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Abstract

We investigate the properties of collections of linear bipartitions of points

embedded into R3, which we call collections of affine splits. Our main

concern is characterising the collections generated when the points are em-

bedded into S2; that is, when the collection of splits is spherical. We find

that maximal systems of splits occur for points embedded in general po-

sition or general position in S2 for affine and spherical splits, respectively.

Furthermore, we explore the connection of such systems with oriented ma-

troids and show that a maximal collection of spherical splits map to the

topes of a uniform, acyclic oriented matroid of rank 4, which is a uniform

matroid polytope. Additionally, we introduce the graphs associated with

collections of splits and show that maximal collections of spherical splits in-

duce maximal planar graphs and, hence, the simplicial 3-polytopes. Finally,

we introduce some methodologies for generating either the hyperplanes cor-

responding to a split system on an arbitrary embedding of points through a

linear programming approach or generating the polytope given an abstract

system of splits by utilising the properties of matroid polytopes. Estab-

lishing a solid theory for understanding spherical split systems provides a

basis for not only combinatorial–geometric investigations, but also the de-

velopment of bioinformatic tools for investigating non-tree-like evolutionary

histories in a three-dimensional manner.
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Chapter 1

Introduction

We begin with a brief overview of the relative fields and ideas that will be encountered

throughout this work.

A rich theory emerges at the interface of combinatorics and geometry, resulting in

the fascinating field of discrete (or combinatorial) geometry. Although there have been

myriad outstanding discoveries within the field as a result of the work of many ingenious

mathematicians, a wide range of open problems (often very easily stated and seemingly

innocuous) still exist. A nice example is the Hadwiger Conjecture: “Can any convex

body in n-dimensional space be covered with 2n (or less) smaller copies of itself?”

(Boltjansky and Gohberg, 1985). Matoušek (2002), in his fantastic text on the subject,

compared discrete geometry to “an Alpine mountain range”, where ”convenient paths

[...] provide safe trails to a few peaks and lookout points”, but “reaching the higher

peaks still needs substantial effort”.

The field of convex geometry has experienced a relatively recent bloom with the uprise

of computational geometry and combinatorial optimisation alongside the progressive

development of ever-more-sophisticated computing systems (see, e.g., Preparata and

Shamos, 1988; Nemirovski, 2007). Even though the basic premises and ideas present

in convex geometry have been investigated since antiquity, the major developments—

especially those concerning the combinatorial properties of convex objects—have mainly

been conducted within the past couple hundred years, with particularly prolific pro-

gression occurring in the 20th century (Grünbaum, 2003).

A natural question, which has arisen in many combinatorial contexts, relates to the

concept of separation: We ask in which ways, or how many ways, is a single object
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or collection of objects separable, where the object/s of interest may be concrete (e.g.,

a collection of triangles in the plane) or abstract (e.g., a topological space). Further-

more, higher-level questions of invariance in the notion of separability provide us with

a potential means of relating and comparing seemingly disparate concepts. Thus, the

study of separability is of great inherent interest from a purely mathematical stand-

point, much in the same manner as symmetry.

The concept of separability has strong motivation in terms of classification systems on

data sets, which underpins the theories of machine learning and neural networks, both

massive areas of research in the modern landscape involving (but not limited to) the

development of algorithms to effectively classify data sets (see Bishop, 2006; Rojas,

1996, for good introductions to machine learning and neural networks, respectively).

These methods utilise the fundamental idea of (linear or non-linear) separability in

order to better understand the structure of a given data set, which is absolutely crucial

in the modern age of ‘big data’, or to make efficient and precise predictions on the

classification of new data. This is extremely valuable throughout many scientific dis-

ciplines, not to mention societally and commercially (Widrow, Rumelhart, and Lehr,

1994).

In the development of machine learning, a fundamental idea is that of hyperplane ar-

rangements and the subsequent induced separations of a given set of points, which

then, in some sense, must be independent. In the 1930s, Whitney and Nakasawa

(both of whom have fascinating—and, in the latter case, tragic—stories; see Keith,

2013; Nishimura and Kuroda, 2009, respectively) independently laid the foundations

of matroid theory as a generalised axiomatisation of independence. In a very different

manner, the theory of oriented matroids was simultaneously developed, predominantly

during the 1960s and 1970s, through very different approaches by many different math-

ematicians. Some of the key players in this period were Rockafellar, who indicated the

need for an axiom system in oriented matroid theory (Rockafellar, 1969); Folkman

and Lawrence, for whom the fundamental Topological Representation Theorem in the

theory was named (Folkman and Lawrence, 1978); Las Vergnas, who set about axioma-

tising the theory from a graph-theoretic/combinatorial standpoint (Las Vergnas, 1975);

and Bland, who approached it from a linear programming duality standpoint (Bland,

1974). Most pertinently to the context of this work is the concept of oriented matroids

arising from sign vectors, which generalise the concept of the partitions (i.e., separa-

tions) of an n-dimensional space by arrangements of (n−1)-dimensional hyperplanes.
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The equivalence of the axiom systems of oriented matroids allows us to translate results

and contexts originally written in disparate mathematical languages under a rigorous

combinatorial backbone. It is still, however, a young field, and there is a feeling that

there is much of importance yet to be found.

Graph theory naturally links into all combinatorial fields of mathematics and, hence,

has found good use in the fields mentioned above; a prime example of the connection

between graph theory and discrete/convex geometry being the Circle Packing Theorem,

also known as the Koebe–Andreev–Thurston Theorem (Thurston, 1981, Section 13),

which says that, for every connected simple planar graph G, there exists a circle packing

in the plane whose intersection graph is isomorphic to G, which has far-reaching con-

sequences (see, e.g., Rodin and Sullivan, 1987). Furthermore, neural networks, which

are composed of nodes and (weighted) connections between them (Rojas, 1996), rely

on an intrinsic graph structure, and so graph-theoretic results may permit us a deeper

understanding of such methods. These examples demonstrate only a tiny sample of the

flexibility and connectivity of graph theory throughout diverse mathematical contexts.

A particular aspect of graph theory which is relevant to the subject at hand is that

of inscribability. An intuitive and visual concept, discerning inscribability amounts

to asking which graphs can be realised as polytopes with vertices lying on the unit

sphere (Dillencourt and Smith, 1996). However, at present, a satisfying combinatorial

characterisation of inscribability is still lacking.

Graph theory has found applications through diverse scientific realms, and one such

example in biology is in providing a model for evolution. Trees (i.e., connected acyclic

graphs) play an important role in evolutionary modelling, where the assumption that

the process of evolution occurs by genetic lines bifurcating over time has been used

to develop mathematical methods to infer genetic histories (Morrison, 1996; Farris,

1972). While tree models are, in a large number of cases, sufficient for represent-

ing the evolutionary processes which have occurred, they lack the ability to express

reticulate phenomena, such as horizontal gene transfer. For this reason, the idea of

a phylogenetic network was developed, which may better represent such evolutionary

histories coherently (see Huson and Bryant, 2006, for an in-depth survey of the diverse

uses of phylogenetic networks in evolutionary studies). The ability to soundly infer

historical contexts from data allows researchers to obtain an in-depth understanding

of evolutionary mechanisms and to rigorously formulate theories to explain such aber-

rant phenomena. Hence, providing consistent frameworks for the construction of such
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methods is an important facet of mathematical biology.

In the context of phylogenetic networks, the concept of a circular split system was

introduced by Bandelt and Dress (1992) and developed into a widely used method

by Bryant and Moulton (2004). The end-product of their Neighbor-Net method is a

collection of circular splits of a set of taxa, which is subsequently used to construct

a highly resolved phylogenetic network (called a splits graph). Following their lead,

we propose the idea of a collection of spherical splits as an extension of this idea; it

is not entirely a natural extension, as three-dimensional objects tend to have wildly

differing properties to those in two dimensions, and so we have attempted to treat the

construction and analysis of such collections carefully and thoroughly.

This thesis is organised as follows:

In Chapter 2, we first define the concept of a split as a bipartition of a finite abstract

set. This concept naturally extends to an affine split, which is a bipartition induced by

an embedding of the set into an ambient space; in our case, we consider embeddings

into R3, where natural linear bipartitions are induced by planes. We establish some

fundamental properties of such collections of affine splits, in particular finding a bound

on the cardinality of a maximal collection of affine splits, which is tight if and only if

the points are embedded into general position. Following this, we look at some funda-

mental definitions and connections in convex polytope theory and define a collection

of polytopal splits to be a collection of affine splits with the points embedded as the

vertices of a 3-dimensional polytope, from which it follows that a maximal collection of

polytopal splits must be associated with a set of points in general and convex position.

Finally, after considering the issue of polytope inscribability, we define spherical splits,

which correspond to collections of polytopal splits where the points are constrained to

lie on the unit sphere. We detail some difficulties with discerning polytopal collections

of splits from spherical ones, and provide a restriction result for spherical splits.

In Chapter 3, we begin by outlining oriented matroid theory from the covector and tope

(maximal covector) axiomatisations, introducing both axiom systems and considering

the natural equivalence between the two. The properties of, and operations relating to,

sign vectors are introduced, and uniformity, acyclicity, and simplicity of oriented ma-

troids are detailed. We follow by defining the Vapnik–Chervonenkis dimension for split

collections and showing that a maximal collection of affine splits has VC-dimension 4.

By appropriately defining a certain set of sign vectors T from a maximal collection of

affine splits and utilising the fundamental correspondence of Gärtner and Welzl (1994)
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between collections satisfying certain properties and sets of topes related to uniform

oriented matroids, we establish the connection between maximal collections of affine

splits and rank 4 uniform oriented matroids. Following this correspondence, we inves-

tigate the lattices associated with oriented matroids. After defining and exemplifying

order complexes and shellings, we determine a connection between maximal collections

of affine splits and shellable 3-balls. We establish the relationship between maximal

sets of polytopal/spherical splits and matroid polytopes, and briefly consider the impli-

cations of this. Finally, we discuss the realisability of oriented matroids in the context

of collections of affine splits.

In Chapter 4, we investigate graph structures associated with collections of poly-

topal/spherical splits. We discuss some fundamental graph-theoretic results, including

Steinitz’s connection between 3-connected planar graphs and 3-polytopes, as well as

the non-planarity criteria of Kuratowski and Wagner. Then, we define the graph GS

associated with a collection of splits S and show that those associated with maximal

collections of polytopal/spherical splits are maximal planar graphs. We show that such

a graph associated with a collection of spherical splits is inscribable, and attempt to

provide a reasonable explanation, in terms of the structure of the splits/embedding,

for the case of non-inscribable GS . Finally, we consider some contraction results to

determine the subgraphs of GS induced by the separable subsets of a given split.

In Chapter 5, we detail two methodologies: One for generating a split collection given

a set of points, and another for generating the face lattice of a matroid polytope given

a set of topes. While these methods are most definitely not optimal, they provide

a launchpad for the development of a more comprehensive and efficient system for

generating collections of points, hyperplanes, simplices, and/or topes associated with a

given input. The first method is a linear programming approach for the determination

of topes and hyperplanes given a set of points in R3, although a natural extension to

n dimensions is possible. A derivation and some results of the system are provided.

The second method uses a brute-force approach to determine the covector lattice and,

using that information, calculate the polytope face lattice of a matroid polytope.

Finally, in Chapter 6, we summarise our findings and discuss the remaining open

questions and potential directions for future research.
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Chapter 2

Split Systems and Polytopes

We begin with some fundamental definitions.

2.1 Splits

Given a finite set Y , a split of Y is a bipartition of the elements of Y into two non-

empty parts; that is, a split is comprised of two non-empty sets A,B ⊂ Y , such that

A ∩ B = ∅ and A ∪ B = Y . If A and B comprise a split of Y , we denote the split by

A|B (or, equivalently, B|A). If A|B is a split and |A| = i, then we may call A|B an

i-split; it follows that every i-split is an (n−i)-split, where n = |Y |. If S is a collection

of splits, we denote the collection of i-splits by Si.

Example 1. Let Y = {a, b, c, d}. Then, if A = {a} and B = {b, c, d}, A|B is a split

of Y ; in particular, it is a 1-split (or, equivalently, a 3-split). However, if A = {a} and

B = {b, d}, then A|B is not a split of Y , as the element c is not included.

Note that, if Y has cardinality n, there are 2n−1−1 possible splits on Y .

2.1.1 Hyperplanes and Affine Splits

In general, a hyperplane in an n-dimensional affine space is an (n−1)-dimensional affine

set. For our purposes, as we consider the ambient space to be R3, when we refer to a

hyperplane H, we mean a 2-dimensional plane. That is, H = {x ∈ R3 : 〈x, v〉 = k} for

some v ∈ R3 \ 0 and k ∈ R, and where 〈·, ·〉 is the standard inner product on R3. As a

hyperplane H is fully determined by v and k, for clarity’s sake, we may refer to H as

H(v, k).
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A set of the form {x ∈ R3 : 〈x, v〉 > k} is called an open halfspace and a set of the

form {x ∈ R3 : 〈x, v〉 ≥ k} is a closed halfspace. Given a hyperplane H = H(v, k),

we denote the open halfspaces induced by H as H+ = {x ∈ R3 : 〈x, v〉 > k} and

H− = {x ∈ R3 : 〈x, v〉 < k} for convenience.

Let φ : Y ↪→ R3 be an embedding. We call a split A|B of Y an affine split (with

respect to φ) if there exists an open halfspace γ such that φ(A) = φ(Y ) ∩ γ. We say

that the sets A and B are affinely separable (or separable) if A|B is an affine split with

respect to an embedding φ.

We denote the collection of all affine splits on Y (with respect to φ) by Aφ(Y ). A

collection S of splits on a finite set Y is affine if there exists an embedding φ :

Y ↪→ R3 such that S ⊆ Aφ(Y ). It is important to note that the structure of Aφ(Y )

is intrinsically dependent on φ, and that there will typically be many different non-

equivalent affine split collections for any given Y .

