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Abstract 
 
 
Marine microbes, including both eukaryotes and prokaryotes, are the basal components of 

marine food webs and play a fundamental role in global biogeochemical cycling. Marine 

phytoplankton are responsible for approximately 50% of Earth’s primary production, while 

heterotrophic bacteria and archaea modulate carbon and nutrient cycling in the marine 

environment. The structure and function of marine microbial communities are closely 

coupled. Consequently, understanding the factors which govern the distribution of marine 

microbes through space and time has key implications for food webs and biogeochemical 

cycling. The development of high-throughput sequencing technologies has revolutionised 

marine microbial ecology by facilitating the profiling of microbial communities in high 

taxonomic resolution. In this thesis high-throughput sequencing of the 16S and 18S rRNA 

genes was used to achieve two major aims. The first aim was to investigate the ecological 

processes which underpin microbial community assembly in the marine environment. The 

second aim was to investigate the responses of marine microbial communities to near-

future ocean acidification.  

Two studies were performed towards the first aim of this thesis. In the first study, the 

microbial biogeography of the South Pacific Gyre was characterised across three depths at 

22 stations along a 2,000 km longitudinal transect of the region. Microbial community 

composition was homogenous across horizontal spatial scales in the surface waters of the 

South Pacific Gyre, but varied significantly between surface waters and the deep 

chlorophyll maximum. A null model approach was used to unveil the ecological processes 

driving microbial community assembly in the region. Microbial communities in the surface 

waters were assembled primarily through the deterministic process of homogeneous 

selection, indicating that selection pressures were sufficient to overwhelm the influence of 

dispersal effects and ecological drift across vast horizontal spatial distances in the region. 

Dispersal limitation was comparatively more influential in the assembly of microbial 

communities between the surface waters and the deep chlorophyll maximum, indicating 

that stochastic processes play a significant role in microbial community assembly between 

these contiguous water masses.  
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In the second study, the bacterioplankton and protist biogeography of the Southland Front 

system was characterised in surface waters at 24 stations spanning four water masses. Both 

bacterioplankton and protist communities displayed significant structuring according to 

water mass, although this effect was most pronounced in bacterioplankton communities. A 

null model approach revealed that bacterioplankton communities were primarily assembled 

through homogeneous selection, while protist communities were primarily assembled 

through dispersal limitation and ecological drift across the Southland Front system. These 

findings highlight that distinct ecological processes can underpin the assembly of co-

occurring bacterioplankton and protist communities, and that hydrographic features such 

as oceanic fronts play an important role in structuring both bacterioplankton and protist 

communities. 

Two studies were conducted towards the second aim of this thesis. In the first study, the 

effect of ocean acidification and warming on bacterioplankton communities was 

investigated at the fringe and ultra-oligotrophic centre of the South Pacific Gyre using 

trace-metal clean deckboard incubation experiments. Bacterioplankton community 

composition and function were resistant to ocean acidification alone, and combined with 

warming, at the fringe of the South Pacific Gyre. Subtle but significant responses of 

bacterioplankton community composition to ocean acidification were observed at the ultra-

oligotrophic centre of the South Pacific Gyre. These results suggest that bacterioplankton 

community responses to ocean acidification may be modulated by nutrient regimes. 

Nonetheless, the findings of this study did not diverge substantially from the narrative that 

bacterioplankton communities are resistant to near-future acidification.  

In the second study, the effect of ocean acidification on both prokaryotic and eukaryotic 

biofilm communities was investigated at the Shikine-Jima CO2 seep system in Japan. The 

composition of both prokaryotic and eukaryotic communities was profoundly affected by 

ocean acidification through early successional stages, though these responses were not 

associated with shifts in community diversity or evenness. Notably, the relative abundance 

of the nuisance algae Prymnesium sp. and Biddulphia biddulphiana were enhanced under 

high CO2 conditions. These findings suggest that benthic biofilm communities may be 

vulnerable to near-future ocean acidification, and that changes in biofilm community 

composition may contribute to the reorganisation of coastal ecosystem observed at CO2 

seeps globally.  

In its entirety, this thesis significantly contributes to our understanding of the spatial 

dynamics of marine microbial communities by revealing the highly deterministic nature of 

bacterioplankton community assembly in the coastal waters and central gyre of the South 
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Pacific Ocean. Furthermore, the findings of this thesis highlight the dominance of 

stochastic processes in structuring marine protist communities across short spatial scales, 

which may contribute to challenges in correlating abiotic environmental variables with 

marine protist community composition through space. The resistance of bacterioplankton 

communities to ocean acidification at the fringe of the South Pacific Gyre, and subtle 

responses to ocean acidification at the ultra-oligotrophic centre of the South Pacific Gyre 

broadly support the notion that bacterioplankton communities are resilient to near-future 

ocean acidification. In contrast, the composition of both prokaryotic and eukaryotic biofilm 

communities was profoundly affected by ocean acidification, leading to the proliferation 

of harmful algae with potentially severe consequences for coastal marine environments.  
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Chapter 1: Introduction 
 
 
1.1 Marine microbial community structure and function 
 

1.1.1 Microbial diversity 

 

Microbes dominate marine ecosystems by both abundance and biomass (Whitman et al., 
1998; Biard et al., 2016). A single microliter of surface seawater can contain up to 10 

heterotrophic protists, 10 photosynthetic protists, 100 cyanobacteria, and 1000 

heterotrophic bacteria (Azam and Malfatti, 2007). The vast microbial diversity of the 

marine environment has long been recognised, yet estimates of taxonomic richness 

continue to increase with progressive surveying and technological developments (Pedrós-

Alió, 2006; de Vargas et al., 2015; Sunagawa et al., 2015).  

On a global scale, the phototrophic component of protist communities in the marine 

environment is dominated by diatoms, haptophytes (including coccolithophores), and 

chlorophytes (de Vargas et al., 2015; Malviya et al., 2016; Piredda et al., 2018), while the 

heterotrophic component of protist communities is dominated by radiolarians, excavata, 

ciliates, and other marine alveolates (de Vargas et al., 2015; Biard et al., 2017). 

Dinoflagellates are a highly abundant and diverse component of marine protist 

communities, and possess a range of trophic strategies, including phototrophy, mixotrophy, 

heterotrophy, parasitism, and mutualism (Le Bescot et al., 2016; Faure et al., 2019). An 

estimated 150,000 distinct protist operational taxonomic units (OTUs) occupy the photic 

ocean (de Vargas et al., 2015). 

Prokaryotic communities (bacteria and archaea) in the marine environment are dominated 

by Alphaproteobacteria and Gammaproteobacteria (Sunagawa et al., 2015). The 

genomically streamlined alphaproteobacterial SAR11 clade and gammaproteobacterial 

SAR86 clade are amongst the most abundant free-living marine bacteria and have a 

cosmopolitan distribution in the marine environment (Dupont et al., 2012; Sunagawa et al., 
2015; Giovannoni, 2017). Bacteroidetes are the most abundant heterotrophic bacteria 

following Alphaproteobacteria and Gammaproteobacteira (Sunagawa et al., 2015), and are 

associated with productive marine environments suited to their predominantly particle 
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attached lifestyle (Fernández-Gómez et al., 2013). Cyanobacteria are the only phylum of 

prokaryotic oxygenic photoautotrophs, and represent a substantial component of 

prokaryotic communities in the marine environment (Sunagawa et al., 2015; Farrant et al., 
2016). The cyanobacterial genera Synechococcus and Prochlorococcus are cosmopolitan 

in their distribution, excluding polar environments, but are particularly concentrated at 

tropical and subtropical latitudes (Flombaum et al., 2013). Marine archaea represent a 

consistent minor component of prokaryotic communities in the photic ocean, though 

ammonia-oxidising Thaumarchaeota represent a larger component of prokaryotic 

communities in the mesopelagic zone (Sunagawa et al., 2015; Santoro et al., 2019). An 

estimated 37,470 distinct prokaryotic OTUs occupy the epipelagic and mesopelagic ocean 

(Sunagawa et al., 2015). 

 
 
1.1.2 Microbial primary production 

 

Phytoplankton (including photosynthetic protists and prokaryotes) account for an estimated 

0.2% of the total photosynthetically active carbon biomass on Earth (Field, 1998). 

However, as a result of their rapid turnover rates, these organisms are responsible for 

approximately 46-50% of global primary production (Field, 1998; Behrenfeld et al., 2001), 

equating to the fixation of ~39-50 Pg C yr-1 (Field, 1998; Rousseaux and Gregg, 2013). 

Phytoplankton primary production is greatest in high-latitude and upwelling regions, yet 

subtropical and tropical regions are major contributors to total primary production due to 

their vast area (Rousseaux and Gregg, 2013).  

Rousseaux & Gregg (2013) coupled satellite-derived ocean colour data with the NASA 

Ocean Biogeochemical Model to partition marine primary production between major 

phytoplankton groups. On a global scale, they estimated that diatoms accounted for over 

50% (20.3 Pg C yr-1), coccolithophores accounted for 21% (8.0 Pg C yr-1), chlorophytes 

accounted for 17% (6.8 Pg C yr-1), and cyanobacteria accounted for 10% (4.0 Pg C yr-1) of 

phytoplankton primary production. The contribution of each phytoplankton group to total 

primary production varied substantially between regions. Diatoms were the dominant 

primary producers in high-latitude regions, accounting for ~89% of carbon fixation in the 

Southern Ocean. Coccolithophores were important primary producers in temperate and 

subtropical ocean basins, accounting for ~29% of carbon fixation in the South Pacific. 

Chlorophytes played a large role in equatorial regions, accounting for ~42% of carbon 

fixation in the equatorial Atlantic Ocean. Finally, cyanobacteria contributed significantly 
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to primary production in subtropical and equatorial regions, where they accounted for up 

to 19% of carbon fixation (Rousseaux and Gregg, 2013). 

Remote sensing techniques provide key insights into phytoplankton carbon fixation on a 

global scale. However, estimates of phytoplankton carbon fixation vary according to the 

specific methods employed, highlighting that substantial uncertainty surrounds these 

estimates (Blondeau-Patissier et al., 2014; Lee et al., 2015). For example, Flombaum et al. 
(2013) estimate that cyanobacteria account for approximately 25% of marine primary 

production based on direct measurements of carbon fixation rates, in comparison to 10% 

as estimated by Rousseaux & Gregg (2013) using remote sensing techniques. Nonetheless, 

these data demonstrate the enormous contribution of marine phytoplankton to global 

carbon fixation and outline the relative contributions of major phytoplankton groups.  

 

 

1.1.3 Marine carbon cycling 
 
Phytoplankton primary production is classically transferred to higher trophic level through 

direct zooplankton grazing, and the subsequent consumption of zooplankton by fish and 

other large marine organisms (Pomeroy, 1974). However, a large fraction of 

phytoplankton-derived organic carbon is ultimately converted to dissolved organic matter 

(DOM) through exudation, cell lysis, and the breakdown of dead cells by extracellular 

enzymes (Azam and Malfatti, 2007). This DOM, only accessible to heterotrophic bacteria 

and archaea (Azam and Malfatti, 2007), is either remineralised or transferred to higher 

trophic levels through the marine microbial loop (Azam et al. 1983; Fig. 1.1).  

The marine microbial loop commences with the uptake of phytoplankton-derived DOM by 

heterotrophic bacteria and archaea, which act as a food source for protist grazers. Protist 

grazers are consumed by zooplankton, facilitating the transfer of organic carbon to higher 

trophic levels. Between 60 and 99% of DOM assimilated by heterotrophic bacteria and 

archaea is respired (Del Giorgio and Cole, 1998; Reinthaler and Herndl, 2005; Reinthaler 

et al., 2005; Alonso-Sáez et al., 2007), though these values can be substantially lower under 

certain circumstances (Baltar et al., 2015b). Thus, phytoplankton-derived organic carbon 

has multiple routes of transfer to higher trophic levels, but respiratory carbon loss is greatest 

through the marine microbial loop. 

A minor proportion of phytoplankton-derived organic carbon escapes the marine microbial 

loop (Azam and Malfatti, 2007), primarily through the formation and sinking of aggregates 

(Turley and Stutt, 2000). Between 15 and 20% of phytoplankton-derived organic carbon is 
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exported to the oceans’ interior, where it remains for hundreds to thousands of years based 

on deep water residence time (Siegel et al., 2016). Approximately 0.3% of phytoplankton-

derived organic carbon is exported to deep sea sediments, where it is sequestered on 

geological timescales (Dunne et al., 2007). The efficiency of the marine microbial loop 

plays a key role in modulating oceanic carbon flux, and consequently the global carbon 

cycle (Azam and Malfatti, 2007).  

 

 

 
 

Figure 1.1 The marine microbial food web. Most carbon fixed through phytoplankton primary production 
becomes DOM, which is utilised by marine bacteria and archaea. The majority of assimilated DOM is 
remineralised through respiration by bacteria and archaea, but a small proportion is returned to the marine 
food web through protist grazing on heterotrophic bacteria and archaea, and subsequent zooplankton grazing 

on heterotrophic protists. The red dotted line indicates the route of phytoplankton-derived organic carbon 
through the marine microbial loop. Adapted from Azam & Malfatti (2007). 
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1.1.4 The relationship between marine microbial community structure and function 
 
Marine protists are highly diverse, illustrated by the 150,000 protist operational taxonomic 

units identified in a global survey of the sunlit ocean (de Vargas et al., 2015).  Vast 

morphological, physiological, and behavioural diversity exists in marine protists, often 

below the species level (Worden et al., 2015; Keeling and del Campo, 2017). Consequently, 

the taxonomic structure of marine protist communities influences community function, 

including primary production and carbon cycling (Dutkiewicz et al., 2015; Worden et al., 
2015). For example, carbon export can be expedited by the presence of diatoms (Leblanc 

et al., 2018; Tréguer et al., 2018), radiolarians (Gutierrez-Rodriguez et al., 2018), and 

coccolithophores (Iversen and Ploug, 2010), which form heavy biogenic structures that 

increase the sinking velocity of aggregates. The specific composition of diatom 

communities influences their contribution to carbon export, due to the morphological and 

physiological distinctions between species (Kemp and Villareal, 2018; Tréguer et al., 
2018). Furthermore, nutrient acquisition strategies differ between phytoplankton taxa 

(Beltrán-Heredia et al., 2017; Berthelot et al., 2018) which can influence overall ecosystem 

productivity. Ecosystem level investigations demonstrate that phytoplankton productivity 

is linked with community structure in marine environments (Blais et al., 2017; Mayot et 
al., 2017; Talaber et al., 2018).  Advances in single-cell genomic techniques have revealed 

high levels of functional diversity amongst closely related heterotrophic protists 

(Seeleuthner et al., 2018; Strassert et al., 2018), suggesting that the specific composition 

of heterotrophic protist communities may influence the flow of carbon through marine food 

webs. Indeed, protist community structure has been demonstrated as an excellent proxy of 

community function in freshwater systems (Grossmann et al., 2016).   

Marine prokaryotes are also highly diverse (Sunagawa et al., 2015). The structure of 

prokaryotic communities in the marine environment is often predictable based on 

environmental conditions, which is likely to result from narrow niches and low levels of 

functional redundancy within these communities (Fuhrman, 2009). Heterotrophic marine 

bacteria possess a diverse range of mechanisms for the acquisition and utilisation of organic 

carbon (Reintjes et al., 2018; Zhang et al., 2018) and other resources (Bryson et al., 2017). 

Galand et al. (2018) show that the taxonomic diversity of prokaryotic communities in the 

marine environment is well correlated with functional diversity, based on metagenomic 

profiling of microbial communities in the Mediterranean Sea. These data indicate that 

minimal functional redundancy exists in marine prokaryotic communities. These findings 

contrast with evidence of functional redundancy in marine prokaryotic communities from 
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global surveys (Louca et al., 2016). However, Louca et al. (2016) screened prokaryotic 

communities for a predefined set of functional traits rather than surveying the broader 

functional diversity of these communities, and consequently their data are limited to 

indicating the ubiquitous nature of key metabolic functions in marine prokaryotic 

communities. Nonetheless, evidence of functional redundancy in prokaryotic communities 

has been established across a range of environments (Martiny, 2015; Louca, Polz, et al., 
2018) though the extent of function redundancy in marine prokaryotic communities 

remains a key area of investigation.  Guidi et al. (2016) show that the composition of 

prokaryotic communities has a strong influence on carbon export in the oligotrophic ocean, 

and Landa et al. (2015) show that prokaryotic community composition influences carbon 

cycling during phytoplankton blooms, highlighting the important functional implications 

of prokaryotic community composition in the marine environment.  

The structure and function of prokaryotic and protist communities in the marine 

environment are fundamentally linked and have implications for marine food webs and 

global biogeochemical cycling (Nemergut et al., 2014). Consequently, understanding the 

factors which govern the structure of these communities through space and time is of 

paramount importance, as the structure of microbial communities inevitably impacts key 

functions such as primary production and carbon cycling. 

 

 

1.2 Marine microbial community assembly 
 
Community ecology aims to unravel the factors which underpin the abundance and 

distribution of species through space and time. Classical theories have characterised 

community assembly as either niche-based (exclusively deterministic) or neutral 

(exclusively stochastic) (Hubbell 2001). Niche-based community assembly theories posit 

that the community composition and diversity is deterministically controlled by 

interactions between species and their environment, and interactions between species 

themselves (Vellend, 2010). In contrast, neutral community assembly theories posit that 

the community composition and diversity is stochastically controlled through demographic 

processes, independent of species traits (Hubbell, 2001). More recently, it has been 

accepted that communities assemble through a combination of deterministic and stochastic 

processes, and investigating the relative importance of these processes has become a central 

focus in community ecology (Chase and Myers, 2011; Vellend et al., 2014).  
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Vellend (2010) highlighted that community ecology was becoming an increasingly 

convoluted field of research and provided a conceptual framework to facilitate hypothesis 

driven lines of investigation incorporating both stochastic and deterministic processes. 

Borrowing from the four major processes in population genetics (selection, gene flow, drift, 

mutation), Vellend proposed that communities are assembled through a combination of 

selection, dispersal, drift, and speciation (Table 1.1). While this framework is very general, 

it has the potential to serve the same function as analogous theory in population genetics 

and has been widely adopted by community ecologists (830 citations as of 17.01.2019). 

 
Table 1.1 Microbial community assembly processes according to Vellend’s conceptual framework (Vellend, 
2010), adapted from Zhou & Ning (2017). 
 

Process Definition 

Selection Deterministic process which shapes community structure due to fitness differences 
between organisms, including both abiotic conditions and biotic interactions 
 
 

Dispersal Movement and colonization of individual organisms from one location to another 
location, through active or passive mechanisms 

 
 

Drift Random changes in the relative abundance of different organisms within a 
community due to stochastic demographic processes 
 
 

Speciation 
(Diversification) 

The emergence of new genetic variation through evolutionary processes 

 

 

The value of Vellend’s conceptual framework, with minor adaptations, was quickly 

recognised by microbial ecologists (Hanson et al., 2012; Stegen et al., 2013; Zhou and 

Ning, 2017). The most prominent adaptation was the replacement of speciation with 

diversification, to avoid complexities associated with microbial species definitions and to 

acknowledge the ecological relevance of genetic diversity below species resolution (Zhou 

and Ning, 2017; Caron and Hu, 2018). Methods to partition the relative influence of 

selection, dispersal, drift, and diversification on microbial community assembly have 

recently emerged (Stegen et al., 2013, 2015; Wang et al., 2013; Dini-Andreote et al., 2015). 

These methods, combined with the vast availability of high-throughput amplicon 

sequencing derived profiles of microbial community composition, have significantly 

advanced our understanding of microbial community assembly across a range of systems 
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(Nemergut et al., 2013; Zhou and Ning, 2017). For example, Valverde et al. (2014) and 

Tripathi et al. (2018) showed that deterministic processes become increasingly important 

in microbial communities under abiotic stress. Liao et al. (2016) demonstrated that 

deterministic processes have a greater influence on habitat specialists, while stochastic 

processes have a greater influence on habitat generalists. Graham et al. (2017) found that 

deterministic processes are able to overwhelm the influence of dispersal in highly 

connected aquatic environments, and Graham and Stegen (2017) illustrated that 

communities assembled primarily through deterministic processes are more 

biogeochemically efficient.  

Despite the rapid increase in published studies investigating microbial community 

assembly processes (Zhou and Ning, 2017), few studies have been conducted in the marine 

environment. Investigations of marine sediments consistently show that deterministic 

processes dominate prokaryotic community assembly (Meyerhof et al., 2016; Petro et al., 
2017; Starnawski et al., 2017). However, investigations of pelagic environments show that 

prokaryotic community assembly can vary from highly deterministic (Logares et al., 2018), 

to a more even balance between stochastic and deterministic processes (Wu et al., 2017a; 

Mo et al., 2018). Comparisons of community assembly processes between prokaryotes and 

protists also display contrasting results in the marine environment. Logares et al. (2018) 

showed that while prokaryotic community assembly is highly deterministic, stochastic 

processes dominate protist community assembly in marine and freshwater Antarctic lakes. 

Conversely, Wu et al. (2017a) showed that the ratio of deterministic to stochastic processes 

is greater in protists than in prokaryotes in the East China Sea. Consequently, substantial 

further investigation is necessary to advance our understanding of the ecological processes 

which underpin microbial community assembly in the marine environment. This 

knowledge will significantly contribute to our ability to predict how microbial communities 

are likely to respond to environmental change (Stegen et al., 2018). 

 

 

1.3 Marine microbial community profiling using high-throughput 
sequencing 
 

Victor Smetacek commented that while terrestrial ecologists studying macroorganisms can 

immerse themselves in habitats and directly observe the organisms which they study, 

marine microbial ecologists cannot, adding a degree of abstraction to our understanding of 
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these systems (Smetacek, 2018). Traditionally, investigations of prokaryotic communities 

have relied on the generation of bacterial 16S rRNA gene clone libraries followed by 

Sanger sequencing, which only succeeds in capturing a small proportion of the diversity 

present in these communities (Lovejoy et al., 2006). Investigations of protist community 

composition traditionally rely on taxonomy-based light microscopy analyses, but these 

techniques require expert taxonomists and are prone to observer effects (Moreira and 

López-García, 2002; Silva, 2008). Furthermore, light microscopy is not always sufficient 

to distinguish between ecologically relevant protists, as cryptical species are pervasive 

(Smayda, 2011). More recently, molecular tools have been employed for profiling both 

prokaryotic and protist communities (Hugerth and Andersson, 2017). Denaturing gradient 

gel electrophoresis (Muyzer et al., 1993), terminal restriction fragment length 

polymorphism (Liu et al., 1997), and automated ribosomal intergenic space analysis (Fisher 

and Triplett, 1999) allow the comparison of general patterns in microbial community 

composition but offer limited insights into the precise taxonomic composition of these 

communities. Microarrays offer greater taxonomic insights in the context of microbial 

community profiling but are limited to screening for a predefined cohort of taxa 

(Ehrenreich, 2006). The arrival of high-throughput sequencing technologies revolutionised 

our ability to profile microbial communities in high depth and taxonomic resolution (Sogin 

et al., 2006; Caporaso et al., 2011).  

High-throughput amplicon sequencing profiles of microbial communities are based on 

polymerase chain reaction (PCR) amplified marker gene fragments originating from 

genomic DNA extracted from environmental samples. The small subunit (SSU) ribosomal 

RNA (rRNA) gene (prokaryotes: 16S rRNA gene, eukaryotes: 18S rRNA gene) has been 

adopted as a universal marker gene for both prokaryotic and protist communities due to its 

presence across all taxa, lack of horizontal gene transfer, and the presence of hypervariable 

regions flanked by highly conserved regions providing reliable binding sites for universal 

PCR primers (Hugerth and Andersson, 2017). Assigning taxonomic identities to resulting 

SSU rRNA gene sequences relies on cross-referencing with sequence databases which are 

available for both prokaryotes (DeSantis et al., 2006; Quast et al., 2013; Cole et al., 2014) 

and protists (Guillou et al., 2013; Quast et al., 2013; Cole et al., 2014; Decelle et al., 2015). 

The selection of primers, library preparation protocols, and sequencing analysis protocols 

in high-throughput sequencing studies can impact the profile of microbial communities 

obtained, and consequently universal guidelines have been developed to allow comparisons 

to be drawn between studies on a global scale (Caporaso et al., 2012; Thompson et al., 
2017; Knight et al., 2018).  
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Marine microbial ecologists were among the first to implement high-throughput amplicon 

sequencing for profiling microbial communities (Sogin et al., 2006). These techniques have 

provided novel insights into the global diversity and distribution of marine prokaryotes 

(Sunagawa et al., 2015; Santoro et al., 2019) and protists (de Vargas et al., 2015; Malviya 

et al., 2016; Biard et al., 2017; Faure et al., 2019). Moreover, these techniques have 

revealed the temporal dynamics of marine microbial communities across multiple scales, 

from daily succession during phytoplankton bloom events (Needham and Fuhrman, 2016) 

to interannual cycles in community composition (Ward et al., 2017). High-throughput 

amplicon sequencing studies have also begun to unveil the complex nature of microbial 

interactions in the marine environment (Lima-Mendez et al., 2015) and the influence of 

microbial community structure on marine carbon cycling (Guidi et al., 2016).  

 
 
1.4 Ocean acidification 
 

Anthropogenic CO2 emissions have driven atmospheric CO2 concentrations from 

preindustrial levels of 280 ppm, to present day levels exceeding 400 ppm (Stocker, 2014). 

Present day atmospheric CO2 concentrations are at their highest level in the past 800,000 

years (Lüthi et al., 2008). Under the intergovernmental panel on climate change (IPCC) 

representative concentration pathway (RCP) 8.5 ‘business as usual’ emissions scenario, 

atmospheric CO2 concentrations are projected to reach 1,000 ppm by 2100 (Stocker, 2014). 

The accumulation of anthropogenic CO2 in the atmosphere has contributed to the definition 

of the Anthropocene, a new geological epoch characterised by anthropogenic remodelling 

of the biosphere (Lewis and Maslin, 2015).  

Approximately 30% of anthropogenic CO2 emissions are taken up by the ocean (Sabine et 
al., 2004), reducing surface ocean pH and shifting the marine carbonate system through a 

process termed ‘ocean acidification’ (Fig. 1.2; Caldeira & Wickett 2003, Doney et al. 
2009). Mean surface ocean pH has decreased by 0.1 units from 8.2 to 8.1 since the pre-

industrial era and is projected to decrease by a further 0.3 units by the end of this century 

(Hoegh-Guldberg et al., 2014), corresponding to a 150% increase in H+ ion concentration 

(Doney et al., 2009). Atmospheric CO2 reacts with water altering the marine carbonate 

system according to the following equation: 

 

CO#	(&'()*) ⇋ CO#	(&-) + H#O	 ⇋ 	HCO0		1 +	H2 ⇋ CO0		#1 +	2H2  
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The dissolution of CO2 into the surface ocean leads to an increase in the concentration of 

CO2 and bicarbonate ions (HCO3-), and a decrease in the concentration of carbonate ions 

(CO32-) in seawater (Fig. 1.2). The projected mean surface ocean pH decrease of 0.3 units 

by the end of the century corresponds with a 50% decrease of CO32- ion concentrations (Orr 

et al., 2005). This decrease in CO32- ion concentration will reduce the availability of 

calcium carbonate in the marine environment, which has important implications for 

organisms that form calcareous structures (Hoegh-Guldberg et al., 2014).  

 

 

 
 
Figure 1.2 (a) The dissolution of atmospheric carbon dioxide into the surface ocean leads to the formation of 
carbonic acid, which dissociates to form bicarbonate ions, carbonate ions, and hydrogen ions. (b) Bjerrum 

plot showing the concentration of different inorganic carbon species as a function of pH (adapted from 
Mccoy, 2013).  

 

 

Ocean acidification is not occurring in isolation, but rather within a wider framework of 

oceanic climate change. The increased concentration of atmospheric CO2 and other 

greenhouse gases has driven a temperature increase of 0.11ºC per decade in the surface 

ocean (Hoegh-Guldberg et al., 2014). This warming leads to increased stratification of 

pelagic environments, reducing vertical nutrient supply to the surface ocean and reducing 

the concentration of dissolved oxygen in the ocean interior (Hoegh-Guldberg et al., 2014). 

Thus, it is important to consider how these complex environmental changes will interact 

(Boyd et al., 2016). 
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1.5 Marine microbial responses to ocean acidification 
 

The responses of marine microbes to ocean acidification will have profound implications 

for marine carbon cycling, as the magnitude of carbon fixation and export is linked to the 

structure of microbial communities in the marine environment. Significant research effort 

has been dedicated to understanding how marine microbial communities, including both 

photoautotrophic and heterotrophic components, will respond to ocean acidification.  

Joint et al. (2011) hypothesised that marine prokaryotic communities may be resilient to 

ocean acidification as these organisms already experience large fluctuations in pH across a 

range of spatiotemporal scales, and consequently possess sufficient physiological plasticity 

to tolerate projected decreases in mean surface ocean pH. Liu et al. (2010) conducted a 

meta-analysis of prokaryotic community responses to ocean acidification, reporting 

significant effects of ocean acidification on prokaryotic community diversity and structure 

in some studies and no effects in others. Since these seminal papers, studies investigating 

the impact of ocean acidification on prokaryotic community diversity and composition 

employing CO2 manipulation experiments have reported minimal effects in the Arctic 

Ocean (Newbold et al., 2012; Roy et al., 2013; Zhang et al., 2013; Oliver et al., 2014; 

Hartmann et al., 2016; Wang et al., 2016), Southern Ocean (Maas et al., 2013; Donahue et 
al., 2019), Pacific Ocean (Burrell et al., 2017), Mediterranean Sea (Baltar et al. 2015a), 

and Baltic Sea (Lindh et al., 2013; Bergen et al., 2016). While these studies report little to 

no effect of ocean acidification on prokaryotic community diversity and composition, there 

is a growing body of evidence demonstrating that ocean acidification can interact with 

temperature, nutrient availability, dissolved organic carbon supply, and other 

environmental variables to restructure prokaryotic communities in the marine environment 

(Lindh et al., 2013; Bergen et al., 2016; Sala et al., 2016).  

The effect of ocean acidification on phytoplankton is challenging to predict, as different 

species employ distinct carbon concentrating mechanisms (CCMs; Reinfelder 2011, 

Mackey et al. 2015). These molecular mechanisms concentrate CO2 around RuBisCO for 

carbon fixation, typically by employing carbonic anhydrases to convert HCO3- to CO2 

(Hopkinson et al., 2011). The increased availability of dissolved CO2 projected by the end 

of the century may reduce the necessity of CCMs, leading to downregulation of their 

activity (e.g. reduced expression of carbonic anhydrases; Li et al. 2015). Downregulation 

of CCMs reduces the energetic cost of carbon fixation, leading to the reorganisation of 

species energy budgets (Mackey et al., 2015). The distinct inorganic carbon utilization 
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strategies and CCMs of different phytoplankton species may lead to shifts in competitive 

interactions under elevated CO2 conditions, with the potential to restructure phytoplankton 

communities (Mackey et al., 2015). Indeed, meta-analyses reveal a diverse range of 

physiological responses to ocean acidification across major phytoplankton groups 

(Dutkiewicz et al., 2015). In addition to these photophysiological effects, calcifying 

phytoplankton such as coccolithophores are expected to be physiologically vulnerable to 

ocean acidification as the reduced availability of calcium carbonate can alter the energetic 

cost of producing and maintaining their calcareous structures (Beaufort et al., 2011; Bach 

et al., 2013). However, physiological responses of coccolithophores to ocean acidification 

vary between species (Meyer and Riebesell, 2014) and between different strains of 

conspecifics (Langer et al., 2009; Müller et al., 2015).  

