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The Twilight Zone of Nucleotide Homology

by Stephanie MCGIMPSEY

Homology search tools are important for inferring homology in the abundance of
genomes currently sequenced. These tools utilise sequence similarity in order to as-
sign a score between two sequences from which homology is inferred. The relation-
ship between sequence similarity and homology can break down for certain levels
of similarity. The zone of pairwise identity where a known pair of homologs has a
50% chance or less of being inferred as homologous based on the alignment score is
called the twilight zone. The twilight zone for nucleotide homology has previously
been calculated using databases that were small or contained bias. Therefore, the
aim of this research was to calculate the twilight zone of nucleotide homology using
a carefully designed database of homologous sequences. A database of core ncRNA
and mRNA genes from a large range of genus representative bacteria was gener-
ated, from which sequence pairs were chosen. The database was used to calculate
where the twilight zone of nucleotide homology was for four different types of align-
ment algorithms; BLASTn, ggsearch, nhmmer and ssearch. The effect of G+C content
and sequence length on the location of the twilight zone was also examined. The
twilight zone was shown to be between 38-50% pairwise identity for all alignment
algorithms tested. Both sequence length and G+C content shift the twilight zone for
all four alignment algorithms. This research has shown that between 38-50% pair-
wise identity homology should not be inferred based only on the alignment score,
as there is a greater chance of incorrectly inferring homology than correctly infer-
ring homology. Furthermore, the analyses have shown that a parametric approach
to database design is required to further balance the database used for the twilight
zone calculation.
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Chapter 1

Introduction

The invention of high-throughput sequencing has lead to an exponential increase in
the number of sequenced genomes in the last 20 years (Fig. 1.1)(1, 2). The relative
ease at which we can now access genetic information has coincided with an increase
in research into understanding the complexity and composition of genomes, partic-
ularly using comparative methods. For large data sets, computational approaches
are needed to effectively and quickly find features of interest (3). Pre-existing math-
ematical algorithms and heuristic techniques, particularly those relating to the field
of graph theory, have been adapted to help with the processing, mapping and un-
derstanding of the genome (4–10). While these algorithms are often mathematically
optimal, the biological sphere is full of exceptions and oddities that leave these algo-
rithms often working less than perfectly (11). The majority of these algorithms are
of non-deterministic polynomial time (NP) complexity which means in their pure
form they can take an extremely long time to solve even the simplest of biological
data sets (12). The field of bioinformatics tends to lead in the creation and adaption
of algorithms using smart, biologically sensible heuristics that best map the biolog-
ical processes occurring in the genome without losing the understanding of the un-
derlying biology. This has lead to great advances in the ability to understand the
relatedness of species or genes, understand the potential functions of genes with-
out having to isolate the associated proteins or RNA and essentially ‘time travel’ to
model evolution (13–16). This thesis explores the limitations of a subset of these soft-
ware advances, homology search tools, and when you can use sequence alignments
to infer homology between sequences.

1.1 Homology and similarity

Homology is a biological concept of great interest to biologists from many fields and
is defined as having a common evolutionary origin between sequences, species or
organisms (17–19). It is generally inferred by similarity (e.g. morphological traits,
gene sequences), and this forms the basis for how homology is identified between
gene sequences computationally (20). Homology is a binary question, things are
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FIGURE 1.1: Increase in the number of genomes available over
the last 20 years: Number of genomes in the December NCBI Gen-
Bank release each year graphed from data publicly available at

https://www.ncbi.nlm.nih.gov/genbank/statistics/

either homologous or not, whereas similarity is a scale from nothing in common to
everything in common. Therefore to superimpose the definition of homology to a
gene on the basis of similarity requires us to levy limits of how much similarity is
required before we can determine two things are homologous (21).

While homology between two sequences may elude to common ancestors, similar
sequences are not always the result of common evolutionary origin. Other factors
such as convergent evolution, low complexity sequences, sequence length or G+C
content may cause high sequence similarity and none of these allow for inference of
common ancestry (Fig. 1.2 A)(22, 23). Random pairs of sequences have some level
of similarity by chance purely due to utilising the same set of residues as each other
(nucleotides or amino acids). On average two unrelated protein sequences of the
same length will have 5% pairwise identity (the percentage of matching residues in
the alignment, PID) if aligned without gaps whereas nucleotide sequences will have
on average 25% PID (19). As we don’t have access to most extinct ancestral genomes
there is no easy way to check if genetic similarity is due to ancestry or other mitigat-
ing factors. Therefore the problem of assigning homology for a pair of sequences lies
with how we determine similarity and at what levels of similarity we can be assured
that homology exists (19). Homology determination is also complicated by the fact
that homology may be divided into several sub types, and the different definitions
of these may also cause issues when trying to infer homology between two species
(24).
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1.1.1 Parology, orthology and xenology

Homology is a catch all term that contains different sub-types that impact how genes
can be used in alignments to infer homology. Orthology, parology and xenology are
homology mechanisms with different biological interpretations (25). Orthologs are
genes that diverged post speciation from a common ancestral gene (26). Paralogs are
genes that are duplicates of an ancestral gene (26). Xenologs are homologous genes
found in a species due to horizontal gene transfer (21). So within one genome it is
entirely possible to have an ortholog, paralog and xenolog of the same gene all with
different evolutionary origins. Widely used alignment algorithms lack the ability
to differentiate between the types of homologs without the use of phylogenetic trees
(27, 28). This leads to uncertainty as to whether an identified homolog is the ortholog
that was intended, or if it is instead a paralog or xenolog.