Note that, throughout the following, we make use of embeddings of (abstract) sets of

points into R3. This is in order to reconcile with the underlying context in which we

wish to utilise spherical splits, where the points represent data labels and the embedding

represents the means by which we visualise the data (even though we will not delve

into this background territory, herein). Thus, we have kept the embedding, playing

the role of intermediary in the bioinformatic process, as we wish to understand which

properties of the embedding must be considered in further research.

Example 2. Let X = {a, b, c}. Then, a collection of splits on X is

S =
{
{a}|{b, c}, {a, b}|{c}

}
.

This collection of splits is depicted, along with an embedding φ of X into R2, in

Figure 2.1; note that S is an affine collection of splits, as the splits are represented by

1-dimensional hyperplanes (the blue lines).

φ(a)

φ(b) φ(c)
{a}|{b, c}

{a, b}|{c}

Figure 2.1: Depiction of a collection of affine splits (blue lines) on three vertices.
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In investigating collections of combinatorial objects, there is a natural question which

arises: When is a collection as large as it can possibly be? Or, more precisely: When is

a collection not properly contained in any larger collection? We begin by establishing a

property of φ which prevents Aφ(X) from attaining a maximal number of splits:

Proposition 1. Let φ : X ↪→ R3 be an embedding. If four or more points of φ(X)

are coplanar, then there is an embedding ψ : X ↪→ R3 such that Aφ(X) ⊆ Aψ(X) and

Aφ(X) 6= Aψ(X).

Proof. Let H be a hyperplane such that |H ∩ φ(X)| > 3 (as φ(X) has a 4-coplanar

set of points, we can find such an H) and X ′ = {xi ∈ X|φ(xi) ∈ H} and, for each

split A|B ∈ Aφ(X), let HA|B be a hyperplane separating φ(A) and φ(B). Let X =

R3 \ {HA|B : A|B ∈ Aφ(X)}. Then, φ(X) ⊂ X and X is open and so, for each xi ∈ X,

there is an open ball B(φ(xi), εi) ⊂ X , where εi > 0. Let ε = mini εi.

Let v be a unit normal vector to H. For any u ∈ X ′, we consider the embedding:

ψ(x) =


φ(x) x 6∈ X ′

φ(x) + εv x = u

φ(x)− εv x ∈ X ′ \ {u}

,

with associated affine splits Aψ(X). Let S = A
∣∣B ∈ Aφ(X) and HS be a plane

corresponding to S determined by normal n and constant k. By definition, ε is less

than the distance from any point in φ(X ′) to HS, which means that the image of any

point a in A∩X ′ satisfies (without loss of generality) ψ(a) ∈ ψ(X)∩H+
S and, similarly,

ψ(b) ∈ ψ(X)∩H−S for all points b in B∩X ′. Thus, S ∈ Aψ(X) and so Aφ(X) ⊆ Aψ(X).

Therefore, every split in Aφ(X) is a split in Aψ(X).

To see that Aψ(X) contains a split that is not in Aφ(X), consider the plane H. We

know that H 6∈ Aφ(X), as X ′ ⊂ H. Without loss of generality, let A = (X \X ′)∩H+

and B = (X \X ′) ∩H−. Fix u ∈ X ′ and let ψ be defined with respect to u, as above.

Then, H will correspond to the split SH =
(
A ∪ {u}

)
|
(
B ∪ (X ′ \ {u})

)
.

Therefore, SH 6∈ Aφ(X) but SH ∈ Aψ(X) and, consequently, Aφ(X) is properly con-

tained in Aψ(X).
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We say that a collection of points in Rd is in general position when no d + 1 points

are contained in any (d−1-dimensional) hyperplane. In R3, this corresponds exactly to

disallowing 4-coplanarity: No four points lie on any (2-dimensional) hyperplane. For

example, in Figure 2.2, the vertices of the tetrahedron are in general position, but the

vertices of the square are not. Note that, for any n ∈ N and d ∈ N, we can always

find a set of n points in general position in Rd: For example, a result of Erdős implies

that, for sufficiently large N , (1− ε)N points can be placed in general position on the

N × N grid for any ε > 0 (Roth, 1951; Froese, Kanj, Nichterlein, and Niedermeier,

2015), which we can then naturally extend to any N ×N × · · · ×N grid.

(a)

z
y

x

w

(b)

cb

a

d

Figure 2.2: (a) Tetrahedron and (b) coplanar square formed by four points in R3.

In Figure 2.2(a), the blue triangle is a section of a separating hyperplane represent-

ing the affine split {x, z, w}|{y}; in Figure 2.2(b), the blue line is a one-dimensional

section of the hyperplane representing the split {a, c, d}|{b}, and the red dashed lines

correspond to the unrealisable 2-split {a, d}|{b, c} induced by the 4-coplanarity of the

vertices.

Now, we work towards finding an upper bound for the number of affine splits associated

with an arbitrary embedding φ. For convenience, we define the integer function (fol-

lowing the notation of Gärtner and Welzl, 1994) as:

Φd(n) :=

(
n

≤ d

)
=

d∑
i=0

(
n

i

)
.

Harding (1967) asked and answered the following question: “What is the number of

distinct partitions of a given set of N points in k dimensions that can be thus induced by

(k−1)-dimensional hyperplanes?” The following theorem is a direct result of Harding’s
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theorem (Hwang and Rothblum, 2011, Theorem 1), translated to the context of affine

splits (instead of “separable 2-partitions”):

Theorem 2. Given a finite set of points X and an embedding φ : X ↪→ R3 such that

the points of φ(X) are in general position, the number of distinct affine splits in Aφ(X)

is Φ3(|X|−1)−1.

Note that we have the term Φ3

(
|X|−1

)
−1, and not Φ3

(
|X|−1

)
(as in the original), as

X|∅ is considered a separable 2-partition, but not an affine split.

Proposition 3 follows immediately:

Proposition 3. Let X be a finite set. If φ is an embedding of X into R3 and Aφ(X)

is the associated collection of affine splits, then |Aφ(X)| ≤ Φ3

(
|X|−1

)
−1.

Proof. This is a direct consequence of Theorem 2, as the number n of points in general

position in X cannot exceed |X|.

The result of Proposition 1 indicates that, with the property that no four points are

coplanar, sets of points in general position provide a likely candidate for those on which

the collections of affine splits are maximal. We show that any collection of affine splits

may be extended to a collection on a set of points in general position.

Proposition 4. For any collection of affine splits Aφ(X), there is an embedding ψ

such that ψ(X) is in general position and Aφ(X) ⊆ Aψ(X).

Proof. If φ(X) has no 4-coplanar set of points, then φ(X) is already in general position.

So, suppose that φ(X) is not in general position and that there exists at least one set

of four coplanar points in φ(X).

By Proposition 1, we can find an embedding ψ1 : X ↪→ R3 such that Aφ(X) ( Aψ1(X).

Now, either ψ1(X) is in general position, or has at least one set of four coplanar points as

well. In the latter case, by Proposition 1, there again exists an embedding ψ2 : X ↪→ R3

such that Aψ1(X) ( Aψ2(X), and so on. For each ψi such that ψi(X) is not in general

position, we split a 4-coplanar set of points to yield another embedding ψi+1 such that

Aφ(X) ( Aψ1(X) ( · · · ( Aψi
(X) ( Aψi+1

(X)

is a chain of proper containments.

By Proposition 3, the cardinality of a collection of affine splits on X is bounded by

Φ3(|X|−1)−1, and as |Aψk
| is a strictly increasing sequence in k, there must exist some
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embedding ω such that Aψk
(X) ⊆ Aω(X) and there exists no embedding ψ such that

Aω(X) ( Aψ(X). This occurs exactly when ω(X) has no set of 4-coplanar points and,

hence, is in general position.

Therefore, Aφ(X) ( Aω(X) and ω(X) is in general position.

We culminate by showing that the bound on a collection of affine splits is tight and,

thus, maximality is achieved for collections of affine splits with respect to embeddings

of points into general position:

Proposition 5. If φ(X) is in general position, then |Aφ(X)| = Φ3(|X|−1)−1. Fur-

thermore, there exists no embedding ψ : X ↪→ R3 such that Aφ(X) ( Aψ(X).

Proof. As we have |X| points in general position, Theorem 2 implies that |Aφ(X)| =

Φ3(|X|−1)− 1.

Now, suppose that there exists ψ : X ↪→ R3 such that Aφ(X) ( Aψ(X). This means

that |Aψ(X)| > Φ3(|X|−1)−1, which, by Theorem 2, implies that there are more than

|X| points in X. This is clearly a contradiction, and so Aφ(X) is contained in no larger

collection of affine splits.

Proposition 5 motivates the following definition. An affine collection of splits S on

X is maximal when S = Aφ(X), where φ(X) is in general position. For affine splits

in R3, then, maximality occurs when no four points in φ(X) are coplanar (see Fig-

ure 2.2).

The cardinalities of maximal sets of affine splits on n points are shown in Table 4.1, in

a later chapter.

Thus, we have a characterisation of maximal collections of affine splits (i.e., those with

respect to embeddings in general position) and the cardinality (i.e., Φ3(|X|−1)−1) of

such collections.

2.1.2 Alternate Proof for the Bound

The section above was made much easier (and, perhaps, slightly less transparent) by

the use of Theorem 2. We thought it was worthwhile to include our initial derivation
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of the bound on a collection of affine splits, as it made use of concepts which are of

interest (at least, in our opinion).

To establish the cardinality of a set S of affine splits, we make use of a specific duality

for points and hyperplanes; in particular, the polar (Gallier, 2008, Definition 3.3). For

a point x ∈ R3 and hyperplane H ⊂ R3 not containing the origin, define the polar

operations x 7→ x◦ and H 7→ H◦ by

x◦ = {y ∈ R3 : 〈x, y〉 = 1}

such that each x maps to a unique hyperplane x◦ ∈ R3, and

H◦ such that H = {x ∈ R3 : 〈H◦, x〉 = 1},

so the polar maps a hyperplane H to a unique point H◦ ∈ R3.

Furthermore, the polar mapping is incidence- and order-preserving (Gallier, 2008); that

is,

x ∈ H+ ⇔ H◦ ∈ x◦+,

where H+ is one of the halfspaces induced by H.

Furthermore, if x ∈ S2, then x◦ is the unique hyperplane tangent to S2 at x.

Note that there are multiple ways that the polar dual of a set has been defined throught

the literature (see, e.g., Charney and Davis, 1995). We have chosen this specific def-

inition for the polar as alternative definitions of x◦ and H◦ yield other types of sets,

which may not be desirable for the matter at hand. For example, if the dual of a point

is instead defined by x◦ = {y ∈ R3 : 〈x, y〉 ≤ 1}, then x◦ would not be a hyperplane,

but instead the closed halfspace associated with that hyperplane which contains the

origin (Gallier, 2008, Definition 3.4).

Proposition 6. Let X be a set and φ : X ↪→ R3 such that φ(x0) is the origin for some

x0 ∈ X. There exists a bijective map between a collection of affine splits Aφ(X) and

the regions cut by the polar arrangement X0 = {x◦ : x ∈ X \ {x0}}.

Proof. As φ(x0) is the origin, it follows, for every separating hyperplane H of φ(X \
{x0}), that x0 ∈ H−.

Now, consider two separating hyperplanes H1 and H2 such that H+
1 ∩ φ(X \ x0) =

H−2 ∩φ(X \x0). Then, H1 and H2 induce the same split in X \x0, but distinct splits in
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X. Thus, every split induced by the arrangement of hyperplanes separating X \ {x0}
is unique.

Now, consider the polar arrangement given by X0, as defined above. As it is a collection

of polar hyperplanes, X0 cuts R3 into a collection of disjoint open regions R0.

Suppose that a split S ∈ Aφ(X) has two representative hyperplanes H1 and H2. Then,

we have that H+
1 ∩φ(X) = H+

2 ∩φ(X), and so φ(x) ∈ H+
1 ⇔ φ(x) ∈ H+

2 for all x ∈ X.

By the order preservation of the polar, then, we have that

H◦1 ∈ φ(x)◦,+ ⇔ H◦2 ∈ φ(x)◦,+,

and so H◦1 and H◦2 lie in the same region RS. Thus, the split S uniquely corresponds

to the region RS.

To see that there is one region which does not technically correspond to a split, consider

the polar region V =
⋂
x∈X\{x0} φ(x)◦,−. Any point h ∈ V satisfies h ∈ φ(x)◦,− for all

x ∈X\{x0}, and so corresponds to a hyperplane satisfying φ(x) ∈ h◦,− for all x ∈ X
(as φ(x0) must be in h◦,− as well), and so V corresponds to the partition X|∅, which

is not an affine split.

For any split S ∈ Aφ(X), let HS = H(vS, 1) be any hyperplane inducing the split,

and let RS be the region cut by X0 containing H◦S = vS. Then, the map ι : S → R0

such that S maps to the region containing vS is well-defined, as any representative

hyperplane of S maps to a unique region RS, as established above.

Now, let S, S ′ ∈ AS (X) such that S = A|B 6= A′|B′ = S ′. Then, without loss of

generality, if A = H+
S ∩ φ(X) and A′ = H+

S′ ∩ φ(X) then there exists at least one

element x ∈ X \ {x0} such that x ∈ A but x 6∈ A′, or vice versa. This implies that H◦S

and H◦S′ are separated by at least one of the x◦ in X0 and, so, cannot be in the same

region. Hence, ι is injective.

