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Abstract 

A defining feature of capture-recapture is missing data due to imperfect de­

tection of individuals. The standard approach used to deal with the missing 

data is to integrate (or sum) over all the possible unknown values. The 

missing data is completely removed and the resulting likelihood is in terms 

of the observed data. The problem with this approach is that often biologi­

cally unnatural parameters are chosen to make the integration (summation) 

tractable. A related consequence is that latent variables of interest, such as 

the population size and the number of births are only available as derived 

quantities. As they are not explicitly in the model they are not available to 

be used in the model as covariates to describe population dynamics. There­

fore, models including density dependence are unable to be examined using 

standard methods. 

Instead of explicitly integrating out missing data, we choose to include 

it using data augmentation. Instead of being removed, the missing data is 

now present in the likelihood as if it were actually observed. This means 

that we are able to specify models in terms of the data we would like to 

have observed, instead of the data we actually did observe. Having the 

complete data allows us to separate the processes of demographic interest 

from the sampling process. The separation means that we can focus on 

specifying the model for the demographic processes without worrying about 
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the sampling model. Therefore, we no longer need to choose parameters in 

order to simplify the removal of missing data, but we are free to naturally 

write the model in terms of parameters that are of demographic interest. A 

consequence of this is that we are able write complex models in terms of a 

series of simpler conditional likelihood components. We show an example of 

this where we fit a CJS model that has an individual-specific time-varying 

covariate as well as live re-sightings and dead recoveries. 

Data augmentation is naturally hierarchical, with parameters that are 

specified as random effects treated as any other latent variable and included 

into the likelihood. These hierarchical random effects models make it pos­

sible to explore stochastic relationships both (i) between parameters in the 

model, and (ii) between parameters and any covariates that are available. 

Including all of the missing data means that latent variables of interest, 

including the population size and the number of births, can now be included 

and used in the model. We present an example where we use the population 

size (i) to allow us to parameterize birth in terms of the per-capita birth 

rates, and (ii) as a covariate for both the per-capita birth rate and the 

survival probabilities in a density dependent relationship. 
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Chapter 1 

Capture-Recapture Methods 

Ecologists are interested in examining the dynamics of animal populations. 

In particular they want to describe demographic change in terms of sur­

vival probabilities, movement rates and fecundity and examine the effect 

of covariates on these processes. The problem is that we are unable to di­

rectly observe survival and fecundity rates and need some way of estimating 

these. One way to do this is with data from capture-recapture experiments . 

Capture-recapture experiments involve catching and marking a sample of 

animals from the population at some initial time t1 . The mark is in the 

form of a unique tag from which the animal can be identified in the future. 

The animals are then released back into the population. At k -1 subsequent 

times, t2, ... , tk further samples are taken. Recaptures of previously marked 

animals are recorded, with any unmarked animals tagged. 

The data from a capture-recapture study can be written in terms of au. 

by k capture matrix xobs, where u. is the total number of individuals ever 
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Capture-Recapture Methods 3 

observed. A typical capture history looks like 

1 1 . . . 1 

xobs = 1 0 0 

0 0 . . . 1 

The value Xf]8 = l denotes a capture for individual i in sample j, with 

Xf]8 = 0 otherwise. The superscript obs is used because xobs only contains 

the capture histories for those individuals observed in one or more samples. 

It does not include the capture histories for the individuals in the population 

that were never caught. 

In many capture-recapture experiments, covariates are collected when 

the individuals are caught. These covariates could be individual-specific, 

such as sex, length or weight, or they could be common to all individuals 

caught in that sample, for example, temperature. 

The assumptions placed on animal behaviour both within and between 

the sampling occasions gives rise to a multitude of capture-recapture mod­

els (Otis et al. 1978, Pollock et al. 1990). For example, closed population 

models arise when the time period between capture occasions is short and 

it is assumed the population is closed to immigration, emigration, birth and 

death. Open population models arise when any of these assumptions is re­

laxed. It is also possible to have models that combine these assumptions. 

For example, the robust design assumes that there are series of capture occa­

sions for which the population is closed interspersed with periods for which 

the population is assumed open (Pollock 1982). 

The focus of this thesis is on population monitoring in ecology. How­

ever, the methods developed can be easily transferred to other areas where 



~ 

.. , 

• J.. 

,;.. 

·' 

·, 

;. 

•/ 

'r" 

.,. 

"" 
·\ 

J.. 

"' 

.,,_ 

-c\ 

.,... 

~!· 

.,I 

~ 

"' 
I\ 

:1'. 

·-~ 

'"" 

Capture-Recapture Methods 4 

capture-recapture models are applied, for example, in computer science 

(Briand et al. 1997) and in multiple-list studies in epidemiology (Hook and 

Regal 1995) . 

As much as possible we attempt to keep notation consistent. A full 

description of the notation used is given in appendix A. 

1.1 Closed population models 

The interest in closed population models is estimating the size of the popu­

lation, denoted ~- In order to estimate ~' we write the likelihood in terms 

of capture probabilities 

Pll Plk 

p= 

Pi-n · ·· Pl-1.k 

where Pij is the probability of individual i being caught in sample j. We 

use information from the individuals observed as well as assumptions about 

p to estimate the number of individuals with capture history (0, ... , 0) that 

were available for capture but never seen. The standard likelihood is 

\.>f u. k b l-1. k 
obs) 1,. II II Xfj s ( 1-Xobs II II 

£(p,~;X cx:u.!(~-u.)! Pij l-Pij) 'J (l-Pij) 
i=l j=l i=u.+ 1 j=l 

(1.1) 

This is the most general likelihood with assumptions about p leading to 

different classes of model. Otis et al. (1978) give details about 8 classes of 

model: Mo, Mt, lvh, Mh, Mtb, Mth, Mbh, Mtbh· 
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1.1.1 Assumptions About The Capture Process 

Model Mo 

Model Mo has one capture probability that is constant across individual 

and time, 

Pij = p, i = l, ... , ~' j = 1, ... , k. 

Model Mt 

Model Mt has a different capture probability for each sample occasion 

which is constant across individual, 

Pij=Pj, i=l, ... ,~, j=l, ... ,k. 

Model Mb 

Model Mb has two capture probabilities: p if an individual has never been 

caught and c if an individual has been caught before, 

_ { p if i has never been caught 
Pij -

c if i has been caught before 
'i=l, ... ,~, j=l, ... ,k. 

This model allows for the study to influence the behaviour of the animals. 

If the capture process is a bad experience for the animals, we get a trap-shy 

response with p > c. However, if the capture process is a good experience 

for the animals, we get a trap-happy response with p < c. Note that these 

responses can also be induced by the study design used. For example, if our 

sampling targets areas where animals were previously caught, we are likely 

to observe a trap-happy response. 

Model Mh 

Model Mh has a different capture probability for each individual in the 
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population which is constant through time, 

PiJ=Pi, i=l, ... ,~, j=l, ... ,k. 

The historically popular approach to estimate ~ for model Mh is to use 

the non-parametric jackknife of Burnham and Overton (1978). Alternatives 

include using finite mixtures for p (Pledger 2000) or assuming the capture 

probabilities p are drawn from a probability density function with support 

on [O, l]. Holzmann et al. (2006) showed that the population size~ is iden­

tifiable in model Mh conditional on a model for p . However, Link (2003) 

showed that different probability density functions for p can lead to identical 

sufficient statistics with different values of~-

Higher Order Models 

The higher order models Mtb, Mth, Mbh and Mtbh are all extensions of 

models Mt, Mb and Mh. For example, Mth assumes that each individual 

has their own capture probability that changes through time. Models Mtb, 

Mth, Mbh and Mtbh are not identifiable without further assumptions (Otis 

et al. 1978). 

Log-linear models can also be used to fit closed population models (Fien­

berg 1972, Cormack 1989, Agresti 1994). A virtue of log-linear models is that 

they provide flexible expressions for the capture probabilities with interest 

in the estimation of ~-

1.1.2 Covariates 

Often there are covariates z that can improve estimation of ~ because they 

help to explain capture probabilities. When the covariate is time-varying 

and common across individuals, we can include a model where the capture 
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probabilities p are deterministically modeled in terms of the covariate z 

(Lebreton et al. 1992). 

The more challenging case is when there are individual-specific covariates 

that are assumed to fully explain differences in capture probabilities between 

individuals. The problem with this model is that we do not know the covari­

ates values for the individuals that we have never observed. Huggins (1989) 

solved this problem by using a likelihood that conditioned on u., the number 

of individuals ever observed. He uses a method of moments estimator for ~ 

based on the Horvitz-Thompson estimator (Horvitz and Thompson 1952), 

u. 1 

~ = L Pi(zi) 
i=l 

where Zi is the covariate value for individual i. This varies from the true 

Horvitz-Thompson estimator 

u. 1 

~ = L Pi(Zi) 
i=l 

through replacing Pi(zi) by its estimate Pi(zi)- Instead of conditioning on u., 

an alternate approach is to include ~ in the likelihood as a parameter and 

complete the data using data augmentation. This approach is investigated 

in more detail in section 3.1.1. 

1.1.3 The Problem with Closed Population Modeling 

As stated at the beginning of chapter 1, interest lies in examination of de­

mographic change in the population. In this regard, there is little value in 

knowing ~- The interest is in investigating how ~ changes through time, in 

particular with respect to covariates. Open population models were intro­

duced to investigate these changes in ~-
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1.2 Open population models 

1.2.1 Cormack-Jolly-Seber Model 

The Cormack-Jolly-Seber (CJS) model (Cormack 1964, Jolly 1965, Seber 

1965) was a breakthrough for capture-recapture modeling. Through condi­

tioning on u = ( u1, . .. , uk), where Uj is the number of unmarked individuals 

caught in sample j, a maximum likelihood framework was obtained in which 

the closed population assumption was relaxed by allowing death to occur 

during the study. We express the inclusion of mortality through the par­

tially observed death covariate d, where dij takes the value 1 if individual 

i died between sample j and j + l and it takes the value O otherwise. The 

value dik = l is taken to mean that an individual was still alive in the last 

sampling occasion, enforcing the constraint that ~J=1 dij = l, i = 1, ... , u .. 

We know that an individual did not die before the time in which we last 

saw it (the sample of last capture £i) so the values dij for j = l, ... , £i - 1 

are known to be 0. The remaining dij values are missing subject to the 

constraint ~J=1 dij = l. There are many possible covariates that could be 

specified to include the information on death that is contained in d. For 

example, an indicator matrix a could be used, where aij = l if individual i 

was alive at time of sample j and aij = 0 otherwise. The choice of d over 

a, or any other alternatives, was made for convenience. 

To model the mortality, we introduce a vector of survival probabilities 

s, 

S = (S1, ... , Sk-1), 

where Sj is the probability of surviving from sample j to j + l conditional 

on being alive at the time of sample j. Even though it is possible to have 

parameters varying across individuals (Pledger et al. 2003), the CJS model 
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Capture-Recapture Methods 9 

assumes both capture and survival probabilities do not vary between indi­

viduals but can vary through time. The vector of capture probabilities p 

is 

P = (P2, ···,Pk)-

The likelihood for the CJS model is obtained by finding the joint probability 

of the capture histories for all individuals, conditional on first capture 

obs Xij+1 1-X;j+l u. {Z;-1 } 
L(S,p; X ) ex g Xl SiPj+l (1 - PHI) XZ;, 

where Ji is the sample of first capture for individual i and Xi is the prob­

ability of individual i never being observed after sample j. The value XZ; 

is required because it is necessary to integrate (or in this case sum) over 

the unknown values of d and remove them from the likelihood. The value 

Xk = l is known and a recursive relationship gives, 

Xi= (l - Sj) + Sj(l - PH1)xj+1, j = l, ... , k - l. (1.2) 

Closed form solutions for the CJS model are available and are given by 

Pollock et al. (1990) for the 2k - 3 identifiable parameters: 

P2, · · · ,Pk-1, S1, · · ·, sk-2,Pksk-l· 

Covariates 

Often there are additional covariates collected that are assumed to affect 

the parameters in the model. These covariates may have been collected for 

one of two reasons: 
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1. To improve the estimation of the model. The covariates are expected 

to at least partially explain the variability in the parameters, but there 

is very little interest in the relationship. An example of this is when 

sampling effort is used as a covariate for capture probabilities. 

2. To investigate biologically interesting relationships. In this case the 

effect of the covariates improves knowledge about the population dy­

namics of the species. An example of this is the effect of rainfall on 

survival rates. Lebreton et al. (1992) gave a deterministic framework 

for modeling the parameters in terms of known covariates. One such 

model could be 

logit(Sj) ='Yo+ ,'1Zj, j = l, ... , k - l, 

where the survival probabilities are a function of the covariate Zj. 

Even thought this was a large step forward, it is usually unsatisfactory. 

This is because we are assuming that the covariate fully explains the 

variability in the parameter. 

A preferable approach is to hierarchically model the parameters using 

random effects (see section 4.1). One potential hierarchical model is 

that the parameters are themselves modeled as having a probability 

distribution function whose (hyper )parameters are explained by the 

covariates. Hierarchical models are more realistic as they allow rela­

tionships to be specified that only partially explain the variability in 

the parameter. 

Individual-Specific Time-Varying Covariates 

Individual-specific time-varying covariates are difficult to incorporate, as 
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they include missing covariate values. To overcome this, a model for the 

covariate must be specified and all missing values integrated out. When the 

covariate is categorical the common model used is the first order Markovian 

multi-state model. Here the "state" of individual i in sample j depends only 

on the state of i in j - 1 (Schwarz et al. 1993b). An extension to this is 

where the "state" of individual i in sample j depends on the state of i in 

j - 1 and j - 2 (Brownie et al. 1993). So long as the number of "states" is 

not too large, the summation over the missing covariates is computationally 

feasible, with the first order Markovian multi-state model able to be fitted in 

popular capture-recapture software such as MARK and M-SURGE (White 

and Burnham 1999, Choquet et al. 2004). 

Including individual-specific time-varying continuous covariates is even 

more difficult. This is because it is harder to integrate over the missing co­

variate values than it is to sum over a discrete number of values. In general, 

analytic integration is impossible and numerical integration using quadra­

ture is too computationally burdensome to be useful in practice. However, 

Bonner and Schwarz (2006) specified an extension to the CJS model where 

the missing covariate values were integrated out using Markov chain Monte 

Carlo within a Bayesian framework (see chapter 5). A more detailed dis­

cussion of this models is given in section 4.2.2 with an example in chapter 

9. 

1.2.2 The Jolly-Seber Model 

To allow for birth, Jolly (1965) and Seber (1965) included a model for u = 

(u1, ... , uk), the number of unmarked individuals caught in each sample. 

They assumed that Uj, the number of unmarked individuals caught in sample 

j, is binomially distributed with index Uj, the total number of unmarked 
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individuals in the population immediately before sample j, 1 

Uj rv B(Uj,Pj), J = 1, ... , k, 

with the values U1 and Uk not identifiable. Including the information on 

first capture means that derived estimates2 can be obtained for demographic 

summaries such as N = (N1, ... , Nk), where Nj is the number of individuals 

alive in sample j (Pollock et al. 1990). Even though the information is 

available to estimate these quantities, we are unable to fully exploit this 

information. The unobserved random variable Nj is not available for direct 

modeling because it does not appear explicitly in the likelihood. This means 

we are unable to use Nj as a covariate in the model without adopting an 

errors-in-variables approach (Barker et al. 2002). 

Unfortunately the "birth" parameters that are specified in the model, 

Uj, are not particularly useful to a biologist as they combine aspects of 

both the demographic processes of interest and the intensity of sampling. If 

intense sampling was undertaken in sample j - 1 then Uj will be lower than 

if very little sampling was undertaken in sample j - 1. This means that the 

parameter Uj is of little use for further hierarchical modeling. 

1.2.3 The Crosbie-Manly-Arnason-Schwarz Model 

Schwarz and Amason (1996) followed the lead of Crosbie and Manly (1985) 

and modeled the first captures in terms of N, the total number of individ-

uals ever available for capture throughout the study. The Crosbie-Manly­

Arnason-Schwarz (CMAS) model includes an unknown vector B = (Bo, ... , Bk-l), 

where Bj is the number of individuals born between sample j and j + 1, 

1 Actually Jolly (1965) modeled Tj, the number of Uj subsequently released to take 
into account loss on capture. 

2Note that only N2, ... , Nk-l are identifiable. 
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Capture-Recapture Methods 13 

as the outcome of a multinomial distribution with index ~ and probabilities 

/3 = ((Jo, ... , (Jk-1), 

B ,--., MN(~,/3), 
with the constraint that :z=t:;6 (Jh = l. While this is a step toward modeling 

in terms of biologically useful parameters, there are three problems: 

1. The model is not identifiable, with~' /3 and Pl confounded . 

2. The parameters /3, while not sensitive to sampling intensity, are sen­

sitive to aspects of the study design. To illustrate, consider a study 

with k = 3 and 

/3=(},l,l)· 
If the study were extended for a further s periods and birth occurred 

in at least one of those periods, then the values of (Jo, (31 and (32 would 

all change. Therefore, as with the JS model there is little interest in 

the hierarchical modeling of /3, as they are not natural demographic 

parameters . 

3. Random variables of interest, such as Nj, are still not available for 

direct modeling and are only available as derived parameters. 

1.2.4 Models with Natural Birth Parameters 

Pradel (1996) and Link and Barker (2005) proposed models that parame­

terize birth in terms of per-capita birth rate index3 , 

I E(Bj) 
r/j = E(Nj)" 

3The likelihoods of Pradel (1996) and Link and Barker (2005) are different but yield 
the same parameter estimates when there is no loss on capture. See Link and Barker 
(2005) for details about the difference if there is loss on capture. 
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Capture-Recapture Methods 14 

It is referred to as an index because the expected abundance E(Nj) is used 

instead of the actual value Nj. Both Pradel (1996) and Link and Barker 

(2005) construct the likelihood conditional on u. instead of ~' with Link 

and Barker (2005) justifying this by showing that the distribution [u.l~] 

contains very little, if any, information about the identifiable parameters. 

Parameterizing in terms of per-capita birth rates has two advantages over 

the model of Schwarz and Amason (1996): 

1. The per-capita birth rate index is a more natural parameter for mod­

eling. It describes the demographic change due to birth and does not 

depend on aspects of either study design or sampling intensity. For this 

reason Link and Barker (2005) included a hierarchical model where the 

per-capita birth rate index and survival probabilities were correlated. 

Including models of this sort allow biologists to investigate interesting 

relationships between birth and survival as described in section 4.1. 

2. The model is specified in terms of identifiable parameters (Link and 

Barker 2005). 

However, as with the Jolly-Seber and CMAS models, we are unable to in­

clude random variables of interest, such as Nj, directly in the likelihood to 

be used for modeling. 

1.2.5 Dead Recoveries and Live Re-sightings 

In many situations dead recoveries and/ or live re-sightings occur outside of 

the sampling occasions. An example is in fisheries, where an angler might 

catch a fish and report the tag number. If the angler returns the fish after 

capture, the observation is a live re-sighting, otherwise it is a dead recov­

ery. The recoveries and re-sightings may continue well after sampling has 
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Capture-Recapture Methods 15 

finished. To account for this, we split the time after the end of sampling 

into periods of approximately the same length as the time between sampling 

periods. We denote the total number of re-sighting and recovery periods as 

k' . 

The model of Burnham (1993) includes only the information from dead 

recoveries. An additional vector of parameters r = (r1, ... , Tk') is required 

in the model, where Tj is the probability that an individual that has died 

between sample j and j + l is reported dead. 

The model of Barker (1997) allows live re-sightings as well as dead re­

coveries. As well as r, two additional vectors of parameters are required: 

R = (R1, ... ,Rk,) and R' = (R~, ... ,R~,), where Rj is the probability an 

individual that survived until j + l is re-sighted alive between sample j and 

j + l, and Rj is the probability that an individual that has died between 

sample j and j + l is re-sighted alive without being found dead. Other 

parameterizations are also available. For example, one can parameterize in 

terms of R, f = (!1, ... , fk,) and v = (v1, ... , vk'), where Ji is the prob­

ability an individual is either re-sighted or recovered between j and j + l 

given that they were alive in sample j and Vj is the probability that an indi­

vidual is re-sighted alive given they were either re-sighted alive or recovered 

dead between j and j + l. This parameterization can be used in fisheries 

where re-sightings and recoveries are obtained from anglers who catch fish 

and then decide whether to keep or return the fish. We use the R, f and v 

parameterization in chapter 9. 

The practical problem with having multiple sources of data is that it 

makes the likelihood, in particular, Xj, more complex than for the standard 

CJS model, for example, see Barker et al. (2004). The benefit, however, is 

that so long as the standard regulatory conditions hold for the likelihood, 
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then the additional data will increase the amount of information about the 

parameters of interest, at least asymptotically (Barker and Kavalieris 2001). 

Robust Design 

Pollock (1982) suggests a study design for open population analysis that is 

robust to unequal probability of capture. This so-called robust design brings 

together the best elements of both closed population and open population 

estimation into one model. There are k primary sample periods in which 

the population is assumed to be open. Then, within each primary period 

there are a further C secondary sampling periods in which the population is 

assumed closed4 . A graphical representation is given in figure 1.1. 

Primary 
Periods 

Secondary 
Periods 1 

1 

2 ... C 1 

2 k 

2 ... C 1 2 ... C 

Figure 1.1: Graphical description of the robust design as given in Pollock 
et al. (1990). 

Using the robust design allows us to choose closed population models 

such as model Mh for p. This relaxes the assumption that p is constant 

across individuals and makes the model robust to unequal capture prob­

ability. Many different versions of the robust design have been suggested 

and implemented, including combining it with other models such as the 

4 There need not be the same number of secondary periods in each primary periods. 
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multi-state model. 

1.3 Missing Data in Capture-Recapture Models 

A comparison of all the standard models described above reveals two com­

mon features: 

1. Interest is in the flexible modeling of the demographic processes such 

as survival probabilities and birth rates. 

2. Imperfect detection of individuals leads to missing data. All of the 

methods described above, with the exception of Bonner and Schwarz 

(2006), explicitly integrated out these missing components. Data aug­

mentation (Tanner and Wong 1987) is an alternative method for in­

corporating missing data where all missing data is included directly 

into the likelihood. Having the missing data available leads naturally 

to hierarchical models that explore relationships between demographic 

parameters. Missing data methods, in particular data augmentation, 

are explored in the next chapter. 
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Chapter 2 

Missing Data Methods 

The process by which the data go missing is often referred to as the miss­

ingness mechanism. Anytime we have any missing data, we must determine 

whether the missingness mechanism for the data is ignorable. If the miss­

ingness mechanism is not ignorable then we need to explicitly model the 

process by which the data went missing. 

To ascertain whether the missingness mechanism is ignorable we define 

y to be the matrix/vector of complete data, which is the data we would like 

to have observed, irrespective of whether we did or not. We also define an 

indicator I, where 

~;~ { 1 if Yij is observed 
, Vi, j. 

0 if Yij is missing 

We separate the data y into an observed component yobs and a missing 

component ymis such that y = (yobs, ymis). 
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2.1 Ignorability 

The missingness mechanism is non-ignorable if either: 

1. The distribution of I depends on ymis, 

[Ilymis, Yobs,¢], 

where <p are the parameters modeling the missingness mechanism and 

[x] denotes the probability density function for continuous x or prob­

ability mass function for discrete x. Consider an example where a 

survey was conducted to investigate the relationship between age and 

income of respondents. Suppose that all respondents were first asked 

for their age1 . Then all respondents were asked to specify their income 

if it was under $Z. The missing income data is non-ignorable because 

the process by which it goes missing depends on the unknown value 

of the income. 

2. The parameters used to model the data y ( denoted as 0) are also used 

to model I, that is q> = f (0). Note that if inference is conducted using 

Bayesian methods (see chapter 5), then the missingness mechanishm 

is also non-ignorable if q> and() are separate but not distinct2 (Gelman 

et al. 2004). 

If the missingness mechanism does not depend on the missing data values 

and q> and () are separate and distinct, then the missingness mechanism is 

said to be ignorable and I does not need to be included in the model. 

Ignorable missing data can be further classified as either missing at random 

1 For the sake of the example we assume that all participants answered all questions 
asked of them. 

2Distinct parameters are independent in their prior distribution. 
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(MAR) or missing completely at random (MCAR). Assuming that ¢, and () 

are separate and distinct, data are MAR if the missingness mechanism does 

not depend on the missing data values but does depend on the observed 

data values, 

[Ilyobs, ¢,]. 

Gelman et al. (2004) uses the survey for income and age above to. give an 

example of data MAR. As before, respondents were first asked for their age. 

Then only respondents under the age of Z were asked for their income. The 

missing income data is classified as MAR because the process by which it 

goes missing depends on observed data ( the respondents age) and not the 

underlying value of the missing data (the respondents income). 

Data are MCAR if the missingness mechanism does not depend on the 

data, 

[II¢]. 

In the survey for age and income, suppose we first ask respondents for their 

age. Then we flip a coin to decide whether or not to ask for their income. 

The missing income data is MCAR because the process by which the data 

go missing has nothing to do with either age or income. 

To show that the missingness mechanism for data MAR or MCAR is 

ignorable, first consider the case where the missingness mechanism depends 

on the missing data 

[Ilymis, Yobs, cp] . 

The joint distribution of inclusion vector I and the observed data is 

[yobs,Il(),cp] = j[yl()l[Ily,cp] dymis, 
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Missing Data Methods 21 

where () are the parameters of interest, As we are unable to move the 

missingness mechanism out of the integral ( as it involves ymis) any inference 

about () must include [I\y, ¢]. However, if the missing data are MAR then, 

[yobs' I[()' <P] = [II yobs' <P] J [y I eJ dymis 

= [I[ yobs' <P] [yobs I eJ. 

Now any inference about () need only include the term [yobs\e]. Therefore, 

as far as inference about () is concerned, the missingness mechanism is ig­

norable. The same process can be followed for data MCAR. 

2.2 Data Augmentation and Latent Variables 

Irrespective of whether the missingness mechanism is ignorable or not, the 

missing data itself needs to be specified and integrated out of the model. 

The standard approach is to explicitly integrate the missing data out of the 

model. However, there is an alternative approach called data augmentation 

where missing data is included in the model and integrated out as part of 

the model fitting procedure (Tanner and Wong 1987). Two of the commonly 

used algorithms for data augmentation are the EM algorithm and Markov 

chain Monte Carlo (MCMC) methods. 

Data augmentation need not be restricted to the inclusion of missing 

data. Any latent/unobserved variables can be included, whether they are 

natural to the model or not. For example, slice sampling (see section 5.2.2) 

is a MCMC simulation technique where a latent variable is included for the 

sole purpose of invoking a Gibbs sampler in order to improve convergence 

of the algorithm. 
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2.2.1 Difficulties of Working With Data Augmentation 

The key to data augmentation is specifying the latent variables in a way that 

will ensure rapid convergence of the computational algorithm used to fit the 

model. The problem is that the same model with a different expression 

for the latent variables can converge at different rates (Meng and van Dyk 

1997). Consider a hierarchical random effects model that can be written 

either as, 

where z is latent, or as 

X rv N(z, a-2
) 

z rv N(e, r/), 

X rv N(e + E, a-2
) 

Erv N(O, r/), 

where E is latent. Even though the two models are the same, the conver­

gence of the parameters in these two expressions can be drastically different 

(Papaspiliopoulos et al. 2003, Neal and Roberts 2005). While there are the­

oretical reasons why one parameterization will work better than the other 

for a given dataset,3 often the best practical approach is a time consuming 

one: chose one expression and if convergence is not satisfactory, try another 

expression. For this reason, the development of efficient computational al­

gorithms that improve the convergence, irrespective of the parameterization 

used, is an area of current research (van Dyk and Meng 2001). 

3 See Meng and van Dyk (1997), Papaspiliopoulos et al. (2003), Neal and Roberts 
(2005) for details. 
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2.2.2 Complete Data Likelihood 

We follow the notation of Gelman et al. (2004) and refer to the likelihood 

that must be used for inference as the observed data likelihood (ODL). This 

consists of the vector I and the observed data values4 , 

£o ( (), cp; Yobs, I) ex [yobs, II(),¢]. 

Including the missing data through data augmentation means we have the 

complete data y available for modeling. Again we follow Gelman et al. 

(2004) and refer to this as the complete data likelihood (CDL), 

£c(e, ¢; y,I) ex [y,Ile, ¢]. 

A simple example that compares the difference between modeling using (i) 

the observed data likelihood directly and (ii) the complete data likelihood 

is given in appendix B. 

Even though we are integrating out the missing data less efficiently, 

as we are integrating iteratively instead of explicitly, there can be a large 

advantage to working with the CDL. Often the CDL is in a form that is 

preferable to work with and has a natural factorization that the ODL does 

not. Essentially this is because we are modeling the data we would like to 

have observed instead of the data we have actually observed. This is the case 

when using data augmentation to obtain the complete data likelihood for the 

( open population) capture-recapture problem. The CDL presents the data 

that demographers would like to have in order to build hierarchical models 

to investigate demographic change. We are able to separate the nuisance 

capture component from the demographic processes of interest, such as birth 

4 Note that for ignorable missingness mechanisms we need not include I and¢. 
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and death. This allows the focus to be on building sensible and relevant 

scientifically driven models for examining relationships of interest instead of 

focusing on the complexities of obtaining the incomplete data. 
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Chapter 3 

Capture-Recapture Using 

Data Augmentation 

The first step in developing a framework for capture-recapture models using 

data augmentation is to incorporate standard models such as closed popula­

tion, CJS, JS and CMAS models. Once these models have been developed, 

we can begin to investigate hierarchical extensions. 

3.1 Closed Population Models 

The complete data for the closed population capture-recapture model is 

the complete set of capture histories for every individual ever available for 

capture, X. The matrix X comprises the capture histories for all individuals 

available for capture xobs and the capture histories for individuals we never 

saw xmis 

X = ( xobs ) . 

xmis 
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The component xmis is a matrix of zeros of unknown dimension. To over­

come this, we specify N, the total number of individuals ever available for 

capture as a parameter in the model, so that, conditional on N the ma­

trix of capture histories X is fully specified. A separate variable I that 

specifies whether the data are observed or missing is not included in the 

model because I= J(X). Therefore, the missingness mechanism is already 

accounted for through the capture histories X. 

The CDL for this problem is 

£c(p, N; X) oc [XJp, NJ 

where p is the matrix of capture probabilities. The joint distribution for 

X is the product of a series of Bernoulli distributions with a probability of 

capture Pij for individual i in sample j, 

NI N k 

[XI NJ . II II Xij (1 )1-X·· P, oc (N - u.)! Pij - Pij ,1. 
i=l j=l 

(3.1) 

The combinatorial term is included to account for the arbitrary ordering of 

individuals in the X matrix. In this case, the complete data likelihood in 

equation 3.1 is identical to the observed data likelihood used in equation 1.1. 

As described in section 1.1.1, models Mo, Mt, Mb, Mh, Mtb, Mth, Mbh and 

Mtbh are obtained by making assumptions about the capture probabilities 

Pij· 

A special case of model Mh is when the individual capture probabilities 

are assumed to be draws from a common probability distribution, 

Pi,.__,f(Op), i=l, ... ,N. 
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The parameters p are no longer parameters, but random variables. We 

supplement the complete data by p, which we include as latent variables 

using data augmentation. This means the CDL becomes 

Lc(Op,'N;X,p) ex [X,p!Op,'N] 

= [Xlp, 'N][p!Op, 'NJ. 

The component [Xlp, 'NJ is specified in equation 3.1 with the constraint 

Pij = Pi, i = 1, ... , 'N, j = l, ... , k. 

The component [pl Op, 'NJ is the common distribution for p, 

N 

[pl Op, 'NJ = II[pilOp], 
i=l 

[pi!Op] =f(Op)-

This model can also be represented using a directed acyclic graph (DAG). 

In a DAG, data and parameters are specified as nodes, with the directed 

arrows joining them specifying a relationship between the nodes. A single 

lined arrow denotes a stochastic conditional probability relationship and a 

double lined arrow denotes a deterministic relationship. The direction of 

the arrow determines the direction of relationship between the nodes. For 

example, in figure 3.1 the conditional probability of X depends on 'N and p. 

DAGs are acyclic because starting at any one node we are unable to find a 

path that returns to that node. The DAG for model Mh is given in figure 

3.1 with an example of fitting this model in section 7.1. 
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Figure 3.1: A DAG for a model Mh, where capture probabilities are from a 
common distribution with parameters Op. 

3.1.1 Model Mh With Covariates 

An extension to model Mh is when there are individual-specific covariates 

that explain the difference in the capture probabilities, 

logit(pi) = z,, 

where 1 = ('yo, 'Y1)' is a vector of parameters and 

Z= 

1 z1 

1 Z2 

1 ZN 

where Zi is the value of the covariate1 for individual i. The values Zi, i = 

1, ... , u. are observed with Zi, u. + 1, ... , ~ unobserved. In order to fit this 

model Huggins (1989) conditions on u. in order to obtain inference about 

~' as described in section 1.1.2. This method imposes hidden assumptions 

1 This model can easily be extended to having more than one covariate. 
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about the covariate values for the unseen individuals. A better approach 

is to explicitly state the assumptions about the unknown covariate values 

through a model for z. 

The complete data for this model consist of two components: 

1. The complete set of capture histories for every individual ever available 

for capture, X. 

2. The complete vector of covariate values z. As Zi, u. + 1, ... , ~ are 

unobserved we must include these using data augmentation. We model 

the covariate values z as being drawn from a common distribution with 

parameters (} z, 

Zi "-' g(Oz). 

A separate variable I that specifies whether the covariate values were ob­

served or missing is not included in the model because I= f(X). Therefore, 

the missingness mechanism is already accounted for through the capture his­

tories X. 

The CDL for this model is 

£c ( (} z, '"Y, ~; X, z) ex: [ X, z IO z, '"Y, ~] 

= [Xlz, '"Y, ~][zlOz, ~]. 

