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sèche, quand arrive la saison de pluie.〉〉

〈〈 In Africa, we never forget the river that has given the water in the

dry season when the raining season comes.〉〉



6



Contents

1 General Introduction 13

1.1 Electro-optic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Secure Communications . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Algorithmic cryptography . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Quantum cryptography . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Key-distribution based on giant fiber lasers . . . . . . . . . . . 17

1.3 Chaos-based Communications . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Emergence of chaos in systems . . . . . . . . . . . . . . . . . . 18

1.3.2 From chaos to chaos-based communications . . . . . . . . . . 19

1.3.3 Message insertion . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Security in chaos communications . . . . . . . . . . . . . . . . 21

1.3.5 Optical chaos communications . . . . . . . . . . . . . . . . . . 21

1.4 Photonics Microwave Generation . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Effects of phase noise on microwave oscillators . . . . . . . . 25

1.4.2 Reduction of phase noise in oscillators . . . . . . . . . . . . . 27

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Broadband Chaos Generators Using Semiconductor Lasers 29

2.1 Semiconductor Lasers with All-optical Feedback . . . . . . . . . . . . 29

2.2 Electro-optic Systems with Delay Generating Intensity Chaos . . . . . 32

2.3 Electro-optic Systems with Delay Generating Phase Chaos . . . . . . 36

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Loopholes in Opto-electronic Delay Devices 41

3.1 Delay Time Identification Techniques . . . . . . . . . . . . . . . . . . 41

3.2 Delay Time Identification in Chaotic Semiconductor

Lasers with All-optical Feedback . . . . . . . . . . . . . . . . . . . . . 43

7



8 CONTENTS

3.3 Delay Time Identification in Intensity Chaos

Opto-electronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Delay Time Identification in Phase Chaos

Opto-electronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Delay Time Identification from Detected Signal with Message . . . . 52

3.5.1 Intensity chaos model . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Phase chaos model . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Identification of Other Parameters . . . . . . . . . . . . . . . . . . . 55

3.6.1 Intensity chaos opto-electronic system . . . . . . . . . . . . . . 55

3.6.2 Phase chaos opto-electronic system . . . . . . . . . . . . . . . 58

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Dynamics of Electro-optic Delay Systems with Feedback in the

Laser Source 61

4.1 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 System I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2 System II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Theoretical and Numerical Study . . . . . . . . . . . . . . . . . . . . 63

4.2.1 System I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 System II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Other results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Receiver System and Effects of Parameter Mismatch . . . . . . . . . . 70

4.3.1 Receiver system . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Effects of parameter mismatch . . . . . . . . . . . . . . . . . . 72

4.4 Encoded/Decoded Message . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusions and Final Remarks . . . . . . . . . . . . . . . . . . . . . 77

5 Electro-optic Phase Chaos Systems With Digital Key Performing

Time Delay Concealment 79

5.1 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Characterization of the Dynamics . . . . . . . . . . . . . . . . . . . . 83

5.3 Effect of the PRBS on Delay Time Identification . . . . . . . . . . . . 85

5.4 Synchronization and Sensitivity to Digital-Key Mismatch . . . . . . . 90

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Electro-optic Phase Chaos Systems in Parallel Configuration 95

6.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Delay Time Concealment . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CONTENTS 9

6.4 Effect of the PRBS on Synchronization . . . . . . . . . . . . . . . . . 101

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Effect of Fiber Dispersion on Broadband Chaos Implemented by

Electro-Optic Phase Chaos Systems 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Overview on Optical Fiber Effects . . . . . . . . . . . . . . . . . . . 104

7.2.1 Origin of fiber impairments . . . . . . . . . . . . . . . . . . . 104

7.2.2 Operating principle of dispersion in communications . . . . . . 105

7.3 Optical Channel and Receiver . . . . . . . . . . . . . . . . . . . . . . 107

7.3.1 Emitter and optical channel . . . . . . . . . . . . . . . . . . . 107

7.3.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Numerical Results: Cancellation Noise . . . . . . . . . . . . . . . . . 109

7.4.1 Using dispersion-compensation . . . . . . . . . . . . . . . . . . 111

7.4.2 Using a dispersion-shifted fiber (DSF) . . . . . . . . . . . . . 112

7.5 Experimental Results: Cancellation Noise Spectra . . . . . . . . . . . 113

7.5.1 Using dispersion compensation modules (DCMs) . . . . . . . . 115

7.5.2 Using dispersion-shifted fibers (DSFs) . . . . . . . . . . . . . . 117

7.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Opto-electronic Microwave Oscillator with Double Loop 119

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Opto-electronic Microwave Oscillator with a Single Loop . . . . . . . 119

8.2.1 Steady state solutions . . . . . . . . . . . . . . . . . . . . . . 122

8.2.2 Stochastic phase equation . . . . . . . . . . . . . . . . . . . . 123

8.3 Opto-electronic Microwave Oscillator with Double Loop . . . . . . . . 125

8.4 Amplitude Equation for a Double Loop Opto-electronic Oscillator . . 126

8.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.6 Comparison of Phase Noise Between OEOs with Single and Double

Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.6.1 Stochastic phase equation for OEO with double loop . . . . . 134

8.6.2 Phase noise spectrum for OEO with double loop . . . . . . . . 135

8.6.3 Comparison phase noise spectra between OEOs with single

and double loop . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 General Conclusions and Future Work 141

9.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



10 CONTENTS

Resumen

Esta tesis tiene por objetivo general el estudio de la dinámica no lineal en distintos

sistemas electro-ópticos. Por un lado se estudia la utilización de estos sistemas para

generar caos de alta complejidad con vistas a comunicaciones ópticas encriptadas y

por otro como generadores de microondas de alta pureza espectral.

En los últimos años se han diseñado diversos sistemas optoelectrónicos basados

en láseres de semiconductor y sujetos a retroalimentación óptica o electro-óptica

para generar portadoras caóticas que permitan encriptar mensajes. Estos sistemas

han sido estudiados tanto desde un punto de vista teórico como experimental y,

más allá del laboratorio, en algunos casos se han utilizado en pruebas de campo en

redes de fibra comercial instalada. La utilización de los láseres de semiconductor

como fuentes viene motivada por su facilidad integración en redes ópticas, por su

fiabilidad y por su bajo coste. Dada la rápida dinámica de estos láseres, el tiempo de

realimentación es superior a las escalas de tiempo internas, por lo desde un punto de

vista matemático estos son sistemas con retraso, los cuales pueden desarrollar caos

de alta dimensionalidad. Por otro lado la rapidez de la dinámica permite alcanzar

velocidades de transmisión de varios Gb/s.

Aunque se han obtenido resultados muy interesantes en el lado de las presta-

ciones, las cuestiones relacionadas con la seguridad han estado mucho menos con-

sideradas. En este tipo de encriptación basada en hardware el mantener ocultos los

parámetros de operación es un elemento esencial para preservar la seguridad. Se

ha visto que en algunos casos los parámetros de operación pueden identificarse en

la portadora caótica transmitida. En particular si bien el tiempo de retraso es un

elemento clave en la generación de caos, también es uno de los parámetros más vul-

nerables a identificación. A pesar de que la identificación del tiempo de retraso no

implica necesariamente que se pueda decodificar el mensaje, śı que abre las puertas

a ataques posteriores.

En este contexto, y después del caṕıtulo 1 introductorio y del 2 de descripción

de los sistemas considerados, investigamos en el caṕıtulo 3 la seguridad en las confi-

guraciones existentes más comunes: láseres de semiconductor con retroalimentación

óptica y sistemas electro-ópticos con retroalimentación diseñados para generar caos

en la intensidad o en la fase. Los resultados de este estudio demuestran que el

retraso se puede sacar en todos estos sistemas usando diversos métodos de análisis

de series temporales, tales como la autocorrelación y la entroṕıa mutua retrasada.

En particular, en láseres de semiconductor con realimentación óptica en los que se

hab́ıa propuesto la ocultación del tiempo de retraso eligiendo éste de manera que

fuese similar a la escala de tiempo interna de oscilación de relajación, demostramos

que si bien este tipo de camuflaje funciona en la serie temporal de la intensidad del
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campo eléctrico, falla de forma evidente analizando la fase o cualquier cuadratura

del campo (como la parte real o imaginaria).

Llegados a este punto nos centramos en el desarrollo de sistemas que pre-

senten un grado más elevado de seguridad. Como primera propuesta (caṕıtulo 4)

investigamos la dinámica en dos sistemas con realimentación electro-óptica en los

que implementamos una retroalimentación adicional en el láser de semiconductor

utilizado como fuente de luz en el sistema. Con este método, aumentamos tanto el

número de parámetros del sistema como la complejidad de su dinámica. Estudiamos

la sincronización de emisor y receptor y mostramos que el receptor autorizado puede

decodificar el mensaje en forma apropiada.

Una segunda propuesta (caṕıtulo 5) consiste en la introducción de un nove-

doso sistema que integra una clave digital en el sistema caótico, lo cual constituye

un primer puente entre la criptograf́ıa algoŕıtmica y la basada en caos. El esquema

propuesto, basado en los sistemas electro-ópticos para generación de caos en fase,

incorpora dos bucles conectados en serie. Uno permite generar la portadora trans-

mitida mientras que el otro genera una variable interna en la cual se implementa la

clave digital. Por un lado, la clave digital aumenta en forma significativa el tamaño

de la clave global del sistema. Por otro, los resultados indican que la clave digital

permite camuflar el tiempo de retraso, de manera que este no puede ser identifi-

cado analizando la serie temporal con las técnicas usuales. Simultáneamente el caos

generado por el doble bucle de retraso camufla la clave digital.

En el caṕıtulo 6, consideramos una configuración que incorpora dos bucles

electro-ópticos para generación de caos en fase acoplados en paralelo. Encontramos

que dicho sistema permite ocultar los tiempos de retraso relacionados con el bucle

interno, incluso sin llave digital. Esta configuración permite también la inclusión de

una clave digital la cual aumenta el tamaño de la clave global del sistema. En este

caso la clave digital dificulta la identificación de los tiempos de retraso asociados al

bucle externo, pero no llega a camuflarlos completamente.

Después del análisis de la seguridad en los sistemas actuales y de la propuesta

de nuevos sistemas, en el caṕıtulo 7 estudiamos los efectos del canal de transmisión.

En particular analizamos los efectos de la dispersión en la fibra óptica. Los resul-

tados indican que el mensaje no se puede recuperar después algunos kilómetros de

propagación en fibra monomodo usual. Pero, el mensaje se recupera correctamente

si compensamos la dispersión de forma adecuada o si usamos fibra con dispersión

desplazada.

Finalmente para mostrar los múltiples usos de los sistemas electro-ópticos, in-

vestigamos en el caṕıtulo 8 un sistema electro-óptico con doble bucle para generar

microondas de alta pureza espectral. Encontramos que este sistema puede generar

microondas de mucha mayor amplitud que su equivalente con un sólo bucle. Además,
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demostramos que este sistema permite reducir el ruido de fase hasta 20 dB permi-

tiendo obtener unas prestaciones mejores que los sistemas anteriores (-50 dB a 10

Hz y -150 dB a 1 MHz).



Chapter 1

General Introduction

1.1 Electro-optic Devices

Electro-optic systems involve components or devices which operate by modifying the

optical properties of a material through an electric field. The change can take place

in the optical absorption, e.g., change of the absorption constants or creation of an

absorption band at some wavelengths which gives rise to a change in color. The

change can also be in the reflective index, e.g., pockels effect (or linear electro-optic

effect), Kerr effect (or quadratic electro-optic effect, QEO effect) or electro-gyration

(rotation of the beam polarization plane due to the electric field).

RF

electrode DC

electrode

(a)

(b)

Figure 1.1: An optical intensity mod-

ulator for optical telecommunications

(Figure taken from [1]).

Electro-optic modulators are excellent ex-

amples of optical devices whose the reflective in-

dex linearly change with the electric field (pock-

els effect) when an electrical modulation is ap-

plied. Figure 1.1 shows an electro-optical mod-

ulator designed for intensity modulation (a) and

its schematic representation (b). Electro-optical

modulators can also be designed for phase, fre-

quency, amplitude, or polarization modulation.

Electro-optic systems are found useful for a

variety of applications. They can be used to pro-

duce images of an object through illumination,

amplification, or thermal imaging. They can be also used to generate ultra-pure

microwaves and complex carriers for telecommunications applications. In the frame

of this thesis, we study electro-optic devices for telecommunications applications.

In the context of chaos communications, they are useful for generating broadband

carriers within which multi-gigabit information can be securely encoded and success-

fully decoded. As for the microwave generation, electro-optics systems can be used

for time-frequency metrology and radar applications. The following sections provide

an introductory background to secure communications and microwave generation.

13
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1.2 Secure Communications

Protecting sensitive information from undesired interception has always drawn at-

tention in communication networks. Traditionally, the confidentiality and the au-

thentication of information are achieved through mathematical algorithms. More

recently, other encryption techniques has been introduced such as quantum key

distribution and chaos-based communications.

1.2.1 Algorithmic cryptography

The operating principle consists in digitalizing analogic signals to be transmitted,

such as voice, video, text,etc.. and then convoluting them with a given binary

pattern (key). Subsequently, the resulting binary string is sent through a public

communication channel [2]. There are basically two types of algorithms: those that

make use of a symmetric (private) key and those that use an asymmetric (public)

key. In the first one, the recipient decodes the message using the same key-string

code as used for encryption.

Figure 1.2: Symmetric Cryptography (Figure

taken from [4]).

As shown in Fig. 1.2, it is required

that the two parties agree upon a key us-

ing another secure channel (for example,

a face-to-face meeting or an exchange via

a trusted courier). Security relies on the

fact that for a given key of length N (with

N large as possible), an eavesdropper has

2N possible keys to explore and it is very

difficult to know which is the appropriate

one. An example of this type of encryp-

tion is the Vernam cipher [3]. In the Vernam cipher, the message (plain-text) is

encrypted by applying a XOR logical operation, bit-by-bit, with the secret key,

which is randomly generated. The key must be as long as the message. The result

of the XOR operation generates the text to be transmitted (cipher-text). The au-

thorized receiver decodes the message by performing a XOR operation between the

cipher-text and the key. The Vernam algorithm has been mathematically proved

to be fully secure if (and only if) the key is fully random, the key is as long as the

message and the key is used only once.

Other examples of common symmetric key algorithms are data encryption

standard (DES), advanced encryption standard (AES), international data encryp-

tion standard (IDEA), and RC4 (Ron’s Code), and typical key sizes are 64, 128, or

192, 256,.., bits. The main drawback of symmetric key cryptography is that it is



15

not suitable for secure communications between two persons who do not know each

other (for instance, it is not suitable for business operations and digital signature).

To circumvent the drawbacks of the symmetric-key cryptography, other soft-

ware cryptosystems relying on asymmetric-key algorithms (public-key cryptography)

have been developed [5]. In these systems, the message encrypted with one key can

only be decrypted with the paired key. Given one key, it is computationally not

feasible to derive the paired key.

Figure 1.3: Asymmetric Cryptography (Figure

taken from [4]).

Figure. 1.3 illustrates the use of

asymmetric cryptography for classic con-

fidential communications. It works by

making one key, called the public key,

widely available, while maintaining the

other key secret, called the private key.

The receiver sends the public key to the

emitter who uses it to code the message.

The message can only be decoded using

the private key kept by the receiver. This

scheme is used for example in digital sig-

natures. However, it should be noticed that asymmetric algorithms use significant

computational resources in comparison with their symmetric counterparts and there-

fore are generally not used to encrypt bulk data streams. The most popular asym-

metric public-key encryption systems are the so-called Rivest, Shamir and Adleman

(RSA) algorithms proposed by Ron Rivest, Adi Shamir and Len Adelman in 1978

[5].

Because of the limitations of the asymmetric key algorithms such as the limited

speed and non-absolute security, symmetric-key algorithms are still actively pursued

in the algorithmic community, including new stream cyphers [6] and cryptographic

hash functions [7]. Besides, hybrid algorithms such as Pretty Good Privacy (PGP)

algorithm combine public key encryption to define a private key used for fast sym-

metric encryption [8].

Despite the efforts made for providing appropriate algorithms the growing

computation capabilities increasingly threatens current algorithmic cryptography.

For example, the American scientist Peter Shor implemented in 1994 an algorithm

capable of cracking any convoluted message (cipher-text) encrypted with a public

key algorithm, such as RSA algorithm [5] and its variants, and schemes based on el-

liptic functions [9, 10], by factoring and computing discrete logarithms on quantum

computers [11, 12]. Nonetheless, the capability of breaking the Shor’s algorithm

depends on the available computer power. Without waiting for quantum computer

construction, a public-key RSA operating with a string code of 512-bit, still consid-
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ered secure in late 1990 has been broken in 1999 using 300 computers, so that it is

now required to use at least 1024-bit or 2048-bit key string codes in any software

cryptosystem [13]. These last findings in software cryptography underlies a latent

threat to modern cryptography. Arguably the construction of quantum computers

would definitively devastate the foundations of modern cryptography.

1.2.2 Quantum cryptography

In order to strengthen the process of securely exchanging the secret key other ap-

proaches have been proposed. Out of those, the quantum cryptography relies on the

peculiar properties of quantum mechanics, which allow two remote parties to com-

municate a private, secret key, protected from eavesdropping by the laws of physics.

This key can then be used in a conventional cryptographic algorithm. Quantum

key distribution (QKD) was proposed by Bennett and Brassard in 1984 [14]. It

establishes a shared key between the sender of the message and the recipient, while

preventing for eavesdropping [15]. The prevention to the eavesdropper’s presence

is made possible through Heisenberg uncertainty principles, which guarantee that

measuring quantum data disturbs it, and that disturbance alerts authorized users.

(a) (b)

Figure 1.4: (a) Commercial quantum key distribution system manufactured by ID Quantique. Box

covers removed. Alice at left, Bob at right; (b) Quantum hacker experimental setup (Figures taken

from [17]).

Today, some commercial QKDs are already available to strengthen security

when operating with software cryptosystems, evidencing thereby the maturity of

QKD technology and its practical interests [see Fig. 1.4 (a)]. However, recent inves-

tigations show that, since practical implementations do not operate at the quantum

limits (single photon), it is possible for an eavesdropper to fully remote-control the

detectors that notify for his presence so as to tracelessly acquire the full secret key

[16, 17]. Figure 1.4 (b) shows the device developed to demonstrate this attack [17].

Unfortunately, this loophole can be likely applied to most QKD systems. In addi-
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tion, quantum cryptography has some severe limitations. Among others, its inability

of encrypting information in real time and the fact that key generation rate is still

only of several tens of KHz because of noise and attenuation in the quantum channel.

1.2.3 Key-distribution based on giant fiber lasers

In the framework of the key exchange, another way to proceed relies on mutually

coupled optical systems [18, 19]. Figure 1.5 shows an example of secure key distri-

bution using a giant fiber laser system. The system is made up of three mirrors at

each end and the choice of the same mirror or not by the two parties, determines

the lasing characteristics of the laser, allowing each one to deduce which mirror was

selected at the other end and, thus, to exchange a bit.

Figure 1.5: Concept for secure key distribution

based on establishing laser oscillations between

the sender and receiver: Giant Fiber Lasers sys-

tem for secure key distribution.MA, MB: Alices

and Bobs end mirrors; IFA, IFB : inline filters;

NSA, NSB: broadband noise sources. Inset: Fre-

quency response of the three mirrors at the three

different states (Figure taken from [18]).

As the authors explained ”The

system consists of a long erbium doped

fiber laser with Alice at one end and

Bob on the other. Bob and Alice can

each choose independently a mirror from

a set of three mirrors (one set at each

end), labeled T , 1, and 0 (see the inset

in Fig. 1.5), and use it as the laser re-

flector at their end. Each of the three

mirrors in a set has its peak at a dif-

ferent frequency. The T mirror is cen-

tered on ω0, mirror 1 is centered on

ω0 + δω, and mirror 0 is centered on

ω0 − δω. The erbium-doped amplifiers

(EDFA) provide the optical gain for the

laser, and the inline filters IFA and

IFB are narrow-band filters centered at

ω0. Each communication cycle (e.g.,

the generation of a bit for the key) starts

with Alice and Bob placing their mirror at ω0 (T ). This phase resets the symmetry

of the system and establishes synchronization. Next, they each randomly select a bit

(e.g., 0 or 1) and switch on the appropriate mirror. The laser gain is maintained at

a level such that if they pick different bits, there is sufficient gain for the laser to lase

at ω0 but at a lower amplitude compared to the T state. If they both choose 1, the

lasing wavelength shifts to ω0+ δω, and if they choose 0, the lasing wavelength shifts

to ω0 − δω. The choice of mirrors determines the lasing characteristics of the laser,

allowing each of the two parties to deduce which mirror was selected at the other end
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and, thus, to exchange a bit. To achieve security, the determination of the mirrors

choice should be simple for legitimate users but very difficult (ideally impossible) for

an eavesdropper (Eve)” [18]. This scheme could, in principle, operate faster than

the current QDK systems but it will not be sufficiently fast for the real time data

transmission.

1.3 Chaos-based Communications

A hardware cryptosystem that can complement the future software cryptography

in real high speed data transmission is chaos-based communications. An efficient

cryptography could therefore proceed either by first encrypting the data in software

and latter transmit it using a hardware system operating in a chaotic regime or by

using hybrid systems which mix a digital key with chaotic carriers. The foundations

of chaotic cryptosystems on one hand relies on the unpredictability of the chaotic

behavior and its sensitivity to initial conditions, and on the other hand, on the

deterministic properties of the chaos allowing for synchronization, necessary for

message decoding at the receiver. Within the frame of this thesis, we will particularly

focus on this type of encryption systems.

1.3.1 Emergence of chaos in systems

Chaos is a paradigmatic concept used to describe deterministic dynamical systems

whose behavior is complex, unpredictable and extremely sensitive to initial condi-

tions [20, 21, 22, 23, 24]. This happens even though these systems are deterministic,

meaning that their future behavior is fully determined by their initial conditions,

with no random elements involved. It is essentially characterized by its sensitivity

to initial conditions (popularly referred to as the butterfly effect). Indeed, small

differences in initial conditions, such as those due to rounding errors in numeri-

cal computation, yield widely diverging outcomes for chaotic systems, rendering

long-term prediction impossible in general. Quantitatively, the divergence between

two trajectories in phase space starting with a small initial separation δZ0 can be

approximated by

|δZ(t)| ≈ eλet|δZ0| (1.1)

where λe is the Lyapunov exponent. The calculation of Lyapunov exponents is an

efficient way to characterize the dynamics. In chaotic systems, at least one of the

Lyapunov exponents is positive. Chaos was first explicitly evidenced by Edward

Lorenz in a pioneering paper entitled ”Deterministic non periodic flow” [25]. In
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lasers, chaos goes back to the pioneering works of Haken in 1975 [26]. It has subse-

quently proven that when a system presents both nonlinearity and complex enough

phase space, it can lead to chaotic behavior. Chaotic behavior has been encountered

in many lasers (solid-state [27], gas ring [28], semiconductor [29], etc..) operating

under appropriate conditions. Typically, chaos can emerge in any continuous system

described by differential equations with both nonlinearity and phase space dimension

larger than two (the Poincaré-Bendixon theorem precludes the existence of chaos

in two dimensions). However, in discrete systems only the nonlinearity is necessary

to induce chaotic regimes. The maps are typical examples illustrating this latter

case. In systems such as ordinary differential equations and maps, the phase space

is finite-dimension while the dimension is infinite for delay differential equations or

partial differential equations. In dissipative systems showing chaotic behaviors, the

system typically evolves to a chaotic attractor whose dimension is smaller than the

one of the phase space. The dimensionality of the chaotic attractor depends on the

parameters of the system and it is usually finite even in infinite dimensional systems.

1.3.2 From chaos to chaos-based communications

Before chaos cryptography, chaos was basically an useful tool for the understanding

of some phenomena in biology, chemistry, physics, etc.. The usefulness of chaos for

applications changed significantly thanks to the pioneering work of Pecora and Caroll

who, in 1990 succeeded in synchronizing two chaotic systems linking them with

common signals [30]. Three years latter, in 1993, Cuomo et al. demonstrated the

first chaos based on communications implemented with the electronic circuits [31].

This demonstration definitively paved the road for chaos-based communications.

Since then, many types of synchronization have been identified in chaotic systems,

leading therefore to the possibility of encoding the message within any accessible

physical variable (power, phase, wavelength, etc..). Among others [32],

• Phase synchronization: The concept of chaotic phase synchronization reflects

systems for which the phase φ(t) chaotically fluctuates while the amplitude of

the signal evolve freely and remain unrelated [33, 34]. Phase synchronization

arises when the difference between instantaneous phases φ1(t) and φ2(t) of

chaotic signals is limited in time:

|φ1(t)− φ2(t)| < const. (1.2)

• Complete synchronization: It implies exact correspondence between state vec-

tors of interacting (unidirectionally or reciprocally coupled) systems: x(t) ≡
u(t). This regime occurs only in coupled systems with identical elements, e.g.,

each component having the same dynamics and parameter set [35, 36, 37].
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• Lag synchronization: It occurs when the interacting systems undergo almost

identical oscillations but shifted over a certain time interval τ , e.g., x(t) ≈
u(t + τ) [33, 38, 39, 40]. This type of synchronization is used in chaotic com-

munications where the shift time interval τ arises from the travel time between

the emitter and the receiver.

• Generalized synchronization: it is characterized by the existence of a functional

relationship between the state of the coupling systems, e.g., the response system

is a function of the driving system, x(t) = F (u(t)) [35, 36].

The majority of chaos-based optical communications schemes are based on

complete synchronization (or lag synchronization when the travel time between

emitter and receiver is taken into account) or on generalized synchronization (in

the case of the use of semiconductor lasers with optical feedback for which the re-

ceiver system is typically not identical to the emitter since it has an injected signal

from the emitter).

1.3.3 Message insertion

Different approaches for the transmission of information signals using chaotic dy-

namics have been proposed. The most used approaches to encode the message are:

♣ Chaos masking (CMS): The message is mixed with the chaotic carrier after

it leaves the loop of the transmitter. Thus, the message does not contribute to

the carrier generation in the transmitter. The masking can be done in several

ways including addition of the message to the chaotic carrier or modulation of the

amplitude of the chaotic carrier 1 [41, 42]. In these schemes, the amplitude of the

message must be small enough to allow high-quality synchronization and to conceal

it.

♣ Intra-loop chaos modulation: The message is embedded within the trans-

mitter loop, and therefore affects the dynamics of the transmitter [43]. The message

can enter in the loop either additively (additive chaos modulation, ACM) or mul-

tiplicatively (multiplicative chaos modulation, MCM). The widespread one is the

ACM scheme. In both cases, the message can have a large amplitude without com-

promising the synchronization. However, one should make sure that the amplitude

of the carrier is larger than that of the message in order to avoid direct detection of

the message.

♣ Chaos shift key (CSK): In this type of the scheme, the digital message

directly modulates a control parameter in the transmitter. Thus, such control pa-

rameter switches between two distinct levels depending on whether a ”0” or ”1”

1modulation of the amplitude has been referred by some authors as ”chaos modulation”
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bit is transmitted. Meanwhile, the receiver system is biased at a fixed parameter

value which is, for example, the level at which ”0”bit is transmitted [44, 45]. The

message is recovered by measuring the synchronization error between the transmit-

ter and receiver (very low error or no error for ”0” bit and large error for ”1”). A

drawback of this scheme is that the bit rate has to be slow enough for the receiver

to resynchronize.

1.3.4 Security in chaos communications

The encryption efficiency of chaos-based communication systems relies on two nec-

essary key points: the unpredictability of the carrier signal and the sensitivity of

the synchronization to parameter mismatch. However, the security in hardware

cryptosystems is most probably the main Achilles’ heel because it implies many

factors and the deficiency of only one can definitively collapse the viability of the

system. Among the strong requirements that any chaotic cryptosystem should fulfill,

one finds the efficient masking of the message within the chaotic carrier [46]. This

condition is in general fulfilled when a small amplitude message is hidden within

much faster chaotic fluctuations with large amplitude. Second, the system should

be able to conceal itself the parameters which meanwhile serve as the physical keys

for decryption. Third, the chaotic carrier should be complex enough to prevent its

reconstruction using simple techniques such as return maps. For example, some

communication schemes using low-dimensional chaotic signals can be unmasked be-

cause of their narrow spectra. Their dynamics can be reconstructed from time series

[47, 48, 49, 50] or suitable return maps [51, 52, 53]. Fourth, the parameter space

dimension should be large enough to avoid breaking by brute-force-attack or similar

techniques. Further interesting recommendations to achieve a reasonable degree of

security has been suggested [54], as well as some methods to quantify the cryptanal-

ysis of chaotic encryption schemes [55].

1.3.5 Optical chaos communications

The first scheme for optical chaos communications was proposed in 1994 based on

a loss-modulated solid-state laser [56]. However, as the previous electronic systems

proposed, this system has a low-dimensional chaotic attractor and therefore it can

be attacked by an eventual eavesdropper. Besides solid state lasers are of little

use in optical communication networks. Therefore the next step was to consider

semiconductor lasers [41]. Those can become chaotic with some external feedback

which can be modeled with a delay differential equations. From mathematical point

of view, the appearance of a delayed term in a differential system drastically changes

the analysis: the solution is no more uniquely defined by a single initial condition,
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but requires a continuous interval of values x(t) over the time interval [t0 − T, t0].

Thus the phase space becomes infinite dimensional allowing attractors with arbitrary

high dimension. Given this advantage and its applicability to optical networks,

delayed systems based on semiconductor lasers are considered as a prototype of

systems in which very high complexity can be encountered.

Semiconductor lasers have also the advantages of being small in size, cheap

to produce, electrically pumped, and easy to modulate. In general, the dynamics

of a single-mode homogeneously broadband semiconductor laser can be described

by three basic variables: the slowly varying complex amplitude of the electric field

E(t), the material population inversion density N (t) and the complex amplitude

of the material polarization P(t). The variables E(t), N (t) and P(t) are, respec-

tively, governed by three important time constants: the cavity decay time 1/γ, the

population relaxation time τR0, and the material polarization relaxation time τq.

For semiconductor lasers, τq ≪ 1/γ, τR0 so that the behavior of P(t) adiabatically

follows that of E(t) and N (t). Despite this system is described by three real vari-

ables (amplitude, phse and inversion population, for example), in practice solitary

semiconductor lasers do not exhibit complicated dynamics without external pertur-

bation. Deviations from steady-state continuous-wave (CW) emission can only be

damped through relaxation oscillations, responsible of the energy exchange between

electron and photon [57]. However, it has been demonstrated that semiconductor

lasers subject to feedback can exhibit much more complex dynamics, suitable for

chaos communications. Besides the delay, this approach is rendered possible capital-

izing on either the nonlinear nature of the laser or adding an external nonlinearity.