Finally, let v be a point in any region cut by X0. Then, v◦ corresponds to the hyperplane

H = {x ∈ R3 : 〈x, v〉 = 1}, which does not intersect φ(X) by incidence preservation of

the polar and, hence, induces a split S in Aφ(X). However, as v is in the same region

RS as any other representative hyperplane of S, the region RS is in the domain of ι

and, so, with the inclusion of ι(X|∅) = V , ι is surjective.

Thus, as a well-defined, injective, and surjective mapping, ι is a bijection between S

and R0.
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We demonstrate the bound on the cardinality of an affine split collection by establishing

the cardinality of a maximal collection of affine splits:

Proposition 7. Let X be a set of cardinality n and φ(X) be an embedding of X into

R3. The number of splits in a maximal collection of affine splits on φ(X) is Φ3(n−1)−1.

Proof. Note that translating the points φ(X) such that φ(x0) is the origin for some

point, as in Proposition 6, does not change the structure of the split collection. So,

without loss of generality, Proposition 6 holds for an arbitrary embedding into R3.

Now, suppose that φ(X) is in general position. By Stanley (2006), the total number

of regions—bounded or unbounded—cut by a hyperplane arrangement X is at most

Φ3(|X|). Therefore, the maximum number of regions cut by the arrangement X0 is

Φ3(|X|−1). Furthermore, as the planes are arranged such that every three intersect at

a point, as a consequence of the φ(X) being in general position, the arrangement cuts

the maximal amount Φ3(|X|−1) of regions.

As, by Proposition 6, the splits are in bijection with the regions cut by X0, we obtain

the desired result by disregarding the one region given by ι(X|∅):

|Aφ(X)| = φ3(|X|−1)−1.

As any non-maximal collection of affine splits, by definition, must have less splits than

the maximal case, it follows that Φ3(|X|−1)−1 is the upper bound we desire.

2.2 Polytopes

Before we can define spherical splits, we need to understand a bit about convex poly-

topes. We may, loosely, think of as polytopes as convex geometric objects with “flat

sides”. The idea of such objects has existed since antiquity; for example, the Pla-

tonic solids are all three-dimensional regular convex polytopes (the simplest of which

being the tetrahedron, shown in Figure 2.2(a)). However, the bulk of research into

the combinatorial aspects of convex polytopes has been made only in the last century.

Grünbaum’s Convex Polytopes (Grünbaum, 2003) provides a comprehensive survey of

convex polytope theory.
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The convex hull of a set of points X in Rd is the “smallest” convex set conv(X) ⊂ Rd

containing X. More precisely, the convex hull can be defined as the intersection of all

convex sets containing X; thus, any other convex set containing X must also contain

conv(X), justifying the use of the term “smallest”.

Example 3. If we have the six points in the plane shown in Figure 2.3, then the convex

hull is the polygon “wrapped around” the points a, b, c, d, and e. Notice that f lies in

the interior of the convex hull.

f

a

b

c
d

e

Figure 2.3: Convex hull of six points in the plane.

A convex polytope P can be defined equivalently as the convex hull of a finite number

of points or as the finite intersection of a finite number of halfspaces (Matoušek, 2002,

Theorem 5.2.2). A polytope P is called a d-polytope if d is the dimension of the

smallest affine subset containing the vertices of P ; that is, the dimension of the affine

hull {
∑

i=1 λixi : xi ∈ X,
∑

i λi = 1}, where X is the set of vertices of P . In our case,

we will only consider bounded convex 3-polytopes (i.e., those in R3), which we will

simply refer to as polytopes without risk of confusion.

A face of a polytope P is a subset of P of the form P ∩H, where H is a hyperplane

such that P is fully contained in one of the closed halfspaces induced by H; we call a

0-dimensional face a vertex, a 1-dimensional face an edge, and a 2-dimensional face a

facet of P , respectively. The set of all faces F(P) of a polytope P has a natural partial

ordering ≤ by inclusion; that is,

F ≤ G ⇐⇒ F ⊆ G,

for all faces F,G ∈ F(P). Note that P is itself a face, and so P ∈ F(P). Hence, F(P)

is bounded and has well-defined meet and join operations (∧ and ∨, respectively),

given as follows:

F ∧G = F ∩G,
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and where F ∨ G is the smallest face containing both F and G. It follows that F(P)

is a lattice, which we call the face lattice of P (see Section 2.2 of Ziegler, 1995, for a

more detailed overview of lattices in the context of polytopes).

Example 4. Considering the tetrahedron (as shown in Figure 2.2a), the corresponding

face lattice is presented in Figure 2.4. We have that each “tier” of the lattice corre-

sponds to faces of different dimensions; for example, the middle tier contains the edges

of P . We also have, for example, xyz ∧ xyw = xy and yz ∨ yw = yzw.

P

xzw yzwxywxyz

yz yw zwxwxzxy

zyx w

∅

Figure 2.4: The face lattice of the tetrahedron.

2.2.1 Polytopal Splits

For any collection of points X ∈ Rd, conv(X) defines an m-polytope (i.e., of dimension

m ≤ d). The set of vertices of the polytope given by conv(X) are called the extremal

vertices of X; that is, the extremal vertices are those which do not belong to the interior

of any other face of conv(X) or, equivalently, x is an extremal vertex if and only if

conv
(
X \ {x}

)
6= conv(X).

If Aφ(X) is a collection of affine splits with respect to an embedding φ, we say that

Aφ(X) is polytopal if φ(X) forms the set of vertices of a 3-polytope. The following

theorem provides a characterisation of polytopal collections of splits in terms of the

structure of Aφ(X):

Theorem 8. If S ⊆ Aφ(X) is a collection of affine splits such that, for each x ∈ X,

Sx = {x}
∣∣X \ {x} is in S , then S is a collection of polytopal splits.
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Proof. Let x ∈ X. As Sx is a split for all y ∈ X, φ(x) is affinely separable from

φ(X \ {x}) and, so, x must not be contained in conv
(
φ(X \ {x})

)
. Thus, x must be

extremal. As this holds for all x ∈ X, each φ(x) must be a vertex of conv
(
φ(X)

)
and

so S is a collection of polytopal splits.

Note that, in general, a collection of affine splits will not be polytopal. For example,

the expected number of vertices in the convex hull of n points uniformly distributed in

the 3-ball is (asymptotically) on the order of
√
n (Meilijson, 1990), and on the order of

log(n) when the points are chosen in R3 using the 3-dimensional normal distribution

(Har-Peled, 2011); thus, with increasing n, the likelihood of all n points being extremal

will be very low.

Example 5. Figure 2.5 shows two splits (realised as hyperplanes) of a polytope with

vertices in general position.

Figure 2.5: Two polytopal splits.

If all points in φ(X) are vertices of conv
(
φ(X)

)
then we say that φ(X) is convex

independent (or is in convex position, equivalently); that is, for all x ∈ X, we have

φ(x) 6∈ conv
(
φ(X \ {x})

)
. In particular, if φ(X) is in general position, this implies

that, for any five-point subset X ′ ⊆ X, conv(X ′) is not a tetrahedron containing one

of the points of X ′.

We say that Aφ(X) is a maximal collection of polytopal splits if it is polytopal and
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maximal as an affine collection of splits. In particular, this implies that φ(X) is in

general and convex position.

2.2.2 Simplices and Simplicial Complexes

The tetrahedron is an example of a simplex : A polytope which is the convex hull of

an affinely independent set of vertices. Polytopes may be built by stacking (i.e., gluing

together at a facet) simplices, provided the resultant set is convex; the triangular

bipyramid shown in Figure 2.6 is the result of stacking two tetrahedra. Polytopes

constructed in such a way are called stacked polytopes.

Figure 2.6: The triangular bipyramid, constructed by gluing two tetrahedra together

at a facet (shown in blue).

Stacked polytopes composed of tetrahedra are examples of simplicial complexes, which

are sets of simplices K satisfying

K1. Every face of a simplex in K is also in K , and

K2. The non-empty intersection of any two simplices T1, T2 ∈ K is a face of both T1

and T2.

Example 6. For instance, considering the triangular bipyramid in Figure 2.6, we

can form a simplicial complex Kbipy if we consider the collection including the two

tetrahedra and all of the external faces, edges, and vertices of the polytope, as well

as their mutual internal facet (in order to guarantee conditions K1 and K2); as such,

− Kbipy is a simplicial 3-complex, as the largest dimension of any simplex is three;

− Kbipy is a pure simplicial complex, as all of the maximal simplices (tetrahedra)

have the same dimension; and
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− The boundary of Kbipy—that is, the subcomplex consisting of all lower-dimensional

(i.e., d < 3) simplices only contained in one of the maximal simplices—is the tri-

angular bipyramid.

We will revisit simplicial complexes in Section 3.4, in the context of certain lattices

induced by maximal collections of splits.

2.2.3 Polytope Inscribability

Two polytopes P and Q are combinatorially equivalent if F(P) and F(Q) are isomor-

phic as lattices.

A polytope is inscribable if it is combinatorially equivalent to a polytope with all ver-

tices lying on the sphere S2. An example of a non-inscribable polytope (in fact, the

smallest non-inscribable polytope with respect to number of faces) is shown in Fig-

ure 2.7 (Grünbaum, 1963, see Figure 4.6, also). For a comprehensive modern overview

of polytope scribability (that is, inscribability and the dually related circumscribabil-

ity), the reader is referred to Chen and Padrol (2017). We will also consider inscriba-

bility, in terms of the graphs related to polytopes, in section 4.3.

Figure 2.7: The face-minimal uninscribable polytope (i.e., the non-inscribable polytope

with the least number of faces).

2.3 Spherical Splits

A collection of splits S is spherical if S ⊂ Aφ(X) for some embedding φ : X ↪→ R3

such that φ(X) ⊂ S2 (i.e., the φ(x) all lie on the unit sphere). Note that, as they are

particular cases of affine splits, the above results (in particular, Propositions 3 and 5)

hold for spherical splits.
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A classification of the polytopal collections of splits S = Aφ(X) for which we may

inscribe the points while retaining the structure of S would be useful. We call a

polytopal collection of splits Aφ(X) deformable to a spherical collection of splits if the

points φ(X) can be moved onto a sphere without changing any split S ∈ S . Then,

a polytopal collection of splits is spherical if it is deformable to a spherical collection

of splits. We conjecture the existence of a non-deformable polytopal sets of splits, but

lack a characterisation of such a case at present.

Conjecture 1. There exists a collection of maximal polytopal splits which is not de-

formable to a collection of spherical splits.

We believe that such an example may be constructed by demonstrating that there

exists a collection of Φ3(n−1) convex simple curves in the plane partitioning a set of n

points in general position which cannot be deformed into true circles without at least

one of the points necessarily crossing one of the curves. If true, this would imply that

there is an intrinsic geometric/combinatorial quality which more strongly categorises

spherical splits than the definition given.

If φ(X) is in general position, then it corresponds to a maximal collection of affine

splits by definition. Thus, the maximal collections of spherical splits are precisely the

collections of maximal affine splits where φ(X) is in general position on S2 (and, hence,

in general and convex position).

It is worth noting that a general collection of affine splits will not be spherical (there

will be non-extremal vertices), and that there exist affine split collections such that all

points of φ(X) are extremal, but Aφ(X) is not spherical—this happens exactly when

conv
(
φ(X)

)
is the boundary of a non-inscribable polytope. However, if Conjecture 1

is not true, then all maximal polytopal collections of splits are deformable to maximal

collections of spherical splits, which would provide a very strong relationship between

the polytopal and spherical splits, especially considering Proposition 4.

Example 7. The polytope of Example 5 is shown inscribed in the sphere in Figure 2.8,

with the same edge set. Two spherical splits are shown in Figure 2.8(a). In normalising

the vertex co-ordinates, the four vertices forming a “kite” on the right side have moved

such that the edge down the center, which originally corresponded to a polytopal 2-

split, is not a spherical 2-split (see Figure 2.8(b)). This does not necessarily mean that

the system is not deformable, however, it exemplifies that the process of embedding the

vertices affects the structure of the collection of splits. If the top vertex were moved
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along the sphere “clockwise” (in the plane), eventually the 2-split associated to the

edge would become realisable.

(a) (b)

Figure 2.8: (a) Two spherical splits on an inscribed polytope; and (b) side view of a

split showing a change in a 2-split due to the embedding.

A few polytopal splits of the face-minimal non-inscribable polytope and the same for

the polytope after normalising its vertex co-ordinates are shown in Figure 2.9. Note

that, after normalisation, it can be observed that the edges no longer correspond to

a convex polytope. Furthermore, before and after normalisation, there are 108 and

119 total affine splits on the vertices (as determined by the linear program detailed in

Chapter 5), respectively. This demonstrates that, as we would expect, the collection

of polytopal splits on this polytope is not deformable to the full collection of spherical

collection of splits on the associated inscribed polytope. However, neither are maximal,

as a consequence of the cubic (lower left) corner.
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(a) (b)

Figure 2.9: (a) Polytopal splits on the face-minimal non-inscribable polytope; and (b)

spherical splits on the normalised vertices of the polytope.

For a collection S of splits, we define the restriction of the collection to Y ⊆ X to

be

S |Y = {A ∩ Y
∣∣B ∩ Y : A|B ∈ S and A ∩ Y 6= ∅ 6= B ∩ Y }.

Note that we have |S |Y | < |S | for any Y ( X.

Proposition 9. Let X be a set of points and φ : X ↪→ S2 be an embedding in general

position, such that S = Aφ(X) is a maximal collection of spherical splits on X. If

A ⊆ X, then the restriction of S to A is a maximal collection of spherical splits.

Proof. Let A ⊆ X. As φ(X) is in general position, every subset of φ(X) must also be.

Thus, the restriction of φ(X) to φ(A) is in general position on the sphere, and induces

a maximal collection of affine splits by Proposition 5. Thus, Aφ(A), as a maximal

collection of affine splits on a set of points on the sphere, is a maximal collection of

spherical splits on φ(A) by definition. Furthermore, as no point was moved, each split in

Aφ(A) must be the restriction of at least one split in Aφ(X), and so Aφ(A) = Aφ(X)|A.

