
i 

 

 

Reconceptualizing the Periaqueductal Grey: Fear, Anxiety and 

Motivational Systems in an Ancient Structure 

 

 

 

 

by 

Carlos Eduardo Barroso Silva 

 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy  

at the University of Otago, Dunedin 

New Zealand 

 

 

September 2018 

 

 

Thesis Supervisor: Neil McNaughton 

  



ii 

 

Abstract 

The periaqueductal grey (PAG) is classically seen as a region responsible for the control of 

defensive reactions. This thesis provides a detailed review of anatomical and functional data on 

the different parts of the PAG together with the dorsal raphe. Based on anatomical features, this 

thesis proposes a new subdivision of the PAG that accounts for the distinct characteristics of 

the area. I provide a comprehensive functional view of the PAG, going beyond simple panic 

and escape to integrate data on fear, anxiety, and depression. Importantly, I conclude that this 

periaqueductal cluster of nuclei is broadly involved in motivated behavior controlling not only 

aversive but also appetitive behavior and with some involvement in more complex motivational 

processes such as approach-avoidance conflict resolution. To test some of these hypotheses, I 

present experimental evidence showing that the PAG can produce an anxiety-like signal in the 

forebrain, and compare it to the signal evoked by reticular stimulant. Furthermore, I explore the 

effect of pharmacological interventions in tegmental areas and how these impact PAG- and 

RPO-evoked responses. In sum, I propose that the PAG is a highly conserved region 

surrounding the aqueduct and it appears to be the simplest, foundational, element of controlling 

integrated motivated goal-directed behaviors of all types. 
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Chapter 1. Introduction 

The need to survive by reacting appropriately to external threats is one of the strongest 

drives in biology. Many animals, from the simplest marine vertebrates to neurologically 

complex primates, have nervous systems dedicated to producing appropriate reactions to 

perceived threats. It is generally believed that many mental disorders arise from dysfunction of 

these defense systems. For example, a human panic attack is recognized as a homologue of the 

defensive reactions animals make to threats that are close, imminent and life-threatening. While 

panic can be adaptive in the face of actual danger, it becomes a ‘disorder’ if it occurs 

unexpectedly when no danger exists, or if the response is otherwise inappropriate or excessive 

given the actual threat.  

Panic disorder is among the most expensive of the psychiatric disorders, at both the 

individual and societal level (Smit et al., 2006). In Europe, panic disorder has an annual cost of 

~€14,000 per person diagnosed (Batelaan et al., 2007). Furthermore, comorbidity is common 

and half the patients diagnosed with panic disorder also suffer from depression and/or 

agoraphobia (Baldwin, 1998), making diagnosis and treatment even more challenging and 

costly. 

Both adaptive and dysfunctional panic are controlled by the midbrain’s periaqueductal grey 

(PAG), which is the lowest structure in a neural hierarchy controlling defense and aggression. 

The PAG is thus implicated in a range of mental disorders and is best known for its involvement 

in panic and anxiety. However, the nuclei of the PAG have quite a complex structure and a 

broader functional scope than usually attributed to them (which I will argue can be treated as 

including the dorsal raphe). In Chapter 2, I review the structure and function of the different 

parts of the PAG; argue that the dorsal raphe (DR) constitute a vital part of this complex; and 

present a novel picture of these nuclei as the most caudal integrative control centers of not only 

defensive responses but also appetitive ones. Necessarily, I also discuss the systems that resolve 

goal conflict between these two types of responses.   

The PAG’s involvement in disorders of emotion was first demonstrated via stimulation 

experiments with cats, where electrical stimulation of the PAG directly elicits aggressive-

defensive behavior, despite the absence of any threatening stimulus (Fernandez De Molina & 

Hunsperger, 1962; Hunsperger, 1956). Although a very similar set of responses is evoked from 

electrical stimulation of the central nucleus of the amygdala and from an area that the authors 

dubbed the “hissing zone” of the hypothalamus, destruction of the cat PAG renders stimulation 

of these other areas ineffective, while the opposite is not true: PAG stimulation still elicits 
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aversive reactions even after hypothalamic and amygdalar lesions (Schreiner & Kling, 1953). 

PAG is therefore considered fundamental and necessary as the lowest structure in the 

hierarchical top-down control of defensive and aggressive strategies in the brain. 

Human case studies show similar results. Patients with Urbach-Wiethe disease, a rare 

genetic disorder that causes calcification of parts of the brain (Koen et al., 2016), show some 

dysfunction in emotional memory and negative facial expression recognition if their amygdala 

has been affected, but are still largely emotionally and autonomically responsive to other fear- 

and anxiety-inducing cues (Adolphs, Tranel, Damasio, & Damasio, 1994; Bach, Hurlemann, & 

Dolan, 2013; Becker et al., 2012; Hurlemann et al., 2007; Lindquist, Wager, Kober, Bliss-

Moreau, & Barrett, 2012; Markowitsch et al., 1994; Terburg et al., 2012). 

 

 Basic problem: what’s so special about the PAG and the mind? 

The PAG stands as a misunderstood structure in the current neuropsychological research 

landscape. A lot is known about its properties, functions and involvement with pathologies, and 

yet this information has not been drawn together to make a coherent picture. Take for instance 

the most common conceptualization of the PAG as a crucial node in the defense and emotional 

system. This is in fact correct: the PAG is the lowest level in the brain hierarchy that produces 

unified, intense aversive reactions in any animal that has an identifiable PAG. Although other 

parts of the brain are also capable of producing intense emotional reactions, if the PAG is 

removed from the system (pharmacologically or through lesioning) then these responses cease, 

indicating that the PAG is of fundamental importance. With more than 50 years of research into 

the midbrain and its roles in emotion, the image of the PAG as the seat of negative emotions 

has dominated the field. 

However, as early as the 1980s, the PAG was also shown to be fundamental to something 

a lot more pleasant than fearful experiences of terror: the initiation of sexual behavior. It is true 

that sexual behaviors can be generated from regions other than the PAG, such as certain 

divisions of the hypothalamus. However, just as it is the case with fear evocation, lesions of the 

PAG eliminate sexual behaviors evoked by the hypothalamus (Chapter 2). 

The PAG’s influence on positive behaviors does not stop only at sexual initiation: it is also 

part of the circuit involved in speech generation. In fact, its role in vocalizations is so deep that 

animals can be rendered mute by lesions of the PAG. Certainly, there are important differences 

between animal vocalizations and human speech. The first and most obvious difference is that 
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animal vocalizations are devoid of complex semantic content. Although several mammalian 

species are endowed with the ability to produce distinct vocalizations that are understood by 

conspecifics to convey different messages, these clearly pale in comparison with the complexity 

of human speech. Secondly, animal sounds are frequently the result of an emotional response 

to environmental pressures and not something that appears to be under volitional control, as 

seen during threat or conflict, sexual courting, or when distressed pups seek maternal attention. 

Speech in humans, on the other hand, is a more measured affair, where individuals tend to 

engage in controlled, voluntary exchanges instead of involuntary emotional utterances. With 

that in mind, can we claim that the PAG is fundamentally involved in human speech? Evidence 

is mounting that it is. At least three reported cases of human PAG lesions have resulted in 

mutism (Esposito, Demeurisse, Alberti, & Fabbro, 1999), and, in fMRI studies where 

participants are instructed to produce voluntary speech, the PAG is shown to be active both 

during proper speech, and also during whispered, non-vocalized speech (Schulz, Varga, 

Jeffires, Ludlow, & Braun, 2005).  

How can a region that is capable of producing intense fear and aggressive defensive 

reactions also produce states that are at the other end of the emotional spectrum? A search on 

the Web of Science database for the keyword “periaqueductal” plus “panic” or “fear” yields 

95,561 research papers. In comparison, “periaqueductal” plus “sex” or “lordosis” (the 

prominent female sexual behavior in rodents) only returns 5,367 articles. Furthermore, the 

PAG’s involvement in sex and speech are not the only overlooked functions of this region: the 

rodent PAG has clear involvement in maternal behavior and is part of the brain networks 

controlling social interactions as well. 

The inconsistencies about what kind of structure the PAG is exist even in its most widely 

accepted role as a defensive region of the brain. For example, the dorsolateral division of the 

PAG has been described as “an important site for the organization of fear responses to 

predators” (Gross & Canteras, 2012). However, responding to the presence of a predator was a 

role also ascribed to a different part of the PAG, the dorsomedial column: “[which] could 

contribute to the overall pattern of somatomotor and autonomic responses expressed by animals 

facing natural threats” (Borelli & Brandao, 2008). The dorsomedial and dorsolateral are two 

distinct parts of the PAG, with different connections and receptors. It is unlikely that 

structurally different regions would have the same function. As another example of 

inconsistencies regarding the PAG, it has been said that “the lateral PAG column (and its 

associated circuit) is activated preferentially by ‘escapable’ physical stressors to which an 

active defensive reaction(s) is the primary response” (Keay & Bandler, 2015), while at the same 
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time it has been said that “(…) the lateral PAG can influence motivational drive to seek 

appetitive reward” (Motta, Carobrez, & Canteras, 2017). Once again, it is inconceivable, at 

least at face value, that activation of a single specific region of the brain would provoke escape 

(the act of moving away from physical stressors) and at the same time drive approach (the act 

of moving closer to appetitive rewards). 

And beyond this functional inconsistency, how can the PAG be conceptualized in models 

and theories of the mind as this ancient region for negative reactions, if it also regulates aspects 

that are so diametrically different? Theoretical frameworks, which are used to guide further 

research and insights into the nature of the human mind, have an incomplete view of the PAG. 

The main objective of this thesis is to attempt to correct how the PAG is conceptualized.  

 Defensive systems 

1.2.1. The question of movement 

“If you root yourself to the ground, you can afford to be stupid.” 

(Churchland, 1986) 

In order to discuss the functions of the PAG, we first need to discuss the dynamics that were 

responsible for the development of the PAG itself – and the rest of the nervous system, for that 

matter. The evolution of the neuron, one of the fundamental units in the nervous system and 

one of the main targets of scientific enquiry into the human mind, gives insight into what these 

forces might be. Sedentary multicellular organisms, like for instance the sponges in the phylum 

Porifera, lack neurons – i.e. cells capable of transmitting signals, electrical and/or chemical, 

among themselves. Despite possessing many features that would indicate otherwise, such as 

receptor genes and neurotransmitters, no animal in this phylum is endowed with a neuronal 

network similar to mammals (Conaco et al., 2012).  

The phylum Ctenophora is considered to be the earliest example of animals possessing a 

nervous system serving molecular functions similar to mammals. Jellyfish in the Cninidaria 

group are also endowed with a diffuse nerve network, which is capable of signaling to produce 

a motor response if mechanical stimulation to the organism is detected. But the nature of the 

responses produced are crude; cells in the jellyfish orchestrate motor responses that are not 

guided in any particular orientation in relation to the detected stimulus (Bucher & Anderson, 

2015). In other words, a jellyfish reacts to a threat, even if such reaction involves moving in the 

direction of the threat. Clearly animals that are capable of coordinating the direction of their 

responses to environmental stimuli would be at an evolutionary advantage. Indeed, the comb 
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jellies in the phylum Ctenophora are greatly differentiated from the cnidarians by the defining 

presence of small filaments over their bodies called cilia. It has been shown that organisms in 

the Ctenophora group are capable of producing directed escape away from physical stimulation 

(Mackie, Mills, & Singla, 1992) Also, the same cilia are also used to direct the animal towards 

food (Tamm, 2014). 

Looking to these rudimentary organisms for inspiration and extrapolating the simple 

dynamics of these early neurons to the more complex mammalian nervous system, a reasonable 

theory would be that humans are at the end of an evolutionary road that pressured organisms to 

produce increasingly sophisticated responses to guide them toward or away from certain 

discrete positive or negative stimuli. Although sedentary sponges have virtually the same genes 

coding for the expression of receptors and neurotransmitters found in higher order animals, it 

may have been the necessity to move and control the direction of that movement that 

transformed these cells into recognizable neural networks. 

1.2.2. Trying to predict the future: not-so-clear and not-so-present danger  

As new and ever more complex nervous systems started to develop, the strategies employed 

to deal with environmental pressures grew more sophisticated. Whereas the early sea 

ctenophores and cnidarians could only move away from danger once it was close enough for 

physical contact, humans, as other vertebrates, are capable of foreshadowing future events with 

some degree of precision, allowing them to act long before physical contact with the threat is 

established. 

The influential work of Caroline and Robert Blanchard (1988) highlights the arsenal of 

distinct behaviors employed by rats depending on the imminence of the threat. They 

demonstrated that the array of behaviors shown by rats is dependent both on the distance 

between the rat and the perceived threat, as well as the rat’s perception of the likelihood of 

escape.  

At the lowest level of the defense hierarchy is the phenomenon of thanatosis, or tonic 

immobility. When prey perceives that it is cornered or captured by a predator, it can cease 

movement and become unresponsive to physical stimuli, even painful ones. In rare controlled 

lab experiments that studied this tonic immobility, it was shown that the behavior increases 

survival of the prey by serving as a distraction to predators (R. K. R. Thompson et al., 1981). 

Once the prey was captured and started displaying tonic immobility, the predator, probably 

assuming that their prey is dead, would release it and engage in hunting other nearby targets. 

However, as soon as the predator removed itself from the location, the prey would return to its 
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active state and make its escape. As a very crude means of survival, tonic immobility is present 

across a wide range of land vertebrates such as mammals, birds, reptiles and amphibians, and 

also in fish. Beyond vertebrates, it has also been reported in invertebrates such as crustaceans, 

and even insects and arachnids. As it does not require distinct anatomical appendages or 

specialized behavior to develop (in fact, this strategy relies solely on not having any overt 

behaviors), tonic immobility is a suitable mechanism of defense even among the simplest of 

organisms (Humphreys & Ruxton, 2018). Despite being a very cunning method of self-defense, 

tonic immobility is very rudimentary as it is employed not to avoid threat, but to try and solve 

it after attack has commenced. 

On the next level of the defense hierarchy is attack. When an animal is cornered and 

perceives no available escape route, but has yet to be captured, it may display signs of 

aggression, such as threatening vocalizations and body postures. In rats, if these strategies are 

not sufficient to thwart predator approach, then the animals might attack the predator at close-

quarters distances, usually in the face area, and then attempt to escape. Although this behavior 

is observable in wild rats, the behavior is virtually abolished in laboratory strains of rats (D. C. 

Blanchard, Griebel, & Blanchard, 2003), making the study of this behavior difficult in 

domesticated strains. 

However, if predator presence is detected but attack is perceived as not being imminent, the 

prey will most likely engage in freezing. Also, it is thought that animals might display freezing 

under scenarios of uncertainty, when predator presence is not well established. Freezing 

behavior works by mostly reducing detection by a predator, and it also provides the prey with 

time to assess the situation and gather more evidence as to whether or not it should escape the 

location or attack the predator. Although freezing is perhaps the most studied defensive 

behavior in animals, it is also extremely misunderstood in relation to its functions. For instance, 

freezing behavior not only occurs as a pre-emptive measure before a physical confrontation, 

but it also frequently happens after an aversive physical event (Fanselow & Lester, 1988). At 

this point it should be noted that, at a superficial level, although pre-encounter freezing, post-

encounter freezing and tonic immobility all resemble one another, they are very distinct 

strategies of defense that are heavily dependent on context and situation. Also, these behaviors 

are sensitive to different classes of drugs, and are reliant on different brain networks.  

Whenever a predator’s presence is at all uncertain, rodents and other animals will also 

engage in risk assessment behaviors, which is the next level of the defense hierarchy. In the 

Blanchard’s Visible Burrow System (R. J. Blanchard & Blanchard, 1989), an artificial system 

of subterranean tunnels was built in a lab setting, and animals were allowed to live in it as a 
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colony. When a cat was placed on the surface level of the system, the rats would quickly escape 

into the burrows below (one of the first, more basic defensive responses described above). 

When the cat was subsequently removed from the area by the experimenters, the rats would 

eventually move gradually back up towards the surface, displaying risk assessment behaviors. 

These would include stretching from the inside of the burrow to the opening outside, sniffing 

and head poking. The Blanchards noted that these risk assessment behaviors were long-lasting, 

and the colony would engage in them for 20 hours or more after the cat had been removed, 

while also suppressing other social activities (R. J. Blanchard & Blanchard, 1989). Another 

type of risk assessment strategy, when threat is perceived to be even less imminent or even 

more ambiguous than in the example above, is rearing behavior. Many mammals will rear on 

their hind legs when presented to novel stimuli or environments. This behavior, much like the 

stretching and sniffing of the Blanchard’s experiments, is thought to serve the purpose of 

gathering information about the environment and possible threats (Lever, Burton, & Ο'Keefe, 

2006). However, as the body posture of rearing leaves animals considerably exposed and 

vulnerable, it is reasonable to expect that it is only displayed when the animals assume that 

threat is not certain, and therefore is a behavior more toward the safe end of the defensive 

distance gradient.  

Now, let us pause for a moment and assume that the defensive hierarchy described above 

is more or less correct – and this is somewhat of a hard concession, as in the case of the 

confusion regarding the freezing behaviors described above, this is not a topic that the research 

community can readily agree on. But, considering momentarily that this hierarchy is an 

acceptable one, we can readily see that strategies at the close-proximity end of the spectrum 

(tonic immobility, fighting, escaping) are present in a big range of animal taxa, from creatures 

with simpler nervous systems such as insects and crustaceans to animals with complex ones, 

such as mammals. As we move towards the more elaborate end of defensive strategies that rely 

on information gathering and short- and long-term memory systems (stretching, sniffing, 

rearing), these behaviors start to be limited to selected mammals only (Lever et al., 2006). 

Leaving aside selective pressures (defensive behaviors are probably more acute in prey 

animals than predators, for instance) it seems evident that throughout the road of evolution 

animals gradually developed responses not only to clear and present danger, but also to not-so-

clear and not-so-present ones – or ‘imagined’ threats, in a sense. Perhaps no better example of 

reacting to imagined threats exists than humans. While rats can react cautiously for up to 20 

hours after they last had evidence that something dangerous was in the area, humans can react 

cautiously for a lifetime, even when the danger was never experienced first-hand. As 
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exemplified by Sapolsky (1998) book title, zebras indeed don’t get ulcers, because zebras are 

not spending their days in the savannah worrying about crime that they heard about in the news 

but were never victims of. Zebras have to deal with acute, immediate problems like a lion 

sprinting towards them, and then producing an according response, like escaping. Humans, like 

zebras, also have to deal with acute immediate dangers, and are well equipped to do so. 

However, unlike zebras, humans are also equipped to deal with future, anticipated problems 

that zebras cannot even fathom. In Woody Allen’s 1977 movie Annie Hall, a flashback scene 

to the main character’s childhood reveals that once as a young boy he ended up in the 

psychiatrist office with depression: 

Dr. Flicker: Why are you depressed, Alvy? 

Alvy Singer: The universe is expanding. 

Dr. Flicker: The universe is expanding? 

Alvy Singer: Well, the universe is everything, and if it’s expanding, 

someday it will break apart, and that will be the end of everything. 

Mrs. Singer: What has the universe got to do with it? You’re here, in 

Brooklyn. Brooklyn is not expanding! 

*** 

In the same way that brains are capable of reacting to aversive stimuli that can either be 

close or distant (be it physically or temporally), they are equally capable of reacting to close 

and distant appetitive stimuli as well. Hungry rats, for instance, can easily learn to press levers 

in order to receive a food reward. Given enough training, rats can even be convinced to engage 

in a little bit of future planning: press lever number one, and get a small reward; or press lever 

number two, wait a few seconds, and get a larger reward. With some tinkering, experimenters 

can adjust the ratios of delay, so if animals initially choose the sooner and smaller reward, the 

time delay of the larger reward would be decreased so it would be more seductive in the next 

trial. If then the animal chooses the delayed reward, its time delay would be increased, and so 

on. After a lot of micro-adjustments to these delay times (or the same can be done with reward 

sizes, to the same effect), animals eventually reach a stage of indifference to preference where 

they essentially choose the immediate reward in 50% of the trials and the delayed reward in the 

other 50%. At this point, the smaller immediate reward is taken to represent the subjective value 

that the rat gives to the larger future reward; in other words, if a rat’s point of indifference is 

between 1 pellet of food delivered now and 5 pellets of food delivered after 5 seconds, it would 
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be implied that both rewards have the same subjective value to the animal. As the value of the 

delayed reward is established as a function of the immediate reward, common delays to both 

the immediate and delayed rewarded can be added (i.e. in the case of the example above, now 

the 1 pellet of food comes after 2 seconds or the 5 pellets come after 7 seconds). As the common 

delay to both rewards starts to be gradually increased, animals gradually switch their preference 

and start to become future planners: the more delayed reward would be valued more highly. In 

humans, these patterns of valuing are remarkably similar to the ones in animals, with one single 

difference: the magnitude of the scale of the time that organisms are willing to wait for their 

rewards. As shown in figure 8 of Vanderveldt, Oliveira, and Green (2016), pigeons and humans 

show the same pattern of valuation of delayed rewards, but with many orders of magnitudes of 

difference in the time scale: a 20-second delay of food reward in the pigeon follows the same 

discounting pattern to a 10-year delay in monetary reward in humans. This could be taken as 

empirical evidence that pigeons, unlike young Alvy in Annie Hall, are probably not endowed 

with brain systems that allow them to worry about the consequences of the universe expanding. 

1.2.3. Could rudimentary structures have some form of sophistication? 

During vertebrate evolution (or at least during gnathostomes evolution), Nature promoted 

the creation of ever-increasing cerebral complexity not by scrapping previous ones and starting 

again from scratch, but by subtly modifying existing brain or, more usually, adding new brain 

on top of old, unchanging brain. Although some subcortical structures altered their shape due 

to other hypertrophied regions (for example, the superior colliculus of birds is relatively larger 

than the one in mammals, distorting the borders of the periaqueductal grey located ventrally), 

the more phylogenetically old brain regions remained largely preserved across species. The 

behaviors employed by vertebrates to deal with immediate threats and rewards are largely 

commanded by ancient, well preserved, midbrain, pontine and medullary regions. Aggressive 

reactions, the likes of which would be seen in animals reacting to close-quarter threats, are 

solely dependent on the PAG to the point that a cat that had most of its brain anterior of the 

hypothalamus removed would still produce defensive responses – albeit it in a more 

exacerbated, uncontrolled manner (Kaada, 1967). The PAG, by the way, is anatomically and 

biochemically similar across mammals, and has analogous regions in birds and fish as well. As 

another example, the basal ganglia in birds, reptiles and mammals is extremely well preserved, 

with similar cell populations, neurotransmitters and functions (Reiner, Brauth, & Karten, 1984). 

On the other hand, when it comes to cortical regions, in particular the neocortex, the 

differentiation among species is enormous even within primates (Kaas, 2012).  
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We could assume at this point that simplistic nervous systems give rise to blunt defensive 

reactions related to present and clear stimuli, while on the other end of evolutionary spectrum, 

complex brains developed the capacity to deal not only with certain and present stimuli, but 

that are also capable of predicting and committing to future, uncertain ones.  

 

 Wrapping up – establishing some of the questions and deciding on a plan 

With the scenario presented in this Chapter so far, I would like to return to the first question 

poised at the beginning about the PAG: how can an ancient region that is capable of producing 

intense fear and aggressive defensive reactions, also be capable of producing states and 

functions that are completely opposite in the emotional and evolutionary spectrum? 

In a two-dimensional system of defense proposed by McNaughton and Corr (2004), an 

anatomical hierarchy is described for the control of defensive reactions in the brain, related to 

distance to the threat (figure 3 in that publication). In this model, fear-related states (defensive 

avoidance) and anxiety-related ones (defensive approach) are placed in parallel on the 

defensive-distance continuum. For each level, it was hypothesized that each structure would 

possess anatomical subdivisions that command both avoidance and approach. Essentially, the 

avoidance column represents responses that are produced to threats perceived to be certain, 

while the approach column represents responses to threats perceived to be uncertain. An 

updated version of the scheme was proposed later (McNaughton, DeYoung, & Corr, 2016), 

with the addition of a third parallel column, indicating non-defensive approach systems – that 

is, brain structures concerned with commanding behavior and states to unambiguous appetitive 

stimuli at different distances from the organism. This image is reproduced here in Figure 1.1. 

As is clear in the figure, both phylogenetically old and new structures possess the ability to 

generate strategies that are rudimentary and sophisticated, respectively, to solve the problems 

of avoidance, approach and conflict. At the bottom of the image, however, we see an untidy 

scenario: where we might expect there to be approach properties assigned to the PAG, there is 

nothing.  
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Figure 1.1.The hierarchical organization of avoidance and approach (McNaughton et al., 

2016). Original model proposed by McNaughton and Corr (2004) 

 

The scenario presented in this Chapter – where approach and avoidance have primitive 

origins that are conserved and overlaid by later systems – suggests that the approach slot at the 

bottom right of the image should rightfully be occupied by the PAG. Simple approach is surely 

as primitive as simple avoidance. But which subdivision of the PAG would that be? And, if 

approach and avoidance are represented in PAG, would it not be reasonable to expect primitive 

mechanisms of approach-avoidance conflict resolution to have some presence there also? Is the 

existing evidence strong enough to justify altering the model? Do we have novel experimental 

evidence to support this change? This thesis will address these questions and go toward re-

conceptualizing the place of the PAG in the vertebrate motivational landscape. 

1.3.1. Thesis outline 

What is the PAG? 

In Chapter 2, I present an extensive review of the PAG’s anatomy and functions, in order 

to: 1) solve the inconsistencies about which part commands fear reactions; 2) propose a region 

that controls conflict; 3) propose a new subdivision of the PAG to accommodate evidence of 

its involvement in appetitive states; and 4) present a functional view of the PAG and dorsal 

raphe in relation to repeated conflict and the pathogenesis of depression.  
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Can the PAG produce conflict?  

In Chapter 4, I test the hypothesis that the PAG is able to generate conflict-like                                                                                                                                                                                                                                                                                           

activity in the forebrain. By recording local electrical activity from the prefrontal cortex and 

hippocampus of rats, I show that freezing behavior from electrical stimulation of the PAG 

generates cortical and hippocampal theta, an estimated index of conflict and anxiety. I also 

demonstrate that different regions of the PAG in the anterior-posterior axis produce opposing 

cortico-hippocampal responses, while generating the same behavior of freezing. 

Can the nucleus incertus influence PAG-generated states? 

In Chapter 5, I investigate how manipulating the nucleus incertus (one of the nodes in the 

theta-generating circuits of the brain) impacts the cortical and hippocampal theta produced by 

the PAG. The nucleus incertus has been shown to influence the generation of theta and also to 

heavily project to the PAG. I test the administration of both a classical and a novel anxiolytic 

into the nucleus incertus, as well as an agonist and an antagonist of the local nucleus incertus 

receptor, relaxin. 
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Chapter 2. The periaqueductal grey and the dorsal raphe: a locus of 

control for aversive and appetitive states 

 Introduction 

In this review, I describe the topography and biochemistry of the PAG complex, and delve 

into three of its functional domains: the regulation of appetitive and aversive states; motivation 

and decision-making during conflict; and its involvement in the behavioral traits and 

symptomology of depression.  

First, I summarize evidence that the dorsal PAG plays a major role in appetitive behaviors 

and states. While its role in positive affect is seldom emphasized in the literature, I highlight 

the dorsal PAG’s involvement in sexual and social approach, and propose two new anatomical 

divisions that account for this functional specificity, supported by anatomical and biochemical 

evidence.  

Second, I aim to demonstrate that the dorsal and ventral parts of the PAG compete and self-

regulate. The interactions of the parts of the PAG influence not only states and processes related 

to motivation but also decision-making during conflict. 

Third, I argue that, although the PAG’s hallmark function is the control of defensive 

reactions, the ventral PAG and DR evoke quiescent, recuperative states, and are involved in the 

long-term reduction of behavioral and autonomic activity seen in animal models of depression. 

By extension, I propose that a similar mechanism occurs in humans. 

 Anatomy of the periaqueductal complex 

2.2.1. Phylogeny of the PAG 

The PAG is a heterogeneous region. It has varying densities of cells and neuron-to-glia 

ratios throughout its extension, and also has distinct somatic shapes and dendritic arborization 

patterns that show no particular orientation (Behbehani, 1995). Despite this lack of uniformity, 

the whole length of the PAG shows a stable trend of increasing cell body size when moving 

radially from the aqueduct to the periphery.  

While early Nissl and Golgi staining methods failed to show partitions in the periaqueductal 

complex, later investigations employing cluster analysis of neuron groupings asserted that the 

PAG can be divided into dorsal and ventral portions (see F. Conti, Barbaresi, and Fabri (1988), 

for an overview). 
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Later immunohistochemical and retrograde tracing established that there were distinct 

columns within the PAG, using NADPH-d labeling (Carrive & Paxinos, 1994; Gonzalez-

Hernandez, Conde-Sendin, & Meyer, 1992; Johnson & Ma, 1993; Leigh, Connick, & Stone, 

1990), nitrous oxide synthase (Onstott, Mayer, & Beitz, 1993), cytochrome oxidase (F. Conti 

et al., 1988), substance P (Barbaresi, 1998), and localized autoradiography binding sites for 

cholecystokinin (H. Liu, Chandler, Beitz, Shipley, & Behbehani, 1994) and excitatory amino 

acids (Albin et al., 1990). Columnar divisions are also seen in the patterns of medullar, cortical 

and subcortical topographical to PAG (discussed below), and through functional experiments 

demonstrating how separate loci within the PAG control and integrate defensive and autonomic 

functions (see Section 2.3). 

As seen in Figure 2.1, the organization of the cells surrounding the brain aqueduct is 

generally stable across diverse species. The set of nuclei that form the PAG are present in a 

similar form in all mammals; generally sharing the same functions and basic organization 

(Kingsbury, Kelly, Schrock, & Goodson, 2011). For example, the PAG retains its overall shape, 

morphology, density and relative volume across non-human primates, felines and rodents 

(Mantyh, 1982b). Recently, certain midbrain structures in other vertebrates were described as 

being homologues of the mammalian periaqueductal complex as well. Although the PAG and 

its homologues retain the same general function and properties across different classes of 

animals, the cell distribution differs somewhat among fish, amphibians, reptiles and birds. In 

birds, the PAG homologue is shifted laterally because of a hypertrophied tectum, but the cell 

organization is the same as that in mammals (Dubbeldam & den Boer-Visser, 2002; Kingsbury 

et al., 2011). In teleost fish, the equivalent of the mammalian PAG is located opposite the 

nucleus torus semicircularis, a homologue for the inferior colliculus, making its location similar 

to that in mammals (Bass, Rose, & Pritz, 2005). In fish, this PAG homologue exerts control 

over the vocalizations made during mating and social scenarios (Bass, 2008; Bass & McKibben, 

2003); both features of the mammalian PAG (see Section 2.3). Furthermore, the PAG of the 

plainfin midshipman (Porichthys notatus) projects to cortical, thalamic and hindbrain regions 

as it does in mammals (Kittelberger & Bass, 2013).  

Overall, this suggests that the PAG has been highly conserved during evolution and is 

common across tetrapods in general (Bass et al., 2005). Indeed, analogues of the PAG across 

different vertebrates have similar mRNA and protein expression patterns, indicating similar 

genetic origin (O'Connell & Hofmann, 2012). 
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Figure 2.1. PAG (yellow) in different vertebrates, as determined by similar local mRNA or 

protein expression. Adapted with permission from O'Connell and Hofmann (2012). 

 

2.2.2. The division of nuclei surrounding the aqueduct 

Here I review the mammalian PAG, as conventionally labeled, together with the dorsal 

raphe nucleus (DR), which together with the PAG forms a simple ‘O’ of grey matter around 

the aqueduct. The traditional columnar division of the PAG and DR through the anterior 

posterior axis is presented in Figure 2.2. 

The DR, located ventrally to the PAG, is the most rostrally positioned of the raphe nuclei: 

clusters of cell populations mostly located in the midline between hemispheres, whose defining 

characteristic is the high density of serotonin-producing cells that innervate most of the 

forebrain and hindbrain. The DR is not a homogenous structure, and is by convention separated 

into dorsal and ventral divisions, as well as lateral wings that extend ventrally to the ventral 

PAG. According to Descarries, Watkins, Garcia, and Beaudet (1982), the DR can easily be 

distinguished from the PAG by the dense packing of cells in the region, while the cell body 
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diameter is less different between the two structures, with the PAG averaging a diameter of 

13.6µm against the DR average of 15.5µm.  

Although the DR has distinct features that separate it from the PAG hodologically, 

chemically and functionally, I argue in this review that the DR shares common functions and 

anatomical features with the PAG and should be viewed as a crucial component of the PAG 

complex, without which most of the functions, evoked behaviors, or adaptive roles of the latter 

would not be possible. 

As discovered by Beitz (1985), the neuron-to-glia density in the PAG varies in its rostral-

caudal axis, with the highest density of neurons found in the more rostral portion, while this 

density gradually decreases towards the more caudal part. Similarly, the extreme dorsal portion 

has a higher density of cells than the more ventral aspect. The shape of the perikarya also varies 

in the rostro-caudal axis: cell bodies on the caudal portion are more elongated and cells in the 

rostral part are more circular. Similarly, a slightly higher proportion of rostral cells than 

caudal cells are oriented in parallel to the aqueduct. Meanwhile, the average size (length, 

width, axial ratio and area) of periaqueductal cells are consistent throughout. 

The tissue immediately surrounding the aqueduct constitutes a ring of low neuron-to-glia 

cell density in comparison to the rest of the PAG, as shown through Golgi staining (Beitz & 

Shepard, 1985; Hamilton, 1973a, 1973b; Mantyh, 1982b) and observed clearly in Nissl- and 

Cresyl violet-stained sections (Beitz, 1985; Gioia, Bianchi, & Tredici, 1984; Paxinos & 

Watson, 1998). 

Radially, PAG cells cluster in regard to their size and population density. The dorsal part 

has the highest density of neurons, followed by the dorsolateral and lateral, the ventrolateral, 

and finally the more sparsely populated medial ring. This cytological pattern disappears once I 

move to the caudal extreme of the PAG, where subdivisions can no longer be distinguished by 

density alone, and Beitz collectively refers to these cells simply as PAG. While the average 

soma size of PAG cells is constant across subdivisions, the medial ring has slightly smaller 

cells, a finding reported in the rat, cat and monkey (Hamilton, 1973a; Mantyh, 1982b) 

Based on these anatomical findings, and further functional and biochemical data, the PAG 

is conventionally divided into dorsomedial (DMPAG), dorsolateral (DLPAG), lateral (LPAG) 

and ventrolateral (VLPAG) columns (Bandler, Carrive, & Depaulis, 1991), as shown in Figure 

2.2. Given their common shared properties, the DM and DL are sometimes collectively referred 

as simply “dorsal PAG” (DPAG), as for example in W. Zhang, Hayward, and Davenport (2007) 

and Roncon et al. (2015). 
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Figure 2.2. Columnar division of the PAG through the anterior posterior axis. Approximate 

bregma coordinates for the rat brain from the atlas of Paxinos and Watson (1998). DM: 

dorsomedial PAG; DL: dorsolateral PAG; L: lateral PAG; VL: ventrolateral PAG; DR: 

dorsal raphe nucleus; Cb: cerebellar lobule. 

 

There are no general synaptic distinctions between the different columns of the PAG at the 

caudal end (Moss & Basbaum, 1983a). Most connections of the caudal PAG are symmetrical, 

with axodendritic synapses amounting to 97% of the observed connections in the region. Of 

note, the ventral PAG is completely absent of axosomatic connections, a type of synapse seen 

in the dorsal regions, albeit in small numbers.  

2.2.3. Intra-periaqueductal connections 

The nuclei of the PAG are strongly interconnected (see Table 2.1). All parts receive 

projections from the other subdivisions, with the exception of the DLPAG column, which only 

receives projections from the DMPAG (Jansen, Farkas, Mac Sams, & Loewy, 1998; Canteras 

& Goto, 1999; Vertes, 1991). 

The subdivisions of the PAG also project to themselves at more anterior and posterior levels. 

For example, cells in the intermediate level of the DMPAG send axons to the anterior and 

posterior levels of DMPAG; a trend also seen in the other divisions. This organization could 
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indicate that extremes of the PAG that contain unique afferents could receive information from 

different sources and relay the signal to other parts of itself in the anterior-posterior axis.  

 

Table 2.1. Projections from the Medial Aspect of All PAG/DR Divisions to the Anterior, Medial 

and Posterior Aspect of All Other Divisions 

      mDM mDL mL mVL mDR References 

P
R

O
JE

C
T

IN
G

 T
O

 

D

M 

A +++ +++ ++ + + 

Jansen, Farkas, 

Mac Sams, & 

Loewy, 1998; 

Canteras & Goto, 

1999; Vertes, 

1991 

M ...... +++ ++ + + 

P +++ ++ ++ + . 

DL 

A +++ +++ . . . 

M + ...... . . . 

P ++ ++ . . . 

L 

A ++ . ++ ++ +++ 

M ++ + ...... ++ ++ 

P ++ + ++ ++ + 

VL 
M + . ++ ...... ++ 

P +++ + + + ++ 

DR 
M ++ + + ++ ...... 

P ++ + . +  

Note: ...... = site of injection; . = negligible projections; + = weak or small projections; ++ = medium projections; 

+++ = strong or large projection. A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Strong connective patterns include the DM sending heavy terminals to itself and the DL, 

both caudally and rostrally; this is reciprocated by the DL also connecting to the DM. The DM 

also displays strong connections ventrally, having synaptic terminals and fibers scattered on the 

L, VL and DR. On the other hand, the L, VL and DR send weaker projections to the dorsal 

aspect of the PAG, and none at all to the DLPAG, suggesting a biased relationship between the 

dorsal and ventral PAG. 