The component [Xlz, '"Y, ~] is specified in equation 3.1 with 

Pij = expit(z7), i = 1, ... , ~' j = l, ... , k. 
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The component [zlOz, ~] is the common distribution for the covariate values, 

l'( 

[zlOz, ~] = Il[zilOz], 
i=l 

[zilOz] =g(Og). 

The DAG for this model is given in figure 3.2 with an example of fitting this 

model in section 7.2. 

Figure 3.2: A DAG for a model Mh with individual specific covariates z. 
The covariates are modeled in terms of parameters Oz. 

In some circumstances z may be completely unknown, in which case 

we can model the entire z vector as a latent variable (Agresti 1994). For 

example, we could model the capture probabilities as a sample from a finite 

mixture distribution (Pledger 2000) with the unknown values of Zi denoting 

group assignment. 
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3.1.2 Splitting the capture history 

In order to generalize this framework to open population studies, it is helpful 

to consider the capture history in two components: Xi, the capture history 

up to and including first capture, and X2 the capture history subsequent to 

first capture. Note that X1 and X2 contain all the information about X. 

For a closed population the likelihood contribution for each piece is, 

xii l{ J; 
[X I l 1,. IT IT Xlij 1-X .. 

lP,N = (N-u.)! Pij (1-Pij) 1tJ, 

i=l j=l 
u. k 

[X2IX1,Pl=IT IT Pt2ij(l-Pij)l-X2ij, 
i=lj=J;+l 

where Ji is the sample of first capture and (for convenience) takes the value 

k if an individual was never caught. 

This factorization is also convenient for closed population models with 

behavioural effects. For example, the likelihood for model Mb can be written 

as, 

N! l{ J; 
[X1 IP, NJ = IT IT pXlij (1 - p)l-X1ij 

(N-u.)! ' i=lj=l 
u. k 

[X2IX1 ,c] = IT IT cX2;i(l- c)l-X2;i. 
i=lj=J;+l 

3.2 Open Population Models 

The extension to open population models is achieved through the introduc­

tion of covariates, such as death, birth and movement that relax the closed 

population assumptions. 
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3.2.1 CJS 

Introducing the interval censored time of death, d, defined in section 1.2.1 as 

a covariate using data augmentation provides an alternative description of 

the CJS model2 . The traditional approach (in section 1.2.1) is to explicitly 

sum over all of the unknown covariate values to remove them from the model. 

This is done through the function Xj specified in equation 1.2, 

Xj = (1 - Sj) + Sj(l - PH1)xj+1, 

where Xk = l. Including the time of death using data augmentation means 

we no longer need to specify Xj and explicitly integrate over the values. 

Instead the computational algorithm we choose, such as the EM algorithm 

or MCMC, integrates over the missing data as a part of the procedure. 

In the same manner that we split the capture matrix X into X1 and X2 

we also split the death matrix d into d1, the information about mortality 

up to an including first capture and d2 the information about mortality 

subsequent to first capture. As we are conditioning on first capture, we do 

not use d1 for the CJS model. 

To account for loss on capture we specify the vector i. If li = 0 then 

individual i was lost on capture, with li = l otherwise. All individuals with 

li = 0 are known to have di£.; = l as they died at the time of last capture. 

The complete data for the CJS consist of two components: 

1. The capture histories subsequent to first capture X2 

2. The partially observed death covariate subsequent to first capture d2 

A separate indicator variable I that specifies whether the data in d2 data is 

2 Note that this description is a special case of Dupuis (1995), who described the 
multistate model using data augmentation. 
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observed or missing is not included in the model because I= J(X2). Even 

though we may only be interested in survival probabilities (and not capture 

probabilities) we must include a model for X2 because this component is 

modeling the non-ignorable missingness mechanism of d2. 

The CDL for the CJS model is 

£c(P, S; X2, d2, Xi, i) ex [X2, d2[P, S, Xi, i] 
(3.2) 

= [X2[P, d2, X1l[d2[S, Xi, i] 

where p = (P2, ... ,Pk) and S = (S1, ... , Sk-1). We condition on X1 in 

order to condition on the first capture of each individual. We also condition 

on 1, because we do not want individuals lost on capture to contribute to 

mortality rates. If desired we could also model the loss on capture, however, 

in most cases this is a nuisance component of the model. 

The survival component of equation 3.2 is further factorized as 

N 

[d2[S, X1, i] = l1[d2i:[S, Xi, Lil, 
i=l 

[d2i,1s, xi, Lil =M N(1, ei(ii)), 

( 

.£,;-1 

ei(ii) = (1 - sJJ, sJJ1 - sJi+1), .... , II sh(1 - s.e,;l\ 
h=Ji 

.£,; k-2 k-1 ) 
ii Il sh(1 - S.e,;+1), ... , ii Il sh(l - sk-1), ii Il sh . 

(3.3) 

where d2i: is the ith row of the matrix d2. Note that individuals lost on 

capture do not have a (1- Sj) term contributing to the likelihood. Through­

out the rest of the model formulation in chapters 3 and 4 we ignore loss on 

capture for readability, noting that this formulation can incorporate loss on 
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capture unless otherwise specified. 

The distribution for the capture matrix X2 is largely the same as in 

model Mt for a closed population. The exception is that individuals are 

now only available for capture until the interval-censored time of death, 

u '.Di 

[X2Jd2,P, X1] ex: II II Pf2ij (1- Pj)l-X2ij' 

i=l j=J'i+l 

where '.Di is the last sample in which individual i was alive. 

The DAG for this model is specified in figure 3.3. 

Figure 3.3: A DAG for the CJS model with loss on capture i. 

(3.4) 

The factorization of the CDL in equation 3.2 shows a benefit of the 

data augmentation approach. We are able to separate the likelihood into a 

component for mortality and a component for capture conditional on death. 

This is not only the natural factorization of the data, but it also allows us to 

ignore the capture component when constructing the conditional likelihood 

for the mortality process. Another benefit of data augmentation is that we 

do not need to worry about how to average over the missing values of d2 

when constructing the conditional likelihood components. 
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3.2.2 The Jolly-Seber Model 

Allowing for birth is an important extension to the CJS model. Jolly (1965) 

and Seber (1965) independently proposed to extend the CJS model through 

modeling the column sums of Xi, 

u. 

Uj = I:Xiij, j = l, ... ,k 
i=i 

where Uj is the number of unmarked individuals observed in sample j. 

The complete data for this problem is identical to the complete data for 

the CJS except now we also include the capture histories up to and including 

first capture, Xi. The CDL for the JS model is, 

£c(P, S, U; X2, d2, Xi) ex [Xi, X2, d2JP, S, U] 

ex [Xi JP, U] [X2JP, d2, Xil[d2JS, Xi] 
(3.5) 

'"-..,,--' ---------
First Captures CJS component 

where U = (Ui, ... , Uk), with Uj being the total number of unmarked indi­

viduals in the population available for capture at sampling occasion j. 

The component for first captures from equation 3.5 is 

where 

k 

[Xi JP, U] = Il[ujJPj, Uj] 
j=i 

[ujJPj, Uj] = Bin(Uj,Pj), j = l, ... , k. 

(3.6) 

Even though both the index Uj and the probability Pj are unknown, the 

CJS component provides information that makes Pj identifiable for j = 

2, ... , k - l, which in turn makes Uj, j = 2, ... , t -1 identifiable. 

The DAG for this model is given in figure (figure 3.4). 
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Figure 3.4: A DAG for the JS model, where u = (u1, ... ,uk)-

Values of demographic interest, such as Nj, the total population size in 

sample j, can be obtained from deterministic functions of the parameters, 

Nj = Uj +Mj 

j-1 { u. } 

Mj = ~ Uh-;dih 

j = 1, ... ,k (3.7) 

where Mj is the number of marked individuals in the population immediately 

before sample j. The DAG for this extension is in figure 3.5. 

As mentioned in section 1.2.2, the values Uj are not particularly inter­

esting to a biologist. They include both the sampling intensity as well as 

aspects of demographic interest, such as birth. The biologist has very little 

interest in further modeling of the Uj random variables. Therefore, mod­

els are required that parameterize in terms of more biologically interesting 

birth parameters. One such extension to the JS model is examined in section 

4.3.1. 
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Figure 3.5: A DAG for the JS model including the population size in each 
sample N = (N1, ... , Nk)-

3.2.3 CMAS 

An alternative to including birth through modeling u = ( u1 , ... , uk) was 

considered by Crosbie and Manly (1985) and Schwarz and Arnason (1996). 

They started with a closed population model which they relaxed in two 

ways: 

1. They relaxed the assumption that all individuals remain available for 

capture until the end of the study. We express this through the intro­

duction of a death covariate d as in the CJS. 

2. They relaxed the assumption that all individuals are available for cap­

ture at the beginning of the study. We express this through the intro­

duction of a birth covariate b. The birth covariate has value bij = 1 

if individual i was born between sample j and j + 1 and bij = 0 oth­

erwise. The value bio = 1 is taken to mean that an individual was 



.,, 

\ 

·" 

c~ 

" 

j 

Capture-Recapture Using Data Augmentation 39 

alive at the beginning of the study3 . As with the death covariate the 

covariate b is partially known. We know that an individual was not 

born after the time in which we first observed it (the sample of first 

capture Ji so the values bij for j =Ji, ... , k - l are known to be 0. 

The remaining bij values are missing (subject to the constraint that 

Lj:t bij = 1). 

The complete data for the CMAS model consists of three components: 

1. The capture histories X = (Xi, X2) 

2. The death covariate d = (di, d2) 

3. The birth covariate b 

Separate variables Ib and Id that specify whether the data in b and dare 

observed or missing are not included in the model because Ib = f(X) and 

Id= f(X). This means that even though we may only be interested in birth 

rates and survival probabilities we must also include a model for X because 

this component is modeling the non-ignorable missingness mechanisms of b 

and d. 

As with the closed population models we include N, the total number of 

individuals ever available for capture, as a parameter in the model as we do 

not know the dimension of X. 

The CDL for the CMAS model is, 

£c(S,p,(3,N;X,b,d) ex [X,d,blp,S,(3)~] 
(3.8) 

= [Xlp, d, b, Nl[dlS, b, NJ [blf3, NJ, 

where (3 = (/30, ... , f3k-i) are the birth parameters with the constraint 

Lj /3j = l. This factorization separates the joint likelihood into the natural 

3 This introduces the restriction that I:;;:t b;j = l. 
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ordering of birth, then death conditional on birth, then capture conditional 

on birth and death. 

The capture component is 

N '.D; 

[X IP, d, b, ~] = II II p:ij (1 - Pj) 1-X;j. (3.9) 
i=l j=23;+1 

This is identical to the representation of capture under model Mt except 

that individuals are only available for capture from the time of birth until 

the time of death. 

The mortality component is 

N 

[dlS, b, ~] = II[di:lb, SJ, 
i=l 

[di: lb, SJ = M N(l, f.i), 

( 

k-2 k-1 ) 
f.i = (1 - s23;+1), s23;+1 (1 - s23;+2), ... , II sh(1 - sk-1), II sh . 

h=23;+1 h=23;+1 

(3.10) 

Note that we assume that an individual cannot die in the same period that it 

was born. Incorporating additional assumptions or different data can relax 

this assumption. For example, Crosbie and Manly (1985), Schwarz et al. 

(1993a) and Schwarz and Amason (1996) introduce assumptions to allow 

individuals to die before they are available for capture. Here, we exclude 

such individuals from the definition of~-

The birth component is 

N 

[bl/3,~] = II[bi:l/3], 
i=l (3.11) 

[bi:J/3] = MN(l,(3). 
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This factorization allows us to focus on writing sensible and interesting 

models for birth and survival without worrying about (i) the model for the 

capture process or (ii) how to average across the missing band d values. 

The DAG for this model is in figure 3.6. 

Figure 3.6: A DAG for the CMAS model. 

As with the Jolly-Seber model we are able to obtain the population size 

in each sample deterministically from b, di and d2, 

~ (j-i j-i ) 

Nj = L L bih - L dih , j = 1, ... , k. i=i h=O h=i 

(3.12) 

The DAG for this extension is in figure 3.7. 

Figure 3. 7: A DAG for the CMAS model including population size in each 
sample N =(Ni, ... , Nk)-
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An alternate factorization of the CDL in equation 3.8 is 

Lc(S,p, (3, 'N; X, b, d) 

(3.13) 
ex: [X1 Jp, b, di, 'Nl[d1 JS, b, 'Nl[bJ(3, 'NJ [X2JP, d2, X1)[d2JS, X1) 

First Capture CJS component 

This factorization specifies the CMAS model as a CJS model with additional 

components that model first capture through introduction of the birth co­

variate. 

As mentioned in section 1.2.3, the CMAS model has several problems. 

As with the JS model one of those is that the birth parameters are not 

natural to a biologist, as they do not separate aspects of study design and 

the demographic process of interest. An extension of the CMAS to more 

natural birth parameters is examined in section 4.3.2. 
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Chapter 4 

Extending the Hierarchy 

In this chapter we extend the framework developed in the previous chap­

ter. In particular we look on hierarchical extensions motivated by additional 

data, covariates or assumptions, with a focus on models that explore demo­

graphic relationships of interest. 

4.1 Random effects models 

In many situations we may wish to assume that parameters in the model 

are themselves drawn from a common probability distribution function. We 

refer to these as random effects models. There are three popular motiva­

tions for random effects models: (i) parsimony, (ii) prediction (iii) specifying 

relationship between parameters . 

Consider a CJS model where the focus is on estimating survival probabil­

ities with no potential covariates. Standard approaches give two alternatives 

for the survival probabilities (i) time specific and (ii) constant through time. 

Suppose the second model does not fit the data well, however, we feel that 

the first model is too general. Including a random effect achieves parsimony 

through assuming that the survival probabilities are time specific, but they 
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are sampled from some common probability distribution function. This ef­

fectively reduces the number of survival parameters from k - l to m, where 

1:<Sm:<Sk-1. 

Another example is where survival is assumed to depend on time-varying 

covariates. The standard approach of Lebreton et al. (1992) treats survival 

as a deterministic function of the covariate. However, even if the relationship 

is statistically significant it may not provide an adequate fit of the data. 

Random effects allow us to include additional variability in the regression 

relationship to account for the over-dispersion. More details about including 

covariates are given in section 4.2. 

To show how random effects are used for prediction consider a CMAS 

model where the focus is in predicting population size forward 8 years. As 

before, suppose that a constant survival rate is unrealistic and does not fit 

the data well. However, it is impossible to predict time specific survival 

probabilities 8 years into the future without additional assumptions. One 

such assumption is that survival probabilities are sampled from a common 

probability distribution with location parameter µsand scale parameter rs. 

Including the survival probabilities as latent variables using data augmen­

tation means that the CDL for the CJS model becomes 

Lc(µs, rs,P; X2, X1, d2, S) ex [X2IP, d2, X1l[d21S, X1] [Slµs, rs] . 
----------- '--v-" 

CJS Component Random effect 

The terms [X2JP, d2, X1] and [d2JS, X1] are the usual CJS components spec­

ified in equations 3.4 and 3.3 with the term [SJµs, rs] specifying the random 

effect for S. A common random effects model for survival is that the logit 
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of the survival probabilities is distributed as a normal distribution, 

k-1 

[SJµs,Ts] ex Il[Sjlµs,Ts] 
j=l 

[SjJµs, Ts]= logitN(µs, Ts) 

45 

(4.1) 

The DAG for this model is given in figure 4.1. As usual, we choose our 

computational algorithm so that the latent variables S are integrated out 

of the model as part of the model fitting process. 

Figure 4.1: A DAG for the CJS model where the logit of the survival prob­
abilities are assumed to be samples from a N(µs, Ts) random effects distri­
bution. 

More complex random effects distributions can be specified that often in­

clude relationships between parameters. Johnson and Hoeting (2003) spec­

ified the logit of the survival probabilities in a CJS model to have auto­

regressive errors. Link and Barker (2005) specified a multivariate random 

effects distribution for the per-capita birth rate index and the logit of sur­

vival in the model from section 1.2.4. They assumed that the survival prob­

abilities and per-capita birth rate indices for each given sampling period 
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were correlated, 

where 

( 
logit(Sj) ) rv MV N (µ, :E) ' 

log(ryj) 
j=l, ... ,k-l, 

µ = ( µs ) ' :E = ( cr1 pcrs
2
cr11 ) 

µ17 pcrscr17 cr17 

46 

If p > 0 then this suggests that survival is relatively high/low when fecundity 

is relatively high/low. This suggests that there will be "good" years in which 

individuals not only have higher survival probabilities but are also able to 

put effort into reproduction. Likewise, there will also be "bad" years when 

survival probabilities and fecundity are low. 

4.2 Including Covariates 

Often capture-recapture data is collected with additional covariates, z, that 

are assumed to affect the parameters in the model. The covariates z can 

either be fully observed or partially observed. 

4.2.1 Fully Observed Covariates 

Consider a CJS model where both the capture and survival probabilities are 

assumed to depend on some fully observed covariate z that varies through 

time but is constant between individuals. Lebreton et al. (1992) treats the 

parameter as a deterministic function of the covariate, for example, 

logit(Sj) ='Yo+ 'YlZj, j = l, ... , k - l, 
(4.2) 

logit(pj) =0:0 + 0:1zj, j = 2, ... , k. 
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The CDL for this model is 

Lcb, a; X2, Xi, d2, z) ex: [X2la, z, d2, X1l[d2I,, z, X1] 

where 1 = ('Yo, 11) and a= (ao, a1). The component [d2I,, z, X1] is speci­

fied in equation 3.3 with 

Sj = expit('Yo + ,1zj), j = l, ... , k - l. 

The component [X2la, z, d2, X1] is specified in equation 3.4 with 

Pj = expit(ao + a1zj), j = 2, ... , k. 

The DAG for this model is in figure 4.2. 

Figure 4.2: A DAG for the CJS model where the covariate z fully explains 
capture and survival probability. 

The model specified in equation 4.2 assumes that all variability in Sj 

and Pj is explained by the covariate. As described in section 4.1, this is a 

problem if either the capture or survival probabilities are over-dispersed, as 

even if a1 or ,1 is significant, the model may not fit the data adequately. 

A more appropriate model accounts for any over-dispersion in Pj and Sj 
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by using data augmentation to include the deviations f.pj and f.Sj, which 

themselves are drawn from a specified distribution. The CDL for this model 

is 

Le(,, a, Ts, Tp; X2, X 1 , d2, Es, Ep, z) 
(4.3) 

ex: [X2la, Ep, z, d2, X1l[d2I,, Es, z, X1][EpiTp][EslTs] 

where Es= (cs1, ... , f.Sk-1) and Ep = (cp2, ... , f.pk)- The component [X2la, Ep, z, d2, X1] 

is specified in 3.4 with 

Pj = expit(ao + 0:1Zj + Epj), j = 2, ... , k. 

The component [d2IS, X1] is specified in equation 3.3 with 

Sj = expit('-yo + ')'1Zj + f.Sj), j = l, ... , k - l. 

One set of possible random effects distributions is 

k-1 

[EsiTs] ex: IJ[csjlTsl, 
j=l 

[csjlTs] =N(O, Ts), 

k 

[EpiTp] CX: IJ[tpjlTp], 
j=2 

[EpjlTp] =N(O, Tp)• 

The DAG for this model is given in figure 4.3. 

4.2.2 Partially Observed Covariates 

(4.4) 

Covariates may not be fully observed for a number of reasons. We focus 

on situations where the covariate is individual-specific and time-varying. 
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Figure 4.3: A DAG for the CJS model capture and survival probabilities are 
modeled as a random effect which depends on the fully observed covariate 
z. 

This means that we are only able to observe the covariate value when the 

individual is caught, with the value missing otherwise. 

The missingness mechanism for the covariates is not ignorable because 

whether the covariate is observed or not depends on the value of the missing 

covariate through the survival rates, birth rates and capture probabilities. 

However, as before, we do not need to separately include an indicator func­

tion I to model the missingness mechanism of z because I= f(X). 

Even though we do not need to include I, a model for the missing values 

of z is required. In most, if not all situations, we model both the observed 

and missing values of the covariate. To assist in the model formulation, 

we separate the covariate values z into a component z1 that has informa­

tion on z up to and including first capture for each individual and z2 that 

has information on z after first capture. To include an individual-specific 

covariate z into a CJS model, we must (i) include the missing values of 

z into the model using data augmentation and (ii) specify a model for z2 

in terms of parameters \Ji. A consequence of z being individual-specific is 
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that any parameters that depends on it, will also be individual-specific. To 

ensure identifiability, any random effect can only vary across time, with in­

dividual differences fully explained by z. The CDL for a CJS model with a 

time-varying individual-specific covariate z that affects capture and survival 

probabilities is 

Le(,, a, Ts, Tp, \[I; X2, Xi, d2, Es, Ep, z) 
(4.5) 

ex [X2la, Ep, z, d2, X1l[d2I,, Es, z, X1l[EplTpl[EslTs][z2l\[1, z1] 

The component [X2la, Ep, z, d2, X1] is the individual-specific analogue of 

equation 3.4, 

with 

u '.D; 

[X2ld2,P, X1] ex II II p:2ij (1 - Pij)l-X2;j' 
i=l j=J;+l 

Pij = expit(ao + a1Zij + Epj), i = 1, ... , u., j = 2, ... , k. 

(4.6) 

The component [d2I,, Es, z, X1] is the individual-specific analogue to equa­

tion 3.3, 

~ 

[d2IS, X1] = II[d2i:IS, X1], 
i=l 

[d2i:IS, X1] =MN(l, f:.i), 

( 

k-2 k-1 ) 

f:.i = (1 - siiJ, sii;(l - siJ;+1), ... , II sih(1 - sik-1), II sih 

h=J;, h=J; 

(4.7) 

with 

Sij = expit('Yo + 11Zij + ESj), i = 1, ... ,u., j = l, ... , k -1. 
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The components [EpiTp] and [EslTs] are specified in equation 4.4. The addi­

tional component [z2I\Ji, z1] models the unknown values of the covariate. In 

the next section we show how various models for the covariate z2 give rise 

to different capture-recapture models. The DAG for this model is in figure 

4.4. 

The difference between the CDLs in equations 4.5 and 4.3 and the DAGs 

in figures 4.4 and 4.3 show there is very little difference between including 

fully observed and partially observed covariates. The basic model structure 

is the same with the only differences being that the parameters become 

individual-specific and an additional layer is required to model the missing 

covariate values. 

Figure 4.4: A DAG for the CJS model where capture and survival proba­
bilities are modeled as a random effect which depends on the covariate z. 
The covariate values after first capture z2 are only partially observed and 
modeled in terms of parameters \Ji. 
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Categorical Covariates 

In some situations the partially observed covariate z is categorical. The 

multistate model is obtained when the model for categorical z2 is assumed 

to be a first order Markov chain (Schwarz et al. 1993b, Dupuis 1995), 

where 

u. k 

[z21'11, z1] ex: II II [zijl'11, Zij-1], 
i=lj=J;+l 

nz nz 

[Zij+1l'¥,Zij] CX: II II wfilij+1=l)I(z;j=h)' 

h=l l=l 

(4.8) 

where 'Yjkl = Pr(Zij+l = llzij = h), nz is the number of possible "states" 

and :Z:::::z 'Yjhl = 1, Vj, h. 

Dupuis (1995) also specified the multistate model in terms of the CDL 

and fitted the model using MCMC methods. Dupuis (1995) did not include 

the covariate d but treated death as an additional absorbing state of the 

covariate z. Although this changes the latent structure of the covariates z 

and d, the model is the same. 

We are not forced into assuming that z2 is a first order Markov chain. 

We can extend the model to a second or higher order Markov chain (Brownie 

et al. 1993), or we can model z2 using any other model that is appropriate. 

If we include first captures then we also need to specify the model for 

the covariate values from the time of birth until first capture. If we assume 

the covariate values are a first order Markov chain we need to model the 

covariate values in the first period after birth separately from subsequent 

periods, 
J; 

[z1l1r,'11,b,~] = [zi~;+1l1r,~] II [ZijJW,zij-1] 
j=~;+2 

where 1r are parameters used to describe initial allocation into a state. A 
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possible model for the covariate in the period after birth is, 

nz 

[ I l II I(zi'13-+1=h) . 
Zi\!\+l 1r, ~ = 7fIB;+lh ' i = 1, ... '~ 

h=l 

where Kjh = Pr(Zij = h[bij-l = 1) with the constraint Lh Kjh = l, Vj and 

J(-) is the indicator function. 

The component [zij ['11, Zij-1], j = 123i + 2, ... , Ji is assumed to be the 

same as the model specified in equation 4.8. 

Availability for capture 

Availability is a commonly used partially observed categorical covariate 

for describing movement in and out of the study population (Jolly 1965, 

Seber 1965). We can express availability of capture through the covariate z, 

with Zij = l if individual i is available for capture in sample j and Zij = 0 

otherwise. 

Three common assumptions about movement are first order Markovian 

emigration, random emigration and permanent emigration (Barker 1997). 

First order Markovian emigration is when movement between the time of 

sample j and j + l depends only on the covariate for individual i at time of 

sample j. The transition matrix '11 j for Markovian emigration is, 

l 1-F'. F' l Wj= 1 1 
, j=l, ... ,k-l 

l-Fj Fj 

where 
p. 

J Pr(zij+l = l[zij = 1) 

F1 = Pr(zij+l = l[Zij = 0) 

Random emigration and permanent emigration are special cases of Marko­

vian emigration. Under random emigration the movement probability does 
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not depend on the previous value of the covariate, that is, Fj = Fj. Under 

permanent emigration, once an individual becomes unavailable for capture, 

it can never be available again, that is Fj = 0. 

Permanent Emigration 

Permanent emigration is assumed in most models that include first cap­

tures, (Jolly 1965, Seber 1965, Schwarz and Amason 1996, Link and Barker 

2005). Averaging across the various combinations for b, d and z for each 

capture history reveals that the parameters Sj and Fj are confounded and 

there is not enough information to separately estimate birth, movement and 

survival parameters prior to the first capture. The confounding of Sj and 

Fj shows that we are unable to distinguish between those individual who 

emigrate (permanently) and those who die. 

The standard approach is to not include the covariate z but combine 

(i) birth and immigration and (ii) death and emigration. This changes the 

meaning of both b and d. The value bij = 1 means that individual i was 

either born or immigrated into the population between sample j and j + 1 

with bij = 0 otherwise. The value dij = 1 means that individual i either died 

or emigrated out the population between sample j and j + 1 with dij = 0 

otherwise. As a result, the meanings of the parameters change to reflect the 

changes in the meaning of b and d. In general we parameterize in terms of 

qJj = SjFj, where 1 - </Jj is the probability that an individual either died or 

emigrated out of the population between sample j and j + l. 

First order Markovian Emigration 

Without strong assumptions, first order Markovian emigration is not iden­

tifiable unless more complex study designs are used, such as the robust de­

sign, or models incorporating different types of re-encounter data. Even 
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with these designs, additional constraints about the time-specific covariate 

parameters, Fj and F5 are required. One sufficient constraint is that move­

ment parameters are fixed through time, Fj = F and F5 = F' (Barker et al. 

2004). A further problem is that there is not enough information to sep­

arate the birth parameters from the allocation probabilities 7fjl· Possible 

solutions include gathering different information that can be used to sepa­

rate the two parameters or assuming that all individuals are born unavailable 

( or available) for capture, 1r jl = 0 ( or 7f jl = 1). The assumption 7f jl = 1 

is algebraically equivalent to combining individuals being born available for 

capture with immigrants becoming available for capture for the first time. 

Random Emigration 

Under random emigration Fj is confounded with PHl (Burnham 1991). 

The standard approach is to not include z but instead consider the identi­

fiable parameter Pj+l = FjPj+l, the joint probability of being available for 

capture and caught in sample j + 1. Including the first captures means that 

7fjl is also confounded with PHl · As with Markovian emigration, one possi­

ble solution is to assume all individuals are born unavailable ( or available) 

for capture with 7f jl = 0 ( or 1r jl = 1). Another possible solution is to assume 

that initial allocations are the same as subsequent movement probabilities, 

that is, 7fj1 = Fj (Barker 1997). Under this assumption the algebraic struc­

ture for the model is identical to that of permanent emigration described 

above, with the only difference being the meaning of the parameters in the 

model. 
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Continuous covariates 

The inclusion of individual-specific time-varying continuous covariates is 

very difficult using standard models because we must explicitly integrate 

out the missing values of continuous z, as mentioned in section 1.2.1. How­

ever, the CDL for continuous z is identical to the CDL for categorical z. 

The only differences in the model specification are in (i) the model spec­

ified for z and (ii) describing how the parameters depend on z. Bonner 

and Schwarz (2006) assumed that both survival and capture probabilities of 

meadow voles deterministically depended on body weight z. They used the 

CDL 

.Cc(,, a, w; X2, X1, d2, z) 

ex [X2la, d2, z, X1l[d2I,, z, X1][z2IW, z1] 

The capture component [X2la, d2, z, X1] is specified in equation 3.4 with 

Pij = expit(ao + a1Zij), j = 2, ... , k. 

The survival component [d2i,,z,X1] is specified in equation 3.3 with 

Sij = expit('Yo + ')'1Zij), j = 1, ... , k -1. 

Bonner and Schwarz (2006) assumed that individual weight changed through 

time according to a Wiener process with drift, 

u. k 

[z2IW,z1] oc II II [zijlW,Zij-1] 
i=lj=J;+l 

[Zij+liW,Zij] =N(Zij + W1j, W2) 



,, 

<r 

' 

" ,, 

l, 

', 

~ 

.., 

'< 

:< 

'\ 

Extending the Hierarchy 57 

The parameter iir lj is the mean weight change in the population between 

sample j and j + l. 

In section 6.4 we discuss fitting this model using WinBUGS and in chap­

ter 9 we fit a capture-recapture model for rainbow trout where individual 

body length is a continuous covariate. 

Uncertain Covariate Values 

Often the covariates that we observe are uncertain. We do not wish to use 

the corrupted observed covariate z in our models, so we include the true 

covariate value z' into the model using data augmentation and specify: 

1. A model describing the corruption of z from the true value z'. 

2. A model for the true covariate values z'. 

A necessary component of the model is either having the data or assump­

tions that make the modeling of the corruption process is identifiable. The 

multi-event model of Pradel (2005) is obtained when the covariate value is 

categorical. 

4.3 Using latent variables 

One of the advantages of the data augmentation approach is that the latent 

variables are available in the model to be used. They can be used in any way 

so long as the rules of conditional probability are obeyed. In this section we 

develop extensions to the capture-recapture model where the latent variables 

are used (i) to define more natural birth parameters and (ii) as a covariate. 
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4.3.1 Extension of JS Model to Include Birth Parameters 

We can make use of latent variables to re-parameterize the JS model from 

section 3.2.2 to include biologically interesting birth parameters. The key 

step is recognizing that 

Uj = u;_1 + Bj-1, j = 2, ... , k (4.9) 

where u;_ 1 is the number of individuals that were unmarked immediately 

after sample j-1 and survived until j, and Bj-1 is the number of individuals 

that were born between samples j - 1 and j. The CDL for the standard 

Jolly-Seber model in equation 3.5 is extended to include hierarchical models 

for u; and Bj, factored in the natural order of events in time, 

Cc(P, S, r,; X2, d2, Xi, U', B) 

k k-1 
ex [u1IP1, U1] II[ujlPj, u;_1, Bj-1] II [u;1sj, U1:j, d2:(l:j-l), Bj-1, u;_1] X 

j=2 j=l 

k-1 
II [Bjl'/Jj, u1:j-1, d2:(1,j-1), Bj-1, u;_1][X2IP, d2, X1l[d2IS, X1] 
j=l 

(4.10) 

where U' = (U{, ... , UL1), B = (B1, ... , Bk-1) and rJ = (171, ... , '/Jk-1). 

The components [u1 IP1, U1] and [uj !Pi, u;_1 , Bj-1] are specified in equa­

tion 3.6, 

[u1IP1, U1] = Bin(U1,P1) 

[uilPi, u;_1, Bj-1] = Bin(Uj,Pj), j = 2, ... , k 

with Uj obtained from equation 4.9 for j = 2, ... , k. 

We assume that all unmarked individuals in the population immediately 
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after the jth sampling period survive until sample j + 1 with probability Sj. 

This gives, 

[u;1sj, U1,j, d2:(l:j-l), Bj-1, u;_1] = Bin(Nj -Mj -Uj, Sj), j = 1, ... 'k-1 

(4.11) 

where Bo= U1, U0 = 0 and 

Nj=Uj+Mj 

j-1 { u } 
Mj = E Uh-;d2ih 

j = 1, ... ,k. (4.12) 

The value Nj is the number of individuals alive at time of sample j and Mj 

is the number of marked individuals in the population immediately before 

the jth sample. 

We choose to model the number of births into the population between 

sample j and j + 1 as a Poisson random variable. This gives, 

[Bj JTJj, u1,j-l, d2:(l:j-l), Bj-1, U5_1] = Pois( 7JjNj), j = 1, ... , k - 1, 

where 
E(Bj) . 

7]j = ---, J = 1, ... , k - 1 
Nj 

is the per-capita birth rate with Nj given in equation 4.12. We choose to 

parameterize in terms of per-capita birth rates as these are natural birth 

parameters, The value 7Jj is the expected number of new individuals born 

between samples j and j + 1 for every individual alive in sample j. They do 

not depend on any aspect of the study design1 and can be used to model the 

changes in population dynamics. The per-capita birth rates '17 are similar 

1 Except for determining the relevant population. 
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to the per-capita birth rate indices 17' considered by Pradel (1996) and Link 

and Barker (2005), 

, E(Bj) · = 1, ... , k - 1. 
T/j = E(Nj)' J 

We refer to T/j as an index because we use the expectation of Nj instead of 

its actual value. 

The components [X2IP, d2, X1] and [d2IS, X1] are the CJS components 

for capture and mortality conditional on first capture and are specified in 

equations 3.4 and 3.3. 

