 Baseline Cocktail Drug Administration  

The ability of patients to take oral medications and blood pressure will be assessed. To 

proceed with planned phenotyping cocktail administration, subjects must be able to take oral 

medications, and must have a minimum systolic blood pressure of 90 mmHg without 
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vasopressor support. If the subjects do not meet these requirements, but are expected to 

clinically improve, patients may be reassessed within 7 days to meet these requirements.  

2 to 21 days prior to cycle 1 of neoadjuvant or adjuvant chemotherapy patients will be 

administered a low dose ‘Inje’ probe drug cocktail (see Section 5.2).  

 

4.2 Recurrent Clinical and Laboratory Evaluations 

4.2.1 Passive Dose Assessment 

This study will monitor patient chemotherapy prescribing, doses administered and dose 

reductions and delays, to exclude ‘dose capping’ as a cause for poor chemotherapy outcome 

in these patients.  

4.2.2 FitBit One® Data Collection and Inflammatory Markers Blood Sampling 

Patients will be allocated FitBit One® devices on the day of AC cycle 1 and paclitaxel dose 

1 and 6 administration (neoadjuvant or adjuvant chemotherapy). After three weeks (21 ± 2) 

(AC cycle 1) and one week (7 ± 2 days) (paclitaxel Dose 1 and 6)  patients will be asked to 

return to clinic to allow “syncing” of physical activity data from the device, to return the 

device until next allocation, hand in the ‘FitBit One® and Physical Activity’ journal (see 

below) and give a blood sample. Three 5 mL EDTA tubes of blood will be collected. One 

will be frozen as whole blood; the other two will be spun down and frozen as serum. Both 

will be stored at -80°C until analysis. 

Throughout the designated time points of FitBit wearing participants will be asked to record 

a journal of when, for how long, and what occurred during events of FitBit One® removal 

and record any physical activity within 24 hours of blood sampling.  

At the end of the exercise monitoring period participants will be required to have body 

morphometry measured (i.e height, weight, BMI, waist circumference, triceps skin-fold and 

body composition analysis). 

4.2.3 Final Cytochrome P450 Phenotyping Cocktail Administration 

After finishing dose 6 of paclitaxel, neoadjuvant or adjuvant chemotherapy patients will be 

administered with the second low dose of ‘Inje’ probe drug cocktail. See Section 5.2 for 

probe drug cocktail administration and sampling procedure. 
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On day of final phenotyping cocktail administration, a comprehensive assessment of all 

concomitant medications will be documented. This list will be inclusive of medications 

administered or taken within the preceding 24 hours, along with time of administration.  

Laboratory results performed within 24 hours prior to planned administration of 

phenotyping cocktail administration will be reviewed. Repeat laboratory studies will be as 

per standard of care, and will be comprised of: complete blood count with differential; an 

electrolyte panel, including a serum creatinine; and liver function tests. The minimum 

requirements for laboratory values that will be used to determine if cocktail administration 

should proceed are presented in Table 3.  

 

Table 3. Minimum Laboratory Values Required Prior to 

Cocktail Administration 

Laboratory 

Measurement 

Minimum Requirement to Proceed 

with Phenotyping Cocktail 

Administration 

Systolic Blood 

Pressure 
> 90 mmHg 

AST  ≤ 3x ULN 

ALT ≤ 3x ULN 

Bilirubin ≤ 2x ULN 

 

If the subjects do not meet these requirements, but are expected to clinically improve, 

patients may be reassessed within 7 days until these requirements are met.  

 

5. Administration of Fitbits and Probe Drug Cocktail 

5.1 Administration of FitBit One® and Inflammatory Markers Blood Sampling 

The current protocol does not include an exercise intervention, but patients will wear Fitbits 

to monitor physical activity during cycle 1 of AC and during dose 1 and 6 of paclitaxel. 

Potential participants will be identified from the CDHB Oncology Clinics.  

5.1.1 FitBit One® Syncing 

Participants will be asked to wear the FitBit One® for three weeks following cycle 1 of AC 

chemotherapy and for one week each after dose 1 and 6 of paclitaxel. Patients will be asked 

to return to the clinic with the device three weeks (21 ± 2 days) after cycle 1 of AC 
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chemotherapy and one week (7 ± 2 days) after dose 1 and 6 of paclitaxel. During the return 

visit any recent physical activity (within the last 24 hours) carried out by the patient will be 

recorded (physical activity journal) and the device will be “synched” with the desktop 

software. During the last FitBit “syncing” visit (one week after dose 6 of paclitaxel) 

participants will be asked to return the device. 