Incubation experiments indicate that high CO2 conditions can lead to an increased 

abundance of large centric diatoms in the Southern Ocean (Feng et al., 2010; Hoppe et al., 
2013; Trimborn et al., 2017) and Atlantic Ocean (Eggers et al., 2014). These findings align 

with physiological studies which indicate that large diatoms are able to capitalise on 

increased CO2 concentrations more effectively than smaller diatoms (Wu et al., 2014). In 

contrast, incubation experiments in the Arctic Ocean indicate subtle shifts in community 

structure from large diatoms and coccolithophores, to smaller diatoms and picoeukaryotes 

(Newbold et al., 2012; Schulz et al., 2013, 2017; Hoppe et al., 2018). Comparable 

enhancement of picoeukaryote abundance under elevated CO2 conditions has been 

demonstrated in the Baltic Sea (Bach et al., 2016; Crawfurd et al., 2017). Regional 

differences in phytoplankton community responses to ocean acidification may originate 

from differences in the composition of communities at the beginning of each experiment 

(Eggers et al., 2014) or the interactions between ocean acidification and other 

environmental variables including temperature and iron availability (Hoppe et al., 2013, 

2018; Trimborn et al., 2017).  

Investigations of the effect of ocean acidification on heterotrophic protists are less common 

than studies investigating phytoplankton. Early studies report no significant effect of CO2 

on heterotrophic protist community composition (Suffrian et al., 2008; Aberle et al., 2013). 

However, Hancock et al. (2018) demonstrated species-specific responses of 

choanoflagellates to elevated CO2 conditions in a Southern Ocean mesocosm experiment. 

Further investigation of the responses of heterotrophic protists to ocean acidification are 

warranted due to the important role these organisms play in the marine microbial loop 

(Worden et al., 2015).   



Chapter 1: Introduction 
 
 

 14 

1.6 Thesis Outline 
 

This thesis has two major aims. The first aim is to investigate the ecological processes 

which underpin microbial community assembly in the marine environment, as this 

knowledge predicates our ability to understand microbial community responses to 

environmental change (Stegen et al., 2018). The second aim is to investigate the responses 

of marine microbial communities to ocean acidification employing high-throughput 

amplicon sequencing techniques. To this end, the proceeding chapters are organised as 

outlined below. 

Chapter 2 describes the microbial biogeography of the oligotrophic South Pacific Gyre, 

which is under-sampled in global surveys of marine microbial communities (Sunagawa et 
al., 2015). The ecological processes which underpin microbial community assembly in the 

region are unveiled using an ecological null model approach (Stegen et al., 2013), and the 

effects of key environmental parameters on the balance between deterministic and 

stochastic processes are quantified. Moreover, I discuss potential mechanisms leading to 

the enhanced taxonomic richness of the deep chlorophyll maximum when compared with 

surface waters.   

Chapter 3 describes the distribution of both prokaryotes and protists across the dynamic 

Southland Front System, a compression of the Subtropical Frontal Zone located east of 

New Zealand’s South Island.  Employing high-spatial resolution sampling, the ecological 

processes which structure prokaryotic and protist communities across the region are 

investigated and differences between prokaryotic and protist community assembly are 

discussed. 

Chapter 4 investigates the response of prokaryotic communities to ocean acidification and 

warming at the fringe and at the centre of the South Pacific Gyre. These oligotrophic 

regions have been understudied in the context of ocean acidification despite their key role 

in marine carbon cycling. Profiles of prokaryotic community composition are 

complemented with flow-cytometry and bacterial production data to predict how 

prokaryotic community structure and function may respond to future conditions in the 

region.  

Chapter 5 determines the responses of marine biofilm communities to ocean acidification 

at a volcanic CO2 seep system located in Shikine-Jima, Japan. Trends in biofilm diversity, 

evenness, and composition are presented, and discussed in the context of previous studies 

at CO2 seeps. The ecological mechanisms which underpin differences in biofilm 
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community composition between control and high CO2 sites and the potential enhancement 

of toxin-producing protists under high CO2 conditions are discussed. 

Chapter 6 summarises the findings of the preceding four chapters and discusses these 

findings in relation to one another and in the wider context of both marine microbial 

community assembly and marine microbial community responses of ocean acidification, 

before areas for further investigation are outlined.   

 
 
1.7 Author Contributions 
 
Table 1.2 Summary of author contributions to each chapter (RA = Ro Allen, LJH = Linn J. Hoffmann, TCS 
= Tina C. Summerfield, MJL = Matthew J. Larcombe, CL = Cliff Law, KC = Kim Currie, ZL = Ziva 
Louisson). 
 

Chapter Writing Editing Sample 
Collection Sequencing Sequence 

Processing 
Statistical 

Design 
Statistical 
Analyses 

Chapter 1 RA RA, LJH, TCS - - - - - 

Chapter 2 RA RA, LJH, TCS, 

MJL 

TCS RA, ZL RA RA RA 

Chapter 3 RA RA, LJH, TCS RA, KC RA RA RA RA 

Chapter 4 RA RA, LJH, TCS, 

CL 

LJH, TCS TCS RA RA RA 

Chapter 5 RA RA, LJH, TCS RA RA RA RA RA 

Chapter 6 RA RA, LJH, TCS - - - - - 

 

Additional co-authors of Chapter 5 are included for provision of logistical support and site 

access at the Shikine-Jima CO2 seep system. 
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Chapter 2: Selection dominates microbial 
community assembly in the oligotrophic ocean 
 
 
2.1 Abstract 
 

Oligotrophic subtropical gyres play a key role in global biogeochemical cycles. In these 

regions microbial communities govern primary production and carbon and nutrient cycling, 

yet little is known about the ecological processes which underpin assembly of these 

microbial communities. I investigated microbial biogeography and community assembly 

processes at three depths over a ~2,000 km longitudinal transect of the South Pacific Gyre. 

Microbial communities in the surface waters (15 m and 50 m) were homogeneous across 

the transect, whilst communities at the deep chlorophyll maximum were distinct from the 

surface waters and displayed greater compositional variability. Homogeneous selection 

was the dominant community assembly process in both the surface waters (100%) and at 

the deep chlorophyll maximum (85.96%), though variable selection (6.43%) and stochastic 

processes (7.60%) had a minor influence at the deep chlorophyll maximum. Homogeneous 

selection (55.89-57.11%), dispersal limitation (33.42-33.58%), and variable selection 

(9.47-9.77%) influenced community assembly between the surface waters and the deep 

chlorophyll maximum. Temperature was the most important environmental modulator of 

the balance between stochastic and deterministic assembly processes. These findings 

demonstrate that microbial community assembly in the oligotrophic ocean is highly 

deterministic, suggesting that these communities may respond predictably to 

environmental change. 
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2.2 Introduction 
 

Oligotrophic subtropical gyres cover approximately 40% of Earth’s surface by area, and 

are expanding globally (Polovina et al., 2008). These regions represent the largest 

continuous biomes on Earth (Raimbault et al., 2008), and have been described as ocean 

deserts due to their characteristically low nutrient concentrations and productivity (Irwin 

and Oliver, 2009). Nonetheless, these regions account for ~20% of total marine primary 

production due to their vast size (Hoegh-Guldberg and Poloczanska, 2017). Oligotrophic 

subtropical gyres are microbially dominated systems; cyanobacteria are the major primary 

producers (Grob et al., 2007; Flombaum et al., 2013), whilst heterotrophic bacteria and 

archaea modulate carbon and nutrient cycling (Azam and Malfatti, 2007). Carbon export 

in oligotrophic subtropical gyres is closely related to microbial community composition 

(Guidi et al., 2016), supporting recent evidence that microbial community function is 

strongly correlated with taxonomic composition in the marine environment (Galand et al., 
2018). Consequently, understanding the ecological processes which underpin microbial 

community assembly through space and time in the oligotrophic ocean is of great 

importance.  

Ecological theories describing community assembly have classically been categorised as 

stochastic (neutral) (Hubbell, 2001) or deterministic (niche-based) (Chase and Leibold, 

2003). This dichotomy has been studied extensively in the macroecological context, and 

has polarised ecologists (Vellend et al., 2014). However, stochastic and deterministic 

processes are not mutually exclusive, and the relative balance between these processes has 

received increased attention (Vellend et al., 2014; Zhou and Ning, 2017). Vellend  

proposed the partitioning of community assembly into four major processes (selection, 

dispersal, drift, and speciation), considering both stochastic and deterministic elements 

(Vellend, 2010). Under this framework, selection refers to deterministic changes in local 

community composition due to differences in fitness between species. Dispersal refers to 

the movement of individuals between local communities, and is not an entirely stochastic 

processes, as species traits can affect dispersal ability (Hanson et al., 2012). However, in 

this study dispersal is considered to be a primarily stochastic process, as microbial dispersal 

is predominantly passive (Nemergut et al., 2013). Drift refers to stochastic changes in the 

abundance of species within a local community.  Speciation refers to the emergence of new 

species within a local community, through evolutionary processes. Importantly, speciation 

is expected to have minimal influence on the structuring of local communities between 
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which dispersal is possible (i.e. metacommunities) (Leibold et al., 2004; Stegen et al., 
2013). Vellend’s  partitioning of community assembly processes (Vellend, 2010) lends 

itself well to microbial ecology and provides a suitable framework for investigating the 

balance between stochastic and deterministic processes (Nemergut et al., 2013; Stegen et 
al., 2013).  

Advances in high-throughput sequencing technologies have facilitated global-scale 

surveying of microbial diversity (Sunagawa et al., 2015; Thompson et al., 2017). 

Concurrently, emergent macroecological patterns in microbial communities (Shade et al., 
2018), and the ecological processes which underpin microbial community assembly 

(Hanson et al., 2012; Nemergut et al., 2013; Zhou and Ning, 2017), have become focal 

topics in microbial ecology. The balance between stochastic and deterministic processes in 

microbial community assembly has been investigated across a range of free-living and host-

associated systems, with contrasting results (Stegen et al., 2013; Dini-Andreote et al., 2015; 

Martínez et al., 2015; Graham et al., 2017; Griffin and Wells, 2017; Logares et al., 2018; 

Tripathi et al., 2018). Subsequently, debate still remains about the relative importance of 

these processes, and defining general rules of microbial community assembly remains a 

major challenge. In the marine environment, analysis of metacommunity structure through 

time in the Sargasso Sea shows deviation from purely stochastic community assembly in 

the surface waters but not at 200 m (Vergin et al., 2017). In Chinese coastal bays and the 

East China Sea, respectively, stochastic processes outweigh deterministic processes in 

microbial community assembly (Wu et al., 2017a; Mo et al., 2018). These studies highlight 

that microbial community assembly processes are not conserved between different marine 

ecosystems. 

The South Pacific Gyre is the largest oligotrophic subtropical gyre (Polovina et al., 2008), 

yet little is known about the microbial biogeography of the region, as it has been under-

sampled relative to other marine biomes (Sunagawa et al., 2015; Walsh et al., 2015). 

Moreover, the ecological processes which underpin microbial community assembly in the 

South Pacific Gyre have not been investigated, limiting our ability to predict how these 

communities may respond to oceanic climate change (Stegen et al., 2018). Environmental 

conditions, and therefore selective regimes, in the South Pacific Gyre are homogeneous 

across large horizontal spatial scales and heterogeneous across short vertical spatial scales 

(Ellwood et al., 2018), offering an ideal system in which to investigate microbial 

community assembly processes. 

The microbial biogeography of the oligotrophic South Pacific Gyre was surveyed across 

horizontal (longitude) and vertical (depth) spatial scales during the New Zealand leg of the 
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GP13 GEOTRACES transect (Ellwood et al., 2018; Schlitzer et al., 2018). I then used a 

null model approach (Stegen et al., 2013, 2015) to investigate the relative contribution of 

stochastic and deterministic processes to microbial community assembly.  

 
Table 2.1 Definitions of microbial community assembly processes partitioned according to Stegen et al., 
(2013). ß-nearest-taxon-index (ßNTI) and the modified Raup-Crick metric based on Bray-Curtis dissimilarity 
(RCbray). 

 
Class Process Definition ßNTI RCBray 

Deterministic Homogeneous Selection Consistent selective pressure resulting from consistent 

environmental conditions is the primary cause of 

compositional turnover between a pair of local communities 

 

< -2 - 

Deterministic Variable Selection Divergent selective pressure resulting from divergent 

environmental conditions is the primary cause of 

compositional turnover between a pair of local communities 

 

> +2 - 

Stochastic Homogenising 

Dispersal 

High dispersal rates between a pair of local communities is 

the primary cause of compositional turnover between a pair of 

local communities 

 

< |2| < -0.95 

Stochastic Dispersal Limitation Low dispersal rates between a pair of local communities, 

acting in concert with ecological drift, is the primary cause of 

compositional turnover between a pair of local communities 

 

< |2| > +0.95 

Stochastic Undominated Stochastic dispersal and drift are the primary cause of 

compositional turnover between a pair of local communities 

< |2| < |0.95| 

 

 
 

2.3 Methods 
 
2.3.1 Study area and sampling 

 

During June 2011, samples were collected from the surface waters (15 m and 50 m) and 

the deep chlorophyll maximum (DCM; 109 m – 154 m) at 22 stations spanning a 2 000 km 

longitudinal transect of the oligotrophic South Pacific Gyre (32°S-32°S, 172°W-150°W; 

Fig. 2.1). The oceanic biogeochemistry of the region is described in detail by Ellwood et 
al. (Ellwood et al., 2018), and these data are available through the GEOTRACES 
Intermediate Data Product 2017 (Schlitzer et al., 2018) (TAN1109 GP13). In brief, 

environmental conditions were horizontally consistent across the transect, but varied 
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substantially between depths (Fig. A.1). Surface waters (0-50 m) were characterised by 

extremely low nitrate concentrations (< 20 nmol L-1), which are likely to have limited 

phytoplankton productivity. Phosphate concentrations in the surface waters ranged 

between 30 and 110 nmol L-1 and exceeded concentrations typically considered limiting  

(< 15 nmol L-1) (Moore et al., 2013). Iron concentrations in the surface waters were 

consistently low, ranging between 0.05 and 0.29 nmol L-1. Vertical diffusion was the 

dominant mode of nitrate, phosphate, and iron supply to the surface waters.  The DCM 

received greater vertical diffusive supply of nitrate, phosphate, and iron, than the surface 

waters. Phytoplankton communities at the DCM removed the vast majority of nitrate from 

the water, severely limiting nitrate supply to the surface waters (Ellwood et al., 2018).  

A total of 60 samples were collected from 15 m (n = 20), 50 m (n = 21), and the DCM (n 

= 19), using a winch-lowered SBE 32 Carousel water sampler (Sea-Bird Scientific, 

Bellevue, WA, USA). For bacterial community analyses, 2 l seawater samples were 

immediately filtered through 0.2 µm polyethersulfone filters (Sterlitech, Kent, WA, USA) 

and stored at -80ºC until DNA extraction in 2018. Temperature, salinity, oxygen, and depth 

profile data were recorded from an SBE 911plus CTD (Sea-Bird Scientific, Bellevue, WA, 

USA) integrated into the SBE 32 Carousel water sampler. Nitrate, phosphate, and silicate 

concentrations were sampled from the SBE 32 Carousel water sampler according to 

methods described in Ellwood et al. (Ellwood et al., 2018) (Fig. A.1).



 

  

 
Figure 2.1 MODIS-Aqua satellite derived Chlorophyll a concentrations (4 km resolution; Hu et al., 2012) in the oligotrophic South Pacific Gyre, averaged over Austral Winter 
2011 (doi: 10.5067/AQUA/MODIS/L3B/CHL/2018). Locations of sampling stations are indicated by white-filled red circles. Inset displays a world map, with the cruise path 
indicated by the red line.
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2.3.2 DNA extraction, PCR, and sequencing 

 
Genomic DNA was extracted from each polyethersulfone filter using the DNEasy Plant 

Mini kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. The 

hypervariable V4 region of the 16S ribosomal RNA gene was amplified by PCR using 

universal 16S primers 515F (5′ GTGYCAGCMGCCGCGGTAA) (Parada et al., 2016) and 

806R (5’ GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015) modified with an 

overhang region complementary to Illumina sequencing adapters (Griffith et al., 2017). 

PCR amplifications were performed in triplicate for each sample using the HiFi Hotstart 

PCR kit (KAPA Biosystems, Boston, MA, USA) according to the manufacturer’s 

instructions. The first round PCR protocol consisted of an initial denaturation at 95°C for 

120 s, 25 cycles of denaturation at 98°C for 20 s, annealing at 50°C for 30 s, and extension 

at 72°C for 30 s, with a final extension at 72°C for 60 s. Following first round PCR, 

triplicate PCR products were pooled and purified using the Mag-bind TotalPure NGS kit 

(OMEGA Bio-tek, Norcross, GA, USA) according to the manufacturer’s instructions. 

Purified PCR products were quantified using a Qubit dsDNA High Sensitivity Assay 

(Thermo Fisher Scientific, Waltham, MA, USA) and diluted to 1 ng ul-1. A second round 

of PCR was performed to attach Illumina sequence adapters and indexes. The second round 

PCR protocol consisted of an initial denaturation at 95°C for 120 s, 10 cycles of 

denaturation at 98°C for 20 s, annealing at 60°C for 20 s, and extension at 72°C for 20 s, 

with a final extension at 72°C for 60 s. Finally, second round PCR products were purified, 

quantified, and pooled for sequencing on a single Illumina MiSeq run, returning 2 x 250 

bp paired-end reads (Illumina, San Diego, CA, USA). Sequence data are accessible through 

the EMBL database under accession number PRJEB30061. 
 

 

2.3.3 Sequence processing 

 
Paired-end reads were processed in the R environment (R Core Team, 2013) according to 

the Bioconductor workflow (Callahan et al., 2016). First, sequences were trimmed and 

truncated to remove primers and low-quality reads, respectively. Amplicon sequence 

variants (ASVs) were then resolved at single nucleotide resolution using DADA2 (Callahan 

et al., 2016), which provides higher accuracy and reproducibility in 16S rRNA gene 

sequencing studies when compared with traditional operational taxonomic units (Callahan 

et al., 2017). The removeBimeraDenovo function implemented through the ‘DADA2’ R 



Chapter 2: Selection dominates microbial community assembly in the oligotrophic ocean 
 
 

 24 

package was used to remove chimeric sequences. Taxonomy was assigned to sequences 

using the RDP naïve Bayesian classifier (Wang et al., 2007) against the SILVA release 132 

database (Quast et al., 2013). Sequences which were not classified as bacteria or archaea, 

or were classified as chloroplasts or mitochondria, were excluded. A maximum-likelihood 

phylogenetic tree was then constructed, based on 16S rRNA gene sequences, using the R 

package ‘phangorn’ (Schliep, 2011). Sequence read counts, taxonomic assignments, the 

phylogenetic tree, and associated metadata were assembled as a phyloseq object for 

downstream analyses (McMurdie and Holmes, 2013). Sequence reads were randomly 

subsampled to an even depth of 29,280 reads per sample prior to analysis. Sequence 

processing R scripts are available at https://github.com/ro-allen/geotraces_transect. 

 

 

2.3.4 Microbial biogeography 

 
Shannon diversity (H’) was compared between depths using a one-way ANOVA with 

Tukey’s HSD (α = 0.05). Differences in local community composition were tested between 

depths based on Bray-Curtis dissimilarity using PERMANOVA (Anderson, 2001) 

implemented using the adonis function in the R package ‘vegan’ (Oksanen et al., 2016) (α 

= 0.05). To investigate variability in local community composition at each depth, within-

depth Bray-Curtis dissimilarity was compared between depths using a one-way ANOVA 

and Tukey’s HSD (α = 0.05). Distance-decay relationships between depths were quantified 

using a linear model, based on pairwise Bray-Curtis dissimilarity and the geographic 

distance separating each pair of local communities. Finally, trends in the distribution of 

ASVs across vertical scales were investigated by quantifying the proportion of shared and 

unique ASVs between depths using methods adapted from Schmidt et al. (Schmidt et al., 
2016).   

 

 

2.3.5 Microbial Community Assembly 

 
Patterns in microbial community assembly across horizontal (longitude) and vertical 

(depth) spatial scales in the South Pacific Gyre were examined using a null model approach 

described by Stegen et al. (Stegen et al., 2013, 2015). The approach relies on phylogenetic 

signal in environmental optima, such that close phylogenetic relatives share similar 

environmental optima (validated using the Mantel Correlogram; Fig. A.2) and uses 



Chapter 2: Selection dominates microbial community assembly in the oligotrophic ocean 
 
 

 25 

measures of phylogenetic and compositional turnover between pairs of local communities 

to parse community assembly processes between homogeneous selection, variable 

selection, homogenising dispersal, dispersal limitation, and an undominated scenario 

(Table 2.1). 

First, observed phylogenetic turnover between each pair of local communities was 

calculated as ß-mean-nearest-taxon-distance (ßMNTD) (Webb et al., 2008; Stegen et al., 
2013) using the comdistnt function in the R package ‘picante’ (Kembel et al., 2010): 

 

ßMNTD = 	0.5 +, -./

0/

./12

min6∆./89: +	 , -.9

09

.912

min6∆.98/:< 

 

Where nk is the total number of ASVs in local community k, -./ is the proportion of ASV i 

in local community k, and min6∆./89: is the minimum phylogenetic distance observed 

between ASV i in community k and all ASVs j in local community m. A null model 

distribution of ßMNTD values was calculated by shuffling the tips of the phylogenetic tree, 

and recalculating ßMNTD over 999 randomizations (Stegen et al., 2013). This simulates 

ßMNTD values expected under stochastic (neutral) community assembly.  

For each pair of local communities, observed ßMNTD was compared with the null model 

distribution of ßMNTD using the ß-nearest-taxon-index (ßNTI) metric (Stegen et al., 2013; 

Dini-Andreote et al., 2015): 

 

ßNTI = 	
(ßMNTD?@A − ßMNTD0CDD)

F(ßMNTD0CDD)
 

 

ßNTI > +2 indicated greater than expected phylogenetic turnover and that variable selection 

was the primary assembly process (Table 2.1). ßNTI < -2 indicated less than expected 

phylogenetic turnover and that homogeneous selection was the primary assembly process. 

ßNTI < |2| indicated that phylogenetic turnover did not significantly deviate from the mean 

of the null model distribution (i.e. selection is not the primary community assembly 

process).  

Pairs of local communities where selection was not the primary community assembly 

process (ßNTI < |2|) were further analysed to partition stochastic processes between 

dispersal limitation, homogenising dispersal, and an undominated scenario (Table 2.1), by 

comparing observed Bray-Curtis dissimilarity to a null model distribution of Bray-Curtis 
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dissimilarity (Stegen et al., 2015). The null model distribution of Bray-Curtis dissimilarity 

was calculated by randomly drawing ASVs into a local community until the observed 

richness of that community is reached. The probability of drawing a particular ASV was 

proportional to the number of local communities in which the ASV was observed. Reads 

(individuals) were then randomly drawn into each drawn ASV until the total number of 

reads in the sample was reached (29,280 in all samples). The probability of drawing a read 

of a particular ASV was proportional to the sum of reads represented by that ASV across 

all local communities. Bray-Curtis dissimilarity was then re-calculated, and this 

randomization process was repeated 999 times to generate a null model distribution. 

Observed Bray-Curtis dissimilarity was compared to the null model distribution of Bray-

Curtis dissimilarity using the RCbray metric (Chase et al., 2011; Stegen et al., 2015): 

 

RC@IJK = 	2 M	NO(BC0CDD > 	BC?@A) +	
O(BC0CDD = 	BC?@A)

2
R − 0.5S 

 

Where O(BC0CDD > 	BC?@A) is the proportion of Bray-Curtis null model distribution values 

greater than the observed value, and O(BC0CDD = 	BC?@A) is the proportion equal to the 

observed value. For each pair of local communities, RCbray > +0.95 indicated greater than 

expected community dissimilarity and that dispersal limitation was the primary assembly 

process. RCbray < -0.95 indicated less than expected community dissimilarity and that 

homogenising dispersal was the primary assembly process. RCbray < |0.95| indicated that 

community assembly was not dominated by either selection or dispersal, and that stochastic 

dispersal and drift were the primary assembly processes (undominated) (Stegen et al., 
2015).  

Importantly, the null model approaches described are used to infer the most influential 

process between pairs of local communities, but do not imply the absence of other 

processes (Stegen et al., 2013). The efficacy of ßNTI and RCbray metrics to infer patterns 

in microbial community assembly has been validated in previous studies (Dini-Andreote et 
al., 2015; Stegen et al., 2015).  

To investigate the influence of environmental variables on microbial community assembly 

processes, pairwise differences in z-score transformed temperature, oxygen, salinity, 

nitrate, phosphate, silicate, and depth between samples were calculated. ßNTI scores were 

then regressed against z-score transformed pairwise differences in each environmental 

variable using linear models. 
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All null model analyses were conducted in the R environment, using the R package 

‘picante’ (Kembel et al., 2010) and code adapted from Stegen et al. (Stegen et al., 2013). 

R scripts for these analyses are available at https://github.com/ro-allen/geotraces_transect. 

 

 

2.4 Results 
 

2.4.1 Microbial biogeography 

 
Microbial communities at the DCM (H’: 5.05 ± 0.15) were more diverse than at 15 m (H’: 

4.43 ± 0.10) and 50 m (H’: 4.32 ± 0.09; Tukey’s HSD, both p < 0.001), whilst diversity did 

not differ between 15 m and 50 m (Tukey’s HSD, p > 0.05). Microbial community 

composition was profoundly different between both 15 m and the DCM (PERMANOVA, 

R2 = 0.66, p = 0.001; Fig. 2.2a), and 50 m and the DCM (PERMANOVA, R2 = 0.67, p = 

0.001). Whilst microbial community composition also differed between 15 m and 50 m, 

the effect was much subtler (PERMANOVA, R2 = 0.09, p = 0.001) and separation between 

these depths was difficult to distinguish through principal coordinates analysis (Fig. 2.2a). 

This reflects similar patterns in the abundance of dominant taxa at 15 m and 50 m, but not 

at the DCM (Fig. A.3). Microbial communities at the DCM were more variable than 

communities at 15 m and 50 m (Tukey’s HSD, both p < 0.001; Fig. 2.2b), whilst there was 

no difference in variability between communities at 15 m and 50 m (Tukey’s HSD, p > 

0.05). Distance-decay in Bray-Curtis dissimilarity was weak but significant at 15 m (slope 

= 3.23 x 10-5, R2 = 0.18, p < 0.001), 50 m (slope = 4.55 x 10-5, R2 = 0.30, p < 0.001), and 

the DCM (slope = 1.36 x 10-4, R2 = 0.20, p < 0.001). However, the distance-decay slope 

was approximately three-fold steeper at the DCM (Fig. 2.2c), indicating that microbial 

communities became more dissimilar as the distance between them increased at the DCM 

than in the surface waters.  

A total of 1826 ASVs were identified at the DCM, of which 63.20% were not found in the 

surface waters (Fig. 2.3a). Fewer ASVs were identified at 15 m (1253) and 50 m (1059), 

and a smaller fraction of these ASVs were not found at the DCM (i.e. unique to the surface 

waters; 15 m: 51.00%, 50 m: 48.16%). ASVs unique to the DCM represented 14.99% of 

16S rRNA gene reads at that depth (Fig. 2.3b). ASVs unique to the surface waters 

represented a smaller proportion of 16S rRNA gene reads at 15 m (7.38%) and 50 m 

(6.59%), respectively.  
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Figure 2.2 (a) Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarity between microbial 

communities at 15 m, 50 m, and the DCM of the oligotrophic South Pacific Gyre. 80% of variation is 

explained by the first two axes. (b) Violin plot of Bray-Curtis dissimilarity (inverse scale) between microbial 

communities within each depth. Black points represent the mean value, bars represent ±1 standard deviation, 

and letters represent significantly different groups (Tukey’s HSD, α = 0.05). (c) Distance-decay plot of Bray-

Curtis dissimilarity (inverse scale) and geographic distance (km) between pairs of communities at each depth 

(15 m, 50 m, DCM). Lines represent significant relationships based on linear model fit (p < 0.05). 



Chapter 2: Selection dominates microbial community assembly in the oligotrophic ocean 
 
 

 29 

 

 

 
Figure 2.3 (a) The cumulative number of ASVs unique to the surface waters, unique to the DCM, and shared 

between the surface waters and the DCM, at each depth for all samples in the oligotrophic South Pacific Gyre 

after subsampling sequence reads to an even depth of 29,280 reads per sample. (b) The relative abundance of 

ASVs unique to the surface waters, unique to the DCM, and shared between the surface waters and the DCM, 

based on summed read counts from all samples at each depth. 

 

 

2.4.2 Microbial community assembly 

 
Microbial community assembly was investigated on large-scale horizontal (longitude) and 

vertical (depth) axes in the oligotrophic South Pacific Gyre (Table 2.2). Deterministic 

processes (homogeneous selection and variable selection) were consistently more 

important than stochastic processes (homogeneous dispersal, dispersal limitation, and 

undominated) along both axes, and homogeneous selection was the primary driver of 

community assembly. Across horizontal space, homogenous selection accounted for 100% 

of assembly in the surface waters (both 15 m and 50 m). At the DCM, homogenous 

selection accounted for 85.96% of assembly, whilst variable selection accounted for 6.43%. 

Stochastic processes had a minor influence at the DCM, where dispersal limitation and the 

undominated scenario accounted for 1.75% and 5.85% of assembly, respectively. Across 

vertical space, homogenous selection accounted for 100% of assembly between 15 m and 

50 m. Stochastic processes were more influential when comparing surface waters to the 

DCM, as dispersal limitation accounted for 33.42% and 33.58% of assembly when 

comparing 15 m to the DCM and 50 m to the DCM, respectively.  
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Table 2.2 Microbial community assembly processes across horizontal and vertical spatial scales in the 

oligotrophic South Pacific Gyre. Values represent the percentage of local community pairs within each 

category which were primarily assembled by each process.   