Using the Jolly-Seber model, the total number of individuals available 

for capture N is not a parameter in the model. However, it can be obtained 

using the deterministic relationship 

k-1 

N = U1 + LBj. 
j=l 

The WinBUGS code used to fit this birth parameterization is given in section 

6.6. 

4.3.2 Extension of CMAS Model to Include Per-Capita Birth 

Rates 

As with the Jolly-Seber model it is possible to re-parameterize the birth 

component in the CMAS model to include biologically interesting parame­

ters such as the per-capita birth rate 1J = (TJ1, ... , T/k-2). As the per-capita 

birth rate is not defined before the first sample we keep the parameter /Jo 

to describe birth before the study. This means the complete set of birth 

parameters is (/30,T/1, ... ,T/k-2). 

In order to write the model in terms of the per-capita birth rate 1J we 
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must factorize the CDL in equation 3.8 carefully to ensure that we obey the 

rules of conditional probability. The CDL for the CMAS model is 

£c(S, p, /3o, TJ, 'N; X, b, d) ex[X, b, dip, /3o, TJ, S, 'NJ 

ex[Xlp, d, b, 'Nl[b, dl/3o, TJ, S, 'NJ 
(4.13) 

The capture component is specified in equation 3.9. The birth and death 

components are further factorized in terms of the natural order of events 

through time, 

N { k-1 { 
[b,dl/3o,TJ,S,'NJ ex IJ [bi0l/3oJ ]J [bijlb,(o:j-1),d:(l:j-1),/30,T/1:j,'NJx 

[d;; [b,(o,;), d,(1,;-1), S;]}} 

(4.14) 

The death component is 

[dijlb:(O:j), d,(1:j-1), SJ 

{ ( 

· 1 · 1 ) } 1-d;j 
ex 1- I:bih - tdih (1- Sj) 

h=O h=l 

{ (

j-1 j-1 ) }dij 
~?ih - ;dih (1- Sj) 

j = 1, ... , k - l 

(4.15) 

{

j-1 }1-d;j { j-1 }dij 
ex L dih 1 - L dih j = k, 

h=l h=l 

where the terms 

(f bih - f dih) and f dih 
h=O h=l h=l 

enforce the constraints that individuals are born before they can die and 
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:z=j=l dij = l, i = 1, ... , N. The death component assumes that, conditional 

on being alive at the time of sample j, the probability of death between j 

andj+l is 1-Sj. 

The birth component is 

[biO l,Bo] <X ,Bb bw (l - ,Bb) 1-b;o 

[bij lb:(O:j-1), d,(1:j-1), ,Bo, 'r/1:j, N] (4.16) 
. 1 b·. 

<X { ( 1 - t bi,) f3';} ., (1 _ (3';)(1-l.:i.~,~,.). j ~ 1 •...• k _ l, 

where 

,Bb = ,Bo, 

,Bj = . T/jNj . 
N rn:1(1 - ,e~), J = 1, ... , k - 2, 

,8(_1 = 1. 

The constraint ,8(_1 = 1 is equivalent to constraining :z=t;6 ,Bh = l and 

together with (1 - :Z:::::{:1 bih) impose the constraint :z=~:;6 bih = l, i = 

1, ... , N. The birth component assumes that conditional on not previously 

being born, the probability of being born between sample j and sample j + l 

is ,Bj. As we are conditioning on b,(O:j-l) and d,(l:j-l) in the birth model for 

bij it is legitimate to use Nj as specified in equation 3.12 as a part of the 

model. 

4.3.3 Density Dependence 

As well as including Nj in the birth model, we can also use it as a covariate in 

a density dependence model. Density dependence assumes that the popula­

tion size is an important predictor for both survival and fecundity of animal 
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populations. In particular, when the population size is high, competition 

for resources is strong, reducing both survival probabilities and fecundity. 

However, when the population size is low there is little competition for re­

sources, resulting in high survival probabilities and high fecundity. As noted 

by Armstrong et al. (2005): "There is evidence for density dependence in 

a wide range of species... but most studies can be challenged on statistical 

grounds". The statistical problem is that when the interval-censored times 

of birth and death are explicitly integrated out of the model in the standard 

way, the population size is not explicitly included in the model. This means 

that unless there is additional information on population size then the data 

are used twice; once to estimate abundance and then again to use the abun­

dance estimate in a density dependent relationship. This is why Seber and 

Schwarz (2002) state: "Tools to investigate the whole issue of density de­

pendence and dependence upon the actions of other individuals are not yet 

readily available [for capture-recapture data]. Models that estimate abun­

dance (e.g., Jolly-Seber models) are available, but the feedback loop between 

abundance and subsequent parameters has not yet been complete". We are 

able to complete the feedback loop because we have N = (N1 , ... , Nk) in 

the model available to be used. We can specify density dependent models 

for either the CMAS model or the Jolly-Seber model. 

Density Dependence in the CMAS model 

As we include the density dependence relationship through random effects 

models for S = (S1, ... ,Sk_i) and 'l'J = (rJ1, ... ,T/k-2), we include these 

values as latent variables using data augmentation. This means the CDL 



"c 

-" 
\ 

J 

j 

\ 

.,1-

Extending the Hierarchy 64 

for the CMAS becomes 

Lc(f3o,,, r,p, N; X, b, d, S, rJ) cx:[X, b, d, S, rJIP, (30 , ,, r, NJ 

cx:[Xlp, d, b, NJ [b, d, S, rJJf3o, 1 , r, NJ, 

where I and T are collections of parameters that model the density depen­

dence. The component [Xlp, d, b, NJ is the standard CMAS capture distri­

bution and is specified in equation 3.9. To include density dependence we 

factor the component [b, d, S, 7Jl/3o, 1 , r, NJ in terms of the natural ordering 

of events in time, 

[b, d, 'I, SI/Jo, -y, r, NJ oc TI { [b;o IPo] x 

n { [b;; lb,(O,j-1), d,(1,j-1), /Jo, '11,j, N][d;; I b,(o,;), d,(1,;-1), S;]}} X 

k-2 k-1 

II [ruJb:(O:j-1), d,(1:j-1), ,, T, NJ II [Sjlb:(O:j-1), d,(1:j-1), ,, T, NJ. 
j=l j=l 

(4.17) 

The factorization is similar to the one in section 4.3.2 with the components 

[dij lb,(o:j), d,(1:j-1), SjJ and [bij lb,(o:j-1), d,(1:j-1), f3o, 'l'Jl:j, NJ defined in equa­

tions 4.15 and 4.16. We have also factorized the survival and per-capita birth 

rates in time order. As both Sj and r}j depend on b,(O:j-l) and d,(l:j-l), we 

can legitimately model Sj and rJj in terms of Nj as given in equation 3.12. 

One potential model for the distributions for Sj and r}j is 

[Sjlb,(o:j-l), d,(1:j-1), ,, r, NJ = logitN('yo + "f1Nj, Ts), j = 1, ... , k - l, 

[rJjlb:(O:j-1), d,(1:j-1), ,, T, NJ = LN('y2 + "/3Nj, T77), j = 1, ... , k - 2. 
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In section 8 we fit a density dependent model using the CMAS parameteri­

zation. 

Density Dependence in the JS model 

As we include the density dependence relationship through random effects 

models for S = (S1, ... ,Sk-1) and r, = (TJ1,--·,T/k-1), we include these 

values as latent variables using data augmentation. The CDL for the JS 

model in 4.10 is extended to include distributions for Sj and T/j which are 

factored in the natural order of events in time, 

£c(P, ,, T; X2, d2, X1, s, r,, u', B) 

k 

CX [u1IP1, U1] Il[ujlPj, u;_1, Bj-1l[X2IP, d2, X1l[d2IS,X1] X 

j=2 

k-1 { IT [u;1sj, U1:j, d2:(l:j-l), Bj-1, u;_1] [Sj lu1:j-l, d2:(l:j-l)' u;_1, Bj-1] X 

j=l 

[B; I~;, ULj-1, d2,(l,j-l), B;-1, u;_,JI~; [u1,j-l, d2,(l,j-l), u;_,, B;-1]}, 

where I and T are collections of parameters that model the density depen­

dence. As both Sj and T/j depend on u1:j-1, d2:(l:j-l), u;_1 and Bj-1, we 

can legitimately model Sj and T/j in terms of Nj as given in equation 4.12. 

One potential model for the distributions for Sj and T/j is 

[SjlU1:j-l, d2:(l:j-l), u;_1, Bj-1] = logitN('"Yo + "(1Nj, TS), j = l, ... , k - l, 

[TJj lu1:j-1, d2:(l:j-1), UJ-1, Bj-1] = LN(,'2 + "/3Nj, r,.i), j = l, ... , k - l. 

In section 6.6 we discuss fitting a density dependent model using the JS 

parameterization in WinBUGS. 
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4.4 Auxiliary Data 

In many cases auxiliary data is available from other sources that can be 

included to improve estimation of demographic parameters in the model. 

There are many possible types of auxiliary data that may be available, but 

we will focus on information on live re-sightings and dead recoveries of the 

individuals between sampling periods. These observations may continue well 

after sampling has finished, so we split the time after the end of sampling 

into periods of approximately the same length as the time between sampling 

periods and denote the total number of re-sighting and recovery periods as 

k'. If k' ;?:: k, the death covariate d changes dimension to accommodate the 

additional information on mortality from the auxiliary information. 

4.4.1 Recovery models 

A common form of auxiliary information is the reporting of dead recoveries 

of the individuals outside of the sampling times (Burnham 1993). We include 

this data through the matrix Yi, where Y1ij = 1 denotes individual i being 

reported dead between sample j and j + 1 and Y1ij = 0 otherwise. Assuming 

that an individual died in the same period it was reported, the recoveries 

give us more information about the interval-censored times of death d. For 

all individuals that were ever recovered dead we know their time of death, 

so we have complete information about d for that individual. Including the 

information on death obtained from Y1 means that X is no longer completely 

modeling the missingness mechanism for d. The missingness mechanism for 

d is only fully specified if both X and Y1 are included in the model. The 

parameters required to include the recoveries are r = (r1, ... , rk' ), where rj 

is the probability that an individual who dies between sample j and j + 1 
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will be recovered dead. The CDL for the model with recoveries Yi is, 

Lc(S,p, r; X2, Xi, d2, Yi) cx:[X2, d2, Yi.IP, S, r, X1] 
(4.18) 

cx:[X2IP, d2, X1l[d2JS, X1][Yi. Ir, d2]. 

The recovery component is assumed to be 

u. 

[Y1lr, d2] ex IJ r~1t1.J; (1- rnJ1
-Y1i:1.J;. (4.19) 

i=l 

The distribution [X2IP, d2, X1] is the capture component from the CJS 

model as specified in equation 3.4. The death component is 

u. 

[d2JS, X1] = IJ[d2i:IS, X1l, 
i=l 

[d2i:IS,X1] =MN(l,~i), i = 1, ... ,u. 

Assuming that k' 2: k we have 

( 

k'-1 k' ) 

~i = (1- siJ, si;(1- Si;+1), ... , Il sh(1- sk,), Il sh . 

This is similar to the mortality component for the CJS model in equation 

3.3 except there are k' survival periods instead of k - 1. If k' < k the death 

component is specified in equation 3.3. The DAG for this model is in figure 

4.5. 

4.4.2 Joint re-sighting and recovery models 

As well as information about dead recoveries, there may also be information 

from live re-sightings (Barker 1997). We include this through the matrix }S, 

where Y2ij = 1 denotes individual i being re-sighted alive between sample j 
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Figure 4.5: A DAG for the CJS model with auxiliary data on dead recoveries. 
This is the dead recovery model of Burnham (1993) with no movement. 

and j + l and Y2ij = 0 otherwise. Any re-sighting after the period of last 

capture provides information about the interval censored times of death d. 

Including the information on death obtained from Y2 means that X and 

Y1 are no longer sufficient to account for the missingness mechanism for d. 

The missingness mechanism for d is only fully specified when X, Yi and 

Y2 are all included in the model. The parameters required to include the 

re-sightings are R = (R1, ... , Rk') and R' = (R~, ... , R~, ), where Rj is the 

probability of an individual being re-sighted between sample j and j + l 

given that it is alive in both j and j + l and RJ is the probability of an 

individual being re-sighted between samples j and j + l given that it died 

between j and j + l and was not recovered dead. The CDL for the model 

with recoveries Yi and re-sightings ¥ii is, 

£c(S,p, r, R, R'; X2, Xi, d2, Yi, ¥ii) 

ex [X2,d2, Yilp,S,r,X1] X [Y2IR,R',d2, Yi,X1]. 

Recovery Model from equation 4.18 Re-sighting component 
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We follow the model of Barker et al. (2004) and model Y2 as, 

[YiilR,R',d2, Y1,X1] 

ex IT { ( R',;ni Y2i:D; (1 _ R',;nJl-Y2i:D;) l-Yii'.D; 'Ilff R?ii (l _ Rj )l-Y2;j} . 
i=l J=Ji 

(4.20) 

The DAG for the CJS model with re-sightings and recoveries is in figure 4.6. 

Figure 4.6: A DAG for the CJS model with auxiliary data on dead recoveries 
and live re-sightings. 

An alternate parameterization used in Barker (1997) is in terms off = 

(Ji, ... , fk,), v = ( v1, ... , vk,) and R = ( R 1, ... , Rk'), 

Rj =Rj 

(1-vj)Jj 
rj = 1- Sj 

fi-SiRi _ rj 
1-Si 

RI_ 

j - 1- rj 

j = 1, ... ,k' (4.21) 

where Ji is the probability an individual is either re-sighted or recovered 

between j and j + 1 given that they were alive in sample j and Vj is the 

probability that an individual is re-sighting alive given they were either re­

sighted alive or recovered dead between j and j + 1. The DAG for this 
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parameterization is in figure 4.7. 

Figure 4.7: A DAG for the CJS model with auxiliary data on dead recoveries 
and live re-sightings using the f, v and R parameterization. 

We fit a joint re-sighting and recovery model using the f, v and R 

parameterization in chapter 9. 

4.5 Ro bust Design 

The only change required to include the robust design is the constraining of 

parameters that allow individuals to enter and exit the population during the 

secondary sampling periods. Examples of appropriate constraints include 

Sj = l and '/Jj = 0. A nice result is that this means there are no major 

structural changes required to fit the robust design. 

The importance of the robust design is best seen with complex models 

such as the CMAS model with density dependence on survival and per­

capita birth rates. The same data is used to estimate all unknowns, including 

p, S, TJ and N with high sampling dependencies likely between parameters in 
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the model, making the model difficult to fit. This is not true with the robust 

design because the primary periods are used to estimate the demographic 

parameters Sand r,, while the secondary periods are used to estimate p and 

N. This should vastly improve the sampling correlation of the model. 

4.6 Mother-of-all-models 

The idea behind the mother-of-all-models is to have the likelihoods for com­

monly used capture-recapture models factorized into conditional likelihoods 

that can be called and combined on request to give a user specified model. 

Barker and White (2004) mapped out a conceptual plan for the mother­

of-all-models that included the robust design and joint recapture, live re­

sighting models. However they were unable to obtain a factorization that 

could easily include the multi-state model. Specifying the model in terms of 

the CDL overcomes these problems. As outlined above, closed population, 

CJS, JS, CMAS, multistate, continuous covariate, auxiliary data and robust 

design models can be obtained by selecting the appropriate conditional like­

lihood components and multiplying them together. At least in theory, this 

means that it is possible to develop software that allows for user-specific 

customization of the likelihood. Users would be able to select conditional 

likelihood components that are appropriate for the data they have collected, 

allowing the focus of modeling to be on choosing good scientific models for 

the appropriate components. 



. \ 

'\ 

~-" 

··y 
; 

. .,, 

' \ 

-\ 

' .. , 

\ \ 

. .l 

C 

' ., 

~ 

" 
> ,\ 

·,r 

,( 

)> 

>, 

Part III 

Model Fitting 



,' 

' ,. 

;( 

Chapter 5 

Inference 

A Bayesian framework is adopted for inference. The Bayesian approach is 

preferred over other methods of inference because it has better machinery 

with which to fit hierarchical models that incorporate data augmentation. 

5.1 Bayesian Methods 

Adopting a Bayesian framework for statistical inference means that we ex­

press all of the uncertainty about parameters in terms of probability state­

ments. In particular, we assign uncertainty in terms of a probability distri­

bution function (pdf). Inference is based solely on the distribution of the 

parameters given the data, the so-called posterior probability distribution. 

The posterior distribution for parameters O conditional on data y is found 

using 

[ylOJ [OJ 
[OlyJ = f[y!Ol[O] dO' (5.1) 

where [OlyJ is the posterior distribution, [ylO] is proportional to the likeli­

hood and [OJ is the joint prior distribution for the parameters. 

The major criticism of Bayesian methods is the need to specify the prior 
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distribution [OJ. The common argument used is that prior distributions 

make inference subjective because different people have different prior be­

liefs. Even though two people may have the same data y and use the same 

likelihood [y[O] they may obtain a different posterior distribution because 

of the difference in their prior beliefs. While frequentists1 point to the need 

for subjective priors as a fundamental flaw of the method, they must also 

recognize a certain subjectiveness in their own procedures. Even though 

maximum likelihood estimation is optimal asymptotically, there is no guar­

antee it will be for a finite sample. So how do we know which estimator to use 

for any given problem? An example of this subjectiveness is seen in linear 

calibration (also called inverse regression/prediction), see Osborne (1991) for 

a review of methods. Two main frequentist estimators have been proposed 

(i) the classical estimator2 and (ii) the inverse estimator. Both estimators 

have virtues and downsides with no one estimator winning widespread ap­

proval. Interpreting the problem from a Bayesian perspective shows that 

the two different estimators are equivalent to choosing two different prior 

distributions for the missing predictor, that make very different assumptions 

(Hoadley 1970, Hunter and Lamboy 1981). One could argue that Bayesian 

inference has an advantage in that any assumptions and prior knowledge is 

explicitly stated and sensitivity to the prior distributions can be examined, 

whereas frequentist inference often relies on hidden assumptions that are 

sometimes very difficult to ascertain (as is the case for linear calibration). 

A good philosophy is that honesty should prevail in both the Bayesian and 

frequentist paradigm with full disclosure about methods and assumptions 

used. For Bayesian inference this means that the prior distributions should 

1 A frequentist is someone who considers probability in terms of long run frequencies 
of outcomes. Therefore, they reject the notion that probability can be used as a measure 
of uncertainty. 

2 Which is the MLE 
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always be disclosed. 

Bayesian inference is conceptually very simple. Equation 5.1 is used to 

find the posterior distribution from which all inference is made. However, 

the integral in the denominator of 5.1 makes the calculation of the posterior 

distribution difficult in practice. For all but the very simplest of models, 

obtaining the marginal distribution of y has been prohibitive, especially 

when there are a large number of parameters. 

The inability to obtain the posterior distribution, as well as questions 

about the foundations of Bayesian inference, led to a 200 year hiatus in 

the extensive use of the framework. However, widespread use of Bayesian 

methods has come with simulation techniques that make it possible to sim­

ulate from the required posterior distribution without the need to evaluate 

the marginal distribution of the data. These simulation techniques make it 

possible to sample from the proportional posterior distribution, 

[Bly] ex [y!B][B]. (5.2) 

This means we can avoid calculating the marginal likelihood 

[y] = j[y!Bl[B] dB. 

However, even though we do not require the marginal likelihood to fit the 

model, it is still important, particularly when we are looking to perform 

model selection (see section 5.3.2). 

The recent popularity of Bayesian methods has largely come because any 

missing data or latent variables can easily be included in the model using 

data augmentation. In the situation where we have missing data so that 
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y = (yobs, ymis), the required posterior distribution becomes 

[OJyobs] = f[yJOl[O] dymis 
ff[yJO][O] dymis de· 

76 

Latent variables, such as random effects are included in a similar way. Con­

sider the latent variable r-, included as a random effect. The required poste­

rior distribution becomes 

[OJyobs] = f[yobsJr-,l[r-,JOl[O] dr-, 
JJ[yobsJr-,][r-,JO][O] dr-, dB. 

Even though both of these calculations look prohibitive for practical infer­

ence, they are not. In practice, when using the simulation techniques that 

will be described in the next section, the only change that is required is 

that the missing data ymis or latent variables r-, are treated like any other 

unknown and updated at every iteration. 

5.2 Simulating from the Posterior Distribution 

The methods below are not Bayesian per se. They are methods that al­

low us to draw a sample from any distribution that is specified up to its 

proportionality constant. 

5.2.1 Rejection Sampling 

Rejection sampling can be used to generate samples from a univariate dis­

tribution that has an unknown proportionality constant, 

[x] ex g(x), 
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where g(x) is known. The technique requires an envelope function f(x) that 

(i) integrates to 1, (ii) can be sampled from, and (iii) covers the proportional 

pdf g(x) for all values in its support once appropriately scaled, 

M f (x) > g(x), 'vx, 

where NI is the scaling factor that ensures coverage. 

The algorithm consists of two steps: 

1. Generate a sample x* from the envelope function, 

x* rv f(x). 

2. Accept the candidate with probability q, 

g(x*) 
q = M f(x*) 

If accepted: x* "' [x]. 

If rejected: return to step 1. 

Example: Binomial Probability 

Consider data y from a binomial distribution with index N and unknown 

probability p. If we were to specify a beta prior distribution with parameters 

a and /3 the posterior distribution for p is proportional to 

[ply, NJ ex py+a-1 (1 - p)N-y+/3-1 (5.3) 
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The posterior distribution for p is known to be a beta distribution, 

[ply, NJ = Beta(y + a, N - y + /3). 

Alternatively, we could use equation 5.3 to generate samples from the pos­

terior distribution for p using rejection sampling. We specify the envelope 

function to be f (p) 

f (p) = Unif(O, 1) 

with scaling factor 

]VJ= p11+a-1(l _ p)N-y+/3-1 

where 
_ y+a-l 
p= N+a+/3-2 

is the value of p that maximizes equation 5.3. 

The algorithm proceeds as: 

1. Generate the candidate value 

p*""' Unif(O, 1) 

2. Accept p* with probability q 

q= (~)y+a-1 (ll~~)N-y+/3-1 

If accepted: p* is a sample from [ply] 

If rejected: return to step 1 

For y = 60, N = 100, a = l and /3 = l, a kernel density smooth of 50,000 

values from the rejection sampler provides an excellent approximation to 
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the posterior distribution, as shown in figure 5.1. 

--Rejection Sampler 
--Direct Posterior 

0 0.2 0.4 0.6 0.8 
p 

Figure 5.1: Comparison between the true posterior distribution for p (red­
line) and the posterior distribution estimated by a kernel density smooth of 
50, 000 samples found using rejection sampling (blue line). 

Different Envelopes 

The efficiency of the algorithm can be improved by specifying an envelope 

distribution that closely approximates the posterior distribution, while still 

ensuring coverage. If the target distribution is log-concave, a piecewise ex­

ponential envelope function can give an excellent approximation to the pos­

terior distribution, so long as enough pieces are chosen and they straddle 

the maximum. To further increase efficiency, the envelope can be adaptively 

improved at each iteration (Gilks and Wild 1992). 
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Problems with the rejection sampling 

There are two major difficulties with rejection sampling: 

• The extension to multivariate rejection sampling is very difficult due 

to the need to specify a multivariate envelope function. For practical 

applications, rejection sampling is only feasible in one dimension. 

• It is very difficult to specify an envelope function for a non log-concave 

distribution with infinite support. 

5.2.2 Markov Chain Monte Carlo Methods 

Markov chain Monte Carlo (MCMC) is a technique where an ergodic3 Markov 

chain is constructed that has as its limiting stationary distribution the pos­

terior distribution of interest. The values generated using MCMC are only 

guaranteed to be a sample from the posterior distribution once the Markov 

chain has converged to its limiting distribution. Therefore, every time we 

use MCMC it is essential that we check that the chains appear to have 

converged, even though we can never be certain that they have in fact con­

verged. One check of convergence is to see whether chains that are started 

at different points come together. This is called mixing. To ensure that 

the chains mix, multiple chains should be run with over-dispersed starting 

values4 . A good diagnostic tool to determine convergence is simply by eye: 

do the chains look mixed? If we are unsure, the chains need to be run for 

longer. If required, there are also diagnostic tools available to help deter­

mine convergence (Brooks and Gelman 1998). The posterior sample should 

only be collected once we are sure the chains are well mixed. 

3For more information about ergodicity see Cox and Miller (1965). 
4 Note that even though starting values should be over-dispersed they should also be 

reasonable. Once far enough into the tail of a distribution it can be so flat that algorithms 
may struggle to find a region of high probability. 
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There are many different MCMC algorithms (Lui 2001, Robert and 

Casella 2004) but we focus our attention on the Gibbs sampler, the Metropolis­

Hastings algorithm and variants of these. 

Gibbs Sampling 

The Gibbs sampler (Geman and Geman 1984) is a technique used to sample 

from multivariate distributions. It is also known as alternative conditional 

sampling because the algorithm consists of sampling from the full conditional 

distribution of each unknown in turn. In situations where there is high 

sampling correlation between unknowns, blocks of unknowns can be updated 

in turn instead of one at a time. 

Suppose we are wanting to sample from the distribution [x], where x = 

(x1 , x2, x3). If we are in iteration m, the standard Gibbs sampler alternates 

between the following full conditional distributions: 

[ 
(m+l) I (m) (m)] 

Xl X2 'X3 

[ 
(m+l) I (m+l) (m)] 

X2 Xl ,X3 

[ 
(m+l) I (m+l) (m+l)] 

X3 Xl 'X2 . 

One advantage of Gibbs sampling is that we are able to use any sampling 

scheme to generate samples from the full conditional distributions. If the 

full conditional distribution is of known form, we can sample directly from 

that. However, if the full conditional distribution is not of known form then 

we can use rejection sampling, the Metropolis-Hastings algorithm or any 

other sampling scheme that we are smart enough to devise. 

The Gibbs sampler is used for all models in this thesis. If the full condi­

tional distributions are of known form we sample directly from these. Oth­

erwise, we use another sampling scheme, most frequently the Metropolis-
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Hastings algorithm to obtain the sample. 

Slice Sampler 

The slice sampler (Neal 2003, Higdon 1998, Damien et al. 1999) is a tech­

nique used to improve the convergence of the Markov chain. Interest is 

in sampling from the distribution [x] which is not of known form and tech­

niques that obtain independent samples from the required distribution, such 

as rejection sampling, cannot be easily used. The slice sampler uses data 

augmentation to introduce an auxiliary variable u that invokes a Gibbs sam­

pler that has the distribution of interest as its limiting distribution. In each 

iteration we sample from: 

l. The distribution for the auxiliary variable u conditional on the current 

value of the x: 

[u(m+l)lx(m)] = Unif(O,f(x(m))). 

2. The distribution for x conditional on the current value of u: 

[x(m+l)lu(m+l)] = Unif(a), 

where a is the set of values of x such that f(x) ;:::: u(m+l). 

The easiest way to understand the slice sampler is with an example5 . We 

wish to sample from the distribution 

1 
[x] = 2 exp (-VX), X > 0. 

5 The example is found in Robert and Casella (2004) 
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Assuming we are in iteration m, the first step is to generate a sample from 

[u(m+l) lx(m)J, 

[u(m+l) lx(m)] = Unif ( 0, ~exp(-~)) · 

The next step is to find the set of values a for which J(x) 2: u(m+l), 

a= { X : ~ exp (-VX) > U(m+l)} 

= { X: -,Jx > log (2u(m+l))} 

= { X: - (log ( 2u(m+l)) r < X < (log ( 2u(m+l)) f}. 

The constraint that x > 0 further restricts the set a, 

a= { x: 0 < x < (log (2u(m+l))f}. 

Therefore, the full conditional distribution for x(m+l) is 

[x(m+l)lu(m+l)] = Unif (o, (log (2u(m+1l) r). 

Alternating between these two conditional distributions yields a Markov 

chain that has the distribution of interest [x] as its limiting distribution. 

Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970) 

is arguably the most important MCMC algorithm. The algorithm is very 

general and can be used for both univariate and multivariate distributions. 

We focus on the univariate case as we are making use of the Gibbs sampler 

for multivariate distributions. 
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Suppose that we are wanting samples from the distribution [x] which has 

as unknown proportionality constant, 

[x] ex: g(x), 

where g(x) is known. In iteration m, the Metropolis-Hastings algorithm 

proceeds as follows: 

1. A candidate value of the parameter x* is generated from a specified 

jumping distribution J(x*lx(m)). 

2. The candidate is accepted with probability q, where 

q = min (1, g(x*)J(x(m) Ix*) ) 
g(x(m))J(x*lx(m)) . 

If accepted: x(m+l) = x* 

If rejected: x(m+l) = x(m). 

3. Update the iteration counter tom+ 1 and return to step 1. 

(5.4) 

The sequence (x1,x2, ... ,xM) forms a Markov chain that has as its sta­

tionary limiting distribution the distribution of interest [x]. In general we 

discard £ samples to ensure that the chain has converged to its limiting 

distribution and take (xH1, ... , XM) to be a sample from [x]. 

In the Metropolis algorithm (Metropolis et al. 1953) the jumping distri­

bution is symmetric, so J(x*lx(m)) = J(x(m)lx*). These terms then cancel 

out of the acceptance calculation in equation 5.4. 

As the jumping distribution is specified by the user it can be chosen to 

optimize the algorithm. If the approximate form of the posterior is known 

then an independent jumping distribution J(x*) can be specified that is close 

to the posterior and has a high rate of acceptance. If the approximate form 
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of the posterior is not known we can specify a general jumping distribution 

that can be adapted during a training phase in order to draw an efficient 

sample. Consider a normal random walk jumping distribution, 

J(x*Jx(m)) = N(x(ml,u3) 

where U} is specified by the user. We can optimize the algorithm by choosing 

a good value of u3. If u3 is too large or too small the Markov chain is slow 

to mix. The optimal value for u3 is one that gives an acceptance rate of 

approximately 44% provided the target distribution [x] is approximately 

normal ( Gelman et al. 2004). This can be achieved through tuning u J 

during a training phase. We initialize u J to some value (say 0.001) and if 

the candidate value is accepted we then multiply u J by the value a (say 

a= 1.1). If the candidate value is rejected we then multiply O"J by the value 

44 
b = a-s"6 

to achieve an approximate acceptance rate of 44%. Changing the value of b 

changes the expected acceptance rate. In general we set b = a - l in order to 

approximate 50% acceptance rates in the chains. 

In situations where x is categorical a similar process can be used. We 

select a discrete uniform jumping distribution centered at the current value 

of the parameter. We give the current value the probability of 0, thus 

enforcing the candidate to be different from the current value. The first 

step of our proposal is generating a value A 

A,...., Bern(0.5) 
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We then use this value in the discrete uniform jumping distribution 

J(x*lx(m)) = ' 
{ 

DU(e(m) - "' g(m) - 1) if A= 0 

DU(e(m) + 1, g(m) + K) if A= 1 

The value that is adapted is K. We initialize K to some discrete positive 

value (say 1) and set up an adaptive scheme during the training phase. If 

the candidate value is accepted we add 1 to the value of K and if the candidate 

value is rejected we then subtract 1 from the value of K but ensure K never 

goes below l. 

For both the continuous and categorical case, the samples obtained in 

the training phase must be discarded, even if it looks as if the Markov chain 

has mixed well. This is because we have no assurance that the Markov chain 

we have generated while changing the jumping distribution has the target 

distribution as its limiting distribution. Therefore, we run the training phase 

for £ iterations to obtain the parameters of the jumping distribution, which 

are then fixed for the subsequent samples. 

Example: Binomial Probability 

Consider the binomial problem from section 5.2.l. We are interested in 

sampling values from the posterior distribution for p when y = 60, N = 100, 

o: = 1 and /3 = l. The proportional posterior for p is given in equation 5.3 

as 

[ply, N] ex py+a-1(1 - p)N-y+/3-1 

We specify a random walk logit-normal jumping distribution for p, 

J(p*lp(m)) = logitN(logit(p(m)), crJ). 
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The acceptance probability for the candidate p* in iteration m is, 

. ( ( p* )y+a-l ( l - p* )N-y+/3-l p*(l - p*) ) 
q=mm 1 -

' p(m) 1 _ p(m) p(m)(l - p(m)) ' 
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where the term on the right is the ratio of jumping distributions. The 

parameter p was initialized to be 0.5, the value of a set to 1.02 and the value 

CT J was initialized to 0.001. During a tuning phase of 5000 iterations the 

value of CT J was optimized as described above. A kernel density smooth of 

the 50,000 samples subsequent to the tuning phase is in good agreement 

with the known posterior distribution, see figure 5.2. The value for CT J after 

the tuning phase was 0.365470 and the 50,000 posterior samples had an 

acceptance rate of 53%, close to the desired rate of 50%. It is no surprise that 

the samples from rejection sampling (figure 5.1) give a better approximation 

to the true posterior than the samples from Metropolis-Hastings (figure 5.2). 

This is because the rejection algorithm draws independent samples from 

the posterior distribution, whereas Metropolis-Hastings generates correlated 

samples. 

Reversible Jump MCMC 

Reversible jump MCMC (Green 1995) is an extension of the Metropolis­

Hastings algorithm. It is used when variables are being updated that define 

the dimension of other variables in the model. This dimension parameter 

will be referred to as the jumping parameter. An example is multi-model 

inference where a model indicator that determines the dimension of the 

parameter vector (} is included in the model as a parameter to be updated. 

The algorithm works by obtaining detailed balance so that lower /higher 

dimensions are not incorrectly favoured or penalized. Any two values of the 
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--Metropolis-Hastings 
-- Direct Posterior 

0 0.2 0.4 0.6 0.8 
p 

Figure 5.2: Comparison between the true posterior distribution for p (red­
line) and the posterior distribution estimated by a kernel density smooth of 
50,000 samples found using the Metropolis-Hastings algorithm (blue line) . 
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jumping parameter must have auxiliary parameters specified so that they 

have the same dimension, with bijections to move from one value to another. 