A) A T G C G T C C - G A T
| | | - | * * | - | - |
A T G - G A G C T G - T

A T G C G T C C G A T
| | | - - - * | | - |
A T G - - - G C G - T

Human Gene A

Bacteria Gene A*Chimpanzee Gene A

7 Matches - 2 Mismatches - 3 Gaps
70% Pairwise Identity

6 Matches - 1 Mismatch - 4 Gaps
86% Pairwise Identity

B) - - G C A - - - A C T A G 
A T G C T C A G A - A - -

Leading Gaps

Match

Mismatch

Gap Open

Gap Extend

Trailing Gaps

FIGURE 1.2: Similarity versus homology and alignment scoring: A)
Two sequence alignments to Human Gene A highlighting how true
homologs (Chimpanzee Gene A) can have similar similarity to non-
homologous sequences (Bacteria Gene A*). B) A sequence alignment
with different reward or penalties highlighted to illustrate how ho-

mology search algorithms score alignments based on sequence
similarity.

1.1.2 Alignment and scoring

Currently the most common way to infer homology is to measure similarity between
two sequences by aligning them using an algorithm to get a pairwise alignment (20).
Each alignment algorithm calculates a score as a measure of how similar the two
aligned sequences are and homology can be inferred using the score as evidence
of significant similarity (11). Irrespective of the underlying mathematics of the al-
gorithm, each alignment score depends on the location of matches, mismatches and
gaps. Matches are where the two sequences have the same nucleotide (or amino acid
for proteins) in the same place in the alignment and this is scored positively (Fig. 1.2
B). Mismatches are where there are two dissimilar nucleotides in the same place in
the alignment (Fig. 1.2 B). These imply a substitution mutation has occurred in one
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of the sequences at this position and are often scored negatively as this makes the
sequences less similar.

Gaps can be split into two categories; within the alignment and trailing or leading
gaps (a.k.a. “end gaps”). Leading and trailing gaps are gaps at the very start or
very end of the alignment (Fig. 1.2 B). They are often neither penalised or positively
scored due to the fact that we could just be missing the start or end of one of the
sequences due to problems with sequencing or assembling the genome. This helps
prevent large penalties in the case of non-coding RNA (ncRNA) sequences as the
exact start and end of the gene is unknown because they do not utilise mechanisms
to define their boundaries like start and stop codons in protein coding sequences.
Internal alignment gaps indicate indels (insertion-deletion events) (Fig. 1.2 B). These
decrease the similarity between sequences so are also often scored negatively.

Some alignment algorithms distinguish these internal gaps into a further two cate-
gories; gap opening and gap extension. Gap opening means it is the very first gap
in a sequence of gaps or a lone gap whereas gap extension means that a gap already
precedes it. The biological reasoning behind this is that often insertions and dele-
tions occur in one single evolutionary event (e.g. one insertion of multiple residues)
so they need to be scored in such a way that long gaps are not overly penalised
compared with short gaps when both could feasibly have occurred as one mutation
event. These can be penalised differently or the same depending on the algorithm
settings. The severity of penalisation or reward for each of the above cases is depen-
dent on the parameters set by the algorithm and the algorithm type itself.

To determine true homologs from non-homologs requires the alignment score and
statistical measures that allow for the significance of the score to be determined (20,
29). The alignment score is dependent on both the scoring scheme chosen and the
underlying algorithm for the alignment tool.

1.2 Alignment algorithm types

Homology alignment tools are used in many different facets of biology due to their
ability to determine potential function or the level of relatedness between sequences
quickly and cheaply compared with traditional laboratory work (3). This means a
variety of algorithms have been developed using different underlying mathematical
principles to determine potential homologs (9, 30, 31). Alignment algorithms can be
broken down into two groups, either by the way they align, or by the mathematical
algorithm type.
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1.2.1 Global and local alignments

There are two common ways to align two sequences; globally or locally (Table 1.3)(3,
32–34). Global alignments align sequences from start to finish whereas local align-
ments find highly conserved areas between the two sequences and don’t necessar-
ily align the whole sequence. Local alignments are better at aligning more diverged
species that may only have functional domain conservation rather than full sequence
conservation (34). The mathematical algorithms that underpin both search types are
Needleman-Wunsch (global) and Smith-Waterman (local) (4, 5). Both algorithms
utilise a recursively built matrix of alignment scores for each residue in the two se-
quences as well as traceback methods to determine the alignment from how the ma-
trix scores were calculated (33). The recursive matrix is built using a set of formulae
that differs between Needleman-Wunsch and Smith-Waterman.

Needleman-Wunsch

For Needleman-Wunsch the initial top left cell of the matrix (corresponds to a gap-
gap cell) is initialised to 0 and the rest of the first row (sequence 1 aligned to all
gap columns) and column (sequence 2 aligned to all gap columns) are filled with
decreasing negative multiples of the gap penalty (5, 33). After the initialisation of
the first row and column each cell in the matrix is recursively calculated based on
its three neighbouring cells that preceed it to determine which cell, added to either a
match score or gap penalty, will be the maximum value. The largest value is added
to the cell and an arrow added pointing to which cell of the three neighbours the
score was calculated from (33). If multiple values are the same an arbitrary choice is
made although both potential origin cells could be kept if a graph structure rather
than a matrix was used. The whole matrix is filled similarly and once complete the
bottom right cell will be the score for the optimal alignment. Starting at the cell, the
traceback arrows are used to find that alignment from the bottom right cell to the
top left cell. This will give the optimal alignment of both sequences to each other.
At certain points in the traceback there may have been two different ways to get the
same score and thus slight variations to give the same optimal alignment score are
possible.