 

  Variable 
 selection 

Homogeneous 
selection 

Total 
deterministic 

Dispersal 
 limitation 

Homogenising 
dispersal Undominated  

Total 
stochastic 

15 m  0 100 100 0 0 0 0 

50 m  0 100 100 0 0 0 0 

DCM 6.43 85.96 92.39 1.75 0 5.85 7.60 
        

15 m to 50 m 0 100 100 0 0 0 0 

15 m to DCM 9.47 57.11 66.58 33.42 0 0 33.42 

50 m to DCM 9.77 55.89 65.66 33.58 0 0.75 34.33 

 

 

Linear models were used to investigate the influence of environmental variables on 

microbial community assembly processes, revealing a strong relationship between 

temperature and ßNTI (slope = 1.64, R2 = 0.46, p < 0.001). These results indicate that 

homogeneous selection was the primary community assembly process when temperature 

conditions between pairs of local communities were similar, and that the role of stochastic 

processes, and finally variable selection, increased as differences in temperature increased 

(Fig. 2.4). There was a moderate relationship between depth and ßNTI (slope = 1.41, R2 = 

0.31, p < 0.001), and a weak relationship between both phosphate and ßNTI (slope = 0.87, 

R2 = 0.17, p < 0.001) and oxygen and ßNTI (slope = 0.74, R2 = 0.12, p < 0.001). Nitrate, 

silicate, and salinity were not meaningfully related to ßNTI (all R2 < |0.01|). 
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Figure 2.4 The relationship between ßNTI and differences in temperature (z-score) for each pair of samples 

in the oligotrophic South Pacific Gyre, based on linear model fit. Closed circles represent pairs of samples 

where deterministic processes dominated community assembly (ßNTI < -2: homogeneous selection, ßNTI > 

+2: variable selection). Open circles represent pairs of samples where stochastic processes dominated 

community assembly (ßNTI < |2|).  

  



Chapter 2: Selection dominates microbial community assembly in the oligotrophic ocean 
 
 

 32 

2.5 Discussion 
 

2.5.1 Horizontal metacommunity structure and assembly 

 

Horizontal metacommunity structure in the nutrient-limited surface waters (15 m and 50 

m) of the South Pacific Gyre was remarkably consistent (Fig. 2.2). All local communities 

were dominated by Prochlorococcus and SAR11 ASVs (Fig. A.3), which are highly 

adapted to oligotrophic conditions (Biller et al., 2014; Giovannoni, 2017). This likely 

reflects harsh nitrate limitation, combined with low concentrations of phosphate and iron 

(Ellwood et al., 2018), which create a strong selective environment in the surface waters of 

the South Pacific Gyre. In line with this, homogeneous selection was the dominant 

community assembly process through horizontal space across the region (Table 2.2). 

Suboptimal environments can impose strong selection pressure by limiting the number of 

species in the regional pool which can tolerate local conditions (Chase, 2007), and by 

creating intense competition for limiting resources (e.g. nitrate).  Strong selection 

minimises the role of stochasticity in community assembly, resulting in highly similar local 

community composition (Evans et al., 2017) (Fig. 2.2a) and shallow distance-decay 

relationships (Hanson et al., 2012) (Fig. 2.2c).  The surface waters of the South Pacific 

Gyre are regarded amongst the most temporally stable environments on Earth (Raimbault 

et al., 2008), which may contribute to the overwhelming role of homogeneous selection in 

the region. Temperature variation is low on decadal scales (Roemmich et al., 2016) and 

productivity is consistently low due to nutrient-limitation (Dandonneau et al., 2004). As a 

result, selection pressures act on microbial communities consistently through both space 

and time, which may enhance the influence of selection on local community composition 

(Dini-Andreote et al., 2015). Computational models predict that microbial communities 

assembled primarily through selection should be biogeochemically efficient, as the 

probability of maladapted taxa being present in the community is low (Graham and Stegen, 

2017). The findings of the current study support this notion, as previous reports 

demonstrate that microbial recycling of carbon and nutrients in the surface waters of the 

oligotrophic ocean is exceptionally efficient, leading to very low rates of vertical carbon 

export (Guidi et al., 2016). 

Horizontal metacommunity structure at the DCM was more variable than in the surface 

waters (Fig. 2.2). The DCM received greater vertical nutrient supply, was more productive, 

and was more environmentally variable than the surface waters (Ellwood et al., 2018) (Fig. 
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A.1). As a result, variable selection was more important at the DCM than the surface waters 

(Table 2.2), aligning with the greater variation observed in local community composition 

(Evans et al., 2017) (Fig. 2.2b). Stochastic processes were comparatively more influential 

at the DCM than the surface waters (Table 2.2), which is likely explained by two factors. 

First, horizontal dispersal between local communities at the DCM may be lower than in the 

surface waters as a result of reduced wind-driven mixing, which decreases as a function of 

depth (Wu et al., 2017a). Second, macroecological theory suggests that stochasticity has a 

greater influence on community assembly in more productive environments, when other 

physicochemical parameters do not exert overwhelming selection pressure (Chase and 

Leibold, 2003; Chase, 2010). The greater influence of stochastic processes may also 

contribute to the higher diversity (Chase, 2010) and the steeper distance-decay relationship 

observed at the DCM (Hanson et al., 2012) (Fig. 2.2c). Despite the greater influence of 

stochastic processes at the DCM relative to the surface waters, community assembly at the 

DCM was predominantly deterministic (Table 2.2).  

  

 

2.5.2 Vertical metacommunity structure and assembly 

 

Vertical metacommunity structure was consistent between 15 m and 50 m in the surface 

waters of the South Pacific Gyre (Fig. 2.2a). Environmental conditions were similar 

between these depths (Fig. A.1). Homogeneous selection was the primary assembly 

process, indicating that consistent selection pressures driven by consistent environmental 

conditions underpin the similarity in local community composition between these depths 

(Fig. 2.2a). Both 15 m and 50 m were located within the mixed layer at most sampling 

stations (Ellwood et al., 2018), and consequently, rates of dispersal between the two depths 

are likely to be high. Even in a strong selective environment, sufficient dispersal is 

necessary to allow selection to overwhelm the potential effects of ecological drift (Evans 

et al., 2017). These findings suggest that the surface waters of the oligotrophic South 

Pacific Gyre act as a continuous microbial habitat, due to a consistent selective regime and 

sufficient rates of dispersal.  

Local communities at the DCM were distinct from the surface waters (Fig. 2.2a). The 

cooler deep waters of the DCM are separated from the warmer nutrient-limited surface 

waters of the South Pacific Gyre by a pycnocline (density gradient) (Ellwood et al., 2018), 

across which there is minimal physical mixing. As a result, dispersal limitation accounted 

for over one third of microbial community assembly between the surface waters and the 
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DCM (Table 2.2). Temperature-related stratification of oceanic waters, as is observed here, 

has previously been shown to increase the influence of dispersal limitation on microbial 

community assembly (Vergin et al., 2017). Furthermore, the dispersal limitation has 

previously been shown to substantially influence community assembly in contiguous 

aquifer and hyporheic environments (Stegen et al., 2013; Graham et al., 2017).  

Though dispersal limitation plays an important role in microbial community assembly 

between the surface waters and the DCM, selection remains the most influential assembly 

process (Table 2.2). Variable selection accounted for approximately one tenth of 

community assembly between the surface waters and the DCM, reflecting the large 

environmental differences between these depths at particular stations (Fig. A.1). 

Interestingly, homogeneous selection accounted for over half of community assembly 

between the surface waters and the DCM. 

Thus, despite environmental differences, it appears that selection pressure is at least 

partially conserved between these depths. These findings suggest that both deterministic 

and stochastic processes influence community assembly between contiguous water masses 

in the oligotrophic ocean.  

 

 

2.5.3 Environmental features and community assembly 

 

The role of deterministic assembly processes was closely related to temperature in the 

South Pacific Gyre (Fig. 2.4). Where temperature was similar between communities, 

homogeneous selection was the primary assembly process. As temperature diverged, 

stochastic processes, and finally variable selection, became more influential. Temperature 

controls the rate of metabolic processes in bacteria (Davidson and Janssens, 2006) and 

marine bacteria display highly specialised thermal niches (Yung et al., 2015). The thermal 

niche of bacteria can interact with nutrient use efficiency (Hall et al., 2009) and competition 

for limiting resources (Hall et al., 2008), which is pertinent to consider in the nitrate-limited 

oligotrophic South Pacific Gyre (Ellwood et al., 2018). The data reported in this study 

suggest that temperature exerts selection pressure on marine microbes. These findings align 

with evidence that temperature is the most influential driver of variation in marine 

microbial community composition on a global scale (Sunagawa et al., 2015).  

Phosphate concentrations were similarly related to microbial community assembly 

processes but explained a smaller proportion of variation and had a shallower slope than 
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temperature, suggesting that temperature exerted stronger selection pressure. This is likely 

to be because phosphate concentrations in the South Pacific Gyre were greater than those 

typically considered to be limiting (Moore et al., 2013; Ellwood et al., 2018).  

Interestingly, nitrate concentrations were not meaningfully related to community assembly 

processes in the South Pacific Gyre. The explanation for this is two-fold. First, nitrate 

concentrations were consistently around the limit of detection (Ellwood et al., 2018) (Fig. 

A.1), offering minimal variation in the dataset to analyse. Second, the measurements in this 

study quantified background nitrate concentrations, rather than nitrate supply. Nitrate 

supply to the DCM is greater than to the surface ocean in the South Pacific Gyre (Ellwood 

et al., 2018), but higher rates of nitrate turnover at the DCM mean that background nitrate 

concentrations may appear similar between the two environments. Subsequently, the linear 

model approach used in this study is likely to have quantitatively under-estimated the 

influence of nitrate on microbial community assembly processes. Nonetheless, the relative 

abundance of highly adapted oligotrophs (Biller et al., 2014; Giovannoni, 2017) (Fig. A.3) 

and the overwhelming influence of homogeneous selection in the oligotrophic surface 

waters (Table 2.2) suggest that nitrate concentrations are likely to exert selection pressure 

on microbial communities in the South Pacific Gyre. 
 
 
2.5.4 ASV accumulation at the DCM 

 

Vertical connectivity between local communities in the oligotrophic ocean is 

predominantly mediated by two processes. First, through particle sinking, where microbial 

colonisation of sinking particles in the surface waters can affect the structure of local 

communities in deeper waters (Mestre et al., 2018). Second, through advection, where 

physical mixing of contiguous water masses leads to the dispersal of microbes between 

environments (Wilkins et al., 2013). Advective dispersal of microbes between the surface 

waters and the DCM in the South Pacific Gyre is limited due to the stratified nature of the 

water column (Ellwood et al., 2018). Wilkins et al. (2013) demonstrate that in areas of 

limited physical mixing, dispersal primarily affects metacommunity structure by providing 

opportunities for microbes to cross-colonise contiguous water masses. Colonisation 

success is determined by the selective landscape of the new environment, and this selection 

pressure can readily overwhelm the effects of advective dispersal between contiguous 

water masses (Graham et al., 2017) (Table 2.2). Consequently, microbes which are 

distributed throughout both the surface waters and the DCM are inferred to be able to 
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successfully colonise both environments (Wilkins et al., 2013) (that is, to be able to survive 

and reproduce in both environments). I propose the presence of a biased environmental 

filter between the surface waters and the DCM in the South Pacific Gyre, whereby microbes 

dispersed form the surface waters to the less environmentally restrictive DCM have a 

greater probability of colonisation success than microbes dispersed in the opposite direction 

(Fig. 2.5). In other words, a larger proportion of the regional species pool is capable of 

colonising the DCM than the surface waters. This proposal is supported by the greater 

absolute number of ASVs at the DCM, the larger fraction of unique ASVs at the DCM, and 

the larger proportion of reads represented by unique ASVs at the DCM, when compared 

with the surface waters (Fig. 2.3). Indeed, similar patterns of species accumulation in 

nutrient replete environments have been observed in freshwater systems (Schmidt et al., 
2016). Furthermore, this proposal aligns with the distinct life-history strategies of marine 

microbes (Lauro et al., 2009). For example, oligotrophs such as SAR11 maintain growth 

rates and show minimal physiological responses to the increased availability of organic 

matter or nutrients, and possess a range of mechanisms to avoid direct competition with 

copiotrophic strategists (Giovannoni, 2017). Consequently, oligotrophs are likely to 

display high colonisation success of more nutrient-replete environments such as the DCM 

(Fig. 2.3). In contrast, copiotrophs have higher nutrient requirements and a life-history 

strategy focussed on exploiting transient resource availability (Vergin et al., 2013), thus 

are less likely to be able to successfully colonise oligotrophic environments such as the 

surface waters of the South Pacific Gyre. I propose this biased environmental filter as a 

mechanism contributing to species accumulation observed at the DCM across oligotrophic 

oceans globally (Sunagawa et al., 2015). 

 
 

2.5.5 Summary 

 
Here, I show that microbial community assembly is highly deterministic across horizontal 

scales of thousands of kilometres in the oligotrophic South Pacific Gyre. These findings 

support niche-based community assembly (Chase and Leibold, 2003) and contribute to a 

growing body of evidence supporting the dominance of determinism in shaping marine 

microbial communities (Vergin et al., 2017; Wu et al., 2017a; Mo et al., 2018). Though 

deterministic processes remained the most influential microbial community assembly 

processes across vertical scales, dispersal limitation plays a substantial role in community 

assembly between contiguous water masses in the oligotrophic ocean. This highlights the 
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relevance of stochastic processes in structuring microbial communities, which is often 

debated (Zhou and Ning, 2017). I identified temperature as an environmental modulator of 

the balance between stochastic and deterministic community assembly processes in the 

South Pacific Gyre, aligning with evidence that temperature is the key determinant of 

microbial community composition on a global scale (Sunagawa et al., 2015). Nutrient 

limitation is also likely to impose selection pressure on microbial communities in the South 

Pacific Gyre and may interact with temperature (Hall et al., 2008, 2009), though these 

effects are likely to have been quantitatively underestimated in this study. Macroecological 

theory states that stochastic processes have a greater influence on community assembly in 

more productive environments (Chase, 2010). The findings of this study support this 

notion, demonstrating that microbial community assembly in the least productive oceanic 

waters on Earth (Claustre and Maritorena, 2003) is overwhelmingly deterministic. The 

findings of this study inform a conceptual model of microbial community assembly the 

oligotrophic ocean (Fig. 2.5) and suggest that microbial communities may respond 

predictably to oceanic climate change in these biogeochemically important regions (Stegen 

et al., 2018). 

 



 

  

 



 

  

Figure 2.5 A conceptual model of microbial community assembly in the oligotrophic ocean. Coloured circles represent individuals in each local community (blue: oligotrophic 

strategists; red: copiotrophic strategists), numbers within each circle represent ASV identity. Local environmental conditions are represented by roman numerals below each 

local community. Sufficient dispersal to overwhelm the effects of ecological drift, and the occurrence of dispersal limitation, are indicated by solid and dashed curved arrows, 

respectively. Cross-colonization is represented by straight arrows, and arrow thickness indicates the probability of colonization success. Pie charts represent the community 

assembly processes within (right) and between (left) each depth. (a) Microbial communities in the surface waters display low alpha diversity, low beta diversity, and shallow 

distance-decay, as these communities are assembled through homogeneous selection driven by consistent environmental conditions across large horizontal spatial scales. 

Horizontal and vertical dispersal are sufficient to allow homogeneous selection to overwhelm the influence of drift. (b) Microbial communities in at the DCM display higher 

alpha diversity, higher beta diversity, and a steeper distance-decay, as variable selection and stochastic processes are more influential than in the surface waters. (c) The exchange 

of microbes between surface waters and the DCM is limited by low rates of physical mixing. Dispersal limitation and variable selection drive community divergence between 

the contiguous water masses of the surface waters and the DCM. (d) A biased environmental filter impacts the colonisation success of microbes dispersed between the surface 

waters and the DCM. Microbes dispersed from the surface waters to the DCM have a greater probability of successful colonization than microbes dispersed in the opposite 

direction, leading to ASV accumulation at the DCM.
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Chapter 3: Distinct processes structure 
bacterioplankton and protist communities across 
an oceanic front 
 
 
3.1 Abstract 
 

Bacterioplankton and protists fulfil key roles in the marine ecosystem. Understanding the 

abundance and distribution of these organisms through space and time is a key focus of 

biological oceanographers. The role of oceanographic features, in addition to 

environmental conditions, in structuring bacterioplankton and protist communities has 

been increasingly recognised. Here, patterns in bacterioplankton and protist diversity and 

community structure are investigated across the Southland Front system, a compaction of 

the subtropical front zone, to the east of New Zealand’s South Island. Frontal waters are 

identified as a minor diversity hotspot for bacterioplankton, but not protists. 

Bacterioplankton show a high degree of spatial structuring across the front, with 

communities closely tracking water mass identity through the region. Protist communities 

also tracked water mass identity through the region, though this effect was less pronounced. 

An ecological null model approach was used to demonstrate that protist communities are 

primarily assembled through stochastic processes, whilst bacterioplankton are primarily 

assembled through deterministic processes across the Southland Front system. I suggest 

that these differences emerge from fundamental differences in the characteristics of 

bacterioplankton and protist communities. These findings add to a growing body of 

literature highlighting the importance of oceanographic features in shaping 

bacterioplankton and protist communities, promoting the necessity for such features to be 

considered more explicitly in the future.  
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3.2 Introduction 
 
Bacterioplankton (bacteria and archaea) and protists form the fundamental basis of marine 

food webs and biogeochemical cycling (Chassot et al., 2010; Passow and Carlson, 2012). 

Marine phytoplankton, including both cyanobacteria and photosynthetic protists, are 

responsible for approximately 50% of global primary production (Field, 1998). Protists are 

key components of marine environments due to their abundance, taxonomic diversity, and 

functional diversity, fulfilling roles are producers, consumers, decomposers, and parasites 

(de Vargas et al., 2015). The vast majority of phytoplankton-derived organic carbon is 

routed through the marine microbial loop, where heterotrophic bacterioplankton 

remineralise organic matter, modulating the cycling of carbon and nutrients (Azam and 

Malfatti, 2007). The structure of marine bacterioplankton and protist communities is 

closely coupled to their function (Arrigo et al., 1999; Guidi et al., 2016; Galand et al., 
2018). Consequently, it is crucial to unravel the factors which determine the abundance and 

distribution of these organisms through space and time. Historically, efforts to understand 

the abundance and distribution of bacterioplankton and protists have focussed on the 

influence of environmental conditions, however, emerging evidence indicates that 

oceanographic features and hydrodynamics may play a significant role in structuring these 

communities (Clayton et al., 2017; Djurhuus et al., 2017; Lévy et al., 2018). 

Oceanic fronts are regions where environmentally distinct water masses meet, creating 

sharp physicochemical gradients over fine spatial scales (Belkin et al., 2009). These regions 

vary in their spatial and temporal extent (Belkin et al., 2009) and are frequently associated 

with enhanced productivity (Belkin et al., 2009; Taylor et al., 2012). Flow between water 

masses separated by oceanic fronts is limited, therefore fronts can act as soft dispersal 

barriers for passively drifting organisms such as bacterioplankton and protists (Gildor et 
al., 2009). These regions may be considered as the marine analogues of terrestrial 

‘ecotones’; interfaces between habitat types which often harbour enhanced species richness 

(Smith, 1997; Ribalet et al., 2010).  

A latitudinal transect of the South Pacific basin found that bacterioplankton and protist 

diversity are enhanced at the mesoscale (> 50 km) Subtropical Frontal Zone (Raes et al., 
2018). However, this relationship does not emerge in bacterioplankton communities at a 

sub-mesoscale (< 50 km) compaction of the Subtropical Frontal Zone (Morales et al., 
2018). In contrast, sub-mesoscale oceanic fronts act as diversity hotspots for photosynthetic 

protists in the North Pacific (Ribalet et al., 2010; Clayton et al., 2013, 2017). These 

diversity hotspots are hypothesised to result from a combination of physical and biological 
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processes (Clayton et al., 2013), such as  physical mixing of communities and the relief of 

nutrient limitation (Clayton et al., 2017). Further research is needed to understand the effect 

of sub-mesoscale oceanic fronts on bacterioplankton and protist diversity, with a particular 

consideration of heterotrophic protist which have often been overlooked by previous 

studies.  

In addition to affecting diversity, oceanic fronts and other sub-mesoscale oceanographic 

features can influence the structure of bacterioplankton and protist communities (Lévy et 

al., 2018). Both bacterioplankton and protist communities display biogeographic patterns 

across the South Pacific basin according to mesoscale oceanic front delimited biomes (Raes 

et al., 2018). Moreover, sub-mesoscale oceanic fronts act as transition zones for 

bacterioplankton community structure in both surface (Baltar et al., 2016) and deep waters 

(Baltar and Arístegui, 2017). Bacterioplankton communities track water masses closely 

across sub-mesoscale oceanic fronts in the Indian and Southern Oceans, as each water mass 

constrains a distinct bacterioplankton assemblage (Wilkins et al., 2013; Djurhuus et al., 
2017; Hernando-Morales et al., 2017). Intuitively, the structuring of bacterioplankton 

communities across sub-mesoscale oceanic fronts is associated with equally distinct 

functional shifts affecting bacterial respiration rates (Baltar et al., 2015b) and extracellular 

enzyme activity (Baltar and Arístegui, 2017), highlighting the influence these features on 

marine biogeochemical cycling. Protist communities display similar biogeographic 

patterns to bacterioplankton communities across the South Pacific basin (Raes et al., 2018), 

and photosynthetic protists also display structuring across sub-mesoscale oceanic fronts 

(Taylor et al., 2012; Clayton et al., 2014).  

Although the structure of bacterioplankton and protist communities across oceanic fronts 

have been investigated independently, integrated studies are required to resolve differences 

in how these oceanographic features affect each community. Bacterioplankton and protist 

communities are assembled through the balance between stochastic process (neutral), such 

as dispersal limitation and ecological drift, and deterministic processes (niche-based), such 

as selection (Vellend, 2010). Recent evidence indicates that the balance between stochastic 

and deterministic processes can differ between co-occurring bacterioplankton and protist 

communities (Wu et al., 2017a; Logares et al., 2018). This suggests that oceanographic 

features, such as fronts, may affect bacterioplankton and protist communities differently.  

Here, patterns in bacterioplankton and protist diversity and community structure are 

investigated in high spatial resolution across the Southland Front system, a local 

compaction of the Subtropical Frontal Zone which results in four environmentally distinct 

water masses occurring over a 65 km transect east of New Zealand’s South Island. 
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Bacterioplankton and protist community composition was determined using high-

throughput sequencing of the 16S and 18S rRNA gene, respectively, to investigate the 

following hypotheses: oceanic fronts act as diversity hotspots for bacterioplankton and 

protist communities, bacterioplankton and protist communities at oceanic fronts display 

water mass specificity, stochastic processes are comparatively more influential in protist 

community assembly than bacterioplankton community assembly.  

 

 

3.3 Methods 
 
3.3.1 Study area and sampling 

 

Samples were collected across a longitudinal transect of the Southland Front system, a local 

manifestation of the larger Subtropical Frontal Zone hydrographic boundary which 

separates warm, high salinity subtropical waters from cooler, less saline subantarctic 

surface waters. In the Southland Front system, the Subtropical Frontal Zone narrows to a 

range of ~10 km, as it is constrained by the continental shelf break (Sutton, 2003; Fig. 3.1). 

The Southland Front system is characterised by abrupt transitions between four key water 

masses (coastal waters, subtropical waters, frontal waters, and subantarctic surface waters) 

over a fine spatial scale (< 65 km). Coastal waters are characterised by variable 

environmental conditions, due to transient riverine inputs of freshwater and nutrients (Jones 

et al., 2013). Subtropical waters are more saline and warmer than their neighbouring water 

masses, and are modified from typical subtropical waters due to nutrient inputs from 

adjacent coastal waters (Jones et al., 2013). Frontal waters represent the transition zone 

between subtropical and subantarctic waters. Subantarctic waters are cooler and less saline 

than the other water masses, and represent a classical high-nutrient low-chlorophyll 

environment (Jones et al., 2013). Transitions in salinity and temperature have previously 

been used to distinguish these water masses (Jillett, 1969; Currie et al., 2011; Jones et al., 

2013) (Fig. A.4).  

Sampling of the Southland Front system was conducted during the RV Polaris II voyage of 

the Munida Time Series Transect on November 28th, 2017. Seawater samples were 

collected from ~2 m depth using a continuous underway pump at 24 stations along the 

transect, targeting the four constituent water masses of the Southland Front system (Fig. 

3.1) which were differentiated according to temperature and salinity profiles (Jillett, 1969).  
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Figure 3.1 Map of the Southland Front system to the east of Tairoa Head, Dunedin, New Zealand. Solid 

circles represent the location sampling stations, colours indicate the water mass identity of each sampling 

station (red: coastal waters, orange: subtropical waters, green: frontal waters, blue: subantarctic waters). 

Contours indicate the major bathymetric features of the region. Inset map shows the sampled region of the 

Southland Front system, in the context of New Zealand. 

 
 
3.3.2 Environmental measurements 

 
Sea surface temperature and salinity data were recorded continuously throughout the 

voyage from the RV Polaris II continuous underway pump using a Sea Bird SBE45 

thermosalinograph (Sea-Bird Scientific, Bellevue, WA, USA) associated with the vessel’s 

GPS system. To quantify chlorophyll a concentrations, 500 ml seawater samples were 

collected from the continuous underway pump and filtered through 0.7 µm glass-fibre 

filters (GF/F) using a peristaltic pump. Following filtration, each GF/F was transferred to 

an opaque cryovial to prevent photodegradation of chlorophyll a and frozen at -20°C until 

further laboratory analysis. Chlorophyll a was extracted from each GF/F in 96% ethanol 
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through an incubation period of 24 hours at -20°C. Following the incubation period, 

cryovials were centrifuged at 6,000 rpm for 5 minutes to remove fibres and particulate 

matter. Chlorophyll a concentration was then determined using spectrophotometric 

methods described in Jeffery and Humphrey (Jeffrey and Humphrey, 1975). To quantify 

inorganic nutrient concentrations (nitrate, phosphate, silicate, ammonia), triplicate 50 ml 

seawater samples were collected from the continuous underway pump and syringe filtered 

through 0.22 µm polycarbonate filters. The filtrate was collected in 50 ml falcon tubes, and 

frozen at -20°C prior to laboratory analysis. Inorganic nutrient concentrations were 

determined using a Lachat FIA auto analyzer (Lachat Instruments, Loveland, CO, USA). 

 

 

3.3.3 DNA sampling, extraction, and library preparation 

 
At each station (Fig. 3.1), 2 l seawater samples were collected from the continuous 

underway pump and filtered through 0.2 µm polyethersulfone filters. Filters were frozen in 

liquid nitrogen for the duration of the voyage before being transferred to a -80°C freezer. 

Each filter was snap-frozen in liquid nitrogen and manually crushed using a sterile glass 

rod in preparation for DNA extraction. Genomic DNA was extracted using a DNEasy Plant 

Mini kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. To 

investigate the composition of bacterioplankton communities, the V4 region of the 16S 

rRNA gene was amplified using the 515F (5’ GTGYCAGCMGCCGCGGTAA) and 806R 

primers (5’ GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015; Parada et al., 2016), 

modified to allow the downstream attachment of Illumina sequencing adapters (Griffith et 
al., 2017). Triplicate PCR mixtures were prepared using the HiFi Hotstart PCR kit (KAPA 

Biosystems, Boston, MA, USA), and each contained 1 X KAPA HiFi buffer (2 mM 

MgCl2), 0.3 mM KAPA dNTP Mix, 0.3 µM of forward and reverse primers, and 0.5 U of 

KAPA HiFi Hotstart DNA Polymerase. The PCR thermocycler program consisted of an 

initial denaturation step at 95°C for 120 s before 25 cycles of 98°C for 20 s, 60°C for 30 s, 

and 72°C for 30 s, followed by a final extension period of 60 s at 72°C. To investigate the 

composition of protist communities, the 18S rRNA gene was amplified using the 

TAReuk454FWD1 (5’ CCAGCASCYGCGGTAATTCC) and TAReukREV3 (5’ 

ACTTTCGTTCTTGATYRA) primers (Stoeck et al., 2010), modified to allow the 

downstream attachment of Illumina sequencing adapters (Griffith et al., 2017). Triplicate 

PCR mixtures were prepared according to protocols described above. The PCR 

thermocycler program consisted of an initial denaturation step at 95°C for 30 s before 10 
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cycles of 95°C for 30 s, 53°C for 30 s, and 72°C for 30 s, followed by 15 cycles of 95°C 

for 30 s, 48 °C for 30 s, and 72°C for 30 s, with a final extension period of 300 s at 72°C 

(adapted from Massana et al., 2015). Following first round PCR, triplicate PCR products 

were pooled and purified using the Mag-bind TotalPure NGS kit (OMEGA Bio-tek, 

Norcross, GA, USA) according to the manufacturer’s instructions. Purified PCR products 

were quantified using the Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific, 

Waltham, MA, USA) according to the manufacturer’s instructions. Once quantified, 

purified PCR products were diluted to a uniform concentration of 1 ng µl-1. In order to 

attach Illumina sequence adapters and indexes, a second round of PCR was performed 

using 1 µl of diluted first round PCR products. The PCR thermocycler program for second 

round PCR consisted of an initial denaturation step at 95°C for 120 s before 10 cycles of 

98°C for 20 s, 60°C for 20 s, and 72°C for 30 s, followed by a final extension period of 60 

s at 72°C. Second round PCR products for 16S rRNA gene and 18S rRNA gene libraries 

were purified, quantified, and pooled independently. Pooled 16S rRNA gene libraries were 

sequenced on the Illumina MiSeq platform (Illumina, San Diego, CA, USA) using the V2 

reagent kit, yielding 2 x 250 bp reads. Pooled 18S rRNA gene libraries were sequenced on 

the Illumina MiSeq platform using the V3 reagent kit, yielding 2 x 300 bp reads. 

 

 

3.3.4 Sequence processing 

 
All sequence processing was performed in the R environment (R Core Team, 2013), 

according to the Bioconductor workflow (Callahan et al., 2016). The first step of the 

workflow is to trim and truncate reads to remove primers and low-quality sequences, 

respectively. Amplicon sequence variants (ASVs) were then resolved at single nucleotide 

resolution using the ‘DADA2’ R package (Callahan et al., 2016). The resolution of exact 

ASVs improves the accuracy and reproducibility of high-throughput sequencing studies 

(Callahan et al., 2017). Chimeric ASVs were identified and removed using the 

removeBimeraDenovo function in the ‘DADA2’ R package. Taxonomy was assigned 

against the SILVA database (release 132; Quast et al., 2013) and the PR2 database (version 

4.10.0; Guillou et al., 2013) for 16S rRNA gene ASVs and 18S rRNA gene ASVs, 

respectively, using the RDP naïve Bayesian classifier (Wang et al., 2007). 16S rRNA gene 

ASVs classified as bacteria or archaea were retained, and sequences classified as 

chloroplasts or mitochondria were removed prior to downstream analysis. 18S rRNA gene 

sequences classified as metazoan were removed prior to downstream analyses, resulting in 
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the exclusion of four 18S rRNA gene samples which were dominated by metazoan 

sequences (stations: S7, S8, S9, S12). Maximum-likelihood phylogenetic trees were 

constructed based on 16S rRNA gene sequences and 18S rRNA gene sequences, 

respectively, using the R package ‘phangorn’ (Schliep, 2011; Callahan et al., 2016). ASV 

tables, taxonomic assignments, maximum likelihood trees, and environmental metadata 

were compiled as a phyloseq object (McMurdie and Holmes, 2013) for 16S rRNA gene 

ASVs and 18S rRNA gene ASVs, respectively. Sequence reads were randomly subsampled 

to an even depth prior to downstream analyses (16S rRNA gene: 51,121 reads, 18S rRNA 

gene: 17,340 reads).  

