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i 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that 

causes the enlargement of kidneys due to the bilateral development of fluid-filled cysts. This 

results in end-stage kidney disease in adults and a reduced life expectancy.  
 

While it is known that a mutation within a PKD-causing gene is required for the development 

of ADPKD, the underlying mechanisms causing cystogenesis and allowing the progression of 

disease are not well understood.  
 

As a result of this poor understanding there are few treatment options for patients with ADPKD, 

therefore a large proportion of patients will progress to end-stage renal disease for which they 

will need dialysis or renal transplantation. 

 

Epigenetic modifications including DNA methylation are known to be altered in neoplasia, for 

which there are now several FDA-approved therapeutic drugs. As there are many similarities 

between ADPKD and neoplasia, we postulate that like tumour tissue, ADPKD tissue contains 

differentially methylated regions that may be exploited for future therapeutic discovery. 

 

To investigate this, we have performed reduced representation bisulfite sequencing (RRBS) on 

four ADPKD kidney tissue samples, and three non-ADPKD kidney tissue samples. In this 

analysis we confirm that there are 13 regions in the genome with differential methylation, and 

there is a global trend of hypomethylation in ADPKD. Furthermore, the 3’ end of the 

PKD-associated gene PKD1 shows increased methylation associated with increased mRNA 

expression. 
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ii 

To investigate whether DNA methylation changes are universally changed in ADPKD cysts, 

we performed RRBS on a further eight ADPKD samples, each from unique cysts from a single 

ADPKD patient. In this analysis there were differential methylation patterns in each cyst, 

however these changes were not consistent between cysts. 

 

These data show trends in global methylation in ADPKD not previously reported, and 

methylation changes within the genes NAGLU and GET4 concomitant with gene expression, 

which require further investigation to identify their role in ADPKD. 

 

Keywords: Autosomal Dominant Polycystic Kidney Disease, ADPKD, DNA Methylation, 

RRBS, miRNA 
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Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common heritable renal 

disease in humans. Characterised by the development of large, fluid-filled cysts throughout 

both kidneys, this disease has an estimated prevalence of 3 in 10,000 [1]. As cysts continue to 

develop and grow throughout a patient’s lifetime, the kidney will ultimately enlarge from less 

than 200 g in a healthy person to upwards of 1.5 kg in some ADPKD patients. The amount of 

cystic growth (both by number and volume) varies between patients, from patients who develop 

only a few cysts and have adequate renal function in late adulthood [2], to patients with cysts 

visible as early as in utero, and who experience severe and rapidly progressive disease [3]. 

 

As a consequence of the growth of these cysts, renal function is impaired. It is assumed that 

either the destruction of the renal parenchyma [4], the fibrosis of interstitial kidney tissue [5], 

the disruption of the renal architecture [6, 7], or a combination of any of these precludes the 

regular function of nephrons [8]. Patients present with symptoms that reflect the decline of renal 

function, including flank pain, hypertension and various urinary complications. Interestingly, 

ADPKD patients experience several cardiac-related symptoms, and patients often develop 

hypertension ten years earlier than the average person (even when they exhibit adequate renal 

function). Common extrarenal symptoms include cysts in other organs such as the liver, 

pancreas and intestines. The prevalence of intracranial aneurysms is also higher in ADPKD 

patients than the general population [9, 10]. Many of these extrarenal symptoms are caused by 

connective tissue defects [11]. 
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Associated with significant morbidity, the progression of ADPKD will ultimately inhibit renal 

function to the point of end-stage renal disease (ESRD), at which point patients may require 

dialysis or renal transplantation. An estimated 50% of ADPKD patients will reach ESRD by 

age 60 [12, 13]; in New Zealand ADPKD is the fourth most common reason for dialysis [14]. 

Despite the significant burden ADPKD can play on the medical system, there is currently no 

cure for the disease, and patients are treated with a limited number of therapeutics that show 

moderate improvement in some patients. One of the currently available therapeutic options is 

the vasopressin V2-receptor antagonist tolvaptan. Tolvaptan has been approved for the 

treatment of ADPKD in several countries, as it attenuates the rate of cyst growth by half, 

delaying the onset of ESRD. However, this drug has undesirable side effects including resulting 

in abnormal liver function tests, which results in poor patient tolerance [15]. Additionally, the 

efficacy of tolvaptan has been deemed insufficient for approval from the US Food and Drug 

Administration (FDA) [16]. As a result of these factors, ADPKD patients have a reduced life 

expectancy than that of the general population [12, 17]. 

 

1.1 The genetic background of ADPKD 

ADPKD is genetically heterogeneous – a germline mutation within a PKD-causing gene is a 

prerequisite for patients to develop this disease. PKD1 is the most prevalent disease-causing 

gene for ADPKD, with approximately 85% of patients having mutations within this gene. It 

was previously assumed PKD2 accounted for the remaining 15% of patients [18]; however, the 

sequencing of patients with atypical ADPKD has led to the discovery of patients with mutations 

in genes including GANAB [19] and DNAJB11 [20], which are now considered to be PKD-

causing genes for a small proportion of patients. Approximately 10% of patients have no family 

history of ADPKD, and 25% of these have proven de novo mutations [21]. 
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There is no mutation ‘hot-spot’ within these genes; over 1,800 mutations have been identified 

as contributing to the pathogenicity in ADPKD. These are highly variable, spread across each 

gene, and are typically unique within families. A database of ADPKD mutations within PKD1 

and PKD2 has been established (pkdb.mayo.edu) [22], with frameshift mutations accounting 

for the largest percentage of predicted pathogenic mutations recorded to date. The pattern of 

inheritance in ADPKD follows that of autosomal dominance, as most patients are heterozygotes 

for the pathogenic mutation they carry. 

 

Patients with a mutation within PKD1 are classed as type I ADPKD patients, while patients 

with a mutation within PKD2 are type II ADPKD patients. PKD1 mutations affect males and 

females equally, with a median onset of ESRD (or death) at 53 years. PKD2 mutations affect 

males and females differently, however, as males have an earlier median onset ESRD than 

females (67 and 71 years, respectively) [18]. There is insufficient data on the epidemiology of 

other pathogenic genes in ADPKD due to their recent characterisation and low prevalence.   

 

Features of the PKD1 gene (16p13.3) make it likely to be more susceptible to somatic mutation.  

It has a high GC content [23], which makes it more vulnerable to slippage errors during 

replication [24], and the presence of a long polypyrimidine tract within intron 21, which may 

predispose the gene to mutation [25]. PKD1 spans almost 50 kb of the genome, but it has an 

open reading frame (ORF) of 14 kb, with most of this being untranslated (Fig. 1.1) [26].  
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Figure 1.1: Features of the ADPKD-associated gene PKD1 
PKD1 is 50 kb in length and runs in the 3’ 5’ direction. Regulatory elements within the gene include 
multiple CpG islands, an area of H3K27Ac within intron 1, DNase clusters associated with the CpG 
islands and H3K27Ac region. There are also three miRNAs within the gene and promoter: miR-1225, 
miR-4516 and miR-3180-5. The 3’ end of TSC2 is directly adjacent to the 3’ end of PKD1. Image 
generated on the UCSC genome browser with the GRCh37/hg19 genome annotation. 
http:/genome.ucsc.edu [27, 28]. 
 

Alternative splicing of Pkd1 is observed in mouse and rat models [29, 30], however analysis of 

PKD1 is complicated due to the multiple pseudogenes, so it is unclear whether alternate splicing 

is present or plays a role in PKD1 expression.  There are also six pseudogenes ~13 Mb upstream 

of PKD1 which share a 97-99% homology with sequences from exons 1-33 [31, 32]. These 

may indicate a propensity for this region of the genome to experience somatic mutation; in 

cancer somatically acquired pseudogenes mirror features seen in retrotransposons [33]. 

 

Conversely, PKD2 (4q21) is a single copy gene. It spans 68 kb of the genome, with an ORF 

~5 kb [34]. Multiple alternative splicing transcripts have been identified in PKD2, including 

some which are not present in polysomal fractions, indicating that perhaps they play a role in 

the expression of other PKD2 transcripts [35].  
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For the purposes of this research, patients with assumed or confirmed type I ADPKD are 

investigated, and thus the discussion into ADPKD predominantly features type I ADPKD 

characteristics. 

 

1.2 PKD genes and Polycystins 

PKD1 encodes the protein polycystin-1 (PC1), a 462 kD integral membrane protein with both 

an extracellular and an intracellular terminus (Fig. 1.2). The extracellular N-terminus, which 

makes up approximately 75% of the protein, contains various domains capable of binding to a 

range of molecules including collagen, fibronectin, proteins and lipids. Of particular interest 

are the cell wall integrity and stress response component homology domain (which may bind 

to carbohydrates) and a C-type lectin domain for which carbohydrate binding is calcium-

dependent [31]. The intracellular C-terminus also interacts with lipids and proteins, although 

the function of this terminus appears to play a role in signalling, as this tail contains a G-protein-

activation site and phosphorylation signalling sites. Overall, PC1 has a structure indicative of a 

receptor or adhesion molecule. 
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Figure 1.2: Structure of Polycystin 1 and Polycystin 2 
Polycystin 1 (left) is a 462 kD protein, predominantly comprised of an extracellular N terminus. This 
terminus contains a cytosine-flanked leucine repeat sequence (LR), which is capable of binding collagen, 
fibronectin and laminin; a cell wall integrity and stress response component domain (WSC); PKD1-like 
IgG-like repeats (IgG-like) which can bind protein ligands; and a C-type lectin which binds 
carbohydrates in a calcium-dependent manner. The intracellular C terminus contains a G-protein 
activation site, and a coiled-coil domain which has been postulated to assist with binding to the coiled-
coil domain of Polycystin 2. PC2 (right) is a smaller protein of 110 kD. The transmembrane domains 
share homology with the transmembrane domains of PC1, and the extracellular loop between domains 
5 and 6 forms a pore (which allows calcium to flow into the cell). The intracellular N terminus of PC2 
contains SH3 domains which allow the binding of focal adhesion proteins such as tensin. Adapted from 
Wilson (2004) [5]. 
 

Polycystin-2 (PC2) is a 110 kD protein (Fig. 1.2). The transmembrane domain of this protein 

shares a homologous region with a section of the transmembrane domain within PC1, however 

the proteins have different functions. The six transmembrane domains of PC2 form a pore, 

which acts as a nonselective cation channel capable of transporting Ca2+ [36]. PC2 belongs to 

a subfamily of transient receptor potential channels. 
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It is believed that PC1 and PC2 form a polycystin complex together, which may have a 

mechanotransduction role in which the receptor molecules of PC1 influence the capacity of 

PC2 to transport Ca2+ [37]. 

 

1.3 Molecular characteristics of renal cysts in ADPKD 

ADPKD cysts demonstrate variable thickening of the basement membranes as well as 

alterations in the matrix composition [5, 12, 38]. Epithelial cells derived from ADPKD are more 

adherent to type I and IV collagen [39, 40]. The relationship between the cells and the matrix 

may also be influenced by abnormal numbers of integrin receptors. In mice, it has been 

demonstrated that the over-expression of matrix and focal adhesion complex-associated 

proteins such as tensin results in the growth of a high number of cysts [41, 42]. 

 

A key process during development is regulating the polarity of cells through the location of 

specific proteins in order for correct renal function to occur [43]. Tissue from ADPKD has 

altered polarity, including the relocation of the Na+/K+-ATPase pump from the basolateral to 

the apical cell membrane [44]. This suggests the ability to regulate polarity is lost (or never 

activated) in cystic tissue. Additionally, the isoform present in the cystic cell is the fetal form 

α1β2 rather than the mature isoform α1β1, suggesting that the fetal isoform is never 

downregulated in mature cells. Furthermore, polarity of PKD1 is also altered in ADPKD. While 

typically characterised as a membrane protein, PKD1 has been found primarily in the cytoplasm 

of ADPKD epithelial cells [45]. 

 

The ADPKD epithelia respond abnormally to signalling molecules. In the ADPKD kidney, 

apoptosis is abnormally persistent, destroying the renal parenchyma, which allows cystic 



 

 

8 

epithelia to proliferate. In mice it has been demonstrated that inactivation of the apoptosis 

inhibitor bcl-2 is sufficient to cause renal cysts. 

 

Conversely, the proliferation of renal epithelia – which should cease at adulthood – continues 

in ADPKD. Epithelial cells originating from the ADPKD kidney have been proven to have an 

increased capacity for proliferation. ADPKD is also more susceptible to stimulation from the 

growth factor EGF, which is another cause of cystic proliferation. This can be demonstrated in 

transgenic mice overexpressing the receptor erb-b2, which develop focal dilation and 

proliferation of tubular epithelia [46]. 

 

EGF is secreted into the cystic lumen in quantities than can initiate proliferation. Combined 

with the abnormal location of EGF receptors in the luminal membrane, this mechanism 

contributes to the growth of cells. The inhibition of these receptors in mice reduces the number 

of cysts. Other growth factors, cytokines, lipid factors, ATP and cAMP all are present within 

the cyst fluid and contribute to the proliferative capabilities of the epithelia. 

 

The ADPKD-causing genes PKD1 and PKD2 have many purported roles in ADPKD. One such 

role involves a signalling cascade which leads to cell proliferation, migration and differentiation 

by repressing transcription factors such as TCF/LEF, AP-1 and STAT1. These genes control 

other pathways such as Wnt signalling. 

 

1.3.1 Characteristics of PKD1 in ADPKD 

Although it is known that a germline mutation to either PKD1 or PKD2 is typically required 

for ADPKD, the direct relationship these genes have with the onset of disease is not clear. It 

may be expected that the germline mutation would result in the loss of function at this allele 
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(either due to truncation or misaligned protein folding), thereby causing a loss of polycystin 

dosage, or function, sufficient to cause cystogenesis. 

 

Loss of polycystin dosage has been demonstrated in mice, where the knockout or reduction of 

Pkd1 is sufficient to cause cystic disease, as well as extrarenal manifestations typical of 

APDKD (Table 1.1). 

Table 1.1: Evidence demonstrates either an increase or decrease of PKD1 and Polycystin 1 causes 
ADPKD 
Mouse model section adapted from Happé and Peters (2014) [67]. 

 

However, the loss of dosage model is contrary to observational evidence in human ADPKD 

tissue. Various analyses of PKD1 expression in tissue derived from ADPKD cysts has shown 

evidence that PKD1 expression is increased in cystic tissue (Table 1.1). These analyses are not 

conclusive evidence that ADPKD is caused by the upregulation of PKD1, as a significant 

proportion of cyst (10-20%) are deemed to have an absence of the protein in some studies [6, 

63]. However, they do demonstrate that the relationship between PKD1 and ADPKD is not as 

simple as loss-of-function animal models previously described. 

 

Mouse models: Reduction of Pkd1 

Knockout mice [47-51] 
Conditional knockout mice [52-54] 
Inducible knockout mice [49, 55] 

Hypomorphic mice [56-59] 
Mouse models: 

Increased expression of (human) PKD1  [60, 61] 

Human tissue: 
Variable PKD1 expression in human tissue  [62] 

Human tissue: 
Increased expression of PKD1  [6, 63-66] 
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1.4 Cystogenesis in ADPKD 

Cysts initially arise from the proliferation of epithelial cells within a nephron tubule. The 

accepted model of cyst development is based upon focal proliferation (Fig. 1.3), where a single 

epithelial cell undergoes some form of genetic event, altering the function of the cell and 

initiating abnormal proliferation [4].  The resulting mass of cells then fills with fluid and will 

bud off from the nephron of origin to become an independent cyst. The monoclonal nature of 

ADPKD cysts has been demonstrated [68], supporting the concept that the origin of a cyst is 

likely from one epithelial cell. 

 

Figure 1.3: Focal proliferation as a model of cyst development 
Focal proliferation is widely agreed upon as the mechanism by which cysts develop. In this model, a 
genetic event generates cystic cells (red), which proliferate and expand out of the renal tubule, until they 
bud off and expand as a single, independent cyst. 
 

Cysts continue to grow, likely as a result of fluid intake and the continual cellular proliferation. 

Cyst growth as measured by total kidney volume is variable, and is calculated to increase at a 

rate of 1-10% per year [69, 70]. 

 

Although each kidney contains roughly one million nephrons [71] which all carry the germline 

PKD-causing mutation, less than 1% of these will develop into a cyst [72]. In this respect, 

ADPKD is dominant at the genetic level, but recessive at the cellular level. Therefore, it is not 

the germline mutation alone causing cystogenesis, but one or more additional molecular 

features initiating cystogenesis. The feature(s) would then need to occur hundreds of times in 
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each PKD kidney in order for the characteristic cystic kidney to develop. A number of 

hypotheses have been suggested to explain the initiation of cystogenesis in ADPKD. 

 

1.4.1 Loss of heterozygosity 

In 1992 it was first proposed that ADPKD was caused by the loss of the second ‘wild-type’ 

copy of PKD1, comparable to the repression of tumour suppressor genes in heritable cancers 

[73].  This mechanism is dubbed the “two-hit hypothesis”, and there is experimental evidence 

to demonstrate that this does occur in some cysts from ADPKD patients. Multiple studies have 

identified loss of heterozygosity (LOH) in PKD1, in approximately 12-24% of selected 

ADPKD cysts, based upon microsatellite analysis. [68, 74, 75]. The true rate of LOH in 

ADPKD may be higher due to single nucleotide polymorphisms rather than the specific 

translocations tested in these studies, although it is unlikely to account for the development of 

all cysts. 

 

In the LOH model, the rate at which patients acquire a second hit plays a role in determining 

the course of disease. This would also explain the phenotypic variability between different 

patients. However, for this model to account for all cyst formation, there must be extremely 

high rates of somatic mutation within PKD1 and PKD2. In addition, while LOH is frequently 

cited as a theory to explain the mechanism underlying cystogenesis initiation, there are some 

experimental observations (such as increased gene expression, see Section 1.3.1) which LOH 

cannot sufficiently explain. 
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1.4.2 Incomplete penetrance 

Papers published in the late 2000s report the screening of PKD1 and PKD2 in consanguineous 

ADPKD families that do not fit the normal paradigm of single dominantly inherited mutations 

in ADPKD. 

 

A notable PKD1 mutation R3277C (RC) was found and determined to be the pathogenic 

mutation in a family. The RC allele appears to show a “low potency” where heterozygous 

family members show minimal disease and develop only a few renal cysts. This is unlike typical 

PKD1 mutations, where heterozygotes develop significant ADPKD. However, the homozygous 

family members with two copies of RC presented with severe ADPKD that progressed to ESRD 

and required transplantation [76]. In another family, the in utero onset of polycystic kidney 

disease was found to be the accumulation of the RC allele in trans with another, more severely 

pathogenic and completely penetrant PKD1 mutation [77]. Therefore, the RC allele could also 

be described as incompletely penetrant, able to induce severe ADPKD in combination with 

another pathogenic mutation. 

 

1.4.3 Gene dosage and networks 

As the dosage of PC1 has been found to be both increased and decreased in ADPKD tissue and 

animal models (Table 1.1), it has been questioned whether the dosage itself influences 

cystogenesis, or whether the dysregulation of this molecule has downstream consequences in 

gene networks. 

 

An early example of this is PAX2, which is known to play a role in kidney cell differentiation 

[78]. Transgenic ADPKD compound mutant mice carrying, in an addition to a homozygous 

Pkd1 mutation, a heterozygous Pax2 mutation, demonstrate less severe cyst formation [79], 
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inferring that perhaps reduction of Pax2 dosage may be equivalent to inhibition of factors 

involved in the signalling pathways (such as cMet, NF-𝜅B or Wnt) that form a regulatory 

cascade to activate Pax2 expression in kidney tubules. 

 

It is also been demonstrated that the protein kinase mTOR (mechanistic Target of Rapamycin) 

plays a role in ADPKD. mTOR plays a role in the coordination of cellular growth and 

metabolism, and is regulated by PC1 [80]. As a target of Rapamycin, this has been an 

investigated route for therapeutic treatment of ADPKD. While Rapamycin has lowered total 

kidney volume, this molecule, as a treatment for ADPKD, has been unsuccessful due to poor 

patient tolerance to side effects [16]. 

 

A recent study has demonstrated that the oncogene Myc is upregulated both in the absence and 

gain of polycystin-1 in transgenic mice [81]. Furthermore, the expression of PC1 was 

modulated by the overexpression of Myc, suggesting that there is a regulatory loop mechanism 

influencing pathogenesis. 

  

1.5 Polycystic Kidney Disease is a ciliopathy 

Cysts from ADPKD arise from the epithelial cells of the nephron. Renal epithelial cells have a 

primary (immotile) cilium protruding on the apical membrane, which can act as a 

mechanosensor to detect fluid flow within the lumen, in turn triggering an influx of intracellular 

Ca2+ (which has a role in cell signalling) [82]. 

 

ADPKD is considered a ciliopathy – a disorder of the cilia – due to evidence linking 

dysfunctional cilia with cystic kidney disease. In mice, inactivation of either the gene Kif3a or 

Polaris prevents the synthesis of cilia, subsequently causing polycystic kidney disease [83]. The 
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absence of cilia is not a feature in Pkd1 mutant mice nor ADPKD patients, so inactivation of 

Kif3a is not a requirement for the disease but it does infer that the impairment of cilia is crucial 

in ADPKD. 

 

PC1 and PC2 can both localise to the cilium [37, 84], where together they are thought to 

function as sensors of the extracellular environment (the renal tubular lumen) and initiate 

signalling cascades. Cultured renal epithelial cells from Pkd1– mutant embryonic mice do not 

respond to fluid flow sheer stress, while their wild-type counterparts do by increasing the 

intracellular Ca2+ concentration [85]. It is postulated that the large extracellular portion of PC1 

acts as a sensor, which results in a conformational change to activate PC2. 

 

Additionally, when wild-type renal epithelial cells were treated with an inhibitory antibody 

designed to target the intracellular portion of PC2, the cells continue to respond to fluid flow 

by increasing the concentration of intracellular Ca2+. However, when the same cells are treated 

with an antibody targeting the extracellular portion of PC2, the cells no longer respond to fluid 

flow [37]. 

 

In addition to ADPKD, there are various forms of renal ciliopathies, including Autosomal 

Recessive Polycystic Kidney Disease (ARPKD). This disease includes subtypes such as 

Nephronophthisis (NPHP) and Medullary Cystic Kidney Disease (MCKD) (Table 1.2). 

ARPKD is an inherited, recessive disease caused by the gene PKHD1. Recessive PKD is much 

less common than the dominant form, and often results in fetal or neonatal death [86]. It is 

generally accepted that ARPKD cysts arise from the collecting duct of the nephron, which 

expand but stay attached to their respective tubule [5]. In ADPKD it is believed the cysts bud 

off from the nephron, and while there is some experimental evidence to suggest a high 
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proportion of ADPKD cysts contain collecting duct markers, ADPKD cysts are believed to 

arise from all segments of the nephron as well as the collecting ducts [87]. 

 

Table 1.2: A summary of the major renal ciliopathies 

Disease Genetic cause 
Age when 

affected/diagnosed Cyst location 

ADPKD 

PKD1 

Primarily adults 
Arise from all segments of the 
nephron and bud off into the 

parenchyma 

PKD2 
GANAB 

DNAJB11 

ARPKD 

PKHD1 Neonates Derived from and remain 
connected to the collecting duct 

NPHP genes Infants - Adolescents Corticomedullary border 
MCKD1 

Primarily adults Within the medulla 
MCKD2 

 

NPHP, which is the primary cause of renal failure in children, is the result of recessive 

inheritance of one of a large number of identified NPHP genes, which affect adolescents, 

juveniles and infants. In this disease, cysts develop at the corticomedullary border of the kidney 

[88]. There are also multiple forms of MCKD, consequential of the dominant inheritance of 

MCKD1 or MCKD2 [89, 90]. In MCKD, cysts form exclusively within the medulla and result 

in the bilateral shrinkage of the kidneys. MCKD is typically milder than NPHP, and primarily 

affects adults.  

 

The development of hepatic cysts can occur in ADPKD patients, which is usually indicative of 

co-morbid Polycystic Liver Disease (PLD). PLD can occur as an independent disease or 

alongside ADPKD or ARPKD, however hepatic cysts typically do not affect liver function. 

PLD alone is associated with the genes PRKCSH and SEC63 [91, 92]. 
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1.6 Similarities between ADPKD and neoplasia 

ADPKD demonstrates similarities to a number of features associated with cancer, which is why 

it has been described as “neoplasia in disguise” [93]. Features of ADPKD align with eight of 

the ten hallmarks of cancer (Table 1.3) [94]. 

Table 1.3: Comparison of ADPKD and the hallmarks of cancer 
Adapted from Seegar-Nukpezah et al. (2015) [95]. 

Hallmarks of cancer ADPKD 

Genomic instability and mutation 

LOH has been proposed to initiate cystogenesis [68, 
74, 75]; emerging data that epigenetic changes 

contribute to cystogenesis [96]. 
ADPKD lymphocytes demonstrate high levels of 

DNA damage [97]. 

Sustaining proliferative signalling 
Elevation of epithelial proliferation in ADPKD cysts 

due to growth factors/cytokines/cAMP in cystic 
fluid. 

Evading growth suppressors Tumour suppressor signalling (such as p53) is 
dysregulated [98, 99]. 

Resisting cell death Low levels of apoptosis in cysts (elevated in 
parenchyma) [100]. 