By the same logic, a corollary applying to affine splits (which we will make use of in

the next chapter) immediately follows:

22



Corollary 10. Let X be a set of points and φ : X ↪→ R3 be an embedding in general

position, such that S = Aφ(X) is a maximal collection of affine splits on X. If A ⊆ X,

then the restriction of S to A is also a maximal collection of affine splits.
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Chapter 3

Oriented Matroids and Topes

An oriented matroid may be defined in a number of equivalent ways. Here, we use

the covector and tope axiomatisations, as topes naturally correspond to open cells in

arrangements of hyperplanes (or pseudospheres). In this section, the definitions follow

those of Björner, Vergnas, Sturmfels, White, and Ziegler (1999) and Richter-Gebert

and Ziegler (1997).

3.1 Sign Vectors and Covectors

A sign vector is simply a vector with entries in {+,−, 0}.

The concept of a sign vector generalises the idea of a partition of a set X. If |X| = n

and [n] = (1, 2, · · · , n) is an ordering of the elements xi of X, then a sign vector C

is a vector of length n such that the ith entry Cxi corresponds to xi, where + entries

correspond to points on the positive side of the partition, − to those on the negative

side, and 0 to those lying on the separation (which we consider to be a hyperplane, in

our context).

The entry of C associated with an element x ∈ X is denoted by Cx. The zero set of a

sign vector C is the set z(C) = {x ∈ X : Cx = 0} ⊆ X. The zero vector 0 is simply

the sign vector with all zero entries. Similarly, we define C+ = {x ∈ X : Cx = +} and

C− = {x ∈ X : Cx = −}.

For sign vectors C,D ∈ {+,−, 0}X , the composition C ◦D is defined (co-ordinate wise)
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by:

(C ◦D)x =

Cx if Cx 6= 0,

Dx otherwise.

Furthermore, we define:

−Cx =


− if Cx = +,

+ if Cx = −,

0 if Cx = 0.

Thus, if C ∈ L, −C is the covector satisfying (−C)x = −Cx for all x ∈ X. Furthermore,

for a collection of covectors C ⊆ L, −C is the collection {−C : C ∈ C}.

Finally, for C,D ∈ {+,−, 0}X , the separation s(C,D) is defined as

s(C,D) = {x ∈ X : Cx = −Dx 6= 0}.

A set of sign vectors L ⊆ {+,−, 0}X is the set of covectors of an oriented matroid if

and only if it satisfies the following covector axioms (Björner et al., 1999, Definition

4.1.1):

C1. 0 ∈ L;

C2. C ∈ L implies −C ∈ L (equivalently, L = −L);

C3. C,D ∈ L implies C ◦D ∈ L; and

C4. if C,D ∈ L and x ∈ s(C,D), then there exists E ∈ L such that Ex = 0 and

Ey = (C ◦D)y = (D ◦ C)y for all y 6∈ s(C,D).

An oriented matroid M is fully determined by a set of covectors satisfying the above

axioms, and so we may denote M by (X,L). We call X the ground set of M. An

oriented matroid M is loop-free if, for all x ∈ X, there exists C ∈ L such that

Cx 6= 0. Furthermore, M is called acyclic if there is a C ∈ L such that Cx = + for all

x ∈ X.

The cocircuits of L are the covectors with minimal non-zero entries (or minimal sup-

port), and the rank of an oriented matroid is |z(C)| + 1 for any cocircuit C; that is,

one more than the number of zeros in any cocircuit.

By the Topological Representation Theorem of Folkman and Lawrence (Björner et al.,

1999, Theorem 1.4.1), every rank d + 1 oriented matroid M can be represented as
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an arrangement of oriented pseudospheres (of dimension d−1) in Sd (or, equivalently,

M describes a cell decomposition of the d-sphere). Hence, we see a clear and desir-

able relationship between polytopal/spherical collections of splits and rank 4 oriented

matroids.

3.2 Topes

The Folkman–Lawrence topological representation implies that every rank d + 1 ori-

ented matroid induces a cell decomposition of Sd, which naturally extends to a cell

decomposition of Rd; that is, by considering the extension of the (d−1)-dimensional

(pseudo)spheres to (d−1)-dimensional (pseudo-)hyperplanes. In such a way, every rank

d + 1 oriented matroid corresponds to a hyperplane (or pseudo-hyperplane) arrange-

ment in Rd. The maximal covectors of an oriented matroid (which, as we will see

shortly, also fully determine the oriented matroid) correspond precisely to the cells cut

by the associated arrangement.

Uniformity of an oriented matroid, in a general sense, indicates that the hyperplanes

of the corresponding arrangement are in general position, where an arrangement H in

Rd is in general position if (Stanley, 2006):

{H1, · · · , Hp} ⊂ H, p ≤ d⇒ dim(H1 ∩ · · · ∩Hp) = d− p,

{H1, · · · , Hp} ⊂ H, p > d⇒ H1 ∩ · · · ∩Hp = ∅.

More precisely, an oriented matroid of rank d on X is uniform if all of its cocircuits

have exactly d−1 zero entries.

Let X be an (implicitly ordered) set and T ⊆ {+,−, 0}X . Then, T is the set of

maximal covectors (or topes) of a uniform oriented matroid M with ground set X if

and only if it satisfies the following three axioms (from Björner et al., 1999, attributed

as “Lawrence’s axioms”, Lawrence, 1983):

T1. T 6= ∅ and T 6= 0;

T2. T = −T ; and

T3. if T ∈ {+,−, 0}X , T 6= 0, satisfies T+ ⊆ S+ and T− ⊆ S− for some S ∈ T , then

either there is a tope S ∈ T such that T ◦S ∈ T and T ◦ (−S) /∈ T , or T ◦U ∈ T
for all U ∈ {+,−}X .
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Then, T uniquely determines the covectors of a uniform oriented matroid M (and,

hence, the oriented matroid M) through the construction (see Section 3.8 of Björner

et al., 1999):

L = {C ∈ {+,−, 0}X : C ◦ T ⊆ T }. (†)

Considering that topes must satisfy the covector axiom C3, it follows that all topes

T ∈ T have the same support and, thus, the same zero set z(T ) := E0. We call E0

the set of loops of M. Two elements x, y ∈ X \ E0 are called parallel if the following

condition holds:

Cx = 0⇔ Cy = 0 for all C ∈ L.

If an oriented matroid does not have loops or distinct parallel elements, then it is called

simple.

Lemma 11. If an oriented matroid M is acyclic, then it is simple.

Proof. By covector axiom C2, the topes ofM have identical support X \E0; therefore,

in an acyclic oriented matroid, as

z((+,+, · · · ,+)) = ∅,

all topes have full support and E0 = ∅, and so M is loop-free and has no parallel

elements. Thus, an acyclic orented matroid is simple.

We see that topes and covectors are, in a sense, interchangeable: Given a collection

L of covectors, the collection of topes T may be identified simply as the collection

of maximal covectors (i.e., those with maximal support); on the other hand, given a

collection of topes T , we may obtain the corresponding collection of covectors L using

the equation above (†).

3.3 Vapnik–Chervonenkis Dimension and Spherical

Splits

The Vapnik–Chervonenkis (VC)-dimension, as introduced by Chervonenkis and Vapnik

(1971), of a pair (X,R), where R ⊆ 2X , is the maximum cardinality of a set Y ⊆ X

such that R|Y = 2Y ; in which case, we can say that Y is shattered by R. We denote

the VC-dimension of the pair (X,R) by dimV C .
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Example 8. For a simple example, let X = {a, b, c}, Y1 = {a, b}, Y2 = {a, c}, and

R = {{a, b}, {b, c}, {a}, {c}}. Then, it follows that

R|Y1 = {{a, b}, {b}, {a}, ∅} and R|Y2 = {{a}, {c}},

and, so, Y1 is shattered by R (as R|Y1 = 2Y1), but Y2 is not.

Furthermore, it can be seen that R will not be able to shatter X and, thus, the VC-

dimension of (X,R) is 2.

The VC-dimension, in its original context, measures the capacity of a statistical clas-

sifier; that is, the ability the classifier has to capture the complexity of the space

it is imposed upon. In the combinatorial context (which aligns more with ours),

the VC-dimension measures the ability of a family of sets to separate finite sets of

points (Adams and Nobel, 2012). A VC-dimension of 4, then, implies that the family

R has the capacity to separate sets of four points of X. An important consequence

of the VC-dimension in machine learning is that a space of sets F in Rd is finitely

learnable if and only if there is a finite bound on the cardinality of a subset of Rd

which may be shattered by F (Natarajan, 1989, Theorem 7).

In order to define the VC-dimension of a collection of splits, we must ensure that we

have a pair (X,RS ) which matches the required structure. To that end, we define the

VC-dimension of a collection of splits S to be the VC-dimension of the range space

(X,RS ), where RS = {A : A|B ∈ S } ∪ {X, ∅}. In this way, RS ⊂ 2X preserves the

information of S , and we can calculate the VC-dimension associated with a collection

of splits.

Proposition 12. Let S be an affine collection of splits on X. The pair (X,RS ) has

VC-dimension less than or equal to 4, with equality when S is maximal.

Proof. We will first show that if Y ⊂ X is shattered by RS , then |Y | < 5.

First, suppose that S is a maximal collection of affine splits. Let Y ⊆ X, such

that |Y | = 5. Consider the restriction S |Y : As S is a maximal collection of affine

splits on X, S |Y corresponds exactly to a maximal collection of affine splits on Y

by Corollary 10 and, so, we have that
∣∣S |Y ∣∣ = Φ3(4)−1 = 14 by Proposition 5. As

each split corresponds to two subsets A and B in RS , this means that the maximal

number of subsets cut by S |Y (in addition to X and ∅) is

2
∣∣S |Y ∣∣+ 2 ≤ 30 < 32 =

∣∣2Y ∣∣.
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As the two sets have different cardinalities, they cannot be equal and, so, Y is not

shattered by RS and the VC-dimension of (X,RS ) must be less than or equal to 4.

Let Z ⊆ X, such that |Z| = 4 and suppose S = Aφ(X) such that φ(X) is in general

position. As S is maximal, no four points in φ(X)—and, hence, φ(Z)—are coplanar,

by definition. Thus, if A is any non-empty proper subset of Z, then φ(A) cannot

separate φ(Z\A), and there exists a separating hyperplaneH such thatH+∩φ(Z)
∣∣H−∩

φ(Z) is an affine split of Z corresponding to A
∣∣Z \ A.

As this holds for all subsets of Z, it is shattered by RS and, thus, the VC-dimension

of (X,RS ) is 4.

We are now at a point to establish an important connection between maximal collec-

tions of affine splits and oriented matroids, due to a fundamental correspondence given

by Gärtner and Welzl in their substantial development of the Vapnik–Chervonenkis

dimension in the context of oriented matroids (Gärtner and Welzl, 1994). In this way,

every maximal collection of splits S corresponds to an oriented matroid MS .

Given a collection of splits S , we define

T = {T : Ta = + for a ∈ A, Tb = − for b ∈ B, for all A|B ∈ S } ∪ {T+,−T+},

where T+ = (+,+, · · · ,+) has length |X|. Note that, as A|B = B|A, we have, for all

T ∈ T , that −T ∈ T as well.

Theorem 13. Let S = Aφ(X) be a maximal collection of affine splits on X and let

T be defined as above. Then, T corresponds to the set of topes of a unique, acyclic,

and simple rank 4 uniform oriented matroid M with ground set X.

Proof. By Proposition 5, a maximal collection of affine splits S on X has cardinality

|S | = Φ3(|X|−1)−1. So, we have

|T | = 2|S |+ 2 = 2
(
Φ3(|X|−1)−1

)
+ 2 = 2

(
Φ3(|X|−1)

)
.

We also have that T = −T , and dimV C |T | = dimV C |S | = 4, by Proposition 12.

Then, by (Gärtner and Welzl, 1994, Theorem 50), T is naturally isomorphic to the set

of topes of a uniform oriented matroid M of rank 4 with X as ground set.
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By definition, (+,+, · · · ,+) ∈ T and, so, M is acyclic. Therefore, by Lemma 11,M
is simple.

Finally, suppose there exists another acyclic and loop-free rank 4 oriented matroidM′

on X, such that the topes T ′ of M′ satisfy T ⊆ T ′. Then, we have |T | ≤ |T ′|. In

analogy to Proposition 5, however, the number of topes is bounded by 2Φ3(|X|−1) and,

so, |T | = |T ′|.

Hence, as T ⊆ T ′, we have T = T ′ (up to reorientation), and it follows thatM′ =M.

So, we may unambiguously refer to M as the uniform oriented matroid MS with

ground set X corresponding to S .

3.4 The Big and Affine Face Lattices

For each partially ordered set (or poset) P with a unique global minimum 0 (i.e., there

exists no C ∈ P such that C < 0), we define the poset rank of an element C ∈ P by

the length of the interval [0, C] = {X ∈ P : 0 ≤ X ≤ C}. The topes of an oriented

matroidM are the maximal rank elements of a lattice associated toM, which we will

discuss in this section.

This lattice emerges from adjoining the set of covectors L with a global maximum 1̂

and endowing the resultant set with the (co-ordinate wise) partial order ≤ defined by

0 < +, 0 < −, and where + and − are incomparable; it is called the big face lattice

Fbig(L).

The join of two covectors C,D ∈ L in Fbig(L) is defined by

C ∨D =

C ◦D = D ◦ C if s(C,D) = ∅,

1̂ otherwise.