The four sub-classes of nonlinear dynamics most used in chaos-based commu-

nications are shown in Figure 1.6. In Fig. 1.6 (a), a linear feedback is obtained

via an external mirror placed so that a fraction of the light is reflected back to the

cavity (all-optical feedback system) [59]. The nonlinearity is given by the coupling

between the optical field amplitude and the inversion population density inside the

semiconductor laser. The dynamics of such systems can be described using the

Lang and Kobayashi model [60]. This scheme has been widely used [41, 42, 62].

In Fig. 1.6 (b), a part of the laser output is fed to a delay fiber and then detected

by photodiode which converts the optical signal into the electrical variations used

to modulate the pump current of the laser. In this case, the feedback is nonlinear

[63, 64, 65]. In Fig. 1.6 (c), the output of a continuous-wave (CW) laser semiconduc-

tor laser goes through an electro-optical modulator. The electro-optical modulator

is driven by an electro-optical delay loop similar to the previous case. This type of

electro-optical systems with nonlinear feedback was first proposed by Ikeda [66] and

has been implemented later using semiconductor lasers [43, 67]. Finally, Fig. 1.6 (d)

illustrates a solid state laser with modulated pump as in [56]. Other systems that
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Figure 1.6: Four sub-class of nonlinear dynamics in Optics mostly involved in optical chaos gener-

ation for encryption (Figure taken from ref.[58]).

have been suggested for optical chaos cryptography include fiber ring lasers [68, 69]

and microchip lasers [70].

The first laboratory experiments demonstrating the potential of optical chaos

communications came at late 90’ using fiber lasers [71] and optoelectronic feed-

back devices [43, 67]. Several experimental demonstrations followed which triggered

specific research projects. A US research consortium MURI2 demonstrated the pos-

sibility of 2.5 Gb/s pseudo random message transmission using a laser subjected to

optoelectronic feedback (with achieved bit error rate (BER) of the order of 10−4 in a

back-to-back transmission [72]). The OCCULT3 European project demonstrated an

electro-optical setup with improved performance (low BER ∼ 10−8-10−9 at 3 Gb/s

[73]).

These last years, dramatic progress in chaos-based communications have been

made with experiments in realistic field networks. In particular, two main successful

demonstrations implying multi-gigabit information transmission in real installed op-

tical networks over several tens of kilometers [74, 75]. Figure 1.7 (a) shows the field

experiment of fibre transmission in the optical communication network of Athens,

Greece [74]. During the transmission, the messages were hidden within a strong

chaos generated from semiconductor lasers with all-optical feedback [Fig. 1.7 (b)] or

by electro-optical feedback systems [Fig. 1.7 (c)]. Current performances of all-optical

2Multidisciplinary University Research Initiative
3Optical Chaos Communication Using Laser-diode Transmitters, http://ifisc.uib-csic.es/project/occult/
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(a)

(c)

(b)

Figure 1.7: (a) Field experiment of fibre transmission in the optical communication network of

Athens, Greece. (b) Experimental setup for all-optical feedback system. (c) Experimental setup

for electro-optical feedback system which makes use of an integrated Mach-Zehnder interferometer

(MZ) (Figure taken from [74]).

systems for secure transmission are limited to 2.5 Gb/s because of their signal band-

width while electro-optical systems are capable of developing strong chaos with a

bandwidth which can span over several tens of GHz. In such electro-optical system

the chaos was induced in intensity. Encouraged by this success, another electro-

optic system which, induces chaos in phase has been proposed [76], and successfully

tested in the installed optical network infrastructure of Frères Lumières in Besançon,

France [75], allowing the remarkable rate of 10 Gb/s message transmission. The de-

tails in these systems are given in the next chapter.

As a final remark, electro-optic systems are very flexible and, in fact, they

are also actively investigated for other applications which require very low noise.

Thus they are suitable as ultra-pure microwave generators as described in the next

section.

1.4 Photonics Microwave Generation

A microwave is an electromagnetic wave whose frequency in vacuum is between

300 MHz and 300 GHz, thus corresponding to a wavelength between 1 mm and

1 m. Microwaves are useful for a wide variety of technological applications such as

radio and television broadcasting, radars, microwave ovens and mobile telecommu-

nications networks. Depending on the application, a certain purity is needed. In

mobile telecommunications, for example, in which microwaves are used as carriers

to be modulated by information-bearing signals, fairly purity is acceptable. On the
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contrary, exceptional pure microwaves are required in radar, time frequency metrol-

ogy or in lightwave technology where the purity is directly connected to the system

performance.

Traditionally, microwave signals are generated using complicated electronic

circuits. As microwave signals are distributed over metallic waveguides such as

coaxial cables, the attenuation reduces the transmission power significantly, requir-

ing multiple amplifications in the communication network. In order to overcome

such problems, the idea of delivering microwave signals over optical fibers offers an

excellent solution due to the low attenuation of optical fibers. Basically, such mi-

crowaves can be generated through optical heterodyne technique, where the outputs

of two lasers with different wavelengths are coupled and sent to a photodetector for

beat frequency generation [77]. When the two frequencies are coupled, heterodyning

creates two new frequencies (called heterodynes), one is the sum of the two frequen-

cies mixed while the other is their difference. Subsequently the desired one is used

while the other is filtered out at the mixer output. However, in such systems, the

linewidth of the microwave signal is rather broad due to the lack of phase correlation

of two separated laser sources, and hence its overall performance is degraded.

One of the most used optical systems for microwave generation was proposed

by X. S. Yao et al. [78]. It converts continuous light energy into stable and spectrally

pure microwave signals. In such system, the purity of microwave signal is achieved

thanks to a delay line inserted into the loop. The role of the delay is to store the

energy providing an equivalent to a quality factor given by Q = 2πfmT where fm
is the microwave frequency and T the delay induced by the delay line. The main

advantage of the OEO is its capability of generating ultra-stable, spectrally pure

microwave with frequency which can be as large as 75 GHz and with a phase noise

lower than −140 dBc/Hz at 10 kHz [79, 80]. Late on, these studies were comple-

mented by Y.K. Chembo et al. who provided a dynamics approach to investigate

analytically the stability properties of OEOs [81] and also to predict eventual insta-

bilities [82]. Next we provide better understanding of the phase noise, which is an

Achilles’ heel in most of these systems.

1.4.1 Effects of phase noise on microwave oscillators

Self-sustained oscillators are characterized by their radial component (amplitude)

which is stable and their polar component (phase) rather neutrally stable. The

trajectory for its steady-state evolves along a close curve called a limit cycle as the

consequence of the system periodicity [32, 83]. The state is therefore ultimately

attracted to the limit cycle for any starting point, out to it as shown in Fig. 1.8.

This peculiar property of physical systems directly affects their fluctuation behavior.
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Figure 1.8: Limit cycle in the Voltage-Intensity state space (Figure taken from [84]).

Effectively, as the amplitude is stable, after any perturbations in that direction, due

to noise, the state tends to return to the limit cycle and consequently the effects

of noise would remain small. However, as the phase is rather neutrally stable,

fluctuations induced by noise in the direction along the limit cycle do not experience

any restoring force to return the phase to its original value. Consequently, in the

presence of noise, the state point walks randomly along the limit cycle, or in other

words, the phase undergoes a diffusion process.

a)

b)

c)

Figure 1.9: Phase diffusion in the state-space

(a) and the time-domain (b), and time evo-

lution of P (φ(t), t) (c); all cases assuming

t1 < t2 (Figure taken from [84]).

Given the necessity to get around the

phase noise (at least to lower it at acceptable

level), some earlier pioneering works were

devoted to oscillator phase noise to elucidate

its fundamental mechanism [85, 86] and re-

cent works such as those in [84] pointed out

that phase noise can induce a damping of the

amplitude. To clearly understand the effects

of phase noise, let us perform a thought ex-

periment by considering an ensemble com-

posed of sufficiently large number of identi-

cal oscillators starting with the same initial

phase conditions (for instance zero at t = 0).

In voltage-intensity phase space as shown in

Fig. 1.9 (a) (right), the state points of the

ensemble of all the oscillators are all in top of one to another. Thus, the signals from

the ensemble are all also on top of one to another since the oscillators are at the same

initial state [Fig. 1.9 (b) (right)] and as consequence the time-dependent probability
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distribution of the phase4 p(φ(t), t) is a delta function [Fig. 1.9 (c) (right)].

However, as the time elapses, the rotating oscillation points diffuse along the

limit cycle [see Fig. 1.9 (a) (center)], leading to incoherent oscillator signals [see

Fig. 1.9 (b) (center)] and the probability distribution spreads out [see Fig. 1.9 (c)

(center)]. This spreading out is typically measured in term of the diffusion parameter

which indicates how fast the phase diffusion occurs. For sufficiently long time, the

rotating oscillation points eventually spreading over the entire limit cycle [see Fig. 1.9

(a) (right)], the oscillator signals are completely incoherent [see Fig. 1.9 (b) (right)]

and the probability distribution looks similar to a Lorentzian with shorter shape and

fatter [see Fig. 1.9 (c) (right)]. This implies that the oscillator will completely lose its

initial phase information after a sufficiently long time. Therefore, the performance

of any system running as oscillator is critically determined by the phase noise.

1.4.2 Reduction of phase noise in oscillators

To reduce the phase noise in oscillators, the first requirement consists in optimiz-

ing the components used. Then the noise can be further reduced using alternative

techniques. Out of those, the noise filtering technique [87], the noise-to carrier ratio

minimization [88], the exploitation of time variance [89], the use of devices such as

coupled oscillators [90] and the use of resonators having good quality factor [91]

have been explored. In the optical case, microwave generations based on external

modulation [92] and those using a dual-wavelength lasers [93] are examples of de-

vices operating with low phase noise. Recent theoretical study of opto-electronic

oscillators phase noise confirmed that the use of a long delay line plays a main role

in lowering the phase noise [94]. Within the frame of this thesis, we will also provide

more details to such systems.

1.5 Dissertation Organization

After the proofs of principles, the main goals of research in the field of chaos-based

communications are related to performance and to security issues. This thesis in-

tends to identify and to propose solutions to some of the drawbacks encountered

in chaos-based communications. This challenge at some point requires the re-

evaluation and adaptation of existing schemes, and often require the development of

new setups. In the context of microwave generations, we also study the possibility

of further reducing the phase noise in current electro-optic devices. The dissertation

is organized as follows

4P (φ(t), t)dφ represents the probability for the phase to be in (φ, dφ) for a given time, t.
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• Chapter 2 gives an overview on the basic systems involved in practical experi-

ments. We also describe in detail how the receivers are built.

• Chapter 3 points out the loopholes in the systems studied in chapter 2 and

justifies the need to strengthen their security. Particular attention is paid to

delay time identification which is an ingredient necessary for chaotic system

reconstructions.

• In chapter 4, we study the dynamics of an electro-optic delay system when

besides the usual feedback, an additional feedback is applied to the light source.

We describe the system in detail, and investigate effects of this extra feedback

on the dynamics and on the performance for chaos communications.

• Chapter 5 is devoted to the study of a system with two phase-chaos electro-

optic loops connected in serial. We use this scheme to implement a digital

key which besides being an ingredient necessary for successful decoding, also

provides concealment of the delay time.

• Chapter 6 studies electro-optic phase chaos systems with two chains connected

in parallel and with a receiver that operates in semi-closed loop. In particular

we also investigate the conditions of high quality synchronization.

• Chapter 7 deals with the effects of fiber propagation on broadband chaos. The-

oretical and experimental approaches are used to explore different ways to over-

come the dispersion effects.

• In Chapter 8, we study an opto-electronic system with a double loop for ultra-

pure microwave generations. The problem of phase noise reduction is investi-

gated.

• Chapter 9 summarizes the main results of the thesis and proposes some per-

spectives for future investigations.



Chapter 2

Broadband Chaos Generators

Using Semiconductor Lasers

In this chapter, we focus on the properties of nonlinear opto-electronic systems for

broadband chaos-based communications. In particular we review the three most

used configurations: semiconductor lasers with all-optical feedback, intensity chaos

electro-optic delay systems, and phase chaos electro-optic delay systems. All these

three configurations have been implemented in field experiments carried out using

installed optical fiber in different cities [74, 75].

The chapter is organized as follows: In Sec. 2.1, we briefly describe the case

of SL subject to all-optical feedback. Secs. 2.2 and 2.3 are devoted to electro-optic

systems generating chaos in intensity and in phase, respectively. Finally a brief

conclusion is given at the end of the chapter.

2.1 Semiconductor Lasers with All-optical Feedback

Figure 2.1: Scheme for chaos synchronization

of semiconductor lasers (SLs) with optical feed-

back. (a) Configuration using a closed-loop re-

ceiver. (b) Configuration using an open-loop

receiver.

One of the most fundamental configura-

tions used to generate a high-dimensional

chaotic optical output is a single-mode

semiconductor lasers with optical feed-

back. The feedback is induced from a

fraction of the output radiation reflected

back to the active region of the laser via

an external mirror [see Fig. 2.1]. The dy-

namics of such system can be described

by the Lang and Kobayashi equations

in terms of complex electric field E(t)

and carrier number N (t) inside the active

layer [60]. For the emitter, such equations

29
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are

dE(t)

dt
=

1 + ia

2

(

gm
N −N0

1 + ̺|E(t)|2 − γ

)

E(t) + κE(t− T )e−iω0T ,

dN (t)

dt
= J0 − γeN (t)− gm

N −N0

1 + ̺|E(t)|2 |E(t)|
2, (2.1)

where i2 = −1, the carrier lifetime 1/γe is defined as the average time it takes an

excess of carriers to recombine, the photons lifetime 1/γ is a time constant that

describes the decay of energy in a cavity, gm is the gain parameter, N0 is the carrier

number at transparency, ω0 is the free running frequency of the solitary laser, a is

the linewidth enhancement factor (also known as α-factor)1, T is the external cavity

round-trip after one reflection, κ is the feedback strength, J0 the injected current

and ̺ is the nonlinear saturation factor. The gain saturation factor given by (1+̺I)

is included in [61] to summarize a set of physical effects that eventually bound the

material gain as the number of intracavity photons increases. The threshold current

which corresponds to the minimum value beyond which all the losses (absorption,

etc..) are compensated is given by

Jth = γe(
γ

gm
+N0). (2.2)

The behavior of the laser mostly depends on the system parameters. The easily

experimentally accessible ones are the injection current J0, the feedback strength

κ and the round trip delay time T . For numerical simulations, we consider the

following parameters: γ = 5×1011 s−1, γe = 5×108 s−1, a = 5, gm = 1.5×10−8 ps−1,

N0 = 1.2×108, ̺ = 2×10−7 [41, 95]. For these parameters the solitary laser threshold

current is Jth = 7.1 × 1016s−1 which corresponding to a threshold current intensity

of 11.8 mA. Through this thesis we will consider delay times larger than 0.85 ns.

These delay times are in to the so-called long cavity regime. In this regime, the

dynamics has similar characteristics for any feedback phase [96]. Therefore,we will

take the feedback phase ω0T (modulo 2π) to be zero.

Under moderate feedback rates, Eqs. (2.1) can develop chaotic behavior with

very high complexity due to the nonlinear nature of the lasers [96]. Fig. 2.2 shows

various route to chaos depending on the experimentally tunable parameter T when

considering κ as the bifurcation parameter. Figure 2.3 displays the power (a) and

the optical (b) spectra of the system for moderate feedback. It turns out that

this scheme can allow for the generation of chaotic carriers which span over several

Gigahertz.

1To avoid confusion with the α used as the fiber attenuation factor in chapter 7, here we use a instead of the

standard notation, α.
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Figure 2.2: Bifurcation diagrams with the feedback rate κ taken as the bifurcation parameter. It

shows the route to chaos for (left) T = 5 ns, (center) T = 1.2 ns, (right) T = 0.85 ns.
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Figure 2.3: Power (a) and optical (b) spectra for κ = 2.5 ns−1 and T = 1 ns.

Successful chaos-based communication using this scheme is based on synchro-

nization of an emitter master laser and a receiver slave laser which is achieved by

injecting part of the light emitted by the former into the latter. The associated re-

ceiver can be subject to its own feedback loop (closed loop configuration) [see Fig. 2.1

(a)] or not (open loop configuration) [see Fig. 2.1 (b)]. The receiver dynamics can

be described by

dE ′(t)

dt
=

1 + ia′

2

(

g′m
N ′ −N ′

0

1 + ̺′|E ′(t)|2 − γ′
)

E ′(t) + κ′E ′(t− T ′)e−iω
′

0T
′

+ κrE(t),

dN ′(t)

dt
= J ′

0 − γ′eN ′(t)− g′m
N ′ −N ′

0

1 + ̺′|E ′(t)|2 |E
′(t)|2, (2.3)

where the prime denotes the receiver parameters and variables. For open loop

receivers, κ′ = 0 while for closed loop receivers κ′ 6= 0. The term κrE(t) accounts

for the injection of the transmitter laser field into the receiver one. Ideally an open

loop receiver with identical parameters as the transmitter and choosing κr = κ,

can synchronize perfectly with the master since E ′(t) = E(t − T ) is a solution of

Eqs. (2.1) and (2.3) [97, 98].

However, this identical synchronization turns out to be quite difficult to achieve

since it immediately disappears as soon as there is some parameter mismatch [97].

Another possible synchronization in this system is the generalized synchronization

in which the power of the receiver P ′(t) ≃ α′P (t) [99]. While this synchronization
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does not correspond to a mathematical exact solution, it is usually good enough to

allow for message codification and decodification [41, 97].

The message can be encoded in several ways. As an example, it can be encoded

by modulating the transmitter chaotic intensity output so that the transmitted

signal is given by

PT (t) = (1 + αmm(t))P (t), (2.4)

where PT (t) is the intensity of the transmitted signal including the message while

P (t) ∝ |E(t)|2 is the intensity of the carrier only, αm is the amplitude of the mes-

sage. In this case, the message can be recovered at the receiver side through the

operation m′(t) = (1 − P (t)/P ′(t))/αm where P ′(t) ∝ |E ′(t)|2. Thus when P ′(t)

synchronizes with P (t), the message can be recovered. The quality of the recov-

ered message will therefore depend on the synchronization quality. At this point,

the performance depends on the receiver configuration [95]. It was claimed that

an open loop receiver configuration is mechanically more stable, easier to imple-

ment and very robust against frequency detuning and small parameters mismatch

[42, 100], and has a shorter resynchronization time in case the connection is sud-

denly interrupted [65, 97]. However, a proper decoding of the message demands a

larger amplitude of the message than the closed loop receiver configuration. This is

a serious drawback as a large amplitude of the encoded message compromises the

performance and security of the system. Therefore it is more suitable to use closed

loop receivers for which despite being sensitive to parameter mismatch, a relatively

large region of synchronization can be found [95, 97, 101].

2.2 Electro-optic Systems with Delay Generating Intensity

Chaos

Figure 2.4: Emitter setup of basic

electro-optic intensity chaos generator,

adapted from [103].

One of the systems belonging to the suitable

class of chaotic systems able to develop high

complexity was proposed by Goedgebuer et al.

in 2002 [102]. This system uses a nonlinear delay

feedback loop illuminated by a CW semiconduc-

tor laser (see Fig. 2.4). The nonlinearity is im-

plemented through a lithium niobate (LiNbO)3
Mach-Zehnder modulator, which is a customized

integrated optics telecom device. This architec-

ture has many advantages for optical communi-

cations. Through having good stability and con-

trollability in real conditions, it also has great
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architectural flexibility so that some components can be replaced to change differ-

ent parameters (bandwidth, noise, efficiency etc..) or even to modify the architecture

(additional delays, transformations etc..). Furthermore, it can be easily designed in

matched pair. The system is composed of:

• A CW semiconductor laser (SL) delivering a constant power P0 = hνI (where

h stands for the Planck constant, ν is the photon emission frequency and I ∝
|E(t)|2 the photon number).

• A Mach-Zehnder modulator (MZM): The light coming from the SL is evenly

split into the two arms of the MZM and interferes at its output. The refractive

index of one arm is modulated by the output voltage of an electronic driver.

The applied voltage has two components: a constant or DC component VB that

allows to select the operating point of the modulator; and a radio-frequency

(RF) component V (t) which is used to generate the chaos. The complex enve-

lope of the electric field at the MZM output can be written as

E(t) =
1

2
E0

{

1 + e
i
[

πV (t)
VπRF

+
πVB

VπDC

]

}

,

where VπRF and VπDc stand for the RF half-wave and the bias electrode half-

wave, respectively and E0 is the amplitude of the SL output. The optical output

power is given by

P (t) = P0 cos
2

[

πV (t)

2VπRF
+

πVB
2VπDC

]

,

where P0 = |E0|2/(µ0c), µ0 being the vacuum permeability and c the speed of

the light.

• A fiber delay line used to delay the optical signal in time. The fiber is assumed

not to be dispersive (independent to the frequency of delayed signal) so that

the delay time T is given by as T = L/Vg, where L is the fiber length while Vg
is the group velocity.

• An amplified photodiode with sensitivity S to detect the optical signal (inten-

sity) and convert it into an electrical signal,

• A RF driver whose output modulates the MZM and closes the delay loop. The

RF driver is naturally a filter which can be low-pass, high-pass or band-pass of

any order. Table 2.1 overviews the main fundamental 1st order filters.

Here, we assume that the RF driver behaves as a first-order bandpass linear

filter with gain G0. Thus the system can be described by the RF output voltage as
(

1 +
τ

θ

)

V (t) + τ
dV

dt
(t) +

1

θ

∫ t

t0

V (t′)dt′ = G0S0P (t− T ), (2.5)
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Filter kind Representation in time domain Bandwidth

Low-pass 1st order x(t) + τ dx(t)
dt

[0, fH = 1/(2πτ)]

high-pass 1st order x(t) + 1
θ

∫ t

t0
x(t′)dt′ [fB = 1/(2πθ),∞]

band-pass 1st order
(

1 + τ
θ

)

x(t) + τ dx(t)
dt

+ 1
θ

∫ t

t0
x(t′)dt′ [fB, fH ]

Table 2.1: Filters and their corresponding equations.
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Figure 2.5: Bifurcation diagram showing signal amplitude distribution in dependence on feedback

gain G for parameters τ = 20 ps, θ = 1.6 µs, G = 5, T = 30 ns and φ = π/4.

where η0 accounts for overall losses. Since we are going to consider systems for which

τ ≪ θ, the term τ/θ can be neglected as compared to 1.

The message m(t) is added within the chaotic carrier as shown in Fig. 2.4.

In practice, this is achieved through another SL having the same wavelength but

with orthogonal polarization in order to prevent for the interference between light

beams of the chaotic optical intensity carrier and the optical intensity binary data.

For security issues, fast polarization scrambling is required to prevent from a simple

polarization splitting attack on the transmission line. For the modeling purposes, we

introduce x(t) = πV (t)/(2VπRF ), u =
∫ t

t0
x(t′)dt′ so that the system can be described

by

x+ τ
dx

dt
+

1

θ
u = G

{

αmm(t− T ) + cos2 [x(t− T ) + φ]
}

, (2.6)

du

dt
= x, (2.7)

where the parameters are the fast cutoff time scale τ , the slow cutoff response time

θ, the offset phase φ = πVB/(2VπDC
) and the normalized electro-optical loop gain

G = πSG0P0η0/2VπRF while αm is the ratio between the message and the carrier

light beam. For high values of the bifurcation parameter G, the interplay between
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nonlinearity and delay generates a chaotic output. Typical parameters used to

induce strong chaotic behavior in this system are τ = 20 ps, θ = 1.6 µs, G = 5,

T = 30 ns and φ = π/4. Figure 2.5 displays the bifurcation diagram of such system

as a function of the feedback gain G. It can be seen that for large value of G, the

system is highly chaotic. Its Lyapunov dimension has been found to be greater than

1000 for T = 30 ns and G = 5 [104]. With such large dimension, one may expect

that it will be computationally very complex to reconstruct the high-dimensional

attractor from the time series.

To decrypt the encoded message a receiver is built similarly to the emitter

using an open loop configuration as shown in Fig. 2.6. The signal coming from the

emitter is split in two parts. One part is used to drive the nonlinear processing

branch that, in suitable conditions, regenerates the chaotic carrier without message

x′(t). The receiver can be described by

x′ + τ ′
dx′

dt
+

1

θ′
u′ = G′

{

αmm(t− T ) + cos2 [x(t− T ′) + φ′]
}

, (2.8)

du′

dt
= x′. (2.9)

In a back-to-back configuration, x′(t) synchronizes with x(t) for identical pa-

rameters. As shown in Fig. 2.6 the output of the receiver MZM is then detected by

the photodiode PD− and combined with the second part of the transmitted signal

detected by PD+. Therefore, the message is obtained by canceling the chaos in the

combiner. The output of the combiner reads

m′(t) ∝ G
{

αmm(t) + cos2 [x(t) + φ]
}

+G′ cos2 [x(t) + φ′] . (2.10)

Figure 2.6: Receiver setup of basic

electro-optic intensity chaos generator,

adapted from [103] .

The cancellation of the message is eas-

ily achieved experimentally operating the MZM

with a π−shifted static phase in the receiver (e.g.

φ′ = φ+π/2). Alternatively this could have been

done using balanced photodiodes and exchang-

ing their inputs or using an inverted amplifier at

the receiver. Note that for small mismatch, ac-

ceptable synchronization quality is still achieved

[105]. Moreover, practical demonstrations have

shown that even when the emitter and the re-

ceiver are located far one from another, good

synchronization quality (with BER of the order

10−7 for a message at 3 Gb/s) is obtained after

compensating for the fiber losses and its disper-

sion effects [74].
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2.3 Electro-optic Systems with Delay Generating Phase Chaos

Figure 2.7: Phase chaos emitter setup. MZI:

Mach-Zehnder interferometer; PD: photodi-

ode; PM: phase modulator; SL: semiconduc-

tor laser.

Encouraged by the performances obtained

from the previous system, a promising op-

tic phase chaos system has been recently

proposed [76, 75]. This setup has led to

the most efficient and the fastest experimen-

tal demonstration of chaos communication.

The schematic representation of such system

is shown in Fig. 2.7. In this system, the

intensity modulator MZM in Fig 2.4 is re-

placed by two other devices, namely a fast

phase modulator (PM) and an imbalanced

passive Mach-Zehnder interferometer (MZI),

with time imbalance longer than the charac-

teristic time of the phase modulation.

The transmitter thus consists of a CW distributed feedback semiconductor

laser feeding a LiNbO3 phase modulator with the wavelength λ = 2πc/ω0 = 1.55 µm.

This phase modulator having a halfwave voltage of Vπ, receives the electrical chaotic

input from a broadband RF driver, and translates this electrical signal modulation

into the optical phase while keeping the intensity unchanged. The optical phase

therefore changes proportionally to the voltage applied to the modulator, and the

time dependent phase shift introduced by the modulation is

ϕ(t) = π
V (t)

Vπ
. (2.11)

The message is mixed with the chaos through a second cascaded phase modulator,

which is assumed for simplicity to have the same Vπ. The message phase modulation

is performed by driving the modulator with a Vπ peak-to-peak voltage in order to

add a π phase shift, following the standard differential phase shift keying (DPSK)

modulation scheme. Hence, the encoded message introduces in practice an addi-

tional phase shift, so that the total optical phase at the output of the message phase

modulator reads:

ψ(t) = π
V (t)

Vπ
+ π

µm(t)

Vπ
, (2.12)

where µm(t) = ±Vπ is the message amplitude. The electric field has only one

polarization in our system, so that we can restrict ourselves to a scalar description

of the optical field. The modulator output is split in two parts, one is transmitted

through the channel while the other enters in the delay line. From Eq. (2.12), the
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complex electric field envelope with the message can be written as

E(t) = E0e
iψ(t) , (2.13)

where E0 is the constant field amplitude at the output of the SL. This envelope is

then optically delayed in time T while traveling through the optical feedback path

in the transmitter so that the total electric field at the MZI input can be written as

E(t) = E0e
i[ω0(t−T )+ψ(t−T )], (2.14)

where ω0 stands for the central frequency of the laser. The optical signal sub-

sequently crosses an imbalanced passive MZI that performs a nonlinear phase-to-

intensity conversion as follows

E ′(t) =
E0

2

{

e[iω0(t−T )+iψ(t−T )] + e[iω0(t−T−δT )+iψ(t−T−δT )]
}

=
E0

2
e[iω0(t−T )]

{

e[iψ(t−T )] + e[−iω0δT+iψ(t−T−δT )]
}

. (2.15)

This therefore evidences that this conversion is led by the mean of a nonlocal non-

linearity in time, since it is ruled by an intrinsic differential delay which should be

significantly greater than the typical phase variations timescale. The MZI imbalance

is also responsible for an extra constant phase ω0δT of the interference condition,

which corresponds to the static operating point of the nonlinear conversion. The

optical intensity at the MZI output is thus a nonlinear nonlocal transformation of

the phase modulation:

PTr(t) = P0 cos
2

{

1

2
[ω0δT + ψ(t− T )− ψ(t− T − δT )]

}

, (2.16)

where P0 = |E0|2/(µ0c). This optical intensity is then converted to the electrical

domain by a photodiode. The obtained electrical signal is then band-pass filtered

by the electronics of the feedback loop, whose RF frequency filtering process can be

modeled in the time domain by an integro-differential operator characterized by a

high- and a low-frequency cut-off. For sake of simplicity we assume that the filter

is linear and of second order, so that the dynamics of the input RF voltage at the

input of the chaos phase modulator obeys

V (t) + τ
dV

dt
(t) +

1

θ

∫ t

t0

V (t′)dt′ = η0G0SPTr(t) , (2.17)

where θ and τ are the characteristic response times attached to the low and high

cut-off frequencies of the filter respectively, G0 stands for the amplifier gain, η0
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Figure 2.8: Bifurcation diagram showing signal amplitude distribution in dependence on feedback

gain G for parameters τ = 20 ps, θ = 1.6 µs, G = 5, T = 30 ns and φ = π/4.

accounts for overall optical losses, and S is the photodetection efficiency. Note that

the condition τ ≪ θ has been taken into account in the above equation (easily

fulfilled assumption, since the feedback filtering is broadband for telecom devices).

For mathematical convenience we introduce the dimensionless variables x(t) and

m(t) as follows:

x(t) = π
V (t)

2Vπ
≡ ϕ(t)

2
, (2.18)

m(t) = π
µm(t)

2Vπ
, (2.19)

so that Eq. (2.17) can be rewritten in the dimensionless form as

x(t) + τ
dx

dt
(t) +

1

θ
u = G cos2

{

∆(x)T +∆(m)T + Φ0

}

, (2.20)

du

dt
= x, (2.21)

where and ∆(F )T = F (t− T )− F (t− T − δT ), G = πη0G0SP0/(2Vπ) is the overall

feedback loop gain, and Φ0 = ω0δT/2 is a constant offset phase. This equation

rules the dynamics of the input RF voltage at the first phase modulator. The

delay term therefore involves the difference x(t − T ) − x(t − T − δT ) instead of

x(t − T ) as in the intensity chaos system. For the same parameters as used for

the intensity chaos system, the dynamical properties of the system are intrinsically

different [76]. Figure. 2.8 displays the bifurcation diagram for this system as G

increases for parameters τ = 20 ps, θ = 1.6 µs, T = 30 ns, φ = π/4, and δT =

400 ps. An interesting remark is that the threshold beyond which the system starts
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oscillating is reduced by factor 2 compared to the intensity chaos system, due to the

fact that, x(t − T ) − x(t − T − δT ) have variations whose amplitude can be twice

higher than that of x(t − T ). Besides, the message is embedded within the phase

while it was integrated in amplitude in the previous case.

