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Abstract 

 
Any resources obtained by an organism must be divided between life history 

components, namely growth, reproduction and survival. Resources are limited, thus 

creating trade-offs between competing traits. One trade-off is the relationship between 

the size and the number of offspring (fecundity) produced by a mother. Although 

adaptive phenotypic plasticity in this trade-off has been demonstrated across the 

Animal Kingdom, understanding of the mechanisms behind this is lacking. For example, 

female zebrafish (Danio rerio) subjected to different feeding regimes have shown this 

phenotypic plasticity, but studies have not determined the mediators of this change. 

This thesis aimed to examine the phenotypic plasticity in resource allocation to 

reproduction in wild-type zebrafish and elucidate mechanisms allowing the change. 

Female zebrafish were fed either 1.5% (Low) or 3% (High) of body weight daily and 

phenotypic changes in fecundity, offspring size and gene expression of five candidate 

genes in the ovary were evaluated. Representative ovary samples were also analysed by 

RNA-Seq. There were trends for increases in lrp8 and esr2a mRNA expression levels in 

the ovaries of the food-limited females when compared with food-abundant females. 

This supported previous literature demonstrating increases in vitellogenin in larger eggs. 

In the food-abundant females, there was an increase in fshr mRNA expression levels. 

This could be a mechanism to increase fecundity, through increased follicles entering 

vitellogenesis. A second experiment was performed to assess the sensitivity and timing 

of the resource allocation decisions. Female zebrafish were exposed to an initial feeding 

regime for four weeks and then switched to the other feeding regime for another four 

weeks. These females were analysed for differences in resource allocation and the 

trade-off between follicle size and reproductive investment was analysed regardless of 

feeding regime. Across both experiments, differences in phenotype were hard to discern 

due to the effects of maternal condition. There were marked differences in females 

within the same tanks, possibly due to dominance effects, and this may have obscured 

the effects of the individual feeding regimes. Overall, there was no adaptive phenotypic 

plasticity in offspring size or offspring number evident in the experiments presented. 

Future gene expression studies on females clearly demonstrating differences in 

phenotype are necessary. 
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An organism’s ability to acquire resources from the environment and the subsequent 

allocation of these resources to different areas of life history is a major determinant of 

Classical life history theory states that traits will become optimised over time to 

maximise fitness in the local environment (Winemiller and Rose 1992). This can either 

be achieved through the ability to exhibit different phenotypes in response to different 

external cues or through long term natural selection resulting in alteration of the 

is a complicated and many faceted discipline. To accurately model the population 

including; predation, density-dependence, resource availability, and reproductive 

Keough 2009, Marshall et al. 2010). Historically, models which predict optimal endpoints 

into account (Reznick et al. 2002). Their strength lies however in providing inspiration 

and a starting point to study the complex interactions of a species’ life history and 

Life history theory at the core evaluates different constraints or trade-offs present 

between all variables and traits in a species. It also investigates how these trade-offs 

change or create strategies to enable species to deal with different or changing 

organism from the environment in which they reside. These resources are then divided 

between three main areas; growth, reproduction and survival. Any trait within the same 

increase in one will lead to a decrease in another, causing a negative relationship or 

“trade-off”. A trade-off is defined as occurring when an increase in fitness due to change 

life-history trait (Roff et al. 2006). One such trade-off was modelled by Smith and 

Fretwell (1974). They proposed that there was a trade-off between offspring number 

and size in any female individual and that in any environment an optimal offspring size 

1.1 Background and History 
 

 

 

its ability to survive and reproduce (Burton et al. 2010, Robinson and Beckerman 2013). 
 

 

 

 

 

underlying genotype (Pigliucci et al. 2006, Crispo 2007). The study of life history theory 
 

 

dynamics and organism phenotypic traits, many different factors must be evaluated 
 

 

strategies (Winemiller and Rose 1992, Reznick et al. 2002, Allen et al. 2008, Marshall and 
 

 

have been relatively simplistic and have failed to take the complexity of a natural system 
 

 

 

possible evolution (Reznick et al. 2002). 
 

 

 

 

environments (Winemiller and Rose 1992). There are limited resources available to any 
 

 

 

area will be in direct competition for a limited pool of resources and therefore an 
 

 

 

in one trait is opposed by a decrease in fitness due to a concomitant change in another 
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onl
 

theory considers that any organism ultimately aims to maximise its total reproductive 

theory asks the question of how much energy should be invested in offspring on an 

individual basis? If there is greater individual investment (and therefore larger offspring) 

physical space in the mother and limited resources being available for reproduction 

(Smith and Fretwell 1974, Winemiller and Rose 1992, Winemiller and Rose 1993). Larvae 

themselves are much more limited in their ability to adapt to a local environment when 

compared with adults (Winemiller and Rose 1993, Segers and Taborsky 2011). They 

by the mother. In limited environments fish can alter egg-size to produce fewer, larger 

Phenotypic plasticity is defined as the ability of individual genotypes to yield distinct 

phenotypes when exposed to different environments (Pigliucci et al. 2006, Green and 

various phenotypes in different environments. However, even if the differences in 

phenotype are quite apparent, the underlying cause and benefit of this plasticity can 

considered adaptive when a clear benefit to the organism or population is demonstrated 

(Bashey 2003, Bashey 2006, Marshall and Uller 2007, Allen et al. 2008). When resource 

Often when confronted with a resource-limited environment, mothers will produce 

smaller offspring as less resources are available for reproduction. This is considered to 

have been studies which have shown an opposite effect, resource-limited mothers 

Although this will reduce fecundity in the mother, if the larger offspring has an 

 

 
 

 

fitness and produce as many surviving young as possible (Smith and Fretwell 1974). The 
 

 

 

there will be an overall reduction in the number of offspring produced due to limited 
 

 

 

 

 

must therefore rely on the maternal influences such as altered individual provisioning 
 

 

eggs which allow offspring a greater chance of survival (Bashey 2006, Hassall et al. 2006, 

Forbes et al. 2010, Segers and Taborsky 2011, Riesch et al. 2012, Closs et al. 2013). 

 
 
 

  1.2 Adaptive Phenotypic Plasticity and Maternal Effects 
 

 

 

Extavour 2014). There are numerous studies which investigate the differences between 
 

 

 

be  hard  to  determine  (Bashey  2006,  Pigliucci  et  al.  2006).  Phenotypic  plasticity is 
 

 

 

availability changes, basic life history traits can be highly plastic (Pampoulie et al. 2000). 
 

 

 

be a passive, physical response with the mother having no control (Bashey 2006). There 
 

 

producing  offspring  which  are  larger  than  when  in  a  resource-rich  environment. 
 

that maximises maternal reproductive fitness will be produced. Their original classical 
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be maintained. If larval survival is increased with increased offspring size, then plasticity 

non-favourable (Bashey 2003, Bashey 2006, Bashey 2008, Kuijper and Johnstone 2013). 

Anticipatory or adaptive maternal effects involve manipulating the offspring phenotype 

to be better suited to the local (or larval) environment (Marshall and Uller 2007). These 

effects are characterised by adjusting offspring phenotypes to match to external 

environmental cues or by creating inherited environmental effects that ultimately 

al. 2014, Paul et al. 2015). Any organism is informed of future environmental conditions 

environment which her offspring will experience. If a mother can predict unfavourable 

offspring. Initial offspring size is closely correlated with both offspring and maternal 

often shown to have higher survival when exposed to harsher environment conditions 

(Fischer et al. 2011, Kuijper and Johnstone 2013, Murphy et al. 2014, Paul et al. 2015). 

For this type of plasticity to be selected for the maternal environment must be a good 

offspring phenotype must be outweighed by the maternal fitness gained through 

offspring survival (Ware 1975, Marshall and Uller 2007, Jørgensen et al. 2011, Segers 

and Taborsky 2011, Burgess et al. 2013, Burgess and Marshall 2014, Paul et al. 2015). 

produced is the size that maximises her fitness in a given environment (Smith and 

Fretwell 1974, Ware 1975). Often this pattern is true in species which have a limited 

 

 
 

 

in this trait is selected for in environments where the larval environment is uncertain or 
 

 

 

 

 

 

increase offspring survival (Marshall and Uller 2007, Jorgensen et al. 2014, Murphy et 
 

 

through external cues. If these are consistent, a mother can reasonably predict the 
 

 

conditions for her offspring, then she may be able to alter the phenotype (size) of her 
 

 

fitness (Marshall and Uller 2007, Fischer et al. 2011). This is because larger offspring are 
 

 

 

 

indicator of the potential offspring environment and the cost of the plasticity in the 
 

 

 

 

Reproductive  investment  is  entirely  decided  by  the  mother,  so  the  offspring  size 
 

 

 

dispersal as then there is a correlation between the maternal and offspring 

environments (Kuijper and Johnstone 2013). 

 
 
 

 1.3 Natural Selection/Speciation 

advantage in a resource-limited environment then the overall fitness of the mother may 
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subjected to novel conditions (Pigliucci et al. 2006, Crispo 2007). This can occur when 

2006, Pigliucci et al. 2006, Riesch et al. 2012). As there is a cost to plasticity, this new 

phenotype being selected for can alter the reaction norm for a species and improve the 

If there are differences in plasticity in egg size and number between populations then it 

in risky or harsh environments then females which produce these larger offspring will 

than a population in an “easier” environment. If natural selection is acting on offspring 

for radiation of species from geographically distinct ecotypes into new challenging 

There are four different ecological mechanisms which can evoke selection occurring on 

for (Jørgensen et al. 2011). 1) Intraspecific competition during early life stages; if 

pattern is likely to occur. Larger offspring have a competitive advantage to obtain food 

and other resources (Einum and Fleming 2000). 2) Fertilization success; a larger egg is a 

likelihood of fertilisation success (Levitan 1993). 3) Development time; if development 

time is faster in the egg than when the offspring is feeding alone then larger eggs can 

hatch at a more developed stage than their counterparts in smaller eggs. Selection is 

evoked if a constant mortality rate is assumed, so faster development is directly 

with mortality rate. Mortality is often size dependent, decreasing with increased body 

size. If mortality is size dependent, then mortality will change as the organism grows 

(Blueweiss et al. 1978). Growth rate is directly affected by temperature and food 

 

 
 

 

species expand into new habitats or are at the edge of a species range (Hassall et al. 
 

 

 

performance of the population under these new conditions (Hassall et al. 2006, Pigliucci 

et al. 2006, Crispo 2007). 
 

 

can be acted on by natural selection. As larger offspring often have a selective advantage 
 

 

have higher reproductive success, producing a population where egg size may be larger 
 

 

size, then risk-spreading tactics and selection at the edges of a species range could allow 
 

 

environments (Hassall et al. 2006, Riesch et al. 2012). 
 

 

offspring size, demonstrating clear adaptive reasons for larger offspring being selected 
 

 

offspring develop in a limited habitat where intracohort competition is likely then this 
 

 

 

better target for sperm in broadcast spawners, so the larger the egg size, the higher the 
 

 

 

sustain yolk-driven development for longer. This allows offspring in the larger eggs to 
 

 

 

correlated with higher survival rates (Levitan 2000). 4) Offspring growth rate combined 
 

 

 

Phenotypic plasticity can provide novel well-adapted phenotypes when a species is 
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availability; therefore, resource availability can directly play a role in the evolution of 

offspring size in a population or species. In both fish and butterfly species it has been 

reported that when it is colder and there is less food available (closer to winter), then 

offspring size is larger than when the same populations are exposed to warmer, more 

food-rich environments (spring/summer) (Ware 1975, Fischer et al. 2003). 

 
 

 
 

Figure 1.1: Boxplots showing survival rates (%) after 30 days (a) and the number of 
surviving offspring (b) for Poecilia mexicana when exposed to optimal environmental 
conditions. Fish came from two different habitat types; benign surface, smaller 
offspring (white) and a toxic cave, larger offspring (grey). (Riesch et al. 2012) 
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phenotypes; one which inhabits a sulfidic cave environment and another occupying 

toxic (harsh) sulfidic environment produce fewer large young when compared to the 

mollies that are living in the non-sulfidic environments. To test whether there was 

fitness of the offspring from both phenotypes under benign conditions. They found that 

although the larger offspring had a higher innate fitness, there was a higher total 

number of smaller offspring surviving overall (Figure 1.1). This means that in more 

benign environments the mollies that produce larger offspring will be selected against 

surface habitats moving into the caves. As these ecotypes appear to be undergoing 

genetic heritability of this difference in egg size and fecundity could promote further 

reproductive isolation and divergence (Riesch et al. 2012). Similarly, in a population of 

at the edges of the range, where conditions were harsher (colder and wetter), females 

were producing larger offspring and fewer of them when compared to individuals in the 

optimal areas of the range. This had a significant genetic component and females raised 

The phenotype of larger and fewer offspring being produced seems to become 

that initial plasticity in the offspring size and number trade-off phenotypes could act as 

a mechanism to allow successful dispersal into new habitats, such as lowland river or 

Ultimately this phenotypic plasticity provides a well-adapted phenotype that can be 

populations (Hassall et al. 2006, Pigliucci et al. 2006, Crispo 2007). In New Zealand, it 

has been shown that non-migratory galaxiids have relatively larger eggs and lower 

 

 
 

 

other non-sulfidic habitat in the surrounding sea floor. The mollies present in the more 
 

 

 

possible speciation occurring, Riesch et al. (2012) tested the survival and the overall 
 

 

 

 

 

due to a lower overall reproductive fitness and vice versa with the mollies from the 
 

 

speciation  (multiple  divergent  traits  including  behavioural  and  morphological),  the 
 

 

 

field grasshoppers (Chorthippus brunneus) in Britain, Hassall et al. (2006) showed that 
 

 

 

 

in a laboratory setting continued to produce larger eggs across multiple generations 

(Hassall et al. 2006). 
 

 

genetically fixed in multiple species, when plasticity is no longer selected for. This means 
 

 

 

sea fish species colonising further upstream (Riesch et al. 2012, Closs et al. 2013). 
 

 

acted upon by natural selection and can help drive reproductive isolation between 
 

 

 

fecundity  than  their  closely  related  amphidromous  species.  This  trait  has  evolved 

In Atlantic mollies (Poecilia mexicana), there are two different reproductively isolated 
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(Closs et al. 2013). It is argued that the larger eggs produce more well-developed larvae 

To be considered an acceptable research model, an organism must be considered 

representative of a large range of biological organisms while also having appropriate 

characteristics that make it easier to study in the laboratory environment than the 

quickly and easily in a laboratory environment, due to the relatively short lifecycle, and 

are increasingly used as a model organism in many different avenues of scientific study 

Ribas and Piferrer 2014). Zebrafish have been used to generate new insights in areas 

(Haffter et al. 1996, Schier et al. 1996, Grunwald and Eisen 2002, Lieschke and Currie 

Danio rerio is a member of the order Cypriniformes, a large group of freshwater fish 

Douglas 2003, Mayden et al. 2007). Within this order the zebrafish is placed in the family 

Cyprinidae. The Danio genus is one of several genera assigned to the subfamily 

the Malay Peninsula, Sumatra and the Yunnan province of China (Spence et al. 2006, 

Engeszer et al. 2007, Wang et al. 2007, Spence et al. 2008, Fang et al. 2009). Danio rerio 

is common to South and South-East Asia (Spence et al. 2006, Engeszer et al. 2007, 

Zebrafish are highly adaptable and can survive in a wide range of environments. This 

close to streams and rice paddies (Engeszer et al. 2007). In the wild, zebrafish typically 

 

 
 

 

which enhances survival in the more resource-limiting freshwater environment (Closs et 

al. 2013, Vanderpham et al. 2013). 

 
 
 

  1.4 Zebrafish as a model 
 

 

 

 

animals it  is used to  represent  (Ribas and Piferrer  2014). Due to their ability to breed 
 

 

due to their genetic similarity to humans and other vertebrates, zebrafish, Danio  rerio, 
 

 

(Grunwald and Eisen 2002, Lieschke and Currie 2007, Spence et al. 2008, Lawrence 2012, 
 

 

such as toxicology, developmental biology, evolution, disease and genetics research 
 

 

2007, Lawrence 2012, Ribas and Piferrer 2014). 
 

 

spread throughout North America, Africa and Eurasia (Northern Hemisphere) (Fang and 
 

 

 

Rasborinae, which is common in India, Pakistan, Nepal, Bangladesh, Sri Lanka, Thailand, 
 

 

 

 

Mayden et al. 2007, Spence et al. 2008). 
 

 

species has been found inhabiting rivers, small streams, stagnant or slow-moving pools 
 

separately several times within the genus as the different river systems were colonised 
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in shallow water over gravel or plants. Larvae survive on a diet of zoo plankton and 

Previous studies have demonstrated plasticity in oocyte diameters or fecundity of 

zebrafish with changing nutritional environments. Forbes et al. (2010) showed that 

when exposed to two different feeding regimes, a high and a low (40% of the high), 

fecundity was significantly reduced in female zebrafish subjected to the low feeding 

regime when compared with the females on the high feeding regime. Conversely the 

Lawrence et al. (2012) fed zebrafish at different frequencies to a total of 5% body weight 

oocytes than those fed every day at varying frequencies. But these fish were also 

Zebrafish are asynchronous batch spawners, which means that oocytes in several stages 

of development are present in the ovary at the same time. Oocyte growth is dynamic 

and continuous but key stages are loosely separated and categorised by changes in the 

Oocyte development has been divided into 5 broad stages in this species (Selman et al. 

 

 
 

 

organic material (Spence et al. 2008). 
 

 

 

 

 

 

spawned  egg   diameters  were   significantly  increased   in  the   food-limited females. 
 

 

a day and discovered that fish fed  once  every other day produced  significantly  fewer 
 

 

significantly smaller (not corrected for body weight) (Lawrence et al. 2012). 
 
 

 
1.5  Oocyte Development in Danio rerio 

 

 

 

 

morphology of the nucleus and follicle as well as changes in its cytoplasmic composition. 
 

 

1993), Figure 1.2). 
 

 
Figure 1.2: Generalised oocyte development in fishes. The sequence of oocyte stages is; Stage I 
– primary growth (previtellogenic), Stage II – cortical alveoli growth, Stage III – early 

spawn annually. Spawning occurs just before the monsoon season and clutches are laid 



Chapter 1 - General Introduction 10 
 

These are classified as primary growth oocytes (PGO) at this stage. PGOs are organised 

the nest and are surrounded by follicle cells (Selman et al. 1993). The layer of follicle 

cells contains the steroid-secreting granulosa (inner) and theca (outer) cells (Nagahama 

Stage two is the formation of cortical alveoli. Cortical alveoli are membrane-limited 

oocyte grows, the cortical alveoli proliferate and move to the periphery. Further 

the space between the oocyte and the vitelline envelope. This hardens the vitelline 

envelope preventing polyspermy after fertilisation has taken place (Patino and Sullivan 

Stage three is the vitellogenic stage and is the major growth phase with zebrafish 

size increase is predominantly due to the accumulation of yolk within the oocyte. 

Vitellogenin and neutral lipids are taken into the ovary mainly through receptor- 

vitellogenic oocytes, Stage IV – late vitellogenic oocytes and Stage V – mature oocyte or 
ovulated egg. Figure is adapted from information obtained from Lubzens et al. (2010) and 
Urbatzka et al. (2011) 

 
 
 

Stage 1 - Previtellogenic 
 

 

in cell nests alongside oogonia and prefollicular cells. As they begin to grow, PGOs leave 
 

 

 

1994). Meiosis is arrested at prophase I (Lubzens et al. 2010). 
 
 

 
Stage 2 – Cortical alveoli 

 

 

vesicles containing both proteins and carbohydrates. As vitellogenesis continues and the 
 

 

downstream (after fertilisation) the contents of the cortical alveoli are discharged into 
 

 

 

2002). 
 
 

 
Stage 3 - Vitellogenesis 

 

 

oocytes increasing in diameter from 0.3 to 0.7 mm (Selman et al. 1993). This massive 
 

 

 

mediated endocytosis and subsequently processed into yolk proteins (Selman et al. 

1993, Patino and Sullivan 2002). 
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During maturation, meiosis is resumed. The nucleus, or germinal vesicle, migrates 

towards the periphery of the oocyte and breaks down during the first meiotic division. 