2.2.4. Afferent connections 

The afferent connections to the PAG do not show particularly strong localizations in the 

rostro-caudal or dorso-ventral aspects of the region (see Tables 2.2-2.10). The clear exception 

to this rule that might prove to be functionally relevant is the DL column. In some instances 

this column is the preferred site of incoming projections, such as the ones from the anterior 
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cingulate cortex (Table 2.2). In other respects, the DL is completely devoid of terminal fields 

when compared to neighboring areas, as in the case of fibers arriving from the amygdala (Table 

2.5) and ventrolateral medulla (Table 2.10). 

Frontal cortex. Remarkably, both the CG1 and CG2 subdivisions of the anterior cingulate cortex 

(ACC) exclusively and consistently target the DLPAG throughout its dorso-caudal extent, with 

no significant efferents to other divisions of the PAG/DR at any level (Beckstead, 1979; Floyd, 

Price, Ferry, Keay, & Bandler, 2000; Meller & Dennis, 1986; Wyss & Sripanidkulchai, 1984). 

This information is summarized in Table 2.2. The majority of the cingulate cells that target the 

DLPAG are glutamate- and aspartate-positive in nature (Beart, Summers, Stephenson, Cook, 

& Christie, 1990; Beitz, 1989). 

 

Table 2.2. Projections from the Cingulate Cortex to the PAG/DR at Anterior, Medial and 

Caudal Levels 

 
  DM DL L VL DR References 

C
IN

G
U

L
A

T
E

 

C
O

R
T

E
X

 

Anterior 

CG1 

A . ++ . ...... ...... (Beckstead, 1979; Floyd et 

al., 2000; Meller & 

Dennis, 1986; Wyss & 

Sripanidkulchai, 1984) 

M . ++ . . . 

P . ++ . . . 

Anterior 

CG2 

A . +++ . ...... ...... 
(Floyd et al., 2000; Wyss 

& Sripanidkulchai, 1984) 
M . ++ . . . 

P . ++ . . . 

Note. .... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

Meanwhile, the subdivisions of the medial prefrontal cortex (mPFC) show distinct patterns 

of connections with the PAG, as summarized in Table 2.3. 
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Table 2.3. Projections from the Medial Prefrontal Cortex to the PAG/DR at Anterior, Medial 

and Caudal Levels 

 
  DM DL L VL DR References 

M
E

D
IA

L
 P

R
E

F
R

O
N

T
A

L
 C

O
R

T
E

X
 

Posterior 

Prelimbic 

Cortex 

A ++ +++ +   (Floyd et al., 2000; 

Meller & Dennis, 1986; 

Sesack, Deutch, Roth, 

& Bunney, 1989; Wyss 

& Sripanidkulchai, 

1984) 

M ++ +++ + + . 

P + +++ + ++ + 

Anterior 

Prelimbic 

Cortex 

A . . + ...... ...... 

(Floyd et al., 2000) M . . ++ +++ +++ 

P . . + +++ +++ 

Infralimbic 

Cortex 

A . . . ...... ...... (Hurley, Herbert, Moga, 

& Saper, 1991; Sesack 

et al., 1989; Takagishi 

& Chiba, 1991; Wyss & 

Sripanidkulchai, 1984) 

M . . . ++ + 

P . + + +++ +++ 

Dorsal 

Peduncular 

Cortex 

A . . + ...... ...... 

(Floyd et al., 2000; 

Hurley et al., 1991) 
M . . . +++ ++ 

P . . . +++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

The prelimbic cortex (PrL), an extensive cortical subdivision on the medial wall of the 

prefrontal cortex (PFC) that extends from the olfactory bulb to the genu of the corpus callosum 

in the rat (Paxinos & Watson, 1998), projects heavily to the PAG/DR. Despite being treated by 

the Paxinos atlas as a single homogenous region, the anterior and posterior parts of the PrL 

project differently to the PAG.  

Subdividing the PrL is necessary due to both anatomy and function. For example, 

projections from the parahippocampal cortices to the PrL show distinct anterior-posterior 

patterns, with denser projections at rostral PrL levels, but this parcelation is not seen in other 

prefrontal areas like the orbital or insular cortices (Delatour & Witter, 2002). Furthermore, PrL 

projections to the thalamus are more concentrated in the anterior than the caudal part (S. Li & 

Kirouac, 2012), and the anterior and posterior parts of the PrL differentially connect to 

subdivisions of the hypothalamus (Floyd, Price, Ferry, Keay, & Bandler, 2001). In rats exposed 
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to a rewarding conditioned stimulus, the anterior and posterior portions of the PrL display 

different levels of c-Fos expression (Schroeder, Binzak, & Kelley, 2001).  

Connections from the PrL to the PAG/DR also display distinct anterior-posterior 

characteristics. The more anterior half of the PrL has been shown to preferentially target ventral 

periaqueductal regions, particularly the VLPAG and DR, although a few scattered processes 

can be found in the LPAG (Floyd et al., 2000). Cells in the posterior half of the PrL, however, 

tend to intensely target the DMPAG and DLPAG, with a few scattered fibers in the LPAG, 

VLPAG and DR (Floyd et al., 2000; Meller & Dennis, 1986; Sesack et al., 1989; Wyss & 

Sripanidkulchai, 1984). A recent study investigating the nature of these medial PFC (mPFC) 

projections to the PAG found that most PrL axons originate from pyramidal cells on Layer 5 of 

the medial wall, and are glutamatergic in nature (Franklin et al., 2017) 

The infralimbic cortex (IL), located ventrally to the PrL in the medial wall, preferentially 

targets the VLPAG and DR, with more dense fiber distribution at the caudal levels (Hurley et 

al., 1991; Sesack et al., 1989; Takagishi & Chiba, 1991; Wyss & Sripanidkulchai, 1984).  

Located ventrally to the IL is the DP cortex. This segment of the mPFC shows a similar 

pattern of projections to those of the IL, and targets mostly the ventral parts of the PAG (Floyd 

et al., 2000; Hurley et al., 1991).  

As shown in Table 2.4, the projections from the orbital and insular cortices are mostly 

concentrated in the ventral PAG, with a few exceptions. The few terminals originating from the 

very anterior dorso-lateral orbital cortex (DLO) preferentially target the VLPAG and DR, with 

only a few processes in the LPAG at intermediate levels (Floyd et al., 2000), and the more 

posterior lateral orbital cortex (LO) also projects exclusively to the ventral parts of the PAG/DR 

(Beckstead, 1979). Projections originating from the medial orbital cortex (MO) are quite intense 

in the VLPAG and DLPAG at intermediate and caudal levels, and a few scattered terminals 

also selectively innervate the DLPAG at the more extreme posterior region (Floyd et al., 2000). 

This distribution is also witnessed with projections from the ventral orbital cortex (VO) cells, 

albeit at a smaller volume (Hoover & Vertes, 2011). 
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Table 2.4. Projections from the Orbito-Insular Cortices to the PAG/DR at Anterior, Medial and 

Caudal Levels 

 
  DM DL L VL DR References 

O
R

B
IT

O
-I

N
S

U
L

A
R

 

C
O

R
T

IC
E

S
 Orbital 

Cortex 

A . ++ + ...... ...... 
(Beckstead, 1979; Floyd et 

al., 2000; Hoover & 

Vertes, 2011) 

M . . + +++ +++ 

P . . . +++ +++ 

Insular 

Cortex 

A . . . ...... ...... (Beckstead, 1979; Floyd et 

al., 2000; Neafsey, Hurley-

Gius, & Arvanitis, 1986; 

Reep & Winans, 1982) 

M . . . ++  

P . . . ++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

As with orbital projections, cells from the insular cortices terminate strongly in the VLPAG 

and DR, with no registered projections aimed at the dorsal parts of the PAG (Beckstead, 1979; 

Floyd et al., 2000; Neafsey et al., 1986; Reep & Winans, 1982). Both the dorsal and ventral 

divisions of the agranular insular cortex (AIV, AID) project to the PAG/DR. 

Temporal Areas. The central nucleus of the amygdala (CNA) is the only region in the 

amygdaloid complex projecting to the PAG (Krettek & Price, 1978; Pardo-Bellver, Cadiz-

Moretti, Novejarque, Martinez-Garcia, & Lanuza, 2012; Petrovich, Risold, & Swanson, 1996). 

It targets mostly the LPAG, VLPAG and DR, although some processes are found in the 

DMPAG (Hopkins & Holstege, 1978; Price & Amaral, 1981; Rizvi, Ennis, Behbehani, & 

Shipley, 1991). As shown in Table 2.5, no amygdalar afferents reach the DLPAG at any point 

in the rostro-caudal axis, making it the only PAG/DR division not innervated by the amygdala. 
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Table 2.5. Projections from the Amygdaloid Complex to the PAG/DR at Anterior, Medial and 

Caudal Levels 

 
  DM DL L VL DR References 

A
M

Y
G

D
A

L
A

 

Central 

Nuclei 

A ++ . +++ ...... ...... 

(Hopkins & Holstege, 1978; Price 

& Amaral, 1981; Rizvi et al., 1991) 
M ++ . +++ ++ ++ 

P + . + +++ +++ 

Basolateral 

Nucleus 

A . . . ...... ...... 

(Krettek & Price, 1978) M . . . . . 

P      

Basomedial 

Nucleus 

A . . . ...... ...... 

(Petrovich et al., 1996) M      

P      

Medial 

Nuclei 

A . . . . . 

(Pardo-Bellver et al., 2012) M . . . . . 

P . . . . . 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

The PAG/DR complex does not receive direct projections from the hippocampus or the 

septum (Marchand & Hagino, 1983; Meibach & Siegel, 1977; Raisman, Cowan, & Powell, 

1966; Staiger & Nurnberger, 1991; L. W. Swanson & Cowan, 1977; van Groen & Wyss, 1990), 

but other structures related to the hippocampus do project to the PAG/DR (see Table 2.6). The 

lateral habenula sends direct projections to the VLPAG and DR (Canteras & Swanson, 1992; 

Herkenham & Nauta, 1979; Neckers, Schwartz, Wyatt, & Speciale, 1979; Pasquier, Anderson, 

Forbes, & Morgane, 1976), while the medial part does not (Herkenham & Nauta, 1979; 

Pasquier et al., 1976). Meanwhile, the perirhinal and entorhinal cortices target mostly the dorsal 

PAG, with no evidence of projections reaching the VPAG or DR (Witter & Groenewegen, 

1986a, 1986b).  
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Table 2.6. Projections from the Hippocampal Formation to the PAG/DR at Anterior, Medial 

and Caudal Levels 

 
  DM DL L VL DR References 

H
IP

P
O

C
A

M
P

A
L

 F
O

R
M

A
T

IO
N

 

Lateral Septal 

Nucleus 

A    ...... ...... 
(Powell, 1963; Staiger & 

Nurnberger, 1991) 
M . . . . . 

P . . . . . 

Medial Septum 

A . . . ...... ...... 
(Marchand & Hagino, 1983; 

Powell, 1963) 
M . . . . . 

P . . . . . 

CA1 

A . . . ...... ...... (Marchand & Hagino, 1983; 

Meibach & Siegel, 1977; 

Raisman et al., 1966; L. W. 

Swanson & Cowan, 1977; van 

Groen & Wyss, 1990) 

M . . . . . 

P . . . . . 

CA2 

A . . . ...... ...... 
(Marchand & Hagino, 1983; 

Raisman et al., 1966; L. W. 

Swanson & Cowan, 1977) 

M . . . . . 

P . . . . . 

CA3 

A . . . ...... ...... (Marchand & Hagino, 1983; 

Meibach & Siegel, 1977; 

Raisman et al., 1966; L. W. 

Swanson & Cowan, 1977) 

M . . . . . 

P . . . . . 

DG 

A . . . ...... ...... (Marchand & Hagino, 1983; 

Meibach & Siegel, 1977; 

Raisman et al., 1966; L. W. 

Swanson & Cowan, 1977) 

M . . . . . 

P . . . . . 

Medial Habenula 

A . . . ...... ...... 
(Herkenham & Nauta, 1979; 

Pasquier et al., 1976) 
M . . . . . 

P . . . . . 

Lateral Habenula 

A . . . ...... ...... (Araki, McGeer, & Kimura, 

1988; Herkenham & Nauta, 

1979; Neckers et al., 1979; 

Pasquier et al., 1976) 

M . . . ++ + 

P . . . ++ + 

Perirhinal and 

Entorhinal  
Cortices 

A ++ + . ...... ...... 
(McIntyre, Kelly, & Staines, 

1996; Witter & Groenewegen, 

1986a, 1986b) 

M + + ++ . . 

P . . + . . 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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Hypothalamus. Diencephalic regions are the densest source of projections to the periaqueductal 

area, with hypothalamic areas being the largest contributors (Marchand & Hagino, 1983). This 

is summarized in Table 2.7. 

 

Table 2.7. Projections from the Hypothalamus to the PAG/DR at Anterior, Medial and Caudal 

Levels 

 
  DM DL L VL DR References 

H
Y

P
O

T
H

A
L

A
M

U
S

 

Medial Preoptic 

Area 

A ++ ++ +++ ...... ...... 

(Rizvi, Ennis, & Shipley, 1992) M ++ + +++ +++ + 

P + + +++ +++ + 

Dorsal Pre-

mammillary 

Body 

A + +++ + ...... ...... 

(Canteras & Swanson, 1992) M      

P + +++ + . . 

Ventromedial 

Hypothalamic 

Nucleus 

A ++ ++ ++ ...... ...... 
(Shimogawa, Sakuma, & 

Yamanouchi, 2015; Veening et 

al., 1991) 

M ++ ++ +++ ++ + 

P ++ + ++ +++ + 

Posterior 

Hypothalamic 

Area 

A +++ +++ +++ ...... ...... 

(Vertes & Crane, 1996) M +++ +++ +++ +++ ++ 

P + + ++ +++ ++ 

Anterior 

Hypothalamic 

Area 

A + + ++ ...... ...... 

(Conrad & Pfaff, 1976; Saper, 

Swanson, & Cowan, 1978) 
M + + ++ ++ + 

P + + ++ ++ + 

Supramammillary 

Area, Medial Part 

A + + ++ ...... ...... 

(Vertes, 1992) M . . + ++ +++ 

P      

Lateral 

Hypothalamic 

Area 

A . . +++ ...... ...... 

(Nauta, 1958; Roeling et al., 

1994; Veening et al., 1991) 
M . . + +++ ++ 

P . . + ++ +++ 

Table continued on following page. 
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(Table 2.7 continued) 

 
  DM DL L VL DR References 

H
Y

P
O

T
H

A
L

A
M

U
S

 

Dorsomedial 

Hypothalamic 

Nucleus 

A . + ++ ...... ...... 
(R. H. Thompson, Canteras, & 

Swanson, 1996; Veening et al., 

1991) 

M . + +++ ++ + 

P + + +++ ++ ++ 

Ventral Pre-

mammillary 

Body 

A    ...... ...... 

(Canteras, Simerly, & Swanson, 

1992) 
M . . . ++ + 

P . . + ++ + 

Supramammillary 

Area, Lateral Part 

A . . ++   

(Vertes, 1992) M   ++ +  

P      

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

Regions like the anterior hypothalamic area (Conrad & Pfaff, 1976; Saper et al., 1978), 

ventromedial hypothalamus (Shimogawa et al., 2015; Veening et al., 1991), and posterior 

hypothalamic area (Vertes & Crane, 1996) target all parts of the PAG/DR, whereas a dorsal-

ventral trend can be seen in projections from other hypothalamic regions. For instance, the 

VLPAG and DR are the exclusive destination of fibers arising from the lateral hypothalamic 

area (Nauta, 1958; Roeling et al., 1994; Veening et al., 1991) and most of the supramammillary 

region (Vertes, 1992). 

While the dorsal aspects of the PAG, particularly the DLPAG, are specifically targeted by 

the dorsal pre-mammillary body (Canteras & Swanson, 1992), the ventral pre-mammillary 

body predominately projects to the VLPAG and DR (Canteras et al., 1992). 

Tectum, midbrain, pons, medulla and spinal cord. Projections from the tectum to the PAG/DR 

are shown in Table 2.8. While there are no projections from the inferior colliculus to the 

PAG/DR area (Mantyh, 1982a; Moore & Goldberg, 1966; Peyron, Luppi, Fort, Rampon, & 

Jouvet, 1996), the superior colliculus (SC), targets the antero-dorsal aspect of the PAG, and 

fibers originating mostly from the deep layers of the SC reach the DL column, as well as parts 

of the LPAG (An, Bandler, Ongur, & Price, 1998; Graham, 1977; Mantyh, 1982a).  
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Table 2.8. Projections from the Tectum to the PAG/DR at Anterior, Medial and Caudal Levels 

 
  DM DL L VL DR References 

T
E

C
T

U
M

 

Superior 

Colliculus 

A + ++ ++ ...... ...... 

(An et al., 1998; Graham, 1977; 

Mantyh, 1982a) 
M . +++ ++ . . 

P .  . . . 

Inferior 

Colliculus 

A . . . ...... ...... 

(Mantyh, 1982a; Moore & Goldberg, 

1966; Peyron et al., 1996) 
M . . . .  

P . . . . . 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

Projections from the midbrain, basal ganglia and pons to the PAG/DR are summarized in 

Table 2.9. Numerous structures in the midbrain and pons send projections to the PAG/DR, 

although a distinctive topography is not always present. Interestingly, while the raphe magnus 

targets both the dorsal and ventral PAG (Levine & Jacobs, 1992; Mantyh, 1982a), the median 

raphe only sends connections to the ventral parts, not targeting the DLPAG or DMPAG 

(Azmitia & Segal, 1978a; Vertes, Fortin, & Crane, 1999).  

Nuclei that express modulatory neurotransmitters send projections widely to the PAG. 

These include the locus coeruleus (Jones & Moore, 1977; Jones & Yang, 1985; Kim, Lee, Lee, 

& Waterhouse, 2004; Mantyh, 1982a) and nucleus incertus (Goto, Swanson, & Canteras, 2001; 

Olucha-Bordonau et al., 2003). Other modulatory regions, however, exclusively target the 

ventral PAG. For example, the substantia nigra (Gerfen, Staines, Arbuthnott, & Fibiger, 1982; 

Hopkins & Niessen, 1976) and ventral tegmental area (Beckstead, Domesick, & Nauta, 1979; 

Simon, Le Moal, & Calas, 1979) predominantly target the VLPAG and DR. 
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Table 2.9. Projections from the Midbrain, Basal Ganglia and Pons to the PAG/DR at Anterior, 

Medial and Caudal Levels 

 
  DM DL L VL DR References 

M
ID

B
R

A
IN

, 
B

A
S

A
L

 G
A

N
G

L
IA

 A
N

D
 P

O
N

S
 

Cuneiform 

Nucleus 

A ++ ++ +++ ...... ...... 
(Edwards & de Olmos, 1976; 

Mantyh, 1982a; Steeves & 

Jordan, 1984) 

M + ++ ++ +++  

P      

Locus 

Coeruleus 

A + + +++ ...... ...... 
(Jones & Moore, 1977; Jones & 

Yang, 1985; Kim et al., 2004; 

Mantyh, 1982a) 

M + ++  ++ ++ 

P     +++ 

Magnus 

Raphe 

A    ...... ...... 
(Mantyh, 1982a; Peyron et al., 

1996) 
M +++ +++  +++  

P     ++ 

A5 

Noradrenaline 

Cell Group 

A ++ ++ ++ ...... ...... 

(Byrum & Guyenet, 1987) M      

P      

Reticulus 

Pontis Oralis 

A    ...... ...... 

(Mantyh, 1982a) M ++ ++  ++  

P      

Nucleus 

Incertus 

A . ++ + ...... ...... 
(Goto et al., 2001; Olucha-

Bordonau et al., 2003) 
M . ++ . ++ ++ 

P + + . +++ +++ 

Zona Incerta 

A + + +++ ...... ...... 

(Ricardo, 1981) M . . +++ ++ + 

P . . ++ ++ . 

Median 

Raphe 

A . . ++ ...... ...... 
(Azmitia & Segal, 1978a; Vertes 

et al., 1999) 
M . . . ++ ++ 

P . . + ++ +++ 

Substantia 

Nigra 

A . . + ...... ...... 
(Gerfen et al., 1982; Hopkins & 

Niessen, 1976) 
M . . . ++ ++ 

P . . . ++ + 

Ventral 

Tegmental 

Area 

A . . ++ ...... ...... 
(Beckstead et al., 1979; Simon et 

al., 1979) 
M . . + ++ ++ 

P . . . ++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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Projections from the medulla and spinal cord to the PAG/DR are presented in Table 2.10. 

Perhaps the most notable feature about the projections originating from the medulla to the 

PAG/DR is that they appear to target all subdivisions while selectively ignoring the DL column 

(Blomqvist & Craig, 1991; Herbert & Saper, 1992b; Mantyh, 1982a; Rinaman, 2010). The 

ventrolateral medulla, for instance, sends heavy projections to the DMPAG and LPAG, while 

the DLPAG located between the two receives no projections (Bjorkeland & Boivie, 1984; 

Herbert & Saper, 1992b). 

Neither the cervical nor lumbar parts of the spinal cord send afferents to the DMPAG and 

the DR, while both heavily target the LPAG (Bjorkeland & Boivie, 1984; Blomqvist & Craig, 

1991; Keay, Feil, Gordon, Herbert, & Bandler, 1997; Wiberg & Blomqvist, 1984). 

 

Table 2.10. Projections from the Medulla and Spinal Cord to the PAG/DR at Anterior, Medial 

and Caudal Levels 

 
  DM DL L VL DR References 

M
E

D
U

L
L

A
 A

N
D

 S
P

IN
A

L
 C

O
R

D
 

Ventrolateral 

Medulla 

A +++ . +++ ...... ...... 

(Bjorkeland & Boivie, 1984; 

Herbert & Saper, 1992b) 
M +++ . +++ ++ . 

P +++ . ++ ++ . 

Nucleus 

Tractus 

Solitarius 

A . . + ...... ...... 

(Herbert & Saper, 1992b; 

Rinaman, 2010) 
M . . + ++ + 

P . . + +++ ++ 

Spinal 

Trigeminal 

Nucleus 

A . . ++ ...... ...... 

(Blomqvist & Craig, 1991; 

Mantyh, 1982a) 
M . + ++ + . 

P . . . . . 

Cervical 

Spinal Cord 

A . + +++ ...... ...... (Bjorkeland & Boivie, 1984; 

Blomqvist & Craig, 1991; Keay 

et al., 1997; Wiberg & 

Blomqvist, 1984) 

M . + +++ + . 

P . . ++ + . 

Lumbar 

Spinal Cord 

A . + + ...... ...... 
(Bjorkeland & Boivie, 1984; 

Blomqvist & Craig, 1991; 

Wiberg & Blomqvist, 1984) 

M . ++ +++ ++ . 

P . +++ ++ +++ . 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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2.2.5. Efferent connections 

In general terms, outgoing projections from the PAG complex retain their columnar pattern 

at different rostro-caudal levels. However, the nature of these projections is very different 

between the dorsal (DM, DL and L) and ventral (VL and DR) divisions (see Tables 2.11-2.17). 

The dorsal portions only send significant ascending projections as far as the thalamus 

through the periventricular bundle. In contrast, the ventral portions innervate the thalamus, 

hypothalamus, hippocampal formation and frontal cortices through two different nerve 

pathways: the first goes to the thalamus through the periventricular bundle and then ventrally 

to the hypothalamus, while the second departs the PAG ventrally, synapses collaterals in the 

hypothalamus, and continues from there to terminate in forebrain structures. 

Fibers descending from the dorsal PAG to the medulla target a limited number of hindbrain 

and pontine structures, like the cuneiform nucleus and the magnus and median raphe nuclei. 

Axons from the ventral regions, on the other hand, are directed to a larger variety of regions in 

the pons and on the floor of the 4th ventricle: descending fibers from the VLPAG and DR split 

into two bundles, one traveling more dorsally and connecting to locations on the 4th ventricle 

like the nucleus incertus, dorsal tegmental nucleus and locus coeruleus, and the second bundle 

diverting ventrally and innervating different points of the reticular formation and other pontine 

structures on its way towards the medulla. 

Frontal cortex. Table 2.11 summarizes PAG/DR projections to the frontal cortices. The ventral 

portions of the PAG, especially at the caudal extreme,  project to the frontal cortices (Herrero, 

Insausti, & Gonzalo, 1991). Sparse projections from the VLPAG reach the PrL and IL cortices, 

but most of the efferent connections to these areas depart from the DR (Conde, Maire-Lepoivre, 

Audinat, & Crepel, 1995; Hoover & Vertes, 2007; Meller & Dennis, 1991). The dorsal aspect 

of the PAG, on the other hand, does not project to the medial PFC in any significant amount. 

As with the medial PFC, the ACC receives projections originating mostly from cells in the 

DR (Conde et al., 1995; Hoover & Vertes, 2007). Although a few scattered cells in the lateral 

portion of the PAG at the more rostral level are found to project to the orbital cortex, most of 

the efferents to this region follow the same pattern as the other cortical targets in the area, and 

are limited to the DR at more caudal portions (Azmitia & Segal, 1978a; Coffield, Bowen, & 

Miletic, 1992).  

The DR innervates the rostral DLO, LO, VO and MO subdivisions of the orbital cortex. 

The agranular subdivisions of the insular cortex are also preferentially targeted by DR neurons, 
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with no cells from the dorsal PAG known to project to this cortical region (Jasmin, Burkey, 

Granato, & Ohara, 2004).   

The raphe cells reaching the PFC are mostly of non-serotonergic nature, and originate from 

a population located at the midline level that is distinct from cells that project to other areas 

(Vanbockstaele, Biswas, & Pickel, 1993).  

Table 2.11. Projections Targeting the Frontal Cortices from the PAG/DR at Anterior, Medial 

and Caudal Levels 

 
  DM DL L VL DR References 

C
IN

G
U

L
A

T
E

 

C
O

R
T

E
X

 

Anterior 

CG1 

A . . . ...... ...... 
(Conde et al., 1995; Hoover 

& Vertes, 2007) 
M . . . . ++ 

P . . . . ++ 

Anterior 

CG2 

A    ...... ...... 

 M      

P      

M
E

D
IA

L
 P

R
E

F
R

O
N

T
A

L
 C

O
R

T
E

X
 

Posterior 

Prelimbic 

Cortex 

A    ...... ...... 
(Herrero et al., 1991; Meller 

& Dennis, 1991.5) 
M . . . . ++ 

P . . . . ++ 

Anterior 

Prelimbic 

Cortex 

A . . . ...... ...... 
(Conde et al., 1995; Hoover 

& Vertes, 2007; Meller & 

Dennis, 1991.5) 

M . . . . ++ 

P . . . + ++ 

Infralimbic 

Cortex 

A . . . ...... ...... 
(Conde et al., 1995; Hoover 

& Vertes, 2007; Meller & 

Dennis, 1991.5) 

M . . . . ++ 

P . . . + ++ 

Dorsal 

Peduncular 

Cortex 

A    ...... ...... 

(Meller & Dennis, 1991.5) M    .  

P      

O
R

B
IT

O
-I

N
S

U
L

A
R

 

C
O

R
T

IC
E

S
 Orbital 

Cortex 

A . . + ...... ...... (Azmitia & Segal, 1978a; 

Coffield et al., 1992.8; 

Craig, Wiegand, & Price, 

1982) 

M . . . + ++ 

P . . . . +++ 

Insular 

Cortex 

A . .  ...... ...... 
(Jasmin et al., 2004; Saper, 

1982) 
M . . . ++ +++ 

P      

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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Temporal areas. Most amygdalar subdivisions are targeted by VLPAG and DR cells, apart 

from the central nuclei (CNA), which receives some fibers originating from the LPAG at rostral 

and intermediate levels (see Table 2.12). There is no reported innervation from the DMPAG 

and DLPAG to the amygdala (Bobillier et al., 1976; Ottersen, 1981; Reichling & Basbaum, 

1991). The CNA receives input from cells that are highly concentrated in the DR and VLPAG 

at the caudal level, and a moderate number of cells grouped at the caudal extreme of the LPAG 

(Rizvi et al., 1991). Furthermore, the caudal DR consistently projects to the basolateral, medial 

and basomedial amygdala, with some cells in the VLPAG also projecting to the basomedial 

nucleus (Ottersen, 1981). 

The axons originating in the ventral PAG/DR and targeting the central amygdala are at least 

partly dopaminergic (Hasue & Shammah-Lagnado, 2002), despite few dopaminergic cell 

bodies in the PAG and DR (Shimada, Ishikawa, & Tanaka, 1976; L. W. Swanson, 1988). 

 

Table 2.12. Projections Targeting the Amygdaloid Complex from the PAG/DR at Anterior, 

Medial and Caudal Levels 

 
  DM DL L VL DR References 

A
M

Y
G

D
A

L
A

 

Central 

Nuclei 

A . . ++ ...... ...... 
(Bobillier et al., 1976; Reichling & 

Basbaum, 1991.2; Rizvi et al., 

1991) 

M . . + ++ +++ 

P . . . +++ +++ 

Basolateral 

Nucleus 

A . . . ...... ...... 
(Meller & Dennis, 1991.5; Ottersen, 

1981; Reichling & Basbaum, 

1991.2) 

M . . . . ++ 

P . . . . ++ 

Basomedial 

Nucleus 

A . . . ...... ...... 
(Meller & Dennis, 1991.5; Ottersen, 

1981; Reichling & Basbaum, 

1991.2) 

M . . . ++ ++ 

P . . . ++ ++ 

Medial 

Nuclei 

A . . . ...... ...... 
(Meller & Dennis, 1991.5; Ottersen, 

1981; Reichling & Basbaum, 

1991.2) 

M . . . . + 

P . . . . + 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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Table 2.13 shows PAG/DR projections targeting the hippocampal formation. As with the 

rest of the forebrain, most periaqueductal efferents to the hippocampal formation originate in 

the VLPAG and the DR, with the exception of the entorhinal area in mammals, which receives 

sparse axons from the rostral DMPAG and DLPAG (Insausti, Amaral, & Cowan, 1987; Kohler 

& Steinbusch, 1982; Segal, 1977). 

The DR projects significantly not only to the parahippocampal cortices (Insausti et al., 1987; 

Kohler & Steinbusch, 1982; Room & Groenewegen, 1986; Segal, 1977; Vertes, 1991.5), but 

also to the medial septum (Bobillier, Petitjean, Salvert, Ligier, & Seguin, 1975; McKenna & 

Vertes, 2001; Pasquier & Reinoso-Suarez, 1978) and lateral septum (Waselus, Galvez, 

Valentino, & Van Bockstaele, 2006), and dorsal CA1 (McKenna & Vertes, 2001; Wyss, 

Swanson, & Cowan, 1979). The lateral septum is also considerably targeted by VLPAG 

neurons (Wyss et al., 1979), although they are not serotonergic in nature (Kohler & Steinbusch, 

1982). The dorsal columns, however, do not connect directly to the hippocampal region 

(Amaral & Cowan, 1980; Azmitia & Segal, 1978b; Herkenham & Nauta, 1977; Krout & 

Loewy, 2000; Meller & Dennis, 1991.5; Olucha-Bordonau et al., 2003.; Pasquier & Reinoso-

Suarez, 1977; Segal & Landis, 1974; Waselus et al., 2006). 
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Table 2.13. Projections Targeting the Hippocampal Formation from the PAG/DR at Anterior, 

Medial and Caudal Levels 

 
  DM DL L VL DR References 

 

Parahippocampal 

Cortices 

A + + . ...... ...... (Insausti et al., 1987; Kohler & 

Steinbusch, 1982; Room & 

Groenewegen, 1986; Segal, 

1977; Vertes, 1991.5) 

 M . . . + +++ 

 P . . . + +++ 

H
IP

P
O

C
A

M
P

A
L

 F
O

R
M

A
T

IO
N

 

Lateral Septal 

Nucleus 

A . . . ...... ...... 
(Meller & Dennis, 1991.5; 

Pasquier & Reinoso-Suarez, 

1978; Waselus et al., 2006) 

M . . . . ++ 

P . . . . +++ 

Medial Septum 

A . . . ...... ...... (Bobillier et al., 1975; 

McKenna & Vertes, 2001; 

Pasquier & Reinoso-Suarez, 

1978) 

M . . . . + 

P . . . . ++ 

CA1 

A . . . ...... ...... (Amaral & Cowan, 1980; 

Kohler & Steinbusch, 1982; 

McKenna & Vertes, 2001; 

Olucha-Bordonau et al., 2003.; 

Pasquier & Reinoso-Suarez, 

1977; Segal & Landis, 1974; 

Wyss et al., 1979) 

M . . . ++ ++ 

P . . . ++ +++ 

CA2 

A . . . ...... ...... (Amaral & Cowan, 1980; 

Pasquier & Reinoso-Suarez, 

1977, 1978; Segal & Landis, 

1974) 

M . . . . . 

P . . . . . 

CA3 

A . . . ...... ...... (Amaral & Cowan, 1980; 

Pasquier & Reinoso-Suarez, 

1977, 1978; Segal & Landis, 

1974) 

M . . . . . 

P . . . . . 

DG 

A . . . ...... ...... (Amaral & Cowan, 1980; 

Azmitia & Segal, 1978b; Kohler 

& Steinbusch, 1982; McKenna & 

Vertes, 2001; Olucha-Bordonau 

et al., 2003.; Pasquier & Reinoso-

Suarez, 1977, 1978) 

M . . . . . 

P . . . . ++ 

Medial Habenula 

A   . ...... ...... 
(Herkenham & Nauta, 1977; 

Krout & Loewy, 2000) 
M . .  . . 

P    .  

Lateral Habenula 

A   . ...... ...... 
(Herkenham & Nauta, 1977; 

Krout & Loewy, 2000) 
M . .  . . 

P    +  

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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Hypothalamus. 

Projections from the PAG/DR to the hypothalamus are described in Table 2.14. Several 

parts of the hypothalamus receive projections from the dorsal PAG, including the medial 

preoptic area (Simerly & Swanson, 1986), anterior hypothalamic area (Meller & Dennis, 1991), 

dorsomedial hypothalamus (Meller & Dennis, 1991; R. H. Thompson & Swanson, 1998) and 

posterior hypothalamic area (Abrahamson & Moore, 2001; Bobillier et al., 1976; Meller & 

Dennis, 1991). This is in contrast with cortical and other forebrain regions which are only 

targeted by the ventral PAG (see above sections).   

The other hypothalamic regions, however, are more preferentially targeted by the ventral 

parts of the PAG. The lateral hypothalamus receives strong projections from the DR (Bobillier 

et al., 1976; Reichling & Basbaum, 1991), and so does the medial part of the supramammillary 

nucleus (Hayakawa, Ito, & Zyo, 1993).  
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Table 2.14. Projections Targeting the Hypothalamus from the PAG/DR at Anterior, Medial and 

Caudal Levels 

 
  DM DL L VL DR References 

H
Y

P
O

T
H

A
L

A
M

U
S

 

Medial Preoptic 

Area 

A ++ + + ......  ......  

(Simerly & Swanson, 1986) M + + + + + 

P           

Dorsomedial 

Hypothalamic 

Nucleus 

A    ...... ...... 
(Meller & Dennis, 1991.5; 

R. H. Thompson & 

Swanson, 1998) 

M + + + +  

P + + + ++ + 

Anterior 

Hypothalamic 

Area 

A    ...... ...... 

(Meller & Dennis, 1991.5) M  ++  +++  

P      

Posterior 

Hypothalamic 

Area 

A . ++ +++ ...... ...... 
(Abrahamson & Moore, 

2001; Bobillier et al., 1976; 

Meller & Dennis, 1991.5) 

M . + +++ + ++ 

P . . + + + 

Lateral 

Hypothalamic 

Area 

A    ...... ...... 
(Bobillier et al., 1976; 

Reichling & Basbaum, 

1991.2) 

M . . . . +++ 

P . . . + +++ 

Ventromedial 

Hypothalamic 

Nucleus 

A . . ++ ...... ...... 

(Shimogawa et al., 2015) M . . . ++ + 

P . . . + + 

Dorsal Pre-

mammillary 

Body 

A . . . ...... ...... 
(Comoli, Ribeiro-Barbosa, 

& Canteras, 2000; Meller & 

Dennis, 1991.5) 

M . . . . . 

P . . . . . 

Ventral Pre-

mammillary 

Body 

A    ...... ...... 

(Meller & Dennis, 1991.5) M  .    

P      

Supramammillary 

Area, Medial Part 

A . . . ...... ...... 

(Hayakawa et al., 1993) M . . . . ++ 

P . . . . ++ 

Supramammillary 

Area, Lateral Part 

A . . . ...... ...... 
(Gonzaloruiz, Alonso, Sanz, 

& Llinas, 1992) 
M      

P      

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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Tectum, midbrain, pons, medulla and spinal cord. Table 2.15 summarizes projections from the 

PAG/DR to the tectum. The superior colliculus (SC) and inferior colliculus (IC) have 

consistently been reported to receive little-to-no projections from the PAG/DR (Appell & 

Behan, 1990; Beyerl, 1978; Bobillier et al., 1976; Brunso-Bechtold, Thompson, & Masterton, 

1981; Coleman & Clerici, 1987; Mantyh, 1983). Of note, fiber tracts exiting the PAG formation 

towards both the forebrain and hindbrain pass through both the SC and IC without synapsing 

locally (Meller & Dennis, 1991). 

However, as discussed previously in this review (see Section 2.4.4), the SC does have 

efferent projections to the PAG, and it contributes to the PAG/DR processing of environmental 

threats (Brandao, Anseloni, Pandossio, De Araujo, & Castilho, 1999; Brandao, Cardoso, Melo, 

Motta, & Coimbra, 1994; Redgrave & Dean, 1991). This collicular-periaqueductal relationship, 

however, as shown by anatomical and functional data, appears to be one way, top-down only.  

 

Table 2.15. Projections Targeting the Tectum from the PAG/DR at Anterior, Medial and 

Caudal Levels 

 
  DM DL L VL DR References 

T
E

C
T

U
M

 

Superior 

Colliculus 

A . . . ...... ...... (Appell & Behan, 1990; Bobillier 

et al., 1976; Mantyh, 1983; 

Waterhouse, Border, Wahl, & 

Mihailoff, 1993) 

M . . . + . 