For any tope T ∈ T , no covector C ∈ L satisfies T ≤ C ≤ 1̂ (in which case, we say that

1̂ covers T ), and so the topes are, as mentioned above, the maximal rank elements, or

coatoms, of Fbig(L). Furthermore, the atoms of Fbig(L) are the elements which cover

0; these are precisely the cocircuits (i.e., the minimal rank elements) in L.

Example 9. Consider the following set of covectors on a two-point set (it is not difficult
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to verify that it satisfies the covector axioms):

L = {(+,+), (+,−), (−,+), (−,−), (+, 0), (0,+), (−, 0), (0,−), (0, 0)}.

Then, we have 0 < (0,+) < (+,+) and, so, the poset rank of (+,+) is 1. However,

(+,+) and (−, 0) are incomparable. The join of (+, 0) and (0,+) is (+,+) and (+, 0)∨
(0,−) = (+,−), but (+, 0) ∨ (−, 0) = 1̂.

Furthermore, (+,+) is a coatom (and, hence, a tope) and (+, 0) is an atom (and, hence,

a cocircuit).

If we have an oriented matroid (X,L) and y ∈ X is an element which is not a loop, we

call the triple (X,L, y) an affine oriented matroid. For such an affine oriented matroid

(X,L, y), we define:

L+
y = {C ∈ L : y ∈ C+}.

By adjoining L+
y with 1̂ and the induced partial order from Fbig(L), we obtain the

affine face lattice L̂+
y .

In the context of polytopal and spherical splits, consider the affine oriented matroid

(X,L, p), where p ∈ X and the split p|X \ {p} corresponds to the positive tope

(+,+, · · · ,+) (which we may assume without loss of generality, by reorientation).

Then, L̂+
p is equivalent to the lattice structure of S (in that each split S ∈ S is

equivalent to a coatom of L̂+
p ), as the splits S ∈ S , by choice of orientation, satisfy

p ∈ H+ for any H ∈ HS.

Note that, as all points of φ(X) are extremal, any p ∈ X will give the same result with

an appropriate reorientation of the planes in HS and, so, without loss of generality, we

may simply denote the affine face lattice corresponding to S as FS = L̂+ (i.e., L̂+ is

equivalent—up to reorientation—to L̂+
p , for any p ∈ X).

Given a partially ordered set (P,≤), we define the order complex ∆ord(P ) as the sim-

plicial complex with the elements of P as vertices and the (finite) chains x1 < x2 <

· · · < xi, xi ∈ P , as the simplices (that is, the collection of simplices is generated by

the totally ordered chains in P ). Note that this situation is a bit more abstract than

the simplicial complex Kbipy presented in Example 6, as each element of P is a vertex

and any totally ordered subset of P is a simplex in the order complex. For a good

collection of lecture notes on poset topology—the first of which introduces the order

complex—the reader is referred to Wachs (2006).
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Example 10. Kbipy is the order complex of the poset shown in Figure 3.1, with x > y

if x is above y:

a

b c

d

e

Figure 3.1: The poset P such that ∆ord(P ) = Kbipy.

Note that there are two maximal chains (a < b < d < e and a < c < d < e) in the poset

shown in Figure 3.1, each with four totally ordered subsets of length 3, six of length 2,

and four of length 1. In addition, the two maximal simplices intersect in one chain of

length three (i.e., a < d < e; the blue vertices in the figure), which corresponds to the

face shown in blue in Figure 2.6. Furthermore, note that reversing the order will not

change the order complex of a poset: If x < y < z is a chain in a poset, then z < y < x

in the poset given by reversing the order (which we call the order dual).

We call a simplicial d-complex K shellable if it admits an ordering s1, s2, · · · , sn (which

we call a shelling) of the collection of its maximal simplices s, such that

sk ∩
( k−1⋃

i=1

si

)
is a non-empty pure simplicial (d−1)-complex K for all 2 ≤ k ≤ n; that is, considering

the addition of sk to the subcomplex Ki given by the (union of the) collection si, i < k,

sk is joined to Ki along a pure (d− 1)-subcomplex of its boundary. This definition of

a shelling is particular for simplicial complexes (Ziegler, 1995); for more general (e.g.,

non-pure) complexes, see the definition in, for example, Ziegler (1998).

Example 11. The simplicial complex Kbipy of Example 6 given by the triangular

bipyramid clearly has a shelling: T1 (a three-dimensional simplex) is glued to T2 at a

face (a 2-dimensional simplex), and so the ordering (T1, T2) is a shelling of Kbipy.

Finally, Björner et al., 1999, Theorem 4.5.7(i) gives us that, asM = (X,L) is a rank 4

uniform oriented matroid defined by a maximal collection of polytopal/spherical splits,

the order complex of the associated affine face lattice ∆ord(L̂+) is a shellable 3-ball;
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that is, the union of all simplices s ∈ ∆ord(L̂+) is homeomorphic to the unit ball in

R3.

Example 12. To demonstrate the level of complexity of such a shelling, consider the

order complex associated to the affine lattice L̂+
Tet given by the topes corresponding to

a maximal collection of polytopal splits on the tetrahedron. There are eight maximal

covectors in L̂+
Tet, each of which corresponds to a simplicial region in space, and so

covers at most four covectors (i.e., facets of the simplices) which, in turn, cover three

covectors (i.e., the edges bounding the facets) which, finally, cover two cocircuits (i.e.,

the corresponding vertices) each. Thus, we have an upper bound,

8× 4× 3× 2 = 192,

on the number of simplices in ∆ord(L̂+
Tet). Furthermore, the union of all such simplices

is homeomorphic to the 3-ball, by the above result.

For fixed p ∈ X, FS is isomorphic to L̂+
p through the mapping hp : FS → L̂+ defined

by

hp(S) = TS,

where TS is the tope of MS corresponding to S such that Tp = +, and hp is extended

to the non-maximal elements of the lattices by using the natural meet operations on

S and T , such that

hp(S1 ∧ S2) = hp(S1) ∧ hp(S2),

for all S1, S2 ∈ S . In brief, the essence here is that splits correspond to dual regions,

which we know are in one-to-one correspondence with the topes. The geometric situa-

tion of the regions corresponding to splits induces an adjacency property, which we use

to determine the lattice FS . In the same way, topes have a natural adjacency property

through the separation, and these properties coincide: S1 is adjacent to S2 in S if and

only if they differ by a single (polar) point; T1 is adjacent to T2 in T if and only if their

separation is a single element. In this way, the same lattices are induced by S and

T , and the splits correspond, in a one-to-one and onto fashion, to the affine subset of

the topes with a single fixed element p. Thus, the induced (geometric and covector)

lattices are equivalent. The mapping above indicates this (however imprecisely).

This gives another characterisation of S , as the set of coatoms of a lattice combinato-

rially equivalent to a shelling of the 3-ball. Whether every such shelling of the 3-ball

gives us a maximal collection of polytopal splits is a harder question.
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Generalising the upper bound in Example 12, we have the following result:

Proposition 14. If S is a maximal collection of polytopal splits, the number of sim-

plices in ∆ord(FS ) is bounded above by 24Φ3(|X|−1).

Proof. Using the same reasoning as in Example 12, as each region cut by an arrange-

ment corresponding to S must be simplicial, we have a maximum of 4 (faces) ×
3 (edges)× 2 (vertices) = 24 chains descending from each maximal element in FS , of

which there are Φ3(|X|−1).

3.5 Matroid Polytopes

Let M be an oriented matroid with ground set X and A ⊆ X, and define the set

C |A = {C|A : z(C) ⊆ A}; that is, C |A is the set of all covectors C ∈ L such that the

zero set of C is contained in A. We call M[A] := (A,C |A) the restriction of M to A.

Furthermore, we define the contraction M/A of M by A as

M/A = {C|X\A : C ∈ L and A ⊆ z(C)}.

A set F ⊆ X is a face of M if there exists a covector C ∈ L such that z(C) = F and

C+ = X \ F . A face is an extreme point if the rank of M[F ] is 1.

If {x} is an extreme point for all x ∈ X, then M is called a matroid polytope.

Proposition 15. The uniform oriented matroid M associated with a maximal collec-

tion of polytopal splits is a matroid polytope.

Proof. Let x ∈ X. As each split Sx = x
∣∣X \ {x} is a polytopal split, there exists a

tope Tx = {−,−, · · · ,+, · · · ,−} ∈ T such that T+
x = x. As −Tx ∈ T also, we have

−T+
x = X \ {x}.

As both −Tx and T+ are in T , and asM is acyclic, by covector axiom C4 there exists

a covector Cx ∈ M such that C0
x = x, and so {x} is a face of M. Now, to see that

M[{x}] has rank 1, observe that C |x := {C|x : z(C) ⊆ x}, and so there must only be

one element, Cx, in C |x. Thus, M[{x}] must have rank 1.

As x was chosen arbitrarily, M[{x}] has rank 1 for all x ∈ X, and so M is a matroid

polytope.
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Furthermore, as M is uniform, it is a uniform matroid polytope.

The following result (Björner et al., 1999, Proposition 9.1.2(b)) gives us a concrete

means to calculate the face lattice of a given matroid polytope, which will prove to be

useful later.

Proposition 16. Let M be a uniform matroid polytope on ground set X. A subset

F ( X is a face of M if and only if M/F is acyclic.

As a matroid polytope of rank 4, the set of faces of a matroid polytope M, which

we will call the polytope face lattice L̂P , is the face lattice of a linear-piecewise cell

decomposition of S2; furthermore, as M is uniform, the polytope face lattice L̂P is a

simplicial (or triangulated) sphere (Björner et al., 1999, Section 9.1).

We define an m-weak configuration of points and pseudocircles (or m-weak PPC con-

figuration) on a finite point set X to be the pair P = (P,L), where P is a point

set (px)x∈X ∈ S2 and L is a set of simple closed curves in S2, satisfying the following

conditions:

PPC1 For each l ∈ L, there exist at least three points in P lying on l;

PPC2 For any three points px1 , px2 , px3 in P , there exists a unique curve in lx1,x2,x3

that contains all of them; and

PPC3 Each pair of distinct curves in L that shares at least m points in P intersects

(transversally) at most twice.

The main theorem in Miyata (2018, Theorem 4.1), loosely implies that, for every rank

4 uniform oriented matroid M, there exists a 2-weak PPC configuration realizing M,

in which every curve passes through exactly three points (in which case, we say the

PPC is in general position). The corollary below follows, as a result:

Corollary 17. The uniform matroid polytope M associated with a maximal collection

of polytopal splits is representable as a 2-weak PPC configuration.

Example 13. An example of a 2-weak PPC on four points in the plane is shown in

Figure 3.2. Note that each pair of curves intersects at two points (and, thus, intersects

at most twice transversally).

Finally, although we have not delved very deeply, there is a well-deserved concluding
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Figure 3.2: A 2-weak configuration of points and pseudocircles (PPC) on four points.

remark (Richter-Gebert and Ziegler, 1997): Matroid polytopes provide an invaluable

lens through which we may investigate the theory of convex polytopes. In particular,

they provide precise combinatorial representations of convex polytopes, which the PL-

sphere model lacks. Although there are some shortcomings in the dual theory of

matroid polytope face lattices (e.g., the order dual of the face lattice of a matroid

polytope is not, in general, the face lattice of a matroid polytope), applying the dual

theory of oriented matroids to matroid polytopes has allowed for the consideration of

non-polytopal spheres in the investigation of the realisability properties of polytopes,

providing what Richter-Gebert and Ziegler called “perhaps the most powerful single

tool ever developed for polytope theory.”

3.6 Realisability

Although the realisability of an oriented matroidM can be considered in many different

ways, a good definition (Richter-Gebert and Ziegler, 1997) is that an oriented matroid

M of rank d + 1 is realisable if there exists a vector configuration X such that M =

(X,LX), where LX is the collection {CX(y) : y ∈ Rd} generated by the function

CX(y) = (sign(yTx1), · · · , sign(yTxn)).

A realisable rank d oriented matroid M can be identified by a chirotope χ : Xd →
{−, 0,+} (0 is not in the image of χ if M is uniform), such that the realisation φ :

X → Rd−1 satisfies

χ(x1, x2, x3, · · · , xd) = signdet
(
ψ(x1), ψ(x2), ψ(x3), · · · , ψ(xn)

)
,

where ψ(x) =
(
ψ(x)
1

)
; that is, the vector obtained by appending a 1 to ψ(x) (Björner

et al., 1999).
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Furthermore, even if we do not fully know the structure of χ, with partial informa-

tion of χ—the orientations of the simplices, which may be generated from a simpli-

cial complex—we may obtain the ψ(xi) using non-linear optimisation methods (see

Firsching, 2015). With the additional constraint that each ψ(xi) is a unit vector, we

will obtain an inscribed set of points ψ(X) ⊂ Sd−2. This provides us with a potential

method for developing point–split collections starting from more abstract data.

In this thesis, given a collection of affine splits S , we obtained an oriented matroidMS

through an a priori existing geometric structure: An arrangement of real hyperplanes.

Thus, we know that M is realisable when it is obtained from a collection of affine

splits:

Proposition 18. The oriented matroid MS induced by a maximal affine collection of

splits S is realisable.

Proof. We know that S is in bijective correspondence with a representative collection

of Φ3(|X|−1) hyperplanes HS , and so may be represented as a hyperplane arrangement

in R3.

As every hyperplane arrangement H gives rise to an oriented matroid (for example,

using the construction in Section 6.1.3 of Richter-Gebert and Ziegler, 1997, where, using

the fact that each hyperplane H ∈ H naturally divides R3 into positive and negative

halfspaces, the intersection of H and S2 induces a cell decomposition on S2, in which

each cell corresponds to a sign vector in {0,+,−}|H|, where the ith entry indicates the

position of the cell with respect to the circle cut by the ith hyperplane Hi; the collection

of all such sign vectors forms the set of covectors L of the associated oriented matroid),

it follows that each arrangement of hyperplanes is in bijective correspondence with a

realisable oriented matroid (up to reorientation).