Tumour-promoting inflammation 
Interstitial inflammation is observed in ADPKD 

[101]. This is thought to contribute to disease 
progression. 

Inducing angiogenesis Abnormal capillaries around renal cysts [102, 103]. 

Deregulating cellular energetics High rate of aerobic glycolysis in ADPKD [104]. 

Avoiding immune destruction Macrophages are thought to promote cyst growth 
through C3 induction [105]. 

Enabling replicative immortality 
Replicative immortality does not occur in ADPKD – 
replicative crisis is delayed in Pkd1-/- mouse embryo 

fibroblasts [98]. 
Activating invasion and metastasis Metastasis does not occur in ADKD. 

 

Most notably, both diseases can be characterised by genomic instability and mutation. In cancer, 

this is either due to heritable phenotypes or the “chance acquisition” of a mutant genotype 

causing the subclonal population of cells to proliferate over neighbouring cells [94]. Emerging 

data now recognises that epigenetic modification regulating gene expression is also an aspect 

of instability in the genome. In ADPKD, the heritable phenotype originates within a 
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PKD-causing gene (such as PKD1). The chance acquisition of mutant genotypes is the LOH 

proposed to occur in more than 10% of clonal cyst populations. 

 

Defects in the DNA-maintenance mechanisms within the genome have been documented in 

neoplasia [106], limiting the cell’s ability to repair or destroy misfolded proteins and to prevent 

further genomic damage. Interestingly, one of the genes recently attributed to PKD 

pathogenesis, GANAB, is involved in the quality control complex of the endoplasmic reticulum.  

 

Another similarity between neoplasia and ADPKD is that epithelial cells originating from renal 

cysts have sustained proliferative signalling, wherein molecules such as EGF, cAMP and 

cytokines contribute to cyst growth and are speculated to drive cystogenesis in an oncogenic 

fashion. The deregulation of apoptosis is also observed in both diseases, although in cancer this 

process is limited; in ADPKD apoptosis is increased in the parenchyma and marginally reduced 

in tubule epithelia. 

 

One key hallmark of cancer that ADPKD does not possess is the invasion and metastasis of 

malignant cells throughout other organs of the body. While cysts are observed in other organs 

(such as within the liver and intestines), these do not proliferate and cause organ failure in the 

same manner that the primary cysts within the kidney do, and there is no evidence to suggest 

they originate from migration of renal cysts. 

 

There are two fundamental characteristics of cystic cells in ADPKD which are not considered 

to be in the hallmarks of cancer: altered ciliary signalling, and the dysregulation of intracellular 

Ca2+ and cAMP. 

 



 

 

18 

Available treatments for ADPKD are limited due to both the incomplete knowledge of the 

disease, and little financial incentive for pharmaceutical companies to develop 

ADPKD-specific products [95]. Additionally, a number of therapies have failed due to 

insufficient patient responses during clinical trials or poor patient tolerance to side effects. The 

similarities between ADPKD and cancer means that there is the possibility of therapeutics 

currently developed for use in cancers to be repurposed for use in ADPKD, some of which have 

already been the subject of clinical trials in ADPKD [16]. 

 

1.7 Epigenetic and post-translational influences in ADPKD 

In addition to germline or somatic mutations, gene and protein expression can be easily altered 

by epigenetic mechanisms. These are molecular changes that occur to the DNA molecule 

without changing the genetic sequence and are easily altered to change gene expression. 

Epigenetic factors are important for many reasons. During development, epigenetic 

mechanisms play a role in cellular growth and differentiation, and as cells mature, these 

epigenetic factors change to suit the role of a cell. Once the cell differentiates, epigenetic 

modifications are specific for every cell type. 

 

Two key forms of epigenetic regulation involve histone modification (such as acetylation and 

methylation) and DNA methylation. These mechanisms act to modify the chromatin state and 

accessibility of DNA to transcription factors. A similar biological mechanism is the 

post-translational regulation of genes by microRNA. The most significant mechanisms of 

epigenetic control of gene expression in ADPKD are explored below. 
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1.7.1 microRNA 

microRNA are a class of non-coding RNAs, approximately 20 nucleotides long. These 

sequences function as post-translational regulators to alter protein expression by cleaving 

mRNA (as part of a silencing complex containing Dicer). It has been estimated that one third 

of protein coding genes may be regulated by miRNA [107]; in cancer it has been documented 

that a large number of genes are modified by specific miRNA. Some notable pathways 

regulated by miRNA include the anti-apoptosis gene BCL2 and the oncogene MYC [108]. 

 

miRNAs are transcribed from the genome as primary miRNA, which are then spliced with 

Drosha and Dicer enzymes to become mature miRNAs (Fig. 1.4). Mature miRNAs contain a 

“seed site”, which is a sequence estimated to be from six to ten nucleotides long that has the 

ability to target complementary sequences in the genome. Due to the frequency of the 

complementary sequence in the genome, each miRNA has the ability to transcriptionally 

regulate a multitude of genes [109, 110]. 
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Figure 1.4: Maturation and mechanism of miRNA 
miRNAs are transcribed from the genome with RNA Pol II. The primary miRNA is then modified by 
Drosha enzymes to become pre-miRNA. Pre-miRNA are further modified by Dicer. The mature miRNA 
can then form a complex with a RISC (RNA-induced silencing complex) to bind to a complementary 
sequence on a mRNA molecule where it can attenuate expression through two mechanisms: repression 
or degradation. 
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1.7.2 miRNA in ADPKD 

Previous research in renal development has confirmed that miRNAs are required for embryonic 

development of the kidney, and several miRNAs have been implicated in glomerular and 

tubular diseases [111]. Screening of miRNA in tissue and plasma samples has identified a wide 

range of miRNA as being dysregulated in ADPKD. Current findings of miRNA dysregulation 

in ADPKD include the upregulation of miR-182-5p [112] and 199a-5p [113], as well as the 

downregulation of miR-192 and miR-194 due to hypermethylation [114]. It has also been 

demonstrated that miR-501-5p is upregulated in ADPKD, causing activation of the mTOR 

pathway through p53-mediated mechanisms [115]. 

 

Most recently, inhibition of the miR-17~92 cluster has been demonstrated to reduce cyst 

proliferation in ADPKD mice [116]. Further analysis of the six miRNAs within this cluster 

(miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR-92a-1) provides evidence that 

modulation of miR-17 alone is sufficient to attenuate the growth of cysts [117]. Additionally, 

the anti-miR-17 treatment in this study inhibited mTOR signalling. As mTOR has previously 

been assessed as a target for therapies in ADPKD (see Section 1.4.3), inhibition of miRNA 

suggests an additional target for treatment of the disease. 

 

1.7.3 Histone Modification 

DNA is wound around histone octamers, which allow for the tight packaging and organisation 

of the DNA molecule in the nucleus. The histone proteins contain many tails, to which a large 

range of chemical modifications can occur. These modifications determine how closely the 

histones are packaged together, in turn facilitating how freely DNA can be transcribed. There 

are three main modifications to the histone tails: phosphorylation, methylation and acetylation 

[118].  
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Acetylated histones result in relaxed chromatin (euchromatin) which is associated with greater 

levels of gene transcription, while deacetylation results in heterochromatin, which is tightly 

packed and has reduced levels of gene transcription (Fig. 1.5).  

 

 

Figure 1.5: Histone acetylation regulates gene transcription 
The modification of lysine residues attached to the histone octamers that DNA is wound around 
determines how tightly packaged the chromatin is. Euchromatin (upper) is associated with greater levels 
of gene transcription than heterochromatin (lower) which prevents transcriptional mechanisms from 
accessing the DNA. Chromatin packaging is modified by the attachment of acetyl group (Ac) to the 
lysine residues with histone acetyltransferases (HATs), or dissociation of acetyl group from the lysine 
residue with histone deacetylases (HDACs). 
 

Histone acetylation is catalysed with histone acetyltransferases (HATs), while deacetylation 

requires histone deacetylases (HDACs). There are several classes of HATs and HDACs, based 

upon homologous sites and the target of their epigenetic affects [119].  
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1.7.4 Histone deacetylases in ADPKD 

While multiple mechanisms of histone modification are able to occur, there is little evidence of 

histone phosphorylation and methylation in the context of ADPKD. The regulation of histones 

with HDACs, however, has been well documented [96]. Some of the studies implicating HDAC 

activity in ADKD include p53-induced repression of the PKD1 promoter which has been shown 

to be attenuated with HDAC treatment [120], targeting of HDAC5 expression through 

polycystin-dependent fluid stress signalling [121], and HDAC6 inhibition preventing the 

release of Ca2+ from the endoplasmic reticulum, consequentially attenuating cyst growth 

through cAMP signalling [122]. 

 

Numerous studies have identified the activity of HDACs as a driver of neoplasia, due to the 

aberrant expression of HDACs in tumours [123], and the ability to use post-translational 

modification of histones with HDACs and HATs as biomarkers in human tumours [124]. As 

such, there are now several HDAC inhibitors that have been approved by the Food and Drug 

Administration (FDA) for the use in human cancer [125]. The class I HDAC inhibitor VPA, 

and class I and II HDAC inhibitor TSA have both been shown to reduced cyst formation and 

slow cyst growth in animal models [99, 120, 121, 126], yet these drugs are yet to show sufficient 

beneficial effects in human clinical trials and be approved by the FDA. 

 

1.7.5 DNA methylation 

DNA has the potential for nucleotides to be modified by the addition of a methyl group via 

DNA methyltransferase (DNMT) proteins. This typically occurs on cytosine residues which are 

immediately followed by guanine (CpGs), although DNA methylation can also occur at other 

dinucleotide combinations [127]. Mammalian DNA is methylated at 70-80% of all CpG sites 
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in the genome [128], as DNA methylation is required for the controlled suppression and 

expression of genes (Fig. 1.6). 

 

 

Figure 1.6: DNA methylation as an epigenetic mechanism 
The addition of a methyl group to a CpG dinucleotide is created by DNMTs (or methylating agents). 
Unmethylated DNA can be facilitated by the inhibition of DNMTs, or demethylating agents. 
Hypomethylation of promoters and other enhancer elements allow the transcription of genes, while 
hypermethylation of promoters prevents the DNA machinery from accessing these regions to enable 
transcription. The inverse is seen in gene bodies, as hypermethylation at the 3’ end of a gene is often 
correlated with increased gene expression, although an explanatory mechanism for this is not clear. 
 

Clusters of CpGs are known as CpG islands, and these are often found in areas of high 

importance for gene expression, such as the promoter or enhancer regions of the genome [129]. 

Methylation at the promoter regions of the genome have historically been associated with the 

repression of a gene, by reducing the ability of transcription factors to bind [130]. One 

mechanism of transcription factor inhibition includes chromatin remodeling, suggesting that 

there is epigenetic cross-talk between DNA methylation and histone modification in the 

epigenetic control of genes [131]. 
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Methylation of CpGs within the gene body is not as well understood as that of the promoter, 

but typically results in sustained or increased expression of a gene [132, 133]. A variety of 

mechanisms have been proposed to explain this phenomenon. These all postulate that the 

methylated regions contain genomic elements, either responsible for alternative splicing, 

containing transcription factors which when hypomethylated interfere with the host gene 

expression, or as residual epigenetic marks from embryonic stages of development [132]. 

 

DNA methylation is required at all stages of life, from differentiation of embryonic stem cells 

during development [134], to the maintenance of X inactivation [135] and specialization of 

cells [136]. The pathology of several diseases, most notably cancers, has been linked to 

dysregulation of DNA methylation both globally and locally [137]. As such, DNMT inhibitors 

have been developed as a therapeutic drug for certain cancers [138]. 

 

1.7.6 DNA methylation in ADPKD 

A 2014 paper by Woo et al. [139] was the first to report global DNA methylation in ADPKD 

patients. This was conducted with pyrosequencing on the kidney tissue from three patients with 

ADPKD (and three from non-ADPKD tissue). The results from this analysis identified over 

13,000 unique fragments in the genome which were differentially methylated; 91% of these 

were found to be hypermethylated. The exonic region of the genome was found to be the major 

target of DNA methylation changes in ADPKD, with 5.93-fold higher hypermethylation 

occurring at these regions. 

 

This group also analysed DNA methylation in the PKD1 gene body (exon 43), and 

demonstrated hypermethylation in ADPKD samples, negatively correlating with the expression 

of the gene. Demethylation of an immortalised cell line (WT 9-12) resulted in increased PKD1 
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mRNA, and treatment of the cyst-forming cell line MDCK with a DNMT inhibitor repressed 

the growth of cysts. 

 

Inhibition of DNMTs has been developed as a therapeutic for various neoplasia [137]. It is 

theorized that if the hypermethylation of ADPKD was resulting in cystogenesis, the same 

pharmaceuticals could be used for the treatment and management of ADPKD patients. 

 

1.8 Rationale for study 

Preliminary data from a previous student [140] showed global hypomethylation in an analysis 

of ADPKD tissue from two patients. This was in contrast to the previously reported study which 

identified hypermethylation as a contributing factor to ADPKD [139]. As there are so few data 

currently available on DNA methylation in ADPKD, my first aim in this study was to analyse 

further ADPKD tissues, to add to the previous research performed in our laboratory on the 

methylation of tissue from ADPKD kidneys. 

 

All previous work on the ADPKD methylome has been performed using whole tissue samples, 

which contain multiple ADPKD cysts. As cysts are thought to arise independently, one of my 

specific aims in this study was to identify whether changes seen in ADPKD whole tissue are 

representative of the ADPKD methylome, or whether cysts each contain their own unique 

methylation pattern.  

 

1.9 Hypothesis 

I hypothesise that there will be significant differences in the methylome of ADPKD tissue and 

non-ADPKD kidney. I further hypothesise that there will be multiple differentially methylated 

loci in the ADPKD tissue that may have a role in the pathogenesis of ADPKD. 
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1.10 Aims 

• To use reduced representation bisulfite sequencing (RRBS) to identify key regions of 

differential methylation in a larger panel of ADPKD kidney tissue. 

• To use RRBS to show the (representative) methylome of ADPKD cysts and determine 

whether the changes seen in whole tissue are seen consistently in individual cysts. 

• To investigate the three miRNAs associated with CpG islands in the PKD1 gene and 

determine if aberrant expression of these miRNAs is involved in ADPKD pathogenesis. 
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2.1 Sources of nucleic acids for genetic analysis 

DNA and RNA isolated for this research came from kidney tissue from ADPKD patients and 

healthy individuals, as well as ADPKD-derived cell lines. One patient has a confirmed germline 

PKD1 mutation. The remining four patients are assumed to have PKD1 mutations, based upon 

the age of patients at time of nephrectomy, however these patients have not been genotyped. 

Data about each sample such as age and sex can be found in Appendix A. The use of human 

tissue samples was approved by the Otago Human Ethics Committee H15/H110. 

 

2.1.1 Kidney tissue dissection 

Tissue segments were dissected from the kidneys of ADPKD patients immediately following 

renal transplantation at Dunedin Hospital. Multiple segments were cut from the cortex of the 

kidney (although this region is not clearly defined in ADPKD due to the extent of cyst growth, 

thus the location was approximated), in which each tissue section contained tissue from 

multiple cysts as well as blood cells, connective tissue, fibrous tissue and any remaining 

parenchyma. Tissue samples were cut from multiple regions in the kidney by grasping a 

segment of tissue with forceps and cutting it out with surgical scissors. Samples were 

immediately frozen in liquid nitrogen for storage at -80 ºC. 

 

An additional kidney in this analysis was treated with neutral buffered formalin (NBF) for seven 

days prior to dissection. The selection of tissue segments was carried out in the same manner 

as above but were stored in 70% EtOH for 24 hours before embedding in a paraffin block (rather 

than freezing at -80 ºC). 

Chapter 2: Methods 
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Segments of non-ADPKD tissue were provided by the Christchurch Tissue Bank. These 

samples were collected from the cortex of the kidney during renal tumour surgery – dissected 

as far from the tumour as possible, and with histological testing to confirm the absence of 

malignant tissue – which were collected fresh and frozen at -80 ºC when delivered to our 

laboratory. The non-ADPKD tissue was used as the control group in this study, as by the time 

ADPKD patients undergo nephrectomy, the disease has developed to an extent where the 

kidneys contain no unaffected tissue that could be used as a direct comparison against cystic 

tissue. 

 

2.1.2 Isolation of cyst wall tissue from an ADPKD kidney 

In addition to segments of tissue, sections of cyst wall were also dissected from an ADPKD 

kidney. These samples were intended to only contain tissue from a single cyst wall, thereby 

providing a more precise picture of the methylation landscape in cystic tissue. These samples 

were excised from an ADPKD kidney that had been treated in NBF for 24 hours and rinsed 

with 70% EtOH to wash off any sources of contaminating DNA (such as blood cells) from the 

cyst wall. These samples were submerged in EtOH and stored at 4 ºC. 

 

2.1.3 Immortalised cell line growth 

The two cell lines used in this analysis were renal epithelial cells WT 9-7 (ATCC® CRL-2830™) 

and WT 9-12 (ATCC® CRL-2833™), each derived from an independent cyst of a female 

ADPKD patient. The cell lines have been characterised as having originated from a proximal 

tubule based upon CD13 antibody staining and LTA lectin binding (although the WT 9-12 cell 

line demonstrates distal and proximal characteristics). Mutation screening has shown that these 
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cells both carry the truncating PKD1 mutation Q2556X – WT 9-7 is heterozygous for this 

mutation while WT 9-12 is homozygous [141]. 

 

Cells were grown on flasks coated with type I collagen (0.05 mg/mL) in DMEM media (Table 

2.1). The cells were grown at 37 ºC with 5% CO2 for ten days, during which time they went 

through one passage. Cells were lifted with Trypsin-EDTA (0.25%) and spun down at 300 g 

for five minutes. The supernatant was aspirated, and the pellets were stored at -20 ºC until 

required for DNA and RNA extraction.  

Table 2.1: DMEM media for cell culture 
Dulbecco's Modified Eagle Medium (DMEM) 89%  
Penicillin-Streptomycin (10,000 U/mL) 1%  
Fetal Calf Serum 10%  

 

2.1.4 DNA isolation from cells and tissue 

DNA was extracted from the cell line pellets using a QIAmp DNA Mini kit (Qiagen, cat. no. 

51304). All elutions followed the manufacturer’s instruction. 

 

Approximately 25 mg of tissue was cut from the frozen kidney segments over dry ice with a 

clean razor blade. The ADPKD samples required further maceration with the blade to assist 

with the homogenization steps, as they are fibrous and difficult to breakdown in the following 

steps. The samples were then transferred to a 2 mL microcentrifuge tube to grind with a clean 

pestle, then homogenized in a QIAShredder column (Qiagen, cat. no. 79656) before continuing 

with the QIAmp DNA Mini kit protocol. 

 

DNA was isolated from cyst wall samples, which had been treated with NBF, with the QIAmp 

DNA FFPE kit (Qiagen, cat. no. 56404), omitting the paraffin-melting steps. Incubation at 57ºC 
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was increased from one hour to overnight (approximately 16 hours) to ensure maximum lysing, 

and the ATE incubation was extended to five minutes to increase the final yield of DNA. 

 

2.1.5 RNA isolation from cells and kidney tissue 

RNA was extracted from the cell line pellets and fresh-frozen kidney tissue segments using a 

miRNeasy Mini kit (Qiagen, cat. no. 217004). As above, 25 mg of the tissue samples were cut 

over dry ice and macerated with a clean razor blade. The miRNeasy protocol was followed as 

per the manufacturer’s instruction to isolate total RNA. 

 

The segment of ADPKD kidney in paraffin was sliced into four sections 10 µm thick, and RNA 

was extracted using the miRNeasy FFPE kit (Qiagen, cat. no. 217504). Deparaffinisation was 

performed with xylene, and the manufacturer’s instructions were followed after this point. 

 

2.2 Creation of reduced representation bisulfite sequencing libraries 

The methylome of samples in this research was generated using a method known as reduced 

representation bisulfite sequencing (RRBS), wherein a fraction of the genome enriched with 

CpG sites is amplified and sequenced to provide an overall picture of the methylation across 

the whole genome.  

 

This protocol is comprised of six key steps (summarised in Fig. 2.1). It is based upon published 

protocols [142], although it has been modified to allow a lower quantity of input DNA. Key 

processes of the protocol are detailed in the following sections. Prior to the development of this 

protocol, five whole tissue samples were generated from 2.5 µg of DNA by a previous student 

[140], and the cell line libraries were generated from 2.5 µg of DNA with the assistance of 

Jackie Ludgate.  
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Figure 2.1: Summary of the RRBS protocol 
RRBS libraries are generated from DNA isolated from kidney tissue. (i) The DNA is fragmented at CpG 
sites using an MspI digest. (ii) Fragments are then modified to repair sticky ends (grey), (iii) an A-tail 
(green) is added to the 3’ end of each fragment, (iv) and a sequencing adaptor (purple) ligated to the A-
tail. (v) The library is then bisulfite converted, creating single stranded fragments with uracil (yellow) 
in place of methylated cytosines. (vi) The library is then amplified and is ready to be sequenced. 
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2.2.1 MspI digest 

An MspI restriction enzyme digest was set up for each sample (Table 2.2) and incubated at 

37 ºC overnight. Low-bind tubes were used for this and all subsequent steps performed in the 

thermal cycler to minimise the loss of DNA due to sample-tube binding.  

Table 2.2: MspI restriction enzyme digest 
DNA sample ~0.5 µg  
NEB MspI (20 U/µL) 8.0 µL  
10x NEB Buffer 4 3.0 µL  
MQ H2O To 30.0 µL  
Total 30.0 µL  

 

Once digested, libraries were purified with the QIAQuick PCR Purification kit (Qiagen, cat. no. 

28104) and eluted into 60.0 µL. 

 

2.2.2 Fragment repair 

Following the digest and purification, samples were incubated with End Repair Mix 2 according 

to Table 2.3 at 30 ºC for 30 minutes. 

Table 2.3: Fragment repair for one RRBS library 
MspI-digested DNA sample  60.0 µL   
End Repair Mix 2 40.0 µL   
Total 100.0 µL   

 

This sample was then purified with the MinElute PCR Purification kit (Qiagen, cat. no. 28006) 

and eluted into 17.5 µL. 

 

A 30A overhang was formed at the 3’ end of each fragment using A-Tailing Mix (Table 2.4). 

Libraries were incubated at 37 ºC for 30 minutes, 70 ºC for five minutes and 4 ºC for five 

minutes. 

  



 

 

35 

Table 2.4: A-Tailing 
DNA sample 17.5 µL  
A-Tailing Mix 12.5 µL  
Total 30.0 µL  

 

To the A-Tailed sample, adaptors with a 30T overhang were bound to the fragments in each 

library, set up as in Table 2.5 in a preheated thermal cycler at 30 ºC for ten minutes. Unique 

adaptor sequences were selected for each library, based on the published sequencing guidelines 

for multiplexing [143], which allows for multiple libraries to be pooled together and sequenced 

across the same lanes. 

Table 2.5: Adaptor ligation 

 

Immediately following ligation, 5 µL of Stop Ligase Mix was added to each sample, and a final 

MinElute PCR Purification was carried out. 

 

2.2.3 Bisulfite conversion 

To identify the methylation status of the DNA, samples underwent bisulfite conversion. 

Although two different kits were used (EZ DNA Methylation-Direct, Zymo, cat. no. D5020 and 

MethylCode Bisulfite Conversion, Invitrogen, cat. no. MECOV50), the reagents and protocols 

used are the same. 

 

The protocol for each kit was followed, each time using freshly prepared CT reagent, as this is 

only stable for a short period of time, and subject to degradation when exposed to UV light. 

Once converted, the remaining library preparation steps were carried out within 24 hours, as 

single-stranded bisulfite converted libraries are not as stable as double stranded genomic DNA. 

DNA sample 60.0 µL  
RSB Buffer 2.5 µL  
DNA Adaptor 2.5 µL  
Ligation Mix 2 2.5 µL  
Total 37.5 µL  
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2.2.4 Semi-quantitative PCR 

A PCR reaction was set up for each library (Table 2.6) and split in two tubes. Each sample 

underwent thermal cycling at 15 and 20 cycles (Table 2.7). 

 

Table 2.6: PCR master mix 
10x PfuTurbo Cx Reaction Buffer 2.5 µL  
2.5mM dNTP Stock (3.3 mM final) 3.0 µL  
TruSeq PCR Primer Cocktail 3.0 µL  
DNA Sample 3.0 µL  
PfuTurbo Cx HotStart DNA Polymerase 1.2 µL  
MQ H2O 12.3 µL  
Total 25.0µL  

 

Table 2.7: Thermal cycling conditions for library amplification 
With the semi-quantitative analysis, n = 15 or n = 20 cycles; in large scale amplification, n = the number 
determined by semi-quantitative PCR analysis. 

 95 ºC 2 minutes  
Denaturation 95 ºC 30 seconds 

x n cycles Annealing 65 ºC 30 seconds 
Extension 72 ºC 45 seconds 

 72 ºC 7 minutes  
 4 ºC hold  

 

A 3% (w/v) NuSieve gel was prepared by mixing NuSieve™ GTG™ agarose (Lonza, cat. no. 