P . . . . + 

Inferior 

Colliculus 

A . . . ...... ...... 
(Beyerl, 1978; Brunso-Bechtold et 

al., 1981; Coleman & Clerici, 

1987; Mantyh, 1983) 

M . . . . . 

P . . . . . 

Note. ...... = anatomical division is non-existent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 

 

The periaqueductal inputs to the midbrain (Table 2.16), medulla and spinal cord (Table 

2.17) arise mostly from the dorsal parts of the PAG, with a few exceptions. This represents a 

difference from the forebrain, where most periaqueductal axons come from the ventral part. 

The regions that receive predominantly ventral PAG inputs are the nucleus incertus (Goto 

et al., 2001), locus coeruleus (Ennis, Behbehani, Shipley, Van Bockstaele, & Aston-Jones, 

1991; Krout, Jansen, & Loewy, 1998.1), substantia nigra (SN) (Gerfen et al., 1982) and 
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reticulus pontis oralis (Holstege, 1991b; Mantyh, 1983; Shammah-Lagnado, Negrao, Silva, & 

Ricardo, 1987). 
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Table 2.16. Projections Targeting the Midbrain, Basal Ganglia and Pons from the PAG/DR at 

Anterior, Medial and Caudal Levels 

 
  DM DL L VL DR References 

 

Magnus 

Raphe 

A +++ . +++ ...... ...... (Abols & Basbaum, 1981; 

Aghajanian & Wang, 1977; 

Beitz, Mullett, & Weiner, 

1983.56; Holstege, 1991b) 

 M +++ . +++ +++ . 

 P +++ . +++ ++ . 

 

Median 

Raphe 

A + ++ ++   
(Behzadi, Kalen, Parvopassu, & 

Wiklund, 1990.; Mantyh, 1983; 

Meller & Dennis, 1991.5) 

 M ++ ++ ++ +++  

 P . . + +++ +++ 

 

Nucleus 

Incertus 

A . + + ...... ...... 

(Goto et al., 2001) M . + . +++ . 

P . . . ++ +++ 

Reticulus 

Pontis Oralis 

A . . ++ ...... ...... 
(Holstege, 1991b; Mantyh, 1983; 

Shammah-Lagnado et al., 1987) 
M . . +++ ++ + 

P . . . ++ + 

Cuneiform 

Nucleus 

A    ...... ...... 
(Garcia-Rill, Skinner, Gilmore, 

& Owings, 1983) 
M      

P . . . ++ +++ 

Locus 

Coeruleus 

A . . . ...... ...... 
(Ennis et al., 1991; Krout et al., 

1998.1) 
M . . . . . 

P . . . ++ + 

Substantia 

Nigra 

A . . . ...... ...... 

(Gerfen et al., 1982) M . . . ++ ++ 

P . . . . + 

Ventral 

Tegmental 

Areal 

A . . . ...... ...... 

(Phillipson, 1979) M . . . + . 

P . . . + . 

Zona Incerta 

A . . . ...... ...... 

(Roger & Cadusseau, 1985) M . . . . . 

P . . . . . 

A5 

Noradrenaline 

Cell Group 

A . . . ...... ...... 

(Byrum & Guyenet, 1987.1) M . . . . . 

P . . . . . 

Note. ...... = anatomical division is inexistent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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The DLPAG displays another singular characteristic, by being the only PAG subdivision 

that lacks significant output directed at midbrain, medullary or spinal targets. For example, the 

DMPAG and LPAG have large cell populations targeting the magnus raphe (see Table 2.16) 

and the ventrolateral medulla (Table 2.17), in stark contrast to the intermediate DLPAG, which 

shows no efferents (Abols & Basbaum, 1981; Aghajanian & Wang, 1977; Beitz, Mullett, et al., 

1983.56; Carrive, 1991; Henderson, Keay, & Bandler, 1998; Holstege, 1991b; Van Bockstaele, 

Aston-Jones, Pieribone, Ennis, & Shipley, 1991). 

A large volume of cells in the PAG, mostly located at the VLPAG division, send both 

GABAergic and opioid inhibitory projections to the ventrolateral medulla (Bowman, Kumar, 

Hassan, McMullan, & Goodchild, 2013), and serotonergic projections to the trigeminal nucleus 

of the spinal cord (Y. Q. Li, Takada, & Mizuno, 1993), indicating that these neurotransmitters 

are essential for the promotion of ventral PAG-generated analgesia. 

Table 2.17. Projections Targeting the Medulla and Spinal Cord from the PAG/DR at Anterior, 

Medial and Caudal Levels 

 
  DM DL L VL DR References 

M
E

D
U

L
L

A
 A

N
D

 S
P

IN
A

L
 C

O
R

D
 

Nucleus 

Tractus 

Solitarius 

A    ...... ...... 

(Herbert & Saper, 1992b) M    +++  

P      

Ventrolateral 

Medulla 

A +++ . +++ ...... ...... 
(Carrive, 1991; Henderson et al., 

1998; Van Bockstaele et al., 1991) 
M +++ . +++ ++ + 

P ++ + ++ ++ + 

Spinal 

Trigeminal 

Nucleus 

A . . . ...... ...... 
(Beitz, Mullett, et al., 1983; Y. Q. 

Li, Takada, Shinonaga, & 

Mizuno, 1993) 

M . . . ++ + 

P . . . ++ + 

Cervical 

Spinal Cord 

A . . . ...... ...... 
(Holstege, 1991a.; 1991b; Martin, 

Humbertson Jr., Laxson, 

Panneton, & Tschismadia, 1979) 

M . . + . . 

P . . . + . 

Lumbar 

Spinal Cord 

A    ...... ...... 

 M      

P      

Note. ...... = anatomical division is inexistent at this level; . = negligible projections; + = weak or small 

projections; ++ = medium projections; +++ = strong or large projections; A = anterior/rostral; M = 

medial/intermediate; P = posterior/caudal. 
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2.2.6. A new parcellation of the PAG: internal and external columns 

The DLPAG and LPAG columns are not homogenous within themselves in terms of 

connections. I therefore propose that there are distinct external and internal parts of these two 

columns, based on different properties. I label them the dorsolateral PAG, external part 

(DLPAGe); lateral PAG, external part (LPAGe); dorsolateral PAG, internal part (DLPAGi); 

and lateral PAG, internal part (LPAGi), and summarize the anatomical findings in Table 2.18. 

The projections from the ACC, that exclusively target the DLPAG within the PAG/DR, are 

more precisely targeted at the external part of the column (DLPAGe) (Beckstead, 1979; Wyss 

& Sripanidkulchai, 1984). Similarly, the projections from the superior colliculus are 

concentrated in the DLPAGe, with no terminals in the DLPAGi (Graham, 1977). Medullary 

projections also terminate selectively in the external parts of the PAG. These include axons 

from the ventrolateral medulla reaching the LPAGe and not the LAPGi (Bjorkeland & Boivie, 

1984), and both the cervical and lumbar spinal cord also targeting the DLPAGe and LPAGe 

exclusively while not projecting to their internal counterparts (Bjorkeland & Boivie, 1984). 

As pointed out in Section 2.4.2, projections from the amygdala to the PAG/DR are marked 

by the paucity of terminals targeting the DLPAG compared to the other columns. When 

examining the few amygdalar fibers in the DLPAG, it is possible to note that they tend to 

concentrate on the DLPAGi, closer to the aqueduct (Hopkins & Holstege, 1978; Price & 

Amaral, 1981; Rizvi et al., 1991). Several hypothalamic areas also tend to prefer the internal 

parts of the PAG. The medial preoptic area overwhelmingly targets the DLPAGi and LPAGi 

(Rizvi et al., 1992; Simerly & Swanson, 1988), as do the anterior, lateral, dorsomedial and the 

caudal ventromedial divisions of the hypothalamus (Conrad & Pfaff, 1976; Saper et al., 1978; 

Veening et al., 1991).  

 

  



42 

 

Table 2.18. Afferents to the internal and external divisions of the DLPAG and LPAG 

  DLi DLe Li Le References 

Anterior CG1 

A . ++ 

no afferents 
(Beckstead, 1979; Wyss & 

Sripanidkulchai, 1984) 
M . ++ 

P . ++ 

Anterior CG2 

A . +++ 

no afferents 
(Wyss & Sripanidkulchai, 

1984) 
M . ++ 

P . ++ 

Superior Colliculus 

A . ++   

(Graham, 1977) M . +++   

P .    

Ventrolateral 

Medulla 

A 

no afferents 

. +++ 

(Bjorkeland & Boivie, 1984) M . +++ 

P . +++ 

Cervical Spinal 

Cord 

A . + . +++ 

(Bjorkeland & Boivie, 1984) M . + . +++ 

P . . . ++ 

Lumbar Spinal 

Cord 

A . + . + 

(Bjorkeland & Boivie, 1984) M . ++ . +++ 

P . +++ . ++ 

Central Nuclei of 

the Amygdala 

A     
(Hopkins & Holstege, 1978; 

Price & Amaral, 1981; Rizvi et 

al., 1991) 

M ++ .   

P ++    

Anterior 

Hypothalamic Area 

A + .   

(Conrad & Pfaff, 1976; Saper et 

al., 1978) 
M + .   

P + .   

Lateral 

Hypothalamus 

A 

no afferents 

+++ + 

(Veening et al., 1991) M +++ . 

P +++ . 

Dorsomedial 

Hypothalamic 

Nucleus 

A +++ . ++ . 

(Veening et al., 1991) M +++ . ++ + 

P +++ + +++ . 

Caudal 

Ventromedial 

Hypothalamus 

A +++ + ++ . 

(Veening et al., 1991) M +++ + ++ . 

P ++ + ++ . 
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Note for Table 2.18. . = negligible projections; + = weak or small projections; ++ = medium projections; +++ 

= strong or large projections; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

DLi:dorsolateral PAG, internal part; DLe: dorsolateral PAG, external part; Li: lateral PAG, internal part; Le: 

lateral PAG, external part.  

 

2.2.7. Neurochemical profile 

Throughout the PAG, cell bodies and axonal processes express a wide range of 

neurotransmitters and neuropeptides (see Tables 2.19-2.30). Radioimmunoassay, enzymatic 

isotope assay, and immunohistochemistry have found high concentrations of neurotransmitters 

such as acetylcholine (Palkovits & Jacobowitz, 1974), histamine (Taylor, Gfeller, & Snyder, 

1972), serotonin (Palkovits & Jacobowitz, 1974), GABA (Fahn & Cote, 1968), dopamine 

(Versteeg, Van Der Gugten, De Jong, & Palkovits, 1976), aspartate (Clements, Madl, Johnson, 

Larson, & Beitz, 1987) and orexin (Baldo, Daniel, Berridge, & Kelley, 2003), and moderate 

concentrations of neuropeptides such as encephalin, Substance P, bombesin, angiotensin, and 

P-lipotropin (Mantyh, 1982b). These are reviewed in more detail in the following subsections. 

GABA  

The distribution of gamma-aminobutyric acid (GABA) in the PAG/DR is shown in Table 

2.19. At both the rostral and intermediate levels, the DL column of the PAG is distinct from the 

other subdivisions in terms of high numbers of GABA-positive cell bodies. A much smaller 

number of these cell bodies is present in the lateral and ventral parts, including the DR. This 

pattern reverses at the more caudal end of the PAG/DR complex, where the ventral and lateral 

sections show larger numbers of cells expressing GABA compared to the DL region. At all 

levels, however, the midline sections of the DMPAG and the DR show fewer GABA 

immunopositive cells than the other regions (Barbaresi, 2005; Belin et al., 1979). 

Retrograde labeling has shown that these GABA cells are local interneurons, since they 

project to the PAG/DR itself, exerting local tonic inhibition on most of the GABA-sensitive 

cells in the region, with very few efferent projections. This is indicated by lesions of putative 

external GABAergic sources not significantly reducing the availability of periaqueductal 

GABA – see Reichling (1991) for review. 

As with local cell bodies, GABAergic receptors are more numerous in the DL column of 

the PAG on all levels of the rostral to caudal axis, for both subtypes A and B; on caudal levels, 

however, the distribution is more uniform throughout all subdivisions, including the DR (Chu, 

Albin, Young, & Penney, 1990; Gundlach, 1991).  
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Table 2.19. Concentrations of GABAergic Cell Bodies, Axonic Processes and Receptors in the 

PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell 

Bodies 

A . +++ . ......  ......  

(Barbaresi, 2005; Stamp & Semba, 

1995) 
M . ++ + ++ . 

P . +++ ++ +++ . 

Fibers 

and 

Terminals 

A   ++    ...... ......  

(Barbaresi, 2005) M   ++   ++   

P   ++   ++   

GABA A 

receptors 

A + +++ +  ......  ...... 

(Chu et al., 1990) (Gundlach, 1991) M + +++ + + + 

P ++ ++ ++ ++ ++ 

GABA B 

receptors 

A + +++ + ...... ...... 

(Bowery, Hudson, & Price, 1987; 

Chu et al., 1990) 
M + +++ + + + 

P + ++ + + + 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Nitric oxide Table 2.20 describes the distribution of nitric oxide (NO) cell bodies and fibers in 

the PAG. NADPH-diaphorase labeling is an effective method of locating NO cells in the brain, 

as NADPH is one of its synthases (Hope, Michael, Knigge, & Vincent, 1991). The PAG region 

exhibits NADPH-d-positive cells in the DL column and the DR throughout most of its rostro-

caudal extent (Barbaresi, Quaranta, Amoroso, Mensa, & Fabri, 2012; Ruiz-Torner, Olucha-

Bordonau, Valverde-Navarro, & Martinez-Soriano, 2001). The same pattern is seen with nitric 

oxide-synthase (Gotti, Sica, Viglietti-Panzica, & Panzica, 2005; Onstott et al., 1993). 

Interestingly, NO is extremely localized in the DLPAG and the DR with little in the rest of 

PAG. The volume of local fibers and terminals for NO is concentrated in the DLPAG, VLPAG 

and the DR, with the DMPAG and LPAG displaying much smaller NO arborization (Carrive 

& Paxinos, 1994; F. Conti et al., 1988). 

NO in the PAG is of interest for the study of emotional and defensive disorders, as the 

administration of NO donors is known to produce panic-like reactions in rats (Braga, Aguiar, 

& Guimaraes, 2009), while inhibition of NO synthesis produces anxiety-like behaviors (see 
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(Guimaraes, Beijamini, Moreira, Aguiar, & de Lucca, 2005; Guimaraes, Deaguiar, Delbel, & 

Ballejo, 1994) for a review). 

 

Table 2.20.Concentration of Nitric Oxide Cell Bodies and Axonic Processes in the PAG/DR 

Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell 

Bodies 

A . +++ . ...... ...... (Barbaresi et al., 2012; Carrive & 

Paxinos, 1994; Gonzalez-Hernandez et 

al., 1992; Onstott et al., 1993; Pilyavskii, 

Maiskii, Hariri, Peker, & Bulgakova, 

1996; Vincent & Kimura, 1992) 

M . +++ . . ++ 

P . ++ . . +++ 

Fibers and 

Terminals 

A + +++ + ...... ...... 

(Carrive & Paxinos, 1994; F. Conti et al., 

1988; Ruiz-Torner et al., 2001) 
M + +++ + ++ +++ 

P + +++ + +++ +++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Glutamate The pattern of glutamate cell bodies, terminals and receptors in the PAG is presented 

in Table 2.21. In rodents, glutamatergic cell bodies are present in the DM, L, and VL portions 

of the PAG, but only in small numbers in the DL and not in any considerable concentration in 

the DR, with glutaminase being distributed in the same pattern (Clements et al., 1987). 

However, in at least one report on cats, glutamate cell bodies were shown to be scattered over 

all identified PAG subdivisions of the feline PAG/DR, showing no recognizable pattern in term 

of cell bodies or synaptic terminals distribution (Barbaresi, Gazzanelli, & Malatesta, 1997).  

Beitz (1990) found that cells in the PAG that project and release glutamate and aspartate to 

the raphe magnus nucleus do not cluster in specific defined columns, and appear to be spread 

mostly at the peripheral limits of the PAG.   

Various glutamergic receptors are abundant and evenly distributed through the PAG/DR; 

but with slightly higher binding volume in the dorsal regions, especially for kainate and 

quisqualate in the DL column (Albin et al., 1990; Azkue, Knopfel, Kuhn, Mateos, & Grandes, 

1997; Gundlach, 1991; Tolle, Berthele, Zieglgansberger, Seeburg, & Wisden, 1993). 
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Table 2.21. Concentrations of Glutamatergic Cell Bodies, Axonic Processes and Receptors in 

the PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell Bodies 

A +++ + +++ ...... ...... 

(Barbaresi & Manfrini, 1988; 

Clements et al., 1987) 
M +++ + +++ ++ . 

P ++ + ++ + . 

Fibers and 

Terminals 

A ++ ++ ++ ...... ...... 

(Barbaresi & Manfrini, 1988) M ++ ++ ++ ++ + 

P ++ ++ ++ ++ + 

NMDA 

receptors 

A ++ + + ...... ...... 

(Albin et al., 1990; Tolle et al., 1993) M ++ + + + ++ 

P + + + ++ ++ 

Kainate 

receptors 

A ++ +++ ++ ...... ...... 

(Albin et al., 1990) (Gundlach, 1991) M + +++ + + + 

P + +++ + + +++ 

AMPA 

(Quisqualate) 

receptors 

A ++ ++ + ...... ...... 

(Albin et al., 1990; Tolle et al., 1993) M ++ ++ + ++ ++ 

P + + + ++ + 

mGluR 

receptors 

A + ++ + ...... ...... 

(Azkue et al., 1997) M + ++ + + + 

P      

Note. ...... = anatomical division is inexistent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

In the mammalian nervous system, glutamate is the most abundant excitatory 

neurotransmitter, serving functions beyond cell signaling and assuming roles in cellular 

metabolism and intracellular processes. The localization of glutamate as a neurotransmitter is 

difficult, since all available immunohistochemical methods for detecting glutamate might also 

detect local glutamate that is simply part of the metabolic pool and may have no cell-signaling 

role. To appraise localized glutamergic systems with a role in cell signaling, the limitations of 

the techniques available must be taken into account and compensatory resources must be 

considered, such as using immunohistochemical and immunocytochemical labeling in 

conjunction with tracing imaging from putative glutamatergic afferent sites and efferent 

projections from the PAG.  
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Acetylcholine  Table 2.21 shows concentrations of cholinergic cell bodies, terminals and 

receptors in the PAG. Cell bodies containing acetylcholine (ACh) are located in the caudal part 

of the rodent and feline VLPAG, with none of the rest of PAG nor the DR showing any ACh-

positive cells (Armstrong, Saper, Levey, Wainer, & Terry, 1983). An investigation of the 

primate brain indicates the same pattern of scattered VLPAG cholinergic cell bodies (Kimura, 

McGeer, Peng, & McGeer, 1981). It is important to note that most of these cholinergic cell 

bodies are located at the border of the VLPAG and the laterodorsal tegmental nucleus (LDTg), 

which emerges lateral to the DR and ventral to the VLPAG. The LDTg is one of the most 

densely populated cholinergic centers in the midbrain, and it is conceivable that these detected 

bodies are actually functionally part of the LDTg, rather than the VLPAG. Despite the DR’s 

closeness to both the VLPAG and LTDg, especially at caudal levels, no significant cholinergic 

cell bodies are located within its boundaries in rodents or primates. 

With the exception of the DMPAG, the PAG subdivisions and the DR display cholinergic 

processes throughout their extension, with an increase in density towards the caudo-ventral 

levels (Ruiz-Torner et al., 2001). The terminal fields are limited to the boundaries of the PAG, 

and no immunoreactivity is seen on the neighboring reticular formation or superior and inferior 

colliculi (Kimura et al., 1981), demonstrating very specific regional input from cholinergic 

sources. 

While muscarinic receptors are fairly evenly spread throughout the PAG and DR 

(Gundlach, 1991; Levey, Kitt, Simonds, Price, & Brann, 1991; Wamsley, Lewis, Young, & 

Kuhar, 1981; Zubieta & Frey, 1993), the nicotinic subtype appears to be more concentrated in 

the VLPAG and the DR (Skoubis et al., 2006; L. W. Swanson, Simmons, Whiting, & 

Lindstrom, 1987). In squirrel monkeys, vocalization is mediated by a broad array of 

neurotransmitters in the PAG, including ACh muscarinic receptors. However, ACh nicotinic 

receptors have no effect on PAG-elicited vocalizations (C. L. Lu & Jurgens, 1993).   
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Table 2.22. Concentrations of Cholinergic Cell Bodies, Axonic Processes and Receptors in the 

PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell Bodies 

A . . . ...... ...... 

(Armstrong et al., 1983; Kimura et al., 

1981) 
M . . . + . 

P . . . + . 

Fibers and 

Terminals 

A . . ++ ...... ...... 

(Ruiz-Torner et al., 2001) M . + ++ + +++ 

P . ++ + +++ +++ 

Nicotinic 

receptors 

A . . . ...... ...... 
(Harfstrand et al., 1988; Quik et al., 

2000; Skoubis et al., 2006; L. W. 

Swanson et al., 1987) 

M . . .   

P . . . ++ ++ 

Muscarinic 

(mostly m2 

subtype) 

A . ++ ++ ...... ...... 

(Gundlach, 1991) (Levey et al., 1991; 

Wamsley et al., 1981) 
M . +++ ++ . . 

P ++ ++ ++ ++ ++ 

Muscarinic 

m3 

receptors 

A + +++ ++ ...... ...... 

(Zubieta & Frey, 1993) M + +++ ++ + + 

P      

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 
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Catecholamines The catecholamines dopamine, adrenaline and noradrenaline (and their 

receptors) are more highly concentrated in the PAG/DR region than any other midbrain region 

(see Table 2.23). While the dorsal portions of the PAG show relatively high concentrations of 

dopamine and noradrenaline compared to other midbrain regions, these concentrations are 

much higher in the ventral region and in the DR (Palkovits & Jacobowitz, 1974; Versteeg et 

al., 1976). Adrenergic and noradrenergic medullary afferents preferentially target the ventral 

part of the PAG, especially at the rostral level (Herbert & Saper, 1992a; Kwiat & Basbaum, 

1990), while dopaminergic cell bodies are found in the ventral region of the PAG (Benarroch 

et al., 2009; Flores, El Banoua, Galan-Rodriguez, & Fernandez-Espejo, 2004; Flores, Galan-

Rodriguez, Ramiro-Fuentes, & Fernandez-Espejo, 2006; J. Lu, Jhou, & Saper, 2006) and the 

DR (Unguez & Schneider, 1988), but not the dorsal regions. 

While dopaminergic D1 and D2 receptors are more common in the telencephalon than in 

most mesencephalic structures (Camps, Kelly, & Palacios, 1990; Gehlert & Wamsley, 1985), 

only D2 receptors appear to be functionally present in the dorsolateral PAG, where they mediate 

defense-like behaviors (G. H. Fletcher & Starr, 1987), while D1 receptors present in the ventral 

region of the PAG exclusively modulate nociception (Flores et al., 2004; Meyer, Morgan, 

Kozell, & Ingram, 2009). 

A1 and A2 adrenergic receptors are found in the ventral and ventrolateral columns of the 

PAG and respond in similar ways to adrenergic stimulation (Vaughan, Bandler, & Christie, 

1996). These A1 and A2 receptors are also present in the DR, and the ionic mechanism through 

which noradrenaline excites these cells is similar to the mechanism in the ventrolateral PAG 

(Pan, Grudt, & Williams, 1994). 
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Table 2.23. Concentrations of Catecholaminergic Cell Bodies, Axonic Processes and Receptors 

in the PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Adrenaline/

Noradrenali

ne Cell 

Bodies 

A . . . ...... ...... 

(Poitras & Parent, 1978; L. W. 

Swanson & Hartman, 1975) 
M . . . . . 

P . . . . . 

Dopamine 

Cell Bodies 

A . . . ...... . ...... 
(Meyer et al., 2009; Shimada et 

al., 1976; L. W. Swanson, 1988) 
M . . . . . 

P . . . + . 

Adrenaline/

Noradrenali

ne Fibers 

and 

Terminals 

A    ...... ...... 
(Herbert & Saper, 1992b; L. W. 

Swanson & Hartman, 1975; 

Ungerstedt, 1971) 

M . . . +++ ++ 

P . . + +++ ++ 

Dopamine 

Fibers and 

Terminals 

A . . ++ ...... ...... 
(Herbert & Saper, 1992b; L. W. 

Swanson, 1988; Ungerstedt, 1971) 
M . . ++ +++ ++ 

P . . + ++ ++ 

Adrenaline 

alpha 1 

receptors 

A . . . ...... ...... 
(Day, Campeau, Watson, & Akil, 

1997; Pieribone, Nicholas, 

Dagerlind, & Hokfelt, 1994) 

M . . . . ++ 

P . . . . +++ 

Adrenaline 

alpha 2 

receptors 

A . . . ...... ...... 
(A. P. Nicholas, V. Pieribone, & 

T. Hokfelt, 1993a) 
M . . . . . 

P . . + . . 

Adrenaline 

beta 1 

receptors 

A . . . ...... ...... (A. P. Nicholas, V. A. Pieribone, 

& T. Hokfelt, 1993b; Rainbow, 

Parsons, & Wolfe, 1984; Wanaka 

et al., 1989) 

M . . . . + 

P . . . . + 

Adrenaline 

beta 2 

receptors 

A . . . ...... ...... 
(Nicholas et al., 1993b; Rainbow 

et al., 1984) 
M . . . .  

P . . . . + 

Dopamine 

D1 

receptors 

A . . . ...... ...... 
(Boyson, McGonigle, & Molinoff, 

1986; Weiner et al., 1991) 
M . . . . . 

P . . . . . 

Dopamine 

D2 

receptors 

A ++ ++ ++ ...... ...... 
(Yokoyama, Okamura, Nakajima, 

Taguchi, & Ibata, 1994) 
M      

P ++ ++ ++ ++ +++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 
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Histamine Reports have shown that histamine cells in the midbrain and pons are present during 

rodent embryonic development, but absent after birth and into maturity (Karlstedt, Nissinen, 

Michelsen, & Panula, 2001; Nissinen & Panula, 1995). This is true for the PAG, where 

histaminergic cells do not exist in the mature rodent (Steinbusch, 2009; Watanabe et al., 1984). 

The distribution of different subtypes of histaminergic receptors in the PAG is summarized 

in Table 2.24. The PAG shows a relatively high number of histaminergic receptors, approaching 

the density of some hypothalamic nuclei (Pollard, Moreau, Arrang, & Schwartz, 1993; Taylor 

et al., 1972). The role of these receptors in the PAG seem to be centered on vocal control 

(Jurgens & Lu, 1992; C. L. Lu & Jurgens, 1993), as they do not appear to affect panic-like 

behaviors (Santos, Huston, & Brandao, 2000) and only have a secondary function in controlling 

nociception (Thoburn, Hough, Nalwalk, & Mischler, 1994).  

 

Table 2.24. Concentrations of Histaminergic Cell Bodies, Axonic Processes and Receptors in 

the PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell 

Bodies 

A . . . ...... ...... 

(Steinbusch, 2009; Watanabe et al., 1984) M . . . . . 

P . . . . . 

Fibers and 

Terminals 

A . . ++ ...... ...... 

(Panula, Pirvola, Auvinen, & Airaksinen, 

1989; Watanabe et al., 1984) 
M ++ ++ ++ ++  

P . + ++ ++ ++ 

H1 

receptors 

A . . . ...... ...... 

(Palacios, Wamsley, & Kuhar, 1981) M . . . .  

P . . . . ++ 

H2 

receptors 

A + + + ...... ...... 
(Honrubia, Vilaró, Palacios, & Mengod, 

2000; Traiffort et al., 1992; Vizuete et al., 

1997) 

M + + + + + 

P + + + + ++ 

H3 

receptors 

A + ++ ++ ...... ...... 

(Pillot et al., 2002; Pollard et al., 1993) M ++ ++ ++ ++ + 

P ++ ++ ++ ++ + 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 
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Substance P Substance P is a neurotransmitter present in the brain and spinal cord, where it is 

known to be involved in pain signaling. In the PAG/DR, substance P is generally uniformly 

present throughout the rostral-caudal extension, as shown in Table 2.25. 

While cell bodies expressing substance P are seen throughout the PAG/DR complex, they 

appear to be slightly more numerous dorsally at the intermediate level and sparser in the 

VLPAG and DR. Moving posteriorly, however, substance P-positive cells become more 

concentrated in the VLPAG and DR (R. P. Liu & Swenberg, 1988; Moss & Basbaum, 1983b). 

Although the midbrain region is broadly innervated by substance P fibers and terminals, the 

PAG/DR can be clearly delineated from its neighboring regions by the pattern of its substance 

P innervation. In the rostral PAG, substance P processes are more concentrated in the PAG than 

in the surrounding reticular formation or the deeper layers of the superior colliculus. This 

pattern persists through the mid and caudal PAG/DR, whereas no significant labeling is seen 

on surrounding areas like the inferior colliculus (Ljungdahl, Hokfelt, & Nilsson, 1978; Moss & 

Basbaum, 1983b).  

Rostrally, substance P receptors are more densely concentrated in the dorsal portions of the 

PAG, although, ventrally from the aqueduct, a number of cells within the Edinger-Westphal 

nucleus also show heavy labeling. More posterior to that, around the midway length of the 

PAG/DR complex at the level of the middle superior colliculus, concentrations are balanced 

throughout the radial subdivisions both dorsally and ventrally. Finally, on the caudal extreme, 

the balanced labelling continues, clearly limited to the PAG/DR only, with neighboring regions 

like the dorsal tegmental nucleus showing no labeling (Beaujouan, Torrens, Saffroy, & 

Glowinski, 1986; R. P. Liu & Swenberg, 1988; Mantyh, Hunt, & Maggio, 1984; Rothman, 

Herkenham, Pert, Liang, & Cascieri, 1984). 
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Table 2.25. Concentrations of Substance P Cell Bodies, Axonic Processes and Receptors in the 

PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell 

Bodies 

A ++ ++ ++ ...... ...... 

(R. P. Liu & Swenberg, 1988; Moss & 

Basbaum, 1983b) 
M ++ +++ ++ + + 

P ++ + ++ ++ ++ 

Fibers and 

Terminals 

A ++ ++ ++ ...... ...... 

(Ljungdahl et al., 1978; Moss & Basbaum, 

1983b) 
M ++ ++ ++ ++ ++ 

P ++ ++ ++ ++ ++ 

non-

specific 

receptors 

A +++ +++ ++ ...... ...... 
(Beaujouan et al., 1986; R. P. Liu & 

Swenberg, 1988; Mantyh et al., 1984; 

Rothman et al., 1984) 

M +++ +++ ++ ++ ++ 

P ++ ++ ++ +++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Serotonin Table 2.26 presents the pattern of serotonergic cell bodies, axonic processes and 

receptors in the PAG/DR region. The DR is the main site of serotonin, or 5-hydroxytryptamine 

(5-HT), input to the forebrain and has the largest concentration of serotonergic cell bodies 

within the PAG/DR complex (Bjorklund, Falck, & Stenevi, 1971). Although many serotonergic 

cells can also be found in the ventrolateral PAG, especially caudally (Clements, Beitz, Fletcher, 

& Mullett, 1985; Takeuchi, Kimura, & Sano, 1982), no 5-HT cell bodies are seen in the dorsal 

divisions of the PAG. 

There are serotonergic processes in all the subdivisions of the PAG, but the highest 

concentrations are in the ventral divisions, with an increase towards the caudal portion of the 

PAG. This increase in 5-HT concentration towards posterior positions only happens ventrally, 

with dorsal regions retaining a low level of serotonergic fibers (Clements et al., 1985; Gioia, 

Tredici, & Bianchi, 1983; Steinbusch, 1981). 

The 5-HT1A receptor subtype is present in all divisions of the PAG and DR, although greater 

numbers are seen in more ventral regions (Pompeiano, Palacios, & Mengod, 1992). A reverse 

pattern of distribution is observed with the 2A subtype, with the lateral column of the PAG 

having higher immunoreactivity than the other subdivisions (Appel et al., 1990; Cornea-Hebert, 
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Riad, Wu, Singh, & Descarries, 1999; Griffiths & Lovick, 2002; Morilak, Garlow, & 

Ciaranello, 1993; Pazos, Cortes, & Palacios, 1985). 

Investigations around dysfunctions related to 5-HT tend to focus on the VLPAG and DR 

(de Paula Soares & Zangrossi, 2009; Deakin; Graeff, Guimaraes, De Andrade, & Deakin, 

1996), as these regions have the largest populations of neurons supplying 5-HT to the forebrain. 

 

Table 2.26. Concentrations of Serotonergic Cell Bodies, Axonic Processes and Receptors in 

the PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell 

Bodies 

A . . . ...... ...... (Behzadi et al., 1990; Clements et al., 

1985; Di Carlo, Hubbard, & Pate, 1973; 

Hubbard & Di Carlo, 1974; Leger, 

Charnay, Dubois, & Jouvet, 1986; Y. Q. 

Li, Zeng, Dong, Rao, & Shi, 1991; Pin, 

Jones, & Jouvet, 1969; Poitras & Parent, 

1978; Steinbusch, 1981; Takeuchi et al., 

1982) 

M . . . ++ +++ 

P . . . ++ +++ 

Fibers and 

Terminals 

A ++ ++ ++ ...... ...... 

(Steinbusch, 1981) M ++ ++ ++ +++ +++ 

P + + + +++ +++ 

1A 

receptors 

A    ...... ...... 

(Pompeiano et al., 1992) M + + ++ ++ +++ 

P + + ++ ++ +++ 

2A 

receptors 

A + + ++ ...... ...... 
(Appel et al., 1990; Cornea-Hebert et al., 

1999; Griffiths & Lovick, 2002; Morilak 

et al., 1993; Pazos et al., 1985) 

M + + ++ + + 

P + + + + + 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Encephalin, endorphin and opioid receptors  

The distribution of endogenous opioid cell bodies, axonic processes and receptors in the 

PAG is displayed in Table 2.27. No cell bodies express endorphins in the PAG or DR (Bloom, 

Battenberg, Rossier, Ling, & Guillemin, 1978; Weber & Barchas, 1983; Weber, Roth, & 

Barchas, 1982), but all subdivisions of the PAG and DR have neurons positive for encephalin. 
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Rostrally, the proportion of encephalin cells is higher at dorsal levels in the DMPAG and 

DLPAG; ventrally, this pattern shifts in that cells are more numerous at ventral levels in the 

VLPAG and DR (Khachaturian, Lewis, & Watson, 1983; Moss, Glazer, & Basbaum, 1983; 

Murakami, Okamura, Yanaihara, Yanaihara, & Ibata, 1987; Uhl, Goodman, Kuhar, Childers, 

& Snyder, 1979). 

The pattern of innervation of encephalin fibers is less distinct than cell body distribution. 

Processes are fairly evenly distributed in medium-to-high numbers throughout the PAG and 

DR (Khachaturian et al., 1983; Moss et al., 1983; Murakami et al., 1987; Sar, Stumpf, Miller, 

Chang, & Cuatrecasas, 1978; Simantov, Kuhar, Uhl, & Snyder, 1977). 

In the brain, delta opioid receptors are concentrated in the forebrain and cortex (Sharif & 

Hughes, 1989), while other regions, including the PAG and DR, show little-to-no receptor 

binding or mRNA expression (Allen et al., 1993; Mansour, Khachaturian, Lewis, Akil, & 

Watson, 1987; Peckys & Landwehrmeyer, 1999; Sharif & Hughes, 1989; Waksman, Hamel, 

Fournie-Zaluski, & Roques, 1986). Mu opioid receptor mRNA, however, is present in large 

amounts in all subdivisions of the PAG and DR, although this does not necessarily correspond 

to sites of receptor binding (Mansour, Fox, Thompson, Akil, & Watson, 1994). One possible 

explanation for this is that while mu receptor synthesis occurs locally at the level of the soma, 

the receptor is transported through axons to efferent terminals in distant locations. This 

hypothesis is supported by the finding that delta opioid receptors in the rat spinal cord are 

mostly on the presynaptic terminals of cells (Cheng et al., 1995) and that receptor binding is 

reduced in efferent sites to a lesion (Lamotte, Pert, & Snyder, 1976).  

The PAG has a known role in regulating nociception in animals, and is the target of deep 

brain stimulation treatments for chronic pain in human patients. Higher levels of endorphins 

can be detected in the ventricular fluid of patients undergoing pain-reducing PAG stimulation, 

and this reduction in nociception can be counteracted by naloxone administration (Hosobuchi, 

Rossier, Bloom, & Guillemin, 1979). Even the analgesic effects generated by other structures, 

like the amygdala, can be hampered by the blockade of PAG opioid receptors (Pavlovic, 

Cooper, & Bodnar, 1996). This opioid control of pain in the PAG is by the ventral, not dorsal, 

PAG (Nichols, Thorn, & Berntson, 1989). 

The involvement of opioid systems in the PAG goes beyond pain control, however. For 

instance, the antagonism of mu-receptors in the area can combat the panicolytic effects of 

fluoxetine (Roncon et al., 2012), and can regulate GABAergic availability and 

neurotransmission (Vaughan, Ingram, Connor, & Christie, 1997), as well as other emotional 
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responses mediated by the PAG (De Luca-Vinhas, Macedo, & Brandao, 2006; McNally, Pigg, 

& Weidemann, 2004; Roncon et al., 2013). 

 

Table 2.27. Concentrations of Endogenous Opioid Cell Bodies, Axonic Processes and 

Receptors in the PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Endorphins 

Cell Bodies 

A . . . ...... ...... 

(Bloom et al., 1978; Weber & Barchas, 

1983; Weber et al., 1982) 
M . . . . . 

P . . . . . 