Stage five is the mature egg, which is ovulated into the ovarian lumen. At this stage these 

In the majority of oviparous animals vitellogenin is the predominant yolk precursor (Prat 

et al. 1998). Vitellogenins (Vtgs) are a diverse family of large phosphoglycoproteins. They 

vertebrates (Williams 2001, Hiramatsu et al. 2002). As a very high-density lipoprotein, 

oocytes. Once vitellogenin is synthesised in the liver, it is secreted into the bloodstream 

sequester vitellogenin from the blood stream and deposit it into yolk granules. This is 

achieved through receptor-mediated endocytosis. Once vitellogenin is taken up into the 

oocytes, it is enzymatically cleaved and repackaged into lipovitellins and phosvitins 

A member of the low-density lipoprotein (Ldl) receptor family, LR-8 has been designated 

as the vitellogenin receptor in teleosts (Davail et al. 1998, Prat et al. 1998, Hiramatsu et 

family are type-1 receptor proteins. All members of this family contain both 

of ligands including the plasma lipoproteins, such as vitellogenin and the low-density 

Stage 4 - Maturation 
 

 

 

Meiosis continues until the second metaphase and then it is arrested until fertilisation 

(Lubzens et al. 2010). 

 
 
 

Stage 5 – Ovulation 
 

 

eggs are ready for fertilisation. For a more detailed review of oocyte development in 

zebrafish, see Selman et al. (1993). 

 
 
 

1.6 Vitellogenin 
 

 

 

are  produced  by  the  liver  and  synthesis  is  mediated  by  circulating  estrogen  in 
 

 

vitellogenin  transports  the  largest  proportion  of  yolk  proteins  into  the developing 
 

 

where it is transported around the body. Once it reaches the ovary, developing oocytes 
 

 

 

 

which make up the yolk (Hiramatsu et al. 2002, Hiramatsu et al. 2002). 
 

 

 

al. 2004, Johnson 2009, Hiramatsu et al. 2013, Mizuta et al. 2013). The Ldl receptor 
 

 

transmembrane and cytoplasmic domains. They are involved in endocytosis of a variety 
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factor precursor, a Class B repeat and O-linked sugar domains, which defines their 

their ligand specificity (Bujo et al. 1995, Prat et al. 1998, Reading et al. 2014, Figure 1.3). 

Multiple receptors and multiple vitellogenin proteins have been identified in cutthroat 

that specifically bind Vtgs have also been detected in rainbow trout (Oncorhynchus 

mykiss) and white perch (Morone americana) (Lancaster and Tyler 1991, Reading et al. 

Tyler (1991) showed that in rainbow trout, the sequestration and the subsequent 

packaging of vitellogenin into its yolk derivatives can account for up to 80% of the final 

occurs (Prat et al. 1998), changes in the level of uptake of vitellogenin could change the 

overall size of the resulting oocyte. Vitellogenin and low-density lipoprotein are both 

Studies where empirical evidence has been demonstrated for egg size plasticity have 

shown that the larger eggs have higher amounts of proteins and lipids in the yolk 

and lipids in the larger eggs act as more food for the larvae allowing for rapid growth 

and increasing initial larval size (Johnson 2009, Sun et al. 2015). Vitellogenin expression 

 

 
 

 

identities. They also contain Class A ligand binding (LDLa) repeats, which determines 
 

 

 

trout (Oncorhynchus clarki) (Mizuta et al. 2013). Multiple ovarian membrane proteins 
 

 

 

2011). 
 
 
 

 
Figure 1.3: Representation of the structure of the very low density lipoprotein and vitellogenin 
receptor family, modified from a figure in Prat et al. (1998). 

 
 
 

 

 

oocyte size. As vitellogenesis is the stage during which most of the growth of the oocyte 
 

 

 

yolk precursors found in zebrafish (Wang et al. 2005). 
 

 

 

(Guisande and Gliwicz 1992, Hassall et al. 2006, Sun et al. 2015). These extra proteins 
 

 

 

has been demonstrated to control egg size in birds, locusts and ticks (Williams 2001, 

lipoproteins. The receptors consist of unique configurations of an epidermal growth 
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blocker, smaller eggs were laid, and clutch size increased when compared to birds which 

vitellogenin and very low-density lipoproteins (Williams 2001). In migratory locusts 

there are two distinct density-dependent phenotypes, i.e., high-density gregarious (G) 

maturity and the overall egg size produced. In general, the high-density locusts mature 

faster and produce larger eggs. This study determined that regulation of vitellogenin 

expression occurred through a gene called Syntaxin 1A (Syx 1A). In the wild, Syx 1A 

expression was higher in the G locusts producing larger eggs. When exposed to a Syx 1A 

as in the S locusts (Chen et al. 2015). These findings suggest that vitellogenin and the 

While the polar lipid and protein components of the yolk are delivered to the developing 

oocyte by circulating vitellogenins, there is a separate mechanism for the transport of 

2015). Neutral lipids are packaged into very low density (VLDL) and low density 

lipoproteins (LDL) for transport around the body. These are synthesised in the liver and 

al. 2013). In birds and mammals, VLDL and LDL are taken up into the oocyte by receptor- 

mediated endocytosis. This occurs during vitellogenesis in birds and is mediated by the 

VLDL receptor (Bujo et al. 1995, Johnson 2009). In fish, there are multiple receptors that 

play a role in the endocytosis of different lipoproteins (Mushirobira et al. 2013, 

mammalian VLDL receptor and was cloned in cutthroat trout (Luo et al. 2013, Hiramatsu 

 

 
 

 

were untreated. This decrease in egg size was accompanied by a 50% decrease in plasma 
 

 

 

and  low-density  solitary  (S).  These  phenotypes  have  differences  in  the  time  until 
 

 

 

 

 

blocker the G locusts took longer to mature, and the egg size decreased to a similar size 
 

 

upstream regulation of vitellogenin production can play a key role in determining egg 

size in an individual. 

 
 
 

1.7 Very low-density and Low-density Lipoproteins 
 

 

 

neutral lipids (Bujo et al. 1995, Hiramatsu et al. 2013, Luo et al. 2013, Hiramatsu et al. 
 

 

 

are made up of primarily triacylglycerides and cholesterol (Hiramatsu et al. 2013, Luo et 
 

 

 

same receptor as vitellogenin. In mammals this endocytosis is achieved via a specific 
 

 

 

Hiramatsu et al. 2015). The major teleost lipoprotein receptor is an orthologue of the 
 

 

et  al.  2015).  The  abundance  of  mRNA  transcripts  for  this  receptor  are  highest  in 

Chen et al. 2015). In zebra finches, Taeniopygia guttata, treated with an estrogen 
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previtellogenic oocytes and decreased during vitellogenesis. This follows the pattern of 

neutral lipid uptake into the oocyte (Luo et al. 2013). 
 

In fish there are two main pathways of triacylglyceride accumulation in the developing 

oocyte. 1) Circulating VLDL is processed by ovarian lipoprotein lipase into LDL and the 

resulting free fatty acids (FFAs) are incorporated into the oocytes and form oil droplets 

(Hiramatsu et al. 2013). Or 2) VLDL or LDL binds to one or multiple lipoprotein receptors, 

where it then undergoes endocytosis and is stripped of FFAs. These FFAs are then 

utilized for oil droplet formation in the oocyte (Hiramatsu et al. 2003, Hiramatsu et al. 

2013). 
 

Damsteegt et al. (2015) showed that LDL and not vitellogenin has a major role in lipid 

deposition and accumulation in previtellogenic eel oocytes. Incubation with specific 

antisera against the LDL receptor significantly reduced oocyte size. In cutthroat trout 

VLDL was shown to be the predominant transporter of triacylglycerides while LDL is 

important in providing cholesteryl ester to the oocyte (Hiramatsu et al. 2015). 
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In all vertebrates, gametogenesis is controlled by the pituitary through the production 

(Nagahama 1994, Nagahama 1995, Tyler et al. 1997, Patino et al. 2001, Mazón et al. 

2015, Figure 1.4). These both stimulate the ovary to produce steroids, which control the 

clear which parts of the oocyte development pathway is controlled by which hormone 

Mazón et al. 2015). Fsh and Lh both consist of a common α-subunit (Cga) which is non- 

covalently bound to a β-subunit (Fshβ or Lhβ). These distinct β-subunits are what confer 

the different hormone specificities (Pierce and Parsons 1981, Swanson et al. 1991, Yaron 

In salmonids, studies suggest that secondary oocyte growth and vitellogenesis are 

maturation and ovulation (Swanson et al. 1991, Tyler et al. 1997, Campbell et al. 2006). 

1.8 Gonadotropins 
 
 
 

Figure 1.4: Simplified schematic of the brain-pituitary-gonadal-liver axis or the hormonal 
regulation of vitellogenesis in a generalised teleost. The axis is regulated by negative feedback 
by estradiol-17β (Estrogen). The brain releases gonadotropin-releasing hormone (GnRH), this 
stimulates the production of the gonadotropins, follicle-stimulating hormone (Fsh) and 
luteinising hormone (Lh). These travel through the bloodstream to target tissue (Ovary), in the 
ovary they stimulate the theca cells that surround developing oocytes to produce androgens. 
These androgens are converted to estradiol-17β via P450 aromatase in the granulosa cells, 
that adjoin the theca cells. Estradiol-17β stimulates hepatocytes in the liver to produce 
vitellogenin (Vtg), this travels to the ovary and is incorporated into the developing oocytes 
through receptor-mediated endocytosis. This figure was created using information obtained 
from Nagahama (1994). 

 

 

of  gonadotropins;  follicle-stimulating  hormone  (Fsh)  and  luteinising  hormone  (Lh) 
 

 

 

process of folliculogenesis. This dual system is well documented, but it is not always 
 

 

as it can differ between species (Swanson et al. 1991, Tyler et al. 1997, Gen et al. 2003, 
 

 

 

 

et al. 2003, Levavi-Sivan et al. 2010). 
 

 

regulated primarily by Fsh while Lh plays a primary role in regulating final oocyte 
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in the regulation of growth of the previtellogenic and vitellogenic oocytes whereas Lh is 

has a group-synchronous ovary. Although it spawns annually, it carries clutches of 

oocytes at different stages of development in the ovary which are then successively 

al. 2015). Fsh has been demonstrated to enhance uptake of vitellogenin into oocytes 

during vitellogenesis in cutthroat trout (Tyler et al. 1997). In zebrafish, gene knockout 

studies investigating the effects of gonadotropins and their receptors have 

demonstrated that the Fsh receptor is necessary for oocytes to move past the primary 

Fsh receptor with Lh occurred, this meant small numbers of oocytes entered 

(Chu et al. 2015, Zhang et al. 2015, Li and Cheng 2018). Changes in the level of Fsh could 

thus play a role in phenotypic plasticity of oocyte size by increasing vitellogenin uptake. 

In mammals, the “fecundity genes” increase the number of follicles ovulated through 

preventing the down-regulation of FSHr, and therefore increasing sensitivity to FSH 

(Moore et al. 2004, Moore and Shimasaki 2005). Treatment with exogenous FSH can 

(Clethrionomys glareolus) increased the number of pups per litter, when treated with 

human menstrual urine which contains FSH. Concomitantly, the average size of the pups 

is also reduced (Oksanen et al. 2002). Similarly, in side-blotched lizards (Uta 

was decreased when compared to non-treated lizards (Sinervo and Licht 1991, Sinervo 

1999). Sensitivity to circulating gonadotropin levels may therefore play a key role in the 

The insulin-like growth factor/growth hormone (Igf-Gh) signalling system is conserved 

 

 
 

 

primarily involved in maturation and ovulation (Mazón et al. 2015). This species of bass 
 

 

 

spawned during the annual season (Mayer et al. 1988, Asturiano et al. 2000, Mazón et 
 

 

 

 

 

growth stage. If fshb expression was knocked out in the pituitary, cross reactivity of the 
 

 

vitellogenesis but folliculogenesis was still impaired when compared to normal females 
 

 

 

 

 

 

cause super-ovulation in mammals (Fowler and Edwards 1957). Female bank voles 
 

 

 

 

stansburiana) treated with ovine FSH, clutch size was increased, and the size of the eggs 
 

 

 

determination of the size of clutches brought through to ovulation. 
 
 
 

1.9 Growth Hormone and Insulin like growth factor system 
 

 

across multicellular animals. It coordinates cell growth and proliferation with respect to 

This is also true in the European sea bass (Dicentrarchus labrax); Fsh is heavily involved 
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mammals, intraovarian insulin-like growth factors are important for maintaining oocyte 

the same or similar in fish. Evidence from a variety of fish species suggests that the 

metabolic system (Igf-Gh system) and somatolactin play roles in the regulation of oocyte 

maturation inducing steroids or can induce final maturation directly (Le Gac et al. 1993, 

In studies on Drosophila it has been shown that the insulin signalling pathway underlies 

phenotypic plasticity in ovariole number. Ovarioles are the egg-producing structures of 

produced. It was demonstrated that with a loss of function of the insulin-like receptor, 

were fed a poor diet ovariole numbers were lower than in flies fed a nutritionally rich 

Campbell et al. (2006) evaluated the interactions between the growth and reproductive 

systems. In coho salmon, growth during critical periods is important for determining age 

cortical alveoli accumulated in the oocyte, there were corresponding increases in the 

plasma levels of Fsh and 17-beta estradiol. Concomitantly, there were increases in the 

in the ovary. There were also corresponding decreases in expression of ovarian growth 

hormone receptor and somatolactin receptor transcripts. At the lipid droplet 

Fsh-ovary axis. The components of the Fsh axis that were upregulated; included plasma 

Fsh, estradiol 17beta as well as ovarian mRNA transcripts for gonadotropin receptors, 

transitioning the oocyte into the oil droplet stage. There was a consistent positive 

relationship between plasma IGF-1, estradiol 17beta and pituitary Fsh during body 

growth in the spring. This suggests that these factors are important parts of the 

 

 
 

 

development and promoting steroidogenesis (Chandrashekar et al.  2004). This may be 
 

 

 

development.  In  a  number  of  species,  Igf-1  can  induce  the  oocyte  to  respond  to 
 

 

Kagawa et al. 1994, Kagawa et al. 1995, Maestro et al. 1997, Patino and Kagawa 1999). 
 

 

 

insect ovaries, so numbers of these are directly related to the overall number of eggs 
 

 

the ovariole number was significantly decreased (Green and Extavour 2012). When flies 
 

 

diet, showing that insulin-like growth factor signalling is the molecular mediator of the 

nutritional state (Green and Extavour 2014). 
 

 

 

of maturity and fecundity (Campbell et al. 2006). This study demonstrated that as 
 

 

 

expression levels of fsh in the pituitary and the steroidogenic acute regulatory protein 
 

 

 

accumulation stage, there was a general increase in plasma Igf-1 and components of the 
 

 

 

star, igf1 and igf2. This suggests that Fsh signalling may play an important role in 
 

 

 

physiological condition including the nutritional state (Green and Extavour 2014). In 
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was found to be strongly correlated with the rate of oocyte development with the larger 

fish. Igf1 and Igf2 expression was higher in the ovaries of the fish with oocytes in the oil 

droplet stage, which were in the fastest growing fish (Campbell et al. 2006). Thus, the 

reproductive axis and could play a direct role in controlling fecundity in vertebrate 

Although adaptive phenotypic plasticity in offspring size has been widely demonstrated 

physiological mechanisms by which this occurs. In Drosophila, it has been demonstrated 

resource availability in the local environment. Insulin-like growth factor-1 levels directly 

directly reflects adult fecundity in these flies. In teleosts, specifically zebrafish, Danio 

rerio, orthologues of the fec gene in mammals, bone morphogenetic protein 15 and 

role in this species (Forbes et al. 2010). Wildtype zebrafish have clearly demonstrated 

adaptive plasticity in the offspring size versus number trade-off and are a model 

to investigate potential molecular mechanisms involved in the plasticity of maternal 

This thesis endeavours to shed light on the patterns of resource allocation in zebrafish 

when exposed to different resource levels in the environment. It also aimed to elucidate 

 

 
 

 

salmon possessing oocytes in a further stage of development than the oocytes in smaller 
 

 

 

Igf-Gh  system  appears to  mediate  nutritional  status  or  the  nutrient  uptake  to the 
 

 

species. 
 
 

 
1.10 Rationale 

 

 

in  a  range  of  vertebrate  species,  there  are  few  studies  which  have  evaluated the 
 

 

that metabolic hormones play a role in informing the reproductive system about the 
 

 

correlate  with  the  number  of  ovarioles  (reproductive  structures)  produced,  which 
 

 

 

growth differentiation factor 9 have been evaluated but have not been found to play a 
 

 

 

organism with an entirely sequenced transcriptome. This makes them ideal candidates 
 

 

reproductive investment in teleosts. 
 
 
 

1.11 Thesis aims 
 

 

 

the mechanisms that allow for adaptive plasticity in offspring phenotypes when exposed 

mechanism by which oocyte development is influenced by body growth. Body growth 
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fecundity and follicle diameter and related changes in mRNA levels of reproductive and 

Chapter Two: Phenotypic plasticity in offspring size in the zebrafish (Danio rerio) – 

investigating expression of candidate genes from the gonadotropic and somatotropic 

For this Chapter, there were two separate, but similar, experiments carried out. Initially 

assigned to a low (1 % of body weight daily) or high (3 % of body weight daily) feeding 

regime. Secondly; Phase one (P1) of the experiment outlined in Chapter three below; 24 

to a high (3 %of body weight) feeding regime. Both experiments were analysed for 

differences in relative mRNA transcript abundance of the follicle-stimulating hormone 

receptor (fshr), the growth hormone receptor (ghrb), the insulin-like growth factor one 

receptor (igf1ra) the vitellogenin receptor (lrp8) and the very low density lipoprotein 

 

 
 

 

metabolic factors in the ovaries of females exposed to different feeding regimes as 

outlined below. 

 
 
 

1.12 Chapter Overview 
 

 

 

axes 
 

Specific study aims: 
 

1.12.1 To identify expression of candidate genes in relation to differences seen in 

fecundity and egg size when female zebrafish are exposed to different resource 

levels in the environment. 
 

Study approach: 
 

 

a pilot study was carried out; where six tanks of mixed sex zebrafish were randomly 
 

 

 

female fish, 12 exposed to a low (1.5 % of body weight) feeding regime and 12 exposed 
 

 

differences in reproductive phenotype. Ovarian tissue from the P1 fish was analysed for 
 

 

 

 

receptor (vldlr). 

to changing environmental resource availability. Specifically, it evaluated changes in 
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Chapter Three: Effects of changing food environments on the phenotypic plasticity in 

reproductive resource allocation in the zebrafish, Danio rerio 
 

Specific study aims: 
 

1.12.2  To use phenotypic measures of follicle size, and fecundity to identify changes in 

resource allocation to reproductive traits, when female zebrafish are exposed to 

fluctuating resource levels in the environment 
 

Study approach: 
 

In this Chapter, the experiment was split into two phases. P1: twelve tanks were 

randomly assigned to either a low (1.5 % of body weight daily) or high (3 % of body 

weight daily) feeding regime. After four weeks, two tanks from each regime had six fish 

terminally sampled. Subsequently, the twelve tanks were randomly assigned to a 

feeding regime for the second phase. Either they remained on the feeding regime from 

phase one or switched to the other feeding regime. Reproductive investment and follicle 

diameter was compared between each treatment to elucidate changes in resource 

allocation. 
 

Chapter Four: Unravelling molecular mediators of maternal effects – using a 

transcriptomic approach to reveal changes in gene expression between zebrafish, Danio 

rerio, exposed to different resource environments. 
 

Specific study aims: 
 

1.12.3 To compare the complete transcriptomic snapshots of ovaries of zebrafish, 

displaying different reproductive resource allocation. 

1.12.4 Identify differentially expressed genes and pathways between the treatments 
 

Study approach: 
 

For this study representative samples of whole ovary tissue, three from fish that were 

exposed to a high feeding treatment (3 % of body weight daily) and three from fish that 

were exposed to a low feeding treatment (1.5 % of body weight daily), were chosen. 

HiSeq Illumina sequencing technology and later bioinformatics was used to generate 

and compare transcriptomes of each ovary. 
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Originally this analysis was planned to occur before the candidate gene research. 

Unfortunately, due to time constraints and the length of time the analysis takes, there 

was not enough time to wait for these samples to come back and the candidate genes 

described in Chapter Two were instead chosen from the literature. 

 
 
 

Chapter Five: General Discussion 
 

This chapter collates, summarises and discusses the key findings of the thesis and wider 

implications. Future research directions are also highlighted. 