50081) in a glass bottle with freshly prepared 0.5 X TAE buffer, heating in small increments in 

a microwave at 50% power until the powder is fully dissolved. The gel was then poured into a 

tray with a 12-toothed comb and left to set for an hour. Once set it was placed in the 

electrophoresis tank, submerged but not covered in freshly prepared 0.5 X TAE buffer. 7 µL of 

25 bp DNA ladder (Invitrogen, cat. no. 10597011) was loaded into the first well, and PCR 

products were loaded in pairs with 3 µL Xylene Cyanol (XC) loading dye. The gel was run at 

50 V for 5 minutes, then paused as additional 0.5 X TAE buffer was added to the tank to 

submerge the gel and the gel was run for a final 85 minutes. This method of dry-loading the 
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NuSieve™ gel prevents PCR products from rising out of the well (which can happen due to 

remaining EtOH in the sample). 

 

Once the gel was run for a total of 90 minutes, the gel was visualised under UV in the BioRad 

GelDoc. The resulting image (see Appendix B) was used to judge the number of cycles required 

to successfully amplify the remaining library, by comparing the brightness of bands between 

150 and 325 bp. These decisions were supported with advice from senior researchers in the 

laboratory who have experience with this protocol. 

 

2.2.5 Large scale amplification 

PCR master mix was prepared (Table 2.8) and amplified under cycling conditions determined 

by the semi-quantitative PCR. For each library, the DNA and master mix solution was pipetted 

across an 8-tube strip of 0.2 mL microcentrifuge tubes in volumes of 12 µL, replicating the 

surface area of the semi-quantitative PCR. Once amplified, the PCR products were pooled from 

the 8-tube strip into a 2 mL microcentrifuge tube and purified with a MinElute PCR Purification 

kit. 

Table 2.8: Large scale PCR master mix 
10x PfuTurbo Cx Reaction Buffer 10.0 µL  
2.5mM dNTP Stock (3.3 mM final) 12.0 µL  
TruSeq PCR Primer Cocktail 12.0 µL  
DNA Sample 12.0 µL  
PfuTurbo Cx HotStart DNA Polymerase 4.8 µL  
MQ H2O 49.2 µL  
Total 100.0 µL  

 

2.2.6 Size selection 

In order to isolate the RRBS library from the adaptors and any DNA fragments remaining in 

the sample, libraries were run through another 3% (w/v) NuSieve gel as prepared above. Fresh 

0.5 X TAE buffer was added to the gel electrophoresis tank to reach but not cover the gel. 7 µL 
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of 25 bp DNA ladder was loaded into the first well, and libraries (18 µL of DNA and 2  µL of 

XC loading dye) were loaded into every second well, with a maximum of four libraries on any 

gel. The gel was run at 50V for a few minutes, and once the samples were seen to move into 

the gel, and tank was paused and 0.5 X TAE buffer was added to fully cover the gel. The gel 

was then run at 50 V for a total of 90 minutes.  

 

Once this was completed, the gel was carefully removed from the tank and placed on a clean, 

sterile surface (a T75 cell culture flask was used). The first lane containing the ladder was cut 

from the gel with a clean razor blade and transferred to the GelDoc to visualise and measure 

the DNA ladder without exposing the RRBS libraries to the UV lamp. Using a ruler laid 

alongside the lane, the distance to the 150 and 325 bp bands was measured (Fig. 2.2). 

 

Lanes containing the library were cut from the gel with a clean razor blade. Perpendicular cuts 

were made at the 150 bp and 325 bp points, using the ruler laid alongside as a reference. Each 

cut was made with a new razor blade, to eliminate the likelihood of contamination from the 

larger DNA fragments and smaller adaptor dimers on the blade surface. 

 

The section of the gel containing the library was then placed into a 2 mL LoBind 

microcentrifuge tube (Eppendorf, cat. no. 022431048) to perform a MinElute Gel Extraction 

(Qiagen, cat. no. 28604); sections weighing over 400 mg were split into two tubes. The 

remaining agarose was pieced together and imaged under UV in the GelDoc to confirm the 

process had correctly removed the section containing DNA library (Appendix B). 
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Figure 2.2: Illustration of size selection and gel extraction 
A) Expected RRBS library following large-scale library amplification. B) The lane containing a 1 kb 
ladder is cut from the gel and imaged under UV; distance to the 150 and 325bp bands is measured on a 
ruler. C) Lane containing RRBS library is cut from gel. The gel is cut at the distances measured from 
the ladder to excise solely the section of the gel containing RRBS library. 
 

2.2.7 Library preparation 

Isolated libraries were quantified with the Qubit 2.0 Fluorometer (Life Technologies) with the 

dsDNA HS Assay (Invitrogen, cat. no. Q32851), before being sent to Otago Genomics Facility 

(OGF) to be run through the 2100 Bioanalyzer. 

 

Several libraries required an additional round of size selection, when initial bioanalyzer traces 

indicated adaptor contamination. For this, AMPure XP Beads (New England BioLabs, cat. no. 

E6270) were used, following the manufacturer’s protocol to remove fragments under 100 bp. 
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Bead size selection does not lose as much of the DNA library as an additional gel extraction. 

These samples were run through the bioanalyzer again before continuing with sequencing. 

 

Libraries were diluted in Qiagen elution buffer 10 nM in 10 µL solutions for high-throughput 

sequencing on the Illumina HiSeq 2500 with single-ended 100 bp reads. Some libraries had a 

yield too low to prepare a 10 nM solution from, and so smaller quantities of DNA were 

submitted (as listed in Appendix C). 

 

2.3 Analysis of sequencing data 

The libraries produced in Section 2.2 were mapped to the human genome. The resulting 

alignments were used alongside additional RRBS libraries from ADPKD and non-ADPKD 

tissue previously generated in our laboratory, to analyse the methylome of ADPKD. Analysis 

was performed with DMAP programs [144] in command line and with RStudio functions. An 

outline of the protocol is detailed below, step-by-step examples of the programs are in 

Appendix D. 

 

2.3.1 Preparation of sequencing alignments 

Each file was trimmed using the program cleanadaptors (v 1.35), which trimmed the 5’ and 3’ 

ends of each fragment to remove residual adaptor sequence from being included in the 

subsequent analyses. Sequence quality was checked with fastqc (v 0.11.5), and the resulting 

file was opened in a web browser to check for features such as overrepresented sequences. 

Overrepresented sequences indicate that adaptor sequences are still present in the library and 

the file should be further trimmed with more stringent criteria. The switches -t and -T instruct 

the program how far to cut off the 5’ and 3’ end of the fragment, respectively, and -x rejects 

fragments which are less than 4 bp in length following trimming. 
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As the samples had been sequenced across multiple lanes, each sample had multiple files (i.e. 

three for each individual ADPKD cyst) which were merged together to create a single file per 

library. 

 

The fastq files were mapped to the human genome (GRCh37/hg19 construct) using bismark 

(v 0.16.1), which generates a bam file. 

 

A non-ADPKD reference genome was created from all three non-ADPKD libraries using 

samtools (v 1.3), which could be used to compare against all ADPKD cyst libraries. 

 
 

2.3.2 Analysis of RRBS data 

Text files of the methylation data were generated using diffmeth (v 1.75). In all cases, the 

following switches were used: -F 2 (requires every fragment to contain two or more CpGs) and 

-t 10 (each fragment must contain ten or more reads). Additionally, all fragments used in 

analyses were to be between 40 and 220 bp in length. 

 

Lists of all RRBS fragments in a sample were generated with the switch -L. ANOVA analysis 

between two groups (-R and -S) were performed with the switch -B. 

 

The files generated from diffmeth analysis were annotated with identgeneloc (v 0.15), which 

gave information about the location of the nearest protein-coding gene for each fragment. 
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2.3.3 Post-processing of RRBS data 

Once generated by DMAP programs, data was further analysed in RStudio. 

 

The lists of all RRBS fragments in each sample were compiled into one data frame, and the 

merge function was used to create a data frame of fragments common between all nineteen 

libraries. Pearson’s correlation coefficient (PCC) was calculated using this data frame to assess 

the similarities between samples. 

 

Global methylome analysis was performed with a Wilcoxon rank sum test for each library. 

Hyper- and hypomethylation trends were calculated between the median methylation values of 

the libraries. Violin plots were generated, which visually demonstrated trends across the whole 

genome. 

 

To identify the DMFs in ADPKD tissue, the p values calculated by ANOVA analysis in 

diffmeth were adjusted using False Discovery Rate (FDR) to account for multiple testing. The 

difference between non-ADPKD and ADPKD methylation was calculated and fragments with 

an absolute difference greater than 10% with an FDR-adjusted p value < 0.05 were identified 

as DMFs. 

 

Two methods of clustering were applied to the data sets. The first was unsupervised hierarchical 

clustering, which was performed on the common analysed fragments of all 19 RRBS libraries.  

 

The second clustering technical was  applied to only the common analysed fragments from the 

eight ADPKD cysts. This approach used the program ConsensusClusterPlus [145] to estimate 

the number of classes in an unsupervised dataset.   



 

 

43 

 

2.4 Gene expression 

The expression of ADPKD-associated gene PKD1 was investigated in ADPKD and non-

ADPKD tissue sources through qPCR. Additional qPCR was performed on the same samples 

for several of the DMF-associated genes (cDNA and analysis performed by me, qPCR of DMF 

genes performed by Michael Bates). 

 

2.4.1 cDNA generation 

cDNA was generated from total RNA extractions using High-Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, cat. no. 4368814), following the protocol without 

RNase inhibitor. 10 µL of total RNA (10 ng) from each sample was added to 10 µL of master 

mix (set up as in Table 2.9). The samples were incubated at 25 ºC for ten minute, 37 ºC for two 

hours and 85ºC for five minutes. 

Table 2.9: cDNA Reverse Transcription master mix 
10X RT Buffer 2.0 µL  
25X dNTP Mix (100 mM) 0.8 µL  
10X RT Random Primers 2.0 µL  
MultiScribe™ Reverse Transcriptase 1.0 µL  
MQ H2O 4.2 µL  
Total 10.0 µL  

 

2.4.2 Reference gene selection 

Four genes – B2M, EEF1A1, RPL27 and SRP14 – were selected as potential reference genes, 

as these have been used in previous studies of gene expression in ADPKD. Primers were 

prepared to 10 ng/µL (sequences in Appendix E) for qPCR with SYBR® Premix Ex Taq™ (Tli 

RNase H Plus) (Takara Bio, cat. no. RR420A). Reactions were performed in triplicate on a 

LightCycler480 system, the set up for a single reaction is in Table 2.10. 
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Table 2.10: qPCR reaction set up 
SYBR® Premix Ex Taq™ 5.0 µL  
PCR Forward Primer (10 µM) 0.2 µL  
PCR Reverse Primer (10 µM) 0.2 µL  
cDNA sample 1.0 µL  
MQ H2O 2.6 µL  
Total 10.0 µL  

 

The most suitable genes were required to show consistent expression across all the tissue 

samples, which was measured with the algorithm geNorm and reported as “M” and “CV” values 

in qbase+ [146, 147]. 

 

2.4.3 Quantification of PKD1 expression 

To calculate the relative expression of PKD1 in the tissue samples, qPCR was carried out in a 

96-well plate. Each sample underwent qPCR for two reference gene primer pairs and a primer 

pair that targets PKD1 (sequences in Supplementary Table E.1), all in triplicate and set up as 

per Section 2.4.2 on the LightCycler480. The Cq values were imported into qbase+, where the 

expression of PKD1 in each sample was normalised to geometric mean of the relative quantities 

of the two reference genes [146, 147]. 

 

2.4.4 Statistical significance 

In order to determine the statistical significance in PKD1 expression between ADPKD and non-

ADPKD samples, the p value was calculated by way of a non-parametric t-test. The 

Mann-Whitney U-Test was used between the two groups in Prism. 

 

2.4.5 miRNA expression 

The expression of miRNA within the PKD1 sequence was carried out using the TaqMan® 

systems, which has pre-designed probes to target mature miRNA in a sample. This protocol 
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includes the TaqMan® Advanced miRNA cDNA Synthesis (Applied Biosystems, cat. no. 

A28007), followed by the Advanced miRNA Assay (Applied Biosystems, cat. no. A25576). 

 

In this protocol, cDNA is produced from four consecutive reactions as outlined in the Advanced 

miRNA Assays User Guide. 10 ng of total RNA was used for cDNA synthesis.  The 

amplification of miRNA for qPCR analysis was performed on three target miRNA (Assay ID 

478639_mir, 479661_mir, 478303_mir) and the reference gene miR-191-5p (Assay ID 

477952_mir) with the TaqMan® Fast Advanced Master Mix as recommended by the 

manufacturer. 

 

miRNA data was analysed on qbase+ by normalising the Cq expression of the genes to the 

reference gene, and by performing the Mann-Whitney U-Test between sample groups (as in 

Section 2.4.4). 
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Reduced representation bisulfite sequencing (RRBS) libraries were created from two ADPKD 

samples as per the methodology in Section 2.2. These sequencing data were analysed with 

RRBS data from an additional two ADPKD and three non-ADPKD tissue samples (prepared 

by a previous Master’s student in our laboratory [140]). 

 

The purpose of this was to create data representative of the methylome of ADPKD and non-

ADPKD kidneys to elucidate the differences between the two groups and demonstrate key 

differences that occur in ADPKD. The methylome analyses presented in this chapter have since 

been published [148] and can be read in Appendix F. 

 

3.1 Source material 

3.1.1 Kidney tissue 

Samples from one of the ADPKD kidneys used in this analysis (ADPKD D) were collected 

immediately following nephrectomy. This kidney weighed 1,164 g, and morphology was 

difficult to distinguish due to the presence of numerous cysts throughout the kidney (Fig. 3.1). 

It was noted that the centre of the kidney appeared to contain a large volume of adipose tissue, 

approximately where the medulla may be located. 

  

Chapter 3: Analysis of the ADPKD kidney 

methylome 
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Multiple sections of tissue were collected from this kidney, and two sections were used in this 

analysis to provide biological and technical replicates (eventually to be called samples ADPKD 

D I, II and III). The second sample of ADPKD tissue prepared in this study (ADPKD 05) was 

donated in 2005 and had been stored at -80 ºC. All samples used in this analysis are summarised 

in Table 3.1. 

 

 

Figure 3.1: ADPKD kidney following nephrectomy 
The left kidney from patient ADPKD D (1,164 g) was dissected for collection of whole tissue ADPKD 
samples. A) Large fluid-filled cysts characteristic of ADPKD are throughout the entire kidney. B) The 
kidney, opened along the coronal plane, is filled with cysts. A large deposit of what appears to be adipose 
tissue is found within the centre. (1 = ADPKD cyst, 2 = adipose deposit). 
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Table 3.1: Sample summary 
Tissue was sourced from three non-ADPKD patients (blue) and six ADPKD patients (red). Of the 
ADPKD samples, biological replicates were generated from repeat analyses of patient ADPKD D, and 
one pair of technical replicates was prepared from this same patient. Cell lines originally isolated from 
the same patient were also biological replicates. qPCR analyses were performed with tissue samples 
from three non-ADPKD patients and five ADPKD patients (whole tissue only). Patient ADPKD W 
tissue was only used for qPCR (not RRBS). 

Patient Tissue type Biological and technical 
replicate origin 

Sample ID RRBS 
Input 

qPCR 
Input 

Non-ADPKD E Fresh-frozen   Non-ADPKD E 2.5 µg 10 ng 
Non-ADPKD G Fresh-frozen   Non-ADPKD G 2.5 µg 10 ng 
Non-ADPKD H Fresh-frozen   Non-ADPKD H 2.5 µg 10 ng 

ADPKD 05 Fresh-frozen   ADPKD 05 0.5 µg 10 ng 
ADPKD 07 Fresh-frozen   ADPKD 07 2.5 µg 10 ng 
ADPKD 08 Fresh-frozen   ADPKD 08 2.5 µg 10 ng 

ADPKD D 

Fresh-frozen Left 
kidney 

Tissue Sample 1 ADPKD D I 0.5 µg 
10 ng 

Tissue Sample 2 
ADPKD D II 0.5 µg 
ADPKD D III 0.5 µg 

Formalin 
Right 
kidney 

 Cyst 1 0.5 µg - 
 Cyst 2 0.5 µg - 
 Cyst 3 0.5 µg - 
 Cyst 4 0.5 µg - 
 Cyst 5 0.5 µg - 
 Cyst 6 0.5 µg - 
 Cyst 7 0.5 µg - 
 Cyst 8 0.5 µg - 

ADPKD W Formalin   ADPKD W - 10 ng 

WT 9 Cell line 
Proximal tubule WT 9-7 2.5 µg - 

Proximal and distal tubule WT 9-12 2.5 µg - 
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3.1.2 Generation of RRBS libraries 

RRBS libraries were generated from small sections of kidney tissue (approximately 25 mg). It 

was noted that one section of ADPKD D tissue (which would generate sample ADPKD D I) 

was distinctly redder than the second ADPKD D sample, which appeared to be more fibrotic 

(and generated samples ADPKD D II and III, which were technical replicates of each other). 

Libraries were generated from 0.5 µg of DNA using the modified RRBS methodology in 

Section 2.2. 

 

3.1.3 Assessing the quality of data procured for this analysis 

Mapping and bisulfite conversion rates were calculated for the processed RRBS files to ensure 

they were of sufficient quality (Table 3.2). While all libraries had bisulfite conversion > 98%, 

only the ADPKD D sample with the highest coverage and mapping efficiency (ADPKD D III) 

was selected for further analysis in this section of the research project and will be referred to as 

‘ADPKD D’ in the remainder of this chapter. 

 

Table 3.2: Coverage and mapping efficiency of generated RRBS libraries 
Data on the sequencing alignment and efficiency generated as part of the Bismark alignment. 

 
Sequences 
analysed in 

total 

No. alignments 
with unique best 

hit 

Mapping 
efficiency 

Bisulfite 
conversion 

ADPKD D I 9.95E+06 4.75E+06 47.70% > 98% 
ADPKD D II 1.43E+07 7.26E+06 50.80% > 98% 
ADPKD D III 1.42E+07 7.70E+06 54.20% > 98% 

ADPKD 05 1.86E+07 1.01E+07 54.20% > 98% 
 

The sequences underwent quality control by FastQC analysis, which analyses each sequenced 

fragment and assigns a quality score based upon the ability to identify nucleobases at each 

position in a sequence. This is represented by a box and whisker plot (Fig. 3.2) which plots the 

median and interquartile range (IQR) of all analysed sequences at each position in the read. It 
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is expected that good quality sequences should have an IQR scoring above 28, which estimates 

accuracy of base-calling at 99.9%. Additionally, sequenced libraries with IQR scores falling 

below 20 (accuracy of base-calling ≤ 90%) should be trimmed to eliminate poor quality reads. 

 

The quality analysis of the RRBS libraries for ADPKD 05 and ADPKD D had sufficient quality 

scores and thus were suitable for further analyses. 

 

 

 

Figure 3.2: Quality score of RRBS library ADPKD 05 
The quality of RRBS fragments across the sequenced lengths is represented by a box and whisker plot. 
The above sample, ADPKD 05, is representative of the sequence quality observed in all of the RRBS 
libraries generated in this project. It is typically recommended that when the interquartile range is above 
28 (green), the sequencing data is of good quality, and then it drops below 20 (red) the sequences should 
be trimmed at this position in the read to eliminate poor quality. 
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3.1.4 Validation of the RRBS protocol for assessing the methylome of kidney tissue 

Pearson’s correlation coefficient (PCC) values were calculated between each pair in the RRBS 

analysis (Table 3.3). These measure how far the observed data lie from the line of perfect 

concordance. Therefore, the variation between libraries can be measured as 1 PCC. These data 

validate the accuracy of the RRBS protocol, and also provide insight into the relationship 

between methylomes of kidney tissue in different groups (Table 3.4). A definition of correlation 

for highly similar objects has been described as: < 0.90 as poor, 0.90-0.95 as moderate, 

0.95-0.99 as substantial and > 0.99 as almost perfect concordance [149]. 

 

Table 3.3: Pearson’s correlation coefficients between pairs of RRBS libraries 
Libraries 05, 07, 08, D I, D II and D III are ADPKD samples, while E, G and H are non-ADPKD tissue. 
All pairs p < 2.2E-16. 

 

Technical replicates (ADPKD D II and III) were the most closely related (PCC = 0.993) in this 

group, which supports the validity of the RRBS methodology to accurately replicate the 

methylome of kidney tissue as the concordance is “almost perfect”. 

 

 

 

 05 07 08 D I D II D III E G 

07 0.989        

08 0.990 0.990       

D I 0.969 0.976 0.965      

D II 0.982 0.982 0.981 0.973     

D III 0.982 0.982 0.981 0.972 0.993    

E 0.972 0.976 0.977 0.953 0.982 0.982   

G 0.967 0.971 0.972 0.945 0.976 0.977 0.989  

H 0.977 0.982 0.984 0.955 0.980 0.980 0.987 0.985 
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Table 3.4: Mean PCC between experimental variables 
Mean PCC values calculated from data available in Table 3.3. 

 Mean PCC 
Technical Replicates 

Samples prepared from the same DNA extraction 0.993 

Biological Replicates 
Samples from the same patient; different DNA extractions 0.972 

Unrelated ADPKD 
Samples from unrelated ADPKD patient libraries 

0.982 

ADPKD v Non-ADPKD 
Comparisons between ADPKD and non-ADPKD libraries 0.973 

Unrelated Non-ADPKD 
Samples from unrelated non-ADPKD libraries 0.987 

 

3.2 Methylation in kidney tissue 

3.2.1 The global methylome in kidney tissue 

There were 345,711 fragments shared between ADPKD (n = 4) and non-ADPKD (n = 3) groups 

which satisfied the criteria of containing at least two CpGs and a read depth of at least ten at 

each fragment site. The coverage from each individual RRBS library is in Table 3.5. These 

fragments also had to be present in at least two of the ADPKD and two of the non-ADPKD 

libraries. This group of fragments was termed the analysed fragments, which covered 1,791,585 

CpG sites.  

Table 3.5: Coverage of RRBS libraries 
Fragments were required contain two or more CpGs with a read depth of 10 or higher, and to be in at 
least two non-ADPKD and two ADPKD samples in order to be included in analysed fragments pool. 

 Fragments analysed CpGs covered 
Non-ADPKD E 342,174 1,772,557 
Non-ADPKD G 313,924 1,619,926 
Non-ADPKD H 342,028 1,768,358 

ADPKD 05 250,407 1,353,018 
ADPKD 07 341,981 1,757,350 
ADPKD 08 340,723 1,762,144 
ADPKD D 170,346 957,481 

Total analysis 345,711 1,791,585 
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Total methylation within each of the whole tissue libraries is illustrated in Fig. 3.3. It is noted 

that the ADPKD D library has a significantly lower coverage and median methylation. The 

comparison between the ADPKD and non-ADPKD groups is plotted in Fig. 3.4. 
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Figure 3.3: Global methylome of RRBS libraries 
The total sequenced methylome of each whole tissue RRBS library (n listed in Table 3.5). Median values 
(represented by the black bar on each violin plot) are on average lower in the ADPKD (red) samples 
compared to non-ADPKD (blue). The methylation values from the non-ADPKD (blue) and ADPKD 
(red) libraries are plotted where the median value is represented by the white dot. The distribution of 
methylation values are represented by the shape and area of the violin plot. Sample ADPKD D has less 
coverage of highly methylated fragments, as the kernel density in the area between 0.8 and 1.0 
methylation is not as wide as the other samples. 
 

 

Figure 3.4: Total methylation within genomic elements of ADPKD and non-ADPKD tissue  
The methylation beta values extend from 0 (no methylation in a fragment) to 1 (all CpGs are methylated 
in a fragment). The methylation values from the non-ADPKD (blue) and ADPKD (red) libraries are 
plotted where the median value is represented by the white dot. The distribution of methylation values 
are represented by the shape and area of the violin plot. n(Genome-Wide) = 345,711). 
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The median methylation value of the ADPKD tissue group was 0.56, whilst the non-ADPKD 

tissue group had a median methylation score of 0.58. This demonstrates a small but statistically 

significant trend of hypomethylation in ADPKD tissue (p < 2.2E-06, Wilcoxon rank sum test). 

Because sample ADPKD D had a significantly lower median, the global median of the other 

three ADPKD libraries was plotted to check that this library had not created a bias in the 

analysis. The global median value of methylation of libraries ADPKD 05, 07 and 08 was also 

0.56 (Supplementary Fig. G.1).  

 

The violin plot of genomic elements (Fig. 3.4) indicates a small amount of global 

hypomethylation in the intron, exon and intergenic fragments, as well as the same trend of 

global hypomethylation seen in Fig. 3.3 (Wilcoxon rank sum test p < 2.2E-16, Table 3.6). 

 

Table 3.6: Significance of differences in methylation seen in ADPKD tissue 
Median difference is calculated as methylation of non-ADPKD tissue subtracted from ADPKD tissue; 
negative values indicate hypomethylation of ADPKD. The significance was assessed with a Wilcoxon 
rank sum test (W). 