5.1.2 Blood Sampling 

The evaluation of the patient’s physical activity and circulating inflammatory levels will 

entail collection and analysis of FitBit One® data received during neoadjuvant or adjuvant 

chemotherapy along with overlapping blood draws for comparison. Pre-administration 

blood samples (5 mL) are routinely collected from all cancer patients undergoing surgery in 

Christchurch Hospital via the Cancer Society Tissue Bank Christchurch, and these will be 

available to this study for analysis of obesity-related inflammatory biomarkers in patient 

serum prior to surgery. Additional blood samples will be collected from patients at their first 

oncology appointment prior to starting cycle 1 (AC) of chemotherapy, and three weeks (21 

± 2 days) following cycle 1 of AC chemotherapy and one week (7 ± 2 days) after dose 1 and 

6 of paclitaxel (two 5 mL EDTA tubes of blood will be collected at each visit; 10 mL/per 

visit; 45 mL total). Blood samples will be, (a) as per standard of care, immediately analysed 

for routine clinical Complete Blood Counts (including markers of inflammation such as 

neutrophil and lymphocyte counts), and (b) prepared and stored as per CSTB Christchurch 

standard operating procedures (SOP) for batched analysis of circulating inflammatory 

adipokines using commercially available immunoassays (as per manufactures’ instructions).  

 

5.2 Administration of Cytochrome P450 Phenotyping Cocktail  

5.2.1 Cocktail Administration 

The phenotyping cocktail used in this study is a modification of the “Inje” cocktail.  It is 

comprised of the following medications, assessing the following CYPs, respectively: 

caffeine, CYP1A2; losartan, CYP2C9; omeprazole, CYP2C19; dextromethorphan, 

CYP2D6; and midazolam, CYP3A4. The probe medications administered as the cocktail 

will consist of standard tablets of 100 mg caffeine, 25 mg losartan and 20 mg omeprazole. 

Additionally, 30 mg of dextromethorphan syrup diluted in 50 mL plain water, and 1 mg 

midazolam in 50 mL plain water. In order to ensure whole midazolam and 
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dextromethorphan dose is administered, the used cup/s will be rinsed and rinsing water 

swallowed. This cocktail has been selected because these drugs, at these low doses, have 

minimal risk of causing clinical effect, even in the context of significantly delayed clearance 

of drugs. 

5.2.2 Pharmacokinetic Sampling 

Patients will be requested to fast on the day of cocktail administration. Subjects will be 

asked to restrain from caffeine-containing beverages for 24 prior to dosing. Blood sampling 

will be taken at baseline (prior to administration of cocktail) and 4 hours post-administration 

of cocktail to assay midazolam, caffeine, and omeprazole metabolites. Once the vacutainer 

has ceased filling, the sample will be immediately placed on ice. All samples will be 

centrifuged for 10 min at 3,000 rpm at 4°C, and plasma will be removed. Plasma will then 

be processed, using ethanol precipitation, then stored at -80°C until time of pharmacokinetic 

analysis. A random urine sample (at least 50 mL) will be collected at baseline, followed by 

administration of the cocktail medications. Total urine will be collected over 0-8 hours, to 

assay losartan and dextromethorphan metabolites. Following recording of the urine volume, 

a 50 mL aliquot will be taken and stored at -80°C until time of pharmacokinetic analysis. 

Please refer to Table 5 for the schedule of pharmacokinetic sampling. 

5.2.3 Schedule for Cocktail Administration 

The baseline phenotyping cocktail will be administered either, before the patient begins 

neoadjuvant chemotherapy or, after the patient’s breast cancer surgery and within three 

weeks of starting AC adjuvant chemotherapy. The final phenotyping cocktail will be 

administered after cessation of neoadjuvant or adjuvant chemotherapy.  

5.2.4 Pharmaceutical Information 

 Caffeine 

 Storage Conditions 

Foil-wrapped tablets should be stored at or below 30°C. 

 How Provided 

Tablets of over the counter caffeine citrate contain 100 mg caffeine.  They are provided in an 

aluminium foil packet.    

 Stability  

48 months stored at or below 30°C. 