Encephalin 

Cell Bodies 

A +++ +++ . ...... ...... 
(Khachaturian et al., 1983; Moss et al., 

1983; Murakami et al., 1987; Uhl et al., 

1979) 

M ++ + ++ +++ +++ 

P . ++ ++ +++ +++ 

Endorphins 

Fibers and 

Terminals 

A ++ ++ ++ ...... ...... 

(Fallon & Leslie, 1986; Weber & 

Barchas, 1983) 
M ++ ++ ++ ++ ++ 

P ++ ++ ++ ++ ++ 

Encephalin 

Fibers and 

Terminals 

A +++ ++ . ...... ...... 
(Khachaturian et al., 1983; Moss et al., 

1983; Murakami et al., 1987; Sar et al., 

1978; Simantov et al., 1977) 

M ++ ++ + +++ +++ 

P +++ +++ ++ ++ +++ 

Mu 

receptors 

A + +++ + ...... ...... (Allen et al., 1993; Gutstein, Mansour, 

Watson, Akil, & Fields, 1998; 

Herkenham & Pert, 1982; Mansour et 

al., 1994; Mansour et al., 1987; 

Moskowitz & Goodman, 1985; Sharif 

& Hughes, 1989; Waksman et al., 1986) 

M      

P + ++ + + + 

Delta 

receptors 

A . . . ...... ...... (Allen et al., 1993; Mansour et al., 

1987; Peckys & Landwehrmeyer, 1999; 

Sharif & Hughes, 1989; Waksman et 

al., 1986) 

M . . . .  

P . . . . . 

Kappa 

receptors 

A . + . ...... ...... 
(Gutstein et al., 1998; Mansour et al., 

1987; Unterwald, Knapp, & Zukin, 

1991) 

M      

P + + + ++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 
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Orexin Orexin is a recently-discovered neuropeptide known to be synthesized by a group of 

cells in the hypothalamus (hence its alternative name, hypocretin). Its pattern of distribution is 

summarized in Table 2.28. Despite being concentrated in populations of cells limited to the 

lateral, dorsomedial and a few selected other hypothalamic nuclei, orexin fibers project widely 

to different parts of the central nervous system, from cortical areas through to the brainstem 

and medulla, including the PAG/DR (Nambu et al., 1999; Sakurai et al., 1998). Of note, the 

PAG/DR is very strongly targeted when compared to surrounding structures, such as the 

superior colliculus and reticular formation, which display much sparser orexin terminals. 

Fibers from the hypothalamus terminating in the periaqueductal region demonstrate no 

special pattern of concentration, with all columns of the PAG and DR showing dense labeling 

from orexin fibers (Nambu et al., 1999). Exceptions to this localized orexin distribution are the 

median raphe, located ventrally to the PAG/DR, and the locus coeruleus, located caudally to 

the PAG/DR. Both regions receive strong orexinergic projections and could be part of a 

functional system with the PAG/DR. 

 

Table 2.28. Concentrations of Orexin Cell Bodies, Axonic Processes and Receptors in the 

PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Cell 

Bodies 

A . . . ...... ...... 

(Nambu et al., 1999; Sakurai et al., 1998) M . . . . . 

P . . . . . 

Fibers and 

Terminals 

A +++ +++ +++ ...... ...... 

(Nambu et al., 1999) M +++ +++ +++ +++ +++ 

P      

OX1 

receptors 

A . . ++ ...... ...... 

(Marcus et al., 2001) M      

P . . . . ++ 

OX2 

receptors 

A . . . ...... ...... 

(Marcus et al., 2001) M      

P . . + . +++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 
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Orexin was initially discovered to be involved in hunger and food-seeking behavior, as 

orexinergic cells are located in regions of the hypothalamus classically associated with food 

intake. The name thus originates from the Greek word for appetite, orexis. While the DR 

mediates certain aspects of feeding and appetite, and these are modulated by 5-HT (P. J. 

Fletcher & Coscina, 1993), the PAG could mediate changes in motivational states related to 

feeding. For instance, the PAG is involved in switching from passive behaviors to active ones, 

such as hunting and foraging (M. O. Klein et al., 2014; Mota-Ortiz, Sukikara, Felicio, & 

Canteras, 2009; Sukikara, Mota-Ortiz, Baldo, Felicio, & Canteras, 2006). Further putative roles 

for orexin that could involve the PAG include arousal, reward seeking and processing 

(Brisbare-Roch et al., 2007; Harris & Aston-Jones, 2006), and the mediation of 

sleep/wakefulness (Sakurai, 2005).  

Orexin is also able to exert nociceptive control of pain. It dampens the tail flick response in 

rats when injected in the spinal theca, and has the same efficacy as morphine when injected 

intravenously (Yamamoto, Nozaki-Taguchi, & Chiba, 2002). This mechanism is independent 

of the opioid system, as these effects are not antagonized by naloxone (Bingham et al., 2001). 

While the hypothalamus is capable of generating orexin-mediated nociception, orexin blockade 

in the PAG neutralizes hypothalamic-generated analgesia (Esmaeili, Reisi, Ezzatpanah, & 

Haghparast, 2016), indicating that the PAG exerts strong influence over the hypothalamus in 

this regard. 

Cannabinoids 

Cannabinoid receptors in the brain are involved in the mediation of the psychotropic effects 

of Cannabis, mostly through the CB1 receptor. As shown in Table 2.29, the concentration of 

endocannabinoid receptors in the PAG/DR increases in the caudal aspect (Herkenham, Lynn, 

de Costa, & Richfield, 1991; Herkenham, Lynn, Johnson, et al., 1991; Matsuda, Bonner, & 

Lolait, 1993; Tsou, Brown, Sanudo-Pena, Mackie, & Walker, 1998). 
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Table 2.29. Concentrations of Endocannabinoid Receptors in the PAG/DR Region, at Anterior, 

Medial and Caudal Levels 

  DM DL L VL DR References 

CB1 

receptors 

A    ...... ...... 

(Moldrich & Wenger, 2000) M ++ ++ ++ + . 

P      

CB2 

receptors 

A . . . ...... ...... 

(Gong et al., 2006) M      

P      

non-

specific 

receptors 

A + + + ...... ...... 
(Herkenham, Lynn, de Costa, et al., 1991; 

Herkenham, Lynn, Johnson, et al., 1991; 

Matsuda et al., 1993; Tsou et al., 1998) 

M      

P +++ +++ ++ ++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Cholecystokinin  

Table 2.30 shows the pattern of Cholecystokinin (CCK) cell bodies and axonic processes 

in the PAG/DR complex. CCK is a hormone originally isolated from the gastrointestinal tract, 

where it initiates enzymatic secretion in the pancreas and contraction in gall bladder muscles. 

More recently, CCK has been located in the brain, where its distribution is widespread. 

Systemic administrations of CCK can promote satiety in rats, while antagonism of CCK 

receptors in the brain annuls the satiety effect of the hormone (Dourish, Rycroft, & Iversen, 

1989). 

Synaptic terminals and populations of cell bodies expressing CCK are present in the 

VLPAG and DR (H. Liu et al., 1994; Loren, Alumets, Hakanson, & Sundler, 1979). CCK 

molecules can act through GABA and opioid receptors (Wiesenfeld-Hallin, de Arauja Lucas, 

Alster, Xu, & Hokfelt, 1999) and GABAergic agonists are capable of antagonizing the central 

effects of CCK (Bradwejn & Demontigny, 1985), indicating a central role for this molecule in 

regulating panic and anxiety reactions in the PAG (Y. Li & Han, 1989). 

Indeed, it appears that CCK facilitates panic-like reactions at the PAG level and also 

peripherally, with one potentiating the other: intravenous CCK administration can induce panic 

attacks in both humans (de Montigny, 1989) and animals (Bradwejn, Koszycki, & Shriqui, 

1991), and local injections of the peptide in the dorsal PAG in animal models seem to either 
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facilitate the panicogenic effects of local injections of excitatory amino acids (Mongeau & 

Marsden, 1997) or have direct panicogenic effects that are blocked by local administration of 

CCK antagonists (Zanoveli, Netto, Guimaraes, & Zangrossi, 2004). 

 

Table 2.30. Concentrations of CCK Cell Bodies and Axonic Processes in the PAG/DR Region, 

at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

CCK Cell 

Bodies 

A . . + ...... ...... 

(Loren et al., 1979) M . . . ++ ++ 

P . . . ++ ++ 

CCK Fibers 

and 

Terminals 

A + +++ + ...... ...... 

(H. Liu et al., 1994; Loren et al., 1979) M + +++ + + + 

P + +++ + + + 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Glycine  

Glycine is a neurotransmitter with inhibitory properties at the brainstem and spinal cord, 

and its distribution in the PAG/DR is presented in Table 2.31. Glycine fibers are seen in all 

columns of the PAG, although they are comparatively underrepresented at the DLPAG 

(Rampon, Luppi, Fort, Peyron, & Jouvet, 1996). Receptors, however, are absent from most of 

the PAG at the rostral level, but become more widespread through all columns on the caudal 

aspect (Zarbin, Wamsley, & Kuhar, 1981). 

Glycenergic inputs to the medulla are capable of regulating both vascular (Blessing & Reis, 

1983; Guertzenstein & Silver, 1974) and cardiac (Ezure, Tanaka, & Kondo, 2003) changes at 

local GABA receptors. These effects could be at least partially mediated through glycine cell 

bodies present at the LPAG and VLPAG (Rampon et al., 1996), given that the LPAG and 

VLPAG target the ventrolateral medulla (Carrive, 1991; Henderson et al., 1998; Van 

Bockstaele et al., 1991). 
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Table 2.31. Concentrations of Glycine Cell Bodies, Axonic Processes and Receptors in the 

PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Glycine Cell 

Bodies 

A . . ++ ...... ...... 

(Rampon et al., 1996) M . . ++ ++ . 

P . . + ++ . 

Glycine 

Fibers and 

Terminals 

A    ...... ...... 

(Rampon et al., 1996) M ++ + +++ +++ ++ 

P      

Glycine 

receptors 

A . . + ...... ...... 

(T. Araki et al., 1988) M      

P ++ ++ ++ ++ ++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Corticotropin releasing factor 

Corticotropin releasing factor (CRF) is a peptide central in the signaling pathways that 

influence the cascade of stress responses in the body. Cells that release CRF are heavily 

concentrated in hypothalamic regions, although sizeable populations exist in other sites like the 

amygdala and the PAG (see Table 2.32).  

The ventral PAG contains CRF cells in the lateral column, ventrolateral column and in the 

dorsal raphe (Merchenthaler, Vigh, Petrusz, & Schally, 1982; Olschowka, O'Donohue, Mueller, 

& Jacobowitz, 1982). Local axonic processes, though, appear to be segmented more dorsally, 

mostly at the DLPAG and LPAG, with only a smaller volume at the VLPAG (Olschowka et 

al., 1982). The CRF fibers at the PAG mostly originate from hypothalamic and amygdalar sites 

(Gray & Magnuson, 1992). 
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Table 2.32. Concentrations of Corticotropin Releasing Factor (CRF) Cell Bodies and Axonic 

Processes in the PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

CRF Cell 

Bodies 

A . . + ...... ...... 
(Merchenthaler et al., 1982; 

Olschowka et al., 1982) 
M . . + + . 

P . . + + + 

CRF Fibers 

and 

Terminals 

A . ++ ++ ...... ...... 

(Olschowka et al., 1982) M . ++ ++ . . 

P . ++ ++ + . 

Somatostatin 

Cell Bodies 

A . . . ...... ...... 
(Finley, Maderdrut, Roger, & Petrusz, 

1981) 
M . . . ++ ++ 

P      

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Neurotensin  

The peptide neurotensin, which has a proposed modulatory influence over dopaminergic 

systems, is present in the human and monkey PAG as one of the most concentrated regions for 

neurotensin in the midbrain and brain stem (Cooper, Fernstrom, Rorstad, Leeman, & Martin, 

1981; Kataoka, Mizuno, & Frohman, 1979). As seen in Table 2.33, neurotensin fibers are 

evenly distributed over all subdivisions of the mammalian PAG/DR (Jennes, Stumpf, & 

Kalivas, 1982; Mai, Triepel, & Metz, 1987), while cells are present mostly within the VLPAG 

and DR, and are known to project to the magnus raphe (Beitz, Shepard, & Wells, 1983). 

Centrally administered neurotensin provokes a series of autonomic changes in the rat, 

including sedation and reduced locomotion. Neurotensin administration in the PAG generates 

nociception that is dependent on the median raphe but not dependent on opioidergic systems 

(Al-Rodhan et al., 1991; Behbehani & Pert, 1984). In vitro studies show that neurotensin exerts 

its effects in the PAG through complex interactions with other receptor systems: while 

neurotensin release can be induced by opioids (Stiller, Gustafsson, Fried, & Brodin, 1997), its 

mechanism of action appears to be the inhibition of GABA neurotransmission, which is 

achieved through the release of glutamate-induced endocannabinoids that bind to the CB1 

receptor (Mitchell, Kawahara, & Vaughan, 2009).  
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Table 2.33. Concentrations of Neurotensin Cell Bodies, Axonic Processes and Receptors in the 

PAG/DR Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Neurotensin 

Fibers and 

Terminals 

A ++ + ++ ...... ...... 

(Jennes et al., 1982; Mai et al., 1987) M ++ ++ ++ ++ ++ 

P ++ ++ ++ ++ ++ 

Neurotensin 

Cell Bodies 

A . . . ...... ...... 
(Beitz, Shepard, et al., 1983; Jennes et 

al., 1982; Mai et al., 1987) 
M . + . ++ + 

P . . . ++ ++ 

Neurotensin 

receptors 

(non-specific) 

A + +++ ++ ...... ...... 

(Moyse et al., 1987) M + +++ + +  

P + +++ + + ++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 

 

Relaxin 

Relaxin was first discovered as a peripheral hormone secreted by the reproductive system, 

capable of inducing changes related to pregnancy and menstrual cycles. Relaxin-3, a variant of 

the hormone, has since been confirmed to be present in the brain. The locus of synthesis for 

relaxin in the CNS is the nucleus incertus (NI), a diminutive structure caudal to the PAG/DR, 

at the floor of the 4th ventricle (Bathgate et al., 2002; Burazin et al., 2002; C. Liu et al., 2003). 

The NI has widespread efferents, spanning most of the forebrain and midbrain (Goto et al., 

2001; Olucha-Bordonau et al., 2003).  

Table 2.34 summarizes the distribution of relaxinergic processes and receptors in the 

PAG/DR. Relaxin fibers originating from the NI are found in high volume across the rostro-

caudal extent of all PAG/DR subdivisions (Ma et al., 2007; Ma, Sang, Lanciego, & Gundlach, 

2009; Smith et al., 2010). Meanwhile, RXFP-3 relaxin receptors are concentrated in the 

DLPAG and VLPAG, although they are also found in other PAG/DR subdivisions (Smith et 

al., 2010). 

The relaxin system appears to modulate a wide array of emotional, defensive and cognitive 

aspects of brain function. In rats, systemic antagonism of the relaxin brain receptor is anxiolytic 

and antidepressant (Ryan et al., 2013), while agonism induces feeding (Calvez, Lenglos, de 

Avila, Guevremont, & Timofeeva, 2015). In the amygdala, relaxin impairs emotional 

conditioning (Ma et al., 2005), and NI lesions impair extinction of fear conditioning (Pereira et 
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al., 2013). NI neurons induce hippocampal theta when stimulated, and also increase their firing 

rate when hippocampal theta is evoked by reticular stimulation (Nunez, Cervera-Ferri, Olucha-

Bordonau, Ruiz-Torner, & Teruel, 2006). Furthermore, the endogenous release of relaxin at the 

medial septum enhances spatial learning while at the same time promoting hippocampal theta 

(Ma, Olucha-Bordonau, et al., 2009), while inhibition of NI neurons blocks spatial learning 

(Nategh, Nikseresht, Khodagholi, & Motamedi, 2015). The modulatory properties of the relaxin 

system is long-ranging: NI relaxin cells fire in the presence of CRF (Ma, Blasiak, Olucha-

Bordonau, Verberne, & Gundlach, 2013) and in turn are capable of changing firing patterns in 

the medial PFC (U. Farooq et al., 2013).  

 

Table 2.34. Concentrations of Relaxinergic Axonic Processes and Receptors in the PAG/DR 

Region, at Anterior, Medial and Caudal Levels 

  DM DL L VL DR References 

Relaxin Fibers 

and Terminals 

A ++ ++ ++ ...... ...... 
(Ma et al., 2007; Ma, Sang, et al., 

2009; Smith et al., 2010) 
M + +++ + +++ + 

P +++ ++ ++ +++ +++ 

Relaxin 

Receptors 

A + +++ + ...... ...... 

(Smith et al., 2010) M + +++ + +++ + 

P + + + + ++ 

Note. ...... = anatomical division is non-existent at this level; . = little detected; + =small amount; ++ = medium 

amount; +++ = large amount; A = anterior/rostral; M = medial/intermediate; P = posterior/caudal. 
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 Functions within the PAG 

The anatomy reviewed so far suggests that there should be considerable functional 

differentiation of the PAG/DR complex. In this section, I discuss the evidence for functional 

differentiation not only between the dorsal and ventral parts of the PAG/DR complex, but also 

along its anterior-posterior axis and between its internal and external portions. The new 

divisions of the PAG introduced in Section 2.6 account for the distinct functionality of these 

areas.  

Given the PAG’s phylogeny and well-conserved state among species, it has long been 

known as a region that mediates behavioral and autonomic flight-or-fight responses during 

close-proximity aversive scenarios, and the electrical or chemical stimulation of the PAG is a 

well-established model for studying panic attacks in animals. Electric stimulation of the PAG 

in human patients produces an array of symptoms and signs similar to a patient suffering a panic 

attack; and panic disorder patients show structural and biochemical abnormalities in midbrain 

structures, including the PAG (see Del-Ben and Graeff (2009) for a review on the subject). 

Pharmacological interventions known to be effective in treating panic-related symptoms in the 

clinic, like the administration of 5-HT selective drugs, reduce the responses provoked by PAG 

electrical or chemical stimulation (Jenck, Moreau, & Martin, 1995). Furthermore, patients 

diagnosed with panic disorder or with a history of panic attacks are sensitive to panic attacks 

induced by challenges like the inhalation of carbon dioxide (CO2) or intravenous infusion of 

sodium lactate and potassium cyanide, and these challenges also facilitate the production of 

escape reactions from PAG electrical stimulation in rats (Schimitel et al., 2012). 

Prior to the 1980s, the PAG was considered functionally homogenous. However, with the 

subsequent division of the PAG into columns, each with their own properties, attention shifted 

to how distinct parts of the PAG are responsible for different types of behavioral and autonomic 

responses – see, for example, S. P. Zhang, Bandler, and Carrive (1990); and reviews by Shipley, 

Ennis, Rizvi, and Behbehani (1991); Carrive (1993) and Bandler and Shipley (1994). 

An early dichotomy in PAG function came from the distinct autonomic responses and 

defensive scenarios provoked by activation of the dorsal versus ventral extremes of the PAG. 

Activation of ventral PAG elicits passive behavioral states, including immobility, cataplexy, 

bradycardia, hypotension and opioid-mediated analgesia. Activation of dorsal PAG, however, 

elicits active reactions more related to fight/flight, namely vigilance, hyperactivity to stimuli, 

tachycardia, hypertension and non-opioid analgesia. 
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To make sense of this dichotomy when discussing the functions of the PAG, defensive 

distance (R.J.  Blanchard, Flannelly, & Blanchard, 1986) must be taken into account. When a 

threat is imminent and clear (e.g. a rat detecting a cat about to pounce, or a person noticing a 

snake at close proximity), the PAG will be involved in organizing the defensive response. In 

contrast, the PAG has no involvement (or only plays a secondary role) in less threatening 

scenarios where the danger is remote or unclear (e.g. a rat detecting the smell, but not the 

presence, of a cat, or a person seeing a suspicious figure on the other side of the street).  

As discussed in Chapter 1, the elegant evolutionary explanation is that animals resort to 

active strategies, such as running or fighting, to survive close-proximity threats, while the 

adaptive response to uncertain or distant threats distant is to freeze, as a reduction in motor 

activity will decrease the likelihood of detection while the animal can assess the situation 

further. However, defensive distance alone is insufficient to explain mobility and immobility 

in laboratory manipulations, and I argue that the animal’s assessment of their likelihood of 

successful escape influences their response to a great extent. 

Consider the following two scenarios, and how the escapability of the situation influences 

the defensive response. In the first scenario, a rat is placed in a small, closed box that has 

previously been associated with an aversive stimulus. The rat will freeze, even though no actual 

threat is present, indicating that the animal is reacting to a potential (distant) threat. However, 

when given the opportunity to remove itself from the box by being given access to a separate 

chamber, it will choose to escape instead, engaging in more active types of defensive and risk 

assessment behaviors, such as crouch-sniff and stretch postures (Viellard, Baldo, & Canteras, 

2016). In contrast, now consider the second scenario in which a rat has been placed in a sealed 

enclosure with a real predator: an actual (proximal) threat. If the rat knows that a way out from 

danger is possible (say, through a small passage that leads to a hiding burrow), it will remove 

itself from the area by escaping (or first fighting and then escaping). However, if the rat knows 

that escape is not possible, then it will resort to an acute state of immobility, called quiescence, 

to avoid detection. During this state, animals reduce their autonomic responses to such an extent 

that they become unresponsive to external stimuli. The most extreme case of this passive 

defensive state is known as tonic immobility or thanatosis (Arduino & Gould, 1984), in which 

animals ‘play dead’ and stop responding to predator probes and attacks entirely. In some species 

the behavior includes mimicking death though body posture or the release of putrid scents.  

While not always successful, this strategy is adaptive as a last resort, as it may provide the 

prey with an opportunity to escape. In the same way that animals constantly monitor their 

environment while freezing due to distant threats, animals engaging in tonic immobility also 
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monitor their environment and can become mobile when escape is judged possible (Arduino & 

Gould, 1984). Considering that some predators have no interest in pursuing dead prey and 

others might shift their attention to other priorities if they perceive their prey to be defeated, an 

animal using tonic immobility as a defense mechanism at least has a chance of successfully 

evading their predator. 

Thus it is clear that, alongside defensive distance, the escapability of the environment is 

highly influential on the animal’s chosen survival strategy. In this section, I thus consider 

experimental data in light of both of these factors, as they activate distinct circuits within the 

PAG. 

 The dorsal-ventral axis 

In broad terms, the dorsal aspects of the PAG are involved in the production of different 

classes of behavior, while the ventral PAG inhibits responsiveness to stimuli (see Figure 2.3 

and Table 2.35). 

 

 

Figure 2.3. The predominant, contrasting functions of the dorsal and ventral PAG. 

 

Lordosis is the curvature of a female rodent’s spine, produced in the presence of a desired 

male. PAG lesions can reduce (or completely abolish) lordosis, particularly when located in the 

dorsal PAG (Sakuma & Pfaff, 1979b), indicating that this region is crucial in the production of 
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this behavior. Activation of the ventral PAG, on the other hand, inhibits lordosis (Arendash & 

Gorski, 1983).  

In social encounters, aggression towards a conspecific is more easily elicited from dorsal 

rather than ventral stimulation (Depaulis, Bandler, & Vergnes, 1989). The flight response seen 

during encounters with proximal dangers can only be induced from stimulation of the dorsal 

PAG (Carrive, 1993). Furthermore, escape behavior produced by the elevated T-Maze (ETM, 

an ethological model of fear), labels more cells in the dorsal PAG in c-Fos experiments (Leite 

Silveira, Zangrossi Jr, de Barros Viana, Silveira, & Graeff, 2001), as does escape provoked by 

a blast of ultrasonic sound (Neophytou et al., 2000). Similarly, while hypoxia can cause 

vigorous escape responses, in vitro studies show that dorsal cells are more responsive to low 

levels of oxygen than ventral cells (Kramer, Nolan, & Waldrop, 1999). 

When faced with an inescapable threat, the best defensive strategy for a rat is quiescence or 

tonic immobility. It needs to remain still and decrease the probability of being detected: in other 

words, to reduce its movement, reduce its response to stimuli, and decrease nociception - in 

anticipation of injury. Excitatory amino acid (EAA) injections in the ventral part of the PAG 

produce immobility and unresponsiveness (Bandler & Depaulis, 1991), reduce blood pressure 

(Carrive, 1993) and increase analgesia (Besson, Fardin, & Oliveras, 1991; Fardin, Oliveras, & 

Besson, 1984). In addition, responses to aversive conditioned memories of an inescapable 

environment seem to be dependent on the ventral PAG as well, as lesions (Leman, Dielenberg, 

& Carrive, 2003; Vianna, Graeff, Landeira-Fernandez, & Brandao, 2001) and opioid blockade 

(Grahn, Maswood, McQueen, Watkins, & Maier, 1999) in the ventral region disrupt 

conditioned responses, while dorsal interventions do not. 
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Table 2.35. Functions of the Dorsal and Ventral Extremes of the PAG/DR 

Function 
Dorsal 

role 

Ventral 

role 
Paradigm Description References 

Sexual 

(activation) 

Yes no Stimulation Lordosis  

More less Lesion Lordosis 
(Sakuma & 

Pfaff, 1979b) 

Sexual 

(inhibition) 
no Yes Stimulation Lordosis 

(Arendash & 

Gorski, 1983) 

Social More less Stimulation 

Aggressive 

behaviour towards 

conspecific 

(Depaulis et 

al., 1989) 

Sympathetic 

(activation) 

Yes no EAA 
Increase in arterial 

blood pressure 

(Carrive, 

1993) 

More less Electrophysiology 

Neurons responsive 

to hypoxic states in 

vitro 

(Kramer et 

al., 1999) 

Fear 

Yes no Stimulation Flight response 
(Carrive, 

1993) 

More less c-Fos 
Encounter with 

predator 

(Canteras & 

Goto, 1999) 

More less c-Fos 

Escape behaviour 

in an ethological 

model of panic 

(ETM) 

(Leite 

Silveira et al., 

2001) 

More less c-Fos 
Escape elicited by 

ultrasonic sound 

(Neophytou 

et al., 2000) 

Sympathetic 

(inhibition) 
no Yes EAA 

Decrease in arterial 

blood pressure 

(Carrive, 

1993) 

Nociception 

(inhibition) 

no Yes Opioid Blockade 
Opioid-dependent 

analgesia 

(Nichols et 

al., 1989) 

no Yes Stimulation 

Pure analgesia 

without elicitation 

of active 

behaviours 

(Besson et al., 

1991) 

Anxiety less More EAA 
Immobility by 

localized injection 

(Bandler & 

Depaulis, 

1991) 

Memory 

Recollection 

no Yes Lesion 

Reduction in 

conditioned 

freezing 

(Leman et al., 

2003) 

no Yes Opioid Blockade 

reduction in 

expression of 

conditioned fear 

(Grahn et al., 

1999) 
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 The anterior-posterior axis 

The anterior and posterior portions of the PAG show distinct functional properties, 

including differential control of reproductive traits, maternal behavior and other social and 

defensive responses (summarized in Figure 2.4 and Table 2.36). 

 

Figure 2.4. The predominant functions of the anterior and posterior PAG. 

 

Lordosis in female rats is more strongly elicited from the anterior parts of the PAG (Sakuma 

& Pfaff, 1979a), indicating that this portion of the PAG has a role in controlling receptiveness 

to a partner in copulation. Stimulation of the posterior part, however, inhibits lordosis 

(Arendash & Gorski, 1983). 

Active maternal functions, such as retrieval and licking of pups, are more strongly 

correlated with the anterior PAG, while passive maternal behaviors like kyphosis (a curvature 

of the spine presented along with stillness to facilitate nursing) is mediated by the posterior 

PAG. For example, c-Fos experiments demonstrate stronger labeling in anterior PAG cells after 

dams actively interact with pups (Lonstein & Stern, 1997a), and lesions of the anterior PAG 

reduces dam nursing behavior (Sukikara et al., 2006). Meanwhile, the kyphotic posture is 
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correlated with more c-Fos labeling in the posterior parts of the PAG, and destruction of this 

region reduces kyphosis more (Lonstein & Stern, 1998).  

The role of the PAG in feeding is not well defined. Early studies with animals sustaining 

midbrain lesions show that destruction of parts of the PAG does not significantly affect feeding 

(Lyon, Halpern, & Mintz, 1968; Parker & Feldman, 1967). A more recent report, however, 

showed that muscimol injections in the anterior PAG greatly reduced feeding (Tryon & 

Mizumori, 2018).  

Social behaviors also vary across the anterior-posterior PAG axis. During a social 

interaction test in which an animal is exposed to a conspecific, kainic acid injections in the 

anterior PAG lead to the production of strong avoidance behaviors, such as backing away, while 

injections in the posterior PAG lead to strong escape behaviors, such as running and jumping 

(Depaulis, Keay, & Bandler, 1992). Furthermore, these behaviors are accompanied by 

corresponding, specialized vocalizations: anterior stimulation produces vocalizations related to 

social separation (Kyuhou & Gemba, 1998), while posterior activation evokes vocalizations 

related to social aggression (Depaulis et al., 1992). 

The anterior PAG is associated with freezing, as c-Fos labelling is stronger here when the 

animal is faced with an inescapable threat, such as a predator (Canteras & Goto, 1999), or a 

stimulus related to a predator like the scent of a cat (Dielenberg, Hunt, & McGregor, 2001). In 

contrast, the posterior PAG is more strongly associated with escape behaviors seen during 

aversive encounters that are more proximal and certain, such as actual attack by a predator. 

Electrical stimulation of the posterior PAG produces fight or flight (Bandler & Depaulis, 1991), 

and the inhalation of CO2 or intravenous injection of potassium cyanide elicit strong escape 

responses in the rat and concomitantly generate more c-Fos labeling in caudal regions of the 

PAG (Muller et al., 2017). Similarly, NADP-h activity is stronger in the posterior PAG after a 

noxious visceral stimulation (Rodella, Rezzani, Agostini, & Bianchi, 1998). 

The anterior PAG plays an important role in the acquisition of conditioned fear, while the 

posterior PAG is involved in its expression. This can be seen through interventions where 

NMDA blockade in the anterior part of the PAG disrupt the acquisition of Pavlovian 

conditioning to an aversive stimulus, while NMDA blockade in the posterior part disrupts the 

expression of conditioned responses (Souza & Carobrez, 2016). Additional support to this 

notion comes from c-Fos experiments, which demonstrate that the posterior PAG is more 

selectively labeled after the expression of conditioned responses (Carrive, Leung, Harris, & 

Paxinos, 1997). 
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Table 2.36. Functions of the Anterior and Posterior Extremes of the PAG/DR. 

Function 
Anterior 

role 

Posterior 

role 
Paradigm Description References 

Maternal 

(active) 

Strong weak c-Fos 

Active maternal 

behaviours (retrieval, 

licking) 

(Lonstein 

& Stern, 

1997a) 

Strong weak Lesion 

Active maternal 

behaviours (retrieval, 

licking) 

(Lonstein 

& Stern, 

1998) 

Sexual 

(activation) 
Strong weak Stimulation Lordosis facilitation 

(Sakuma & 

Pfaff, 

1979a) 

Maternal 

(passive) 

weak Strong c-Fos 

Passive maternal 

behaviours (kyphosis 

immobility) 

(Lonstein 

& Stern, 

1997b) 

no Strong GABAa 

Passive maternal 

behaviours (kyphosis 

immobility) 

(Salzberg, 

Lonstein, & 

Stern, 

2002) 

no Strong Lesion 

Passive maternal 

behaviours (kyphosis 

immobility) 

(Lonstein 

& Stern, 

1998) 

Sexual 

(inhibition) 
weak Strong Stimulation Lordosis inhibition 

(Arendash 

& Gorski, 

1983) 

Social 

Anxiety 

Strong weak Stimulation 
Social separation 

vocalizations 

(Kyuhou & 

Gemba, 

1998) 

Strong weak 
KA 

injection 
Social avoidance 

(Depaulis 

et al., 1992) 

Social 

Aggression 

weak Strong 
KA 

injection 

Social aggression 

vocalizations 

(Depaulis 

et al., 1992) 

weak Strong 
KA 

injection 
Social escape 

(Depaulis 

et al., 1992) 

Anxiety 

Strong no Stimulation Freezing  

Strong weak c-Fos 
Freezing to predator 

presence 

(Canteras 

& Goto, 

1999) 

Strong weak c-Fos 
Freezing to exposure 

to cat odour 

(Dielenberg 

et al., 2001) 

Table continued on following page. 
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(Table 2.36, continued) 

Memory 

Acquisition 
Strong weak 

NMDA 

blockade 

Acquisition of 

aversive classical 

conditioning 

(Souza & 

Carobrez, 

2016) 

Nociception weak Strong 
NADPH-d 

activity 

Noxious visceral 

stimulation 

(Rodella et 

al., 1998) 

Fear 

weak Strong Stimulation escape response 

(Bandler & 

Depaulis, 

1991) 

no Strong c-Fos 

Escape to i.v. 

potassium cyanide or 

inhaled CO2 

(Muller et 

al., 2017) 

Memory 

recollection 

weak Strong c-Fos 
Expression of aversive 

classical conditioning 

(Carrive et 

al., 1997) 

weak Strong 
NMDA 

blockade 

Expression of aversive 

classical conditioning 

(Souza & 

Carobrez, 

2016) 

 

 The interior-exterior axis 

The dorsal part of the PAG has traditionally been split into three subdivisions based on 

function and anatomy: the DMPAG, DLPAG and LPAG (see Table 2.37 for a list of functions). 

Despite these anatomical separations, a big functional overlap exists across these regions, and 

many opposing emotional states can be elicited from these areas. While behaviors associated 

with negative emotions (e.g. fight or flight, social aggression and anxiety) are linked to the 

dorsal PAG, so too are positively-valenced expressions of sexual receptivity and maternal 

behavior. In this Chapter, I proposed new internal and external subdivisions for the DLPAG 

and LPAG. In this functional section, I show experimental evidence that reconciles anatomy 

with functional specificity. Figure 2.5 summarizes these new divisions, and Tables 2.38 and 

2.39 list the functional and anatomical features that distinguish these subdivisions apart. 
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Figure 2.5. The predominant and unique functions and characteristics of the DMPAG and the 

proposed internal and external subdivisions of the DLPAG and LPAG. 

 

The interior regions of the LPAG and DLPAG are specialized for sexual and social 

encounters. In male rats, androgen receptors are exclusive to the interior LPAG (Murphy & 

Hoffman, 2001), and the LPAGi contains cells that project to the nucleus retroambiguus, a 

region with known involvement in producing lordosis (Vanderhorst, Terasawa, Ralston, & 

Holstege, 2000). While stimulation of the LPAGi and DLPAGi elicits lordosis in female rats 

(Ogawa, Kow, McCarthy, Pfaff, & Schwartz-Giblin, 1991), the LPAGi also elicits 

vocalizations related to sexual courtship (Kyuhou & Gemba, 1998) and slows breathing 

(Subramanian, Balnave, & Holstege, 2008). In general, the LPAGi seems to be more involved 

in mediating social interactions than the other regions, as c-Fos labeling in rats is more 

prominent in this area after social encounters with dominant conspecifics (Motta et al., 2009). 

In contrast, the external components of the PAG are more strongly correlated with negotiating 

aversive encounters and pain. Stimulation of the LPAGe generates distress vocalizations 

(Kyuhou & Gemba, 1998; Subramanian et al., 2008) and faster breathing (Subramanian et al., 

2008), and c-Fos labeling is more prominent in the LPAGe after aversive challenges, like forced 

swimming (Bellchambers, Chieng, Keay, & Christie, 1998), and after flight responses provoked 

by inhalation of CO2 or intravenous injection of potassium cyanide (Muller et al., 2017). In 
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addition, c-Fos labelling is stronger in the DLPAGe of rodents that receive a painful deep 

muscle stimulus (Keay & Bandler, 1993) or exposure to a cat (Canteras & Goto, 1999), and 

systemic morphine injections only reduce GABA release in the LPAGe, not the LPAGi (Renno, 

Mullett, & Beitz, 1992).   
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Table 2.37. Functions of the Columns of the Dorsal PAG. 

Function Description 
DMPAG 

Role 

DLPAG 

Role 

LPAG 

Role 
Paradigm References 

Stress Forced restraint Strong weak weak c-Fos 
(Lino-de-Oliveira, Sales, Del Bel, Silveira, 

& Guimaraes, 2001) 

Anxiety 

Freezing caused by 

GABAergic blockade in 

the superior colliculus 

Strong no no c-Fos (Borelli, Ferreira-Netto, & Brandao, 2006) 

Reduction of exploration 

of open arms in the EPM 
Strong no no CRF (Borelli & Brandao, 2008) 

Defensive behaviours 

(stretching, flat-back 

posture) 

Strong no no CRF (Borelli & Brandao, 2008) 

Fear 

Escape caused by an airjet Strong weak no c-Fos (Salchner & Singewald, 2002) 

Escape caused by 

GABAergic blockade in 

the superior colliculus 

Strong weak no c-Fos (Borelli et al., 2006) 

Fear / 5-HT / 5-HT-

1A 

Reduction in c-FOS 

expression after escape 

caused by an airjet in 

animals treated w/ 

fluoxetine 

Yes no no c-Fos (Salchner & Singewald, 2002) 

Acute buspirone Strong weak no c-Fos (Lim et al., 2008) 

Chronic buspirone Yes no no c-Fos (Lim et al., 2008) 

Sympathetic 

Renal sympathetic activity Yes Yes Yes EAA 
(Iigaya, Horiuchi, McDowall, & Dampney, 

2010) 

Heart rate weak Strong weak EAA (Iigaya et al., 2010) 

Arterial blood pressure weak Strong Strong EAA (Iigaya et al., 2010) 
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Table 2.38. Features and Functions of the Internal and External Subdivisions of the DLPAG. 

