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ABSTRACT
In this paper we extend a previous work (Vielva & Sanz 2009) where we presented a
method based on the N-point probability distribution (pdf) to study the Gaussianity
of the cosmic microwave background (CMB). We explore a local non-linear perturba-
tive model up to third order as a general characterization of the CMB anisotropies.
We focus our analysis in large scale anisotropies (θ > 1◦). At these angular scales (the
Sachs-Wolfe regime), the non-Gaussian description proposed in this work defaults (un-
der certain conditions) to an approximated local form of the weak non-linear coupling
inflationary model. In particular, the quadratic and cubic terms are governed by the
non-linear coupling parameters fNL and gNL, respectively. The extension proposed in
this paper allows us to directly constrain these non-linear parameters. Applying the
proposed methodology to WMAP 5-yr data, we obtain −5.6× 105 < gNL < 6.4× 105,
at 95% CL. This result is in agreement with previous findings obtained for equivalent
non-Gaussian models and with different non-Gaussian estimators, although this is the
first direct constrain on gNL from CMB data. A model selection test is performed,
indicating that a Gaussian model (i.e. fNL ≡ 0 and gNL ≡ 0 ) is preferred to the non-
Gaussian scenario. When comparing different non-Gaussian models, we observe that
a pure fNL model (i.e. gNL ≡ 0) is the most favoured case, and that a pure gNL model
(i.e. fNL ≡ 0) is more likely than a general non-Gaussian scenario (i.e. fNL 6= 0 and
gNL 6= 0). Finally, we have analyzed the WMAP data in two independent hemispheres,
in particular the ones defined by the dipolar pattern found by Hoftuft et al. (2009).
We show that, whereas the gNL value is compatible between both hemispheres, it is
not the case for fNL (with a p-value ≈ 0.04). However, if, as suggested by Hoftuft et
al. (2009), anisotropy of the data is assumed, the distance between the likelihood dis-
tributions for each hemisphere is larger than expected from Gaussian and anisotropic
simulations, not only for fNL, but also for gnl (with a p-value of ≈ 0.001 in the case
of this latter parameter). This result is an extra evidence for the CMB asymmetries
previously reported in WMAP data.

Key words: cosmology: observations – cosmology: cosmic microwave background –
methods: data analysis – methods: statistical

1 INTRODUCTION

Current observations of the Cosmic Microwave Background
(CMB) temperature and polarization fluctuations, in addi-
tion to other astronomical data sets (e.g. Komatsu et al.
2009; Gupta et al. 2009, see Barreiro 2009 for a recent re-
view), provide an overall picture for the origin, evolution,
and matter and energy content of the universe, which is usu-
ally referred to as the standard cosmological model. In this
context, we believe the universe to be highly homogeneous
and isotropic, in expansion, well described by a Friedmman-

Robertson-Walker metric and with a trivial topology. The
space geometry is very close to flat, and it is filled with cold
dark matter (CDM) and dark energy (in the form of a cos-
mological constant, Λ), in addition to baryonic matter and
electromagnetic radiation. Large scale structure (LSS) is as-
sumed to be formed by the gravitational collapse of an ini-
tially smooth distribution of adiabatic matter fluctuations,
which were seeded by initial Gaussian quantum fluctuations
generated in a very early inflationary stage of the universe
evolution.

It is interesting to mention that, besides the success of
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current high quality CMB data (in particular the data pro-
vided by the WMAP satellite Hinshaw et al. 2009) in con-
straining the cosmological parameters with good accuracy
and in showing the high degree of homogeneity and isotropy
of the Universe (as predicted by the standard inflation sce-
nario, see for instance Liddle & Lyth 2000), it has been,
precisely, through the analysis of this very same data, that
the CMB community has been allowed to probe fundamen-
tal principles and assumptions of the standard cosmological
model. Most notably, the application of sophisticated sta-
tistical analysis to CMB data might help us to understand
whether the temperature fluctuations of the primordial ra-
diation are compatible with the fundamental isotropic and
Gaussian standard predictions from the inflationary phase.

Indeed, the interest of the cosmology community in this
field has experienced a significant growth, since several anal-
yses of the WMAP data have reported some hints for depar-
ture from isotropy and Gaussianity of the CMB temperature
distribution. The literature on the subject is very large, and
is still growing, which makes really difficult to provide a
complete and updated list of publications. We refer to our
previous work (Vielva & Sanz 2009) for an (almost) com-
plete review.

Among the previously mentioned analyses, those re-
lated to the study of non-standard inflationary models have
attracted a larger attention. For instance, the non-linear
coupling parameter fNL that describes the non-linear evo-
lution of the inflationary potential (see e.g. Bartolo et al.
2004, and references therein) has been constrained by sev-
eral groups, from the analysis of the WMAP data: using the
angular bispectrum (Komatsu et al. 2003; Creminelli et al.
2007; Spergel et al. 2007; Komatsu et al. 2009; Yadav &
Wandelt 2008; Smith et al. 2009); applying the Minkowski
functionals (Komatsu et al. 2003; Spergel et al. 2007; Gott
et al. 2007; Hikage et al. 2008; Komatsu et al. 2009); using
different statistics based on wavelets (Mukherjee & Wang
2004; Cabella et al. 2005; Curto et al. 2009a,b; Pietrobon
et al. 2009; Rudjord et al. 2009), and by exploring the N-
pdf (Vielva & Sanz 2009). Besides marignal detections of
fNL > 0 (with a probability of around 95%, Yadav & Wan-
delt 2008; Rudjord et al. 2009), there is a general consensus
on the WMAP compatibility with the predictions made by
the standard inflationary scenario at least at 95% confidence
level. The current best limits obtained from the CMB data
are: −4 < fNL < 80 at 95% CL by Smith et al. (2009). In ad-
dition, very recently, promising constraints coming out from
the analysis of LSS have been reported: −29 < fNL < 70 at
95% CL (Slozar et al. 2008).

The aim of this paper is to extend our previous
work (Vielva & Sanz 2009), where the full N-pdf of a non-
Gaussian model that describes the CMB anisotropies as a
local (pixel-by-pixel) non-linear expansion of the temper-
ature fluctuations (up to second order) was derived. For
this model —that, at large scales, can be considered as an
approximation to the weak non-linear coupling scenario—
we are able to build the exact likelihood on pixel space.
Working in pixel space allows one to include easily non-ideal
observational conditions, like incomplete sky coverage and
anisotropic noise. The extension of the present work is to
account for higher order moments in the expansion, in par-
ticular, we are able to directly obtain constraints on gNL,

that is the coupling parameter governing the cubic term of
the weak non-linear expansion.