 Administration Information 

One tablet, containing 100 mg caffeine, will be administered with 100 mL plain water.      

 Availability 

Caffeine will be sourced from Christchurch Hospital Pharmacy. 

 Losartan 
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 Storage Conditions 

Losartan potassium tablets are stored in an aluminium blister pack at or below 25°C. 

 How Provided 

Blister packs containing 30 or 90 tablets.    Individual tablets contain 25 mg of losartan.   

 Stability  

24 months stored at or below 25°C. 

 Administration Information 

Administration of one 25 mg tablet with 100 mL plain water.     

 Availability 

Losartan will be sourced from Christchurch Hospital Pharmacy.   

 Omeprazole 

 Storage Conditions 

Omeprazole modified release tablets are stored in an aluminium blister pack at or below 25°C. 

 How Provided 

Blister packs containing 30 or 90 tablets. Individual tablets contain 20 mg of omeprazole.   

 Stability  

24 months stored at or below 25°C. 

 Administration Information 

Administration of one 20 mg tablet with 100 mL plain water.  

 Availability 

Omeprazole will be sourced from Christchurch Hospital Pharmacy.   

 Dextromethorphan 

 Storage Conditions 

Dextromethorphan hydrobromide monohydrate is liquid, and should be stored at or below 25°C. 

 How Provided 

Dextromethorphan hydrobromide monohydrate liquid at 1 mg/mL is provided in a 200 mL bottle. 

For dosing, 30 mL (30 mg) will be withdrawn with a syringe.   

 Stability  

Stable at ≤ 25°C until expiry date shown on the pack. 

 Administration Information 

30 mL of 1 mg/mL dextromethorphan hydrobromide monohydrate should be added to 50 mL of 

plain water. The syringe used to draw up 30 mL should be washed three times with the water 

solution. 

 Availability 

Dextromethorphan will be sourced from Christchurch Hospital Pharmacy.  

 Midazolam 

 Storage Conditions 

Ampoules should be stored below 30°C, out of direct sunlight. Ampoules are single-use only. 

Ampoules should not be frozen. 

 How Provided 

Midazolam is available as a 5mg/5mL ampoule.   

 Stability  

Stable at < 30°C until expiry date shown on the pack.  It should not be diluted with macrodex 

6% in dextrose.   

 Administration Information 

Ampoules will be broken open, and 1 mL of liquid will be removed using a 5 mL syringe.   This 

will placed in 50 mL plain water, and 5 mL will be withdrawn and flushed into the container 

three times.    

 Availability 

Midazolam will be sourced from Christchurch Hospital Pharmacy. 

 

5.3 Passive Dose Assessment 

Information regarding laboratory values, chemotherapy dosing, adverse events, and any 

additional hospital contacts will be derived passively from the health record.  
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6. Laboratory and Data Analysis Plan  

6.1 Laboratory Analysis of Circulating Inflammatory Adipokines   

All patient serum and whole blood samples will be stored at -80 °C until they are required 

for analysis. Analysis will utilise commercially available immunoassays. Laboratory 

analysis will be performed in the Mackenzie Cancer Research Group laboratory, Pathology, 

University of Otago, Christchurch (UOC).  

 

6.2 Laboratory Analysis of Phenotyping Cocktail Medications 

All patient samples (plasma and urine) will be stored at -80 °C until they are required for 

analysis. Analysis will utilise a validated laboratory developed assay, on high pressure 

liquid chromatography using mass spectroscopy detection (HPLC-MS/MS), based on prior 

published assays. This assay will determine concentrations of the parent compounds, as well 

as metabolites as appropriate (i.e. midazolam/4-OH midazolam; losartan/E-3174; 

caffeine/paraxanthine; omeprazole/5-hydroxyomeprazole; dextromethorphan/dextrorphan). 