Feature Description DLPAGi DLPAGe Paradigm References 

Biochemistry 

Substance-P synaptic 

terminals 
Yes no - (Moss & Basbaum, 1983b) 

Relaxin-3 synaptic 

terminals 
More less - (Ma et al., 2007) 

Orexin fibers Yes no - (Baldo et al., 2003) 

 
NADPH-d positive cell 

bodies in the juvenile rat 
no Yes - (Iwase et al., 1998) 

Anatomy 

Projections from the 

amygdala 
Yes no - (Hopkins & Holstege, 1978) 

Projections from the 

hypothalamus 
Yes no - (Vertes & Crane, 1996) 

Projections from the 

superior colliculus 
no Yes - (Graham, 1977) 

Projections from the 

cingulate cortex 
no Yes - (Beckstead, 1979) 

Sexual Lordosis Yes no Stimulation (Ogawa et al., 1991) 

Nociception 
Deep muscle noxious 

stimulus 
less More c-Fos (Keay & Bandler, 1993) 

Fear Exposure to a cat less More c-Fos (Canteras & Goto, 1999) 
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Table 2.39. Features and Functions of the Internal and External Subdivisions of the LPAG 

Feature Description LPAGi LPAGe Paradigm References 

Biochemistry 

Encephalin synaptic 

terminals 
Yes no - (Moss et al., 1983) 

Relaxin-3 synaptic 

terminals 
More less - (Ma et al., 2007) 

Substance-P synaptic 

terminals 
Yes no - (Moss & Basbaum, 1983b) 

Androgen receptors in 

male rats 
Yes no - (Murphy & Hoffman, 2001) 

Reduction on the release 

of GABA after systemic 

morphine injection 

no Yes - (Renno et al., 1992) 

Glutamaergic and 

aspartate cell bodies 
no Yes - (Clements et al., 1987) 

Anatomy 

Projections from the 

hypothalamus 
Yes no - (Vertes & Crane, 1996) 

Projections to Nucleus 

Retroambiguus sites 

controlling lordosis 

More less - (Vanderhorst et al., 2000) 

Sympathetic 

Slower, shallow breathing 

(apneusis) 
Yes no Stimulation (Subramanian et al., 2008) 

Faster, deep breathing 

(tachypnea) 

no Yes Stimulation (Subramanian et al., 2008) 
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Table 2.39. continued 

Feature Description LPAGi LPAGe Paradigm References 

Sexual 

Lordosis reflex Yes no Stimulation (Ogawa et al., 1991) 

Vocalizations related to 

sexual courtship 
More less Stimulation (Kyuhou & Gemba, 1998) 

Social 
Exposure to a dominant 

conspecific 
More less c-Fos (Motta et al., 2009) 

Vocal 

Neurons that fire during 

vocalizations 
no Yes Electrophysiology (Dusterhoft, Hausler, & Jurgens, 2004) 

Vocalizations less More Stimulation (Subramanian et al., 2008) 

Stress 

Vocalizations related to 

social separation 
less More Stimulation (Kyuhou & Gemba, 1998) 

Forced swim less More c-Fos (Bellchambers et al., 1998) 

Fear 

Aversive responses no Yes Stimulation (Ogawa et al., 1991) 

Escape provoked by i.v. 

potassium cyanide or 

CO2 

no Yes c-Fos (Muller et al., 2017) 

Exposure to a cat less More c-Fos (Canteras & Goto, 1999) 
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 Summary 

In this Chapter, I reviewed the anatomy and functions of the PAG and attempted to clear 

some of the confusions about the region. Also, I attempted to highlight potential functions and 

roles in which the PAG appears to be significantly involved, although rarely acknowledged in 

the literature. 

The PAG has been traditionally associated with two main phenomena (and both of them 

quite unpleasant in nature): pain and panic attacks. Although the role of the PAG on these two 

negative aspects of the mind are undeniable, and investigations on how the PAG manages them 

yielded strong advancements in our understanding and treatment of these states, this is hardly 

the whole picture for this region of the brain. 

I proposed here that the PAG also has a strong role in regulating appetitive functions, mainly 

sexual responses, although recent evidence points out to the possibility of its involvement in 

feeding as well. Based on function, anatomy and biochemistry, I propose here that the 

dorsolateral and lateral columns of the PAG need to be further subdivided. I propose the 

existence of internal (i.e. closer to the aqueduct) subdivisions that are functionally and 

anatomically distinct from the parts that are in the periphery of the PAG.  

Clearly, all the hypotheses generated here in this Chapter cannot be tested by a single 

person, in the short course of his doctoral studies. Many of the appetitive roles of the PAG, its 

involvement in the pathogenesis of depression, and direct functional proof of the newly 

suggested subdivisions of the PAG would require more time, expertise and collaborations with 

different groups than a single PhD project allows to. 

In the next Chapters I will try to address at least one of my claims here: that different 

portions of the PAG in anterior-posterior axis are involved in distinct roles in the motivational 

spectrum, specially anxiety and panic. At the end of this thesis (Chapter 6) I will return to the 

ideas presented here in this review, along with the findings from the experimental Chapters, in 

an attempt to show how these findings impact our understanding of the PAG, the nature of 

motivational states, and the theories that we build in order to comprehend them. For the 

moment, however, let us move to the experiments that will tackle a few of the hypothesis and 

ideas presented in this Chapter. 
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Chapter 3. General methods 

This Chapter summarizes the common methods used to acquire all the experimental data 

reported in this thesis. Animal housing, handling, surgery, acquisition setup, histological 

procedures, and data processing were all common across the different experiments. Details 

regarding the behavioral procedures, electrical stimulation, drug administration and statistical 

analysis that are unique to each experiment are given separately in each experimental Chapter. 

I used two batches of rats in this thesis. The first batch (from now on called Multipolar 

Batch) was implanted with multi-polar, high-density arrays (28 channels total) and were used 

to validate the procedures, and to gather baseline LFP data during PAG and RPO stimulation. 

The second batch of rats (from now on, Bipolar Batch) was implanted with bipolar and tripolar 

electrodes (8 channels total), and were used to gather PAG and RPO stimulation data and test 

the intracranial effects of drugs. The bipolar batch matched the multipolar batch in having 

activity recorded from the left prelimbic cortex (PrL) and the left and right hippocampus (HPC). 

Also, all animals had bipolar stimulating electrodes implanted in the right reticulus pontis oralis 

(RPO) and left periaqueductal grey (PAG) and a guide cannula for intracerebral drug injections 

aimed at the midline nucleus incertus (NI). Drug injections were not carried out through the 

cannula in the multipolar batch because of the age of the animals after extensive electrical 

testing. 

Animal welfare standards were in accordance with the University of Otago Animal Welfare 

guidelines; and all the surgical and experimental manipulations were approved by the 

University of Otago Animal Ethics Committee (protocol numbers AEC 29/12, and AEC 10/16). 

 Animal housing, handling 

A total of thirty-nine male Sprague-Dawley rats were used in this project (n=29 for 

multipolar batch, and n=10 for bipolar batch). They weighed between 150-200 gm on arrival. 

All animals were sourced from the Hercus-Taieri breeding colony of the University of Otago. 

Upon arriving at the psychology department housing space, rats were paired in cages in order 

to avoid stress from social isolation, and given ad-libitum access to food and water. Cages were 

located in a temperature (20-22º C) controlled room, on a 12h light-dark cycle with lights on at 

6am. All experimental data were collected during the light period of the cycle. 

Before any experimental manipulation, rats were given 10 days to acclimatize to the 

laboratory, and were handled daily. Weight progression was assessed daily, and after the initial 
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10 days the animals were scheduled for surgery if body weight had reached a minimum of 300 

grams.  

 Electrodes 

3.2.1. Multipolar arrays 

Animals in this batch were implanted in the recording areas described in more detail below 

(bilateral HPC and left PrL), but with a set of custom-built multipolar arrays. These electrodes 

were manufactured from insulated nichrome wires (0.001” diameter, California Fine Wire 

Company, USA). These wires could be arranged in any spacing configuration using our 

laboratory’s novel method for array building. First, a section of 15cm of nichrome wire had its 

insulation at one of the ends removed by exposing it to a heat gun at 400° C for 30 seconds. 

This uninsulated part of the wire (around 1.5cm) was then wrapped around a 1cm piece of silver 

wire. By attaching a heated needle to a stereotaxic arm, small sheets of plastic could be 

punctured at close spacing (between 200 and 500 µm in this project; see Figure 3.1). The 

individual nichrome wires were then threaded through the holes. As each wire was threaded, 

the other end of it that was wrapped around the piece of silver wire was then soldered to a pin 

in a mini array socket with 32 pins (Ironwood, USA). 

After each nichrome wire was threaded through the plastic, the wires were twisted together 

(Figure 3.2, panel A). A small amount of cyanoacrylate-based adhesive (Loctite 401, UK) was 

applied to the top side of the plastic sheet where the wires were inserted, and a fine tungsten 

rod (0.009” gauge) was added in parallel for structural rigidity. After 24 hours to allow curing 

of the adhesive, the wires on the other side of the plastic sheet were cut with a surgical scalpel 

and the finished array was unglued from the plastic sheet (Figure 3.2, panel B). 

For HPC arrays, eight recording tips were spaced 200 µm apart, in order to cover the dorsal 

hippocampus in the dorso-ventral axis. For the prefrontal cortex, eleven tips were spaced 500 

µm apart in order to cover most of the medial wall of the prefrontal cortex. 
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Figure 3.1. Sheets of plastic punctured at different distances for array building. Punctures 

were made at either 500µ or 200µ distances for prefrontal and hippocampal arrays, 

respectively. The two hippocampal sheets were the same as each other. 
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Figure 3.2. A: Nichrome wires threaded through the punctured plastic sheet, and then 

twisted. B: Finalized PrL array including tungsten rod used to maintain rigidity during 

implantation. 

 

3.2.2. Bipolar recording 

All the recording electrodes for this batch of animals were built from twisted, PFA-insulated 

stainless steel wires with a 0.005” thickness (AM-Systems, USA). Each of these wires had their 

ends bared and soldered to male gold pins using phosphoric acid flux. During implantation 

surgery, these pins were inserted into a McIntyre connector (Molino & McIntyre, 1972).  

Recording electrodes for PrL were composed of three stainless steel wires twisted together. 

Tip separation for this tripolar setup was 1mm, so the three tips would span the whole dorso-

ventral height of the PrL and minimize stereotaxic imprecision. Out of the three tips, two of 

them were selected later in post processing as the bipolar pair for analysis. 

Electrodes for the left and right HPC were composed of two twisted wires each, with a tip 

separation of 0.6mm with one tip aimed at the hippocampal fissure and the other at stratum 

oriens of CA1.  

3.2.3. Ground, reference and stimulating electrodes 

For both the multipolar and bipolar batches, signals in the recorded regions were acquired 

by referencing against a common, distant electrode in the animal's skull. During post-

processing, further subtractions between two local signals from each region resulted in a more 

localized "bipolar” signal, which was used for analysis. 

Tungsten rod 
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For this common reference, a section of PFA-insulated stainless steel wire had the insulation 

stripped from each end and one end was then soldered to the head of a jeweler’s screw using 

phosphoric acid flux. During surgery, this screw was fixed to the skull area just behind lambda. 

The ground wire was a length of bare silver wire (0.005” diameter, AM Systems, USA), and 

was wrapped around the outside of the implant prior to suturing.  Both RPO and PAG 

stimulating electrodes were composed of the type of insulated bipolar twisted wires described 

above. Tip separation for both pairs was 0.5mm.  

 Surgical methods 

All instruments, swabs, towels, etc. were sterilized via autoclave before use and were placed 

on a sterile field during surgery. Stainless steel screws and electrodes were placed in 70% 

alcohol for at least 5 hours. All animals received a prophylactic dose of antibiotic treatment 

(Amphoprim, 30mg/kg), 30 minutes prior to the beginning of surgery.   

The multipolar batch of rats in this project was anesthetized for surgery using an injectable 

solution. Halfway through this project our laboratory surgical suite was updated with a new 

inhalant anesthetic system, which was used for the animals in the bipolar batch.  

The rats operated with injectable anesthesia were given ketamine and medetomidine 

(75mg/kg and 0.5mg/kg, s.c.) and given additional injections of ketamine if necessary, as 

determined by toe pinch reflex. As soon as voluntary movement ceased, atropine (0.05mg/kg, 

s.c.) was administered to reduce the secretion of fluids in the respiratory tract and aid breathing.  

For inhalation anesthesia, an isoflurane evaporator (E-Z Anesthesia, USA) was used. 

Animals were first placed in an induction chamber connected to the machine, until lightly 

anesthetized for ease of handling, and then removed from the chamber, and administered 

buprenorphine (0.1mg/kg, s.c.) for additional pain control. While still under anesthesia, the 

animal’s scalp was shaved, rubbed with 70% alcohol and then infiltrated with Marcaine (0.4 

ml/kg) and Lidocaine (0.2 ml/kg) subcutaneously. The animal was then moved to the 

stereotaxic frame; and a breathing cone installed over the nose bar of the stereotaxic frame 

delivered oxygen mixed with isoflurane at a rate of 1.5 liter/minute. The percentage of 

oxygen/isoflurane mix was regulated between 2% and 3% depending on the animal’s toe-pinch 

reflex and breathing responses. Then, Tricin (Jurox, Australia) was applied to the animals eyes, 

which were also covered with a wet cotton pad for protection. The animal’s head was then 

secured to the stereotaxic frame using non-traumatic ear bars, and the tongue was gently pulled 

out from the mouth to aid breathing.  
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The animal's scalp was then swabbed with Betadine, and the head and body were covered 

with a plastic sheet that had been soaked in 70% alcohol for at least 15 minutes and acted as a 

sterile surgical field. During surgery, all animals rested on a heated pad in order to maintain 

body temperature. 

A single midline incision was made on the scalp through the sterile field. Superficial 

muscles were pushed to either side with a sterile swab and the surface of the skull scraped clean 

until the cranial fissures were made visible. The edges of the incision were kept open with skin 

retractors. 

A sterile needle was mounted to the stereotaxic arm, and the dorsal-ventral height of lambda 

was taken. The needle was then moved forward along the anterior-posterior axis, and placed 

over bregma. The nose bar height was then adjusted so bregma would be placed on the same 

level as lambda, achieving the flat-skull position.  

After proper placement of the rat in the frame, a dental drill was mounted to the stereotaxic 

arm, and holes for the electrodes were drilled in the skull. The coordinates for implantation are 

shown in Table 3.1. For the left dorsal PAG, the stereotaxic arm was placed at a 16 degree angle 

and, for the nucleus incertus, the stereotaxic arm was positioned at a 10 degree angle and the 

nose bar was dropped to -12.5mm from horizontal zero, both in order to avoid damage to the 

blood vessel plexus beneath lambda. The dorsal-ventral coordinates used for implanting the 

guide cannula (Plastic One, USA) were calculated so the tip would rest 1mm above the NI. A 

scheme of the implantation is presented in Figure 3.3. 

Table 3.1. Coordinates for stereotaxic implantations. 

 A-P (reference) M-L D-V (skull) Angle Nose Bar 

Left PrL +2.76mm     (Bregma) +0.60mm -4.50mm 0° flat skull 

Left HPC -3.8mm      (Bregma) +2.50mm -2.90mm 0° flat skull 

Right HPC -3.8mm      (Bregma) -2.50mm -2.90mm 0° flat skull 

Right RPO -7mm         (Bregma) -1.60mm -6.50mm 0° flat skull 

Left dPAG +1.32mm     (Lambda) +2.30mm -4.50mm 16° flat skull 

NI -2.8mm      (Lambda) +0.62mm -5.16mm 10° -12.5mm 

Note: A-P: anterior-posterio; M-L: medial-lateral; D-V: dorsal-ventral; PrL: prelimbic cortex; HPC: 

hippocampus; RPO: reticular pontis oralis; dPAG: dorsal periaqueductal gray. 
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After the placement of the holes for the electrodes and the guide cannula, holes for the 

stainless steel jeweler’s screws were drilled. Seven screws were fixed to the edges of the 

incision in order to secure the electrodes and cannula to the skull. The reference electrode 

supplied an eighth screw and was fixed posterior and lateral to lambda. 

 

 

The electrodes and the cannula were placed over their respective craniotomy sites one at a 

time, and slowly lowered into the brain. After the electrode or cannula was inserted, dental 

cement was applied to the site and the electrode was secured to the nearest screw. This process 

was repeated for each electrode until all of them were in position. 

The posterior left screw was left exposed, and the end of a bare silver wire was wrapped to 

it. Then, the wire was tightly wrapped around the circumference of the incision on the outside 

of the screws and underneath the skin. Finally, dental cement was applied to the top of the 

implant to cover all the wires (with the exception of the silver bare wire) and hold the connector 

on an appropriate position.  

Figure 3.3. Schematic top view of rat’s skull during implantation surgery. Placement of 

structural and reference screws (grey) are displayed, along with craniotomy holes (black) for 

electrode and cannula implantation. The posterior-most right side screw served as a reference 

electrode, and the posterior-most right side screw was used to secure the uninsulated silver 

ground wire. 
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For animals that received injectable anesthesia, antisedan (atipamezole, 2.5mg/kg s.c.) was 

administered at the end to reverse the effects of the medetomidine and speed recovery. For 

animals that received gas anesthesia, the oxygen/isoflurane was dropped to 0% and animals 

received pure oxygen for 10 minutes. In both cases, carprofen (5mg/kg, s.c.) was given to 

relieve post-operative pain. During surgery, 10ml of 0.9% physiological saline was 

administered s.c. in doses of 2ml in order to maintain hydration. 

The animals were then individually housed in a clean cage with free access to food and 

water. The animal’s well-being and recovery were monitored for seven days according to the 

University of Otago Animal Welfare guidelines using a standard monitoring sheet. After full 

recovery, rats were grouped back into their original pairs. 

 Behavioral apparatus 

All animals were tested in a modified operant chamber (width: 24.5cm, height: 18.5cm, 

depth: 30cm), with its levers, lights and feeding mechanisms removed. All walls were made out 

of transparent acrylic, except for the back one which was made out of aluminium. This operant 

box was placed inside a second chamber, which apart from a small hole on the ceiling through 

which the recording cable ran, was fully sealed from external light and noise. Illumination 

inside the chamber was provided by a non-aversive red light, and a fan provided air recirculation 

and background noise. A small video camera inside the larger chamber provided a live video 

feed for experimenter observation. 

Prior to any data collection, for 5 consecutive days, the rats were individually placed inside 

the observation box and allowed to explore for fifty minutes. Before each exposure, the walls 

and floor of the observation box were cleaned with a 10% ethanol solution and allowed to dry. 

 Electrical stimulation response thresholds 

Stimulating currents for the PAG and RPO electrodes were delivered by a custom built, 

constant current isolated stimulator controlled by custom software programmed in Visual Basic 

6. Stimulation was set at 100 Hz with monophasic pulses with a width of 0.1 ms. Trains for the 

RPO stimulation were set to 1 second duration, and PAG trains were set to 8 seconds maximum 

duration. 

In order to determine the ideal currents necessary to drive the desired responses from the 

PAG and RPO, rats were tested daily before data acquisition. They were individually placed in 

the observation chamber, the recording cable attached to their head stage and given 30 minutes 

to habituate before testing. 
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First, the current for appropriate RPO responses was established. When animals voluntarily 

ceased moving, an initial current of 10µA was delivered in a 1-second train. High intensity 

currents can provoke undesired motor reactions in free moving animals, so during the delivery 

of the current the animal’s behavior and real time LFPs were observed. We defined the ideal 

response based on repeated stimulation that provoked clear, elicited hippocampal theta from 

the stimulation train with no evoked motor reactions. If no induced theta or motor reactions 

were noticed, the stimulating current was increased in 5µA steps until the highest current that 

caused no motor responses was reached.  

Following determination of RPO-stimulation values, the animals were tested for PAG-

evoked responses. The goal for the PAG stimulation was to establish the minimum current 

intensity necessary to induce the emotional response of freezing. Stimulation trains were 8 

second long, and the first current was set at 10uA, with increases in 5µA steps until the desired 

freezing behavior was evoked.  

After repeated PAG stimulations at the freezing threshold, RPO stimulations were 

conducted in order to verify that the desired hippocampal responses were still being elicited. In 

all cases, the currents established for the RPO-stimulation before PAG activations were still 

effective in inducing hippocampal theta rhythmicity.  

 Data acquisition and processing 

Local field potentials were acquired by a Micro1401 (CED, UK) at a sampling rate of 512 

Hz. The signal was passed through Grass Model 15 amplifiers, and hardware gain was set at 

x5,000 for all acquired data. The signals acquired from the recording electrodes were referenced 

to a recording screw positioned at the posterior part of the rat’s skull behind lambda in a zone 

that is thought to be electrically silent. For data processing, the files were down-sampled to 256 

Hz using the in-built cubic spline interpolation in Spike2 (CED, UK), band passed at 2-30 Hz 

and exported to Matlab (Mathworks, USA).  

Referencing from a common, distant electrode has been shown to bias the interpretation of 

signals and to cause spurious correlations (Lalla, Rueda Orozco, Jurado-Parras, Brovelli, & 

Robbe, 2017; Shirhatti, Borthakur, & Ray, 2016). In order to minimize this, subtractions of the 

signal in the PrL and HPC were performed between local pairs of electrodes. Based on the 

histological reconstruction, the electrodes centered in our regions of interested (left HPC, right 

HPC and PrL) were re-referenced to their closest neighbor. All data analysis was then 

performed on the three resulting localized signals from the left HPC, right HPC and PrL.  
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As described in the acknowledgements section of this thesis, MatLab routines were 

designed and adapted by Dr Calvin Young. He also advised, supervised and provided training 

on how to conduct the analysis through a Spike2-MatLab-SPSS workflow. The acquisition, 

handling and processing of the datasets were done by me under his supervision and guidance.  

3.6.1. Spectral analysis 

The time-frequency analyses reported here were done with 1-second windows with 50% 

overlap between them. All spectral analyses were carried out using the multi-taper method, with 

three tapers and a numerical bandwidth product of 5 using the Chronux package 

(http://chronux.org/, (Bokil, Andrews, Kulkarni, Mehta, & Mitra, 2010; Mitra, 2007) and with 

a cut-off frequency set to 30 Hz. For this project, theta was defined as 5 to 10 Hz and z-scored 

power spectral density for this band was calculated relative to the rest of the frequency 

spectrum.  

3.6.2. Pairwise phase consistency analysis 

Supplementary to coherence analysis, pairwise phase consistency analysis (PPC) was also 

employed in this study. PPC calculates the distribution of the relative angular distances between 

two Hilbert-transformed signals, and estimates the phase coupling from the two based on the 

outcome. PPC, similar to coherence and phase-lock value, indicates how much two separate 

signals are “synchronized” based on the phase of their oscillations. These measures are 

generally taken to represent an estimation of the degree of relationship between two brain 

regions. However, unlike spectral coherence or phase-lock value estimates, PPC has been 

demonstrated to be free of the biases that come from a small number of observations in a sample 

(Vinck, van Wingerden, Womelsdorf, Fries, & Pennartz, 2010). With this in mind, this thesis 

uses the more traditional measure of coherence, alongside the PPC measure, to infer the 

relationship between the neural oscillations of different regions. 

3.6.3. Partial directed coherence analysis 

To assess the direction of theta modulation between HPC and PrL, we employed the Partial 

Directed Coherence (PDC) method developed by Baccala and Sameshima (2001) – also see 

Young and Eggermont (2009) for discussion and used before in our laboratory (Ruan, Young, 

& McNaughton, 2017; Young, Ruan, & McNaughton, 2017).  

 Statistical analysis 

For all experiments in this thesis, each measure of interest had their variance distribution 

analyzed for normality. The r-squareds between the means and the variances of the samples 
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were calculated, and the data were power transformed when necessary before repeated 

measures ANOVAs were performed. For the ANOVAs, orthogonal polynomial contrasts were 

extracted for dimensional factors using SPSS (IBM, USA). The interactions between these 

contrasts were assessed, and the linear and quadratic components derived, where the significant 

interactions between the different levels of treatments can be captured by significant polynomial 

trends. The use of these methods allow for 1 degree-of-freedom contrasts, which prevent the 

effects of sphericity; 1 degree-of-freedom contrasts are also statistical measures that are 

recommended in the Publication Manual of the American Psychological Association (Kirk, 

2013). 

For experiments in Chapter 4, the data were arranged to test the hypothesis that our two 

electric stimulation treatments (PAG and RPO) produce different states from their respective 

unstimulated periods (sham) and between themselves. Also, we anticipated that measurements 

in the two hippocampi would be different from the ones in the PrL. Therefore, the contrasts 

assessed were PAG/RPO x Stim x Region, where “PAG/RPO” represents either stimulation of 

the PAG or stimulation of the RPO, “Stim” represents either real electrical stimulation or sham 

stimulation, and “region” represent LFP measurements in the two hippocampi and the prelimbic 

cortex. This model anticipates a significant difference between the states produced by PAG and 

RPO stimulation, and this would be seen in the form of a linear trend between the two. Likewise, 

it is expected that the two hippocampi would behave similarly, and the PrL would show 

different activity from the other two. In this case, a significant quadratic trend between left HPC 

vs PrL vs right HPC (treated as levels of a dimensional factor) would capture this.  

For experiments in Chapter 5, the same general organization of stimulation and LFP regions 

was followed for hypothesis testing but including also factors related to drug treatments. We 

tested 4 compounds: CDP, Buspirone, RXFP3-A2, and R3B(1-22)R. We first tested CDP, 

buspirone and saline. Then, in a separate test, we analyzed RXFP3-A2, R3B(1-22)R and saline. 

In these statistical tests, the highest level of interaction assessed was Stim x Drug x Region x 

Time x Injection, where “Stim” represents either PAG stimulation, RPO stimulation or Sham 

stimulation, “Drug” represents saline and two of our experimental compounds, “Region” 

represents our LFP measurements in the two hippocampi and the prelimbic cortex, “Time” 

represents one block of time before the injection of drugs and two blocks after, and “Injection” 

represents animals that received drug injections in two different brain regions. Similar to the 

arrangement in Chapter 4, a difference between PAG and RPO states would be expected in the 

form of a linear trend, and hippocampi x PrL differences would be seen in the form of a 

quadratic trend. For CDP and Buspirone, our hypothesis was arranged to test a quadratic effect 
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from saline, indicating that both drugs produce the same effects, and the effects are different 

from saline. If the two compounds have different effects, this would be captured by a linear 

trend between the two. For RXFP3-A2 and R3B(1-22)R, a linear trend is expected – indicating 

that the two peptides produce opposing effects. This expectation arises from the two drugs being 

an agonist and antagonist of the RFXP3 receptor, respectively. 

The data and results presented in Chapter 4 come from raw, untransformed values. This was 

decided once the transformed numbers yielded p-values in the ANOVA that were not radically 

different from the p-values from those for the raw numbers. Therefore, in order to keep 

interpretation of the numbers easy, the untransformed numbers and their statistical test results 

are reported there. 

For data in the experiments of Chapter 5, we used unchanged raw values following the same 

logic described above, with the exception of the measures of coherence and PPC. These two 

variables presented skewed variances, and transformations were used to correct this. For the 

CDP/Buspirone and relaxin Agonist/Antagonist experiments, coherence was arcsine 

transformed, and PPC was transformed to the power of 0.12 (1/8 power transform), 

respectively.  

 Histological methods 

After all testing was concluded, animals were euthanized with pentobarbitone sodium 

(100mg/kg, i.p.). A transcardial perfusion was performed with 60ml of 0.9% saline solution, 

followed by 60ml of a 10% paraformaldehyde solution, followed by 30ml of a 30% sucrose-

10% formaldehyde solution for cryoprotection.  

Afterwards, the brains were removed and placed in a vial containing 200ml of 10% 

paraformaldehyde solution, and stored in a cool environment for 24 hours. After this, the liquid 

was drained and replaced with a 30% sucrose-10% formaldehyde solution for cryoprotection, 

and left to saturate for five days minimum. 

The brains were then blocked and placed on a microtome (Leica 1320, Germany), covered 

with a cryoprotecting gel (VWR Chemicals, Germany) and frozen with carbon dioxide. The 

tissue was sectioned at 90µm thickness, and wet mounted on gelatin-coated glass slides. The 

slides were then left to dry for at least 12 hours before proceeding to staining. 

The sections were stained in 1.3% thionin protocol (following an adapted protocol from 

L.W. Swanson (1992) coverslipped with a mounting medium (DPX, Merck, Germany), and at 

least 24 hours allowed for drying. The sectioned and mounted slices were then digitized using 
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a digital macro camera and the photo files were used to reconstruct electrode and cannula 

placements according to the atlas of Paxinos and Watson (2007). 
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Chapter 4. Cortico-hippocampal oscillations and interactions during 

PAG-generated freezing 

 Introduction 

The PAG is a central locus for the control of aversive and defensive responses (Chapter 2). 

Stepwise increases in electrical or chemical stimulation of the dorsal PAG evoke a hierarchy of 

behavioral and autonomic responses like those of animals exposed to predatory threats. At 

lower levels of stimulation, animals display strong freezing behavior; at higher levels, animals 

eventually perform an escape response that consists of running and/or jumping, similarly to the 

response seen in animals that are in close contact with predators (Sudre, de Barros, Sudre, & 

Schenberg, 1993).  

Dorsal PAG escape behavior has been extensively studied at the pharmacological level, and 

it is taken as a reliable proxy for fear responses and panic attacks in animals (Jenck et al., 1995). 

Dorsal PAG-induced freezing, however, has not been much studied. In experiments with 

rodents, freezing is generally induced by placing animals inside an operant box and delivering 

small electric foot shocks. After previously experiencing the painful stimulus and not being 

able to remove themselves from the environment, rats engage in freezing behavior. This 

freezing (either innate or conditioned) response is generally seen as a measure of anxiety, as it 

is responsive to anxiolytic drugs (L. H. Conti, Maciver, Ferkany, & Abreu, 1990).  

The PAG appears to be part of the networks mediating freezing responses and anxiety. 

Lesion studies indicate more precisely that destruction of the ventral, but not the dorsal PAG, 

disrupts conditioned freezing responses (Grahn et al., 1999; Leman et al., 2003). Also, several 

experiments indicate ventral PAG activation during conditioned freezing responses. 

Interestingly, however, while destruction of the ventral PAG disrupts conditioned freezing, it 

does not inhibit freezing elicited by stimulation of the dorsal PAG (Vianna et al., 2001). These 

indicate that while at the phenomenological level both ventral and dorsal PAG freezing 

behaviors look similar, their etiology are distinct.  

If the ventral, rather than the dorsal PAG, is necessary for conditioned freezing responses, 

how can dorsal PAG-generated freezing be explained? In one study (Canteras & Goto, 1999), 

c-Fos labeling indicated strong dorsal PAG activity in rats exposed to a cat. According to the 

authors “during the 10 min of the predatory encounter, all five animals exposed to the cat 

expressed a robust freezing response (…) and several episodes of vigorous running and jumping 

escape behaviours (…)”.  Considering that both freezing and escape behaviors happened 
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concomitantly, it becomes hard to interpret which behavior primarily drove dorsal PAG 

labelling. Another c-Fos study suffers from the same limitation, in which animals were exposed 

to cat odor and given the opportunity to escape from the environment of exposure into an 

enclosed box: animals exposed to the experimental condition escaped more frequently into the 

hiding place and had more strongly expressed c-Fos in the dorsal PAG (Canteras & Goto, 1999; 

Dielenberg et al., 2001).  

Chapter 2 provides some answers about the nature of dorsal PAG responses. There, I 

proposed that the anterior PAG is involved in anxiety-like behaviors, related to distal or 

ambiguous threats, and the posterior PAG is involved in panic-like behaviors, related to 

immediate and certain threats. Those propositions, while based on reports in the literature, have 

not been put to direct experimental test. 

In animal research, the defining behavioral expression of anxiety is taken to be freezing 

(immobility). Panic/fear reactions, are taken to be represented by vigorous running and 

escaping. Whenever an animal is immobile, the dominating circuits producing immobility must 

also be inhibiting movement; and the same can be said about the circuits producing escape from 

a threat and at the same time inhibiting immobility systems. As a demonstration of this, 

experiments shows that conditioned anxiety responses (immobility) inhibit panic-like responses 

(running) induced by electrical stimulation of the PAG (Magierek, Ramos, da Silveira-Filho, 

Nogueira, & Landeira-Fernandez, 2003). Also, in humans that suffer from panic disorder, states 

of relaxation or clinical techniques that cause reductions of anxiety can produce panic attacks 

(Cohen, Barlow, & Blanchard, 1985; D. F. Klein, 1993; Mellman & Uhde, 1989). Furthermore, 

in both animals and humans, anxiety enhances pain sensitivity while fear reduces it (Rhudy & 

Meagher, 2000). These appear to show that anxiety and fear compete and balance each other in 

order to produce behavior inhibition and activation through different sensory, motivational and 

cognitive systems in the brain.   

In mammals, the occurrence of movement seems to overlap with the occurrence of electrical 

field oscillations at the theta band in the hippocampus. Early evidence showed that the faster 

animals move, the faster the frequency and stronger the amplitude of hippocampal theta is 

(McFarland, Teitelbaum, & Hedges, 1975). The co-occurrence of movement and theta is so 

ubiquitous that one of the first conceptualizations of hippocampal theta was as a signal of 

locomotor action and motor planning (see Buzsaki, 2002 for an overview). It was later 

demonstrated, however, that hippocampal theta can sometimes be absent when animals are 

engaged in motor activity. As an example, theta does not occur during repetitive, stereotyped 

behaviors (Kemp & Kaada, 1975). Also, hippocampal theta can occur when animals are 
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immobile, leading some to the separate theta into two types: type I theta, that appears during 

movement and is not abolished after administration of atropine; and type II theta, that appears 

during immobility and in animals under surgical anesthesia, and can be abolished by atropine 

(Kramis, 1975). 

Artificially elicited theta through reticular stimulation does not provoke movement at the 

appropriate intensity, and is reduced by anxiolytic-only drugs (McNaughton, Kocsis, & Hajós, 

2007). This led to the notion that hippocampal theta might also be a neural mechanism 

subserving anxiety processes (J. A. Gray & N.   McNaughton, 2000; McNaughton & Gray, 

2000). But theta seems to be related not only to anxiety, but perhaps more generally to the 

importance (either positive or negative) of relevant stimuli and actions. As demonstrations of 

this, hunger and food availability (Ford, Bremner, & Richie, 1970; Munn, Tyree, McNaughton, 

& Bilkey, 2015; Routtenberg, 1968), predator presence (Sainsbury, Heynen, & Montoya, 

1987), operant learning (Feder & Ranck, 1973; Lopes da Silva & Kamp, 1969), and novel 

stimuli (Kemp & Kaada, 1975) generate hippocampal theta. On the other hand, irrelevant 

stimuli or stimuli that the organism was habituated to (Kemp & Kaada, 1975; Sainsbury, Harris, 

& Rowland, 1987), already learned and automatic behaviors (Feder & Ranck, 1973) and 

consummatory acts (Routtenberg, 1968) do not generate theta. 

If the circuits commanding panic-like responses, as witnessed at the behavioral level, are in 

a state of competition with anxiety-like circuits, then the neural signals associated with these 

states should also show opposing trends. As indicated above, previous research points to 

increased hippocampal theta rhythm as a potential anxiety signal in the brain. So, stimulation 

of PAG regions with known involvement in anxiety (namely the anterior portion) should evoke 

increases and decreases in hippocampal theta. Conversely, stimulation of the regions involved 

in panic (i.e., more posterior portions) should reduce hippocampal theta. 

Both panic- and anxiety-like processes are, however, also orchestrated by cortical regions. 

Structures in the medial wall of the prefrontal cortex have been implicated in the modulation of 

basic defensive functions. For instance, the anterior cingulate cortex (ACC) is a node in the 

pain processing network of the brain, and it has been suggested more specifically as a center 

responsible for the affective component of painful events (Fuchs, Peng, Boyette-Davis, & 

Uhelski, 2014; Hsu et al., 2013).  

Sitting ventrally to the ACC is the prelimbic cortex (PrL). This cortical division sends strong 

projections to the PAG and, in return, receives projections from the ventral PAG as well 

(Chapter 2). The PrL has strong modulatory influence over defensive circuits in the brain, 
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including influence over the dorsal raphe (DR) which is capable of influencing PAG activity. 

Disinhibition of the PrL can promote elevations in extracellular 5-HT in the DR, and in turn 

cause escape responses in the rat (Yamashita, Spiacci, Hassel, Lowry, & Zangrossi, 2017). The 

PrL is also implicated in the control of conditioned responses. Electrical stimulation of this 

region increases conditioned responses and prevents animals from extinguishing the acquired 

association (Vidal-Gonzalez, Vidal-Gonzalez, Rauch, & Quirk, 2006). It has also been 

proposed that the PrL can modulate short term affective memories and feed this information to 

the striatum and limbic circuits, greatly modulating emotional processes (Vertes, 2006).  

Understanding how different brain structures react dynamically and interact during these 

states can be important to elucidate the nature of PAG-induced freezing. If the states induced 

by activation of the PAG are reflective of panic and/or anxiety disorders, then understanding 

how large assembles of neurons behave during these states should illuminate and broaden our 

understanding of fear- and panic-generating systems in the brain.  

So, it is proposed here that hippocampal theta activity serves as an underlying neural 

mechanism that allows for the emergence of behaviors, functions and emotional states that 

require the coordination of large assembles of cell populations in different brain locations. 

Considering that the PAG-induced freezing state could be an anxiety-like state of conflict, it 

would be expected that the emergence of this behavior would correlate with enhanced theta 

oscillations in the hippocampus. But structures like the PrL, on the other hand, can influence 

subcortical structures like the PAG via the DR, and induce panic responses (i.e. avoidance 

responses away from danger) which are ethologically opposite to conflict-, and anxiety-like 

freezing.  

In this Chapter, I investigate changes in HPC and PrL field potentials during behavioral 

states induced by PAG stimulation. If hippocampal theta reflects an underlying neural 

mechanism necessary for the generation of anxiety states, we would expect that increases and 

decreases in theta activity should reflect increases and decreases in anxiety. In this section, 

responses to the RPO electrical stimulation method will be used as a comparing tool against the 

responses produced by electrical stimulation of the PAG.  