 

 

3.3.5 Statistical analyses 

 
The Chao1 index (Chao, 1984), implemented through the estimate_richness function in the 

R package ‘phyloseq’ (McMurdie and Holmes, 2013), was used to estimate ASV richness 

at each sampling station. The Chao1 index estimates ASV richness based on the observed 

number of ASVs, the observed number of ASVs occurring only once, and the observed 

number of ASVs occurring only twice (Chao, 1984). The index is well-suited to data sets 

with a high number of low-abundance ASVs, as is the case with high-throughput amplicon 

sequencing datasets (Hughes et al., 2001). ASV richness was compared between water 

masses using a one-way ANOVA with Tukey’s HSD. The relationship between ASV 

richness and environmental variables were investigated using linear models, for 

bacterioplankton and protist communities, respectively. The relationship between 

bacterioplankton and protist ASV richness was investigated using a linear model. 

Bray-Curtis dissimilarity was used to quantify compositional differences between pairs of 

samples for both bacterioplankton and protist communities. PERMANOVA analysis 

(Anderson, 2001), based on Bray-Curtis dissimilarity and implemented through the adonis 

function in the R package ‘vegan’ (Oksanen et al., 2016), was used to test the differences 

in community composition between water masses for both bacterioplankton and protist 

communities. Due to the spatially structured nature of environmental conditions across the 

Southland Front system, the multivariate regression tree (MRT) method was used to 

investigate the environmental and spatial features structuring bacterioplankton and protist 

communities across the region (De’ath, 2002). The MRT method, based on Bray-Curtis 

dissimilarity between pairs of samples and implemented through the ‘mvpart’ R package 

(De’ath, 2002), clusters groups of samples through a series of hierarchical binary splits 
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based on environmental or spatial features in order to minimize the sum of squared 

dissimilarity between samples in each resulting cluster. Where multiple parameters could 

delimit an identical binary split, spatial parameters were given priority. Cross-validation is 

used to select optimal tree size (minimum cross-validated relative error), and trees are 

summarized by their size (number of binary splits) and the proportion of variance in 

community dissimilarity explained (De’ath, 2002). All measured physicochemical 

variables, and longitude as a spatial variable, were included in the MRT analyses. The 

technique aims to characterise clusters of similar communities, defined by a series of binary 

environmental and spatial rules. Finally, the relationship between bacterioplankton and 

protist community dissimilarity was compared using the mantel test.  

The influence of stochastic and deterministic processes on bacterioplankton and protist 

community assembly was investigated using a null model approach (Stegen et al., 2013, 

2015). The approach leverages phylogenetic signal, whereby organisms with close 

phylogenetic relationships occupy similar environmental niches. In brief, the approach 

compares observed phylogenetic turnover between pairs of communities to phylogenetic 

turnover expected under purely stochastic (i.e. null model) community assembly to 

generate the ßNTI metric. ßNTI > 2 indicates that pairs of communities are less 

phylogenetically clustered than expected under null model assembly, and that variable 

selection is the dominant community assembly processes. ßNTI < -2 indicates that pairs of 

communities are more phylogenetically clustered than expected under null model 

assembly, and that homogeneous selection is the dominant community assembly process. 

ßNTI < |2| indicates that phylogenetic clustering between pairs of communities does not 

deviate from null model expectations, and selection is not the dominant community 

assembly process. For pairs of communities where ßNTI < |2|, further analysis was 

performed to partition the influence of dispersal limitation, homogenising dispersal, and an 

undominated scenario indicating a combination of ecological drift, weak selection, and 

weak dispersal (Stegen et al., 2015). For these pairs of communities, ASV turnover was 

quantified using a modified Raup-Crick metric based on Bray-Curtis dissimilarity (RCbray; 

(Stegen et al., 2013)) and compared to ASV turnover expected under purely stochastic 

community assembly. RCbray > 0.95 indicates that communities had greater ASV turnover 

than expected, indicating that dispersal limitation was the dominant community assembly 

process. RCbray < -0.95 indicates that communities had less ASV turnover than expected 

under purely stochastic community assembly, indicating that homogeneous dispersal was 

the dominant community assembly process. RCbray < |0.95| indicates that ASV turnover 

does not deviate from null model expectations, and communities are primarily assembled 
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under the undominated scenario. The relative contribution of variable selection, 

homogeneous selection, dispersal limitation, homogenising dispersal, and the undominated 

scenario to overall community assembly was quantified as the proportion of pairwise 

community comparisons dominated by each process (Stegen et al., 2013). The efficacy of 

this approach to infer community assembly processes has been demonstrated in previous 

investigations (Dini-Andreote et al., 2015; Stegen et al., 2015). Whilst the approach 

identifies the most influential process in shaping communities, the described ecological 

processes are not mutually exclusive, and it is important to consider that identifying one 

process as dominant does not indicate the absence of other processes (Stegen et al., 2015).  

 

 

3.4 Results 
 

3.4.1 Alpha diversity 

 
Bacterioplankton communities displayed greater Chao1 estimated ASV richness in the 

frontal waters and coastal waters than neighbouring subtropical and subantarctic waters 

(Tukey’s HSD < 0.05; Fig. 3.2a). Bacterioplankton ASV richness did not differ between 

frontal waters and coastal waters, or between subtropical and subantarctic waters (Tukey’s 

HSD > 0.05). In contrast, protist ASV richness did not significantly differ between water 

masses (Tukey’s HSD > 0.05; Fig. 3.2b). However, protist communities in the subtropical 

waters were excluded from this analysis due to an insufficient sample size (n = 2). Linear 

models were used to analyse the relationship between ASV richness and environmental 

variables in bacterioplankton and protist communities. Bacterioplankton ASV richness was 

moderately related to salinity (R2: 0.27, p < 0.01), but no other environmental variables. 

Protist ASV richness was not significant related to any environmental variable (p > 0.05). 

Linear model analysis revealed no significant relationship between bacterioplankton and 

protist ASV richness across the Southland Front system (p > 0.05; Fig. A.5b). 
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Figure 3.2 (a) Bacterioplankton Chao1 estimated ASV richness and longitudinal position of sampling 

stations. Error bars indicate error in Chao1 estimated ASV richness. Colours indicate water mass identity. (b) 

Protist Chao1 estimated ASV richness and longitudinal position of sampling stations. 

 

 

3.4.2 Community structure 

 

PERMANOVA analysis revealed that bacterioplankton communities significantly differed 

between all water masses, with the greatest difference being observed between subtropical 

and subantarctic waters (R2: 0.95, p = 0.005; Fig. 3.3a; Fig. 3.4a) and the subtlest 

differences being observed between coastal and subtropical waters (R2: 0.68, p = 0.005). 

Similarly, protist communities significantly differed between all water masses, though 

comparisons with subtropical waters should be interpreted with caution due a limited 

sample size (n = 2). The magnitude of differences in protist communities (R2: 0.42-0.62) 

between water masses was lower than in bacterioplankton communities (R2: 0.68-0.95). 

The greatest differences were observed between coastal and subantarctic waters (R2: 0.62; 

p = 0.012; Fig. 3.3b; Fig. 3.4c), which are the water masses separated by the greatest 

geographic distance in the Southland Front system. The subtlest differences were observed 

between neighbouring coastal and subtropical waters (R2: 0.42; p = 0.046).  

Multivariate regression tree (MRT) analysis revealed the environmental and spatial 

features structuring bacterioplankton and protist communities across the Southland Front 

system. The main feature explaining variance in bacterioplankton community composition 

was longitude, which divided samples east and west of 171.1° longitude, corresponding to 

the separation of coastal and subtropical waters from front and subantarctic waters (Fig. 



Chapter 3: Microbial community structure across an oceanic front 
 
 

 52 

3.4b). This division also aligned with the clear division in environmental conditions at this 

longitude (Fig. 3.3c). Samples west of 171.1° longitude were further divided east and west 

of 170.8° longitude, corresponding to the separation of coastal and subtropical waters. 

Samples east of 171.1° longitude were further divided east and west of 171.3° longitude, 

distinguishing frontal waters from subantarctic waters. MRT analysis explained 93.2% of 

variance in bacterioplankton community composition, indicating that bacterioplankton 

community composition closely tracks water masses across the Southland Front system. 

Similar to bacterioplankton communities, the main feature explaining variance in protist 

communities was longitude, which divided samples east and west of 171.1° longitude (Fig. 

3.4d). Samples of west 171.1° longitude were further divided east and west of 170.9° 

longitude, whilst samples east of 171.1° longitude were further divided east and west of 

171.4° longitude. These binary divisions diverged from trends in bacterioplankton 

community structure and did not correspond to the complete separation of water masses. 

MRT analysis explained 77.2% of variance in protist community composition.  
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Figure 3.3 Heatmaps showing the structure of (a) the 30 most abundant bacterioplankton taxa, (b) the 30 

most abundant protist taxa, and (c) environmental conditions across the Southland Front system. Taxa order 

is determined according to the neatmap algorithm (Rajaram and Oono, 2010), implemented through phyloseq. 

(b) Heatmap showing the structure of the 30 most abundant protist taxa. (c) Heatmap displaying variance in 

environmental conditions across the Southland Front system, using values normalized to 0-1.



 

 

 

Figure 3.4 (a) Non-metric multidimensional scaling plot of bacterioplankton community composition across the Southland Front system. Labels indicate sampling station, 
colours indicate water mass identity. (b) Multivariate regression tree analysis indicating hierarchical binary splitting to explain bacterioplankton community structure across 
the Southland Front system. The depth of each branch is proportional to the variance explained by the preceding split. (c) Non-metric multidimensional scale plot of protist 
community composition across the Southland Front system. (d) Multivariate regression tree analysis indicating hierarchical binary splitting to explain protist community 
structure across the Southland Front system. 
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Linear models based on Bray-Curtis dissimilarity and geographic distance were used to 

investigate distance-decay relationships in bacterioplankton and protist communities. Both 

bacterioplankton communities (R2 = 0.60, p < 0.001; Fig. 3.5a) and protist communities 

(R2 = 0.76, p < 0.001; Fig. 3.5b) displayed a significant distance-decay relationship, though 

geographic distance explained a substantially larger proportion of variance in protist 

community composition than in bacterioplankton community composition.  

 

 

 
Figure 3.5 (a) Distance-decay relationship of bacterioplankton community composition across the Southland 

Front system determined by Bray-Curtis dissimilarity (inverse scale). Linear model fit and significance are 

displayed. (b) Distance-decay relationship of protist community composition across the Southland Front 

system. 

 

 

The mantel test was used to quantify the relationship between bacterioplankton and protist 

community composition across the Southland Front system. There was a significant 

relationship between bacterioplankton and protist community composition (r = 0.88, p < 

0.001; Fig. A.5a), demonstrating that these groups show broadly similar community 

structure across the Southland Front system, supporting the findings of non-metric 

multidimensional scaling and MRT analysis (Fig. 3.4). 
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3.4.3 Community assembly 

 

A null model approach revealed that homogeneous selection (90.58%; Fig. 3.6) was the 

dominant bacterioplankton community assembly processes across the Southland Front 

system, whilst the undominated scenario (6.16%), homogenising dispersal (2.90%), and 

dispersal limitation (0.36%) were minor influences. In protist communities, dispersal 

limitation (58.42%) and the undominated scenario (37.37%) were the most influential 

assembly processes, whilst homogenising dispersal (3.68%) and homogeneous selection 

(0.53%) were minor influences. Thus, bacterioplankton community assembly was 

primarily deterministic, and protist community assembly was primarily stochastic, across 

the Southland Front system. 

 

 

 
 

Figure 3.6 Bacterioplankton and protist community assembly processes across the Southland Front system 

inferred using a null model approach (Stegen et al. 2013).   
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3.5 Discussion 
 

3.5.1 Alpha diversity 

 

Several reports have suggested that oceanic fronts can act as diversity hotspots for both 

bacterioplankton (Raes et al., 2018) and protist communities (Ribalet et al., 2010; Clayton 

et al., 2013; Mousing et al., 2016; Raes et al., 2018). However, the magnitude and presence 

of such effects are not consistent (Mousing et al., 2016; Morales et al., 2018). Two major 

mechanisms have been suggested to underpin observations of enhanced diversity at oceanic 

fronts. First, oceanic fronts act as regions where distinct water masses converge, and 

subsequently distinct bacterioplankton and protist communities have the potential to be 

physically mixed, enhancing diversity (Mousing et al., 2016; Clayton et al., 2017; Morales 

et al., 2018). Second, oceanic fronts are frequently associated with increased nutrient 

concentrations and subsequently enhanced primary production, which may support higher 

bacterioplankton and protist diversity (Clayton et al., 2014; Raes et al., 2018).  In this study, 

bacterioplankton ASV richness was higher in the frontal waters than in the neighbouring 

subtropical and subantarctic waters but was not significantly different from ASV richness 

in the coastal waters (Fig. 3.3a). These findings contrast with previous reports from the 

Southland Front system, which found no evidence of enhanced bacterioplankton diversity 

in frontal waters over a long-term time series study (Morales et al., 2018). Two factors are 

likely to be responsible for the contrasting findings of these studies. First, this study 

employed a higher spatial resolution, which may have allowed the identification of a 

bacterioplankton diversity hotspot in the dynamic frontal waters that may have been missed 

by the long-term time series study. Second, this study used updated Earth Microbiome 

Project primers to survey bacterioplankton diversity, which more accurately capture the 

relative abundance and diversity of SAR11 clade Alphaproteobacteria in marine 

environments (Apprill et al., 2015). SAR11 are important components of bacterioplankton 

communities across the Southland Front system and are likely to contribute to observed 

differences between studies. It remains uncertain whether the bacterioplankton diversity 

hotspot observed in this study persists seasonally, tracking shifts in the strength and 

position of the front (Morales et al., 2018). 

Protist ASV richness did not significantly differ between surveyed water masses (Fig. 

3.3b), though subtropical waters were excluded from this analysis. These findings 

demonstrate that the frontal waters do not harbour enhanced protist diversity, contrasting 
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with the findings of previous reports from oceanic fronts in other regions (Clayton et al., 
2013, 2017; Raes et al., 2018). Enhanced diversity of photosynthetic protists at oceanic 

fronts reported in previous studies is associated with increased primary production, aligning 

with global-scale correlations between these parameters (Vallina et al., 2014). However, in 

this study no evidence of increased primary production in frontal waters was found using 

chlorophyll a as a proxy (Table A.1). Although chlorophyll a is frequently used as a proxy 

of primary production in marine environments, it is not always a good indicator due to the 

influence of grazing pressure on standing stocks of photosynthetic protists. Nonetheless, 

these findings suggest that oceanic fronts alone do not enhance protist community diversity, 

but that previously observed protist diversity hotspots at oceanic fronts may result from 

specific environmental conditions such as higher nutrient concentrations which can 

increase primary production. 

Interestingly, bacterioplankton and protist diversity are positively correlated across the 

South Pacific basin, displaying similar trends in tracking oceanic fronts and features (Raes 

et al., 2018). Moreover, both bacterioplankton and protist diversity were well correlated 

with chlorophyll a concentration (Raes et al., 2018). In this study, no significant 

relationship between bacterioplankton and protist diversity was found across the Southland 

Front system (Fig. A.5b). Moreover, neither bacterioplankton or protist diversity were 

correlated with chlorophyll a.  
Overall, these findings demonstrate the capacity of oceanic fronts to act as diversity 

hotspots for bacterioplankton communities, though further investigation is necessary to 

elucidate whether these trends persist through time. In contrast to previous studies, no 

evidence of oceanic fronts acting as diversity hotspots for protist communities was found. 

Differences in environmental conditions and productivity between fronts in different 

regions and at different spatial scales may underpin differences in observed results.  

 

 

3.5.2 Community structure  

 

Alphaproteobacteria and Bacteroidetes represented the largest component of 

bacterioplankton communities in the coastal and subtropical waters (Fig. A.6), where the 

greatest chlorophyll a concentrations were observed (Table A.1). Bacteroidetes are 

associated with high-productivity marine environments (Buchan et al., 2014) and are 

important decomposers of algal-derived organic matter (Teeling et al., 2012; Fernández-

Gómez et al., 2013). Alphaproteobacteria dominates bacterioplankton communities in the 
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subantarctic waters, whilst the relative abundance of Bacteroidetes was markedly lower in 

the subantarctic waters compared with other water masses. These findings may reflect the 

lower productivity of these environments (Table A.1). Alphaprotebacteria SAR11 Clade Ia 

ASVs dominated subantarctic waters (Fig. 3.3a). These free-living bacteria are well-

adapted to low-productivity environments and are efficient scavengers of dissolved organic 

substrates (Giovannoni, 2017). Interestingly, the alphaproteobacterial Amylibacter ulvae 

displayed a high relative abundance in subtropical and frontal waters. These recently 

described bacteria are associated with the macroalgae Ulva fenestrata (Nedashkovskaya et 
al., 2016), but the analysis in this study suggests that they may also play an important role 

in the surface waters of near-shore marine environments.  

Bacterioplankton communities displayed structuring according to water mass across the 

Southland Front system (Fig. 3.3a), corroborating the findings of previous reports from the 

region which demonstrate that oceanic fronts act as transition zones, or ecotones, for 

bacterioplankton communities (Baltar et al., 2016; Morales et al., 2018). Bacterioplankton 

communities were highly similar within each water mass, but distinct between water 

masses (Fig. 3.2a, Fig. 3.3a), indicating that each water mass harbours a characteristic 

bacterioplankton community. The high degree of water mass specificity aligns with the 

findings of previous studies demonstrating that bacterioplankton communities track water 

masses across oceanic fronts (Djurhuus et al., 2017; Hernando-Morales et al., 2017), and 

highlights the important role of sub-mesoscale oceanographic features in structuring 

bacterioplankton communities.  

Chlorophytes were a major component of protist communities in the coastal waters but 

decreased in relative abundance with increasing distance from the shore (Fig. A.6). In 

contrast, haptophytes represented a relatively minor component of protist communities in 

the near-shore coastal and subtropical waters but increased in relative abundance with 

increasing distance from the shore. Dinoflagellates represented a smaller component of 

protist communities in the coastal waters than in the subtropical, frontal, and subantarctic 

waters. Trends in other protist divisions were less pronounced, reflecting significant 

variation within each water mass (Fig. A.6). Minutocellus polymorphus and Minidiscus 
trioculatus, both centric diatom species, were prevalent in the coastal, subtropical, and 

frontal waters but had a much lower relative abundance in subantarctic waters (Fig. 3.3b). 

The bloom-forming prymnesiophyte, Phaeocystis antarctica, was absent from coastal and 

subtropical waters but represented a significant component of the protist communities in 

frontal and subantarctic waters. Phaeocystis antarctica is a major contributor to carbon 

export in the Southern Ocean (Arrigo et al., 1999; Bender et al., 2018). Finally, 
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Ostreococcus lucimarinus, one of the smallest eukaryotes on earth (Palenik et al., 2007), 

dominated communities in the coastal waters, explaining the enhanced relative abundance 

of chlorophytes in these waters, but decreased in relative abundance with increased distance 

from the shore (Fig. 3.3b).  Previous studies have shown Osterococcus to be well correlated 

with chlorophyll a concentrations across oceanic fronts, in agreement with the findings of 

this study (Clayton et al., 2017). Overall, these findings demonstrate transitions between 

the dominant phytoplankton taxa across the Southland Front system. 

Protist communities displayed structuring according to water mass across the Southland 

Front system. Though communities in each water mass were distinguishable based on 

PERMANOVA analysis, this effect was much less pronounced than in bacterioplankton 

communities (Fig. 3.3b; Fig. 3.4c; Fig. 3.4d).  These findings build on previous evidence 

that distinct protist assemblages are separated by oceanic fronts (Ribalet et al., 2010; Taylor 

et al., 2012; Clayton et al., 2014, 2017) by demonstrating the influence of water masses on 

protist community structure. 

Protist communities displayed a stronger distance-decay relationship than bacterioplankton 

communities (Fig. 3.5). Distance-decay relationships are classical biogeographic patterns, 

which are associated with the influence of stochastic processes (i.e. dispersal limitation and 

ecological drift) on community assembly (Hanson et al., 2012). Stronger distance-decay 

relationships indicate that communities become more dissimilar with increasing distance, 

as a result of dispersal limitation and ecological drift. However, the use of distance-decay 

as a proxy of dispersal probability has recently been challenged in marine environments, 

with water mass mixing suggested as a superior alternative (Hernando-Morales et al., 
2017). Indeed, further studies explicitly quantifying mixing between waters masses would 

contribute towards better understanding the role of oceanic fronts in structuring 

bacterioplankton and protist communities. 

 

 

3.5.3 Community assembly 

 

The emergent differences between bacterioplankton and protist community structure over 

the Southland Front system are the result of differences in community assembly processes 

between these groups. Bacterioplankton were primarily assembled through deterministic 

processes, whilst protist communities were primarily assembled through stochastic 

processes (Fig. 3.6). These findings align with a previous study comparing 

bacterioplankton and protist community assembly in Antarctic marine and freshwater 
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environments (Logares et al., 2018), but contrast with other work from coastal marine 

environments which suggested that deterministic processes play a greater role in structuring 

protist communities as protists are generally less phenotypically plastic than 

bacterioplankton (Wu et al., 2017a). Furthermore, the dominance of deterministic 

processes in structuring bacterioplankton communities across the hydrodynamic Southland 

Front system adds to previous evidence from hyporheic environments demonstrating that 

deterministic processes remain influential in structuring bacterioplankton communities in 

hydrodynamically complex and interconnected systems (Graham et al., 2017). 

The distinct community assembly processes observed between bacterioplankton and 

protists may stem from fundamental differences in the community characteristics of these 

groups.  In general, bacterioplankton have smaller cells and larger community sizes 

(number of individuals) than protists. The relative influence of stochastic processes on 

community assembly is inversely related to the total number of individuals in the 

community, as larger community sizes decrease the probability of species loss through 

ecological drift (Orrock and Watling, 2010). Consequently, stochastic processes should 

have a lesser effect on bacterioplankton communities, compared with protist communities. 

Moreover, cell size is inversely related to dispersal ability in passively dispersing aquatic 

organisms (De Bie et al., 2012; Soininen et al., 2013). Higher dispersal rates increase the 

effective size of a community, decreasing the influence of stochastic processes on 

community assembly (Ron et al., 2018). Thus, the smaller cell sizes of bacterioplankton 

may further contribute to the comparatively weaker influence of stochastic processes when 

compared with protist communities. Overall, local bacterioplankton communities are 

seldom influenced by dispersal effects and ecological drift, as the selection pressure of local 

environmental conditions overwhelms these processes. In contrast, local protist 

communities are significantly influenced by dispersal limitation and ecological drift as 

selection pressure is not sufficient to overwhelm these processes (Fig. 3.6).  
 

 

3.5.4 Bacterioplankton-protist community relationship 

 

The distinct community assembly processes which structure bacterioplankton and protist 

communities across the Southland Front system highlight the potential decoupling of these 

communities over hydrodynamic regions such as oceanic fronts. Despite differences in the 

structure of bacterioplankton and protist communities, the composition of these 

communities remained well coupled across the Southland Front system (i.e. Fig. A.5a). 
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Bacterioplankton and protists form important interactions in the marine environment, as 

symbionts, parasites, and community service providers (Lima-Mendez et al., 2015; 

Seymour et al., 2017). Indeed, disruption of bacterioplankton-protist interactions across 

oceanic fronts could have implications for regional primary production and biogeochemical 

cycling. Interestingly, the coupling of bacterioplankton and protist communities across the 

Southland Front system highlights the potential of using the region to screen for 

bacterioplankton-protist interactions which persist through a range of environmental 

conditions. The importance of bacterioplankton-protist interactions has been increasingly 

recognised (Lima-Mendez et al., 2015; Seymour et al., 2017) and calls for new approaches 

towards identifying putative interactions. Oceanic fronts may provide a valuable resource 

in this context. 

 

 

3.5.5 Conclusions 

 

In this study, bacterioplankton and protist diversity and community structure was surveyed 

across the Southland Front system. I found that frontal waters can act as diversity hotspots 

for bacterioplankton communities but found no evidence of this effect in protist 

communities. Bacterioplankton and protist communities were both structured according to 

water masses, though this effect was more pronounced in bacterioplankton communities. 
Bacterioplankton were primarily assembled through deterministic processes, whilst protist 

communities were primarily assembled through stochastic processes across the region. I 

suggest that these distinct community assembly mechanisms are the result different 

characteristics of bacterioplankton and protist communities, including the total number of 

individuals in a community, average cell size, and community turnover rates. Overall, these 

findings contribute to a growing body of evidence demonstrating that sub-mesoscale 

oceanographic fronts and features play a substantial role in structuring bacterioplankton 

and protists communities. Consequently, such features should be explicitly considered in 

attempts to resolve the factors which underpin the abundance and distribution of 

bacterioplankton and protists through space and time in the marine environment, calling 

for further exploration of these trends at the interface between physics and biology. 
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Chapter 4: Bacterial community responses to 
elevated CO2 and warming in the oligotrophic 
South Pacific Gyre 
 
 
4.1 Abstract 
 

Bacteria play a critical role in primary production, carbon cycling, and nutrient cycling in 

the oligotrophic open ocean. To investigate the effect of elevated CO2 and warming on the 

composition and function of bacterial communities in oligotrophic waters, two trace-metal 

clean deck board incubation experiments were performed during the 2011 New Zealand 

GEOTRACES transect of the South Pacific Gyre (SPG). High-throughput amplicon 

sequencing of the 16S rRNA gene revealed that bacterial community composition was 

distinct between the fringe and ultra-oligotrophic centre of the SPG, and changed 

consistently between replicates in response to elevated CO2 at the ultra-oligotrophic centre 

but not at the fringe of the SPG. Bacterial community composition was not affected 

consistently between replicates by the combined effects of elevated CO2 and warming in 

the SPG, suggesting an antagonistic response in contrast to previous studies. Protein 

synthesis rates (3H-Leucine incorporation) and bacterial abundance were not affected by 

elevated CO2 alone or in combination with warming, whereas DNA synthesis rates (3H-

Thymidine incorporation) were enhanced by elevated CO2 and warming. These data 

suggest bacterial community responses to elevated CO2 may be modulated by nutrient 

regimes, as bacterial communities differed in response between the fringe and the ultra-

oligotrophic centre of the SPG. 
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4.2 Introduction 
 

Oligotrophic subtropical gyres cover approximately 41% of earth’s ocean area, and account 

for 22% of total marine primary production (Hoegh-Guldberg and Poloczanska, 2017). 

These gyres are expanding globally, as a result of ocean warming, and are likely to play an 

increasingly important role in marine carbon cycling (Polovina et al., 2008, 2011). The 

South Pacific Gyre (SPG) is the largest oligotrophic subtropical gyre, and possesses the 

lowest marine chlorophyll concentrations recorded globally (Claustre and Maritorena, 

2003). Primary production in the surface waters of the SPG is limited by the supply of 

nitrogen and secondarily by the supply of iron (Bonnet et al., 2008; Ellwood et al., 2018), 

which decrease from the oligotrophic fringe to the ultra-oligotrophic centre of the gyre 

(Ellwood et al., 2018). The precise role of the SPG in global carbon cycling remains a 

subject of debate, though in-situ estimates suggest that the region is responsible for 

significant carbon fixation on a global scale and may act as a net sink for CO2 (Claustre et 
al., 2008; Duarte et al., 2013; Williams et al., 2013). 

Marine bacteria play a fundamental role in oligotrophic subtropical gyres, and are 

instrumental in the recycling of carbon and nutrients, where these processes underpin 

biogeochemical cycles and primary production (Azam and Malfatti, 2007). The 

cyanobacteria Prochlorococcus and Synechococcus are the numerically dominant primary 

producers in these regions, with the vast majority of fixed carbon passing through the 

microbial loop, where organic matter is recycled through assimilation and respiration by 

heterotrophic bacteria (Azam et al., 1983; del Giorgio and Duarte, 2002). Only a small 

proportion of organic matter escapes the microbial loop and is exported to the deep ocean 

for long-term sequestration (Raven and Falkowski, 1999).  

The role of bacterial communities in oligotrophic subtropical gyre carbon cycling is closely 

related to their taxonomic composition (Guidi et al., 2016). Bacterial community 

composition (BCC) is predominantly controlled by environmental factors, many of which 

are in flux as a result of anthropogenic climate change (Hutchins and Fu, 2017). The 

dissolution of rapidly accumulating atmospheric CO2 into the ocean has driven a decrease 

in mean surface ocean pH of 0.1 units since the pre-industrial era, whilst the greenhouse 

effect of CO2 has simultaneously increased sea surface temperatures (Hoegh-Guldberg et 
al., 2014). Further acidification of 0.3 pH units and warming of 3ºC is projected by 2100 

under business-as-usual anthropogenic emissions scenarios (Hoegh-Guldberg et al., 2014). 

Joint et al. (2011) hypothesised that bacterial communities would be resistant to elevated 
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CO2, due to the variability in marine pH and pCO2 which they experience across multiple 

time-scales. In contrast, temperature modulates a range of bacterial processes (Pomeroy 

and Wiebe, 2001) and is a significant explanatory factor of bacterial biogeography in the 

SPG (Walsh et al., 2015). As a result, bacterial communities in the SPG may be affected 

by warming.  To date, CO2 manipulation studies in the Arctic Ocean (Newbold et al., 2012; 

Roy et al., 2013; Zhang et al., 2013; Oliver et al., 2014; Hartmann et al., 2016; Wang et 
al., 2016), Ross Sea (Maas et al., 2013), Baltic Sea (Lindh et al., 2013; Bergen et al., 2016), 

Mediterranean Sea (Baltar et al., 2015a), and Pacific Ocean (Burrell et al., 2017) have 

found negligible or weak effects of elevated CO2 on BCC. However, the combined effects 

of elevated CO2 and warming have consistently been shown to alter the composition and 

function of bacterial communities in high-latitude regions (Lindh et al. 2013; Bergen et al., 
2016).  

Despite the prominent role of oligotrophic subtropical gyres in global carbon cycling 

(Hoegh-Guldberg and Poloczanska, 2017), and their global expansion (Polovina et al., 
2008), the effects of elevated CO2 and warming on BCC remain to be investigated in these 

regions.  pH conditions in the SPG are highly stable (Doney et al., 2009), thus bacterial 

communities are not exposed to the environmental variability which underpins the 

hypothesis of resistance posited by Joint et al. (2011). Furthermore, marine heterotrophic 

bacteria are highly diverse and often associated with specific nutrient regimes, making it 

difficult to generalize responses between ocean regions (Hutchins and Fu, 2017). Indeed, 

the physiological and functional responses of bacterial communities to elevated CO2 have 

previously been shown to be more pronounced under low-nutrient conditions (Bunse et al., 
2016; Sala et al., 2016). Consequently, bacterial communities in the SPG may respond 

differently to elevated CO2 and warming than those in high-latitude or coastal regions. This 

represents a significant gap in our understanding of how marine microbial communities are 

likely to respond to oceanic climate change on a globally relevant scale. 