As far as we are aware, direct constraints on gNL have
been made available only very recently (Desjacques & Sel-
jak 2009) and are obtained from LSS analyses: −3.5×105 <
gNL < 8.2 × 105 at 95% CL. This constraint was obtained
for the specific case in which the coupling parameter gov-
erning the quadratic term (fNL) is negligible (i.e. fNL ≡ 0,
which is the situation required for some curvaton inflation-
ary models, e.g. Sasaki et al. 2006; Enqvist & Takahashi
2008; Huang 2009). We present in this work the first direct
measurement of gNL obtained from CMB data. In addition
to study the particular case of fNL ≡ 0, we also consider a
more general case in which a joint estimation of fNL and gNL

is performed. Finally, and justified by recent findings (e.g.,
Hoftuft et al. 2009), we compute the N-pdf in two different
hemispheres, and derive from it constraints on fNL and gNL

for this hemispherical division of the celestial sphere.
The paper is organized as follows. In Section 2 we de-

scribe the physical model based on the local expansion of
the CMB fluctuations and derive the full posterior probabil-
ity, recalling how it defaults to the case already addressed
in Vielva & Sanz (2009). In Section 3 we check the method-
ology against WMAP-like simulations. Results on WMAP
5-year data are presented in Section 4. Conclusions are given
in Section 5. Finally, in Appendix A, we provide a detailed
computation of the full N-pdf.

2 THE NON-GAUSSIAN MODEL

Although current CMB measurements are well described by
random Gaussian anisotropies (as it is predicted by the stan-
dard inflationary scenario), observations also allows for small
departures from Gaussianity, that could indicate the pres-
ence of an underlying physical process generated in non-
standard models.

As we did in Vielva & Sanz (2009) we adopt a para-
metric non-Gaussian model for the CMB anisotropies, that
accounts for a small and local (i.e. point-to-point) pertur-
bation of the CMB temperature fluctuations, around its in-
trinsic Gaussian distribution:

∆T i = (∆T i)G + a
[
(∆T i)

2
G −

〈
(∆T i)

2
G

〉]
+

b (∆T i)
3
G +O

(
(∆T i)

4
G

)
. (1)

The linear term ((∆T i)G) is given by a Gaussian N-point
probability density function (N-pdf) that is easily described
in terms of the standard inflationary model. The second and
third terms on the right-hand side are the quadratic and the
cubic perturbation terms, respectively, and they are gov-
erned by the a and b parameters.

The sub-index i refers to a given direction in the sky
that, in practice, is described in terms of a certain pixeliza-
tion of the sphere. The operator 〈·〉 indicates averaging over
all the pixels defining the sky coverage. We have not con-
sidered explicitly an instrumental noise-like term, since, for
the particular case that we intend to explore (i.e., large-scale
CMB data), its contribution to the measured signal (for ex-
periments like WMAP or Planck) is negligible. Precisely at
the large-scale regime, the term ∆T i is mostly dominated
by the Sachs-Wolfe contribution to the CMB fluctuations,
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and can be related to the primordial gravitational potential
Φ (e.g. Komatsu et al. 2001) by:

∆T i ≈ −
T0

3
Φi, (2)

where T0 is the CMB temperature. Small departures from
Gaussianity of the Φ potential are usually described via the
weak non-linear coupling model:

Φi = ΦL,i + fNL

(
ΦL

2
,i − 〈ΦL

2
,i〉
)

+ gNLΦL
3
,i +O

(
ΦL

4
,i

)
. (3)

Taking into account equations 1, 2 and 3, and always con-
sidering the specific case for scales larger than the horizon
scale at the recombination time (i.e. above the degree scale),
it is trivial to establish the following relations:

fNL
∼= −

T0

3
a , gNL

∼=
(
T0

3

)2

b. (4)

At this point, it is worth mentioning that the model in equa-
tion 1 does not pretend to incorporate all the gravitational
and non-gravitational effects, due to the evolution of the ini-
tial quadratic potential model, but rather allows for a use-
ful parametrization for describing a small departure from
Gaussianity. The relationships in equation 4 have to be un-
derstood just as an asymptotic equivalence for large scales.

Let us simplify the notation by transforming the Gaus-
sian term (∆T i)G into a zero mean and unit variance ran-
dom variable φi. It is easy to show that equation 1 trans-
forms into:

xi = φi + aσ
(
φ2
i − 1

)
+ bσ2φ3

i +O
(
σ3) (5)

where:

x ≡ 1

σ
∆T , φ ≡ 1

σ
(∆T )G (6)

and σ2 ≡
〈
(∆T i)

2
G

〉
is the standard deviation of the CMB

fluctuations. Trivially, the normalized Gaussian variable φ
satisfies:

〈φ2n+1
i 〉 = 0

〈φ2m
i 〉 = (2m− 1)!!

〈φiφj〉 = ξij , (7)

where n > 0 and m > 0 are integer numbers, and ξij rep-
resents the normalized correlation between pixels i and j.
Obviously, the N-pdf of the φ = {φ1, φ2, ..., φN} random
field (where N refers to the number of pixels on the sphere
that are actually observed) is given by a multivariate Gaus-
sian distribution:

p(φ) =
1

(2π)N/2(det ξ)1/2
e−

1
2
φξ−1φt

, (8)

where ξ denotes the correlation matrix and operator ·t de-
notes standard matrix/vector transpose.

As it was the case in Vielva & Sanz (2009), the objective
is to obtain the N-pdf associated to the non-Gaussian x =
{x1, x2, ..., xN} field, as a function of the non-linear coupling
parameters (or, equivalently, the a and b coefficients):

p(x|a, b) = p(φ = φ(x))Z. (9)

In this expression, Z is the determinant of the Jacobian for
the φ −→ x transformation. Because the proposed model

is local (i.e. point-to-point), the Jacobian matrix is diagonal
and, therefore, Z is given by:

Z = det

[
∂φi

∂xj

]
=
∏
i

(
∂φi

∂xi

)
. (10)

Both, equations 9 and 10, require the inversion of equa-
tion 5: i.e., to express φi as a function of xi. After some
algebra, it can be proved that:

φi = xi + ηiσ + νiσ
2 + λiσ

3 + µiσ
4 +O

(
σ5) , (11)

where:

ηi = −a
(
x2i − 1

)
νi =

(
2a2 − b

)
x3i − 2a2xi

λi =
(
5ab− 5a3

)
x4i +

(
6a3 − 3ab

)
x2i − a3

µi =
(
14a4 − 21a2b+ 3b2

)
x5i +

(
−20a4 + 20a2b

)
x3i

+
(
6a4 − 3a2b

)
xi. (12)

Instead of dealing with p(x|a, b), it is equivalent, but more
convenient, to work with the log-likelihood L (x|a, b):

L (x|a, b) = log
p (x|a, b)
p (x|0)

. (13)

A detailed computation of L (x|a, b) is given in Appendix
A. Let us just recall here its final expression:

1

N
L (x|a, b) = Fσ +

(
2a2 − 3b+G

)
σ2 +Hσ3

+

(
12a4 − 36a2b+

27

2
b2 + I

)
σ4, (14)

where N is the number of data points, and F , G, H and I are
functions of a and b (see A13). The desired N-pdf, p(x|a, b)
is obtained by the inversion of equation 13, and taking into
account that p (x|0) ≡ p (φ = x), i.e., the known Gaussian
N-pdf in equation 8.