In this Chapter we will also evaluate if the anterior PAG is capable of generating distinct 

cortico-hippocampal responses than more caudal portions of the PAG, as predicted by the 

findings in Chapter 2. Although stimulation of both the anterior and middle PAG is capable of 

evoking immobility and freezing in the rat, Chapter 2 of this thesis presented anatomical, 

biochemical and functional evidence that indicates that these two PAG regions are not similar. 
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Could the freezing behavior elicited by stimulation of different levels of the PAG in the 

anterior-posterior axis be electrophysiologically different while behaviorally similar?  

With these in mind, we anticipate that: 1) middle PAG stimulations, at the freezing 

threshold, will reduce hippocampal and PrL theta power and/or frequency; 2) anterior PAG 

stimulations, at the freezing threshold, will increase hippocampal and PrL theta power and/or 

frequency and 3) anterior and posterior PAG stimulations will differently affect cortico-

hippocampal coherence. 

 Methods 

For this experiment, ten Sprague-Dawley rats were initially used. Two animals had to be 

removed from the study due to health complications, and a third one had stimulating electrodes 

located outside of the regions of interest, making the final number of animals used seven. The 

housing, surgical, and recording procedures are described in the general methods section in 

Chapter 3.  

4.2.1. Behavioral apparatus 

All animals were tested in a modified operant chamber (width: 24.5cm, height: 18.5cm, 

depth: 30cm), with its levers, lights and feeding mechanisms removed. All walls were made out 

of transparent acrylic, except for the back one which was made out of aluminium. It was placed 

inside a second chamber, which apart from a small hole on the ceiling through which the 

recording cable ran, was fully sealed from external light and noise. Illumination inside the 

chamber was provided by a non-aversive red light, and a fan provided air recirculation and 

background noise. A small video camera inside the larger chamber provided a live video feed 

for experimenter observation. 

Prior to any data collection, for 5 consecutive days, the rats were individually placed inside 

the observation box and allowed to explore for fifty minutes. Before each exposure, the walls 

and floor of the observation box were cleaned with a 10% ethanol solution and allowed to dry. 

4.2.2. Electrical stimulation response thresholds 

In order to determine the ideal currents necessary to drive the desired responses from the 

PAG and RPO, rats were tested daily before data acquisition. They were individually placed in 

the observation chamber, the recording cable attached to their head stage and given 30 minutes 

to habituate before testing. 

First, the current for appropriate RPO responses was established. When animals voluntarily 

ceased moving, an initial current of 10µA was delivered in a 1-second train (the parameters for 
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the stimulation are detailed in the methods section of Chapter 3). High intensity currents can 

provoke undesired motor reactions in free moving animals, so during the delivery of the current 

the animal’s behavior and real time LFPs were observed. We defined the ideal response based 

on repeated stimulation that provoked clear, elicited hippocampal theta from the stimulation 

train with no evoked motor reactions. If no induced theta or motor reactions were noticed, the 

stimulating current was increased in 5µA steps until the highest current that caused no motor 

responses was reached.  

Following determination of RPO-stimulation values, the animals were tested for PAG-

evoked responses. The goal for the PAG stimulation was to establish the minimum current 

intensity necessary to induce the emotional response of freezing. Stimulation trains were 8 

second long, and the first current was set at 10uA, with increases in 5µA steps until the desired 

freezing behavior was evoked.  

After repeated PAG stimulations at the freezing threshold, RPO stimulations were 

conducted in order to verify that the desired hippocampal responses were still being elicited. In 

all cases, the currents established for the RPO-stimulation before PAG activations were still 

effective in inducing hippocampal theta rhythmicity.  

4.2.3. Recording sessions 

For the data presented in this section, rats were tested in 10-minute sessions on each of five 

days. LFP activity from the bilateral HPC and left PrL were recorded according to the detailed 

methods in Chapter 3. For each session, rats were consecutively stimulated at the RPO and 

PAG-freezing thresholds established before. The first 1-second RPO train was delivered, 

followed 30 seconds later by an 8-second PAG train, and by the end of each session the rat had 

received 10 stimulations of each type. At the end of the session, the stimulating current for PAG 

was increased in steps of 5µA until an escape response was induced, and the session was 

finished. The experimental timeline is illustrated in Figure 4.1. 
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Figure 4.1. Timeline of experiment. A: time interval between stimulations. RPO and PAG 

stimulation trains are presented each 30 seconds, alternating between the two. B: view of a 

single minute of the experimental session. PAG trains last 8 seconds, and RPO ones 1 second. 

 

4.2.4. Data processing 

Given that PAG stimulation periods are 8 times longer than RPO ones, 1-second segments 

of EEG were extracted from each stimulation event in order to adequately compare the effects 

of the two stimulation types. 1-second periods of data before the onset of each event were 

extracted from each epoch, and treated as control “sham” stimulations, and 1-second periods 

after the onset were used for assessing stimulation effects (see Figure 4.2). 

After segmentation of the data, each epoch was individually computed for power, instant 

frequency, coherence, PPC and PDC as described in the methods section on Chapter 3. All 10 

trials of each type within the session were then averaged for each measure within the theta range 

(5 to 10 Hz).  
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Figure 4.2. EEG segmentation from original RPO (A) and PAG (B) stimulation periods, 

demarcated by vertical red lines. Two 1-second segments of data before and after the onset of 

stimulation (0 second on X-axis) were used as “sham stimulation” and “real stimulation” 

epochs for analysis, respectively. 

 

 PAG-induced responses vs. RPO-induced responses 

4.3.1. Histology 

After data acquisition, electrode placements were verified histologically. All subjects 

included in this experiment had recording electrodes located in the left PrL, as shown in Figure 

4.3, and HPC as shown in Figure 4.4. Stimulating electrodes located in the PAG and RPO are 

shown in Figures 4.5 and 4.6 respectively.  
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Figure 4.3. Histological placements of recording electrodes for the left PrL. Black dots in 

panel A show the centerpoint between the two pairs of electrodes in each rat that were used 

for analysis. A-P coordinates from bregma are indicated. Panel B is a representative 

photomicrograph showing the electrode trace through the medial wall of the prefrontal 

cortex.  
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Figure 4.4. Histological placements of recording electrodes for the left and right HPC. Black 

dots in panel A show the centerpoint between the two pairs of electrodes in each rat that were 

used for analysis. A-P coordinates from bregma are indicated. Panel B is a representative 

photomicrograph showing the electrode trace through the right hippocampus. 

 

Figure 4.5. Histological placements of stimulating electrodes for the PAG. . Black dots in 

panel A indicate location of the anode of the two stimulating tips in each rat. A-P coordinates 

from bregma are indicated. Panel B is a representative photomicrograph showing the 

electrode trace through the left PAG. 
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Figure 4.6. Histological placements of stimulating electrodes for the RPO. Black dots in 

panel A indicate location of the anode of the two stimulating tips in each rat. A-P coordinates 

from bregma are indicated. Panel B is a representative photomicrograph showing the 

electrode trace through the right hemisphere. 

 

4.3.2. Results 

Behavioral and neural effects of stimulation. For RPO stimulation, an average of 57µA 

was found to be the maximum intensity that evoked theta rhythmicity with no motor 

manifestations, with ±4µA (S.E.M.) variations from one day to the next.  

For PAG stimulation, an average of 68µA was established as the minimum current that 

caused clear, repeatable, evoked freezing, with a variation of ±6.5µA (S.E.M) across different 

days. These effective PAG currents caused evident freezing in animals, characterized by the 

arrest of ongoing motor activity, with the animal resting all four pawns on the ground. 
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Occasionally, these changes in posture would be accompanied by visible changes in breathing 

and/or cardiac patterns, noticeable by faster breathing movements in the thoraxic region. Other 

occasional occurrences included micturition and defecation, and sometimes head scanning. A 

few seconds after the stimulation train finished, rats stopped freezing and returned to normal 

behavior. 

Power spectral density during PAG stimulation. Before conducting comparisons between 

the effects of PAG and RPO stimulations with segmented 1-second periods, spectral analysis 

was performed on 24-second epochs of PAG stimulation, which included the 8-second periods 

before and after the delivery of the stimulus train as well as the 8 s period of stimulation. 

As shown in Figure 4.7, PAG stimulations provoke marked changes in HPC and left PrL 

field potentials that are bound to the stimulation period. As seen in panel A, LFP amplitude is 

greatly diminished, especially at the hippocampus during the stimulation period. Spectrograms 

in panel B show that in both left and right HPC, before stimulation, the dominating power band 

is 5Hz (this is consistent with the rat being restricted in an operant chamber, in which the animal 

is confined to slower and smaller movements, which produce lower frequency theta). During 

stimulation this band still is the dominating one, but power is greatly reduced. Once stimulation 

is turned off, activity in this band returns, with a rebound effect of showing stronger power than 

during pre-stimulation. For the left PrL, the pre-stimulation period shows dominating bands 

bellow 5Hz – although some relative activity is also present at higher frequencies, unlike the 

HPC. During stimulation, as seen with the HPC, power in the dominating bands is greatly 

diminished. Immediately after stimulation is turned off, a small rebound in power happens, but 

in the following seconds power is generally reduced to a level below the pre-stimulation period. 

Theta power. Results for LFP power in the theta band are presented in Figure 4.8. For PAG 

stimulation, the overall pattern is that stimulation of this area causes a large decrease in LFP 

power. As seen in in panel A, power is decreased by approximately a third during stimulation 

(stimulation [linear], F(1,6) = 52.61, p < 0.001). In the same panel, we can see that RPO 

stimulation appeared to cause a slight increase in mean power, but this was not significant 

(stimulation [linear], F(1,6) = 0.98, p = 0.36). Panel B shows the LFP power value for L-HPC 

during sham and RPO stimulation. Most of the increase in power during stimulation, seen in 

panel A, came from this region. The increase, however, was not significant (stimulation [linear], 

F(1,6) = 1.61, p = 0.25).  

Panel C presents the detailed view of LFP power by region and stimulation type, and the 

quadratic components for each state. No statistically significant changes were seen for specific 
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regions; the reduction in power seen during PAG stimulation affected all three regions similarly. 

For RPO, there appears to be a slight positive curve during sham, that is reversed and becomes 

negative during stimulation; this, however, was not a significant change (Stimulation [linear] x 

Region [quadratic], F(1,6) = 1.78, p = 0.230).   

Frequency. The effect of stimulation on HPC and left PrL frequency is presented in Figure 

4.9. Panels A and B show that both PAG and RPO stimulation significantly reduced frequencies 

across the regions (PAG stimulation [linear], F(1,6) = 11.93, p = 0.014; RPO stimulation 

[linear], F(1,6) = 50.40, p < 0.001). 

Panel C shows the changes promoted by the stimulation in the relationship between the 

recorded areas. The reductions in frequency coming from PAG stimulation originate almost 

entirely from a reduction in left PrL frequency, with HPC frequency remaining largely 

unchanged (PAG stimulation [linear] x Region [quadratic], F(1,6) = 298.60, p < 0.001).   

Theta coherence and PPC. No significant effects of either stimulation were seen between 

the stimulation states for PPC and coherence measures (Figure 4.10). Panel A shows the PPC 

numbers by pairs, averaged across both sham and stimulation states of PAG and RPO. In 

general, the left and right HPC are 3 times more coherent among themselves than they are with 

the PrL. This is captured by the significant trend that shows the left and right HPC having higher 

PPC scores (Region [quadratic], F(1,6) = 7.61, p = 0.02). No differences were seen between 

PPC levels of the hippocampi against the PrL, meaning that the left HPC has the same levels of 

synchronicity with the PrL as the right HPC (Region [linear], F(1,6) = 0.02, p = 0.87). Panel B 

shows the PPC levels for each state of stimulation. No significant differences were seen 

between the sham and stimulated periods of both PAG and RPO. Panel C shows the coherence 

measures for PAG and RPO stimulations; again, no significant changes were seen in coherence 

between sham and stimulation of both PAG and RPO. 
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Figure 4.7. LFP activity under PAG stimulation for a representative rat. Event epochs are 

comprised of a total of 24 seconds including 8 second periods before, during and after 

stimulation. A: Each panel presents raw LFP of ten individual trials of PAG stimulation, with 

stimulation periods indicated by black dashed lines at the center. Top: Left HPC; bottom: left 

PrL. Panel B shows spectrograms for relative power (averaged trials). From top to bottom: 

Left HPC, left PrL and right HPC spectrograms, with PAG-stimulation periods delimited by 

white dashed lines at the center. 
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Figure 4.8. Theta power during real and sham stimulations of PAG and RPO (n=7). Panel A 

shows the overall effects of stimulation, with the activity of the regions averaged. PAG 

stimulation promotes a significant decrease in LFP power, and RPO promotes a non-

significant increase in LFP power. Panel B shows a non-significant increase in hippocampal 

power during RPO stimulation. Panel C shows a detailed view of LFP power in all regions, 

with their quadratic curves fitted. Power was significantly decreased during PAG stimulation 
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at both the hippocampal sites and the left PrL. RPO stimulation promotes a non-significant 

change in the quadratic relationship between left PrL and the HPC sites. Solid lines indicate 

statistically significant differences, and dashed lines indicate non-significant differences. 

 

PDC. In order to tell if the changes seen during stimulation are being led by specific regions, 

Partial Directed Coherence analysis was conducted. Figure 4.11 illustrates PDC measures 

during sham and real stimulations. During PAG stimulation (panel A), information flowing 

from the left HPC to the right HPC and to the left PrL is reduced. Meanwhile, the flow from 

the left PrL to the left HPC is increased. Panel B in the same picture shows that RPO stimulation 

mostly keeps the dynamics between the regions unaltered, with the exception of an increase in 

flow from the left HPC to the left PrL. 

Figure 4.12 presents the results from the PDC analysis in more detail. Panels A and B 

present PDC measures averaged across real and sham stimulations of both types. In general 

terms, panel A shows that the flow of information from the two HPC sites to the left PrL is 

larger than the bilateral flow between the two hippocampi. Statistically, this is demonstrated by 

a significant difference between the flow of information in the two HPC  left PrL direction 

compared to L-HPC  R-HPC (Region [quadratic], F(1,6) = 11.20, p = 0.02). The right HPC 

tends to more strongly influence left PrL than the left HPC, although the differences are not 

significant (Region [linear], F(1,6) = 6.48, p = 0.051). 

Panel B displays the flow of information from left PrL to both right and left HPC, and 

compares it to how the left and right HPC talk between themselves. In general, it cannot be said 

that PrL influences either HPC anymore than the two HPC influence each other (Region 

[quadratic], (F(1,6) = 1.56, p = 0.266). Although the power of PrL to modulate activity in the 

HPC is not any larger than the influence that left and right HPC have on each other, the image 

also show that PrL influences the left HPC more than it influences the right HPC (Region 

[linear], F(1,6) = 23.69, p = 0.005). 

Panels C and D show PDC measures during stimulation. In general, stimulations of both 

PAG and RPO did not produce large changes. First, PAG stimulation did not cause any 

significant changes in the flow of information between the areas studied (PAG Stimulation 

[linear], F(1,6) = 3.28, p = 0.130). RPO stimulation, however, caused changes albeit small ones. 

During sham, we see a significant linear difference between L-HPC  left PrL and R-HPC  

left PrL, and no quadratic difference between the flow of the two HPC to left PrL against HPC 

 HPC. These indicate that during non-stimulated periods the right HPC is sending more 

information to the left PrL than the left HPC, and left to right HPC communication is not 



110 

 

significantly different than the averaged flow of information from both HPC to the left PrL. 

However, during stimulation, L-HPC  PrL increases, making it now significantly higher than 

HPC  HPC communication, and as high as R-HPC  left PrL (RPO stimulation [linear], 

F(1,6) = 7.74, p = 0.039; RPO stimulation [quadratic], F(1,6) = 15.52, p = 0.011).  

Panel D shows that the flow of information from left PrL to both HPC and from right HPC 

to left HPC are generally unaffected by both PAG and RPO stimulation compared to sham 

(Stimulation [linear] x real/sham [linear] x region [linear], F(1,6) = 1.22, p = 0.319; Stimulation 

[linear] x real/sham [linear] x region [quadratic], F(1,6) = 0.079, p = 0.079). 
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Figure 4.9. Frequency changes during sham and real stimulations of the PAG and RPO 

(n=7). Both PAG (panel A) and RPO (panel B) stimulations promote a general decrease in 

frequency from baseline across regions. Panel C shows the effects of stimulation in each 

region separately. The reductions in frequency coming from PAG stimulation are mostly due 

to decreases in left PrL, with hippocampal sites remaining mostly unchanged. The image 

shows the quadratic curve and the changes promoted by stimulation. Solid lines indicate 

statistically significant differences, and dashed lines indicate non-significant differences. 
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Figure 4.10. Pairwise Phase Consistency (PPC) and coherence for PAG and RPO stimulation 

(n=7). Panel A shows the average PPC between regions, averaged across sham and real 

types of both stimulation. Panel B and C show the detailed view for each state, respectively 

for PPC and coherence. Solid lines indicate statistically significant differences, and dashed 

lines indicate non-significant differences. 
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Figure 4.11. PDC during PAG stimulation (A) and RPO stimulation (B). The same results are 

also shown in bar graph form, and with more detailed explanation, in Figure 4.12. 
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Figure 4.12. Statistical results for PDC. Panel A shows PDC activity averaged across PAG, 

RPO, Sham and Real states for L-HPC  left PrL, L-HPC  R-HPC and R-HPC  left PrL, 

along with linear and quadratic relationships. Panel B shows PDC activity averaged across 

PAG, RPO, Sham and Real states for left PrL  L-HPC, R-HPC  L-HPC and left PrL  

R-HPC along with linear and quadratic relationships. Panels C and D show detailed effects 

of stimulation on the same pairs in A and B, respectively. Solid lines indicate statically 

significant differences, and dashed lines indicate non-significant differences (NS = non-

significant). 
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 Anterior PAG vs. Mid PAG 

In the first part of this Chapter, the general effects of PAG stimulation that also generated 

freezing were investigated on a series of LFP measures. Subjects in that experiment, however, 

had stimulating electrodes placed mostly in the medial portion of the PAG. In order to assess 

whether the more anterior PAG produces similar effects, five rats with PAG stimulating 

electrodes placed in the anterior PAG (aPAG) were tested and analyzed in the same way, and 

compared with the same medial PAG (mPAG) animals.  

As described in the first part of this Chapter, daily pre-test sessions were conducted in order 

to define the minimum PAG stimulation threshold capable of producing behavioral responses. 

The methodology for the second group of rats was the same as for the previous group. 

4.4.1. Histology 

The location of the recording electrodes for the left PrL and HPC, and stimulating electrodes 

for the PAG are shown in Figures 4.13, 4.14 and 4.15, respectively. 

 

Figure 4.13. Histological placements of recording electrodes for the left PrL. Black dots show 

the centerpoint between the two pairs of electrodes in each rat in the mPAG group. Grey dots 

show the centerpoint between the two pairs of electrodes in each rat in the aPAG group. A-P 

coordinates from bregma are indicated. 
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Figure 4.14. Histological placements of recording electrodes for the left and right HPC. 

Black dots show the centerpoint between the two pairs of electrodes in each rat for the 

mPAG group. Grey dots show the centerpoint between the two pairs of electrodes in each 

rat for the aPAG group. A-P coordinates from bregma are indicated. 
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Figure 4.15. Histological reconstruction of PAG stimulating electrode placements. Black dots 

in panel A indicate location of the anode of the two stimulating tips in the animals in the 

mPAG group. Panel B shows the location of the anode of the two stimulating tips in animals 

in the aPAG. On the right, the concentration of the stimulating regions for each group is 

indicated in the anterior-posterior axis of the PAG. 

 

4.4.2. Results 

Effects of electrical stimulation. The behaviors elicited by stimulation in the two groups 

were distinct. As described before, mPAG animals would freeze during stimulation, and 

occasionally head scanning and faster breathing patterns would occur in some animals. Rats in 

the aPAG group presented this freezing behavior as well, but the occurrence of higher rates of 

breathing was more consistent and intense than the other group. The aPAG animals also 

displayed strong sniffing and occasional facial contractions during stimulation, which were 

completely absent in the mPAG rats. 

For rats with aPAG electrode placements, the average minimum electric current that caused 

freezing was 428µA, with a variation of ±6.9µA (S.E.M) in different days of testing. This 

minimum threshold for freezing is considerably higher than the one for animals stimulated in 

the mPAG (68µA, ±6.5µA), and an independent sample, two tailed t-test showed these 

differences were reliable (t (10) = -3.88, p = 0.003).   
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Upon increase of the stimulation current (96uA, ±9.6µA as a group average), animals in the 

mPAG group would consistently present escape behaviors, characterized by forward running 

in circles while the stimulation train was on. Subjects in the aPAG group, however, were more 

resistant to change of behaviors with higher currents. Most animals in this group failed to 

consistently show escape behaviors with stronger stimulations and would usually remain in the 

freezing state. Occasionally, higher currents in the aPAG group would cause backing reactions. 

This motor reaction was characterized by backwards locomotion, with a strong arched back and 

lowered head. In some other animals, higher currents provoked strong, contralateral head 

turning. These two behaviors are unique to aPAG animals, as no animals in the mPAG group 

displayed backing or head turning during stimulation. 

Power spectral density during PAG stimulation. Figure 4.16 presents spectrograms for 

activity in the HPC and left PrL for an animal under mPAG stimulation (left column; same 

images presented in Figure 4.2) and an animal under aPAG stimulation. As demonstrated 

before, mPAG stimulation reduces theta power on all three channels of interest. aPAG 

stimulation, on the other hand, increases hippocampal theta power on the ~15Hz band. One 

thing to note is that pre-stimulation epochs are different between the animals from different 

groups. For instance, the representative aPAG animal in image 4.2 show a much wider band of 

strong HPC activity between 5 and 15 Hz than the mPAG animal.  

 



119 

 

 

Figure 4.16. LFP activity under stimulation of the medial PAG (left column) and anterior 

PAG (right column) of one representative rat in each group (10 individual trials averaged). 

Event epochs are comprised of a total of 24 seconds including 8 second periods before, 

during and after stimulation. 
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Theta power. The effects of stimulation of the mPAG and aPAG are shown in Figure 4.17. 

In panel A, we can see how mPAG and aPAG differently affect theta power on all averaged 

regions. As established in the previous section in this Chapter, mPAG stimulation significantly 

reduces power over the average of all regions. aPAG stimulation, on the other hand, may show 

a marginal effect in increasing theta power (Stimulation [linear], F(1,4) = 2.86, p = 0.166). 

Panel B shows a detailed view, per recorded region, of the effects of mPAG and aPAG 

stimulations. It is possible to see that mPAG stimulation equally reduces power on both HPC 

and the left PrL. aPAG stimulation, however, increases power on all regions, and most 

noticeably in left PrL. On the sham scenario, left PrL LFP power is significantly smaller than 

the average of the two HPC (Region [quadratic], F(1,4) = 22.78, p = 0.009). During stimulation, 

however, left PrL power increases and becomes indistinguishable from HPC (Region 

[quadratic], F(1,4) = 0.31, p = 0.608). In order to evaluate if the increases in left PrL and right 

HPC power seen on panel B are statistically significant between sham and stimulation states, 

post-hoc analysis were conducted on these channels separately and are presented in panel C. 

Increases in left PrL power are only marginally significant (Stimulation [linear], F(1,4) = 2.46, 

p = 0.192). The increase in right HPC power, however, was shown to be significant (Stimulation 

[linear], F(1,4) = 13.71, p = 0.021). As seen with the power spectral density heat maps, a 

difference exists in the pre-stimulation periods (sham stimulation) of the two groups of animals. 

For instance, the LFP power of the three regions is not different in the pre-stimulation period 

of animals in the mPAG group; on the other hand, power for the PrL is much smaller than the 

power for the hippocampal regions in the aPAG animals. 
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Figure 4.17. Theta power during real and sham stimulations of medial PAG (n=7) and 

anterior PAG (n=5). Panel A presents the changes promoted by mPAG and aPAG 

stimulations on the general activity of the regions, averaged. mPAG stimulation promotes a 

significant decrease in power, while aPAG promotes a marginally non-significant global 

increase. Panel B shows results per individual channels. mPAG promotes equal decreases in 

HPC and left PrL power. aPAG stimulation produces an increase in left PrL and right HPC 
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power, which is significantly reflected on their quadratic curves. Panel C shows post-hoc 

tests comparing sham and stimulation effects on left PrL and right HPC. Solid lines indicate 

statically significant differences, and dashed lines indicate non-significant differences. 

 

Frequency. Figure 4.18 summarizes the effects of stimulation on frequency. While mPAG 

activation greatly reduces left PrL frequency, aPAG stimulation does not promote the same 

strong frequency changes (Stimulation [linear] x region [linear], F(1,4) = 0.049, p = 0.83; 

Stimulation [linear] x region [quadratic], F(1,4) = 5.71, p = 0.075).  

 

Figure 4.18. Frequency changes during real and sham stimulations of the mPAG (n=7) and 

aPAG (n=5). mPAG induces significant decreases in left PrL frequency, but aPAG effects are 

non-significant. Solid lines indicate statically significant differences, and dashed lines 

indicate non-significant differences (NS = non-significant). 

 

Theta PPC and coherence. Figure 4.19 shows the results of stimulation on PPC and 

coherence. For PPC, no significant effects of stimulation were seen between groups for the two 

HPC against PrL (Stimulation [linear] x Region [quadratic] x PAG group, F(1,10) = 0.02, p = 

0.87) or between the two HPC (Stimulation [linear] x Region [linear] x PAG group, F(1,10) =  

0.96, p = 0.35). 

In the same way, no changes were seen in coherence measures (Stimulation [linear] x region 

[quadratic] x PAG group, F(1,10) = 3.80, p = 0.08; Stimulation [linear] x region [linear] x PAG 
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group, F(1,10) = 0.70, p = 0.42). As seen with other measures, it is important to note that 

coherence between the two groups of rats is different in the pre-stimulation period. A 

comparison of the sham periods between the two groups reveals that they are different (Region 

[quadratic] x PAG group, F(1,10) = 11.91, p = 0.006), indicating that in the mPAG group the 

activity of the PrL is more similar to the two HPC than it is in the aPAG group.  
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Figure 4.19. Pairwise Phase Consistency (panel A) and coherence (panel B) for mPAG (n=7) 

and aPAG (n=5).  
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Figure 4.20. PDC activity during sham and stimulation states of mPAG and aPAG. Panel A 

shows L-HPC  left PrL, L-HPC  R-HPC and R-HPC  left PrL, and panel B shows left 
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PrL  L-HPC, R-HPC  L-HPC and left PrL  R-HPC. Dashed lines indicate statically 

non-significant differences (NS = non-significant). 

 

PDC. Results for PDC are shown in Figure 4.20. Panel A shows PDC scores for the flow 

of information going from the HPC to left PrL, and from left HPC to right HPC. Although the 

baseline sham of the two groups of rats is slightly different (the dominance of the right HPC 

over left PrL, seen in the mPAG group, is reversed in the aPAG group), no actual effect of 

stimulation was present (Stimulation [linear] x region [linear] x PAG group, F(1,9) = 0.047, p 

= 0.83; Stimulation [linear] x region [quadratic] x PAG group, F(1,9) = 0.703, p = 0.42). 

Panel B shows PDC for left PrL influence over HPC, compared against the right HPC 

influence over left HPC. Again, no significant differences were found between sham and 

stimulation states for both groups (Stimulation [linear] x region [linear] x PAG group, F(1,9) = 

0.029, p = 0.87; Stimulation [linear] x region [quadratic] x PAG group, F(1,9) = 0.008, p = 

0.93). 

 Summary and data discussion 

In this Chapter, an electrophysiological investigation of the properties of freezing generated 

by PAG stimulation was conducted. Free-moving animals had their local field potential activity 

recorded from the prelimbic cortex and both sides of the hippocampus. Measures of theta 

power, frequency, coherence and causation between areas were assessed during electrical 

stimulation of the PAG that provoked freezing responses. 

The first finding was that stimulations of the mPAG that also induced freezing caused 

marked and significant reductions in the amplitude of hippocampal and prefrontal theta. These 

reductions were bound to the stimulation period, and ceased as soon as stimulation was 

terminated. After electrical stimulation was ceased, spectrograms showed a rebound effect of 

theta power in the hippocampus, with stronger activity than what was seen in the pre-

stimulation period. 

In general, both hippocampal and prefrontal LFP power were reduced by approximately 1/3 

during mPAG stimulation, and this reduction was statistically robust (p<0.001). In contrast, 

while mPAG generated a reduction of power in all areas, RPO stimulation produced an increase 

of power in the left hippocampus – although this RPO-increase was not statically significant. 

Another strong change seen during mPAG stimulation was a large reduction in frequency, 

but selectively at the prefrontal cortex – no changes in frequency happened at either of the 
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hippocampi. On average, mPAG stimulation caused a drop of 1.5Hz in the dominant 

frequencies present in the prefrontal cortex that was strongly significant (p < 0.001). RPO 

stimulation also caused a significant reduction in frequency in both hippocampi and the 

prefrontal cortex (p < 0.001). Compared to the mPAG, however, this drop was relatively small 

at around 0.5 Hz (F = 50.40). 

This drop in frequency during RPO stimulation, despite being very small when compared 

to the equivalent PAG effect, is unexpected. Usually, hippocampal frequency is increased 

during reticular stimulation (Green & Arduini, 1954; McNaughton & Sedgwick, 1978; Vertes, 

1981). Previous studies in the free moving rat have shown that reticular stimulation using the 

same parameters and type of electrodes as the current one, have evoked hippocampal theta at 

the range of 7-8Hz using 50µA of current amplitude (McNaughton & Sedgwick, 1978; Figure 

1). The investigation presented here also used stimulation currents averaging 50uA, and also 

produced hippocampal theta around the range of 7-8Hz; the crucial difference is that in the 

results presented here, hippocampal frequency was already at 7.5Hz before the onset of 

stimulation. One possibility for this is that repeated, concurrent activation of the PAG at the 

threshold of freezing could have changed basal activity in the hippocampus. It is very likely 

that during the inter-stimulation periods, when no manipulations are made and the animal is 

behaving freely, spontaneous activity in the hippocampus was stronger than usual. This would 

be due to activation of the PAG producing emotional states that lasted beyond the stimulation 

period. Crucially, this explanation would imply that RPO stimulation can override input from 

PAG or related areas in generating theta frequency. This would be possible if the PAG effect 

was mediated by RPO, with the 100Hz RPO stimulation antidromically activating the PAG 

input pathway to block incoming input. 

Coherence measures indicate that, either before or during stimulations, all the regions 

recorded from were similarly synchronized to each other. This, however, was different with 

PPC. PPC indicated that activity in the two hippocampi was more similar between themselves 

than the activity between the hippocampi and the prefrontal cortex. Stimulations of the mPAG 

and RPO, however, did not change these patterns of synchronization. Measures of pairwise 

phase consistency, used to infer if changes seen in one signal might be caused by another, 

remained largely unmodified during electrical activations.  

Since mPAG stimulation caused marked changes in power and frequency, we employed 

partial directed coherence measures to infer if these changes could be being led by any of the 

regions recorded in this study. At their resting state, before any stimulation of any kind was 

delivered, it was seen that the right hippocampus “leads” activity seen in the prefrontal cortex 
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and left hippocampus – more precisely however, the only statistically significant inference here 

was that the right HPC leads the PrL more than the left HPC does, and this was a marginal 

significance at best (p = 0.039). The only stimulation effect that was seen was during RPO 

activation, when the influence of the left hippocampus over the prefrontal cortex was elevated 

enough for it not to be statistically any different from the influence that the right hippocampus 

commands; putting in another words, at the resting state the right HPC influences activity in 

the PrL more than the left HPC, but during RPO stimulation both hippocampi equally influence 

activity seen in the PrL. No changes were seen during mPAG stimulation. 

After establishing what changes were seen during the freezing response produced by mPAG 

stimulation, we assessed the effects of aPAG-induced freezing in a different group of animals. 

The first difference seen was that aPAG activation caused increases in power while mPAG 

caused decreases. However, the spectrograms comparing the two groups shows that the pre-

stimulation activity between the two groups of animals was different. Stronger activity at higher 

frequencies was seen during these baseline epochs of aPAG animals compared to the mPAG 

group.  

The increases in power promoted by aPAG stimulation were greater at the prefrontal cortex 

and the right hippocampus. The quadratic effect seen between the prefrontal cortex and the two 

hippocampi seen at pre-stimulation (p = 0.009) became statically insignificant during 

stimulation (p = 0.61); in other words, during pre-stimulation prefrontal power was smaller than 

hippocampal power, but during stimulation power in this region increased to levels that made 

it similar to the hippocampus. 

Another difference between the two groups was seen in frequency. aPAG activation did not 

produce the same reduction in prefrontal frequency as the one seen with mPAG. Although 

stimulation of the aPAG did not cause any significant changes in the frequency of either of the 

hippocampi or the prefrontal cortex, it is important to point out that a trend is present (quadratic 

between sham and real stimulation, F = 5.71, p = 0.075). Although not significant, it is possible 

to see in Figure 4.16 that the quadratic trend of sham is eliminated during aPAG stimulation, 

indicated by the increase in hippocampal frequency.  

For measures of synchronicity or causality, no differences caused by stimulation were seen 

in either group. Stimulations of the aPAG and mPAG did not produce changes in coherence, 

pairwise phase consistency and phase-directed coherence. 

Essentially, there are two strong and significant results from these experiments:  
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1) mPAG provokes strong reductions in theta amplitude in the prelimbic cortex and 

hippocampus, while aPAG provokes increases in theta amplitude, especially in the 

prelimbic cortex; 

2) mPAG provokes strong reductions in the dominant frequency in the prelimbic 

cortex, while aPAG provokes no changes in the dominant frequency in the prelimbic 

cortex. 

Although the evoked changes in hippocampal activity suggest a role of PAG regions and 

hippocampal theta in anxiety and panic, there are some important caveats and unanswered 

questions. Firstly, other frequency bands of LFP activity were not examined in this study. It is 

uncertain if, for example, lower or higher frequency bands are also changed in the same way as 

theta during the manipulations done in the current experiments. If changes to theta are also 

accompanied by changes in other bands, then the specificity of the proposed PAG-induced 

signal would be diminished, and instead more general increases and decreases of hippocampal 

activity are more akin to PAG induced states rather than a single frequency band. Secondly, 

drastically opposed hippocampal theta effects were obtained while the same behavior 

(immobility) was evoked. While defensive immobility and increased hippocampal theta are 

generally seen as proxies of anxiety/conflict and therefore their co-occurrence is expected, it 

becomes harder to see how the same behavior of immobility (anxiety) would also happen 

concomitantly with the opposing state of lower hippocampal theta. One possibility is that, 

although both look extremely similar, immobility evoked by the aPAG and mPAG represent 

different classes of emotional responses. Perhaps aPAG immobility represents conflict/anxiety, 

while mPAG immobility represents anticipatory fear and a preparatory, pre-motor state prior to 

escape. While the phenomenon of PAG-induced escape reaction is well studied and is taken to 

be a model for panic attacks, the phenomenon of PAG-induced immobility is not well 

understood or well explained at all, leaving it open for interpretations.  

But before we can further discuss the meaning of these results for the way we understand 

the PAG, defensive systems, fear and anxiety, we will first take a look at another experiment, 

reported in in the next Chapter that may help us more with these questions.  
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Chapter 5. Pharmacological manipulation of a region in the theta-

generating system: how anxiolytic drugs in the nucleus incertus affect 

PAG-evoked responses 

 Introduction 

The nucleus incertus (NI) is a small pontine nucleus, sitting on the floor of the 4th ventricle. 

Despite its small dimensions, the cells in the NI project widely to diverse regions in the brain, 

including strong projections to the PAG and dorsal raphe (Chapter 3), septum and 

parahippocampal cortices (Goto et al., 2001; Olucha-Bordonau et al., 2003).  

The main neurotransmitter system in the NI is relaxin-3. Relaxin-3 is a highly conserved 

neuropeptide, being present in insects (Nassel & Vanden Broeck, 2016), fish (Donizetti et al., 

2008), rodents (Ma et al., 2007), primates (Ma, Sang, et al., 2009) and humans (C. Liu et al., 

2003). In the brain, the presence of cells expressing relaxin-3 is highest in the NI, where it is 

co-expressed by cells alongside GABA (Ma et al., 2007). Cells expressing relaxin-3 are also 

abundant in the PAG and DR, making these two of the regions with the largest concentrations 

of cell bodies expressing the neuropeptide in the brain after the NI (Smith, Ryan, Hosken, Ma, 

& Gundlach, 2011). Of the four relaxin receptors identified, RXFP-3 is the one for which 

distribution in the brain is more stably conserved across rodents and primates (Gundlach et al., 

2009). Besides high concentrations in the NI, the RXFP-3 receptor and/or its mRNA is also 

strongly expressed in the amygdaloid complex, septum, hippocampal formation, PAG and DR, 

and several pontine structures surrounding the NI (Smith et al., 2010). 

Given the widespread connections of the NI and relaxin-3 presence in critical brain regions 

known to control arousal, anxiety and learning, interest in the involvement of NI peaked in 

recent years. In initial experiments, electrical stimulation of the NI in anesthetized rats evoked 

theta rhythmicity in the hippocampus (Nunez et al., 2006). In the same report, electrolytic 

lesions and GABAA agonism via muscimol of the NI were both sufficient to abolish theta 

oscillations evoked by RPO stimulation. Later reports confirmed that NI cells respond during 

RPO-induced hippocampal theta, and demonstrated that NI field potentials are phase-locked 

with the hippocampus in the theta band (Cervera-Ferri et al., 2011; Martinez-Bellver et al., 

2015). These reports indicate that the NI is an important node in the ascending arousal system, 

probably acting as a relay station between the reticular formation and the hippocampus/septum, 

and that it modulates hippocampal theta.  