The receiver is built in the symmetric way to the transmitter. In practice the

offset phase Φ0 is strongly sensitive to environmental fluctuations, and it needs to

be actively controlled through a fine tuning of δT (e.g. thermal control between the

imbalanced arms of the interferometer): the chaotic masking thus remains deter-

ministic and controllable, which is a required condition for proper chaos replication

at the receiver side.

The modeling of chaos cancellation can be described following a similar ap-

proach as previously done for the emitter. The receiver equations can be written

as

x′(t) + τ ′
dx′

dt
(t) +

1

θ′
u′ = G′ cos2

{

∆(x)T +∆(m)T ′ + Φ′

0

}

, (2.22)

du′

dt
= x. (2.23)

Figure 2.9: Phase chaos receiver setup. MZI:

Mach-Zehnder interferometer; PD: photodi-

ode; PM: phase modulator.

In order to remove the chaotic masking, the

replicated chaos needs to have the oppo-

site sign with respect to the emitter one.

As already stated, this is easily achieved

experimentally operating the MZI with a

π−shifted static phase. When the receiver

applies an additional phase modulation onto

the received light beam, proportionally to

the signal x′(t), this leads to a total optical

phase modulation proportional to (x + x′)

at the chaos cancellation output. A DPSK

message modulation is then applied at the

transmitter to retrieve m(t) as stated before, due to the anti-phase chaos replica ex-

pected for x′(t). The resulting light beam can then be processed through a standard

DPSK demodulator matched with the message bit rate (imbalanced MZI with δTm
in Fig.2.9). The photodiode detects

m′(t) ∝
∣

∣

∣
e2i[x(t)+x

′(t)] + e2i[x(t−δTm)+x′(t−δTm)]
∣

∣

∣

2

. (2.24)

This scheme has led to a recovered message at 10 Gb/s with a BER of 10−7 over

more than 100 km [75]. More details in fiber dispersion effects regarding this scheme

will be provided in chapter 7. In order to improve the security in such systems, it

is worth to first identify the loopholes. The next chapter is devoted to this issue.
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2.4 Conclusions

In this chapter, we have overviewed the three main configurations widely investigated

for optical communication applications and which have been successfully tested in

the installed optical networks. For each system, we have provided details in the

emitter and receiver modeling, as well as the way to encode and decode the message.



Chapter 3

Loopholes in Opto-electronic

Delay Devices

Since the security of the chaotic hardware cryptography schemes strongly depends

on the concealment of the system parameters, it is worth to carefully investigate

different ways which can lead to the extraction of the parameters. An eventual

eavesdropper can have access to the transmission channel and may be able to record

all the necessary data, at least in principle. The eavesdropper can then apply time

series analysis techniques to these data in order to identify the system parameters.

Thus, each variable that can be intercepted or reconstructed from the intercepted

signal, should be carefully analyzed in order to estimate the security level of the

system. Once the critical parameters are identified, the eavesdropper can try to

reconstruct the receiver or to decode the message using an alternative technique

such as neural networks [106]. One of the most critical parameters in the systems

described in chapter 2 is the delay time.

The outline of the chapter is as follows. Sec. 3.1 describes the different delay

time identification techniques used in this thesis. In Sec. 3.2 we investigate the

delay time identification in semiconductor lasers with optical feedback from the

intensity and phase time-series as well as from field quadratures. In Sec. 3.3 and

Sec. 3.4 we apply the delay identification techniques to the intensity and phase

chaos electro-optical systems. In Sec. 3.5 the same techniques are applied for delay

time identification from the transmitted signals while in Sec. 3.6 we attempt the

identification of other system parameters. Sec. 3.7 gives some concluding remarks.

3.1 Delay Time Identification Techniques

The delay time is, to our knowledge, the necessary ingredient in all approaches to

replicate the underlying dynamics in chaotic delay systems. For example, even in

hyper-chaotic systems the knowledge of the delay time allows for the projection

of the high-dimensional attractor onto a reduced dimensional phase space, which

41
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makes the system more vulnerable [107]. Several techniques can be used to identify

the delay time. Among them, we find

• Autocorrelation (AC) function: It measures the linear relation between the

variable x(t) and its time-shifted version x(t + s). For continuous systems, it

is defined as

C(s) =

∫ +∞

−∞

x(t)x(t + s)dt, (3.1)

When scanning over s, the delay time is extracted as the first pronounced peak

or valley given by the AC after the peak at s = 0. Other peaks can be also

observed at multiples of the delay time period, but with smaller amplitude.

• Delayed mutual information (DMI): It measures the amount of the informa-

tion that can be obtained about one variable by observing another. The DMI

between x(t) and x(t + s) is a positive quantity defined as

DMI(s) =
∑

x(t), x(t+s)

p(x(t), x(t + s)) ln
p(x(t), x(t + s))

p(x(t))p(x(t + s)))
, (3.2)

p(x(t)) is the probability distribution function of x(t) while p(x(t), x(t + s))

stands for the joint probability distribution function between x(t) and x(t+ s)

[108, 109]. The calculation of the DMI also gives a peak at the delay time and

at its multiples.

• Time distribution extrema (TDE): TDE relies on a statistical analysis of the

time intervals between extrema in the time series. One first determines extrema

in the time series and then analyzes the time intervals between them [110, 111].

For different values of lag-time s, we count the number of pairs of extrema

separated in time by s, normalized to the total number of extrema. In other

words, it gives an estimation of the probability to find a pair of extrema in x(t)

separated by s, given a sufficiently number of extrema.

• Filling factor (FF): For a given equation ẋ(t) = F [x(t− s), x(t)], we project the

trajectory ~x(t)=(x(t− s), x(t), ẋ(t)) from the infinite dimensional phase space

into a three-dimensional space which is spanned by the coordinates (x(t − s),

x(t), ẋ(t))[112, 113]. When s = T , the trajectory (x(t−s), x(t), ẋ(t)) is confined
to a surface, leading therefore to a minimum fractal dimension (between 1 and

2). A potential way to compute the FF consists in covering the (x(t− s), x(t),

ẋ(t)) by cubes and count the number of cubes which has been visited at least

one time, normalized to the total number of cubes. This method can be quite

simplified by working only with the extrema of x(t), e.g. ẋ(t) = 0. In this
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case, the trajectory is reduced to (xext(t− s), xext(t)) where xext(t) stands for

extrema of x(t) and therefore the cubes are replaced by squares. Also, it is

convenient to have a long time series.

It is known that the AC and the DMI overestimate the delay time by an amount

related to the fastest time scale of the system intrinsic dynamics, while the TDE

and the FF show minimum at the exact value of delay time. Next we use these

estimators to identify the delay time in the systems described in chapter 2. We also

investigate its robustness of each estimator to noise.

3.2 Delay Time Identification in Chaotic Semiconductor

Lasers with All-optical Feedback

In SL with all-optical feedback two important time scales coexist, namely the re-

laxation oscillation period τRo and the external cavity round-trip time T [114]. It

should be noted that for the solitary laser the relaxation-oscillation period τR0 is

given by

τR0 =
2π

√

γeγ(b− 1)− γeb2/4
, (3.3)

where b = gm (J0 − γeN0) / (γγe). Thus with the parameters given in chapter 2,

τR0 = 0.75 ns. It has been suggested that the delay time can be hidden when

parameters are such that delay time is close to the relaxation period of the laser

operating with moderate feedback [115, 116]. In that case the interplay between

the intrinsic SL dynamics and the delayed feedback leads to a concealment of the

delay time. These results have been experimentally verified recently [117]. Both

theoretical and experimental results were obtained by computing statistical quanti-

fiers from intensity time series. However, these results can depend on the observable

[118]. Since the phase of the electrical field is also a part of the signal transmitted

through the public channel, it can be also used by an eventual eavesdropper for

data analysis. In this section we discuss the role of the phase in the delay time

identification [119]. In particular we show that for SL with optical feedback even if

the delay time is hidden in the intensity time series it can be readily identified from

the phase or from quadrature time series.

Figure 3.1 displays the results for the autocorrelation (left column) and delayed

mutual information (right column) as computed from intensity time series. Here we

only consider the cases for which the system is chaotic. For moderate values of the

feedback rate, such as κ = 2.5 ns−1 [Fig. 3.1 (a) and (d)] and κ = 5 ns−1 [Fig. 3.1 (b)

and (e)], the delay time (vertical dashed line) cannot be easily identified. As shown
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Figure 3.1: Autocorrelation (left) and DMI (right) for κ = 2.5 ns−1 (a, d), κ = 5 ns−1 (b, e)

and κ = 10 ns−1 (c, f) obtained from the intensity time series, |E(t)|2. The vertical dashed line

indicates the delay time T = 1 ns. For the parameters chosen τR0 = 0.75 ns.

in [115] the more pronounced maxima of the DMI and minima of C(s) are located

around τR0/2 while there is no significant trace of the delay time. This is an effect of

the interplay between the feedback and the intrinsic SL dynamics. It is worth noting

that the value of T is within the interval [τR0 + 0.15 ns, τR0 + 0.35 ns] which was

found as leading to well delay time concealment for moderate feedback rate when

computing the quantifiers from the intensity time series [115]. For larger feedback

rate, the contribution of the delay term in Eq. (2.1) becomes more important, so

that the delay time is no longer concealed. For example for κ = 10 ns−1 a clear peak

is observed around the delay time both in autocorrelation [Fig. 3.1 (c)] and DMI

[Fig. 3.1 (f)] functions as also shown in [115, 116] for the same parameters.

While the intensity can be measured by an eventual eavesdropper through a

simple detection (using a photodiode) of the transmitted signal, the phase ϕ(t) ≡
Arg[E(t)] of the transmitted signal can also be detected although it requires the use

of more sophisticated devices such as an optical 90o hybrid coupler [120, 121], and it

is more difficult to measure experimentally. The knowledge of these two components

allows the reconstruction of the real and the imaginary parts of the complex field.

Figure 3.2 displays C(s) (left column) and DMI (right column) computed from

the phase ϕ(t) (solid line) recovered within the interval [−π, π], and from the real

part Re [E(t)] (dashed line) of the electric field. As shown, the delay time can be
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Figure 3.2: Autocorrelation (left) and DMI (right) as in Fig. 3.1 computed from ϕ(t) (solid line)

and Re[E(t)] (dotted line).

identified even for κ = 2.5 ns−1 in both the autocorrelation and the DMI, although

the DMI peak is narrower and thus more distinguishable. The peak for the DMI

appears at a slightly larger value as compared to the actual value of the delay time

while the peak for the autocorrelation is located very close to the actual delay time.

As the feedback rate increases, both the autocorrelation and DMI peaks become

narrower and more distinguishable while the location of the DMI peak gets closer

to the actual delay time. Finally, for κ = 10 ns−1, for which the delay signature was

already found from intensity series, the peaks in C(s) and in DMI computed from

ϕ(t) or Re [E(t)] are sharper and more precisely located than those obtained from

the intensity time series. We have found that the delay time is identified from ϕ(t)

or Re [E(t)] even when T = τR0. For the imaginary part of the field or for other

quadratures one obtains similar results to those obtained for the real part.

Globally, the peak for the phase in the DMI is larger than that obtained from

the real part of the field, while the opposite occurs for the autocorrelation. This

indicates that phase indeed carries a nonlinear relationship between its state and its

lagged-version. Linear relationships, such as the ones measured by the correlation,

turns out to be stronger for the quadratures. The different results for intensity and

phase can be explained from the dynamics. From Eqs. (2.1), the phase equation
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Figure 3.3: Size of the DMI peak signaling the delay time computed from |E(t)|2 (a, d), Arg(E(t))

(b, e) and Re(E(t)) (c, f). For the left column T = 1 ns while the right one T = 5 ns. Solid lines

and bars correspond to the background mean value and standard deviation.

can be written as

dϕ

dt
=
a

2

(

gm
N −N0

1 + ̺|E(t)|2 − γ

)

+ κ
|E(t− T )|
|E(t)| sin [ϕ(t− T )− ϕ(t)− ω0T ] . (3.4)

The last term tends to keep constant the difference ϕ(t − T ) − ϕ(t), so that the

dynamics of ϕ(t−T ) is strongly linked to that of ϕ(t). On the contrary, the equation

for the intensity does not have a term depending on |E(t)|2−|E(t−T )|2 which could

push |E(t)|2 close to |E(t− T )|2.
Figure 3.3 (left column) shows the size of the peak found in the DMI computed

from the intensity (upper row), from the phase (middle row) and from Re [E(t)]
(bottom row) as function of the feedback strength for T = 1 ns. As an indication

of the background level we also show the average and standard deviation (vertical

bars) of the DMI on the interval from 2 to 4 ns. Two main regions can be identified:

For κ & 6 ns−1 it is possible to distinguish a peak around the delay time from the

background level independently to the variable used. Furthermore, in this region the

size of the peaks increases linearly with the feedback strength. For smaller values of

κ the size of the peak depends strongly on the variable chosen to compute the DMI.

While the peak obtained from the intensity time series merges with the background,
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Figure 3.4: Location of the DMI peak for T = 1 ns (a) and T = 5 ns (b) when computing the DMI

from |E(t)|2 (•), Arg(E(t)) (H) and Re(E(t)) (+). The horizontal dashed line indicates the delay

time location T = 1 ns (a) and T = 5 ns (b).

the one from the phase or the real part remains always distinguishable.

For T = 5 ns [Fig. 3.3 (right column)] the delay time can be identified using

DMI even from the intensity time trace [115]. Still, as shown in the figure, the peak

can be better identified from the background level (here calculated in the interval

from 5.5 to 7.5 ns) when the DMI is computed from the phase or a quadrature.

Fig. 3.4 compares the location of the peaks in DMI computed from different

variables. It turns out that the real part Re [E(t)] appears as the variable from

which the delay time signature can be retrieved with more accuracy even when the

delay time is close to the relaxation period. The peak for the intensity time series is

not only the less visible, as discussed before, it is also the one located farther away

from the actual delay time.

In summary, our results show that in SL with external feedback the delay

time can be identified from the phase or quadrature time series by the means of

autocorrelation or DMI even when it is concealed in the intensity time series. Besides

providing more visible peaks, phase and quadratures also lead to a more precise

location of the peak. The difference in the information carried out by intensity and

phase can be further illustrated by looking at the power and optical spectra. While

the power spectrum computed from the intensity does not reveal the presence of

a delay time [Fig. 3.5 (a) and (b)] corresponding to κ = 2.5 ns−1 and κ = 5 ns−1

respectively, the optical spectrum, which depends on both the intensity and the

phase of the laser, hints the presence of a delay time, Fig. 3.5 (d) and (e). The

delay time defines the spacing between the modes present around the maximum of

the optical spectrum. For κ = 10 ns−1 for which the delay time can be identified

from both intensity and phase time series, it is also seen that both the power and

the optical spectra reveal that signature [Fig. 3.5 (c) and (f)]. In SL the α-factor

a determines the strength of the coupling between amplitude and phase dynamics.

Increasing a as shown in Fig. 3.6 the coupling becomes stronger and thus the size
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Figure 3.5: Power (left) and optical (right) spectra for κ = 2.5 ns−1 (top row), κ = 5 ns−1 (center

row) and κ = 10 ns−1 (bottom row) considering T = 1 ns.

Figure 3.6: Autocorrelation (a) and DMI (b) for κ = 2.5 ns−1, T = 1 ns and a = 10 computed

from ϕ(t) (solid line) and Re[E(t)] (dotted line).

of the DMI or autocorrelation peaks computed from the phase decrease. We have

checked that for the practical values of the α-factor a, the peak is always visible

around the delay time, at least in DMI.

While the results presented in this section do not take into account the noise,

we note that the autocorrelation and the DMI are robust to noise so that the results

obtained with noisy time series are similar. The spontaneous emission noise of SL

can be modeled by adding a stochastic term to the Lang-Kobayashi equations as
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Figure 3.7: Autocorrelation (left) and DMI (right) as in Fig. 3.2 but considering Dm = 103 s−1

computed from ϕ(t) (solid line) and Re[E(t)] (dotted line).

follows

dE(t)

dt
=

1 + ia

2

(

gm
N −N0

1 + ̺|E(t)|2 − γ

)

E(t) + κET e
−iω0T +

√

2DmN (t)χ(t),

dN (t)

dt
= J0 − γeN (t)− gm

N −N0

1 + ̺|E(t)|2 |E(t)|
2, (3.5)

where Dm is the spontaneous emission rate, ET ≡ E(t− T ) and χ(t) is a Gaussian

white noise of zero mean and correlation < χ(t)χ∗(t′) >= 2δ(t− t′) [122]. As shown

in Fig. 3.7, the results obtained with noise are similar to that obtained without it,

both in the autocorrelation and in the DMI.

3.3 Delay Time Identification in Intensity Chaos

Opto-electronic Systems

Here we focus on delay time identification in the intensity chaos system considering

G = 5 which leads to hyper-chaotic dynamics. Figure 3.8 (two top rows) shows the

results using the techniques described before applied to the time series x(t). As it can
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Figure 3.8: (a), (e) AC, (b), (f) DMI, (c), (g) TDE and (d), (h) FF functions as a function of an

embedding delay s computed from 107 data points corresponding to a 10 µs time series generated

from Eqs. (2.6) and (2.7). (a)-(d) correspond to the case without noise. (e)-(f) correspond to a

time series obtained by adding a Gaussian white noise of amplitude 10% of the carrier amplitude.

All the estimator results are normalized to 1.

be seen, a very pronounced valley or peak is found around 30 ns, which corresponds

to the delay time. The results were obtained using 107 data points corresponding to

a time series of 10 µs recorded after the transient time of 30 µs. The peak appears

in AC and DMI at a position which overestimates the delay time by τ/2 (the lowest

scale of the model). In order to point out the robustness of different estimators, we
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deliberately add a Gaussian white noise of amplitude 10% of the carrier amplitude

to the time series generated from free-noise system. Figure 3.8 (two bottom rows)

displays the results when applying the delay time identification techniques to the

noisy time series. It turns out that, despite the noise, all the techniques reveal the

delay time signature. However, while the peak/valley size in AC (e) and DMI (f)

is almost the same compared to that found for the free-noise system, e.g (a) and

(b) respectively, the visibility of the peak/valley obtained in TDE (g) and FF (h)

is significantly reduced as compared to (c) and (d). These results indicate that

TDE and FF are sensitive to noise and therefore for a further increase of the noise

amplitude, they can become inefficient to identify the delay time.

3.4 Delay Time Identification in Phase Chaos

Opto-electronic Systems

As the intrinsic properties of this system are different, this could also affect the delay

time identification. Assuming that the time series x(t) from Eqs. (2.20) and (2.21)

can be intercepted, a similar approach can be followed for delay-time retrieving.

Figures 3.9 (two top rows) show the results for delay time identification considering

a free-noise system. One can properly identify peaks or valleys at 30 ns and 30.4 ns

corresponding to delay times T and T + δT , respectively. However, it is seen that

the peak sizes are much smaller compared to those found from the intensity setup

described by Eqs. (2.6) and (2.7). Note that for the autocorrelation, for example,

the peak is 10 times smaller while the DMI peak is about 70 times smaller. This

can be explained by the interplay between the two delays. On the other hand, the

analysis of Fig. 3.9 (e) and (f) confirm the robustness of AC and DMI to noise, while

the TDE (g) and FF (h) do not allow to discriminate the peak at the delay time to

the background noise when analyzing a 10%-noise system. In a practical situation,

these two last techniques can be inefficient for delay time identification since real

systems are always noisy.

The results in the delay time identification were found out in the previous

sections by analyzing the ideal signal x(t) which in some cases is not precisely the

one transmitted. Besides, the message can also influences the dynamics and have

an effect on delay time identification. This is discussed in the next section.
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Figure 3.9: (a), (e) AC, (b), (f) DMI, (c), (g) TDE and (d), (h) FF functions as a function of an

embedding delay s computed from 107 data points corresponding to a 10 µs time series generated

from Eqs. (2.20) and (2.21). (e)-(d) correspond to the case without noise. (e)-(f) correspond to a

time series obtained by adding a Gaussian white noise of amplitude 10% of the carrier amplitude.

All the estimator results are normalized to 1.

3.5 Delay Time Identification from Detected Signal with

Message

The first stage in eavesdropping information consists in its interception using appro-

priate devices. The main objective of this section is to analyze the signal which can
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be effectively detected through the transmission channel. The question is addressed

considering the intensity and phase chaos electro-optical generators discussed pre-

viously. Note that for the all-optical feedback system, the real detected output

is proportional to |E(t)|2, already analyzed in the previous section. Through this

scheme, the message is embedded with the chaos using chaos masking procedure.

Since the message is added outside of the carrier generator, its amplitude should

be very small to prevent for direct detection of an intruder and thus cannot really

modify the carrier properties so as to blur the delay time.

3.5.1 Intensity chaos model

For the intensity chaos scheme, the overall power that an eavesdropper can detect

using photodiode placed in the optical transmission line can be written as

£(t) = G′
{

αmm(t) + cos2[x(t− T ) + φ]
}

, (3.6)

where G′ = PS is the amplitude of transmitted signal with P being the amplitude

of the power launched into the fiber while S is the sensitivity of the photodiode

used for detection. Figure 3.10 displays the size of the peaks at delay time T when

the quantifiers are computed from £(t) as the bit rate is varied both in AC (a) and

DMI (b) considering different message amplitudes. It turns out that, despite the

message, a clear peak emerges closer to the delay time as it was already the case

when analyzing x(t) for a system without message. For high message amplitude or

high bit rate, the peaks on the estimators decrease but they are always visible at

least in the DMI. These results definitively show that in intensity chaos scheme, the

delay time can be extracted even when the message is embedded. Not even αm = 1,

which means that the amplitude of the message is equal to that of the carrier, can

conceal the delay time. Note that αm = 1 is too large for secure transmission since

the message can be partially directly detected in £(t).

3.5.2 Phase chaos model

When the data are encoded within a phase, it becomes necessary to use, before

photodetectors, devices which can enable to capture the phase variations. Among

others, it is possible to use a Fabry-Perot or a Mach-Zehnder interferometer to first

convert the phase variations into intensity variations, or optical hybrid couplers

to directly estimate the phase. If we assume the message as a non-return to zero

sequence having an amplitude matching the cascaded PM halfwave voltage, m(t)

then takes logical 0 when no bit is transmitted and π/2 when a bit 1 is transmitted.

When the message is encoded through this topology, the optical signal which leaves
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Figure 3.10: Recorded peak size at T for a message amplitude αmG with αm = 1 (• symbol)

and αm = 0.4 (∗ symbol) versus the bit rate, (a) from AC function, (b) from DMI. The red line

corresponds to the mean value of the maxima given by AC or DMI while the bars (green in color)

stand for the deviation around this mean value.

the emitter to the receiver is given by

E(t) = E0e
2i[x(t)+m(t)], (3.7)

where E0 is the constant amplitude of the electric field at the SL output. Here,

we use a MZI with imbalanced delay δTm to convert the chaotic phase variations

carrying the message into the intensity ones. The total power which can be detected

after transforming the phase into the intensity variations is

£(t) = G′ cos2 [(x(t)− x(t− δTm) +m(t)−m(t− δTm)] , (3.8)

We assume for our numerical calculations SP = 5 and δTm = 0.5 ns. Figure 3.11

displays the peaks given at delay times T (• symbol) and T+δT (∗ symbol) obtained

both in AC (a) and DMI (b) considering a time series given by Eq. (3.8). In (a), the

peaks in the AC are identifiable only when no message is present or with a message

with bit rate less than 1/δT . The peaks approach the noise background as the bit

rate is larger than the inverse of the delay time difference 1/δT , e.g. 2.5 Gb/s.

Surprisingly, no distinguishable peak is found in the DMI [see Fig. 3.11 b)], even in

the absence of the message. The inset plot in Fig. 3.11 illustrates the case without

message (blue color), with a 1 Gb/s message (black color) and with a message at

10 Gb/s (red color).
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Figure 3.11: Recorded peak size at T (• symbol) and T +δT (∗ symbol) versus the bit rate, a) from

autocorrelation function, b) from mutual information. The dashed (red in color) line corresponds

to the mean value of the background noise considering the highest 2000 spurious peaks while the

bars (green in color) stand for the deviation around this mean value. The inset plot illustrates

the case without message (blue color), with a 1 Gb/s message (black color) and with a 10 Gb/s

message (red color).

3.6 Identification of Other Parameters

In chaos communication schemes, the extraction of delay time is not enough for

unmasking the underlying dynamics. Nonetheless it can contribute to recover other

system parameters. In this section we show that once the delay time is identified,

systems described by scalar equation can be fully reconstructed. The full recon-

struction of a nonlinear system with multiples variables is much more difficult than

that of a scalar system.

3.6.1 Intensity chaos opto-electronic system

For intensity chaos schemes as described by Eqs. (2.6) and (2.7), besides the delay

time other parameters of the system are the high (low) cutoff response times τ (θ),

and the overall loop gain G. They are presumed to be unknown by an intruder.

However, real keys are only those which cannot be revealed even using identification

methods for chaotic series. On a wavelength chaotic generator which is modeled

by a scalar delay system similar to the one for intensity chaos but without a low

cutoff filter, Udaltsov et al. have shown that it is possible to recover the parameters,

once the delay time is identified [108]. They used the spline interpolation to identify

the nonlinear function form as a sin2(.)-function from time series λ(t), then they

assumed the nonlinear function to be A sin2[Bλ(t) +C] where the parameters A, B

and C were subsequently identified as that for which the minimum synchronization
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Figure 3.12: (a) A part of the original (red color) and the reconstructed (green color) time series

generated from Eqs. (2.6) and (2.7). (b) Corresponding radio-frequency spectrum and (c) Optical

power spectrum at the output of MZM.

error in (A,B,C)-plane is obtained. Along the same line, another method based on

time extrema statistics has been used to recover the parameters for a Mackey-Glass

system [110]. In both cases, the authors made use of the dynamical variable which

can be directly intercepted.

Here we attempt the reconstruction of an intensity chaos system for which

the dynamical variable is not directly intercepted. We assume that the intruder

has knowledge of the topology and can intercept the time series. According to the

scheme presented in Sec. 2.2, the transmitted signal can be written as

£(t) = G′
{

cos2 [x(t) + φ]
}

. (3.9)

The dynamical variable, x(t) can be reconstructed from the intercepted signal, £(t),

as follows

x∗(t) + φ =
1

2
arccos

[

2£(t)−G′

G′

]

, (3.10)

where x∗(t) is the reconstructed state of x(t). By applying the average over time in

each side of Eq. (3.10), one obtains

〈x∗(t)〉+ φ =
1

2

〈

arccos

[

2£(t)−G′

G′

]〉

. (3.11)

The presence of the low cutoff integral term u(t) in Eq. (2.6) imposes the mean value

〈x∗(t)〉 to be zero in order to ensure the convergence of the solution even at infinite

time. The offset phase, φ, is then given by

φ =
1

2

〈

arccos

[

2£(t)−G′

G′

]〉

. (3.12)

Therefore the reconstructed states, x∗(t), can be deduced as

x∗(t) =
1

2
arccos

[

2£(t)−G′

G

]

− 1

2

〈

arccos

[

2£(t)−G′

G′

]〉

, (3.13)
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Figure 3.13: Left hand side of Eq. (2.6) as a function of x(t− T ) constructed from an intercepted

time series without the message. (Red color) θ = 1.6 µs, (blue color) θ → ∞.

However, because of the periodicity of cosine-functions, x∗(t) always evolves within

the range −π and π. The π jumps artificially created by the arccos-function have to

be corrected (by adding ±π) so that the time trace for x(t) is continuous. Deriving

Eq. (3.13) with respect to time, one obtains

dx∗(t)

dt
=

−d£(t)/dt
√

G′2 + [2£(t)−G′]2
. (3.14)

Discretizing Eq. (3.14) for the points in the data series, one obtains

xk+1 = xk −
£k+1 − £k

√

G′2 + [2£k −G′]2
. (3.15)

This discretized version is used to correct the artificial π jumps. Figure 3.12 shows

the reconstructed time traces (green color) in comparison with the original one (red

color). It turns out that both traces are match very well [see Figure 3.12 (a)].

By plotting the spectrum both in electrical (b) and optical (c) domains, it

appears that signal bandwidth may span over more than 30 GHz around the nom-

inal frequency of the laser beam. By inspecting the RF power spectrum displayed

in Fig. 3.12 (b), the value of the high cutoff frequency, τ can be estimated around

9 GHz which corresponds to τ ∗ = 17.7 ps while the real cutoff response time is

τ = 20 ps. The difference between the estimated and the real value is 11.5% which

for τ -mismatch is a good result for an eavesdropper since for this parameter, good

synchronization is still obtained even with a mismatch larger as 15% [105]. Alter-

natively, this parameter can be determined used time extrema statistics if the delay

time is known [110].
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Given the values of τ and T , an estimation of the nonlinear function can be

done by plotting the left hand side of Eq. (2.6) as a function of delayed variable,

x(t − T ). Since the value of θ is a priori unknown, its role in synchronization can

be pointed out by separately studying the cases with and without the low cutoff

response time θ. Figure 3.13 displays the nonlinear function of the model neglecting

the integral term (blue color) and when taking into account the integral with the

correct value of θ (red color). Inspecting this figure, it appears that the integral term

just shifts the nonlinear function of G/2 corresponding to the continuous component

of cos2(.) which is removed by the integral (high-pass filter). By measuring the peak-

to-peak amplitude of the nonlinear function, one notices that it exactly coincides

with the overall loop gain G. Finally, the last parameter θ can be deduced by

averaging over time each side of Eq. (2.6), e.g.

θ =
−τ

〈

dx
dt

〉

+G
〈{

cos2 [x(t− T ) + φ]
}〉

〈

∫ t

t0
x(t′)dt′

〉 . (3.16)

One can also notice that the value of the nonlinear function for x(t−T ) = 0 coincides

with that of G cos2 φ. Thus, knowing G, one can deduce the value of φ. Also it is

worth noting that the accurate estimation of the integral requires a long time trace.

When the message is encoded through this scheme, the intercepted signal

becomes

£(t) = G′
{

αmm(t) + cos2 [x(t) + φ]
}

, (3.17)

and thus the value of φ given by

φ =
1

2

〈

arccos

[

2£(t)− 2G′αmm(t)−G′

G′

]〉

, (3.18)

becomes difficult to estimate since αmm(t) is not known.