Consider the case where we want to sample from the distribution [x, (] 

which has an unknown proportionality constant, 

[x,(] ex f(x,(), 

where f(x, () is known. The jumping parameter is ( and this determines 

the dimension of x. In order to update ( we propose a candidate (* from 

J((*l(Cm)). As the dimension of x changes we generate an augmenting vari­

able u from H(ul(Cm), (*, x), which together with the existing values xCm) 

and the bijection (xCm)*, u*) = 9((m),(* (x(m), u) give the candidate values 

xCm)*. The candidate (* together with xCm)* are accepted with probability 

q' = min(l, q), 

_ J(xCm)*, (*)J((Cm)l(*)H(u*I(*, (Cm), xCm)*) I 'vg((m),(*(xCm), u) 
q- J(xCm),(Cm))J((*i(Cm))H(ui(Cm),(*,xCm)) 'v(xCml,u) 

(5.5) 

where the component on the right is the determinant of the Jacobian of 

the bijection. We then proceed as for the Metropolis-Hastings algorithm. 

If the candidates are accepted then ((Cm+ll,xCm)) = ((*,xCm)*), otherwise 

((Cm+l), xCm)) = ((Cm), xCm)). We keep the superscript m on x because we 

are updating the jumping parameter ( not x. The values of x get updated 

in turn during other steps of the Gibbs sampler. 

5.3 Model Checking and Selection 

Two important questions when fitting models to data are: 

l. Does the model fit the data well? 
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2. How do you determine the best model? 

The first question deals with ensuring that the model ( or models) are sensible 

and that the data look like they could have come from the model. The second 

question deals with finding the best model from a set of candidate models. 

5.3.1 Model Checking 

A useful tool for model assessment is the posterior predictive distribution 

( Gelman et al. 2004). A set of replicate data is generated from the parameter 

values at each iteration. The replicate data is then compared to the observed 

data using an appropriate test statistic. If the model is good then the value 

of the test statistic for the replicate data should be similar to that from the 

observed data. However, if the model does not fit well then they will be 

quite different. 

The key to this approach is the choice of the test statistic. There are 

various omnibus test statistics that have been used for capture-recapture 

type data, for example Brooks et al. (2000a) uses the Freeman-Tukey test 

statistic (Freeman and Tukey 1950, Bishop et al. 1975) and King and Brooks 

(2002) use the value of the likelihood as their test statistic. Omnibus tests 

are convenient as they available irrespective of the data being analyzed, 

however, this wide applicability means that they are less likely to discern lack 

of fit. For capture-recapture models the choice of adequate test statistics is 

a largely unexplored question. A promising, yet potentially time consuming 

approach would be to use a test statistic that is theoretically appropriate 

for the model being examined. For example, the test statistic used when 

examining a CJS model could be based on the results of Pollock et al. (1985). 
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5.3.2 Model Selection 

Burnham and Anderson (1998) suggest that even before the data are col­

lected much thought should go into into determining covariates likely to 

affect the system of interest, with only a small set of scientifically driven 

models considered. Once the data have been collected, Link and Barker 

(2006) suggest that Bayes factors are the quantity that should be used for 

multi-model-inference. The Bayes factor between model j and model h, 

BF1h, is defined as the marginal likelihood of the data y under model j 

compared to the marginal likelihood of the data under model h, 

[ylM1] 
BFjh = [yll\!h] 

where the marginal likelihood [ylM1] is evaluated as 

[ylMj] = J [ylO, Mj][OIMj] d(}. 

Bayes factors are combined with prior model weights to give posterior model 

weights that can be used for model weighting or model selection. For exam­

ple, one can specify prior model weights so that the posterior model proba­

bilities are the AIC model weights (Burnham and Anderson 1998, Link and 

Barker 2006). The problem is that Bayes factors are difficult to calculate, 

as they involve evaluation of the marginal probability of the data given the 

model (the marginal likelihood) by integrating the likelihood with respect to 

the prior. It is precisely this calculation that made practical Bayesian model 

fitting almost impossible except in relatively simple problems. The popu­

larity of MCMC comes because it circumvents the need for the calculation 

of the marginal likelihood. 

The calculation of Bayes factors is an area of active research in Bayesian 



~ 

Inference 92 

methods. Current approaches include estimation of the marginal likelihood 

from the MCMC output (Raftery et al. 2007) and methods that attempt to 

sample from the joint model and parameter space (Han and Carlin 2001). 

Of the second of these approaches, reversible-jump MCMC (RJMCMC) is 

perhaps the best known example among ecologists (Brooks et al. 2000b), 

and is currently the best general method for calculating Bayes factors, or 

equivalently posterior model weights given prior model weights. 

In RJMCMC, the model is treated as another unknown to be estimated 

(see section 5.2.2). Posterior model weights are obtained which, combined 

with the prior model probabilities, give the Bayes factors. However, RJM­

CMC is difficult to implement, due to the need to match parameter dimen­

sions and specify efficient bijections between all candidate models. Unfor­

tunately, no flexible and efficient RJMCMC algorithms are available in any 

commonly used statistical software. 

For fixed effects models, the so-called Bayesian Information Criterion 

(BIC) can be used to find an approximation to marginal likelihood, with 

ratios of BI Cs giving the Bayes factors (Link and Barker 2006). The BIC is 

similar to AIC and easy to calculate, 

BIG= -2[XIO] + mlog(n), 

where [XIO] is the likelihood at the posterior mode (or maximum likelihood 

estimate) of the parameters, m is the number of parameters in the model 

and n is the sample size. However, in many situations, the sample size n is 

not well defined and for random effects models the number of parameters m 

is unknown, making the criterion difficult to use (Raftery et al. 2007). 

Random effects models can be used as an alternative to model averaging 
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and selection in many cases (Gelman et al. 2004). Consider the joint live re­

sighting, dead recovery model of Barker (1997), with parameters S, R, R', r, 

p, F and F', where the effect of sex on survival is of interest. To complicate 

matters, it is thought that sex and time could effect the other (nuisance) 

parameters. For each parameter, we can specify ( at least) 5 different models: 

(i) constant across time and sex, (ii) constant across time with a sex effect, 

(iii) varying through time with no sex effect, (iv) varying through time 

with an additive sex effect and (v) varying through time with a sex effect 

interaction. This gives a possible 57 = 78, 125 models we could examine. 

Instead of performing model selection on all, or a subset, of these nuisance 

parameters, we can specify a full model for each nuisance parameter, and 

obtain parsimony on nuisance parameters by modeling the parameters as 

random effects. This essentially removes the unneeded parameters from the 

model (as they are being sampled from the random effects distribution), 

so it saves us from the arduous task of performing model selection on the 

nuisance parameters. Conditional on having a random effects distribution 

for the nuisance parameters, we can then perform model selection across the 

5 different models for S. 

When using random effects, it is essential that distributional assumptions 

are appropriate. For example, the quantities being combined in the random 

effect could be mostly similar with the occasional spike. In order to specify 

an appropriate random effect, either: 

• Suitable covariates need to be found that help to explain the variability, 

in particular, the variability associated with the spike. 

• A heavy tailed distribution, such as a t-distribution, is specified so 

that the spike is reasonable under the model. 
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Chapter 6 

Capture-Recapture Models 

in WinBUGS 

The most widely used program for Bayesian statistics is BUGS (Spiegel­

halter et al. 2003), Bayes Using Gibbs Sampling. It is freely available in 

many forms including WinBUGS, for a windows operating system and ver­

sions for other operating systems, such as ClassicBUGS and LinBUGS. An 

open source version, OpenBUGS, is also available. BUGS is a general pur­

pose statistical packages that can be used for a wide range of models and 

applications. 

6.1 Program WinBUGS 

As the name suggests, WinBUGS uses Gibbs sampling to generate samples 

from the posterior distribution. Models can be written in WinBUGS in two 

ways: 

l. As a DAG in the doodleBUGS editor. 

2. Writing code directly in the WinBUGS editor. 
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We only consider the second option as it offers the most flexibility. Nodes 

specified in WinBUGS are either stochastic or deterministic. The code 

x - dbern(theta) 

specifies that x is a stochastic node sampled from a Bernoulli distribution 

with parameter e. The code 

y <- sqrt(x) 

specifies that y is a deterministic node that is the square root of the node x. 

Several steps are required in order to run a model in WinBUGS: 

1. The model is checked for syntax errors. 

2. The data are loaded. The standard way to enter data is within in a 

list ( ... ) statement as in program R. 

3. Initial values are obtained for every unknown. These are either pre­

specified or generated from the prior distribution. Pre-specified initial 

values are included within a separate list ( ... ) statement. 

4. The model is compiled into Pascal code. 

5. The nodes to be monitored are selected. 

6. The model is run. 

6.1.1 Advantages of WinBUGS 

There are many advantages to using WinBUGS: 

• The full conditional distributions that are used in the Gibbs sampler 

are automatically calculated. This means that changes to the model, 

including hierarchical extensions, are easy to include and require vir­

tually no programming effort. 
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• WinBUGS selects what it considers to be the best possible sampling 

algorithm for each full conditional distribution. If WinBUGS recog­

nizes that the full conditional distribution is of known form then it 

will directly samples from the distribution. If direct sampling is not 

possible then WinBUGS selects a sampling algorithm from a range 

of possibilities, including rejection sampling, slice sampling and the 

Metropolis-Hastings algorithm. 

• WinBUGS can be run as a script and can be called from other pro­

grams. 

• WinBUGS has an inbuilt help file, including numerous examples. 

6.1.2 Limits of WinBUGS 

Unfortunately there are also several downsides to WinBUGS: 

• There is not an explicit reversible jump step available in WinBUGS. 

Various tricks are required to include reversible jump steps in Win­

BUGS. Durban and Elston (2005) show how inefficient data augmen­

tation can be used to fit individual specific closed population capture­

recapture models, such as model Mh in WinBUGS. These models re­

quire a reversible jump because the population size ~ determines the 

dimension of the capture history X. Link and Barker (2006) describe 

how to perform inefficient multi-model inference in WinBUGS. Even 

though these tricks are very helpful in certain situations, they can 

dramatically slow down the program, even to the point where models 

cannot be practically run. 

• For large data sets WinBUGS can be very slow, especially for complex 

problems. 
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• It is very difficult to modify the algorithms to improve the rate of 

convergence. 

• Tricks are required to use a probability distribution that is not hard­

wired. One of these tricks is called the 'ones trick', where a value w = 1 

is specified as data1 . We then model was a Bernoulli random variable 

with probability q, where we write q as the probability distribution 

function we wish to include. A similar trick is called the 'zeros trick', 

where w = 0 is specified as data, with w modeled as a Poisson random 

variable. Both the ones trick and the zeros trick are explained in 

full under the "Specifying a new sampling distribution" heading in 

the "Tricks: Advanced Use of the BUGS Language" section of the 

WinBUGS 1.4 help file (Spiegelhalter et al. 2003). 

6.2 CJS 

We examine the fitting of open population models in WinBUGS. The sim­

plest open population model is the CJS model. Coding the CDL of the CJS 

in WinBUGS requires two steps: 

1. Including and modeling the interval-censored time of death. 

2. The modeling of capture conditional on time of death. 

Implementing step 2 in WinBUGS is straight-forward. Step 1 is more dif­

ficult because the time of death is partially known through being right­

censored. The complication arises because WinBUGS does not allow cen­

sored data for the multinomial distribution. Therefore, we must factor the 

mortality distribution for the CJS model [d2IS, X1] defined in equation 3.3 

1 We can also specify a vector or matrix of ones if desired. 
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as 

where dmin denotes the observed (right) censored time of death. The com­

ponent [d2ldmin, SJ is a series of multinomial distributions from the time of 

last capture 

u. 

[d2ldmin, SJ= II[d2i:ldmin, SJ 
i=l 

where 

If an individual was lost on capture then [d2i:ldmin,S,X1J ex: 1. The second 

term accounts for each individual surviving from first capture until last 

capture 
u. ,C.;-1 

[dminlS, X1J CX: II II Sj, 
i=l j=J; 

This factorization solves one problem but introduces another. WinBUGS 

does not allow a multinomial distribution to be specified for the individuals 

caught at the time of last capture as these individuals only have one possible 

outcome. There are two possible solutions: (i) writing the likelihood sepa­

rately for individuals caught in the last sample, or (ii) including a (k + l)th 

column ind that has Pr(dik+l = 0), Vi. We prefer the second option as it 

allows us to have the same likelihood for all individuals. 
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An example of WinBUGS code that can be used to fit the CJS model 

p(t)S(t) when imputing the times of death is given in appendix C.1. The 

key features of the model are: 

• Line 8: Ensures that individuals are only available for capture until 

death. 

• Line 36: Specifies [d2ldmin, S, X1]. 

• Line 47: Specifies [dminlS, X1] using the ones trick. 

The data file requires several components: 

• The capture histories X. 

• The samples of first capture ~ = (J1, ... , Ju.). 

• The samples of last capture ..C = ( £1, ... , ..Cu.). 

• The times of death d. Any missing values are including through spec­

ifying NA. 

• The number of samples k 

• The number of individuals caught u. 

• The vector wd = (1, ... , 1) for the ones trick. 

An example of the data file needed is given in appendix C.2. The initial 

values for the stochastic nodes can either be specified in a way similar to 

the data or sampled from the prior distributions. 
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6.3 Jolly-Seber 

The JS model extends the CJS model by including the first capture, 

The WinBUGS code that is required for the JS model is given in appendix 

C.3. The only additional data required is u = (u1, ... , uk)-

6.4 Continuous Covariates 

To include a continuous covariate into a CJS model requires two steps: 

1. Including the covariate in the model for p and S. 

2. Specify a model for the covariate. 

As an example, consider the continuous covariate model fitted by Bonner 

and Schwarz (2006). Individual body weight was assumed to be a predictor 

of both survival and probability of capture: 

logit(Sij) ='YI+ 'Y2Zij 

logit(Pij+l) = 'Y3 + 'Y4Zij+l 

i = 1, ... , u., j = 1, ... , k - 1 

where Zij is the standardized weight of individual i in sample j. As the 

weight was only obtained when each individual was caught, a model is re­

quired for the missing values. We model the weight as 

Zij "'N(Zij-1 + .D.j-1, T), i = 1, ... , u., j = 1, ... , k. 

where .D.j is the mean increase in weight between j and j + 1 and T is the 

precision. 
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The WinBUGS code to include the continuous covariates is in appendix 

C.4. The only additional data that need to be specified for the continuous 

covariates is the matrix of covariates z. The missing values of z have the 

value NA and are updated as part of the Gibbs sampler. 

6.5 Multi-state 

If the covariate z is categorical the only differences from the continuous case 

is (i) the model for z and (ii) the model for how Sand p depend on z. We 

fit a model where both survival and capture probability depend on z, 

logit(Sij) = Shi 

logit(Pij+1) = 7rzj 

i = 1, ... , u., j = 1, ... , k - 1, 

where h = Zij, l = Zij+l, S is a matrix of survival probabilities that are 

state and time specific and 1r is a matrix of capture probabilities that are 

state and time specific. The model for z is 

Pr(zij = lJZij-1 = h) = ~hz, i = 1, ... , u.,j =Ji+ 1, ... , k, 

where'¥ is a matrix of state specific transition probabilities that are constant 

through time. The WinBUGS code required to fit this model is in appendix 

C.5. 
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6.6 Density Dependence Using Jolly Seber Model 

We make use of the density dependent specification of the JS model that is 

developed in section 4.3.3. In particular we look at a model where 

logit(Sj) "'N(/31 + /32Nj, u?), j = 1, ... , k - 1 

- 2 . 
log(r]j) "'N(/33 + /34Nj,u2 ), J = 1, ... ,k-1, 

logit(pj) "'N(/35,u~), j = l, ... ,k, 

where Nj is the value Nj that has been centered to reduce sampling corre­

lation between parameters. 

In practice this model is slow to run in WinBUGS and can exhibit very 

poor mixing in the Markov chain. As there is no easy way to modify the 

sampling algorithms in WinBUGS there is little that can be done to improve 

the convergence of the algorithm. As we are not estimating any individual­

specific parameters, one potential solution (at least for speed) is to re-write 

the mortality component, d2, in terms of sufficient statistics that require 

data augmentation. We factorize the death component of the CJS defined 

in equation 3.3 as 

k-1 

[d2IS,X1] ex Il[Djlmj, Rj, Tj, Mj, Sjl[Tj1Sj], 
j=l 

(6.1) 

where Dj is the unknown number of individuals that die between samples 

j and j + 1, mj is the number of marked individuals caught in sample j, 

Rj is the number of individuals caught in sample j that were subsequently 

released, Tj is the number of individuals caught up to and including sample 

j that were subsequently caught after j and lVIj is the unknown number of 

marked individual alive immediately before sample. The second component 
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of equation 6.1 models all individuals that are known to survive until period 

j + l, 
k-1 

[TjlBj] ex: IT sfh. (6.2) 
h=l 

The first component of equation 6.1 is more difficult as it requires us to 

find the unknown values of lvlj and Dj. As we know there were no marked 

individuals in first sample, M1 = 0 with 

Mj+l = Mj - mj + Rj - D j, j = l, ... , k - l. 

The death component is then given as 

[Djlmj, Rj, Tj, Mj, Sj] = Bin(Mj - mj + Rj -Tj, 1- Bj), j = l, ... , k - l. 

The capture component for the CJS model defined in equation 3.4 must also 

change because we are now using the sufficient statistics, 

k 

[X2IP, d2, X1] = Il[mjlPj, Mj] 
j=2 

[mjlPj, Mj] ex: p";i (1 - Pj)Mrmi 

(6.3) 

A pleasant result is that writing the model in terms of the sufficient statistics 

not only improves the speed of the model, but also vastly improve mixing. 

The WinBUGS code for this model is given in appendix C.6. The data 

for this problem are the values u = (ui, ... , Uk), m = (m2, ... , mk), R = 

(R1, ... , Rk-1), T = (Ti, ... , Tk-1) as well as wr = (l, ... , 1) and wd = 

(1, ... , 1) which are used to include equations 6.2 and 6.3 into the model 

using the ones trick. An example of the data file needed is given in appendix 

C.7. Note that for this model, the initial values must be carefully specified 
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to ensure that all quantities in the model are in range. 
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Chapter 7 

Capture-Recapture Models 

Using Gibbs Sampling 

Here we present how to fit a selection of standard capture-recapture mod­

els where any missing data is included using data augmentation. For the 

remainder of the thesis, all models presented are fitted using special pur­

pose programs written in MATLAB using Gibbs sampling within a Bayesian 

framework. The Gibbs sampler requires a sample from the full conditional 

distribution of every unknown in every iteration. We directly sample from 

the full conditional distribution is we are able to, otherwise if the full con­

ditional distribution is not of known form we use either the Metropolis­

Hastings updater (MH) or use reversible jump Markov chain Monte Carlo 

(RJMCMC) as described in section 5.2.2. In general we do not explicitly in­

clude the iteration superscript on the unknowns. Unless otherwise specified 

we use the latest value for the unknown. 
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7.1 Model Mh 

As specified in section 3.1, the CDL for model Mh with the capture proba­

bilities drawn from a common distribution is 

The DAG for this model is in 3.1. The capture component is 

NI N k 

[Xlp, NJ ex u.!(N ~ u.)! IT IT p;ii (1 - Pi)l-X;j. 
i=lj=l 

(7.1) 

The capture probabilities are specified to be samples from a beta distribu­

tion, 

N 

[plµ, <7
2

, NJ = IT[Pilµ, <7
2J 

i=l (7.2) 

where we re-parameterize the beta distribution in terms of the meanµ and 

variance <72 to improve the sampling correlation, 

The back transformation is 

(7.3) 
(3 = (l - µ)'lj; 
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where 

The model specification is completed with prior distributions. The posterior 

distribution is 

[µ, 0"2, P, :NJXobs] ex [X IP, :NJ [pJµ, 0"2, '.Nl[CT2 Jµ][µl['.N] 

The prior distribution for CT2 is conditional on µ in order to ensure that the 

values ofµ and CT2 are permissible, giving 0: > 0 and /3 > 0. In particular, 

the prior distribution for CT2 needs to ensure that CT2 < µ(1 - µ). 

7.1.1 Full Conditional Distributions 

A summary of the unknowns, their prior distributions and the updater used 

to sample from the full conditional distribution is given in table 7.1. 

Unknown Prior Distribution Updater 
µ Be(a, b) MH 

0"2 U (0, µ(l - µ)) MH 
'.N DU(O,A) RJMCMC 

Pi Beta 

Table 7.1: Table summarizing the Gibbs sampler for model Mh. 

Full Conditional Distribution [µJ·] 

The full conditional distribution for µ is 

[µl·l ex [pJµ,0"2,'.N][0"2lµ][µJ. 
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The prior distributions [µ] and [TJµ] are specified in table 7.1 and the dis­

tribution [pJµ, CT2, NJ is specified in equation 7.2. This means 

[µ[·Jex: II~ r(a + /3) pa-lµa-l(l- µ)b-lI (o < 0'2 < µ(1- µ)) 
i=l r(a)I'(/3) i 

where a and /3 are given in equation 7.3. 

Full Conditional Distribution [ o-2 
J ·] 

The full conditional distribution for CT2 is 

[0'2[,] CX: [p[µ, 0'2, N][CT2[µ]. 

The prior distribution [CT2] is specified in table 7.1 and the component 

[p[µ, CT2 , NJ is specified in equation 7.2. This gives 

~ 

[ 
2

11 
IIr(a+/3) a-1 ( 2 ) 

(T • ex: i=l r(a)I'(/3/i J O < (T < µ(1 - µ) 

where a and /3 are given in equation 7.3. 

Full Conditional Distribution [~ [ ·] 

The full conditional distribution for N is 

[N[.] ex: [X[p, Nl[p[µ, CT2, Nl[NJ. 

The prior distribution [NJ is specified in table 7.1, the distribution [X[p, NJ 

is specified in equation 7.1 and the distribution [pJµ, CT2, NJ is specified in 

equation 7.2. As N is discrete and defines the dimension of X and pit must 

be updated using RJMCMC (section 5.2.2). In iteration m we propose a 

candidate W from the jumping distribution J(W[N(m)). Supposing that 
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W > N(m) we must also generate two augmenting variables Up and ux so 

that both p(m)* and X* are of dimension W, 

We specify the bijection to be the identity, 

( 

p(m) ) ( x(m) ) 
p(m)* = ' X* = . 

Up Ux 

We choose H2(·) to be a function yielding a (W - N(m)) x k matrix of zeros 

with probability 1 as we know that any additional individuals were not 

caught. We choose H1(·) to be a function generating (W - N(m)) values 

from the Be(a, /3) random effects distribution for p. We then accept the 

candidate W with probability q' = min(l, q), where 

[WI.JJ(N(m)IW) 

All other terms cancel out of the expression because we were able to write 

the augmenting variable Up in terms of the random effects distribution for 

p. For the case when W < N(m) we delete the last (N(m) - W) rows of the 

X and p matrices and q becomes 

W(N(m) - u.) J(N(m)IW) * 
q = * (m) k I(u. '.SN :SA). 

(N - u.)N rr~(m) (1 _ (m)) J(N*IN(m)) 
i=~*+l Pi 
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If accepted :N(m+l) = W, x(m+l) = X* and p(m) = p(m)*, otherwise we set 

:N(m+l) = :N(m)) x(m+l) = x(m) and p(m) remains unchanged. 

Full Conditional Distribution [Pi I·] 

The full conditional distribution for Pi is 

[pJ] ex [Xlp, :Nl[plµ, T, :NJ, i = 1, ... , :N. 

The components [Xlp, :NJ and [plµ, T, :NJ are specified in equations 7.1 and 

7.2. This gives 

where 

[Pil·] = Be(a', b'), i = 1, ... , :N, 

k 

a'= LXij+a 
j=l 

k 

b' = k - L Xij + ,6) 
j=l 

where a and ,6 are given in equation 7.3. 

7.1.2 Example: Taxi Cabs in Edinburgh, Scotland 

Carothers (1973) conducted a capture-recapture experiment in Edinburgh 

where any taxi cab that passed a preselected point in the city was recorded 

as a capture. Sampling occurred over k = 10 days with a different selection 

point on each day. The population was assumed closed with a known popu­

lation size of :N = 420. We compare the results of the model fitted assuming 

the capture probabilities are drawn from a common beta distribution to the 

standard procedure in Otis et al. (1978) that uses the jackknife estimator 

(Burnham and Overton 1978). 
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The following prior distributions were used to fit the model: 

~ "'DU(O, 100000) 

µ"' Be(l, 1) 

o-2 
"-' U (0, µ(1 - µ)). 
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The Gibbs sampler was run on 3 independent chains started from different 

values. Each chain had an adaptive phase of 10, 000 iterations to optimize 

the Metropolis-Hastings and RJMCMC algorithm as specified in section 

5.2.2. Each chain was then run for a further 100,000 iterations. The chains 

mixed well and were combined to give a posterior sample of 300, 000 itera­

tions. 

There is a large difference in the results between the two models (Ta­

ble 7.2). Not only does the median of~ in the CDL differ from the MLE 

of ~ found using the jackknife, but the width of the corresponding con­

fidence/credible interval also differs between the two models. The lower 

interval estimate of 418 taxi cabs in Otis et al. (1978) is higher than the me­

dian of the posterior distribution for ~ found using the CDL. The difference 

in the estimates is caused because the jackknife procedure yields a different 

model for the individual capture probabilities than was used in the CDL. 

Unfortunately, as model lVh is non-identifiable (Link 2003) as mentioned 

in section 1.1.1, there is no way to distinguish between these two different 

models. The estimated posterior densities for ~, µ and o- are given in figure 

7.1. 
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Method 
Jackknife 

CDL 

Estimate 
471 
408 

True 420 

2.5% 
418 
358 

97.5% 
524 
525 
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Table 7.2: Table comparing the estimates of ~ under model Ivh for the 
taxi data of Carothers (1973) using (i) the jackknife (Burnham and Overton 
1978) and (ii) the CDL assuming that capture probability are drawn from a 
beta distribution. The CDL estimate is the posterior median and the 2.5% 
and 97.5% quantiles are the equal sided credible interval values. 

300 350 400 450 500 550 600 

~ 
0.06 0.08 0.1 0.12 0.14 0.16 0.18 

~ 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Figure 7.1: Estimates of the posterior distribution of~ (top), µ (middle) 
and O" (bottom). 
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7.2 Model Mh with Individual-Specific Covariates 

An extension to model lvh described in section 3.1.1 is where there are 

individual-specific covariates z that fully explain differences in individual 

capture probabilities. The CDL is 

Lc(µ,T, 1 ,~;X,z) ex [Xlz, 1 ,~][zlµ,T,~]-

The DAG for this model is in figure 3.2. We specify a logistic relationship 

between p and z, 

logit(pi) = 'YO + 'YlZi, 

so that the capture component [Xlz, 1 , ~] is 

[Xlz, 1, ~]ex-· ,1~1~! __ \i IT IT expit('Yo+'Y1Zi)Xij (1-expit('Yo+'Y1zi))1-X;j. 
i=l j=l 

(7.4) 

The covariate values are modeled as a sample from a normal distribution, 

~ 

[z Iµ, T, ~] = II [zi Iµ, T] 
i=l (7.5) 

[zilµ, T] = N(µ, T). 

The model specification is completed with prior distributions. The pos­

terior distribution is 

2 

b, ~' µ, TIXobs] ex [Xlz, 1, ~][zlµ, T, ~] II ['Yh][~][µ][T]. 
h=l 

7.2.1 Full Conditional Distributions 

A summary of the unknowns, their prior distributions and the updater used 

to sample from the full conditional distribution is given in table 7.3. 
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Unknown Prior Distribution Updater 
:N DU(O,A) 

zr:n,is 
i 

"/j N(µo, To) 
T Ga(a, b) 
µ N(µo, To) 

Table 7.3: Table summarizing the Gibbs 
individual-specific covariates. 

Full Conditional Distribution [~l·J 

The full conditional distribution for :N is 

RJMCMC 
MH 
MH 

Gamma 
Normal 

sampler for model 
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Mh with 

The prior distribution [:NJ is specified in table 7.3 and the distributions 

[Xjz, 1 , :NJ and [z[µ, T, :NJ are specified in equations 7.4 and 7.5. As :N is 

discrete and defines the dimension of X and z it must be updated using 

RJMCMC (section 5.2.2). In iteration m we propose a candidate W from 

the jumping distribution J(W[:N(m)). Supposing that W > :N(m) we must 

also generate two augmenting variables Uz and ux so that both z(m)* and 

X* are of the dimension :N*, 

We specify the bijection to be the identity, 

( 

z(m) ) ( x(m) ) 
z(m)* = , X* = . 

Uz UX 

We choose H2(·) to be a function yielding a (W - :N(m)) x k matrix of zeros 

with probability 1 as we know that any additional individuals were not 
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caught. We choose H1(·) to be a function generating (W - N(m)) values 

from the N(µ, T) random effects distribution for z. The candidate W is 

accepted with probability q' = min(l, q), where 

[Wl.]J(N(m)IW) 
q= 

[N(m)I.JH1(uzlN(m), W, µ, T)J(WIN(m)) 

= W(N(m) - u.) rrr~N(m)+1 ( 1 - expit ('YO+ ,'1Zt)*)) k J(N(m) IW) 
(W - u.)N(m) J(WIN(m)) I(u. ::; W ::; A). 

All other terms cancel out of the expression because we were able to write 

the augmenting variable Uz in terms of the random effects distribution for 

z. For the case when W < N(m) we delete the last (N(m) - W) rows of X 

and z with q becoming 

_ W(N(m) - u.) J(N(m)IW) k I(u.::; N*::; A). 

q - (W - u.)N(m) rrr~;~+l ( 1 - expit ('YO+ ,'1z}m))) J(WIN(m)) 

If accepted N(m+l) = W x(m+l) = X* and z(m) = z(m)* otherwise we set , ' 
N(m+1) = N(m), x(m+1) = x(m) and z(m) remains unchanged. 

Full Conditional Distribution [ziis I·] 

The full conditional distribution for zyiis, i = u. + l, ... , N is 

[zil·J ex [XI,, z, Nl[zlµ, T, NJ. 

The components [XI,, z, NJ and [zlµ, T, NJ are specified in equations 7.4 and 

7.5. This gives 

[zris I·] ex expit('Yo + 'Y1Zi)I:J=1 X;j (1 - expit('Yo + ,'lZi) )k-I:J=1 X;j 

( 
T 2) . x exp - 2(zi - µ) , i = u. + l, ... , N. 



h 

Capture-Recapture Models Using Gibbs Sampling 116 

Full Conditional Distribution ['yj I·] 

The full conditional distribution for 'Yi, j = 0, l is 

bjl·l ex: [XI,, z, ~H'Yjl· 

The prior distribution bil is specified in table 7.3 and the distribution 

[XI,, z, ~] is specified in equation 7.4. This gives 

~ 

bi I·] ex: IT ( expit( 'Yo + "(1Zi)LJ=1 X;j (1 - expit( 'YO + "flZi) l-LJ=1 X;j) 
i=l 

( To 2) x exp - 2 ('Yj- µ0 ) , j = 0,1. 

Full Conditional Distribution [r!·] 

The full conditional distribution for T is 

[Tl·] CX: [z\µ, T, ~][T]. 

The prior distribution [T] is specified in table 7.3 and the distribution [z\µ, T, ~] 

is specified in equation 7.5. This gives 

[rl] ~ Ga (;+a, I:f-,(~i - µ)' +b) 

Full Conditional Distribution [µ\·] 

The full conditional distribution for µ is 

[µ\·] CX: [z\µ, T, ~][µ]. 
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The prior distribution[µ] is specified in table 7.3 and the component [zlµ, T, l'{] 

is specified in equation 7.5. This gives 

[µ!.] = N(a, b) 

where b is a precision and 

T I:f=l Zi + Toµo 
a= 

~T+To 

b = ~T + TQ. 

7.2.2 Example: Simulated Data 

Data were simulated under the model for a k = 10 period study using: 

~ = 100 

1=(-2,1) 

Zi ""'N(O, 1), i = 1, ... , ~ 

The capture histories were stochastically simulated as 

Xij ""'Bern(expit('Yo + ')'1Zi)), i = 1, ... , ~, j = 1, ... , k. 

The resulting data set used for the analysis has u. = 76. As expected, the 

observed covariate values zobs give a poor estimate of µ and a- because we 

are more likely to see individuals with high Zi values. The sample mean and 

standard deviation are 0.27 and 0.79 respectively. 

We compare the results of the model that assumes the covariate values 

are drawn from a common normal distribution to the standard procedure 

in MARK in which we condition on the u. individuals that were caught 
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(Huggins 1989). 

The following prior distributions were used to fit the model: 

N ,.__, DU(O, 100000) 

rj ,.__, N(O, 0.0001), j = 0, l 

µ ,.__, N(O, 0.0001) 

T ,.__, Ga(0.001, 0.001). 
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The Gibbs sampler was run on 3 independent chains started from different 

values. Each chain had an adaptive phase of 10,000 iterations to optimize 

the Metropolis-Hastings and RJMCMC algorithms as specified in section 

5.2.2. Each chain was then run for a further 100, 000 iterations. The chains 

mixed well and were combined to give a posterior sample of 300,000 itera­

tions. 

There is very good agreement between the two methods used (Table 

7.4). The only difference appears to be that the posterior distribution for 

N is skewed further to the right. It is reassuring to see that the estimates 

of µ and a- found including the missing individuals automatically adjust 

for the systematic biases that occur when estimating µ and a- from only 

the observed individuals. The point estimates for (µ, a-) have changed from 

(0.27, 0.79) with only the observed individuals to (0.00, 0.87) when including 

all individuals. 

The posterior distribution for the population size N fitted using the CDL 

is in figure 7.2. 