131 

 

The NI has been shown to be involved in stress responses, and to be active during stressful 

events. The NI is rich in CRF1 receptors (corticotropin release factor), most of which are 

present in cells that also express relaxin-3, and that respond to systemic injections of CRF 

(Tanaka et al., 2005). Infusion of CRF into the NI also reduces neuronal firing of cells in the 

prelimbic cortex (Usman Farooq et al., 2013). Exposure to the elevated plus maze in rats cause 

c-Fos labeling in the NI, as do the administration of an anxiogenic inverse agonist of the 

GABAA benzodiazepine receptor (Lawther et al., 2015).  

Systemic injections of an agonist of the RXFP-3 receptor indicate some anxiolytic effects. 

Animals that received central injections of the agonist displayed decrease anxiety-like 

behaviors in the light-dark box task and the elevated plus maze (Ryan et al., 2013). In this same 

report, injections of RXFP-3 agonist also reduced depression-like behaviors in the forced swim 

test, but only in animals that have been previously exposed to test, indicating some anti-stress 

functions of the receptor system. In a RXFP-3 knockout mouse model, however, animals were 

shown to be hypoactive and to locomote less than control animals (Hosken, Sutton, Smith, & 

Gundlach, 2015), probably indicating that any antidepressive or anti-stress effects of activating 

the RXFP-3 receptor in the forced swim test could be cofounds from enhanced motor activity. 

Two other reports on RXFP-3 gene knockout mice confirmed that animals with the gene 

deletion are more hyporeactive, and also failed to show any behavioral changes in anxiolytic 

tests such as the open field test, elevated-plus maze test, light-dark box test and novel object 

exploration test (Smith, Hosken, Sutton, Lawrence, & Gundlach, 2012; Smith, Lawrence, 

Sutton, & Gundlach, 2009). This lack of change in the gene deleted animals could be explained 

by a later investigation showing that central administration of relaxin-3 agonist did not change 

behaviors in anxiety tests, but did counteract some of the anxiogenic effects of an inverse 

agonist of the GABAA benzodiazepine receptor (C. Zhang et al., 2015). 

Although evidence of involvement of both the NI and RXFP-3 systems in the control of 

hippocampal theta rhythm is plentiful, its exact role in controlling anxiety-like behaviors is 

unclear. Equally, while anatomical and immunohistochemical evidence supports the notion that 

the NI has some form of influence over the PAG, no direct experimental evidence of NI 

modulation over PAG and its behaviors is available. 

In Chapter 4, I demonstrated how mPAG stimulation provokes a reduction in hippocampal 

and prefrontal theta power, along with reductions in prefrontal frequency as well. In this 

Chapter, I aim to investigate how manipulations of the serotonergic, benzodiazepinergic, and 

both the agonism and antagonism of RXFP-3 in the NI and surrounding areas affect the activity 

evoked by PAG and RPO stimulation.  
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If RPO activation is indicative of anxiety, and PAG activation indicative of fear/panic, I 

expect that changes in one system will not happen in the other, or that the changes will occur 

in opposing directions; that is, if the anxiolytic drugs in the NI reduce RPO-induced 

hippocampal power, I expect these drugs to have no effect on PAG-induced hippocampal power 

– or to cause changes in a different direction, by increasing power.  

Therefore, the experiments in this Chapter have two objectives:  

1) To understand if pharmacological manipulation of NI receptor systems change 

PAG-induced states in the hippocampus and prefrontal cortex, and; 

2) To test the hypothesis that mPAG-induced states are different from RPO-induced 

states, supporting the view that the cortico and hippocampal changes observed 

during mPAG stimulation on Chapter 5 are not anxiety-related but more likely fear-

related. 

 Methods 

For this experiment, a subgroup of 6 Sprague-Dawley rats from the cohort used in the first 

experiment in Chapter 4 were used. These animals had bipolar stimulating electrodes implanted 

in the mPAG and RPO, LFP recording electrodes placed bilaterally in the hippocampus, and a 

guide cannula implanted at the NI. The housing, surgical, recording, behavioral procedures, 

apparatus and data processing are described in the general methods section in Chapter 4.  

5.2.1. Intracerebral microinjections 

The drugs used in this investigation were: Chlordiazepoxide (CDP), a benzodiazepine 

anxiolytic; Buspirone, a 5-HT1A receptor agonist anxiolytic; RXFP3-A2, a RXFP-3 receptor 

selective agonist (Shabanpoor et al., 2012); R3B(1-22)R, a RXFP-3 receptor antagonist 

(Haugaard-Kedstrom et al., 2011). CDP and Buspirone were purchased from Sigma (USA) and 

the two relaxin peptides were synthesized and supplied by Professor Andrew Gundlach of the 

Florey Institute and the University of Melbourne (Victoria, Australia). All compounds were 

dissolved in physiological saline (0.9% NaCl; 2mg/ml) and the volume injected was 0.5µL 

based on previous studies (Ma et al., 2017; Nategh et al., 2015) and preliminary data from our 

laboratory. Physiological saline was used as control. 24 hours were allowed between each drug 

administration, and a counterbalanced design was used in this experiment, with animals 

receiving all drugs in different orders. 
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5.2.2. Experimental session and design 

After the animal was placed inside of the experimental chamber and the recording cable 

was connected to its head implant, an injecting cannula was inserted into the guide cannula 

cemented to the rat’s head implant. The tip of this injecting cannula was set to protrude 1mm 

beyond the tip of the guide cannula, and to reach the NI. A polyethylene tube was attached to 

the injecting cannula, and connected to a 1µL glass syringe (Hamilton, USA). All drugs were 

injected at a rate of 0.25uL/min by an automatic syringe pump (Razel Scientific, USA). Once 

the drug trial session began, the animals were not disturbed by experimenter intrusion.  

The doors for the observation box and acoustic chamber were closed, and the animals were 

allowed a 2 minute period for acclimatization. After this, the experimental session proper was 

initiated. Each session lasted around 20 minutes, and involved sequential RPO and PAG 

electrical stimulation trains as described in Chapter 4, and also illustrated here in Figure 5.1: a 

1-second RPO train, followed 30 seconds later by an 8-second PAG train, for the duration of 

the session. After an initial baseline period of 5 minutes, the injection pump was turned on and 

infusion of the experimental solution begun. The progress of the injection was monitored by 

the movement of a small air bubble inside of the polyethylene tube. The injection time for 0.5µL 

was on average 2:00 minutes, after which the pump was turned off and the animal remained 

inside the chamber for 10 more minutes.  

 

 

Figure 5.1. Components of the experimental session. Each session lasted approximately 20 

minutes. Data from the baseline period (a block of 5 minutes previous to the start of drug 

injection), from post injection 1 (a block of 5 minutes immediately following end of injection) 

and post injection 2 (a blocks of 5 minutes following post injection 1) were used for analysis 

in this experiment. Each 5 minute block contains 5 samples of the three types of stimulation 

(PAG, RPO and Sham). 

 

5.2.3. Data processing 

Similar to what was described in Chapter 4, LFP data segments based on the onset of 

stimulation trains were extracted for analysis. For this Chapter, three segments were produced: 
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a “sham” condition, corresponding to a 1-second unstimulated period before the onset of PAG 

stimulation; a PAG condition, corresponding to the initial 1-second period of the PAG; and a 

RPO condition, corresponding to the whole 1-second RPO train. Since no general differences 

were seen between “sham PAG” and “sham RPO” in Chapter 4, in this experiment a single 

“sham” period was used for simplicity, also allowing the extraction of stimulation effects as a 

quadratic component and differences between PAG and RPO as a linear component. 

For statistical analysis, these stimulation periods were then averaged across three time 

blocks as seen in Figure 5.1.: a pre-injection control block (baseline); an immediate post-

injection block (post injection 1) and a later post-injection block (post injection 2). Each block 

contains 5 averaged stimulation periods for each stimulation type (PAG, RPO and sham). The 

effects of the drugs were extracted as the quadratic component of time (i.e. the difference 

between post injection 1 and the average of the periods before and after it). Similarly, for 

analysis, the drug conditions were ordered as CDP, saline, Buspirone so that general anxiolytic 

action could be assessed as a quadratic component; and agonist, saline, antagonist so that the 

RXFP-3 effect overall could be assessed as a linear component. 

5.2.4. Histology 

The localization of the recording and stimulating electrodes are shown in in Figures 4.3 to 

4.6 in Chapter 4. The localization of the cannula tips and estimated spread of the injected fluids 

are shown here in Figure 5.2. 

The diffusion of fluids from the centerpoint of injection sites in brain tissue is estimated to 

be around 1mm for a 0.5µL volume (Myers, 1966). Based on this, the histological 

reconstructions show that of the animals included in this study, three had injection tips that fell 

within a 1mm radius of the right NI. Three other rats in which the dispersion of the drugs was 

estimated to have not reached the NI were used as control animals (outside of NI, OS). Of these 

three rats in the OS group, two had injections in the right locus coeruleus and surrounding 

structures, such as the dorsal part of the subcoeruleus nucleus, the central grey of the pons and 

several small trigeminal nuclei, and the last one had injections limited to a small portion of the 

pontine reticular nucleus. No lesions or necrosis at the injection site were observed in any of 

the animals tested. 

 



135 

 

 

Figure 5.2. Histological reconstruction of sites of injection. Panel A shows the location of the 

tips of the injector cannula, along with the estimated diffusion of the compounds. Panel B 

shows the cannula tract in the brain of a representative rat.  
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 Results 

Note: some result figures mentioned in the text are located at the postscript section at the end 

of the thesis. These figures are identified by the letter P before their numbering, which is 

sequential with the figures included in this chapter. 

5.3.1. CDP and buspirone 

Theta power. The overall means summarizing theta power findings under CDP, saline and 

Buspirone is shown in Figure P5.3 (Postscript). An initial statistical analysis revealed 

significant interactions that were group dependent (Stim [linear] x Drug [linear] x Region 

[linear] x Time [quadratic], F(1,4) = 31.6, p = 0.005). Post hoc tests were conducted with the 

two groups separately in order to detect which one was the source of the detected effect. These 

effects were revealed to be significant in the animals that received drug injections in the NI 

(Stim [linear] x Drug [linear] x Region [linear] x Time [quadratic], F(1,2) = 65.62, p = 0.015), 

but not the ones with injection outside of the NI (Stim [linear] x Drug [linear] x Region [linear] 

x Time [quadratic], F(1,2) = 3.43, p = 0.205). 

The significant contrasts are summarized in Figure 5.4. Let us focus in panel A of Figure 

5.4 which details the effects of drugs during PAG stimulation. The left portion of the image 

shows LFP power levels for the two hippocampi sites under the CDP condition. No significant 

changes between the time points are seen, either in the form of a linear or quadratic trend. 

Moving to the right side of the image, we see the same brain regions under the Buspirone 

treatment. In here, it is possible to see that the L-HPC shows a significant quadratic trend of 

time, with increased LFP power being registered in the post injection 1 time point; this trend is 

not seen in the R-HPC or in any of the regions under CDP. Down below, in panel B, we see the 

effects of the two drugs during RPO stimulation. This panel shows that neither CDP nor 

Buspirone display a quadratic trend of time.  
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Figure 5.3. Summary of LFP power data in the significant contrast of Stim x Drug x Region x 

Time (linear, linear, linear, quadratic) in the NI injection group. Panel A: PAG stimulation. 

Panel B: RPO group. NS = non-significant; * = significant. 

 

Frequency. The overall means summarizing frequency findings under CDP, saline and 

Buspirone are shown in Figure P5.5 (Postscript), and a significant group effect was observed 

(Stim [linear] x Drug [quadratic] x Region [quadratic] x Time [linear], F(1,4) = 12.40, p = 

0.024). A post hoc of the NI group did not show significance in this contrast (Stim [linear] x 

Drug [quadratic] x Region [quadratic] x Time [linear], F(1,2) = 2.97, p = 0.227), and the effect 

was revealed to come from the OS animals (Stim [linear] x Drug [quadratic] x Region 

[quadratic] x Time [linear], F(1,2) = 20.55, p = 0.045).  
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These results indicate that in the OS group, but not NI, both CDP and Buspirone promote 

reductions in hippocampal frequency in relation to PrL frequency, during only one type of 

stimulation. Figure 5.6 summarizes the significant contrasts in the OS group. In panel A, we 

can see the magnitude of the quadratic effect over time; that is, the difference in the quadratic 

trend of stimulation and drug from  baseline to post injection 2. In it, we can see that the largest 

decrease in frequency comes from the drug treatment during RPO stimulation. Panels B and C 

show frequency patterns during PAG and RPO stimulation, respectively. At the right side of 

the image, we can see that the quadratic effect of drug comes mostly from Buspirone during 

RPO, but not PAG stimulation.  

Theta coherence and PPC. No group dependent effects were seen in coherence. By pooling 

the groups together (Figure P5.7, Postscript), a significant interaction was found (Stim [linear] 

x Drug [quadratic] x Region [linear] x Time [quadratic], F(1,4) = 16.81, p = 0.015).  Figure 5.8 

compares the effects of drugs over PAG and RPO stimulation. Panel A shows the quadratic 

effect of time, indicating that the experimental drugs increased coherence between the R-HPC 

and PrL during RPO stimulation only. This drug effect on RPO only was confirmed by a post 

hoc tests of each stimulation group separately (Sham stim: drug [quadratic] x region [linear] x 

time [quadratic], F(1,5) = 0.13, p = 0.72; PAG stim: drug [quadratic] x region [linear] x time 

[quadratic], F(1,5) = 0.20, p = 0.66; RPO stim: drug [quadratic] x region [linear] x time 

[quadratic], F(1,5) = 24.97, p = 0.004). Panels B and C show PAG and RPO stimulation results, 

respectively. In panel C, R-HPC x PrL coherence under CDP and Buspirone increase at post 

injection 1; however, the baseline levels of these drugs is also lower than the others. 

Another apparent effect seems to be one of time. Figure 5.7 shows that in almost all stim x 

drug cases, coherence tends to decrease in post injection periods compared to baseline. It is 

unlikely that this is a pure drug effect, as the reduction also happens during saline treatment x 

stimulation. The exception to this trend is the combination of saline x sham stimulation, where 

no reductions in coherence are seen. Therefore, it appears that the reductions in coherence over 

time are a mix of the after effects of the stimulations and drugs, as during the combination of 

sham stim and saline no changes in coherence occur over time. 

For PPC, analysis revealed a group effect, albeit marginally significant (Stim [linear] x Drug 

[linear] x Region [linear] x Time [linear] x Injection group, F(1,4) = 7.80, p = 0.049). The group 

means are shown in Figure P5.9 (Postscript). A comparison of the two groups on the significant 

contrast interactions is shown in Figure 5.10. No group trend appears significant, and post hoc 

analysis did not show any significant effects by group (NI: Stim [linear] x Drug [linear] x 
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Region [linear] x Time [linear], F(1,2) = 5.20, p = 0.150; OS: Stim [linear] x Drug [linear] x 

Region [linear] x Time [linear], F(1,2) = 3.77, p = 0.192). 
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Figure 5.4. Summary of LFP frequency data in the significant contrast of Stim x Drug x Region x Time x Injection (linear, quadratic, quadratic, 

linear) in the OS injection group (N=2). Panel A: The quadratic effect a factor of time under both PAG and RPO stimulations. Panel B: Effect of 

drugs over time during PAG stimulation. Panel C: Effect of drugs over time during RPO stimulation. NS = non-significant; * = significant.
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Figure 5.5. Summary of coherence data in the significant contrast of Stim x Drug x Region x Time (linear, quadratic, linear quadratic) with 

injection groups pooled (N=6). Panel A: The quadratic effect as a factor of time under both PAG and RPO stimulations. Panel A: Effect of drugs 

over time during PAG stimulation. Panel B: Effect of drugs over time during RPO stimulation. NS = non-significant; * = significant.
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Figure 5.6. Summary of PPC data in the contrast of Stim x Drug x Region x Time (linear, 

linear, linear, linear), with both groups shown (NI, N=3; OS N=3). NS = non-significant. 

 

5.3.2. RXFP3-A2 and R2B(1-22)R 

Theta power. A difference between groups was seen in the highest level of interactions 

(Stim [linear] x Drug [quadratic] x Region [linear] x Time [quadratic] x Injection group, F(1,4) 

= 20.05, p = 0.011). The overall trends for both groups are shown in Figure P5.11 (Postscript). 

Post hoc tests of groups revealed the effect to be present in the NI group (Stim [linear] x Drug 

[quadratic] x Region [linear] x Time [quadratic], F(1,2) = 4049.98, p < 0.000), but not in the 

OS group (Stim [linear] x Drug [quadratic] x Region [linear] x Time [quadratic], F(1,2) = 1.57, 

p = 0.337).  

Figure 5.12 shows the significant contrasts in this analysis. Panel A shows the quadratic 

difference between post injection 1 and the average of baseline and post injection 2. The largest 

change between the drug treatments and saline is seen on the left hippocampus during PAG 

stimulation; under saline treatment, L-HPC power drops in post injection period 1, and this is 

counteracted by the drug treatments which increase power in the same region. Although a 

somewhat similar trend is seen with the R-HPC during RPO stimulation, this effect was not 

NS NS
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proved to be significant. Panel B shows the overall trends and quadratic lines fitted to the 

graphs. It is possible to see that L-HPC under PAG stimulation is the only region that went from 

a negative quadratic shape in saline to a positive one under drug treatments, while all 

combinations of stimulation, region and drugs showed only positive quadratic trends. 
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Frequency. Figure P5.13 (Postscript) shows the overall pattern of drugs effects under PAG 

and RPO stimulation. Statistical test showed that there was a group dependent effect with two 

significant complex interaction at the highest level (Stim [linear] x Drug [linear] x Region 

[linear] x Time [quadratic] x Injection group, F(1,4) = 39.40, p = 0.003; and Stim [linear] x 

Drug [quadratic] x Region [quadratic] x Time [linear] x Injection group, F(1,4) = 26.56, p = 

0.007). Post hoc analysis showed that the effect was coming from the OS group (Stim [linear] 

x Drug [linear] x Region [linear] x Time [quadratic], F(1,2) = 170.11, p = 0.006 and Stim 

[linear] x Drug [quadratic] x Region [quadratic] x Time [linear], F(1,2) = 181.41, p = 0.005) 

and not from the NI group (Stim [linear] x Drug [linear] x Region [linear] x Time [quadratic], 

F(1,2) = 6.69, p =0.123 and Stim [linear] x Drug [quadratic] x Region [quadratic] x Time 

[linear], F(1,2) = 6.60, p = 0.129, respectively). 

This initial result points to PAG stimulation being different from RPO stimulation (linear 

component of stim) with all other factors showing both significant linear and quadratic 

elements. Within the OS group, post hocs of PAG and Sham stimulation do not hold 

significance in the contrasts (PAG: Drug [linear] x Region [linear] x Time [quadratic], F(1,2) 

= 2.38, p = 0.263 and Drug [quadratic] x Region [quadratic] x Time [linear], F(1,2) = 0.16, p = 

0.725; Sham: Drug [linear] x Region [linear] x Time [quadratic], F(1,2) = 2.57, p = 0.250 and 

Drug [quadratic] x Region [quadratic] x Time [linear], F(1,2) = 0.72, p =0.485). Testing of the 

RPO stimulation, however, showed that one of the contrasts was significant (Drug [linear] x 

Region [linear] x Time [quadratic], (F(1,2) = 19.48, p = 0.048), but not the other (Drug 

[quadratic] x Region [quadratic] x Time [linear] (F(1,2) = 3.11, p = 0.220). 

These results indicate that RXFP3-A2, but not R3B(1-22)R, reduce R-HPC frequency 

during RPO stimulation, but not during PAG, in animals in the OS group, but not the ones in 

the NI group. This is summarized in Figure 5.14. 
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Figure 5.7. Summary of LFP power data in the significant contrast of Stim x Drug x Region x Time (linear, quadratic, linear, quadratic) in the 

NI injection group (N=3). Panel A: The quadratic effect as a factor of time under both PAG and RPO stimulations. Panel B: Effect of drugs over 

time during PAG and RPO stimulation.
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Theta coherence and PPC. Trends for coherence under stimulation and drug treatments, 

for both groups, are shown in Figure P5.15 (Postscript). There were no significant interactions 

of the highest level between groups (Stim [linear] x Drug [linear] x Region [quadratic] x Time 

[linear], F(1,4) = 6.28, p = 0.066; Stim [quadratic] x Drug [linear] x Region [quadratic] x Time 

[linear], F(1,4) = 4.20, p = 0.110). With the groups pooled together, no significant interactions 

were found either (Stim [linear] x Drug [linear] x Region [quadratic] x Time [linear], F(1,4) = 

0.97, p = 0.380; Stim [quadratic] x Drug [linear] x Region [quadratic] x Time [linear], F(1,4) = 

5.84, p = 0.073). 

Trends for PPC are shown in Figure P5.16 (Postscript). Analysis revealed two group-

dependent trends at the highest level of interactions (Stim [linear] x Drug [linear] x Region 

[linear] x Time [quadratic], F(1,4) = 8.74, p = 0.042; and Stim [quadratic] x Drug [linear] x 

Region [linear] x Time [quadratic], F(1,4) = 8.53, p = 0.043). Post hoc tests of groups did not 

show any significant interactions for the contrasts of interest (NI group: Stim [linear] x Drug 

[linear] x Region [linear] x Time [quadratic], F(1,2) = 0.79, p = 0.467 and Stim [quadratic] x 

Drug [linear] x Region [linear] x Time [quadratic], F(1,2) = 10.11, p = 0.086; OS group: Stim 

[linear] x Drug [linear] x Region [linear] x Time [quadratic], F(1,2) = 10.89, p = 0.081 and Stim 

[quadratic] x Drug [linear] x Region [linear] x Time [quadratic], F(1,2) < 0.000, p = 0.98). The 

data from the two groups are compared in Figure P5.17 (Postscript). 
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Figure 5.8. Summary of LFP frequency data in the significant contrast of Drug x Region x 

Time (linear, linear, quadratic) in the OS injection group during RPO stimulation (N=3). 

Panel A: The quadratic effect as a factor of time under RPO stimulation. Panel B: Effect of 

drugs over time during RPO stimulation. NS = non-significant. * = significant. 

 

 Summary and data discussion 

In this Chapter, the effect of two anxiolytic drugs (CDP and Buspirone) and an agonist and 

an antagonist of the RFXP3 receptor (RXFP3-A2 and R3B(1-22)R – referred to from now on 

as agonist and antagonist for clarity) were assessed on PAG- and RPO-elicited LFP oscillations. 

CDP and buspirone were selected for their shared anxiolytic effects, despite different 

pharmacodynamics: CDP acts on the benzodiazepine receptor, enhancing GABAA receptor 

activity, and buspirone acts as an agonist of the 5-HT1A receptor. The interest in the RFXP3 

peptides stems from the tentative involvement of the RFPX3 receptor in the regulation of 

motivational and emotional states in the brain. The drugs were administered intracerebrally in 

the Nucleus Incertus, as this region has strong projections to the PAG, and is known to modulate 
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hippocampal theta. A second group of animals, with injections to structures surrounding the NI, 

were also used in this experiment. The expectation in this experiment is that NI has a dual 

purpose of regulating fear (by influencing PAG) and anxiety (by influencing reticular-induced 

hippocampal theta). 

In Chapter 5, I demonstrated how activation of the mPAG at the freezing threshold caused 

marked reductions in hippocampal and prelimbic LFP power, and also reductions in prelimbic 

frequency. RPO stimulation, on the other hand, is known to provoke increases in hippocampal 

power and frequency. This RPO-elicited hippocampal activity is a reliable method of testing 

the efficacy of anxiolytic drugs. The nature of this PAG-induced signal in hippocampal and 

cortical oscillations, on the other hand, is unknown.   

The experiments in the current Chapter had several purposes. First, there are two 

pharmacological questions that need to be answered: 1) do benzodiaze receptor and 5-HT1A 

receptor manipulations in the NI change RPO-elicited hippocampal responses; and 2) do 

relaxin-3 agonism and antagonism also change RPO-elicited hippocampal responses? If the 

answer to these questions is Yes, and these drugs are shown to cause changes, then another 

question of interest is: 3) are these drugs causing similar or different changes to PAG- and RPO-

induced states? This last question is of particular interest in order to elucidate the nature and 

meaning of the PAG-induced changes demonstrated in Chapter 5. 
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Table 5.1. Summary of results from CDP and Buspirone analysis in this Chapter. 

  PAG Sham RPO 

C
D

P
 /

 B
U

S
 

Power 

Between Group F = 31.6 

no detected effect no detected effect 

NI Group F = 65.62 

OS Group F = 3.43 

Buspirone @ NI ↑ hippocampal 

power 

Frequency no detected effect no detected effect 

Between Group F = 12.40 

NI Group F = 2.97 

OS Group F = 20.55 

CDP+Bus @ OS ↓ hippocampal 

frequency 

Coherence no detected effect no detected effect 

No Group Effect, Pooled F = 16.81 

PAG F =  0.20; Sham F = 0.13 

RPO F = 24.97 

Time effects / baseline shift 

PPC no detected effect no detected effect 

Between Group F = 7.80 

NI Group F = 5.20 

OS Group F = 3.77 

no detected effect 

 

p-value: < 0.04 from 0.04 to 0.1 > 0.1 Effects from: Nucleus Incertus Outside Areas 

 

 

 



150 

 

Table 5.2. Summary of results from RXFP3-A2 (ago) and R3B(1-22)R (ant) analysis in this Chapter. 

  PAG Sham RPO 

A
G

O
 /

 A
N

T
 

Power 

Between Group F = 20.05 

no detected effect no detected effect 
NI Group F = 4049.98 

OS Group = 1.57 

Ant+Ago @ NI ↑ hippocampal power 

Frequency no detected effect no detected effect 

Between Group F = 39.40 

NI Group F = 6.69 

OS Group = 170.11 

Ago @ OS ↓ hippocampal frequency 

Coherence no detected effect no detected effect 

Between Groups F = 6.28; 4.20 

Pooled Groups F = 0.97; 5.84 

no detected effect 

PPC no detected effect no detected effect 

Between Group F = 8.74; 8.53 

NI Group F = 0.79, 10.11 

OS Group F = 10.89; 0.00 

no detected effect 

 

p-value: < 0.04 from 0.04 to 0.1 > 0.1 Effects from: Nucleus Incertus Outside Areas 
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Tables 5.1 and 5.2 summarize the findings of this Chapter. As demonstrated in the previous 

Chapter, PAG stimulation reduces hippocampal power dramatically; in this Chapter, buspirone 

was shown to increase hippocampal power, partially counteracting the effects of PAG 

stimulation. This effect was strongly connected to manipulations of the NI but not the OS group 

(F = 65.62 vs. F = 3.43). Also, this change was only seen during PAG stimulation, and not 

during sham or RPO stimulation, indicating a pathway-specific drug effect. Similarly, the same 

results were found with relaxin agonist and antagonist manipulations, where both compounds 

increased hippocampal power during PAG stimulation only.  

Analysis of frequency also showed consistent, stimulation-depend effects of drugs: CDP 

and buspirone both reduced hippocampal frequency during RPO stimulation only, but not 

during PAG stimulation. With the relaxin peptides, the RFXP3 agonist also reduced 

hippocampal frequency during RPO stimulation only. Unlike the power results, however, these 

effects of the drugs were observed in animals that received injections outside of the NI but not 

inside. 

With the two measures of neural synchronicity used here (coherence and PPC), results are 

less clear. In the CDP/Bus analysis, no group effect was detected with coherence; that is, if the 

injection of drugs provoked changes, these changes are independent of where the injections 

were performed. In the image summarizing the overall effects of drugs over coherence (Figure 

5.7) it is possible to see a striking effect of time; that is, even during saline injection, coherence 

between the regions tend to decrease over time. While in a sense this is a blow to any 

experimental inference (that is, the interpretability of the effect of drugs), a peculiar pattern is 

evident: coherence tends to remain stable over time during saline injections under sham 

stimulation only. This points to the possibility that the reductions in coherence observed here 

are probably a compound effect of repeated stimulations and the effect of drugs. 

By conducting statistical analysis on coherence measures with the two injection groups 

pooled together, a strong effect was observed in the RPO group but not in the PAG or Sham 

groups (F = 24.97, F = 0.20, F = 0.13, respectively). In here, we see a second unexpected, albeit 

consistent, result (showed also in Figure 5.8): in the CDP and buspirone sessions, compared to 

saline, coherence was greatly increased after injection of the drugs, even if a possible common 

effect of time affected both the drug and saline groups. However, this change only occurs 

because coherence during the baseline period (the blocks of time before any drug was infused) 

was much lower than what was seen in saline sessions. While this could be seen as an 

experimental fluke, this shift was only seen in R-HPC x L-PrL coherence, and not in the 

coherence among other regions. As a reminder, the animals in this project had electrodes 
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implanted in the right hemisphere for reticular stimulation, and in the left hemisphere for PAG 

stimulation. It would be possible that the changed right hippocampus/left PrL coherence seen 

here could also be a partial effect of lateralization of stimulation. 

More crucially, no unusual baseline shifts were seen in the same animals when these were 

tested with the relaxin compounds (Figure 5.15). For the relaxin peptides, no significant 

between group effects were observed. A failure to detect any significant effects remained after 

pooling the two groups together.  

For PPC, both with CDP x Buspirone and Agonist x Antagonist, initial group effects were 

detected. In both cases, these were modest in terms of significance and effect sizes (between 

F= 7.80 and 8.74). CDP x Buspirone, post hocs did not show any strong effects or significance; 

for agonist x antagonist, although no statically significance was observed, the separation of the 

two groups yielded an increase of the observed F-ratio. Each group showed strong effects in 

different contrasts (F = 10.11 for NI; F = 10.89 for OS), indicating some unique interactions in 

each group. This result indicates that, unlike CDP and buspirone, the relaxin compounds appear 

to cause real changes in coherence; however, in order to reach higher levels of significance and 

precision, a study with a larger sample size is required here. 

Perhaps the first pattern to emerge with these results is that changes caused by drugs were 

stimulation-dependent. That is, no changes in power, frequency or neural synchronicity were 

seen during the basal states of sham stimulation. If the PAG- and RPO-induced neural signals 

are to be interpreted as being proxies of fear and anxiety, these results indicate that drug 

manipulations in the NI and outside areas do not affect the baseline functioning of the recorded 

cortico-hippocampal circuits, and only modify neural patterns during fear and anxiety states. 

The second pattern seen in these results is that the drug effects were selective to either PAG 

or RPO, but not common to both. For example, 5-HT1A and RXFP-3 manipulations in the NI 

increased hippocampal power during PAG, but not during RPO stimulation; similarly, infusion 

of drugs outside of the NI reduced hippocampal power during RPO, but not PAG stimulation. 

Changes to RPO-induced activity. In previous experiments with urethane-anesthetized 

animals, muscimol injections in the NI reduced the field potential power of RPO-evoked 

hippocampal theta (Nunez et al., 2006). The current experiments conducted in this project, with 

free moving animals, were unable to replicate these findings. This discrepancy in findings could 

be explained by the different reasons. Firstly, although both CDP and muscimol act on the 

GABAergic receptor system, the mechanism of action of the two drugs are distinct. CDP binds 

to the benzodiazepine receptor, enhancing GABAA receptor activity (i.e. amplifying the effects 



153 

 

of GABA when that is released), while muscimol, binds directly to the GABAA receptor (acting 

like release of GABA). Different results from CDP and muscimol experiments could be 

expected if the GABAergic receptor population in the NI is underrepresented for the 

benzodiazepine receptor. Another possibility is the fact that the effects of CDP rely on the 

endogenous GABA present in the region, while muscimol does not, therefore making it possible 

that CDP effects on the GABAA receptor are not potent enough to induce changes in 

hippocampal theta. Failure to replicate findings from muscimol experiments using CDP have 

been reported before (Dudchenko & Sarter, 1992). Finally, another factor is that previous 

experiments used urethane-anesthetized animals. Under the effects of urethane, it is possible 

that other nodes in the theta-generating system were inactive, giving the NI a more prominent 

role than what it would otherwise have in free moving animals. 

The results of the current experiment, however, showed reliable effects on the reduction of 

hippocampal frequency. Once again surprisingly (but in line with the above findings with power 

measures), injections outside the NI were the most effective in reducing theta frequency. As 

anticipated by other authors (McNaughton, Kocsis, & Hajos, 2007), CDP and buspirone, two 

drugs that have the same anxiolytic clinical effects despite their different pharmacology, were 

efficient in reducing hippocampal theta. A third drug, the relaxin-3 receptor agonist RXFP3-

A2, was also effective in reducing hippocampal theta. In the group in which theta frequency 

reductions were significant, the injections were centered in the locus coeruleus and other small 

nuclei in the pontine tegmentum. Cholinergic activation of the locus coeruleus produces 

hippocampal theta in halothane-anesthetized animals (Berridge & Foote, 1991), a find 

supported by evidence that in free moving animals, optogenetic activation of locus coeruleus 

neurons produces cortical theta (Carter et al., 2010). The results from this Chapter are in 

concurrence with these findings, and add new possibilities to the involvement of 

benzodiazepinergic, serotonergic and relaxinergic receptor systems in the locus coeruleus 

controlling theta rhythmicity in the hippocampus.         

Changes to PAG-induced activity. The nucleus incertus had more influence on 

hippocampal states provoked by PAG- than RPO-stimulation. Administration of buspirone, but 

not CDP, in the NI was effective in increasing hippocampal theta power during PAG 

stimulation. 5-HT1A, the receptor to which buspirone has the highest binding affinity, is present 

in the cells of the NI that also express relaxin-3 (Miyamoto, Watanabe, & Tanaka, 2008). In 

this same publication, central 5-HT depletion by administration of p-chlorophenylalanine 

caused a marked increase in the expression of relaxin-3 gene expression in the NI. Although 

the precise mechanisms throughout which serotonin regulates relaxin-3 in the NI is unclear, the 
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results presented in this Chapter and these previous findings suggest that they could happen 

through 5-HT1A receptors.  

Perhaps the most consequential finding in the current experiments is that buspirone/5-HT1A 

and not CDP/GABAA caused changes in PAG- but not RPO-stimulation states. 5-HT1A receptor 

binding is reduced in patients with a diagnosis of panic disorder (Nash et al., 2008). In rats, 

activating the 5-HT1A receptor in the dorsomedial hypothalamus inhibits panic-like reactions 

from the electrical stimulation of the same region (de Bortoli, Yamashita, & Zangrossi, 2013). 

Fluoxetine, a drug with known anti-panic effects, enhances 5-HT1A receptor activity in the PAG 

(Zanoveli, Nogueira, & Zangrossi, 2007), and blocking the same receptor in the dorsal PAG 

also blocks the anti-panic effects of the drug (Zanoveli et al., 2010). Given our knowledge of 

the PAG and 5-HT1A receptors involvement in panic, and of how the NI has strong projections 

to the PAG, the results of the buspirone experiment in this Chapter reinforce the 5-HT1A 

involvement in panic and indicate that the NI could also be a strong regulatory node in the 

panic/fear system. Also, one of the hypotheses proposed in this thesis is that the reductions in 

hippocampal theta produced by PAG stimulation (Chapter 4) could be a proxy for a fear/panic 

signal. The results from buspirone testing in this Chapter are supporting evidence for this 

notion. 

The experiments in this Chapter had two objectives. The first one was a “smaller scale” 

goal; it was an attempt to demonstrate that the nucleus incertus, a region with known regulatory 

roles in anxiety and in hippocampal theta, was also capable of modulating the effects of PAG 

stimulation demonstrated in Chapter 4. Indeed, the results presented here support this 

hypothesis, with the NI reducing the effects provoked by PAG stimulation, although findings 

from the NI influencing RPO-stimulation hippocampal theta in anesthetized animals could not 

be replicated in free-moving rats. The second, “larger scale” goal in this Chapter was an 

investigation aimed at better characterizing the nature of the PAG-induced states in Chapter 4. 

The hypothesis going into the current experiments was that these PAG-induced states were 

more akin to a neural substrate of panic rather than one of anxiety. The results here appear to 

confirm this suggestion. In the next Chapter I attempt to unify all of the findings from the 

Chapters 3, 4 and 5 into a cohesive view of the PAG and some of its functions. 
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Chapter 6. Discussion 

In the previous Chapters of this thesis I presented a literature review and experimental data 

addressing the nature and functions of the PAG/DR complex. Discussion of the detailed 

implications was provided in the relevant Chapters. Below I start with a summary of the 

conclusions of those detailed discussions. All the data presented so far indicate that the PAG is 

endowed with both anxiety/conflict and withdrawal/fear components as well as appetitive ones. 

In this conclusion Chapter, I will present a unified view of the PAG based on the evidence of 

the previous Chapters, and propose a new model of how the PAG controls the systems that help 

solve the problems of approach, withdrawal and conflict. Also, I will propose that the PAG/DR 

is responsible for reducing general activity when the organism is presented with scenarios that 

are not resolvable.  

In the first Chapter of this thesis, I described how the need to move appropriately to external 

cues is the most fundamental force driving the development and evolution of nervous systems. 

The first rudimentary nerve cells and systems emerged to guide the organism towards appetitive 

and safe stimuli, and away from aversive and dangerous ones. My argument was that as 

evolution built more complex, centralized, nervous systems capable of more elaborated, 

abstract thinking and planning, the demands that created these systems remained the same as 

before: the need to move according to environmental pressures. Features of the human mind 

that seem unique within the animal kingdom, such as planning for the future, anticipating 

outcomes, creative thinking, communication and cooperation with others, are all side-effects of 

pressure for better adaptation that maximizes positive and avoids negative outcomes. Although 

the human mind can appear different to the rest of the animal kingdom, its features are only 

more complex variations of the same simplistic behaviors approach and withdrawal of the early 

jellyfish. Movement is, in the end, the fundamental requirement that shaped all animals. 