3.6.2 Phase chaos opto-electronic system

Besides the parameters mentioned above the phase chaos system has an additional

imbalanced delay time δT . Furthermore, the eavesdropping of the message can be

more complicated as it is encoded in the phase rather than in the intensity which

is easier to detect. Note that the recovery of the phase requires more sophisticated

equipment whose the accuracy may also play an important role.

Assuming that the phase can be intercepted, a similar approach can be followed

for its reconstruction. We plot the RF power spectrum (Fig. 3.14) and extract its

−3 dB frequency, which, in principle, corresponds to the high cutoff frequency of

the filter. We obtain a −3 dB frequency of about 8 GHz corresponding to the cutoff
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Figure 3.14: RF spectrum of x(t).

-3
-2
-1
 0
 1
 2
 3
 4
 5

-4 -3 -2 -1  0  1  2  3  4

x+
τ 

dx
/d

t+
 θ

-1
 u

x(t-T)-x(t-T-δT)

(a)

-1

 0

 1

 2

 3

 4

 5

-4 -3 -2 -1  0  1  2  3  4

x+
τ 

dx
/d

t+
 θ

-1
 u

x(t-T)-x(t-T-δT)

(b)

Figure 3.15: x + dx/dt + u/θ as a function of x(t − T )− x(t − T − δT ) for (a) θ = 1.6 µs (solid

line) and θ → 0 (symbol line) without message, (b) for θ = 1.6 µs considering a 1 Gb/s message

(symbol line) and no message (solid line). The plots were obtained with parameters τ = 12.2 ps,

θ = 1.6 µs, T = 30 ns, δT = 400 ps and φ = π/4.

response time τ ∗ = 19.9 ps while the real value is τ = 20 ps. Given the value of τ , T

and δT , we plot x+dx/dt as a function of x(t−T )−x(T +δT ) as shown in Fig. 3.15.

The effect of the integral, as before, is to shift the nonlinear function. From the curve

amplitude, one extracts G. The value of φ is extracted at x(t−T )−x(T + δT ) = 0.

Figure. 3.15 (b) displays the nonlinear function when the message is encoded.

It shows two curves whose one, corresponding to the bit 0 (m(t) = 0) coincides with

the curves without the message. The second curve related to the bit 1 (m(t) = π/2),

is π/2-dephased to the first one. However, it should be noticed that the estimation

of the parameters can be compromised in real systems because of the noise.
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3.7 Conclusions

Our efforts to identify the drawbacks in opto-electronic systems for chaos com-

munications has led to the conclusion that the delay time is the most vulnerable

parameter which can be retrieved using delay time identification techniques. These

results therefore confirm those already reported in the literature [107, 114, 123, 124].

In fact we have found that, although their high complexity, the delay time can be

identified in such systems using standard methods and when even computing from

noisy series gained from systems with multiple delays as already reported in [110].

Still worse, we have found that some scalar systems can be fully reconstructed once

the delay time is known. However, full reconstruction seems difficult for multiple

variable systems, although the extraction of the delay time is possible.



Chapter 4

Dynamics of Electro-optic Delay

Systems with Feedback in the

Laser Source

The previous chapter has shown the limits of scalar systems once the topology is

known. Besides, optical chaos encrypted communications require a wide spectrum of

the chaotic carrier to efficiently mask the message from eventual eavesdroppers. This

goal can be achieved in optoelectronic devices by increasing the gain loop parameter

[96, 125]. However, the loop gain, and consequently the complexity of the system, is

experimentally limited due to the saturation of some device components. Therefore,

it becomes necessary to investigate alternative ways to produce a stronger chaos

complexity. Moreover, the increase in the number of the system parameters can

also be fruitful for providing more security since an eavesdropper has to face up

the parameter mismatches to succeed in building an adequate receiver necessary

for the decryption of the message. A way to reach all these purposes can consist

in involving an extra feedback loop feeding the laser. It is worth noting that the

feedback in the controlled source has been previously considered in opto-electronic

systems by Udaltsov et al. as a possible way to get around delay time cracking

[109].

In this chapter, we explore the impact of such combination as a fruitful alter-

native for improving security in electro-optic delay systems [126]. The chapter is

organized as follows: In Sec. 4.1 we introduce two new configurations differing in

the way the laser feedback is performed. Sec. 4.2 is devoted to the theoretical and

numerical results of each configuration while Sec. 4.3 deals with the synchronization

and the effects of parameter mismatch. In Sec. 4.4, the viability of the models is

numerically tested by encoding and decoding the message. Finally Sec. 4.5 provides

some concluding remarks and outlooks.

61
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Figure 4.1: Schematic setup: (a) Emitter for System I; (b) Emitter for System II; (c) Full emitter-

receiver setup for system I.

4.1 The System

We consider a modification of the basic architecture presented in Sec. 2.2 in which

a part of the signal from the filter loop is used to modulate the pump current of

semiconductor laser. Therefore, now the laser output power depends on the RF

voltage x(t), meaning that the overall loop gain G in Eq. (2.6) which is proportional

to the laser output power is also time dependent G(t) = G1I(t), where G1 is the

normalized electro-optical gain coefficient while I = |E(t)|2 is the photon number.

Therefore Eqs. (2.6) and (2.7) become

x+ τ
dx

dt
+

1

θ
u = G1I(t− T ) cos2 [x(t− T ) + φ] , (4.1)

du

dt
= x. (4.2)

The photon number I is obtained from the semiconductor laser rate equations [122]:

dI

dt
= (G − γ)I, (4.3)

dN
dt

= J0 − γeN − GI + F (x), (4.4)

G = gm(N −N0)/(1 + ̺I), (4.5)
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where the parameters are as defined in Eq. (2.1). It is clearly seen that additionally

to the DC current component J0, we have a feedback contribution F (x) which is a

function of the RF voltage, x(t). The explicit expression of F (x), and consequently

the behavior of the system depends on the setup. Here we consider two different

schematic setups as shown in Figs. 4.1.

4.1.1 System I

A fraction of the RF output voltage is converted to current J1 using a voltage-to-

current converter, and injected back to the laser [Fig. 4.1 (a)] so that

F (x) = J1x(t). (4.6)

Since x(t) is a dimensionless variable, J1 has the same unit as J0. It is worth to

note that the modeling holds for a laser whose bandwidth is larger than that of the

photodiode or RF driver meaning that the laser does not filter the signal.

4.1.2 System II

A fraction of the optical light is detected at the output of MZM using a 2× 2 fiber

coupler and an additional photodetector, then it is converted into an electrical signal

and finally into a current to modulate the pump [Fig. 4.1 (b)]. In this process those

frequencies larger than the photodetector bandwidth fc are filtered out. We model

this as a low-pass filter having input signal J1G1I cos
2 [x(t) + φ] which comes from

converting the optical signal into an electric one. The feedback contribution in laser

in this case is then given by

dF

dt
= −2πfc

{

F − J1G1I cos
2 [x(t) + φ]

}

. (4.7)

It is worth noting that in System I, the signal is divided in the electrical domain

using the RF divider while in System II, it is done in optical domain through an

optical fiber splitter. As u(t) is an integral, 〈x(t)〉 should be zero in order to ensure

the convergence of the solution even at infinite time. This is true for the case of

no feedback in the laser as well as for the two new systems introduced here. For

system I the feedback dependent current injected in the laser F has a zero average,

so that the average of the output intensity 〈I〉 is the same as the constant laser

power without the feedback, and G1〈I〉 = G. That is not the case for system II.

4.2 Theoretical and Numerical Study

For the numerical study, we take the following parameter values gm = 1.5×10−8 ps−1,

̺ = 2× 10−7, N0 = 1.2× 108, γ = 3.3× 1011 s−1, γe = 5× 108 s−1 [127]. With these
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parameters, the threshold current is Jth = 7.1 × 1016 s−1. For the electro-optical

loop, we consider τ = 20 ps, θ = 1.6 µs, G1 = 2.89 × 10−5, T = 30 ns. Others

parameters will be stated in the figure captions.

4.2.1 System I

To find the fixed points, all the derivatives are set to zero, dx/dt = dw/dt = 0.

There is a single fixed point solution (xst, wst, Ist,Nst) given by

xst = 0,

wst = θG1Ist cos
2 φ,

Ist =
J0gm − γegmN0 − γeγ

γ(gm + ̺γe)
,

Nst =
gmN0 + γ + ̺J0

gm + ̺γe
. (4.8)

Assuming x = xst + δx, w = wst + δw, I = Ist + δI and N = Nst + δN , and

linearizing Eqs. (4.1), (4.3)-(4.5) around the fixed point, the stability of this fixed

point is determined by the following 4×4 matrix

M =









ã11 + a11e
−λT a12 a13e

−λT 0

1 0 0 0

0 0 a33 a34
J1 0 a43 a44









where the coefficients are

a11 = −G1Ist
τ

sin 2φ, ã11 = −1

τ
, a12 = − 1

τθ
,

a13 =
G1 cos

2 φ

τ
, a33 = − ̺γIst

1 + ̺Ist
, a34 =

gmIst
1 + ̺Ist

,

a41 = J1, a43 =
−γ

1 + ̺Ist
, a44 = −γe −

gmIst
1 + ̺Ist

. (4.9)

The steady state is stable if the real part of all the eigenvalues λ are negative.

The spectral analysis of delayed systems is more involved than that of ordinary

systems since the term e−λT in the matrix M leads to a characteristic equation

which can have an infinite number of eigenvalues. Out of all those eigenvalues,

typically one computes a finite set of the eigenvalues with largest real part. One

of the packages that can be used for this purpose involves the DDE-BIFTOOL

algorithm in MATLAB [128]. In this method characteristic roots are computed

through successive approximations. We henceforth use this method to investigate

the stability of the steady state given above. The presence of sin 2φ and cos2 φ
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Figure 4.2: Real part of the top eigenvalues versus offset phase for (a) J1 = 0.0 and (b) J1 = 0.08J0.

We have chosen J0 = 1.5Jth which corresponds to 〈G〉 = G1〈I〉 = 3.08.

in the matrix coefficients shows that the function is π-periodic. Therefore we can

perform the stability analysis only over the interval [0, π] without loosing generality.

Figure 4.2 shows the real part of the top eigenvalues ofM. When the feedback is only

applied to the MZM (J1 = 0) [Fig. 4.2 (a)], there are three stable regions (around

zero, π/2 and π) corresponding to the offset phases which lead to the predominance

of destructive interference. Adding the feedback to the SL the stationary state for

φ = 0 or π is destabilized while the stationary state corresponding to φ = π/2

remains stable [see Fig. 4.2 (b) for J1 = 0.08J0].

Figure 4.3 (left) shows the bifurcation diagram for J1 = 0 displaying all the

maxima and minima of a long time trace obtained for each value of the offset phase

φ. All the results are obtained after integrating over a time of 40 µs which is

25 times longer than the slowest time scale θ of the model. The time step used

for the numerical integration is 1 ps. The single value for the amplitude maxima

found for phases close to zero, π/2 and π corresponds to the stable steady state

described in the previous paragraph. Multiple values for the amplitude maxima or

minima correspond to multi-periodic or chaotic behaviors. Figure 4.3 (right) shows

the corresponding bifurcation diagram for J1 = 0.08J0. As predicted by the linear

stability analysis, the steady state solutions for offset phase φ = 0 and φ = π are

now unstable and the system displays a chaotic behavior. Furthermore inspecting

the values of the offset phases for which the system is already unstable, we see that

typically the spread of bifurcation diagram looks larger and denser indicating that

the system has become more chaotic by applying feedback in the laser.

Quantitatively speaking, one could characterize the complexity using the di-

mensionality of the attractor. However, in delay systems the dimensionality grows

linearly with the delay time while the complexity of the system does not change so

much. Therefore it is more convenient to characterize the complexity by the means
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Figure 4.3: Bifurcation diagram versus offset phase φ for J0 = 1.5Jth: (left) J1 = 0.0 and (right)

J1 = 0.08J0.

Figure 4.4: Entropy Ω of x(t) versus offset phase φ for J1 = 0 (• symbol) and J1 = 0.08J0 (∇
symbol). We use a data series with 4× 107 points sampled in 4× 106 histogram bins.

of the statistical entropy which is an indicator showing how the system is organized

or disorganized. Gain of the entropy indicates the increase of disorder and eventu-

ally the increase of the system complexity. The entropy of a system described by a

variable x(t) is defined as

Ω = −
∑

x(i)

p(x(i)) ln [p(x(i))] , (4.10)

where p(x) is the density probability function of x(t). Figure 4.4 shows the entropy

of the system for J1 = 0 (• symbol) and J1 = 0.08J0 (∇ symbol) obtained for

different values of the offset phase φ. It can be seen that the system becomes more

chaotic (higher entropy) by applying the feedback in the laser. This is noticeably

true for the values of φ for which steady states were observed without the feedback

in the laser. Also, there are some values of φ for which the system is in fact less

chaotic. Note that the steady state solutions are here indicated by zero-entropy.

On the other hand, different dynamical regimes can be observed by simply
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Figure 4.5: Entropy versus the injection current J0 for offset phases φ = 0.1 (a) and φ = π/4 (b).

We have taken J1 = 0.0 (• symbol) and J1 = 0.08J0 (∇ symbol) . We use a data series with 4×107

points sampled in 4× 106 histogram bins.

changing the pump current J0. Figures 4.5 show the entropy displayed by varying

the pump current, J0, either when there is no feedback in the laser (• symbol)

or considering feedback in the laser (∇ symbol) for two values of the offset phase

as indicated in the figure caption. For φ = 0.1 when there is no feedback in the

laser, the system does not go into a chaotic regime until J0 ≃ 1.6Jth. By adding

the feedback in the laser, the system becomes chaotic much earlier (J0 ≃ 1.1Jth)

[see Fig. 4.5 (a)]. For φ = π/4 the system goes smoothly into a chaotic regime

for J0 ≃ 1.1Jth when no feedback is present in the laser. Adding the feedback in

the laser, the fixed point is destabilized just after the threshold (J0 ≃ 1.01Jth) [see

Fig. 4.5 (b)].

4.2.2 System II

The fixed point of this model is given by (xst, wst, Ist, Nst, Fst) where

xst = 0,

wst = θG1Ist cos
2 φ,

Ist =
(J0 + Fst)gm − γegmN0 − γeγ

γ(gm + ̺γe)
,

Nst =
gmN0 + γ + ̺(J0 + Fst)

gm + ̺γe
,

Fst = J1G1Ist cos
2 φ. (4.11)

We should note that for this system the photon number at the steady state

is larger and depends on the offset phase. The stability of this fixed point can be

investigated following an approach similar to that of subsection 4.2.1. Since now we
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Figure 4.6: a) Real part of the top eigenvalues of matrix M and b) bifurcation diagram versus

offset phase for J0 = 1.5Jth and J1 = 0.08J0.

Figure 4.7: Entropy Ω of x(t) versus offset phase φ for J1 = 0 (• symbol) and J1 = 0.08J0 (∆

symbol). We use a data series with 4× 107 points sampled in 4× 106 histogram bins.

have an extra equation [Eq. (4.7)] we have to deal with the 5×5 matrix

M =













ã11 + a11e
−λT a12 a13e

−λT 0 0

1 0 0 0 0

0 0 a33 a34 0

0 0 a43 a44 0

ηeIst sin(2φ) 0 −ηe cos2 φ 0 −2πfc













where ηe = 2πfcJ1G1 and the coefficients aij are given by Eq. (4.9) with Ist given

by Eq. (4.11). The real part of the top eigenvalues of this matrix are plotted in

Fig. 4.6 (a). As happens for system I the feedback in the laser destabilizes the

steady state around the offset phases 0 and π while a narrow region of stability for

the stationary state remains for an offset phase around φ = π/2. Figure 4.6 (b)

shows the bifurcation diagram as a function of the offset phase. Comparing this

figure with Fig. 4.3 (left), it can be seen that the system develops more chaotic

regions than system with no feedback in the laser. Furthermore, Fig. 4.7 clearly
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Figure 4.8: Entropy versus the injection current J0 for offset phases φ = 0.1 (a) and φ = π/4 (b).

We have taken J1 = 0.0 (• symbol) and J1 = 0.08J0 (∆ symbol). We use a data series with 4×107

points sampled in 4× 106 histogram bins.

Figure 4.9: Entropy versus J1 for (a) φ = 0.1 and (b) φ = π/4 considering system I (• symbol)

and system II (∆ symbol). We use a data series with 4× 107 points sampled in 4× 106 histogram

bins. We consider a pump current J0 = 1.5Jth.

evidences that system II is more chaotic for the whole range of offset phases than

the system without feedback in the laser and than system I with the same J1. In

Fig. 4.8 we plot the entropy as function of the injected current J0 for J1 = 0.08J0
and two values for the offset phase. When comparing with the case without the

feedback in laser, it is seen that for both values of the offset phase chaos starts

being developed for a lower value of the pump current J0.

4.2.3 Other results

To sum up this section, we plot the entropy of each proposed system as function of

the laser feedback strength parameter J1 considering J0 = 1.5Jth. It can be seen

from Fig. 4.9 (a) that the feedback in the laser induces chaos for the offset phase

φ = 0.1 for which the system is stable without J1. This happens faster for system II

than for system I. An increase in J1, for a fixed value of offset phase φ = 0.1

leads to a more chaotic behavior for both systems. When considering φ = π/4 as
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Figure 4.10: Optical power spectrum at the output of MZM considering J0 = 1.5Jth and φ = 0.3:

J1 = 0 (red line), J1 = 0.08J0 (green line) for (a) system I and (b) system II.

shown in Fig. 4.9 (b), the entropy for system II keeps increasing with J1 in the

range of parameters we have explored. On the contrary, the entropy of system I

starts decreasing after some threshold around 0.08J0 meaning that the effect of the

feedback in the laser becomes negative.

On the other hand it is also possible to evidence the increase in chaos com-

plexity by plotting the power spectrum of the optical signal transmitted from the

emitter to the receiver. The optical output intensity of the MZM is given by

G1I(t) cos
2 [x(t) + φ]. Figures 4.10 show, in green color, the optical power spec-

trum for system I (a) and system II (b) in comparison with the system without

feedback in the laser (red color). The peak at frequency zero corresponds to the

DC component of the optical power output. What matters for chaos codification

is the rest of the spectrum beyond the DC peak. For J1 = 0, when no feedback is

applied to the laser (red line) the power spectrum spans over 55 dB in the range of

60 GHz and present peaks around the DC frequency spacing by the inverse of delay

time. For J1 = 0.08J0 (green line), the spectrum broadens significantly. For system

I the spectrum spreads only over 40 dB in the range of 60 GHz. The spectrum

of system II is even broader, spreading 20 dB over the same frequency range. We

can also notice that the peaks around the central frequency have disappeared for

system II, meaning that full chaos has been developed.

4.3 Receiver System and Effects of Parameter Mismatch

4.3.1 Receiver system

For each model, the receiver is built similarly to the emitter. The only difference

is that the receiver is fed back by the light only coming from the master instead of

itself light. The full emitter-receiver scheme of System I is represented in Fig. 4.1
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(c). The feedback in the receiver laser comes from the RF driver output. System

II is built similarly but feedback in the receiver laser comes from its MZM output.

Introducing y(t) = πV ′(t)/(2Vπ) and u
′ =

∫ t

t0
y(t′)dt′, the receiver dynamics is given

by

dI ′

dt
= (G ′ − γ′)I ′, (4.12)

dN ′

dt
= J ′

0 − γ′eN ′ − G ′I ′ + F (y), (4.13)

y + τ ′
dy

dt
+

1

θ′
u′ = G′

1I(t− T ′) cos2 [x(t− T ′) + φ] , (4.14)

where the prime ”′” denotes the receiver. It is important to remark that Eq. (4.14) is

independent of the receiver laser parameters. However, the receiver laser is necessary

for decoding. That is why it is more convenient to measure the synchronization

quality between the emitter and the receiver at the output of the MZMs rather than

their RF inputs as it is usually the case. For this purpose, we define £(t) and £′(t)

as the detected power by PD+ and PD−, respectively, assuming the same sensitivity

of photodiodes S. They can be therefore written as

£(t) = SG1I(t) cos
2 [x(t) + φ] , (4.15)

£′(t) = SG′

1I
′(t) cos2 [y(t) + φ′] . (4.16)

The quality of that synchronization depends on several factors, including the param-

eter mismatch between the master and the receiver, the presence of noise fluctuations

and the degradation due to fiber propagation effects. The latter has been considered

in [129] for the chaos generated by an all-optical feedback system where the authors

showed that compensating the losses by in-lining EDFAs every 50 km and using

dispersion shifted fiber, one can minimize the fiber effects to the very acceptable

level. Also, in ref. [130] similar results were found out using standard transmission

fibers and then compensating the dispersion using dispersion compensation mod-

ules. Here we neglect the effect of noise fluctuations and therefore we focus on the

effect of parameter mismatch. We first consider that all the receiver parameters are

identical to the master except for the delay time.

Figures 4.11 show the time trace of £(t) and £′(t) when the two delay times

are different. It can be seen that system II induces faster fluctuations than system I

(notice the different scale in the time axis of the figure). In both cases the receiver

synchronizes with the master shifted in time ∆T = T ′ − T . Thus mismatches in

the delay time produce a trivial effect. The flying time, delays induced by the

electrical connections, and the response time of the system (which play exactly the
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Figure 4.11: Emitter (solid red line) and receiver (dashed blue line) time traces at the MZM output

for ∆T = −0.1 ns considering (a) system I and (b) system II. J0 = 1.5Jth,J1 = 0.08J0 and φ = 0.3.

same role as the receiver delay time) just shift the time traces [105]. However,

a slight difference on other parameters between the emitter and receiver due to

manufacturing mismatches, which are unavoidable, can degrade the synchronization

as addressed in the next subsection.

4.3.2 Effects of parameter mismatch

The quality of the synchronization between master and receiver can be characterized

by the synchronization error and the cross-correlation. The average synchronization

error is given by

σ =

√

〈ε2∆p〉
〈£2

p(t)〉
, (4.17)

where ε∆p(t) = £′

p′(t) − £p(t). This is an indicator of the minimum modulation

amplitude below which the encoded message cannot be recovered. The sub-indexes

p and p′ in the master and slave time traces reflect the fact that the master and

slave systems may operate with different parameter values. The cross-correlation

Γ££′(s) =

〈[

£p(t)−
〈

£p(t)
〉][

£′

p′(t+ s)−
〈

£′

p′(t)
〉]〉

√

〈

|£p(t)− 〈£p(t)〉|2
〉

〈

∣

∣£′

p′(t)− 〈£′

p′(t)〉
∣

∣

2
〉

, (4.18)

is a qualitative indicator of the topological distortion of slave trajectory. Notice

that for £ = £′, Eq. (4.18) defines the autocorrelation function. In the following,

we analyze the influence of mismatch in each parameter individually, considering

∆T = 0. For such detuning value, the correlation is maximum for s = 0.
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Figure 4.12: Average synchronization error, σ (left panels) and maximum cross-correlation, Γxy(0)

(right panels) given by Eqs. 4.17 and 4.18, respectively, as function of the laser parameter mismatch

(∆p = p′ − p) in N0, γe, γ and J1 (from top to bottom). The solid line corresponds to J1 = 0 (no

feedback in the laser), (◦) to system I with J1 = 0.08J0 and (×) to system II also with J1 = 0.08J0.

Figure 4.12 shows the synchronization error (left panels) and the cross-correlation

(right panels) for different mismatches in the laser parameters. For a mismatch in

N0 and γe, the synchronization error grows basically linearly with the mismatch.

The degradation of the synchronization with the mismatch is stronger for system I

(◦) and system II (×) as compared with the system without laser feedback (solid

line). For N0 and γe, negative mismatch has stronger effect than positive one for

system I whereas the opposite happens for system II.

The mismatch in γ is the one that has stronger effects in system II while its
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Figure 4.13: Average synchronization error, σ (left panels) and maximum cross-correlation, Γ££′(0)

(right panels) given by Eqs. 4.17 and 4.18, respectively, as function of the filter loop parameter

mismatch in φ (top row) and τ (bottom row). The solid line corresponds to J1 = 0 (no feedback

in the laser), (◦) to System I with J1 = 0.08J0 and (×) to System II also with J1 = 0.08J0.

effects in system I are the same as in the original system without a feedback in the

laser. Besides for system II, the effect of this mismatch is very asymmetric being

more pronounced for negative (γ′ > γ) than for positive mismatch. This asymmetry

is already present when the laser operates in CW (solid line) and is magnified by the

feedback in the laser. The mismatch in J1 induces a synchronization error that grows

symmetrically (asymmetrically) for system I (system II). For positive mismatch in

system II, (J ′

1 < J1) the degradation grows faster than for negative mismatch.

The results for the cross-correlation are quite different for systems I and II.

For system I the cross-correlation function shows a parabolic shape for mismatches

in N0 and γe while the cross-correlation for the other mismatches is always close to

1. System II shows for all the mismatches a cross-correlation which is practically 1.

This means that the synchronization error obtained in Fig. 4.13 (left) comes from

difference in the amplitude. In fact in the system without feedback, the effect of

the mismatch in the overall gain G is to change the amplitude of the variable which

affects more the synchronization than the cross-correlation.

As for the other parameters, the effect of mismatch in the slow cutoff time θ

is typically negligible in this kind of systems [105], so we focus on the mismatch in

the offset phase φ and the fast cutoff time τ . Results are plotted in Fig. 4.13. The

synchronization quality is very sensitive to the offset phase mismatch. When the

laser operates in CW (solid line) by changing the offset phase the system goes from
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perfect synchronization (for zero or π mismatch) to perfect anti-synchronization (for

±π/2 mismatch) in which £′(t) = £(t) (σ = 1 and Γ££′ = −1). For chaos commu-

nication the chaotic masking can be removed through the anti-synchronization by

operating the MZM π-shifted offset phase, e.g. φ′ = φ + π. When the feedback is

added to the laser, perfect synchronization is still present for zero and π mismatch

but the perfect anti-synchronization is degraded mainly for system II. As for the fast

cutoff time τ mismatch, it plays the same role in system I and II. Nevertheless the

effect of τ -mismatch is always less important than the other mismatches discussed

before. The cross-correlation function shows a parabolic shape for system I while it

looks constant for system II.

4.4 Encoded/Decoded Message

As mentioned before, in chaos-based optical communication systems, the amplitude

of the message to be encrypted should be small compared to the amplitude of chaotic

carrier to ensure the secrecy and to avoid large distortions of the transmitted signal

which could prevent the receiver to synchronize with the emitter. When the mes-

sage is encoded, the system performance can be affected in different ways (dynam-

ics, synchronization and communication performance) depending on the encoding

scheme [131]. Numerical simulations have shown that the additive chaos modulation

(ACM) scheme can increase the complexity of the chaotic waveforms maintaining

at the same time the synchronization quality before and after a message is encoded

[132].

In the scheme as shown in Fig. 4.1 (c), we encode the message using the

ACM technique as described in sec. 2.2. We assume the message to be encoded

in the chaotic system as a sequence of a non-return-to-zero (NRZ) pseudorandom

bit sequence of 1 Gb/s bit rate. The output of the laser diode containing message

can be written as p1m(t) where m(t) is 1 when an optical power P1 is transmitted

and 0 when no optical power is transmitted. The mixing is performed through an

all-optical 2× 2 fiber coupler which is also used to send the output to the receiver.

When the message is embedded within the chaos, Eq. (4.1) becomes

x+ τ
dx

dt
+

1

θ
u = G1I(t− T ) cos2 [x(t− T ) + φ] + αmm(t− T ), (4.19)

where αm = πP1/2Vπ is the amplitude of the message. Here we use αm = 0.3

which is much smaller than the average gain 〈G1I〉 ≈ 3.08. Figures 4.14 (a) and (b)

display the eye diagrams of the signal transmitted to the receiver for systems I and

II, respectively. In both cases, it can be seen that the eye diagrams are completely

close so that one cannot distinguish the chaotic fluctuations from the message. The
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Figure 4.14: Eye diagrams for the transmitted signal (top row) and recovered message obtained

considering on one hand−20% and 20% (center row) and on the other hand −1% and 0.1% (bottom

row) mismatch in τ and γ respectively, when the message is encoded through either system I (a, c,

e) or system II (b, d, f). Other parameters considered are J0 = 1.5Jth, J1 = 0.08J0 and φ = 0.3.

hidden message can only be discriminated from the chaotic fluctuations when using

an authorized receiver and its quality depends on how capable the receiver is to

remove the chaos.

The recovery process at the receiver is as follows: At the input of the receiver,

the transmitted signal is split into two parts, one part is used to drive the slave

system which ideally should have parameters identical to the emitter, while the

other part is directly detected by the photodiode PD+. Taking into account the

message, the slave system dynamics is ruled by

y + τ
dy

dt
+

1

θ
u′ = G′

1I(t− T ) cos2 [x(t− T ) + φ] + αmm(t− T ). (4.20)

The output of the slave system is detected using balanced photodiode PD− and

the message is finally retrieved in the RF power combiner which typically subtracts
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PD− from PD+ signals after carefully matching all the parameters. In fact, the

signal at the RF power combiner [see Fig. 4.1 c)] can be written as

£m(t) = S
′
{

G1I cos
2 [x(t) + φ] + αmm(t)

}

− SG′

1I
′ cos2 [y(t) + φ′] , (4.21)

where S and S
′

are factors accounting for the PD− and PD+ sensitivities and fiber

couplers, respectively. If the receiver and emitter synchronize perfectly, x(t) = y(t),

I ′(t) = I(t), and taking G′

1 = G1, S
′ = S, φ′ = φ, we have from Eq. (4.21)

£m(t) = Sαmm(t) (4.22)

which is the recovery message in perfect conditions. However, it is worth to note

that this perfect recovery of the message is difficult in real situations because of

noise and various mismatches. For an unauthorized receiver, the mismatch is large

and consequently it fails to correctly discriminate the chaos from the message. For

S = 1 and αm = 0.3, Fig. 4.14 (c) [(d)] show the eye diagram for system I [system II]

obtained considering −20% and 20%mismatch in τ and γ respectively. In both cases,

the eye diagrams are completely close meaning that even with just 20% of mismatch

in two parameters, the message cannot be retrieved. When the same mismatches

are decreased to −1% and 1% respectively, the eye diagrams both from system I

and system II are completely open as shown in Fig. 4.14 (e) and (f). Thus, an

authorized receiver can successfully recover the message while an unauthorized one

fails to retrieve it.

4.5 Conclusions and Final Remarks

In this chapter, we have studied two electro-optical delay feedback systems pumped

by a semiconductor laser subject to feedback. In particular we have introduced two

new different schemes in which it can be implemented. The additional feedback in

the laser makes the semiconductor laser to operate in a chaotic regime instead of

CW. As a consequence the overall system becomes more chaotic as shown by the

increase of statistical entropy. Furthermore the additional feedback induces chaos

for parameter values in which the system was not chaotic. These effects are already

clearly observed when the amplitude of the feedback in the semiconductor lasers is

only 16% of the DC pump current. Therefore this is a useful mechanism to generate

broader bandwidth chaos.