3 APPLICATION TO WMAP SIMULATIONS

In this Section we aim to investigate the performance of the
parameters estimation from the N-pdf derived in the previ-
ous Section. We explore different non-Gaussian scenarios; in
particular, we study three particular cases of special interest:

• Case i) a 6= 0, b = 0. This scenario would correspond,
for example, to the case for the slow-roll standard inflation
• Case ii) a = 0, b 6= 0. This scenario would correspond

to the particular situation for some curvaton models.
• Case iii) a 6= 0, b 6= 0. It is a generic case, not repre-

senting any specific inflationary model, but rather a general
scenario.

In particular, we will study how the determination of
the parameters governing the non-Gaussian terms is per-
formed, and what is the impact when one is exploring dif-
ferent configurations. In the next subsections, we will focus,
first, in the case in which a slow-roll standard like scenario is
assumed (i.e., we only try to adjust for the quadratic term,
assuming the cubic one is negligible), whatever the data is
actually a pure quadratic or cubic model, or a general non-
Gaussian scenario. Second, we will follow a similar analy-
sis, but assuming the estimation of a pure cubic term. Fi-
nally, we will address the case for a joint estimation of both
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Figure 1. Mask at NSIDE=32 HEALPix resolution used in this

work. It corresponds to the WMAP KQ75 mask, although the
point source masking has not been considered, since the point

like-emission due to extragalactic sources is negligible at the con-

sidered resolution. At this pixel resolution, the mask keeps around
69% of the sky.

(quadratic and cubic) terms. In the following, we will refer
all our results in terms of the non-linear coupling parameters
(fNL and gNL), rather than to the a and b coefficients.

In order to carry out this analysis, we have gener-
ated Gaussian CMB simulations coherent with the model
induced from the WMAP 5-year data at NSIDE=32
HEALPix (Górski et al. 2005) resolution (≈ 2◦).

The procedure to generate a CMB Gaussian simula-
tion —(∆T )G in equation 1— is as follows. First, we simu-
late WMAP observations for the Q1, Q2, V1, V2, W1, W2,
W3, W4 difference assemblies at NSIDE=512 HEALPix res-
olution. The C` obtained with the cosmological parameters
provided by the best-fit to WMAP data alone (Table 6 in
Hinshaw et al. 2009), are assumed.

Second, a single co-added CMB map is computed after-
wards through a noise-weighted linear combination of the
eight maps (from Q1 to W4). The weights used in this lin-
ear combination are proportional to the inverse mean noise
variance provided by the WMAP team. They are indepen-
dent on the position (i.e., they are uniform across the sky
for a given difference assembly) and they are forced to be
normalized to unity. Notice that we have not added Gaus-
sian white noise to the different difference assembly maps,
since we have already checked that instrumental noise plays
a negligible role at the angular resolution in which we are
interested (≈ 2◦, see Vielva & Sanz 2009, for details).

Third, the co-added map at NSIDE=512 is degraded
down to the final resolution of NSIDE=32, and a mask rep-
resenting a sky coverage like the one allowed by the WMAP
KQ75 mask (Gold et al. 2009) is adopted. At NSIDE=32 the
mask keeps around 69% of the sky. The mask is given in fig-
ure 1. Let us remark that observational constraints from an
incomplete sky coverage can be easily taken into account by
the local non-Gaussian model proposed in this work, since
it is naturally defined in pixel space. This is not the case
for other common estimators like the bispectrum, where the
presence of an incomplete sky coverage is usually translated
into a loss of efficiency.

We have generated 500000 simulations of (∆T )G, com-
puted as described above, to estimate the correlation matrix
ξ accounting for the Gaussian CMB cross-correlations. We
have checked that this large number of simulations is enough

to obtain an accurate description of the CMB Gaussian fluc-
tuations.

In addition, we have generated another set of 1000 sim-
ulations. These are required to carry out the statistical anal-
ysis to check the performance of the parameter estimation.
Each one of these 1000 (∆T )G simulations are transformed
into x (following equations 1 and 6) to study the response
of the statistical tools as a function of the non-linear pa-
rameters defining the local non-Gaussian model proposed in
equation 5.

Finally, let us remark that hereinafter the likelihood
maximization is simply performed by exploring a grid of
values in the parameter space of the non-linear coupling pa-
rameters. The step used in the grid is small enough to guar-
antee a good estimation both of the likelihood peak and
tails.

3.1 The recovery of fNL in the presence of a cubic
term

The results obtained from the 1000 simulations are given in
figure 2. We have explored 16 different non-Gaussian models,
accounting for all the possible combinations obtained with
simulated ḡNL values of 0, 3× 105, 5× 105 and 106, and f̄NL

values of 0, 200, 400 and 600. For each panel, we present
the histogram of the maximum-likelihood estimation of the
non-linear coupling quadratic parameter: f̂NL. Notice that
we refer to a simulated value of a given non-linear coupling
parameter (xNL), as x̄NL, whereas that its estimation via the
maximum-likelihood is denoted as x̂NL. Vertical dashed lines
in each panel, indicate the value of the maximum-likelihood
estimation for the parameter.

As it can be noticed from the figure, when the simulated
data satisfies the condition of the particular explored model
(i.e., ḡNL ≡ 0, first column), the fNL is accurately and effi-
ciently estimated, at least for values of f̄NL < 600. Actually,
this is a result that we already obtained in Vielva & Sanz
(2009), which indicates that for f̄NL > 600, the perturbative
model stars to be not valid any longer.

However, when the simulated non-Gaussian maps also
contain a significant contribution from a cubic term, the
bias in the determination of the fNL parameter stars to be
evident already for lower values of the simulated f̄NL. It is
interesting to notice that, even if the simulated ḡNL is large
(for instance ḡNL = 106), we do not see any significant bias
in f̂NL, for simulated f̄NL values lower than 200.

Summarizing, we can infer that for non-Gaussian sce-
narios with |̄fNL| . 400 and |ḡNL| . 5 × 105, no significant
bias on the estimation of a pure quadratic term is found. It
is worth mentioning that these range of values are in agree-
ment with predictions from most of the physically motivated
non-Gaussian inflationary models. Notice that, in general,
even for the cases in which a bias is observed, the efficiency
in the determination of fNL (somehow related to the width
of the histograms) is almost unaltered.