Smith-Waterman

Smith-Waterman differs in the recursion by filling cells in the matrix with a zero
if the recursive score (calculated from the three preceding cells) would otherwise
be negative (4, 33, 34). The traceback is also different as the highest score found
in the matrix is the starting point for tracing back the alignment rather then the
bottom right matrix cell. This allows the alignment to end and start anywhere in the
matrix. The traceback ends when a cell of value 0 is encountered so the alignment
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also does not have to reach the top left hand corner of the matrix either. This allows
alignments of parts of the sequences rather then the whole sequence length. There
may be multiple partial alignments that have the same score and these alignments
can all be found from the matrix.

Both of these methods are computationally costly (although Smith-Waterman is more
computationally intensive as multiple different alignments can be formed for a se-
quence pair) and therefore some alignment algorithms have estimations of the meth-
ods (using heuristics) rather then the full computation.

1.2.2 Underlying mathematics of homology search tools

Homology search tools can be broken down by algorithm type into those that are
quick database search heuristic methods and those that are dynamic methods (use
Smith-Waterman or Needleman-Wunsch in their entirety) (Fig 1.3). Dynamic algo-
rithms are guaranteed to find the optimal alignment for the two sequences for a
given scoring scheme, although the alignment given may not be the most biolog-
ically relevant, whereas heuristic approaches may only find good alignments (not
the mathematically most optimal) (33, 35). The loss in accuracy is due to approxima-
tions of dynamic algorithms being made using heuristic techniques that are done to
increase the speed of alignment compared with dynamic algorithms (33). Four com-
monly used homology search algorithms for nucleotide sequences, BLASTn, nhmmer,
ssearch and ggsearch, all represent different combinations of local, global, dynamic
and heuristic approaches (Tab. B.1) (36–38).

ggearch and ssearch

ggsearch implements Needleman-Wunsch to score each alignment between the query
and the database as described above (30, 37, 39). ssearch uses Smith-Waterman
which is accelerated by striped Single-Instruction Multiple-Data (SIMD) referred to
as Streaming SIMD Extensions 2 (SSE2) (4, 37, 40). This basically performs the Smith-
Waterman operation as described above but on multiple parts of the matrix in paral-
lel to speed up computation of all possible local alignments for two sequences (40).

BLASTn

The BLASTn algorithm divides the query sequence up into nucleotide sections (words)
of 11 nucleotides (default parameter setting) (3, 9, 38). Similar words to those found
in the query (e.g. have one or two different nucleotides) are also computed and
aligned to the word they originate from. Similar words that are above a score thresh-
old are included in the word set. Matches between words and database sequences
are then extended in either direction until the alignment score drops below a set
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An overview of homology search methods.  

Eva K. Freyhult et al. Genome Res. 2007;17:117-125 

Copyright © 2007, Cold Spring Harbor Laboratory Press 

FIGURE 1.3: Homology search algorithms overview:aAn overview
of homology search methods. A Venn diagram illustrating an
overview of the methods used in this study. Different methods
are classified as heuristic, single sequence, profile HMM, stochastic

context-free grammar (SCFG), and/or RNA specific.

aAdapted from Exploring genomic dark matter: A critical assessment of the performance of homol-
ogy search methods on noncoding RNA, Freyholt et al.. 2007, published by Genome Research, Cold
Spring Harbor Laboratory Press. Permissible by CC-BY license.

threshold. A heuristic approximation of the Smith-Waterman algorithm is used
to create gaped alignments. Each alignment is given a score based on the scoring
scheme. The default score for a match is 2, mismatch is -3, gap open is 5 and gap ex-
tend is 2 (41). To access the significance of alignments an E-value is calculated for all
potential alignments. An E-value for a sequence match is the number of sequences
in a database expected to have a similar score as the match by chance based on the
database size (Eqn. 1.1) (34). Those that have an E-value above the given thresh-
old are included in the final output. The use of words to find regions of similarity
makes BLASTn a fast alignment tool, as not every combination of sequences has an
alignment score calculated. However BLAST is not guaranteed to find the optimal
alignment (34, 42). Despite this limitation, it will find good alignments between se-
quence pairs and the E-value statistic provides the user with more information about
the significance of the alignment in addition to the alignment score.
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E-value = Kmne−λS

K: Scale factor for the search space, m: Length of the query sequence

n: Number of sequences in the database, λ: Scale factor for the scoring system

S: Alignment score

(1.1)

nhmmer

nhmmer utilises probabilities and profile hidden Markov models (HMM) in a six step
process to narrow the database sequences to statistically significant matches (36, 43).
A HMM is a statistical model that describes the potential evolutionary outcomes for
each residue in a sequence based on the probabilities of each evolutionary event, cal-
culated from a multiple sequence alignment for a gene (10, 44). There are 3 hidden
states which are the evolutionary events that aren’t directly observable from the se-
quence; match, insert and deletion (Fig. 1.4) (44). This emulates evolution in that we
see the residues in a sequence but we don’t see the evolutionary events (e.g. dele-
tion) that caused that sequence to exist. This allows for more flexibility in scoring at
certain residues in a sequence when aligning a sequence to an HMM as its not just a
residue to residue comparison. For each residue in the sequence there is a probabil-
ity that it is an insert, deletion or a match that is calculated from the model based on
what residue is at the position in the sequence. This allows for variable regions to be
less heavily penalised if there is high variation and highly conserved regions to be
heavily penalised if there is variation.

FIGURE 1.4: Profile HMM diagram: Diagram of a profile HMM
showing the hidden states of an HMM (insert, match and delete) and

the transitions possible between them. a

aReproduced fromHidden Markov Models and their Applications in Biological Sequence Analysis,
Yoon 2009 under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium.