Despite the systems are more chaotic, high-quality synchronization is still pos-

sible when the mismatch in parameters is small allowing for message decoding. The

additional parameters to be turned, in order to achieve synchronization, increase the

difficulties of an eventual eavesdropper to decode the message without the adequate

receiver system.
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Figure 4.15: RF spectrum of £(t) for system I (red line) and for system II (green line) considering

J0 = 1.5Jth, J1 = 0.08J0 and φ = 0.3.

One of the main advantages of the models studied in this chapter concerns the

data interception. In fact, the reconstruction of the underlying dynamics strongly

depends on the observable (variable) which is analyzed [118] as discussed in chap-

ter 3. In our case, the direct detection of the transmitted signal leads to

£(t) ∼
∣

∣E(t)
{

1 + e2i[x(t)+φ]
}∣

∣

2
= I(t) cos2[x(t) + φ], (4.23)

which is more difficult to analyze than x(t) or I(t). Even using an optical 90o

hybrid coupler, the reconstruction of x(t) is now indeed difficult since the intensity

I(t) is also time-dependent. An eventual eavesdropper therefore has to attempt the

identification of the parameters from £(t). Figure 4.15 shows the RF spectrum of

£(t) for system I and II. As it can be seen, it does not reveal the cutoff frequency

of the filter as it is the case for RF spectrum of x(t) [see Fig. 3.12 (b)]. Notice that

the RF spectrum of £(t) for system II is particularly flat.



Chapter 5

Electro-optic Phase Chaos

Systems With Digital Key

Performing Time Delay

Concealment

In chaos encryption there is no rigorous counterpart to the digital key of algorithmic

cryptography. Confidentiality relies essentially on the hardware parameters that

should be kept secret. As discussed in chapter 3, the delay time in itself can be

identified from the transmitted signal using several methods. Still worse, under the

assumption of noise-free or even of small amplitude noise, the underlying chaotic

dynamics of some systems can be reconstructed once the delay time is identified,

using appropriate techniques such as artificial neural networks [106]. Furthermore,

hardware cryptosystems also suffer from a relatively low parameter space dimension

(a sort of equivalent to the digital key size in algorithmic encryption). This problem

arises from the fact that apart from the delay time, other parameters have quite

limited range of values for which strong chaos is obtained. This exposes the system

to brute-force attacks. Given current computer speed, it is generally agreed that a

key space of size less than 2100 is not sufficiently secure [54]. This goal seems difficult

in practice when dealing only with hardware cryptosystems. The situation becomes

critical with the identification of the delay time.

To circumvent these drawbacks, we propose in this chapter to implement a

currently suggested principle in algorithmic cryptography, which consists in mixing

different algebra when constructing the encryption algorithm [133]. We combine

a pseudo-random binary sequence (PRBS) used in symmetric-key encryption, with

a high-dimensional chaotic time series generated by an analog physical system, to

make a symmetric-key encryption system with enhanced cryptographic security by

reciprocal concealment [134]. At this point we notice that while public-key encryp-

tion schemes have won popularity, they have drawbacks such as limited speed and

non-absolute security. Thus symmetric-key algorithms are still actively pursued,

79
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including new stream cyphers1 and cryptographic hash functions2. Besides, hybrid

algorithms such as PGP (Pretty Good Privacy) combine public key encryption to

define a private key used for fast symmetric encryption [8].

In general chaotic communications mix the digital message and the chaotic car-

rier, however this mixing is quite weak and the statistical properties of the message

cannot be controlled beforehand, thus the masking of the chaotic carrier statisti-

cal properties is quite limited. Through the introduction of an amplitude-balanced

entropy mixing between a PRBS and a chaotic generation process, we perform an

efficient entropy amplification for the resulting carrier even in absence of any mes-

sage. As a consequence, this approach proposes a solution both for the problem

of the introduction of an efficient digital key in chaos communications, as well as

for the problem of delay time concealment. There have been indeed recently a few

attempts to address separately these issues. In semiconductor lasers with optical

feedback, the optical feedback phase plays an important role in the synchronization

[135] thus a digital key implemented by modulating that phase was suggested [136].

In the same context, it has been also suggested [116] that delay time can be masked

if chosen to be close to the laser relaxation time, however the phase still carries

information revealing the delay time signature (see Sec. 3.2, [134]). Systems with

delay time modulation [137, 138, 139] proposed as alternatives to get around the

delay time extraction, are however very difficult to implement practically.

The configuration studied here is based on a double electro-optic delayed feed-

back dynamics. The scheme allows on one hand to integrate a digital key required

for successful decryption which can be implemented as a long PRBS generated by

an appropriate algorithm or as a relatively short sequence generated from a natural

random process used repetitively. On the other hand, the involved digital random

sequence performs a concealment of the delay time, under conditions described later,

so that the delay time cannot be anymore identified from the time series using known

methods. The digital key is in principle intended to generate a long PRBS, as it

is classically used in some algorithmic encryption scheme. Besides the scheme, our

proposal is based physically on high speed phase chaos [76] which has been recently

successfully tested in a chaos communication field experiment up to 10 Gb/s [75].

The chapter is outlined as follows. In Sec. 5.1 we introduce the system and in

Sec. 5.2 we characterize its dynamics. In Sec. 5.3 we show the effect of the digital

key in the identification of the delay time from a time series. In Sec. 5.4 we discuss

the sensitivity of the synchronization on the digital key. Finally in Sec. 5.5 we give

some concluding remarks.

1European project eSTREAM (http://www.ecrypt.eu.org/stream).
2NIST call for the future SHA-3 (http://csrc.nist.gov/groups/ST/hash/sha-3/)



81

5.1 The System

The system under study is based on the phase chaos communication scheme pre-

sented in [76], however with structural architecture modifications, in order to ensure

the efficient achievement of our initial goal: security enhancement of chaos commu-

nication through the use of digital key. It is illustrated in Fig. 5.1. Both emitter

and receiver consist of two similar nonlinear delayed differential processing chains,

serially connected. The sub-indexes k = 1, 2 refer to elements of the same chain.

In each chain, one has an electro-optic phase modulator (PM) having a half-wave

voltage Vπ, and seeded by a continuous-wave (CW) telecom semiconductor laser

(SL), which is phase modulated by an external signal (whether the PRBS R, or

the message m to be securely transmitted). The electrical input of the PM of a

chain is driven by the electrical output of the other chain. The PM optical out-

put of one chain thus consists of two superimposed phase modulations, the PRBS

or the message, and the nonlinear delayed differential processing performed by the

other chain. The phase modulated light beam is then processed according to the

delayed nonlinear dynamics of its chain. The delay time Tk is performed by a length

of fiber. The nonlinear transformation is performed non locally in time, between

the input phase and the output intensity of an imbalanced interferometer (e.g. a

passive Mach-Zehnder interferometer MZI), which imbalancing delay times δTk is

required to be longer than the typical time scale of the phase modulation as earlier

described in 2.3. The intensity fluctuations resulting from this nonlinear conversion

of the phase modulation, are then detected by an amplified broadband telecom pho-

todiode. The output electrical signal is further amplified by an RF driver, which

gives the output of the processing chain serving as the electrical input for the other

chain. The transmitted phase modulated light beam is the output of PM2, which

contains the linearly superimposed phase modulation of the message in standard

DPSK (differential phase shift keying) format. It is worth noting that the message

m is linearly added within the chaotic phase of the optical light beam to be trans-

mitted while the PRBS R is similarly added in the chaotic phase of another light

beam. The PRBS generator can be, for example, a linear feedback shift-register

(LFSR) with primitive feedback polynomial, which can be efficiently implemented

in hardware [140]. In this case, the common secret between the emitter’s PRBS

and the receiver one is the initial state of the LFSR. However, it should be adjusted

taking into account the shift in time between the emitter and the receiver.

The dynamical modeling of the encoding can be described as follows. The

electronic bandwidth of the feedback loop is assumed to result from two cascaded

linear first-order low-pass and high-pass filters. Considering the filter output volt-

ages V1(t) and V2(t) in chains 1 and 2 respectively and performing a derivation
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Figure 5.1: Transmitter and receiver setup: SL: semiconductor laser, PM: phase modulator, MZI:

imbalanced Mach-Zehnder interferometer, PD: photodiode, x1(t) and y1(t) are dimensionless out-

put voltage of RF driver for external and internal loop while R(t) and m(t) are pseudo-random

bit sequence and message, respectively. Sub-indexes 1 and 2 refer to the internal and to the

transmitted light beam parameters, respectively.

similar to the one given in Sec. 2.3, it turns out that the emitter dynamics can be

described by the dimensionless output filter variables x1(t) = πV1(t)/(2Vπ,1) and

y2(t) = πV2(t)/(2Vπ,2):

x1 + τ1
dx1
dt

+
1

θ1
u1 = G1 cos

2 [∆(y2)T1 +∆(R)T1 + φ1] , (5.1)

y2 + τ2
dy2
dt

+
1

θ2
u2 = G2 cos

2 [∆(x1)T2 +∆(m)T2 + φ2] , (5.2)

du1
dt

= x1, (5.3)

du2
dt

= y2, (5.4)

where ∆(F )t0 = F (t−t0)−F (t−t0−δt0). The parameters are the feedback strengths

G1, G2, the delay times T1, T2, the fast (slow) filter characteristic response times τ1,

τ2 (θ1, θ2 ), the MZI imbalanced delays δT1 and δT2, and the MZI static phases φ1

and φ2.

At the receiver side, the decoding is performed as follows. The input phase

modulated light beam is split into two paths. The long path replicates the two

serial processing chains used for the encoding at the emitter, in which of course a
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synchronized PRBS is involved, thanks to the knowledge of the digital secret key.

The analog secret key consists in the hardware parameters determining the devices of

the two serial processing chains, and their exact operating conditions. The output of

the two processing chains, after being inverted, serves as the electrical input of PM′

2,

which is intended to cancel the pseudo-random phase modulation superimposed to

the message. The dynamics at the receiver is given by:

z1 + τ ′1
dz1
dt

+
1

G′
1

v1 = G′

1 cos
2
[

∆(w2 +R′)T ′

1
+ φ′

1

]

, (5.5)

w2 + τ ′2
dw2

dt
+

1

θ′2
v2 = G′

2 cos
2
[

∆(x1 +m)T ′

2
+ φ′

2

]

, (5.6)

dv1
dt

= z1, (5.7)

dv2
dt

= w2, (5.8)

where primes refer to the receiver parameters. The output of PM′

2 is then expected

to be the phase modulation issued by the message only. It can be demodulated using

a standard DPSK demodulator, consisting in an MZI with an imbalanced delay time

δTm and a photodetector as discussed in Sec. 5.4.

5.2 Characterization of the Dynamics

To show the effect of including a digital key, we first characterize the chaotic dy-

namics generated by the transmitter when no message is encoded. Convenient bi-

furcation parameters for the system are the feedback strengths G1 and G2. Since

the message is embedded within the transmitted light beam described by dynamical

variable x1(t), we can henceforth focus on this variable to analyze different behav-

iors of the system. We measure the complexity by means of the statistical entropy

in (G1, G2)-plane considering two cases: without digital key and with digital key in

order to point out the PRBS role in the statistical properties of the carrier x1(t).

Numerical simulations are performed considering the key physical parameters arbi-

trary chosen, within the range of experimentally accessible values [76], as follows:

T1 = 15 ns and T2 = 17 ns, τ1 = 20 ps, τ2 = 12.2 ps, θ1 = 1.6 µs, θ2 = 1.6 µs,

δT1 = 510 ps, δT2 = 400 ps, φ1 = π/8, φ2 = π/4. Other parameters are stated in

the figure captions when necessary. Figure 5.2 shows the entropy of x1(t) in (G1,

G2)-plane without PRBS (a) and with a PRBS key of amplitude π/2 at 3 Gb/s

(b). It turns out that without PRBS (R = 0), the entropy of the system is smaller

than 6 for G1G2 <
√
2. It grows as G1 and/or G2 increases and for G1 = G2 = 5,
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Figure 5.2: Statistical entropy Ω of x1(t) in (G1, G2) plane without PRBS (left panel) and with

a PRBS key of amplitude π/2 at 3 Gb/s. The entropy was calculated using a data series with

4× 107 points recorded after the transient time and sampled into 4× 106 histogram bins.

Figure 5.3: Optical power spectrum at the output of PM without the message and when no PRBS

is involved (red line) or considering a PRBS key of amplitude π/2 at 3 Gb/s (green line). a)

G1 = G2 = 2 and b) G1 = G2 = 4.

it reaches a value around 14.4, which corresponds to a completely chaotic system.

Notice that a completely random process would lead to a maximum entropy given

by the natural logarithm of the number of bins, which in our case is ≈ 15.2. Com-

paring the entropy without and with PRBS, it is clear that the PRBS increases

significantly the entropy for small feedback strengths. For large feedback strength

the effect is smaller. These results can be also evidenced by plotting the optical

spectrum as shown in Fig. 5.3. For G1 = G2 = 2 (a), the spectrum shows peaks



85

around the central frequency when no PRBS is integrated (red line). These peaks

emerge at the frequency corresponding to the inverse of δT1, which is smallest delay

time involved in the chaotic transmitted phase generation x1(t) [see Eq. (5.1)]. The

peaks disappear when PRBS is added (green line). For G1 = G2 = 4, both spectra

obtained with and without PRBS are similar evidencing therefore the smaller effect

of the digital key for this case.

5.3 Effect of the PRBS on Delay Time Identification

This section is intended to investigate in which conditions the delay time can be

concealed. Before investigating delay time concealment, let us clarify what are the

relevant times for successful decoding, that is, whether synchronization depends

on the individual delays T1 and T2 , or only on the total delay T = T1 + T2.

Assuming R′ = R and identical parameters for emitter and receiver except for the

delay times T1 and T2, by Fourier transforming Eqs. (5.2), (5.4), (5.6), and (5.8)

and subsequently dividing Eqs. (5.2) by (5.6), one obtains

Y2(ω)

W2(ω)
= e−iω(T2−T

′

2), (5.9)

where F (ω) stands for the Fourier transform of f(t). The relationship between Y2(ω)

and W2(ω) given by Eq. (5.9) indicates that

w2(t) = y2(t + (T2 − T ′

2)). (5.10)

Thus, by replacing Eq. (5.10) into the right hand side of Eq. (5.5) and subsequently

Fourier transforming Eqs. (5.1), (5.3), (5.5), and (5.7), it turns out that

X1(ω)

Z1(ω)
= e−iω(T1+T2−T

′

1−T
′

2), (5.11)

As the total delay time is T = T1 + T2 for the emitter and T ′ = T ′

1 + T ′

2 for the

receiver, it turns out that

X1(ω) = Z1(ω) (5.12)

for T = T ′ even when the individual delay times are different. Therefore, for iden-

tical parameters between the emitter and the receiver and for R′ = R, x1(t) will

synchronize with z1(t) provided T = T ′. We have also numerically checked that the

synchronization still takes place at the receiver as long as the overall delay time T is

the same for emitter and receiver, even if individual delays T1 and T2 are different.

Since real systems are always noisy, another interesting point would be to in-

vestigate the robustness of the quantifiers to noise. Appropriate ones for unmasking
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Figure 5.4: (a) AC, (b) DMI, (c) TDE and (d) FF functions as a function of an embedding delay s

computed from 107 data points corresponding to a 10 µs time series after adding a Gaussian white

noise of amplitude 3.5% of the carrier amplitude. The time series were generated from a system

without PRBS (R(t) = 0). All the results are normalized to 1.

the delay time signatures are those robust to noise. To figure out this issue, let

us first consider a noisy series by adding to the carrier generated without PRBS a

Gaussian white noise of amplitude 3.5% of the carrier amplitude. Figure 5.4 shows

the delay time identification computed using the methods described in chapter 3.

As it can be seen, despite the presence of noise in the time series, clear peaks are

found at T = T1 + T2, T + δT1, T + δT2 and T + δT1 + δT2 both in the autocor-

relation (a) and in the delayed mutual information (b), evidencing therefore that

even with noise, the delay times can still properly be identified. On the contrary,

no clear peaks are distinguishable at the different delay times when computing the

time distribution statistics (c) or the filling factor (d) from the same noisy series.

Thus taking into account the fact that experimental time series are always noisy, we

henceforth focus only upon AC and DMI methods since TDE and FF methods are

so sensitive to noise that even just a small noise added to the carrier prevent them

to work properly. Once the quantifiers are chosen, we can henceforth consider again

a free-noise time series in our analysis since it is the ideal case for an eavesdropper

to attempt the delay time identification.

As in the previous section, we consider that no message is transmitted (m(t) =
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Figure 5.5: Autocorrelation function C(s) (a) and delayed mutual information DMI(s) (b) of x1(t)

without PRBS (red line), and with a PRBS of amplitude of π/2 at 3 Gb/s (black line). A time

series of length 10 µs with 107 data points was used.

0) to show the role of the PRBS in the delay time identification. The graphs in

Fig. 5.5 display the autocorrelation (a) and the DMI (b) computed from the trans-

mitted phase proportional to x1(t), when no PRBS is used (red line) and with a

PRBS at 3 b/s with an amplitude of π/2 (black line). In the first case both func-

tions show peaks at T = T1 + T2, T + δT1, T + δT2 and T + δT1 + δT2, so that all

relevant delay times can be readily identified. The delay time signature vanishes

completely when the PRBS is included.

Figs. 5.6 (a) and (b) show the size of peaks found in C(s) and in the DMI at

the relevant delay times as a function of the PRBS bit rate considering an amplitude

of π/2. The peaks are clearly distinguishable for zero bit rate (no PRBS). When

increasing the bit rate, the peak size decreases and approaches the background value

of these functions (green line). The background mean and standard deviation are

calculated in Fig. 5.6 using the highest 2000 spurious local maxima (e.g. excluding

the peaks corresponding to real delay times). For low bit rates R(t) and R(t− δT1)

take the same value most of the time, so ∆(R) vanishes most of the time and

therefore its effect is small (see the concept of temporal non locality as introduced

in [76] and as discussed in Sec. 2.3). Therefore the peaks both in the DMI and in

C(s) can still be distinguished from the background standard deviation, shown with

bars in the figure. When the bit rate reaches a value corresponding to the inverse

of δT1 (∼ 1.97 Gb/s), ∆(R)T1 is typically non zero, and the PRBS plays a key role

in the dynamics, concealing the delay time peaks.

The size of the peaks as function of the PRBS modulation amplitude is shown

in Figs. 5.6 (c) and (d). An important remark is that the PRBS modulation am-
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Figure 5.6: Absolute value of the peaks in C(s) (a,c), and DMI (b,d), at T (•), T+δT2 (�), T+δT1
(+) and T + δT1+ δT2 (H) vs. the PRBS bit rate (upper row) and PRBS amplitude (bottom row).

In (a) and (b) the PRBS amplitude is π/2 while in (c) and (d) the PRBS bit rate is 3Gb/s. Solid

line and bars correspond to the background mean value and standard deviation. A series of length

267 times T was used.

plitude is a π-periodic function associated to the periodicity of cos2 in Eq. (5.1).

Thus, a PRBS of amplitude π has no effect since ∆(R)T1 only takes values 0 or π and

both are equivalent in the cos2 term. Efficient concealment occurs for amplitudes

between π/3 and 2π/3 approximately. We have found that this range increases when

increasing G1 and/or G2.

Remarkably enough, while the PRBS conceals the delay time in the chaotic

carrier x1(t), the cross-correlation between x1(t) and R(t) is of the order of 10−3,

meaning that the digital key itself is also concealed in the chaotic carrier. This is

explained by the fact that the interplay between balanced amplitudes of the chaos

and a PRBS is optimizing the mutual nonlinear mixing, resulting in an efficient

mutual masking of each signal by the other.

On the other hand, it should be noticed that for δT1 = δT2, the interplay
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Figure 5.7: Autocorrelation function C(s) (a) and delayed mutual information DMI(s) (b) of x1(t)

considering ∆T1 = ∆T2 = 400 ps. A time series of length 10 µs with 107 data points was used.

All the results are normalized to 1.

Figure 5.8: Absolute value of the peaks in C(s) (a), and DMI (b), at T (•), T + 2δT1 + τ1 + τ2
(�), T + 2δT1 (▽) as a function of mismatch η = (δT2 − δT1)/δT1 considering δT1 = 400 ps. Solid

line and bars correspond to the background mean value and standard deviation. A series of length

267 times T was used.

between δT1 and δT2 leads to a resonance and consequently, pronounced peaks are

observed at T , T + δT1, T + 2δT1. Figures 5.7 (a) and (b) illustrate this issue. For

the autocorrelation the middle peak is indeed located at T + δT1. For the DMI the

middle peak is composed of two peaks one at T+δT1 and the other at T+δT1+τ1+τ2.

This splitting may explain the small size of the intermediate peak in the DMI.

While typically the delay time signature is reduced when increasing the overall

loop gain, we have found that when δT1 = δT2 the delay time can always be identified

even for G1 = G2 = 15, way beyond experimental limits. Therefore for efficient delay

time concealment, one needs to take δT1 6= δT2.

The dependence of the concealment on the mismatch between the two shorter
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delay times η = (δT2 − δT1)/δT1 is investigated in Fig. 5.8. It turns out that as

such mismatch increases, the peak sizes both in C(s) and DMI(s) decrease so that

it becomes very difficult to identify the delay time for a mismatch greater than

about 20%. In particular, we note that the delay time signature is lost in the

autocorrelation already at a 10% mismatch while the DMI allows the identification

of the delay time up to 20% mismatch.

5.4 Synchronization and Sensitivity to Digital-Key Mismatch

In order to decode the message, the receiver electro-optic phase modulator PM2

applies an additional phase modulation onto the received light beam, proportionally

to the signal z1(t). This leads to a total optical phase modulation proportional to

(x1+z1) at the PM
′

2 output. The resulting light beam can then be processed through

a standard DPSK demodulator matched with the message bit rate (imbalanced MZI

with δTm in Fig.5.1). The photodiode detects

Pm(t) ∝ cos2
[

∆̄(x1 +m+ z1)∆Tm
]

. (5.13)

where ∆̄(F )δTm = F (t)− F (t− δTm). The decoded message m′(t) is obtained from

Pm(t). For perfect anti-synchronization, z1(t) is equal to −x1(t), and m′(t) repro-

duces m(t). For a receiver system with identical parameters but with a π-shift in

the receiver MZM (that is φ′

1 = φ1 ± π/2), z1(t) = −x1(t), the anti-synchronization

between z1(t) and x1(t), is obtained if R′ = R. While hardware mismatch is un-

avoidable in practice, several field experiments of chaos communications [74, 75] have

demonstrated that the resulting synchronization error is still acceptable. Moreover,

the electro-optic phase dynamics we consider as our experimental basis, has led to

the best experimental chaos synchronization quality reported so far over more than

10 GHz bandwidth. The correct decoding however depends strongly on the simul-

taneous matching of all the parameters in the emitter and receiver, in the same way

as it was already investigated in the literature [105]. The sensitivity of the decoding

with respect to the physical parameter mismatch is thus not revisited here. In order

to check that the precise knowledge of the pseudo-random digital sequence indeed

brings significant additional security we consider in the following that the receiver

parameters are identical to the transmitter. The differences δ1(t) = z1(t) − x1(t)
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and δ2(t) = w2(t)− y2(t) follow

δ1 + τ1
dδ1
dt

+
1

θ1
ε1 = −G1 sin

[

∆(δ2)T1 +∆(R′ − R)T1
]

× sin
[

2∆(y2)T1 +∆(δ2)T1 +∆(R +R′)T1 + 2φ1

]

, (5.14)

δ2 + τ2
dδ2
dt

+
1

θ2
ε2 = 0, (5.15)

dε1
dt

= δ1, (5.16)

dε2
dt

= δ2. (5.17)

From Eq. (5.15), we find two roots of the characteristic polynomial corresponding

to the homogeneous solutions as

r± =
−1±

√

1− 4τ2/θ2
2τ2

. (5.18)

Because of the very large bandwidth of the filter, τ1/θ1 ≈ 10−5, the roots can be

approximated by

r+ ≈ −1/θ2, r− ≈ −1/τ2. (5.19)

Thus since both solutions are negative, it turns out that δ2 decays to zero after

the longer characteristic time, e.g. θ2. For R′ = R, after δ2 has decayed to zero,

the right hand side of Eq. (5.14) vanishes so that δ1 also decays to zero after the

longer characteristic time θ1. Therefore the receiver synchronizes perfectly to the

emitter after a transient time of order θ1+θ2. However, if there is a mismatch in the

PRBS then the right hand side of Eq. (5.14) does not vanish and therefore δ1 is finite,

resulting in a degraded synchronization. Actually, for identical parameters, δ2 always

decays to zero independently of any eventual PRBS mismatch, indicating that the

internal variable does synchronize. Synchronization degradation takes place on the

transmitted variable. Figure 5.9 (a) displays the root-mean square synchronization

error

σ =

√

〈δ1(t)2〉
〈x1(t)2〉

(5.20)

as a function of the percentage of wrong bits η in the receiver PRBS, where 〈〉 stands
for time average. Synchronization error grows fast from zero when the PRBSs dif-

fer. Even for a 1% difference in the PRBS key the synchronization error is close

to 25% indicating a very poor synchronization. When synchronization is degraded,

z1(t) does not replicate x1(t), and the quality of the recovered message decreases.

The most relevant way to characterize this is by measuring the BER of the recov-

ered message. Figure 5.9 (b) shows the bit error rate (BER) in the case of identical
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Figure 5.9: Influence of the PRBS-mismatch on (a) synchronization error σ and (b) on bit error

rate (BER) for m(t) transmitted at 10 Gb/s; vs. rate of wrong bit η in receiver PRBS key. We

consider PRBSs of amplitude π/2 and length 215 (•) and 29 (∆) bits generated at 3 Gb/s. The

(◦) symbol (blue color) is obtained for a PRBS of length of 29 bits generated at 1 Gb/s.

parameters as a function of the PRBS mismatch for a pseudorandom message trans-

mitted at 10 Gb/s. The BER increases linearly with η. For a pseudorandom message

of amplitude π/2 (which corresponds to 30% of the carrier amplitude) transmitted

at 10 Gb/s a 1% mismatch in the PRBS leads to a BER of 0.01.

It should be noticed that the digital key can be implemented as a long sequence

of bits generated by an appropriate algorithm or alternatively as a finite length

sequence used repetitively. We find similar results in both cases provided the length

of the sequence long enough as illustrated in Fig. 5.9 (b) for keys which are 215 and

29 bit long. Besides the PRBS mismatch influence depends on the PRBS bit rate.

Thus, as already mentioned, its effect is much smaller for bit rate smaller than 1/δT1
as evidenced with open circle symbols in Fig. 5.9 corresponding to PRBS with bit

rate 1 Gb/s.

5.5 Conclusions

In conclusion we have shown that a digital key can be integrated with a chaos-

based communication system in a way that it conceals the delay time and it is

necessary ingredient for decoding. Besides bridging the gap between symmetric-key

algorithmic cryptography and chaos-based encoding, the concealment of the delay

time is particularly relevant to prevent from eventual eavesdropper attacks. In our

phase-chaos electro-optical delay system the chaotic dynamics does not reveal the

digital key so it is possible to use it in a repetitive way while concealing it. The

interference generated by the two similar delay times present in our system plays a
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critical role in the mutual concealment. We have found that in the electro-optical

set-up for intensity chaos generation with a single delay time no concealment takes

place. In our system, the effective key-space of the encryption can be defined as

the product of the analog key size and the digital one. From another viewpoint,

the mixing of a digital source of entropy, and an analogue one, can be viewed as an

entropy amplification procedure, which is strongly relevant in terms of cryptographic

security. Furthermore, the setup can be easily modified or reconfigured, both from

the digital or analogue source of entropy.

On a broad perspective, as for PGP, chaotic symmetric encryption schemes as

proposed here may be typically dedicated to high speed secure data transmission.

Asymmetric encryption (based on algorithmic cryptography, mutually coupled op-

tical chaos [18] or quantum key distribution [15]) could bring the complementary

solution for efficient and secure (perhaps slower) secret key exchange.
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Chapter 6

Electro-optic Phase Chaos

Systems in Parallel Configuration

The electro-optical chaos generators considered in the previous chapters have a very

large degree of flexibility. An interesting structural modification can consist in orga-

nizing the system studied in the previous chapter in a parallel configuration keeping

the fundamental ideas which are the implementation of both an internal variable and

a digital key. Such configuration re-organization will therefore require to regenerate

the non-transmitted light beam at the receiver. This makes the receiver to operate

in semi-closed loop, which is known to be very sensitive to synchronization.

The chapter is organized as follows. Sec. 6.1 provides a description of the

model. Sec. 6.2 is devoted to the analysis of the delay time concealment. Sec. 6.3

deals with the synchronization between the emitter and the receiver for identical

parameters. Sec. 6.4 addresses the effects of a digital key on the decoding process

of the message. Finally, Sec. 6.5 provides some concluding remarks.

6.1 System

Figure 6.1 shows the parallel configuration setup. This configuration typically allows

the use a single light source for the whole emitter-receiver system instead of three

independent light sources as it was the case for the serial configuration. Also, while in

the serial configuration the optical signal undergoes two phase modulations (chaotic

modulation + either pseudorandom or message modulation) before the MZI1, in

this case four phase modulations (two chaotic proportional to x1(t) and y2(t) +

pseudorandom + message) are successively applied to the optical signal, which is

subsequently split in two parts. Each part is delayed in a fiber loop before the

phase-to-intensity conversion by the MZI1 or MZI2 followed by the detection at

the photodiode. The dynamics of this system can be described in terms of the

dimensionless variables x1(t) and y1(t) as

95
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Figure 6.1: Transmitter and receiver setup in the parallel configuration: SL: semiconductor laser,

PM: phase modulator, MZI: imbalanced Mach-Zehnder interferometer, PD: photodiode, x1(t) and

y2(t) are the dimensionless output voltages of the RF drivers for the external and the internal loops

while R(t) and m(t) are the pseudo-random bit sequence and message, respectively. Sub-indexes

1 and 2 refer to the internal and to the transmitted light beam parameters, respectively.

x1 + τ1
dx1
dt

+
1

θ1
u1 = G1 cos

2 [∆(x1 + y2)T1 +∆(R +m)T1 + φ1] , (6.1)

y2 + τ2
dy2
dt

+
1

θ2
u2 = G2 cos

2 [∆(x1 + y2)T2 +∆(R +m)T2 + φ2] , (6.2)

du1
dt

= x1, (6.3)

du2
dt

= y2, (6.4)

where again ∆(F )t0 = F (t− t0)−F (t− t0 − δt0). For numerical simulations, we use

the parameters T1 = 15 ns and T2 = 17 ns, τ1 = 20 ps, τ2 = 12.2 ps, θ1 = 1.6 µs,

θ2 = 1.6 µs, δT1 = 510 ps, δT2 = 400 ps, φ1 = π/4, φ2 = π/8, G1 = 5 and G2 = 3.