3.2 The recovery of gNL in the presence of a
quadratic term

As for the previous case, a graphical representation of the
results obtained from the 1000 simulations is given in fig-
ure 3. We have explored the same 16 different non-Gaussian
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ḡ N

L
=

0
E
+
00

−
20

0
0

20
0

40
0

60
0

80
0

05010
0

15
0

20
0

f̂ N
L
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Figure 2. These panels represent the accuracy and efficiency on the estimation of the fNL parameter. From left to right, the columns

correspond to simulated ḡNL values of: 0, 3 × 105, 5 × 105 and 106. Similarly, from top to bottom, rows correspond to simulated f̄NL

values of: 0, 200, 400 and 600. The histograms show the distribution of the obtained values of f̂NL for each case. The vertical dashed

lines indicate the simulated f̄NL value, and help to identify the presence of a possible bias.
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Figure 3. These panels represent the accuracy and efficiency on the estimation of the gNL parameter. From left to right, the columns

correspond to simulated ḡNL values of: 0, 3 × 105, 5 × 105 and 106. Similarly, from top to bottom, rows correspond to simulated f̄NL

values of: 0, 200, 400 and 600. The histograms show the distribution of the obtained values of ĝNL for each case. The vertical dashed

lines indicate the simulated ḡNL value, and help to identify the presence of a possible bias.
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models already described above. As it can be noticed from
the figure, when the simulated data corresponds to the ex-
plored model (i.e., f̄NL ≡ 0, first row), the gNL parameter is
reasonably estimated, at least for simulated ḡNL < 106.

However, when the simulated non-Gaussian maps also
contain a significant contribution from the quadratic term,
a bias in the determination of the gNL parameter stars to be
notorious for lower values of the simulated ḡNL coefficient.
In particular, the plots of the first column (i.e., ḡNL ≡ 0)
show a clear bias on ĝNL. This indicates that, when the an-
alyzed case corresponds to a pure quadratic scenario, and a
pure cubic model is assumed, the gNL estimator is sensitive
to the quadratic non-Gaussianity and, somehow, it absorbs
the non-Gaussianity in the form of a fake cubic term. In
particular, an input value of f̄NL ≡ 400 is determined as a
pure ĝNL ≈ 2.5 × 105. Notice that this was not the situ-
ation for the previous case, where the fNL estimation was
not sensitive to the presence of a pure cubic model (at least
for reasonable values of ḡNL). This is an expected results,
since, any skewned distribution would imply the presence
of a certain degree of kurtosis, whereas the opposite is not
necessary true.

3.3 The general case: the joint recovery of fNL and
gNL

Finally, we have also explored the case of a joint estima-
tion of the quadratic and cubic terms. The results obtained
from the 1000 simulations are given in figure 4. As for the
previous cases, we have explored the same 16 different non-
Gaussian models already described above. The plots repre-
sent the contours of the 2-D histograms obtained for the pair(

f̂NL, ĝNL

)
of the maximum-likelihood estimation. Vertical

and horizontal dashed lines indicate the simulated f̄NL and
ḡNL values, respectively.

As it can be noticed from the figure, only for the regime
|̄fNL| . 400 and |ḡNL| . 5 × 105, we obtain an accurate
and efficient estimation of the non-linear coupling param-
eters. As it was reported above, this regime correspond to
the boundaries obtained from the pure fNL case.

It is interesting to notice the presence of very large bi-
ases for cases outside of the previous range. In particular,
estimations tend to move towards a region of the parameter
space of larger values of both, fNL and gNL. Only a secondary
peak in the 2-D histogram corresponds to the simulated pair
of values.

This result, combined with the previous ones, indicates
that the non-Gaussian model proposed in equation 1 is only
valid up to values of the quadratic and cubic terms of around
1% and 0.05%, respectively.

4 APPLICATION TO WMAP 5-YEAR DATA

We have studied the compatibility of the WMAP 5-year data
with a non-Gaussian model as the one described in equa-
tion 1. In particular, we have analyzed the co-added CMB
map generated from the global noise-weighted linear com-
bination of the reduced foreground maps for the Q1, Q2,
V1, V2, W1, W2, W3 and W4 difference assemblies (see
Gold et al. 2009, for details). The weights are proportional

to the inverse average noise variance across the sky, and
are normalized to unity. This linear combination is made
at NSIDE=512 HEALPix resolution, being degraded after-
wards down to NSIDE=32.

Under these circumstances, we are in the same condition
as for the analysis performed on the simulations described
in Section 3. Therefore, the theoretical multinormal covari-
ance of the CMB temperature fluctuations (ξ) is the one
already computed with the 500000 simulations (see previ-
ous Section).

Two different analysis were performed. The first ac-
counts for an all-sky study (except for the sky regions cov-
ered by the Galactic mask described in the previous Sec-
tion), where constraints on the non-linear coupling parame-
ters from different scenarios are presented. We will present as
well results derived from a model selection approach, where
we investigate which are the models that are more favoured
by the data. The second analysis explores the WMAP data
compatibility with the local non-Gaussian model in two dif-
ferent hemispheres. In particular, we have studied indepen-
dently the two hemispheres related to the dipolar pattern
described in Hoftuft et al. (2009).

4.1 All-sky analysis

We have computed the full N-pdf in equation 9, for three dif-
ferent scenarios: a non-Gaussian model with a pure quadratic
term (i.e., gNL ≡ 0), another case with a pure cubic term
(i.e., fNL ≡ 0), and a general non-Gaussian model (i.e.,
fNL 6= 0 and gNL 6= 0),

Results are given in figure 5. Left panel shows the like-
lihood obtained for the first case: p (x|fNL). Actually, this
result is the one that we already obtained in our previous
work (Vielva & Sanz 2009). The maximum-likelihood esti-
mation for the quadratic factor is f̂NL = −321. The con-
straint on the non-Gaussian parameter is: −154 < fNL < 94
at 95%.

The middle panel in figure 5 presents the likelihood
obtained from a model with a pure cubic term: p (x|gNL).
The maximum-likelihood estimation for the quadratic fac-
tor is ĝNL = 42785. The constraint on the parameter is:
−5.6 × 105 < gNL < 6.4 × 105 at 95%. This result is com-
patible with a previous finding obtained from the analysis of
LSS data (Desjacques & Seljak 2009). The result reported
in this work is, as far as we know, the first direct constraint
of gNL from CMB data alone.

The right panel in figure 5 shows the contour levels
at the 68%, 95% and 99% CL, for the likelihood obtained
from an analysis of a general quadratic and cubic model:
p (x|fNL, gNL). Notice that the maximum likelihood estima-
tion for the fNL and gNL parameters are similar to those
obtained from the previous cases (where the pure models
were investigated). Even more, the marginalized distribu-
tions for the two parameters are extremely similar to the
likelihood distributions discussed previously, and, therefore,

1 Notice that in Vielva & Sanz (2009) we used a different defi-

nition between the primordial gravitational potential Φ and the

CMB temperature. This difference implies that, in our previous
work, the fNL parameter had an opposite sign with respect to the

definition used in this paper.
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Figure 4. These panels represent the accuracy and efficiency on the joint estimation of the fNL and gNL parameters. From left to right,

the columns correspond to simulated ḡNL values of: 0, 3 × 105, 5 × 105 and 106. Similarly, from top to bottom, rows correspond to

simulated f̄NL values of: 0, 200, 400 and 600. The contours show the distribution of the obtained values of the pair
(

f̂NL, ĝNL

)
for each

case. The vertical and horizontal dashed lines indicate the simulated f̄NL and ḡNL values, respectively, and help to identify the presence

of a possible bias.
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Figure 5. Likelihood distribution of the non-linear parameters obtained by analyzing 1000 simulations, according to the local non-

Gaussian model given in equation 1. Left panel correspond to a pure fNL analysis: p (x|fNL). Middle plot shows the result for a pure gNL

model: p (x|gNL). Right panel provides the 68%, 95% and 99% contour levels of the likelihood obtained from a joint fNL, gNL analysis

of the WMAP 5-year data: p (x|fNL, gNL).

the constraints on the non-linear coupling parameters are
virtually the same.