 
 
 

The chapters of this thesis were designed to be standalone works, therefore some 

overlap in material of the introductions may occur. There is some cross-referencing 

between methods and results sections. 
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Chapter Two 
 

Phenotypic plasticity in offspring size in the zebrafish (Danio rerio) – investigating 

expression of candidate genes from the gonadotropic and somatotropic axes 
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2.1 Introduction 
 

It can be argued that an organism’s purpose is to survive and reproduce, passing on its 

genetic material to the next generation. In an optimal environment (i.e. constant) there 

is a trade-off between offspring size and the number of offspring produced, which 

maximises the reproductive fitness of the parent (Smith and Fretwell 1974). In reality, 

any environment is heterogenous and therefore this relationship is also variable. The 

trade-off is dependent on two factors; the resource availability in the environment, and 

the maternal space for offspring development. Some species respond to a food-limited 

or harsh environment by producing fewer offspring that are smaller or of “lower quality” 

than when in ideal conditions (Bashey 2006). There are other species however, that can 

change reproductive resource allocation when confronted with different environmental 

conditions, maximising maternal fitness by increasing offspring survival in harsh 

environments. In these species, when exposed to an environment which has high levels 

of food then large numbers of small offspring are produced. If the same species are 

confronted with a food-limited environment then there is a switch in strategy to 

producing fewer offspring, but these offspring are relatively much larger (Blueweiss et 

al. 1978, Fox and Czesak 2000, Bashey 2003, Bashey 2006, Forbes et al. 2010). This 

phenotypic plasticity in offspring size is seen as a way to maximise reproductive fitness, 

as in limiting environments, larger larvae have a much higher chance of survival (Bashey 

2006, Kuijper and Johnstone 2013). If the maternal environment is correlated with the 

offspring environment, then plasticity in offspring size is favoured to adjust for changes 

in food availability in different seasons (Kuijper and Johnstone 2013). Few studies 

however, have investigated the possible molecular mechanisms that may play a role in 

this strategy. 

The relationship between the nutritional environment and reproductive development 

has been widely documented. In mammals, studies have demonstrated that the growth 

hormone - insulin-like growth factor (GH – IGF-I) system has roles in maintaining oocyte 

development and promoting steroidogenesis (Chandrashekar et al. 2004). In Drosophila, 

changes in the level of insulin-like growth factor 1 (IGF-I) directly influences the number 

of ovarioles present in the ovary which is a direct indicator of the number of offspring 

that will be produced (Green and Extavour 2014). There is also evidence from a variety 
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of fish species that the metabolic pathway (growth hormone - insulin-like growth factor 

system) plays many important roles in regulating and supporting ovarian development. 

IGF-I directly promotes ovarian development, both through increasing steroidogenesis 

and through inducing final maturation in the oocytes (Higuchi et al. 2016). The role that 

the insulin-like growth factors play in ovarian development seems to be species specific 

with various effects occurring in different fish species (Higuchi et al. 2016). However, 

despite this variation, this system seems to play a key role in communicating the 

nutritional and growth status in fish and in regulating ovarian development accordingly 

(Higuchi et al. 2016). Therefore, this system is a candidate for the signalling of nutritional 

status and for mediating size and number of offspring in reproductively plastic species. 

Other possible systems that could play a role in determining offspring size include the 

uptake of vitellogenin, very low-density and low-density lipoprotein into the developing 

oocytes. Vitellogenesis is the major growth phase of an oocyte and maximum oocyte 

size is often determined during this stage. In rainbow trout, the sequestration and 

packing of vitellogenin into the yolk derivatives can account for up to 80% of the final 

oocyte size (Tyler et al. 1991, Tyler et al. 1997). In eels, low density lipoprotein is also 

associated with oocyte growth (Damsteegt et al. 2015). 

Gametogenesis is controlled by the production of gonadotropins in the pituitary in all 

vertebrates (Tyler et al. 1997, Mazón et al. 2015). The roles of the two gonadotropins, 

follicle-stimulating hormone (Fsh) and luteinising hormone (Lh), differ between species. 

In salmonids and the European sea bass, Dicentrarchus labrax, Fsh is the hormone that 

is mainly responsible for regulation of secondary oocyte growth and vitellogenesis (Tyler 

et al. 1997, Mazón et al. 2015). Secondary oocyte growth is the stage of most growth in 

the oocyte, it involves the cortical alveoli stage, and the uptake of both vitellogenin and 

neutral lipids into the oocyte (Lubzens et al. 2010, Lubzens et al. 2017). 

Across all the vertebrate species that exhibit plasticity in offspring size and number, very 

few studies have looked at the molecular mediators of the change. To gain a better 

understanding of the possible links between the metabolic and reproductive axes in 

teleost species, female zebrafish (Danio rerio) were subjected to high and low feeding 

regimes. It has previously been demonstrated that zebrafish exhibit adaptive plasticity 

in reproductive resource allocation when exposed to different nutritional environments 



Chapter 2 - Molecular Mediators 25 
 

(Forbes et al. 2010). Females placed on a low feeding ration produced fewer and larger 

eggs than females that were fed more (Forbes et al. 2010). This study aimed to 

elucidate changes in the ovarian  environment  when  female  zebrafish  are  exposed 

to different feeding regimes. To achieve this, the expression levels of messenger RNA 

in the ovary  for  five  candidate  genes  were  investigated.  These  included  the  

follicle stimulating hormone receptor (fshr),  the  growth  hormone  receptor  (ghrb), 

the insulin-like growth factor one receptor (igf1ra)  the  vitellogenin  receptor  (lrp8) 

and the very low density lipoprotein receptor (vldlr). 

 
 

2.2 Methods 
 

2.2.1 Husbandry 
 

All zebrafish used in the following experiments were purchased from an aquarium 

distributor, Brooklands Pet Products, New Plymouth. The fish were shipped overnight 

using standard tropical fish transporting procedures. Fish were randomly assigned to 

tanks measuring 40 cm x 40 cm x 70 cm, which were filled to around three quarters of 

the total volume with purified water. The experiments were carried out in a 

temperature-controlled facility which was kept at an ambient temperature of 25 °C, with 

a light cycle of 14 hours light, 10 hours darkness. Each tank contained internal 

submerged filters which had cycled the water for two weeks before any fish were added, 

allowing bacterial biofilms to form. Tanks were cleaned and siphoned with 

accompanying water changes every seven days. All water used in the tanks had been 

pre-warmed and all chlorine was removed through evaporation. All experiments were 

carried out in accordance with the guidelines of the University of Otago Animal Ethics 

Committee. 
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2.2.2 Experimental Design 
 

2.2.2.1 Experiment 1 - 
 

This was designed to recreate the work done by Forbes et al. (2010). Upon arrival, fish 

were separated into seven mixed sex tanks, six containing ten fish each and a final tank 

containing fourteen fish (Figure 2.1). Six tanks were exposed to the experimental feeding 

treatments whereas the seventh tank was kept on a permanent intermediate feeding 

ration and males from this tank were used for any spawning trials. This was an attempt 

to avoid any possible differences in male quality that may occur between the different 

feeding regimes becoming a confounding factor in the experiment. 

Prior to the experimental period, all fish were allowed an acclimation period of seven 

days, during which time a predetermined amount of food was fed to every tank (roughly 

1.5% of total bodyweight (see below), Salmon starter, NRD 5/8, INVE Aquaculture). 

Following this acclimation all experimental tanks were starved for a day to allow total 

evacuation of any food present in the digestive tract. Fish were weighed to the nearest 

mg. This was done by using a tared beaker of water to find the total fish weight of each 

tank which was then used to calculate the average weight for each tank and an overall 

average weight (around 1 g per fish). To determine the experimental feeding levels, 

satiation feeding was carried out. Fish were starved for a day to allow complete 

evacuation of any previous food. The total amount of food consumed by each tank over 

the course of five minutes was measured, and the results across all six experimental 

tanks were used to determine an average maximum feeding amount. These results were 

used to assign a high feeding regime of 300 mg per tank per day which corresponded to 

around 3 % of body weight. The low feeding regime was set at a third of this value (100 

mg per day) which was equivalent to 1 % of the total bodyweight. Tanks were assigned 

to treatments using a random number generator (Figure 2.1). The tank containing 14 

fish was maintained at an intermediate regime and was fed 160 mg of food per day (1.5% 

body weight). 
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Figure 2.1: The layout of the experimental tanks in Experiment 1, blue colour indicates the low 
feeding treatment, red indicates the high feeding treatment, white indicates a tank 
maintained on an intermediate feeding treatment. All tanks contained ten zebrafish, Danio 
rerio, of mixed sex except tank seven which contained fourteen fish. 

 
 

Feeding was carried out twice per day, at 9 am and 5 pm. In the third week, spawning 

trials were attempted with females from tank 1 and 2. One gravid female was placed 

overnight in a standard spawning tank with two males from the intermediate tank (Tank 

7). In zebrafish, spawning usually occurs the next morning close to daybreak. If spawning 

occurred, eggs were collected the next morning and photographed (Section 2.2.4). 

Terminal sampling was carried out to evaluate differences in gonadosomatic index (GSI), 

oocyte size and overall ovary composition between the two treatments. 

Due to unsuccessful spawning attempts, only two tanks were terminally sampled at the 

end of three weeks (Tank 1 and Tank 2). The other four tanks remained on the 

experimental treatment for another four weeks while continuing to carry out breeding 

trials. These remained unsuccessful and all remaining tanks were terminally sampled 

after seven weeks total. 

4 3 2 1 
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2.2.2.2 Experiment 2a - Timing and Plasticity of Fecundity Changes 
 

This experiment is split and analysed across this chapter and Chapter Three. This is due 

to the results of the initial dissections after four weeks closely relating to the results 

found in Experiment 1, which assesses the differences between fish subjected to two 

feeding regimes, high food or low food. These initial dissection results have therefore 

been titled Experiment 2a. In Chapter Three, I investigate the results obtained after the 

full 8 weeks of the experiment and explore the changes in plasticity when the feeding 

regimes are switched. For the purposes of this chapter, Experiment 2a consists of four 

tanks on two different feeding regimes. 

As in Experiment 1, fish were initially fed roughly 1.5% body weight until the experiment 

began. To determine the experimental feeding doses, satiation feeding over five 

minutes was used accordingly to the method outlined in Experiment 1. For this 

experiment, satiation feeding was carried out twice and the average of the two 

measurements was combined. The high feeding dose was set at a total of 30 mg per fish 

per day and the low dose was set at half of this value. This corresponds to around 3 and 

1.5 % of the average fish body weight. All tanks were fed twice a day, at 9 am and 5 pm. 
 
 

Table 2.1: Experimental endpoints for the female zebrafish, Danio rerio, terminally sampled at 
the halfway point of Experiment 2a (Phase 1). Fish were kept on one of two feeding regimes; 
Low: 1.5% of body weight or High: 3% of body weight for four weeks .Non – fish which had 
completely non-ovulated ovaries. Cohorts taken refers to the separation of a section of the un- 
ovulated ovary tissue into three distinct follicle size classes for more targeted qPCR analysis. 
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After four weeks, six female fish from each tank were placed in a spawning tank 

containing males from an intermediate tank (one female from each tank per day). Fish 

were checked at daybreak and if spawned, eggs were collected, counted and yolk 

diameters measured (Section 2.2.4). Regardless of whether or not spawning occurred, 

fish were euthanised in a lethal dose of benzocaine and sampled as outlined below. This 

resulted in three experimental endpoints; fish that spawned eggs, fish that had ovulated 

eggs in the body cavity and fish that did neither (Table 2.1). 

 
 

2.2.3 Dissection Protocols 
 
 

Figure 2.2: Simplified dissection and sampling protocol for all female zebrafish, Danio rerio, in 
Experiment 1. 
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Fish were individually placed in a beaker containing a lethal dose of benzocaine (1 ml in 

200 ml). After fish went limp, they were removed and patted dry with a paper towel. 

Fish were then measured to the nearest mm using callipers, for both the standard length 

(from snout tip to beginning of the caudal fin) and the total length (entire fish). Prior to 

dissecting, total body weight was measured to the nearest mg. 

After outside measurements were taken, the spinal column was severed, the body cavity 

opened, and each fish was sexed by eye. Males were discarded. Ovaries were then 

removed from females and total ovary weight measured. A single ovary was weighed 

and preserved in ethanol for total fecundity estimates. 

In Experiment 1, for the first three females of each tank the second ovary was cut into 

two, half was placed in collagenase (1 mg/ml) for digestion. This was used later for size 

frequency analysis. The second half of the ovary was frozen on dry ice and stored at -80 

°C for later qPCR analysis. Any females which were not analysed for size frequency 

distribution of follicles had the entire second ovary frozen on dry ice and stored at -80 

°C for later qPCR analysis. (Figure 2.2) 
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Figure 2.3: Simplified dissection and sampling protocol for all female zebrafish, Danio rerio, in 
Experiment 2a. 

 
 
 

For Experiment 2a sampling was carried out as above (Experiment 1), except for the 

following changes. Collagenase digestion was not carried out. When fish had large 

mature oocytes, collagenase digestion was too vigorous, resulting in inaccurate 

representations of the true size frequency distribution of follicles in the ovaries (data in 
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Appendix – Figure A.1). Instead, after the ovary weights were measured, one ovary was 

preserved in 70% ethanol and used for both size frequency analysis and for estimation 

of fecundity. This ovary was gently broken apart, using forceps to preserve the integrity 

of the follicles. 

The second ovary was divided in half, one half was frozen on dry ice and stored at -80 °C 

for qPCR analysis (in spawned fish this was one whole ovary). The second half of the 

ovary was then separated into different follicle size classes or cohorts. This was done as 

zebrafish have an asynchronous ovary containing multiple stages of follicle development 

at any one time (Selman et al. 1993). This means that all follicles are exposed to the 

same hormonal environment. Separation into different size classes will illuminate stage 

specific changes in the mRNA expression levels of the receptors that may be diluted in 

the whole ovary. The ovary was gently separated into three distinct size classes by eye 

using forceps, placing different sized follicles into a chilled glass viewing plate to 

preserve the tissue. All size classes were then photographed for each fish and the 

cohorts were frozen on dry ice and stored at -80 °C for later qPCR analysis. Only non- 

ovulated ovary tissue was used for qPCR analysis. (Figure 2.3) 

When the cohorts were compared between treatments, there were no differences 

between average oocyte diameter for any of the different size classes. This meant that 

there was a direct comparison between follicles of the same size and developmental 

stage between feeding regimes. (Figure 2.4) 
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Figure 2.4: The average follicle diameters of zebrafish, Danio rerio, when ovaries separated 
into three separate follicle size classes, Small, Medium and Large. The fish were exposed to 
two different feeding regimes, low (light grey) which was 1.5% of body weight fed daily, or 
high (dark grey) which corresponds to 3% of body weight fed daily. N = 5 fish for low and 6 fish 
for high. Error bars are ± one standard error of the mean. 

 
 
 

2.2.4 Macroscopy and Microscopy 
 

All photography of ovary tissue was carried out using an Olympus SZS2 microscope with 

an Olympus Sc100 camera attached. The Olympus Cellsens program was then used to 

calculate follicle diameters and numbers of vitellogenic follicles for each ovary sample. 

All spawned or ovulated eggs in Experiment 2a were photographed. Yolk diameters and 

numbers of eggs were counted using the Olympus Cellsens program. 

 
 

2.2.5 Sample analysis 
 

2.2.5.1 Size Frequency and Total Fecundity 
 

For total fecundity, each ethanol-preserved sample was placed in a petri dish and gently 

separated using forceps. All follicles with a diameter above 140 µm were counted, as 

any larger than 140 µm were assumed to have been recruited into vitellogenesis and it 

is likely they will eventually be spawned (Selman et al. 1993). As these counts were only 

from one ovary, each value was adjusted to obtain a total follicle count per individual. 

This was then used as a proxy for the fecundity of each fish. Relative fecundity was 
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obtained by dividing the total number of vitellogenic follicles by the total body weight 

of each fish. Gonadosomatic index (GSI) was calculated by dividing the total ovary 

weight by the total body weight for each individual fish. Total body weight was used as 

a proxy for the condition of each fish, with heavier fish assumed to have had more 

access to food resources. 

In Experiment 1, three fish from each tank were analysed for size frequency distribution 

of the follicles in the ovary. Three random separate areas of the digested ovary were 

photographed under a dissecting microscope. The Olympus Cellsens program was used 

to obtain average diameters for every visible follicle above 140 µm. To compare 

“offspring size” between the feeding regimes, the largest 20% of the follicles measured 

were averaged. 

In Experiment 2a, all fish sampled were analysed for the size frequency distribution of 

follicles in the un-ovulated ovary tissue. Five separate random areas of the ethanol- 

preserved ovary were photographed under a dissecting microscope. The Olympic 

Cellsens program was again used, and all follicles with a diameter of 140 µm and above 

were measured. The ovulated and non-ovulated size frequency distributions were 

separated before analysis. To evaluate differences in the mean follicle diameters 

between feeding regimes the largest 20% of the measured follicles were compared. 

 
 

2.2.5.2 Quantitative Polymerase Chain Reaction 

RNA Extraction and cDNA Synthesis 

Samples were retrieved from storage at -80 °C for analysis of mRNA expression 

differences between treatments. RNA was extracted using the TRIzol reagent 

(Invitrogen) following the protocol designed by the manufacturer. Any genomic DNA 

was removed through incubation with DNA-free DNase I (Turbo DNA Free Kit, Ambion) 

for 30 minutes at 37 °C. Quantity of RNA was obtained by using a Nanodrop ND-1000 

spectrophotometer (Labtech). All cDNA was synthesised via reverse transcription using 

the ABI, High Capacity cDNA Reverse Transcription Kit. This was carried out in a 10 µl 

reaction volume, with 500 ng of RNA and the master-mix (prepared according to the 



Chapter 2 - Molecular Mediators 35 
 

manufacturer’s instructions) added to a 200 µl PCR tube. Tubes were then placed in a 

PCR machine and subjected to the following program; incubation at 25 °C for 10 

minutes, amplification at 37 °C for 120 minutes and heat inactivation at 85 °C for 5 

minutes. Any cDNA was then stored at -30 °C until needed for further analysis. 

 
 

Primers 
 

Five primers were designed to quantify the expression of genes that represent both the 

metabolic and reproductive pathways: the follicle stimulating hormone receptor (fshr), 

the growth hormone receptor (ghrb), the insulin-like growth factor one receptor (igf1ra) 

the vitellogenin receptor (lrp8) and the very low density lipoprotein receptor (vldlr). Two 

housekeeping genes were also chosen; β-actin (actb1) and eukaryotic translation 

elongation factor 1 alpha 1a (eef1a1a). These were designed to be used to filter out any 

potential background differences in transcript quantity not caused by the treatment 

effects. All primers except those for the amplification of β-actin, were designed using 

Primer-BLAST (NCBI). All primer pairs, except eef1a1a and lrp8, were designed to have 

at least one primer of the pair crossing an exon-exon boundary. Similar annealing and 

melting temperatures were also chosen. The primer pair for actb1 was obtained from a 

previous study (Tang et al. 2007). The primers were then purchased from Integrated 

DNA Technologies (Table 1). Each primer was resuspended in distilled water to 100 µM 

as per the manufacturer’s instructions. All primers were further diluted to 10µM before 

use in the q-PCR assays. 
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Table 2.2: Specific primer sequences 5’-3’ for all genes used for quantitative PCR, follicle 
stimulating hormone receptor (fshr), vitellogenin receptor (lrp8), insulin-like growth factor 1 
receptor (igf1ra), growth hormone receptor beta (ghrb), very low-density lipoprotein receptor 
(vldlr), β-actin (actb1) and eukaryotic translation elongation factor 1 alpha 1a (eef1a1a). All q- 
PCR primers were designed to span intron boundaries. 

 
 
 

 
Standards 

 
An initial qPCR was carried out on a single sample and the qPCR products were used to 

create a standard curve for each gene. Using a Nanodrop ND-1000 spectrophotometer 

(Labtech) the concentration of cDNA was measured in each sample. The cDNA for each 

gene was diluted to 100 ng/µl and then this was used to create seven standards ranging 

from 100 pg/µl to 0.0001 pg/µl after a series of 10-fold serial dilutions. 

 
 

Quantitative real time PCR 
 

Gene expression levels were determined using qPCR for all target genes. All qPCR assays 

were carried out using a QuantStudioTM 5 – 96 well quantitative PCR machine 
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(Thermofisher Scientific). All results were analysed using QuantStudioTM Design and 

Analysis software. All plates were run using the following reaction per well; 1 µl cDNA 

(10 ng/µl), 5 µl of Takara SYBR Green, 0.5 µl each specific forward and reverse primers 

and 3 µl of distilled water. All primers annealed at 62 °C. 

The following thermal profile was used across all reactions; initial denaturation at 95 °C 

for 2 minutes, followed by 40 cycles of denaturation (95 °C for 5 seconds), annealing (62 

°C for 10 seconds) and extension (72 °C for 5 seconds). In the final step, a dissociation 

curve analysis was run. This consisted of a 95 °C (60 seconds) denaturation step, a 55 °C 

(30 seconds) annealing step and then incremental 1 °C temperature increases (30 

seconds for each degree) to reach a final temperature of 95 °C (30 seconds). To ensure 

the specificity of the primers the dissociation curves were analysed for the presence of 

only one peak of fluorescence. This indicates that only one product has been amplified 

in each qPCR reaction. For every gene analysed, two no-template-controls (distilled 

water) and a six-step standard curve were also included on the plate alongside the two 

replicate wells for each sample. The standard curves were used to quantify the relative 

abundance of all the unknown samples. 