Thus, MS is realisable.

Summarising the results of this chapter, the following theorem follows from and strength-

ens Theorem 13 and Proposition 18, along with the discussions of Gärtner and Welzl

(1994) and Björner et al. (1999):

Theorem 19. Let X be a set and φ : X ↪→ R3 be an embedding. Then, Aφ(X) is a

maximal collection of affine splits if and only if MS (as defined above) is a unique,
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acyclic, realisable, rank 4 uniform oriented matroid with ground set X.

Realisability of an oriented matroid is an inherently difficult property to test for—

determining the realisability of an oriented matroid has been determined to be poly-

nomially equivalent to the existential theory of the reals (see Fukuda, Miyata, and

Moriyama, 2012) and, thus, NP-hard—and our result relies upon the knowledge that

realisable oriented matroids are in correspondence with real hyperplane arrangements.

This is by no means trivial, and this topic could be easily expanded on in order to

acquire further technical results.
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Chapter 4

Graphs Induced by Collections of

Splits

As we have found a natural relationship between spherical collections of splits and poly-

topes, a combinatorial aspect worth investigation is gained through Steinitz’s seminal

correspondence between polytopes and planar graphs (see Theorem 21, below). To this

end, we define a graph structure related to polytopal split collections and explore the

related properties. We assume some, but not much, prior knowledge of graph theory;

for a thorough introductory text, the reader is referred to Bollobás (2002).

4.1 Graphs and Split Systems

Let S be a collection of splits on X. We define the graph GS associated with S to

be the graph with vertex set X and edge set ES = {{a, b} : {a, b}|X \ {a, b} ∈ S };
that is, GS = (X,ES ).

Lemma 20. Let S be a maximal collection of polytopal splits on X with respect to an

embedding φ. Then, {a, b}
∣∣X \ {a, b} ∈ S if and only if conv

(
{φ(a), φ(b)}

)
is an edge

of conv
(
φ(X)

)
.

Proof. Suppose that S = {a, b}
∣∣X \ {a, b} ∈ S . Note that φ(X) is a set of extremal

points (as the φ(X) is in general and convex position) and, so, conv
(
φ(X)

)
is a polytope

with set of vertices being all points of φ(X). Furthermore, as {a, b} and X \ {a, b} are

separated by a hyperplane in the embedding, conv
(
φ({a, b})

)∩conv
(
φ(X\{a, b})

)
= ∅.
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Let ab denote conv({φ(a), φ(b)}), and ` be the line through φ(a) and φ(b). First,

we ensure that ` does not intersect conv
(
φ(X \ {a, b})

)
. Suppose there exists c ∈

` ∩ conv
(
φ(X \ {a, b})

)
. As c ∈ conv

(
φ(X \ {a, b})

)
, we have that either φ(a) ∈

conv
(
φ(X \ {b})

)
or φ(b) ∈ conv

(
φ(X \ {a})

)
, which contradicts that each x ∈ φ(X)

is extremal. Thus, no such c exists, and so ` and conv
(
φ(X \ {a, b})

)
are disjoint.

Now, define P` to be a plane with normal `, and let π be the projection onto P`. Then,

as both φ(a) and φ(b) lie on `, π(φ(a)) = π(φ(b)) is a point p ∈ P`. Furthermore,

π
(
conv(φ(X \ {a, b}))

)
is a convex polygon C ⊂ P`.

As π−1(p) = `, and as ` ∩ conv
(
φ(X \ {a, b}

)
= ∅, we conclude that p and C are

also disjoint. Thus, by the hyperplane separation theorem (see, e.g., Rockafellar, 1970,

Theorem 11.1), there exists a line L ⊂ P` such that C is properly contained in an

open half-plane cut by L, and (without loss of generality) which passes through p,

from which it follows that L does not intersect C. Affinely extending L by ` yields

a hyperplane Hab which contains φ(a), φ(b), and ab, but does not intersect any other

point of conv
(
φ(X)

)
.

As conv
(
φ(X)

)
is supported by Hab at φ({a, b}), ab is, by definition, an edge of

conv
(
φ(X)

)
.

For the converse, suppose that ab is an edge of conv
(
φ(X)

)
. Then, there exists a

hyperplane passing through φ(a) and φ(b) which does not intersect the interior of

conv
(
φ(X)

)
. Hence, φ(a) and φ(b) can be separated from φ

(
X\{a, b}

)
and so {a, b}

∣∣X\
{a, b} ∈ Aφ(X).

We call a graph G planar if it can be drawn in the plane such that no two edges

of G intersect. We can characterise planarity of a graph in terms of the forbidden

minors K5 (the complete graph on five vertices) and K3,3 (the “utility graph”) shown

in Figure 4.1; that is, a planar graph contains no subgraph which is a subdivision of

either minor.

The seminal results that a planar graph has forbidden subdivisions and minors were,

respectively, established by Kuratowski (1930) and Wagner (1937).

A planar graph G is a maximal planar graph if no edge can be added to G without

violating the planarity of G; equivalently, each face of G is bounded by three edges

(and, thus, is triangular). As such, we call a maximal planar graph triangulated.
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(a) (b)

Figure 4.1: The forbidden minors for planarity (a) K5 and (b) K3,3.

A graph G = (V,E) is connected if there exists a path between every pair of vertices

u, v ∈ V ; that is, if there is a sequence of edges u, a1, a1a2, · · · an−1an, an, v in E × E.

Furthermore, we call the graph k-vertex-connected (or, simply, k-connected) if it has

more than k vertices and remains connected when any set of less than k vertices are

removed.

Example 14. Both K5 and K3,3 are connected, where K5 is 4-connected and K3,3 is

3-connected. The graph given by the edges and vertices (which we call the 1-skeleton)

of the tetrahedron, as shown in Figure 4.2, is also 3-connected (the tetrahedron was

portrayed as a polytope in Figure 2.2a).

Figure 4.2: The 1-skeleton of the tetrahedron.

Steinitz’s characterisation of the boundary complexes (i.e., 1-skeletons) of 3-polytopes

as the 3-connected planar graphs (Steinitz, 1922), in slightly more modern terms, is as

follows:

Theorem 21 (Steinitz’s Theorem). A graph G is realisable as a 3-polytope if and only

if G is planar and 3-connected.

The result was published, in full, in conjunction with Rademascher (Steinitz and Rade-

mascher, 1934) in 1934, after which the result seemingly fell into obscurity until 1962,

when the result was used by Grünbaum and Motzkin (1962) to demonstrate that there
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exist polyhedral graphs in which there does not exist a simple path through all the

vertices, in response to a problem posed by Balinski the prior year (Balinski, 1961).

This is hardly exceptional in mathematics, but, for what Klee had dubbed the “second

landmark” (after Euler’s theorem) in the theory of convex polytopes (Klee, 1966), it

is not unremarkable that such a seminal result should lie fallow for so long. For more

detail on the connection between planar graphs and 3-polytopes, see Grünbaum, 2003,

Chapter 13.

Proposition 22. If S = Aφ(X) is a maximal polytopal collection of splits, then GS

is maximal planar and 3-connected.

Proof. If S is a collection of polytopal splits, this implies that φ(X) is the set of

vertices of P = conv
(
φ(X)

)
, and, as each S ∈ S2 is an edge of P by Lemma 20, the

graph GS must be the 1-skeleton of P .

By Steinitz’s Theorem, as GS is the 1-skeleton of a polytope in R3, it corresponds to

a unique (up to combinatorial equivalence) 3-connected planar graph.

Now, suppose that there exists a face F of P such that F is bounded by more than three

edges. However, this implies that four points lie on a plane—namely, the hyperplane

supporting P at F—and, thus, φ(X) is not in general position. This contradicts the

maximality of S , and F must be triangular.

Therefore, GS is triangulated and, hence, is maximal planar.

The following result follows immediately from Proposition 22, as subgraphs of planar

graphs are, again, planar (considering forbidden minors):

Corollary 23. If S ( Aφ(X) with respect to an embedding φ such that φ(X) is in

general and convex position, then GS is planar.

Note that, depending on the structure of S2, GS may not even be connected!

As each maximal planar graph on n vertices has 3n − 6 edges (see Diestel, 2005,

Corollary 4.2.10), we must have that |S2| = 3|X| − 6 for a maximal collection of

polytopal or spherical splits. Accordingly, the numbers of splits |S max| and 2-splits

|S max
2 | of a maximal planar graph are given in Table 4.1.
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Table 4.1: Numbers of maximal collections of splits and edges of the corresponding

graphs for maximal polytopal split collections on X.

|X| |S max| |S max
2 |

2 1 0

3 3 3

4 7 6

5 14 9

6 25 12

7 41 15

8 63 18

9 92 21

10 129 24

11 177 27

12 231 30

13 298 33

14 377 36

15 469 39

16 575 42

17 696 45

18 833 48

19 987 51

20 1,159 54
...

...
...

40 9,918 114

41 10,699 117
...

...
...

85 98,854 249

86 102,425 252
...

...
...

182 988,441 540

183 1,004,913 543
...

...
...
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4.2 Examples of Graphs and Polytopes Induced by

Collections of Splits

In this section, we provide some basic examples of maximal collections of splits with

their associated graphs and polytopes. For each of |X| = 4 and 5, there is only one

maximal planar graph, and so the following two examples are comprehensive for those

cases.

Example 15 (Four points). Let X = {a, b, c, d}. Then, we have that the collection of

all splits on X is given by

S = {abc|d, abd|c, acd|b, bcd|a, ab|cd, ac|bd, ad|bc}

and so

S2 = {ab|cd, ac|bd, bc|ad}.

Again, note that

|S | = 7 = Φ3(|X|−1)−1.

We have V (GS ) = X and, as each 2-split gives us two edges, we have

E(GS ) = {ab, ac, bc, cd, bd, ad}.

We can see, from Figure 4.3a, that GS is maximal planar. When GS is inscribed in

the sphere, the corresponding polytope is the tetrahedron, as shown in Figure 4.3b.

(b)

b c

a

d

(a)

Figure 4.3: (a) The 2-split graph GS for the maximal collection of splits on four

vertices; and (b) the corresponding polytope, the tetrahedron.
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Example 16 (Five points). Let X = {a, b, c, d, e}. The unique (up to combinatorial

isomorphism) maximal collection of polytopal splits on X is given by

S1 = {a|bcde, b|acde, c|abde, d|abce, e|abcd}, and

S2 = {ab|cde, ac|bde, ae|bcd, bc|ade, bd|ace, be|acd, cd|abe, ce|abd, de|abc}.

We have that S3 = −S2 and S4 = −S1 and so, by identifying these, we get:

|S | = |S1|+ |S2| = 14 = Φ3(|X|−1)−1.

Note that ad|bce is not included as a split; otherwise, we would have |S | > Φ3(|X|−1)−1

and |S | would exceed the cardinality of a maximal collection of affine splits.

So, we have E(GS ) = {ab, ac, ae, bc, bd, be, cd, ce, de}. We can see, from Figure 4.4a,

that GS is maximal planar. With the addition of the edge ad, we would have GS = K5,

the complete graph on five vertices (see Figure 4.5, below), which is non-planar. When

GS is inscribed in the sphere, the corresponding polytope is the triangular bipyramid,

as shown in Figure 4.4b.

(a) (b)

a c

b

e d

Figure 4.4: (a) The 2-split graph GS for the maximal collection of splits on five vertices;

and (b) the corresponding polytope, the triangular bipyramid.

4.3 Graph Inscribability

A graph is said to be inscribable if it is combinatorially equivalent to the 1-skeleton of

an inscribable polytope. Combinatoric conditions for inscribability have been a long-

standing topic of interest in graph theory and, although no firm necessary and sufficient

45



condition has been established as yet, many criteria for inscribability have been dis-

cerned (for a relatively comprehensive overview, the reader is referred to Dillencourt

and Smith, 1996). The vertex-minimal non-inscribable graph is K5, which is shown, in

R3, in Figure 4.5.

Figure 4.5: The vertex-minimal non-inscribable graph K5, shown here in R3.

A forbidden minor for inscribability (Grünbaum, 1963) is shown (in blue) in Figure 4.6

(this was used to discern the face-minimal non-inscribable polytope in Figure 2.7).

v

Figure 4.6: Replacing the vertex v in the tetrahedron with a forbidden subgraph to

form the 1-skeleton of the face-minimal uninscribable polytope.

Proposition 24. If S is a maximal collection of spherical splits, then GS is inscrib-

able.

Proof. As S is maximal, GS is maximal planar and, hence, a triangulation.

First, if GS is 4-connected, then it is inscribable by Theorem 3.3 of Dillencourt and

Smith (1996).
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As φ(X) is in convex position, the (stereographic) projection of φ(X) into the plane

yields no 4-cocircular set of points (i.e., no four points lie on any circle in the plane).

Hence, GS is Delaunay realisable; that is, realisable as a triangulation (or, more gen-

erally, a tesselation) where all vertices on the boundary of a common interior face

are cocircular, and no points lie on the interior of any such circumcircle. Note that

GS may not be a Delaunay triangulation but, instead, equivalent to one through a

sequence of “flips” (see, e.g., Cheung, 2009); hence, it is realisable as a Delaunay trian-

gulation (for an informative overview of the Delaunay triangulation and its dual, the

Voronoi diagram, the reader is referred to Aurenhammer, 1991).

By Lemma 2.2 of Dillencourt and Smith (1996), a planar graph G is Delaunay real-

isable if and only if the graph G′ obtained by stellating (that is, adding a vertex and

connecting it to all vertices on the boundary of the face) the unbounded face f of G is

inscribable. Consider the graph HS obtained by deleting v: HS is still triangulated,

as deleting a vertex of degree n in a triangulation yields an n-polygonal face, and so

deleting v leaves a triangle T . Thus, HS is also Delaunay realisable. By appropriate

(stereographic) rotation, we can consider T to be the unbounded face, and the graph

obtained by stellation of T is simply GS . Thus, as GS was obtained by stellating the

unbounded face T of the Delaunay realisable graph HS , GS is inscribable.