In general, caution should be used when placing non-informative priors 

on parameters that are on the logit scale, such as ,o. A normal prior dis­

tribution with low precision on the (-oo, oo) logit scale results is a bathtub 

shaped prior distribution on the original [O, 1] scale with most mass near 
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CDL Posterior Conditional Likelihood 

Parameter 2.5% Median 97.5% 2.5% Mode 97.5% 
~ 90 109 158 90 107 145 

'Yo -2.33 -1.98 -1.67 -2.25 -1.94 -1.62 
"fl 0.61 0.94 1.3 0.57 0.90 1.23 
µ -0.41 0.00 0.26 
(]" 0.73 0.87 1.10 

Table 7.4: A comparison of parameter estimates for the model Mh with 
individual specific covariates using simulated data when (i) assuming the 
covariates are drawn from a common normal distribution and (ii) using the 
conditional likelihood approach of Huggins (1989). 

50 100 150 200 250 300 

Figure 7.2: Posterior density estimate for the population size ~ for model 
lVh with individual-specific covariates that are assumed to be drawn from a 
common normal distribution. The data were simulated with a true popula­
tion size of 100. 
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0 and 1. This prior is non-informative so long as the likelihood has very 

little mass near the boundaries. However, if there is reasonable mass in the 

likelihood close to either O or 1, then the prior can be unintentionally infor­

mative. One possible alternative is to use a logistic prior distribution with 

mean O and scale 1. This distribution on the (-oo, oo) scale is equivalent to 

a beta distribution with a= 1 and f3 = l on a [O, 1] scale. 

Potential improvements in the efficiency of the MCMC algorithm can be 

obtained from examining different link functions for p, such as the probit 

link. The use of different link functions may allow us to use more efficient 

sampling algorithms for some/all of the parameters in the model, improving 

the convergence of the Gibbs sampler. For example, in certain situations, 

data augmentation can be used to obtain known full conditional distribu­

tions for the parameters in probit regression (Gelman et al. 2004). 

7.3 The CJS Model 

The CDL for the time specific CJS model denoted p(t)S(t) is specified in 

equation 3.2 as 

Cc(P, S; X2, d2, X1) ex [X2[P, d2, X1l[d2[S, X1l, 

where [X2[P, d2, X1] is specified in equation 3.4 and [d2[S, X1] is specified 

in equation 3.3 (with no loss on capture so that li = 0, \/i). The model spec­

ification is completed with prior distributions for the capture and survival 

probabilities. The posterior distribution is 

k k-l 

[p, s, d2is1x2, d!t8, X1] ex [X2[P, d2, X1l[d2[S, X1] II [Ph] II [Sh]-
h=2 h=l 
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7.3.1 Full Conditional Distributions 

A summary of the unknowns, their prior distributions and the updater used 

to sample from the full conditional distribution is given in table 7.5. 

Unknown 
Sj 
Pj 

dmis 
2i: 

Prior Distribution 
Be(a,/3) 
Be(a, /3) 

Updater 
Beta 
Beta 

Multinomial 

Table 7.5: Table summarizing the Gibbs sampler for the CJS modelp(t)S(t). 

Full Conditional Distribution [Sjl·] 

The full conditional distribution for Sj, j = l, ... , k - l is 

[Sjl·l CX [d2IS, X1l[Sj]-

The prior distribution [Sj] is specified in table 7.5 and the component 

[d2IS, X1] is specified in equation 3.3. This gives 

[Sjl·] = Be(Mf- Dj + a,Dj + 1 ), j = l, ... ,k-1, 

where Dj is the number of marked individuals that died between sample j 

and j + l and Mf is the number of marked individuals in the population 

immediately after sample j, 

u. 

Dj = Ld2ij 
i=l 

Mf = t {txlih- f d2ih}. 
i=l h=l h=l 
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Full Conditional Distribution [Pj I·] 
The full conditional distribution for Pj, j = 2, ... , k is 

[pjl·] ex [X2IP,d2,X1][pj]-

The prior distribution [pj] is specified in table 7.5 and the distribution 

[X2IP, d2, X1] is specified in equation 3.4. This gives 

[pjl·] = Be(mj + a, Mj - mj + 1 ), j = 2, ... , k, 

where mj is the number of marked individuals caught in sample j and Mi 

is the number of marked individuals in the population immediately before 

sample j, 

u. 

mj = LX2ij 
i=l 

u. j-1 
Mj =LL {X1ih - d2ih} · 

i=l h=l 

Full Conditional Distribution [d2it8 I·] 

The full conditional distribution for the missing values in the ith row of 

d2 is 

[£iuf8 I·] ex [X2IP, d2, X1l[d2IS, X1]. 

The components [X2IP,d2,X1] and [d2IB,X1] are specified in equations 3.4 

and 3.3. This gives a multinomial distribution, 

[d~fsl·] = MN(l,(i), i = 1, ... ,u. 
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where (i = ( (i,C;, ... , (ik) and 

K, .. 
(-. - iJ . n 

iJ - "'k ' J = "-'i' ... ' k 

K,ij = 

L., h=,C; K,ih 

j-l 

II Sh(l - Ph+1)(l - Sj), j = £i, ... 'k - 1 
h=,C; 

j-l 

II Sh(l - Ph+l), j = k 
h=-C; 

7.3.2 Example: European Dipper 
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We fit the CJS model to European dipper ( Cinclus cinclus) data from Le­

breton et al. (1992). The prior distributions used were 

Sj "'Be(l, 1), j = 1, ... , k - 1 

Pj "'Be(l, 1), j = 2, ... , k. 

The study consists of 7 periods with u. = 294 unique individuals observed. 

The Gibbs sampler was run on 3 independent chains started from different 

values. Each chain had a burn-in of 10,000 followed by a further 100,000 

iterations. The chains mixed well and were combined to give a posterior 

sample of 300, 000 iterations. 

The marginal posterior distributions of the identifiable parameters are 

summarised in table 7.6 and figure 7.3. 

A nice feature of the CJS model is that the full conditional distributions 

are of known form. However, if we were to model either survival or capture 

probability in terms of covariates or include random effects, then the full 

conditional distributions would not be guaranteed to be of known form and 

sampling schemes such as the Metropolis-Hastings algorithm may become 

necessary. 
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Parameter 2.5% Median 97.5% 
S1 0.4628 0.7226 0.9662 
S2 0.3187 0.4474 0.5965 
S3 0.3654 0.4800 0.6018 
S4 0.5095 0.6273 0.7450 
S5 0.4906 0.6019 0.7151 
P2 0.3962 0.6704 0.9054 
p3 0.6715 0.8822 0.9818 
p4 0.7321 0.8889 0.9730 
p5 0.7453 0.8830 0.9633 
P6 0.7826 0.9118 0.9787 

Table 7.6: Posterior 2.5%, 50% and 97.5% quantile estimates for the survival 
and capture probabilities for the European dipper using a S(t)p(t) CJS 
model. 

_S1 

_S2 

_Ss 

_Ss 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-P2 

-Ps 

-P4 

-Ps 

-Pe 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 7.3: Estimates of the posterior distribution for the survival probabil­
ities (top) and capture probabilities (bottom) for the European dipper using 
a S(t)p(t) CJS model. 
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7.4 The CMAS Model 

The CDL for the time specific CMAS model denoted p(t)S(t)f3(t) is specified 

in equation 3.2 as 

£c(S, p, (3, 'N; X, b, d) ex [Xlp, d, b, 'Nl[dlS, b, 'Nl[blf3, 'N] 

where the three distributions are specified in equations 3.9, 3.10 and 3.11. 

The model specification is completed with prior distributions for all param­

eters. The posterior distribution is 

[p, S, (3, bmis, ~is'NIXobs, bobs, dobs] 

k k-l 

ex [Xlp, b, d, 'Nl[dlS, b, 'Nl[blf3, 'NJ II [ph] II [Sh][f3]['N]. 
h=l h=l 

Even though the model is specified in terms of (3 we are able to exam­

ine samples from the posterior distribution for rJ = (771, ... , 77k-1) through 

transforming the samples from the posterior distribution of (3, b, d and 'N, 

/3 ·'N 77· - 1 . 1 k J - N· ) J = ) ... ) A - 1. 
J 

For this reason, we also refer to this model as p(t)S(t)77(t). 

7.4.1 Full Conditional Distributions 

A summary of the unknowns, their prior distributions and the updater used 

to sample from the full conditional distribution is given in table 7.7. 
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Unknown 
N 
Pj 
Sj 
(3 

br:nis 
i: 

dr:nis 
i: 

Prior Distribution 
DU(O,A) 
Be(a, 1) 
Be(a,1) 
Dir(v) 

Updater 
RJMCMC 

Beta 
Beta 

Dirichlet 
Multinomial 
Multinomial 
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Table 7.7: Table summarizing the Gibbs sampler for the CJS model p(t)S(t). 

Full Conditional Distribution ['NI·] 

The full conditional distribution for N is 

[NI·] oc [Xlp, b, d, Nl[dlS, b, Nl[blf3, Nl[NJ. 

The prior distribution [NJ is specified in table 7.7 and the other components 

are specified in equations 3.9, 3.10 and 3.11. As N is discrete and defines 

the dimension of X, d and bit must be updated using RJMCMC (section 

5.2.2). In iteration m we propose a candidate W from the jumping distri­

bution J(WIN(m)). Supposing that W > N(m) we must also generate three 

augmenting variables ub, ud and ux so that both b(m)*, d(m)* and X* are 

of the dimension W, 

Ub rv H1 ( ulN(m), N*, (3) 

Ud rv H2(ulN(m),w,s,ub) 

ux rv H3(ulN(m), N*) 

We specify the bijection to be the identity, 

b(m)' ~ ( b::) ) , d(m)' ~ ( d::) ) , 
X*~ (::I) 
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We choose H3(·) to be a function yielding a (W - ~(m)) x k matrix of ze­

ros with probability 1 as we know that any additional individuals were not 

caught. We choose H1(·) to be a function generating (W - ~(m)) vectors 

from the birth distribution M N(l, /3) specified in equation 3.11. We choose 

H2(-) to be a function generating (W - ~(m)) vectors according to the mor­

tality distribution M N(l, €i) specified in equation 3.10. We then accept the 

candidate W with probability q' = min(l, q), where 

[Wl·JJ(~(m)IW) 

q = [~(m)l·]H1(ubl~(m), N*, /3)H2(udl~(m), N*, S, Ub)J(Wl~(m)) 

W(~(m) - u.) rt~N(m)+l I1~23;+1 (1- Pj)J(~(m)IW) I(u. <~*<A). 
(N* - u.)~(m) J(Wl~(m)) - -

All other terms cancel out of the expression because we were able to write 

the augmenting variables ub and ud in terms of the conditional likelihood 

components of b and d. For the case when W < ~(m) we delete the last 

(~(m) - W) rows of the X, d and b matrices and q becomes 

_ W(~(m) - u.) J(~(m)IW) I(u.::::; ~*::::; A). 
q- (~*-u.)~(m)rrN* I1'.D~. (1-p·)J(Wl~(m)) i=N(m)+1 J-23,+1 J 

If accepted ~(m+l) = ~* x(m+l) = X* and z(m) = z(m)* otherwise we set 
' ' 

~(m+l) = ~(m)' x(m+l) = x(m) and z(m) remains unchanged. 

Full Conditional Distribution [pj I·] 

The full conditional distribution for Pi, j = l, ... , k is 

[pil·] ex [Xlp, b, d, ~][pj]. 
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The prior distribution [pj] is specified in table 7.7 and component [XJp, b, d, ~] 

is specified in equation 3.9. This gives 

[pjJ·] = Be(nj + a, Nj - nj + 'Y), j = l, ... , k, 

where nj is the number of individuals caught in sample j and Nj is the 

number of individuals alive in sample j, 

N 

nj = LXij 
i=l 

Nj = t (f bih-f dih) · 
i=l h=O h=l 

Full Conditional Distribution [ Sj J ·] 

The full conditional distribution for Sj, j = l, ... , k - l is 

[SjJ·] ex [dJS,b,~l[Sj] 

(7.6) 

The prior distribution [Sj] is specified in table 7.7 and the component 

[dJS, b, ~] is specified in equation 3.10. This gives 

[SjJ·] = Be(Nj - Dj + a, Dj + 'Y), j = l, ... , k - l, 

where Nj is defined in equation 7.6 and Dj is the number of individuals that 

died between sample j and j + l, 

N 

Dj = Ldij· 
i=l 
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Full Conditional Distribution [,6 I·] 

The full conditional distribution for ,6 is 

[,61·] ex [bl,6, ~][,6] 
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The component [bl,6, ~] is given in equation 3.11 and the prior distribution 

[,8] is specified in table 7. 7 where v = ( vo, ... , vk- l). This gives 

[,61·] = Dir (B + v), 

where B = (Bo, ... , Bk-1) and Bj is the number of individuals born between 

sample j and j + l, 

~ 

Bj = I)ij, j = 0, ... , k - l. 
i=l 

Full Conditional Distribution [bf'i8 I·] 

The full conditional distribution for the missing values in the ith row of 

bis 

[bfi8 I·] ex [Xlp, b, d, ~][dlS, b, ~l[bl,6, ~] 

The components are given in equations 3.9, 3.10 and 3.11. The gives a 

multinomial distribution, 

[bfisl·] = MN(l, (i), i = 1, ... , ~ 
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where (i = ((iO, ... , (iJ;-1) and 

;- "'ij . 0 '?: 
-,ij = J;-l , J = , ... , ui - 1 

I:h=O t,,ih 
J;-1 

"'ij=/3j II Sh(l-ph), j=O, ... ,Ji-1 
h=j+l 

Note that Ji = :Di for all individuals never caught i = u. + 1, ... , l{. 

Full Conditional Distribution [df,1i8 I·] 
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The full conditional distribution for the missing values in the ith row of 

dis, 

[dfisl·] ex [Xlp, b, d, l{l[dlS, b, l{] 

The components are given in equations 3.9 and 3.10. This gives a multino­

mial distribution, 

[dfisl·] = MN(l,(i), i = 1, ... ,u. 

where (i = ( (i£.;, ... , (ik) and 

(ij = "'ij . -..::-'k ) J = £· k L,h=£.; "'ih i, ••• ) ~ 

"'ij = 

j-1 

II Sh(l - Ph+1)(l - Sj), j = £i, ... , k - 1 
h=£.; 
j-1 

II Sh(l - Ph+l), j = k 
h=£.; 

Note that £i = 11,i + 1 for all individuals never caught i = u. + 1, ... , l{. 
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7.4.2 Example: Meadow Vole 

We fit the CMAS model to meadow vole (Microtus pensylvannicus) data col­

lected at the Patuxent Wildlife Research Center, Laurel, Maryland (Williams 

et al. 2002). The prior distributions used are 

Sj "'Be(l, 1), j = l, ... , k - l 

Pj"'Be(l,l), j=l, ... ,k 

(3"' Dir(l) 

~ "'DU(O, 100000) 

where 1 is a vector of ones of length k. The study consists of 6 periods 

with u. = 294 unique individuals observed. The Gibbs sampler was run 

on 3 independent chains started from different values. Each chain had an 

adaptive phase of 10, 000 iterations to optimize the RJMCMC algorithm as 

specified in section 5.2.2. Each chain was then run for a further 100, 000 

iterations. The chains mixed well and were combined to give a posterior 

sample of 300, 000 iterations. 

The marginal posterior distributions of the identifiable parameters are 

summarized in table 7.8 and figure 7.4. The posterior predictive distribu­

tions of population size Nj, birth Bj and death Dj are summarized in table 

7.9. It is interesting to note that there is information about ~' even though 

it is not identifiable (Link and Barker 2005), as shown by its posterior dis­

tribution in figure 7.5. 
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Parameter 2.5% Median 97.5% 
S1 0.7862 0.8752 0.9526 
S2 0.5632 0.6595 0.7544 
S3 0.5787 0.6809 0.7777 
S4 0.5174 0.6166 0.7114 

P2 0.7919 0.8918 0.9562 

P3 0.7343 0.8431 0.9218 
p4 0.8212 0.9201 0.9756 
p5 0.7975 0.8952 0.9579 

T/2 0.1272 0.2182 0.331 

T/3 0.1538 0.2537 0.375 

T/4 0.2592 0.3779 0.5209 

Table 7.8: Posterior 2.5%, 50% and 97.5% quantile estimates for the per-
capita birth rates , survival and capture probabilities for the meadow vole 
using a S(t)p(t)ry(t) CMAS model. 

_ S1 

_ S2 

_ S3 

_ S4 
I 

0.4 0.5 0.6 0.7 0.8 0.9 

- P2 

- P3 

- P4 

- Ps .~ . 
0.4 0.5 0.6 0.7 0.8 0.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Figure 7.4: Estimates of the posterior distribution for the survival probabili­
ties (top) , per-capita birth rates (middle) and capture probabilities (bottom) 
for the meadow vole using a S(t)p(t)ry(t) CMAS model. 
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Quantity 2.5% Median 97.5% 
N2 125 132 144 
N3 108 115 128 
N4 103 108 118 
N5 103 108 117 
B2 21 29 37 
B3 22 29 36 
B4 35 41 49 
D2 36 45 55 
D3 29 37 46 
D4 36 41 49 

Table 7.9: Posterior predictive 2.5%, 50% and 97.5% quantile estimates for 
Nj, Bj and Dj for the meadow vole using a S(t)p(t)r,(t) CMAS model. 

290 300 310 320 330 340 350 

Figure 7.5: Estimate of the posterior distribution for the non-identifiable 
parameter ~ for the meadow vole. 



Chapter 8 

Density Dependent CMAS 

Model 

Bishop et al. (1978) presents a capture-recapture study of the moth Gon­

odontis bidentata from Northwest England. There were k = 17 sampling 

occasions in which u. = 689 individuals were caught. The data were also 

analyzed by Crosbie and Manly (1985) and Link and Barker (2005). Link 

and Barker (2005) placed a multivariate random effects model on survival 

and per-capita birth rates as described in section 4.1. They found weak evi­

dence of a positive correlation between logit(Sj) and log(77.i), suggesting that 

survival probabilities and fecundity are positively related. Even though a 

model of this nature provides some insight into dynamics of the population, 

it leaves many questions unanswered. One such question is whether there 

are common covariate(s) that induce this positive correlation. An obvious 

choice for a covariate is the population size, giving a density dependent re­

lationship. When population size is high and competition is strong, both 

survival and per-capita birth rates may be relatively low. However, when 

population is low with little competition, survival and per-capita birth rates 
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may be relatively high. Here we will fit a model to the Gonodontis bidentata 

dataset where both survival probability Sj and the per-capita birth rate 7Jj 

are modeled in terms of the latent variable Nj, the population size at time 

of sample j. We fit this model using the Gibbs sampler, generating a sample 

from the full conditional distribution of each unknown in every iteration. 

8.1 Model 

The factorization required for the density dependent CMAS model is de­

scribed in section 4.3.3, in particular equation 4.17. The CDL is 

Lc(/lo, a, -y, r, p, N; X, b, d, S, '1) <X [Xlp, d, b,N] !] { [bio I/Jo] x 

Q { lbi; lb,10,;-1), d,11,;-1), /Jo, '11;, NJ[d,; lb,10,;), d,11,;-1), S;]}} x 

k-2 k-1 

II [7Jj lb:(O:j-1), d,(1:j-1), ,, T, NJ II [Sj lb:(O:j-1), d,(1:j-1), ,, T, NJ. 
j=l j=l 

(8.1) 

where the capture component [Xlp, d, b, NJ and the mortality component 

[dij lb:(O:j), d,(l:j-l), SjJ are specified in equations 3.9 and 4.15. The models 

we use to include the density dependence are 

[Sjlb,(o:j-1), d,(l:j-1), ,, Ts, NJ = logitN('yo + ,1Nj, Ts), j = 1, ... , k - 1 

[rJjlb:(O:j-1), d,(1:j-1), a, T71 , ~J = LN(ao + a1Nj, T71 ), j = 1, ... , k - 2, 

(8.2) 

where Nj is Nj arbitrarily centered to reduce sampling correlation, 

Nj = log(Nj) - 5.5. 
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We include the error term in equation 8.2 to allow for potential over-dispersion 

in S and r,. In order to reduce the number of computations performed at 

each iteration we re-parameterize the birth component by changing the vari­

able from 'r/j to /3j using 

/3. 'N 
ry· - J . l k J - N· , J = , ... , - 2. 

J 

The Jacobian required for this transformation is 

O'rfj 

8/3j 

'N 

Nj 

The model specified for 'r/j in equation 8.2 is 

(8.3) 

[ I l fr;; ( Tr, - 2) 1 'r/j b:(O:j-1), d:(l:j-1), a, Tr,, 'N = y ~ exp - 2 (log(ryj) - ao - a1Nj) 'r/j 

Changing the variable to /3j gives 

[/3j lb:(O:j-1), d:(l:j-1), a, Tr,, 'NJ 

{r;; ( Tr, - 2) Nj \ O'r/j \ = V ~ exp - 2 (log(/3j) + log('N) - log(Nj) - ao - a1Nj) 'N/3j 0/3j 

= a exp (-i (log(/3j) + log('N) - log(Nj) - a 0 - a 1.Nj) 2
) ;j, 

(8.4) 

which is a log-normal distribution with mean ao + a1.Nj + log(Nj) - log('N) 

and precision Tr,· The change of variable means that the birth component 
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of the CDL in equation 8.1 is now written in terms of /3 = (/31, ... ,f3k-1), 

[bi0l/3o] ex f3bb;o(l - f3b)l-b;o 

[bij lb:(O:j-1), d:(l:j-1), f3o, /31:j] 

. 1 b·· 

ex { ( 1-t b;h) Jlj} " (1 - /J,)(1-l.:/,.,,,.), j ~ 1, ... , k - 1 

where 

f3b = f3o 

/35 = . /3j . Tit:1(1-/3~)' J=l, ... ,k-2 

/3~-l = 1 

(8.5) 

As with equation 4.16 the constraint ,8~_1 = 1 is equivalent to Zt:6 ,Bh = l 

and together with the (1-z{:1 bih) term imposes the constraint zt:6 bih = 

l. 

The model specification is completed with prior distributions for all pa­

rameters. The posterior distribution is 

[o:, ,, T,P, S, ,Bo, /3, bmis, ~is, NIXobs, dobs, bobs] ex [Xlp, d, b, NJ X 

l{ { k-1 { 
}] [biOl,Bo]}] [bij lb:(O:j-1), d:(l:j-1), ,Bo, /31:j] x 

}} 

k-1 

[dij lb:(O:j), d:(l:j-1), Sj] II [Sj lb:(O:j-1), d:(l:j-1), 1, TS, NJ X 

J=l 

k-2 1 1 k 

II [,Bj lb:(O:j-1), d:(l:j-1), o:, T77 , NJ II [ah] II bh][Ts][T77 ] II [ph][f3o][N] 
j=l h=O h=O h=l 

We denote this model p(t)S(DD)ry(DD). 
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8.2 Full Conditional Distributions 

A summary of the unknowns, their prior distributions and the updater used 

to sample from the full conditional distribution is given in table 8.1. 

Unknown Prior Distribution Updater 
~ DU(O,A) RJMCMC 

Pj Be(a', b') Beta 
a MVN(µo, ~o) Multivariate Normal 

'"Y MVN(µo,~o) Multivariate Normal 

T71 Ga(a', b') Gamma 
TS Ga(a', b') Gamma 
Sj MH 

/3o Be(a', b') MH 
/3j - MH 

b'f!"'iS - Multinomial 
i 

d'f!"'iS 
i 

Multinomial 

Table 8.1: Table summarizing the Gibbs sampler for model the density 
dependent CMAS model. 

Full Conditional Distribution [~I·] 

The full conditional distribution for ~ is 

[NI-] cx[Xlp, d, b, NJ fl { [b;ol/Jo]x 

ll { [b,; I b,10,j-l)' d,11,j-1)' /Jo' /J1,; II d;; I b,(O,j)' d, (1,j-1)' s, I } } X 

k-l k-2 

II [Sj \b:(O:j-1), d:(l:j-1), '"Y, TS,~] II [/3j lb:(O:j-1), d:(l:j-1), a, T 71 , ~] [~]. 

j=l j=l 

The prior distribution [~] is specified in table 8.1 and the other components 

are specified in equations 3.9, 8.5, 4.15, 8.2 and 8.4. As ~ is discrete and 

defines the dimension of X, d and b it must be updated using RJMCMC 

(section 5.2.2). In iteration m we propose a candidate W from the jumping 

distribution J(~*l~(m)). Supposing that W > ~(m) we must also generate 
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three augmenting variables ub, UJ and ux so that both b(m)*, d(m)* and 

X* are of the dimension ~*, 

Ub "' Hi ( ul~(m), ~*, ,6) 

UJ"' H2(ul~(m),~*,S,ub) 

ux "' H3 ( ul~(ml, ~*) 

We specify the bijection to be the identity, 

( 

b(m) ) ( d(m) ) ( x(m) ) b(m)* = , d(m)* = , X* = . 
Ub UJ UX 

We choose H3 (·) to be a function yielding a (W - ~(m)) x k matrix of zeros 

with probability 1 as we know that any additional individuals were not 

caught. We choose H 1 (·) to be a function generating (W - ~(m)) vectors 

from the multinomial birth distribution M N(l, ,6) specified in equation 3.11. 

We choose H 2 (·) to be a function generating (W - ~(m)) vectors according 

to the multinomial mortality distribution M N(l, xii) specified in 3.10. We 

then accept the candidate W with probability q' = min(l, q), where 

[Wl·)J(~(m)IW) 

q = [~(m)l·)H1(ubl~(m), W,,6)H2(udl~(m), ~*, S, Ub)J(Wl~(m)) 

_ W(~(m) - u.) ADD nr~N(m)+l TI~ss;+l (1 - Pj)J(~(m)IW) I(u. < W < A) 
(W - u.)~(m) J(Wl~(m)) - - ' 
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where 

ADD= >.1>.2 

exp (-7; I:J;:::;J (log(,Bj) + log(W) - log(NJ) - a0 - a1NJ) 
2
) 

>.1=----------------------~ 

exp (- 7
; I:J;:::;J (1og(,6j) + log(N(m)) - log(Njm)) - a0 - a1Njm)) 2) 

exp (-'I,} I:J;:::;J (logit(Sj) - 'Yo - ry1NJ) 
2
) 

>.2 = ---,~--------------'--,-

exp (-'I,} I:J;:::;J (logit(Sj) - 'Yo - ry1Njm))2) 

All other terms cancel out of the expression because we draw the augmenting 

variables ub and ud in terms of the multinomial expressions for b and d in 

the standard CMAS model. For the case when W < N(m) we delete the last 

(N(m) - W) rows of the X, d and b matrices and q becomes 

W(N(m) - u.) ADDJ(N(m)IW) J(u. ::s; W ::s; A). 
q = (W - u.)N(m) rt~N(m)+1 TI~'23;+1 (1 - Pj)J(WIN(m)) 

If accepted N(m+l) = W x(m+l) = X* and z(m) = z(m)* otherwise we set , , 

N(m+1) = N(m), x(m+1) = x(m) and z(m) remains unchanged. 

Full Conditional Distribution [Pj I·] 

The full conditional distribution for Pj, j = l, ... , k is 

[pjl·] oc [Xlp, b, d, N][pj] 

The prior distribution [pj] is specified in table 8.1 and the distribution 

[Xlp, b, d, N] is specified in equation 3.9. This gives 

[pjl·] = Beta(nj + a', Nj - nj + b'), j = l, ... , k, 
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where nj is the number of individuals caught in sample j and Nj is the 

number of individuals alive in sample j, 

~ 

nj = LXij 
i=l 

~ (j-1 j-1 ) 
Nj = ; ~ bih - ; dih . 

Full Conditional Distribution [ o: I·] 

The full conditional distribution for o: = (ao, a1) is 

k-2 
[o:] ex II [,6hlb,(o:h-l), d,(1:h-1), o:, T1J, ~][o:] 

h=l 

The component [,6hlb:(O:h-l), d,(l:h-l), o:, T1J, ~] is specified in equation 8.4 

and the prior distribution [o:] is specified in table 8.1 where µo is a 2 x 1 

vector and ~o is a 2 x 2 matrix. This gives 

[o:I·] = MVN (T1J~aA~Ya, ~a), 

where 

( 
1 -1)-1 ~a = T1)AaAa + ~O , 

1 N1 log(,61) + log(~) - log(N1) 

Aa= Ya= 

1 Nk-2 log(,6k-2) + log(~) - log(Nk-2) 

Full Conditional Distribution bl·] 

The full conditional distribution for 1 = ho, "11) is 

k-1 
bl·] = II [Shlb:(O:h-1), d,(l:h-1), 1, TS,~][,] 

h=l 
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The component [Shlb,(o:h-l),d:(l:h-l),1',Ts,~] is given in equation 8.2 and 

the prior distribution for I is specified in table 8.1 where µo is a 2 x 1 vector 

and ~o is a 2 x 2 matrix. This gives 

[,I·]= MVN (rs~'YA~y"f, ~'Y), 

where 

( 
I -1)-1 ~'Y = rs A'YA'Y + ~o , 

1 N1 logit(S1) 

A'Y = y'Y = 

1 Nk-1 logit(Sk-1) 

Full Conditional Distribution [r77 1·] 

The full conditional distribution for r17 is 

k-2 

[r17I·] <X IT [,Bhlb,(o:h-1), d,(l:h-1), a, T17, ~l[r17] 
h=l 

The component [,Bhlb,(o:h-l), d,(l:h-l), a, r17 , ~] is specified in equation 8.4 

and the prior distribution h] is specified in table 8.1. This gives, 

where 

II k-2 I a =--+a 
2 

[r17I·] = Ga(a",b") 

k 2 ( - )2 I:h:l log(,Bh) + log(~) - log(Nh) - ao - a1Nh 
~= +Y 2 . 
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Full Conditional Distribution [ rs I·] 

The full conditional distribution for Ts is 

k-1 

[Tsl ·] ex: IT [Shlb:(O:h-1), d:(1:h-1), ,, Ts][Ts] 
h=l 
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The component [Shlb:(O:h-l), d:(l:h-l), 1 , Ts] is specified in equation 8.2 and 

the prior distribution [Ts] is specified in table 8.1. This gives 

(
k - 1 It:i (1ogit(Sh) -10 -11Nh) 

2 

) 
[Tsl·] = Ga -

2
- + a', 

2 
+ b' . 

Full Conditional Distribution [ Sj I·] 

The full conditional distribution for Sj, j = l, ... , k - l is 

N 

[Sj I·] ex: Il[dij lb:(o:j), d:(1:j-1), Sj][Sj lb:(O:j-1), d,(1:j-1), ,, Ts] 
i=l 

The components are specified in equations 4.15 and 8.2. This gives 

[Sjl·l ex: sr-Dj-1(1 - Sj)Dj-l exp (- Ti (logit(Sj) -10 -11Nj) 2
). 

Full Conditional Distribution [,Bo I·] 

The full conditional distribution for /3o is 

N { k-1 } 
[/3ol·] ex: I] [bi0l/3o] J][bijlb,(o:j-1),d:(l:j-1),/30,,61,j] [/3o] 
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The prior distribution [,6oJ is specified in table 8.1 and the other components 

are specified in equation 8.5. This gives 

( 

k-2 ) Bk-1 ( k-2 ) 
B +a' 1 b' 1 [,6ol·J ex ,60 ° - (1- ,60) - 1- ~,eh I l - ~,eh> 0 . 

Full Conditional Distribution [/3j J · J 

The full conditional distribution for ,6j, j = l, ... , k - 2 is 

k-1 

[,6j I ·J ex II [bih lb,(o:h-1), d,(1:h-1), ,60, /31,h][,6j lb,(o:j-1), d,(1:j-1), a, T11 , NJ. 
h=j 

These components are given in equations 8.5 and 8.4. This gives 

( 

k-2 )Bk-1 ( k-2 ) 
[,6jl·] ex,6fo-l 1 - ~,6h 1 l - ~,6h > 0 X 

( 
T17 - 2) exp - 2 (log(,6j) + log(N) - log( Nj) - o:o - 0:1 Nj) . 

Full Conditional Distribution [bris I· J 

The full conditional distribution for the missing values in the ith row of 

bis, 

N { k-1 
[bfisl·J ex[XJp, d, b, NJ g [bi0J,60J J1 [bij lb:(O:j-1), d,(1:j-1), ,60, /31:j] X 

[d;;[b,10,;), d,(1,j-1), S;]} X 

k-1 k-2 

II [Sj Jb,(o:j-l), d,(l:j-l), 1 , Ts, NJ II [,6j Jb,(o:j-l), d,(l:j-l), a, T17 , NJ. 
j=l j=l 
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The components are specified in equations 3.9, 8.5, 4.15, 8.2 and 8.4. This 

gives a multinomial distribution, 

[bfisl·] = MN(l,Ci), i = 1, ... ,N. 

where Ci= ((iD, ... , (iJ;-1) and 

(ij 
K,ij 

j = 0, ... ,Ji -1 '\'J;-1 ) 
~h=O "'ih 

J;-1 
K,ij =/3j II Sh(l - Ph) X 

h=j+l 

k-2 

II exp (- i, (log(f3h) + log(N) - log(Nh) - ao - a1Nh) 2
) x 

h=l 
k-l 

II exp ( - T; (logit(Sh) - 'Yo - 'YlNh) 2
) , j = 0, ... , Ji - 1. 

h=l 

The value Nh is the value of Nh when bij = 1. Note that Ji = '.Di for all 

individuals never caught i = u. + 1, ... , N. 