 
 

2.2.5.3 Statistical Analysis 
 

All statistical analyses were carried out using R software, version 3.4.2 (R Core Team 

2017). Data distributions were checked for assumptions of normality (exploratory 

boxplots and histograms) and homogeneity of variances (Levene’s test). If either 

assumption was violated then data was log transformed and assumptions were re- 

checked, all mRNA data were log transformed before analysis. 

For Experiment 1, one-way analysis of variance models (ANOVA) were used to evaluate 

differences in mean follicle diameters, relative fecundities and GSI between feeding 

regimes. 

Experiment 2a, consisted of a nested design, with multiple tanks present in each 

treatment. The results for this experiment were analysed by nested ANOVA with tank 

identity as a factor within feeding regime. Any significant interaction effects between 
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tank and treatment (p < 0.05 are reported). A Linear Mixed Effects model with tank as a 

random effect was used to analyse the relationship between follicle diameter and body 

weight. 

There was high variation in both housekeeping gene expression levels when tested using 

a nested ANOVA between the two feeding regimes. For eef1a1a relative expression 

levels between the two feeding regimes were significantly different and there was high 

variation in relative expression seen between individuals within the individual feeding 

regimes (F3,12 = 4.17, p = 0.02, treatment*tank: p = 0.05). The relative expression levels 

of actb1 were not significantly different between feeding regimes but there was a trend 

for an increase in expression in the low treatment and a strong trend for differences 

between individuals in the same feeding regime (F3,12 = 1.27, p=0.31, treatment*tank: p 

= 0.08). Due to these results relative expression levels of the candidate genes were 

normalised over total RNA as quantified by Nanodrop. 
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2.3 Results 

 
2.3.1 Experiment 1: 

 
2.3.1.1 Fecundity and GSI 

 
Relative fecundity was around 0.6 vitellogenic follicles per mg of body weight, regardless 

of feeding regime (t4 = -0.49, p = 0.65, Figure 2.5 A). GSI also showed no difference when 

females on the low feeding regime were compared to females on the high feeding 

regime, remaining at around 10% (t11 = -0.73, p = 0.47, Figure 2.5 B). 

 
 

 

Figure 2.5: The average relative fecundity (A) and the average gonadosomatic index (GSI) (B) in 
female zebrafish, Danio rerio, when fed 1% (Low) or 3% of body weight daily (High) during 
Experiment 1. N (number of fish) = 3 for fecundity and N (number of fish) = 6 for GSI, each bar 
represents the average value for the feeding regime ± 1 standard error. 
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2.3.1.2 Follicle Diameter 

 
There was no difference in follicle diameter between females exposed to either high 

feeding or low feeding regimes in Experiment 1 (F1,5 = 0.23, p = 0.61, Figure 2.6). When 

the overall average follicle diameters across all size classes in the ovary were compared, 

then there was a significant difference found between the two treatments with the 

females on the high feeding regime appearing to have a lower follicle diameter overall 

(F1,5 = 13.4, p < 0.001). This was due to the large number of smaller follicles present in 

the ovary, compared with fewer larger follicles (see section 2.3.1.3 Size Frequency). 

 
 
 
 

 
Figure 2.6: The average follicle diameter of the top 20% of the total follicles in the ovaries of 
female zebrafish, Danio rerio, when fed 1% (Low) or 3% of body weight daily (High) during 
Experiment 1. N (number of fish) = 3 for each feeding regime, each bar represents the average 
follicle diameter for the feeding regime, error bars are ± one standard error of the mean. 

 
 

2.3.1.3 Size Frequency 
 

The size frequency distribution of the oocytes in the ovaries of the females on the low 

feeding regime, showed two distinct clutches of follicles, one centred approximately 

around 350 µm and another centred approximately around 750 µm. In contrast the 

distribution from the higher feeding regime had no clear separation into distinct 

clutches, although there were still small peaks around 300 µm and 750 µm. There was a 
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higher proportion of oocytes in the larger size range in the ovaries of the females on the 

lower feeding regime (around 60-70% of all oocytes found between 600 – 800 µm). The 

higher feeding regime had a more even distribution of follicles present across the size 

classes, with a slightly higher proportion at the lower end (Figure 2.7). 

Unfortunately, due to over-digestion by collagenase, after the second sampling, I was 

unable to construct an accurate size frequency distribution for the last four tanks. 

Everything above 500 µm was digested, skewing the results. Therefore, the distribution 

of the oocytes was only compared between Tank 1 and 2. 

 
 
 

Figure 2.7: The size frequency distribution of oocytes in the ovaries of female zebrafish, Danio 
rerio, when fed 1% (A) or 3% of body weight daily (B) in Experiment 1. Each different coloured 
size frequency distribution represents the ovary of a different female (three females were 
sampled in each regime). 
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2.3.2 Experiment 2a: 

 
2.3.2.1 Fecundity and GSI 

 
In females exposed to the higher feeding regime there was a tendency for an increase 

in fecundity (1.00 ± 0.23 vitellogenic follicles/ mg body weight) when compared to the 

females fed lower amounts (0.57 ± 0.17 vitellogenic follicles/ mg body weight) (Figure 

2.8 A). This was not significant (Nested ANOVA: F3,6 = 1.45, p = 0.27). GSI was very similar 

across both feeding regimes at around 13% (Nested ANOVA: F3,6 = 0.10, p = 0.76, Figure 

2.8 B). 
 
 
 

 

Figure 2.8: The average relative fecundity (A) and the average GSI (B) for non-ovulated female 
Danio rerio, when fed 1.5% (Low) or 3% (High) of bodyweight daily during Experiment 2a, N 
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(number of fish) = 5 for each regime. Bars represent the average value for each feeding 
regime, error bars are ± one standard error. 

When the top 20% largest follicles present in the ovaries were compared between 

feeding regimes in non-ovulated fish, average follicle diameters were found to be 

around 760 µm regardless of the amount fed (Nested ANOVA: F3,6 = 0.13 , p = 0.77, 

Figure 2.9 A). There was a tendency towards a decrease in follicle diameter in the 

remaining ovary tissue in ovulated females fed a higher amount of food when compared 

to the low feeding regime (Nested ANOVA: F3,5 = 1.93, p = 0.31, Figure 2.9 B) 

 
 

 
Figure 2.9: The average follicle diameter (µm) of the largest 20 % of follicles present in the 
ovaries of non-ovulated (A) and ovulated (B) female zebrafish, Danio rerio, when fed 1.5% 
(Low) or 3% (High) of body weight daily during Experiment 2a. For non-ovulated females, n = 5 
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for each feeding regime. For ovulated females, n = 3 for each feeding regime. The bars 
represent the average follicle diameter for each feeding regime ± 1 se. 

2.3.2.2 Body Weight and Oocyte Diameter 
 

If feeding regime was removed from the analysis, there was an increase in follicle 

diameter as body weight increased. The larger fish were producing larger oocytes 

compared to the smaller ones regardless of the amount they were fed (LMER: p = 0.02, 

t8 = 5.6, R2 = 0.50) (Figure 2.10). 

 
 
 
 
 
 

Figure 2.10: The relationship between the average follicle diameter (of the largest 20 % of 
follicles in the ovary, µm) and the body weight (mg) of individual female zebrafish, Danio rerio 
in Experiment 2a. R2 = 0.50. 
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Due to the positive correlation between body weight and oocyte diameter, relative 

oocyte diameters were used to compare between treatments, removing the effect of 

body condition. There was a tendency towards larger relative follicles in the females 

which were fed lower amounts of food when compared to females that were fed more. 

This was true for both ovulated females and the females that did not spawn or ovulate. 

It was not a significant relationship however (F3,14= 2.66, p = 0.12) (Figure 2.11). 

 
 

 
 
 
 

Figure 2.11: The relative follicle diameter (largest 20% (µm) / mg body weight) for female 
zebrafish, Danio rerio, when fed 1.5% (Low) or 3% (High) of bodyweight daily during 
Experiment 2a. A is females who did not spawn or ovulate, N (number of fish) = 5 for both 
feeding regimes. B is ovulated females, N (number of fish) = 3 for both feeding regimes. The 
bars represent the average relative follicle diameter for each treatment ± 1 standard error. 
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2.3.2.3 Size Frequency 

 
For Experiment 2a, in both treatment groups when fish neither spawned nor ovulated, 

there were two distinct clutches of oocytes found in the ovaries. As in Experiment 1, 

these are centred around 350 µm and 750 µm. However, unlike Experiment 1 there was 

no clear difference between the treatment groups, with around 60 % of the total oocytes 

measuring between 140 µm and 540 µm, with the remaining 40 % between 620 µm and 

860 µm (A and B). When fish that had spawned were compared between feeding 

regimes there was also no difference in size frequency distribution. When the ovulated 

fish were compared, then the females in the low food treatment seemed to have a 

higher proportion of larger oocytes than the high treatment (C and D), which is 

consistent with the trends found in Experiment 1. These results are only comparing two 

tanks and each bar represents a fish, whereas graph A and B are comparing tank 

averages, variation in the responses is clearly seen between fish even in the same tank 

(Figure 2.12). 
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Figure 2.12: The size frequency distribution of follicles in the ovary in female zebrafish when fed a low feeding regime (1.5 % of bodyweight), non-ovulated 
(A) and ovulated (C) and females fed a high feeding regime (3% of bodyweight), non-ovulated (B) and ovulated (D). N (number of fish) = 5 for both non- 
ovulated graphs (different coloured distributions are tank averages) and N= 3 for both ovulated graphs (different bars represent individual fish). 
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2.3.2.4 Quantitative PCR 
 

Table 2.3: The F and p values obtained through statistical analysis of the differences in ovarian 
transcript abundance for follicle stimulating hormone receptor (fshr), vitellogenin receptor 
(lrp8), insulin-like growth factor 1 receptor (igf1ra), growth hormone receptor beta (ghrb) and 
very low-density lipoprotein receptor (vldlr) when female zebrafish, Danio rerio, are subjected 
to two different feeding regimes, low (1.5 % body weight) and high (3 % of body weight). 
Ovaries were also separated into three different follicle size classes for more targeted analysis 
(Small, Medium and Large). Black dots represent strong trends (p < 0.1) 

 

 
 

There were no effects of feeding regime on the relative abundance of either vldlr 

transcripts or igf1ra transcripts. This was true across the three different follicle size 

classes as well as in the whole ovary sample. The relative transcript abundance of ghrb 

was also unaffected by feeding regime (Table 2.4, Figure 2.12). 

There was also no effect of feeding regime on the transcript abundance of lrp8 (the 

vitellogenin receptor) in any of the separated follicle cohorts, small, medium or large. 

There was a trend for a higher transcript abundance in the low feeding regime (1.18 x 

10-7 ± 3.7 x 10-8) compared to the high feeding regime (4.44x 10-8 ± 1.65 x 10-8) when the 

whole ovary samples were compared (F3,10 = 3.75, p = 0.09). 

There was a trend for an increase in the transcript abundance of fshr in the high feeding 

regime (Small: 8.69  x 10-8 ± 2.69 x 10-9, Medium: 6.46 x 10-8 ± 2.24 x 10-8) compared to 

the low feeding regime (Small: 2.25 x 10-8 ± 9.2 x 10-9, Medium: 2.91 x 10-8 ± 1.74 x 10- 

8), for both the small and medium cohorts (Small: F3,8 = 4.42, p = 0.06, Medium: F3,9 = 

3.46, p = 0.09). There were no differences in transcript abundance between the feeding 

regimes in the largest oocytes or in the whole-ovary sample comparison. In the whole 
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ovary samples there was large variation between tanks in the same treatment with a 

lower transcript abundance of fshr found in Tank Seven compared with Tank Eleven (F2,10 

= 17.04 p-value < 0.01). This was not the case with the small and medium follicle size 

classes, there were no differences found between the tanks in the same treatment. 

(Table 2.4, Figure 2.13) 

For all genes, there was a decreasing level of relative transcript abundance seen as the 

follicles matured with the largest expression levels seen in the smallest oocytes (Figure 

2.13). 
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Figure 2.13: Relative expression levels of the target genes; fshr, igf1ra, vldlr and lrp8 in the 
ovaries of female zebrafish exposed to high (3% of bodyweight) or low (1.5% of bodyweight) 
feeding regimes. Ovaries were separated into different cohorts containing different size classes 
of oocyte, small (S), medium (M) or large (L) (Graphs A, C, E and G). Sections of whole ovary from 
the same fish were also analysed (Graphs B, D, F and H). N (number of fish) = 6 for all low 
treatments and N (number of fish) = 7 for all high treatments. Bars represent the average relative 
expression levels for each feeding regime ± 1 standard error, strong trends are indicated. 
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2.4 Discussion 
 

2.4.1 Reproductive Investment and Oocyte Diameter 
 

In Experiment 1, all fish regardless of the feeding regime, had a similar relative gonad 

weight and number of vitellogenic oocytes present in the ovary. In Experiment 2a, there 

was also no increase in GSI in fish on the high regime (HF) when compared to fish on the 

low regime (LF). There was a weak trend for an increase in the number of vitellogenic 

follicles seen in HF when compared to LF. This was not significant but is supported by 

previous work carried out by Forbes et al. (2010). My experiment was designed as a pilot 

study to recreate the work done by Forbes et al. (2010) but did not show the same level 

of phenotypic plasticity that was found in that study. In Forbes et al (2010), zebrafish 

were exposed to four different levels of feeding (5.33%, 2.67%, 1.34% and 0.67%) and 

the two highest treatments had significantly increased fecundity when compared to the 

two treatments fed lower amounts. 

For the original design of the experiment, all fish were meant to spawn as an 

experimental endpoint to evaluate the differences in egg and offspring size. 

Unfortunately, there were very low success rates in the spawning trials across all the 

treatments. When spawned diameters were taken from the females which did spawn in 

Experiment 2a and females that spawned in a closely related experiment, there was a 

very strong trend for a decrease in yolk diameter seen in the HF fish compared to the LF 

fish. This trend was carried through to hatchling lengths as well with smaller offspring 

hatching from the eggs spawned from HF females when compared to the LF females. 

These results were not statistically analysed due to low sample size and the combination 

of experiments (Appendix- Figure A.2 and A.3). This suggested that there was an effect 

of feeding regime on egg and offspring size in this experiment. This is supported by the 

study carried out by Forbes et al. (2010), where fish exposed to lower feeding regimes 

produced larger spawned eggs (0.72 mm, yolk diameter) than fish which were fed higher 

amounts (0.64 mm yolk diameter). After the failed spawning attempts, to evaluate 

differences in follicle diameter between feeding treatments the top 20% of the 

diameters measured for size frequency analysis were analysed for each fish. There was 

no effect of feeding regime on the average of the top 20% follicle diameters for either 

experiment. Follicle diameter is therefore potentially not directly comparable to yolk 
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diameter after spawning has occurred. As zebrafish are asynchronous spawners, taking 

the top 20% of follicles in the ovary could be mixing different clutches, especially in the 

LF fish which produce smaller clutches than the HF fish. Therefore, the proxy used in 

these experiments for offspring size may not be entirely accurate. 

A study on killifish (Nothobranchius furzeri), has shown that as the fish age/ grow larger 

there is a lessening (or even complete loss) of the egg size vs fecundity trade-off. They 

state that this is due to the energetic constraints being higher during periods of rapid 

growth in early life (Vrtílek and Reichard 2015). The zebrafish used in the current study 

were already on average 1000 mg when they arrived, in contrast the fish used in by 

Forbes et al. (2010) were only 500 mg. At larger sizes, there is more space to grow 

oocytes that are larger and still have a high fecundity. There is potentially a physiological 

limit on the number of offspring able to be produced at any one time, perhaps related 

to the number of primordial germ cells. Once this limit is reached, any surplus resources 

are devoted to egg size rather than number (Vrtílek and Reichard 2015). Also, when 

there are few resources being redirected towards growth, there is a potential surplus of 

energy allocated to reproduction, allowing for both large eggs and high numbers of them 

(Auer 2010, Vrtílek and Reichard 2015). 

In Experiment 1, when all the measured oocytes were combined in an average, the LF 

females had significantly larger oocyte diameters than the HF females. This was due to 

a larger proportion of oocytes found in the larger size classes of the overall ovary. As 

zebrafish are asynchronous batch spawners, there are multiple clutches and multiple 

oocyte sizes present in the ovary (Selman et al. 1993, Gothilf et al. 1997). When the size 

frequency distribution of follicles in the ovaries were broken down into size classes and 

compared between the feeding regimes, there was a clear difference in the distribution 

seen in Experiment 1. In the LF fish there was a higher proportion of oocytes (around 

60-70%) present in the larger size classes (around 650 - 850 μm) compared with only 

around (30-40%) present in the HF fish. This then creates a larger oocyte diameter 

overall in the LF. This could point to a lower size for maturation in the oocytes present 

in the HF fish ovaries which results in an overall smaller yolk diameter on average when 

the eggs are spawned (Crean and Marshall 2009, Forbes et al. 2010). 
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This difference in the size frequency distributions of the oocytes in the ovaries is not 

found in Experiment 2a when fish that neither spawned or ovulated are compared. 

However, when fish had ovulated the largest clutch into the body cavity the remaining 

oocytes in the ovary followed a similar trend to Experiment 1. This could be due to higher 

recruitment into the secondary growth phase in the HF fish, resulting in larger numbers 

of oocytes coming through the ovary in each clutch. 

In conclusion, neither experiment indicated adaptive phenotypic plasticity in female 

zebrafish when they are exposed to different feeding regimes. There was no increase in 

offspring size found under food-limited conditions, although the proxy for offspring size 

may not have been entirely accurate. 

 
 

2.4.2 Molecular Mediators 
 

In both the smallest and medium cohorts of oocytes, previtellogenic or vitellogenic 

(based on size 250 – 500 μm (Selman et al. 1993)), there was a strong trend for an 

increase in relative transcript abundance of fshr in the ovaries of HF females. Follicle 

stimulating hormone (Fsh) plays key roles in the early development of oocytes and 

mediates recruitment into vitellogenesis. When rainbow trout, Oncorhynchus mykiss, 

were subjected to a unilateral ovariectomy during early vitellogenesis, an increase in the 

plasma concentration of Fsh occurred when compared to control fish that had both 

ovaries (Tyler et al. 1997). This increase in plasma Fsh coincided with recruitment of a 

secondary batch of primary oocytes into vitellogenesis indicating that Fsh plays a direct 

role in mediating whether oocytes enter the secondary growth phase (Tyler et al. 1997). 

A similar pattern of increased fecundity has been demonstrated in sheep, with 

mutations in bone-morphogenetic protein 15 (BMP-15) and growth differentiation 

factor 9 (GDF-9) causing an increased sensitivity to FSH in the developing follicles. This 

increased sensitivity causes earlier development into preovulatory follicles, which 

increased the overall number of follicles ovulated (Moore et al. 2004, Moore and 

Shimasaki 2005). 

In synchronous spawning fish, such as salmonids, it has been widely demonstrated that 

Fsh is the main gonadotropin throughout vitellogenesis and early oocyte development 
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before declining and Lh induces maturation and therefore the levels of Lh only increase 

later in development. (Prat et al. 1996, Tyler et al. 1997, Breton et al. 1998, Prat et al. 

1998, Yaron et al. 2003). In asynchronous spawners, including zebrafish, there is a much 

less distinct hormonal profile, both Fsh and Lh are present simultaneously in the ovary. 

This is due to there being multiple clutches of oocytes at different developmental levels 

(Gothilf et al. 1997, Jackson et al. 1999). Therefore, regulation of the individual oocytes 

is likely to occur at the receptor level (Chu et al. 2015, Zhang et al. 2015). Gene knockout 

studies in zebrafish have demonstrated that without fshr expression oocytes do not 

develop past the primary growth stage (previtellogenic) (Chu et al. 2015, Zhang et al. 

2015, Li and Cheng 2018). As there is a higher abundance of fshr transcripts found in the 

previtellogenic and early vitellogenic follicles in the HF fish, changes in the receptor 

could be a mechanism for a change in fecundity. The increase in fshr transcript 

expression could correspond to larger numbers of primary follicles being recruited into 

vitellogenesis in each clutch, resulting in more follicles per clutch overall (Campbell et 

al. 2006, Chu et al. 2015). As maternal ovary space is a limiting factor in both the size 

and number of follicles produced, this increase in the number of follicles per clutch could 

result in a less room and smaller follicles overall (Uller and Olsson 2005). This is 

demonstrated in the size frequency distribution profiles of the different feeding 

regimes. Females on the LF regime have a much larger proportion of follicles in the larger 

size classes, possibly reflecting smaller clutch sizes, whereas the fish on the HF regime 

have higher levels of follicles present in the early vitellogenic stages. 