Here, the findings of two deck board incubation experiments which aim to characterise the 

compositional and functional response of bacterial communities to elevated CO2 and 

warming at the oligotrophic fringe and at the ultra-oligotrophic centre of the SPG are 

reported (Fig. 4.1). In each experiment, surface water was maintained under control 

(ambient temperature, pH 8.1), high CO2 (ambient temperature, pH 7.8), and greenhouse 

(ambient temperature +3°C, pH 7.8) conditions for five days to discriminate between the 

impacts of ocean acidification alone, and combined with elevated temperature. Importantly, 

these experiments were performed under trace-metal clean conditions to avoid incidental 
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iron fertilisation, which can alter bacterial communities in the region (Bonnet et al., 2008; 

Law et al., 2011). Community composition was investigated using high-throughput 

amplicon sequencing of the 16S rRNA gene, this data was coupled with flow-cytometry 

and bacterial secondary production data to investigate the functional response of bacterial 

communities to these environmental perturbations.   

 

 

 
Figure 4.1 The South Pacific Ocean to the east of New Zealand. White diamonds indicate the positions of 

samples sites at the fringe of the SPG (G-OA1) and the ultra-oligotrophic centre of the SPG (G-OA3). 
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4.3 Methods 
 

4.3.1 Experimental setup 

 
Two trace-metal clean incubation experiments were performed aboard the RV Tangaroa 

during the New Zealand GEOTRACES transect of the SPG. Seawater for experiment G-

OA1 was collected from the oligotrophic fringe of the SPG at 35ºS 180ºW, on 8 June 2011. 

Seawater for experiment G-OA3 was collected from the ultra-oligotrophic centre of the 

SPG at 32º 26.4’S 152ºW, on 21 June 2011 (Fig. 4.1). The incubation system setup is 

described in detail by Law et al. (2012). In brief, nine 22 L flexible polyethylene cubitainers 

were filled with seawater sampled from 25-30 m using a Teflon diaphragm pump. 

Cubitainers were filled non-sequentially inside a trace-metal clean positive pressure tent, 

to maximise homogeneity between replicates and prevent trace-metal contamination. After 

filling, cubitainers were transferred to a thermostatically controlled deck board incubation 

unit, and maintained at either surface seawater temperature, or surface seawater 

temperature +3℃ (±0.5 ℃; Table 4.1) to simulate conditions projected in the region at 2100 

under ‘business as usual’ emissions scenarios (Law et al., 2017). Light intensity within the 

deck board incubation unit was 25% of external PAR. All equipment used in the 

experimental incubation was acid-washed and thoroughly rinsed with Milli-Q according to 

standard trace-metal clean practices.  

To investigate the effect of elevated CO2 and warming on bacterial communities, triplicate 

cubitainers were dedicated to each of three experimental treatments, control, high CO2, and 

greenhouse (Table 4.1). Initially, CO2 concentrations were adjusted by the diffusion of pure 

CO2 gas through permeable silicon tubing in each cubitainer (as described in Hoffmann et 
al., 2013). Pure CO2 was then substituted for 750 ppmv CO2 in air to maintain stable target 

conditions, selected to simulate projected atmospheric CO2 concentrations in the region at 

2100 (Law et al., 2017). pHT was used as an indicator of pCO2 and was monitored 

throughout the experiment using an automated spectrophotometric system (Mcgraw et al., 
2010; Law et al., 2012).  

Samples were collected from each cubitainer after an 18-24h pHT adjustment period (Day 

1) and at Day 5. Cubitainers were transferred to a laminar flow hood within the trace-metal 

clean positive pressure tent where sampling was conducted without the introduction of 

headspace. Cubitainers were then returned to the deck board incubation units. One 

cubitainer from the greenhouse treatment in experiment G-OA1 was compromised, and 

subsequently excluded from analysis. 
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Table 4.1 Details of experiments G-OA1 and G-OA3, including temperature and pH conditions within the 

cubitainers over the course of the incubation period. Adapted from Law et al. (2012). 

Experiment Date Location Treatment Temperature pH (s.d.) 

G-OA1 08/06/2011 35°S 180°W Control 18.1 °C 8.097 (0.005) 

   
High CO2 18.1 °C 7.895 (0.005) 

   
Greenhouse 21.1 °C 7.864 (0.007) 

      
G-OA3 21/06/2011 32 26.4°S 152°W Control 19.1 °C 8.120 (0.006) 

   
High CO2 19.1 °C 7.877 (0.009) 

   
Greenhouse 22.1 °C 7.856 (0.006) 

 

 

4.3.2 DNA sampling, extraction, and PCR 

 
At Day 1 and Day 5 in experiment G-OA1 and G-OA3, 1.5 L water samples were collected 

from each cubitainer and filtered through 0.2 µm polyethersulfone filters. Filters were 

immediately snap-frozen in liquid nitrogen and stored in a -80℃ freezer. Prior to DNA 

extraction, filters were fragmented using a sterile glass rod. Genomic DNA was extracted 

from each fragmented filter using the DNEasy Plant Mini kit (Qiagen, Valencia, CA, USA) 

according to the manufacturer’s protocol. One filter from the high CO2 treatment at Day 1 

of G-OA3 was lost. The V4 hypervariable region of the 16S rRNA gene was amplified by 

PCR from genomic DNA using the universal 16S primers 515F (5’ 

GTGCCAGCMGCCGCGGTAA) and 806R (5’ GGACTACHVGGGTWTCTAAT) 

(Caporaso et al., 2011), modified with an overhang region complementary to Illumina 

sequencing adapters (Griffith et al., 2017). For each sample, triplicate 25 µl PCR reactions 

mixes were prepared with the HiFi Hotstart PCR kit (KAPA Biosystems, Boston, MA, 

USA) and contained 1 X KAPA HiFi buffer (2 mM MgCl2), 0.3 mM KAPA dNTP Mix, 

0.3 µM of forward and reverse primers, and 0.5 U KAPA HiFi Hotstart DNA Polymerase. 

PCR reactions were performed using the following protocols: initial denaturation at 95 °C 

120 s, followed by 25 cycles of  denaturation at 98 °C for 20 s, annealing at 60 °C for 30 s, 

and extension at 72 °C for 30 s, with a final extension period of 60 s at 72 °C. Resulting 

triplicate PCR products for each sample were pooled, and subjected to a second round of 

PCR to attach Illumina sequence adapters and indexes according to the following protocols: 

initial denaturation at 95 °C for 120 s, followed by 10 cycles of denaturation 98 °C for 20 

s, annealing at 60 °C for 20 s, and extension at 72 °C for 20 s, with a final extension period 

of 60 s at 72 °C. The PCR products were purified after each round of PCR using the Mag-
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bind TotalPure NGS kit (OMEGA Bio-tek, Norcross, GA, USA) according to the 

manufacturer’s instructions. After the first round, purified amplicons were quantified using 

the Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific) and diluted to 1 ng  

µl-1 for the second round of PCR. Following the second round of PCR and purification, the 

amplicons were quantified and pooled for sequencing on the Illumina MiSeq platform using 

the V2 reagent kit, yielding 2 x 250 bp paired-end reads (Illumina, San Diego, CA, USA).  

 

 

4.3.3 Sequence processing 

 
From 33 samples, a total of 1,745,501 paired-end reads were returned and processed 

according to the Bioconductor workflow (Callahan et al., 2016). Paired-end reads were 

trimmed and truncated to remove primer sequences and low-quality sequences, 

respectively (forward reads: retained nucleotides corresponding to positions 20-240, 

reverse reads: retained nucleotides corresponding to positions 19-181). A quality control 

filter was applied, and reads with more than two expected errors were removed. DADA2 

was used to resolve amplicon sequence variants (ASVs) at single nucleotide resolution 

(Callahan et al., 2016), rather than conventional clustering based on 97% similarity. Exact 

ASVs resolved by DADA2 increase the accuracy and reproducibility of amplicon 

sequencing studies (Callahan et al., 2017). Paired-end reads were then merged, and putative 

ASVs were screened for chimeras. Sequences determined to be chimeric were removed 

using the removeBimeraDenovo function in the ‘DADA2’ R package. Taxonomic 

assignment was performed against the SILVA database (version 132; Quast et al., 2013) 

using the Ribosomal Database Project’s naïve Bayesian classifier implemented through the 

‘DADA2’ R package (Wang et al., 2007). 16S rRNA gene amplicon read counts, 

taxonomic assignments, and associated metadata were combined as an object in the R 

package ‘phyloseq’ (McMurdie and Holmes, 2013). ASVs which were not classified as 

bacteria, or had fewer than 5 reads in a minimum of two samples in either experiment G-

OA1 or G-OA3, were excluded. Samples were rarefied to an even depth of 38,691 and 

9,819 reads for experiments G-OA1 and G-OA3, respectively. Prior to statistical analyses, 

data were segregated by experiment and time. All sequence processing was performed in 

the R environment (R Core Team, 2013) and annotated scripts are available at 

https://github.com/ro-allen/geotraces_experiment. These sequence data have been 

submitted to the EMBL database under accession number PRJEB29087. 
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4.3.4 Bacterial community composition 

 
Analyses of BCC were performed independently for each time point in experiments G-

OA1 and G-OA3. To investigate patterns in alpha-diversity, Faith’s Phylogenetic Diversity 

(Faith, 1992) was calculated for each sample. The effect of treatment on Faith’s 

Phylogenetic Diversity was analysed using a one-way ANOVA with Tukey’s HSD (α = 

0.05). To investigate patterns in beta-diversity, weighted UniFrac (Lozupone and Knight, 

2005) was used to calculate a pairwise dissimilarity matrix based on ASV read counts and 

a maximum-likelihood phylogenetic tree constructed in the R package ‘phangorn’ (Schliep, 

2011). The weighted UniFrac dissimilarity matrix was used as an input for PERMANOVA 

analyses (Anderson, 2001) implemented using the adonis function in the R package ‘vegan’ 

(Oksanen et al., 2016), to test differences in BCC between treatments (α = 0.05). 

Homogeneity of dispersal, a key assumption of PERMANOVA (Anderson and Walsh, 

2013), was tested using the betadisper function in the R package ‘vegan’ prior to analysis. 

There was no significant difference in dispersal between treatments at any time point in 

either G-OA1 and G-OA3 (p > 0.05). 

 

 

4.3.5 Bacteria and picophytoeukaryote cell density 

 
To determine the cell density of bacteria and picophytoeukaryotes, triplicate 3 ml samples 

were collected from each cubitainer at Day 1 and Day 5 of experiment G-OA1 and G-OA3 

and immediately frozen in liquid nitrogen for later analysis by flow cytometry (Law et al., 
2012). To determine total bacterial cell density, the SYBRGreenII nucleic acid stain 

(Invitrogen, Calsbad, CA, USA) was used with a dark incubation period of 10 minutes to 

allow bacterial cells to be differentiated from other particles (Maas et al., 2013). Natural 

chlorophyll a fluorescence was used to determined picophytoeukaryote cell density (Maas 

et al., 2013). The mean cell density derived from triplicate 3 ml samples was carried 

forward for statistical analysis, to avoid pseudo-replication. Cell density data were analysed 

using a one-way ANOVA with Tukey’s HSD (α= 0.05).  
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4.3.6 Bacterial secondary production 

 
Bacterial secondary production was determined by 3H-leucine incorporation and 3H-

thymidine incorporation using the TCA precipitation and centrifugation methodology 

described in Knap et al. (1996) and Smith and Azam, (1992). 3H-leucine incorporation was 

used as a proxy for protein synthesis, whilst 3H-thymidine incorporation was used as a 

proxy for DNA synthesis (Knap et al., 1996). Triplicate incubations were performed under 

dark conditions simultaneously for each cubitainer for a minimum 3.8-hour period. 3H-

thymidine incorporation (mols) was converted to cell number according to Smith and Hall, 

(1997) estimates of 2.4 x 1018 cells mol-1 in open ocean environments. This value was then 

converted to a carbon value according to 20 x 10-15 g C cell-1 (Cho and Azam, 1988). 3H-

Leucine incorporation (mols) was converted to bacterial protein production (g) according 

to the following equation: 

 

Bacterial protein production (g) = Leucine incorporation (mols) x 1797 x 2 

 

The resulting value was then multiplied by 0.86 to generate a carbon value (Azam and 

Simon, 1989). Bacterial secondary production data were analysed using a one-way 

ANOVA with Tukey’s HSD (α = 0.05).  
 

 

 

4.4 Results 
 
4.4.1 Bacterial community composition 

 

High-throughput amplicon sequencing of part of the 16S rRNA gene was used to 

characterise BCC at Day 1 and Day 5 of each deck board incubation experiment. At the 

oligotrophic fringe of the SPG (G-OA1), at Day 1, Bacteroidetes (21.19-38.87%) and 

Alphaproteobacteria (17.98-34.52%) were dominant across all treatments, followed by 

Gammaproteobacteria (10.36-15.65%), Cyanobacteria (7.79-15.21%), and Planctomycetes 

(6.37-12.39%; Fig. 4.2). At the level of specific amplicon sequence variants (ASVs), 

bacterial communities were dominated by the Alphaproteobacterial AEGEAN-
169_marine_group asv_2 (4.41-14.53%), whilst a range of ASVs belonging to 

Bacteroidetes, Cyanobacteria, Planctomycetes, Alphaproteobacteria, 
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Gammaproteobacteria, and Verrucomicrobia, were also common (> 1%, Fig. 4.3). At Day 

5, Bacteroidetes (30.45-42.42%) remained dominant. The relative abundance of 

Alphaproteobacteria decreased (6.84-11.43%), whilst the proportion of reads classified as 

Planctomycetes (10.08-28.61%) and Cyanobacteria (11.12-19.43%) increased. 

NS2b_marine_group asv_3 (3.48-13.74%), CL500-3 asv_4 (3.25-11.89%), and 

Prochlorococcus_MIT9313 asv_1 (3.40-7.73%) were the most common ASVs. There was 

no significant difference in BCC between treatments at either Day 1 or Day 5 in experiment 

G-OA1 (PERMANOVA, p > 0.05, Table A.2; Fig. 4.4).  

At the ultra-oligotrophic centre of the SPG (G-OA3), Cyanobacteria (31.46-40.08%), 

Alphaproteobacteria (17.05-25.44%), and Gammaproteobacteria (10.05-17.31%) 

displayed the highest relative abundance, followed by Bacteroidetes (6.84-14.95%) and 

Chloroflexi (5.53-12.62%), across all treatments at Day 1 and Day 5. 

Prochlorococcus_MIT9313 asv_1 (16.65-21.76%) was the dominant ASV in all samples, 

whilst AEGEAN-169_marine_group asv_2 (3.39-9.46%), SAR202_clade asv_18 (2.74-

7.21%), and Prochlorococcus_MIT9313 asv_24 (3.70-5.06%) were also common. At Day 

5 in experiment G-OA3, the relative abundance of Bacteroidetes was higher in the control 

treatment than in the high CO2 treatment (control: 13.2 % (±0.42), high CO2: (7.55% 

(±0.61), ±1 SD). This difference was influenced by the relative abundance of the 

Flavobacteriaceae NS2b_marine_group asv_3 (control: 2.31% (±0.24), high CO2: 1.36% 

(±0.22)) and NS4_marine_group asv_10 (control: 1.19% (±0.10), high CO2: 0.64% 

(±0.03)). Similarly, the relative abundance of Actinobacteria was higher in the control 

treatment compared to the high CO2 treatment (control: 2.43% (±0.60), high CO2: 1.58% 

(±0.12)), driven by a lower relative abundance of Candidatus_Actinomarina asv_9 

(control: 1.67% (±0.27), high CO2: 1.22% (±0.15)). In contrast to these trends in 

Bacteroidetes and Actinobacteria, the relative abundance of Cyanobacteria (control: 

34.80% (±2.45), high CO2: 38.91% (±1.30)) and Gammaproteobacteria (control: 13.96% 

(±0.33), high CO2: 17.01% (±0.31)) were lower in the control treatment than in the high 

CO2 treatment. Trends in Cyanobacteria were driven by Prochlorococcus_MIT9313 asv_1 

(control: 18.91% (±0.98), high CO2: 21.15% (±0.65)), whilst trends in 

Gammaproteobacteria were influenced by SAR86_clade asv_60 (control: 0.89% (±0.02), 

high CO2: 1.42% (±0.14)) and other SAR86_clade ASVs. At Day 5 in experiment G-OA3, 

there was a significant treatment effect on BCC (PERMANOVA, p = 0.037, Table A.2; 

Fig. 4.4). Experimental design precluded pairwise testing; however, principle coordinates 

analysis (Fig. 4.4D) revealed clear clustering and centroid differentiation between the 

control and high CO2 treatments, whilst the greenhouse treatment was highly variable.  
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Faith’s PD, a phylogenetic diversity metric, revealed no significant difference in 

phylogenetic diversity of bacterial communities between treatments at ether Day 1 or Day 

5 in experiment G-OA1 or G-OA3 (Tukey’s HSD, p > 0.05)



 

 

 

 
Figure 4.2 Stacked bar plot of bacterial community composition in experiment G-OA1 (left) and G-OA3 (right). Bacteria are grouped by Phylum, except Proteobacteria which 
are divided into their respective classes. Phyla representing < 1% of total reads are grouped as ‘Other’. 
  



 

 

 

 
Figure 4.3 Heatmap of the 50 most abundant ASVs in bacterial communities at Day 1 and Day 5 of experiments G-OA1 (left) and G-OA3 (right). Rows correspond to 
unique ASVs and columns correspond to individual samples. Taxa order is determined according to the neatmap algorithm (Rajaram and Oono, 2010). The colours aligned 
with the ASV labels indicates the phylum (or Proteobacterial class) of each ASV. 



Chapter 4: Bacterial community responses to ocean acidification in the oligotrophic ocean 
 
 

 77 

 
 

 
Figure 4.4 Principal coordinates analysis based on weighted UniFrac distance between bacterial communities 
in control (white), high CO2 (grey), and greenhouse (black) treatments for G-OA1 Day 1 (A), G-OA1 Day 5 
(B), G-OA3 Day 1 (C), and G-OA3 Day 5 (D). 

 
 
4.4.2 Bacteria and picophytoeukaryote density 

 
Although cell abundance decreased between Day 1 and 5, there was no significant 
difference in bacteria cell density between treatments in G-OA1 and G-OA3 (Tukey’s 
HSD, p > 0.05, Fig. 4.5A). Picophytoeukaryote cell density did not differ between 
treatments at either time point in G-OA1 (Fig. 4.5B). However, at Day 1 in G-OA3, 
picophytoeukaryote cell density was significantly greater in the high CO2 (3,284 (±319) 
cells ml-1, ±1SD) and greenhouse (3,230 (±101) cells ml-1) treatment compared with the 
control (2,663 (±134) cells ml-1). At Day 5 in G-OA3, picophytoeukaryote cell density was 
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significantly greater in the greenhouse (2,214 (±236) cells ml-1) treatment compared with 
the control (1,612 (±100) cells ml-1).  
Comparisons between regions revealed that bacterial cell density was significantly greater 
in G-OA1 compared to G-OA3 at Day 1 in all treatments (One-way ANOVA, p < 0.05). 
Bacterial cell density was not significantly different between G-OA1 and G-OA3 at Day 5 
in any treatment (One-way ANOVA, p > 0.05). In contrast, picophytoeukaryote cell density 
was greater in G-OA1 than G-OA3 in all treatments at Day 1 and Day 5 (One-way 

ANOVA, p < 0.05).  
 

 
Figure 4.5 Cell density determined by flow-cytometry for bacteria (A) and picophytoeukaryotes (B) in 
control (white), high CO2 (grey), and greenhouse (black) treatments at Day 1 and Day 5 in experiments G-
OA1 and G-OA3. Error bars represent 1 SD. Horizontal bars indicate significant differences between 

treatments identified by Tukey’s post-hoc test (* p<0.05).  
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4.4.3 Bacterial secondary production 
 
Bacterial secondary production was measured using 3H-Leucine incorporation and 3H-
Thymidine incorporation, which act as proxies for protein synthesis and DNA synthesis, 
respectively. 3H-Leucine incorporation rates decreased between Day 1 and 5 in both 
experiments, but were not significantly different between treatments at either Day 1 or Day 
5 in G-OA1 (Tukey’s HSD, p > 0.05, Fig. 4.6A, mean 0.20-0.28 µg C l-1 d-1), or G-OA3 
(Day 1 mean 0.13-0.15 µg C l-1 d-1; Day 5 mean 0.09-0.11 µg C l-1 d-1). 3H-Thymidine 
incorporation data was only available for the greenhouse treatment at Day 1 in G-OA1 
(0.71 (±0.07) µg C l-1 d-1, ±1SD). 3H-Thymidine incorporation increased between Day 1 
and 5. In G-OA1 at Day 5, 3H-Thymidine incorporation was significantly higher in the 
greenhouse (1.80 (±0.19) µg C l-1 d-1) compared with the control (0.98 (±0.06) µg C l-1  
d-1) treatment, whilst the high CO2 (1.29 (±0.38) µg C l-1 d-1) treatment did not differ from 
either greenhouse or control treatments. In G-OA3, 3H-Thymidine incorporation was 
significantly higher in the high CO2 (0.89 (±0.01) µg C l-1 d-1) and greenhouse (0.84 (±0.04) 
µg C l-1 d-1) compared with control (0.54 (±0.06) µg C l-1 d-1) treatments at Day 1. By Day 
5, control (0.72 (±0.16) µg C l-1 d-1), high CO2 (1.13 (±0.34) µg C l-1 d-1), and greenhouse 
(1.43 (±0.33) µg C l-1 d-1) treatments were not significantly different, despite a trend of 
higher incorporation in high CO2 and greenhouse treatments (Fig. 4.6B).  

Comparisons between regions showed that 3H-Leucine incorporation rates were 
significantly higher in G-OA1 compared with G-OA3 at both Day 1 and Day 5 across all 
treatments (One-way ANOVA, p < 0.05). Whilst it was not possible to compare 3H-
Thymidine incorporation rates between experiments at Day 1, at Day 5 3H-Thymidine 
incorporation was not significantly different between G-OA1 and G-OA3 in any treatment 
(One-way ANOVA, p > 0.05). 
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Figure 4.6 Comparison of bacterial secondary production determined by 3H-Leucine incorporation (A) and 
3H-Thymidine incorporation (B) in control (white), high CO2 (grey), and greenhouse (black) treatments at 
Day 1 and Day 5 in experiments G-OA1 and G-OA3. Error bars represent 1 SD. Horizontal bars indicate 

significant differences between treatments identified by Tukey’s post-hoc test (* p<0.05, ** p<0.01, *** 

p<0.001).  
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4.5 Discussion 
 

4.5.1 Bacterial community responses to elevated CO2 and warming  
 
In this study, the effects of elevated CO2 and warming on bacterial communities were 
compared at the oligotrophic fringe and ultra-oligotrophic centre of the SPG. Bacterial 
community composition was not significantly affected by either high CO2 or greenhouse 
conditions at the oligotrophic fringe of the SPG, suggesting some resistance, at least short-
term, to these perturbations. In contrast, BCC diverged between the high CO2 and control 
treatments after 5 days of incubation at the ultra-oligotrophic centre of the SPG.  

The most pronounced difference between the control and high CO2 treatments at day 5 in 
the centre of the SPG was a lower relative abundance of the Flavobacteriaceae family 
(Bacteroidetes) in the high CO2 treatment (Fig. 4.2; Fig. 4.3). Flavobacteriaceae are 
commonly associated with phytoplankton blooms in nutrient-replete environments 
(Buchan et al., 2014) and have previously been shown to be vulnerable to elevated CO2 in 
the Arctic Ocean (Zhang et al., 2013), though this trend was not detected in similar 
experiments in the same region (Newbold et al., 2012; Roy et al., 2013). The relative 
abundance of Actinobacteria was also lower in the high CO2 treatment at the centre of the 
SPG, explained by a lower relative abundance of Candidatus_Actinomarina asv_9. These 
bacteria are amongst the smallest known free-living cells (Ghai et al., 2013).  Their 
adaptation to oligotrophy was revealed by genome assembly, which found extensive 
evidence of genome streamlining (Mizuno et al., 2015) that reduces cellular nutrient 
demands (Sela et al., 2016).   
In contrast to the responses of Bacteroidetes and Actinobacteria, the relative abundance of 
Gammaproteobacteria was greater in the high CO2 treatment at the centre of the SPG (Fig. 
4.2). This shift was the result of trends in SAR86_clade ASVs. Similarly to Candidatus 
Actinomarina, the SAR86 clade are adapted to oligotrophic environments through 
streamlined genomes (Dupont et al., 2012), and have previously been reported as abundant 

in the oligotrophic surface waters of the SPG (West et al., 2016). Notably, the relative 
abundance of the dominant cyanobacteria Prochlorococcus was greater under the high CO2 
treatment at the centre of the SPG. Prochlorococcus possess a highly streamlined carbon 
concentrating mechanism, which is not down-regulated under elevated CO2 conditions in 
nutrient-enriched media (Hopkinson et al., 2014). Furthermore, Prochlorococcus do not 
exhibit any growth rate response to elevated CO2 or temperature in nutrient-enriched 
monoculture (Fu et al., 2007). This suggests that elevated CO2 concentrations do not 
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provide a physiological advantage to the genus under nutrient replete conditions. In 
contrast, Prochlorococcus has been shown to increase in abundance in response to elevated 
CO2 in natural communities under low-nutrient conditions (Sala et al., 2016). Thus, the 
trends in Prochlorococcus abundance observed in this study may be the result of indirect 
effects of elevated CO2 (e.g. altered competitive interactions) or physiological advantages 
(e.g. reduced energetic cost of carbon fixation) which are constrained to oligotrophic 
conditions. Finally, the ubiquitous Alphaproteobacterial SAR11 clade was resistant to 

elevated CO2 at the ultra-oligotrophic centre of the SPG, supporting data from high-latitude 
regions (Hartmann et al., 2016). 
Recent metatranscriptomic analysis revealed that different families of heterotrophic 
bacteria upregulate distinct suites of pH homeostasis-related genes in response to elevated 
CO2 under low-nutrient conditions (Bunse et al., 2016). These pH homeostasis mechanisms 
differ in their energetic demands, which may have taxa specific ramifications for bacterial 
growth efficiency under elevated CO2 conditions in the oligotrophic ocean, as heterotrophic 
bacteria may be energy-limited in these regions (Del Giorgio et al., 2011). Though further 
research is necessary to characterise the physiological responses of specific bacteria to 
elevated CO2, current evidence demonstrates that physiological responses are not 
consistent between taxa (Bunse et al., 2016). In this study, BCC responses to the elevated 
CO2 appeared to be consistent, demonstrated by a high degree of similarity between the 
high CO2 replicates at the ultra-oligotrophic centre of the SPG (Fig. 4.4D). The findings of 
this study are consistent with the notion that physiological differences between bacteria 
may underpin community responses to elevated CO2 in ultra-oligotrophic regions.  
The most surprising finding of this study is the resistance of BCC to the combined effects 
of elevated CO2 and warming (greenhouse treatment) at both the oligotrophic fringe and 
ultra-oligotrophic centre of the SPG. These findings contrast with previous studies in high-

latitude regions which demonstrate significant effects of elevated CO2 and warming on 
bacterial community structure and function (Lindh et al., 2013; Bergen et al., 2016). The 
divergence of the findings of this study and those previously reported may be a result of 
nutrient limitation in the SPG, which have been shown to supress the metabolic responses 
of cyanobacteria and heterotrophic bacteria to temperature in laboratory experiments as a 
result of altered cellular energy budgets and enzyme kinetics (Berggren et al., 2010; 
Marañón et al., 2018). An important consideration is that this study was performed during 

the Austral Winter, and the temperature in the greenhouse treatment (+3°C ±0.5) was 

within the boundaries of annual sea surface temperature (SST) variance in the region 
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(Signorini and McClain, 2012). Nonetheless, the absence of response observed in the 
greenhouse treatment cannot be attributed exclusively to annual temperature cycles, as CO2 
concentrations in the greenhouse treatment profoundly exceeded annual variance 
(Takahashi et al., 2009). Therefore, these data suggest that elevated temperature and CO2 
may act antagonistically on BCC in the SPG. 
 
 

4.5.2 Differences between the fringe and oligotrophic centre of the SPG 
 
The divergent responses of BCC to elevated CO2 at the oligotrophic fringe and the ultra-
oligotrophic centre of the SPG may be explained by the different nutrient regimes in the 
respective regions, as the supply of nitrogen and iron is greater at the fringe than in the 
centre of the SPG (Ellwood et al., 2018). Heterotrophic bacteria can be energy-limited 
under ultra-oligotrophic conditions (Del Giorgio et al., 2011), thus the energetic 
ramifications of differential physiological responses to elevated CO2 may have more 
pronounced effects on growth efficiency, and therefore community composition, under 
ultra-oligotrophic conditions compared to regions with greater nutrient supply. 
Additionally, BCC can vary greatly between nutrient regimes (Hutchins and Fu, 2017). 
Bacterial communities were profoundly different between the oligotrophic fringe and the 

ultra-oligotrophic centre of the SPG, reflected in the dominance of Bacteroidetes in G-OA1 
and the dominance of Cyanobacteria and Alphaproteobacteria in G-OA3 (Fig. 4.2; Fig. 
4.3). Thus, another possible explanation for the different responses of BCC to elevated CO2 
between the fringe and centre of the SPG is that bacterial taxa composing communities at 
the fringe of the SPG are more tolerant of elevated CO2 conditions.  Nonetheless, these 
prominent differences suggest that the availability of nitrogen and iron are more influential 
than elevated CO2 and warming in structuring bacterial communities in the SPG.   
There was a pronounced temporal shift in BCC between day 1 and day 5 at the fringe of 
the SPG (Fig. 4.3). This may be the result of nutrient depletion over the duration of the 
experiment, as the incubations were isolated from allochthonous nutrient and iron inputs 
(e.g. vertical supply of nitrogen and aeolian supply of iron; Ellwood et al., 2018). The 
temporal shift in BCC at the centre of the SPG was less pronounced (Fig. 4.2; Fig. 4.3). 
This may reflect the ultra-oligotrophic conditions, where nutrients are predominantly 
autochthonous and their availability is tightly controlled by bacterial regeneration (Azam 
and Malfatti, 2007; Bonnet et al., 2008; Raimbault and Garcia, 2008), and so maintained 
in the G-OA3 incubations. Temporal changes in BCC at both the oligotrophic fringe and 
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the ultra-oligotrophic centre of the SPG demonstrate the capacity for restructuring of 
bacterial communities over the timeframe of the investigation. However, it is pertinent to 
consider that the potential rate of turnover in bacterial communities is related to bacterial 
growth rates, and may therefore be lower in ultra-oligotrophic environments (Nemergut et 
al., 2013). Nonetheless, longer incubation periods could enhance potential bottle effects, 
which have previously been shown to affect the structure and function of bacterioplankton 
communities under polar and freshwater environments (Massana et al., 2001; Baltar et al., 

2012).  
 