An alignment of sequences by nhmmer to a profile HMMs produces a bit score as the
measure of similarity of a database sequence to the HMM. A bit score is the log two
odds ratio of the probability of the profile HMM given the data and the probability
of the null model given the data (Eqn. 1.2)(45). The null model (a single state HMM
emitting nucleotides at equal frequencies) is used to calculate the probability that
the sequence is not homologous to the profile HMM (36, 43, 46). Each step in the
nhmmer pipeline calculates bit scores using this method.
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Bit score = log2
P(model|data)
P(null|data) (1.2)

For nhmmer the single ungapped segment Viterbi (SSV) heuristic filtering step is used
to align all database sequences without gaps in a local alignment to a match state
only HMM (36). Striped Single-Instruction Multiple-Data (SMID) is used to speed
up the algorithm (40). High scoring segments of the sequence are extracted in order
to prevent entire chromosomes or contigs being further processed (if the database
contains genomes) (46). A p-value threshold is set for the distribution of bit scores
based on comparison with a pre-calculated null distribution of random sequences,
and sequences that pass this threshold pass on to the next filter. The p-value thresh-
old prevents the majority of non-homologs from passing onto the next step. The
score calculated during SSV filtering is adjusted based on estimated sequence com-
position bias in the potential homolog. Any sequence with an adjusted score above
the same p value threshold as the SSV filtering step is passed through the Viterbi
filter. A gap permissible alignment to the profile HMM is done using the Viterbi al-
gorithm which is accelerated using SIMD vector implementation. The Viterbi filter
calculates the most probable hidden state passes for the observable sequence, which
means it can find the sequence of match-insert-delete states that would emit the ob-
served nucleotide sequence with highest probability for the given profile HMM (33).
A new p-value threshold is applied to the distribution of scores produced and those
that are above it are scored with the full Forward parsing algorithm.

The Forward algorithm calculates the total probability that the database sequence
was generated by the HMM by summing all the probabilities of each possible state
path that could emit the observed sequence (33). Essentially it finds all the com-
binations of match-insert-delete (paths) that could emit the sequence and adds the
probabilities of each path together. It is a recursive algorithm as the probability of
each state is dependent on the states that came before. The Forward algorithm is
very similar to Viterbi except it uses all the possible paths rather than the maximal
scoring one to score the database sequence. Only if the score passes one final p
value cut off is the sequence also aligned using the Backward algorithm to the pro-
file HMM. The Backward algorithm calculates the probability of each state (match,
insert, delete) for each residue in the sequence which is akin to the posterior prob-
ability of the states except it is calculated in reverse recursive (i.e. starts at the end
of the sequence) (33). This probability is used to calculate the bit score for each local
alignment.

1.2.3 Defining homology from a pairwise alignment

A pairwise alignment is where two sequences are aligned using an alignment algo-
rithm and allows for direct comparison between the sequences (34). The alignment
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similarity score is used to infer homology between sequences and is influenced by
the alignment algorithm used, along with the scoring scheme. Most algorithms cal-
culate a bit score; a measure of sequence similarity independent of alignment length
and database size (36, 39, 41). Similar sequences have a higher bit score and scores
above a set threshold (determined by the user) are inferred as homologous.

Its also worth noting that observable changes between two sequences will not be the
only sequence mutations that have occurred over time (29). Reverse mutations and
multiple mutations at the same residue are obscured by comparing two sequences
at one point in time (29). The process of comparing similarity to determine related-
ness lacks the ability to account for the potential of these ’invisible’ mutations. This
means the divergence of two sequences can be underestimated (29). The reverse
can also happen where two sequences have diverged in their sequence similarity
to the extent they have not maintained enough similarly for their homology to be
detectable using sequence similarity so the relationship between the two sequences
can’t be identified(29). Sequence similarity is one of the best measures available
for determining homology, alongside structural similarity, but it is fundamentally
flawed especially when trying to determine homology for distant relatives (20).

Correctly inferring homology based on sequence similarity in an alignment is im-
portant for many different processes such as annotation of genes and taxonomy
classification. Errors in homology inference can cause many different problems that
can have an effect on the wider scientific community. Incorrect assignment of func-
tion can cause a gene to be assigned a potential function it does not have but it can
also cause the erroneous annotation to propagate to other genome annotations or
sequence databases (e.g. glyoxalase I function annotated for a soybean gene but
the sequence had no match to the Structure Function Linkage Database HMM for
glyoxalase I) (47–49). Incorrect assignment of taxonomy based on alignments in
metagenomics studies can cause errors in identifying which species are present in
an environment (e.g. Yersinia pestis (aka the plague) as a ’normal’ part of the New
York subway microbiome) (50, 51). Therefore determining the homology between
pairwise alignments relies on having checks in place to prevent homology being
inferred when there is not enough evidence for it.

Pairwise alignments can be grouped into four categories using the bit score and
the structure of the gene (52). Actual homologs tend to have similar sequence and
same structure whereas sequences likely to be called as false homologs have similar
sequence but dissimilar structure. Sequences that are dissimilar but have similar
structure are presumed cases of convergent evolution. The final case is sequence
pairs considered unrelated which have dissimilar sequence and dissimilar structure.

The ability to differentiate between true and false homologs is important for ge-
netics research however alignments with low similarity scores (potentially distant
homologs or unrelated sequences) can be indistinguishable (19, 20, 29). As sequence



1.3. The twilight zone 11

similarity decreases between aligned sequence pairs the ability to detect true ho-
mologs trends downward and the number of false homologs increases (52). At some
level of sequence similarity the number of false homologs exceeds the number of
true homologs. The zone at which this occurs has been labelled the twilight zone
((11, 29, 32, 52–54).