In multiple oviparous species, vtgr expression is found to be highest in previtellogenic 

oocytes and expression decreasies as development progresses until it is barely 

detectable once they have entered vitellogenesis (Bujo et al. 1995, Prat et al. 1998, 

Hiramatsu et al. 2004, Mizuta et al. 2013). Conversely, the Vtgr protein is predominantly 

found in the periphery of vitellogenic oocytes. This suggests that the main de novo vtgr 

transcription occurs during pre-vitellogenesis and the protein is continuously recycled 

during vitellogenesis (Mizuta et al. 2013, Damsteegt et al. 2015). In my study, there was 

an increase in lrp8 transcript abundance in the whole ovaries of the female on the LF 

regime when compared to the females on the HF regime. Lrp8 has been designated as 

the main vitellogenin receptor in teleosts (Prat et al. 1998, Hiramatsu et al. 2004, Mizuta 
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et al. 2013). These differences in gene expression between the feeding regimes were 

not seen in the size-separated follicle samples. Even the smallest follicles separated from 

the ovaries were above 300 μm, meaning that they were all at least early vitellogenic 

(Selman et al. 1993). As stated above, lrp8 is only expressed in previtellogenic oocytes, 

therefore the increased trend was only able to be discerned in the whole ovary sample. 

In future studies, better separation of the ovary into smaller cohorts even lower than 

300 μm may be able to further elucidate any changes in lrp8 expression between 

treatments as then the previtellogenic oocytes can be analysed. The increase seen in the 

mRNA expression of the lrp8 receptor in LF females could correlate with an increased 

vitellogenin uptake into the follicles, increasing oocyte size overall. Previous studies 

have shown that when adaptive plasticity in egg size is present, larger eggs have higher 

amounts of proteins and lipids in the yolk (Williams 2001, Hassall et al. 2006, Chen et al. 

2015). 

These experiments provided no link between the metabolic hormone pathway and the 

adaptive plasticity in follicle size found in zebrafish. This is regardless of previous 

literature clearly showing a clear relationship between nutritional environment and 

fecundity in many fish species (Le Gac et al. 1993, Kagawa et al. 1994, Kagawa et al. 

1995, Maestro et al. 1997, Patino and Kagawa 1999, Campbell et al. 2006). The trend for 

an increase in the vitellogenin receptor suggests that there could be regulation at the 

level of the liver. Vitellogenin is primarily synthesised in the liver and production is 

mediated by circulating estrogens (Peyon et al. 1996, Peyon et al. 1998, Prat et al. 1998, 

Hiramatsu et al. 2015). Previous studies on the European eel found that level of 

vitellogenin produced by hepatocytes was increased when growth hormone (GH) was 

administered alongside 17-beta estradiol (Peyon et al. 1996). Future studies evaluating 

vitellogenin expression in the liver between different feeding regimes could be valuable. 

Expression levels of all the target genes regardless of feeding regime showed a decrease 

in relative transcript abundance as the follicle size increased. This is likely due to a 

dilution of the mRNA population occurring as the oocytes grow. As an oocyte develops 

maternal mRNA and ribosomal RNA accumulates in the cytoplasm, diluting the overall 

RNA population (Selman et al. 1993, Lubzens et al. 2010). This trend further complicates 
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comparison of gene expression between feeding regimes, as the relative expression 

level of each gene will change as the oocyte grows. 

 
 

Conclusions 
 

There was no evidence for phenotypic plasticity in offspring size in female zebrafish 

when exposed to two different feeding regimes, low (1.5 % of body weight daily) and 

high (3 % of body weight daily). There was a trend for higher fecundity in female fish 

kept on the high feeding regime compared to the females fed lower amounts. 

Although there was no support for adaptive plasticity in offspring size found, there were 

strong trends in the relative abundance of fshr and lrp8. This suggests these could play 

a key role in determining the offspring size and number in zebrafish, but future studies 

are needed to evaluate the true nature of this relationship. 
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Chapter Three: 
 

Effects of changing food environments on the phenotypic plasticity in reproductive 

resource allocation in the zebrafish, Danio rerio 
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3.1 Introduction 
 

The energy and resources available to any given organism are finite and must be 

allocated between the different activities the organism undertakes to complete its 

lifecycle. These activities can be broadly divided into growth, reproduction and survival 

and an organism must “decide” how to allocate resources to each activity. The 

availability of resources and how they are allocated to reproduction will ultimately 

determine reproductive success (Auer 2010, Burton et al. 2010). 

Due to the finite nature of resources available to a mother, maternal provisioning of one 

component of reproduction must reduce the resources available to another (Auer 2010, 

Burton et al. 2010, Lim et al. 2014). Many studies have examined the “trade-off” 

between offspring size and the number of offspring produced and due to the fact that 

offspring size and number are competing for a limited pool of resources, a negative 

relationship has been expected (Smith and Fretwell 1974, Lim et al. 2014). Classical 

theory predicts that a mother is constrained by the optimal offspring size for the local 

environment and the trade-off between offspring size and offspring number will reflect 

this. In high quality environments, a mother will produce large numbers of small 

offspring. Conversely, in low quality environments a mother will produce fewer numbers 

of larger offspring (Smith and Fretwell 1974). Given that environments will vary over the 

course of a mother’s lifetime, mothers must rely on external cues to determine the 

optimal offspring phenotype which will maximise maternal fitness. 

In a constant environment, a mother has long-term external cues available that can help 

to accurately predict an optimal offspring phenotype. In environments that vary 

unpredictably, any one “optimal” offspring phenotype is unlikely to perform well in 

every situation and in these cases, it is predicted that a mother will “hedge her bets” by 

producing a range of offspring sizes. This strategy allows her to maintain reproductive 

fitness regardless of the environmental conditions of the offspring (Crean and Marshall 

2009). 

Phenotypic plasticity is defined as a single genotype having the ability to produce 

alternate phenotypes depending on environmental cues (Nylin and Gotthard 1998, 

Pigliucci et al. 2006). Adaptive plasticity is demonstrated when the changes in 
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phenotype between different environments have a measurable adaptive advantage to 

the organism. Phenotypic plasticity can be expressed at multiple different levels; 

behavioural, biochemical, physiological and developmental. While biochemical and 

physiological plasticity can be reversed or changed over relatively short time scales, 

developmental plasticity takes longer to be reversed or can even be irreversible 

(Pigliucci et al. 2006). Phenotypic plasticity can be a mechanism that allows a single 

organism to maximise fitness in an uncertain environment, or allows an entire species 

to thrive in a variety of habitats (Vrtílek and Reichard 2015). It is easy to state that 

environment can effect changes on variables related to life history, but it is harder to 

demonstrate that these changes are adaptive. To determine whether any phenotypic 

plasticity is adaptive, a clear enhancement of an organism’s fitness needs to be 

demonstrated. 

If a mother can predict an unfavourable offspring environment and alters the resulting 

offspring phenotype in response, i.e. producing larger eggs, then she can increase her 

fitness through greater offspring survival. The phenotypic plasticity of the mother is 

likely to be physiological, with changes occurring at a metabolic or hormonal level, 

directly changing the number or size of the offspring produced. The phenotypic plasticity 

of the offspring is developmental, as changing the size of the egg will change the initial 

size of the offspring. Larger eggs ultimately mean larger initial offspring size. The growth 

rate of all organisms is affected by temperature and food availability and studies have 

linked changes in temperature and food availability to changes in the size of the 

offspring produced (Fischer et al. 2003). In pelagic fish species, eggs produced in winter 

are larger than eggs produced by the same species in spring and summer when 

conditions are more favourable for larval growth (Ware 1975). 

A female’s sensitivity to environmental changes depends on how the overall resources 

are allocated to reproduction. If clutches are provisioned from stored reserves, then 

there will be limited response to changing resource availability in the short term. If 

oocytes are directly provisioned from resources obtained straight from the environment 

then the system is likely to be highly sensitive to environmental change (Reznick and 

Yang 1993). 
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Offspring phenotypes are variable at all levels: among different species, different 

populations within species, different females within a population, between different 

clutches of oocytes in a single female and even between different oocytes within the 

same clutch. Previously, it has been demonstrated that zebrafish (Danio rerio) exhibit 

adaptive plasticity in offspring size, producing larger offspring in food-limited 

environments (Forbes et al. 2010). To investigate the sensitivity of this adaptive 

response, female zebrafish were exposed to changing food conditions, through 

experimentally switching feeding regimes. To investigate when in oogenesis decisions 

are made about offspring size and fecundity, changing feeding regimes allowed for 

assessment of any changes in patterns of resource allocation. Follicle diameters were 

compared between females exposed to a short period (phase) of high or low feeding 

regimes, a long period of high or low feeding regimes (constant) or changing feeding 

regimes. The trade-off between follicle size and reproductive investment was also 

assessed. 

 
 

3.2 Methods 
 

3.2.1 Husbandry 
 

All non-experimental parameters were kept as described in Section 2.2.1 in Chapter 

Two. The wildtype zebrafish, used in this experiment were also obtained from 

Brooklands Pet Products, New Plymouth and shipped overnight using standard tropical 

fish shipping procedures. 

For this experiment 180 mixed sex zebrafish of around 4 cm were ordered, and once 

they had arrived were divided between 12 tanks at random with 15 fish per tank. 

Unfortunately, over the ensuing week there was a high level of mortality (50 fish died) 

and to maintain sample size another 140 fish were ordered as replacement stock. This 

resulted in a final total of 190 zebrafish distributed between the 12 experimental tanks. 

Fish were randomly separated into tanks, four containing the original fish (Cohort 1, 13 

fish per tank), and eight containing the new group of fish (Cohort 2, 17 fish per tank). To 

avoid differences between the different age groups all fish were kept on a feeding 

regime of around 12 mg per fish (roughly 1.5% bodyweight) until fish reached an average 
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body weight of 1 g in all tanks. Fish were weighed weekly using a tared beaker filled with 

water until the desired weight was reached. 

 
 

3.2.2 Experimental Design: 
 

For the entirety of the experiment, fish were separated between two feeding regimes, 

one with a high ration (H) and one with a low ration (L). As in the previous experiment 

(Section 2.2.2.1, Chapter Two), satiation feeding was used to determine a maximum 

feeding dose. In this case, two satiation feedings were carried out and then the 

maximum dose (H) was taken as an average of both. For this experiment H was set at 30 

mg per fish per day (around 3% of bodyweight) and L was set at 15 mg per fish per day 

(1.5% of bodyweight). Feeding was carried out twice a day at around 9 am and 5 pm 

with the overall daily amount split over the two feedings. All uneaten food was siphoned 

out to maintain water quality and 25% water changes were carried out every seven days. 

This experiment (Experiment 2, part of which is described in Chapter 2, Section 2.2.2.2), 

was separated into two phases; phase 1 (P1) and phase 2 (P2). During P1, the twelve 

tanks were divided randomly between the high or low regime and remained on these 

for three weeks. At the three-week mark, four tanks were randomly chosen (from the 

tanks containing the younger fish, two per regime) to have six females terminally 

sampled (Low: L-0, High: H-0). To create a ‘naïve’ ovary without mature follicles that 

represent the previous feeding history, females were spawned over the period of a 

week, one female per tank per day. A female was randomly selected from each tank and 

placed overnight in a spawning tank containing a male fish. In the morning, the female 

was euthanised in a lethal dose of benzocaine and sampled according to the protocols 

explained in the previous chapter (Figure 3.2, Chapter Two, Section 2.2.3). Any spawned 

eggs were photographed for later diameter and fecundity analysis, using an Olympus 

SZS2 dissecting microscope with an Olympus SC100 camera attached. Females were 

euthanised whether they had spawned or not. At the end of this week all tanks were 

assigned to the second phase of treatment. The majority of the P1 data is analysed in 

Chapter 2 (Section 2.3.2, Experiment 2), the 8 tanks that were not sampled after P1 were 
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still split evenly between the high and low feeding regimes during P1. When presenting 

data from P1 in this chapter fish are referred to as either L-0 or H-0. 

During P2, tanks either remained on the same feeding regime as in the first four weeks 

or were switched to the other feeding regime. This resulted in a total of four treatments 

(Low – Low: L-L, Low – High: L-H, High – High: H-H and High – Low: H-L) as well as the 

earlier sampled fish (P1: Low: L-0 and High: H-0). The second phase continued for 

another four weeks and then all females were spawned and terminally sampled as in P1. 

When sampling was carried out after P2 it was discovered that there were no remaining 

females in Tank 8 after the sampling for P1 (Table 3.1). This means that there were only 

two tanks with females present in treatment L-L. (Figure 3.1) 
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Figure 3.1: Experimental design for Experiment Two. Twelve tanks containing female zebrafish, 
Danio rerio, were placed on two different feeding regimes (high and low, Phase one), then for 
Phase two each feeding regime was split again producing four total treatments. Each phase 
lasted four weeks (A). The layout of the tanks in Experiment Two, all tanks were randomly 
assigned to treatments, orange tanks correspond to the tanks containing Cohort 1, treatment is 
outlined at the bottom of each tank (B). 
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3.2.3 Dissections 
 

All dissections were carried out according to the protocols outlined in Chapter Two, 

Section 2.2.3 – 2.2.4.1. For reference the sampling protocol is outlined in brief in Figure 

3.2. 

 

Figure 3.2: Dissection protocols for all female zebrafish terminally sampled during Experiment 

Two. 
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Table 3.1: Sampling endpoints on a per tank basis for all female zebrafish, Danio rerio, in the 
final dissection (Phase 2) round of Experiment Two. Treatments were a combination of feeding 
regimes; Low: 1.5% of body weight and High: 3% of body weight, in four week phases. Non – all 
females which did not spawn or ovulate before being sacrificed. Cohorts taken – follicles were 
separated into size classes from non-ovulated tissue present in the ovary and frozen for later 
qPCR analysis. 

 

 
 
 
 

Although ovary tissue was taken for potential qPCR analysis, for this chapter only 

morphological data were considered; molecular analyses were carried out on P1 

samples in Chapter 2 (Section 2.3.2.4). Also due to low statistical power (for both 

spawned and ovulated fish), only fish which did not spawn or ovulate were analysed 

(Non, Table 3.1). 

 
 

3.2.4 Within-clutch Variation Analysis 
 

As the food level in the environment was not constant (changed between phases), it was 

important to check for any bet hedging strategy. This was achieved through analysing 

variation in follicle diameter within the largest clutch in the ovary, using the coefficient 

of variation of the largest 20 % of oocytes for each fish. The coefficient of variation was 

calculated by dividing the standard deviation of the largest 20 % and then dividing it by 

the average largest follicle diameter of each fish. This was then compared between 

treatments. 
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3.2.5 Statistical Analysis 
 

All statistical analyses were performed using the R software, version 3.4.2, and 

assumptions were checked as in the previous chapter (Section 2.2.4.3). 

A Linear Mixed-Effects model using the ‘lme4’ package, (LMER, Pinheiro and Bates 2000, 

Bates et al. 2015) was used to determine the influence these fixed effects, i.e feeding 

regime, had on follicle diameter. Tank identity was included as a random factor in all 

analyses to account for dependency within the tanks. All data is expressed as averages 

of tank values. Model selection was carried out according to the protocol outlined by 

Zuur et al (2009). 

Originally the fixed section of the model was saturated with parameters and the model 

with the lowest AIC was chosen. Following this, non-significant components were 

sequentially removed, starting with the highest interactions. Significance of differences 

between treatments were determined post hoc. Response variables included, follicle 

diameter, GSI, fecundity, body weight, and relative follicle diameter, these were 

combined in different combinations depending on the model. Feeding regime was 

always a fixed effect when used. 

For follicle diameter, the model containing feeding regime, GSI and body weight as 

factors as well as tank identity as a random effect, had the lowest AIC value. Any 

significant interaction effects between fixed parameters (p < 0.05) are reported. 

Initially all six treatments were analysed together for all variables, but due to significant 

differences between the phases, L-0 and H-0 (P1) were compared and the four 

treatments in P2 were compared (L-L, L-H, H-L and H-H) in separate statistical analyses. 

All six treatments were analysed together for variation in follicle diameter within the 

largest clutch, as this had no relationship with body weight. 
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3.3 Results 
 

3.3.1 Fecundity, GSI and Oocyte Diameter 
 

Body weight dramatically increased between phase one and two of the experiment. P1 

had an average body weight of 870 ± 84 µg, compared to an average body weight of 

1288 ± 76 µg in P2 (F1,44 = 25.49, p = 8.0 x 10-6, Figure 3.3). Due to this marked difference 

in condition, all variables were analysed separately for P1 and P2. 

 
 
 
 

Figure 3.3: The effect of different feeding regimes on body weight of female zebrafish, Danio 
rerio. There were six different treatments present all consisting of a combination of two different 
feeding regimes; Low (L): 1.5% of body weight or High (H): 3% of bodyweight, in four-week 
phases. Fish were sacrificed after phase one (L-0 and H-0) or after phase two (L-L, L-H, H-L and 
H-H). Bars represent the average body weight ± 1 se in each treatment, n (number of tanks) = 2 
for L-0, H-0 and L-L and 3 for the other treatments. Different letters refer to treatments that 
were significantly different from one another. 
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3.3.1.1 Phase 1 
 

The majority of the results for P1 were presented in Chapter Two in Section 2.3.2, and 

so will be briefly summarised here as the differences between the phases are talked 

about in the discussion. For further detail refer to Chapter Two. 

 
Body weight did not differ between feeding regimes for P1 (LMER: F1, 1.84 = 0.532, p = 

0.54, Figure 3.3, L-0 and H-0). GSI was similar at around 1.3 % of total body weight for 

females fed on both the low and high regimes. Relative fecundity tended to increase in 

fish fed more food (H-0) with around twice as many vitellogenic follicles per mg of body 

weight when compared to fish fed lower amounts (L-0). Follicle diameters did not differ 

between feeding regimes in non-ovulated females and were around 760 µm. When 

“quality” (body weight) was controlled for, there was a tendency for larger ‘relative’ 

follicle diameter in females on the low feeding regime (L-0) when compared with the 

high feeding regime (H-0). 

 
 
 

3.3.1.2 Phase 2 
 

Body weight was comparable across all treatment groups and the average was around 

1300 mg (LMER: F3, 7.2 = 0.04, p = 0.99, Figure 3.4). However, there was high variation in 

body weight seen both within individuals in the tanks and between the tanks in each 

treatment group (treatment*tank interactions: F10,26 = 4.9, p = 0.001, Figure A.5 in 

Appendix 4). When coefficients of variation were calculated for each treatment (L-L, L- 

H, H-L and H-H), they were all above 12% (Table 3.2). 

 
There was no difference in GSI across all four treatments, it was all around 16% on 

average (LMER: F10,26 = 1.01, p = 0.4). High variation in GSI between individuals in each 

tank was also present, some fish in the tank displaying a GSI of 8% and some a GSI of 

20% (treatment*tank interactions: F10,26 = 2.61 p = 0.03, Figure A.6 in Appendix 4). All 

treatments except L-L had high coefficients of variation (Table 3.2). 
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Table 3.2: Coefficients of variation (%) calculated for both body weight and GSI for female 
zebrafish, Danio rerio, both within each tank and for the entire treatment groups after phase 
two dissections. Fish were exposed to four different combinations of feeding regime. Feeding 
regimes were set at 1.5% of body weight daily (Low) or 3% of body weight daily (High). 

 

 
 
 

Follicle diameter was slightly smaller in the females kept on the high feeding regime for 

both phases (H-H) when compared to females who spent any time fed a lower feeding 

regime (L-L, L-H and H-L). The largest difference was between H-L and H-H; 754 ± 16 µm 

compared to 806 ± 9 µm (LMER: F3,5.93 = 1.26, p = 0.37, Figure 3.4 B). 
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Figure 3.4: The average gonadosomatic index (GSI) (A) and average follicle diameter (largest 
20%, μm) (B) for non-ovulated female zebrafish, Danio rerio. There were four different 
treatments present all consisting of a combination of two different feeding regimes; Low: 1.5% 
of body weight or High: 3% of bodyweight, in four-week phases. Fish were sacrificed after phase 
two (L-L, L-H, H-L and H-H). Each bar represents the average value in the treatment ± 1 se, n 
(number of tanks) = 2 for L-L, 3 for the remaining treatments. 

 
 

 
3.3.2 Maternal – Offspring Correlations 

 
Follicle diameter was strongly dependent on body weight in P1, with larger fish 

producing larger follicles (LMER: t8 = 2.817, p = 0.02, R2 = 0.50, Figure 3.5, blue triangles). 