Finally, we want to comment a few words about two
issues: the incorporation of possible a priori information re-
lated to the parameters defining the non-Gaussian model,
and the application of model selection criteria (or hypoth-
esis tests) to discriminate among the Gaussian model and
different non-Gaussian models.

As we largely discussed in our previous work (Vielva &
Sanz 2009), one of the major advantages of computing the
full N-pdf on the non-Gaussian model is that, in addition
to provide a maximum-likelihood estimation for the non-
linear coupling parameters, we have a full description of the
statistical properties of the problem. More in particular, if
we could have any physical (or empirical) motivated prior
for the fNL and gNL parameters, it could be used together
with the likelihood function to perform a full Bayesian pa-
rameter estimation. This aspect has not been considered in
this work, precisely because such a well motivated prior is
lacking. Actually, a possible and trivial a priori information
that could be used in this specific case, would be to limit
the range of values that can be taken by fNL and gNL, such
as the non-Gaussian model is, indeed, a local perturbation
of a Gaussian field (i.e., the typical values that we discussed
in Section 3). However, these priors do not seem to be quite
useful since, first, we do not have any evidence to chose any
different form for the prior that an uniform value over the
parameters range; and, second, the limits of these ranges
are somehow arbitrary. These kind of priors do not provide
any further knowledge on the Bayesian parameter determi-
nation: as it is well known, such estimation would be totally
driven by the likelihood itself, since it is fully defined within
any reasonable a priori ranges.

The possibility of performing a model selection ap-
proach is an extra advantage of dealing with the full N-pdf.
Of course, under the presence of an hypotetical well moti-
vated prior on the non-linear coupling parameters, model
selection could be done in terms of the Bayesian evidence
or the ratio of posterior probabilities (see Vielva & Sanz
2009, for a specific discussion on this application). However,
the lack of such a prior (as we discussed above), makes the
application of a full Bayesian model selection framework sig-
nificantly less powerful than in other situations: as it is very
well known, the use of uniform priors for all the parameters
would provide very little information, since the results would

be very much dependent on the size of the parameters range.
Despite this, we can still make a worthy use of the likelihood
to perform model selection. In particular, some asymptotic
model selection criteria, like the Akaike Information Crite-
ria (AIC, Akaike 1973) and the Bayesian Information Cri-
teria (BIC, Schwarz 1978), can be applied. Both methods
provide a ranging index for competitive hypotheses, where
the most likely one is indicated by the lowest value of the
index. The AIC and BIC indices depend on the maximum
value of the log-likelihood (max [L (x|Θ)] ≡ L̂):

AIC (Hi) = 2
(
p− L̂

)
,

BIC (Hi) = 2
(p

2
logN − L̂

)
,

where p is the number of parameters that determine the hy-
pothesis or model Hi. We have applied these two asymptotic
model selection criteria to the WMAP 5-year data. Defin-
ing the Gaussian model as H0, the pure quadratic model
as H1, the pure cubic model as H2, and the general non-
Gaussian model as H3, and considering the maximum value
for the log-likelihoods obtained for all these cases, we ob-
tain: AIC (H0) < AIC (H1) < AIC (H2) < AIC (H3), and
BIC (H0) < BIC (H1) < BIC (H2) < BIC (H3). That is, the
most likely model is the Gaussian one (what is in agreement
with the results obtained from the parameter determination,
since fNL ≡ 0 and gNL ≡ 0 can not be rejected at any mean-
ingful confidence level). Among the non-Gaussian models, a
pure fNL model is the most likely scenario, being a joint fNL,
gNL model the most disfavoured by the WMAP 5-year data.

4.2 Hemispherical analysis

Among the large number of the WMAP anomalies that have
been reported in the literature, an anisotropy manifested in
the form of a hemispherical asymmetry is one of the topics
that has been more largely studied (e.g., Eriksen et al. 2004a;
Hansen et al. 2004b). Most of the works related to this is-
sue, have reported that such asymmetry is more marked for
a north-south hemispherical division relatively close to the
Northern and Southern Ecliptic hemispheres.

In a recent work, Hoftuft et al. (2009) reported that
large scale WMAP data was compatible with such kind of
anisotropy, in the form of a dipolar modulation defined by a
preferred direction pointing toward the Galactic coordinates
(l, b) = (224◦,−22◦).
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Figure 6. These plots show the areas of the sky that are independently analyzed. The panel on the left accounts for the sky that,
being allowed by the Galactic mask (see Section 3), corresponds to the Northern hemisphere of the sky division considered in this work.

Equivalently, the right panel presents the region of the sky that is analyzed when the Southern hemisphere is addressed.

Motivated by these results, we have repeated the anal-
ysis described in the previous subsection, but addressing in-
dependently the two hemispheres associated to the dipolar
pattern found by Hoftuft et al. (2009). Hereinafter, we will
refer to the Northern hemisphere of this dipolar pattern, as
the half the of celestial sphere whose pole is closer to the
Northern Ecliptic Pole, and, equivalently, we will indicate
as the Southern hemisphere the complementary half of the
sky. The corresponding areas of the sky that are analyzed are
shown in figure 6. The left and right panels show the allowed
sky regions, when the Northern and Southern hemispheres
of the dipolar pattern are independently addressed, respec-
tively. Notice that the regions not allowed by the Galactic
mask are also excluded from the analysis. The portion of
the sky that is analyzed is around 34% for the Northern
hemisphere, and around 35% for the Southern half.

As we discussed in the previous subsection, the con-
straints of the fNL and gNL parameters obtained from the
analysis of pure quadratic and cubic non-Gaussian models,
do not differ significantly from those obtained from a general
analysis of a joint scenario. This is expected for a regime of
relatively low values of the non-linear coupling parameters.
For that reason, in the present study we will only consider
the following two cases: a pure quadratic (i.e. gNL ≡ 0) and
a pure cubic (i.e. fNL ≡ 0) models. Results are given in fig-
ure 7. We present the likelihood probabilities for the first
case —p (x|fNL)— in the left plot, and the one correspond-
ing to the second case —p (x|gNL)— in the right panel. Each
plot shows the results for the Northern (dashed lines), and
the Southern (dot-dashed lines) hemispheres. The maximum
likelihood estimation for the non-linear coupling parameters
are given as vertical lines.