1.3 The twilight zone

The term twilight zone was first coined in relation to pairwise alignments (of nu-
cleotides or amino acid sequences) in 1986 by Russell F. Doolittle (29). The twilight
zone for pairwise alignments is the range of sequence similarity for which the rela-
tionship between similarity and homology breaks down to the extent its not possible
to accurately infer homology using sequence similarity. The reason inferring homol-
ogy in the twilight zone is difficult is it is characterised by a massive increase in non-
homologous sequence pairs relative to true homologs paris for the same sequence
similarity (52). Therefore the alignment bit score, or some other score of similarity,
is no longer enough evidence to infer homology without supplementary data as it
is too difficult to distinguish true from false homologs (11). Non-homologous se-
quences with similar pairwise similarity to true homologs occur due to sequence
artifacts such as repeats, sequence composition (e.g. high G+C content), short se-
quence length or convergent evolution.

The twilight zone occurs for a different range of sequence similarity for nucleotide
and proteins alignments due to the different alphabets utilised. Proteins have 21
amino acids (including selenocysteine) in their alphabet and nucleotide sequences
have four bases. Nucleotide alignments are expected to have a higher twilight zone
than amino acid alignment due to the smaller alphabet.

There are two different types of twilight zones for alignments. One twilight zone
identifies the loss of sensitivity in alignment accuracy of two sequences (11, 32).
This is where the alignment of two sequences is compared for accuracy to a trusted
reference alignment. The other type of twilight zone determines the loss in sensitiv-
ity to inferring homology between two sequences (29, 52, 54). The shared similarity
of aligned sequences is used to determine if two sequences are homologous or not
and the twilight zone begins where the probability of correctly inferring homology
is 50% or less. The second type of twilight zone will be addressed in this thesis.

1.3.1 Protein alignment twilight zones

The initial concept of the twilight zone for protein alignments was developed by
Doolittle in 1986 and has since been expanded upon by Rost and Thompson et al.
in 1999 (52). Rost determined the twilight zone for inferring homology whereas
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Thompson et al. determined the twilight zone for alignment accuracy (32, 52). Since
1999 little has been done to determine if the twilight zone of homology has changed
as more algorithms have been written or algorithms have been updated. Unpub-
lished research from 2012 that was divulged via a first person interview with Sean
Eddy, one of the leading experts in homology alignment algorithms, is the only avail-
able comparison to Rost’s work in 1999 (54).

Doolittle’s twilight zone is between 15-25% and is a ’rule of thumb’ for sequences
of 100 amino acid length or greater (29). The 100 amino acids caveat is due to
the greater probability of short sequences having the same amino acid sequence by
chance and therefore the level of confidence in short alignments is not as easy to give
general advice for (19, 29). No quantitative experiment was done to determine this
zone, it was merely a guideline to follow for researchers to have more confidence in
their ability to determine relatedness from the alignment. At this point in biological
history, alignments were a new source of information, and the importance of this was
not understood as well as it is today (19). The outcome of this book chapter was that
it is difficult to determine if a sequence pair in the twilight zone is truly homologous
based on just the alignment and these pairs requires further computational evidence
to determine their homology. Doolittle ultimately concluded that when determining
if sequence pairs that lie in the twilight zone are homologous, these pairs require
further computational evidence to determine their homology (29). Despite this ini-
tial concept being suggested by Doolittle, it was not experimentally calculated until
1999 by Rost (52).

Rost showed that the twilight zone of homology for protein alignments was between
20-35% pairwise identity (52). It should be noted that the main aim of this paper was
not to determine the twilight zone however the author did calculate characteristics
that identify the location of it. The twilight zone was highlighted by a 5000 fold in-
crease in aligned protein pairs that were falsely considered homologous (similarity
in sequence composition but not in structure) meaning false positives outweighed
true positives for this zone of pairwise sequence identity (Fig. 1.5 A) . This re-
sulted in making the identification of true homologs in this zone a difficult task(52).
The database Rost utilized had 1.7 million pairwise alignments of 792 unique pro-
teins with known structure aligned to 5,646 amino acid sequences from the Pro-
tein Data Bank (PDB) (56). The three alignment algorithms used included a Smith-
Waterman based full dynamic program MaxHom and two quick database search
methods BLASTP (heuristic Smith-Waterman) and PSI-BLAST (heuristic Smith-Wat-
erman) (9, 57). Blast was relatively new at the time and was an important addition
to the alignment algorithm family due to its speed. Rost showed that BLASTP or
PSI-BLAST alignment similarity scores were less accurate than those of MaxHom at
separating true and false homologs for the same coverage (also know as precision or
positive predictive value (PPV)) (52).

In the same year that Rost calculated the twilight zone for homology, Thompson
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FIGURE 1.5: Rosts twilight zone of protein homologya Explosion
of structurally dissimilar pairs in the twilight zone. Numbers of true
(pairs with similar structure) and of false positives (pairs with no sim-
ilar structure) plotted versus the distance to the HSSP-curve (55), i.e.
the horizontal axes give the distance from the threshold defined in
eqn 1 (numbers refer to the parameter n in eqn 1). The levels of pair-
wise sequence identity corresponding to the distance were shown on
top. (A) Number of pairs observed at any distance (logarithmic scale).
(B) Cumulative number of pairs observed (logarithmic scale). For ex-
ample, at a threshold corresponding to about 32% sequence identity
for long alignments, the numbers of true and false positives were
equal (arrow in A); at about 29% even the cumulative numbers of
true and false positives were equal (arrow in B). Note: numbers of
true negatives and false negatives result from the cumulative sums
left of the threshold; percentages of true and false positives given in

Figure 5.

aFigure adapted with permission from Oxford Univeristy Press, Protein Engineering, Design and
Selection;Twilight zone of protein sequence alignments, Rost 1999. Copyright Feb-1999. Reproduced
with Permission 4518510088473.

identified the twilight zone for alignment accuracy to be (10-20% pairwise identity)
(32). The accuracy of an alignment does not necessarily report about the homology
of the sequence pairs. It only shows that the alignment generated by the algorithm
matches with a certain percentage to that of a trusted alignment. Whilst incorrect
alignments of sequence pairs could cause them to have lower PID than expected
(due to not have the maximal number of matched residues), the work of Thompson
et al. does not apply directly to the scope of research of this thesis.