This will be performed in Clinical Pharmacology, University of Otago, Christchurch 

(UOC). Quality assurance/quality control (QA/QC) will be performed as per routine 

including determination of intra- and inter-day variability, stability, and exploration of other 

sources of assay variability. 
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7. Study Calendar 

  

Table 4. Schedule of Events 

Events 
1st Onco 

Visit  
+7 days 

Baseline 

Cocktail  

AC 

(Cycle 1) 

21 ± 2 

days 

from AC 

(1)  

Paclitaxe

l (Dose 

1) 

7 ± 2 

days 

from 

(Dose 1) 

Paclitaxe

l (Dose 

6) 

7 ± 2 

days 

from 

(Dose 6) 

Final 

cocktail  

Distribute Patient Information 

Sheet X          

Informed Written Consent X         

Exercise Monitoring 

Distribution of FitBit One®    X  X  X   

FitBit One® “Syncing”*     X  X  X  

Blood Sampling     X  X  X  

‘FitBit One® and Physical 

Activity’ Journal 
   X X X  

Collection of FitBit One®     X  X  X  

Probe Drug Intervention 

Safety Lab** X  X       X 

Clinical Assessment*** X  X       X 

Concomitant Medications***   X       X 

Cocktail Administration   X       X 

Pharmacokinetic Sampling****   X       X 
*   Fit Bit “Syncing” will require the participant and FitBit One® to present at clinic for data to be retrieved using desktop software. “Syncing” will be performed following the designated chemotherapy cycles/doses. 

** Safety lab will consist of comprehensive liver metabolic profile (inclusive of AST/ALT and bilirubin). This will be performed within 24 hours of cocktail administration. 

*** Clinical assessment and concomitant medications will be assessed at baseline and on day of cocktail administration (See Section 4.). 
**** Please refer to Table 5. for pharmacokinetic sampling procedure. 
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Table 5. Pharmacokinetic Sampling**** 

 0 hrs 4 hrs 8 hrs 

Cocktail Administration X   

Blood Sampling  X  

Urine Sampling Total Urine Collection; Collect 50 mL aliquot at 8 hours 
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8. Data Reporting/Regulatory Concerns 

Storage of data will follow a double-lock arrangement, being protected by password on a 

computer that is in a securely locked room. All data will be de-identified and results will be 

available by publication in scientific, clinical and/or medical journals, and/or during 

conference and project presentations.  

 

9. Statistical Considerations 

Data generated by this study will include: patient demographics; objective measures of 

physical activity over three pre-selected weeks of neoadjuvant or adjuvant chemotherapy; 

laboratory measures of inflammation at baseline, during chemotherapy and post-

chemotherapy; and time-concentration data for probe drugs and metabolites at baseline and 

post-chemotherapy. 

All calculations will be performed in MS-Excel (Microsoft Corporation) or in R (R Foundation 

for Statistical Computing, Vienna, Austria). 

Physical activity analysis will be exploratory and therefore there is not a power calculation to 

determine sample size. Data from the FitBit One® device will be extracted from the desktop 

software using the R (http://www.R-project.org/) package FitBitScraper 

(https://github.com/corynissen/FitBitScraper).  Descriptive statistics (mean, median, 

confidence intervals) as well as temporal trends in FitBit One® data will be explored. These 

data will then be compared within and across patients to measures of inflammation using 

paired and unpaired t-test’s, respectively, for significance (p<0.05). The PAS will be scored 

as per the instrument’s scoring criteria, which converts responses to a metabolic equivalent 

time (MET)44. Relationship between PAS reported METs and FitBit One® data will be 

explored. Relationship between FitBit temporal trends and timing of chemotherapy, adverse 

events, and other comorbidities and laboratory abnormalities during the periods in question 

will be explored.  

Pharmacokinetic analysis will be performed to determine the metabolite to probe drug ratio. 

These data will then be compared within-subject by a paired t-test for significance (p<0.05) 

baseline and post exercise monitoring.  

Exploratory analyses will be performed to examine the correlation between amount of 

physical activity and change in circulating inflammatory adipokine concentrations from 

http://www.r-project.org/
https://github.com/corynissen/FitBitScraper
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stored serum samples. Additionally, serum inflammatory adipokines will be correlated to 

probe drug/metabolite ratios. 
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11. Appendices 

11.1 FDA guideline on strong inhibitors 
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11.2. FDA guideline on strong inducers 
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11.3. Breast cancer adjuvant chemotherapy: AC (doxorubicin-cyclophosphamide) 
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11.4. Breast cancer adjuvant chemotherapy: Weekly paclitaxel 
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11.5. Breast cancer adjuvant chemotherapy: Weekly paclitaxel, 3 Weekly Trastuzumab 
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Patient information sheet and consent form 
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Participant Information Sheet 

 

Title: An Exploratory Study to Assess the Impact of Inflammatory Markers on Breast 