The right panel shows that both hemisphere have a sim-
ilar likelihood (p (x|gNL)) for the case of a pure cubic model.
However, interestingly, it is not the case when addressing a
gNL ≡ 0 scenario. In this case, we notice two important re-
sults. First, whereas the fNL estimation from the analysis of
the Northern hemisphere provides a constraint compatible
with the Gaussian scenario, it is not the case for the South-
ern hemisphere. In fact, we find that fNL < 0 at 96% CL. In
particular we find: f̂NL = −164 ± 62. Second, the distance
between both distributions is too large. Let us make use of
the Kullback–Leibler divergence (KLD, Kullback & Leibler
1951) as a measurement of the distance between the two

likelihoods pn (x|fNL) and ps (x|fNL):

Dn,s =

∫
dfNLpn (x|fNL) log

pn (x|fNL)

ps (x|fNL)
, (15)

where pn (x|fNL) and ps (x|fNL) are the likelihoods for the
Northern and the Southern hemispheres, respectively. Actu-
ally, we use the symmetrized statistitic D, defined as:

D =
1

2
(Dn,s +Ds,n) . (16)

We have found that the distance D for the likelihood dis-
tributions of the fNL parameter estimated in the Northern
and the Southern hemispheres defined by the dipolar pat-
tern described by Hoftuft et al. (2009) is much larger than
it would be expected from Gaussian and isotropic random
CMB simulations. In particular, such a distance has a p-
value ≈ 0.04. This result is a further evidence on the largely
discussed WMAP North-South asymmetry, and it is as well
an indication that such asymmetry is manifested in terms of
the non-Gaussianity of the CMB temperature fluctuations,
in agreement with previous results (e.g., Park 2004; Hansen
et al. 2004b; Eriksen et al. 2004b; Vielva et al. 2004; Cruz et
al. 2005; Eriksen et al. 2005; Land & Magueijo 2005; Mon-
teseŕın et al. 2008; Räth et al. 2009; Rossmanith et al. 2009).

At this point, it is worth recalling that the analysis de-
scribed above has been performed assuming isotropy, i.e.,
we have used the same type of correlations to described the
second-order statistics in both the Northen and in the South-
ern hemispheres. However, the result obtained by Hoftuft et
al. (2009) indicates that these two hemisphere might be de-
scribed by two different correlations (i.e., the sky would not
be isotropic any longer). The dipolar modulation proponed
by Hoftuft et al. (2009) was small (its amplitude was lower
than 0.7%), but significant (a 3.3σ detection was claimed).
Assuming this point, we have repeated our previous analy-
sis, but using different statistical properties for the correla-
tion matrices in the two halves. The way we have estimated
these new correlation matrices is as follows: we have gen-
erated 500,000 simulations (in the same way it has been
already described at the beginning of Section 4, and, once
the co-added maps are degraded to NSIDE=32, each one of
the simulations have been modified by applying the dipo-
lar modulation estimated by Hoftuft et al. (2009) from the
WMAP data. It is from these modulated simulations that
we have estimated the new correlation matrices needed to
estimate the likelihood probabilities. The result of this test
is presented in figure 8. The conclusions related to the fNL
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Figure 7. The left panel present the likelihood on fNL obtained from a pure quadratic analysis —p (x|fNL)—, whereas the right plot

provides the likelihood on gNL from a pure cubic study —p (x|gNL). Dashed lines correspond to the Northern hemisphere, whereas dot-

dashed lines are for the Southern half. Vertical lines indicate the maximum likelihood estimation of the non-linear coupling parameters:
f̂NL and ĝNL.

estimation are essentially the same: on the one hand the
analysis of the Northern hemisphere provides a constraint
compatible with the Gaussian scenario, whereas the South-
ern hemisphere is not; on the other hand, the distance be-
tween both distributions is again too large (it also has a p-
value –as compared to, in this case, anisotropic simulations–
increases up to ≈ 0.09 (estimated in terms of the KLD).
However, despite this slight change in the fNL hemispheri-
cal estimation, dramatic differences can be observed for the
pure cubic scenario. Interestingly, accounting for the dipo-
lar modulation correction reveals an extra departure form
anisotropy related to the gNL constraints. The dipolar mod-
ulation makes the maximum likelihood estimation of gNL

highly incompatible between both hemispheres. In partic-
ular, the distance between both distributions is extremely
rare as compared with the expected behaviour from Gaus-
sian and anisotropic CMB simulations (generated, as ex-
plained above, by applying the dipolar modulation reported
by Hoftuft et al. (2009)): it has a p-value of ≈ 0.002, in the
sense of the KLD.

We have also studied whether a WMAP data corrected
by the dipolar modulation found by Hoftuft et al. (2009)
could present a behaviour compatible with the Gaussian and
isotropic hypotheses. Results for the corrected WMAP data
are given in figure 9. Notice that we do not see any signif-
icant differences from the previous situation (i.e., the case
in which uncorrected WMAP data was analyzed assuming
anisotropy): the dipolar modulation does not affect to the
fNL and gNL constraints.

Summarizing, the results obtained in this subsection
seem to confirm that there is some kind of anomaly related to
an hemispherical asymmetry as the one defined by the dipo-
lar pattern reported by Hoftuft et al. (2009), in the sense of
the fNL parameter. Even more, when WMAP data is ana-
lyzed using correlations compatible with the dipolar modula-
tion suggested by Hoftuft et al. (2009), not only asymmetries
related to the fNL parameter are clear, but also associated
to the cubic term (i.e., the gNL parameter). Intriguingly, the
correction of the WMAP data in terms of this dipolar mod-
ulation is not enough to obtain a CMB signal compatible
with a Gaussian and isotropic random field.

At this point, it is worth mentioning that the dipolar
modulation of Hoftuft et al. (2009) was obtained by consid-
ering second-order moments of the CMB data and, there-
fore, this correction only addresses the problems related to
an asymmetry in terms of this order. Hence, it is not to-
tally surprising that this dipolar modulation correction is
not sufficiently satisfactory to solve the anomaly reported
in this work, since such anomaly is related to higher-order
moments. It is also need to point out that we have tested
that the dipolar modulation correction of the WMAP data
does not affect the results obtained from an all-sky analysis
of the CMB data.

Finally, let us recall that, in a recent work, Rudjord et
al. (2009) searched for specific asymmetries related to the lo-
cal estimation of the fNL parameter, by using needlets. Con-
trarily to our findings, in this work no significant asymmetry
was found when analyzing WMAP data. There are some dif-
ferences between the analyses that could explain the discrep-
ancy, although they have to be taken as mere suggestions.
First, the kind of non-Gaussianity that is probed by each
work is different: whereas the Rudjord et al. (2009) paper ex-
plore a fNL model that is local in the gravitational potential
(from which the non-Gaussian temperature fluctuations are
obtained taking into account all the gravitational effects),
here we adopt a local model in the Sachs-Wolfe regime. Sec-
ond, they work at the best WMAP resolution (around 10-20
arcmins), whereas we focus on scales of around 2◦. Third,
we explore an specific division of the sky (the one reported
by Hoftuft et al. (2009)), whereas they consider several di-
visions that, not necessarily, have to match the one used by
us (they explore hemispherical divisions within an interval
of around 30◦).