With those parameters, the complexity of the system is similar to that obtained for

serial configuration.

6.2 Delay Time Concealment

In the parallel configuration, the delay time can be extracted using the same tech-

niques as before. Different from the serial configuration, here T1 and T2 are both

relevant and not just their sum. However, the total number of relevant delay times

is still four, e.g. T1, T1 + δT1, T2 and T2 + δT2. Figure 6.2 displays the autocorrela-

tion (a) and the DMI (b) without (red line) and with a PRBS of amplitude π/2 at

3 Gb/s (black), computed from a long series for x1(t). We do not take into account

the message in this section (m = 0). Without PRBS, relevant peaks are found both

in the autocorrelation and in the DMI at delay times T1 and T1 + δT1. However,
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Figure 6.2: Autocorrelation function C(s) (a) and delayed mutual information DMI(s) (b) of x1(t)

without PRBS (red line), and with a PRBS of amplitude π/2 at 3 Gb/s (black). We consider

δT1 = 510 ps and δT2 = 400 ps. A time series of length 10 µs with 107 data points was used.

no relevant peak is found around other delay time positions, e.g T2 and T2 + δT2.

We have found that even using the time distribution extrema and the filling factor

methods for the free-noise system, the delay time signatures remain concealed at T2
and T2 + δT2. Note that the concealed delay times correspond to those involved in

the equation for the non-transmitted variable y2(t) [see Eq. (6.2)].

When adding the PRBS, it turns out that autocorrelation is not efficient to

identify the delay times anymore while the size of the peak given by the DMI con-

siderably decreases. The persistence of the peaks even when considering the PRBS

can be understood as follows. Without PRBS the size of the peaks obtained around

the delay time is stronger than in the case of the serial configuration for the same

parameters (compare the red line of Fig. 6.2 with that of Fig. 5.5). This therefore

indicates that the relationship between x1(t) and its delayed values for the parallel

configuration is stronger than for the serial one. Effectively, the amplitude of the

chaos driving the nonlinear term in Eqs. (6.1) and (6.2) for the parallel configu-

ration is twice than that for the serial configuration, e.g. x1(t) + y2(t) instead of

y2(t) for serial configuration, and therefore the mixing of the PRBS and the chaos

is less balanced so that the PRBS cannot conceal the delay time. However, the

cross-correlation between x1(t) and R(t) is of the order of 10−3. Thus the PRBS

remains efficiently masked by the chaos as for the serial configuration. One can also

remark that in any case the effect of the PRBS is to reduce the peak size even if it

is not capable of a full concealment.

Another relevant point consists in investigating the conditions for which the

system guarantees the concealment of T2 and T2 + δT2. In other words, any linear

relationship between x1(t) and y2(t) will consequently lead to appearance of peaks



98

Figure 6.3: Autocorrelation function C(s) (a) and delayed mutual information DMI(s) (b) of x1(t)

without PRBS (red line), and with a PRBS of amplitude of π/2 at 3 Gb/s (black). We consider

δT1 = δT2 = 400 ps. A time series of length 10 µs with 107 data points was used.

even at T2 and T2+δT2. The investigation of such a linear relationship between x1(t)

and y2(t) is possible in Fourier domain. Thus, by Fourier transforming Eqs. (6.1)

and (6.2), one obtains

X1(ω)

(

1 + iωτ1 +
1

iωθ1

)

= G1e
−iωT1FT

{

cos2
[

∆̄(x1 + y2)δT1 + ∆̄(R)δT1 + φ1

]

}

,

Y2(ω)

(

1 + iωτ2 +
1

iωθ2

)

= G2e
−iωT2FT

{

cos2
[

∆̄(x1 + y2)δT2 + ∆̄(R)δT2 + φ2

]

}

,

where ∆̄(F )δt0 = F − F (t− δt0) and FT{x} stands for the Fourier transform of x.

For δT1 = δT2 and φ1 = φ2, it turns out that

X1(ω)

Y2(ω)
=

G1

(

1 + iωτ2 +
1

iωθ2

)

G2

(

1 + iωτ1 +
1

iωθ1

) exp [−iω(T1 − T2)] . (6.5)

Equation (6.5) shows linear relationship between x1(t) and y2(t) and consequently

clear peaks also emerge at T2 and T2 + δT2 when δT1 = δT2. Figure 6.3 shows

the appearance of peaks at T2 and T2 + δT2 both from autocorrelation and DMI,

even when the offset phases are different. For this specific case, we have found that

clear peaks also appear at T2 − T1 (which are out of the range of the figure) as a

consequence of the linear relationship which also exists between x(t) and x(t− (T2−
T1)) [114]. This result therefore shows that only imbalanced delays can lead to delay

concealment by breaking the relationship between x1(t) and y2(t).
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6.3 Synchronization

The part of the signal sent to the receiver is taken at the output of the PM1 and

consequently, the non-transmitted variable y2(t) has to be generated at the receiver,

through an internal closed loop. We investigate here the conditions for possible

synchronization when assuming identical parameters for emitter and receiver. Con-

sidering the receiver setup shown in Fig. 6.1, its dynamics can be described by

z1 + τ1
dz1
dt

+
1

θ1
v1 = G1 cos

2 [∆(x1 + w2)T1 +∆(R′ +m)T1 + φ1] , (6.6)

w2 + τ2
dw2

dt
+

1

θ2
v2 = G2 cos

2 [∆(x1 + w2)T2 +∆(R′ +m)T2 + φ2] , (6.7)

dv1
dt

= z1, (6.8)

dv2
dt

= w2. (6.9)

For G2 = 0, w(t) decays to zero after the characteristic time θ2. The sys-

tem therefore operates in open loop and consequently the synchronization is always

guaranteed for identical parameters as shown in [76]. Thus starting from G2 = 0

and keeping receiver parameters identical to the emitter ones, we gradually increase

G2 in order to investigate the range of G2 for which synchronization is possible.

An efficient way to do that consists in investigating the stability of the complete

synchronization between z1(t) and x1(t) (characterized by the coincidence of states

between x1(t) and z1(t), e.g., x1(t) = z1(t)) either through the root-mean square

synchronization error or by estimating the largest conditional Lyapunov exponent

(LCLE).

As in the previous case, Eq. (5.20) can be used for estimating the synchroniza-

tion error between x1(t) and z1(t). Regarding the LCLE, it can be defined following

the pioneering work of Pyragas in [141] which states that the stability of the syn-

chronization in a delayed system can be determined by looking at the growth of

state vector δ ∈ L (where L is a suitable space function) constructed in the interval
[

t−T, t
]

. Since the system has four different delay times, T1, T1+ δT1, T2, T2+ δT2,

we should consider the largest delay involved in the system. In our case the system

largest delay time is TD = T2+δT2. Defining δ1 = z1(t)−x1(t) and δ2 = w2(t)−y2(t)
as in the previous chapter the LCLE defined in [141] can be actually modified for

this system as

λL = lim
t→∞

1

t
ln











[

∫ 0

−TD
δ21(t + t′)dt′

]1/2

[

∫ 0

−TD
δ21(t

′)dt′
]1/2











. (6.10)
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Figure 6.4: (a) Synchronization Error σ in logarithmic scale, (b) Largest conditional Lyapunov

exponent (LCLE) versus G2 considering G1 = 5.

Stable synchronization occurs for λL < 0. By subtracting Eq. (6.1) from (6.6) and

Eq. (6.2) from (6.7) and linearizing for δ1 and δ2, one obtains

δ1 + τ1
δ1
dt

+
1

θ1
ε1 = −G1∆(δ2)T1 sin [2∆(x1 + y2)T1 + 2∆(R)T1 + 2φ1] , (6.11)

δ2 + τ2
δ2
dt

+
1

θ2
ε2 = −G2∆(δ2)T2 sin [2∆(x1 + y2)T2 + 2∆(R)T2 + 2φ2] , (6.12)

Thus δ1(t) to be used in Eq. (6.10) can be obtained by numerical resolution of

Eqs. (6.1), (6.2), (6.11) and (6.12). Note that λL depends implicitly on the feedback

strengths G1 and G2.

Figure 6.4 (a) shows the synchronization error σ in logarithmic scale as func-

tion of G2 for G1 = 5 which corresponds to a relatively high loop gain. It turns out

that up to G2 = Gth
2 ≈ 3.2, perfect synchronization indicated by a very small syn-

chronization error (σ < 10−13 corresponding to the numerical accuracy) is observed.

Beyond this threshold value for G2, desynchronization rapidly appears as indicated

by a synchronization error which is of order 1. Similar results are found in Fig. 6.4

(b) which displays the LCLE as a function of G2. Furthermore, it can be seen that

for all the values of G2 for which x1(t) and z1(t) synchronize, e.g. G2 < Gth
2 , the

LCLE takes always the same value θ−1
1 which corresponds to the slowest character-

istic time of the system. Beyond Gth
2 , any small perturbation δ1(t) or δ2(t) grows in

time and therefore λL becomes positive indicating desynchronization between the

emitter and receiver. We have found that even setting R = 0, the range of val-

ues for G2 for which synchronization takes place remains the same. Similar values

for the synchronization threshold Gth
2 are obtained for other values of the external
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loop gain G1 provided G1 > 3. Therefore in what follows we will consider only

G2 < Gth
2 ≈ 3.2.

6.4 Effect of the PRBS on Synchronization

Although in the parallel configuration the PRBS does not completely conceals the

delay times T1 and T1+δT1, it can still play a key role in parameter space dimension.

For R′ 6= R the dynamics of δ1(t) and δ2(t) is given by

δ1 + τ1
dδ1
dt

+
1

θ1
ε1 = −G1 sin

[

∆(δ2)T1 +∆(R′ − R)T1
]

× sin
[

2∆(x1 + y2)T1 +∆(δ2)T1 +∆(R +R′ + 2m)T1 + 2φ1

]

, (6.13)

δ2 + τ2
dδ2
dt

+
1

θ2
ε2 = −G2 sin

[

∆(δ2)T2 +∆(R′ − R)T2
]

× sin
[

2∆(x1 + y2)T2 +∆(δ2)T2 +∆(R +R′ + 2m)T2 + 2φ2

]

, (6.14)

dε1
dt

= δ1, (6.15)

dε2
dt

= δ2. (6.16)

These equations indicate that, contrary to the serial configuration, δ2 does not always

decays to zero independently of any eventual PRBS mismatch. Synchronization

degradation therefore takes place both on internal and the transmitted variables.

Furthermore, it is noteworthy that no synchronization is possible between x1(t) and

z1(t) when the internal variables do not synchronize, e.g. δ2(t) = 0.

Figure 6.5 shows both the mean square synchronization error (a) and the

BER (b) as a function of PRBS mismatch for different values of the internal loop

gain G2. For G2 = 0, there is no internal variable and therefore synchronization

degradation relies on the transmitted variable as found for the serial configuration.

The synchronization error grows faster with the mismatch and just a 1% PRBS

mismatch leads to a synchronization error of about 25% similar to that found in

the serial configuration. Regarding the BER obtained for G2 = 0, it grows linearly

with the PRBS mismatch and in fact the results are similar to those obtained in the

serial configuration for G1 = G2 = 5. When increasing G2, the degradation becomes

stronger both in synchronization error and BER. As an illustration, for G2 = 3 the

degradation for 0.4% PRBS mismatch is similar to that obtained for 2% of PRBS

mismatch when considering G2 = 0. Also, as for the serial configuration, we have

found that for bit rates lower than 1/δT1, the effect of the PRBS is largely reduced.
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Figure 6.5: Influence of the PRBS-mismatch η on (a) Synchronization evaluated through the root-

mean square synchronization error σ without the message, and (b) on the BER for a 10Gb/s

message. We have considered a PRBS R(t) of length 1024 bits generated at 3 Gb/s, G1 = 5 and

G2 = 0 (�), G2 = 2 (△), G2 = 3 (•).

6.5 Conclusions

We have studied in this chapter a configuration based on two parallel electro-optic

phase-chaos loops. This allows for the generation of two phase-chaos variables, one

of which is transmitted to the receiver while the other remains internal. The system

also allows for an efficient implementation of a digital key. A suitable receiver is

organized in a semi-closed loop configuration since it contains both an open loop

for the transmitted variable and a closed one for the internal variable. Starting

from single loop system (G2 = 0), we have investigated the conditions for high

synchronization quality. Thus, it was found that synchronization takes place even

for moderate values of the internal loop gain up to G2 ≈ 3.2. For the values range

of G2 for which the system synchronizes, we have found that the system conceals

all the internal loop delay times even without any digital key. On the other hand,

we have found that the digital key decreases the signature corresponding to the

two delay times of the external loop although it does not completely suppress them.

Interestingly, the effect of digital key on synchronization degradation is stronger than

for the serial configuration so that its integration efficiently increases the parameter

space dimension in chaos-based communications.



Chapter 7

Effect of Fiber Dispersion on

Broadband Chaos Implemented by

Electro-Optic Phase Chaos

Systems

7.1 Introduction

Real communication networks will require the use of transmitters and receivers

operating in synchronized chaotic regime, even if located far one from another [31].

In general, the signals are transmitted to receiver via either the electrical or the

optical channels. The latter is the most used in the current communications because

of their very large bandwidth and their low losses. However, besides the problem

of signal-to-noise ratio caused by the noise and various mismatches in parameters

between the emitter and the receiver, which are general for any communication

system, one should additionally overcome the fiber effects. In fact, during its travel

through the fiber, the carrier is subjected to attenuation, Kerr nonlinearity and

chromatic dispersion. The latter effect is the most damaging in broadband chaos

communication because the encrypted signal bandwidth may span over several tens

GHz around the nominal frequency of the laser beam. Hence, dispersion shuffles this

broadband spectrum and, as a consequence, synchronization noise arises because

of imperfect chaos replication at the receiver. This residual cancellation noise is

naturally expected to increase with the spectral bandwidth of the signal, with the

length of the fiber link, and with the absolute value of the chromatic dispersion.

For optical chaos communication networks, the chaotic carriers used for en-

cryption can be generated using a wide variety of architectures ranging from the

amplitude/ intensity [67, 74, 142] to phase modulation schemes [75, 76]. In our

case, the carriers launched into the fiber are generated from the electro-optic non-

linear delay phase chaos generator presented in Sec. 2.3 and the results reported

103
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in this chapter indicate a better synchronization performance [143] when compared

with previous measurements in electro-optical intensity chaos [144]. To the best

of our knowledge, very few investigations have been devoted to the topic of fiber

propagation effects on the performance of chaos cryptography [42, 129, 130, 145],

and they were exclusively based on numerical simulations. Fiber transmission has

been considered, nonetheless, in some experimental works [74, 146], but no detailed

analysis on the fiber dispersion effects has been reported.

Our aim in this chapter is to address this issue with a joint theoretical and

experimental analysis, and with a particular emphasis on the exploration of var-

ious dispersion management schemes able to minimize the detrimental effects of

chromatic dispersion. The chapter is organized as follows. In Sec. 7.2 we briefly

overview the optical fiber effects. In Sec. 7.3 we present the system under study.

The Sec. 7.4 is devoted to the study of cancellation (or synchronization) noise, while

Sec. 7.5 is dedicated to the corresponding spectra. The last section summarizes our

results and concludes the chapter.

7.2 Overview on Optical Fiber Effects

In its simplest form, an optical fiber consists of a central glass core surrounded

by a cladding layer. It can be designed using several types of materials chosen to

minimize the loss and the distortion of the signal during its transmission through

the fiber.

7.2.1 Origin of fiber impairments

Losses, nonlinearity and dispersion are the major unwanted properties of optical

fibers in lightwave communication.

• Fiber losses: The losses in optical fibers dominantly result from the material

absorption and Rayleigh scattering. The first arises from impurities in the fiber

materials while the second comes from density fluctuations frozen into the fused

silica during manufacture. As one may therefore expect, fiber losses depend on the

wavelength of light. It has been found that losses are considerably higher at shorter

wavelengths, reaching a minimum level of about 0.2 dB/km at 1.55 µm which is the

wavelength used for current communications. In general, a transmitted signal under-

goes an exponential attenuation e−αL when traveling over the fiber, where α is the

attenuation factor and L the fiber length. To get around the attenuation problem,

current optical fiber communications inline erbium-doped fiber amplifiers (EDFA)

to compensate for losses which have been accumulated during the propagation.
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• Fiber nonlinearities: On a fundamental level, the origin of nonlinear re-

sponse is related to anharmonic motion of bound electrons under the influence of

an applied field. The material polarization which depends on higher-order suscep-

tibility is responsible for nonlinear effects such as higher-harmonic generation and

sum-frequency generation [147]. Besides defects or color centers inside the fiber core

can also contribute to second-harmonic generation under certain conditions. Single

mode fibers are therefore preferred than multi-mode fibers for optical fiber commu-

nications. Special efforts have been done to annihilate some sources of nonlinearities

so that most of the nonlinear effects in optical fibers are currently originated only

from nonlinear refraction and the Kerr effect.

• Dispersion: Dispersion is composed of polarization dispersion and chromatic

dispersion. In our case, only the chromatic dispersion captures our attention since

efforts have been ever made to limit the polarization dispersion at very acceptable

level in current commercial optical fiber communications. Furthermore, the effects

of polarization mode-dispersion in chaos encryption, have been already investigated

in [148]. Regarding the chromatic dispersion it is mainly caused by the interaction

between the light pulse and the material used to manufacture the optical fiber. Be-

sides that, a light pulse is affected by the waveguide dispersion so that the total

chromatic dispersion is the balance between the material and the waveguide disper-

sions. Mathematically, the effects of fiber dispersion are accounted for by expanding

the mode-propagation constant β in a Taylor series around the central frequency ω0

as follows

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + ...., (7.1)

where the parameter β1 = (dβ/dω) stands for the inverse of group velocity Vg, e.g.

β1 = 1/Vg, while β2 = (d2β/dω2) is the group velocity dispersion coefficient [149].

The latter determines how much an optical pulse would broaden on propagation

inside the fiber. In the straightforward form,

β2 = − λ2

2πc
D, (7.2)

where D is the fiber dispersion coefficient, λ is the optical carriers wavelength, and

c is the speed of light in vacuum. In some cases such as dispersion shifted fibers

for which the 2nd order dispersion is small, the third order dispersion is taken into

account and consequently, Eq. (7.1) should be expanded up to 3rd order.

7.2.2 Operating principle of dispersion in communications

For a single mode fiber, Eq. (7.1) underlies that a specific spectral component at

the frequency ω would arrive at the output end of the fiber after a delay time



106

3/9

Figure 7.1: How the dispersion reacts to induce bit errors.

T = L/Vg. However in real communication networks all light sources emit not only

at a single wavelength λ, but in the band of the spectral width, ∆λ, distributed

around. Different wavelengths in the band ∆λ travel at slightly different speeds

and if the distance over which they travel is significant, they arrive at different

time, leading therefore to spreading or broadening of the original signal. For an

optical source emitting in the range of wavelength ∆λ, the frequency spread can be

determined. In fact, if ∆ω is the spectral width of the pulse, the extent of pulse

broadening for a fiber of length L is governed by [150]

∆T =
dT

dω
∆ω =

d

dω

(

L

vg

)

∆ω = L
d2β

dω2
∆ω = Lβ2∆ω. (7.3)

The lag time at arrival ∆T is called differential delay. Since ω = 2πc/λ, ∆ω =

(−2πc/λ2)∆λ, Eq. (7.3) can be also written

∆T = LD∆λ, (7.4)

with D expressed in units of ps/(km-nm). Figure 7.1 illustrates the potential action

of the dispersion on the real transmitted data. When a sequence of logical bits (0,

1) are transmitted though the fiber, they disperse during propagation and do not

arrive simultaneously at the fiber output after a long distance traveling. The bit

error numerically obtained by confronting the recovery data to the original shows

how some bits have been distorted. Of course, this number is expected to increase

with the transmission distance. It is worth noting that the effect of dispersion on

the bit rate B can be estimated by using the criterion B∆T < 1, e.g. BL|D|∆λ < 1.
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Figure 7.2: Experimental setup. EDFA: erbium-doped fiber amplifier; MZI: Mach-Zehnder inter-

ferometer; PD: photodiode; PM: phase modulator; SL: semiconductor laser; SMF: Single Mode

Fiber, DCM: Dispersion Compensation Module DSF: Dispersion Shifted Fiber.

This condition allows to estimate the order of magnitude of the bit rate that can be

transmitted depending on the fiber characteristics and the spectral of the emitted

source. It should be also stressed that although the information carried by some

pulses is distorted, it is not lost. Thus, it can be recovered if the distorted pulses

are restored [151] using dispersion management.

7.3 Optical Channel and Receiver

7.3.1 Emitter and optical channel

The full experimental setup of emitter-receiver including the fiber transmission chan-

nel is shown in Fig. 7.2. As earlier derived in Sec. 2.3 the emitter dynamics including

the message can be described by

x+ τ
dx

dt
+

1

θ
u = G cos2

{

∆xT +∆mT + Φ0

}

, (7.5)

du

dt
= x. (7.6)

According to the experimental setup, the light beam launched into the fiber com-

munication channel corresponds to the optical signal at the second phase modulator

output. The system configuration as shown in Fig. 7.2 allows to derive the electric

field envelope of the transmitted light

E(0, t) = E0 exp {2i[x(t) +m(t)]} . (7.7)

The above equation is taken as the initial condition to simulate the propagation

of the chaotic carrier along the fiber, which is modeled by the following nonlinear
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equation [147]:

∂E
∂z

(z, t) = −α
2
E(z, t)− β1

∂E
∂t

(z, t) − i
β2
2

∂2E
∂t2

(z, t) +
β3
6

∂3E
∂t3

(z, t)

+iγ |E(z, t)|2 E(z, t), (7.8)

where βk (k=1, 2, 3) is the kth order dispersion, γ is the nonlinear Kerr factor and

α is the linear attenuation. In the reference frame moving with the group velocity

(t→ t− β1z), Eq. (7.8) becomes

∂E
∂z

(z, t) = −α
2
E(z, t)− i

β2
2

∂2E
∂t2

(z, t) +
β3
6

∂3E
∂t3

(z, t) + iγ |E(z, t)|2 E(z, t). (7.9)

It is worth recalling that if the third order dispersion is neglected, Eq. (7.9) is the

dispersive nonlinear Schŕ’odinger equation. The time of flight after propagation

over a fiber length L is TD = L/β1. As discussed later, two scenarios are to be

considered for transmission channel in this chapter. One including single mode fiber

plus dispersion compensation and another considering a dispersion shifted fiber. In

both cases, after propagating E(0, t) over a distance L ≤ 50 Km (and eventually

going through dispersion compensation) the output is amplified to compensate for

the losses. Experimentally amplification is realized by an EDFA followed by an

optical channel filter that removes most of the spontaneous emission noise introduced

by the EDFA. Therefore in the numerical simulation we consider a noiseless amplifier.

7.3.2 Receiver

Similarly to the previous chapters, the receiver stage does simultaneously undertake

two distinct actions: chaos cancellation, and DPSK message demodulation. The

receiver input light is split into two parts using a variable coupler: one part is sent

to a nonlinear delay processing branch, while the second part is fed into the local

electro-optic phase modulator which role is to remove electro-optically the chaotic

phase encryption mask. The amplifier and the variable coupler are set in such a

way that the field going into the delay branch, E(L, t), has the same mean power P0

as in the transmitter. In the case of an ideal chaos cancellation, the receiver phase

modulation output therefore corresponds to a standard DPSK-modulated light beam

(the one imposed by the message phase modulator in the transmitter). The optical

field arriving at the receiver MZI is E(L, t), so the MZI intensity output is

PR(t) =
1

µ0c

1

4

∣

∣

∣
E(L, t− T ′)ei(2Φ

′

0+π) + E(L, t− T ′ − δT ′)
∣

∣

∣

2

, (7.10)

where the prime (′) indicates the receiver parameters. As already stated, the repli-

cated chaos with the opposite sign is obtained by operating the MZI with a π−shifted
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static phase as indicated in Eq. (7.10). Alternatively this could have been done using

balanced photodiodes and exchanging their inputs or using an inverted amplifier at

the receiver.

Under such conditions the normalized signal y(t) driving the receiver phase

modulator with an anti-replica of the chaotic masking, is ruled by the following

“open loop” dynamics:

y(t) + τ ′
dy(t)

dt
+

1

θ′

∫ t

t0

y(s)ds = G′
PR(t)

P0
, (7.11)

where G′ = πη′0G
′

0S
′/(2V ′

πRF ).

The receiver PM applies the phase modulation given by y(t) to the received

light beam in order to remove the chaotic carrier. The resulting light beam can then

be processed through a standard DPSK demodulator matched with the message bit

rate (imbalanced MZI with δTm in Fig. 7.2). The photodiode detects

µR(t) =
1

4
S
∣

∣E(L, t)e2iy(t) + E(L, t− δTm)e
2iy(t−δTm)

∣

∣

2
. (7.12)

In the absence of a binary DPSK message, the sum ε = (x + y) is used to

evaluate the accuracy of the phase chaos cancellation. Similarly to the usual signal-

to-noise ratio, a cancellation-to-chaos ratio can be defined in order to analyze the

accuracy of the chaos cancellation in a normalized way.

7.4 Numerical Results: Cancellation Noise

In this section, we theoretically investigate the time-domain variations of the can-

cellation noise when the fiber and the chaotic carrier parameters are varied. This

analysis relies on the coupled Eqs. (7.5), (7.6), (7.9) and (7.11) with the parameters

τ = 20 ps, θ = 1.6 µs, δT = 0.4 ns, Φ0 = π/4 and T = 70 ns. The power P0 is 5 mW,

and we consider a single mode fiber (SMF) for the transmission channel, with pa-

rameters β2 = 20 ps2 km−1, β3 = 0.1 ps2 km−1, γ = 1.1 W−1km−1, α = 0.2 dB km−1

(0.046 km−1). The propagation of the optical signal in the optical fiber channel is

simulated using the split-step Fourier algorithm, while the calculation of the emitter

receiver dynamics is performed using the predictor-corrector algorithm. The influ-

ence of parameter mismatch has already been explored elsewhere [105] for a similar

electro-optic chaos communication system, so that we can here concentrate on the

effects of the fiber channel only. In this section all the receiver parameters will

thus be assumed to be perfectly matched. This hypothesis enables an easier under-

standing of the cancellation noise that is exclusively due to fiber propagation effects.

Without any message inserted, we characterize the system performance using the
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Figure 7.3: Numerical simulation of the synchronization error between the emitter and receiver

as a function of fiber length in a standard SMF with β2 = 20 ps2km−1 and β3 = 0. The various

values of the feedback gains are G = 2.5 (◦), G = 3.5 (�), and G = 5.0 (•).

normalized cancellation-to-chaos ratio defined as

σ =

√

〈ε2(t)〉
〈x2(t)〉 . (7.13)

We remark that perfect cancellation of the chaos is expected when y(t) perfectly

anti-synchronizes with x(t). Figure 7.3 illustrates clearly the dramatic influence of

the fiber channel on the chaos cancellation at the receiver, when SMF only is involved

in the optical link. The situation worsens as expected for higher feedback strength

(G = 5.0), as this corresponds to an even broader chaotic spectrum to be conveyed

through the dispersive channel (thereby it increases the linear frequency mixing

effect of dispersion). For each situation reported in Fig. 7.3, we clearly see that a

strong signal distortion occurs already for propagation over 10 km of SMF. In this

case, the message could not be successfully retrieved because the synchronization

error is too large. Typically, one would expect this error to be below 10%, which

is of the order of the best experimental cancellation-to-chaos ratio due to residual

parameter mismatch in a back-to-back configuration [76].

Since the nonlinear effects are relatively weak in our context, the large distor-

tion mainly originates from chromatic dispersion. This first result on a standard

non compensated fiber channel shows that phase chaos communication is requiring

necessarily a proper management of the dispersion effects.
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Figure 7.4: (a) Operating principle of transmission including dispersion compensation in chaos

communications, (b) Prototype of tunable DCM able to compensate for a dispersion between 0

and 59.5 ps/nm in steps of 8.5 ps/nm.

7.4.1 Using dispersion-compensation

Dispersion can be compensated either using a dispersion compensation module

(DCM) or a dispersion compensating fiber (DCF). In both cases the principle con-

sists in propagating a signal through the SMF which generates a differential delay.

Then this differential delay is reduced using a component (DCF or DCM) which

has a strong dispersion with the opposite sign. The process is repeated at regular

intervals throughout the fiber as it is shown in Fig. 7.4 (a). In Fig. 7.4 (b) we show

an example of DCM designed to operate between 0 and 59.5 ps/nm by switching

between several subcomponents that allow to compensate for different dispersions

in steps of 8.5 ps/nm. For ideal chromatic dispersion compensation, the SMF and

DCF lengths are chosen to satisfy the condition
∑

k

βk2L
k
1 + βk2DCFL

k
2 = 0, (7.14)

where k indicates the parameters attached to the kth portion. In this chapter we

consider only one of the portions. Generally, a DCF has nominal values which

are typically ten times higher than those of the fiber to be compensated for, and

attenuation in DCFs is usually higher as well. Therefore, in order to adequately

compensate for the dispersion induced in the SMF, we consider the parameters

β2DCF = −10β2, αDCF = 3α and γDCF = 6 W−1km−1. Hence, after the propagation

over a SMF with length L1, the signal is launched into a DCF with length L2 ≪ L1,

and which satisfies the condition

β2L1 + β2DCFL2 = 0 . (7.15)
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Figure 7.5: Numerical simulation of the dispersion compensation using DCFs with β2DCF =

−200 ps2/km, β3DCF = 0.1 ps3/km, αDCF = 0.6 dB, γDCF = 6 W−1km−1. The values used

for the feedback gains are G = 2.5 (•) and G = 5.0 (△). When the chaotic carrier is launched at

z = 0, the synchronization error increases steadily but at z = 50 km, a 5 km-long DCF is used and

drastically reduces the cancellation noise.

In Fig. 7.5, the chaotic carrier undergoes distortion after traveling over L1 =

50 km of SMF, and then is launched into a DCF in which it goes back closer to

its initial state. In the figure we plot what would be the synchronization error if a

receiver was placed at a given point in the fiber. Synchronization error grows with

the propagation distance until the DCF is reached, and then it decreases owing to

the compensation. Finally for a 5 km compensation with DCF, one can obtain a

synchronization error as small as 7.5% when considering a transmitter with G = 5.