Therefore, as S is a maximal collection of spherical splits, GS is an inscribable graph.

An immediate result follows for non-maximal collections S :

Corollary 25. If S is non-maximal, but GS is 4-connected, then it is inscribable.

For example, the split collection on the octahedron is non-maximal (as it has multiple

sets of 4-coplanar vertices), but the octahedron is 4-connected and inscribable, as shown

in Figure 4.7.

We are faced with an interesting question: With an embedded set of points φ(X) and

consequent collection of splits S , when is it the case that GS is not inscribable? By

considering the range of conditions given by Dillencourt and Smith (1996), we can at

least discern that this implies that the graph GS must be non-Delaunay realisable

(along with any graph obtained by deleting a vertex of GS ), non-Hamiltonian (as

well as any graph obtained by removing any pair of adjacent vertices), and at most

3-connected, among other conditions. These conditions provide us with a loose idea of
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Figure 4.7: The octahedron inscribed in the sphere.

what is happening with the points; for example, the non-Delaunay property suggests

that φ(X) has a high level of coplanarity, as the deletion of any point will still induce

a non-Delaunay realisable graph. However, a more in-depth review of both the graph-

theoretic and geometric conditions is necessary to have any hope of characterising the

exact conditions in which an embedding induces a non-inscribable graph.

4.4 Contractions, Deletions, and Restrictions

The set of all vertices adjacent to a vertex a in a graph is called the neighbourhood

N(a) of a; that is, the neighbourhood is the set N(a) = {v ∈ V (G) \ {a} : there exists

e ∈ E(G) such that e = {v, a}}. Similarly, the neighbourhood of an edge {a, b} is

defined as the union of the neighbourhoods of the vertices a and b.

For an edge e = {a, b} ∈ E(G), we define the edge contraction of G with respect to e

to be the graph G�e obtained by removing the edge e, identifying the vertices a and b

as a single vertex a′, and connecting the neighbourhood of {a, b} to a′.

Furthermore, for a subgraph H ⊆ G, we define the contraction of G with respect to

H to be the graph G�H obtained by contracting all edges in H. It is clear to see that

an edge contraction is just a contraction of the subgraph {a, b}; i.e., G�e= G�{a,b}. A

subgraph contraction is shown in Figure 4.8.
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i. ii.

Figure 4.8: (i.) A maximal planar graph on eight vertices and (ii.) the result of

contracting each edge adjacent to two blue vertices.

We call a cycle F in a planar, 3-connected graph G a face-enclosing cycle if it forms a

face of a polytope with 1-skeleton G. Every face-enclosing cycle, thus, is a simple cycle

in G induced on the vertices of F .

Lemma 26. Let F be a face-enclosing cycle in a planar, 3-connected graph G. Then,

the graph G \ F obtained by deleting F from G (i.e., the subgraph of G induced on

V (G) \ V (F )) is connected.

Proof. By a main result of Tutte (1963) (or, in a slightly more modern light, Theorem

1 of Bruhn, 2004), a face-enclosing cycle, as a simple element of the cycle space of the

finite 3-connected graph G, is a peripheral cycle. However, peripheral cycles are exactly

those which are non-separating—that is to say, the subgraph G\F is connected—which

is exactly the property we require.

Proposition 27. If S is a maximal collection of polytopal or spherical splits and

A|B ∈ S , then GS [A] and GS [B]—that is, the subgraphs induced in GS by A and B,

respectively—are connected.

Proof. Let H be a plane corresponding to A|B, and denote by VH the vertices given

by H ∩ E(GS ), by EH the edges given by intersecting H with faces of GS , and let F

be the face bounded by EH (as EH will be a cycle, given that no face of GS is interior

to conv(φ(X))). Finally, let GF be the graph GF = (VH , EH).
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Now, consider the graph GA,F given by GS [V (A) ∪ VF ] (i.e., the graph induced on A

and the vertices of GF ), in which the subdivided edges link the vertices of A and H.

It follows that GA,F is planar and 3-connected and that the deletion of F in GA,F is

simply GS [A].

Then, as F is a face-enclosing cycle of GA,F and as GA,F \ GF = GS [A], Lemma 26

implies that GS [A] is connected. We may just as well have chosen B instead of A and,

so, the result holds for GS [B], as well.

Note that this result applies to polytopal and spherical splits alike, as the proof relies

primarily only on the convexity of the sets considered.

We arrive at a relatively nice characterisation of the pairs of subgraphs of GS which

are related to spherical splits:

Proposition 28. Let S be a maximal collection of spherical splits with associated

graph GS and S = A|B ∈ S . Then, the graphs GS �A and GS �B are planar, connected,

and inscribable.

Proof. Both of the graphs GS �A and GS �B are contracted from GS and, so, must be

planar: No new edges are generated and, thus, no new edge crossings can occur. As GS

is connected and the graph GS [A] is connected (by Proposition 27), GS �B must also

be connected, given that there exists at least one edge between A and B (otherwise,

GS would not be connected). The same reasoning follows for GS �A.

Finally, let φ be an embedding of V (GS ) into S2. Then, GS [A] is Delaunay realisable

as a subset of a Delaunay realisable graph and, so, the graph obtained by stellating

the unbounded face is inscribable.

To see that the vertices disconnected from B must form a face, suppose that F is

the face formed by deleting B. Then, F is a simple cycle on a collection of vertices

V (F ) = {ai} ⊆ A. Suppose that there exists a vertex ak in F such that ak is not

adjacent to any vertex of B in G. Without loss of generality, we can suppose that both

neighbours ak−1 and ak+1 of ak in F are adjacent to the vertices b1 and b2, respectively,

in B.

Now, if b1 = b2 = b, then ak−1ak+1b must be a triangle and so a1a2 is an edge,

contradicting that F is a simple cycle. So, suppose that b1 6= b2. Then, as ak is not

adjacent to any vertex in B, neither akak−1b1 or akak+1b2 are triangles, and so there
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exists a face in GS bounded by at least five vertices (see Figure 4.9). As this definitely

cannot be the case, it follows that each vertex in F must be adjacent to a vertex of B.

Thus, the graph GS �B is equivalent to the graph given by stellating F in GS [A], and

is hence inscribable. The symmetric argument gives the result for GS �A.

ak

b1 b2

ak−1 ak+1

Figure 4.9: Illustration of the argument in the proof of Proposition 28.

Finally, given a graph G, when can we say there must exist a collection of poly-

topal/spherical splits with corresponding graph G? Considering the following example,

we see that the problem lies in the embedding of the graph, not just the structure of

the graph.

Example 17. Consider the graph and the two embeddings on the sphere (brought to

the front side of the sphere) shown in Figure 4.10: For the same graph (Figure 4.10(a)),

we get a different collection of splits, depending on where the middle vertices are moved.

In Figures 4.10(b) and (c), the same exemplary hyperplane is shown in red. We see

that the induced split by the same hyperplane is different, indicating that the change

of embedding has altered the structure of the associated split.
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(a) (b) (c)

Figure 4.10: A graph and two different embeddings on the sphere showing different

induced splits.

We close this chapter with our second open question. We have discovered some nec-

essary conditions for the graph induced by a spherical split system to be inscribable,

but are still lacking sufficient conditions.

Question 1. What are the sufficient conditions for GS to correspond to a maximal

collection of polytopal or spherical splits?

It seems intuitive that the split structure must be related to an interplay between

the cycle space and embedding of a graph but, for graphs on n > 5 vertices, this

relationship is not trivial to deduce. However, it seems likely that we can generate

maximal collections, perhaps by exploiting Delaunay-type properties.

Overall, it remains unknown whether we can fully characterise collections of spherical

splits from the structure of a graph alone. Those splits which are not 1-, 2-, or 3-splits

are dependent not only on the structure of G, but how we embed it. Hence, there may,

unfortunately, be no good graph-theoretic characterisation of collections of spherical

splits. However, as we have seen, we can at least draw some conclusions about the

relationships between the structures S and GS .
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Chapter 5

Generation Methods

Finally, we combine our findings on affine, polytopal, and spherical splits, in order

to provide some methods for the calculation and/or visualisation of such collections,

depending on the data given.

5.1 Convex Optimisation

Our first method takes a collection of points in R3 as input and generates the corre-

sponding collection of separating hyperplanes and topes, using a linear programming

approach. This method was primarily used to generate images for illustrative purposes,

but provides a potential starting point for the development of more sophisticated split

generation software.

5.1.1 Derivation

Assume we have, as input, n points X = {xi} in R3 (i.e., we have an implicit embedding

of the xi). We detail a linear program to determine whether any bipartition A|B of X

is a split of the points.

If A and B are separable, then there exists a hyperplane H = H(v, k) such that

〈v, a〉 > k for all a ∈ A and 〈v, b〉 < k for all b ∈ B.

As the sets are finitely separable, we can reformulate these equations as

〈v, a〉 ≥ k + ε and 〈v, b〉 ≤ k − ε,
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for some sufficiently small ε ∈ R. Multiplying both sides of each equation by 1
ε
, we

obtain

〈v
ε
, a〉 ≥ k

ε
+ 1 and 〈v

ε
, b〉 ≤ k

ε
− 1,

where H(v
ε
, k
ε
) is simply another equivalent way of writing H, and so is equivalent to

H(v, k). Implementing this equivalence, multiplying the first inequality by −1, and

shifting k to the other side, we get

−〈v, a〉+ k ≤ −1 and 〈v, b〉 − k ≤ −1,

which is then condensed into the inequality of the linear program below.

Note that, as our objective is simply to determine the existence of a plane H, we set

the objective function to 0 ∈ R4 for the sake of simplicity.

Let A = {a1, · · · , an1} ⊂ R3 and B = {b1, · · · , bn2} ⊂ R3 form a bipartition of X (i.e.,

n1 + n2 = n and A ∩ B = ∅) and let h̃ = (h1, h2, h3, k)T ∈ R4 represent a potential

separating hyperplane H(v, k) of A and B. Setting

A =



−a1 1

· · · · · ·
−an1 1

b1 −1

· · · · · ·
bn2 −1


∈ Rn×4 and b =



−1

−1

· · ·
−1

· · ·
−1


∈ Rn,

where the ai and bi are row vectors, and maximising the inequality

Ah̃ ≤ b,

feasibility of the linear program is equivalent to the separability of A and B.

Thus, a brute-force check (however inefficient) of all possible bipartitions of X will

yield all the affinely separable bipartitions—that is, the affine splits—along with the

separating hyperplanes.

To implement this, we define the point matrix P ∈ Rn×4 by (assuming the xi are row
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vectors):

P =


x1 −1

x2 −1
...

...

xn −1

 ,

and, noting that it is not necessary in A for the ai to be clustered nor to be above the

bi, we may take a selection of the xi and multiply their corresponding rows by −1 to

create a bipartition of X. To do this, let T ∈ {−1, 1}n (i.e., T is a vector of length n

with entries in {−1, 1}) and multiply the ith row of P by Ti to obtain PT . In this way,

the linear program becomes testing the feasibility of

PT h̃ ≤ b, for all T ∈ {−1, 1}n,

with the output being a maximum of Φ3(n−1) hyperplanes H and their corresponding

{−1, 1}-vectors T . Note that each T corresponds exactly to a tope! In this way,

we can obtain the tope set T , which, in turn, determines the oriented matroid M
corresponding to the collection of splits on X.

5.1.2 Implementation and Results

The linear program was implemented using Python 3.7.2, where the linear program

was carried out with the linprog function of the scipy.optimize package with objective

function (0, 0, 0, 0), bounds (−∞,∞), and tolerance 10−7. The full tope collection (i.e.,

{−1, 1}N) was generated using a modified Gray code method (see, e.g., Doran, 2007).

All output hyperplanes were normalised (except for those with normal 0) to avoid

plotting issues.

In the worst case, we will have to perform 2n iterations to determine all hyperplanes;

however, we do have a stopping criteria—twice the maximal cardinality of S —and,

so, we may have better luck than that: Even for n = 15, we have that 2Φ3(n−1) is

approximately 3% of 2n. This suggests that better heuristics for the topes T may

dramatically increase the speed of the program. Furthermore, if the topes can be

determined a priori (perhaps by an appropriate distance-based clustering method),

the calculation will be much quicker.

With some preliminary testing, the program has proven to generate all topes consis-

tently: The last element tested was (−1,−1, · · · ,−1), which was always in T , and
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|T | = 2φ3(N − 1), which means that all potential topes were traversed and only those

corresponding to hyperplane separations were chosen. This means that the collection

of hyperplanes is incidentally doubled but, using the symmetry of T (due to the way

that the tope collection was generated), in plotting we only require the first half of the

collection of hyperplanes. Unfortunately, this also means that all 2n potential topes

must be tested, with subsequent computational costs. If we only need the hyperplanes,

we need only test the first half of the tope collection, halving the execution time.

The average time taken for the program to compute T and the hyperplanes for n points

is approximately on the order of 2n−7 seconds. Table 5.1 shows the time elapsed for the

program to generate all topes and hyperplanes for some (relatively low) values of n. All

times are the averages of three replicates. The program was carried out in Windows

10 64-bit on an AMD A9-9425 Dual-Core (3.1 GHz base) processor.

n 4 5 6 7 8 9 10 11 12 13

Time (s) 0.082 0.169 0.367 0.887 1.832 3.735 8.468 17.69 34.988 77.78

Table 5.1: Time taken (in seconds) for the linear program to calculate all hyperplanes

and splits on n randomly generated points on S2.