5 CONCLUSIONS

We have presented an extension of our previous work (Vielva
& Sanz 2009), by defining a parametric non-Gaussian model
for the CMB temperature fluctuations. The non-Gaussian
model is a local perturbation of the standard CMB Gaus-
sian field, which (under certain circumstances) is related to
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Figure 8. As in figure 7, but for the case in which the WMAP data has been analyzed using correlation matrices that account for the

dipolar modulation.
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Figure 9. As in figure 7, but for the case in which the WMAP data has been corrected by the dipolar modulation.

an approximative form of the weak non-linear coupling in-
flationary model at scales larger than the horizon scale at
the recombination time (i.e., above the degree scale, see for
instance Komatsu et al. 2001; Liguori et al. 2003). For this
model, we are able to build the posterior probability of the
data given the non-linear parameters fNL and gNL. From
these pdfs, optimal maximum likelihood estimators of these
parameters can be obtained.

We have verified with WMAP-like simulations that the
maximum likelihood estimation of the quadratic non-linear
coupling parameters (̂fNL) is unbiased, at least for a reason-
able range of values, even when non-Gaussian simulations
also account for a cubic term. In particular, we found that
for simulated non-Gaussian coefficients such as |̄fNL| . 400
and |ḡNL| . 5 × 105, the estimation of fNL is accurate and
efficient. However, when trying to study the case in which
only a pure cubic model is addressed, the situation is dif-
ferent. In particular, the simulated quadratic term has an
important impact on the estimation of gNL. For instance,
if a pure quadratic non-Gaussian model is simulated with a
value of f̄NL ≡ 400, a value of ĝNL ≈ 2.5× 105 is wrongly es-
timated. This results indicates, obviously, that the quadratic
term is more important than the cubic one in the expansion
of the local non-Gaussian model, and, therefore, that not
accounting properly for the former might have a dramatic

impact on the latter. Contrarily, the opposite situation is
much more unlikely. Finally, we have investigated the joint
estimation of the fNL and gNL parameters. In this case we
find that for a similar regime as the one mentioned above
(i.e., |̄fNL| . 400 and |ḡNL| . 5 × 105), an accurate and ef-
ficient estimation of the non-linear coupling parameters is
obtained. However, for larger values of these coefficients, we
find that the parameter estimation is highly biased, favour-
ing a region of the parameter space of larger values for both
coefficients.

We have addressed, afterwards, the analysis of the
WMAP 5-year data. We have consider two different anal-
yses. First, we have investigated the case of an all-sky anal-
ysis (except for the Galactic area not allowed by the WMAP
KQ75 mask). Second, and motivated by previous findings,
we have performed a separated analysis of two hemispheres.
In particular, the hemispherical division associated to the
dipolar pattern found by Hoftuft et al. (2009) was consid-
ered.

Regarding the all-sky analysis, we find, for the case in
which a pure quadratic model is investigated, the same result
that we already found in our previous work (Vielva & Sanz
2009). In particular, we determine that −154 < fNL < 94 at
95%. Equivalently, for the case of a pure cubic non-Gaussian
model we establish−5.6×105 < gNL < 6.4×105 at 95%. This
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is in agreement with a recent work by Desjacques & Seljak
(2009), where an analysis of LSS data was performed. The
result that we provide in this paper is, as far as we know, the
first direct constraint on gNL from CMB data alone. Finally,
we have also investigated the case of a joint estimation of the
quadratic and cubic non-linear coupling parameters. In this
case, the constraints obtained on fNL and gNL are virtually
the same as the ones already reported for the independent
analyses.

We have performed a model selection to evaluate which
of the four hypotheses (i.e. Gaussianity, a pure quadratic
model, a pure cubic model and a general non-Gaussian sce-
nario) is more likely. Since a well motivated prior for the non-
linear coupling parameters is lacking, we have used asymp-
totic model selection criteria (like AIC and BIC), instead of
more powerful Bayesian approaches, like the Bayesian Evi-
dence or the posterior ratio test. Both methodologies (AIC
and BIC) indicates that the Gaussian hypothesis is more
likely than any of the non-Gaussian models. We also found
that, among the non-Gaussian scenarios, the one with a pure
quadratic model is the most favoured one, whereas the gen-
eral one (i.e. fNL 6= 0 and gNL 6= 0) is the most unlikely.

The analysis of the WMAP data in two hemispheres
revealed that, whereas both halves of the sky present sim-
ilar constraints on the gNL parameter (and, in both cases,
not indicating any significant incompatibility with the zero
value), the analysis of a pure quadratic scenario showed a
clear asymmetry. First, the fNL value in the hemisphere
whose pole is closer to the Southern Ecliptic Pole, is f̂NL =
−164± 62. Which implies that fNL < 0 at 96%. Even more,
the distance between both likelihoods (given in terms of the
KLD) presents a p-value of ≈ 0.04.

We have also analyzed the WMAP data after by con-
sidering different correlation properties in each hemisphere
(according to the dipolar modulation described by Hoftuft et
al. (2009)). We have tested that the behaviour found for the
fNL is practically the same as before, and that, in addition,
an extra anomaly appears associated with the gNL param-
eter. In particular, the distance between both likelihoods
is anomalously large as well (it corresponds to a p-value of
. 0.002. Further test was performed after correcting WMAP
data from the dipolar modulation. In this case the asymme-
tries in the maximum-likelihood estimations of both non-
linear coupling parameters remain unaltered. Hence, these
results indicate that, as it has been previously reported in
other works, there are evidences of anisotropy in the WMAP
data, reflected as an asymmetry between two opposite hemi-
spheres. Such anomaly is related to a different distribution
for a non-linear coupling parameter related to the quadratic
term. However, a correction in terms of a dipolar modula-
tion as the one proposed by Hoftuft et al. (2009), seems not
to be sufficient to account for this anomaly related to the
likelihood distribution of the fNL parameter.
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Barreiro R.B., Santos D., Désert F.-X., Tristram M., 2007,
A&A, 474, 23
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Hansen F.K. Lilje P.B., 2009, ApJ, 699, 9856

c© 1998 RAS, MNRAS 000, 1–15

http://arxiv.org/abs/0906.0956
http://arxiv.org/abs/0907.2257
http://arxiv.org/abs/0909.1621


14 P. Vielva and J. L. Sanz

Huang Q.-C., 2009, Journal of Cosmology and Astro-
Particle Physics, 06, 035

Land K., Magueijo J., 2005, MNRAS, 357, 994
Komatsu E., Spergel D.N., 2001, Phys. Rev. D, 63, 063002
Komatsu E., et al., 2003, ApJS, 148, 119
Komatsu E., et al., 2009, ApJS, 180, 330
Kullback S., Leibler R.A., 1951, Ann. Math. Statist., 22,
79

Liguori M., Matarrese S., Moscardini L., 2003, ApJ, 597,
57

Liddle A., Lyth D. H., 2000, Cosmological inflation and
large-scale structure, Cambridge University Press
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APPENDIX A: N-PDF DERIVATION

In this Appendix we provide a detailed derivation of the N-
pdf for the non-linear local model given by equation 5. As
it has been already discussed, the objective is to make use
of this likelihood to constrain the parameters that define
the perturbative model. In particular, we are interested in
estimating the parameters governing the quadratic (a) and
cubic (b) terms, that, as it was explained in Section 2, can
be related (under certain circumstances) to the non-linear
coupling inflationary parameters fNL and gNL, respectively.