 
4.5.3 Functional responses 
 
3H-Leucine incorporation is a proxy of protein synthesis, whilst 3H-Thymidine 
incorporation is a proxy of DNA synthesis and therefore cell division (Knap et al. 1996). 
In this study, there was no significant difference in protein synthesis between control, high 
CO2, and greenhouse treatments in the SPG. These findings suggest that bacteria possess a 
community-level physiological tolerance to near-future elevated CO2 and warming. 
Although Bunse et al. (2016) found that heterotrophic bacterial groups upregulate different 
suites of pH homeostasis-related genes in response to elevated CO2, they found that these 

responses did not affect total community protein synthesis (also derived from 3H-Leucine 
incorporation rates), in line with the findings of this study. The trend of increased DNA 
synthesis rates in response to elevated CO2 and warming suggests that these environmental 
perturbations may increase rates of bacterial cell division. However, enhanced DNA 
synthesis rates were not reflected in total bacterial cell density, suggesting top-down control 
of bacterial populations (e.g. by grazing; Fenchel, 2008; Wambeke et al., 2008). These 
findings contrast with those of Burrell et al. (2017) in nearby mesotrophic waters of the 
South West Pacific Ocean, where elevated CO2 conditions did not enhance DNA synthesis 
rates and interacted antagonistically with temperature, suggesting that the functional 
responses of bacterial communities to elevated CO2 and warming can be modulated by 
nutrient regimes. 
Previous studies demonstrate that bacterial recycling of organic matter can be enhanced by 
elevated CO2 and warming, which may reduce the export of organic carbon to the deep 
ocean (Burrell et al., 2017; James et al., 2017). In this study, the effects of elevated CO2 
and warming on bacterial recycling remain unclear, due to inconsistent trends between 3H-
Leucine and 3H-Thymidine derived bacterial secondary production rates. However, James 
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et al. (2017) suggest that increased bacterial respiration rates and altered extracellular 
enzyme activity may underpin accelerated recycling of organic matter; these parameters 
were not measured in this study. Picophytoeukaryote cell density was increased by elevated 
CO2 and warming, but not elevated CO2 alone, at the ultra-oligotrophic centre of the SPG 
(Fig. 4.5B). This contrasts with the findings of previous studies which suggest that 
picophytoeukaryotes may benefit from elevated CO2 alone (Sala et al., 2016; Crawfurd et 
al., 2017; Schulz et al., 2017). Picophytoeukaryotes are major producers of particulate 

organic carbon in the SPG (Grob et al., 2007), and are closely associated with carbon export 
in oligotrophic regions (Guidi et al., 2016). Interestingly, post hoc analysis revealed 
picophytoeukaryote cell density was negatively correlated with bacterial cell density in the 
ultra-oligotrophic centre of the SPG (Fig. A.7). This suggests that picophytoeukaryotes 
may be in competition with bacteria for a limiting resource (e.g. nitrate). In contrast, 
picophytoeukaryote cell density at the fringe of the SPG was positively correlated with 
bacterial cell density, which could reflect mutualism due to both bacteria benefitting from 
organic matter production by picophytoeukaryotes, and picophytoeukaryotes benefitting 
from increased bioavailability of iron due to bacterial production of iron-binding ligands 
(Boiteau et al., 2016). As a result of inconsistent trends in bacterial secondary production, 
and greater picophytoeukaryote cell density at the ultra-oligotrophic centre of the SPG, it 
remains to be resolved how carbon export to the deep ocean will be affected by elevated 
CO2 and warming in these regions. The fundamental importance of subtropical gyres in 
global carbon cycling makes these questions a priority for further investigation (Hoegh-
Guldberg and Poloczanska, 2017). 
Finally, a previous report from these experiments found no effect of elevated CO2 and 
warming on nitrogen fixation in the SPG (Law et al., 2012), which is an important source 
of nitrogen at the fringe of the SPG but less so at the centre (Law et al., 2011; Ellwood et 

al., 2018). Though the composition of diazotrophic communities was not explicitly 
investigated in experiment G-OA1 and G-OA3, communities in the region were thought to 
be dominated by the cyanobacteria UCYN-A (Halm et al., 2011).  However, recent 
evidence indicates that nitrogen fixing capabilities are present in a wide range of 
heterotrophic bacteria in the SPG (Delmont et al., 2018). The newly discovered diversity 
of heterotrophic bacterial diazotrophs may contribute to the resistance of nitrogen fixation 
rates to elevated CO2 and warming in these regions.  
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4.5.4 Conclusions 
 
In conclusion, BCC was modified by elevated CO2 at the ultra-oligotrophic centre of the 
SPG, but not at the oligotrophic fringe, suggesting that bacterial community responses to 
elevated CO2 can be modulated by nutrient regimes. Responses to elevated CO2 at the ultra-
oligotrophic centre of the SPG were consistent between replicates, and may be underpinned 
by distinct pH homeostasis responses between bacterial groups under these ultra-
oligotrophic conditions (Bunse et al., 2016). Bacterial community resistance to the 
combined effects of elevated CO2 and warming contrasts with the findings of previous 
studies (Lindh et al., 2013; Bergen et al., 2016). This may be the result of nutrient limitation 
supressing metabolic responses to temperature (Berggren et al., 2010; Marañón et al., 
2018). As a result of trends in bacterial secondary production and picophytoeukaryote cell 
density, it remains uncertain how elevated CO2 and warming will affect carbon export in 
the SPG. Long-term manipulation experiments are required to resolve the chronic effects 
of elevated CO2 and warming on bacterial community structure and function, whilst further 
studies in other oligotrophic subtropical gyres are necessary to determine whether these 
findings can be generalised. Although such studies present logistical challenges in 
oligotrophic subtropical gyres, they are of paramount importance due to the expansion and 
role of these regions in global carbon cycling (Polovina et al., 2008, 2011; Hoegh-Guldberg 

and Poloczanska, 2017).  
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Chapter 5: Biofilm community responses to ocean 
acidification at a volcanic CO2 seep 
 
 
5.1 Abstract 
 
Microbial biofilms are important components of coastal marine ecosystems, where they 
form microhabitats harbouring a wealth of eukaryotic and prokaryotic diversity, in addition 
to fulfilling key biogeochemical functions and acting as a settlement substrate for habitat 
forming organisms. Ocean acidification has been shown to affect the structure and function 
of eukaryotic and prokaryotic biofilm communities, yet little is known about the ecological 
mechanisms which underpin these responses. In this study, the effect of ocean acidification 
on the early succession of eukaryotic and prokaryotic microbial biofilms was investigated 
at a volcanic CO2 seep system at Shikine-Jima, Japan. Ocean acidification was shown to 
significantly affect the composition of biofilm communities throughout the early stages of 
succession, but did not affect the diversity or evenness of these communities. Variability 
in biofilm community composition was lower under acidification conditions, suggesting 
that ocean acidification may exert significant selection pressure on both eukaryotic and 
prokaryotic communities decreasing the influence of stochastic processes on community 

assembly. The rate of turnover in biofilm community composition between successive time 
points was not significantly affected by ocean acidification. These findings indicate that 
species replacement, rather than shifts in diversity, evenness, or successional dynamics, 
underpin biofilm community responses to ocean acidification. 
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5.2 Introduction 
 
Biofilms are complex aggregates of microbes occupying surfaces in aquatic environments 
(Costerton et al., 1995), these biogenic habitats can harbour a wealth of eukaryotic and 
prokaryotic diversity (Sanli et al., 2015; Flemming et al., 2016). Biofilm microbes exist 
within a matrix of extracellular polymeric substances (EPS) which facilitate bioadhesion 
(Flemming and Wingender, 2010). This functionally important EPS matrix acts as a 
platform for the extracellular breakdown of organic compounds (Pohlon et al., 2010), 
intercellular communication (De Kievit, 2009),  and the storage of excess carbon as 
polysaccharides (reviewed in Flemming & Wingender 2010). In coastal marine 

environments, biofilms are a food-source for benthic grazers (Thompson et al., 2004) and 
are the primary settlement substrate for invertebrates and habitat-forming organisms 
including scleractinian corals (Tran and Hadfield, 2011; Espinel-Velasco et al., 2018).  
Ocean acidification, due to rising atmospheric carbon dioxide (CO2) concentrations, has 
driven a decrease in mean surface ocean pH of 0.1 units since the pre-industrial era, and is 
projected to drive a further decrease of 0.3 units by the end of the century under business-
as-usual scenarios (Hoegh-Guldberg et al., 2014). The responses of biofilms to ocean 
acidification are likely to have ramifications for marine food-webs and biogeochemical 
cycling. Laboratory studies indicate that ocean acidification has both direct and indirect 
effects on eukaryotic and prokaryotic biofilm communities (Witt et al., 2011; Krause et al., 
2012; Russell et al., 2013; Webster et al., 2013), and that ecosystem level studies in natural 
environmental settings must necessarily be integrated with laboratory studies to more 
accurately predict biofilm responses to future ocean acidification (Russell et al., 2013). 
Volcanic CO2 seeps are regions where CO2 gas is emitted from the seafloor, creating areas 
of localised acidification comparable to conditions projected by the end of the century 
(Hall-Spencer et al., 2008; Agostini et al., 2015). These systems provide a lens through 
which to investigate the ecosystem-level effects of ocean acidification in a setting of 
chronic exposure and natural realism (Hall-Spencer et al., 2008; Andersson et al., 2015). 

Studies of eukaryotic biofilm communities at CO2 seeps have focussed primarily on 
microalgae (Lidbury et al., 2012; Johnson et al., 2013, 2015), which are expected to be 
affected by ocean acidification through impacts on their carbon concentrating mechanisms 
and shifts in competitive interactions due to differences in inorganic carbon utilization 
(Mackey et al., 2015). These studies have consistently demonstrated that ocean 
acidification alters the composition of microalgal communities, driving an increase in the 
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total abundance of diatoms and the relative abundance of large chain-forming diatom 
species (Johnson et al., 2013, 2015). Despite consistent shifts in community composition, 
the effect of ocean acidification on eukaryotic biofilm diversity and evenness varies 
between studies (Lidbury et al., 2012; Johnson et al., 2013, 2015).  
Prokaryotic communities are expected to be resilient to ocean acidification due the large 
fluctuations in pH which these organisms must contend with across spatiotemporal scales 
(Joint et al., 2011). However, environmental pH can affect processes involved in biofilm 

formation (Dang and Lovell, 2016). Studies at CO2 seeps have demonstrated that ocean 
acidification can significantly alter the composition of prokaryotic biofilm communities 
settling on artificial substrates over short time periods (Lidbury et al., 2012), though long-
term studies suggest that interactions with macro-organisms and other environmental 
factors may become more important drivers of community structure over time (Hassenrück 
et al., 2017). Studies of established epilithic and epipelic prokaryotic communities at CO2 
seeps demonstrate consistent compositional shifts driven by an increase in the relative 
abundance of Bacteroidetes, and decrease in the relative abundance of 
Gammaproteobacteria and total community diversity, under acidified conditions (Kerfahi 
et al., 2014; Taylor et al., 2014). Moreover, ocean acidification can alter the composition 
of planktonic microbial communities at CO2 seeps, which are the inoculum from which 
biofilm communities assemble (Burrell et al., 2015; Chauhan et al., 2015).  
These compositional shifts in eukaryotic and prokaryotic biofilm communities are 
associated with shifts in community function, such as enhanced primary production 
(Lidbury et al., 2012; Johnson et al., 2013, 2015; Russell et al., 2013), and the increased 
production of uronic acids (Lidbury et al., 2012) which are a proxy of biofilm EPS 
production (Mojica and Cooney, 2010). While these studies demonstrate that ocean 
acidification can significantly affect the structure and function of eukaryotic and 

prokaryotic biofilm communities, successional trends and the ecological mechanisms 
which underpin biofilm community responses to ocean acidification are yet to be 
investigated.  
The advent of high-throughput amplicon sequencing has revolutionised microbial ecology 
by facilitating the surveying of eukaryotic and prokaryotic microbial communities in 
unprecedented depth and resolution (Thompson et al., 2017). Global surveys of marine 
microbial communities employing high-throughput amplicon sequencing have revealed the 
vast extent of previously unknown diversity in eukaryotic and prokaryotic marine microbes 
(de Vargas et al., 2015; Sunagawa et al., 2015; Malviya et al., 2016). These techniques 
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offer an avenue to investigate the ecology of marine microbial communities, including 
biofilms (Sanli et al., 2015), in previously unattainable detail.  
In this study, the effect of ocean acidification on the composition, diversity, and early 
successional dynamics of biofilm communities was investigated over 21 days at the 
Mikama Bay volcanic CO2 seep system, Shikine-Jima, Japan (Fig. 5.1). High-throughput 
amplicon sequencing of the 18S rRNA gene (Stoeck et al., 2010; Massana et al., 2015) and 
16S rRNA gene (Apprill et al., 2015; Parada et al., 2016) was used to characterise 

eukaryotic and prokaryotic components of biofilm communities, respectively. To date, 
these data provide the most detailed assessment of biofilm community composition at CO2 
seeps, and shed new light on the ecological mechanisms which underpin the responses of 
biofilms to near-future ocean acidification.  

 

 
Figure 5.1 Map of Mikama Bay, at Shikine-Jima. Control and high CO2 sites are indicated by blue and red 
points, respectively. The inset at the top right shows Shikine-Jima, with a black bounding-box around the 
Mikama Bay region. The photographic insets at the middle and bottom right show representative seascapes 
at the control and high CO2 sites, taken during sampling for this study. 
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5.3 Methods 
 
5.3.1 Study site and sampling 
 
Shikine-Jima is volcanic island situated approximately 50 km south east of the Shimoda, 
Japan. The island is at a temperate latitude, but is influenced by the warm Kuroshio current. 
Consequently, the coastal waters surrounding the island host a diverse range of tropical and 
temperate organisms including scleractinian corals and canopy-forming macroalgae 
(Agostini et al., 2018). The island harbours a recently described CO2 seep system at 
Mikama Bay where ~98% CO2 gas percolates through the seafloor creating areas of 

localised acidification (Agostini et al., 2015), and an adjacent control site unaffected by the 
CO2 seep system (Fig. 5.1). The experimental high CO2 seep site represents a valuable 
analogue for studying the ecosystem level effects of ocean acidification on coastal marine 
environments (Agostini et al., 2015, 2018). 
Two factory-calibrated Durafet pH sensors (Seafet, Sea-Bird Scientific, Canada) were 
deployed at the control and high CO2 sites during the experimental period to record ambient 
pHtotal at 15-minute intervals. Data from the Durafet pH sensor deployed at the control site 
were corrupted upon retrieval and unavailable for the time period of this study. However, 
Durafet pH sensor data was available from the same period of the previous year, which is 
reported alongside data from the high CO2 seep site during the time period of this study 
(Agostini et al., 2018; Fig. 5.2). Discrete seawater samples were collected from high CO2 
sites (n = 54) for total alkalinity measurements according to methods described in Agostini 
et al. (2018). Carbonate chemistry parameters were estimated for the high CO2 site using 
the R package ‘seacarb’ (Lavigne and Gattuso, 2010), with pHtotal, total alkalinity, 
temperature, and salinity as input variables. Due to the corruption of Durafet pH sensor 
data from the control site, estimated carbonate chemistry parameters are reported from the 
previous year (Agostini et al. 2018; Table 5.1).  
To survey the colonisation and early-succession of biofilm communities under control and 

high CO2 conditions, 9 rigs were deployed at each site, each holding four 5 cm x 10 cm 
transparent acrylic slides at a depth of 5-7 m. One slide was collected from each rig by 
SCUBA divers at 5 days, 10 days , 15 days, and 21 days post-deployment. Acrylic slides 
were chosen as microalgal settlement is consistent between these artificial substrates and a 
range of natural substrates (Johnson et al., 2013, 2015).  
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Following collection, a 30 cm2 section of biofilm was removed from the upper surface of 
each slide using a sterile razorblade and transferred into a 2 ml cryovial. Cryovials were 
immediately transferred to liquid nitrogen prior to DNA extraction. The remaining 20 cm2 
section of biofilm was removed from the upper surface of each slide using a sterile 
razorblade and transferred to a 2 ml microfuge tube for chlorophyll a analysis. Chlorophyll 
a was extracted from biofilm samples in 1 ml of 96% ethanol over a 24-hour period at -
20°C. Following this incubation period, each microfuge tube was centrifuged at 8,000 rpm 

for 5 minutes to remove particulate matter. The supernatant was then used to determined 
chlorophyll a concentration according to spectrophotometric methods described in Jeffrey 
& Humphrey (1975) using a UV-1280 UV-VIS Spectrophotometer (Shimadzu 
Corporation, Kyoto, Japan). 



 

  

Table 5.1 Carbonate chemistry at control and high CO2 sites at Shikine-Jima, Japan. Data presented for 2016 originate from Agostini et al. (2018). Data for 2017 originate 

from this investigation. Control site data were unavailable for 2017 due to instrument error. Temperature, salinity, pH, and total alkalinity (TA) were measured directly, whilst 

pCO2, dissolved inorganic carbon (DIC), bicarbonate (HCO3-), carbonate (CO32-), calcite saturation state (W calcite), and aragonite saturation state (W aragonite) were estimated 

using the R package ‘seacarb’ with directly measured parameters as input values.  

 

 
 
 
 

 

 
Figure 5.2 Time-series of pHtotal at control (blue line) and high CO2 (red line) sites, recording using a Durafet pH sensor during to time period of the study. Durafet pH sensor 

data from the control site were unavailable during the time period of the study, and consequently, data from the same time period of the previous year are displayed.  

Site Temp. (ºC) Salinity (psu) pHtotal TA (µmol kg-1) pCO2 (µatm) DIC (µmol kg-1) HCO3
- (µmol kg-1) CO3

2- (µmol kg-1) W calcite W aragonite 

Control (2016) 16.5 ± 0.0 34.51 ± 0.03 8.22 ± 0.03 2260 ± 3.00 341.5 ± 26.10 2007.70 ± 14.90 1816.6 ± 22.90 178.8 ± 9.00 4.28 ± 0.22 2.75 ± 0.14 

           

High CO2 (2016) 19 ± 0.7 34.47 ± 0.06 7.90 ± 0.17 2270 ± 2.00 888.40 ± 471.30 2140.50 ± 61.20 2002.9 ± 78.70 108.00 ± 31.90 2.59 ± 0.76 1.68 ± 0.49 

High CO2 (2017) 22.18 ± 1.94 34.50 ± 0.00 7.77 ± 0.11 2274 ± 6.83 868.28 ± 317.07 2120.81 ± 45.31 1968.03 ± 60.87 126.24 ± 45.31 3.04 ± 0.60 1.98 ± 0.39 
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3.5.2 Library preparation and sequence processing 
 
Genomic DNA was extracted from each biofilm sample using the Qiagen DNEasy Plant 
Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. A 
two-round PCR protocol was then used to generate paired-end Illumina libraries for 16S 
and 18S rRNA genes, respectively. In the first round, the V4 region of the 18S rRNA gene 
was amplified using the TAReuk454FWD1 (5’ CCAGCASCYGCGGTAATTCC) and 
TAReukREV3 (5’ ACTTTCGTTCTTGATYRA) primers (Stoeck et al., 2010), and the V4 
region of the 16S rRNA gene was amplified using the 515F (5’ 
GTGYCAGCMGCCGCGGTAA) and 806R (5’ GGACTACNVGGGTWTCTAAT) 
primers (Apprill et al., 2015; Parada et al., 2016). Both sets of primers were modified to 
allow the downstream attachment of Illumina sequencing adapters (Griffith et al., 2017). 
Triplicate 25 µl PCR mixtures were prepared for each DNA sample using the HiFi Hotstart 
PCR kit (KAPA Biosystems, Boston, MA, USA) and contained 1 X KAPA HiFi buffer (2 

mM MgCl2), 0.3 mM of KAPA dNTP Mix, 0.3 µM of forward and reverse primers, and 

0.5 U of KAPA HiFi Hotstart DNA Polymerase. The PCR thermocycler program for the 
18S rRNA gene was adapted from Massana et al. (2015) and had an initial denaturation 
step at 95°C for 30 s, followed by 10 cycles of 95°C for 30 s, 53°C for 30 s, and 72°C for 
30 s, followed by 15 cycles of 95°C for 30 s, 48 °C for 30 s, and 72°C for 30 s, with a final 
extension period of 300 s at 72°C. The PCR thermocycler program for the 16S rRNA gene 
had an initial denaturation step at 95°C for 120 s, followed by 25 cycles of 98°C for 20 s, 
60°C for 30 s, and 72°C for 30 s, with a final extension period of 60 s at 72°C. Resulting 
triplicate PCR products from each sample were pooled and purified using the Mag-bind 
TotalPure NGS kit (OMEGA Bio-tek, Norcross, GA, USA) according to the 
manufacturer’s instructions. The DNA concentration of the purified PCR products was 
quantified using the Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific, 
Waltham, MA, USA) according to the manufacturer’s instructions. Following 
quantification, purified PCR products were diluted to a concentration of 1 ng µl-1. 
A second round of PCR was performed to attach Illumina sequence adapters and indexes. 
Each PCR mixture was prepared as described above, and contained 1 µl of diluted first 
round PCR products. The PCR thermocycler program had an initial denaturation step at 
95°C for 120 s, followed by 10 cycles of 98°C for 20 s, 60°C for 20 s, and 72°C for 20 s, 
with a final extension period of 60 s at 72°C. Second round PCR products were purified, 
quantified, and pooled to generate libraries for the 18S rRNA gene and 16S rRNA gene, 
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respectively. Pooled libraries were sequenced on the Illumina MiSeq platform (Illumina, 
San Diego, CA, USA) using the V3 (2 x 300 bp) and V2 (2 x 250 bp) reagent kits for the 
18S rRNA gene and 16S rRNA gene, respectively.  
18S rRNA gene and 16S rRNA gene sequences were processed according to the 
Bioconductor workflow for microbiome data analysis (Callahan et al., 2016). Primers and 
low-quality sequences were trimmed from the reads, before the DADA2 method (Callahan 
et al., 2016) was used to infer amplicon sequence variants (ASVs). This method infers 
ASVs at the single nucleotide resolution, increasing the accuracy and reproducibility of 
high-throughput amplicon sequencing analyses (Callahan et al., 2017). Chimeric sequences 
were then removed, and taxonomy was assigned using the RDP Naïve Bayesian classifier 
(Wang et al., 2007) against the PR2 version 4.10.0 database (Guillou et al., 2013) and 
SILVA release 132 database (Quast et al., 2013) for 18S rRNA gene and 16S rRNA gene 
ASVs, respectively. Prior to downstream analysis, 18S rRNA gene ASVs were filtered to 
remove metazoan sequences. Similarly, 16S rRNA gene ASVs which were not classified 
as bacteria or archaea, or were classified as chloroplasts or mitochondria, were filtered prior 
to downstream analysis. Resulting ASV tables, taxonomy tables, and corresponding 
environmental metadata were assembled as a phyloseq object (McMurdie and Holmes, 
2013) for 16S rRNA gene and 18S rRNA gene ASVs, respectively. Sequence reads were 
then randomly subsampled to an even depth (18S rRNA gene: 11,689 reads, 16S rRNA 
gene: 18,708), and as a result of this process three 18S rRNA gene samples (control: 
R6D21; high CO2: R10D5, R15D5) and three 16S rRNA gene samples (high CO2: R10D5, 
R15D5, R15D15) were excluded due to insufficient sequencing depth.  
 
 
5.3.3 Statistical analyses 
 
A Bray-Curtis dissimilarity matrix was calculated to quantify pairwise dissimilarity 
between biofilm communities. The Bray-Curtis dissimilarity matrix was then used as an 
input for PERMANOVA (Anderson, 2001) to test the effect of site (control and high CO2) 
and time point (day 5, day 10, day 15, and day 21) on both eukaryotic and prokaryotic 
biofilm community composition. Pairwise comparisons were then performed between each 
pair of time points at the control and high CO2 site, and between control and high CO2 sites 
at each time point, respectively. The diversity and evenness of eukaryotic and prokaryotic 
biofilm communities was quantified using Shannon’s Index (H) and the Simpson’s index 
(D), respectively. A two-way ANOVA with Tukey’s HSD was then used to test the effects 



Chapter 5: Biofilm community responses to ocean acidification 
 
 

 97 

of site and time point on eukaryotic and prokaryotic biofilm community diversity and 
evenness. 
Variability in eukaryotic and prokaryotic biofilm community composition at each site and 
time point was quantified using Bray-Curtis dissimilarity. A two-way ANOVA with 
Tukey’s HSD was used to test the effects of site and time point on variability in eukaryotic 
and prokaryotic biofilm community composition. Turnover in eukaryotic and prokaryotic 
biofilm community composition was quantified as the Bray-Curtis dissimilarity between 
successive time points at each rig. A two-way ANOVA with Tukey’s HSD was then used 
to test the effects of site and successive time point on turnover in eukaryotic and prokaryotic 
biofilm community composition. The coupling of eukaryotic and prokaryotic biofilm 
communities was investigated using the Mantel test based on Bray-Curtis dissimilarity 
between pairs of communities, which tests the hypothesis: dissimilarity between pairs of 
eukaryotic communities is linearly correlated with dissimilarity between corresponding 
pairs of prokaryotic communities.  
Finally, the effect of site and time point on biofilm chlorophyll a concentration was 
compared using a two-way ANOVA with Tukey’s HSD, to investigate differences in the 
standing stock of photosynthetic organisms in total biofilm communities.  

 

 

5.4 Results 
 
5.4.1 Biofilm community composition 
 
The eukaryotic component of biofilm communities was variable at both the control and 
high CO2 site throughout the early-successional stages investigated in this study (Fig. 5.3). 
At the Division level, Stramenopiles_X, which included Oomycota and Labyrinthulea, 
represented a significant but highly variable component of biofilms at the control (15.0% 
± 15.4; Fig. 5.3) but not the high CO2 sites (4.5% ± 4.3). Similarly, Ciliophora represented 
a greater component of biofilms at the control (6.3% ± 4.9) than at the high CO2 sites (1.8% 
± 1.3). In contrast, Rhodophyta represented a greater proportion of biofilm communities in 
the high CO2 sites (14.1% ± 9.9) compared to the control sites (3.6% ± 3.3). At day 5, 
Chlorophyta represented a significant component of eukaryotic biofilm communities at 
both sites (control: 13.8% ± 5.7, high CO2: 24.9% ± 5.8), but the relative abundance of 
Chlorophyta was lower at other time points (control: 2.3% ± 2.0, high CO2: 0.9% ± 0.64). 
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From day 10 onwards, Haptophytes had a greater relative abundance at the high CO2 site 
(34.9% ± 13.5) than the control site (16.0% ± 10.4). 
Generally, trends in eukaryotic biofilm community composition were driven by a small 
number of highly abundant ASVs (Fig. 5.3). At day 5, control sites were dominated by 
Ecotocarpus siliculosus asv_3 (22.4% ± 14.8), Phaeophyceaea sp. asv_2 (11.6% ± 13.8), 
and Oomycota sp. asv_6 (22.4% ± 20.1). At the high CO2 site, Phaeophyceaea sp. asv_2 
(15.2% ± 5.6) and Phaeophyceaea sp. asv_12 (16.7% ± 4.0) were the most abundant taxa, 
whilst Ecotocarpus siliculosus asv_3 (1.5% ± 0.4) and Oomycota sp. asv_6 (0.2% ± 0.4) 
were rare or absent. From day 10 onwards, Prymnesium sp. asv_1 (14.3% ± 9.9) and 
Phaeophyceaea sp. asv_2 (22.0% ± 20.7) had the greatest relative abundance at the control 
site, whilst Prymensium sp. asv_1 (30.8% ± 12.1) dominated the high CO2 site.  
PERMANOVA analysis based on Bray-Curtis dissimilarity revealed that both site (pseudo 
F1,61: 24.15, R2: 0.18, p < 0.001) and time (pseudo F3,61: 11.21, R2: 0.25, p < 0.001) 
significantly affected eukaryotic biofilm community composition, and there was a 
significant interaction between these factors (pseudo F3,61: 4.70, R2: 0.11, p < 0.001). 
Pairwise comparisons revealed that eukaryotic biofilm communities at control and high 
CO2 sites significantly differed at each time point (all p < 0.001; Fig. 5.4). At the control 
site, eukaryotic biofilm communities significantly differed between days 5 and 10 (p < 
0.001), days 10 and 15 (p < 0.05), but not days 15 and 21 (p > 0.05). At the high CO2 site, 
eukaryotic biofilm communities significantly differed between each successive time point 
(all p < 0.05). 
 



 

 

  
Figure 5.3 (a) Heatmap of the 20 most abundant eukaryotic ASVs in biofilms at control and high CO2 sites. ASV are ordered according to the neatmap algorithm (Rajaram and 
Oono, 2010). Colour bar indicates the proportion of reads in each sample attributed to a particular ASV. (b) Division level composition of eukaryotic biofilm communities at 
control and high CO2 seep sites. 
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Figure 5.4 Bray-Curtis dissimilarity based nMDS plot of eukaryotic biofilm community composition at 

control (filled circles) and high CO2 (open circles) sites at each time point during the study. 

 

 

At the Phylum and Proteobacterial class level, the prokaryotic component of biofilm 

communities was dominated by Alphaproteobacteria (control: 41.2% ± 18.5, high CO2: 

43.0% ± 8.2) and Bacteroidetes (control: 37.6% ± 12.3, high CO2: 34.0% ± 7.4) in both the 

control and high CO2 site across all time points during the study (Fig. 5.5). 

Gammaproteobacteria were a consistent feature of prokaryotic communities at the high 

CO2 site (16.1% ± 4.0) but represented a smaller and more variable component of 

communities at the control site (12.3% ± 6.3). Similarly, Verrucomicrobia were a variable 

component of prokaryotic communities at the control site (5.7 ± 6.4), but were a smaller 

and less variable component of prokaryotic communities at the high CO2 site (3.0 ± 1.8).  

Trends in prokaryotic biofilm community composition amongst abundant ASVs were 

subtle at the control site, though Loktanella rosea asv_8, Planktotlea asv_6, and Rubritalea 

asv_14 sporadically dominated samples (Fig. 5.5). In contrast, at the high CO2 site, 

prokaryotic communities displayed clear structuring through time amongst the most 

abundant ASVs. At the high CO2 seep site, Planktotalea asv_6 (4.0% ± 0.9), 

Rhodobacteraceae asv_27 (3.5% ± 0.9), Thalassobius asv_35 (3.1% ± 0.7), and Lentibacter 

asv_5 (2.9% ± 0.7) had the greatest relative abundance at day 5. By day 21 
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Cyclobacteriacea asv_9 (3.8% ± 2.1), Tateyamaria asv_17 (3.8% ± 0.8), Glaciecola asv_21 

(3.6% ± 2.0), and Kordia ulvae asv_13 (3.4% ± 1.2) had the greatest relative abundance.  