 Median difference W p 
Genome-wide -0.0214 6.3755E+10 < 2.2E-16 

Promoter -0.0102 2.9147E+9 < 2.2E-16 
Intron -0.0217 9.0363E+9 < 2.2E-16 
Exon -0.0317 5.9062E+8 < 2.2E-16 

Intron/Exon -0.0029 1.3295E+8 < 2.2E-16 
Intergenic -0.0199 9.293E+09 < 2.2E-16 
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3.2.2 Differentially methylated fragments in ADPKD tissue 

Of the 345,711 analysed fragments in the whole tissue analysis, a total of 13 differentially 

methylated fragments (DMFs) were identified (Fig. 3.5). These were distinguished using the 

criteria set out in Chapter 2 (difference in methylation between ADPKD and non-ADPKD ≥ 10% 

and an FDR-adjusted p value < 0.05). 
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Figure 3.5: Methylation of non-ADKPD and ADPKD tissue at DMFs 
DMFs (pages 58, 59) were calculated from ANOVA analysis and have a difference in methylation > 10% 
and FDR-adjusted p value < 0.05. Bars show mean value ± SD, FDR-adjusted p values: * = p < 0.05, 
** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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There was an enrichment of DMFs within intergenic regions and intron regions (Fig. 3.6), 

although due to the low number of total DMFs this limits the significance of any observed 

trends. 

 

 

Figure 3.6: Distribution of genomic elements in DMFs 
A) Distribution of elements in analysed fragments (n = 345,711). B) Distribution of elements in 
identified DMFs (n = 13).   
 

Eight of these DMFs demonstrated hypomethylation in ADPKD, with a difference in 

methylation ranging from 0.10-0.43 between the two groups (Table 3.7). Two of these 

hypermethylated fragments were located within the gene body of protein coding genes. Two 

fragments were located between 5 kb upstream and1 kb downstream from the transcription start 

site (TSS) of a protein coding gene, and therefore are classed as being located within the 

promoter regions. The remaining four fragments were further than 5 kb from a protein coding 

gene and therefore are considered intergenic. 
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Table 3.7: Differentially methylated fragments which show hypomethylation in ADPKD 
Fragments are identified by their location within the chromosome and the nearest protein-coding gene. 
The difference in methylation is calculated by subtracting the methylation score of non-ADPKD from 
that of ADPKD. The relationship to TSS refers to the distance between the fragment location and the 
transcription start site of the nearest protein-coding gene.  

 

The genes associated with the hypomethylated DMFs are as follows: Complexin-1 (CPLX1), 

Diacylglycerol Lipase Beta (DAGLB), KDEL Endoplasmic Reticulum Protein Retention 

Receptor 2 (KDELR2), Family With Sequence Similarity 102 Member A (FAM102A), Calcium 

Release Activated Channel Regulator 2A (EFCAB4B), N-Acetyl-Alpha-Glucosaminidase 

(NAGLU), Adenomatosis Polyposis Coli Down-Regulated 1 (APCDD1), Polypyrimidine Tract 

Binding Protein 1 (PTBP1) and Zinc Finger Protein 343 (ZNF343). 

  

Chromosome 
coordinates: 

Difference in 
Methylation: 

Nearest protein-
coding gene: Relationship to TSS: 

4:793929 - 794143 -0.1786 CPLX1 Within intron 2 

7:6511106 - 6511153 -0.1000 DAGLB/KDELR2 Within an intron of the 
gene body 

9:130768316 - 
130768366 -0.4308 FAM102A ~26 kb upstream 

12:3862528 - 3862582 -0.1664 EFCAB4B 
(CRACR2A) Within promoter 

17:40683608 - 
40683711 -0.2329 NAGLU Within promoter 

flank; 4.2 kb upstream 

18:10271529 - 
10271568 -0.2000 APCDD1 ~183 kb upstream 

19:789109 - 789181 -0.3608 PTBP1 ~8 kb upstream 

20:2513933 - 2513980 -0.2333 ZNF343 ~9 kb upstream 
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There were five hypermethylated DMFs, with a difference of 0.19-1.00 (Table 3.8). Four of 

these are situated within the gene body of their respective genes, and one is intergenic. 

Table 3.8: Differentially methylated fragments which show hypermethylation in ADPKD 
Fragments are identified by their location within the chromosome and the nearest protein-coding gene. 
The difference in methylation is calculated by subtracting the methylation score of non-ADPKD from 
that of ADPKD. The relationship to TSS refers to the distance between the fragment location and the 
transcription start site of the nearest protein-coding gene.  

 

These genes associated with the hypomethylated DMFs are: Transmembrane Protein 18 

(TMEM18), Golgi To ER Traffic Protein 4 (GET4), KDEL Endoplasmic Reticulum Protein 

Retention Receptor 2 (KDELR2), DNA Cross-Link Repair 1C (DCLRE1C) and 

Transmembrane Serine Protease 6 (TMPRSS6). 

 

As the function of these fragments is not limited to the nearest protein coding gene, in silico 

analysis was performed with GenHancer [150] to predict if they play a regulatory role, 

potentially to genes not located linearly across the genome (Table 3.9). Five of the DMFs were 

predicted to contain an enhancer element. 

 

  

Chromosome 
coordinates: 

Difference in 
Methylation: 

Nearest protein-
coding gene: Relationship to TSS: 

2:771624 - 771728 0.3425 TMEM18 ~94 kb upstream 

7:922176 - 922249 0.5226 GET4 Within intron 9 

7:6495310 - 6495378 0.2208 KDELR2 Within an intron of the 
gene body 

10:14979087 - 
14979136 1.0000 DCLRE1C Within an intron of the 

gene body 

22:37499386 - 
37499523 0.1810 TMPRSS6 Spanning intron 1 and 

exon 2 
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Table 3.9: Predicted regulatory roles of DMFs 
DMFs were analysed to identify any associated enhancer elements (GenHancer). DMFs below 
contained at least one regulatory element. 

 

3.3 Expression of DMF-associated genes in ADPKD 

Eight of the DMFs found in this study were investigated with qPCR for gene expression 

analysis in ADPKD tissue isolated from five individuals (Table 3.1). Both NAGLU and GET4 

demonstrated significant differential expression between ADPKD and non-ADPKD tissue 

samples (Fig. 3.7). 

 

Figure 3.7: Expression of DMF-associated genes NAGLU and GET4 
Change in expression (Δ) was reported from qPCR data, using reference genes B2M and EEF1A1. Both 
genes had a statistically significant reduction in ADPKD (p = 0.0357, Mann-Whitney U Test). Bars 
indicate mean expression values ± SD. 
 

Chromosome coordinates: Closest Protein-
Coding Gene: 

Differential 
Methylation: Predicted Enhancer: 

7:922176 - 922249 GET4 0.5226 PRKAR1B, DNAAF5 

9:130768316 - 130768366 FAM102A -0.4308 LOC101929314,  FAM102A,  
PIP5KL1 

12:3862528 – 3862582 EFCAB4B -0.1664 CRACR2A, TULP3 

17:40683608 – 40683711 NAGLU -0.2329 TUBG2, NAGLU, RABC5C, 
HSD17B1, MLX, BECN1 

19:789109 - 789181 PTBP1 -0.3608 CFD 
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Correlation studies between gene expression and DMF methylation values did not show a 

statistically significant correlation in NAGLU and the DMF (17:40683608 – 40683711), 

however they did identify a strong correlation between the expression of GET4 and the 

methylation of the DMF (7:922176 – 922249) (Fig. 3.8). 

 

 
Figure 3.8: Correlation of DMF methylation and gene expression 
Spearman’s rank correlation was used to determine the correlation between the methylation and 
expression of DMF-associated genes NAGLU and GET4 in ADPKD (red) and non-ADPKD (blue) 
kidney tissue. This association was statistically significant in GET4.  
 

3.4 PKD1 in ADPKD tissue 

PKD1 is the gene most attributable to ADPKD. Previous investigations of PKD1 have 

identified both increased and decreased expression of the gene to be associated with ADPKD, 

and published methylation analysis has identified the correlation between hypermethylation of 

the PKD1 gene body and our reduction of PKD1 expression. We decided to investigate this 

within our samples of kidney tissue, using fragments associated with PKD1 in the RRBS data. 

 

3.4.1 Methylation surrounding the ADPKD-associated gene PKD1 

There were 52 fragments in the analysed fragment group that were associated with PKD1, 

spanning a 31,060 bp region (Fig. 3.9A). None of these fragments were classified as DMFs, as 
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although there were some differences in methylation between the two groups, the p value 

calculated to account for multiple comparisons was greater than 0.05. 

 

The 11 fragments at the 3’ end of PKD1 (spanning 16:2164268-2170942) demonstrated a 

difference in methylation between 0.02-0.12 in the two tissue groups is visible as a different 

pattern of methylation on the histogram (Fig 3.9B). Additionally, the methylation of ADPKD 

samples varied greatly, lowering the power and therefore the ability to identify this region as 

being statistically differentially methylated. Another irregularity between the samples was a 

fragment in this middle of the analysed PKD1 region, for which the non-ADPKD methylation 

value is much lower. 

 

 

Figure 3.9: Coverage of PKD1 with RRBS fragments 
A) There were 52 fragments analysed between the two tissue groups. The fragments cover a 31 kb region 
from intron 1 to exon 46. B) The median methylation score at each fragment in ADPKD (red) and non-
ADPKD (blue) groups. Methylation between the two disease states is largely consistent. There is a small 
amount of hypermethylation at the 3’ end of the gene, and an additional point of differential methylation 
at 16:2147611-2147671 as indicated by green arrows. 
 

3.4.2 Expression of PKD1 in ADPKD 

In order to assess if these modest methylation differences between ADPKD and non-ADPKD 

tissue translate into functional differences in the expression of the disease-related gene PKD1, 

qPCR was performed on cDNA derived from samples of fresh-frozen kidney tissue.  

A 

B 
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The three non-ADPKD tissues were used as a reference on which to normalise the data from 

five ADPKD samples, which included tissue samples from the four patients in the above RRBS 

analysis, as well as a sample from an additional ADPKD patient. 

 

The expression of PKD1 was tightly regulated in non-ADPKD tissue, with all samples yielding 

very similar Cq values. However, in ADPKD samples, the expression of PKD1 varied widely 

between samples. Overall there was a 0.504 increase in ADPKD tissue (p = 0.036) when 

compared with non-ADPKD tissue (Fig. 3.10). Of the ten RRBS fragments located within 

PKD1 with a nominal p < 0.05, the methylation of five showed correlation with PKD1 gene 

expression (Supplementary Table H.1) 

 

Figure 3.10: Expression of PKD1 
The change in PKD1 expression (Δ) is reported relative to the reference genes B2M and EEF1A1. PKD1 
had a statistically significant reduction in ADPKD patients (p = 0.0357, Mann-Whitney U Test). Bars 
indicate mean expression values ± SD. 
 

3.5 miRNA in ADPKD 

There are three microRNA within the promoter and gene body of PKD1: miR-1225, miR-3180 

and miR-4516. Because miRNAs are involved in the post-translational regulation of gene 

expression, the miRNA within PKD1 were selected for qPCR analysis to determine if the 
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expression of these genes were altered in ADPKD tissue. Five ADPKD tissue samples and three 

non-ADPKD samples were analysed, using the TaqMan Advanced miRNA Assay kit as per 

Section 2.4.5, with expression normalised to the reference gene miR-191-5p. 

 

The analysis of these miRNA indicated that both miR-1225 and miR-3180 have very little 

expression in the kidney, and there is no evidence that the expression is altered in ADPKD. 

Preliminary analysis of miR-4516, however, demonstrates varied expression in ADPKD 

(Fig. 3.11). 

 

Figure 3.11: Expression of miR-4516 
Change in relative expression (Δ) between ADPKD and non-ADPKD tissue was reported from qPCR 
data, using reference gene miR-191-5p. There was no significant change in expression in ADPKD. 
 

Two of the ADPKD samples (ADPKD 07, D) had reduced levels of miR-4516 expression, 

however the other three ADPKD samples had similar (ADPKD W) or increased (ADPKD 05, 

08) expression.
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The defining feature of ADPKD is the number of cysts that develop within the kidneys. It is 

hypothesized that these all arise from individual molecular events. To investigate whether 

changes seen in the ADPKD kidney are universal within unique ADPKD cysts, the methylome 

of ADPKD cysts were analysed. Reduced representation bisulfite sequencing (RRBS) libraries 

were generated from the walls of unique cysts from a nephrectomized ADPKD kidney. 

 

4.1 Source material 

4.1.1 ADPKD cell lines 

Cell lines WT 9-7 and WT 9-12 were grown from passage 16 and 25, respectively. They were 

cultured on collagen coated plates as per the protocol in section 2 for 10 days. WT 9-12 was 

noted to be slightly more confluent than WT 9-7, but both cell cultures were polygonal in 

appearance, which is typical of kidney epithelia [151] (Fig. 4.1).  

  

Chapter 4: Analysis of the methylome of individual 

ADPKD cysts 
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Figure 4.1: Cultured immortalised ADPKD cells 
WT 9-7 (A) and WT 9-12 (B) were grown on collagen coated plates for ten days. WT 9-12 was observed 
to be more proliferative than WT 9-7. 
 

4.1.2 Isolated ADPKD cyst walls 

Sections of cyst walls were collected from the right kidney of patient “ADPKD D”. This 1,184 g 

kidney had been preserved in neutral buffered formalin (NBF) for one week prior to dissection. 

Although the colour of tissue changes following formalin preservation, it appeared to contain 

adipose tissue within the centre of the kidney (much like the adipose tissue observed in the left 

kidney in Chapter 3). Because of the manner in which the kidney had been removed, spatial 

proximity of cyst samples was not recorded. 

 

4.1.3 Generation of RRBS libraries 

Because cyst wall samples were so small, very low quantities of DNA were eluted from the 

samples, and thus libraries were generated from 0.5 µg of DNA. During library preparation 

many of these samples had high amounts of adaptor contamination (Fig. 4.2) for which they 

required an additional round of size selection with bead purification. Ten cyst walls were 

prepared for analysis but only eight of these had sufficient DNA quantity for further sequencing. 
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Figure 4.2: Bioanalyzer trace before and after adaptor clean up 
(A) ADPKD Cyst 3 had adaptor contamination (peak at 129 bp as identified with arrow). The RRBS 
library is between 178- 323 bp with the highest peak at 199 bp. (B) The adaptor contamination of the 
Cyst 3 RRBS library was reduced following bead purification. 
 

The mapping, bisulfite conversion and quality scores of the RRBS libraries produced from the 

cyst samples were comparable to those produced from whole tissue samples that had been 

produced from the 0.5 µg DNA RRBS protocol. These samples all had lower genome coverage 

and mapping efficiency than those prepared with 2.5 µg of DNA (Table 4.1).  

  

A 

 

B 
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Table 4.1: Genome coverage and efficiency of RRBS libraries 
Seven of the libraries were prepared with previously published RRBS protocol requiring 2.5 µg of input 
DNA. The remaining 12 libraries were prepared with the modified 0.5 µg protocol. Libraries prepared 
with the 2.5 µg protocol had greater coverage of the genome and higher mapping efficiencies. 

DNA input 
(µg): Sample: 

Sequences 
analysed in 

total: 

No. of alignments with 
a unique best hit from 

the different 
alignments: 

Mapping 
efficiency: 

Total number 
of C's 

analysed: 

 

2.5 

WT 9-7 3.75E+07 2.40E+07 63.90% 5.03E+08 

C
el

l 

WT 9-12 2.83E+07 1.80E+07 63.60% 3.66E+08 

Non-ADPKD E 4.25E+07 2.59E+07 61.00% 5.50E+08 

Fr
oz

en
 

Non-ADPKD G 3.50E+07 2.34E+07 67.00% 4.92E+08 

Non-ADPKD H 4.15E+07 2.83E+07 68.30% 5.93E+08 

ADPKD 07 4.69E+07 3.13E+07 66.70% 6.38E+08 

ADPKD 08 5.72E+07 3.78E+07 66.20% 8.06E+08 

0.5 

ADPKD 05 1.86E+07 1.01E+07 54.20% 2.01E+08 

ADPKD D I 9.95E+06 4.75E+06 47.70% 6.88E+07 

ADPKD D II 1.43E+07 7.26E+06 50.80% 1.31E+08 

ADPKD D III 1.42E+07 7.70E+06 54.20% 1.37E+08 

Cyst 1 2.85E+07 1.44E+07 50.60% 2.76E+08 

Fo
rm

al
in

 fi
xe

d 
Cyst 2 3.25E+07 1.71E+07 52.50% 3.11E+08 

Cyst 3 2.11E+07 1.14E+07 54.20% 2.31E+08 

Cyst 4 8.93E+06 4.65E+06 52.00% 5.78E+07 

Cyst 5 1.93E+07 8.20E+06 42.50% 1.57E+08 

Cyst 6 3.88E+07 1.88E+07 48.40% 3.52E+08 

Cyst 7 2.84E+07 1.11E+07 39.10% 1.97E+08 

Cyst 8 1.43E+07 6.15E+06 43.00% 1.07E+08 

 Median 2.84E+07 1.44E+07 54.20% 2.76E+08 
 

 2.5 µg Median 4.15E+07 2.59E+07 66.20% 5.50E+08 
 

 0.5 µg Median 1.89E+07 9.12E+06 50.70% 1.77E+08 
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4.1.4 Concordance of sequencing data 

This analysis created RRBS libraries from three DNA sources: fresh-frozen tissue, formalin-

fixed tissue and immortalised cell lines. Because these tissues undergo different chemical 

processes which have the potential to alter epigenetic tags and affect the quality of DNA, it is 

important to check that the sequencing data is concordant. To do this, the correlation 

coefficients between the libraries were calculated for the cell lines (Table 4.2) and cysts 

(Table 4.3), as visualised in Fig. 4.3. 

 

Table 4.2: PCC of cell line RRBS libraries 
Mean PCC are calculated from individual paired correlation values; full table in Appendix H. 

 WT 9-7 WT 9-12 

ADPKD Tissue 
ADPKD 05, 07, 08, D I, D II, D III 0.944 0.890 

Non-ADPKD Tissue 
Non-ADPKD E, G, H 0.954 0.891 

Cell Lines 
Correlation between two cell lines 0.935 

 

Table 4.3: PCC between various ADPKD libraries 
Mean PCC are calculated from individual paired correlation values; heatmap of data in Fig. 4.3. 

 Mean PCC value 

ADPKD Tissue 
ADPKD 05, 07, 08, D I-III 0.980 

Biological Replicates 
ADPKD D I-III 0.979 

ADPKD Cysts 
All analyses between Cysts 1-8 0.987 

Non-ADPKD Tissue 
Non-ADPKD E, G, H 0.987 

 

The cell lines show a low correlation with tissue samples (both ADPKD and non-ADPKD 

kidney). Additionally, there was low correlation between the two libraries despite these being 
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biological replicates (cell lines derived from the same patient). These data indicated that 

immortalised cell lines would not be suitable for this research as they did not resemble kidney 

tissue. The formalin-fixed samples had consistent correlation with ADPKD tissue and were 

considered to accurately represent ADPKD tissue. 
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Figure 4.3: Heatmap of correlation between RRBS libraries 
PCC values plotted on a heat map to illustrate relative concordance. (A) All 19 RRBS libraries plotted. 
The immortalised cell lines had significantly lower concordance than any of the tissue-sourced libraries. 
(B) The RRBS libraries, excluding the cell lines. Correlation varied between samples, but non-ADPKD 
samples cluster together as they have the lowest concordance in this set of data. Data extracted from 
Supplementary Table H.1 and the ‘single’ method of clustering was used. 
 

A 

 

B 
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4.2 Clustering analysis 

4.2.1 Unsupervised hierarchical clustering of RRBS libraries 

Using the same pool of common analysed fragments which were used to calculate PCC 

(n = 38,139), unsupervised hierarchical clustering was performed on all libraries prepared in 

this research (Fig. 4.4). 

 

Figure 4.4: Unsupervised hierarchical clustering of all RRBS libraries 
Clustering was performed on all common analysed fragments between all 19 RRBS libraries 
(n = 36,824). Cell lines (grey) cluster independent of all tissue samples. There are varying degrees of 
relatedness between non-ADPKD (blue) and ADPKD (red) tissue. The biological replicates from patient 
ADPKD D (whole tissue and cyst) are a darker red, and cluster into two groups.  The ‘complete’ method 
of clustering was used. 
 

As expected, the cell lines WT 9-7 and WT 9-12 clustered independently and at the highest 

height in the analysis, confirming the dissimilarities between these and the kidney tissue 

libraries. 
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The non-ADPKD tissue samples E, G and H were clustered together, as were the whole tissue 

samples 05, 07 and 08. Samples from patient ADPKD D were seen to cluster into two distinct 

groups. The technical replicates ADPKD D II and III had clustered very closely together, 

confirming the precision of the RRBS analysis. They were within a cluster that contained four 

of the eight cyst samples (cysts 2, 3, 4 and 6). The other ADPKD D whole tissue sample was 

in a distinct cluster with the remaining cysts (1, 5, 7 and 8). 

 

Additionally, when hierarchical clustering was performed on solely the ADPKD cyst samples 

(based on common fragments between only these libraries) the same clustering pattern was seen 

(Fig. 4.5). 

 

Figure 4.5: Unsupervised hierarchical clustering of single cyst libraries 
Clustering was performed on common analysed fragments between all eight cysts (n = 39,805). The 
‘complete’ method of clustering was used. 
 

4.2.2 Consensus clustering of ADPKD cysts 

The individual ADPKD cyst libraries were analysed with the program ConsensusClusterPlus 

(Fig. 4.6), which is an algorithm that assists in defining the suitable cluster count in an 

unsupervised analysis [145]. 

 

0
5

10
15

Single ADPKD cysts

C
ys
t4

C
ys
t3

C
ys
t2

C
ys
t6

C
ys
t8

C
ys
t7

C
ys
t1

C
ys
t5



 

 

78 

Consensus matrices were produced for each k value (where k is the predetermined number of 

clusters). Under each cluster, the more strongly items cluster together, the higher the consensus 

is (illustrated by depth of blue). Plots k = 3 and k = 4 have the strongest consensus matrix, with 

no overlaps between the determined clusters. However, in k = 4, there is not as strong consensus 

between items in the same clusters, therefore k = 3 is the stronger candidate for accurate 

clustering. k = 6 also has strong consensus between clusters, but the member count of each 

matrix shown in this plot includes only one sample, therefore this is not an informative 

clustering strategy. 

 

The cumulative distribution function (CDF) plot displays the distribution of consensus for each 

k value. In this analysis, sample k = 3 indicates the maximum stability: k = 2 has a much lower 

CDF value, and k = 4, 5 and 6 demonstrate that further divisions are equivalent to random picks. 

 

The delta area graph shows the relative change in area under the CDF curve, illustrating the 

relative increase in consensus between clusters. In this plot, there is no appreciable increase in 

consensus after k = 4. 

 

The cumulation of this analysis shows that the data clusters well into three groups. While there 

is no appreciable increase in consensus after k = 4, the k = 4 consensus matrix shows that two 

of the clusters contain only one cyst, therefore this would not be an informative division of 

clustering. In fact, the tracking plot demonstrates that one of the clusters from k = 3, light green, 

splits into two clusters in k = 4 (pink and dark green).  
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Figure 4.6: ConsensusClusterPlus matrices 
The ConsensusClusterPlus algorithm visualises the consensus values between samples (between 0 and 
1). Consensus Matrices with clustering dendrograms are generated for each k value. k = 3 is the ‘cleanest’ 
consensus matrix (A) and demonstrates the most appropriate maximum stability on the CDF plot (B). k 
= 4 has the least increase in consensus (C) but as two of its clusters contain individual samples (D) it is 
not the most appropriate clustering value.  
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4.3 Global methylation in ADPKD cysts 

The cyst samples were derived from tissue from patient ADPKD. Previous comparison of the 

median methylation of whole tissue samples had identified that this patient’s genome was 

significantly hypomethylated compared to other samples in this analysis. The global 

methylation of each RRBS library used in the analysis of ADPKD tissue (excluding cell lines) 

was plotted (Fig. 4.7A). 

 

This shows samples ADPKD D I, II and III had a considerably lower median methylation than 

other whole tissue counterparts, and that the median was also lower in cyst samples, particularly 

cysts 4 and 8. However, when the global methylome of each sample was plotted based on only 

the common analysed fragments between the 17 libraries (n = 36,888), the median value of 

methylation was very similar across all samples (< 0.1) (Fig. 4.7B). This suggests that the 

proportion of genomic fragments analysed was different in these hypomethylated libraries. To 

investigate this, the proportion of genomic elements in each library were calculated (Fig. 4.8) 

and the methylation of genomic elements were also plotted (Fig. 4.9). 
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Figure 4.7: Global methylation of all RRBS libraries 
The median methylation of each library is marked by the bar, interquartile values are represented by the 
bars, whiskers extend to minimum and maximum values. A) The total number of sequenced fragments 
in each library, n ranges from 51,805 – 397,796. B) Global methylome of RRBS libraries, based only 
on fragments common in all 17 libraries. n = 36,888. 
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Figure 4.8: Proportion of genomic elements in RRBS libraries 
The non-ADPKD reference library, ADPKD D III and Cyst 4 libraries demonstrate that the libraries 
that demonstrate low global methylation values have a higher proportion of promoter-associated 
fragments. 
 

 

Figure 4.9: Methylation of genomic elements in RRBS libraries 
The non-ADPKD reference (blue), ADPKD D III and Cyst 4 libraries (red) were analysed at each 
genome feature. This demonstrates that the low methylation values are not due to the overrepresentation 
of promoter fragments (which are typically hypomethylated). 
 