Let us recall here the expression for the N-pdf for the
non-Gaussian model, as a function of the multinormal N-pdf
(p (φ), equation 9):

p (x|a, b) = p (φ = φ (x))Z, (A1)

where Z is the determinant of the Jacobian of the φ −→ x
transformation (equation 10). For practical purposes (i.e.,
in order to constrain the non-linear coupling parameters) it
is more convenient to deal with the log-likelihood L (x|a, b)

(given in equation 13), instead of p (x|a, b) (given in equa-
tion 9). Obviously, the later can be easily obtained by the
inversion of equation 13.

Replacing equation 9 into equation 13, it is easy to show
that the computation of L (x|a, b) implies to solve two terms:

L (xi|a, b) = logZ + Ω, (A2)

where Ω ≡ log p(φ=φ(x))
p(x|0) , and, we recall it, p (x|0) ≡

p (φ = x).
Let us address the determination of these two terms

(logZ and Ω) independently.

A1 Determination of the log-Jacobian

According to equation 10, the log-Jacobian for the φ −→ x
transformation is given by:

logZ =

N∑
i=1

log

(
∂φi

∂xi

)
, (A3)

where φi as a function of xi is given in equation 11. It is
straightforward to prove that:

∂φi

∂xi
= 1 +

4∑
m=1

gm,iσ
m, (A4)

where

g1,i = −2axi

g2,i = 3
(
2a2 − b

)
x2i − 2a2

g3,i = 20
(
−a3 + ab

)
x3i + 6

(
2a3 − ab

)
xi

g4,i = 5
(
14a4 − 21a2b+ 3b2

)
x4i + 60(−a4 + a2b)x2i

+3
(
2a4 − a2b

)
. (A5)

Since we are considering a perturbative non-Gaussian
model, then

∑4
m=1 gm,iσ

m � 1 and, therefore, the log-
Jacobian can be easily derived from the Taylor expansion
for the logarithm function:

logZ ≈
N∑
i=1

(g1,i)σ +

(
g2,i −

1

2
g21,i

)
σ2 (A6)

+

(
g3,i +

1

3
g31,i − g1,ig2,i

)
σ3

+

(
g4,i −

1

2
g22,i + g21,ig2,1 − g1,ig3,1 −

1

4
g41,i

)
σ4.

Taking into account that:

1

N

N∑
i=1

x2i = 1 + 2
(
a2 + 3b

)
σ2 +O

(
σ3)

1

N

N∑
i=1

x3i = 6aσ +O
(
σ3)

1

N

N∑
i=1

x4i = 3 +O
(
σ2) , (A7)

(as it can be trivially showed from equations 5 and 7) and
replacing equation A5 into equation A6, one finally gets:

1

N
logZ ≈

(
2a2 − 3b

)
σ2 +

(
12a4 − 36a2b+

27

2

)
σ4, (A8)

up to the appropriate order in σ.
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A2 Determination of Ω

Since we are dealing with a perturbative model (i.e., φ =
x + ε, with ε � x and where ε ≡ ησ + νσ2 + µσ3 + λσ4,
according to equation 11) it is interesting to notice that the
probability function p (φ = φ (x)) can be expanded in terms
of the Taylor expansion, up to the appropriate order:

p (φ = φ (x)) = P + εi∂iP +
1

2
εiεj∂ijP +

1

6
εiεjεk∂ijkP

+
1

24
εiεjεkεl∂ijklP +O (5) , (A9)

where, for simplicity, we define P ≡ p (φ = x+ 0) ≡ p (x|0).
The function ∂iY (x) is the derivative of Y (x) with re-

spect to xi, i.e.: ∂iY (x) ≡ ∂Y (x)
∂xi

. Equivalently, ∂ijY (x) ≡
∂

∂xj
∂iY (x), ∂ijkY (x) ≡ ∂

∂xk
∂ijY (x), and ∂ijklY (x) ≡

∂
∂xl

∂ijkY (x).
Taking into account this expansion, we have::

p (φ = φ (x))

p (x|0)
= 1 +Aiεi +

1

2
Aijεiεj +

1

6
Aijkεiεjεk

+
1

24
Aijklεiεjεkεl, (A10)

where, Ai ≡ ∂iP
P

, Aij ≡ ∂ijP

P
, Aijk ≡ ∂ijkP

P
, and Aijkl ≡

∂ijklP

P
. It is trivial to show that these quantities are related

to the data x, its expected correlation ξ = [ξij ], and the
model (i.e., a and b). After some algebra, one trivially finds:

Ai = −ξ−1
ij x

j , (A11)

Aij = −ξ−1
ij +AiAj ,

Aijk = AijAk −Ajξ
−1
ik −Aiξ

−1
jk

Aijkl = AiAjAkAl + ξ−1
ij ξ

−1
kl + ξ−1

ik ξ
−1
jl + ξ−1

jk ξ
−1
il

−AkAlξ
−1
ij −AjAlξ

−1
ik −AiAlξ

−1
jk

−AkAiξ
−1
jl −AkAjξ

−1
il −AiAjξ

−1
kl .

Since we are interested in the quantity log p(φ=φ(x))
p(x|0) , the

logarithm function can be expanded up to the appropriate
order. It is straightforward to obtain:

Ω = Fσ +Gσ2 +Hσ3 + Iσ4 +O (5) , (A12)

where:

F = − 1

N
(Sηx) , (A13)

G = − 1

N

(
Sνx +

1

2
Sηη

)
,

H = − 1

N
(Sλx + Sην) ,

I = − 1

N

(
Sµx + Sλη +

1

2
Sνν

)
.

We have defined the operator Sαβ ≡ αiξ−1
ij β

j , and η, ν, λ
and µ where defined in equation 12.

Therefore, taking into account equations A8 and A12,
the final expression for the log-likelihood L (x|a, b) is:

1

N
L (x|a, b) = Fσ +

(
2a2 − 3b+G

)
σ2 +Hσ3

+

(
12a4 − 36a2b+

27

2
b2 + I

)
σ4. (A14)
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