The twilight zone calculated by Eddy in 2012 shows that the lower threshold of the
twilight zone is now as low as 11% (Fig. 1.6) (54). HMMER was first published in
1995 so was available when Rost did his research into the twilight zone but he did
not include the algorithm in his experiment (52). The database set up for Eddy’s
experiment is very different then Rost. A pairmark database was created where
a single protein domain target is embedded in a large non-homologous sequence
similar to the profmark benchmark methodology (43, 58, 59). This was done to cre-
ate a database that mimics databases that contain whole contigs, chromosomes or
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genomes, rather then individual sequences for each gene. The database created had
10,691 query sequences searched against 142,322 real sequence targets and 200,000
negative targets (shuffled sequences) (54). Four different alignment algorithms were
tested, HMMER 3.0, PSI-BLAST, BLASTP and Smith-Waterman, however two differ-
ent scoring schemes where tested for Smith-Waterman (Fig. 1.6). The fraction of true
homologs detected for each PID was calculated for fixed specificity, the true nega-
tive rate (the proportion of true negatives found out of all negative targets present).
The lowest twilight zone of all the alignment algorithms was HMMER 3.0 with 11%
(Fig. 1.6). Eddy is the author of the suite of programs in HMMER 3.0. This plus the
lack of peer review for this research would suggest that this calculated zone should
be used with caution (31, 46).

FIGURE 1.6: Eddys twilight zone of protein homology: Twilight
zone analyses using a pairmark database approach to calculate the
fraction of true homologs detected at fixed specificity (true negative
rate). Only sequence pairs between 0-50% were tested. This research

has not been pair reviewed.

Whilst there have been advancements in research into the amino acid alignment
twilight zone and the improvements can be seen in our ability to detect homology
within it, less research has been done on the nucleotide alignment twilight zone.
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1.3.2 Nucleotide alignment twilight zones

The twilight zone for nucleotide alignment accuracy was first calculated by Gardner
et al. in 2005 whereas the twilight zone for homology was calculated in 2010 (11,
53). There was a delay in calculating the twilight zones for nucleotide alignments
despite the ability to sequence DNA being available since 1975 when Sanger et al.
described the Sanger sequencing method (60). Potentially the difficulty in detecting
ncRNA due to their absence of distinctive start and end points meant there was
a lack of sequence data for determining the twilight zone until covariance models
(CMs) were created to find ncRNAs in genomes (61).

As a part of a study of structural ncRNAs that were used to benchmark multiple
sequence alignment programs the twilight zone for nucleotide alignment accuracy
was calculated (11). It was between 50-60% which is much higher then the 10-20%
calculated by Thompson et al. 1999 for protein alignments (32). This zone represents
pairwise identities where little to no structural information can be gathered from
structurally aligned homologous ncRNAs using alignment algorithms alone. The
authors used a set of four RNA alignments that were seed alignments for CMs from
Rfam v5.0 as their reference alignments similar to that of Thompson et al. 1999.
This data set was later published for open access and named the BRaliBase after the
amino acid sequence BAliBASE database (11, 62, 63). The much higher twilight zone
for ncRNA was attributed to the difference in alphabet size (4 nucleotides versus 21
amino acids) resulting in a higher probability of gaining some sequence patterns by
chance, especially if they lack complexity (19, 29).

The database utilised for this calculation of the twilight zone was identified to have
a flaw, nicknamed the BRailiBase dent, where even the most advanced structural
RNA alignment tools seem to perform weakly at best in the 60-40% pairwise iden-
tity range (64). This was due to tRNAs being at least half the sequence pairs or more
for PID values below 40% (64). tRNAs are structurally well conserved but lack se-
quence similarity (65). All the algorithms used in this benchmark align ncRNAs us-
ing structure and sequence so even for low sequence pairwise identity values align-
ment algorithms are able to align tRNA to a high level of accuracy (compared with
other ncRNA genes for that PID) based mostly on structure. Other ncRNA’s don’t
tend to be as structurally well conserved as tRNA for PID values below 60%. Within
the twilight zone (40-60%) there are still alignments from other genes that make up
at least 50% or more of the data for those PID values. Therefore these alignments,
which won’t be as accurate as tRNA alignments due to less structural conservation
will help balance out the unusual nature of the tRNAs structural conservation. Be-
low the twilight zone there are very few other ncRNA sequence pairs so alignment
accuracy is based on only tRNA alignments unlike for higher PIDs. This means after
the twilight zone there was a perceived increase in the accuracy of alignments caus-
ing a dent like trend in the alignment accuracy of all alignment algorithms (Fig. 1.7.
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FIGURE 1.7: The BRaliBase Denta The two plots show 9 of 36 RNA
families with at least 180 alignments. (A) Familywise performance
of LocARNA. The family names in the legend are further accompa-
nied by the total number of alignments for each family in brackets.
(B) Each family’s share of LocARNA’s SPS (after local regression) per
sequence identity. The remaining families with <180 alignments are
grouped into ‘other’. These graphs show the proportion of genes
in the enhanced BRaliBase database (62). Only tRNA, 5s rRNA, U5
spliceosomal RNA and Group II introns were used in the Gardner et

al. twilight zone calculation.

aFigure adapted with permission from Oxford Univeristy Press, Briefings in Bioinformatics;The
BRaliBase dent—a tale of benchmark design and interpretation, Löwes, Benedikt; Chauve, Cedric 2016.
Copyright March-2016. Reproduced with Permission 4518541063092.

The dent was considered to be the twilight zone as it was thought something odd
occurred for this zone of PID that alignment algorithms could not cope with when
in fact it was just due to a biased data set below the dent.