Cancer Drug Metabolism in Response to Physical Activity during Chemotherapy 

 

Principal Investigator: Dr Matthew Strother 

 

1. Introduction 

You are being invited to take part in this study because you are undergoing 

chemotherapy for breast cancer. The research you are being asked to participate in is not 

studying chemotherapy. It is studying if physical activity during chemotherapy changes 

your body’s level of inflammation. This study will compare subjects that have a BMI > 

30 to subjects that have a BMI ranging between 18.5 and 24.9.  Inflammation is your 

body’s response to stress or injury.  Swelling of an ankle, or a fever, is a common sign of 

inflammation.  People that have a BMI > 30 have been shown to have higher levels of 

markers of inflammation in their bloodstream. The level of inflammation recorded in 

blood samples from overweight subjects is still lower than the levels of inflammation 

experienced in an acute response. However, this type of low level inflammation is 

sustained over prolonged periods of time and may impact your body’s ability to process 

medications. Many medications are processed in your body by enzymes in the liver. The 

chemical messengers in your body that cause inflammation can change the function of 

these liver enzymes and decrease the ability of your body to process medications.  

 

It is not known at this time whether physical activity during chemotherapy affects 

inflammation or the function of these liver enzymes. This participant information sheet 

contains detailed information about the research study, which is seeking to determine if 

patients undergoing chemotherapy have differences in their body’s ability to process 

prescribed medications, and if the amount of physical activity they engage in impacts this 

process. The purpose of this information sheet is to explain to you as openly and as 

clearly as possible all the procedures involved in the study before you decide whether to 

take part in it. 

 

Please take time to read the following information carefully and, if you wish, discuss it 

with friends and Whanau and your GP.  

 

You may choose not to take part in the study without giving a reason and there will be no 

disadvantage to you of any kind. 
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2. What is the purpose of the study? 

This study will be observing two things.  First, physical activity will be measured at 

specified times using a FitBit One® device.  This will allow us to determine how 

chemotherapy impacts your activity level.   Second, this study will measure your body’s 

ability to process prescribed medications at fixed times during chemotherapy.  This will 

be done by administering a combination of oral medications at two points in relation to 

your chemotherapy:  within one to three weeks prior to beginning chemotherapy and 

again within two to three weeks after chemotherapy is finished. If this feasibility study 

indicates that physical activity levels are associated with altered liver enzyme function, 

we hope to propose a further study where patients are given an exercise intervention 

programme to follow.  

 

The chemotherapy itself is not being tested- this is being administered to you because 

your doctors have determined it to be a needed step to improve your health. This study is 

only studying your routine activity during chemotherapy and the way your liver enzymes 

are processing the medications.  

 

 

3. Study procedures 

If you agree to join the study you will be asked to sign the consent form. 

 

You will have body measurements recorded at two different time points: before you start 

chemotherapy and after you finish chemotherapy. Additional information will be 

collected from your medical record, including your height, weight, cancer diagnosis, 

chemotherapy regimen, and laboratory values. 

This study will require you to wear a FitBit One® device over several weeks during your 

chemotherapy. This device will be distributed to you. During these times you will be 

asked to wear the device as much as possible, but it could be removed for sleeping and 

bathing, or other activities in which it would be disruptive. Additionally, we will ask you 

to fill out a diary of when you remove the FitBit One®, recording the date of removal, 

the estimated time it is taken off and the activity for which the FitBit was removed. The 

FitBit One® will be collected from you upon your return to clinic for your next 

scheduled chemotherapy appointment and re-distributed when required. At this time a 

blood sample will be taken for analysis to measure inflammation and the way your liver 

enzymes are functioning. You will have to wear the FitBit One® for a total of 

approximately five (5) weeks; split into a three (3) week, and two (2) one (1) week 

periods. You will not be expected to engage in any amount or form of physical activity 

other than what you personally choose to do.  

The second part of this study will measure your liver’s activity with regards to processing 

medications.   To do this, you will be asked to take a combination of medications 

administered by mouth, followed by removal of blood and urine collection to determine 

the concentration of these medications in the bloodstream. This procedure will occur at 
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two separate time-points – prior to you beginning chemotherapy and after you have 

completed chemotherapy. You will be asked to both fast on the day of, and restrain from 

caffeine containing beverages for 24 hours prior to, the planned liver activity assessment. 