PERMANOVA analysis based on Bray-Curtis dissimilarity revealed that both site (pseudo 

F1,61: 23.95, R2: 0.18, p < 0.001) and time (pseudo F3,61: 11.14, R2: 0.25, p < 0.001) 

significantly affected prokaryotic biofilm community composition, and there was a 

significant interaction between these factors (pseudo F3,61: 4.36, R2: 0.10, p < 0.001). 

Pairwise comparisons revealed that prokaryotic biofilm communities at control and high 

CO2 sites significantly differed at each time point (all p < 0.001; Fig. 5.6). Similar to 

eukaryotic communities, prokaryotic biofilm communities significantly differed between 

days 5 and 10 (p < 0.001), days 10 and 15 (p < 0.05), but not days 15 and 21 (p > 0.05) at 

the control site. At the high CO2 site, prokaryotic communities significantly differed 

between each successive time point (all p < 0.001).



 

 

 
Figure 5.5 (a) Heatmap of the 20 most abundant ASVs in prokaryotic biofilms at control and high CO2 sites. ASV are ordered according to the neatmap algorithm (Rajaram 
and Oono, 2010). Colour bar indicates the proportion of reads in each sample attributed to a particular ASV. (b) Phylum level composition of prokaryotic biofilm communities 
at control and high CO2 seep sites.
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Figure 5.6 Bray-Curtis dissimilarity based nMDS plot of prokaryotic biofilm community composition at 

control (filled circles) and high CO2 (open circles) sites at each time point during the study. 

 

 

5.4.2 Biofilm diversity and evenness 

 

A two-way ANOVA revealed that eukaryotic biofilm diversity (Shannon’s index) was 

significantly affected by time point (F3,61: 4.98, p < 0.01), but not site (F1,61: 0.003, p > 

0.05), and a significant interaction was present between site and time point (F3,61: 4.883, p 

< 0.01). Pairwise comparisons (Tukey’s HSD) revealed that eukaryotic biofilm diversity 

was lower at day 5 than at day 10 in the control site (p < 0.05), but did not differ between 

any other time points in either the control or high CO2 site (all p > 0.05). Moreover, 

eukaryotic biofilm diversity was lower in the control site than the high CO2 site at day 5 (p 

< 0.05) but at no other time point (Fig. 5.7a). Prokaryotic biofilm diversity was significantly 

affected by time point (F3,61: 6.30, p < 0.001) but not site (F1,61: 2.53, p > 0.05), with no 

significant interaction between site and time point (F3,61: 0.32, p > 0.05). Prokaryotic 

biofilm diversity was lower at day 5 than at day 10 in the control site (p < 0.05), but did 

not differ between any other time points in either the control or high CO2 site (all p > 0.05; 

Fig. 5.7b).  
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Eukaryotic biofilm evenness was significantly affected by time point (F3,61: 3.26, p < 0.05) 

but not site (F1,61: 0.56, p > 0.05) and there was no significant interaction between site and 

time point (F3,61: 2.69, p > 0.05). However, pairwise comparisons revealed no significant 

differences between time points at either the control and high CO2 sites (all p > 0.05; Fig. 

5.7c).  Prokaryotic biofilm community evenness was significantly affected by site (F1,61: 

4.727, p < 0.05), but not time point (F3,61: 2.56, p > 0.05), and there was no significant 

interaction between site and time point (F3,61: 1.22, p > 0.05). However, pairwise 

comparisons revealed no significant difference between control and high CO2 sites at any 

time point (all p > 0.05; Fig. 5.7d).   

 

 

 

Figure 5.7 (a) Shannon’s index diversity of eukaryotic biofilm communities at each time point during the 

study. (b) Shannon’s index diversity of prokaryotic biofilm communities at each time point during the study. 

(c) Simpson’s index evenness of eukaryotic biofilm communities at each time point during the study. (d) 

Simpson’s index evenness of prokaryotic biofilm communities at each time point during the study. Error bars 

displays standard error. Asterisks denote time points where indexes differed significantly between control 

and high CO2 sites (Tukey’s HSD, p < 0.05). 
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5.4.3 Biofilm compositional variability 

 

A two-way ANOVA revealed that the compositional variability of eukaryotic biofilm 

communities was significant affected by site (F1,257: 35.51, p < 0.001), but not time point 

(F3,257: 2.02, p > 0.05), with no significant interaction between the factors (F3,257: 2.52, p > 

0.05).  Compositional variability in eukaryotic biofilm communities was greater in the 

control compared with the high CO2 site at day 5 (p < 0.05; Fig. 5.8a), day 10 (p < 0.05), 

and day 21 (p < 0.001), but not at day 15 (p > 0.05). The compositional variability of 

prokaryotic biofilm communities was significant affected by both site (F1,257: 103.88, p < 

0.001) and time point (F3,257: 27.34, p < 0.001) and a significant interaction was present 

between these factors (F3,257: 7.71, p < 0.001). Pairwise comparisons revealed that 

compositional variability in prokaryotic communities at the control site at day 5 and day 

10 was significantly lower than at day 15 and day 21 (all p > 0.01). At the high CO2 site, 

variability in prokaryotic biofilm communities at day 5 was lower than at day 15 (p < 0.05), 

though no significant differences were observed between other time points (p > 0.05). 

Compositional variability in prokaryotic biofilm communities differed between control and 

high CO2 sites at day 5 (p < 0.01; Fig. 5.8b), day 15 (p < 0.001), and day 21 (p < 0.001) but 

not at day 10 (p > 0.05). 

 

 

 

Figure 5.8 Boxplot of compositional variability (Bray-Curtis dissimilarity) in (a) eukaryotic and (b) 

prokaryotic biofilm communities at control and high CO2 sites at each time point during the study. Horizontal 

bars represent the median value, the box represents the interquartile range, and the whiskers represent the 

minimum and maximum values excluding outliers. Outliers are represented by open circles. Asterisks denote 

time points where Bray-Curtis dissimilarity differs significantly between sites (Tukey’s HSD, p < 0.05). 
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5.4.4 Biofilm succession 

 

A two-way ANOVA revealed that successive time point (F2,45: 42.44, p < 0.001), but not 

site (F1,45: 0.93, p > 0.05), significantly affected turnover in the composition of eukaryotic 

biofilm communities (Fig. 5.9a), and there was no significant interaction between these 

factors (F2,45: 0.004, p > 0.05). Pairwise comparisons revealed that at both the control and 

high CO2 sites, turnover in eukaryotic biofilms was greater between day 5 and day 10, than 

between day 10 and day 15 (p < 0.001), and day 15 and day 21 (p < 0.001). Similar to 

eukaryotic communities, time point (F2,44: 5.16, p < 0.01), but not site (F1,44: 0.006, p > 

0.05), affected significantly turnover in the composition of prokaryotic biofilm 

communities (Fig 5.9b), and there was no significant interaction between these factors 

(F2,44: 1.049, p > 0.05). However, pairwise comparisons revealed no significant difference 

between pairs of successive time points in either the control or high CO2 site (all p < 0.05).  

 

 

 

Figure 5.9 Boxplot of compositional turnover (Bray-Curtis dissimilarity) in (a) eukaryotic and (b) 

prokaryotic biofilm communities at each rig between successive time points at control and high CO2 sites. 

Horizontal bars represent the median value, the box represents the interquartile range, and the whiskers 

represent the minimum and maximum values excluding outliers. Outliers are represented by open circles. 
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5.4.5 Eukaryotic-prokaryotic biofilm community coupling 

 

Coupling between eukaryotic and prokaryotic communities, based on Bray-Curtis 

dissimilarity, was measured using the Mantel test. The composition of eukaryotic and 

prokaryotic communities was significantly related at both the control (r: 0.513, p < 0.001) 

and high CO2 (r: 0.716, p < 0.001) sites (Fig. 5.10). However, the strength of this 

relationship was much greater at the high CO2 seep site, demonstrating stronger coupling 

between eukaryotic and prokaryotic communities under these conditions.  

 

 

 

 

Figure 5.10 The relationship between eukaryotic and prokaryotic biofilm community composition at (a) 

control and (b) high CO2 sites during the study, investigated using the Mantel test. 

 

 

5.4.6 Biofilm chlorophyll 

 

A two-way ANOVA revealed that chlorophyll a concentration was significantly affected 

by time point (F3,64: 18.67, p < 0.001), but not site (F1,64: 0.18, p > 0.05), and there was no 

significant interaction between these factors (F3,64: 0.76, p >0.05). Chlorophyll a 

concentrations at both the control and high CO2 site were greater at day 10, day 15, and 

day 21, when compared with day 5 (all p < 0.001), but did not significantly differ between 

any other time points (Fig. 5.11).  

 



Chapter 5: Biofilm community responses to ocean acidification 

 

 

 108 

 

 
Figure 5.11 Concentrations of chlorophyll a in total biofilms colonising slides at each time point during the 

study. Error bars displays standard error. 

 

 

5.5 Discussion 
 

5.5.1 Eukaryotic community composition 

 

The eukaryotic biofilm community composition at high CO2 sites differed from control 

sites at all time points during the investigation (Fig. 5.4), supporting the findings of 

previous CO2 seep studies investigating biofilms on both artificial (Lidbury et al., 2012; 

Johnson et al., 2013) and natural substrates (Johnson et al., 2015). The rate of succession 

(compositional turnover between successive timepoints at each rig) in eukaryotic biofilm 

community composition did not significantly differ between control and high CO2 seep 

sites, indicating that the successional dynamics of eukaryotic biofilm communities are not 

affected by ocean acidification (Fig. 5.9a). 

From day 10 onwards, eukaryotic biofilm communities at the high CO2 site were dominated 

by Prymnesium sp. (Fig. 5.3). Prymnesium is a genus of mixotrophic golden algae 

responsible for the production of prymnesins, compounds with allelopathic and toxic 

effects (Manning and La Claire, 2010). These golden algae can form harmful blooms 

resulting in large-scale fish kills with significant socioeconomic implications (Roelke et 
al., 2016). Prymnesium sp. consume microbes affected by their toxins (Roelke et al., 2016), 

whilst the allelopathic nature of prymnesins can reduce grazing pressure and suppress 

competition from other microalgae (Fistarol et al., 2003; Roelke et al., 2016). These factors 

simultaneously increase the fitness of Prymnesium sp. and decrease the fitness of 
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competitors (Roelke et al., 2016). Prosser et al. (2012) found that low pH conditions, 

comparable to those at the high CO2 site in this study, supress bloom formation in 

Prymnesium parvum. However, their study manipulated pH through sulfuric acid addition 

rather than CO2 addition, and consequently is not directly comparable. Prymnesium sp. 
may be able to capitalise on increased CO2 concentrations, which have previously been 

shown to increase toxin production in other microalgae (Hall-Spencer & Allen, 2015, 

Riebesell et al., 2018), allowing them to dominate the eukaryotic component of biofilms at 

the high CO2 site. These findings add to a previous report by Riebesell et al. (2018), which 

showed that some toxic microalgae are consistently able to capitalise on projected near-

future CO2 concentrations at the ecosystem-level. Due to the potential socioeconomic 

impacts of Prymnesium sp., physiological studies are warranted to further explore the 

responses of Pyrmnesium sp. and the production of prymnesins to ocean acidification 

through CO2 manipulation experiments.  

The large chain-forming diatom Biddulphia biddulphiana sporadically colonized slides at 

the high CO2 site, but not the control site (Fig. 5.3). These diatoms can form thick mats that 

overgrow corals and macroalgae, smothering the benthos (Galland and Pennebaker, 2012). 

However, little is known about the environmental conditions which induce such events 

(Galland and Pennebaker, 2012). The findings of this study demonstrate that Biddulphia 
biddulphiana are able to rapidly colonise available substrate under high CO2 conditions, 

suggesting that CO2 concentrations may be an important environmental factor in the 

formation of benthic blooms of Biddulphia biddulphiana. These data align with previous 

reports from CO2 seeps in Italy, which show that large chain-forming diatom species may 

benefit from high CO2 conditions (Johnson et al., 2013, 2015).  

Eukaryotic biofilm community diversity was enhanced at the high CO2 site at day 5 in this 

study, but at no other time point (Fig. 5.7a). This initial greater diversity at the high CO2 

site may be driven by accelerated colonisation of slides by algae which can benefit from 

the increase availability of CO2. However, eukaryotic biofilm diversity did not differ 

between sites beyond day 5, in contrast to the findings of previous CO2 seep studies in Italy 

(Johnson et al., 2013, 2015). Eukaryotic biofilm evenness did not significantly differ 

between control and high CO2 sites at any time point, but has been shown to decrease under 

high CO2 conditions in other studies as a smaller cohort of taxa become dominant (Johnson 

et al., 2013, 2015). Whilst previous studies have focussed on the photosynthetic component 

of biofilm communities (Lidbury et al., 2012; Johnson et al., 2013, 2015), this study 

considers the complete community of microbial eukaryotes and finds no prolonged effect 

of ocean acidification on diversity or evenness. Moreover, previous studies demonstrate 
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that elevated CO2 conditions interact with other environmental variables, including light, 

to affect eukaryotic biofilm diversity (Lidbury et al. 2012). Consequently, it is unsurprising 

that reports of the responses of eukaryotic biofilm diversity to ocean acidification across 

different biogeographic regions and different settlement substrates present contrasting 

results.  

 

5.5.2 Prokaryotic community composition 

 

Similar to eukaryotic community composition, the prokaryotic community composition of 

biofilms was distinct between control and high CO2 sites at all time points during the 

investigation (Fig. 5.6). These findings align with previous reports from CO2 seep studies 

investigating epilithic biofilms (Taylor et al., 2014), epipelic prokaryotic communities 

(Kerfahi et al., 2014), and biofilms settling on artificial substrates (Lidbury et al., 2012). 

The rate of succession in prokaryotic biofilm communities did not significant differ 

between control and high CO2 sites, indicating that ocean acidification does not alter the 

successional dynamics of prokaryotic biofilm communities (Fig. 5.9b).  

Previous studies of prokaryotic communities at CO2 seeps found that ocean acidification 

can enhance the relative abundance of Bacteroidetes (Kerfahi et al., 2014; Taylor et al., 
2014). This effect was suggested to emerge from enhanced productivity of biofilms under 

high CO2 conditions, resulting in a greater supply of organic matter to Bacteroidetes, and 

in particular Flavobacteria, which possess a wide range of mechanisms for utilising organic 

carbon and are associated with productive marine environments (Fernández-Gómez et al., 
2013; Buchan et al., 2014). In this study, the relative abundance of Bacteroidetes did not 

differ between control and high CO2 sites (Fig. 5.5), potentially due to the lack of significant 

differences in chlorophyll a concentration between biofilms at control and high CO2 sites 

which indicates that the standing stock of primary producers does not differ between the 

two sites. Previous studies of prokaryotic communities at CO2 seep sites report an decrease 

in the relative abundance of Gammaproteobacteria (Kerfahi et al., 2014; Taylor et al., 
2014). In this study, the relative abundance of Gammaproteobacteria was greater at the high 

CO2 site (Fig. 5.5). Interestingly, Cyanobacteria represented a very small component of 

biofilm communities at both control and high CO2 sites during this study (Fig. 5.5), 

contrasting with reports from previous characterisations of marine biofilms in other regions 

(Sanli et al., 2015; Hassenrück et al., 2017). These findings indicate that eukaryotic 

microalgae are the dominant primary producers in biofilms in the region.  
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The diversity and evenness of prokaryotic biofilm communities did not significantly differ 

between control and high CO2 sites at any time point during the study (Fig. 5.7b). Previous 

CO2 seep studies have reported conflicting effects of ocean acidification on prokaryotic 

community composition. Kerfahi et al. (2014) showed that prokaryotic diversity in epipelic 

communities is greater under high CO2 conditions. Similarly, Lidbury et al. (2012) found 

that prokaryotic diversity can be enhanced under high CO2 conditions, but that these effects 

are modulated by light conditions. In contrast, Taylor et al. (2014) demonstrated that 

prokaryotic diversity in epilithic biofilms is lower under high CO2 conditions. Whilst this 

study provides greater taxonomic resolution and depth than previous reports, it is apparent 

that the effects of ocean acidification on prokaryotic biofilm community composition are 

not consistent between studies, suggesting that environmental factors other than the CO2 

may be more influential determinants of prokaryotic diversity (Hassenrück et al., 2017).  
  
 
5.5.3 Biofilm compositional variability 

 

Quantifying changes in the compositional variability (within-group dissimilarity) of 

biofilm communities can provide insights into the ecological mechanisms which underpin 

community responses to environmental stressors, such as ocean acidification. The 

compositional variability of both eukaryotic and prokaryotic biofilm communities was 

lower at the high CO2 site than at the control site (Fig. 5.8). This suggests that the influence 

of stochastic (i.e. neutral) processes on biofilm assembly was lower under high CO2 

conditions (Evans et al., 2017). Macroecological studies demonstrate that environmental 

stressors can decrease the influence of stochasticity on community assembly (Chase, 2007), 

as is observed here. More recently, environmental stress has been shown to decrease the 

influence of stochastic processes in microbial community assembly (Valverde et al., 2014). 

These findings, combined with the clear compositional differences between biofilms at 

control and high CO2 sites, demonstrate that biofilms respond in a directional manner to 

ocean acidification by shifting to new, less variable, deterministic configuration (Fig. 5.4; 

Fig; 5.6; Fig. 5.8).  

The assembly of prokaryotic communities in aquatic environments has previously been 

shown to be dominated by deterministic processes (Chapter 2; Logares et al. 2018), whilst 

stochastic processes appear to be comparatively more influential in the assembly of 

eukaryotic microbial communities (Chapter 3; Logares et al. 2018). Although both 

eukaryotic and prokaryotic biofilm communities are assembled through a greater influence 
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of deterministic processes and lesser influence of stochastic processes at high CO2 sites, a 

trend of greater compositional variability in eukaryotic communities compared with 

prokaryotic communities was observed at both sites (Fig. 5.8). These data broadly support 

the notion that prokaryotic community assembly is comparatively more deterministic than 

eukaryotic community assembly in aquatic environments (Chapter 3; Logares et al. 2018). 

Significant compositional variation in both eukaryotic and prokaryotic biofilm 

communities occurred at all time points during the study (Fig. 5.8). Hassenrück et al. (2017) 

reported high levels of compositional variability in prokaryotic biofilm communities 

settling on artificial substrates across a gradient of acidification at two CO2 seep systems 

in Papua New Guinea. Biofilms are characterised by sharp physicochemical gradients 

across microscales leading to patchiness in the distribution of taxa throughout the biofilm 

matrix (Flemming et al., 2016), extending to the centimetre scale (Cordero and Datta, 

2016). The scale of sampling employed in this study (30 cm2 area) and by Hassenrück et 
al. (2017; 4 cm2 area) may not be sufficient to overwhelm the influence of microscale 

variability, and may contribute to the significant compositional variability observed in 

biofilm communities. Indeed, sampling of larger sections of homogenised biofilms may 

reveal more consistent trends in community composition facilitating more general 

conclusions regarding the responses of marine biofilms to ocean acidification.  

 

 

5.5.4 Eukaryotic-prokaryotic biofilm community coupling 

 

The composition of eukaryotic and prokaryotic biofilm communities was more closely 

coupled under high CO2 conditions (Fig. 5.10). These findings indicate that the strength of 

ecological interactions between eukaryotes and prokaryotes may be enhanced by ocean 

acidification. In this instance, the closer coupling of eukaryotic and prokaryotic 

communities may emerge from the consistent dominance of Prymnesium sp. under high 

CO2 conditions. As discussed above, these mixotrophic algae produce toxic and 

allelopathic prymensins which can exert controls on the composition of both eukaryotic 

and prokaryotic communities. Moreover, previous studies demonstrate the ocean 

acidification can enhance the production of EPS in biofilm communities (Lidbury et al., 
2012), which may further contribute to the development of a more closely coupled 

eukaryotic and prokaryotic biofilm community.  
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5.5.5 Invertebrate settlement  

 

Differences in the composition of eukaryotic and prokaryotic biofilm communities between 

control and high CO2 sites are likely to affect the recruitment of invertebrates and habitat-

forming organisms, which has previously been shown to be impacted by ocean acidification 

at CO2 seeps (Cigliano et al., 2010; Fabricius et al., 2015; Allen et al., 2016). In particular, 

the dominance of Prymnesium sp. at high CO2 sites may have profound implications for 

the recruitment of invertebrates and other habitat forming organisms, due to the toxic and 

allelopathic properties of prymnesins, as discussed above. Fabricius et al. (2017) recently 

demonstrated that the recruitment of keystone invertebrate species, such as scleractinian 

corals, is more severely affected by ocean acidification associated shifts in substrate 

composition than by the direct effects of seawater chemistry. Moreover, Espinel-Velasco 

et al. (2018) reviewed the effects of ocean acidification on invertebrate settlement and 

metamorphosis, highlighting the fundamental importance of substrate composition, and in 

particular biofilm community composition, in modulating the effects of ocean acidification 

on invertebrate recruitment. The findings of this study demonstrate clear shifts in biofilm 

community composition under high CO2 conditions, which may have severe consequences 

across multiple trophic levels, in addition to effects on the composition of the biofilms 

themselves. Indeed, these shifts in biofilm community composition and consequent effects 

on the recruitment of invertebrates and habitat-forming organisms may contribute 

significantly to the restructuring of coastal marine environments under elevated CO2 

conditions observed at CO2 seep sites globally (Hall-Spencer et al., 2008; Fabricius et al., 
2011; Agostini et al., 2018). 

 

 

5.5.6 Summary 

 

In summary, this study shows that the composition eukaryotic and prokaryotic biofilm 

communities differ deterministically between control and high CO2 sites, whilst the 

diversity and evenness these communities was unaffected by high CO2 conditions. Both 

eukaryotic and prokaryotic biofilm communities displayed less compositional variability 

at high CO2 sites, indicating that the influence of stochastic processes may be lower under 

high CO2 conditions, in line with macroecological theory suggesting that stochastic 

processes are less influential under environmentally stressful conditions (Chase, 2007). 

Furthermore, the successional trajectory and rate of turnover between biofilm communities 
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appears unaffected by ocean acidification and is not a mechanism through which the 

composition of these communities is affected by ocean acidification across short 

timeframes. These data indicate that species replacement, rather than shifts in diversity, 

evenness, or successional dynamics, underpin biofilm community responses to ocean 

acidification. Furthermore, the dominance of the toxin-producing golden algae genera 

Prymnesium under high CO2 conditions builds on concerns that ocean acidification may 

systematically favour harmful algal species (Hall-Spencer and Allen, 2015; Riebesell et al., 

2018). The findings of this study unveil the ecological mechanisms which underpin biofilm 

community responses to ocean acidification at the Shikine-Jima CO2 seep system, 

representing a significant contribution to our understanding of how these critical marine 

resources may respond to ocean acidification in the near future. However, further studies 

employing high-resolution molecular techniques are warranted in different regions to 

establish whether these findings can be generalized.  
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Chapter 6: Discussion 
 
 
6.1 Marine microbial community assembly 

 
6.1.1 Prokaryotic community assembly 

 

To date, numerous studies have investigated the ecological processes which underpin 

prokaryotic community assembly across a range of systems (Stegen et al., 2013; Martínez 

et al., 2015; Graham et al., 2017; Griffin and Wells, 2017; Tripathi et al., 2018). These 

studies indicate that deterministic processes (homogeneous selection and variable 

selection; Table 2.1) are the predominant drivers of prokaryotic community assembly in 

freshwater, terrestrial, industrial, and host-associated environments. Studies of marine 

sediments show that prokaryotic community assembly is highly deterministic; this is 

unsurprising due to the sharp physicochemical gradients occurring across short vertical 

spatial scales in these environments (Meyerhof et al., 2016; Petro et al., 2017; Starnawski 

et al., 2017). Studies of pelagic marine environments display less consistent results. Vergin 

et al. (2017) and Logares et al. (2018) demonstrate that deterministic processes dominate 

prokaryotic community assembly in the Atlantic Ocean and Antarctic marine and 

freshwater lakes, respectively. In contrast, Wu et al. (2017a) and Mo et al. (2018) report a 

more balanced influence of stochastic and deterministic processes on community assembly 

in the East China Sea. Differences in community assembly processes between sediment 

and pelagic environments may result from sharper physicochemical gradients in sediment 

versus pelagic environments, exerting stronger abiotic selection pressures across shorter 

spatial scales.  

Chapter 2 of this thesis demonstrated that deterministic processes dominate prokaryotic 

community assembly across horizontal spatial scales in the oligotrophic SPG (Fig. 2.5). 

These findings are sensical in the oligotrophic SPG, as the region is characterised by severe 

nutrient limitation and stable environmental conditions across horizontal spatial scales of 

over 2,000 km (Ellwood et al., 2018). Consequently, homogeneity in prokaryotic 

community composition, driven by homogeneous selection, was observed across the 

region. Importantly, these findings indicate that homogeneous selection was able to 
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overwhelm the influence of dispersal effects and ecological drift across vast spatial 

distances in the surface waters of the oligotrophic SPG. The findings of Chapter 2 

significantly expand our understanding of prokaryotic biogeography in the under-sampled 

oligotrophic SPG (Sunagawa et al., 2015) and illustrate that homogeneous selection drives 

homogeneity in prokaryotic community composition across horizontal spatial scales 

exceeding 2,000 km in the region (Fig. 2.2). Similarly, Chapter 3 demonstrated that 

prokaryotic community assembly is highly deterministic across short spatial scales in the 

Southland Front system (Fig. 3.6). These data indicate that selection pressure was sufficient 

to overwhelm dispersal effects and ecological drift across the region. These findings align 

with evidence from hyporheic environments which demonstrate that selection pressure can 

overwhelm dispersal effects and ecological drift even in highly connected aquatic 

environments (Graham et al., 2017). 

While deterministic processes dominated prokaryotic community assembly across 

horizontal spatial scales in both the oligotrophic SPG and the Southland Front system, 

stochastic processes (specifically dispersal limitation) were comparatively more influential 

across vertical spatial scales in the highly stratified oligotrophic SPG (Fig. 2.5, Table 2.2). 

The surface waters of the oligotrophic SPG are separated from the nutrient-rich deep waters 

by a density gradient (Ellwood et al., 2018), suggesting that minimal mixing occurs 

between these water masses. As a result, connectivity between these environments is 

limited, allowing these communities to diverge through ecological drift acting with a 

degree of independence on communities in the surface waters and the deep waters (i.e. 

dispersal limitation). These findings highlight that although deterministic processes 

dominate prokaryotic community assembly in the marine environment, stochastic 

processes can still play a role in structuring prokaryotic communities between contiguous 

water masses. 

Overall, the findings of this thesis contribute to the notion that prokaryotic communities 

are assembled through predominantly deterministic processes, suggesting that differences 

in the environmental niches of prokaryotic ASVs underpin their distribution through space 

and time in the marine environment. Consequently, changes in abiotic or biotic 

environmental conditions which exert selection pressure may have profound implications 

for the structure of prokaryotic communities in a future ocean.  
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6.1.2 Protist community assembly 

 

The substantial role of dispersal limitation and ecological drift (undominated scenario) in 

protist community assembly was eluded to by the emergence of strong distance-decay 

relationships in global-scale surveys of eukaryotic marine plankton communities (de 

Vargas et al., 2015). A study of Antarctic lakes, ranging from freshwater to marine, found 

that dispersal limitation and ecological drift underpinned protist community assembly 

(Logares et al., 2018). Furthermore, studies of planktonic picoeukaryotes in the East China 

Sea showed that dispersal limitation dominated community assembly in abundant taxa, 

while abiotic selection had minimal influence (Wu et al., 2017b). These findings 

correspond with evidence from the Southern Ocean indicating that abiotic selection has a 

minimal influence on protist community composition across short spatial scales, and the 

dispersal effects and ecological drift explained a large proportion of variation in community 

structure (Moreno-Pino et al., 2016).  

Chapter 3 found that dispersal limitation and ecological drift dominated protist community 

assembly in the Southland Front system (Fig. 3.6). These data align with previous evidence 

suggesting that stochastic processes underpin protist community assembly across short 

spatial scales in marine environments (Moreno-Pino et al., 2016). Moreover, these data 

corroborate previous evidence suggesting that dispersal limitation may be important in 

structuring protist communities between contiguous water masses (Monier et al., 2015). 

Inferences about the broader implications of these findings should be considered with 

caution, as I only present data from a single region during a single sampling day. 

Nonetheless, the results of Chapter 3 contribute to a growing body of evidence indicating 

that marine protist communities respond to broad-scale rather than fine-scale 

environmental conditions and are more strongly influenced by dispersal effects and 

ecological drift across short spatial scales when environmental gradients are not dramatic 

(Monier et al., 2015; Moreno-Pino et al., 2016; Wu et al., 2017b). 

The large influence of stochastic processes on protist community assembly, particularly at 

the sub-mesoscale, may distort our ability to predict the responses of marine protist 

communities to environmental change. This is because trait-independent (stochastic) 

processes are important drivers of protist community composition. Thus, to develop a 

deeper understanding of how environmental change, including ocean acidification, may 

affect marine protist communities, it is important to explicitly consider the influence of 
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stochastic processes and the interaction between environmental change and the balance 

between stochastic and deterministic community assembly processes.  

 

 

6.1.3 Prokaryotic versus protist community assembly 

 

Chapter 3 represents the first integrated study of prokaryotic and protist community 

composition across a sub-mesoscale oceanic front using high-throughput amplicon 

sequencing. These data facilitated the direct comparison of prokaryotic and protist 

community structure and assembly across a convergence of four water masses. The 

findings of Chapter 3 demonstrated that deterministic processes underpin prokaryotic 

community assembly, while stochastic processes underpin protist community assembly 

across the Southland Front system. These findings align well with previous studies 

comparing prokaryotic and protist community assembly in aquatic environments (Moreno-

Pino et al., 2016; Logares et al., 2018). Differences in community assembly processes 

between prokaryotic and protist communities may emerge from differences in the 

community level traits of these groups.  

The average cell size of protists is larger than the average cell size of prokaryotes (Zinger 

et al., 2018). Cell size is inversely related to dispersal ability in passively dispersing aquatic 

organisms (De Bie et al., 2012; Soininen et al., 2013). The ecological processes of dispersal 

limitation (i.e. ecological drift acting independently on local communities between which 

dispersal is limited) plays a more significant role in community assembly when dispersal 

rates are lower (Evans et al., 2017). Global surveys of eukaryotic plankton communities 

indicate that larger plankton were more strongly influenced by dispersal effects and 

ecological drift, supporting this narrative (de Vargas et al., 2015). In Chapter 3, I 

demonstrate that dispersal limitation is a key process in protist community assembly but is 

inconsequential in prokaryotic community assembly (Fig. 3.6). 