This correlation was not significant in phase 2, but there was still an observable weak 

positive relationship (LMER: t25.7 = 1.205, p = 0.24, R2 = 0.04, Figure 3.5, black circles). 
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Figure 3.5: The relationship between the average follicle diameter (of the largest 20 % of follicles 
present in the ovary, µm) and the body weight (mg) of individual female zebrafish, Danio rerio, 
after phase 1 (blue triangles) and phase 2 (black circles). 

 
 
 

When feeding regime was removed from the analysis in P1; relative fecundity was 

strongly correlated with follicle diameter (LMER: t8 = 3.683, p = 0.006, R2 = 0.55). The 

females with the highest relative number of vitellogenic oocytes produced the largest 

follicles (Figure 3.6). 

Body weight is often used as a proxy for body condition, as the larger the body weight/ 

body size, the more access to resources in the environment (Lim et al. 2014). Due to the 

high variation seen in body weight within the treatments, oocyte diameter was 

corrected over female body weight to look for the trade-off between number and size 

of offspring. In P1, there was a strong negative relationship between relative follicle 

diameter and relative fecundity (LMER: t8 = -5.40, p = 0.0006, R2 = 0.58, Figure 3.7). 

In P1, females with the largest relative ovary size (GSI) were also producing more 

vitellogenic follicles (LMER: t5.78  = 7.145, p = 0.0004, trend line; Relative Fecundity = 

7.396  (GSI)  –  0.2428,  R2  =  0.82)  (Figure  3.7). Since  GSI and  relative fecundity were 



CHAPTER 3 Timing of plasticity 72 
 

strongly correlated, and both are an indication of reproductive investment, only GSI was 

used to describe follicle biometrics for P2. 

 
 
 
 

 
 

Figure 3.6: The relationship between average follicle diameter (of the largest 20 % of follicles in 
the ovary, µm) and the relative fecundity (number of vitellogenic follicles per mg of body weight) 
in female zebrafish, Danio rerio, sacrificed after phase one, R2 = 0.55. 



CHAPTER 3 Timing of plasticity 73 
 

 
 

 
 
 

Figure 3.7: The relationship between relative follicle diameter (follicle diameter, µm / body 
weight, mg)) and the relative fecundity (number of vitellogenic follicles per mg of body weight) 
in female zebrafish, Danio rerio, sacrificed after phase one. R2 = 0.58. 

 
 
 
 

Figure 3.8: The relationship between the relative fecundity (number of vitellogenic follicles per 
mg of body weight) and the gonadosomatic index (% of body weight) in female zebrafish, Danio 
rerio, sacrificed after phase one. R2 = 0.82. 
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In fish sacrificed in both P1 and P2, females with a higher GSI had smaller relative follicle 

diameters (LMER: Phase 1: t8 = 2.817, p = 0.01, R2 = 0.58, Phase 2: t32 = 2.733, p = 0.01, 

R2 = 0.20, Figure 3.9). In other words, as females increased their investment in 

reproduction (relative gonad size, GSI), the diameters of the follicles produced 

decreased. 

 
 

Figure 3.9: The relationship between the relative follicle diameter (follicle diameter, µm / body 
weight, mg) and the gonadosomatic index (%) in female zebrafish, Danio rerio, sacrificed after 
phase one (blue triangles, R2 = 0.58) and phase two (black circles, R2 = 0.20). 

 
 

3.3.3 Size Frequency Distributions 
 

The following results are subjective, comparing the frequencies of follicle size classes in 

the ovaries of non-ovulated fish between each different treatment without any 

statistical analysis of the differences (Figure 3.10). 

For the P1 treatments (Figure 3.10; L-0 and H-0) there were no differences in the profile 

of the size and frequency of the follicles. The clutches appeared to blend together, 

although the largest clutch was centred around 750 μm, the smaller clutches were not 

distinctly visible. This contrasted with all the P2 treatments (Figure 3.6; L-L, L-H, H-L and 
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H-H) which had clearly bimodal distributions containing a distinct larger clutch centred 

around 750 μm, and a wider distribution of smaller follicles centred around 350 μm. 

In P2, the three treatments which were exposed to a low feeding ration had a similar 

size frequency distribution pattern. There was an even spread of follicles from around 

140 μm to around 500 μm and a smaller cohort of oocytes centred around 750 μm 

(Figure 3.10, LL, LH and HL). The L-L treatment had a slightly higher frequency of follicles 

sized 700 - 800 μm than the other two treatments exposed to low feeding rations, 

around 20 % compared to around 15 %. The largest clutch in the L-L treatment also had 

a narrower distribution with no follicles larger than 860 μm. The size frequency 

distribution profile for the tanks that were only exposed to the high feeding regime 

seemed different to that of the other three treatments. Most of the follicles were 

smaller than 420 μm with a smaller proportion of follicles present in the larger size 

classes, around 10 % on average (Figure 3.6, HH). 

The large distribution spread of the largest clutch in P1 is supported by the variation in 

diameters of the largest 20 % of all follicles in the ovary. There was large variation in 

follicle diameters seen in both feeding regimes and the individual regimes were not 

different from each other (LMER: F3,7 = 0.144, p = 0.74). 

In P2, there was no overall effect of treatment on variation in the follicle diameters of 

the largest clutch (LMER: F3,32 = 1.12, p = 0.38). There was a tendency for less variation 

in follicle diameter within the largest clutch seen in the fish which were kept on the low 

feeding regime for both phases, when compared to the other three treatments that had 

at least one phase of high rations. 

When both phases were compared there was a significant decrease in the follicle 

diameter variation within the largest 20% of follicles in the older, larger fish (P2) when 

compared to the younger, smaller fish (P1) (LMER: t8.73 = -8.25, p = 2.09 x10-5). (Figure 

3.11) 
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Figure 3.10: The size frequency profiles of follicles present in non-ovulated ovaries in female 
zebrafish, Danio rerio, when exposed to six different food environments. There were six 
different treatments present all consisting of a combination of two different feeding regimes; 
Low: 1.5% of body weight or High: 3% of bodyweight, in four-week phases. Fish were sacrificed 
after phase one (L0 and H0) or after phase two (LL, LH, HL and HH). Each different coloured 
profile represents the average distribution of follicles in the different size classes for each tank 
in the treatment, n (number of tanks) = 2 for L0, H0 and LL, 3 for the remaining treatments. 
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Figure 3.11: The effect of different feeding regimes on the follicle diameter variation within a 
clutch, in female zebrafish, Danio rerio. There were six different treatments present all 
consisting of a combination of two different feeding regimes; Low: 1.5% of body weight or High: 
3% of bodyweight, in four-week phases. Fish were sacrificed after phase one (L-0 and H-0) or 
after phase two (L-L, L-H, H-L and H-H). Bars represent the average coefficient of variation ± 1 se 
in each treatment, n (number of tanks) = 2 for L-0, H-0 and L-L and 3 for the other treatments. 
Different letters refer to treatments that were significantly different from one another. 
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3.4 Discussion 
 

The sensitivity of the maternal effects in changing environmental conditions, depends 

on when during oogenesis decisions about size and number of offspring are made. To 

evaluate the sensitivity of the phenotypic plasticity in offspring size displayed by Danio 

rerio, females were placed on changing feeding regimes. The effects of changing ration 

size were investigated through phenotypic changes in the mother. 

 
 

3.4.1 Oocyte Diameter (Size vs Number Trade-off) 
 

There was no effect of changing the feeding regime, on either reproductive investment 

(either relative fecundity or GSI) or follicle diameter, even when corrected for female 

body weight. A study by Filby et al. (2010), investigating access to food, mates and 

shelter in zebrafish, demonstrated that dominance behaviour can affect the physiology 

of individuals in a tank. Subordinate fish are shown to have higher cortisol levels and 

slower growth than dominant fish due to reduced access to food. In my experiment, 

there were large differences between the body weights of individual fish in each tank 

regardless of feeding regime. This observation could reflect the possibility that the more 

aggressive fish within the tanks were limiting the access to food for subordinates. There 

were one or two larger females present in most tanks, creating large coefficients of 

variation (CV) in body weights. Anecdotally, these larger females were more food 

aggressive, rising to feed before the smaller fish. In Filby et al.’s (2010) study, dominant 

females were also shown to have larger GSI when compared to subordinate fish in the 

same tank. In my experiment, there was high variation in GSI within tanks (large CV). 

This means dominant/subordinate effects could be the cause of heterogeneity in 

phenotypic traits within feeding regimes, blurring the effects of food limitation. 

In a previous study by Forbes et al. (2010) adaptive maternal effects were observed in 

zebrafish, with fish exposed to lower feeding regimes producing larger spawned eggs 

(0.72 mm, yolk diameter) than fish which were fed larger amounts (0.64 mm yolk 

diameter). The fish studied by Forbes et al. (2010) also displayed higher fecundity in the 

treatments which were fed higher amounts of food when compared with fish fed lower 

amounts. This result is not evident in the current study. No adaptive maternal effects 
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were demonstrated when females were food-limited. This lack of a response could be 

due to an age effect. In killifish (Nothobranchius furzeri), the negative trade-off between 

egg size and number is lost as the fish ages. In larger, older fish, larger mature oocytes 

are produced without losing fecundity if resources are abundant (Vrtílek and Reichard 

2015). In the current study, the trade-off seen between relative oocyte diameter and 

reproductive investment (GSI) was less steep in older fish, though still present. In Forbes’ 

study, there was a clear trade-off without needing to correct for female body weight 

(Forbes et al. 2010). The zebrafish used by Forbes were around half the size of the fish 

used in the current study, where the fish had obtained full adult size. A possible 

explanation for the loss or relaxing of the trade-off between egg size and number as the 

fish age, is that the trade-off is only maintained strongly during energetically demanding 

periods, such as rapid growth in younger fish or extremely food limiting environments 

(Vrtílek and Reichard 2015). 

When follicle size and fecundity were corrected over female body weight and modelled 

without feeding regime, a significant negative relationship was demonstrated. This 

shows that the classical trade-off that is theoretically predicted is still occurring at the 

individual level (Lim et al. 2014). If body weight was not considered, then the opposite 

relationship occurred showing an increase in follicle diameter when fecundity was 

increased. Previous studies have shown that correlations between competing traits may 

appear in opposition to the predicted trade-off when there is heterogeneity in two 

different characteristics; resource availability and individual resource allocation strategy 

(Van Noordwijk and Dejong 1986, Reznick et al. 2000, Lim et al. 2014). Therefore, when 

quantifying a trade-off at a phenotypic level, individual quality needs to be controlled 

for (Lim et al. 2014). 

Resource availability to individuals is rarely constant and there are many factors that 

mean that no two individuals obtain resources in the same way. This can be due to 

heterogeneous environments as well as inherent differences in the way individuals 

obtain food (Cam et al. 2013). This intraspecific variation in obtaining resources is often 

referred to as “quality”. Individuals with more resources or “high-quality” are able to 

display a higher level of investment into all competing traits, than “low-quality” 
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individuals with fewer resources (Wilson and Nussey 2010). In my experiment, there was 

a high heterogeneity of individual quality within feeding regimes. 

 
 

A positive relationship was observed between maternal body weight and follicle 

diameter, suggesting that the larger fish had more access to resources overall regardless 

of treatment and were able to invest more in both oocyte diameter and number of 

oocytes (GSI). This pattern is seen to be the ‘norm’ across most taxa (Lim et al. 2014), 

and can be explained if optimal offspring size increases as maternal size increases. This 

can occur in environments where there are high levels of intraspecific competition 

(Kindsvater et al. 2012). As Danio rerio, clearly demonstrates this positive correlation, it 

may not be the best candidate species for studying maternal resource allocation 

strategies. Females exposed to higher levels of food tend to grow faster, therefore 

obscuring any species (or population) wide adaptive phenotypic plasticity (Filby et al. 

2010, Kindsvater et al. 2012, Lim et al. 2014). 

In conclusion, the heterogeneity of quality seen in the female zebrafish within each 

feeding regime, is likely to be blurring any phenotypic signs of trade-offs present (Lim et 

al. 2014). To determine if a trade-off between follicle size and fecundity was occurring 

at the individual level, these parameters had to be corrected over maternal body weight. 

The trade-off was also seen to decline as the females aged (grew larger). The positive 

relationship between maternal body weight and follicle diameter, may also mean that 

zebrafish are only suitable to investigate maternal reproductive strategies at a younger 

age. 

 
 

3.4.2 Variation in Follicle Size Within Clutches 
 

Another way in which a mother can ensure her reproductive fitness and manipulate 

offspring phenotype, is through varying the size of offspring within a clutch. If a mother 

can predict the environmental conditions of her offspring, then it makes sense that she 

invests in an average oocyte size that is close to optimum for the environment and 

maximises her fitness (Smith and Fretwell 1974, Reznick and Yang 1993, Marshall and 
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Uller 2007, Crean and Marshall 2009). In guppies, it has been shown that there is an 

adaptive switch from large numbers of small offspring to a few large offspring when 

exposed to food limited conditions. In their natural habitat, there are clear rainy vs dry 

seasons which have a major effect on resource availability and are long enough to 

provide stable environmental cues (Reznick and Yang 1993). If the offspring’s 

environment is unpredictable however, then the mother cannot determine which 

offspring size will maximise her fitness. In this situation, theory states that a mother 

should increase the within-clutch variation in offspring size (or phenotype), or in other 

words, bet hedge (Crean and Marshall 2009). This ensures that at least some of the 

offspring have the correct phenotype regardless of environmental conditions, and as a 

result the average oocyte size will be further from optimal and may appear larger (Crean 

and Marshall 2009). (Figure 3.12) 

In my study the younger fish, P1, (L-0, H-0) had higher variation in follicle size within the 

largest clutch of oocytes, than older fish in P2. This was also supported by the 

size/frequency distribution plots for each treatment. The P1 fish had a much broader 

spread of oocytes without any distinct clutches visible. The largest clutch appeared to 

spread from 500 to 900 µm. The P2 fish had a narrower distribution spread for the 

largest clutch, from around 660 – 900 µm, with L-L having the narrowest of all 660 – 820 

µm. In soil mites, there is a decrease in egg size variation within clutches as the females 

age. It was suggested that this was due to older females ‘experience’, and a more 

predictable environment later in life (Plaistow et al. 2007, Crean and Marshall 2009). 

The high variation in follicle size within the clutches seen in P1, could be due to a lack of 

long term predictability in the environment as they were moved from an intermediate 

feeding regime on to the experimental feeding regimes. 

In unpredictable environments, mothers will often produce a range of offspring sizes to 

take advantage of a range of potential offspring environments (Crean and Marshall 

2009). The two changing feeding treatments, L-H and H-L could be therefore expected 

to show a higher variation in follicle diameter within the largest clutch. This was not the 

case. Females in the L-L feeding regime, tended to have lower within-clutch variation 

compared to the other three P2 treatments, but there was no overall treatment effect. 

The reason L-L may have had a narrower distribution of oocyte size, is that the minimum 
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size for offspring survival will be larger in a resource limited environment. This narrows 

the overall distribution as both the minimum and optimal size of offspring is larger when 

compared to a more resource rich environment (Ware 1975, Crean and Marshall 2009, 

Figure 3.12). 

 
 

3.4.3 Conclusion 
 

In conclusion, on the basis of this experiment there was no evidence that zebrafish, 

Danio rerio, demonstrate adaptive plasticity in the number or size of their offspring 

when exposed to different resource levels. It has been demonstrated before that 

adaptive plasticity is present in this species (Forbes et al. 2010), and the lack of it in the 

current study may be due to differences in the strength of the trade-off between egg 

size and number at different stages in life. In killifish, the trade-off is only demonstrated 

when fish are exposed to energetically demanding periods in life, such as rapid growth 

during the younger phase (Vrtílek and Reichard 2015). The fish used in this experiment 

were adult size and future experiments investigating the changes in this relationship 

from juvenile growth until full size may further illuminate changes in this important life 

history parameter. 
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Figure 3.12: Schematic showing the effect of increasing offspring size variability on the average 
size of offspring that a mother produces. Panels show the relationship between offspring size 
and maternal fitness (dotted curves) and the normal distributions indicates the distribution of 
offspring sizes that the mother produces. (a) Mothers produce a small range of offspring sizes; 
the average offspring size is close to both the minimum offspring size threshold for survival and 
the optimal size for the environment. (b) Mothers produce a larger range of offspring sizes; the 
average offspring size produced is further from the minimum offspring size threshold for survival 
and the optimum offspring size. (Crean and Marshall 2009) 



CHAPTER 4 Ovarian Transcriptomics 84 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 4 
 

Unravelling molecular mediators of maternal effects – using a transcriptomic approach to 

reveal changes in gene expression between zebrafish, Danio rerio, exposed to different 

resource levels in the environment 
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4.1 Introduction 
 

Understanding how a mother changes provisioning of her offspring when exposed to different 

levels of resources in the environment will have wide-reaching implications across many fields 

of study. Nutritional state is a key indicator of the quality of the outside environment and can 

have important effects on many life history traits, including reproduction (Green and Extavour 

2014). Although adaptive plasticity of offspring size is a clearly established life history strategy 

and there are examples across the animal kingdom (Fox and Czesak 2000, Bashey 2003, 

Forbes et al. 2010, Riesch et al. 2010, Green and Extavour 2014), there are very few studies 

that investigate the molecular mediators of this change. 

 
A study on Drosophila, has found that the insulin-like growth factor system plays a key role in 

determining the reproductive output of an individual by determining the number of ovarioles 

produced in the ovary (Green and Extavour 2012). In mammals, such as sheep and cows, it 

has been demonstrated that bone morphogenetic protein-15 and growth differentiation 

factor-9 play a key role in determining fecundity of an individual. Mutations in the genes 

coding for these proteins can result in increased fecundity (Moore et al. 2004, Moore and 

Shimasaki 2005). Forbes et al. (2010) looked at whether these mammalian ‘fecundity’ genes 

played a key role in the adaptive plasticity displayed by zebrafish, Danio rerio, and found that 

these were not the molecular mediators of fecundity in this species. Due to the lack of 

knowledge about the molecular mechanisms that play a role in offspring size plasticity in 

vertebrates, a method allowing for detailed sequencing of entire mRNA populations could be 

highly informative. RNA-Seq is a technique which allows for sequencing and quantification of 

the relative abundance of mRNA transcripts in a tissue. 

 
A transcriptome is a complete set of mRNA transcripts present in a cell at a specific 

developmental stage or physiological condition (Lokman and Symonds 2014). The study of 

transcriptomics aims to distinguish and categorise the transcripts present in a transcriptome 

(Marioni et al. 2008, Lokman and Symonds 2014). This is often done using a high throughput 

sequencing method such as Illumina, which enables the RNA species in a sample to be 

sequenced to reasonable depth and coverage (Bennett et al. 2005, Marioni et al. 2008, Xuan 

et al. 2013). This is useful in expression studies and can reveal differences between mRNA 

species and abundance in different samples when exposed to different treatments or 
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between developmental stages (Smith et al. 2013, Brinkmann et al. 2016). These techniques 

are powerful as they are untargeted and can give a much more detailed glimpse into changes 

in developmental pathways and cascades than simple quantitative PCR or other more 

targeted techniques (Hansen et al. 2011, Lokman and Symonds 2014, Brinkmann et al. 2016). 

 
RNA-Seq is a next generation sequencing technique under the umbrella of transcriptomics. 

RNA is isolated in the samples and is then reverse-transcribed into complementary DNA 

(cDNA). This resulting cDNA is replicated to form double-stranded DNA and the nucleotide 

sequence is obtained for all RNA transcripts in the population via next generation sequencing 

(i.e. Illumina) (Bennett et al. 2005, Xuan et al. 2013). The sequenced population of mRNA is 

considered to be representative of the entire RNA population present in the tissue, however 

some genes with very low expression levels may not be sequenced. To increase the validity 

of the assumption that the sequenced population is representative, greater sequencing depth 

can be used (Todd et al. 2016). The difference between RNA-Seq and other sequencing 

techniques is that RNA-Seq also quantifies the relative abundance of each RNA species 

contained in a sample, and this allows global RNA abundances to be compared between 

samples or treatments (Lokman and Symonds 2014). 

 
This study aimed to use RNA-Seq and bioinformatic analyses to take a comprehensive look at 

the molecular changes that may occur in the ovaries of female zebrafish, when exposed to 

different levels of resources in the environment. Females were kept on two different feeding 

regimes, either low or high, and after the conclusion of the experiment, representative fish 

ovary samples, three fish from each feeding regime were sent for analysis. 
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4.2 Methods 
 

4.2.1 Experimental Design 
 

The six fish used in this analysis were chosen from fish sacrificed after P1 of Experiment Two 

(Chapter 3, Table 3.1, Section 3.2.2). Fish were kept at 25 °C on two different feeding regimes, 

a low (1.5% of body weight daily) or a high (3% of body weight daily) regime. Twelve fish per 

regime were sampled after four weeks. These were placed in spawning tanks with a male 

overnight, then terminally sampled. Three endpoints were reached, i.e., fish that spawned 

eggs, fish that had ovulated oocytes in the body cavity and fish that did neither. See Chapter 

Three, Section 3.2.2 for more detail. 