Each time-point will have the following procedures done: 

 Within 24 hours of the planned assessment day, blood will be taken to ensure that it is 

safe to proceed with the study medications.   Two (2) 5mL tubes of blood (about 1 

teaspoon with each tube) will be removed for assessments of your liver function.    

 On the planned assessment day you will undergo a medical review and physical 

examination to ensure that it is safe for you to continue on the study.   

 Two (2) 5mL tubes of blood (about 1 teaspoon with each tube) will be taken. 

 You will then be asked to take five (5) medications, either as pills or as a liquid.   These 

are specifically listed below.   The effects of these medications and risks in taking them 

are presented later in this information sheet.   

o Midazolam liquid in plain water. 

o Caffeine tablet with plain water.  

o Losartan tablet with plain water.   

o Omeprazole tablet with plain water. 

o Dextromethorphan liquid with plain water.    

 Following administration of these medications you will be observed by a study nurse. 

 Over the following 8 hours, all of your urine will be collected and you will have two (2) 

5mL (about 1 teaspoon) blood sample taken.  

The medications being administered as part of this study are all routine medications 

given to patients for treatment of medical conditions. These drugs have been specifically 

selected because they allow the doctors to look at specific paths of medication 

elimination in the liver. The combination of these medications and the doses have been 

selected because they have been shown in many prior studies to have minimal to no 

effect on how your feel, or your health. However, each medication has some potential 

risks associated with taking them, which are listed: 

 Midazolam: This is a drug used to make people sleepy and to remove anxiety. It can 

cause sleepiness or sedation. You will be observed by a study team member during this 

period to ensure your safety. A reversal agent is available if you have sleepiness beyond 

the expectation of this study. 

 Caffeine: This drug is used to increase wakefulness. It can cause excitability or 

wakefulness. At higher doses, some people experience tremors, anxiety, and/or 

palpitations. The dose administered in this study would not be expected to produce these 

adverse effects. 

 Losartan: This is a drug used to lower peoples’ blood pressure. It can cause low blood 

pressure. Again, you will undergo routine observation and monitoring as part of this 

study, and the dose being administered is not expected to cause change in blood pressure.   

 Omeprazole: This is a medication used to treat acid indigestion and is not associated with 

common side effects. 

 Dextromethorphan: This is a medication used to treat coughs.  It may be associated with 

either sleepiness or excitability in some people, although this is uncommon, and would 

be very uncommon at the dose used in this study. 
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Study procedures 

 

 

 

4. What are the possible risks? 

Most of the risks associated with this study are related to the medications administered. 

However, as noted above, the dose being administered as part of this study has a small 

likelihood of causing symptoms. The two risks for which the study team will be 

primarily assessing after the dose will be, sleepiness and low blood pressure.   If either of 

these develop, a study doctor will be informed, will assess you, and make appropriate 

recommendations to minimize risk of these events.  

Additional risks include: 

 The risks of blood tests, which include fainting and/or pain, bruising, swelling, or rarely 

infection where the needle is inserted. 

 A risk of loss of confidentiality.  If participating in this study, some information about you 

will be stored in study records.  Every effort will be made to prevent any risk of loss of 

this information. 

 

 

5. What are the potential benefits? 

You will not receive any direct benefit from taking part in this study. By taking part in 

this study, you will contribute to our understanding of how liver enzyme functioning is 
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influenced by levels of inflammation and what impact physical activity has on this 

association. This information may benefit other patients having chemotherapy in the 

future.  

 

What Data or Information will be collected and what use will be made 

of it? 

All information collected from you will be confidential and securely stored in such a way 

that only individuals involved in the study will be able to gain access. The data will not 

be linked directly to your name, as you will be assigned a unique study identification 

number to keep your information as confidential as possible. The clinical data collected 

will relate to your chemotherapy doses, the standard laboratory and clinical assessments 

carried out before and during chemotherapy, and laboratory assessments carried out prior 

to your administration of the combination of medications to measure liver enzyme 

activity. Additionally we will collect information regarding any other medications and 

your physical health at the time of assessments. 

 

The data will be used to determine if physical activity is associated with a reduction in 

inflammation, and an increase in liver enzyme activity. 

 

At the end of the project any personal information or raw data on which the results of the 

project depend, will be retained in secure storage for ten years, after which time it will be 

destroyed. Blood samples will be disposed of by standard disposal methods.  You may 

choose to have your sample(s) disposed of with the appropriate karakia (blessing) 

performed by Chaplains in the Christchurch Hospital Chapel. Blood will be stored within 

Canterbury Health Laboratories, and any remaining samples will be disposed of after five 

years. 