From this it is apparent that while the hypomethylated libraries (i.e. ADPKD D, Cyst 4) have a 

higher proportion of promoter coverage, this is not (the sole) contributor of the hypomethylation 

pattern seen in the samples. Across all genomic elements, ADPKD samples had considerable 
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lower median methylation values (and therefore, the finding in Chapter 3 than ADPKD is 

globally hypomethylated is valid). 

 

When ADPKD cysts were paired to the (grouped) non-ADPKD methylome by common 

analysed fragments, global methylation patterns were plotted (Fig. 4.10). In five of these cysts, 

the median methylation is higher than that of the non-ADPKD group. This is in contrast to the 

previously generated data we have produced from whole tissue, which demonstrates 

hypomethylation in ADPKD. Of the remaining three cyst libraries, one demonstrates 

hypomethylation and the other two have median methylation equal to that of non-ADPKD. In 

seven of the eight cysts, however, the interquartile range in ADPKD trends lower than that of 

non-ADPKD. 

 

Figure 4.10: Global methylation of paired non-ADPKD and cyst RRBS libraries 
Cyst libraries (red) were paired against the non-ADPKD reference genome (blue), and the methylation 
values of only the common analysed fragments in each pair are plotted on the violin plot. Five of the 
cyst libraries (1, 5, 6, 7 and 8) are statistically hypermethylated, as the median value (represented by the 
black bar) is higher in the cyst library. 
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4.3.1 Methylation status of previously identified DMFs in cysts 

The specific DMFs identified within the whole ADPKD tissue were investigated in the cyst 

data by performing ANOVA analysis between the three non-ADPKD samples and eight cyst 

samples in order to provide consistent comparisons between the groups. Methylation scores 

were compared across three tissue types: non-ADPKD tissue, ADPKD whole tissue and 

ADPKD cysts. Of the 13 DMFs, 11 had coverage in at least two of the eight cysts; there was 

no coverage in the cysts at the CPLX1 and TMPRSS6-associated fragments. 

 

Eight of these fragments were determined to be significantly differentially methylated in the 

cysts (FDR-adjusted p < 0.05). The remaining three fragments (KDELR2, DCLRE1C and 

APCDD1-associated fragments) did not show the same difference in methylation as seen in 

whole tissue (Fig. 4.11). 
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Figure 4.11: Methylation of the whole tissue-identified DMFs in cyst libraries 
Statistical significance between non-ADPKD libraries and ADPKD cysts was carried out with ANOVA. 
Eight of the DMFs identified in ADPKD whole tissue (Section 3.2) were significantly differentially 
methylated in the group of individual ADPKD cysts. FDR-adjusted p values: * = p < 0.05, ** = p < 0.01, 
*** = p < 0.001, **** = p < 0.0001. 
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There are very few published data on DNA methylation in ADPKD. This study set out to 

identify the global methylation changes associated with ADPKD, and to identify changes within 

specific regions that may be involved in the disease. Additionally, it set out to determine if the 

analysis of whole tissue from ADKPD kidneys is able to interrogate the ADPKD methylome, 

or if unique changes occurred within individual ADPKD cysts that cannot be mapped by bulk 

analysis. 

 

5.1 Quality of data 

The RRBS libraries generated in this analysis demonstrated high Phred scores across the whole 

read lengths, which shows that the base calling was accurate, and that the methylation data 

observed was likely to accurately represent the methylome of the samples analysed. 

 

RRBS has the capacity to cover ~4 million CpG sites across 647,902 fragments [144, 152], 

however, historically in experimental protocols it is typical to yield approximately 340,000 or 

fewer fragments [153]. This is because the established statistical analysis techniques in our 

group require there to be coverage at least ten reads deep on fragments containing two or more 

CpG sites. While these techniques reduce the quantity of fragments available for analysis, it 

reduces the likelihood of sequencing errors. 

 

Bisulfite conversion was > 98% in the RRBS libraries, which is approximately the level 

expected based upon previous studies using this methodology [153] and indicates that the 

protocol was carried out successfully. The samples prepared from 0.5 µg of DNA had low 

Chapter 5: Discussion 
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mapping efficiencies (< 60%), which is lower than expected for libraries prepared with this 

protocol. This may have been due to the reduction in DNA input to the modified protocol. The 

PCR amplification process typically results in the overrepresentation of adaptor dimers [154] 

which need to be removed with additional bead amplification, and two of the ten cyst samples 

originally collected could not be sequenced due to low DNA concentrations after the final 

elution. A suspected reason for this is that the protocol in this study used PfuTurbo DNA 

Polymerase for PCR amplification of the library. The methodology has since been updated in 

our laboratory to replace Pfu with KAPA Polymerase, which has shown an increased efficiency 

of library amplification during the PCR stage of the protocol. The reason for this increased 

efficiency is unclear as both polymerases are designed for high-fidelity PCR.  

 

Another factor affecting the mapping efficiencies is the source material itself. The majority of 

samples with low mapping efficiencies and genome coverage were the individual cyst samples, 

which were very small sections of tissue dissected from neutral buffered formalin-fixed tissue. 

Formalin influences DNA solubility, resulting in lower yields of DNA than from fresh tissue 

[155]. It is also known to contribute to DNA fragmentation, resulting in a reduction in the 

quality of the yield [156, 157]. The kidney used for this collection had been treated in formalin 

for seven days prior to our access to the tissue, therefore the DNA was almost certainly 

degraded to some degree. 

 

5.2 The ability of RRBS to assess the methylome of kidney tissue 

RRBS is a reproducible and validated research technique for assessing the genome wide 

methylation of samples of DNA [152, 158-161]. The reliability of the methodology in this study 

was assessed using Pearson’s Correlation Coefficients (PCC) between each RRBS sample. As 
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the RRBS library coverage largely varied between samples, the PCC was calculated from the 

pool of common fragments, to avoid any biases due to sampling.  

 

Using parameters previously described [149], a PCC 0.95-0.99 suggests there is substantial 

concordance between the data, and PCC > 0.99 is almost perfect concordance. It is expected 

that technical replicates (ADPKD D II and III) should have a PCC approaching 0.99; this was 

seen in this study as the technical replicates had a 0.993 concordance value. This illustrates that 

the protocol and sequencing method was accurate in reporting the methylation of the tissue. 

 

Sample ADPKD D I was a biological replicate of the two above samples, as it was prepared 

from an independent tissue section from the same patient kidney. The PCC between biological 

replicates was 0.971 (comparison between I and II) and 0.970 (comparison between I and III). 

While still indicating a substantial level of concordance between the samples, the 3% variation 

in these samples shows there is some heterogeneity between different sections of the ADPKD 

kidney. Each tissue sample was selected from different sites from the kidney therefore the exact 

cellular makeup of each tissue section is likely to be different. 

 

Surprisingly, the biological replicates above have a slightly lower correlation than the 

correlation between unrelated ADPKD samples (mean PCC = 0.983). This may mean that 

ADPKD D I tissue has a different composition of cells compared to the other ADPKD tissue 

samples. However, this difference is still relatively small, as the methylomes still have 

substantial correlation, and additional biological replicates of the other ADPKD samples (if 

performed) may also show this variation. 
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The non-ADPKD samples are also closely related to each other, with a mean PCC between 

pairs 0f 0.987. The small amount of variance between samples is likely because each patient 

has their own unique methylation. An inter-individual study found a range of concordance 

between DNA methylation of individuals was between 0.93 and > 0.99, dependent on the tissue 

type (renal tissue was not reported) [162]. The non-ADPKD samples suggest that 

approximately 98% of the methylome is required for all kidney cells and remains invariant. 

 

It was noted that the immortalised cell lines originating from ADPKD single cysts (WT 9-7 and 

WT 9-12) displayed different methylation patterns than any of the kidney samples. According 

to the previously mentioned parameters [149], between 0.90 – 0.95 is moderate concordance, 

and PCC < 0.90 is poor concordance. Cell line WT 9-7 had a mean PCC of 0.937 and WT 9-12 

had a mean PCC of 0.882. While these cells are morphologically characteristic of epithelial 

cells (polygonal [163]) and characteristic of ADPKD [141], the immortalisation process may 

have altered the epigenetic makeup of the cells in order to evade senescence. There is 

experimental evidence to suggest that SV40 immortalisation of the cell lines means they cannot 

be relied upon to show methylation changes [164], and DNA methylation progressively changes 

with increased passages [165, 166]. Investigation of paired primary cells from primary and 

metastatic tumours shows no change in global methylation profiles [159], suggesting the 

biggest factor in the observed discrepancy in our data is immortalisation. 

 

Additionally, there was a discrepancy between the two cell lines themselves. As they were from 

the same patient, they may be expected to have a high level of similarity, however, the 

concordance between the two cells is 0.951. The origin of the cells may contribute to global 

methylation differences between the samples; the cell line WT 9-7 has been characterised as 

originating from a proximal tubule, while WT 9-12 expresses markers for both proximal and 
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distal tubules [141]. Another possibility is that the immortalisation process has caused the 

methylomes of these replicating cell lines to be dysregulated, or the number of passages the 

cells have undergone prior to arriving in our laboratory may have contributed to changes in 

DNA methylation. While the exact cause is unclear, it does show that the cell lines no longer 

accurately portray the in vivo ADPKD methylome. 

 

The ADPKD single cyst RRBS data were highly concordant with each other (mean 

PCC = 0.987). The cysts were biological replicates of each other, and biological replicates for 

the whole tissue samples ADPKD D I, II and III. The concordance between the cysts was higher 

than the concordance between the whole tissue biological replicates (mean PCC = 0.978). As 

alluded to above, the whole tissue samples are comprised of many cell types, and likely multiple 

cysts. The cell types of the kidney comprise of nephrogenic cells (renal tubules are formed of 

epithelial cells) [167] and the stroma, which includes fibroblasts and smooth muscle [168]. The 

individual cyst samples, however, were dissected with the aim of reducing the heterogeneity of 

the samples, both by reducing the number of cysts in each sample, and by reducing the 

proportion of stromal cells. Therefore, it could be concluded that the individual cyst samples 

better represent cystic ADPKD kidney tissue.  

 

5.3 Hierarchical clustering 

Hierarchical clustering (Fig. 4.4) of the common analysed fragments of all 19 libraries 

concurred with the correlation and variation values seen above. The immortalised cell lines 

WT 9-7 and WT 9-12 clustered the furthest away from all other RRBS libraries. As this cluster 

was so dissimilar to the remaining tissue samples, this supported the exclusion of immortalised 

cell line data from the methylation analysis. 
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The non-ADPKD tissue clustered separately from the ADPKD samples, demonstrating a 

difference in methylation based upon phenotype. The whole tissue samples 05, 07 and 08 were 

in one cluster, and the samples from patient ADPKD D (three whole tissue samples and eight 

individual cysts) were split into two clusters.  

 

Technical replicates clustered tightly together, along with four of the cyst samples. The 

remaining whole tissue sample and four cysts were in an independent cluster. This suggests that 

there is some level of heterogeneity within patient ADPKD D to cause the splitting of clusters. 

One possible explanation for this is that these samples – particularly the individual cell lines – 

come from cysts that have originated from different cell types. It is known that cysts can arise 

from any region of the nephron [5], so it is possible that the characteristics of the originating 

tubule are preserved in the methylome.  

 

However, there are no data on the precise origin of each sample (due to the distorted nature of 

the ADPKD kidney and limited amount of tissue for immunohistochemistry staining), and there 

are lots of variables in the collection of cystic tissue (such as cyst size) so this hypothesis cannot 

be followed up in the present tissue. Furthermore, tubule origin is unlikely to contribute to the 

difference seen between whole tissue samples, as each tissue sample likely contained a more 

than one cyst which may have originated from different regions of the nephron.  

 

The deviation of methylation patterns in the clustering analyses could alternatively indicate 

independent pathways of DNA that might relate to the somatic mutation or change that initiated 

cyst formation. Previous data on prostate cancer has used DNA methylation alongside copy 

number data to map the unique clonal evolution pathway of tumours [169]. A similar analysis 

of intra-individual variation could be applied to the cyst data to investigate this. Animal models 
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provide a tempting method of investigating cystic clonal development and intra individual 

variation, however the discrepancies of gene dosage in these models (Table 1.1) and differences 

between PKD1 and Pkd1 sequences indicate that this data may not accurately reflect human 

ADPKD mechanisms. 

 

5.4 DNA methylation analysis of whole ADPKD tissue samples 

5.4.1 Methylome-wide sequencing in ADPKD tissue 

The median methylation values of fragments in the libraries ADPKD 05 and D were 

significantly lower than the other ADPKD and non-ADPKD libraries, with reduced lower 

quartile methylation values. It was unclear if this was a biological feature of the two ADPKD 

libraries, or if there was an underlying methodology difference. These two whole tissue samples 

were generated by myself using the low-DNA input methodology, while the other five whole 

tissue samples were generated by Michael Bates with five times the amount of starting material. 

The data was exhibited across a variety of genomic factors, such as genomic elements and CpG 

island features (Appendix G), which revealed the difference in median methylation was 

consistent across investigated regions.  

 

Additionally, when all the kidney tissue libraries were compared at only the common analysed 

fragments (n = 36,824; Fig. 4.7), all libraries now had a much lower and similar median 

methylation value, in line with the least methylated library (Cyst 4). This suggests that the 

lower-coverage libraries had a bias to generate sequences for unmethylated (or low methylated) 

fragments. As Supplementary Fig. G.1 shows, the reduced median methylation of ADPKD D 

tissue did not influence the overall global hypomethylation pattern seen in ADPKD, as this 

library simply did not have the higher methylated fragments. As such these data do not 



 

 

94 

influence the interpretation of the methylation data seen here but do provide limited power for 

a substantial analysis. 

 

Figure 4.7 indicates that the libraries generated from low-DNA input had lower median 

methylation even when adjusted for common analysed fragments only. These data, combined 

with the histograms in Appendix G (Supplementary Fig. G.2), suggest the reduced DNA 

methodology has generated libraries with smaller fragments, concomitant to the reduction of 

median methylation. This is further discussed in Section 5.9.3. 

 

5.4.2 Genome-wide methylation in ADPKD tissue 

When the RRBS methylome is assessed by calculating the median methylation of all 345,711 

fragments across the two tissue groups, the ADPKD genome has a methylation score 0.02 (2%) 

lower than the non-ADPKD genome. This difference in methylation is consistent across all 

genomic elements (Fig. 3.4). The Wilcoxon rank sum p value was < 2.2E-16 in all of these 

comparisons, so the value reported here is highly statistically significant and unlikely to be due 

to random chance. As ADPKD D has shown considerably lower methylation than the other 

samples in the analysis, the comparison between tissue groups was repeated excluding sample 

D (Supplementary Figure G.1). The difference between tissue groups was still 0.02, which 

confirmed that the low median methylation of sample D was due to the fragments in the 

ADPKD D genome originating from largely low-methylated fragments, as demonstrated in 

Section 5.4.1. 

 

Although there was reduced coverage in ADPKD D compared to the other samples, this sample 

was left in the whole tissue analysis as it added strength to the ANOVA between ADPKD and 

non-ADPKD tissue and was not skewing the perceived global methylome of ADPKD tissue. 
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Global hypomethylation is a feature commonly associated with cancer and is believed to initiate 

chromosome instability and activate oncogenes in tumour cells [129]. Some oncogenes have 

been demonstrated to be aberrantly expressed in ADPKD tissue, and overexpression of these 

genes is sufficient to cause cystic disease in mice [170-172]. However, no DMFs were 

identified within any oncogenes in our ADPKD tissue analysis. Genomic instability has been 

suggested as a feature of ADPKD, including the development of somatic mutations in one of 

the PKD genes in order to initiate cystogenesis [97]. A hypomethylated genome, as is 

demonstrated here, could be sufficient to create an environment where somatic mutation occurs 

at a higher rate than in healthy tissue. 

 

Despite this, it should be recognised that the amount of hypomethylation is only 0.02, or 2%. 

Global hypomethylation has been described in cancer, with studies reporting as much as 90% 

of the genome to be hypomethylated [173-176]. Thus, the 2% difference in methylation 

observed in our data is marginal, and so biological consequences, if any, arising as a result of 

this hypomethylation are unclear based upon the current understanding of global DNA 

methylation in cancer. 

 

Due to the ambiguities of single-nucleotide genome alignment, RRBS does not have extensive 

coverage of repetitive elements [177]. As repetitive elements are often characterised as being 

areas that harbour significant amounts of hypomethylation in cancer [178], it is possible that if 

there was more coverage at these repetitive elements they would also be hypomethylated in the 

ADPKD tissue, making the magnitude of hypomethylation potentially more pronounced than 

that seen in this analysis. Other methods of methylation analysis, such as an EPIC-array analysis 

with predictive algorithms [179], could be used to address this hypothesis. 
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These global methylation data are also contradictory to the only other analysis of global 

methylation in ADPKD. Woo et al. report that 91% of CpG methylation sites with differential 

methylation (dCMES) were hypermethylated in their analysis [139]. A direct comparison 

between the two analyses cannot be made, as the estimate by Woo et al. is made by analysis of 

only the dCMES and not the genome at whole. Furthermore, our analysis is the summation of 

all fragments in the analysis, regardless of the statistical significance of each fragment between 

the two groups. 

 

Woo et al. used the MIRA-Seq technique for the analysis of global methylation in their three 

ADPKD samples. MIRA-Seq pyrosequencing works by exploiting the affinity of two methyl-

binding proteins for methylated CpGs, thus resulting in a higher proportion of methylated 

fragments in the final analysis than would be reported using RRBS. Additionally, this protocol 

is less likely to cover methylated CpG islands [180], and as it is an enrichment-based 

methodology, it is more prone to errors in methylation estimation especially when samples have 

high copy number variation, such as that seen in cancer [181, 182]. 

 

A cost-effective sequencing alternative to whole genome bisulfite sequencing (which has not 

yet been applied to ADPKD), RRBS uses a restriction enzyme digest that targets CpGs due to 

the cut site of MspI which is located within a CpG (C^CGG), irrespective of methylation. This 

method has an advantage over enrichment sequencing methodologies, which have an affinity 

for methylated cytosines [183]. Additionally, this methodology allowed us to analyse a greater 

number of CpG sites across both tissue groups, at single nucleotide resolution: Woo et al. 

generated 1 million CpGs in non-ADPKD and 0.7 million in ADPKD compared to our 1.7 

million CpGs in both tissue groups (Table 3.4). 
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Considering the different sequencing approaches, our data indicating global hypomethylation 

provide a more conservative estimate of the ADPKD tissue methylome (with some data 

suggesting this is variable across individual cysts). Our study has a number of strengths, 

including similar age-matched samples and single nucleotide resolution. 

 

5.5 Differentially methylated fragments 

We identified 13 fragments with significant differential methylation in ADPKD tissue. These 

regions have not been identified in the previously published DNA methylation research in 

ADPKD [139], although this paper did not publish a full list of all differentially methylated 

sites and therefore we cannot rule out a similarity between experimental findings. 

 

Thirteen is a relatively low number of loci to identify in an RRBS analysis. Woo et al. identified 

more regions in their 2014 paper using a different sequencing approach. It is possible that 

different methodologies contributed to the difference in quantity of DMFs. As mentioned above, 

MIRA-Seq analysis is based upon enrichment analysis, which is much more prone to errors 

[182] and does not have the same CpG resolution as RRBS. 

 

Another possibility for these differences is that the ANOVA test did not have sufficient power 

to identify additional DMFs due to the lower coverage in ADPKD libraries 05 and D I. This 

appears to be the result of using the adjusted RRBS methodology with reduced input amount 

of DNA (Section 5.2).  

 

Additionally, each patient may have a different methylation landscape due to other factors 

influencing their disease pathology. It is possible that there are several different factors 



 

 

98 

influencing or causing this pathology, and the DNA methylation seen is a consequence of, or a 

response to, these factors. As ADPKD is a heterogeneous disease, these factors could even 

differ between patients. Regardless of what causes the variation, this has led to higher 

FDR-adjusted p values which in turn renders a lot of the additional observed differences 

between the disease-state groups as statistically insignificant. 

 

There were more hypomethylated DMFs (eight) than hypermethylated (five). There was a slight 

enrichment of DMFs within intergenic regions and intron/exon regions, although due to the low 

number of total DMFs this limits the significance of any observed trends. 

 

5.5.1 Intergenic DMFs 

Five of the DMFs were located in regions outside of the protein-coding region (i.e. not within 

the promoter or gene body). As these fragments are as far as 183 kb from the nearest 

protein-coding gene, they provide tenuous links to the closest genes and thus only brief 

summaries of these gene functions and their potential roles in ADPKD are presented below. 

 

APCDD1 is an inhibitor in the Wnt signalling pathway, where increased expression has been 

associated with colorectal tumourigenesis [184, 185]. Hypermethylation of the APCDD1 has 

also been implicated the increased expression of the gene in osteosarcoma [186]. APCDD1 has 

shown expression in skin and fat tissue among others, but relatively low expression in kidney 

[187]. As previously described, the ADPKD tissue samples were noted to contain high levels 

of adipose deposits, particularly within the medullary regions and surrounding the external 

kidney walls. Therefore, the altered methylation value may be associated with the presence of 

adipocytes in the tissue samples. 
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There was methylation data available from five of the eight single ADPKD cysts for this 

APCDD1 fragment. These data were not as hypomethylated as the whole tissue samples, and 

ANOVA analysis did not find this fragment differentially methylated in the ADPKD cysts.  

 

The transcription repressor TMEM18 has various roles reported in literature, including neural 

cell migration and obesity [188, 189]. One possible link to its role in ADPKD tissue is that a 

2014 paper identified that the promoter methylation of TMEM18 and subsequent reduced 

mRNA levels were related to the deposition of visceral adipose tissue [190]. Much like 

APCDD1, the altered methylation associated with this gene may be linked to the presence of 

adipose tissue in ADPKD. 

 

FAM102A is a poorly characterised gene, believed to play a role in estrogen action [191]. There 

is very little evidence to connect it to ADPKD, with the exception that as it is a hormone-related 

gene, sex differences between the ADPKD and non-ADPKD tissue groups in this analysis 

(discussed further in Section 5.9.4) may cause the differences in methylation seen here, rather 

than disease itself. 

 

ZNF343 is ubiquitously expressed in all tissue as it is required for the regulation of gene 

expression in all cells [187]. It is important for nucleic acid binding, and there are no syndromes 

associated with it. Therefore, any role it may be playing specifically within ADPKD is unclear. 

 

PTBP1 is a translational regulator in the cell, involved in pre-mRNA and alternate splicing. 

Regulated by miRNA, expression of this gene is associated with several forms of carcinoma 

[192]. Like ZNF343, there is no clear connection to ADPKD for this gene. Additionally, PTBP1 

was the only gene with an intergenic association to a DMF to be investigated for gene 
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expression as PCR primers were readily available, however no difference was seen between 

tissue groups. While analysis of the single ADPKD cysts found the difference in methylation 

at this fragment to be statistically significant, there was a wide spread in the methylation of this 

fragment across the single cyst samples. This range of DNA methylation was not seen in the 

whole tissue samples. 

 

Both of the DMFs associated with FAM102A and PTBP1 were predicted to contain enhancer 

elements, supporting the belief that the genes closest to the DMFs themselves may not be 

significant to ADPKD, and instead suggesting that these genetic regions are associated with 

regulating other active pathways. 

 

5.5.2 Intragenic DMFs 

There were eight DMFs associated with protein-coding genes: within the promoter (two) or 

gene body (six). Although the function of all eight genes are discussed below, the involvement 

of these genes in ADPKD is unclear based upon methylome studies alone. Many of these genes 

also showed no change in RNA expression, and thus there is a possibility that the methylation 

changes are consequential of the disease state, not factors in the cystogenesis. 

 

5.5.2.1  CPLX1 

Essential for motor function, CPLX1 is a cytosolic protein involved in the exocytosis of synaptic 

vesicles. The product of CPLX1 binds to a SNAP receptor complex at the cellular membrane, 

allowing transmitter release when there is sufficient action potential (Ca2+) at the synapse [193]. 

Given that it is an important regulator in neural synapse, CPLX1 is expressed in the brain in 

higher quantities than other organs [187]. 
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The link between ADPKD and a neural protein is unclear, however one feature of this protein 

does relate to ADPKD: CPLX1 action is dependent on the concentration of Ca2+ - a molecule 

that has had a lot of attention in ADPKD as PKD2 is a calcium channel, and the concentration 

of Ca2+ is thought to be involved in cystic disease. 

 

A qPCR targeting this gene was performed on ADPKD tissue, however no difference was seen 

between non-ADPKD and ADPKD tissue. 

 

5.5.2.2  DAGLB 

Diacylgylerol lipase beta (DAGLB) is an enzyme that catalyses the hydrolysis of diacylglycerol 

to 2-arachinodonoyl-glycerol. This is the most abundant endocannabinoid in human tissue. This 

is the second of the genes associated with ADPKD that plays a role in neuronal signalling (the 

other being CPLX1). It is required for retrograde synaptic signalling at mature synapses – when 

post-synaptic cell bodies release a retrograde messenger to travel ‘backwards’ to bind at the 

axon terminal of a presynaptic neuron [194]. DAGLB is ubiquitously expressed in human tissue, 

with higher expression in some tissue types such as brain [187], but no noticeable renal 

significance. qPCR was not performed for this gene as primers with specificity to the gene 

sequence were not generated in the timeframe. 