An arrangement of hyperplanes generated by the linear program for the vertices of the

regular tetrahedron are shown in Figure 5.1.
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Figure 5.1: Splits on the vertices (green points) of a regular tetrahedron inscribed in

the sphere, represented by a generated hyperplane arrangement.

The corresponding topes are (1, 1, 1, 1), (1, 1, 1,−1), (1, 1,−1, 1), (1, 1,−1,−1),

(1,−1, 1, 1), (1,−1, 1,−1), (1,−1,−1, 1), (1,−1,−1,−1), (−1, 1, 1, 1), (−1, 1, 1,−1),

(−1, 1,−1, 1), (−1, 1,−1,−1), (−1,−1, 1, 1), (−1,−1, 1,−1), (−1,−1,−1, 1), and

(−1,−1,−1,−1); the respective corresponding hyperplanes (given in the form H =

(h1, h2, h3, k)) are (0, 0, 0, 1), (−0.707,−1.225,−0.5, 0.5), (−0.707, 1.225,−0.5, 0.5),

(−1.414, 0,−1, 0), (1.414, 0,−0.5, 0.5), (0.707,−1.225,−1, 0), (0.707, 1.225,−1, 0),

and (0, 0,−1.5,−0.5).

Note that the vacuous region—corresponding to the tope (1, 1, 1, 1)— was not plotted

in Figure 5.1, as the corresponding hyperplane was (0, 0, 0, 1).

A hyperplane arrangement generated for six normally distributed points—thus, corre-

sponding to an affine collection of splits—is shown in Figure 5.2.
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Figure 5.2: An affine split collection represented as a hyperplane arrangement.

Note that, even with only six points, the corresponding system of hyperplanes becomes

very cluttered (as there are a total of 26 hyperplanes to plot!). This suggests that an

alternate means of visualisation is necessary.

Some hyperplane arrangements corresponding to randomly generated sets of four points

on the sphere given by the linear program are shown in Figure 5.3.
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(a) (b)

(c) (d)

Figure 5.3: Spherical split collections represented as hyperplane arrangements.

5.2 Face Lattice Generation

Our second method generates the polytope face lattice from a collection of topes,

using a result for matroid polytopes described in Section 3.5, where we showed that a

maximal collection of polytopal splits uniquely determines a rank 4 uniform matroid

polytope M, the face lattice of which is equivalent to a simplicial sphere. We also

have a concrete means for obtaining the face lattice of M, by means of finding which
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subsets A ( X lead to acyclic contractions.

5.2.1 Derivation

Given a collection of splits S = {Ai|Bi} on a finite set X, we may immediately

associate a collection of topes T ⊂ {+,−, 0}X to S (with some ordering on X). From

this collection of topes, we then, can generate the collection of covectors L by the brute-

force method at the end of Section 3.2. This is extremely unwieldy: Even though we

only need to generate covectors with zero sets of cardinalities 1, 2, and 3, we still need

to test all

2Φ3(|X|−1)

(
|X|
1

)
+2Φ3(|X|−1)

(
|X|
2

)
+2Φ3(|X|−1)

(
|X|
3

)
= 2Φ3(|X|−1)

(
Φ3(|X|)−1

)
possible covectors against each of the 2Φ3(|X| − 1) elements of T .

However, we can generate all subtopes (the elements S ∈ L such that |z(S)| = 1), by

making use of the following lemma (Björner et al., 1999, Lemma 4.2.2.(c)):

Lemma 29. Let T ∈ T . There exists a tope T1 ∈ T such that s(T, T1) = {x} if and

only if there is a subtope S ∈ L such that S < T and z(S) = {x}.

Thus, we only need to compare each pair of topes, leading to on the order of N2

operations. Then, we can repeat the same procedure on the subtopes (treating them

as a tope set, in their own right) to yield the sub-subtopes (having zero set of cardinality

2) and, then, repeat once more on the sub-subtopes to obtain the cocircuits (with zero

set of cardinality 3). In this way, we can generate L much more effectively.

After obtaining L, we can test whether M/A is acyclic for all 3- and 2-point subsets

A of X (asM has rank 4, |z(C)| ≤ 3 for all C ∈ L) in order to find the 2- and 1-faces

(i.e., facets and edges) of the lattice, respectively (we already know that each x ∈ X is

a face, asM is a matroid polytope). We can do this efficiently with {−1, 0, 1}-vectors

by finding the {0, 1}-vectors and taking the indices of their zero sets, as this gives

exactly those sets in X who restrict to acyclic oriented matroids.

From this information, we can construct the unique simplicial sphere (i.e., triangula-

tion) given byM; in fact, if we only need the 1-skeleton, then we only need to consider

the 2-point subsets of X.

This may provide a more efficient way to compute GS , if we are only given information

of the splits. Furthermore, given a set of points distributed in convex and general
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position, we can obtain the face lattice through the topes generated by linear program

detailed above (see section 5.1).

5.2.2 Implementation and Results

The face lattice program was implemented in Python 3.7.2, using only the numpy

package.

As a preliminary result, the output for the covector lattice calculated from the topes

of the tetrahedron (as listed in Section 5.1) by the covector generation portion of the

face lattice program are as follows:

Topes (16): ( 1, 1, 1, 1), ( 1, 1, 1, -1), ( 1, 1, -1, 1), ( 1, 1, -1, -1), ( 1, -1, 1, 1),

( 1, -1, 1, -1), ( 1, -1, -1, 1), ( 1, -1, -1, -1), (-1, 1, 1, 1), (-1, 1, 1, -1), (-1, 1, -1, 1),

(-1, 1, -1, -1), (-1, -1, 1, 1), (-1, -1, 1, -1), (-1, -1, -1, 1), and (-1, -1, -1, -1);

Subtopes (32): (-1, 0, 1, 1), ( 0, -1, -1, 1), ( 0, -1, -1, -1), ( 1, 1, -1, 0), (-1, 0, 1, -1),

( 1, 0, 1, 1), (-1, -1, -1, 0), (-1, 0, -1, -1), ( 0, 1, 1, 1), ( 0, -1, 1, -1), (-1, -1, 0, 1),

( 1, -1, 1, 0), (-1, 1, 0, -1), (-1, 1, -1, 0), ( 1, 1, 0, 1), (-1, 1, 1, 0), ( 1, 0, -1, -1),

( 1, -1, 0, -1), ( 1, -1, -1, 0), ( 0, 1, -1, -1), ( 0, 1, -1, 1), (-1, -1, 1, 0), ( 1, -1, 0, 1),

( 1, 0, -1, 1), ( 1, 1, 0, -1), ( 1, 1, 1, 0), (-1, 1, 0, 1), (-1, -1, 0, -1), ( 0, -1, 1, 1),

( 0, 1, 1, -1), (-1, 0, -1, 1), and ( 1, 0, 1, -1);

Sub-subtopes (24): ( 0, 0, 1, -1), ( 0, 0, 1, 1), (-1, 0, -1, 0), ( 0, -1, 0, 1), ( 0, 1, -1, 0),

( 0, 1, 0, -1), ( 1, 0, -1, 0), ( 0, -1, -1, 0), ( 1, -1, 0, 0), ( 1, 0, 0, -1), (-1, 0, 0, 1),

( 0, 0, -1, -1), (-1, 1, 0, 0), ( 0, -1, 1, 0), ( 1, 0, 1, 0), ( 0, 1, 1, 0), (-1, 0, 1, 0),

(-1, -1, 0, 0), ( 0, 0, -1, 1), (-1, 0, 0, -1), ( 1, 1, 0, 0), ( 1, 0, 0, 1), ( 0, 1, 0, 1), and

( 0, -1, 0, -1);

Cocircuits (8): (-1, 0, 0, 0), ( 1, 0, 0, 0), ( 0, 0, 0, 1), ( 0, 0, -1, 0), ( 0, 0, 1, 0),

( 0, -1, 0, 0), ( 0, 1, 0, 0), and ( 0, 0, 0, -1).

The corresponding face lattice is (where the points are denoted x0 = 0, x1 = 1, x2 = 2,

and x3 = 3):

Facets (4): (1,2,3), (0,1,2), (0,1,3), and (0,2,3);

Edges (6): (0,1), (1,3), (0,3), (2,3), (1,2), and (0,2); and

Vertices (4): (1), (0), (2), and (3).

The lattice is depicted in Figure 5.4. Compared with Figure 2.4, if we adjoin top and
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bottom elements to the lattice and relabel 0, 1, 2, and 3 as x, y, z, and w, we see that

the lattices are equivalent.

023 123013012

12 13 23030201

210 3

Figure 5.4: The face lattice generated from the topes of the tetrahedron.
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Chapter 6

Conclusions

Finally, we summarise the findings of all we have done in this work and suggest direc-

tions for future research.

6.1 Conclusions

The concept and properties of affine, polytopal, and spherical splits have been intro-

duced, along with the connections of collections of polytopal/spherical splits in the

context of (maximal planar) graphs and (rank 4 uniform) oriented matroids.

In Chapter 2, splits, as bipartitions of elements, formed the starting point of our in-

vestigation. By embedding the (abstract) elements into the (concrete) ambient space

R3, we were able to use the additional structure of linear subspaces (i.e., 2-dimensional

hyperplanes) to define the idea of an affine split, from which we could discern funda-

mental combinatorial properties. The geometric properties of the embedding we used

turned out to be the deciding factor in the combinatorics of the collection of affine

splits, with a higher degree of coplanarity in the structure inducing a higher degree of

redundancy in the collection. Thus, the minimal level of coplanarity, achieved when

the points were embedded into general position, provided the maximal collection of

affine splits.

Following on from this, in Section 2.2, we looked into the connection between affine

splits and convex polytopes, showing that the polytopal collections of splits—those

where the points are embedded as the vertices of a polytope—are exactly those for

which all trivial splits (i.e., of the form {x}|X \{x}) occur. Consequently, the maximal
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polytopal collections of splits correspond exactly to those embeddings of points into

convex and general position. In imposing a convexity condition on the embedded

points, we created a stronger characterisation of the associated collection of splits.

In Section 2.3, spherical split collections were defined as those which correspond to

embeddings of points into the sphere S2. In light of this, we understand that all

maximal collections of spherical splits must be those corresponding to embeddings of

points into convex and general position in S2. Intuitively, this is not much of a leap

from the polytopal case, but we found polytope inscribability to be a very subtle topic.

Whether or not there is a gap between the maximal polytopal and maximal spherical

collections of splits remains a main open question of this work.

Then, in Chapter 3, we introduced oriented matroids through the covector and tope

axiom sets and reviewed the basic definitions and results pertaining to the theory.

Following this, we detailed the Vapnik–Chervonenkis dimension, which provided the

context for bridging between maximal systems of affine splits and rank 4 uniform

oriented matroids, through Theorem 13. We showed that these oriented matroids are

acyclic, simple, and realisable, as well as corresponding to matroid polytopes if the split

collection is polytopal or spherical. Furthermore, by investigating the big and affine

face lattices, we found that the order complex of the lattice induced by a maximal

collection of spherical splits is homeomorphic to a shelling of the 3-ball.

Next, in Chapter 4, we investigated the relationship between polytopal/spherical col-

lections of splits and the graphs induced by the 1-skeletons of the associated polytopes,

or, equivalently, the collection of 2-splits. We found that maximal collections of spher-

ical splits induce inscribable 3-connected maximal planar graphs. Additionally, we

deduced some contraction and restriction results for the subgraphs induced by the sets

partitioned by a split. In forging graph-theoretic connections with spherical splits, we

have gained additional combinatorial tools with which we may further investigate such

collections. Considering the nuances of obtaining a split collection from a graph, we

must consider what lies between combinatorics and geometry: The way in which we

embed a graph has an effect on the geometry of the system which is created. There-

fore, it is crucial to look more in-depth at the way in which we embed graphs to gain

a better understanding of how to (or whether we can, with any consistency) generate

collections of affine, polytopal, and/or spherical splits from a given graph.

Finally, in Chapter 5, a couple computational methods were outlined. The first was a

linear program for generating the topes and hyperplanes of small point sets, which was
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used to generate some of the illustrations in the text. The second method generated

the polytope face lattice given the topes of a matroid polytope, and can work together

with the aforementioned program to provide more combinatorial information about the

structure of a point set.

6.2 Future Work

The theory we have built around spherical splits here is hardly complete; in fact, we

have only scratched the surface. Much is yet to be uncovered, especially in terms of

the relations to oriented matroid theory and the further reaches such research may

provide. Additionally, there is still much yet to be understood from the aspect of

inscribability, for which a deeper exploration of both graph-theoretic and geometric

contexts is required.

As for future research directions, we reiterate the major open questions:

(Conjecture 1). Does every maximal collection of polytopal splits correspond to a

maximal collection of spherical splits? We believe there may be an answer to the

contrary (which is the content of the conjecture), and that the counterexample may

be constructed as a forbidden deformation of closed convex curves in the plane to true

circles, given a static point configuration. This may be similar to other questions asked,

and may or may not be easily answerable.

If the conjecture is false, then this implies that all point sets in convex and general posi-

tion induce a maximal collection of spherical splits, giving us a stronger combinatorial–

geometric criterion for such collections. However, if it is true, then we are provided

with evidence that spherical splits, in some sense, are influenced by the Euclidean

properties of the ambient space more strongly than polytopal splits. This intuitively

makes sense, as the defining characteristic of spherical splits is “more than” that of

polytopal splits.

(Question 1). What are the sufficient conditions for a graph GS to be induced by a

collection of polytopal or spherical splits?

An answer to this question may lead towards a better understanding of the proper-

ties of polytopal/spherical splits, and may have some bearing on the theory of graph

inscribability. However, it seems that this question may need more than just a little

thought.
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We hope that this work motivates new discoveries, be it in an abstract sense or a

down-to-earth one.
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