In Chapters 1 and 2 I talked about anxiety (conceptualized as conflict) and fear 

(conceptualized as withdrawal/moving away) as two elements that guide motivation and 

movement in animals. Anxiety and fear appear to be opposing mental phenomena, where one 

is capable of inhibiting the other. The most evident aspect of this competition between the two 

is how their corresponding animal behaviors are completely different by nature: in most cases, 

anxiety/conflict requires stopping all movement, whereas fear/withdrawal requires active 

movement. Whenever an animal is immobile, the dominating circuits producing immobility 

must also be inhibiting movement; and the same can be said about the circuits producing escape 
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from a threat and at the same time inhibiting immobility systems. These led to the pursuit of 

whether or not the PAG can produce signals that correspond to anxiety and fear. 

In Chapter 4, I talk about hippocampal theta and how it can be a strong signal of arousal 

and emotion in the brain. In the same Chapter, I presented experimental evidence that the 

freezing provoked by aPAG stimulation generates high amplitude, high frequency hippocampal 

theta, while mPAG-generated freezing induces low amplitude, low frequency hippocampal 

theta. The rationale that guided these experiments, presented in Chapter 2, was that the aPAG 

is more involved in anxiety-like processes, and the mPAG is more involved in fear/panic-

processes, and the results from the experiments seem to confirm this notion. Also, follow-up 

experiments in Chapter 5 confirmed that manipulations of the 5-HT system (similar to the ones 

that can reduce panic-like behaviors in the rat), but not manipulations of the GABAergic system 

(more related to anxiety and the mechanism through which most anxiety drugs act on) changed 

the hippocampal states induced by mPAG stimulation. This, again, was another strong evidence 

supporting the possibilities that were raised in Chapter 2. 

In the summary sections of each of the experimental Chapters I presented detailed 

arguments and explanations to support why I believe that PAG has anxiety and panic 

components. With these theoretical and empirical evidence from the review and experimental 

Chapters in mind, now I would like to present a unified view of the PAG/DR and its roles. 

 Reconceptualizing the PAG/DR complex 

Classically, the main body of research regarding the PAG has focused on its aversive 

properties. However, other studies have branched out to show that not only does the PAG also 

contribute towards appetitive motivational states and behaviors – such as social interactions, 

pro-sexual behaviors and vocalizations, food and water intake (Parker & Feldman, 1967), and 

even speech control in humans (Holstege & Subramanian, 2016) – it may in fact be essential to 

their operation. 

For instance, the PAG was initially considered of secondary importance for sexual 

behaviors, playing a modulatory role, either facilitating or inhibiting the sexual behaviors 

generated by hypothalamic sites like the preoptic area and the ventral hypothalamus (Arendash 

& Gorski, 1983; McCarthy, Pfaff, & Schwartz-Giblin, 1991; Sirinathsinghji, 1985). However, 

although direct electrical stimulation of either the preoptic area or the PAG in male rats leads 

to sexual behaviors, lesion studies have shown that destruction of the PAG completely abolishes 

these sexual reactions while destruction of the preoptic area alone does not (Marson, 2004). 

Similarly, although stimulating either the dorsal PAG or the hypothalamus of a female rat will 
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lead to lordosis, lesioning the dorsal PAG completely abolishes the behavior while 

hypothalamic lesions do not (Sakuma & Pfaff, 1979b). These findings indicate that the PAG’s 

role in controlling appetitive functions is as fundamental as its role in generating aversive states. 

This conceptualization of the role of PAG sees it as a set of key nodes in the survival circuits 

proposed by LeDoux (2012) and, essentially, a complete conserved remnant of the most 

primitive integrated control of motivated behavior.  

Given the established dual role of the PAG in generating appetitive as well as aggressive-

defensive states, Chapter 2 proposed a new subdivision for the dorsal parts of the PAG that are 

concerned with mediating appetitive behavior. In addition, I also proposed that conflict between 

appetitive-driving regions and aversive-driving regions could be at least partially mediated by 

the DLPAG, with its unique set of connections and chemical properties. Furthermore, I 

hypothesized that conflicts of this nature elicit activation of the VLPAG in order to shut down 

overt behaviors until the neural conflict is resolved, and propose that chronic exposure to 

unresolved scenarios would result in long-term changes to the DR neurons that feed serotonin 

to the PAG and forebrain, causing long-lasting changes in motivational states, such as learned 

helplessness (discussed in Chapter 2).  

It is important to highlight that the PAG is concerned with close-proximity goals (as 

discussed in Chapters 1 and 2). Although the PAG drives behavior towards appetitive stimuli 

and away from aversive ones, these positive and negative stimuli need to be unambiguous and 

close in both space and time for primary control to be by the PAG; distant and future projections 

of a potential cost or benefit will not strongly engage the PAG. The PAG thus plays a 

fundamental role in driving actions that help attain close appetitive goals, such as 

consummating copulation with a partner, but there is no evidence nor any expectation that the 

region would have a central role in driving behavior toward distant goals, such as sustaining 

long-term activity that will only bear fruit in the future. However, while the PAG is not a 

motivational driver for distant goals, it certainly is a potential disruptor of them. For instance, 

in a natural setting, if an animal is engaged in an ongoing task and then detects the presence of 

a close-proximity threat, activation of the PAG would inhibit all the circuits involved in the 

performance of that task, and produce the appropriate defensive behavior: fight, flight or 

immobility, depending on environmental cues. 

The concept of the PAG as a purely aversive region must be amended to include its 

functions in driving behavior towards appetitive goals. Based on data from Chapter 2, I propose 

here a more precise definition of the dorsal PAG as a region driving close-range motivational 

states, which may be either aversive (the DMPAG) or appetitive (the LPAGi). I also 
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conceptualize the role of the ventral parts of the PAG (VLPAG and DR) as stopping action in 

scenarios where aversive and appetitive stimuli are concurrently present. Immediate stopping 

in a conflict scenario is mostly conducted by the VLPAG, probably through inputs from the 

DLPAG and DR. The DLPAG acts as a hub that receives input from relevant cortical and 

subcortical regions that aid in resolving these motivational conflicts. I propose that the effects 

of repeated conflicts generate a more systemic reduction in motivational drive, which is 

mediated by the DR sending inhibitory inputs to the motivational regions of the PAG and the 

forebrain. These ideas would not only reinforce the involvement of the PAG in appetitive 

functions, but it would also be – to the best of my knowledge – the first formal suggestions that 

the PAG/DR is strongly involved with the pathogenesis of depression.  

 Approach, avoidance and conflict: a new perspective of the PAG 

The necessity to approach positive stimuli and to move away from negative ones has been 

a central feature of psychological and biological theory (Corr, 2013). Simple organisms are 

endowed with rudimentary tools that conduct movement towards appetitive cues and away from 

aversive ones. In the more complex mammalian brain, it is recognized that circuitry evolved to 

deal with approaching and avoiding internal representations of goals, rather than simple 

environmental cues (Cloninger & Gilligan, 1987). The fundamental conceptual shift in 

assuming the existence of internal goal representations is that now organisms can develop the 

ability to compare these two opposing goal representations, and decide on the optimal strategy 

for action. Frequently, situations can be ambiguous in that neither moving towards nor away 

from the goal seem ideal. In this scenario, a third system in the brain, parallel to the approach 

and avoidance ones, emerges to deal with conflict between these positive and negative 

representations. The organism can halt locomotion, and engage in further analysis based on 

other external and internal indicators.  

As outlined by McNaughton et al. (2016), the PAG is theorized to be part of the approach-

avoidance-conflict system at its lowest level of defensive and appetitive distance. In Chapter 1, 

I presented a schematic image from McNaughton, DeYoung, and Corr in which the PAG was 

assigned a role only in the avoidance and conflict systems. That image was one of the drivers 

of the main missions of this thesis: to properly incorporate the PAG into a cohesive, unified 

theoretical view of motivational systems in the brain. In Figure 6.1, I present an updated version 

of that scheme, modified here with data from Chapter 2. On this view, since it is a 

phylogenetically old and well-conserved structure, the PAG deals with direct and unambiguous 

scenarios of all types present at close range. Anatomical and functional evidence summarized 
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in Chapter 2 points to the PAG as a locus for dealing with actual (or object-specific) stimuli, 

such as physical contact with a predator or a mate. Meanwhile structures located hierarchically 

above it deal with potential (or object-general) stimuli that might be located further away in 

spatial distance and/or time. 

 

 

Figure 6.1. Approach, withdrawal and conflict systems in the brain. Adapted and updated 

from Figure 7 in McNaughton et al. (2016) 

 

 Negative and positive goals: the dorsal PAG as a motivational driver 

Experimental evidence shows that of all dorsal subdivisions of the PAG, the DMPAG is the 

one most involved in mediating reactions to proximal, aversive stimuli (Figure 6.2). For 

instance, rats exposed to a strong jet of air produce vigorous motor activities, such as flight and 

running reactions. This paradigm is thought to be a model for studying panic in animals, as the 

reactions to the air jet are reduced by treatment with known panicolytic drugs (Salchner & 

Singewald, 2002). In c-Fos experiments, rats subjected to the air jet test show stronger labeling 

in the DMPAG compared to the other PAG divisions, and treatment with fluoxetine, a drug 

with known panic-reducing properties, is more efficient in reducing c-Fos labeling in the 

DMPAG (Salchner & Singewald, 2002). After GABAergic blockade in the superior colliculus, 
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which is known to cause panic-like reactions, c-Fos labeling becomes markedly stronger in the 

DMPAG than in neighboring regions for rats that present with running and jumping (Borelli et 

al., 2006). 

In a mouse line selectively bred for aggressive behaviors, c-Fos labeling is not significantly 

different in the PAG columns of animals exposed to sensory cues of another animal, such as 

sight or odor. However, labelling of the DMPAG is stronger when mice have direct physical 

contact with another animal (Haller, Toth, Halasz, & De Boer, 2006). Further support for the 

DMPAG as a center for dealing with direct and immediate aversive situations, is that c-Fos 

labelling is also stronger in this region for animals that have been physically, forcibly restrained 

(Lino-de-Oliveira et al., 2001). 

Appetitive reactions appear to be dependent on the two identified internal parts of the PAG: 

the DLPAGi and LPAGi (Chapter 2). The lordosis reflex, for instance, is more easily elicited 

from the internal parts of the PAG using localized electrical stimulation (Ogawa et al., 1991). 

Similarly, in guinea pigs, vocalizations related to sexual courtship are also produced more 

efficiently by stimulating the DLPAGi and LPAGi (Kyuhou & Gemba, 1998). Even autonomic 

responses are different in the interior parts of the PAG: electrical stimulation of the LPAGi 

provokes slow, shallow breathing (apneusis) while the LPAGe produces much faster and deeper 

tachypnea, as in aversive reactions (Subramanian et al., 2008). Recently, single unit recording 

investigations in the PAG of free moving animals showed that a larger proportion of cells in 

the LPAG fire than cells in the DLPAG when the animals receive food rewards (Tryon & 

Mizumori, 2018). 

Several areas of the hypothalamus that have a known involvement in sexual behavior and 

regulating feeding project to the internal parts of the PAG and not the external ones. The medial 

preoptic area targets the DLPAi and LPAGi only (Rizvi et al., 1992; Simerly & Swanson, 1988), 

and so do the lateral, dorsomedial and ventromedial hypothalamic areas (Veening et al., 1991). 

Also unique to the interior divisions of the PAG is the presence of synaptic terminals releasing 

relaxin (Ma et al., 2007), a peptide with modulatory effects on feeding (Smith et al., 2011).  

What potential functional differences, if any, exist between the DLPAGi and LPAGi remain 

unresolved, however. It could be that the LPAGi is more concerned with generating sexual 

behaviors than the DLPAGi, as androgen receptors are present to a much smaller degree in the 

dorsolateral column compared to the lateral (Murphy & Hoffman, 2001). Also, projections from 

the medial preoptic area, a region known to promote sexual behaviors, are more abundant in 

the LPAG (Rizvi et al., 1992), and the nucleus retroambiguus, a medullary region that generates 
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lordosis, is targeted by LPAG neurons but not DLPAG ones (Vanderhorst et al., 2000). The 

DLPAGi could either be dealing with other classes of appetitive goals, such as feeding, or it 

could be responsible for a different aspect of appetitive processing altogether. 

 

Figure 6.2. Above: DMPAG neurons at intermediate and posterior sites of the PAG initiate 

behaviors to deal with an aversive stimulus. Below: internal PAG neurons at more anterior 

sites initiate behaviors to deal with an appetitive stimulus.  
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 Motivational conflicts: the DLPAG and VLPAG 

Upon analysis of its chemical and anatomical properties, the DLPAG shows itself to be a 

distinct component of the periaqueductal grey (Chapter 2). In terms of internal connections with 

the other subdivisions of the PAG/DR, the DLPAG is the only region that does not receive 

projections from the ventrally located columns and DR (Jansen, Farkas, Mac Sams, & Loewy, 

1998; Vertes, 1991), but does receive axons from the DMPAG. Therefore, the activities in 

which the LPAG and VLPAG are more engaged, such as cardiovascular control and production 

of immobility, are not relayed back to the DLPAG. It could be, however, that the responses 

generated by the DMPAG concerning escape from a threat are channeled to the DLPAG. While 

only receiving limited PAG input, the DLPAG sends outputs to all other PAG divisions, 

indicating that while its inputs of signals are narrowly located, its outputs are much broader. 

Also unique to the DLPAG are the concentrated projections that it receives from dorsal pre-

mammillary (PMd) neurons compared to other columns (Canteras & Swanson, 1992). The PMd 

is a region that seems to selectively respond to some modalities of threat. In rats exposed to a 

predator or predator’s odor at the end of a runway, lesions of the PMd greatly reduce defensive 

freezing and increase the number of approaches toward the threatening stimuli (Markham, 

Blanchard, Canteras, Cuyno, & Blanchard, 2004). Interestingly, however, lesions of this area 

do not affect freezing induced by the very direct and unambiguous negative effects of a painful 

electric shock (Markham et al., 2004). The PMd seems to modulate responses to uncertain risk, 

such as proximal predator cures, rather than direct and certain threats, like the painful 

experience of an electric shock. 

The exterior portion of the column, the DLPAGe, is the only region in the whole PAG/DR 

complex that receives projections from the anterior cingulate cortex (ACC; Figure 6.3; also 

(Beckstead, 1979; Floyd et al., 2000; Meller & Dennis, 1986; Wyss & Sripanidkulchai, 1984). 

In humans, the ACC responds to different perceptions of the unpleasantness of a painful 

stimulus, rather than the stimulus itself (Rainville, Duncan, Price, Carrier, & Bushnell, 1997). 

As reviewed by Fuchs et al. (2014), the ACC in animals serve the same function of processing 

the affective component of pain, while keeping nociception intact. Experiments with lesions of 

the ACC did not reduce sensory pain processing, and lesioned animals effectively withdraw 

from painfully stimuli, indicating that nociceptive processing is intact in the absence of the 

ACC. However, emotional elements associated with the painful stimulus, such as avoidance of 

a place where pain was previously experienced, are abolished. Further corroborating this, higher 

c-Fos labelling in the ACC was registered for animals that spent time in a place associated with 

a painful stimulus, but no difference in ACC activity was found for actual painful stimulation. 
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Figure 6.3. Projections from the anterior cingulate cortex to the PAG/DR. Cingulate 

projections target the DL column exclusively, not projecting to any of the other subdivisions 

in significant volumes. Line thickness indicates volume of terminals sent to the area. 

 

At the same time, the DLPAG receives fewer projections from the amygdala than other 

PAG regions, as illustrated in Figure 6.4 (Hopkins & Holstege, 1978; Price & Amaral, 1981; 

Rizvi et al., 1991), and those present are found in the DLPAGi, but not the DLPAGe (Hopkins 

& Holstege, 1978; Price & Amaral, 1981; Rizvi et al., 1991). While the amygdala is known to 

play a prominent role in emotional processing, its precise function remains unresolved. A theory 

proposed by J. A. Gray and N. McNaughton (2000) posits that the amygdala is a region tasked 

with increasing or decreasing arousal, and this in turn can positively or negatively modulate 

emotional responses. Therefore it is possible that outputs from the amygdala are not 

fundamental for the systems involved in conflict solving. The amygdala would be potentiating 

an organism to approach or avoid behaviors, but would not play a role in solving conflicts 

between the two. 
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Figure 6.4. Projections from the Central Nuclei of the amygdala to the PAG/DR. Amygdalar 

projections intensely target all PAG/DR subdivisions, with the exception of the DL column to 

which it has fewer terminals. Line thickness indicates volume of terminals sent to the area. 

The DLPAGe appears to be a local conflict resolution area in the PAG, where immediate 

appetitive input from external and local sources, and immediate aversive input from the 

DMPAG, converge. If we conceptualize the conflict between opposing motivational forces as 

the core of anxiety, then the DLPAGe emerges as the root of close-proximity anxiety 

phenomena (see Figure 6.5). 
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Figure 6.5. Unique inputs from sensory and cortical areas reaching the DLPAGe might help 

detect and solve conflicts. Upon detection of a conflict, DLPAGe neurons at intermediate and 

posterior sites of the PAG signal VLPAG and DR neurons to stop motor action until the 

conflict is resolved.  

 

The magnus raphe and the ventrolateral medulla are two of the main sites of descending 

efferent outputs of the PAG. And yet, the DLPAG sends no projections to these two areas when 

compared to the other divisions (Abols & Basbaum, 1981; Aghajanian & Wang, 1977; Beitz, 

Mullett, et al., 1983; Bjorkeland & Boivie, 1984; Carrive, 1991; Henderson et al., 1998; Herbert 

& Saper, 1992b; Holstege, 1991b; Van Bockstaele et al., 1991). In fact, the only real significant 

outputs of the DLPAG column is to itself and the other PAG divisions (Jansen et al., 1998); 

also Figure 6.6). If the DLPAG’s role is indeed in mediating and resolving conflicts locally, it 

would not need to send descending information in order to generate motor output: upon 

activation, the DLPAGe would signal the VLPAG to halt motor activity until the conflict 

between approaching and withdrawing from the stimulus is resolved. Indeed, freezing caused 

by activation of the DLPAG induces c-Fos labeling only in a small set of regions, one of which 

is the VLPAG (Borelli, Ferreira-Netto, Coimbra, & Brandao, 2005). Meanwhile, information 

from ascending areas like the ACC and PMd could help the DLPAG resolve the conflict, by 

integrating the respective affective and contextual cues originating from these areas.  
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Figure 6.6. Intra-PAG/DR connections. From left to right: projections from the DMPAG, 

DLPAG, LPAG, VLPAG and DR to other subdivisions. The DLPAG is the only subdivision 

that does not receive projections from its ventral counterparts. Line thickness indicates 

volume of terminals sent to the area. 

 

Another feature that bolsters the idea of the DLPAG as an anxiety/conflict area is the higher 

concentration of GABAergic receptors within the dorsolateral borders (Bowery et al., 1987; 

Chu et al., 1990; Gundlach, 1991). All classic anxiolytics rely on GABAergic receptors in order 

to produce their effect, and injections of the benzodiazepine receptor agonist midazolam into 

the dorsal PAG reduces anxiety-related behaviors in rats (Russo, Guimaraes, De Aguiar, & 

Graeff, 1993).  

Unlike fear, which produces reductions in nociception, anxiety-like reactions cause an 

enhancement of pain perception in both human and animals (Rhudy & Meagher, 2000). CCK 

fibers, which are involved in increasing nociception, are present in overwhelmingly larger 

volumes in the DLPAG (H. Liu et al., 1994; Loren et al., 1979) and, not coincidentally, 

injections of CCK in the DLPAG produce hyperalgesia (Lovick, 2008). In contrast, the fear-

inducing DMPAG produces reductions in nociception (de Freitas et al., 2014; de Freitas, 

Medeiros, Khan, & Coimbra, 2016). 

Direct experimental evidence for the DLPAG as an anxiety region comes from 

pharmacological investigations using the elevated plus maze (EPM) (Bertoglio, Anzini, Lino-

de-Oliveira, & Carobrez, 2005). Novel and open environments are known to be anxiogenic for 

rats, as they involve uncertainty and exposure to potential threats. Rats who have been treated 

with anxiolytic drugs like benzodiazepines will show decreased anxiety defined by spending 

more time exploring the open arms of the EPM, but only upon their first encounter with the 

maze. If they have prior experience with the EPM, systemic benzodiazepine administration no 

longer has this effect, a phenomenon called ‘one-trial tolerance’. In order to address whether or 

not the DLPAG might be involved this benzodiazepine-resistant anxiogenic state, Bertoglio et 

al. (2005) administered intra-DLPAG injections of lidocaine into rats submitted to the test. 

Lidocaine acts by blocking sodium channels, silencing regional cell activity. After blocking 
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DLPAG activity, the anxiolytic effects of systemic benzodiazepine injections returned on trial 

2 of the EPM, indicating that this region is indeed involved in the anxiety-like effects of the 

one-trial tolerance phenomenon. 
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Table 6.1. Internal Representations of Acute and Resolvable and Unresolvable Goals in the 

Rat’s PAG, the Actions Produced by the Structures Involved, and Analogous Human 

Pathological Manifestations 

 ACUTE SCENARIO 

 RESOLVABLE UNRESOVABLE 
SPECIFICITY 

STIMULUS CHEESE CAT CHEESE + CAT 

INTERNAL 

VALUE 
good bad ambiguous 

different internal 

values 

EMPLOYED 

STRATEGY 
to approach to avoid conflict 

different goal 

representations 

PAG NEURAL 

DYNAMICS 

inhibits 

avoidance 

systems 

and/or 

activates 

approach 

systems 

activates 

avoidance 

systems 

and/or 

inhibits 

approach 

systems 

inhibits both 

approach and 

avoidance, 

receives 

ascending input to 

help resolve 

conflict 

different neural 

dynamics 

RAT 

BEHAVIOUR IN 

RELATION TO 

GOAL 

active 

towards 
active away 

neither towards 

nor away; 

engages in risk 

analysis 

different 

behaviours 

OUTCOME 
successful 

approach 

successful 

avoidance 

dependent on the 

conflict resolution 
different outcomes 

HUMAN 

PATHOLOGICAL 

EQUIVALENT 

mania-

related 

disorders 

phobia-

related 

disorders 

anxiety-related 

disorders 

different 

pathologies 

PAG CIRCUITRY 

MOST HEAVLY 

INVOLVED 

anterior 

LPAGi 

(behav state) 

+ LPAGe 

(autonomic) 

posterior 

DMPAG 

(behav state) 

+ LPAGe 

(autonomic) 

DLPAGe 

(conflict 

resolution) + 

VLPAG 

(behavioural 

suppression until 

resolution) 

different PAG 

regions 

 

 Acute and chronic unresolvable goals and conflicts: the VLPAG and DR as 

general inhibitors of behavior and neuronal activity 

The two preceding sections considered the ways in which the PAG/DR complex deals with 

acute appetitive, aversive and conflict scenarios. As summarized in Table 6.1, acute scenarios 

that are easily acted upon (moving towards cheese or away from a cat) are resolved quickly, 

while a slight delay is introduced if both desirable and undesirable options are presented 
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simultaneously, while the PAG engages behaviors to access the situation and receives further 

information from supporting regions of the nervous system. Despite this slight delay, the acute 

nature of the scenario assumes that its unresolvability is only temporary, and a conclusion is 

eventually reached.  

In both human and animal contexts, however, organisms can be chronically subjected to 

situations where either approaching, avoiding or trying to resolve conflicts are chronically 

impossible goals to be achieved. Perhaps one of the earliest conceptualizations of the effects of 

chronic unresolvability was postulated by Martin Seligman as the theory of learned helplessness 

(Abramson, Seligman, & Teasdale, 1978). In Seligman’s initial learned helplessness studies, 

dogs with no prior experience of electric shock would quickly learn how to avoid it by jumping 

over a barrier, while those who were first exposed to a series of inescapable shocks would not 

take the opportunity to escape when it was finally presented. Later investigations found the 

same results in cats, rats, fish and humans. In rodents, for example,  the presentation of a 

repeated, inescapable and aversive stimulus causes long-term reductions in general 

responsiveness: reducing social interaction (Short & Maier, 1993) and sexual performance 

(Holmer, Rodman, Helmreich, & Parfitt, 2003), reducing food intake (Dess, Minor, & Brewer, 

1989); and causing weight loss even when control and shocked rats consume the same number 

of calories, indicating changes in metabolic rate (Dess, Raizer, Chapman, & Garcia, 1988). 

The phenomenology of learned helplessness in animals resembles the symptomology of 

depression in humans: a general reduction of pleasure or interest in activities, change in 

appetite, diminished sexual libido (Mathew & Weinman, 1982) and social interaction 

(Hirschfeld et al., 2000). Drugs that are known to have effective antidepressant effects in 

humans are also efficient in reducing the deleterious effects of inescapable aversive stimuli in 

animals, indicating this to be a possible analogue to depression in experimental animals 

(Willner, 1984). 

The most accepted hypothesis for the molecular basis of depression postulates that 

monoaminergic systems in the brain, in particular 5-HT, are disrupted in depression (Delgado, 

2000; Hirschfeld, 2000). This hypothesis resonates with the fact that the vast majority of 

validated antidepressants available today are tapping mechanisms in monoaminergic 

neurotransmission.  

The DR is one of the main serotonergic centers in the brain, and its main function appears 

to be the release of 5-HT in the forebrain, although it also sends descending projections. 

Changes in neurotransmitter expression within the DR have been reported in depressed patients 

(Bach-Mizrachi et al., 2008) as well as reductions in tissue volume of this region (Lee et al., 
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2011). In animal studies, the majority of antidepressant drugs alter firing rates of DR cells 

(Scuvée-Moreau & Dresse, 1979). 

Antidepressant drugs are also capable of ameliorating symptoms of panic in humans 

(Lydiard & Ballenger, 1987; Wilkinson, Balestrieri, Ruggeri, & Bellantuono, 2009). Animal 

studies have shown that systemic and localized administration of antidepressants reduces panic-

like responses in ethological models of panic (Zangrossi & Graeff, 2014), and antidepressant 

treatment increases the electric current  threshold necessary to provoke escape reactions 

triggered by the dorsal PAG stimulations (Schenberg, Capucho, Vatanabe, & Vargas, 2002). 

The elicitation of panic-like reactions through electrical stimulation of the dPAG is also 

inhibited in animals that have been chronically exposed to inescapable aversive stimuli 

(Quintino-dos-Santos et al., 2014). It is believed that this inhibition of dPAG cells is due to 

projections from the DR, since changing volumes of extracellular 5-HT in the DR reduce the 

panic responses evoked by dPAG stimulation (Yamashita et al., 2017). These results indicates 

that the DR keeps the dPAG under inhibition in acute, short term scenarios (during risk 

assessment, for example) or chronic, long-term ones (during depression). This dynamic is 

summarized in Figure 6.7. 

 

 

Figure 6.7. Repeated unresolvable scenarios cause long-term changes in serotonergic 

patterns in the DR, which in turn promote general inhibition in the dorsal PAG and its roles 

in aversive and appetitive motivation. Concurrently, descending signals from the VLPAG 

promote general inhibitions in motor, nociceptive and sympathetic activity.  
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If the DMPAG is concerned with governing motivational states to move away from aversive 

stimuli, and the LPAGi to move towards appetitive ones, we would expect changes in these 

regions in depressive states. While we lack direct experimental evidence for this, indirect 

evidence points to this possibility. The lordosis reflex, which is strongly dependent on the 

LPAGi, is reduced after pharmacological (Uphouse, Caldarola-Pastuszka, & Droge, 1992) and 

electrical (Arendash & Gorski, 1983) stimulations of the DR, while lesions of the DR greatly 

increase spontaneous lordosis (Kakeyama & Yamanouchi, 1993). The DR also reduces other 

appetitive behaviors related to the internal parts of the dorsal PAG: inhibition of 5-HT cells in 

the DR increases appetite in satiated rats (P. J. Fletcher & Coscina, 1993), and antagonism of 

CRF (which reduces the 5-HT neurotransmission) increases social interaction in rats (Lukkes, 

Vuong, Scholl, Oliver, & Forster, 2009). In humans, major depressive disorder is quite often 

accompanied by decreases in appetite, sexual libido and social interactions (Hirschfeld et al., 

2000; Mathew & Weinman, 1982; Paykel, 1977). 

Rats electrically stimulated in the ventral PAG assume a relaxed body position, with no 

muscle tone, decreased cardiovascular activation, and a lack of reaction to disturbances caused 

by the experimenter or the presence of another rat in the experimental chamber (Depaulis, Keay, 

& Bandler, 1994). This behavioral pattern is similar to when rats suffer social defeat and display 

a hyporeactive state after losing a confrontation. Corroborating the role of the ventral PAG in 

social defeat, socially defeated animals display preferential activation of ventral PAG cells 

(Kroes, Burgdorf, Otto, Panksepp, & Moskal, 2007). This trend of ventral PAG activation in 

socially defeated animals is also seen in a range of other markers, such as overexpression of 

catecholamine receptors, growth factors and preferential c-Fos expression (Vasconcelos, Stein, 

& de Almeida, 2015). Furthermore, rats that have been repeatedly exposed to an inescapable 

negative stimulus in learned helplessness studies display both the hyporeactive behavioral 

pattern and ventral PAG changes seen in social defeat.  

It is possible that the motor and autonomic functions that are reduced in depressive states 

are being mediated by the VLPAG, given its properties as a general inhibitor of nociception, 

motor activity, and cardiovascular responses. Investigations of DeltaFosB expression support 

the view of the VLPAG role in the symptomology of depression. Transcription factors like 

DeltaFosB are proteins capable of altering how mRNA encodes certain sections of the genetic 

code. It is believed that DeltaFosB accumulation in certain brain areas is capable of producing 

stable, long-term changes in the pattern of activity of cells – a mechanism that explains long-

term changes in behavior caused by environmental effects (McClung & Nestler, 2003; Nestler, 

Barrot, & Self, 2001). It has been shown, for example, that frequent drug intake changes 
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DeltaFosB levels in discreet brain areas, which could contribute to the behavioral, motivational 

and cognitive changes seen in drug addiction (Nestler et al., 2001). In terms of depression, mice 

displaying depression-like symptoms after exposure to inescapable shocks also show elevated 

expression of DeltaFosB in the VLPAG, indicating that the VLPAG is involved in the stable, 

chronic changes seen in depressive states (Berton et al., 2007). Although pain perception in 

depression is controversial, more than one study has shown that depressed patients do indeed 

display reduced nociception. In one particular experimental design, researchers reduced the fear 

and anticipatory anxiety associated with the delivery of a painful stimulus by giving participants 

control over the intensity and timing of shocks (Adler & Gattaz, 1993). This methodology 

revealed that depressed patients have a higher pain tolerance, and that lower thresholds for pain 

perception are correlated with anxiety rather than depression (Silvestrini, 1989; Ward et al., 

1982). Given the prevalent comorbidity between depression and anxiety in humans (Hirschfeld, 

2001), many autonomic findings from studies of depressed patients are probably confounds 

from anxiety.  
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Table 6.2. Internal Representations of Chronic, Unresolvable Goals in the Rat’s PAG, the 

Actions Produced by the Structures Involved, and Analogous Human Pathological 

Manifestations 

 CHRONIC SCENARIO 

 UNRESOLVABLE 
SPECIFICITY 

STIMULUS CHEESE CAT CHEESE + CAT 

INTERNAL 

VALUE 

formerly good, 

now failure 

formerly bad, 

now failure 

formerly 

ambiguous, now 

failure 

all same 

internal values 

EMPLOYED 

STRATEGY 

repeated failure 

(to approach) 

repeated failure 

(to avoid) 

repeated failure 

(to resolve) 

all same 

employed 

strategies 

PAG NEURAL 

DYNAMICS 

inhibits approach 

and avoidance 

systems (?) 

inhibits approach 

and avoidance 

systems 

inhibits approach 

and avoidance 

systems (?) 

all same 

neural 

dynamics (?) 

RAT 

BEHAVIOUR IN 

RELATION TO 

GOAL 

passivity, 

hyporeactivity, 

unresponsiveness 

(?) 

passivity, 

hyporeactivity, 

unresponsiveness 

passivity, 

hyporeactivity, 

unresponsiveness 

(?) 

all same 

behaviours (?) 

OUTCOME 
repeatedly 

unresolved 

repeatedly 

unresolved 

repeatedly 

unresolved 

all same 

outcomes 

HUMAN 

PATHOLOGICAL 

EQUIVALENT 

frustration, 

stress, depression 

(?) 

frustration, stress 

depression 

frustration, 

stress, depression 

all same 

pathologies 

(?) 

PAG CIRCUITRY 

MOSTLY 

INVOLVED 

posterior 

VLPAG + DR + 

dysregulated 

modulatory 

inputs (?) 

posterior 

VLPAG + DR + 

dysregulated 

modulatory 

inputs 

posterior 

VLPAG + DR + 

dysregulated 

modulatory 

inputs (?) 

all same PAG 

regions (?) 

Note. Question marks (?) indicate predictions from this model that have not yet been experimentally demonstrated. 

 

As presented in Table 6.2, I propose that modulatory inputs that have been dysregulated by 

inescapable and unresolvable events reach the DR, altering its baseline activity. In turn, the DR 

promotes tonic inhibition of the dorsal parts of the PAG, which accounts for the reduced 

approach and avoidance responses to some scenarios in animals and humans displaying 

depression-like symptoms. At the same time, the VLPAG inhibits motor, sympathetic and 

nociceptive functions.  

However, since there are no direct projections from either the DR or the VLPAG to the 

DLPAG (recall Figure 6.6), this model predicts that the DLPAG would be spared from the 
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inhibition produced by depression. If the DLPAG controls anxiety as I propose, then the anxiety 

symptoms of animals with depression symptoms should remain unaffected. Indeed, inescapably 

shocked rats do not reduce their exploration of novel and open environments (Short & Maier, 

1993) or the open arms on the EPM (Grahn, Kalman, Brennan, Watkins, & Maier, 1995; 

Quintino-dos-Santos et al., 2014), even though their social interactions (Short & Maier, 1993) 

and DPAG-driven escape responses (Quintino-dos-Santos et al., 2014) are reduced.  

 Final remarks 

In this thesis, I presented a detailed anatomical and functional picture of the periaqueductal 

grey. This anatomical and functional data provided evidence for new subdivisions within the 

PAG and argued that DR should be included as a functional part of the coherent complex that 

surrounds the aqueduct. This additional complexity is consistent with the demonstration that, 

along with its classical role in panic, the PAG plays a role in appetitive states, anxiety and 

depression. Indeed, this thesis provided experimental evidence indicating that the anxiety 

propositions seems to be true.  

My aim was to present a new, more complete, theoretical picture of how the different parts 

of the PAG contribute to the distinct functions attributed to the region. I showed that the 

DMPAG, especially at more caudal levels, is responsible for driving the organism away from 

threats. On the other hand, at more rostral levels the proposed new subdivisions of the PAG, 

the DLPAGi and LPAGi, drive the organism towards appetitive stimuli, especially reproductive 

ones. In situations of motivational conflicts, a local circuit including the DLPAGe, VLPAG and 

DR halts overt simple motivated behavior, while the organism gathers sensory and cognitive 

information in order to solve the conflict. I demonstrated how that afferents unique to the 

DLPAGe can be responsible for decision making during conflicts. When conflict becomes 

chronic and approach/avoidance problems insoluble, I presented a model that explains how the 

VLPAG and DR are responsible for long term reductions in general motor and autonomic 

activity. This is done by inhibition of ascending and descending sites, and also local inhibition 

of the dorsal PAG. Overall, then, a case is made for the PAG representing the bottom, highly 

conserved, level of the hierarchically organized systems controlling integrated motivated 

behavior. 

Many novel ideas have been proposed (and backed by voluminous amounts of data) in this 

thesis. Since testing all of them would be simply impossible for this project, I focused in the 

proposition that the PAG can increase hippocampal theta (anxiety) and also decrease it (fear). 
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In Chapters 4 and 5 I provided empirical demonstrations of how this hypothesis presented here 

can be confirmed.  

Conceptually, these findings should be a guide for future research and treatment of anxiety, 

panic and depression. The PAG, conventionally seen as a center for panic only, is also an 

important locus in the circuits mediating other motivated behavior and so important for other 

psychiatric disorders. 
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7. Postscript 

 

This section contains figures that are cited in Chapter 5. The numbering is sequential with 

the figures included in the chapter. 
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Figure P7.1. The effect of CDP and buspirone over LFP power in the hippocampus and PrL during PAG, sham and RPO stimulations over three 

time periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.2. The effect of CDP and buspirone over LFP frequency in the hippocampus and PrL during PAG, sham and RPO stimulations over 

three time periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.3. The effect of CDP and buspirone over theta coherence in the hippocampus and PrL during PAG, sham and RPO stimulations over 

three time periods. This figure shows the pooled data from the two groups (N=6).
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Figure P7.4. The effect of CDP and buspirone over PPC in the hippocampus and PrL during PAG, sham and RPO stimulations over three time 

periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.5. The effect of RXFP3-A2 and R3B(1-22)R over LFP power in the hippocampus and PrL during PAG, sham and RPO stimulations 

over three time periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.6. The effect of RXFP3-A2 and R3B(1-22)R over LFP frequency in the hippocampus and PrL during PAG, sham and RPO 

stimulations over three time periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.7. The effect of RXFP3-A2 and R3B(1-22)R over theta coherence in the hippocampus and PrL during PAG, sham and RPO 

stimulations over three time periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.8. The effect of RXFP3-A2 and R3B(1-22)R over PPC in the hippocampus and PrL during PAG, sham and RPO stimulations over 

three time periods. Panel A: NI injected animals (N=3). Panel B: OS injected animals (N=3).
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Figure P7.9. A comparison of the effects of RXFP3-A2 and R2B(1-22)R in the NI (N=3) and OS (N=3) groups under PAG, Sham and RPO 

stimulations, capturing the two significant trends (linear, linear, linear, quadratic and quadratic, linear, linear, quadratic). 