 

In addition to retrograde signalling, DAGLB is required in the developmental period for axonal 

growth [195]. It is unclear why an axonal gene may be triggered in ADPKD, but the 

involvement of a gene required for development is not necessarily surprising, as the ADPKD 

cystic cell has been characterised to resemble fetal tissue in many aspects [5].  
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5.5.2.3  KDELR2 

This gene is a member of the KDEL (Lys-Asp-Glu-Leu) receptor family, which recognises and 

binds to specific resident soluble proteins in the Golgi body, returning them to the lumen of the 

endoplasmic reticulum. The KDEL family is responsible for the retention of the luminal ER 

proteins, and combined, determine the specificity of this system. This is required within cells 

throughout the body, and thus KDELR2 is ubiquitously expressed in human tissue [187, 196]. 

 

The DMF 7:6511106 – 6511153 is located within the transcripts of both KDELR2 and the 

aforementioned DAGLB as these genes run on opposing strands. Additionally, both genes have 

multiple splicing transcripts. Therefore, it is possible that KDELR2 is not involved in ADPKD 

pathology, just close in proximity to a region of differential methylation. This is substantiated 

by gene expression observed by qPCR, which shows almost no difference between ADPKD 

and non-ADPKD tissue groups, with the exception of one outlier. Further evidence is found in 

the methylation of the data of the ADPKD cysts at this DMF, which do not show statistically 

significant methylation at this loci when compared to the non-ADPKD tissue. 

 

5.5.2.4  EFCAB4B 

Most commonly referred to in the literature as CRACR2A, EFCAB4B is a calcium release 

activated channel regulator, playing a key role in the store-operated entry of Ca2+ at the calcium 

release activated channel (CRAC), particularly in immune cells. CRAC channels require 

EFCAB4B and STIM1 binding to facilitate the flow of Ca2+ into the cell. STIM1 is located on 

the ER membrane and is sensitive to the stored Ca2+ within the ER, while EFCAB4B is a 

cytosolic protein, dissociating the CRAC-STIM1 complex in high cytosolic concentrations of 

Ca2+ [197]. 
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While broadly expressed in human tissue, the expression of EFCAB4B in kidney tissue is 

recorded as being low [187]. In ADPKD tissue no statistical difference in expression was seen 

(Appendix I). 

 

The EFCAB4B-associated DMF, which is located in the promoter has been identified to contain 

a binding site for the transcription factor EGR1 (Early growth response protein 1), which is 

required for development, and thought to be a tumour suppressor gene . EGR1 binds to genes 

irrespective of cytosine methylation [198], and plays a role in cellular growth, proliferation and 

death, possibly by means of regulating DNA damage [199]. 

 

Additionally, EFCAB4B is predicted to be an enhancer of the gene TULP3,  a negative regulator 

of a signalling transduction pathway which is recruited to primary cilia [200]. TULP3 regulates 

ciliary G protein-coupled receptor trafficking, and has only recently been reported as playing a 

regulatory role in ADPKD [201]. 

 

5.5.2.5  DCLRE1C 

As DCLRE1C was found to contain a DMF with 100% hypermethylation in ADPKD tissue, 

the potential functional role of this gene in PKD is very interesting. As a cross-link repair gene 

encoding the endonuclease ARTEMIS, it is involved in V(D)J recombination and DNA repair 

for double-stranded breaks. 

 

DCLRE1C may be required most within the immune system, given that it has higher levels of 

expression in the lymph nodes than other human tissues, and null DCLRE1C mutations causing 

ARTEMIS depletion result in severe combined immunodeficiency, and hypomorphic mutations 

give rise to a number of other immunodeficiency disorders [202]. 
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The hypermethylated DMF in question is within intron 4 of DCLRE1C. According to the 

paradigm of methylation, this would be predicted to result in a sustained or increased expression 

of the gene. In contrast to patients with immunodeficiency above, the hypermethylation of the 

DCLRE1C gene body could increase the efficiency of ARTEMIS production, in turn increasing 

the efficiency of DNA repair. One possibility to explain why this may occur is that an increase 

in production of ARTEMIS could be an attempt to compensate for the genomic instability 

caused by the cystic disease. 

 

There was only methylation data from two ADPKD cyst samples at this site, which did not 

agree with the whole tissue data. While the cyst samples had more methylation than the non-

ADPKD tissue, they were not as methylated as the whole tissue, and were not statistically 

hypermethylated compared to the non-ADPKD tissue. It is unclear why these samples had such 

lower methylation when the whole tissue samples showed a strong binary pattern between the 

two disease states. There is no data at this site from the whole tissue from patient D (the same 

patient from which the cyst samples come from). 

 

Interestingly, when qPCR was performed with DCLRE1C primers, there was no significant 

difference in expression between the two tissue groups. With the exception of one ADPKD 

outlier with markedly higher expression, the expression of DCLRE1C was almost the same 

between ADPKD and non-ADPKD groups. As alluded to above, methylation of a gene body is 

theorised to support the ability of transcriptional mechanisms to interact with the gene to 

express it, but is not always associated with an increase in gene expression. 
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5.5.2.6  TMPRSS6 

TMPRSS6 encodes a protease found on the cell surface, required for matrix remodelling of the 

liver. TMPRSS6 hydrolyses type I collagen, fibrinogen and fibronectin as part of its role in 

degradation of the extracellular matrix. Additionally, TMPRSS6 plays a role in hepcidin 

production (which usually occurs within the liver). The expression of hepcidin is also tied to 

inflammation and infection; the reduction of hepcidin production is intended to restrict the iron 

available for pathogenic growth [203]. 

 

This gene shows highest expression in the liver, with very low expression in the kidney. 

TMPRSS6 is hypermethylated within the gene body in ADPKD tissue (across intron 1 and exon 

2), which could indicate that expression is increased, or at least stabilised, in ADPKD cells. 

The expression data generated in our laboratory showed no difference between the two groups. 

 

5.5.2.7  NAGLU 

The product of NAGLU is an enzyme that degrades heparan sulphate (HS) by hydrolysis. While 

ubiquitously expressed in human tissue, NAGLU is highly expressed in kidney tissue [204] 

[187]. Mutations in this gene result in the accumulation of HS, causing the disease 

mucopolysacchardosis type IIIB (MSP-IIIB), a neurodegenerative disorder [205]. Lower 

cellular temperature results in a higher activity of mutant enzymes in MSP-IIIB fibroblasts, 

although the mechanism controlling this is unknown [206]. 

 

This fragment was hypomethylated in the promoter in ADPKD tissue as evidenced by the 

analysis of two whole tissue samples. Although the ADPKD single cyst samples showed a 

slightly wider range in methylation at this fragment, the methylation was considered significant 

and supports hypomethylation in ADPKD. 
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In preliminary expression analysis with qPCR, NAGLU was shown to be reduced (Δ = -0.68, 

p = 0.0357) in ADPKD (Fig. 3.7). Hypomethylation of a promoter is typically associated with 

the increased expression of the gene in question, so it is not as common to observe reduced 

gene expression (although this phenomenon has been described before [129]). There is no 

evidence to explain a direct relationship between the promoter of a gene and the subsequent 

reduction of gene expression, although it is plausible that the DMF methylation is leading to 

the overexpression of a repressor of NAGLU. The possible consequences of this are that the 

concentration of NAGLU in the cystic tissue is reduced, in turn increasing HS. HS regulates a 

wide range of biological activities, including development, angiogenesis (blood vessel growth) 

and tumour metastasis. It is a component of the extracellular matrix and is present on the surface 

of fibroblasts to allow cellular adhesion [207]. 

 

Additional methylation analysis on more ADPKD tissue samples should be performed to 

elucidate whether there is a significant correlation between the methylation of this promoter 

and the reduction of NAGLU mRNA. Further experimental research is also required to identify 

whether NAGLU expression is altered due to the presence of inflammatory responses, as 

previously proposed [208], or due to molecular mechanisms regulated by HS. The addition 

more samples in this test would also help elucidate whether these changes are correlated with 

the methylation of the gene promoter. 

 

5.5.2.8  GET4 

GET4 is a chaperone protein, ubiquitously expressed across all tested human tissue types [187]. 

This protein works in a complex alongside BAG6 and UBL4A, which regulate ER-associated 

degradation [209]. This is a cytosolic protein quality control complex which mediates DNA 
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damage signalling and cell death. GET4 and UBL4A are chaperones to BAG6, and the loss of 

both proteins is required to elicit resistance to cellular death. However, the combination of all 

three genes is required for optimal DNA damage response signalling, wherein the complex 

recruits BRCA1 to sites of DNA damage. 

 

Initial expression analysis of GET4 demonstrates a significant reduction in gene expression in 

ADPKD tissue (Δ = -0.941, p = 0.0357), with a strong negative correlation with the methylation 

of the DMF (r = -0.919, p = 0.0071). The GET4-associated DMF is strongly hypermethylated, 

with a difference of 0.52 between the non- and ADPKD tissue groups, a difference that has not 

been previously described in ADPKD. This fragment is located within the gene body (intron 

1), which is purported to strengthen the transcription of a gene, which is conflicting with the 

data presented here. However the fragment, while not defined as a promoter in this study (it is 

further than 1kb into the gene transcript), is at the 5’ end of the gene. It is typical that the 

methylation of the gene body enforcing gene transcription is typically seen towards the 3’ end, 

thus it is plausible that this methylated fragment is operating as a promoter with regulatory 

elements. 

 

Not only is there strong evidence to suggest a probable link between the methylation and 

expression of this gene in ADPKD, there has been a recent publication which identified another 

ADPKD-associated gene involved in ER-associated protein degradation (DNAJB11). 

DNAJB11 is another co-chaperone molecule in which novel mono allelic mutations cause 

atypical ADPKD with maturation and tracking defects, causing ADPKD but not causing 

enlargement of the kidneys [20, 210, 211]. 
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5.5.3 Summary of DMFs 

Of the DMFs identified in this analysis, many are involved in signalling pathways or the 

structure of the cellular environment. These functions are expected in ADPKD, as signalling 

pathways including the roles of PKD1 and PKD2 have long been associated with the disease, 

as have physical characteristics such as increased fibrinogen, thick basement membranes, and 

increased collagen adhesion properties. 

 

Other DMFs, such as DCLRE1C and GET4, have roles in DNA damage and protein quality 

control. A review from Johnson and Collis [212] has highlighted the relationship between 

cellular stress in ciliopathies, and the role of the DNA damage repair (DDR) pathway. The 

breakdown of the DDR pathway could be postulated to cause the dysregulation of cellular 

control (thus leading to cellular proliferation), and investigation into the potential function of 

these genes in ADPKD requires further research. 

 

However, there are DMFs identified through this analysis for which the roles of the associated 

genes are within seemingly unrelated pathways. The genes CPLX1 and DAGLB are the most 

obvious examples of this, as they are both neuronal signalling genes. There is limited evidence 

to suggest that PC1 plays a role in the epithelial lining of the cerebral cortex of the brain, and 

mutation within the genomic neighbour of PKD1, TSC2, causes tuberous sclerosis complex 

disorder in which tumours form in the brain. However, given that these genes (CPLX1 and 

DAGLB) were identified as containing differential methylation in kidney tissue, completely 

isolated from brain tissue or spinal fluid, it is unlikely that this network of genes is at play here.  

 

 The most reasonable explanation for this is that these methylation patterns are arising from the 

distal synapses of neurons located within the kidney. An alternative explanation could be that 
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these regions of the genome have transcriptional roles that have not been identified in the 

analyses performed here (neither the CPLX1 nor DAGLB-associated fragment contain 

transcription factor sequences nor enhancer elements). 

 

The most promising genes identified in this analysis were NAGLU and GET4, which 

demonstrate differential methylation and concomitant reduction of mRNA. An appropriate 

follow up on this data would be to investigate whether the relationship between these 

observations is correlated; i.e. whether the differential methylation of these fragments is 

sufficient to cause reduced gene expression, possibly by the use of DNMT inhibition. 

 

5.6 Global methylation in ADPKD cysts 

The single cysts in this analysis are derived from patient ADPKD D (as single cyst tissue was 

not available for the other samples). The tissue sample from this patient in the whole tissue 

analysis (ADPKD D III) has the lowest global median methylation value of all the tissue 

samples. Both ADPKD D III and ADPKD 05 had lower median methylation and slightly lower 

interquartile methylation ranges, which may indicate that the altered RRBS protocol had a bias 

in which fragments with high DNA methylation may not be as easy to amplify and sequence 

from low amounts of DNA such as that used in the individual cyst analysis. 

 

The ADPKD cyst libraries largely had fewer fragments with high methylation values, and 

subsequently had lower median methylation values (Fig. 4.7A). When each cyst sample was 

paired by common analysed fragments with the non-ADPKD sample (Fig. 4.10), the non-

ADPKD genome reflected the methylation profile of the cyst in question, which shows that it 

was a technical aspect of the sequencing process which has caused the fragments with lower 

methylation values to be sequenced. The cysts were generated from small amounts of formalin-
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fixed tissue, which may have contributed to the lower median methylation values. This is 

discussed further in Section 5.9.3. 

 

Unlike the above analysis on whole tissue, the individual cysts did not all demonstrate global 

hypomethylation when compared to the non-ADPKD sample. Five of the cysts demonstrate 

statistically significant hypermethylation. One cyst demonstrated hypomethylation (as seen in 

whole tissue) and the remaining two samples have median methylation equal to that of the non-

ADPKD sample. This pattern of DNA methylation changes is reflected in the different grouping 

of cyst libraries by the hierarchical clustering. 

 

The differences between individual cysts may reflect different tubules of origin, such as the 

proximal or distal tubule. If this analysis were to be repeated, it would be interesting to perform 

immunohistochemistry on additional sections of the same cyst wall, in order to determine if 

these differences reflect the presence of proximal or distal tubule epithelia. Other reasons for 

the differences in methylation may include the disease trajectory of independent cysts. 

 

5.7 PKD1 

In contrast to previous data on the DNA methylation of PKD1, which showed hypermethylation 

of the gene body [139], this study found no statistically significant differential methylation 

surrounding PKD1 in ADPKD, although there are some regions trending towards a difference. 

While the data does not fully span the 50 kb gene, there is a 31 kb region (exons 2 – 46) with 

RRBS coverage. 

 

There is not sufficient coverage at the promoter in our data to define its methylation status, 

however it has previously been reported that there is little methylation in this region in both 
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non- and ADPKD tissue. Woo et al. report that within a portion of the gene body (exon 43), 

ADPKD is significantly hypermethylated. There was RRBS coverage flanking this exon, and 

the methylation profiles of these fragments, while not statistically significant, support the notion 

that ADPKD has increased DNA methylation at this region. 

 

There are fewer fragments in the ADPKD single cyst samples that cover the PKD1 region, but 

due to consistent methylation values between samples, several fragments were identified as 

being significantly methylated when comparing all cyst samples against all non-ADPKD tissue 

with ANOVA.  These data concur with the observation in whole tissue and with Woo et al.’s 

published data; ADPKD is hypermethylated at the 3’ end of the gene. 

 

While the data in the current study shows the same trend in DNA methylation of PKD1 as Woo 

et al., the expression of the gene does not. It was demonstrated by Woo et al. that the 

hypermethylation of the PKD1 gene body was correlated with the reduction of PKD1 

expression, through treating cell lines with demethylating agents to promote hypomethylation 

and a reduction in cyst formation, leading the authors to conclude that increased gene body 

methylation (within exon 43) reduces the expression of PKD1, sufficient to initiate cystogenesis 

in ADPKD. The relationship between PKD1 methylation and expression was demonstrated on 

cell lines including WT 9-12. However, these changes were not seen in ADPKD tissue in our 

analysis, with a trend of increased PKD1 expression in ADPKD. 

 

The disparity between results is puzzling, but not altogether surprising as there are conflicting 

data on the dosage of PKD1 in ADPKD in published literature (Table 1.1). Adult human kidney 

tissue typically has little-to-no PKD1 expression (PKD1 is required in fetal renal cells [213]), 

but staining of ADPKD tissue has consistently demonstrated the presence of PKD1, including 
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in the cytoplasm. However this is not always the case, with multiple papers reporting a 

significant minority of tissues sampled containing no increased PKD1 expression [6, 62]. 

 

One reason for the differences may simply be the samples used for gene expression. The initial 

PKD1 expression data were generated from whole tissue samples as in this analysis, and the 

data from Woo et al. suggest a wide range of expression was seen between these samples, 

similar to what was observed in our data (Fig. 3.10). Woo et al.’s subsequent analyses on DNA 

methylation were performed on transformed cell lines, which, as demonstrated in Section 4.2, 

appear to have an altered methylome when compared with samples isolated from fresh patient 

tissue. Additionally, the 5-aza-dC treatment, used as a demethylating agent, acts by reducing 

the activity of the DNMT1 enzyme, and thus does not specifically target the gene of interest 

[214]. Therefore, PKD1 will not have been the only gene influenced by demethylation and there 

is a huge number of genes which would have been influenced by DNMT inhibition to reduce 

cyst growth that were not investigated. 

 

While we agree with the previous data that shows there is hypermethylation in the gene body 

of PKD1, it is not yet clear whether this is having an effect on gene expression. As the current 

expression data in this study has only been generated from mRNA, further investigations of the 

protein using western blots may demonstrate complexities of PKD1 transcription and 

translation not seen by qPCR, such as whether the transcribed gene is functional. 

 

5.8 microRNA 

Analysis of the microRNA located within the PKD1 gene was performed as these genes are 

associated with CpG islands, and have the ability to work as post-translational regulators. Given 

that PKD1 is such a significant gene in ADPKD, and there is evidence to suggest that DNA 
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methylation occurs within the gene, it was decided to investigate the three miRNA located 

within the gene promoter and body to determine if DNA methylation had any influence on their 

expression. 

 

It was observed that two of the genes (miR-1225-5p and miR-3180-5p) have little-to-no 

expression in the kidney, and therefore they were not altered by any epigenetic influences 

occurring in ADPKD.  

 

However, miR-4516 was found to be expressed in the kidney tissue of both non- and ADPKD 

samples. miR-4516 is found within intron 1 of PKD1, 2.6 kb from the TSS. The preliminary 

analysis of miR-4516 expression in ADPKD tissue showed that the expression varied widely 

between samples. While this did not provide statistical evidence to support the loss or gain of 

miR-4516 in ADPKD, it does appear that the gene is dysregulated. 

 

Currently there is little information on the function of this miRNA, with literature suggesting 

that the downregulation of this gene leads to the accumulation of fibronectin and thickening of 

extracellular matrix (by negatively regulating fibronectin 1 – FN1) in psoriasis [215, 216].  

Although psoriasis is an epidermal disorder, increased fibronectin and thickening ECM is 

typical of ADPKD cysts [217, 218]. While there is insufficient evidence currently to confirm 

that miR-4516 is influenced by PKD1 expression, or that this is consequential to the 

cystogenesis of ADPKD kidneys, this is a mechanism which may require further investigation. 
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5.9 Experimental limitations 

5.9.1 Immortalised cell lines 

Human immortalised cell lines are the most readily available and renewable source of nucleic 

acids that can be used in the molecular analysis of ADPKD. Both of the cell lines used in this 

project, WT 9-7 and WT 9-12, have been studied in a multitude of ADPKD studies, including 

the only other analysis of DNA methylation in ADPKD [139, 219-222]. Therefore, they are an 

established and well characterised sample for which direct comparisons can be made across 

studies. 

 

However, these cell lines are immortalised with wild type simian adenovirus 40, which enables 

them to proliferate indefinitely. The integration of the virus into the cell has had a consequence 

on the methylation of the cell line, as demonstrated by the correlation coefficients between the 

cell lines and whole tissue (Section 4.2). Loghmann-Adham et al. demonstrated that WT 9-12 

cells grow twice as fast as their counterparts immortalised with a temperature sensitive virus 

[141]. Therefore, in this study we have identified that the immortalised cell lines have 

limitations on their application in the analysis of the methylome, and possibly other epigenetic 

studies in ADPKD.  

 

5.9.2 Limitations of whole tissue sections 

The first part of this study utilised tissue taken from whole cystic human kidney. Whole tissue 

ADPKD sections likely contain several cell types from cystic and interstitial tissue [223]. 

Additionally, it is difficult to determine from which region of the nephron a dissected tissue 

sample has originated from, because the kidney morphology becomes distorted due to the cystic 

overgrowth. Assumptions about the tubule of origin can be made from staining a tissue sample, 

however this was not performed in this study. 
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Isolating tissue from individual cyst walls reduces the number of cell types and the amount of 

interstitial tissue in each sample, and the hope of generating RRBS libraries from this was that 

these would better illustrate similarities and differences between cysts. However, these walls 

were dissected with surgical scissors, and the selection was ‘blunt’ (as compared to laser 

dissection or similar techniques [224]) meaning that there is likely still neighbouring connective 

tissue in each wall sample, rather than pure epithelial cells. Additionally, it was not possible to 

determine exactly where in the kidney they originated from (i.e. cortex or medulla), due to the 

distorted nature of the cystic ADPKD kidney morphology. However, these samples can be said 

to be enriched for epithelial cyst wall cells. 

 

5.9.3 Formalin-fixed tissue provides experimental complications 

The individual cyst samples were generated from tissue which had been fixed in formalin for 

seven days prior to our access to the tissue. Although care was taken during DNA extraction to 

optimise the yield of DNA (Section 2.1.1), NBF treatment can significantly degrade DNA. This 

occurs due to cross-links formed by formaldehyde [225].  

 

It has been shown that leaving tissue in NBF for longer than 24 hours reduces the yield of DNA 

from cDNA [155]. It is possible that this study is assessing the ability to amplify from formalin 

fixed DNA, as the means of assessment was qPCR, and formalin is known to increase the 

proportion of enzyme inhibitors [226]. Given that the RRBS protocol requires PCR 

amplification, it may be that the amplification of DNA is inhibited, rather than a lack of 

sufficient DNA from the formalin fixed tissue. 
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Additionally, NBF-treated tissue yields largely fragmented DNA [227]. As shown in Appendix 

G, the cyst libraries typically had a skewed distribution of fragment lengths, predominantly 

featuring small fragments. This likely had an effect on the coverage of the aligned fragments 

across the methylome, which could in part explain why these libraries had lower coverage than 

other libraries in the analysis. 

 

Furthermore, NBF may cause the deamination of DNA, including 5-methylcytosine residues 

which deaminate to thymine in the presence of formalin-fixation at a higher rate than to uracil 

[228, 229]. Perhaps the deamination of these 5-methylcytosine residues reduces the ability of 

MspI to cleave the recognition site CCGG, leading in turn to reporting a higher proportion of 

unmethylated fragments. This hypothesis is supported by data produced in Chapter 4 

(Fig. 4.7A), which demonstrated that the amount of coverage in the RRBS libraries contributed 

to the median methylation value. 

 

It could be hypothesised that the fixation of the tissues had an impact on the methylation, as the 

cyst libraries largely had lower median methylation than other RRBS libraries. Yet, some of 

the samples from whole tissue also displayed lower median methylation (Fig. 4.7A). There are 

two factors which possibly contribute to this observation. The first is that these low-median 

samples are almost exclusively from patient ADPKD D. There is a small chance that this patient 

is truly, globally hypomethylated at a higher percentage than other individuals. The second and 

more significant factor is that these hypomethylated-median libraries were generated from a 

protocol using five times less input DNA. While there are other published protocols for 

generating RRBS libraries from low input DNA that generate ~4 million CpG reads [160, 161], 

this analysis suggests caution should be used when generating libraries from formalin-fixed 

tissue, particularly when working on small amounts of input DNA. 
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5.9.4 Sample population differences 

The composition of environmental factors in each sample population will likely have an 

influence on the DNA methylation. To limit this, it is best to draw data from populations which 

have common backgrounds (such as age-matched samples). Unfortunately, the complication of 

nephrectomy is such that kidneys are rarely removed from patients, and thus there is a limited 

pool of available tissue for analysis.  

 

The most significant contributors to variation between populations are likely to be age and sex 

(outlined in Appendix A). All the samples in this analysis were within one decade, minimising 

the variation due to age. Unfortunately, the only non-ADPKD tissue available through the tissue 

bank was female cortical renal tissue, and our ADPKD samples are predominantly male. This 

creates a potential environment for bias in the analysis, as females have one X chromosome 

silenced through DNA methylation. While none of the DMFs identified in this study were 

sex-linked, the global methylation patterns between the two tissue groups were reassessed by 

eliminating sex-linked chromosomes from the overall comparison (Appendix G). No change in 

global methylation was seen in any of the tissue samples, and ADPKD tissue remained globally 

hypomethylated by 2%. Therefore we can be assured that any effects of X chromosome 

silencing did not influence this trend. 

 

5.9.5 Considering the medical history of patients 

A consideration when performing studies on the epigenetic landscape in human tissue is that 

these patients were exposed to environmental factors which may be influencing the epigenetic 

profile of individuals. A multitude of unique aspects such as diet, physical activity and other 

lifestyle factors contribute to the unique profile of an individual. As the ADPKD patients have 

a chronic medical condition, which has likely spanned over at least four decades, this is likely 
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to have been a factor modifying their epigenetic landscape [230]. While this would not alter the 

bioinformatic assessment of DNA methylation, understanding the clinical history of patient 

samples provides greater context for elucidating whether changes are likely to be involved in 

initiating or maintaining disease, or arise in response to cystogenesis. Unfortunately due to the 

anonymisation of tissue samples, the patients’ medical history is unavailable, and we can only 

speculate on what medical interventions they underwent prior to nephrectomy. 