Whilst this twilight zone calculation is not comparable to the research done in this
thesis it stands as a good example of how one gene being over represented in a data
set can cause an unusual result.

The next attempt at calculating the twilight zone came before the BRalibase dent was
identified, however the authors used a set of non-identical (<100% PID) structural
RNA molecules from the Protein Database (PDB) (53). The main aim of the research
was to quantify the relationship between sequence and structure conservation in
RNA hence why they used RNA structures in PDB found using xray crystallogra-
phy, nuclear magnetic resonance imagining (NMR)or electron microscopy. Crys-
tallisation of an RNA often requires the sequence to have sticky ends added, non-
essential sections removed or stem loops added to help make the RNA structural
more ordered to obtain crystals (66, 67). This is because RNA molecules are very
flexible, especially in large loop or linker regions. This can mean the RNA is found
in a conformation that isn’t necessarily the most common structure for the molecule
when compared with structures determined in solution via NMR (68). These RNA
structures from PDB were used alongside sequence similarity to determine homol-
ogy between RNAs (53).



1.4. Proposed research and summary 17

Their analyses allowed them to quantify a twilight zone for ncRNA homology for In-
fernal v1.0 using single sequence targets searched against covariance models (CMs)
generated from the remaining sequences in the data set. They used the Infernal
E-value as a threshold to separate true and false homologs based on structure and
sequence conservation. They found that homologous pairs of ncRNA sequences will
diverge structurally when there is a significant reduction in their sequence PID. As
the relationship between sequence and structural conservation becomes less corre-
lated this makes it hard to determine if the amount of structural conservation is sig-
nificant enough to infer homology for low PID values (<60%). Distant homologs had
sequence PIDs between 30-60% so the relationship between structure and sequence
conservation for these sequences is more variable.

Therefore between 30-60% PID inferring homology based on the relationship be-
tween sequence and structure was harder, thus indicating the twilight zone. The
methodology of this paper mimics that of Rost et al. 1999 where sequences of known
structure are used to identify how well alignment algorithms can be used to in-
fer homology from sequence alone (52). The authors only use one alignment al-
gorithm and as Gardner et al. 2005 showed, different alignment algorithms, with
different underlying mathematical approaches, have different twilight zones so bas-
ing the twilight zone off one algorithm is a narrow approach to the problem (11).
Their database is biased towards RNA structures that have been crystallised or im-
aged and are found in PDB. This does not necessarily represent all RNA molecules
known to date, nor does it represent a wide taxonomic range of bacteria for each
RNA molecule.

1.4 Proposed research and summary

The overarching theme with previous attempts at calculating the twilight zones
for nucleotide sequences is that both have database flaws that make them non-
representative of all RNA’s (11, 53). They either focus on a small subset of ncRNA
where there is structural data available or that there is a trusted reference align-
ment that has been curated. Their focus on ncRNA has resulted in the omission of a
large section of RNA sequences; messenger RNAs (mRNA). Whilst the homology of
mRNA cannot be easily confirmed by structural conservation like that of ncRNA, it
can be confirmed by the conservation of amino acid sequence and protein structure
(19, 52).

In order to improve on the previous attempt to calculate the twilight zone of nu-
cleotide homology by Capriotti et al. 2010 three aims were set. The first was to
compile a data set comprised of a representative sample of core mRNA and ncRNA
genes from a wide phylogenetic range of bacteria genera that was as unbiased as
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possible. The idea was that this data set would be representative of nucleotide align-
ments as a whole so the twilight zone can be applied in any nucleotide pairwise
alignment.

The next aim was to calculate the twilight zone for nucleotide homology, utilizing
the data set generated, by using different alignment algorithms that represents all
of homology search tool space. The four algorithms chosen were ggsearch (global
and dynamic), ssearch (local and dynamic), BLASTn (local and heuristic) and nhmmer

(local and heuristic + dynamic (with HMMs)). Each algorithm is widely used and
has over 2000 citations between their original paper and their newest update (Tab.
B.1) (20).

The final aim was to observe any differences for older versions of alignment algo-
rithms compared to the new versions when it came to the ability to extract true
homologs in the twilight zone. This was to see if improvements had been made over
time in alignment algorithms ability to align pairs of sequences in such a way that
we can more easily separate true and false positives.
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Chapter 2

Methods

An overview of the experimental design has been summarised in figure (Fig. 2.1)
and all code, alongside a detailed computational pipeline, can be found at the Github
link in table (Appendix. C.1).

2.1 Database curation

2.1.1 Genome download

All bacterial genomes (101,133) available on the 27th of November 2017 were down-
loaded over a 6 day period from the NCBI RefSeq database using their supplied ftp
instructions (Fig. 2.2) (69). Contig identifiers for each genome were checked to deter-
mine if they were unique for genomes containing multiple contigs. This was done by
comparing each contig identifier in a genome file and removing any genomes with
contigs that had identical headers. Any genome that had one or more redundant
contig labels was removed from the set of genomes to prevent incorrectly calling ho-
mologs. This is because algorithms used in this research use the contig identifier and
nucleotide coordinates within the contig to identify genes. The resultant genomes
are subsequently referred to as the genome set.