 
All the biometric data from females which did not spawn were compared using a 

multidimensional scaling analysis (MDS) performed in R, using the package stats and the 

cmdscale function (Figure 4.1). These data included gonadosomatic index (GSI), body weight, 

standard body length, and total ovary weight. Ovary state (ovulated or not) was also 

considered. For this selection only females which had ovulated were chosen, to avoid any 

effects caused by differences in ovarian composition between ovulated females and the 

females that did not ovulate. The size distribution profiles of follicles in the individual ovaries 

were also added to the analysis. Females with similar profiles were chosen, to directly 

compare between ovaries in similar developmental stages. With all the above constraints, 

females from within each regime which were closely clustered together in the MDS analysis 

were chosen (Figure 4.1). 

 
Ovarian tissue was therefore obtained from six ovulated females, only taking the remaining 

ovary with no ovulated eggs (Table 4.1). Due to budget constraints only these 6 samples were 

sent away for RNA-Seq analysis. 
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Table 4.1: Summary of the treatment (feeding regime; high = 3 % of body weight, low = 1.5 % of body 
weight), individual fish identification, ovarian state, GSI and body weight of the six female zebrafish, 
Danio rerio, chosen for transcriptomic analysis. 

 

 

 

Figure 4.1: Multidimensional scaling plot of the female zebrafish, Danio rerio, in Phase 1 of Experiment 
2. Factors included in the analysis are outlined in Section 4.2.1. Blue diamonds indicate females on the 
low feeding regime, red circles indicate females on the high feeding regime, darker symbols represent 
the samples sent for RNA-Seq analysis. 
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4.2.2 RNA Extraction 
 

Total RNA from each ovary sample was extracted using Trizol reagent (Invitrogen Life 

Technologies), following the protocol laid out by the manufacturer. Genomic DNA was 

removed through incubation with DNA-free DNase I (Turbo DNA Free Kit, Ambion, USA) at 

37°C for 30 minutes. The concentration of the RNA was initially obtained by measuring the 

absorbance at 260 nm/280 nm using a Nanodrop ND-1000 spectrophotometer (LabTech, 

USA). The quality of the RNA was verified through measuring RNA integrity and concentration 

with an RNA Pico chip on an Agilent Bioanalyzer. Samples, each containing 3 µg of freeze- 

dried RNA, were sent to an independent contractor, BGI Tech Solutions (Hong Kong), for 

sequencing. 

 
 
 

4.2.3 Illumina Sequencing 
 

The samples containing RNA were sent to BGI Tech Solutions, where cDNA library 

construction, next generation sequencing and bioinformatic analyses were performed. 

Sequencing was carried out using an Illumina HiSeq 4000 and samples were sequenced to a 

depth of 1 Gb. 

 
 
 

4.2.4 Library Construction 
 

Sequence data were sorted into individual samples and adapters were trimmed by the service 

provider prior to the analysis. Internal software from BGI Tech Solutions was used for filtering 

and removed any reads that were adapter polluted, any reads in which the number of 

unknown bases were above 5% and finally any low-quality reads (which are defined as any 

reads in which the number of bases, with a quality lower than 15, are above 20%). After 

filtering was carried out, all clean data were stored in a FASTQ format. 
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4.2.5 Transcriptome Assembly and Annotation 
 

The alignment program used to map the RNA-seq reads to the reference genome was HISAT, 

due to the large number of reads spanning multiple exons (Kim et al. 2015). Any novel 

transcripts identified were reconstructed using StringTie and then compared to reference 

annotation using Cuffcompare (Trapnell et al. 2014, Pertea et al. 2015). CPC was then used to 

predict the coding potential of these novel transcripts (Kong et al. 2007). Novel transcripts 

were classed as either new isoforms of known genes or completely unknown transcripts. 

 
 
 

4.2.6 Gene Expression Analysis 
 

For gene expression analysis, all clean reads were mapped to the reference genome using 

Bowtie2 (Langmead and Salzberg 2012). Transcript expression levels for each gene were 

calculated using the RSEM software package for all samples (Li and Dewey 2011). Relative 

expression levels were measured in fragments per kilobase of transcript per million mapped 

reads (FPKM). 

 
To compare biological replicates, Pearson’s correlation between all samples based on gene 

expression level was calculated in R using the function cor. Hierarchical clustering analysis of 

the samples was also performed in R using the hclust function. 

 
Differential expression analysis between the ovaries of the fish exposed to the high feeding 

regime and the fish exposed to the low feeding regime was performed using the DEseq2 

software (Love et al. 2014). This is based on a negative binomial distribution. Only transcripts 

which had an expression fold change of above or equal to 2 were compared. A Bonferroni 

correction was used to adjust the p-value for large volumes of data analysis. The cut-off 

adjusted p-value was set at <0.05 to obtain significant differentially expressed transcripts 

between the two treatments. 
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4.2.7 Hierarchical Clustering, Gene Ontology Enrichment and Pathway Analyses 
 

Hierarchical clustering analyses were performed using the data provided by BGI Tech 

Solutions. These analyses were performed using the FPKM for the differentially expressed 

transcripts with an adjusted p-value of <0.1 using the heatmap3 package in R (Zhao et al. 

2014). 

 
Gene ontology enrichment and pathway analyses was performed by BGI Tech Solutions. To 

carry out a gene ontology analysis, genes were first classified according to the official 

classifications. Then a GO-functional enrichment was carried out using the phyper function in 

R. False discovery rates were calculated for each area and then any which had a false 

discovery rate (FDR) lower than 0.001 was defined as significantly enriched. Finally, a pathway 

analysis was carried out using KEGG annotation and phyper was again used to calculate any 

functional enrichment. Any pathways which had an FDR lower than 0.001 were again 

considered enriched (Eisen et al. 1998). 
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4.3 Results 
 

4.3.1 Representative Sampling 
 

When all the obtained biometric data for the female fish considered for this experiment were 

compared there was no clustering into the different feeding regimes. The samples chosen for 

transcriptome analysis were more closely related to each other, than the other fish present 

in the population (Figure 4.1). The average body weight for the entire population was 870 ± 

84 µm, and all sample fish except A10F6 were heavier than average (Table 4.1). 

 
 
 

4.3.2 Similarity Between Biological Replicates 
 

When Pearson correlation and hierarchical clustering was performed on the entire population 

of transcripts for each sample, there was limited similarity found between biological 

replicates (Figure 4.2 B). This was also true when a multidimensional scaling plot was 

performed on the same data. Overall LF3 was not closely clustered with any of the other 

samples sent. HF1 and LF1 were more closely correlated with one another in terms of 

expression than the other samples in their respective treatment groups (Figure 4.2). 
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Figure 4.2: Comparison of biological replicates using A) a multidimensional scaling plot and B) a 
Pearson correlation between six female zebrafish (Danio rerio) when exposed to two different feeding 
regimes (high= 3% of bodyweight per day and low= 1.5% of bodyweight per day) using the fragments 
per kilobase of transcript per million mapped reads (FPKM) of all the genes sequenced in the 
transcriptome. Darker blue means a higher correlation between the samples (B). 
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4.3.3 Identification of Differentially Expressed Genes 
 

Forty-one transcripts were found to be differentially expressed when ovary tissue from fish 

exposed to the low feeding regime was compared to fish exposed to a high feeding regime, 

with a FDR (p-value) of 0.05. When all transcripts annotated to the same gene were pooled, 

only 36 differentially expressed genes were found overall between the two treatments (Table 

4.2). As there was high variation between biological replicates, an FDR of 0.1 was also 

considered, yielding a further 9 differentially expressed genes (Table 4.3). 

 
 
 

4.3.4 Hierarchical Clustering and Gene Ontology Enrichment/Pathway Analysis 
 

Among the genes that were differentially regulated between the feeding regimes, 29 genes 

were up-regulated in the ovaries of the fish fed less food compared to the fish on the higher 

feeding regime. 16 genes were down-regulated overall in the ovarian transcriptomes of the 

fish on the low feeding regime (Figure 4.3). 

 
The biological processes that were found to be over-represented by gene ontology analysis 

included, cytoplasm (p = 0.00064), cytosol (p = 0.005) and regulation of protein stability (p = 

0.07) (Figure 4.4). The molecular pathways that were found to be over-represented when the 

two treatments were compared using KEGGs pathway analysis were the peroxisome 

proliferator-activated receptor (PPAR) signalling pathway (Q-value = 0.0096), endocrine 

resistance (Q-value = 0.028) and the folate biosynthesis pathway (Q-value = 0.043) (Figure 

4.5) 
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Table 4.2: Annotation of differentially expressed genes (n=36 within Q-value <0.05) between ovulated female zebrafish (Danio rerio) when exposed to 
different feeding regimes (high =3% of bodyweight daily and low= 1.5% of bodyweight daily) 
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Table 4.3: Annotation of genes which are tending to be differentially expressed (n=9 within Q-value <0.1) between ovulated female zebrafish (Danio rerio) 
when exposed to different feeding regimes (high =3% of bodyweight daily and low= 1.5% of bodyweight daily) 
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Figure 4.3: Heat-map of differentially (Q-value <0.05) and tending to be differentially (Q-value <0.1) 
ovarian genes in zebrafish (Danio rerio) when exposed to different feeding regimes (high= 3% of 
bodyweight per day and low= 1.5% of bodyweight per day). N=3 for each treatment. Expression levels 
were measured in fragments per kilobase of transcript per million mapped reads (FPKM) from 
normalised values (blue=lower expression and red= higher expression). The colour bar on the left 
represents the log2 fold changes in gene expression in the low females compared to the high females 
when the treatments are compared overall (red= higher expression, green=lower expression). 
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Figure 4.4: Gene ontology analysis of the genes which were differentially expressed in the ovaries of 
zebrafish, Danio rerio, when exposed to different feeding treatments, high (3% of bodyweight daily) 
and low (1.5% of bodyweight daily). Numbers beside the bars represent the number of differentially 
expressed genes in each pathway, genes have been accredited to multiple pathways (overall n= 45). 
The colours of the bars represent the broad gene ontology category each biological process fits into. 
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Figure 4.5: Kegg pathway analysis of the genes which were found to be differentially expressed in the 
ovaries of zebrafish, Danio rerio, when exposed to two nutritional environments, a high feeding group 
(3% of bodyweight per day) and a low feeding group (1.5% of bodyweight per day). The y-axis 
represents the enrichment factor, while the x-axis shows the pathways found in the analysis. Larger 
sized circles represent a higher number of genes that were differentially expressed in that pathway 
and the darker colour represents the more over-represented pathways. Q-value is a corrected p-value 
taking into account the large number of genes present in this analysis. 
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4.3.5 Potential Future qPCR Targets 
 
The estrogen receptor beta (esr2a) was found to be differentially expressed with an FDR of 

0.09 (Figure 4.6, A). To evaluate other candidate genes for future research, the FPKM of genes 

related to the estrogen/steroid hormone pathway were analysed between feeding regimes. 

The ones that showed a tendency to be different between the feeding regimes are shown 

below. The estrogen receptor had a trend for higher expression in the low feeding regime, 

when compared to the females on the high feeding regime. The mRNA levels of zona pellucida 

proteins (zp3 and zp2.3) and the cathepsins (ctsba and ctsla) followed a similar trend (Figure 

4.6, C, D, E and F). Aromatase (cyp19a1a), interestingly was not found to be expressed at all 

in the ovarian transcriptome of the fish on the low feeding regime, with only low expression 

found in the high fed females (Figure 4.6, B). Activin (acvr2aa) was found to have a trend for 

higher transcript abundance in the fish subjected to the high feeding regime compared to 

those in the low regime (Figure 4.6, G). 



 

 
CHAPTER 4 Ovarian Transcriptomics 101 

Table 4.4: Potential endocrine and estrogen-related genes for future qPCR research from the RNA-seq results comparing female zebrafish, Danio rerio, ovaries 
when exposed to different nutritional environments, high (fed 3% bodyweight daily) and low (fed 1.5% bodyweight daily). All p-values are before an FDR was 
applied. 
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Figure 4.6: Relative transcript abundance of potential future qPCR targets related to the estrogen pathway, n = 3 for each treatment in all figures. For detailed 

gene information refer to table 4.4. 



CHAPTER 4 Ovarian Transcriptomics 101 
 

 

4.4 Discussion 
 

Understanding the molecular mechanisms determining oocyte size and fecundity in 

different nutritional environments will have wide-reaching implications across many 

fields. Studies which investigate the response of an organism at the transcriptome level, 

offer chances to understand potential underlying genetic causes of adaptation and 

phenotypic response (Smith et al. 2013).There have been very few studies that 

investigate molecular mediators for the trade-off between offspring size and number 

(Forbes et al. 2010, Green and Extavour 2014). This study looked at using RNA-Seq 

Illumina sequencing technology to compare ovaries from zebrafish, Danio rerio, after 

they were exposed to different levels of resources (food) in the environment. DEG 

identified through this process were used to identify target genes for future research. 

 
As a model species with a fully sequenced genome was used, all gene transcripts were 

annotated and both gene ontology and pathway analysis were performed. Overall, 36 

differentially expressed genes were identified when the ovarian transcriptomes of the 

fish subjected to a low feeding regime (LF), were compared with the transcriptomes of 

the fish kept on a high feeding regime (HF). There were both up and down-regulated 

genes, with a higher proportion of transcripts up-regulated in the low feeding group (29 

genes) when compared to the high feeding group (16 genes up-regulated). These were 

split between a range of different biological processes and pathways, a few of which 

were considered over-represented. 

 
Overall there was a large level of heterogeneity in biometrics seen within the different 

feeding regimes. Due to complexities in the ovarian states of the females at the end of 

the experimental period, some spawned and some ovulated, choosing samples 

representative of the entire population was difficult. As seen in the multidimensional 

scaling plot, the samples chosen for transcriptome were more closely clustered towards 

each other, regardless of feeding regime, than the other fish. This means the molecular 

results obtained in this chapter may not be truly representative of the effects of the 

different feeding regimes. In future studies, a design with a single endpoint may provide 

clearer responses. 
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As there was high variation between the biological replicates, limited clustering shown 

within treatment groups and large variation in the expression levels of most genes 

within treatment groups, a two-pronged approach was used in the analysis. Initially both 

the gene ontology and pathway analysis were considered for candidate genes. Due to 

the lack of differentially expressed genes overall, the cut-off for the FDR was extended 

to 0.1. This meant that a nuclear estrogen receptor, esr2a, was considered differentially 

expressed. The estrogen receptor provided the first glimpse into possible endocrine 

mediators of phenotypic plasticity in follicle size and fecundity. 

 
 
 

4.4.1 Gene Ontology and Pathway Analysis 
 

In the whole analysis there were only 36 genes that were differentially expressed, (FDR 

= 0.05) or 45 if the FDR was extended to <0.1, out of over 24,000 genes that had 

sufficient quality and expression levels to be analysed. This low number of differentially 

expressed genes may be due to the lack of similarity seen between biological replicates 

and the low power of this experiment in general. Due to budget constraints, only 3 

samples representative of each feeding regime were sequenced. Limited biological 

replicates result in low statistical power to detect lower fold changes in expression 

between treatments. The effects of intra-treatment variation also play a much larger 

role when fewer replicates are sampled (Todd et al. 2016). 

 
There were five biological processes and pathways that were considered over- 

represented, when the ovaries from the low fed and the high fed fish were compared. 

In general, these only had two or three differentially expressed genes mapped to the 

specific pathway. One over-represented pathway was the peroxisome proliferator- 

activated receptor signalling pathway (PPAR). This pathway is involved in intra and extra- 

cellular lipid metabolism and is up-regulated in organisms undergoing fasting or food- 

limited periods (de Lange et al. 2007, Fuentes et al. 2013). As the current study is looking 

at differences in between fish exposed to different feeding regimes, this pathway could 

be up-regulated in LF females, indicating they are under food-limited conditions (de 

Lange et al. 2007). However, the PPAR pathway only had 4 transcripts of ubiquitin B 
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mapped to it, which were both up and down-regulated (Appendix 3 – Figure A.4). Due 

to the overall lack of genes that were mapping to each pathway in the analysis and the 

large numbers of pathways represented overall, it is difficult to identify any treatment 

effect here. 

 
 
 

4.4.2 Potential Sources of Error or Bias 
 

The statistical power to detect true expression differences between treatments or 

populations of data is reflective of the ability to distinguish the treatment effects from 

background noise (Busby et al. 2011, Todd et al. 2016). There are three main sources of 

noise or false readings in any RNA-seq analysis, measurement error (or Poisson counting 

error), technical variation and biological variation (Busby et al. 2011, Hansen et al. 2011, 

Todd et al. 2016). The extent of these errors and how they are managed can significantly 

impact the accuracy of assigning differentially expressed genes and the reliability of the 

conclusions that can be drawn (Busby et al. 2011, Todd et al. 2016). 

 
Poisson counting error and biological variation may be playing a role in the accuracy of 

this analysis. Poisson counting error, is the inherent uncertainty that is present in any 

count-based measurement like an RNA-seq (Busby et al. 2011). The shotgun sequencing 

method used in RNA-seq, only measures a small fraction of the entire RNA population 

in a sample, which is why sampling depth is also important. Poisson error is 

disproportionately large for low count data and can be a large part of the variation seen 

in expression counts that are measured below 10 (Busby et al. 2013). Filtering any genes 

with expression counts below 10 can drastically reduce the effect of Poisson error 

(Busby et al. 2013, Todd et al. 2016). In this analysis 19 out of the 45 differentially 

expressed genes measured had expression levels (FPKM) that were below 10. Due to 

Poisson error it is unlikely that these accurately reflect the true expression level of the 

genes shown and that the treatment effect seen in these genes could be created by the 

bias caused by this uncertainty. 

 
There was a high variation seen between biological replicates when the entire 

transcriptomes were compared between all 6 fish regardless of feeding regime. This may 
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be due to the zebrafish being obtained as a wildtype from a pet supplier, rather than a 

purpose bred laboratory strain. Wild populations inherently have higher variation 

between individuals (Todd et al. 2016). 

 
Another opportunity to introduce bias into the analysis, is the random variation that 

inherently occurs in gene expression between samples (Hansen et al. 2011). Gene 

expression is considered stochastic or random and is known to vary considerably 

between units of the same population of samples (Elowitz et al. 2002). At any given time, 

it is highly unlikely that biological replicates will be at the exact same level of 

development. For the samples from my experiment, there was high variation in mRNA 

transcript abundance between biological replicates. For some of the genes that were 

considered differentially expressed between treatments, there were 10, 20 and even 

50-fold changes in transcript abundance within the same biological treatment group. 

Increasing the number of biological replicates in future experiments could reduce the 

overall effects of biological variation and produce more robust datasets (Todd et al. 

2016). 

 
In this experiment, it could be argued that due to both the high level of low count 

expression data (Poisson counting error or measurement error) and biological variation, 

it is likely that the majority of the differentially expressed genes may be a result of 

introduced bias. Even though a false detection rate (Bonferroni correction) was used to 

correct for false positives introduced by the sheer size of the dataset, it may be wise to 

also carefully consider both Poisson counting error and biological variation before 

considering a gene to have a significant treatment effect. 

 
 
 

4.4.3 Potential Candidate Genes for Future Exploration 
 

The link between nutritional state or body condition and reproductive traits such as 

fecundity has been well established in a variety of fish species (Duan 1997, Campbell et 

al. 2006). It is reasonable to infer that an endocrine signal may be playing a major role 

in the signalling of the changing nutritional state of the organism and potentially 
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mediating the phenotypic changes of reduced fecundity and larger egg size in food- 

limited individuals. 

 
Estrogens are the major female sex hormones and have many different functions in both 

reproductive, and non-reproductive tissues (Mueller and Korach 2001, Hewitt et al. 

2005, Lu et al. 2017). Nuclear estrogen receptors, such as the estrogen beta receptor 

(esr2a) bind to estrogen and the estrogen/receptor complex binds to transcriptional 

machinery to cause changes in expression of different genes (Couse and Korach 1999, 

Klinge 2000, Hewitt and Korach 2002). In zebrafish, esr2a has been shown to be the 

primary nuclear estrogen receptor present in the ovaries and the only receptor 

expressed in the oocytes themselves (Lu et al. 2017). In the ovaries of the fish that were 

kept on a low feeding regime, there was a higher abundance of the esr2a transcripts. 

This could provide a first glimpse into the molecular mechanisms regulating the trade- 

off between egg size and fecundity. Using this receptor as a starting point, related genes 

that may not have been considered differentially expressed in this analysis were 

considered. Potential candidate genes were chosen for future research, where larger 

sample sizes should be used. 