 

Based on common practices in treating ADPKD [231, 232], it is plausible that the patients were 

on medications, likely for the long-term management of symptoms. Like all compounds, 

pharmaceuticals have the potential to cause epigenetic changes. Some of these epigenetic 

changes are the direct mechanism by which a medication works (such as HDAC inhibition 

negatively regulating Wnt signalling pathways at therapeutic levels [233]), however many more 

changes are the indirect result of pharmaceuticals, believed to often manifest as side effects 

[234]. 

 

According to clinical reviews, the most commonly used medications in ADPKD include statins, 

beta-blockers and ACE inhibitors, which are all used to combat cardiovascular-related 

symptoms such as hypertension [235]. There is limited observational evidence to speculate that 

statins and beta-blockers could initiate epigenetic changes in other conditions: beta-blockers 

can increase the risk of diabetes [236] which is known to have an epigenetic components [237], 

and statins cause gene expression alterations thought to arise from epigenetic changes [234, 

238]. However, whether this could result in epigenetic changes to the kidney tissue, or play a 

broader role in the epigenetics of all tissue, is uncertain. There are not sufficient data to 

determine whether any medications could contribute to the DMFs identified in this research. 
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5.9.6 Limitations of advanced-stage ADPKD tissue 

All of the ADPKD tissue and cell lines used in this research were derived from the kidneys of 

patients with end-stage renal disease. While this ensures that the tissue that was used in this 

analysis was (truly) cystic, the analysis might be less likely to be able to elucidate any changes 

required to initiate cystogenesis, as these changes may have occurred four or more decades 

earlier. Therefore, the differences between ADPKD and non-ADPKD tissue may be 

highlighting the differences between ‘healthy’ and dysregulated tissue from chronically ill 

patients. These could also include changes in molecular pathways that occur in response to the 

disease; a consequence of disease instead of a causative factor. 

 

An example of epigenetic changes occurring in response to disease has been recently 

investigated in a metastudy performed on patients with chronic kidney disease (CKD) by way 

of epigenome-wide association studies [239]. Of 19 CpG sites identified in the study as being 

significantly differentially methylated in CKD, five of these regions were associated with renal 

fibrosis in patients. This suggests that pathological changes to the kidney, such as the fibrosis 

observed in chronic kidney disease, is linked to epigenetic changes. However, a comparison of 

these data with the data generated in our ADPKD study has shown no overlap between the 

differentially methylated regions in this CKD paper and the DMFs identified in our analysis. 

This suggests that the data identified in our study is likely demonstrating changes which are 

specific to ADPKD and not as a result of CKD.  

 

It is possible that the differences in sequencing methodologies has also contributed to this lack 

of overlap. However, there is an overlap of the CKD paper data (generated from Illumina 450k) 

and Woo et al. data (MIRA-Seq). This means that even with different platforms, similarities 
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can be seen in genome-wide analyses, and the lack of overlap is more likely to be biological 

differences. 

 

Despite our data not fitting with the chronic kidney disease data, it is unlikely that the changes 

to DNA methylation seen in this study are directly contributing to the initiating of cyst growth, 

considering they are end-stage kidneys. However the results seen here may provide information 

about the molecular pathways modified in APDKD, providing potential new targets for 

therapeutic intervention. 

 

A way to identify cystogenesis-associated epigenetic changes could be to sample early-stage 

ADPKD epithelial cells. These can be isolated and characterised from urine, as humans shed 

renal epithelial cells via their urine [240, 241]. This methodology is not commonly employed 

in ADPKD and would need further validation. Additionally, current published protocols 

predominantly use SV40 viruses to immortalise cells [242]. In order to accurately assess DNA 

methylation changes in ADPKD this protocol would need to be altered to avoid viral effects on 

epigenetic changes as seen in the immortalised ADPKD cell lines used in this study. However, 

unlike nephrectomy, this technique is non-invasive and would provide access to cellular 

material from a wider range of ADPKD patients, including various ages and patients with 

milder disease (such as PKD2-related disease) who never reach ESRD and therefore never 

require nephrectomy. 

 

Other PKD models commonly used to study molecular changes associated with disease include 

pluripotent stem cell lines, knockdown and knockout cell lines [243]. However, these do not 

accurately paint a picture of the environment in which cells are originating or growing within 
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a patient, and therefore would have a limited application for studying the epigenetic landscape 

of ADPKD. 

 

5.10 Future Directions 

In the future it would be important to extend the research covered in this thesis, especially to 

include more tissue samples. Human ADPKD tissue is limited both because there is a small 

population with the disease, and secondly because tissue is only available when kidneys are 

removed – this only happens when the kidneys grow to such an extent that they cause 

unmanageable pain or impede the function of other organs. 

 

In addition to the expansion of the data set presented here, further analysis should be performed 

on the individual ADPKD cyst libraries, including the identification of differentially methylated 

fragments in each cyst library. This research was outside the bounds of the project presented 

here, but further work will be done to analyse whether fragments are consistently methylated 

in ADPKD cysts across the kidney, or whether heterogeneity plays a role in the DNA 

methylation of the ADPKD kidney. 

 

Further assessment into the expression of genes in the individual cyst samples would be useful. 

It is interesting that within the eight individual cyst samples, the global trend in methylation 

compared to non-ADPKD tissue was variable, demonstrating both hyper- and hypomethylation. 

This indicates that there is heterogeneity within the cysts of the ADPKD kidney, and has 

implications for both the process of cystogenesis and the response to potential epigenetic 

therapies. While qPCR of the DMF-associated genes could be performed, it may be more 

advantageous to perform RNA-Seq on these samples, given that there is very limited tissue 
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available for analysis, and that analysis to identify DMFs may bring forward a number of 

additional genes to analyse. 

 

Despite variation at the global level, there were also similarities between the whole tissue data 

and the single cyst data within DMFs, which suggests there are fundamental differences in the 

methylome of ADPKD. The expression of these DMF-associated genes should be followed up 

in cyst tissue, to further identify whether the methylation of these genes is linked to their 

expression. 

 

GET4 expression was found to be significantly reduced in ADPKD, which had a strong negative 

correlation with the methylation of the DMF in the gene body. Further research needs to be 

performed to validate whether this is a causal relationship, and additionally to identify if the 

gene plays a role in the cystogenesis of the kidney in ADPKD. Suggested experimental 

approaches include the treatment of primary cell lines with demethylating agents to measure 

the effects of methylation on the gene expression. 

 

5.11 Conclusion 

We have shown that the methylome of kidney tissue is hypomethylated in ADPKD patients, 

and we have identified 13 fragments with statistically significant methylation in these patients. 

Of these, at least one gene has a change in expression correlating with this methylation. We 

have found no significant differential methylation in the ADPKD-causing gene PKD1, although 

there was a trend towards hypermethylation at the 3’ end of the gene, which correlated with an 

increase of PKD1 expression by qPCR. We have found no significant changes in the expression 

of PKD1-associated miRNA. 
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We have also demonstrated that the ADPKD kidney is heterogenous with regards to DNA 

methylation, as illustrated by varying global methylation patterns across eight individual 

ADPKD cysts from a single patient. Furthermore, the cysts fall into two distinct, isolated 

clusters when performing unsupervised hierarchical clustering. We have confirmed that of the 

13 DMFs in whole tissue, eight of these are significantly differentially methylated in ADPKD 

single cyst tissue. 

 

DNA hypomethylation has not been previously reported in ADPKD, and there are currently no 

published data on the methylome of individual ADPKD cysts. This research provides new data 

on the methylation landscape of ADPKD tissue, and identifies two genes (NAGLU and GET4) 

as dysregulated in ADPKD and subsequently will require further investigation for their role in 

cystogenesis. 
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Clinical data 
 

Supplementary Table A.1: Clinical data from samples used in this analysis 
Due to anonymisation of donated tissue, there is limited information on the patient history of historical 
ADPKD tissue. Blanks left where information unavailable. PKD1 mutations are not typically 
investigated, thus there is only disease-causing mutant information on patient ADPKD D – as this patient 
had private genetic screening, and the commercially available cell lines which have been previously 
documented. 
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Disease 
state 

Non-
ADPKD 

Non-
ADPKD 

Non-
ADPKD ADPKD ADPKD ADPKD ADPKD ADPKD ADPKD ADPKD ADPKD 

PKD1 
mutation n/a n/a n/a    D1249fs D1249fs  Q2556X Q2556X 

Tissue 
Type 

Whole 
tissue 

Whole 
tissue 

Whole 
tissue 

Whole 
tissue 

Whole 
tissue 

Whole 
tissue 

Whole 
tissue 

Cyst 
wall^ 

Whole 
tissue^ 

Cell 
Line 

Cell 
Line 

RRBS Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

Patient 
age§ 

53 51 55 52   60 60 56   

Patient 
sex 

F F F M   M M M F F 

Year 
collected 

2010 2009 2015 2005 2007 2008 2016 2016 2016 1999* 1999* 

qPCR Yes Yes Yes Yes Yes Yes Yes No Yes No No 

§ Patient age at time of nephrectomy 
^ NBF-treated prior to our access to tissue 
* Immortalised cell lines generated in 1999. WT 9-7 was cultured from P16, WT 9-12 was cultured from P25. 
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Preparation of RRBS libraries 
 

 
Supplementary Figure B.1: Semi-quantitative PCR gel 
Semi-quantitative PCR amplifications of the RRBS libraries prepared using n = 15 and n = 20 PCR 
cycles were loaded onto NuSieve agarose gel (Section 2.2.4) in pairs. Following gel electrophoresis, the 
gel was imaged under UV light. This gel is of RRBS libraries from cysts 5, 6, 7 and 8 (L = 1 kb ladder). 
The number of PCR cycles to amplify each sample is assessed by determining how much product is 
between 150 – 325 bp without non-specific amplification. All of these samples required 20 cycles of 
PCR. The dark bands at 100 kb are the adaptor dimers. 
 

 

 

 

 

 

 

Supplementary Figure B.2: Measurement of 1 Kb 
ladder 
The ladder from one side of the gel was excised and 
imaged next to a ruler to measure the exact location 
of the 150 bp and 325 bp bands. The lower edge of 
the gel was lined up with the 17 cm mark on the ruler. 
The 150 bp band was at 14.05 cm, the 325 cm band 
was at 13.00 cm. 
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Supplementary Figure B.3: Large-scale amplification gel 
Once the RRBS libraries were excised from the gel for DNA extraction (Section 2.2.6), the gel was 
pieced together and imaged under UV. This shows that the RRBS library was cut out from the gel, 
leaving the adaptor dimer band (~100 bp) intact. The smear of DNA product above and below the 
excised section of the gel is non-specific amplification as it is outside the targeted region (150 – 325 bp). 
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Sequencing submission 
 
Supplementary Table C.1: Sequencing submission from low-input libraries 
Libraries sent to Otago Genomics Facility (OGF) in 2016, sequenced across three lanes.  

Library Adaptor Average fragment 
size (bp) 

Conc. (nM) Volume (uL) Adaptor 
trimming 

ADPKD D 1 AD005 292 10 10 Yes 

ADPKD D 2 AD006 245 2.65 5 Yes 

ADPKD D 3 AD002 276 6.86 5 Yes 

ADPKD D 4 AD004 217 2.68 7  

ADPKD D 5 AD012 313 10 10 Yes 

ADPKD D 6 AD007 325 10 10  

ADPKD D 7 AD019 335 10 10 Yes 

ADPKD D 8 AD010 249 5.7 7 Yes 

ADPKD D I AD001 203 10 10 Yes 

ADPKD D II AD011 203 10 10 Yes 

ADPKD D III AD003 221 10 10 Yes 

ADPKD 05 AD016 239 10 10  

 
Supplementary Table C.2: Sequencing submission from cell lines 
Libraries sent to OGF in 2016, sequenced across two lanes alongside three other RRBS libraries. These 
libraries were prepared with Jackie Ludgate. 

Library Adaptor 
Average fragment 

size (bp) Conc. (nM) Volume (uL) 

WT 9-7 AD011 306 10 30 

WT 9-12 AD003 298 10 30 
 
Supplementary Table C.3: Sequencing submission from RRBS libraries generated in previous 
research 
Libraries sent to OGF in 2015, sequenced across three lanes alongside 10 other RRBS libraries. These 
libraries were prepared by Michael Bates [140]. 

Library Adaptor Average fragment 
size (bp) Conc. (nM) Volume (uL) 

ADPKD 07 AD004 324 10 25 

ADPKD 08 AD002 340 10 25 

Non-ADPKD E AD006 305 10 25 

Non-ADPKD G AD007 269 10 25 

Non-ADPKD H AD005 305 10 25 
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RRBS data processing 
 

RRBS sequences were returned as fastq files which were processed for analysis in command 

line using DMAP programs and in RStudio. Below are examples of the code used to generate 

this data in command line. 

 
# Trim fragments and concatenate into single file 
cleanadaptors -I contam.fa -t 3 -T 3 -x 4 HNYL2BCXY-2046F-01-14-
1_S1_L001_R1_001.fastq > ADPKD05.fastq 
cleanadaptors -I contam.fa -t 3 -T 3 -x 4 HNYL2BCXY-2046F-01-14-
1_S1_L002_R1_001.fastq >> ADPKD05.fastq 
cleanadaptors -I contam.fa -t 3 -T 3 -x 4 HVJWYBCXY-2046F-01-14-
1_S1_L001_R1_001.fastq >> ADPKD05.fastq 
 
 
# Quality check 
fastqc -o qc ADPKD05.fastq 
 
# Bismark alignment 
bismark -n 1 GRCh37 ADPKD05.fastq 
 
# Merge non-ADPKD libraries to create a reference file 
samtools merge nonADPKD.bam 
/home/sbowden/HuKidneyE1_R1_adtr.fastq_bismark_sorted.bam 
/home/sbowden/HuKidneyG2_R1_adtr.fastq_bismark_sorted.bam 
/home/sbowden/HuKidneyH3_R1_adtr.fastq_bismark_sorted.bam 
 
# Generation of list of fragments 
diffmeth -F 2 -t 10 -g Homo_sapiens.GRCh37.dna.chromosome. -L 40,220 -z ADPKD05.fastq > 
ADPKD05_list.txt 
 
# ANOVA 
diffmeth -F 2 -t 10 -g Homo_sapiens.GRCh37.dna.chromosome. -L 40,220 -z  
-R NonE.fastq -R NonG.fastq -R NonH.fastq -S ADPKD05.fastq -S ADPKD07.fastq -S 
ADPKD08.fastq -S ADPKDDIII.fastq > ANOVA.txt 
 
# Gene annotation 
identgeneloc -i -Q -U -R -B “protein_coding” -p GRCh37dat -s “.dat” -r ANOVA.txt > 
ANOVA_gene.txt 
  



 

 

130 

The following are examples of the programs and commands used in RStudio to perform data 

analysis in Chapters 3, 4 and Appendix G. 
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Primer sequences 
 
Supplementary Table E.1: Primer sequences for qPCR 
Primer sequences for qPCR analysis. RefSeq accession numbers for each gene version are 
reported [244]. 

PKD1 
NM_000296.4 

F 5-GCCGCGCCATCCCTTTCTGT-3 
R 5-GCTCCGGCTGTCCACCCCATAC-3 

B2M 
NM_004048.3 

F 5-GAGTGCTGTCTCCATGTTTGATGT-3 
R 5-AAGTTGCCAGCCCTCCTAGAG-3 

EEF1A1 
NM_001402.6 

F 5-CTGCCACCCCACTCTTAATCA-3 
R 5-GGCCAATTGAAACAAACAGTTCT-3 

GET4 
NM_015949.3 

F 5-GAGCCCTGAAGTGGTCCAG-3 
R 5-GTGCAGAAAATGATACCTCGACT-3 

NAGLU 
NM_000263.4 

F 5-TGGCACATCAAGCAGCTTTA-3 
R 5-GTGACAGCCTCGGGAACAT-3 

CPLX1 
NM_006651.4 

F 5-AGTTTGTGATGAAGCAGGCTCT-3 
R 5-GTCTGGGTCCTTCTCCTCGT-3 

DCLRE1C 
NM_022487.4 

F 5-ACAGGAGACTTCAGATTG-3 
R 5-CACTCCTCCCGACTTGGAATT-3 

EFCAB4B 
NM_032680.4 

F 5-CTTCAGGAATAACCCAAGTCAGG-3 
R 5-TTTGGGCTCCAAGTCTGTCCATCA-3 

KDELR2 
NM_001100603.2 

F 5-GATTTCTCTCCTCTTGAGATCCTCT-3 
R 5-ACAGTATAGGATGGTCTGGACTACG-3 

PTBP1 
NM_002819.5 

F 5-ATCAGGCCTTCATCGAGATGCACA-3  
R 5-TGTCTTGAGCTCCTTGTGGTTGGA-3 

TMPRSS6 
NM_153609.3 

F 5-AACGGCAGCGACGAAGAGCA-3 
R 5-TCACACTGCGGGTTGGGCTT-3 
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Publication of data derived from this 
thesis 

 

The following paper manuscript describes global DNA methylation as observed in ADPKD 

from whole tissue samples (derived from work in Chapter Three): 

 

Bowden, S. A., Rodger, E. J., Bates, M., Chatterjee, A., Eccles, M. R., & Stayner, C. (2018). 

Genome-Scale Single Nucleotide Resolution Analysis of DNA Methylation in Human 

Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol, 48(6), 415-424. 

doi:10.1159/000494739 

 

Abstract  

Background: Autosomal dominant polycystic kidney disease (ADPKD) is characterised by the 

formation of fluid-filled cysts in the kidney and end stage renal disease by the fourth or fifth 

decade of life. Mutations in the PKD1 gene account for 85% of all cases of ADPKD. No 

curative therapy exists for patients affected by this disease and an underexplored avenue for the 

treatment of ADPKD is the targeting of epigenetic changes that occur during cystogenesis. 

Limited data exists on alterations in DNA methylation that are associated with ADPKD. Given 

the similarities between cyst growth and neoplasia, and the fact that two DNA methylation 

inhibitors are already FDA-approved for the treatment of myelodysplastic syndrome, we 

hypothesized that global DNA methylation patterns in ADPKD would parallel that observed in 

neoplasia, and which may provide an opportunity to treat ADPKD with epigenetic inhibitors.  

To address this hypothesis we undertook a global DNA methylation analysis of human ADPKD 

kidney. 
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Methods: We generated single nucleotide resolution methylomes of cortical kidney tissue from 

individuals with ADPKD, and from non-ADPKD kidney tissue, using reduced representation 

bisulfite sequencing (RRBS). Using quantitative reverse transcription polymerase chain 

reaction (qRT-PCR), we investigated expression of the PKD1 gene in both ADPKD and non-

ADPKD kidney.  

Results: We have shown that ADPKD-derived genomic DNA exhibits global hypomethylation 

when compared with non-ADPKD kidney, a pattern commonly observed in DNA methylation 

studies of tumour derived tissue. We have also identified thirteen discrete regions that are 

significantly differentially methylated in ADPKD compared to non-ADPKD, and eight of these 

are gene specific. The PKD1 gene shows an increase in methylation at the 3’ end of the gene 

body, but in contrast to previously published data, this is not associated with a decrease in PKD1 

mRNA expression.  

Conclusion: This genome-scale single nucleotide resolution analysis of DNA methylation in 

human polycystic kidneys suggests that DNA methylation differences at specific loci are 

associated with ADPKD. Further exploration into the significance of these preliminary results 

may shed light on the disease process, and potentially reveal new therapeutic possibilities. 

 

Background 

Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of 

inherited kidney disease, affecting 1-5 per 10,000 individuals[1]. ADPKD is characterised by 

the formation of fluid-filled cysts within the kidney, with renal function declining in the fourth 

or fifth decade of life, leading to end stage kidney disease. Extra-renal clinical features include 

cysts in the liver, hypertension, and an increased risk of intracranial aneurysms.  
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A germline mutation in one copy of either the PKD1 or PKD2 gene causes ADPKD, with 85% 

of cases attributable to a mutation in PKD1. Polycystin-1 and -2, are the protein products of the 

PKD1 and PKD2 genes, respectively, and have been shown to interact at their C-terminal 

domains in renal tubule epithelia[2]. Both are transmembrane proteins, with Polycystin-2 able 

to act as a nonselective cation channel on the plasma and/or the endoplasmic reticulum 

membrane[3]. Polycystin-1 has a large extra-cellular N-terminal domain and on the primary 

cilia is postulated to act as a mechanosensor that responds to renal flow, subsequently regulating 

Ca2+ ion flow via Polycystin-2[4].  

 

Recent data investigating epigenetic modification during cystogenesis has suggested a potential 

role for histone modification[5,6] and/or DNA methylation[7,8] in modulating cyst formation. 

DNA methylation occurs at cytosine residues within CpG dinucleotides, and is catalyzed by 

DNA methyltransferases (DNMTs). Methylation at the promoter of a gene is frequently 

associated with a loss of gene expression, while methylation in the gene body, particularly at 

the 3’ end of the gene, correlates with active expression of that gene[9].  There are, however, 

many exceptions to this generalized observation[10-13].   

 

Aberrant DNA methylation patterns are associated with many types of cancer, and accordingly, 

several DNMT inhibitors are currently FDA-approved for the treatment of myelodysplastic 

syndrome. Given that cysts are effectively benign neoplasms[14], and ADPKD itself has been 

described as ‘neoplasia in disguise’[15], there may also exist parallels in global DNA 

methylation patterns that could be exploited therapeutically. A previous study by Woo et al.,[7] 

profiled DNA methylation patterns in ADPKD tissues using MIRA-seq (methylated-CpG 

island recovery assay).  They identified a global hypermethylation in the genome of ADPKD-
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derived DNA, including hypermethylation of the PKD1 gene body (but not the PKD1 gene 

promoter), correlating with a decrease in PKD1 mRNA levels.  

 

To address the hypothesis that global DNA methylation patterns in ADPKD parallels that 

observed in neoplasia, which may provide an opportunity to treat ADPKD with epigenetic 

inhibitors, we have undertaken RRBS (reduced representation bisulfite sequencing) analysis of 

tissues from both ADPKD and non-ADPKD kidneys in the first genome-scale single nucleotide 

resolution analysis of DNA methylation in human polycystic kidneys.  

 

Methods 

Collection and processing of tissues 

The three non-ADPKD cortical kidney tissues were collected from adults aged 50-60yrs by the 

Christchurch Cancer Society Tissue Bank following nephrectomy to remove a renal tumour. 

Wildtype tissue was sampled as far from the tumour site as possible, and appeared normal 

histologically. The ADPKD tissue samples were cortical samples taken from cystic regions of 

the kidney of male patients with ADPKD (aged 50-60yrs). Clinical data for these patients was 

not collected as these data were anonymised. However patients were on dialysis prior to 

nephrectomy, which was performed around the time of kidney transplantation. All procedures 

for collection of renal tissue was approved by the Otago Human Ethics Committee H15/110. 

 

Preparation and sequencing of RRBS libraries 

RRBS libraries of kidney tissue were prepared according to previously published methods [16-

19]. Briefly, genomic DNA was extracted from frozen tissue using the QIAamp DNA Mini Kit 

(Qiagen) with an extended 16 hour Proteinase K treatment at 56 °C. Genomic DNA was 

digested overnight with MspI enzyme (New England Biolabs, Ipswich, MA) and the resulting 
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fragments were end-repaired, A-tailed and ligated to methylated adaptors (Illumina, San Diego, 

CA). Fragments were size selected (150 to 330 bp post-adaptor-ligation size) on 3% Nusieve 

agarose gels (Lonza, Basel, Switzerland) and bisulfite converted using the EZ DNA 

methylation kit (Zymo Research, Irvine, CA). Bisulfite converted libraries were amplified by 

PCR (16-18 cycles) and size-selected again to eliminate primer contamination. Libraries were 

quantified using the Qubit fluorometer (Life Technologies, Grand Island, NY) and quality 

assessed on the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA) using the high 

sensitivity DNA chip according to the manufacturer’s instructions. RRBS libraries were 

sequenced on an Illumina HiSeq2500 with single-ended 100 bp reads. Base-calling was 

performed with Illumina Real Time Analyzer (RTA) software [17].  

 

Quality assessment, alignment and DNA methylation analysis 

Quality of the sequenced reads for each sample was assessed using the FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) program. Adaptor sequences and 

unmethylated CpG bases at the 3¢ end of the reads that were added during end-repair step were 

removed using our in-house cleanadaptors program [20]. The sequenced reads were aligned to 

the complete human reference genome GRCh37 with the Bismark v0.6.4 alignment tool [21], 

allowing for only one mismatch in the seed. The DMAP package [22] was used to generate 

MspI fragment-based methylomes and perform differential methylation analysis of the two 

groups. Only fragments that had at least 2 CpG sites and covered by 10 or more sequenced 

reads in all libraries were included in an F test (ANOVA) to test for significant methylation 

differences between non-ADPKD and ADPKD kidney tissue. We used a false discovery rate 

of <0.05 and fragments with an absolute methylation difference of ≥0.10 between tissue groups 

were identified as differentially methylated fragments (DMFs). 
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Generating single nucleotide resolution methylomes of ADPKD and non-ADPKD kidney 

Reduced representation bisulfite sequencing (RRBS) was used to generate DNA methylomes 

of renal cortex tissue from four ADPKD patients and three non-ADPKD kidneys. For these 

seven samples, a total of 243 million 100 bp sequencing reads were generated.  The sequenced 

reads were mapped to the GRCh37 human reference genome using Bismark [21], with unique 

alignment efficiency ranging from 54.2% to 68% (median=66.2%, Supplementary Table S1). 