The situation is almost the same for smaller gain values (G = 2.5), where the

synchronization error is also estimated to 7.5%. Hence, for DCFs, the compensation

is almost independent ofG. It is interesting to note that this residual synchronization

error is exclusively due to the effect of the fiber nonlinearity, and the third order

dispersion which remain uncompensated. Simulation results without the nonlinear

term in Eq. (7.9) indeed yields a quasi-null synchronization error (below 0.5%), even

if the 3rd order dispersion is not matched.

7.4.2 Using a dispersion-shifted fiber (DSF)

Another alternative way for the reduction of dispersion effects over a fiber channel

is to use a DSF in which the second order dispersion is set close to zero, without

modifying the other properties of the fiber. This small value of the dispersion is

due to the fact that this type of fiber is built adding some doped components so
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Figure 7.6: Numerical simulation using DSFs. The values used for the gains are G = 2.5 (◦),
G = 3.5 (�), and G = 5.0 (•). (a) Synchronization error with the parameters β2 = 0.2 ps2km−1

and β3 = 0. (b) Synchronization error with the parameters β2 = 0.1 ps2km−1 and β3=0.1 ps3km−1.

that the zero-dispersion is shifted to or closer to the emitted wavelength, 1.55 µm,

instead of being at 1.3 µm as it is the case for the standard fiber. The ideal case

would be to have the zero-dispersion exactly at the emitted wavelength. But in

practice this condition is rarely fulfilled and some small dispersion is still found

out. The results obtained with this method are displayed in Fig. 7.6, showing the

evolution of the synchronization error when a carrier is transmitted through a DSF.

In Fig. 7.6 (a), the broadest chaotic spectrum (G = 5.0) is still distorted, so that

the synchronization error reaches 15% after a propagation over L ∼ 50 km, with

β2 = 0.2 ps2km−1. Operating in weak chaotic regime (G = 2.5), the signal is much

less distorted since the synchronization error calculated after the propagation over

100 km is less than 9%. If one manages to reduce the value of β2 (e.g. down to

0.1 ps2km−1), better synchronization is achieved as shown in Fig. 7.6( b), even when

third order dispersion is considered (about 10% after 50 km, with the highest gain

G). It can be noted that globally, the DSF compensation scheme is more efficient

for lower gain values in Figs. 7.6 (a) and 7.6 (b); the optimum has therefore to be

found between increased security (requiring strong hyperchaos and a broad spectrum

through a high gain) and increased signal-to-noise ratio (requiring a minimization

of the cancellation noise).

7.5 Experimental Results: Cancellation Noise Spectra

We have performed experimental measurements in order to evaluate the chaos can-

cellation level after propagation in optical fiber spools available in the laboratory.

Chaos cancellation spectra measurements were chosen as indicators of the chaos
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Figure 7.7: Experimental (a, c) and numerical (b, d) chaos cancellation spectra for transmission

over standard SMF spools, with (a, b) G = 2.5 and (c, d) G = 5.0. Red: chaotic carrier; Green:

back-to-back transmission; Blue: L = 1 km; Magenta: L = 3 km; Cyan: L = 21 km. The

numerical results have been obtained considering a mismatch of 5% in τ and 10% in G.

communication link performance, in order to have a relevant comparison between

experiment and theory. To improve the synchronization quality, additional 7.73 GHz

low-pass filters (corresponding in the modeling to a slightly slower response time τ)

have been added right after the photodiodes, as it is usually the case for 10 Gb/s

data detection in optical communication networks. We expect thus that the width

of the chaotic carrier is better matched to that of 10 Gb/s DPSK message spectrum

(higher frequency chaotic spectral components would anyway not be useful for mes-

sage masking at that bit rate). Our cancellation spectra are obtained with an optical

spectrum analyzer (OSA) with 10 MHz resolution. For each chaos cancellation spec-

trum, we also recorded the corresponding chaotic spectrum without cancellation, so

that the difference between the two situations can lead easily to the cancellation-to-

chaos ratio in the spectral domain. It should be noted that the chaotic spectrum is

obtained from the output of the cascaded PM while the cancellation spectra result

from the receiver PM.
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Figures 7.7 (a), (c) display several experimental cancellation spectra after prop-

agation in standard SMFs. It is intended to evidence the degradation of chaos can-

cellation when dispersion effects grow with increase of the fiber length. As in Fig. 7.3,

the parameters varied were the feedback loop gains and the fiber lengths. The nu-

merical power spectral density of the optical field is shown in panels (b), (d). It is

worth noting that experimental spectra decay faster than numerical ones because

the experimental filter is of higher order. Figures 7.7 (a), (b) display the low gain

case. A few peaks are easily recognizable in the carrier spectrum, thereby indicating

that the full hyperchaotic regime (strong, flat, and broadband) has not been reached

completely with such a gain. When the propagation length is low (0 and 1 km), the

cancellation noise is globally higher than 20 dB (this figure can straightforwardly

be considered as a kind of chaos-to-cancellation ratio). A degradation is observable

when L is increased up to 3 km, and for a 21 km link, the chaotic carrier is not

canceled at all beyond 7 GHz. For the highest achievable feedback gain G = 5.0

[Figure 7.7 (c)], the spectrum of the carrier is much smoother, as the full hyper-

chaotic regime is obtained. In this case, the cancellation performance is between 15

and 20 dB in the back-to-back configuration. However, the same degradation is wit-

nessed as the fiber lengths increase. Hence, at this stage of the experimental study,

it is clear that multi-Gb/s chaos cryptosystems cannot be operated in standard op-

tical networks with SMFs beyond few kilometers without dispersion compensation,

as the cancellation performance becomes severely degraded.

7.5.1 Using dispersion compensation modules (DCMs)

At the experimental level, we compensate the fiber dispersion through the utiliza-

tion of DCMs. The principle of compensating with DCMs consists in propagating

the carrier over a fiber length L1, then launching it into the DCM which is adjusted

so that the cancellation is the best possible. Even though DCMs are not exactly

equivalent to the DCFs used in the numerical analysis in Sec. 7.4.1, the under-

lying physical mechanism is very similar, at least for the second order dispersion

phenomena.

In Figs. 7.8 (a), (c), a tunable dispersion compensation module with a wide

bandwidth and a large control tuning range is used (TDCM from Teraxion). Very

good cancellation spectra is obtained by tuning DCM either to −360 ps/nm to

compensate for a dispersion over 20 km of SMF or to −880 ps/nm for 50 km of

SMF, independently of the feedback strength G. Typically, the use of DCMs is seen

here as an excellent alternative at up to 50 km, as it enables to cancel almost com-

pletely the detrimental effects of fiber dispersion, with a weak penalty of the order

of 1 dB (experimentally, the synchronization error, or equivalently the chaos can-
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Figure 7.8: Experimental (a, c) and numerical (b, d) chaos cancellation spectra for transmission

over SMF spools and using dispersion compensation. (a, b) G = 2.5 and (c, d) G = 5.0. Red:

chaotic carrier; Green: back-to-back transmission, blue: L = 20 km of SMF; Magenta: L = 50 km

of SMF. Numerical results has been obtained considering DCF as in Fig. 7.5 and a mismatch of

5% in τ and 10% in G.

cellation level, is mainly dominated by unavoidable residual parameter mismatch).

For comparison the numerical spectra using a DCF with parameters as in Fig. 7.5

and considering a mismatch of 5% in τ and 10% in G is shown in Figs. 7.8 (b), (d).

It should be noticed here that we can highlight an interesting issue of the dispersion

sensitivity of phase chaos communication schemes. The use of DCM could indeed

not only be efficient for channel dispersion compensation. Such modules could also

be involved inside the phase chaos generation feedback loop, for introducing addi-

tional system complexity and security. The dispersion value set at the transmitter

would thus represent an additional secret key as a physical parameter, which would

be required at the receiver with the right value, in order to achieve the actual phase

chaos cancellation and the decoding of the chaotic masking.
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Figure 7.9: Experimental (a) and numerical (b) chaos cancellation spectrum for transmission over

a 22 km-long DSF spool, with G = 5.0. Red: chaotic carrier; Green: back-to-back transmission;

Cyan: L = 22 km. The numerical results has been obtained considering β2 = 0.1 ps2km−1,

β3=0.1 ps3km−1 and a mismatch of 5% in τ and 10% in G.

7.5.2 Using dispersion-shifted fibers (DSFs)

Another solution that can be experimentally implemented is to use DSFs, exactly as

in the numerical analysis of Sec. 7.4.2. In Fig. 7.9, the measurement of DSF influence

on transmission is reported. Though the operating wavelength (1562.0 nm) was

slightly different from the zero-dispersion wavelength of the DSF fiber (1550.8 nm),

dispersion was low enough so that after transmission over 22 km of fiber only small

differences from the back-to-back case are seen in the cancellation spectrum. If

compared with transmission over SMF without dispersion compensation [Fig. 7.7

(b)], equally small distortion of the cancellation spectrum is observed only for the

1 km SMF case, while the effects of longer fibers are significantly more pronounced.

7.6 Summary and Conclusions

We have led a joint theoretical and experimental study to investigate the detri-

mental effects of fiber propagation on the synchronization of an optical phase-chaos

emitter-receiver system separated by several tens of km, and potentially operat-

ing up to 10 Gb/s. We have shown that when propagating in standard SMFs, the

broadband chaotic carriers are drastically affected by chromatic dispersion, and mes-

sage recovery is impossible beyond few kilometers. We have explored two classical

methods of dispersion management, namely dispersion compensation fibers/modules

and dispersion-shifted fibers, in order to evaluate their suitability for optical chaos

cryptosystems. Both numerical and experimental results have shown that the can-
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Figure 7.10: Numerical eye diagrams for (a) the original message and the recovered one µr(t) after

propagation over (b) 21 km of SMF (as in Fig. 7.7), (c) 50 km of SMF and 5 km of DCF (as in

Fig. 7.8) and (d) 55 km of DSF (as in Fig. 7.9).

cellation noise can be reduced down to the level of the back-to-back configuration. In

particular, our experimental tests led with 20 km DSF, and 50 km of SMF+DCM

have successfully reduced/compensated the fiber contribution and enabled a can-

cellation noise figure ranging from 10 to 20 dB. We have also found numerically

that fiber channel nonlinear effects contributes up to a negligible percentage to the

cancellation-to-chaos ratio, when proper dispersion compensation is achieved. This

numerically found contribution is compatible with the actually obtained minimum

experimental value of the cancellation-to-chaos ratio.

Finally, Fig. 7.10 shows the results of numerical simulations for the eye dia-

gram of a 8 Gbs/s message decoded after propagation by a receiver with a mismatch

of 5% in τ and 10% in G. The decoded message µR given by Eq. (7.12) is to be

compared with the input message going through an equivalent detection scheme in-

volving a MZI with delay δTm. When fiber dispersion effects are compensated or a

DSF is used the message can be clearly recovered. These results thereby indicate that

our phase chaos cryptosystem can be integrated in standard optical fiber networks

where such dispersion management schemes are actually implemented. Moreover

dispersion sensitivity can be beneficial to enhance chaos communication security,

through a secretly set DCM inside the chaos generation process.



Chapter 8

Opto-electronic Microwave

Oscillator with Double Loop

8.1 Introduction

As stated in Sec. 1.4, OEOs are promising devices to generate stable and spectrally

pure microwave signals. Despite its apparent advantage of being simple to construct,

the original scheme presented by X. S.Yao and L. Maleki [79] has a major flaw:

the long storage delay, responsible for the excellent spectral purity, defines closely

spaced modes which are difficult to filter and hence degrade the overall performance.

Several corrective routes have been proposed, the most widely known of which are

an extremely narrow band intra-cavity microwave filter and a dual optoelectronic

loop configuration and which considerably reduced the spurious peak sizes [152].

In this chapter we study an opto-electronic delay system with double loop for

ultra-pure microwave generation [153]. As discussed herein the results show better

performance regarding the microwave amplitude generation and the phase noise

reduction than those already reported in the literature. The outline is as follows:

In Sec. 8.2, we overview the main results obtained in OEO system with single loop.

Sec. 8.3 we describe the system in detail. In Sec. 8.4 we derive the amplitude

equation for double loop OEO. In Sec. 8.5 we perform the simulations to check the

predicted steady states. Sec. 8.6 is dedicated to phase noise performance of both

systems in comparison to the single loop OEO. Sec. 8.7 concludes the chapter.

8.2 Opto-electronic Microwave Oscillator with a Single Loop

To better appreciate the usefulness of opto-electronic microwave oscillator with dou-

ble loop, we first study in this section the equivalent of such system with a single

loop. It is schematically presented in Fig. 8.1 (a) [81], which is similar to the

intensity chaos generator presented in Sec. 3.1 without the message and with an

additional component (narrow passband filter) serving to select the microwave fre-

quency while filtering out all other frequencies [compare Fig. 8.1 (a) to Fig. 2.4].
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Figure 8.1: Setup: SL: semiconductor laser, MZM: Mach-Zehnder modulator, PD: photodiode, (a)

OEO with single loop, (b) OEO with double loop.

The characteristics of the narrow band filter are its central frequency Ω0/2π and its

−3 dB bandwidth ∆Ω/2π. Proceeding as in Sec. 2.2 the dynamics of the microwave

oscillation can be described in term of the usual dimensionless variable x(t) as

x+ τ
dx

dt
+

1

θ
u = G cos2 [x(t− T ) + φ] , (8.1)

du

dt
= x, (8.2)

where G = πSG0P0η0/2VπRF is the normalized feedback gain, φ = πVB/2VπDC is

the Mach-Zehnder offset phase and τ = 1/∆Ω and θ = ∆Ω/Ω2
0 are the characteristic

timescale parameters of the bandpass filter. Usually in these systems a long fiber

delay is required to store the energy (typically one uses 4 km of fiber length corre-

sponding to T = 20 µs). Since the ratio between the fastest and slowest dynamical

timescales τ/θ is in the order of 107 and because of the large delay time, one needs a

lot of memory to compute Eqs. (8.1) and (8.2). One option to get around was intro-

duced by Y. K. Chembo et al. [81]. It consists in deriving the microwave amplitude

equation from Eqs. (8.1) and (8.2) taking advantage of some features of the system.

In fact, as the filter is narrowly resonant around the central frequency Ω0/2π, the

filter output can be written in term of slowly varying amplitude A(t) = Aeiψ(t) as

x(t) =
1

2
A(t)eiΩ0t + cc ≡ A(t) cos [Ω0t + ψ(t)] , (8.3)

where ’cc’ stands for the complex conjugate, A(t) is the modulus of the slowly

varying amplitude A(t) while ψ(t) stands for its slow varying phase. As was done in

[81], the expression of x(t) given by Eq. (8.3) can be used to simplify the nonlinear

term cos2 [x(t− T ) + φ]. Thus, one can Fourier-expand it in harmonics of Ω0 using
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the Jacobi-Anger expansion

eiz cosα =

∞
∑

q=−∞

iqJq(z)eiqα, (8.4)

where Jq are the qth-order Bessel functions of the first kind being q an integer. Then

cos2 [x(t− T ) + φ] =
1

2
+

1

2
J0 (2AT ) cos 2φ

+
1

2

∞
∑

q=1

iqJq (2AT ) cos(qΩ0t− qΩ0T + qψT )
[

e2iφ + (−1)qe−2iφ
]

. (8.5)

Although an infinite number of frequencies besides the fundamental (q = 1) can be

generated during the modulation at the output of MZM1, they are all discarded by

the filter. Thus disregarding all the spectral components except the fundamental

harmonic in Eq. (8.5), Eq. (8.1) can be rewritten as

x+ τ
dx

dt
+

1

θ
u = −1

2
G sin 2φJ1 (2AT ) e

i(Ω0t−Ω0T+ψT ) + cc. (8.6)

For further simplifications it is mathematically convenient to write the integral

as

u(t) =
1

2
U(t)eiΩ0t + cc, (8.7)

where U(t) is a slowly varying amplitude and neglecting Ü as compared to Ω0U̇ .
Here the dot here stands for the derivative. Thus by making use of Eq. (8.2), the

left hand side of Eq. (8.1) can be written as

du

dt
+

1

∆Ω

d2u

dt2
+

Ω2
0

∆Ω
u ≈ 1

2

[(

1 + 2i
Ω0

∆Ω

)

U̇(t) + iΩ0U(t)
]

eiΩ0t + cc. (8.8)

By deriving Eq. (8.7), it turns out that A = U̇ + iΩ0U ≃ iΩ0U . Therefore the left

hand side of Eq. (8.1) can be written as

1

2

[(

2

∆Ω1
− i

Ω0

)

Ȧ(t) +A(t)

]

eiΩ0t + cc. (8.9)

Thus Eq. (8.6) becomes

Ȧ+ µeivA = −G sin 2φeive−iΩ0TJC1 (2AT )AT , (8.10)

where JC1(x) is the Bessel Cardinal function defined as JC1(x) = J1(x)/x. Other

introduced parameters are

Q =
Ω0

∆Ω
; µ =

∆Ω/2
√

1 + [1/(2Q)]2
; v = arctan

[

1

2Q

]

, (8.11)
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Figure 8.2: Numerical bifurcation diagram for OEO system with a single loop.

where Q is the quality factor of the selective RF filter and µ and v act as the

parameters of the effective filter. For high quality factor (typically Q ∼ 200), µ ≃
∆Ω/2. Thus the effective bandwidth is µ ≃ ∆Ω/4π. The quantity Ω0T is the

round-trip phase shift accumulated along the oscillation loop. Typically the system

operates in the phase matching condition e−iΩ0T = ±1. Here we choose e−iΩ0T = −1

so that microwave generation takes place for sin 2φ > 0. When considering e−iΩ0T =

+1 the microwave generation takes place for sin 2φ < 0.

8.2.1 Steady state solutions

Pure microwaves of constant amplitude correspond to stable fixed points of Eq. (8.10).

Thus, for Ȧ = 0, Ast = 0 is a trivial fixed point while

Ast = J −1
C1

[

1

2G sin 2φ

]

, (8.12)

is the non-trivial fixed point which exists only for G sin 2φ > 1. In [81], the authors

demonstrated that the trivial fixed point is stable for G sin 2φ < 1 while the non-

trivial steady state solution is stable for 1 < G sin 2φ < 2.31. Figure 8.2 shows the

bifurcation diagram obtained by displaying the maxima and the minima extracted

by simulating Eq. (8.10). This bifurcation diagram shown in Fig. 8.2 is in full

agreement with that of [81]. Furthermore, one can notice that stable microwaves

can be generated with amplitudes in the range [0, 1.2] corresponding to the feedback

strength 1 < G sin 2φ < 2.31. For G sin 2φ > 2.31, the amplitude undergoes an

oscillatory instability [81].
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8.2.2 Stochastic phase equation

The noise can be taken into account in the amplitude equation through making use

of Langevin formalism, that is, in adding noise sources to a core deterministic model

for the microwave dynamics [94]. Two main noise contributions are to be considered,

• additive noise which results from noisy nature of different components such

as photodiode, amplifier, etc.. For each loop, it is considered to be spectrally

white. Around the central frequency Ω0, it can be written as

ξ(t) =
1

2
ξa(t)e

iΩ0t +
1

2
ξ∗a(t)e

−iΩ0t, (8.13)

where ξa(t) is the complex Gaussian white noise with correlation 〈ξa(t)ξ∗a(t′)〉 =
4Daδ(t− t′) corresponding to the power density |ξ(ω)|2 = 2Da.

• multiplicative noise: It results from the overall gain fluctuations. It has in

general a non trivial structure since it is composed from very different noise

contributions. It can be assumed as flicker near the carrier and white above a

certain knee-value as it has been observed in experiments [94]. The multiplica-

tive noise can be taken into account in the loops by adding a small perturbation

term to the overall loop gain, e.g. G + δG. Thus if we consider dimensionless

multiplicative noise ηm(t) = δG/G, its empirical noise power density can be

considered as

|ηm(ω)|2 = 2Dm

[

1 +
ΩH

ω + ΩL

]

, (8.14)

where ΩL and ΩH are the low and the high corner frequency, respectively.

Thus taking into account the noise terms, the stochastic equation for the slowly

varying amplitude can be written from Eq. (8.10) as

Ȧ+ µeivA = −G sin 2φeive−Ω0T [1 + η(t)]JC1 (2AT )AT + µeivξa. (8.15)

Since A = Aeiψ, Eq. (8.15) can be rewritten as

Ȧ+ iψ̇A = −µeivA+ 2µG sin 2φJC1

(

2Ast
)

× [1 + ηm(t)]AT e
i(ψT−ψ+v) + µeivξ′a(t), (8.16)

where ξ′a(t) = e−iψξa is a complex Gaussian white noise with the mean zero and

the same variance as ξa, e.g. 〈ξ′a(t)ξ
′∗

a (t
′)〉 = 4Daδ(t − t′). From Eq. (8.16), the

stochastic phase equation can be written as

ψ̇ = −µ sin v + 2µG sin 2φJC1

(

2Ast
)

[1 + ηm(t)]
AT
A

sin(ψT − ψ + v) + µ
ζψ(t)

Ast
,

(8.17)
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Figure 8.3: Theoretical phase noise spectrum of the opto-electronic microwave oscillator with single

loop considering the multiplicative noise as flicker (solid line) or white (dashed line) for A = 0.41.

where ζψ(t) = ξ′a,Re(t) sin v + ξ′a,Im(t) cos v is a real Gaussian white noise with zero

mean and variance as that of ξ(t) e.g. 〈ζψ(t)ζ∗ψ(t′)〉 = 2Daδ(t− t′). The sub-indexes

Re and Im refer to the real and imaginary parts of ξ′ψ(t), respectively. As discussed

in Sec. 1.4, we assume the fluctuations on the amplitude are of the second order

meaning that we can assume A(t) ⋍ A(t − T ) ⋍ Ast. Thus by further considering

that the phase fluctuations evolves so that sin(a− b) ≈ a− b, which is typically the

case for the OEOs studied here, Eq. (8.17) becomes

ψ̇ = µ (ψT − ψ) +
µ

2Q
ηm(t) + µ

ζψ
Ast

. (8.18)

Since Eqs (8.49) is linear, the phase noise spectrum in the whole frequency

range can be obtained from the squared modulus of its Fourier transform. Thus

considering that all noise sources are uncorrelated, the Fourier transforms Ψ(ω) of

the phase ψ(t) can be written as

|Ψ(ω)|2 =

µ2

4Q2
|ηm(ω)|2 +

2µ2

|Ast|2Da

|iω + µ(1− e−iωT )|2 . (8.19)

As already stated, Eq. (8.19) shows that the phase noise spectrum depends on

the delay time T , on the quality factor Q and also on the bandwidth µ. Figure 8.3

displays such spectrum considering two cases: the case for which the multiplicative

noise is taken as a white noise (dashed line) and the one for which it is considered

as a flicker noise (solid case). We have taken the following parameter values Dm =

5.0× 10−11 rad2/Hz, Da = Da2 = 9.0× 10−16 rad2/Hz, ΩH = 100 MHz, ΩL = 1 Hz,
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µ = 50π MHz, Q = 200 and Ast = 0.41. The results show that the phase noise

is around −60 dBrad2/Hz at 10 Hz when considering the multiplicative noise as a

flicker while it is around −80 dBrad2/Hz at 10 Hz considering the multiplicative

noise as a white noise. In both cases the phase noise is around −150 dBrad2/Hz at

50 KHz. Beyond this frequency, the first spurious peak appears followed by other

spurious peaks at the integer multiples of the round-trip frequency 50 kHz. The

first spurious peak located around 1/T has a height of about 60 dB. We should note

that the results obtained with a flicker noise agree better with experimental results

[94] than those obtained with a white noise.

8.3 Opto-electronic Microwave Oscillator with Double Loop

The system under study is organized in a double delay feedback loop as shown

in Fig. 8.1 (b). The first loop, which is reminiscent from the initial loop structure,

consists in a semiconductor laser (SL) injecting light into a Mach-Zehnder modulator

(MZM1) which receives electrical signals V (t) and VB in its radio-frequency (RF)

and DC voltage electrodes, respectively. The output of MZM1 can be written as

E1(t) =
E0

2

{

1 + e2i[x(t)+φ1]
}

, (8.20)

where E0 is the SL output amplitude, x(t) = πV1(t)/(2VπRF ) is the dimensionless

voltage, φ1 = πVB,1/(2VπDC
) is the offset phase and VπRF and VπDc stand for the

RF half-wave and the bias electrode half-wave, respectively. Subsequently, E1(t) is

split into two parts. One part is delayed by a time T2 and then converted into an

electrical signal via the photodiode PD2. The output of PD2, |E1(t − T2)|2, is fed

to a narrow band filter with a central −3 dB frequency Ω′

0/2π having bandwidth

∆Ω2/2π, and after amplification is applied as voltage V2(t) to MZM2 RF electrode.

The narrow filter eliminates all the harmonics except the fundamental one. The

second part of E1(t) is launched into an optical delay line and then fed to MZM2

whose output

E2(t) =
E1(t− T1)

2

{

1 + e2i[y(t)+φ2]
}

, (8.21)

is detected by PD1. Here y(t) = πV2(t)/(2VπRF ) and φ2 = πVB,2/(2VπDC
). The elec-

trical signal |E2(t)|2 is fed to another narrow band microwave RF filter of central

frequency Ω0/2π with −3 dB bandwidth ∆Ω1/2π and then is fed to MZI1 RF elec-

trode after amplification. In this scheme the MZM1 optical output plays a double

role. On one hand it becomes, after the delay time T1, the optical input of MZM2

and on the other hand, after a delay T2 it is used to drive RF electrode of MZM2.
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Proceeding as in Sec. 2.2 , it can be demonstrated that the system shown in Fig. 8.1

(b) can be described by the dimensionless amplifier outputs x(t) and y(t) as follows

x+
1

∆Ω1

dx

dt
+

Ω2
0

∆Ω1
u1 =

|E2(t)|2
|E0|2

G1 (8.22)

=
G1

4

[

F (xT1 , φ1) + F (y, φ2) + F (xT1 , φ1)F (y, φ2) + 1
]

,

y +
1

∆Ω2

dy

dt
+

Ω′2
0

∆Ω2

u2 =
|E1(t− T2)|2

|E0|2
G2 =

G2

2
[F (xT2 , φ1) + 1], (8.23)

du1
dt

= x, (8.24)

du2
dt

= y, (8.25)

where xt0 = x(t− t0), F (x, φ) = cos [2x(t) + 2φ] and G1 and G2 are the overall loop

gains. The integral variables uj (j = 1, 2) impose the mean value of x(t) and y(t)

to be zero in the stationary regimes.

8.4 Amplitude Equation for a Double Loop Opto-electronic

Oscillator

We assume identical filters, narrowly resonant around the central frequency Ω′

0/2π =

Ω0/2π so that any harmonic different to the fundamental one is filtered out. Thus

the output of each amplifier oscillates at the central frequency Ω0. Therefore x(t)

and y(t) can be written in terms of slowly varying amplitudes A(t) = Aeiψ(t) and

B(t) = Beiϕ(t) as

x(t) =
1

2
A(t)eiΩ0t + cc ≡ A(t) cos [Ω0t+ ψ(t)] , (8.26)

y(t) =
1

2
B(t)eiΩ0t + cc ≡ B(t) cos [Ω0t+ ϕ(t)] . (8.27)

Through these expressions of x(t) and y(t), the functions F in the right hand side

of Eqs. (8.22) and (8.23) can be, as before, approximated using the Jacobi-Anger

expansion. Then by discarding all the spectral components of the signal except the

fundamental harmonic, we have

F (xT2 , φ1) = − sin 2φ1J1 (2AT1) e
i(Ω0t−Ω0T1+ψT1) + cc. (8.28)
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and

F (xT1 , φ1)F (y, φ2) = −1

2

∞
∑

q=−∞

Jq (2AT1)J−q+1 (2B) ei[Ω0t−qΩ0T1+qψT1
+(−q+1)ϕ]

− Jq (2AT1)J−q−1 (2B) e−i[Ω0t+qΩ0T1−qψT1
+(q+1)ϕ]

×
{

sin(2φ1 + 2φ2)− (−1)q sin(2φ1 − 2φ2)
}

. (8.29)

Equation (8.4) can be truncated since the Bessel functions decrease faster to zero

as the order q increases. Figure 8.4 shows the product Jq(2x)Jq+1(2x) (where q =

1, .., 5) as a function of x. It turns out that, for any argument smaller than 4

(corresponding to microwave amplitude smaller than 2) the Bessel functions of order

6 or greater can be neglected.

To derive the equations for the complex amplitudes A and B we have to con-

sider the spectral components in eiΩ0t in the left hand side of Eqs. (8.22) and (8.23).

To do that, as in Sec. 8.2 for a single loop, we consider

uk(t) =
1

2
Uk(t)eiΩ0t + cc, (8.30)

where Uk(t) is a slowly varying amplitude and neglecting Ük as compared to Ω0U̇k
where the dot here stands for the derivative, the left hand side of Eqs. (8.22) and

(8.23) can be written as

duk
dt

+
1

∆Ωk

d2uk
dt2

+
Ω2

0

∆Ωk
uk ≈

1

2

[(

1 + 2i
Ω0

∆Ωk

)

U̇k(t) + iΩ0Uk(t)
]

eiΩ0t + cc. (8.31)
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By deriving Eq. (8.30), it turns out that A = U̇1 + iΩ0U1 ≃ iΩ0U1. Therefore the

LHS of Eq. (8.22) can be written as

1

2

[(

2

∆Ω1
− i

Ω0

)

Ȧ(t) +A(t)

]

eiΩ0t + cc, (8.32)

and similarly for the left hand side of Eq. (8.23) in terms of B.
Finally, collecting all fundamental harmonic terms, the equations for slowly

varying envelopes A(t) and B(t) can be written as

Ȧ+ µ1e
iv1A = −1

2
µ1e

iv1G1

{

sin 2φ2J1(2B)eiϕ + sin 2φ1J1(2AT1)e
iψT1e−iΩ0T1

+ cos 2φ1 sin 2φ2

2
∑

p=−2

C2p + sin 2φ1 cos 2φ2

2
∑

p=−2

C1−2p

}

, (8.33)

Ḃ + µ2e
iv2B = −µ2e

iv2G2 sin 2φ1J1(2AT2)e
i(ψT2

−Ω0T2), (8.34)

where we have introduced

Cq = Jq(2AT1)J1−q(2B)ei[−qΩ0T1+qψT1
+(1−q)ϕ], (8.35)

and the parameters

Qk =
Ω0

∆Ωk
; µk =

∆Ωk
√

4 +Q−2
k

; vk = arctan

[

1

2Qk

]

. (8.36)

For oscillations to be sustained the phase matching conditions should be fulfilled,

e−iΩ0Tk = ±1. The matching condition e−iΩ0T1 = +1 is equivalent to e−iΩ0T1 = −1

by changing φ1 by −φ1 and ϕ(t) by ϕ(t) + π. Similarly e−iΩ0T2 = ±1 are equivalent

changing φ2 by −φ2 and ψ(t) by ψ(t) + π. Therefore without loss of generality we

will consider e−iΩ0T1 = −1 and e−iΩ0T2 = +1.