After completion of this study, aggregate results abstract or paper form will be available 

to any participant should they wish to have a copy. 

Costs 

You will not be charged for taking part in this study. You will not be paid for taking part 

in this study. 

 

 

Compensation 

If you were injured in this study, which is unlikely, you would be eligible for 

compensation from ACC just as you would be if you were injured in an accident at work 

or at home. This does not mean that your claim will automatically be accepted. You will 
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have to lodge a claim with ACC, which may take some time to assess. If your claim is 

accepted, you will receive funding to assist in your recovery. 

 

If you have private health or life insurance, you may wish to check with your insurer that 

taking part in this study won’t affect your cover. 

 

 

Voluntary participation and early withdrawal  

Taking part in this research study is voluntary. You may decide not to take part or you 

may stop participating in the study at any time without having to give a reason. The study 

doctor may remove you from the study at any time for medical reasons or if you fail to 

follow the instructions given to you. If you do not wish to take part, leave or are asked to 

leave the study early you will not lose any benefits that you would otherwise have and 

your present or future medical care will not be affected. 
 

 

If you have any questions about our project, either now or in the future, please feel free to 

contact either:- 

Dr Matthew Strother  or Dr Margaret Currie 

    

Phone 03 364 0230   Phone 03 364 0544 

 
If you want to talk to someone who isn’t involved with the study, you can contact an independent 

health and disability advocate on: 

Phone:             0800 555 050 

Fax:                 0800 2 SUPPORT (0800 2787 7678) 

Email:              advocacy@hdc.org.nz 

For Maori health support, or to discuss any concerns or issues regarding this study, 

please contact Theona Ireton (Maori Health team),  

Email: Theona.Ireton@cdhb.health.nz 

Maori Health Team- Phone: 03 364 0160  

You can also contact the health and disability ethics committee (HDEC) that approved 

this study on: 

            Phone:             0800 4 ETHICS 

            Email:              hdecs@moh.govt.nz 

  

mailto:advocacy@hdc.org.nz
mailto:Theona.Ireton@cdhb.health.nz
mailto:hdecs@moh.govt.nz
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Participant Consent Form 
 

Title: Measurement of Physical Activity and Liver CYP Activity 
Principal Investigator: Dr Matthew Strother 

 

REQUEST FOR INTERPRETER 

English 
 

I wish to have an interpreter. Yes No 

Maori 
 

E hiahia ana ahau ki tetahi kaiwhakamaori/kaiwhaka 

pakeha korero. 
Ae Kao 

Samoan 
 

Ou te mana’o ia i ai se fa’amatala upu. Ioe Leai 

Tongan 
 

Oku ou fiema’u ha fakatonulea. Io Ikai 

Cook 

Island 
Ka inangaro au i  tetai tangata uri reo. Ae Kare 

Niuean 

 

Fia manako au ke fakaaoga e taha tagata fakahokohoko 

kupu. 
E Nakai 

1. I have read the attached Participant Information Sheet Version 1 dated 5/3/16 

outlining the nature and purpose of the research study and I understand what I am 

being asked to do. 

2. I have discussed my participation in this study with members of the study team. I 

have had the opportunity to ask questions and I am satisfied with the answers I have 

received 

3. I have been informed about the possible risks of taking part in this study. 

4. I consent to medical practitioners, other health professionals, hospitals or laboratories 

outside this institution releasing information concerning my condition and treatment 

which is needed for this study and understand that such information will remain 

confidential. 

5. I understand that my participation is voluntary and that I am free to withdraw at any 

time during the study without affecting my future health care. 

6.  I consent to the storage and use of blood taken from me for use, as described in the 

relevant section of the Participant Information Sheet for research.  

7. I am happy for my GP to be informed of my participation in this study  

 YES / NO 

8. I request that any remaining tissue sample(s) at the end of a study be 

 disposed of with karakia (blessing).       YES / 

NO 

 

Name of Participant  Signature of Participant  Date 
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Name of Investigator   Signature of Investigator   Date 

 

Participant will be provided with a copy of the Participant Information Sheet and this 

Consent Form 

All parties signing the Consent Form must date their own signature 

 