Full Conditional Distribution [df'isl·] 

The full conditional distribution for the missing values in the ith row of 

dis, 

N { k-1 
[dfisl·J cx[Xlp, d, b, NJ IJ [biDl/3oJ D [bijlb:(O:j-1), d:(l:j-1), /3o, /31:j] x 

[<4; lb,(Oj), d, (lj-1), S;] } X 

k-l k-2 

II [Sj lb:(O:j-l), d:(l:j-l), 1 , Ts, NJ II [/3j lb:(O:j-l), d:(l:j-l), a, T71 , NJ. 
j=l j=l 
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The components are specified in equations 3.9, 8.5, 4.15, 8.2 and 8.4. This 

gives a multinomial distribution, 

[di:isl·] = M N(l, (i), i = 1, ... , '.N 

where (i = ((ii'.;, ... , (ik) and 

r .. - K,i1· 
"'k ' j = £· L..,h=i'.; fi,ih i, ... 'k '-:,iJ -

fi,ij = 

j-1 

II Sh(l-Ph+1)(l-Sj)X 

h=i'.; 

k-2 

II exp (-i (log(,6h) + log('.N) - log(Nh) - 0:0 - 0:1Nh) 2
) x 

h=l 
k-l 

II ( TS - 2) exp - 2 (logit(Sh) - 'Yo - "(1Nh) , 
h=l 

j-1 

II Sh(l - Ph+l) X 

h=i'.; 

k-2 

j = £i, ... 'k - l 

II exp (-i (log(,6h) + log('.N) - log(Nh) - 0:0 - a1Nh)2
) x 

h=l 
k-1 

II exp (-T; (logit(Sh) - 'Yo - "(1Nh) 2
), j = k. 

h=l 

The value Nh is the value of Nh when dij = l. Note that £i - ~i + 1 for all 

individuals never caught i = u. + l, ... , '.N. 
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8.3 Results 

The prior distributions used were 

a rvMV N ( (0, O)', 10000h) 

1 rvMVN ((0, O)', 10000h) 

Try rvGa(0.001, 0.001) 

TS rvGa(0.001, 0.001) 

/3o rvBe(l, 1) 

Pj rvBe(l, 1), j = 1, ... , k 

~ rvDU(O, 100000) 

where In is the n x n identity matrix. 

147 

The Gibbs sampler was run on 3 independent chains started from dif­

ferent values. Each chain had an adaptive phase of 20, 000 iterations to 

optimize the Metropolis Hastings and RJMCMC algorithms as specified in 

section 5.2.2. As there was high autocorrelation in the values, each chain 

was run for a 100,000 iteration burn-in followed by a further 300,000 iter­

ations. The chains mixed and were combined to give a posterior sample of 

900,000 iterations. 

The posteriors of particular interest are the density dependent param­

eters a1 and "(1 (figure 8.3). The parameter a1 has approximately 98% of 

mass below O suggesting that per-capita birth rates are negatively associ­

ated with population size. The parameter "(1 has approximately 81 % of the 

posterior mass below 0. This suggests a negative relationship between sur­

vival and population size, although it is not convincing. The evidence of 

density dependence raises the possibility that the correlation identified by 

Link and Barker (2005) was one induced by survival and birth rates both 
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being negatively related to population size. These results indicate that the 

population of Gonodontis is stable, at least in regard to fecundity: when 

the population size becomes large or small, birth rates adjust so that the 

population returns to somewhere near equilibrium. 

Posterior summaries are available for the parameters in the density de­

pendent relationship in table 8.2. To assess the difference between the den­

sity dependence model and standard models we compared the density de­

pendent model to a standard CMAS p(t)S(t)ry(t) model as in section 7.4. 

Imposing the density dependent relationships results in shrinkage toward 

the predicted model (Figures 8.1 and 8.2). The shrinkage not only occurs 

for the estimates of survival probability and birth rates, but also for the de­

mographic summaries predicted from the model, such as Nj. In most cases 

the posterior predictive distribution for Nj is tighter under the assumption 

of density dependence as shown in table 8.4. 
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' ' ' ' 
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Figure 8.1: The posterior medians for logit(Sj) are plotted against the pos­
terior medians for log(Nj) - 5.5 for the p(t)S(t)ry(t) model (blue points) as 
well as for the p(t)S(DD)ry(DD) model (red points). The superimposed 
black lines are the median (solid line) and the 2.5% and 97.5% quantiles 
( dashed lines) of the estimated density dependent relationship. 

Note that the changes in the posterior predictive distribution for Nj as 
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Figure 8.2: The posterior medians for log( r]j) are plotted against the pos­
terior medians for log(Nj) - 5.5 for the p(t)S(t)TJ(t) model (blue points) as 
well as for the p(t)S(DD)TJ(DD) (red points). The superimposed black lines 
are the median (solid line) and the 2.5% and 97.5% quantiles (dashed lines) 
of the estimated density dependent relationship. 
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well as sampling correlations among parameter estimates, are ignored when 

there is crude estimation of the density dependent relationship, for example, 

by regressing survival rate estimates on abundance estimates. Not account­

ing for the sampling process correctly could lead to incorrect inference for the 

study population. In order to compare the estimates we fitted a regression 

model to the posterior medians of Sj and 'r/j obtained from the p(t)S(t)ry(t) 

model, 

logit(Sj) "'Nho + "/1 Nj, rs), j = l, ... ) k - 2, 

log(ijj) "'N(a0 + a1Nj, r;), j = 2, ... , k - 2, 

where Sj and 1Jj are the posterior medians of Sj and 'r/j in the p(t)S(t)ry(t) 

model. The regression estimates are close to those found in the density de­

pendence model p(t)S(DD)ry(DD) although the credible intervals are quite 

different (Table 8.3). The danger of the crude analysis is best seen in the 

posterior for a1, with the 95% credible interval for the crude analysis incor-

rectly including 0. 

Parameter 2.5% 50% 97.5% 

"/0 -0.58 0.13 0.58 

"/1 -3.09 -0.35 0.36 
crs 0.03 0.29 1.14 
ao -1.61 -0.97 -0.64 
a1 -1.60 -0.75 -0.09 

cr'IJ 0.05 0.53 1.22 

Table 8.2: Table of posterior 2.5%, 50% and 97.5% quantiles for 'Yo, ao, crs 

and crry. 
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-4 -3 -2 -1 0 

Figure 8.3: Posterior density estimates for ')'1, the effect of population size 
on survival probabilities (blue line) and a1, the effect of population size on 
per-capita birth rates (red line) for Gonodontis bidentata. 

Parameter 2.5% 50% 97.5% 

r'8 -0.22 0.26 0.73 

'YI -1.06 -0.42 0.23 
CTc s 0.57 0.81 1.27 
a c 

0 -1.62 -1.12 -0.62 
ac 

1 -1.67 -0.83 0.03 
CT c 

7/ 
0.60 0.85 1.37 

Table 8.3: Table of posterior 2.5%, 50% and 97.5% quantiles for r'5, a8, 
CTs and CT~ for t he density dependence relationship found using the median 
values for survival and per-capita birth rates. 
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p(t)S(DD)ry(DD) p(t)S(t)ry(t) 

Quantity 2.5% 50% 97.5% 2.5% 50% 97.5% 

r N2 60 83 133 61 88 155 
N3 85 120 194 92 141 225 
N4 89 129 207 83 122 199 

\ N5 51 103 197 38 54 95 
N5 129 201 347 132 215 385 

l N7 153 233 377 150 261 455 
Ns 145 208 304 133 216 366 
Ng 148 219 334 146 261 503 
N10 192 282 500 252 427 698 
Nn 160 255 457 180 377 755 

\ ,,, 

N12 177 258 405 203 337 536 
N13 186 253 384 218 341 517 

L N14 154 218 320 150 248 425 
N15 129 189 279 116 207 354 
N15 78 160 254 49 75 162 

'"" Table 8.4: Comparison of posterior predictive distributions of Nj from the 
p(t)S(DD)ry(DD) model and the p(t)S(t)ry(t) model. 
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Chapter 9 

CJS Model with Continuous 

Covariates and Auxiliary 

Data 

A capture-recapture study on rainbow trout was conducted by Fish and 

Game New Zealand on the upper headwaters of the Rangitikei River, New 

Zealand as described in Barker et al. (2001). A total of u. = 547 rainbow 

trout were caught over k = 13 sampling periods. The trout were caught 

using natural bait fished upstream at a dead drift during a 2-week window 

each spring (between 7 and 31 October) and autumn (between 15 March and 

15 April) from March 1993 until April 1999 (Barker et al. 2001). At time 

of capture, information was recorded about the sex and the length of each 

individual. In an attempt to improve the survival of the larger, breeding 

fish an upper size restriction of 550mm was imposed on the rainbow trout 

fishery during the study (October 1995), making it illegal to keep any fish 

over 550mm. 

New recruits to the upper headwaters of the Rangitikei River are not 
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assumed to come through birth. Instead it is assumed that fish develop 

downstream and enter the upper headwaters after sexual maturity. There­

fore, including the first captures in the model provides information about 

immigration, not fecundity. As understanding factors that influence immi­

gration is not a focus of the study we look only at models that condition on 

first capture. 

Additional information was available, with live re-sightings and dead re­

coveries collected from anglers. The information obtained for each reported 

fish varied, with length information included for some fish. All length in­

formation that was received from anglers was checked to ensure the mea­

surement was correctly taken. Recoveries and re-sightings were recorded for 

k' = k = 13 periods. 

The goal of the study was to determine whether the upper size limit (i) 

increased the return rate for fish over 550mm and (ii) increased the survival 

for the larger breeding fish. In an attempt to investigate these effects Barker 

et al. (2001) modeled the joint capture-recapture, re-sighting and recovery 

data. They used length at first capture to specify length effects for the period 

after first capture and disregarded all further length information 1 . The 

complete analysis requires length as a covariate for all survival probabilities, 

not just survival for the period after first capture. This requires length to 

be included as a continuous covariate with a model for the missing values. 

In total there were 715 length measurements obtained from the u. = 547 

fish. There was 1 fish with 5 length measurements, 4 with 4 measurements, 

20 with 3 measurements, 113 with 2 measurements, 408 with 1 measurement 

and 1 fish with no length measurements. 

The data comprise several components. 

1 Barker et al. (2001) also used an earlier version of the data. 
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Capture-Recapture Data 

The observed capture-recapture histories are denoted by the matrix xobs, 

where Xfjs = 1 means that individual i was captured in sample j and 

Xfjs = 0 otherwise, i = 1, ... , u., j = 1, ... k. As usual we separate xobs 

into X1 and X2, where X1 contains all information in xobs up to and 

including first capture and X2 contains all information in xobs after first 

capture. 

Angler Recoveries 

The observed angler dead recoveries are denoted by the matrix Yi. The 

value Yiij = 1 denotes individual i being recovered between sample j and 

j + 1, with Y1ij = 0 otherwise, i = 1, ... ,u., j = 1, ... , k'. 

Angler Re-sightings 

The observed angler live re-sightings are denoted by the matrix }'2. The 

value Y2ij = 1 denotes individual i being re-sighted between sample j and 

j + 1, with Y2ij = 0 otherwise, i = 1, ... , u., j = 1, ... , k'. 

Information on Death 

The partially observed matrix d that denotes the interval censored time 

of death, with dij = 1 meaning that individual i died between sample j and 

j + 1 and dij = 0 otherwise, i = 1, ... , u., j = 1, ... , k' + l. We separate d 

into d1 and d2, where d1 contains all information ind up to and including 

first capture and d2 contains all information in d after first capture. Note 

that the re-sightings and recoveries have extended the d matrix. This means 

that the value dik'+l = 1 denotes that the individual was still alive at the 

end of the study. 
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Loss on Capture 

The information on loss on capture is denoted by i = (i1, ... , lu.), where 

li = 0 means that individual i was lost on capture, with li = 1 otherwise. 

Availability for Capture 

The matrix z is used to denote availability for capture, with Zij = 1 

meaning that individual i was available for capture in sample j with Zij = 0 

otherwise, i = 1, ... , u., j = 1, ... , k. We separate z into z1 and z2, where 

z1 contains all information in z up to and including first capture and z2 

contains all information in z after first capture. 

Length Information from Capture-Recapture Model 

The length information for individuals measured as part of the capture­

recapture study is denoted by the matrix L1. The value L1i(81ih) denotes the 

recorded length of individual i in capture h, for i = 1, ... , u., h = 1, ... , Wii· 

The value 81ih is the time at capture h for individual i and W1i is the number 

of times i was captured with a length measurement taken. 

Length Information from Recoveries 

The length information for individuals measured when recovered is de­

noted L2. The value L2i(82ih) denotes the recorded length of individual i in 

recovery h, for i = 1, ... , u., h = 1, ... , W2i· The value 82ih is the time at 

recovery h for individual i and W2i is the number of recoveries for individual 

i with a length measurement taken. Note that it is possible for each indi­

vidual to be only be recovered once in its lifetime, so w2i must either take 

the value O or 1. 
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Length Information from Re-sightings 

The length information for individuals measured when re-sighted is de­

noted L3. The value L3i(83ih) denotes the recorded length of individual i in 

re-sighting h, for i = 1, ... , u., h = l, ... , W3i· The value 83ih is the time at 

re-sighting h for individual i and W3i is the number of times i was re-sighted 

with a length measurement taken. 

Information on Sex 

The sex information that was recorded as part of the capture-recapture 

study is denoted sex = ( sex1, ... , sexu.), with sexi = 1 denoting a male 

with sexi = 0 otherwise . 

Information on Season 

The information on whether sampling occurred in spring or autumn is 

denoted by the vector sea= (sea1, ... , seak), with seaj = l denoting spring 

and seaj = 0 otherwise. 

Information on Regulation 

The information on when the upper size limit was introduced is denoted 

reg = (reg1, . .. , regk), with regj = l denoting that the upper size limit has 

been enforced, with regj = 0 otherwise. 

Note the distinction between tj, 81ih, 82ih and 83ih· The value tj is the 

time at sampling occasion j and 81ih, 82ih and 83ih are the times at capture 

h, recovery h and re-sighting h for individual i respectively. 

The information in sex is incomplete as not every individual has their 

sex assigned. We assume that the underlying sex of the individuals did not 

affect whether or not these observations were recorded. Therefore, the miss­

ingness mechanism is ignorable and the description for how the observations 
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went missing does not need to be included in the model. 

The information on length is also incomplete. There are two reasons are 

length measurements go missing. The first reason is because we are not able 

to observed the fish in every sample. The reason why these observations go 

missing depends on the unobserved length values. The missingness mecha­

nism for this process is fully specified by the capture-recapture process X2 

and the recovery and re-sighting processes Y1 and ¥ii. Therefore, we do not 

need to include an additional component that models how the data go miss­

ing. The second reason length observations are missing is because anglers 

( and in some cases fish and game officers) did not record length measure­

ments when the fish was caught. We assume that this decision has nothing 

to do with the underlying measurement. Therefore, the missingness mecha­

nism is ignorable and the description for how the observations went missing 

does not need to be included in the model. In principle this assumption can 

be relaxed if we believe that anglers were less likely to report the length of 

fish that were close to, or larger than, the legal limit (but still report the 

capture). However, this requires that at least some of the fish that are re­

sighted with no measurement are subsequently caught and measured. There 

was not enough information in this dataset to investigate a model of this 

sort. 

The joint model for this problem is complex, so we develop each of the 

conditional likelihood components in turn before combining them to give 

the CDL. 

9.1 Length Model 

The von Bertalanffy growth function (VBGF) is extensively used in fisheries 

to model the growth in length of fish ( von Bertalanffy 1938). It assumes that 
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growth is monotonically increasing at a decreasing rate to an asymptote as 

shown in figure 9 .1. 

700 

600 

500 

'? 400 
~ 
J:: 
OJ 
3 300 

o~---~----~----~----'-------' 
0 2 4 6 8 10 

Age (years) 

Figure 9.1: An example of the von Bertalanffy growth function. 

9.1.1 Standard VBGF 

The VBGF for the length of individual i at age t, denoted A1i(t) can be 

written as 

A1i(t) = Looi(l - (i exp(-Kit)), Looi > 0, Ki > 0, 0 < (i < l. 

The parameters are Looi, the asymptotic length, Ki a growth rate parameter 

that describes how quickly the growth rises to the asymptote and (i is a 

parameter that allows for the size at birth to be larger than 0. 

When the length data are obtained from capture-recapture studies the 

age of the individual is unknown, making the parameter (i not identifiable. 
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The usual assumption that is incorporated to overcome this is that (i = 1 

making the VBGF, 

A1i(t) = Looi(l - exp(-Ki(Ai(8lil) + .6.i(t)))), 

where Ai(8lil) is the (unknown) age from size O at first capture and .6.i(t) 

is the time difference between t and first capture for individual i. 

In order to estimate the growth parameters, Fabens (1965) conditioned 

on the observed length at first capture of each individual Li(81i1) to give 

Di(t) = (Looi - Li(81i1))(l - exp(-Ki.6.(t))), 

where Di(t) is the expected difference between length at time t and length 

at first capture Li(81i1), which is assumed fixed. Provided there is adequate 

data, least squares estimates can be found for Looi and Ki or restrictions 

of these parameters. Maller and deBoer (1988) showed that this procedure 

yields inconsistent estimates with biases that can potentially be very large. 

Francis (1988a) points out that a major source of the inconsistency is that 

the random variable Li(8lil) is treated as known and overcame this through 

the re-parameterization described in Francis (1988b). James (1991) claimed 

to overcome the problem by modifying Fabens (1965) estimators to give 

distribution-free consistent estimators. Laslett et al. (2002) took a different 

approach and included the age at first capture in the model as a parameter 

to be estimated, 

Li(81ih) ,..._, N(A1i(81ih), u2
), i = 1, ... 'u., h = l, ... 'W1i 

where Li(81ih) is the observed length at time of capture h, u2 is the com-
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bined measurement and model error2 and w1i is the number of captures for 

individual i. In order to fit the model they assumed3 that 

l. Ki= K, i = l, ... , u. 

2. Looi rv N(µoo,Too), i = 1, . .. ,u. 

3. Ai(Dlil) rv LN(µA, TA), i = l, • • •, U. 

Laslett et al. (2002) used maximum likelihood to fit the model, integrating 

out the random effects distribution for age. Note that if there is sufficient 

data it is also possible to extend the model of Laslett et al. (2002) to allow 

Ki to be a random effect, although within a maximum likelihood framework 

Eveson et al. (2004) noted that it " ... may be too computer intensive to be 

feasible in practice". Fortunately, there is no such difficulty using Bayesian 

computational methods such as MCMC. 

The standard VBGF has many statistical downsides. The parameter Looi 

is defined outside the range of the data as we never observe any individuals 

at infinite age. This is especially inappropriate when the individuals we 

catch are still growing rapidly. A related problem is that the parameters 

have high sampling correlation (Ratkowsky 1986, Francis 1988a,b) which 

can lead to unstable parameter estimates. 

9.1.2 VBGF Mark II 

Wang (2004) suggested a re-parameterization of the VBGF in terms of length 

2Laslett et al. (2002) assumed that there was no error in the model. That is, if the 
individuals were accurately measured then they would fit exactly on the VBGF. This 
assumption means that Laslett et al. (2002) define o-2 as measurement error. 

3 Note that as L;(01ih) > 0 and £ 00; > 0 it is preferable to consider positive distribu­
tions to enforce these constraints. For example, 

L;(oi;h) ~ LN(log(J\1(01ih)),T), i = 1, ... ,u., h = l, ... ,wli 

assumes that the median size of the individual fish follow a VBGF. 
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at first capture instead of age at first capture, 

A2i(t) = O:i + (Looi - O:i)(l - exp(-Ki~i(t))), 

where O:i is the length at first capture, 

O:i = Looi(l -(iexp(-KAi(81i1))). 

One virtue of using o:i is that we are able to directly check their values from 

the data. Furthermore, any additional information known about the first 

capture can be included to improve the model fit. We make use of this for 

the Rangitikei River fish because we expect the length distribution of the 

available fish to differ between the autumn and spring sampling periods. 

This difference is highlighted by an extraneous sampling period in the au­

tumn of 1998 where many small fish were caught in the upper headwaters 

because of the high river temperatures in the summer of 1997 /1998. It has 

been suggested that the temperature led to fish moving out of the middle 

reaches and into the cooler headwaters. 

Even though this parameterization provides an improvement over the 

standard VBGF it still exhibits many of the statistical downsides mentioned 

in section 9.1.1, including the parameter Looi being out of range and the high 

sampling correlation between Looi and Ki. 

9.1.3 VBGF Mark III 

Many of the statistical problems revolve around the fact that Looi is defined 

outside the range of the data. To overcome this we re-parameterize in terms 
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of Ai, the instantaneous growth rate at first capture, 

8ai 
8Ai(olil) =Ai= Ki(Looi - ai)-

Using .Ai gives 

· >.i 
A3i(t) = ai + Ki (1- exp(-Ki.6.i(t))). 

The major advantage of this parameterization is that .Ai is well supported 

by the data, so will likely have lower sampling correlation with Ki. 

9.1.4 Additional VBGF alternatives 

There are an infinite number of possible re-parameterizations that could 

be examined for the VBGF. A particularly appealing model is described 

in Ratkowsky (1986), where the VBGF is parameterized predominantly in 

terms of features of the study, 

ni - ai 
A4i(t) = ai + 1 ( K .6.( )) (1 - exp(-Ki.6.i(t))) 

- exp - i tni 

where ni is the length at last capture and .6.(tni) is the time difference 

between last capture and first capture for individual i. Ratkowsky (1986) 

concludes that this parameterization has low sampling correlations between 

parameters and converges well using non-linear least squares. 

However, a necessary feature of the model is .6.(tni), which is not avail­

able for individuals caught less than two times. This means that the ex­

pected size of individuals caught less than twice is not defined at times 

other than first capture. As individuals caught once only are modeled en­

tirely in terms of ai, this is no problem for parameter estimation. However, 
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it makes prediction impossible for times other than the first capture for in­

dividuals caught less than twice. This means that the model is of little use 

as the very reason we are modeling length is to predict the missing values 

of the covariate for use in the capture-recapture model. 

9.1.5 Model 

As we are interested in predicting the missing length values, the VGBF 

model A3i(tj) from section 9.1.3 is chosen as the preferred model for the 

length observations. For readability we suppress the subscript and denote 

this function as Ai(tj), 

,\. 
Ai(t) = ai + ;i (1- exp(-Ki.6.i(t))). (9.1) 

We are able to extend the basic structure of the model to allow for the 

data collection being from both fish and game officers and anglers. We 

expect that the length observations of the anglers are from a separate distri­

bution with a potential bias. Assuming independence between individuals 

and through time the model for length is 

U. Wii 

[L1la,.\,K,T1] = ITIT [L1i(81ij)Ja,-X,K,T1], 
i=lj=l 

[L1i(81ij)Ja, .\, K, T1] = LN(log(Ai(81ij)), T1), 

U. W2i 

[L2Ja,.\,K,B,T2] = ITIT [L2i(81ij)Ja,-X,K,B,T2], 
i=l j=l 

[L2i(81ij)Ja, .\, K,B, T2] = LN(log(Ai(81ij)) + B, T2), 

U. W3i 

[L3la,.\,K,B,T2] = ITIT [L3i(81ij)Ja,.\,K,B,T2], 
i=l j=l 

[L3i(81ij)Ja, A, K,B, T2] = LN(log(Ai(81ij)) + B, T2), 

(9.2) 
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where B is the bias of the anglers, T1 is the precision for the fish and game 

officers and T2 is the precision for the anglers. 

We assume that the instantaneous growth rates Ai, i = 1, ... , u. are 

drawn from a common log-normal distribution that depends on the sex of 

the individual. The conditional likelihood component for .A = (A1, ... , Au.) 

is 

where 

.A= 

Al 

A2 

Au. 

[..\IO,\, T,\, sex] = MV N(X,\O,\, ~,\) 

, x,\ = 

1 sex1 

1 sex2 

l sexu. 

r 
8,\0 1 2 , 0,\ = , ~,\ = O",\Iu . 

e,\1 

(9.3) 

where In is the n x n identity matrix. The common distribution for .A is 

essential because the value of Ai is used to predict the missing values of the 

length covariate for times other than first capture. Without the common 

distribution, Ai is informed by the data only for individuals with at least 2 

captures. 

We assume that the values ai, i = 1, ... ,u. are drawn from a common 

log normal distribution that depends on the sex of the individual as well as 

the season of capture. We include a term in both the mean and variance for 

the autumn of 1998 that allows for the extraordinarily high summer river 

temperatures. The conditional likelihood component for a = ( a1, ... , au.) 

is 

[alOa, Ta, sex, sea] = MV N(XaOa, ~a) (9.4) 
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where 

r 
a1 l 1 1 sex1 sea;y1 

A981 I Bao 

a2 
I, Xa= I ~ 

sex2 sea;y2 A982 Ba1 
CT= I ' Ba= 

Ba2 

l au. J l 1 sexu. seaiu. A98u. I I Ba3 

and 

:Ea= diag((Tal + A981(Ta2 - Ta1)), ... , (Tal + A98u.(Ta2 - Ta1))) 

where A98i = 1 if individual i was first caught in the autumn of 1998 and 

A98i = 0 otherwise. Note that all off diagonals in :Ea are zero. 

To ensure identifiability, the parameter Ki is assumed to be the same for 

every individual in the population, 

Ki = K, i = l, ... , u. 

9.1.6 Obtaining the Age at First Capture 

The VBGF written in terms of length at first capture can be inverted to 

obtain the age at first capture, 

( Ai ) 
log ~ i = l, ... ,u. Ai(51il) = K ' (9.5) 

Ai(51il) is the age from size 0, not birth, which we are unable to estimate 

because we are using capture-recapture observations. However, we expect 

age from size O to be a good proxy for age from birth because trout are born 

small. 

As most of our length information is from individuals larger than 450mm 
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the age estimate is highly model dependent. 

9.2 Modeling Sex 

We assume that the observed sex of the fish is the outcome of an independent 

Bernoulli trial, 

u. 

[sexJB9 ] = II[sexiJB9] 

i=l (9.6) 

[sexiJB9 ] = Bern(B9 ), 

where &9 is the probability of being male. 

9.3 Capture-Recapture Model 

We fit a CJS model (section 3.2.1), including both the length covariate and 

availability for capture. Where possible we model the parameters in a similar 

manner to Barker et al. (2001). 

We extend the model for the capture histories specified in equation 3.4 

to include availability for capture, 

u. '.Di z·. 

[X I() d "\ K X] - II II { X2ij(l - ·)l-X2ij} '1 
2 p, Ep, 2, z, sea, a,"'-, , 1 - Pj p3 . 

i=lj=Ji+l 

(9.7) 

The capture probabilities Pi are assumed to depend on season ( autumn/spring) 

and vary through time according to a random effect, 

logit(pj) = Bpo + Bp1seaj + Epj, j = 2, ... , k, 
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where the model for Ep = ( Ep2, ... , Epk) is 

k 

[EpiTp] = IJ[EpjlTp] 
j=2 

[EpjlTp] = N(O,Tp)-

(9.8) 

We extend the survival model specified in equation 3.3 to allow survival 

probabilities to vary between individual and include the additional informa­

tion from anglers, 

N 

[d2IOs, ES, o:, A, K, i, X1] = II MN(l, ei(li)). 
i=l 

The probability vector ei(ii) is 

( 

Z;-1 

ei(ii)= (1-siiJ,sii;(1-siJ;+1), ... , II sih(1-si_c;t\ 
h=J; 

(9.9) 

Z; k'-1 k' ) 

ii IT sih(1-si_c;+1), ... ,ii IT sih(1-sik'),ii IT sih . 
~~ ~~ ~~ 

The survival probabilities are assumed to vary through time according to a 

random effect. The mean of the distribution is assumed to depend on length 

and age with the length affect changing after the regulation, 

logit(Sij) = Bso + Bs1A~(tj) + Bs2regj + Bs3A~(tj)regj + Bs4A(tj) + ESj, 

i=l, ... ,u., j='Ji,···,k', 

where Ai ( tj) is the age of individual i at time of sample j found using 

equation 9.5, 

Ai(tj) = Ai(8lil) + fli(tj)-

The value A~ ( tj) is the expected length of individual i at time tj given by 
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equation 9.1 standardized with a mean of 559.4mm and standard deviation 

of 76.7mm4 . We use the expected length as a proxy for true length, which we 

are not able to obtain because we cannot separate measurement and model 

error. The model for Es = ( f.Sl, ... , f.Sk') is 

k' 

[EslTs] = II[EsjlTsl, 
j=l 

[EsjlTs] = N(O, Ts). 

(9.10) 

9.4 Information from re-sighting and recoveries 

As catching trout is illegal for anglers for a large majority of the winter 

season, we treat the re-sighting and recovery processes separately for summer 

and winter. During the winter season, the parameters Rj, R 5 and Tj are used 

and assumed constant through time, denoted Rwin, R~in and Twin· For the 

summer months we parameterize in terms of Rj, Ji and Vj as described 

in section 4.4.2 as this is a natural parameterization for the process by 

which the data were collected5. When an angler catches a fish they must 

choose whether to release the fish back into the river (giving a re-sighting if 

reported) or kill the fish (giving a recovery if reported) . 

We extend the recovery model specified in equation 4.19 to allow for (i) 

parameters varying according the season and (ii) individuals not being able 

4 We choose these values to agree with the standardized values used by Barker et al. 
(2001). 

5 Barker et al. (2001) parameterized in terms of R, R' and r as this is the only param­
eterization available in program MARK (White and Burnham 1999). 
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to be recovered when lost on capture, 

[Y1I01, OR, Ov, Os, d2, sea, l, a, A, K, Ef, ER, Ev, ES, Twin] 

nu. { ( Y1i'.D; (1 - . )l-Y1;'.l).) sea'.D; ( Y1i'.D; (1 - . )l-Y1rn.) l-sea'.D; }i; 
CX: T i'.D; T i'.D; ' Twin Twin ' 

i=l 

(9.11) 

We extend the re-sighting model specified in equation 4.20 to again allow for 

(i) parameters varying according the season and (ii) individuals not being 

able to be re-sighted after they were lost on capture, 

[Y2I01, OR, Ov, Os, d2, Xi, sea, l, a, A, K, Ef, ER, Ev, ES, Rwin, R~in> Yi] 

u. { . sea'.l) . l-sea i; cx:Il (R~ _Y2,'.l:J;(l-R' )l-Y2i'.D;) '(R'. Y2;'.l)i(l-R'. )l-Y2i'.D·) '.l)i} i'.D, i'.D; win win ' X 
i=l 

'.D;-1 

l1 ( y 2 .. 1 y )seaj ( y )l-sea· R .. ,1 (1 - R- ·) - 2ij R ~ii (l - R . )l-Y2;j J 
iJ iJ win win 

j='J; . 

(9.12) 

where the values of R~j and Tij for the summer months are obtained from 

equation 4.21, 

Tij = 

R~- = iJ 

(1 - Vij)Jij 

1- Sij 

J;j-SijRij - Tij 
l-S;j 

1- Tij 

The parameters Rj and Jj are very similar and we model these in the same 

way. As anglers may target larger fish we allow these parameters to depend 
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on length as well as varying through time according to a random effect, 

logit(Rij) = eRo + BmA~(tj) + ERj, i = 1, ... ,u., j = {h: seah = 1} 

logit(fij) = efo + eflA~(tj) + Efj, i = l, ... 'u., j = {h: seah = l}. 

where j = { h : seah = l} is the set of all values of j such that seaj = l. 

To evaluate the effect of the upper size limit on release rate, we allow all 

individuals to have the same release rate before the regulation with fish 

larger than 550mm having a different release rate after the regulation, 

logit(vij) = Bvo + Bv1I(Ai(tj) > 550)regj + Evj, 

i = 1, ... ,u., j = {h: seah = l}. 

The model for ER is 

[ERITR] = II [ERjlTR], 
j:seaj=l (9.13) 

[ERjlTR] = N(O, TR)• 

where Tij:seaj=l is the product over all values of j for which seaj = l. The 

model for E f is 

[EJh] = II [cjjlTJ], 
j:seaj=l (9.14) 

[cjjh] = N(O, TJ ). 

The model for Ev is 

[EvlTv] = II [cv;!Tvl, 
j:seaj=l (9.15) 

[Evjh] = N(O, Tv). 
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9. 5 Movement 

We assume that the movement between available and unavailable for capture 

is first order Markovian and constant through time and across individuals, 

u. k 

[z2IOz, z1] = II II [ZijlZij-1, Oz] 
i=lj=J;+l 

[ZijlZij-1,0z] = (e;f (l -Bz1)1
-Zijrj-l (e;i(l - Bz2)1-Zij)1-Zij-l' 

where Oz= (Bz1, Bz2). 

9.6 Posterior Distribution 

(9.16) 

The specification of the model is complete with prior distributions for all 

parameters. The posterior distribution is proportional to 

[X2IOp, Ep, d2, z, sea, o:, ..\., K, X1][z2IOz, z1l[d2IOs, ES, o:, ..\., K, i, X1] x 

4 1 2 

[EplTpl[EslTs] II [Bsh] II [eph] II [ezhl[Tpl[Ts] X 

h=O h=O h=l 

[L1 lo:,..\., K, T1][L2lo:, ..\., K, B, T2l[L3lo:, ..\., K, B, T2][0:IOa, Ta, sex, sea] x 

2 

[..\.IO>-, T>,, sex][sexlBgl[K][Bl[egl[T1] hl II [Tahl[T>,][Oal[O>,] X 

h=l 

[Y1101, OR, Ov, Os, d2, sea, l, o:, ..\., K, Ej, ER, Ev, Es, Twin] X 

[Y2I01, OR, Ov, Os, d2, Xi, sea, l, o:, ..\., K, Ej, ER, Ev, Es, Rwin, R~in> Yi]x 
1 

[EJITJ][ERITR][EvlTv] II {[eJh][eRh][evh]} [TJ][TR][Tv][rwinHRwin][R~inl 
h=O 
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9. 7 Full Conditional Distributions 

9.7.1 Length Model 

A summary of the unknowns in the length component, their prior distribu­

tions and the updater used to sample from the full conditional distribution 

is given in table 9.1. 

Unknown Prior Distribution Updater 
O'.i - MH 
Ai MH 
K U(O,A) MH 
()Ci MVN(µo, ~o) Multivariate Normal 
Tc,I Ga(a, b) Gamma 
Ta2 Ga(a, b) Gamma 
() >. MVN(µo,~o) Multivariate Normal 
T>. Ga(a, b) Gamma 
T1 Ga(a, b) Gamma 
T2 Ga(a, b) Gamma 
B N(µo,To) Normal 

Table 9.1: Table summarizing the Gibbs sampler for length component of 
the model for Rangitikei trout. 