 
Multiple studies have found that exposure to higher levels of estrogen (majority looking 

at environmental toxins) will cause an increase in the production of zona pellucida 

proteins in fish (Arukwe et al. 2000, Thomas-Jones et al. 2003, Santos et al. 2007). In 

zebrafish, the zona pellucida proteins (Zp2 and Zp3) are secreted by the developing 

oocytes during the primary growth phase, and are deposited as an extracellular matrix, 

forming a layer between the oocyte and surrounding follicle cells (Mold et al. 2009). 

Recently, a study looking at the specific effects of the nuclear estrogen receptors in 

zebrafish, demonstrated that when esr2a was knocked out, the levels of zona pellucida 

proteins present in the oocytes were significantly reduced. Earlier hatching also 

occurred due to misshapen chorion envelopes (Lu et al. 2017). In the current 

experiment, there were trends in zp3 and zp2.3 which mirrored the trends found in the 

expression of esr2a between the two treatment groups. Changes in these proteins could 

create different hatching times between treatments and convey selective advantages to 

the offspring. 
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Cathepsins belong to the endosomal/lysosomal protease family and are widely 

distributed in many tissue types (Roberts 2005, Tingaud-Sequeira et al. 2011). Certain 

cathepsins, including cathepsin D, L and B, have been implicated in the metabolism of 

yolk proteins in the developing oocytes (Matsubara and Sawano 1995, Tingaud-Sequeira 

et al. 2011, Palomino et al. 2017). Cathepsin D (ctsd) cleaves vitellogenin molecules into 

yolk proteins inside the oocyte (lipovitellins and phosvitins), during vitellogenesis 

(Matsubara and Sawano 1995, Hiramatsu et al. 2002). Cathepsin B (ctsb) and L (ctsl) 

have been implicated in the hydrolysis of yolk proteins that occurs during oocyte 

maturation (Matsubara et al. 2003, Tingaud-Sequeira et al. 2011, Palomino et al. 2017). 

This processing at the maturation stage produces a free fatty acid pool that is essential 

for hydration of the oocyte and subsequent absorption as an energy source by the 

embryo (Ohkubo and Matsubara 2002, Palomino et al. 2017). Cathepsin La (ctsla) has 

been shown to be expressed in developing embryos in zebrafish and it has been 

suggested that this is the main cathepsin involved in embryonic yolk processing to allow 

subsequent absorption (Tingaud-Sequeira and Cerda 2007). There was a general 

increase in both ctsba and ctsla mRNA transcript expression in the ovaries of the food- 

limited females which could suggest larger quantities of yolk present. This would 

support the expected phenotype of larger eggs being produced in food-limited mothers 

(Forbes et al. 2010). 

 
 
 

4.4.4 Conclusions 
 

Overall, due to high levels of biological variation and other introductions of bias, the 36 

differentially expressed genes identified by RNA-seq are hard to reconcile with changes 

in feeding regime. A future study with larger numbers of biological replicates may 

provide further insight into patterns in gene expression in the ovary when exposed to 

different nutritional environments. Through exploration of the pathways related to the 

differentially expressed estrogen beta receptor, candidate genes for future analyses 

were identified. 
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environment in which they reside. Any resources obtained by a mother are finite and 

Jørgensen et al. 2011). This means maternal provisioning of one component of 

reproduction will reduce the resources available to another (Auer 2010). One classically 

number of offspring produced (Smith and Fretwell 1974, Reznick et al. 2002, Jørgensen 

et al. 2011, Riesch et al. 2012). This relationship is directly dependent on both the 

resources available in the local environment and the amount of physical space the 

mother has available for reproduction (Uller and Olsson 2005, Bauerfeind and Fischer 

the phenotype of her offspring to maximise her fitness in any given environment 

that in resource-limited environments, mothers can increase the investment in each 

individual offspring, but reduce the number of offspring produced. Conversely, it has 

large clutches of comparatively small offspring are produced (Reznick and Yang 1993, 

Bashey 2003, Fischer et al. 2003, Bashey 2006, Hassall et al. 2006, Forbes et al. 2010, 

Riesch et al. 2010, Riesch et al. 2012). These maternal effects (phenotypic plasticity in 

2011, Kuijper and Johnstone 2013). Although adaptive plasticity in offspring size and 

In invertebrates, such as Drosophila, the fecundity of the female has been directly linked 

to the metabolic hormone, IGF-1 (Green and Extavour 2012). In locusts, offspring size 

vitellogenin (Chen et al. 2015). In vertebrates, both gonadotropins and upstream 

fecundity and offspring size, although studies have focused mainly on mammals, birds 

 

 
 

 

must be divided between competing life history traits (Auer 2010, Burton et al. 2010, 
 

 

 

studied trade-off between competing traits, is the relationship between the size and the 
 

 

 

 

 

2008, Auer 2010, Jørgensen et al. 2011). If external cues are reliable, a mother can adjust 
 

 

(Pigliucci  et  al. 2006, Kuijper and  Johnstone 2013).  Many studies have demonstrated 
 

 

 

been shown that in the same  species, in environments which  are  resource abundant, 
 

 

 

 

offspring) are directly related to both offspring and maternal fitness (Jørgensen et al. 
 

 

number has been clearly demonstrated in a range of species, there are few studies that 

evaluate the mechanisms that allow this variation to occur. 
 

 

 

and number have been demonstrated to be mediated by the upstream regulation of 
 

 

regulation  of  vitellogenin  expression  have  been  shown  to  directly  influence  both 
 

 

and lizards (Sinervo and Licht 1991, Sinervo 1999, Williams 2001, Oksanen et al. 2002). 

The amount of resources available to any given organism is directly determined by the 
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phenotype when exposed to different resource availability in the environment. 

offspring size and number (Forbes et al. 2010), and as a widely established model 

organism (Ribas and Piferrer 2014) were deemed appropriate to investigate molecular 

either a low feeding regime (1.5% of body weight) or a high feeding regime (3% of body 

weight) and both phenotypic changes in fecundity, offspring size and gene expression of 

candidate genes in the ovary were evaluated. In a second experiment to evaluate the 

sensitivity of the plasticity response, female zebrafish were exposed to first one feeding 

Mothers exposed to harsh or limiting environments can increase offspring survival by 

manipulating offspring phenotypes (Winemiller and Rose 1993, Jorgensen et al. 2014, 

increasing maternal fitness through increased survival when compared to smaller, less 

developed offspring (Riesch et al. 2010, Murphy et al. 2014). Although these maternal 

effects in zebrafish have previously been demonstrated (Forbes et al. 2010), this 

When fish were analysed regardless of feeding regime, there was a positive relationship 

relationship between maternal body size and offspring size was also found. The larger 

females that were obtaining the most food, were producing both larger offspring, and 

both feeding regimes. Each tank had larger dominant females present, and these fish 

were likely to have limited access to the food for the subordinate females (Filby et al. 

When female condition was not corrected for, there was no trade-off between offspring 

size and number occurring in the female zebrafish overall. When offspring size was 

 

 
 

 

Zebrafish,  Danio  rerio,  have  previously  demonstrated  adaptive  plasticity  in  both 
 

 

 

mediators of offspring size and offspring number. Female zebrafish were exposed to 
 

 

 

 

 

regime and then swapped to the other feeding regime. Phenotypic changes in fecundity 

and offspring size were evaluated. 
 

 

 

Paul et al. 2015). Larger offspring have a selective advantage in limited environments, 
 

 

 

 

adaptive plasticity was not recorded in my experiments, as females in both food- 

abundant and food-limited environments produced similar sized offspring. 
 

 

between   fecundity  (or   reproductive   investment)   and   offspring   size.   A positive 
 

 

 

more of them. There was clear heterogeneity in maternal condition or quality within 
 

 

 

2010). This meant that the effects of environmental resource availability and any 

phenotypic plasticity present was obscured between the feeding regimes. 
 

 

This thesis aimed to elucidate mechanisms allowing for adaptive plasticity in offspring 
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value and reproductive investment. This indicates that at an individual level the trade- 

resources. When there is heterogeneity in both resource allocation and resource 

availability in a population, correlations between competing traits can appear positive 

individual quality when looking at phenotypically expressed trade-offs (Lim et al. 2014). 

Oogenesis is heavily controlled by the pituitary through the production of the 

species, recruitment into the secondary growth phase and vitellogenesis is regulated by 

(Fowler and Edwards 1957). When bank voles, Clethrionomys glareolus, were exposed 

number of pups produced per litter increased, and on average these were smaller 

individuals were exposed to ovine FSH, clutch size increased and concomitantly egg size 

decreased (Sinervo and Licht 1991, Sinervo 1999). They suggested that the number of 

eggs present in the clutch was under the control of circulating levels of gonadotropins, 

vitellogenesis (Sinervo and Licht 1991). In teleosts, when rainbow trout (Oncorhyncus 

mykiss) were subjected to a unilateral ovarioectomy, levels of Fsh in the plasma 

increased concomitantly with recruitment of a new cohort of oocytes into the secondary 

looking at the specific effects of gonadotropins and the gonadotropin receptors in 

zebrafish have demonstrated that Fshr is essential for oocytes to develop past the 

Zhang et al. 2015, Li and Cheng 2018). In the current study, fshr mRNA levels tended to 

tendency for a higher fecundity in these fish when compared to food-limited females. 

As activation of Fshr is essential for the recruitment of oocytes into vitellogenesis (Chu 

 

 
 

 

off may still be present (Lim et al. 2014).   Individuals vary in the way they obtain 
 

 

 

(Reznick et  al. 2000, Lim et  al. 2014). This highlights the importance  of controlling for 
 

 

 

gonadotropins, luteinising hormone  and  follicle  stimulating hormone  (Fsh).  In many 
 

 

Fsh. For example, super ovulation in mammals is induced by exposure to gonadotropins 
 

 

to human menstrual urine (which contains both luteinising hormone and FSH), the 
 

 

(Oksanen et al. 2002). Moreover, in the side-blotched lizards, Uta stansburiana, when 
 

 

 

 

specifically FSH but that the egg size was set by the number of follicles undergoing 
 

 

 

 

growth phase in the remaining ovary (Tyler et al. 1997). Recently, gene knockout studies 
 

 

 

primary  growth  stage  (previtellogenesis-vitellogenesis  transition)  (Chu  et  al.   2015, 
 

 

increase  in  fish  in  a  food-abundant  environment.  This  was  also  accompanied  by a 
 

 

 

et al. 2015, Li and Cheng 2018) changes in the level of this protein could be a mechanism 

standardised over female body weight, a negative relationship was found between this 
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number of follicles brought through to ovulation through preventing the down- 

2004, Moore and Shimasaki 2005). Limitation of space occurs in the mother (Uller and 

Olsson 2005), thus this increase in the number of follicles would decrease the overall 

pituitary or the plasma levels of Fsh in females exposed to different feeding regimes 

Vitellogenin is a key component of yolk, and therefore levels of vitellogenin play a direct 

role in the provisioning of the future larvae (Tyler et al. 1990, Sun et al. 2015). 

species, yolk can account for up to 80 % of the final oocyte size (Tyler et al. 1991). In 

are often shown to have increased levels of lipoprotein when compared to the smaller 

hypothesised to enhance initial survival of these offspring, as more yolk means more 

initial resources for the offspring (Sun et al. 2015). This can lead to both a larger initial 

size and faster development (Levitan 2000). In harsh environments, larger offspring have 

The production of vitellogenin and the uptake into the oocyte is mediated in vertebrates 

by circulating estrogens (Williams 2001). In zebra finches, Taeniopygia guttata, if 

but smaller eggs overall. This decreased egg size, an 8 % decrease in egg mass, was 

accompanied by a 50 % decrease in plasma levels of vitellogenin (Williams 2001). In my 

estrogen receptor, esr2a, in the females that were food-limited, when compared to 

females that had an abundance of food. When target genes were evaluated in ovary 

tendency for an increase in food limited females. In teleosts, lrp8, has been designated 

as the main vitellogenin receptor (Prat et al. 1998, Johnson 2009, Hiramatsu et al. 2013). 

 

 
 

 

regulation of fshr expression and preventing the loss of follicles to atresia (Moore et al. 
 

 

 

size of the eggs produced. Future studies looking at the expression of the fshb in the 
 

 

could illuminate upstream regulation of this pathway. 
 

 

 

Vitellogenesis is often described as the major growth stage of oogenesis and in some 
 

 

species where plasticity in offspring size is seen between populations, the larger eggs 
 

 

ones  (Guisande  and  Gliwicz  1992,  Hassall  et  al.  2006,  Sun  et  al.  2015).  This  is 
 

 

 

 

a selective advantage over smaller ones. 
 

 

 

females are treated with an estrogen receptor blocker, they show increased fecundity 
 

 

 

study, transcriptome  results showed  a trend  for  an  increase  in the  primary ovarian 
 

 

 

samples from females in phase one of experiment two, lrp8 was also found to have a 
 

 

allowing for larger clutches overall. In mammals, the “fecundity gene” increases the 
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This could suggest that, as in birds, in teleosts the regulation of the vitellogenin uptake 

into the oocytes can mediate the size and number of offspring produced by a mother. 
 

It is likely that the Fsh pathway and regulation of vitellogenin uptake play key roles in 

determining size and number of oocytes present in the ovary. However, based on the 

current study it is impossible to definitively state that these are involved in adaptive 

plasticity of offspring size. To clearly evaluate the effects of changes in the expression of 

these genes on both fecundity and offspring size, further research is required with 

females which clearly exhibit phenotypic plasticity in these traits. 
 

For future research it would be wise to carefully consider the state of the target tissue 

at the end of the study. All of my experiments concluded with three different states of 

ovarian tissue, spawned, ovulated and unovulated ovaries. In the previous literature, 

studies looking at plasticity in offspring size have looked at spawned offspring or eggs 

(Forbes et al. 2010, Vrtílek and Reichard 2015). Due to low spawning rates across both 

feeding regimes this was not possible in these experiments. As zebrafish are 

asynchronous spawners (Selman et al. 1993), there are multiple clutches present in the 

ovary, and sampling across the top 20% of follicle size is not guaranteed to only measure 

follicles from a single clutch. 
 

A consistent lack of spawning was seen across all experiments, with low incidence of 

spawning occurring in each feeding regime but not enough to allow for statistical 

analysis. Previous studies have shown that reproduction is cued by food availability 

(Lawrence 2006), which could explain the lower incidence of spawning that occurred in 

the low feeding regimes of the experiments in this thesis. In Forbes (2010), only three 

fish in the lower feeding regime spawned compared to eleven in the higher feeding 

treatment, showing a similar trend. Dominant females can inhibit the spawning of 

subordinate females through pheromones in the water (Gerlach 2006), as there were 

clearly larger dominant females in each tank and this could have produced a lower 

reproductive output in the experiment. In future studies, larger numbers of fish present 

in each tank could help diffuse aggression and dominance behaviour increasing 

reproductive output. 
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in offspring size, due to the treatment directly relating to body condition (Bernardo 

to unavoidable effects of the treatment on parental condition (Lim et al. 2014). 

Manipulating the environment rather than the organism allowed heterogeneity in 

the effects of the feeding regimes. In these fish, maternal size was found to be directly 

correlated with follicle diameter, so the larger dominant fish had larger follicles 

regardless of feeding regime. Increasing the stocking densities in individual tanks can 

mitigate dominance behaviour in this species (Filby et al. 2010). As the fish grew the 

decreased. This meant there was lower pressure to show adaptive plasticity as the 

with abundant resources could produce larger numbers of large offspring. In future 

studies, higher stocking levels and choosing younger fish that have higher energy 

the current study. Other species who do not have this relationship may also be more 

appropriate to study changes in resource allocation between different environments 

Based on the experiments carried out for this thesis, the study of phenotypic plasticity 

effects of maternal condition. Previous literature, and to an extent my study, have 

mediated through increases in the expression of the Fshr in teleosts and potentially 

pituitary Fsh as well, stimulating more oocytes to enter vitellogenesis. Future 

limited ovaries may illuminate the mechanisms that allow for increased provisioning of 

 

 
 

 

1996). The molecular mechanisms underlying maternal effects are hard to discern due 
 

 

 

resource acquisition, potentially through dominance behaviour (Filby et al. 2010), to blur 
 

 

 

 

 

strength  of  the  negative  relationship  between  offspring  size  and  offspring number 
 

 

constraints of space limitation are removed (Uller and Olsson 2005) and the large fish 
 

 

 

constraints and less space for offspring could remove some of the heterogeneity seen in 
 

 

 

(Lim et al. 2014). 
 

 

responses under different resource levels in the environment is complex due to the 
 

 

shown that fecundity will increase in food abundant conditions. This is likely to be 
 

 

 

exploration of increases in the estrogen receptor and vitellogenin receptor in food- 
 

 

individual offspring.

There was a lack of specificity in targeting the underlying mechanisms causing changes 
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Appendix 

Appendix 1 – Collagenase Digestion Trials 

Methods: 

Five female zebrafish were euthanised in 1 ml of benzocaine per 200 ml of water. 

Ovary tissue was removed and separated evenly between 6 different falcon tubes. 

These falcon tubes contained zebrafish ringer and varying concentrations of 

collagenase, 0.5, 0.75 and 1 mg/ml. 

The zebrafish ringer contained: 

116mM NaCl 

2.9 mM KCl 

1.8 mM CaCL2.6H2O 

5 mM HEPES 

1 g/l glucose 
 
 

One falcon tube at each collagenase concentration was placed on a shaker at a gentle 
speed at room temperature. The other three falcon tubes were placed upright in a rack 
on the bench beside the shaker. 

They were incubated for an hour. 

Results: 

All falcon tubes even at the lowest collagenase concentrations contained yolk globules 
floating in the medium from digestion of the largest mature follicles. No concentration 
was found to be suitable for use in the experimental analyses (Figure A1). 
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Figure A1: Collagenase digested ovarian tissue from female zebrafish, Danio rerio. Six 
different treatments were used; 0.5 mg/ml collagenase + shaker (A), 0.5 mg/ml 
collagenase (B), 0.75 mg/ml collagenase + shaker (C), 0.75 mg/ml collagenase (D), 1.0 
mg/ml collagenase + shaker (E), 1.0 mg/ml collagenase (F). 
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Appendix 2 – Spawned Fish from Experiment 2a and 313 
 

During the 2016 lab work component of ZOOL313 an experiment was set up to 

evaluate the effect of food availability in the environment on fecundity and egg size in 

zebrafish (Danio rerio). Fifty mixed sex females were divided evenly between 8 

different tanks, these were randomly designated to two feeding regimes, 1.5% or 3% 

of body weight daily. After four weeks fish were placed in spawning tanks with a male 

overnight. Any eggs spawned were collected and counted. Yolk diameters were 

measured. Eggs were kept in petri dishes until hatched and initial hatchling size was 

measured. 

 
Spawning was relatively unsuccessful, only 1 low feeding regime female spawned and 

3 high feeding regime females. 

 
In the Experiment 2a females, 4 fish also spawned. There were 3 females on the low 

feeding regime that spawned and 1 on the high feeding regime. 

 
The yolk diameters were comparable between the experiments. To look for trends the 

experiments were combined. It appears that there is a strong trend for a reduction in 

yolk diameter and hatchling length in females that are in food-abundant environments 

when compared to food-limited females. (Figure A.2 and Figure A.3) 
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Figure A.2: Average yolk diameter (µm) and hatchling length (µm) in female zebrafish, Danio 
rerio, when they are fed 1.5% (Low) or 3% (High) of body weight daily. Bars represent the 
average value across all fish present ± 1 se, n (number of fish) = 4 for each feeding regime. 
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Figure A.3: Photos of eggs spawned when female zebrafish are exposed to different feeding 
regimes; 1.5% (A8, T2) or 3% (A11, T1) of body weight daily. 
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Appendix 3 – PPAR Enrichment from Gene Ontology Analysis 
 

 
Figure A.4: PPAR pathway enrichment by differentially expressed genes identified in 

zebrafish, Danio rerio, ovarian tissue by RNA-Seq analysis 
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Appendix 4 – Average Body weight and GSI for Phase 2 of Experiment 2 
 

Figure A.5: The average body weight (mg) of female zebrafish, Danio rerio. There were four 
different treatments present all consisting of a combination of two different feeding regimes; 
Low: 1.5% of body weight or High: 3% of bodyweight, in four-week phases. Each bar 
represents the average body weight per tank ± 1 se. 

 
 

Figure A.6: The average GSI (%) of female zebrafish, Danio rerio. There were four 
different treatments present all consisting of a combination of two different feeding regimes; 
Low: 1.5% of body weight or High: 3% of bodyweight, in four-week phases. Each bar 
represents the average GSI per tank ± 1 se. 
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