The size of prokaryotic communities (number of individuals) is greater than the size of 

protist communities in the marine environment. For example, a single microliter of 

seawater can contain up to 20 protists but up to 1,000 heterotrophic bacteria (Azam and 

Malfatti, 2007). The influence of stochastic processes on community assembly is inversely 

related to community size, as the probability of species loss through ecological drift is 

lower in larger communities (Orrock and Watling, 2010). Furthermore, this effect interacts 

with dispersal ability, as greater dispersal ability increases the effective size of a 
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community, and subsequently decreases the influence of stochastic processes on 

community assembly (Ron et al., 2018).  

Finally, in contrast to classic metabolic theory which predicts that growth rates will be 

highest for the smallest organisms (Brown et al., 2004), the average turnover time of 

phytoplankton communities in natural marine environments is estimated to be an order of 

magnitude greater than the turnover time of heterotrophic bacteria (Kirchman, 2016). The 

faster turnover rate of protist communities may contribute to the enhanced effect of 

stochastic processes on community assembly. Under environmental conditions which do 

not exert strong selection pressure, higher turnover rates increase the rate at which dispersal 

limitation and ecological drift can affect a community. This proposed mechanism is more 

controversial than the effects of average cell size and community size, as under intense 

selection pressure faster community turnover rates would be expected to enhance the 

influence of deterministic processes on community assembly. Nonetheless, the role of 

turnover rate in protist and prokaryotic community assembly warrants further investigation 

in the marine environment.   

 

 

6.2 Marine microbial community responses to ocean acidification 

 
6.2.1 Bacterioplankton community responses 

 

Previous studies investigating the responses of planktonic prokaryotic communities 

(bacterioplankton) to ocean acidification have demonstrated either minor effects on 

community composition or no statistically significant effects across a range of ocean basins 

(Newbold et al., 2012; Zhang et al., 2013; Lindh et al., 2013; Maas et al., 2013; Roy et al., 
2013; Oliver et al., 2014; Baltar et al., 2015a; Bergen et al., 2016; Wang et al., 2016; 

Hartmann et al., 2016; Sala et al., 2016; Burrell et al., 2017). These findings broadly 

support the hypothesis proposed by Joint et al. (2011) that marine prokaryotes would be 

resilient to ocean acidification as they must already contend with significant fluctuations in 

pH across a range of spatiotemporal scales and consequently possess sufficient 

physiological plasticity to tolerate projected decreases in mean surface ocean pH.  

Chapter 4 investigated the effect of ocean acidification and warming on bacterioplankton 

communities in the SPG under trace-metal clean conditions for the first time. Despite the 

biogeochemical importance of oligotrophic subtropical gyres (Hoegh-Guldberg and 
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Poloczanska, 2017), the responses of bacterioplankton communities to ocean acidification 

remain poorly investigated in these region. Chapter 4 showed that ocean acidification 

altered prokaryotic community structure at the ultra-oligotrophic centre of the SPG but not 

at the fringe of the SPG, suggesting that nutrient regimes and ocean acidification may 

interact to affect prokaryotic community composition. These findings align with previous 

indications that the prevailing nutrient regime may modulate the effect of ocean 

acidification on prokaryotic communities (Sala et al., 2016). Although ocean acidification 

significantly affected prokaryotic community composition at the ultra-oligotrophic centre 

of the SPG, these effects were subtle (Fig. 4.3) and it is challenging to infer whether such 

minor compositional shifts are of ecological or biogeochemical relevance. Indeed, the 

resilience of prokaryotic communities to ocean acidification at the fringe of the SPG, and 

the subtle effects observed at the ultra-oligotrophic centre of the SPG do not deviate from 

the narrative that ocean acidification has relatively minor impacts on the composition of 

prokaryotic communities (Joint et al., 2011). 

As a growing body of evidence indicates that deterministic processes dominate prokaryotic 

community assembly in the marine environment, shifts in environmental conditions may 

be expected to have significant effects on prokaryotic community composition. However, 

the minimal influence of near-future CO2 concentrations on prokaryotic community 

composition suggests that these environmental perturbations exert relatively weak selection 

pressure on prokaryotic communities in pelagic environments.  

This investigation would have benefitted significantly from greater replication, and a full 

factorial design to allow the effect of temperature and the interaction between temperature 

and ocean acidification to be resolved. The limited replication of this study reduces the 

statistical power of analyses, and the potential to identify the actual effects of ocean 

acidification on prokaryotic community composition. However, significant logistical 

challenges surrounding trace-metal clean deckboard incubation experiments constrained 

these ambitions. Consequently, the data from Chapter 4 form the basis for the hypothesis 

that the composition of prokaryotic communities in the ultra-oligotrophic centre of the SPG 

may be vulnerable to ocean acidification over the next century. However, significant further 

investigation is necessary before firm conclusions can be drawn.    
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6.2.2 Biofilm community responses 

 

Early laboratory studies indicated that ocean acidification can alter the composition of 

biofilm communities through short-term experiments (Witt et al., 2011; Krause et al., 
2012). More recently, CO2 seeps have been employed to investigate the effects of ocean 

acidification in the context of natural communities, where recruitment dynamics and 

biofilm formation may be more realistic than in laboratory experiments. Studies at CO2 

seeps have investigated the effects of ocean acidification on biofilm communities forming 

on artificial substrates (Lidbury et al., 2012; Johnson et al., 2013; Hassenrück et al., 2017), 

intertidal rock surfaces (Taylor et al., 2014; Johnson et al., 2015), sand surfaces (Johnson 

et al., 2015), and sediment surfaces (Kerfahi et al., 2014; Johnson et al., 2015). These 

studies have consistently demonstrated shifts in the composition of both eukaryotic 

(Lidbury et al., 2012; Johnson et al., 2013, 2015) and prokaryotic (Lidbury et al., 2012; 

Kerfahi et al., 2014; Taylor et al., 2014) biofilm communities under elevated CO2 

conditions. However, the effect of elevated CO2 conditions on community diversity and 

evenness varies between studies. For example, Lidbury et al., (2012) found no effect of 

elevated CO2 conditions on eukaryotic community diversity, while Johnson et al. (2013, 

2015) found a decrease in the diversity of photosynthetic eukaryotes under these 

conditions. Kerfahi et al. (2014) found increased prokaryotic community diversity under 

elevated CO2 conditions. Similarly, Lidbury et al. (2012) found greater prokaryotic 

community diversity under elevated CO2 conditions in low light environments. In contrast, 

Taylor et al. (2014) found decreased prokaryotic diversity under elevated CO2 conditions. 

The conflicting findings of these studies are challenging to reconcile due to the different 

molecular techniques employed by the respective investigations, and the various substrates 

which these experiments investigated. To date, studies of biofilm community responses to 

ocean acidification at natural CO2 seep systems have been almost exclusively performed at 

the Vulcano CO2 seep system in the Mediterranean Sea (Lidbury et al., 2012; Johnson et 
al., 2013, 2015; Kerfahi et al., 2014; Taylor et al., 2014), excluding a single study at Upa 

Upasina in Papua New Guinea (Hassenrück et al., 2017). Moreover, these studies employ 

a single time point design (excluding Hassenrück et al., 2017), and offer limited insights 

into the effect ocean acidification on successional dynamics or the ecological mechanisms 

which underpin community responses to ocean acidification.    

Chapter 5 investigated the effects of ocean acidification on eukaryotic and prokaryotic 

biofilm community diversity, composition, and succession, at the Shikine-Jima CO2 seep 

system in Japan. The study found that elevated CO2 conditions drive clear directional shifts 
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in the composition of both eukaryotic and prokaryotic communities throughout the early 

stages of biofilm succession (Fig. 5.4., Fig. 5.6). The diversity and evenness of both 

eukaryotic and prokaryotic biofilm communities were unaffected by elevated CO2 

conditions (Fig. 5.7). Furthermore, the rate of succession in both eukaryotic and prokaryotic 

biofilm communities was unaffected by elevated CO2 conditions (Fig. 5.9), in contrast to 

speculation that faster growth rates of certain marine algae may accelerate biofilm 

succession under elevated CO2 conditions (Dutkiewicz et al., 2015; Mackey et al., 2015). 

These findings indicate that both eukaryotic and prokaryotic biofilm communities respond 

to ocean acidification through shifts in the relative abundance of constituent ASVs and the 

replacement of ASVs sensitive to ocean acidification with ASVs tolerant of ocean 

acidification. These compositional shifts are not associated with any effect on community 

diversity, evenness, or successional dynamics, and are more representative of a simple 

species replacement mechanism.  

To date, Chapter 5 of this thesis represents the most detailed investigation of the responses 

of eukaryotic and prokaryotic biofilm communities to ocean acidification. The study 

employed high-throughput sequencing of the 16S and 18S rRNA genes across 66 samples 

at four time points, offering greater replication, temporal resolution, and taxonomic 

resolution than previous investigations. These findings support the consensus of previous 

literature indicating that near-future ocean acidification can significantly alter the 

composition of both eukaryotic and prokaryotic biofilm communities, in addition to 

offering new insights into the ecological mechanisms which underpin these responses.   

Biofilms are a basal component of coastal marine food webs, as subtidal benthic microalgae 

fix approximately 135 g C m-2 y-1, which is marginally greater than estimated 

phytoplankton productivity in coastal environments (Beardall and Light, 1994). 

Furthermore, biofilms act as a settlement substrate for invertebrates and habitat-forming 

organisms (Qian et al., 2007; Hadfield, 2011). Biofilm community composition directly 

affects invertebrate settlement as invertebrate larvae respond to the presence of specific 

bacterial taxa (Hadfield, 2011). Indeed, shifts in the composition of biofilm communities 

are a likely driver of changes in invertebrate settlement and recruitment associated with 

ocean acidification (Espinel-Velasco et al., 2018). Studies performed at CO2 seeps indicate 

that ocean acidification may cause significant remodelling of coastal marine environments 

(Hall-Spencer et al., 2008; Fabricius et al., 2011; Agostini et al., 2018), and I speculate that 

changes in biofilm community composition may initiate these effects. 

 

 



Chapter 6: Discussion 

 

 

 124 

6.2.3 Effects of ocean acidification on harmful algae  

 

Toxin-producing algae are expected to benefit physiologically from elevated CO2 

concentrations (Fu et al., 2012; Hall-Spencer and Allen, 2015). Laboratory studies indicate 

that the growth rate of toxin-producing diatoms (Sun et al., 2011), dinoflagellates (Tatters 

et al., 2013; Errera et al., 2014; Hattenrath-Lehmann et al., 2015; Ou et al., 2017; Pang et 
al., 2017), and haptophytes (Wang et al., 2010) can be enhanced under elevated CO2 

conditions. These toxin-producing algae appear to benefit more consistently from ocean 

acidification than microalgae considered more broadly (Dutkiewicz et al., 2015). 

Moreover, the cellular toxicity of these algae can increase under elevated CO2 conditions 

(Sun et al., 2011; Tatters et al., 2012, 2013; Pang et al., 2017) as excess carbon due to 

increased photosynthetic activity is shunted to toxin production (Fu et al., 2012).  

Despite evidence from laboratory experiments indicating that the growth rate and cellular 

toxicity of toxin-producing algae can be enhanced by ocean acidification, few studies have 

linked these physiological effects to ecological advantages at an ecosystem level. Riebesell 

et al. (2018) demonstrated that the toxin-producing algae Vicicitus globosus consistently 

benefitted from elevated CO2 concentrations in a large-scale mesocosm experiment, 

providing some of the first in-situ evidence of the proliferation of toxin-producing algae as 

a result of ocean acidification. In Chapter 5, I show that the relative abundance of the toxin-

producing golden algal genus Prymnesium is enhanced in biofilm communities under 

elevated CO2 conditions at the Shikine-Jima CO2 seep (Fig. 5.3). The results of Chapter 5 

represent the second demonstration of the proliferation of toxin-producing algae under 

elevated CO2 conditions in an ecosystem level investigation.   

While predicting the occurrence of harmful algal blooms under future ocean acidification 

scenarios remains a significant challenge (Hallegraeff, 2010; Fu et al., 2012), it is feasible 

that the enhanced relative abundance of toxin-producing algae in biofilm communities may 

act as a seed population from which planktonic blooms can form. Indeed, Prymnesium sp. 
are associated with large scale regional fish kills, and blooming events are likely to have 

widespread socioeconomic ramifications (Roelke et al., 2016). Furthermore, toxin-

producing algae can disrupt the flow of carbon through marine food webs, leading to a 

significant decline in carbon export from pelagic environments (Riebesell et al., 2018), 

potentially creating a positive feedback loop with rising atmospheric CO2 concentrations. 

Indeed, the disruption of carbon flow through marine food webs may also contribute to the 

trophic simplification and reduction of diversity observed at high CO2 seep sites in Shikine-

Jima, Japan (Agostini et al., 2018). While observations of these ecosystem level trends 
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remain in their infancy, they represent a significant cause for concern due to the dramatic 

socioeconomic consequences of harmful algal blooms on a global scale (Berdalet et al., 
2016). 

In addition to the dominance of the toxin-producing algae genera Prymnesium, the relative 

abundance of the mat-forming diatom Biddulphia biddulphiana was higher at the high CO2 

site than at the control site at Shikine-Jima. Biddulphia biddulphiana mats can completely 

smother benthic environments and represent a significant threat to habitat-forming 

organisms as they bypass competition for space, contributing significantly to the reduction 

of habitat complexity observed under elevated CO2 conditions (Agostini et al., 2018). 

Although the environmental factors which induce the formation of such mats are poorly 

understood (Galland and Pennebaker, 2012), it is apparent that elevated CO2 concentrations 

contribute to this behaviour. Mat-forming behaviour was observed on biofilm settlement 

slides at the high CO2 site (Fig. 6.1) but did not form with sufficient voracity to smother 

the benthos surrounding the experimental site. However, at nearby sites of extreme seeping, 

where CO2 concentration exceeded end-of-century projections (Hoegh-Guldberg et al., 
2014), Biddulphia biddulphiana mats completely smothered the benthos leading to an 

ecosystem-level reconfiguration of these coastal marine environments (Fig. 6.1). Previous 

reports that similar Biddulphia biddulphiana mats have formed outside CO2 seep sites 

(Galland and Pennebaker, 2012) suggest that other environmental factors may be important 

in modulating this behaviour, raising concerns that potential interactions between ocean 

acidification and these latent environment variables could lead to the proliferation of 

Biddulphia biddulphiana mats in the near future.  
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Figure 6.1 (a) Biddulphia biddulphiana mat-forming behavior observed on slide collected from high CO2 

site after day 15. Red circle indicates the initiation of a Biddulphia biddulphiana mat. (b) Isolated Biddulphia 

biddulphiana chains observed using a light microscope. (c) Biddulphia bidduphiana mats smothering the 

benthos at extreme CO2 sites. 
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6.2.4 Effects of ocean acidification on community assembly 

 

While the effect of ocean acidification on community assembly processes was not explicitly 

quantified in this thesis, patterns in community structure observed in both Chapter 4 and 

Chapter 5 indicate that ocean acidification may increase the influence of deterministic 

processes on both prokaryotic and eukaryotic community assembly. In prokaryotic 

communities at the ultra-oligotrophic centre of the SPG, and in both prokaryotic and 

eukaryotic biofilm communities at Shikine-Jima, elevated CO2 conditions resulted in lower 

within-group distance in community composition when compared with ambient CO2 

conditions (Fig. 5.8). A higher degree of similarity between replicates can emerge from 

either a greater influence of homogenising dispersal or homogenous selection. In the 

context of these experiments, dispersal is not expected to differ substantively between 

treatments, as water flow is similar at control and high CO2 sites in Shikine-Jima (Agostini 

et al., 2015) and cubitainers in Chapter 4 act as absolute dispersal barriers between 

replicates. Consequently, the congruence between communities under elevated CO2 

conditions observed in both of these experiments may emerge from homogenous selection. 

These findings indicate that elevated CO2 conditions exert consistent selection pressure on 

prokaryotic and eukaryotic communities (though this selection pressure is relatively weak 

in pelagic environments), driving a deterministic directional shift in community 

composition. Indeed, in both macro-ecology and microbial ecology, the presence of abiotic 

stressors decreases the role of stochasticity in community assembly as a result of increased 

selection pressure, leading to congruence in community composition (Chase, 2007; 

Valverde et al., 2014). 

 

 

6.3 Limitations of high-throughput sequencing studies 
 

Though high-throughput amplicon sequencing has made an enormous contribution to our 

understanding of marine microbial ecology (Salazar and Sunagawa, 2017), it is essential to 

consider the nuances of these data. The first of these considerations is the potential for 

primer biases. The original Earth Microbiome Project primers (Caporaso et al., 2011) were 

found to underestimate the relative abundance of SAR11 clade Alphaoproteobacteria, 

which are amongst the most abundant bacteria in the marine environment (Apprill et al., 
2015). These primers were subsequently modified to more accurately represent the relative 
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abundance of SAR11 (Apprill et al., 2015), but the presence of other primer biases cannot 

be completely ruled out. A second consideration is that the number of 16S or 18S rRNA 

gene copies in prokaryotes (Louca, Doebeli, et al., 2018) and protists (Zhu et al., 2005; 

Weber and Pawlowski, 2013) vary between species. In prokaryotic communities, 

differences in 16S rRNA gene copy number between taxa are relatively minor, and 

databases are being developed with the goal of normalising high-throughput amplicon 

sequencing profiles against the gene copy numbers of constituent taxa (Louca, Doebeli, et 

al., 2018). In protists, 18S rRNA gene copy number can differ by at least three orders of 

magnitude between species (Zhu et al., 2005). However, 18S rRNA gene copy number 

correlates well with cell length (Zhu et al., 2005) and biovolume (Godhe et al., 2008) in 

the marine environment, and profiles of protist community composition inferred from high-

throughput amplicon sequencing are closely aligned with profiles obtained through 

microscopy analysis (Piredda et al., 2017, 2018). A third consideration is that high-

throughput amplicon sequencing data are compositional (Gloor et al., 2017), meaning that 

the relative abundance of taxa in a community lack independence from one another. 

However, extensive benchmarking studies demonstrate that these data accurately identify 

patterns in microbial beta-diversity and remain suitable for studying microbial ecology at 

the community level (Weiss et al., 2017; Knight et al., 2018). Despite these nuances, high-

throughput amplicon sequencing offers unprecedented depth, coverage, and taxonomic 

resolution for the profiling of microbial communities, and is an essential tool for marine 

microbial ecologists (Salazar and Sunagawa, 2017).   

 

 

6.4 Future research directions 

 
6.4.1 Marine microbial community assembly 

 

In this thesis, I investigated the ecological processes which underpin both prokaryotic and 

protist community assembly in the marine environment. The findings of this thesis aligned 

well with previous reports indicating that deterministic processes predominantly underpin 

prokaryotic community assemble, while stochastic processes predominantly underpin 

protist community assembly (Moreno-Pino et al., 2016; Logares et al., 2018). However, 

investigations of the relative importance of stochastic and deterministic processes are likely 

to vary across spatiotemporal scales and interact with hydrographic features such as oceanic 
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fronts. Consequently, significant further work is warranted to resolve the contribution of 

these processes to community assembly across different regions and different 

environmental contexts. Importantly, the relative influence of stochastic and deterministic 

processes has seldom been considered in the context of phytoplankton bloom events, 

despite significant research effort allocated to resolving the dynamics of prokaryotic and 

protist communities during these periods (Needham and Fuhrman, 2016). Moreover, 

studies allowing the direct comparison of prokaryotic and protist community assembly may 

help elucidate the traits which underpin differences in community assembly between these 

groups.  

 

 

6.4.2 Incorporating community assembly into ocean acidification studies 

 

The findings of Chapter 4 and Chapter 5 indicate that ocean acidification may alter the 

relative importance of stochastic and deterministic processes in prokaryotic and eukaryotic 

community assembly. Most community and ecosystem level investigations of microbial 

community responses to ocean acidification have focussed exclusively on quantifying the 

impact of abiotic environmental variables on community composition. However, in this 

thesis, I highlight the critical role of stochastic ecological processes in community 

assembly, particularly in protist communities (Fig. 3.6).  I suggest that further efforts to 

quantify the impact of ocean acidification on community assembly processes and the 

explicit consideration of these processes in future investigations may help to reconcile 

discrepancies between studies and act as a platform for developing a deeper understanding 

of how ocean acidification may restructure both prokaryotic and protist communities. 

Indeed, novel conceptual frameworks for the investigation of microbial community 

dynamics have been developed and may benefit ocean acidification research (Stegen et al., 
2018).  

 

 

6.4.3 Linking community structure, function, and activity: a multi-omics approach 

 

A central goal of marine microbial ecologists is to link the structure, function, and activity 

of communities. High-throughput amplicon sequencing is a DNA based technique 

providing significant insights into the composition of both prokaryotic and protist 
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communities (de Vargas et al., 2015; Sunagawa et al., 2015) but offers limited information 

towards the function or activity of these communities.  

RNA-based high-throughput amplicon sequencing can be performed by extracting RNA 

from environmental samples and using this RNA as a template to produce complementary 

DNA, which can then be processed according to the same protocols as DNA-based high-

throughput amplicon sequencing. This RNA-based method isolates the metabolically 

active component of microbial communities and has the potential to return more 

meaningful profiles of microbial community composition with minimal distortion from 

metabolically inactive (dormant) taxa (Lennon and Jones, 2011; Salazar and Sunagawa, 

2017). Consequently, these techniques may more accurately capture the effect of abiotic 

environmental conditions on prokaryotic and protist community composition. RNA-based 

profiling of prokaryotic community composition has already provided key insights into the 

seasonal dynamics (Salter et al., 2015), bloom dynamics (Klindworth et al., 2014; 

Wemheuer et al., 2014), and sediment community responses to elevated CO2 conditions in 

the marine environment (Yanagawa et al., 2013). 

Metagenomics investigates the total genomic composition of microbial communities to 

infer its metabolic potential and can contribute towards bridging the gap between 

community structure and function in marine environments (Sanli et al., 2015). Galand et 
al. (2018) combined metagenomics and high-throughput amplicon sequencing to highlight 

that functional diversity and taxonomic diversity of marine prokaryotes are well correlated 

in the marine environment, suggesting low levels of functional redundancy in these 

communities. Moreover, metagenomics has assisted in the discovery of novel functions in 

uncultured bacterial groups (Delmont et al., 2018).   

Metatranscriptomics investigates the active genomic composition (i.e. gene expression) of 

microbial communities to infer metabolic activity. Metatranscriptomics have already been 

applied to ocean acidification research, revealing distinct pH-homeostasis mechanisms and 

consequently distinct sensitivities of marine bacteria to elevated CO2 conditions (Bunse et 
al., 2016). Moreover, metatranscriptomics has significantly advanced our understanding of 

marine protist communities (Caron et al., 2016). For example, by demonstrating the 

metabolic underpinnings of diatom responses to iron fertilization (Marchetti et al., 2012), 

the level of functional variation within diatom communities (Pearson et al., 2015), and the 

interactions between marine protists and their associated viruses (Moniruzzaman et al., 
2017). 
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Combining the techniques mentioned above promises to provide more profound insights 

into the dynamics of marine microbial communities and how they respond to environmental 

changes such as ocean acidification (Fig. 6.2; Salazar and Sunagawa, 2017). 

 

 

 

 

Figure 6.2 Representation DNA-based and RNA-based multi-omics approaches to advance our 

understanding of microbial community responses to ocean acidification by partitioning total and active 

components of community structure and function. 

 

6.4.5 Harmful algae: from physiology to ecology 

 
Greater efforts to link the physiological responses of harmful algae and the ecosystem level 

manifestations of these responses are necessary. These could include further investigations 

at CO2 seeps or in large-scale mesocosms, in addition to environmental monitoring studies. 

Further investigations at CO2 seeps should aim to quantify the toxicity of biofilms, rather 

than the relative abundance of toxin-producing ASVs. The responses of Prymensium 

growth rate and toxin production under elevated CO2 conditions have not been investigated, 

despite the ease of culturing, the precedent for elevated CO2 concentrations to enhance 

toxic algal growth and toxicity, and the sizeable socioeconomic impact of the genus 

(Roelke et al., 2016). Indeed, these factors highlight Prymnesium as a critical target for 

future physiological investigations of harmful algal responses to elevated CO2.  
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Appendix 
 
 
Supplementary figures 
 

 
Figure A.1 Physical and chemical environmental conditions at 15 m, 50 m, and the DCM at sampled stations 

in the oligotrophic South Pacific Gyre. Sampling was conducted according to methods reported in Ellwood 

et al. (Ellwood et al., 2018).  
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Figure A.2 Phylogenetic signal in microbial communities of the SPG. Phylogenetic signal was quantified 

first by calculating the relative abundance-weighted mean for a subset of physicochemical parameters 

(temperature, salinity, oxygen, depth) for each ASV. From these values, I calculated a Euclidean distance 

matrix to represent the relative ecological niches of each ASV. A corresponding matrix representing 

phylogenetic distance between ASVs was calculated from the maximum-likelihood tree using the 

cophenetic.phylo function in the R package ‘picante’ (Kembel et al., 2010). A Mantel correlogram was used 

to quantify the relationship between ecological niche distance and phylogenetic distance. Ecological niche 

distance was well correlated with phylogenetic distance amongst closely related taxa, but this relationship 

quickly decomposed with more phylogenetically distant taxa. This suggests that closely related taxa share 

similar niche preferences with regards to the environmental parameters considered. Consequently, 

phylogenetic turnover within and between communities was quantified among closest relatives (Stegen et al., 
2013). Closed squares represent significant correlations, open squares represent non-significant correlations. 
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Figure A.3 Microbial community composition in the oligotrophic South Pacific Gyre based on 16S rRNA 

gene read abundance. Heatmaps display the 30 most abundant taxa at each depth (15 m, 50 m, DCM) in 

descending order, calculated based on the sums of total reads pooled across all samples. Rank-abundance 

plots above each heatmap display the proportion of total reads represented by each of the 100 most abundant 

taxa at each depth, in descending order. The grey vertical lines on the rank-abundance plots marks the cut-

off for the 30 most abundant taxa, and the proportion of total reads represented by these taxa (and 

consequently displayed on the heatmap) are displayed in the top right corner.



 

 

 

 
Figure A.4 Temperature and salinity profiles obtained from the RV Polaris II continuous underway sampling system during the sampling voyage of the Munida Time Series 
Transect. Triangles indicate the longitudinal position of sampling stations (red: coastal waters, orange: subtropical waters, green: frontal waters, blue: subantarctic waters). 
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Figure A.5 (a) The relationship between protist and bacterioplankton community dissimilarity, mantel 
statistic and significance are displayed. (b) The relationship between protist and bacterioplankton ASV 
richness, estimated using Chao1, analysed using a linear model.  
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Figure A.6 Top: Stacked bar plot of bacterioplankton community composition across the Southland Front 
system. Bars represent phylum level classification of taxa, except for Proteobacteria which are subdivided 
into classes. Bottom: Stacked bar plot of protist community composition across the Southland Front system 
at the Division level. Blank bars represent samples which were removed due to the dominance of metazoan 
sequences.  
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Figure A.7 The relationship between bacterial cell density and picophytoeukaryote cell density during 
experiment G-OA1 (A) and experiment G-OA3 (B) in control (white), high CO2 (grey) and greenhouse 
(black) treatments. Shaded area represents 95% confidence interval.  
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Supplementary tables 
 
 
Table A.1 Environmental conditions at each samples station across the Southland Front system (n.d. = no 
data, d.l. = below detection limit).   
 

Water Mass Station 
Temperature Salinity Chlorophyll a Nitrate Phosphate Ammonia Silicate 

(°C) (psu) (mg l-1) (µmol l-

1) (µmol l-1) (µmol l-1) (µmol l-1) 

Coastal S1 14.64 34.56 0.53 0.11 0.06 0.62 2.19 

 S2 15.23 34.49 0.24 0.03 0.03 0.49 2.22 

 S3 14.29 34.55 0.31 0.01 0.02 0.40 1.58 

 S4 13.43 34.66 0.42 0.13 0.05 0.93 1.88 

 S5 13.82 34.56 0.42 0.04 0.03 0.51 1.97 

 S6 14.75 34.32 0.68 0.00 0.03 0.20 2.50 
         

Subtropical S7 14.03 34.49 1.08 0.12 0.03 0.21 1.95 

 S8 14.05 34.51 n.d. 0.07 0.03 0.20 1.38 

 S9 14.03 34.52 0.91 0.08 0.03 0.10 1.90 

 S10 13.88 34.52 0.89 0.11 0.03 0.00 1.91 

 S11 13.9 34.54 0.58 0.17 0.03 0.18 1.39 

 S12 13.75 34.6 0.91 0.28 0.04 0.19 1.30 
         

Frontal S13 11.48 34.59 0.05 2.08 0.18 0.07 3.33 

 S14 11.36 34.6 0.15 2.01 0.16 0.08 3.04 

 S15 11.45 34.62 0.42 1.79 0.16 0.18 3.40 

 S16 11.36 34.63 d.l. 2.00 0.17 0.19 3.96 

 S17 11.71 34.62 d.l. 1.71 0.16 0.28 3.73 

 S18 11.83 34.62 0.39 2.04 0.18 0.15 4.64 
         

Subantarctic S19 11.57 34.46 0.19 2.46 0.21 0.18 3.90 

 S20 11.96 34.5 d.l. 2.25 0.19 0.23 4.16 

 S21 11.73 34.41 0.04 2.38 0.20 0.33 4.22 

 S22 12.02 34.39 d.l. 2.48 0.22 0.21 3.14 

 S23 12.41 34.42 d.l. 2.43 0.22 0.22 2.80 

 S24 12.58 34.37 d.l. 2.54 0.23 0.26 1.93 
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Table A.2 Summary of permutational analysis of variance (PERMANOVA) statistics, based on weighted 
UniFrac distance, to test treatment effects on overall bacterial community composition.  
 

 
  Df Sums Of Sqs Mean Sqs F Model R2 p 

G-OA1 Day 1 
       

  
Treatment 2 0.015035 0.0075177 0.95307 0.27601 0.3964 

  
Residuals 5 0.03944 0.0078879 0.72399 

  

  
Total 7 0.054475 1 

   

         

 
Day 5 

       

  
Treatment 2 0.011508 0.0057542 1.015 0.28877 0.4776 

  
Residuals 5 0.028345 0.005669 0.71123 

  

  
Total 7 0.039853 1 

   

                  

G-OA3 Day 1 
       

  
Treatment 2 0.0064386 0.0032193 2.4261 0.4925 0.1558 

  
Residuals 5 0.0066347 0.0013269 0.5075 

  

  
Total 7 0.0130733 1 

   

         

 
Day 5 

       

  
Treatment 2 0.014588 0.0072938 3.6938 0.55182 0.0374 

  
Residuals 6 0.011848 0.0019746 0.44818 

  

  
Total 8 0.026435 1 
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Leaders of the world, you must lead. The continuation of our civilisations, and the natural 
world on which we depend, is in your hands.  
- David Attenborough 