Full Conditional Distribution [ O:'.i I·] 

The full conditional distribution for ai, i = 1, ... , u. is 

[aJ] cx:[L1 la, A, K, T1][L2la, A, K, B, T2l[L3la, A, K, B, T2] x 

[alOa, Ta, sex, seal[d2IOs, ES, a, A, K, i, X1] x 

[Y1I01, ()R, Ov, Os, d2, sea, L, a, A, K, Ef, ER, Ev, Es, Twin] X 

[1'2101, ()R, Ov, Os, d2, Xi, sea, L, a, A, K, Ef, ER, Ev, Es, Rwin, R~in> Yi] 

These components are specified in equations 9.2, 9.4, 9.9, 9.11 and 9.12. 

This full conditional distribution is not of known form. 
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Full Conditional Distribution [.Xii·] 

The full conditional distribution for >.i, i = 1, ... , u. is 

[>.J] cx:[Li la, .X, K, Til[L2la, .X, K, B, T2l[L3la, .X, K, B, T2] x 

[.XIO.A, TA, sex][d2IOs, Es, a, .X, K, i, Xi] x 

[YilBJ, OR, Bv, Os, d2, sea, l, a, .x, K, EJ, ER, Ev, Es, Twin]X 

[Y2IB1, OR, Bv, Os, d2, Xi, sea, l, a, .x, K, EJ, ER, Ev, Es, Rwin, R~in, Yi] 

These components are specified in equations 9.2, 9.3, 9.9, 9.11 and 9.12. 

This full conditional distribution is not of known form. 

Full Conditional Distribution [Kl·] 

The full conditional distribution for K is 

[Kl·] cx:[K] [Li la, .X, K, Ti] [L2la, .X, K, B, T2] [L3la, .X, K, B, T2] x 

[d2IBs, Es, a, .X,K, i,Xi]x 

[YilOJ, OR, Bv, Os, d2, sea, l, a, .x, K, EJ, ER, Ev, ES, Twin] X 

[Y:!101, OR, Bv, Os, d2, Xi, sea, l, a, .x, K, Ej, ER, Ev, Es, Rwin,R~in, Yi] 

The prior distribution [K] is specified in table 9.1 and the other compo­

nents are specified in equations 9.2, 9.9, 9.11 and 9.12. This full conditional 

distribution is not of known form. 

Full Conditional Distribution [Bal·] 

The full conditional distribution for lie, is 

[Oc,I·] ex: [al Om Tc,, sex, seal[Oc,], 
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The prior distribution [On] is specified in table 9.1 where µo is a 4 x 1 

vector and }:;o is a 4 x 4 matrix. The distribution [al On, Tn, sex, sea] is 

the multivariate normal distribution specified in equation 9.4. This gives a 

multivariate normal full conditional distribution for On, 

where 

[Onl·] = MVN(µn,}:;n) 

µn = }:;n (X~}:;;1 log(a) + }:;01µo) 

}:;-1 = X' }:;-1 X + }:;-1 
n n n °' 0 

Full Conditional Distribution [Ta1H 

The full conditional distribution for Tnl is 

[Tn1I·] ex: [alOn, Tn, sex, sea][Tn1] 

The prior distribution [Tn1] is specified in table 9.1 and the distribution 

[al On, Tm sex, sea] is the multivariate normal distribution specified in equa­

tion 9.4. This gives a gamma full conditional distribution for Tnl, 

where 

[Tn1I·] = Ga(a', b') 

, Lf_:__1 I(A98i = 0) 
a= +a 

2 

b
' _ Lf_:__1 I(A98i = O)(ai - (Xn0n)i)2 b - +. 

2 

where (XnOn)i is the ith element of the vector X°'O°'. 
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Full Conditional Distribution [Ted·] 

The full conditional distribution for Ta2 is 

[Ta2[·] ex [a[Oa, Ta, sex, sea][Ta2] 

The prior distribution [Ta2] is specified in table 9.1 and the distribution 

[a[Oa, Ta, sex, sea] is the multivariate normal distribution specified in equa­

tion 9.4. This gives a gamma full conditional distribution for Ta2, 

where 

[Ta2[·] = Ga(a', b') 

, I::'..:...1 I(A98i = 1) 
a= ' +a 

2 

b' = I:r,;,1 I(A98i = l)(ai - (Xa0a)i)2 + b 
2 

Full Conditional Distribution [O.x [ ·] 

The full conditional distribution for 0>. is 

[0>.[·] ex [.X[O>., T>., sexl[O>.]-

The prior distribution [0>.] is specified in table 9.1 where µo is a 2 x 1 vector 

and ~o is a 2 x 2 matrix. The distribution [.X[O>., T>., sex] is the multivari­

ate normal distribution specified in equation 9.3. This gives a multivariate 

normal full conditional distribution for 0>., 

[0>.[·] = MV N(µn, Y:,n) 
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where 

Jl,n = ~n (X~~~1 log(.X) + ~o1 JJ,o) 

~-1 = X'~-1X + ~-1 
n >- >- >- 0 · 

Full Conditional Distribution [T.xl·] 

The full conditional distribution for T_x is 

hi·] ex [>.IO.x, T_x, sex]h] 

The prior distribution h] is specified in table 9.1 and the distribution 

[>.IO.x, T_x, sex] is the multivariate normal distribution specified in equation 

9.3. This gives a gamma full conditional distribution for T_x, 

where 

I U. 
a =-+a 

2 

hi·]= Ga(a',b') 

b' = (log(>.) - X_xO_x)' (log(>.) - X_xO_x) + b 
2 

Full Conditional Distribution [T1 I·] 

The full conditional distribution for T1 is 

h I·) ex [L1 la,>., K, T1] h] 

The prior distribution h) is specified in table 9.1 and the distribution 

[L1 la,>., K, T1] is specified in equation 9.2. This gives a gamma full condi-
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tional distribution for T1, 

where 

hi·]= Ga(a',b') 

"\'U, 
I ui=l Wli + a= a 

2 

b' = I:f~1 I:'.;'c!\ {log(L1i(81ij)) - log(Ai(81ij))}
2 + b 

2 

Full Conditional Distribution [ r2 J ·] 

The full conditional distribution for T2 is 

hi·] ex [L2Ja,>.,K,B,T2l[L3la,>.,K,B,T2]h] 

The prior distribution h] is specified in table 9.1 and the other compo­

nents are specified in equation 9.2. This gives a gamma full conditional 

distribution for T2, 

[T2I·] = Ga(a', b') 

where 

'\"u. "\'3 
, ui=l uj=2 Wji + a= a 

2 

b
' I:f~1 I:'.;'~\ {log(L2i(82ij)) - log(Ai(82ij)) - B}

2 

= + 2 

I:f~1 I:'.;'!\ {log( L3i ( 83ij)) - log( Ai ( 83ij)) - B} 2 

+ 2 +b 

Full Conditional Distribution, [13 I·] 

The full conditional distribution for the bias B is 

[Bl·] ex [L2 la,>., K, B, T2l[L3 la,>., K, B, T2][B] 
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The prior distribution [BJ is specified in table 9.1 and the other compo­

nents are specified in equation 9.2. This results is a normal full conditional 

distribution for B, 

where 

and 

U. W2i 

[Bl·] = N(µn, Tn) 

u. 3 

Tn = T2LLWhi +To 
i=l h=2 

a 
µn=-

Tn 

a= T2 L L(log(L2i(02ij)) - log(Ai(c52ij)))+ 
i=l j=l 

U. W3i 

T2 L L(log(L3i(c53ij)) - log(Ai(c53ij))) + µoTo 
i=l j=l 

9.7.2 Capture-Recapture Model 

A summary of the unknowns in the capture-recapture component, their 

prior distributions and the updater used to sample from the full conditional 

distribution is given in table 9.2. 

Unknown Prior Distribution Updater 
dmis - Multinomial 2i: 
Bsh N(µo, To) MH 
f.Sh MH 
TS Ga(a, b) Gamma 
eph N(µo,To) MH 
Eph MH 
Tp Ga(a, b) Gamma 

Table 9.2: Table summarizing the Gibbs sampler for capture-recapture com­
ponent of the model for Rangitikei trout. 
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Full Conditional Distribution [ d21}8 I·] 

The full conditional distribution for the missing values in the ith row of 

d2 is, 

[~fsl·] cx:[X2IOp, Ep, d2, z, sea, a,>.., K, X1l[d2IOs, Es, a,>.., K, i, X1] x 

[Yi 101' OR, Ov, Os, d2, sea, i, O'., >.., K, EJ, ER, Ev, Es, Twin] X 

[Yiil01, OR, Ov, Os, d2, X1, sea, i, O'., >.., K, EJ, ER, Ev, Es, Rwin, R~in, Yi] 

These components are specified in equations 9.7, 9.9, 9.11 and 9.12. This 

full conditional distribution is a multinomial distribution with probability 

vector 7r di and index 1, 

where 

7rdij 

K-dij -

[d2if8 I·] = MN(l,7rdi) 

K-dij 

"t ' uh=£; K-dih 

(1 - s- ·)R~ _Y2ij (1 - R' .) 1-Y2ij (1 - T") 
tJ tJ tJ tJ ' 

j-l 

II sih(l - Sij)Rrt.C; (1 - Ri5:,;)l-Y2i.C; X 

h=f:.; 
j-l j 

II (1-Rih) II (1-Pihyih(l-Tij)(l-R~j) 

h=f:.;+l h=f:.;+l 

j-l 

II sihR.Jti (1 - Ri5:,;) 1-Y2i.C; x 
h=f:.; 

j-1 j-1 

II (1 - Rih) II (1 - Pihyih. 

h=f:.;+l h=f:.;+l 

j = ,.Ci 

-Ci<j<k+l 

j=k+l 
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The terms that includes Y2i,C; are required because it is possible that in­

dividual i was last observed by re-sighting between period £i and £i + 1. 

Note that if an individual is recovered dead then the values of d2 for that 

individual are fully known and do not need to be updated. Therefore, we 

do not need to include a (1 - Y1ij) term for the (1 - R~j) components as we 

know that none of the individuals being updated were recovered dead. 

Full Conditional Distribution [Oshl·] 

The full conditional distribution for Bsh, h = 0, ... , 4 is 

[Bshl·] ex [d2l8s,Es,a,A,K,i,X1]x 

[Y1l81, OR, Ov, Os, d2, sea, i, a, A, K, Ej, ER, Ev, Es, rwin]X 

[~181, OR, Ov, Os, d2, Xi, sea, i, a, A, K, Ej, ER, Ev, Es, Rwin, R~in, Yi][Bsh]-

The prior distribution [Bsh] is specified in table 9.2 and the other compo­

nents are specified in equations 9.9, 9.11 and 9.12. This full conditional 

distribution is not of known form. 

Full Conditional Distribution [ Esh J ·] 

The full conditional distribution for ESh, h = l, ... , k' is 

[Esh!·] ex [d2l8s,Es,a,.X.,K,i,X1]x 

[Yil81, OR, Ov, Os, d2, sea, i, a, A, K, Ej, ER, Ev, ES, rwin]X 

[Y2l81, OR, Ov, Os, d2,X1, sea, i, a, A, K, Ej, ER, Ev, ES, Rwin, R~in, Yi][Eshlrs] 

The components are specified in equations 9.9, 9.11, 9.12 and 9.10. This full 

conditional distribution is not of known form. 
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Full Conditional Distribution [rsJ·] 

The full conditional distribution for Ts is 

[Tsl·] ex [EsfTs][Ts]. 

The prior distribution [Ts] is specified in table 9.2 and the distribution [EsfTs] 

is specified in equation 9.10. This gives a gamma full conditional distribu­

tion, 

( 
k' ""k' 2 ) [Tsf·] = Ga 2 + a, L..,h21 Esh + b . 

Full Conditional Distribution [ Oph J ·] 

The full conditional distribution for Bph, h = 0, l is 

[Bphf ·] ex [X2fOp, Ep, d2, z, sea, a, .X, K, X1l[Bph] 

The prior distribution [Bph] is specified in table 9.2 and the component 

[X2JOp, Ep, d2, z, sea, a, .X, K, X1] is specified in equation 9.7. This full con­

ditional distribution is not of known form. 

Full Conditional Distribution [Ephl·] 

The full conditional distribution for Eph, h = 2, ... , k is 

[Ephf ·] ex [X2fOp, Ep, d2, z, sea, a, .X, K, X1l[EphfTp], h = 2, ... , k. 

The components are specified in equations 9.7 and 9.8. This full conditional 

distribution is not of known form. 
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Full Conditional Distribution [Tpl·] 

The full conditional distribution for Tp is 

[Tpl·l ex [EplTpl[Tp]. 

The prior distribution [Tp] is specified in table 9.2 and the distribution [EplTp] 

is specified in equation 9.8. This gives a gamma full conditional distribution, 

[ I ] _ G ( k - l I:~=2 E~h ) 
T-p· - a --+a +b 2 ' 2 . 

9.7.3 Sex Model 

A summary of the unknowns in the sex component, their prior distributions 

and the updater used to sample from the full conditional distribution is 

given in table 9.3. 

Unknown 
Bg 

sexris 

Prior Distribution 
Be(a, b) 

Updater 
Beta 

Bernoulli 

Table 9.3: Table summarizing the Gibbs sampler for sex component of the 
model for Rangitikei trout. 

Full Conditional Distribution [09 1·] 
The full conditional distribution for 89 is 

[89 1·] ex [sexl89l[B9 ]. 

The prior distribution [89 ] is specified in 9.3 and the distribution [sexlB9 ] is 

specified in equation 9.6. This gives a beta full conditional distribution, 

[09 [·] - Be ( ~!(sex, - 1) + a, ~I(sex, - 0) + b). 
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Full Conditional Distribution [sexrisJ·] 

The full conditional distribution for the missing sex observation for indi­

vidual i is 

[sexrisl·l ex [aJOa, Ta, sex][.XIO>., T,\, sex][sexJBg] 

These components are specified in equations 9.4, 9.3 and 9.6. This gives a 

Bernoulli full conditional distribution with Pr(sex?'is = 1) = 1rgi, where 

, 
7r gi = "'gOi + "'gli 

"'gli 

where 

"'gli = Bg exp (-i(log(.X) - xte>-)':E:;:1 (log(.X) - xte>.)) X 

exp (-i(log(a) - x:ea)':E;;-1 (log(a) - x:ea)) 

"'gOi = (1 - Bg) exp ( -i (log(.X) - XfO>.)':E:;:1 (log(.X) - XfO>.)) x 

exp (-i(log(a) - X~Oa)':E;;- 1 (log(a) - X~Oa)) 

where Xt is the matrix X>. with the missing value sexi set to 1 and Xf is 

the matrix X>. with the missing value sexi is set to 0. The same principle 

applies to X~ and X~. 

9.7.4 Auxiliary Data 

A summary of the unknowns in the recovery and re-sighting component, 

their prior distributions and the updater used to sample from the full con­

ditional distribution is given in table 9.4. 
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Unknown Prior Distribution Updater 
rwin Be(a, b) Beta 

Rwin Be(a, b) Beta 

R~in Be(a, b) Beta 
gRh N(µo, To) MH 
ERh MH 
TR Ga(a, b) Gamma 

eth N(µo,To) MH 
Efh - MH 
Tf Ga(a, b) Gamma 

evh N(µo,To) MH 
Evh - MH 
Tv Ga(a, b) Gamma 

Table 9.4: Table summarizing the Gibbs sampler for recovery and re-sighting 
component of the model for Rangitikei trout. 

Full Conditional Distribution [ r win I·] 

The full conditional distribution for rwin is 

[rwinl·l CX: [Y1IOt, OR, Ov, Os, d2, sea, i, a,..:\, K, Ej, ER, Ev, Es, rwinHrwin], 

The prior distribution [rwin] is specified in table 9.4 and the other distribu­

tion is specified in equation 9.11. This gives a beta full conditional distri­

bution, 

where 

[rwinl·] = Be(a', b') 

u. 

a'= L yli'.DJ(sea'.D; = O)li + a, 
i=l 
u. 

b' = L(l - Y1i'.DJI(sea'.D; = O)li + b. 
i=l 
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Full Conditional Distribution [Rwinl ·] 

The full conditional distribution for Rwin is 

[Rwinl·l ex: [Yi2I01, OR, Ov, Os, d2, X1, sea, i, a.,>.., K, Ej, ER, Ev, Es, Rwin, R'win> Yi][Rwin]-

The prior distribution [Rwin] is specified in table 9.4 and the other dis­

tribution is specified in equation 9.12. This gives a beta full conditional 

distribution, 

where 

[Rwinl·] = Be(a', b') 

u. '.Di-1 

a'= L L Y2ijI(seaj = 0) + a, 
i=l j=Ji 

u. '.D;-1 

b' = L L (1 - Y2ij)I(seaj = 0) + b. 
i=l j=Ji 

Full Conditional Distribution [R~inl·] 

The full conditional distribution for R'win is 

[Rwinl·l ex: [Y2I01, OR, Ov, Os, d2, X1, sea, i, a.,>.., K, EJ, ER, Ev, Es, Rwin, R'win> Yi][R'winl· 

The prior distribution [R'winl is specified in table 9.4 and the other dis­

tribution is specified in equation 9.12. This gives a beta full conditional 

distribution, 

[R'winl·] = Be(a', b') 
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where 

u. 

a'= LY2i:D;(l -Y1i:nJI(sea:n; = O)ii + a, 
i=l 
u. 

b' = L(l - Y2i:DJ(l - Y1i:nJI(sea:n; = O)ii + b. 
i=l 

Full Conditional Distribution [!9Rhl·] 

The full conditional distribution for BRh, h = 0, l is 

[BRhl·] ex: [Y1119 f' OR, Ov, Os, d2, sea, i, a, A, K, E f' ER, Ev, ES, Twin] X 

[Y2I01, OR, Ov, Os, d2, Xi, sea, i, a, A, K, EJ, ER, Ev, Es, Rwin, R~in, Yi][BRh]-

The prior distribution [BRh] is specified in table 9.4 and the other distribu­

tions are specified in equations 9.11 and 9.12. This full conditional distri­

bution is not of known form. 

Full Conditional Distribution [ERhl·] 

The full conditional distribution for ERh for all values of h for which seah = 

1, 

[tRhl·l ex: [Yi.119 f' OR, Ov, Os, d2, sea, i, a, A, K, E f' ER, Ev, Es, Twin][tRhlTR]• 

The distributions are specified by equations 9.11, 9.12 and 9.13. This full 

conditional distribution is not of known form. 

Full Conditional Distribution [TRI·] 

The full conditional distribution for TR is 

[rRI·] ex: [ERITR][TR]. 
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The prior distribution [Tv) is specified in table 9.4 and [ERITR) is specified in 

equation 9.13. This gives a gamma full conditional distribution, 

[ I·) = G I:h=l I(seah = 1) I:h=l I(seah = l)ERh b 
( 

k' k' 2 ) 

TR a 2 + a, 2 + . 

Full Conditional Distribution [Othl·J 

The full conditional distribution for e fh, h = 0, l is 

[Bthl·l ex [Y1I01, OR, Ov, Os, d2, sea, i, a,>.., K, Ef, ER, Ev, Es, Twin] X 

[1'2101, OR, Ov, Os, d2,X1, sea, i, a,>.., K, Ef, ER, Ev, Es, Rwin, R~in> Yj.][Bthl· 

The prior distribution [BJh] is specified in table 9.4 and the other distribu­

tions are specified in equations 9.11 and 9.12. This full conditional distri­

bution is not of known form. 

Full Conditional Distribution [Efhl·J 

The full conditional distribution for E fh for all h for which seah = l, 

[EJhl·J ex [Y1 IOJ, OR, Ov, Os, d2, sea, i, a,>.., K, Ef, ER, Ev, Es, Twin] X 

[¥:2IOJ, OR, Ov, Os, d2, Xi, sea, i, a,>.., K, Ef, ER, Ev, ES, Rwin, R~in, Y1][EJhiTJ ]. 

The distributions are specified in equations 9.11, 9.12 and 9.14. This full 

conditional distribution is not of known form. 

Full Conditional Distribution [rtl·J 

The full conditional distribution for TJ is 

hi·] ex [EJITJ][TJJ· 
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The prior distribution h] is specified in table 9.4 and [EJITJ] is specified in 

equation 9.14. This gives a gamma full conditional distribution, 

( 

k' k' 2 

[ I] _ G Lh=i I(seah = 1) Lh=i I(seah = l)t:fh ) 
TJ · - a + a + b 2 ' 2 . 

Full Conditional Distribution [ Ovh I·] 

The full conditional distribution for Bvh, h = 0, 1 is 

[Bvhl·l ex [Yil01' eR, Ov, Os, d2, sea, i, a.,>.., K, Ej, ER, Ev, Es, Twin] X 

[~101, eR, Ov, Os, d2, Xi, sea, i, a.,>.., K, Ej, ER, Ev, ES, Rwin, R~in, Yi.][Bvh]-

The prior distribution [Bvh] is specified in table 9.4 and the other components 

are specified in equations 9.11 and 9.12. This full conditional distribution is 

not of known form. 

Full Conditional Distribution [ Evh I·] 

The full conditional distribution for Evh, for all h for which seah = 1, 

[Evhl·l ex [Yi. lO f, eR, Ov, Os, d2, sea, i, a.,>.., K, E f, ER, Ev, Es, Twin] X 

[Y2I01, eR, Ov, Os, d2, Xi, sea, i, a.,>.., K, Ej, ER, Ev, ES, Rwin, R~in, Yi.][EvhlTv]-

The components are specified in equations 9.11, 9.12 and 9.15. This full 

conditional distribution is not of known form. 

Full Conditional Distribution [rvl·] 

The full conditional distribution for Tv is 

[Tvl·] ex [Ev!Tvl[Tv]-
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The prior distribution [Tv] is specified in table 9.4 and [EvlTv] is specified in 

equation 9.15. This gives a gamma full conditional distribution, 

[ I·] - G Lh=l I(seah = l) Lh=l I(se% = l)cvh b 
(

k' k' 2) 
Tv - a 2 + a, 2 + . 

9.7.5 Movement Model 

A summary of the unknowns in the movement component, their prior distri­

butions and the updater used to sample from the full conditional distribution 

is given in table 9.5. 

Unknown 
mis z .. 
iJ 

ezl 

ez2 

Prior Distribution 

Be(a, b) 
Be(a, b) 

Updater 
Bernoulli 

Beta 
Beta 

Table 9.5: Table summarizing the Gibbs sampler for movement component 
of the model for Rangitikei trout. 

Full Conditional Distribution [zJisl·] 

The full conditional distribution for the missing value zf/8 is 

[zJis] ex [X2IOp, Ep, d2, z, sea, a,>., K, X1][z2IOz, z1] 

These components are specified in equations 9.7 and 9.16. This full condi­

tional distribution is a Bernoulli distribution with Pr(Zij = 1) = 7rzij for all 

missing values of z2, where 
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where 

K,zlij 

' 'Trzij = K,zOij + K,zlij 

K,zOij = (Zij-1(1 - Bz1) + (1 - Zij-1)(1 - Bz2))(Zij+1Bz2 + (1 - Zij+l)(l - Bz2)), 

K,zlij = (Zij-1Bz1 + (1 - Zij-l)ez2)(l - Pij)(Zij+1Bzl + (1 - Zij+l)(l - Bz1)). 

(9.17) 

When the value for zikis is updated, the terms involving Zij+l are not in­

cluded, hence equation 9.17 becomes, 

K,zOij = (Zij-1 (1 - Bz1) + (1 - Zij-1) (1 - Bz2)), 

K,zlij = (Zij-1Bz1 + (1 - Zij-1)Bz2)(l - Pij)-

After individual i has died the value of "'zlij in equation 9.17 no longer has 

the (1 - Pij) term and we update z'f/8 from its prior distribution, 

K,zlij = (Zij-1Bz1 + (1 - Zij-l)ez2)(Zij+lBz1 + (1- Zij+1)(l - Bz1)). 

Full Conditional Distribution [ 0 zl I·] 

The full conditional distribution for Bz1 is 

[Bz1I·] CX: [z2IOz,z1l[Bz1]-

The prior distribution [Bz1] is specified in table 9.5 and [z2IOz, z1] is specified 

in equation 9.16. This gives a beta full conditional distribution, 

[Bz1I·] = Be(a',b') 



J. 

CJS Model with Continuous Covariates and Auxiliary Data 192 

where 

u. '.D; 

a'= L L I(zij = l)I(Zij-1 = 1) + a, 
i=l j=J;+l 

u. '.D; 

b' = L L I(Zij = O)I(Zij-1 = 1) + b. 
i=l j=J;+l 

Full Conditional Distribution [Oz2I·] 

The full conditional distribution for Bz2 is 

[Bd·] ex [z2IOz, z1][Bz2]. 

The prior distribution [Bz2] is specified in table 9.5 and [z2IOz, z1] is specified 

in equation 9.16. This gives a beta full conditional distribution, 

where 

[Bd·] = Be(a', b') 

u. '.D; 

a'= L L I(zij = l)I(zij-1 = 0) + a, 
i=l j=J;+l 

u. '.D; 

b' = L L I(Zij = O)I(Zij-1 = 0) + b. 
i=l j=J;+l 
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9.8 Results 

The following prior distributions were used for the length model 

[K] = U(O, 5), 

[fl.>,]= MVN ((0, O)', lOOOOI2), 

h] = Ga(0.001, 0.001), 

[00 ] = MV N ( (0, 0, 0, O)', lOOOOI4) , 

[Tah] = Ga(0.001, 0.001), h = l, 2, 

b] = Ga(0.001, 0.001), h = l, 2, 

[BJ= N(O, 0.0001) 

where In is the n x n identity matrix. The following prior distributions were 

used for the capture-recapture model 

[&sh] = N(O, 0.0001), h = 0, ... , 4, 

[Ts] = Ga(0.001, 0.001), 

[Bph] = N(O, 0.0001), h = 0, l, 

[Tp] = Ga(0.001, 0.001). 
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The following prior distributions were used for the recoveries and re-sightings 

[rwin] = Be(l, 1), 

[Rwin] = Be(l, 1), 

[R~inl = Be(l, 1), 

[ORh] = N(O, 0.0001), h = 0, l, 

[TR] = Ga(0.001, 0.001), 

[BJh] = N(O, 0.0001), h = 0, l, 

[TJ] = Ga(0.001, 0.001), 

[Bvh] = N(O, 0.0001), h = 0, l, 

[Tv] = Ga(0.001, 0.001). 

The following prior distributions were used for the movement model 

[Bzh] = Be(l, 1), h = l, 2. 

The Gibbs sampler was run on 3 independent chains started from different 

values. Each chain had an adaptive phase of 20, 000 iterations to optimize 

the Metropolis Hastings and RJMCMC algorithms as specified in section 

5.2.2. As there was high autocorrelation in the values, each chain was run 

for a 100,000 iteration burn-in followed by a further 500,000 iterations. The 

chains mixed and were combined to give a posterior sample of 1,500,000 

iterations. 

The regulation appears to have improved the release rate of fish over 

550mm (Figure 9.2), with a posterior probability of 0.9999 that the rate of 

release by an angler increased after the upper size limit for a fish larger than 

550mm. However, even though there was an improvement in release rate, it 
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appears that not everybody upheld the new regulation (Figure 9.3). 

-1 0 2 3 4 5 

Figure 9.2: Estimate of the posterior distribution for ev1 the change in re­
lease probability on the logit scale for fish larger 550mm after the regulation. 

Before the regulation it appears that neither age nor length affect the 

survival of the fish (Figure 9 .4). However, it appears the survival of the 

larger fish improved after the upper size limit, with a posterior probability 

of 0.9535 that es3 > 0 (Figure 9.5). These result differ from the analysis of 

Barker et al. (2001), who concluded that 

1. Length has a significantly positive effect on survival before the regu­

lation. The approximate 95% confidence interval for the length effect 

before the regulation is (0.492, 1. 790). 

2. The effect of length on survival increased after the regulation. The 

approximate 95% confidence interval for the length effect after the 

regulation is (1.676, 6.086). 

These results not only yield the wrong conclusion for survival before the 
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0.5 0.6 0.7 0.8 0.9 

Figure 9.3: Estimate of the posterior distribution for v before the regulation 
(blue line) and after the regulation (red line) for fish over 550mm. 

regulation but also over-estimate the positive effect of the regulation for 

larger fish. The spurious results obtained in Barker et al. (2001) show the 

danger of not fully accounting for the missing data properly. 

The changes in both survival and release rate suggest that the upper 

size limit imposed has worked effectively. Not only did the release rate for 

fish over 550mm appear to increase (Figures 9.2 and 9.3) but this increase 

appears to have led to an increased survival in the larger fish (Figure 9.5). 

As the larger fish in the headwaters are thought to be the breeders in the 

population, the regulation appears to have improved the survival of those 

individuals that sustain the Rangitikei rainbow trout fishery. 

An interesting observation is that sex appears to have no effect on length. 

The marginal posterior distributions of parameters ()al and e:u both suggest 

that sex does not influence either the size or instantaneous growth rate at 
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-1.5 -1 -0.5 0 0.5 1.5 

Figure 9 .4: Estimate of the posterior distribution for e s1, the effect of length 
on the logit of survival before the regulation (blue line) and ·es4, the effect 
of age on the logit of survival (red line). 

first capture (Figure 9.6) . 

It appears that the angler observations are not only unbiased but also 

have lower error than the observations from fish and game officers (Figure 

9. 7). One possible explanation is that the screening process used by fish and 

game to ensure measurement were correct taken may have been too strict . 

Another interesting aspect of the model is that the joint posterior dis­

tribution of parameters (Bz1, Bz2, Bpo, Bp1) appears to be bi-modal. As it is 

difficult to visualize in 4 - 5 dimensions, the contours of the kernel density 

smooth6 of the pairs (Bz1 , expit(Bpo)) and (Bz2, expit(Bpo)) are given as an 

example in figure 9.8. These show that when the probability of capture 

in the autumn season is relatively low expit(Bpo) ~ (0.05, 0.15) then the 

6 Note that for computational reasons we thinned the posterior by 1 in 100 giving a 
posterior sample of 15000 for this calculation. 
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-1 -0.5 0 0.5 1.5 2 2.5 

Figure 9.5: Estimate of the posterior distribution for 833, the interaction be­
tween length and the regulation. There is an estimated posterior probahility 
of 0.9589 that 833 > 0. 

movement rates are relatively high, 8z1 ~ (0.15, 0.45) and 8z2 ~ (0.5, 1). 

However, when probability of capture in the autumn season is relatively 

high expit(8po) ~ (0.3, 0.8) then the movement rates are relatively low 

8z1 ~ (0.025, 0.075) and 8z2 ~ (0.05, 0.15). In other words, the data are 

supporting two alternatives: 

1. Relatively low capture probabilities with individuals moving freely be­

tween the alternative states of being available and unavailable for cap­

ture. 

2. Relatively high capture probabilities with individuals strongly prefer­

ring to be unavailable for capture. 

A summary of the marginal posterior distributions for all of the param­

eters is given in table 9.6. 
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Parameter 2.5% 50% 97.5% 

Bso 0.68884 1.3438 1.9693 

Bs1 -0.58081 -0.16867 0.29796 
Bs2 -0.65822 0.075286 0.80839 

Bs3 -0.090616 0.58007 1.1946 

Bs4 -0.6886 -0.095583 0.39034 
fJS 0.027785 0.15848 0.93182 
Bpo -3.3516 -2.1096 2.8787 

,-
Bp1 -0.14422 0.97292 9.1337 
fJp 0.051169 0.61233 3.7678 

BRo -2.2446 -1.868 -1.5368 
eRl -0.38636 -0.029746 0.32181 
fJR 0.023098 0.075888 0.36572 

BJo -1.7549 -1.4934 -1.2415 
efl -0.40243 -0.071213 0.23949 
(J f 0.022774 0.071534 0.28998 
Bvo 0.52841 1.0189 1.6159 
Bv1 0.83882 1.818 2.9772 
fJv 0.026959 0.13795 0.77223 

Twin 0.021391 0.045773 0.087734 

Rwin 0.0021409 0.0084038 0.019501 

R~in 0.0064037 0.042565 0.095496 
Bz1 0.033294 0.20669 0.82139 
Bz2 0.063517 0.44529 0.97784 
Bao 6.2923 6.3116 6.3308 
Bai -0.01429 0.0049146 0.024217 
Ba2 0.027018 0.047741 0.068451 
Ba3 -0.196 -0.1331 -0.070327 

"' 
fJal 0.091639 0.099568 0.10762 
fJa2 0.23036 0.26842 0.31777 
B>.o 3.1258 3.596 4.0451 

B>.1 -0.36292 -0.036537 0.28222 
fJ>, 0.39667 0.56548 0.76092 
K 0.39245 0.7722 1.3731 
fJl 0.026706 0.033453 0.042459 
fJ2 0.011929 0.016918 0.024468 
B -0.0059469 0.0047047 0.015625 
Bg 0.37399 0.41523 0.45724 

Table 9.6: Table of posterior 2.5%, 50% and 97.5% quantiles for all param-
eters from the Rangitikei trout model. 
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~ 
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-1 -0.5 0 0.5 

Figure 9.6: Estimates of the posterior distribution for 8a1, the effect of sex 
on the log of length at first capture (top) and e>..1 , the effect of sex on the 
log of derivative at first capture (bottom). 

9. 9 Extensions 

One appealing extension involves modeling the biomass of the fishery. The 

biomass is the total mass of all fish in the population. There are two steps 

required in order to include a model of this nature. The first is to include the 

continuous covariate weight into the model7 . The second step is to include 

first captures into the model so that all fish in the population are included 

in the model. Once these components are specified, the biomass at time t is 

obtained by adding up the weight of each individual alive at t. 