The median bisulfite conversion rate was calculated to be >98%, assuming that the total 

quantified non-CpG methylation was due to inefficient bisulfite conversion (Supplementary 

Table S1). We determined the CpG DNA methylation (on a scale of 0 to 1) using MspI 

fragments (40-220 bp) as the unit of analysis. Size-selected MspI fragments were the input for 

RRBS sequencing libraries and we have previously described the utility of this approach for 

analysing genome-scale DNA methylation patterns in human tissues [19,22-24]. 

 

Gene enhancer and transcription factor binding prediction 

To identify DMFs overlapping predicted enhancer regions, the GeneHancer database of 

genome-wide enhancer-to-gene associations [25] was downloaded from the GeneCards website 

(https://genecards.weizmann.ac.il/geneloc/genehancer.xlsx) and converted to GRCh37 

coordinates using the UCSC genome browser Liftover tool (http://genome.ucsc.edu/cgi-

bin/hgLiftOver). BEDTools (v2.26.0) intersect was used to identify enhancer-to-gene 

associations that overlapped with the DMFs we identified in ADPKD. The UCSC table browser 

was used to retrieve details of predicted transcription factor binding sites from the ORegAnno 

database [26] that overlap with DMFs we identified in ADPKD. 

 

Gene expression analysis 

Gene expression analysis was performed on the same 3 non-ADPKD and 4 ADPKD tissue 
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samples used for RRBS, as well as an additional ADPKD sample. RNA was extracted from 

frozen tissue using the miRNeasy mini kit (Qiagen), and cDNA was synthesized using the high-

capacity cDNA reverse transcription kit (Applied Biosystems) without RNase Inhibitor. The 

qPCR analysis was performed on cDNA using the SYBR Premix Ex Taq (Tli RNaseH Plus) 

kit (Takara) in a LightCycler 480 system. All qPCRs were performed in triplicate with PKD1 

primers designed to target the 3´ end of the cDNA, with primers targeting B2M and EEF1A1 as 

housekeeping genes. Data analysis was carried out using the software qbase+ to determine the 

relative expression of PKD1 in ADPKD compared to non-ADPKD tissue. 

 

Results 

ADPKD shows global hypomethylation compared to non-ADPKD kidneys  

We compared global methylation patterns between the ADPKD and non-ADPKD kidneys. For 

this comparison, we required that each fragment fulfilled the coverage criteria of 10 or more 

reads and ≥ 2 CpG sites in each fragment) in both analysed groups. Subsequently referred to as 

“common analysed fragments”, there were 345,711 fragments (336,121 from autosomes and 

9590 from sex chromosomes) that contained a total of  1,785,585 CpG sites. The distribution 

of global methylation patterns revealed a bimodal distribution in both non-ADPKD and 

ADPKD samples (Supplementary Fig. S1). This observation is consistent with RRBS 

methylomes observed in somatic cells [23,24]. 

 

The global methylation profiles of the common analysed fragments showed slight, yet 

significant, hypomethylation in ADPKD compared to non-ADPKD kidney (Wilcoxon rank 

sum test, P-value < 2.2e-16, median methylation = 0.76 and 0.78 in ADPKD and non-ADPKD 

kidney respectively). We wanted to determine whether the hypomethylated fragments were 

enriched in particular genomic regions and therefore we performed a similar global analysis on 
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individual genomic elements: gene promoters (-5kb to +1 kb from TSS), introns, exons, intron-

exon boundaries and intergenic regions (Figure 1A and Supplementary Table S2). We also 

performed global analysis on CpG island (CGI) features: CGI cores (contains the core 

CpG island), CGI shores (flanking 2 kb either side of the CGI core), CGI shelfs (flanking 2 kb 

either side of the CGI shore) and open sea (isolated CpGs in the genome) (Figure 1B and 

Supplementary Table S3). Hypomethylation of ADPKD was observed in all these genomic 

elements and CGI features (~2%), but more so in exons (3%) and to a lesser extent in fragments 

overlapping promoters (1%), intron/exon boundaries (0.3%) and CGI cores (0.8%). 

 

Region-specific differential methylation in ADPKD 

Differential methylation analysis was used to determine region-specific methylation differences 

between ADPKD and non-ADPKD kidney tissue. RRBS MspI fragments were used as the unit 

of analysis as previously described [19,23,24]. An ANOVA test followed by corrrection for 

false discovery rate (FDR <0.05) and the requirement for an absolute difference between  

kidney and ADPKD methylation of ≥0.10 identified 13 significantly differentially  methylated  

fragments  (DMFs)  among  the 345,711 common analysed fragments (Figure 2A, Table 1). Of 

the DMFs, 62% were hypomethylated in ADPKD  compared  to non-ADPKD kidney  (eight  

hypomethylated;  five hypermethylated). In relation to genomic features, two DMFs overlapped 

with gene promoters (-5kb to +1 kb from the transcription start site, TSS), six overlapped with 

gene bodies (five in introns and one in an intron/exon boundary) and five were intergenic (>5kb 

upstream of any gene). In comparison to the common analysed fragments (Figure 2B), there 

was an enrichment of DMFs overlapping with intergenic regions and intron/exon boundaries 

(Figure 2C). The two genes containing promoter DMFs were: NAGLU (which encodes an 

alpha-N-acetylglucosaminidase enzyme) and EFCAB4B (a calcium channel regulator; Figure 

2D, Table 1). The six genes with gene body DMFs were: CPLX1 (a regulator of cytoplasmic 
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vesicle exocytosis) GET4 (a part of the BAG6/BAT3 cytosolic protein quality control complex), 

DAGLB (a diacylglycerol lipase enzyme), KDELR2 (a receptor required for retention of 

proteins in the endoplasmic reticulum), DCLRE1C (a DNA cross-link repair enzyme), and 

TMPRSS6 (a type II transmembrane serine proteinase; Figure 2D, Table 1). Some of the DMFs, 

including two that were intergenic, overlapped predicted gene enhancer regions 

(Supplementary Table S4) and transcription factor binding sites (Supplementary Table S5).  

 

The methylation landscape of PKD1 in ADPKD 

PKD1 is a large gene (47.2 kb in length with 46 exons and 47 introns) that plays a central role 

in the pathogenesis of AKPKD. To our knowledge there is currently no single nucleotide 

resolution DNA methylation data available for the whole PKD1 gene in ADPKD. Therefore, 

here we have particularly focused on characterizing the methylation status of this gene. For the 

PKD1 gene, we obtained high quality methylation information for 68 RRBS fragments 

containing 374 CpG sites (Supplementary Table S6). Our RRBS libraries did not have sufficient 

sequencing read coverage upstream of the TSS, with the exception of one 67 bp fragment 

containing 9 CpGs (3.6 kb from TSS) that was fully methylated in both ADPKD and non-

ADPKD but in contrast, exon 1 and part of intron 1 was almost fully unmethylated. The gene 

body of PKD1 was largely fully methylated in both non-ADPKD and ADPKD kidney tissue 

(Figure 3A and Supplementary Table S6). These findings are consistent with the pattern 

observed in RRBS libraries of kidney tissue and kidney epithelial cells from the ENCODE 

project (ENCSR938TEC) [27]. There were no statistically significant DMFs in PKD1 using a 

FDR adjusted P-value <0.05, but with a nominal raw P-value threshold of <0.05 from the 

ANOVA, the ADPKD tissue had ten fragments in PKD1 with methylation differences greater 

than 0.10 compared to non-ADPKD kidney (Figure 3B and Supplementary Table S6). Three of 

the fragments in intron 1 of PKD1 and another on the boundary of intron 9 and exon 10 were 
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less methylated in ADPKD (14-44% difference in methylation) compared to non-ADPKD 

kidney. The other six fragments in intron 32, overlapping introns 40-41 and exons 41-42, and 

the intron 45/exon 46 junction at the 3’ end of the PKD1 gene body were more methylated in 

ADPKD (Figure 3B and Supplementary Table S6). One of the intron one fragments overlapped 

a predicted binding site for the transcriptional repressor CTCF (Supplementary Figure S2). Five 

of the 3´ fragments overlapped a predicted enhancer (Genehancer ID: GH16H002086, gene-

enhancer score = 12.2; Supplementary Table S6) and four of these fragments overlapped a 

predicted binding site for POLR2A, which potentially regulates transcription of PKD1 

(Supplementary Figure S2).  

 

A previous study had correlated an increase in PKD1 gene body methylation with a decrease in 

PKD1 mRNA expression in human ADPKD kidney[7]. We investigated the mRNA expression 

level of PKD1 in five ADPKD kidney samples, (including the four samples for which we had 

RRBS data) and compared this with the three non-ADPKD kidney samples. None of the 

ADPKD samples showed a decrease in PKD1 expression when compared with non-ADPKD 

kidney, with most showing a higher level of PKD1 mRNA. Overall the PKD1 gene had a 

significant 2-fold higher expression (P-value = 0.036) in ADPKD compared to non-ADPKD 

kidney (Figure 3C). Notably, the level of methylation in three of the 3´ fragments was 

significantly correlated (P-value < 0.05) with PKD1 expression (Supplementary Table S7).  

 

Discussion 

By generating and analysing single nucleotide resolution methylomes of cortical kidney tissue 

from individuals with autosomal dominant polycystic kidney disease (ADPKD) and from non-

ADPKD kidney tissue, we have shown that ADPKD exhibits global hypomethylation when 

compared with normal kidney. We have identified a gain of methylation at the 3’ end of the 
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PKD1 gene body, which is associated with a significant increase in PKD1 mRNA expression. 

In addition, thirteen loci show statistically significant differential gain or loss of methylation in 

ADPKD renal tissue. 

 

In cancer, global hypomethylation and site-specific gain of DNA methylation is observed [28]. 

Our results indicate that the methylation landscape of ADPKD compared to normal kidney is 

more likely to resemble the pattern observed in human cancers. However, the specific method 

used for global methylation profiling has implications in interpreting these results. We have 

used RRBS in this study, which enriches for functionally important CpG-rich regions of the 

genome but does not include repetitive elements at sufficient coverage. Repetitive elements are 

generally silenced by high amounts of DNA methylation. In cancers, several types of these 

repeat elements tend to lose methylation marks, leading to global hypomethylation [9]. Based 

on our data, it is plausible that if whole genome methylation were analysed, the degree of 

hypomethylation is likely to be even more pronounced in ADPKD samples compared to normal 

kidney tissue. 

 

In contrast to these RRBS data, genome–wide methylation profiling of ADPKD tissues by Woo 

et al.,[7] using MIRA seq, indicated a global hypermethylation, with only 9% of the ADPKD 

genome being hypomethylated. In agreement with the RRBS data, they also observed 

hypermethylation of the PKD1 gene body.  However, Woo et al have correlated this PKD1 

hypermethylation with a decrease in PKD1 gene expression levels, whereas our PKD1 gene 

expression analysis did not indicate a loss of PKD1 expression in the ADPKD tissues, with all 

ADPKD samples showing the same or higher mRNA levels when compared with non-ADPKD 

renal tissue. Overall, there was a 2-fold higher expression of PKD1 in the ADPKD samples 

(Figure 3C). Our expression data are consistent with a number of earlier studies that have noted 
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an increase in PKD1 mRNA and protein expression in ADPKD kidney.[29-33] In addition, the 

level of PKD1 expression we observed in each ADPKD sample significantly correlated with 

the extent of DNA methylation in several fragments at the 3’ end of the PKD1 gene body 

(Supplementary Table S7). 

 

The difference in the findings of our study and Woo et al. could be largely explained by the 

platform used for profiling methylation patterns. There are at least twenty different techniques 

that have been developed to interrogate genome-wide DNA methylation patterns[34], which 

provide snapshots of the genome based on their design. The most commonly-used of these 

include HumanMethylation450 BeadChip (450K) DNA methylation profiling, enrichment-

based methods include Methylation-dependent Immunoprecipitation followed by sequencing 

(MeDIP-Seq) and MIRA-seq[35], reduced representation bisulfite sequencing (RRBS) and 

whole genome bisulfite sequencing (WGBS).  While WGBS potentially allows investigation 

of every CpG site in the genome, cost and data management considerations have advanced the 

use of alternative methods. RRBS is an alternative to WGBS, that through the use of a 

methylation insensitive restriction digest and size selection process, enriches for CpG sites, 

CpG islands (~ 30-fold for human) and gene promoters and gene bodies[36]. The 450K 

BeadChip approach is the most popular method for genome-wide DNA methylation due to its 

low cost and ease of data analysis. However 450K arrays allow investigation of only 1.7% of 

the CpG sites in the genome, one tenth the sites examined using RRBS.  Enrichment-based 

methods have a number of limitations and do not allow investigation of single CpG sites, with 

a lower accuracy rate when compared to RRBS and WGBS[37]. 

 

Woo et al. used MIRA (methylated-CpG island recovery assay), which exploits the affinity of 

two methyl binding domain proteins (MBD2b and its homologue, MBD3L1). These MBD 
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proteins form a complex and have higher affinity to bind to methylated DNA (in the CpG 

context). The binding of this complex is dependent on the CpG density of the genomic locus 

[38]. These bound DNA fragments (enriched for CpG-methylated DNA) are sequenced 

followed by analysis of methylation. On the other hand, RRBS is based on MspI digestion 

followed by massively parallel sequencing to provide a genome-wide methylation map [20]. A 

recent study of B-cell subsets using MIRA-Seq demonstrated that the majority of methylation 

peaks are present in intergenic and intronic regions, and are less frequent in CpG islands [39], 

while RRBS highly enriches for CpG island fragments. We hypothesise that the difference in 

these two approaches results in analysis of different CpGs and therefore dissimilar differential 

methylation patterns. The two platforms also substantially differ in their CpG coverage. For 

example, Woo et al obtained 1 million distinct CpG sites (per million sequence reads) for the 

pooled non-ADPKD tissue, and 0.7 million unique CpG sites for the three ADPKD tissues. In 

contrast, we analysed 1,525,770 unique CpG sites in both groups using RRBS.  MIRA is based 

on the principle of affinity and enrichment, and a limitation of this approach is that they do not 

allow investigation of single CpG sites, and the efficiency of the methylation calls is affected 

by the CpG density of the genomic locus [40]. Moreover, they are more prone to error if the 

samples have copy number variation. Large-scale studies have demonstrated that enrichment-

based methods have lower accuracy compared to RRBS and Whole Genome Bisulfite 

Sequencing (WGBS) [37,41]. 

 

Another factor that may explain differences found between these two studies is that of tissue 

heterogeneity. While both Woo et al.,[7] and the current study have sampled cystic tissues from 

the renal cortex of ADPKD patients, there is likely to be tissue variation between samples. In 

addition, the potential for different cell types to be present within or between samples could 

lead to an alternative set of differentially methylated fragments being identified. The possibility 
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also exists that the DNA methylation differences noted between ADPKD and non-ADPKD 

kidney are related to changes associated with end-stage kidney disease, rather than cystic 

growth.  A recent study by Chu et al., 2017[42], identified DNA methylation changes associated 

with chronic kidney disease (CKD) in two large cohorts of CKD patients.  However, none of 

the 243 eGFR-associated CpGs identified overlap with our DMFs, leading us to conclude that 

the DNA methylation changes uncovered in the current study are not related to CKD. A further 

limitation in this study is the small number of samples analysed, which limits the statistical 

power for detecting significant differences between the two groups. Future studies using a 

higher number of ADPKD samples will provide further insights about the differential 

methylation landscape in this disease. However, this first genome-scale single nucleotide 

resolution analysis of DNA methylation in human polycystic kidney using RRBS, has revealed 

a number of loci that are epigenetically altered in cystic tissue, and further elucidation of the 

potential role these play in cystogenesis will be the subject of future studies. 

 

Conclusions 

Methylation profiles of ADPKD kidney using RRBS showed global hypomethylation in 

ADPKD compared to non-ADPKD kidney. This is in contrast to previously published work but 

is consistent with the observed similarities between ADPKD and neoplasia. Thirteen 

significantly differentially  methylated  fragments were identified, eight of which are associated 

with a specific gene. In addition, ten fragments in the PKD1 gene showed differences in 

methylation between ADPKD and non-ADPKD kidney. However, none of the ADPKD tissue 

samples showed a decrease in PKD1 expression when compared with non-ADPKD kidney, 

with most showing a higher level of PKD1 mRNA. These data suggest that DNA methylation 

differences are associated with ADPKD and further exploration into the significance of these 

changes may shed new light on the disease process. 
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Figures 

 

 
 

Figure 1: Global DNA methylation patterns of different genomic and CpG island features in 

ADPKD. DMAP software was used to generate MspI fragment-based methylomes from the 

renal cortex of non-ADPKD (n=3, shown in blue) and ADPKD kidney (n=4, shown in red). A. 

In all common analysed fragments (n=345,711), the median methylation in ADPKD (0.76) was 

significantly lower (Wilcoxon rank sum test, P-value < 2.2e-16) than non-ADPKD kidney (0.78) 

and this trend was also observed in the different genomic features: gene promoters, introns, 

exons and intergenic regions. B. The median methylation in ADPKD was also lower in all the 

different CpG island (CGI) features: CGI core (contains the core CpG island), CGI shore 

(flanking 2 kb either side of the CGI core), CGI shelf (flanking 2 kb either side of the CGI shore) 

and open sea (isolated CpGs in the genome). Boxplots show the distribution of methylation: 

minimum, maximum, interquartile range (box), and median (black bar). 
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Figure 2: Differentially methylated fragments identified in ADPKD. DMAP software was used 

to determine region-specific methylation differences between non-ADPKD (n=3) and ADPKD 

(n=4) kidney using the MspI fragments as the unit of analysis. An ANOVA test followed by 

correction for false discovery rate (FDR<0.05) and inclusion of fragments with a methylation 

difference ≥10%. was used to identify significantly differentially methylated  fragments 

(DMFs). A. Methylation of each of the 13 DMFs is plotted on a heatmap from 0 (dark blue) to 

1 (dark red). B. The genomic distribution of all 345,711 common analysed fragments. C. The 



 

 

153 

genomic distribution of the 13 DMFs. D. Scatter dot plots of the 8 DMFs overlapping promoter 

regions or gene bodies. Bars show mean ± SD. 

 

 
 

Figure 3: The methylation profile of the PKD1 gene in ADPKD compared to non-ADPKD 

kidney. A. UCSC genome browser view of RRBS fragments (in black track; DMFs shown with 

red asterisk) overlapping the PKD1 gene (blue track), CpG islands (green track) and ENCODE 

transcription factor binding sites (grey/black track). The MspI fragment-based methylomes 

from renal cortex of non-ADPKD (n=3, blue line) and ADPKD kidney (n=4, red line) had 68 

fragments (black bars, median length = 86 bp) across the PKD1 gene. B. Using a nominal raw 

P-value threshold of <0.05 from the ANOVA, the ADPKD tissue had ten fragments in PKD1 

with methylation differences greater than 10% compared to non-ADPKD kidney (loci indicated 

in panel A with red asterisks).  C. PKD1 gene expression in ADPKD was significantly higher 

(Mann Whitney U test, P-value < 0.05) than non-ADPKD kidney. An additional ADPKD 

sample to those analysed by RRBS was included in the expression analysis (n=5). Bars show 

mean ± SD. 
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Table 1. Differentially methylated fragments identified in ADPKD 

Chr 
Fragment  

Start and End 

FDR adjusted 
P-value 

(FDR<0.05) 

Non-ADPKD 
Methylation 

ADPKD 
Methylation Methdiff1 Closest protein-coding 

gene and function 

2 771624 – 771728 0.049 0.44 0.79 0.34 -94kb from TMEM18 

4 793929 – 794143  0.034 1.00 0.82 -0.18 
CPLX1 (intron 2) 

Cytoplasmic vesicle 
exocytosis 

7 922176 – 922249 0.003 0.33 0.85 0.52 
GET4 (intron 1) 3 

Cytosolic protein quality 
control 

7 6495310 – 6495378 0.034 0.37 0.59 0.22 
DAGLB (intron 1) 

Diacylgylcerol lipase 
enzyme 

7 6511106 – 6511153  <1.79E-17 1.00 0.90 -0.10 

KDELR2 (intron 2) 

Protein retention in the 
ER 

DAGLB (intron 1) 

Diacylgylcerol lipase 
enzyme 

9 130768316 – 
130768366  0.038 0.56 0.13 -0.43 -26 kb from FAM102A2, 3 

10 14979087 – 
14979136  <1.79E-17 0.00 1.00 1.00 

DCLRE1C (intron 4) 

DNA crosslink repair 

12 3862528 – 3862582 0.035 0.25 0.08 -0.17 
EFCAB4B (promoter) 3 

Calcium channel regulator 

17 40683608 – 
40683711  0.048 0.57 0.34 -0.23 

NAGLU (promoter) 3 

Alpha-N-
acetylglucosaminidase 

18 10271529 – 
10271568 <1.79E-17 1.00 0.80 -0.2 -183kb from APCDD1 

19 789109 – 789181 0.034 0.71 0.35 -0.36 -8kb from PTBP12, 3 

20 2513933 – 2513980 1.79E-17 0.90 0.67 -0.23 -9kb from ZNF343 

22 37499386 – 
37499523  0.048 0.25 0.43 0.18 

TMPRSS6 (intron 1/exon 
2) 

Transmembrane serine 
proteinase 

1 Methdiff = average methylation difference between non-ADPKD and ADPKD kidney tissue (a negative value 
indicates hypomethylation in ADPKD tissue compared to non-ADPKD). 
2 Fragment overlaps a transcription factor binding site for this gene, as predicted by OregAnno analysis. 
3 Fragment overlaps predicted enhancer regions reported by Genehancer. 
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Additional data 
 

Supplementary Figure G.1: Median global methylation of ADPKD and non-ADPKD tissue 
excluding sample ADPKD D III 
Sample ADPKD D III was excluded from the global analysis to confirm that the lower median 
methylation of this fragment was not contributing to the pattern of hypomethylation seen in ADPKD. 
Non-ADPKD n = 3 (blue), ADPKD n = 3 (red). p < 2.2E-16. 
 

Supplementary Table G.1: Correlation between DMF methylation and PKD1 expression in 
ADPKD and non-ADPKD tissue 
Correlation calculated with Spearman’s correlation: * = p < 0.05, ** = p < 0.01. XY pairs refers to the 
number of comparisons between DMF methylation and PKD1 expression in each Spearman’s 
correlation calculation at each coordinate. 

 

Chromosome coordinates: r (p): XY pairs: 
16:2140121-2140224 0.9286 (**) 7 
16:2141559-2141709 1 (**) 6 
16:2141710-2141753 0.8214 (*) 7 
16:2141754-2141820 0.5714 7 
16:2141821-2141911 0.9 5 
16:2147611-2147671 0.8857 (*) 6 
16:2165619-2165775 -0.6 4 
16:2174437-2174483 -0.9643 (**) 7 
16:2174683-2174753 -0.7714 6 
16:2176100-2176196 -0.8286 6 

M
et
hy
la
tio
n

Global Promoter Exon Intron Intron/Exon Intergenic

0.0

0.2

0.4

0.6

0.8

1.0



 

 

156 

   

   

   

   

   

  

 

 
Supplementary Figure G.2: Distribution of fragment sizes in RRBS libraries 
Depiction of the distribution of RRBS fragment lengths. Fragments are no shorter than 40 bp and no 
greater than 220 bp. Libraries generated from 0.5 µg of DNA do not have a distinct peak at 140 bp 
unlike their 2.5 µg counterparts. 
  

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Non−ADPKD E

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Non−ADPKD G

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Non−ADPKD H

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

ADPKD 05

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

ADPKD 07

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

ADPKD 08

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

ADPKD D I

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

ADPKD D II

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

ADPKD D III

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 1

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 2

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 3

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 4

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 5

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 6

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 7

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0
14
0
15
0
16
0
17
0
18
0
19
0
20
0
21
0
22
0

Sequence lengths

C
ou

nt

Cyst 8



 

 

157 

 

Supplementary Figure G.3: Median methylome analysis at CpG islands 
The median methylation of the non-ADPKD reference sample (blue) and ADPKD D (red) in relation to 
CpG islands. ADPKD was significantly hypomethylated at all regions, therefore the reason for global 
hypomethylation could not be due to the over-representation of fragments within all in a CpG core, for 
example. 
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Correlation of RRBS libraries 
Supplementary Table H.1: Pearson’s correlation coefficient between all 19 RRBS libraries 
n = 36,824 fragments, p < 2.2E-16 for all observations.  
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DMF-associated expression 
 

 

Supplementary Figure I.1: qPCR of whole tissue DMF identified genes 
Eight genes associated with DMFs were investigated with qPCR in whole tissue from renal samples. 
n(non-ADPKD) = 3, n (ADPKD) = 5. Only GET4 and NAGLU had significant differential expression 
(p < 0.05). 
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