Fix points are given by Ȧ = Ḃ = ψ̇ = ϕ̇ = 0. From Eq. (8.34), we have

Bst = −G2 sin 2φ1J1(2A
st)ei(ψ

st−ϕst). (8.37)

Since Bst is a real positive quantity, the imaginary exponent has to be either 0 or

π depending on the sign of sin 2φ1 and J1(2A
st). There are two options: ψst = ϕst

(Case I ) corresponding to in-phase microwave emission and ψst = ϕst+π (Case II ),

out-of-phase microwave emission. Since the amplitude of the microwave emission is

small enough so that J1(2A
st) remains positive, to have a positive Bst for Case I

φ1 ∈ [−π/2, 0] while for Case II φ1 ∈ [0, π/2].

From Eq. (8.33) we have

Ast =
G1

2
H±(φ1, φ2), (8.38)
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where

H±(φ1, φ2) = sin 2φ1J1(2A
st)∓ sin 2φ2J1

(

2Bst
)

∓ cos 2φ1 sin 2φ2

2
∑

p=−2

J2p(2A
st)J1−2p(2B

st)

+ sin 2φ1 cos 2φ2

2
∑

p=−2

J1−2p(2A
st)J2p(2B

st). (8.39)

H+ corresponds to Case I while H− to Case II. Since H−(φ1, φ2) = H+(φ1,−φ2)

the mathematical fixed points that satisfy ψst = ϕst (Case I) are exactly the same

as the ones obtained for Case II with the opposite φ2. However, for Case I only the

solutions with φ1 ∈ [−π/2, 0] are physical while for Case II the physical solutions

correspond to φ1 ∈ [0, π/2]. Notice that since off-set phases appear in Eqs. (8.37)

and (8.38) as 2φ1 and 2φ2 it is enough to explore the interval [−π, π] for both phases.

The trivial solution Ast = Bst = 0 is always present. As for nontrivial solutions

we first notice that for G2 = 0, Bst = 0 and, since Jq(0) = 0 for q 6= 0, the system

is equivalent to a single loop OEO with gain G1(1 + cos 2φ2)/2. In this case the

non-trivial solution exists only for G1 > Gth
1 = 2/ sin 2φ1(1 + cos 2φ2) [82].

We can in fact obtain an analytical approximation close to threshold for mi-

crowave emission since Ast and Bst are small and Eqs. (8.37) and (8.38) can be

expanded in series. For Case II one gets

Ast =
G1

2

[

g1A
st − g2

2
Ast

3
]

, (8.40)

where

g1 =sin 2φ1[1 + cos 2φ2 +G2 sin 2φ2(1 + cos 2φ1)] (8.41)

g2 =sin 2φ1[1 + cos 2φ2 +G2 sin 2φ2(1 + 4 cos 2φ1)],

+ sin3 2φ1[3G
2
2 cos 2φ2 +G3

2 sin 2φ2(1 + cos 2φ1)]. (8.42)

The non trivial solution is

Ast =

√

2

g2

(

g1 −
2

G1

)

. (8.43)

The threshold for out-of-phase microwave emission is given by G1g1 = 2. The

threshold for in-phase microwave emission is the same since g1 depends only on

cos 2φ2. For φ1 ∈ [−π/2, 0] the physical solution is the in-phase one while for

φ1 ∈ [0,−π/2].
For arbitrary values of the gains G1 and G2 Eqs. (8.37) and (8.38) are solved

numerically to determine the stationary amplitudes. Figure 8.5 displays the region
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Figure 8.5: Non-zero stationary solution given by Eqs. (8.37) and (8.38) with H−. (a) A
st and (b)

Bst displayed in (G1, G2)-plane considering φ1 = 0.5 and φ2 = 0.5

of existence and the amplitude of out-of-phase microwave emission obtained from

Eqs. (8.37) and (8.38) with H− in (G1, G2)-plane considering φ1 = 0.5 and φ2 = 0.5.

For small values of G1 the non-trivial stationary solution does not exist. The range

of values of G1 for which the non-trivial solution exists widens as G2 increases.

Besides the values of Ast and Bst can be high as 1.2 and 2.0 respectively.

We now address the dependence of microwave emission as function of the off-

set phases φ1 and φ2. Figure 8.6 displays the out (in)-of-phase microwave emission

amplitude obtained from Eqs. (8.37) and (8.38) with H− in the (φ1, φ2) parameter

space considering G1 = 2.5 and G2 = 2.5. The contour of the region of microwave

emission can be determined by the threshold condition G1g1 = 2. For φ1 ∈ [−π/2, 0]
the physical solution is the in-phase one while it is in the in-of-phase for φ1 ∈ [0, π/2].

The offset phases φ1 and φ2 play a very relevant role in determining the existence and

amplitude of the microwave emission. Depending on φ1 and φ2 the non-trivial steady

state may have a large amplitude signaling a strong microwave emission or may

even not exist (no microwave emission). The large amplitudes are associated to an

effective constructive interference of the two delay loops while the parameter regions

where no microwave emission takes place are associated to destructive interference.

The results of this section has been obtained with the phase matching e−iΩ0T1 =

−1 and e−iΩ0T2 = 1. For e−iΩ0T1 = −1 and e−iΩ0T2 = −1 the results are the same

since the in-phase solution for a given φ2 corresponds in our phase matching to the

out-of-phase solution for −φ2, which is the in-phase solution for φ2. For e
−iΩ0T1 = 1

and e−iΩ0T2 = ±1 the regions of in-phase and out-of-phase microwave emission in

parameter space would be the same as here but changing φ1 by −φ1 and φ2 by −φ2.
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Figure 8.6: Non-zero stationary solution given by Eqs. (8.37) and (8.38) with H−. (a) A
st and (b)

Bst displayed in (φ1, φ2)-plane considering G1 = 2.5 and G2 = 2.5.

8.5 Numerical Simulations

In order to check our analytical results and also to investigate the stability of the

fixed points shown in Figs 8.5 and 8.6, Eqs. (8.33) and (8.34) are numerically

integrated using a predictor-corrector method. For numerical simulations, we also

consider the parameters ΩH = 100 MHz, ΩL = 1 Hz, µ1 = µ2 = 50π MHz, Q1 =

Q2 = 200 andG1 = 2.5. The initial conditions are chosen so that, after the transient,

the system evolves to the physical solutions, e.g. A ≥ 0 and B ≥ 0.

Taking the loop gain G2 as the bifurcation parameter and considering φ1 = 0.5

and φ2 = 0.5, Fig. 8.7 displays bifurcation diagrams of the amplitude for various

loop gain G1, obtained by extracting different maxima and minima in the time

series after the transient. In this scenario, the bifurcation diagrams show that,

depending on G1, the system can be in a non-trivial steady state for the amplitude

(corresponding to a pure microwave generation) or in a more complex dynamics when

the stationary solution is destabilized through a Hopf bifurcation which induces

modulated amplitudes [see Fig. 8.7 (b) and (c)]. For higher values of G2, it is seen

that the system induces chaotic amplitudes even for relatively low G1. On the other

hand, while the steady state amplitudes of the first filter output follow a parabolic

evolution with respect to G2, those of the second filter output are basically linear

with G2 [see Fig. 8.7 (d) and (e)].

The first results in Fig. 8.7 suggest a closer analysis of the stability of the

stationary solution in the (G1, G2)-plane. To do that and to compare with the

analytical results we display in the (G1, G2)-plane only the steady states amplitudes

[e.g. periodic behavior in x(t)]. Numerically we consider that the amplitude is
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Figure 8.7: Numerical bifurcation diagrams with respect to G2 for G1 = 2 (top row), G1 = 2.5

(middle row) and G1 = 3.0 (bottom row); considering T1 = 20 µs and T2 = 10 T1 and the initial

conditions A(0) = B(0) = 0.2 and ψ(0) = ϕ(0) = 0.5. Other parameters are µ1 = µ2 = 50π MHz,

Q1 = Q2 = 200, φ1 = 0.5 and φ2 = 0.5.
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Figure 8.8: Numerical results giving the microwave amplitudes in (G1, G2)-plane obtained from

Eqs. (8.33) and (8.34) (a) A and (b) B considering φ1 = π/4 and φ2 = 0. The initial conditions

and the parameters were set as in Fig. 8.7.

stationary if after the transient time, it changes in less than 10−4 (allowing for the

integration errors). Figure. 8.8 shows the results. The empty regions correspond to

the values of G1 and G2 for which no steady state is found. While the microwave

amplitudes in the first loop can be high as 1.2 in amplitude [Fig. 8.8 (a)], that in the

second loop can be close to 1.8 [Fig. 8.8 (b)]. It therefore constitutes a potential way
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Figure 8.9: Numerical results giving the microwave amplitudes in (φ1, φ2)-plane obtained from

Eqs. (8.33) and (8.34) (a) A and (b) B considering G1 = 2.5 and G2 = 2.5. The initial conditions

and the parameters were set as in Fig. 8.7. The empty regions correspond to the modulated

amplitudes.

to generate microwaves with higher amplitudes than the single loop which indeed

generates the maximum microwave amplitude of 1.2 as found in ref.[82]. Also note

that these results are in excellent agreement with those predicted previously (see

Fig. 8.5). Note that the white regions of Fig. 8.5 which correspond to the region

where only the trivial zero solution exists correspond in the numerical simulation to

zero amplitude and therefore are plotted in yellow in color in Fig. 8.8.

Figure 8.9 displays the numerical results obtained from Eqs. (8.33) and (8.34)

in (φ1, φ2)-plane for G1 = 2.5 and G2 = 2.5 considering as already stated e−iΩ0T1 =

−1 and e−iΩ0T2 = +1. It turns out that almost all the predicted steady state

amplitudes displayed in Fig. 8.6 for φ1 ∈ [0, π/2] (out-of-phase microwaves) are

stable when φ1 > 0 while those predicted for φ1 ∈ [−π/2, 0] are all unstable (in-

of-phase microwaves). Curiously enough even Fig. 8.6 shows that, for some offset

phases, even the trivial steady state solution are unstable.

8.6 Comparison of Phase Noise Between OEOs with Single

and Double Loop

For comparison, we first derive the corresponding phase noise equation for the OEO

with double loop.
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8.6.1 Stochastic phase equation for OEO with double loop

Considering the phase matching e−iΩ0T1 = −1 and e−iΩ0T2 = 1 the stochastic equa-

tions for slowly varying envelope A(t) and B(t) can be written as

Ȧ+µ1e
iv1A = −1

2
µ1e

iv1G1(1 + ηm1)
{

sin 2φ2J1(2B)eiϕ − sin 2φ1J1(2AT1)e
iψT1

+ cos 2φ1 sin 2φ2

2
∑

p=−2

C̄2p − sin 2φ1 cos 2φ2

2
∑

p=−2

C̄1−2p

}

+ µ1e
iv1ξa1 (8.44)

Ḃ+µ2e
iv2B = −µ2e

iv2G2(1 + ηm2) sin 2φ1J1(2AT2)e
iψT2 + µ2e

iv2ξa2, (8.45)

where

C̄q = Jq(2AT1)J1−q(2B)ei[qψT1
+(1−q)ϕ] ≡ R̄q + iĪq. (8.46)

Since A = Aeiψ and B = Beiϕ, the stochastic phase noise equations from

Eqs. (8.44) and (8.45) can be written as

ψ̇ + µ1 sin v1 =
ζψ
A

− µ1G1

2A

[

1 + ηm1(t)
]{

sin 2φ2J1 [2B]

× sin(v1 + ϕ− ψ)− sin 2φ1J1 [2AT1 ] sin(v1 + ψT1 − ψ)

+

2
∑

p=−2

sin 2φ1 cos 2φ2Ī2p −
2

∑

p=−2

cos 2φ1 sin 2φ2Ī1−2p

}

, (8.47)

ϕ̇+ µ2 sin v2 =
ζϕ
B

− µ2G2

B
sin 2φ1 [1 + ηm2(t)]J1 [2|AT2|] sin(v2 + ψT2 − ϕ), (8.48)

where ζψ = ξa1,Re(t) sin(v1 − ψ) + ξa1,Im(t) cos(v1 − ψ) and ζϕ = ξa2,Re(t) sin(v2 −
ϕ) + ξa2,Im(t) cos(v2 − ϕ) are independent Gaussian white noises with variances

〈ζψ(t)ζ∗ψ(t′)〉 = 2Da1δ(t− t′) and 〈ζϕ(t)ζ∗ϕ(t′)〉 = 2Da2δ(t− t′). The sub-indexes Re

and Im refer to the real and imaginary parts.

Assuming A(t) ⋍ A(t− T ) ⋍ Ast, we can consider that the phase fluctuations

evolves so that sin(a− b) ≈ a− b, which is typically the case for the OEOs studied

here. Thus, Eqs. (8.47) and (8.48) become

ψ̇ = µ1

[

α±ψT1 + β±ϕ− ψ +
1

2Q1
ηm1(t) +

ζψ
Ast

]

, (8.49)

ϕ̇ = µ2

[

(ψT2 − ϕ) +
1

2Q2
ηm2(t) +

ζϕ
Bst

]

, (8.50)

where the coefficients are
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α± =
1

H±

{

− sin 2φ1J1 (2A)− 5J5 (2A)J4 (2B)

− cos 2φ1 sin 2φ2

1
∑

p=0

(2p+ 1)J2p+1 (2A)
[

J2p (2B) + J2(p+1)(2B)

]

∓ sin 2φ1 cos 2φ2

2
∑

p=1

2pJ2p (2A) [J2p−1 (2B) + J2p+1 (2B)]
}

, (8.51)

β± =
1

H±

{

± sin 2φ2J1 (2B)± 5J4 (2A)J5 (2B)

± sin 2φ1 cos 2φ2

1
∑

p=0

(2p+ 1)J2p+1 (2B)
[

J2p (2A) + J2(p+1)(2A)

]

+ cos 2φ1 sin 2φ2

2
∑

p=1

2pJ2p (2B) [J2p−1 (2A) + J2p+1 (2A)]
}

. (8.52)

Here again the signs (+) and (−) refer to the Case I and Case II, respectively. In

both cases, it is important to note that α± + β± = 1. This relationship shows that

the system keeps the neutral stability of the phase since 0 is still an eigenvalue.

Also, it is worth noting that for B = 0 (single OEO loop), α± = 1 and β± = 0

and therefore Eq. (8.49) degenerates to that obtained with single loop OEO. In

the following, we investigate the performance of the system to phase noise when

comparing with a single loop optoelectronic microwave oscillator. A way to do that

consists in comparing the phase noise spectrum of the two systems.

8.6.2 Phase noise spectrum for OEO with double loop

Considering that all noise sources are uncorrelated, the Fourier transforms Ψ(ω) and
Φ(ω) of the phases ψ(t) and ϕ(t), respectively can be written from Eqs (8.49) and
(8.50) as

∣

∣

∣
Ψ(ω)

∣

∣

∣

2

=

(

ω2 + µ2
2

)(

µ2
1

4Q2
1

∣

∣

∣
ηm1(ω)

∣

∣

∣

2

+
2µ2

1

|Ast
1 |2

Da1

)

+ µ2
1α

2
2

(

µ2
2

4Q2
2

∣

∣

∣
ηm2(ω)

∣

∣

∣

2

+
2µ2

2

|Ast
2 |2

Da2

)

∣

∣

∣

(

iω + µ1 (1− α1e−iωT1)
)(

iω + µ2

)

− µ1µ2α2e−iω(T1+T2)

∣

∣

∣

2
, (8.53)

∣

∣

∣Φ(ω)
∣

∣

∣

2

=

µ2
2µ

2
1

( 1

4Q2
1

∣

∣

∣
ηm1(ω)

∣

∣

∣

2

+
2

|Ast
1 |2

Da1

)

+
∣

∣

∣
iω + µ1

(

1− α1e
−iωT1

)

∣

∣

∣

2( µ2
2

4Q2
2

∣

∣

∣
ηm2(ω)

∣

∣

∣

2

+
2µ2

2

|Ast
2 |2

Da2

)

∣

∣

∣

(

iω + µ1 (1− α1e−iωT1)
)(

iω + µ2

)

− µ1µ2α2e−iω(T1+T2)

∣

∣

∣

2 .

(8.54)

At this stage, we note that for α2 = 0 (single loop OEO) one recovers the phase

noise spectrum formula given by Eq. (8.19).
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Figure 8.10: Comparison of the theoretical phase noise spectrum of an opto-electronic microwave

oscillators with single loop given by Eq. (8.19) (dotted line) for A = 0.41 and T = 20 µs and

(dashed line) for A = 0.41 and T = 200 µs with the results for a double loop given by Eq. (8.53)

(solid line), both above threshold in a 500 MHz. The parameters for the double loop are as follows

φ1 = 0.5 and φ2 = 0.5, (a) T1 = 20 µs, T2 = 10T1 and G2 = 0.5, (b) T1 = 20 µs, T2 = 10T1 and

G2 = 2.5. In both the cases, G1 = 2.0 leading to (a) A = 0.93 and B = 0.24, (b) A = 0.86 and

B = 1.22.

8.6.3 Comparison phase noise spectra between OEOs with single and

double loop

In addition to the parameters used in the previous sections, we also consider the

parameters related to noise as Dm1 = Dm2 = 5.0 × 10−11 rad2/Hz, Da1 = Da2 =

9.0 × 10−16 rad2/Hz, φ1 = 0.5 and φ2 = 0.5. For comparison, Fig. 8.10 displays

the phase noise spectrum for the single loop OEO, given by Eq. (8.19) considering

T = 20 µs (blue line) and T = 200 µs (black line), and for double loop described by

Eq. (8.53) for various values of G2, T1 and T2 (solid line) considering φ1 = 0.5 and

φ2 = 0.5. First we compare a double loop OEO with delays T1 = 20 µs (4 km of fiber

length), T2 = 10T1 and G1 = 2.0 with the single loop OEO with delay T = 20 µs

and the microwave amplitude A = 0.41. For G2 = 0.5, the microwave amplitudes in

the first and second loops are A = 0.93 and B = 0.24. It turns out that the phase

noise is reduced of about 14 dB in the frequency area below 1/T2 [see Fig. 8.10 (a)].

In fact, as the quality factor is proportional to the fiber length, the increase of fiber

length leads to its improvement. Therefore the effect of the multiplicative noise [see

Eq. (8.53)] is reduced leading to the phase noise reduction observed in the region

below 1/T2 for which the phase noise is dominated by multiplicative noise. Curiously

enough the spurious peaks which would have appeared between 1/T2 and 1/T1 are

damped due to interferences between the two combined signals in MZM2. Note that

in all the cases, a small spurious peak still appears at 1/T1 meaning that a small
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Figure 8.11: Comparison of the theoretical phase noise spectrum of an opto-electronic microwave

oscillators with single loop given by Eq. (8.19) (dotted line) for A = 0.41 and T = 20 µs and

(dashed line) for A = 0.41 and T = 200 µs with the results for a double loop given by Eq. (8.53)

(dashed blue line), both above threshold in a 500 MHz. The parameters for the double loop are

as follows φ1 = .5 and φ2 = 0.5,(a) T1 = 2 µs, T2 = 10T1 and G2 = 0.7, (b) T1 = 1 µs, T2 = 30T1
and G2 = 0.2. In both cases, G1 = 2.0 leading to (a) A = 0.97 and B = 0.34 and (b) A = 0.82

and B = 0.1.

constructive interference still exists for this mode. Besides, it should be noted that

the effect of the additive noise depends on A. Since for the parameters considered,

A for the double loop OEO is larger than that obtained for the single loop OEO and

therefore the effect of the additive noise is also reduced here. For frequencies above

1/T1, strong spurious peaks appear as in the single loop case. If the same delay

line (T = 200 µs) was used in single loop, the performance of the system would

have compromised due to appearance of the spurious peaks between 1/T2 and 1/T1
[Fig. 8.10 (black)]. When increasing G2 = 2.5 (which leads to microwave amplitude

A = 0.85 and B = 1.22), the phase noise is further reduced to about 18 dB for

≤ 1/T2 [see Fig. 8.10 (b)]. We have found that as G2 increases, the spurious peak

amplitudes in the damping frequency region increase as well. Also, one can notice

that, in this case, the phase noise in the frequency region below 1/T2 get closer to

that obtained considering T = 200 µs in a single loop OEO. The reduction of the

spurious peak amplitude in OEO using several fiber loops has been reported in [154].

However the overall performance was significantly worse than the one reported in

this work.

In second place, we reduce the delay of both loops in the double loop OEO

by a factor 10, so that T1 = 2 µs and T2 = 10T1 while G1 is kept unchanged

(G1 = 2.0), and we compare the results with those obtained for the single loop OEO

as before (e.g. considering a single loop with delay T1 = 20 µs) [Fig. 8.11 (a)]. As in

the previous case, the spurious peaks between 1/T2 and 1/T1 are suppressed. The
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Figure 8.12: Comparison of the numerical phase noise spectrum of an opto-electronic microwave

oscillators with single loop [82] (dotted line) for A = 0.41 and T = 20 µs with the results for a

double loop given by Eqs. (8.33) and (8.34) (solid line), both above threshold in a 500 MHz. The

parameters for the double loop are as follows φ1 = 0.5 and φ2 = 0.5, (a) T1 = 20 µs, T2 = 10T1
and G2 = 0.5, (b) T1 = 20 µs, T2 = 10T1 and G2 = 2.5, (c) T1 = 2 µs, T2 = 10T1 and G2 = 0.7,

(d) T1 = 1 µs, T2 = 30T1 and G2 = 0.2. We consider the multiplicative noise as a Gaussian white

noise with power density |η1,2(ω)|2 = 2Dm1,2). The spectrum is obtained by computing a time

series of 0.08 s sampled into 10 equal parts.

first strong spurious peak appears around 1/T1 =500 kHz. Therefore, the phase

noise performance of the system is improved enough since the same phase noise

performance is obtained for single OEO loop but at 50 kHz. Better results can be

achieved tuning the values of T1, T2 and G2. For example Fig. 8.11 (b) shows the

results for T1 = 1 µs, T2 = 30T1 and G2 = 0.2 corresponding to A = 0.82 and

B = 0.1, again compared with the same single loop OEO with T1 = 20 µs and

A = 0.41. In that case, the phase noise floor is around −150 dBrad2/Hz at 1 MHz

and around −50 dBrad2/Hz at 10 Hz. While Figs. 8.10 and 8.11 plot only the phase

noise for the first loop, we have found that the results for the phase noise in the

second loop are very similar. In the region dominated by the multiplicative noise
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(frequencies below 1/T2) they coincide. In the region dominated by the additive

noise (frequencies above 1/T1) the phase noise for the second loop is slightly larger

than Ψ(ω) since for our parameters A > B [Fig. 8.10 (a) and Figs 8.11 (a) and (b)].

In order to confirm these results, Eqs. (8.33) and (8.34) are directly simu-

lated using the second order Runge-Kutta method for stochastic equations. These

equations include noise both in phase and amplitude. For the sake of simplicity,

the multiplicative noises are considered in simulations as Gaussian white instead of

flicker ones, e.g. with spectral density |ηm1,2(ω)|2 = 2Dm1,2. Figure 8.12 displays

the numerical phase noise spectrum results for the same cases as in Figures 8.10 and

8.11 considering T1 = 20 µs for single loop OEO. In Fig. 8.12 (a) and (b), the phase

noise is considerably reduced in the OEO system with double loop as already found

in analytics. For example one can see that the spurious peaks between 1/T2 and

1/T1 are damped while the strong spurious peaks above 1/T1 emerge at the exact

positions predicted from the analytical results [see Fig. 8.10 (a) and (b)]. Although

the multiplicative noises considered in the simulations are white, it can be seen that,

qualitatively speaking, the same conclusions as those predicted from analytics arise

for all the cases. This therefore evidences that the improvements found in the double

loop configuration do not depend on the nature of the noise.

On the other hand, the results in Fig. 8.12 (c) and (d) also evidence the

possibility of extending the region of low phase noise up to 1 MHz through the use

of OEO system with double loop. Also, it is worth noting that the difference in the

low frequency regime between the simulations and the analytics is due to the fact

that the multiplicative noise has been considered flicker in analytical results (as it

was discussed in Figs. 8.10 and 8.11) and white in simulations.

8.7 Conclusions

This chapter has presented a theoretical and numerically study of OEO with dou-

ble loop designed for microwave generation with phase noise improvement. Our

approach has consisted in comparing the phase noise spectra of the OEO with dou-

ble loop with that of a system with a single loop. We have found that the double

loop configuration can suppress the spurious peaks in frequency range comprised

between to the inverse of the two delay times, (e.g. between T−1
2 and T−1

1 ) so that

it is possible to have phase noise of about −150 dBrad2/Hz at 1 MHz or to improve

the phase of up to 18 dB closer to the carrier. An interesting remark is that while

the maximum amplitude of Ast is around 1.2 in single OEO, a maximum amplitude

of Bst can be high as 1.8. As a consequence microwaves with high amplitudes and

low phase noise can be obtained by adjusting G2.
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Chapter 9

General Conclusions and Future

Work

9.1 General Conclusions

The potential of electro-optic systems for chaos communication applications has

already demonstrated in realistic installed networks. The aim of this dissertation

was to develop new electro-optic delayed systems capable of providing better perfor-

mances than the existing systems, both in security and message decoding points of

view. A review of the existing models indicated a need for a fresh look at structural

architecture modifications, in order to take steps towards the design of more efficient

systems. Using time series analysis techniques, such as autocorrelation and delayed

mutual entropy, we have shown that the delay time is a vulnerable parameter for

such systems. In particular, we have found that despite it has been reported that in

all-optical feedback systems the delay time can be concealed in the intensity time

series if it is chosen to be close to the relaxation time [115, 116], the delay time can

still be identified from the phase of the transmitted electric field or from its quadra-

tures. This result also evidences that the phase carries more information than the

intensity or that it is easier to retrieve that information from the phase than from

the intensity.

As for electro-optic systems, our results have confirmed that the delay time

can be identified using the same techniques, even in the systems with multiple

delay times. The results obtained when analyzing the dynamical variable of the

model has shown that scalar systems can be fully reconstructed and consequently

cannot be as secure as expected. In a practical chaos encryption system, one would

probably prefer a more complex and dedicated nonlinear devices such as a multiple

arms imbalanced interferometer instead of a standard MZI. The physical parameters

defining the dynamic and static conditions of each interferometer arm, in this case,

would represent an additional customized secret key of the hardware encryption.

To overcome the problem of scalar variable systems and also some experimental

constraints, the idea of using an additional feedback to the laser source was presented

141
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in this dissertation. That leads to a system displaying more complex behavior and

with a larger number of parameters that an eavesdropper has to face up. The

results showed that depending on how the laser feedback is performed, the chaos

characteristics are quite different (see Fig. 4.11). We also showed that the message

can be efficiently encoded and recovered using an authorized receiver.

Inspired by our results in delay time identification, which showed smaller peak

sizes at the relevant delay times for electro-optic phase chaos systems, we imple-

mented a digital key in this type of systems. To do that we made important struc-

tural architecture modifications in the system, so that the system now includes two

delay loops in serial configuration. This allows to combine a pseudo-random binary

sequence used in symmetric-key encryption, with a high-dimensional chaotic time

series generated by an analog physical system, to make a symmetric-key encryption

system with enhanced cryptographic security by reciprocal concealment. Besides

bridging the gap between symmetric-key algorithmic cryptography and chaos-based

encoding, the concealment of the delay time is particularly relevant to prevent from

eventual eavesdropper attacks. Furthermore the digital key increases drastically the

parameter space dimension. The experimental basis (electro-optic phase chaos) we

have used to simulate the performance of our new concept, is currently the state

of the art in terms of synchronization quality and bandwidth for practical chaos

communication schemes (10Gb/s field experiment demonstration in our Ref.[75]).

This new proposal is in line with the concept of algebra mixing algorithm, currently

suggested to bridge the gap between software and hardware cryptography. The

flexibility of the system allows for its easy reconfiguration to communicate between

different people.

The flexibility in the design of this electro-optical delay systems has been

proven through the parallel reconfiguration of the loops. The parallel loop config-

uration allows for the concealment of the internal loop delay times even without a

digital key. Still the digital key can be introduced as an additional security element

to increase the parameter space dimension. However, in this case, the digital key is

not capable of fully concealing the external loop delay times.

We have also studied the detrimental effects of fiber propagation on the syn-

chronization when using a phase chaos system. Theoretical and experimental re-

sults have shown that the proper retrieving of the message after few kilometers of

propagation is impossible when using standard optical fibers. However, by using

dispersion shifted fibers or by compensating for the dispersion accumulated during

the propagation, we have found that the message can be properly recovered after

propagation over more than 50 km, even when the third order dispersion and the

nonlinear effects are not compensated.

Finally as a proof of electro-optic system versatility, we have numerically and
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analytically studied an OEO with double loop for microwave generation. The results

indicated that higher microwave amplitudes can be obtained with an OEO with

double loop than with a single loop. One of the main improvements by the double

loop system refers to the purity of the generated microwaves. In particular, the

second loop can allow either to damp the spurious peaks so that the performance of

the system is extended up to 1 MHz or to decrease in about 20 dB the phase noise

close to the carrier.

9.2 Future Work

Very good performances have been found in the different systems presented in this

dissertation. However, the experimental confirmation has been provided only par-

tially. Thus, it will be of great interest to verify experimentally the theoretical

results obtained here for the electro-optic delay systems with double loop both for

chaos-based communications and for ultra-pure microwave generation.

We note also that very few investigations have been dedicated to the imple-

mentation of the schemes which could enable the implementation of asymmetric-key

cryptography through a chaotic dynamics. Thus, it will be quite interesting to study

possible configurations of electro-optical phase chaos systems suited for bidirectional

communications on top of which asymmetric key cryptography could eventually be

implemented.

Regarding the microwave generation, although good results have been obtained

using a long delay line, future microwave generation may require more compact

devices. An option has recently proposed by K. Volyanskiy et al. [155]. It consists

in replacing the narrow filter and the delay line by a resonator. However, the phase

noise in such system is higher. In addition, the theoretical derivation of a dynamical

model for this system is still lacking. Future work could therefore focus on this

aspect which will allow a better understanding of the system, necessary to improve

its performance such as the reduction of the phase noise.
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From February 1st to May 1st, 2010 (3 months), Besançon, France
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IEEE J. Quantum Electron. 38, 1162 (2002).

[46] A. Jacobo, M. C. Soriano, C. R. Mirasso, and P. Colet, IEEE J. Quantum

Electron. 46, 499 (2010).

[47] K. M. Short, Int. J. Bifurcation Chaos 4, 959 (1994).

[48] K. M. Short, Int. J. Bifurcation Chaos 6, 367 (1996).

[49] K. M. Short, Int. J. Bifurcation Chaos 7, 1579 (1997).

[50] D. R. Kulkarni and R. E. Amritkar, Int. J. Bifurcation Chaos 11, 3133 (2001).



152 BIBLIOGRAPHY
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