A joint model needs to be specified which can broken into conditional 

components. Denoting birth as B, length as L, weight as W and mortality 

7 It is not necessary to also have the covariate length, however, if it is available then 
we are able to model the joint distribution of weight and length, improving our model fit. 
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-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 

0 0.01 0.02 0.03 0.04 0.05 0.06 

Figure 9.7: Estimate of the posterior distribution for B, the bias in angler 
length observations (top) and the comparison between the estimated poste­
rior distribution 0-1 (blue line), the fish and game officer standard deviation 
and 0-2 (red line), t he angler standard deviation (bottom) . 
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Figure 9.8: Contour plot of the estimate of the joint posterior distribution 
for the parameters Oz 1 and expit (Opo) (top) and Oz2 and expit(Opo) (bottom) . 

as D , one possibility for a model would be, 

[B, L , W, D J = [B ][L IB ][WIL, B][D IW, L , Bl, 

where [BJ is a model for birth, [L IB] models the length conditional on birth, 

[WIL, BJ is model for weight conditional on length and [DIW, L , BJ models 

t he survival process. 

A model of t his kind allows the fisheries managers to derive biologically 

sensible models for each of the demographic components in turn. If the 

managers were worried about a perceived drop in the biomass they could 

specify a set of models that investigated which component(s) is responsible 

for t he decrease and provide clarification on what area(s) resources need to 

be focused. This type of model empowers managers to target t he key areas 

in improving the state of the fishery. 
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Chapter 10 

Discussion 

We develop a common framework for capture-recapture models which in­

cludes all missing data directly into the model using data augmentation. 

The inclusion of the missing data means that we are able to model in terms 

of the complete data likelihood (CDL). The CDL has a natural biological 

factorization which separates the terms that specify the demographic pro­

cesses from the terms that model the sampling process. This means that the 

focus can be on building interesting biological models instead of accounting 

for the complexities of the sampling process. 

One of the major advantages of modeling in terms of the CDL is that all 

latent variables are in the likelihood available to be used in the model. We 

make use of the latent variables to model the birth process in terms of the 

per-capita birth rates, a natural demographic parameter. The approaches 

of Pradel (1996) and Link and Barker (2005) both approximate the per­

capita birth rate with an index that finds the expected number of births 

per individual expected to be alive at the beginning of the period. Using 

the CDL means we no longer have to approximate the per-capita birth rate 

and are able to parameterize in terms of the expected number of births per 
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individual actually alive at the beginning of the sample. This is a natural 

parameter that many demographers would choose to use when modeling the 

fecundity of a population. 

We also use the latent population size as a covariate in modeling. Even 

though population size can be derived using standard methods, it is impos­

sible to then use this value without using an errors-in-variable approach. 

However, using the CDL means that it is possible to include population 

size as a covariate. In chapter 8 we presented an example where we had 

a density dependent model with both the per-capita birth rates and sur­

vival probabilities dependent on the population size at the beginning of the 

period. 

The latent variables that have been included in the examples provided 

are far from an exhaustive list. Another group of latent variables that could 

be included into the model are future unobservable quantities that we wish 

to predict, usually to investigate population dynamics (Besbeas et al. 2005, 

Thomas et al. 2005, Newman et al. 2006). Barker, Schofield, Armstrong, 

and Armstrong (2008) do this when examining the population dynamics of 

a newly introduced population of North Island saddlebacks (Philesturnus ru­

fusater) on Mokoia Island, New Zealand. A capture-resighting model is used 

with additional information on fecundity to fit a model where the survival 

probabilities and per-capita birth rates are density dependent. Of particular 

interest is quantifying the equilibrium population size on the island as well 

as discovering how many birds can be safely be removed every three years 

in order to establish populations elsewhere. To predict the population size, 

the number of births and deaths in each year for 8 years after last capture 

are included into the model as latent variables. 

Barker et al. (2008) predicted forward 8 = 100 years after the last sam-
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pling period and found the median equilibrium population size to be around 

130 females with a 95% credible interval of between 70 and 400 females. The 

population reached equilibrium around 10 - 15 years after the last sampling 

period. 

The predictions were repeated with a varying number of birds harvested 

every three years to establish new populations. The simulations suggested 

that up to 80 birds could safely be removed every three years as the removal 

of 80 birds ( or less) resulted in a posterior probability of extinction of less 

than 5%. 

A further advantage of the hierarchical framework developed is that 

many of the common capture recapture models can be obtained by selecting 

the appropriate conditional likelihood components and multiplying them to­

gether. Biologists are able to specify the appropriate conditional likelihood 

components that account for the process by which they collect the data and 

also specify the appropriate components that include the demographic pro­

cesses of interest. The nice feature of this is that very complex models can 

be written in terms a series of simpler conditional likelihood components. 

A good example of this is the Rangitikei River trout model. This is a very 

complex CJS model that has length as an individual-specific time-varying 

covariate, as well as auxiliary information on re-sightings, recoveries and 

movement (though availability for capture). Using the CDL we are able to 

break this into conditional likelihood components that model: 

• Length covariate. 

• Mortality after first capture conditional on length. 

• Movement after first capture. 

• Sampling after first capture conditional on mortality, length and move-
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ment . 

• Dead recoveries conditional on length and mortality. 

• Live re-sightings conditional on length and mortality. 

The ability to break up complex problems in terms common conditional 

likelihood components has wide implications for the development of soft­

ware. The currently used capture-recapture software, in particular MARK 

(White and Burnham 1999) and M-SURGE (Choquet et al. 2004) specify 

the likelihood for every distinct model separately. To include a new model, 

such as the one used for the Rangitikei trout, would require a new likelihood 

to be coded into the program. Coding models of this complexity using the 

observed data likelihood is very difficult and time consuming. In contrast, 

the only features that need to be specified when using the CDL is any new 

conditional likelihood components that are not previously specified. One 

obvious consequence is that once the initial work has been put into cod­

ing the standard conditional likelihood components, the maintainance of 

the program is far easier than for the standard software. The problem is 

that there is currently no computer program capable of implementing such 

a framework. WinBUGS can be used for a variety of models, but the lack 

of flexibility, particularly with no RJMCMC step, make it impractical for 

full implementation. One of the challenges in the future is developing soft­

ware that is able to fit models of this kind, either through improving current 

software such as WinBUGS, or starting afresh. If an easy-to-use software 

package is not developed, then these methods, despite all their advantages, 

are unlikely to be widely adopted as users would need to write their own 

MCMC code. 

A related issue for the future are the computational algorithms them-
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selves. The development of flexible software requires flexible algorithms 

with which to fit the models. The problem is that the flexible algorithms, 

such as Metropolis-Hastings can often have slow convergence with high au­

tocorrelation in the Markov chain. Even the complex models investigated 

in chapters 8 and 9 with specialized algorithms exhibited high autocorrela­

tion in the Markov chain. Therefore, as biologists and ecologists continue 

to collect data of increasing complexity, the computational algorithms need 

to improve so that valid inference can be achieved quickly and easily. 

Perhaps the most interesting and exciting change in the future will come 

from the data being collected. As was mentioned at the EURING technical 

meeting in Dunedin in January 2007, technological advances are making 

standard capture-recapture experiments obsolete. Researchers are preferring 

methods, such as radio telemetry, that claim to have perfect detection of 

individuals. In this case, we really do have the data we would like to observe. 

The only change required to incorporate this data in the CDL framework 

is that we would no longer need to include a conditional distribution for 

the capture histories X, as they are fully known. However, even though 

the technological advances claim to have perfect detection, it seems highly 

likely that there will still be missing data. It may be that we are not always 

able to pick up a signal of the radio tags. Perhaps the battery has died, or 

maybe the animal has strayed into an area where signal cannot be picked 

up. It seems reasonable to assume that irrespective of the technology that 

prevails, there will always be missing data that need to be accounted for. 
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Appendix A 

Notation 

A.1 Matrices and Vectors 

Throughout the thesis, scalar values are distinguished from vectors and ma­

trices. Any vector or matrix is specified with bold face, for example, a. The 

ith value from the vector a is a scalar and is denoted by ai . 

The notation b,3 is the third column of the matrix b. Likewise, the 

notation bs, denotes the fifth row of the matrix b. The notation b,(3,7) 

denotes a matrix containing columns 3 to 7 of matrix b. 

A.2 Probability Distribution Functions Used 

Normal Distribution 

The normal distribution will be parameterized in terms of either the vari­

ance or the precision. The normal distribution written in terms of the pre­

cision is 

[yiµ,T] =N(µ,T) 

=ff exp (-i(y- µ)2). 
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Notation 222 

The model in terms of the variance is 

[ylµ, o-2] =N(µ, o-2) 

= /1 exp (--1 (y - µ)2) ' v~ 20-2 

where 

0-2 = ~ 
T 

If a parameter other than er or T is used, then it will be made clear how the 

model is parameterized. 

Multivariate Normal Distribution 

The multivariate normal distribution for y = (Yi, ... , YnY is 

[ylµ, :E] =MVN(µ, :E) 

= (
2
~) "i l:EI-! exp (-~(y - µ)':E- 1 (y - µ)) , 

where µ is a n x 1 mean vector and :E is the n x n symmetric, positive 

definite variance-covariance matrix. 

Log-Normal Distribution 

The log-normal distribution for y ~ 0 is 

[ylµ, o-2] =LN(µ, o-2) 

~ ( 1 2)1 = exp --
2 

(log(y) - µ) -. 
2u y 

As with the normal distribution, the log-normal distribution can also be 

written in terms of the precision T. 
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Logit-Normal Distribution 

The log-normal distribution for O ~ y ~ l is 

~ ( 1 . 2) 1 =v ~ exp - 2CT2 (logrt(y) - µ) y(l _ y)" 

As with the normal distribution, the logit-normal distribution can also be 

written in terms of the precision T. 

Logistic Distribution 

The logistic distribution for y is 

[ylµ, cr] =Logistic(µ, CT) 

exp (-Y·;t) 

where µ is the location and CT is the scale parameter. 

Gamma Distribution 

The gamma distribution for y ~ 0 is 

where a > 0, /3 > 0. 
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Beta Distribution 

The beta distribution for O ::; y ::; 1 is 

[yJa, ,6] =Be(a, ,6) 

r( a + ,6) a-1 ( )/3-1 
I'(a)I'(,6) y l -y ' 

where a > 0, ,6 > 0. 

Dirichlet Distribution 

The Dirichlet distribution is the multivariate extension of the beta distri­

bution. The Dirichlet distribution for y = (Yi, ... , Yn) is 

[yJa] =Dir(a) 

r ("'7:- a·) n 
L...,J=l J II CYj-1 

rr 7:- I'(a ·) Yj ' 
J=l J j=l 

where a= (a1, ... ,an) and O < Yj < l, aj > 0 for j = l, ... ,n. 

Uniform Distribution 

The uniform distribution for y is 

where y E [a, b] and b > a. 

[yJa, b] =U(a, b) 

1 

b- a' 
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Discrete Uniform Distribution 

The discrete uniform distribution for y is 

[y[a, b] =DU(a, b) 

1 
b-a' 

where y, a, bare all integers, y E [a, b] and b > a. 

Bernoulli Distribution 

The Bernoulli distribution for y is 

[y[p] =Bern(p) 

=pY(l _ p)l-y, 

where y either takes the value O or 1 and p E [O, l]. 

Binomial Distribution 

The binomial distribution for y is 

[y[p, NJ =Bin(N,p) 

N! Y( )N-y 
'( - )'p 1 - p ' y. n Y. 

where y and N are both integers, y E [O, NJ and p E [O, 1]. 

Multinomial Distribution 
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The multinomial distribution is the multivariate extension of the binomial 
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distribution. The multinomial distribution for y = (Y1, ... , Yn) is 

[ylp,N] =MN(N,p) 

N! ITn Yj 

I1n--., Pj, 
j=l Y1· j=l 

226 

where p = (p1, ... ,Pn), Lj=IPi = 1, N is an integer and the vector of 

observations y is a non-negative vector with Lj=l Yi = N. 

Poisson Distribution 

The Poisson distribution for y is 

[yi>.] =Pois(>.) 

).Y exp(->.) 

y! 

where y ~ 0 is an integer and>.> 0. 

A.3 Summary of Data and Parameters 

Capture-Recapture Data and Parameters 

~ Total number of individuals ever available for capture. 

k No. of capture occasions in the study. 

k' No. of re-sighting/recovery samples. 

u. The number of unique individuals caught during the study. 

tj The time at sample j. 

xobs A u. x k matrix of observed capture histories. The value 

xrr = 1 means that individual i was observed in sample j 

with Xf/8 = 0 otherwise. 

X Matrix of the complete capture histories, including the ~ -u. 

observed individuals. 
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Capture-Recapture Data and Parameters 

X 1 Information on capture up to and including first capture. 

X 2 Information on capture after first capture. 

b A matrix denoting birth. The value bij = l means that 

individual i is born between sample j and j + 1 and bij = 0 

otherwise. The value biO = l means that individual i was 

alive at the beginning of the study. 

d A matrix denoting death. The value dij = l means that 

individual i died between sample j and j + 1 and dij = 0 

otherwise. The value bik = l means that individual i was 

alive at the end of the study. 

d1 Information on death up to first capture. 

d2 Information on death after first capture. 

227 

1, A vector denoting loss on capture. The value li = 0 means 

that an individual was lost on capture, with ii = l otherwise. 

z A vector/matrix of covariates. One such covariate is avail-

ability for capture. 

Yi Matrix of dead recoveries. The value Y1ij = 1 means that 

individual i was recovered dead between sample j and j + 1, 

with Y1ij = 0 otherwise. 

~ Matrix of live re-sightings. The value Y2ij = 1 means that 

U· J 

individual i was re-sighted between sample j and j + 1, with 

Y2ij = 0 otherwise. 

The number of unmarked individuals in the population im­

mediately before sample j. 

Uj The number of unmarked individuals caught in sample j. 

u; The number of unmarked individuals in the population im­

mediately after sample j that survived until sample j + 1. 



~ 

I-

Notation 228 

Capture-Recapture Data and Parameters 

Bj The number of individual born between sample j and j + 1. 

Pj Probability of capture in sample j. 

Sj Probability of surviving from sample j to sample j + 1. 

Xj Probability of an individual not being seen again after sam­

ple j. 

'T/j The per-capita birth rate between sample j and j + 1. This 

is the expected number of births between sample j and j + l 

for every individual alive in sample j. 

/3j The multinomial probability of birth between sample j and 

Nj 

~i 

Ji 

..Ci 

'.Di 

Rj 

R'-
J 

j + l given that ~ individuals were available for capture 

during the study. 

Population size in sample j. 

Interval censored sample of birth for individual i. The value 

~i = j means that bij = 1. 

Sample of first capture for individual i. 

Sample of last capture for individual i . 

Interval censored sample of death for individual i. The value 

'.Di = j means that dij = 1. 

Probability of an individual being re-sighted between sample 

j and j + l given that it is alive in both j and j + 1. 

Probability of an individual being re-sighted between sam-

ples j and j + l given that it died between j and j + l and 

was not recovered dead. 

Tj Probability that an individual who dies between sample j 

and j + l will be recovered dead. 

Ji Probability of an individual being re-sighted or recovered 

between j and j + l given they were alive in sample j. 
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Capture-Recapture Data and Parameters 

Vj Probability of an individual being re-sighting alive given 

they were re-sighted or recovered between samples j and 

j + 1. 

Table A.l: Notation used for the capture-recapture models. 

VB Length Parameters 

w1i The number of captures for individual i in which a length 

was recorded. 

w2i The number of recoveries for individual i in which a length 

was recorded. Note that w2i must either be O or 1. 

W3i The number of re-sightings for individual i in which a length 

was recorded. 

01ih The time at capture h for individual i. 

02ih The time at recovery h for individual i. 

03ih The time at re-sighting h for individual i. 

L1 Information of the length values obtained from the capture­

recapture study. The value L1i(01ih) is the recorded length 

for individual i in capture h. 

L2 Information of the length values obtained from the recovery 

observations. The value L2i(82ih) is the recorded length for 

individual i in recovery h. 

L3 Information of the length values obtained from the re-

sighting observations. The value L3i(o3ih) is the recorded 

length for individual i in recovery h. 

Looi Asymptotic Length of individual i. 

Ai(t) Age of individual i at time t. 

O:i The length of individual i at first capture. 
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VB Length Parameters 

Ki 

. \ 

B 

D,.i ( t) 

Growth Rate Parameter for individual i . 

The instantaneous growth rate of individual i at first capture 

Length bias when caught by an angler 

Time between first capture of individual i and time t 

Table A.2: Notation used for the VB model. 
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Appendix: CDL vs ODL 

Consider a coin tossing experiment where we record the value of N coin 

tosses. The observation Xj takes the value 1 if toss j is a head and O other­

wise. After the data were recorded but before they could be analyzed, some 

of the pages of data went missing. Instead of N trials, we now only observe 

Nobs of the coin tosses with Nmis = N - Nobs missing values1 . We are 

interested in estimating the unknown probability of tossing a head, denoted 

p. We can summarize the data through counting up the trials. The total 

number of heads is y, 
N 

y= LXj, 

j=l 

of which yobs heads were actually observed, 

Nabs 

Yobs= L Xj. 

j=l 

In order to determine whether we need to include the missingness mech­

anism we write I= (Ii, ... ,IN), where Ij = l if toss j was observed and 

1 For convenience we index the observed data as j = 1, ... , Nabs and the missing data 
as j =Nabs+ 1, ... , N. 
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'Ij otherwise. We assume that the model for I does not depend on the data, 

[II¢], 

where ¢ is the parameter that describes how the data went missing. We 

assume that p and¢ are distinct meaning that the data are MCAR and the 

missingness mechanism is ignorable. 

The complete data likelihood treats the missing data as if we actually 

observed it. Specifying the coin tosses to be independent Bernoulli distri­

butions, 

Cc(p; x, N) cx:[xlp] 
N 

= II[xjlP] 
j=l 

_ Y(l ·)N-y -Pj - PJ , 

where x = (xi, ... , XN ). Note that we do not include the missingness mech­

anism in the CDL because it is ignorable. 

The standard approach for analyzing this data is to use the observed 

data likelihood, 

Nabs N 1 

Co(p;x0
b

8 ,N) ex: II [xjlP] II I)xjlP] 
j=l j=Nobs+l Xj=O 

N l 
Yobs ( )Nobs_yobs II ~ Xj (l )1-x · 

=Pj 1 - Pj ~ Pj - Pj 1 

j=Nobs+l Xj=O 

_ yobs ( ·)Nobs_yobs 
-Pj 1 - PJ · 

Unsurprisingly, this is the likelihood for p that would be used if we assumed 

we had only undertaken Nobs coin tosses in the first place. Placing a Be( a, /3) 
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prior distribution on p yields a 

Be ( yobs + a, Nabs _ Yobs + (3) 

posterior distribution for p. 

An alternative approach is to use data augmentation and fit the model 

from the CDL specified above. We obtain a posterior sample for p through 

Gibbs sampling (see section 5.2.2), alternating between 

[pl·]= Be (y + a, N - y + (3) 

[xjl·] = Bern(p), j =Nabs+ l, ... , N, 

where y = I:f=l Xj. One could wonder whether the Gibbs sampler will 

sample from the required posterior distribution for p. However, with data 

Nabs= 100, Nmis = 20, yobs= 43 and a prior distribution 

p"' Be(l, l), 

a kernel density smooth of a posterior sample of 50,000 using the CDL 

approach is in excellent agreement to the direct posterior distribution (figure 

B.l), confirming that the two approaches are equivalent. 
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Appendix: CDL vs ODL 234 

--Data Augmentation 
--Direct Posterior 

0 0.2 0.4 0.6 0.8 
p 

Figure B.l: Comparison between the true posterior distribution for p (red­
line) and the posterior distribution estimated by a kernel density smooth of 
50,000 samples found using Gibbs sampling from the CDL (blue line) . 
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Appendix: WinBUGS code 

C.1 WinBUGS code for CJS Model 

1 # The entire model is placed between model{} 

2 model{ 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

for(i in 1:udot){ 

for(j in first[i]+1:k){ 

} 

# X[i,j] = 1 if individual i was caught in sample j 

X[i,j] - dbern(peeX[i,j]) 

# individuals can only be caught while alive 

peeX[i,j] <- pcap[i,j]*alive[i,j] 

# Cumsv[i,last[i]] is the cumulative survival rate for 

# individual i between first and last capture. 

Cumsv[i,first[i]] <- 1 

for(j in first[i]+1:last[i]){ 

Cumsv[i,j] <- Cumsv[i,j-1]*sv[i,j-1] 
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16 } 

17 

18 # Cumsvd[i,j] is the cumulative survival rate from 

19 # last capture until sample j for individual i 

20 Cumsvd[i,last[i]] <- 1 

21 for(j in last[i]+1:k){ 

22 Cumsvd[i,j] <- Cumsvd[i,j-1]*sv[i,j-1] 

23 } 

24 

25 # svdmat[i,j] is used in the multinomial for the missing 

26 # d component. It is the conditional probability of 

27 # dying in sample j given they were alive at last[i] 

28 svdmat[i,last[i]] <- Cumsvd[i,last[i]]*(1-sv[i,last[i]]) 

29 for(j in last[i]+1:k){ 

30 svdmat[i,j] <- Cumsvd[i,j]*(1-sv[i,j]) 

31 } 

32 svdmat[i,k+1] <- 0 

33 

34 

35 

36 

37 

# Generates the multinomial draw for the missing value of d 

# conditional on being alive at last[i] 

d[i,last[i] :k+1] - dmulti(svdmat[i,last[i] :k+1] ,1) 

38 # alive[i,j] = 1 if individual i is alive in sample j. 

39 # It is a deterministic function of d. 

40 alive[i,first[i]] <- 1 

41 for(j in first[i]+1:k){ 

42 alive[i,j] <- alive[i,j-1]*(1-d[i,j-1]) 
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43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 } 

} 

# includes the survival probabilities from first[i] 

# to last[i] 

wd[i] - dbern(Cumsv[i,last[i]]) # ones trick 

sv[i,k] <- 0 # so that sum(d) = 1 

# S[j] is the time-specific survival probability 

# p[j] is the time-specific capture probabililty 

for(j in first[i] :k-1){ 

} 

sv[i,j] <- S[j] 

pcap[i,j+1] <- p[j+1] 

} 

for(j in 1:k-1){ 

} 

S[j] - dbeta(1,1) # equivalent to Unif(0,1) 

p[j+1] - dbeta(1,1) 

C.2 Data for CJS Model 

list( 

X=structure(.Data = c( 

1,1,1,1 

,1,0,0,o 

' ... 
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,0,1,1,1),.Dim=c(199,4)), 

udot=199, 

k=4, 

first=c(1,1, ... ,2), 

last=c(4,1, ... ,4), 

wd=c (1, 1, ... , 1), 

d=structure(.Data = c( 

0,0,0,NA,NA 

,NA,NA,NA,NA,NA 

' ... 
,0,0,0,NA,NA), .Dim=c(199,5)) 

) 

C.3 WinBUGS Code for JS Model 

The WinBUGS code that is required to fit the JS Model is 

1 # The entire model is placed between model{} 

2 model{ 

3 for(i in 1:udot){ 

4 for(j in first[i]+1:k){ 

238 

5 

6 

7 

8 

9 

10 

# X[i,j] = 1 if individual i was caught in sample j 

X[i,j] - dbern(peeX[i,j]) 

} 

# individuals can only be caught while alive 

peeX[i,j] <- pcap[i,j]*alive[i,j] 

11 # Cumsv[i,last[i]] is the cumulative survival rate for 
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12 # individual i between first and last capture. 

13 Cumsv[i,first[i]] <- 1 

14 for(j in first[i]+1:last[i]){ 

15 Cumsv[i,j] <- Cumsv[i,j-1]*sv[i,j-1] 

16 } 

17 

18 

19 

20 

21 

# Cumsvd[i,j] is the cumulative survival rate from 

# last capture until sample j for individual i 

Cumsvd[i,last[i]] <- 1 

for(j in last[i]+1:k){ 

22 Cumsvd[i,j] <- Cumsvd[i,j-1]*sv[i,j-1] 

23 } 

24 
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25 # svdmat[i,j] is used in the multinomial for the missing 

26 # d component. It is the conditional probability of 

27 # dying in sample j given they were alive at last[i] 

28 svdmat[i,last[i]] <- Cumsvd[i,last[i]]*(1-sv[i,last[i]]) 

29 for(j in last[i]+1:k){ 

30 svdmat[i,j] <- Cumsvd[i,j]*(1-sv[i,j]) 

31 } 

32 

33 

34 

35 

36 

37 

38 

svdmat[i,k+1] <- 0 

# Generates the multinomial draw for the missing value of d 

# conditional on being alive at last[i] 

d[i,last[i] :k+1] - dmulti(svdmat[i,last[i] :k+1] ,1) 

# alive [i, j] 1 if individual i is alive in sample j. 
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39 # It is a deterministic function of d. 

40 alive[i,first[i]] <- 1 

41 for(j in first[i]+1:k){ 

42 alive[i,j] <- alive[i,j-1]*(1-d[i,j-1]) 

43 } 

44 

45 

46 

# includes the survival probabilities from first[i] 

# to last [i] 

47 wd[i] - dbern(Cumsv[i,last[i]]) # ones trick 

48 

49 sv[i,k] <- 0 # so that sum(d) = 1 

50 # S[j] is the time-specific survival probability 

51 # p[j] is the time-specific capture probabililty 

52 for(j in first[i] :k-1){ 

53 sv[i,j] <- S[j] 

54 pcap[i,j+1] <- p[j+1] 

55 } 

56 } 

57 

58 for(j in 1:k-1){ 

59 

60 

61 } 

S[j] - dbeta(1,1) # equivalent to Unif(0,1) 

p[j+1] - dbeta(1,1) 

62 for(j in 1:k){ 

63 # first capture are binomially distributed 

64 u[j] - dbin(p[j],capu[j]) 

65 # the use of round(.) ensures capu is integer 

240 
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66 capu[j] <- round(capucont[j]) 

67 capucont[j] - dunif(0,5000) 

68 } 

69 p[1] - dbeta(1,1) 

70 } 
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Note that for the program to work, the initial values for capucont [j] must 

be larger than the values of u [j] . 

C.4 WinBUGS Code for CJS Model with Contin­

uous Covariates 

The WinBUGS code required to fit the model for the continuous covariates 

is 

1 # The entire model is placed between model{} 

2 model{ 

3 for(i in 1:udot){ 

4 for(j in first[i]+1:k){ 

5 # X[i,j] = 1 if individual i was caught in sample j 

6 X[i,j] - dbern(peeX[i,j]) 

7 # individuals can only be caught while alive 

8 peeX[i,j] <- pcap[i,j]*alive[i,j] 

9 } 

10 

11 # Cumsv[i,last[i]] is the cumulative survival rate for 

12 # individual i between first and last capture. 

13 Cumsv[i,first[i]] <- 1 

14 for(j in first[i]+1:last[i]){ 
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15 Cumsv[i,j] <- Cumsv[i,j-1]*sv[i,j-1] 

16 } 

17 

18 # Cumsvd[i,j] is the cumulative survival rate from 

19 # last capture until sample j for individual i 

20 Cumsvd[i,last[i]] <- 1 

21 for(j in last[i]+1:k){ 

22 Cumsvd[i,j] <- Cumsvd[i,j-1]*sv[i,j-1] 

23 } 

24 

25 # svdmat[i,j] is used in the multinomial for the missing 

26 # d component. It is the conditional probability of 

27 # dying in sample j given they were alive at last[i] 

28 svdmat[i,last[i]] <- Cumsvd[i,last[i]]*(1-sv[i,last[i]]) 

29 for(j in last[i]+1:k){ 

30 svdmat[i,j] <- Cumsvd[i,j]*(1-sv[i,j]) 

31 } 

32 svdmat[i,k+1] <- 0 

33 

34 # Generates the multinomial draw for the missing value of d 

35 # conditional on being alive at last[i] 

36 d[i,last[i] :k+1] - dmulti(svdmat[i,last[i] :k+1] ,1) 

37 

38 # alive[i,j] = 1 if individual i is alive in sample j. 

39 # It is a deterministic function of d. 

40 

41 

alive[i,first[i]] <- 1 

for(j in first[i]+1:k){ 
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42 alive[i,j] <- alive[i,j-1]*(1-d[i,j-1]) 

43 } 

44 

45 # includes the survival probabilities from first[i] 

46 # to last[i] 

47 

48 

49 

50 

wd[i] - dbern(Cumsv[i,last[i]]) # ones trick 

sv[i,k] <- 0 # so that sum(d) 

for(j in first[i] :k-1){ 

1 

51 # survival and capture probability depend on the 

52 # continuous covariate z. 

53 logit(sv[i,j]) <- gamma[1] + gamma[2]*z[i,j] 

54 logit(pcap[i,j+1]) <- gamma[3] + gamma[4]*z[i,j+1] 

55 } 

56 for(j in first[i]+1:k){ 

57 # the model for z must be included 

58 z[i,j] - dnorm(muz[i,j] ,tau) 

59 muz[i,j] <- z[i,j-1] + delta[j-1] 

60 } 

61 } 

62 for(j in 1:4){ 

63 gamma[j] - dnorm(0,0.0001) # prior distributions 

64 } 

65 for(j in 1:k-1){ 

66 delta[j] - dnorm(0,0.0001) # prior distributions 

67 } 

68 tau - dgamma(0.001,0.001) # prior distribution 
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69} 

C.5 WinBUGS Code for Multistate Model 

The additional code required to include the multistate model is 

1 # The entire model is placed between model{} 

2 model{ 

3 for(i in 1:udot){ 

4 for(j in first[i]+1:k){ 
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5 # X[i,j] = 1 if individual i was caught in sample j 

6 X[i,j] - dbern(peeX[i,j]) 

7 # individuals can only be caught while alive 

8 peeX[i,j] <- pcap[i,j]*alive[i,j] 

9 } 

10 

11 # Cumsv[i,last[i]] is the cumulative survival rate for 

12 # individual i between first and last capture. 

13 Cumsv[i,first[i]] <- 1 

14 for(j in first[i]+1:last[i]){ 

15 Cumsv[i,j] <- Cumsv[i,j-1]*sv[i,j-1] 

16 

17 

} 

18 # Cumsvd[i,j] is the cumulative survival rate from 

19 # last capture until sample j for individual i 

20 Cumsvd[i,last[i]] <- 1 

21 for(j in last[i]+1:k){ 

22 Cumsvd[i,j] <- Cumsvd[i,j-1]*sv[i,j-1] 
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50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73} 

} 

for(j in first[i] :k-1){ 

# survival and capture probability depend on the 

# continuous covariate z. 

sv[i,j] <- s[z[i,j] ,j] 

pcap[i,j+1] <- p[z[i,j+1],j+1] 

} 

for(j in first[i]+1:k){ 

# the model for z must be included. 

z[i,j] - dcat(psi[z[i,j-1],1:nstate]) 

} 

for(j in 1:nstate){ 

psi[j,1:nstate] - ddirch(alpha[1:nstate]) # prior distributions 

} 

for(j in 1:k-1){ 

for(h in 1:nstate){ 

} 

} 

s[h,j] - dbeta(1,1) # prior distributions 

p[h,j+1] - dbeta(1,1) # prior distribution 

for(j in 1:nstate){ 

alpha[j] <- 1 # parameters of the dirichlet in line 62 above 

} 

Note that the number of states, nstate, needs to be specified as data. 
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C.6 WinBUGS Code for JS Density Dependence 

Model 

model{ 

for(j in 2 :k){ 

# ones trick to include capture probability. 

# In sample j, m[j] are caught out of M[j]. 

wr[j] - dbern(pier[j]) 

pier [j] <- pow(p [j] ,m [j]) *pow( (1-p [j]) ,M[j]-m[j]) 

} 

M[1] <- 0 # There are no marked animals before the first sample. 

# There are R[1] marked animals immediately after the first sample 

Mplus[1] <- R[1] 

for(j in 1:k-1){ 

# The number of deaths is generated as a binomial 

D[j] - dbin(mort[j],candie[j]) 

# candie[j] is the number of marked individuals that are able 

# to die between sample j and j+1. We know that T[j] individuals 

# do not die because they were seen in later periods. 

candie[j] <- Mplus[j] - T[j] 

mort[j] <- 1-S[j] 

# The number of marked animals before the j+1th sample are the number 

# alive immediately after the jth sample less the number that die 

# between j and j+1 

M[j+1] <- Mplus [j] - D [j] 

# The number of marked animals immediately after sample j+1 is the 
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} 

# number of marked individuals immediately before sample j+1 (M[j+1]) 

# plus the number of unmarked individuals caught in sample j (R[j+1]-m[j+1]) 

Mplus[j+1] <- M[j+1] - m[j+1] + R[j+1] 

# wd uses the ones trick to include [TIS], the individuals we know survive. 

wd[j] - dbern(pied[j]) 

pied[j] <- pow(S[j],T[j]) 

# JS component 

for(j in 1:k){ 

} 

u[j] - dbin(p[j],capu[j]) 

# the number of individual alive in sample j is the number of unmarked 

# individuals alive at j (capu[j]) plus the number of marked 

# individuals alive at j (M[j]). 

capn[j] <- capu[j] + M[j] 

# round ensure capu is an integer. 

capu[1] <- round(capucont[1]) 

capucont[1] - dunif(0,5000) # prior distribution. 

for(j in 2:k){ 

# the number of unmarked individuals comprises unmarked individuals 

# from the previous sample that have survived (capuprime[j-1]) and new 

# births capb[j-1] 

capu[j] <- capuprime[j-1] + capb[j-1] 

} 
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} 

for(j in 1 :k){ 

logit(p[j]) <- lp[j] 

} 

# random effect on capture probability 

lp[j] - dnorm(beta[5] ,tau[3]) 

for(j in 1:3){ 

} 

tau[j] - dgamma(0.001,0.001) # prior distribution 

sd[j] <- 1/sqrt(tau[j]) # prior distribution 

for(j in 1: 5){ 

beta[j] - dnorm(0,0.00001) # prior distribution 

} 

C. 7 Data for JS Density Dependence Model 

list( 

k = 17, 

m = c(NA,8,17, ... ,8), 

T = c(10,24, ... ,8), 

wd = c(1,1, ... ,1), 

wr = c(1,1, ... ,1), 

littleu = c(15,44, ... ,0), 

R = c(15,52, ... ,8)) 
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