2.1.2 Taxonomy ranks

For each genome in the genome set, taxonomy ranks were obtained from the NCBI
taxonomy database. Two publicly available data files, accession2taxid and taxdump,
were used by taxonomizr v0.2.2, an existing R code package, to get taxonomy rank
data for each NCBI accession ID. The NCBI accession ID is converted to a NCBI tax
ID using the accession2taxid file and the taxID is used to find the taxonomy infor-
mation in taxdump. A custom piece of code (language Perl v5.26.0) was written to
create a tidy tabular output of the taxonomy ranks for each accession (Appendix
C.1). The same code made master files for each taxonomy rank (e.g. class, genus)
where each name in a rank has a list of corresponding genome accessions stored
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within the file. A NCBI taxonomy tree was produced from this data to show the
phylogenetic range of all genomes based on their phylum. Any species with an un-
known phylum classification was excluded from the tree. Each phylum was further
split into classes and each class and phylum was labeled with the number of species
it contained. The tree file was created by transforming the tidy tabular output into a
Newick format tree with a polytomy for each phylum and set of classes. The tree is
a pictorial representative of the genome set (Fig. 3.3). The tree was visualised using
the Interactive Tree of Life (iTOL) online tool and annotation templates they provide
(70).

2.1.3 Gene and genome selection

Genes that span a wide phylogenetic range were required so there would be varying
amounts of divergence between homologs to gain a wide range of pairwise identity
(PID) values for each gene (20). Pairwise identity is defined as the percentage of
similar residues between a pair of aligned sequences (Eqn. 2.2) (71). Core bacterial
genes, both ncRNA and mRNA, were selected from previously published ’essential’
gene sets found in scientific literature (72, 73). Nine core ncRNA genes covariance
models (CMs) were downloaded from Rfam v13.0 and all 144,498 available EggNOG
v4.5.1 profile hidden markov models (HMMs) were downloaded on the 9th of April
2018 (74, 75).

HMMs are used to identify homologs in a diverse set of genomes due to their ability
to ’forgive’ divergence in unessential regions of genes which is often present in pairs
of species that diverged a long period of time ago (10). A CM is a probabilistic
model similar to an HMM except it also encodes secondary structure information
as well as nucleotide sequence information based on a structural multiple sequence
alignment for a gene (61). These models are used to find homologs for ncRNA genes
rather than a single sequence as often ncRNA is structurally more conserved than the
nucleotide sequence is. Therefore sequence diverged homologs can still be found as
long as they retain structural features of importance to the gene. Due to the large and
diverse taxonomic set of bacterial genomes used in this research CMs were required
to identify ncRNA gene sequences in all bacterial species.

The 9 ncRNA genes make up the ncRNA core gene set which excludes tRNAs as
the Rfam model cannot distinguish between tRNA types (e.g. Alanine vs Valine).
The tRNA core gene set consists of 21 tRNAs predicted by tRNAscan-SE v1.3.1 that
incorporate the 21 proteinogenic amino acids into proteins utilized by most bacterial
phylum (76–78).



22 Chapter 2. Methods

mRNA core gene set

The set of EggNOG profile HMMs contained genes that were not in the core gene
set, as well as multiple profile HMMs annotated to the same core gene. The set was
reduced to one representative profile HMM per core gene by using 199 essential
protein genes for Escherichia coli str. K-12 substr. MDS42 and Bacillus subtilis str. 199
to select the best profile HMM for each core gene (73). These genomes were used as
they are from different diverged phylum and both genomes have well characterised
core genes (79). All sequences were downloaded from NCBI. These sequences were
searched against all 144,498 EggNOG profile HMMs using hmmsearch v3.1b2 with
an E-value threshold of 1e-10 . Profile HMMs that matched both E.coli and B.subtilis
core genes were extracted and the bit scores compared by taking the proportion
of the smallest bit score relative to the sum of both bit scores (Eqn. 2.1). If the
proportion is 1 then the model only matched either E.coli or B.subtilis. A profile
HMM that has the same bit score for both E.coli and B.subtilis sequences for a gene
would have be scored as 50% using this relative measure.

If the proportion was between 30% to 70% the EggNOG profile HMM was selected.
If a core gene had multiple profile HMMs in this range the model with the closest
proportion to 50% was chosen. These proportion thresholds were used to ensure
the profile HMM was not heavily biased to finding sequences in only one part of
bacterial taxonomy distribution as the two genomes used to find the core gene pro-
file HMMs were from phylum known to have structural and sequence divergence
in proteins (80–82). Bias in finding sequences can happen if the alignment that the
profile HMM is calculated from does not include sequences for that gene from a di-
verse range of bacterial species. The range is chosen to exclude models that aren’t
close to a 50:50 ratio of bit scores. EggNOG profile HMMs were used as they model
the full protein sequence and not just protein domains like other profile HMMs such
as Pfam (83). The downside is that they are not hand curated models like Rfam and
Pfam nor is there one model per gene (15, 16). This is why the above process was
required to gain a set of full length profile HMMs for each core gene.

This set of 146 profile HMMs is called the mRNA core gene set.

Bit score proportion for E.coli and B.subtilis = min{bE.coli ,bB.subtilis}
bE.coli+bB.subtilis

· 100

bE.coli = the bit score for the gene from E.coli
bB.subtilis = the bit score for the gene from B.subtilis

(2.1)
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Genus representative genome set

A balanced and diverse taxonomic set of genomes was required to represent all se-
quenced bacteria. A combination of ncRNA and mRNA genes were used to select
a representative genome for each genus. cmsearch v1.1.2 with default settings was
used to annotate 16s rRNA in the genome set with the corresponding Rfam CM
(RF0177) (84). Sequences that were shorter than 1000 or longer than 2000 nucleotides
in length and had a bit score of 563.95 or more were ranked by bit score to find the top
bit score match for each genome. 16s rRNA was used as it is thought to be present
in all bacterial genomes and therefore, if it was absent from a genome in the set, it
would be indicative of issues with the assembly or sequence quality (85). The bit
score threshold was chosen by calculating the distribution of bit scores for 16s rRNA
to find the means and standard deviations of the bimodal distribution (Fig. A.1). A
bit score cut off of 563.95 was chosen as it is two standard deviations from the mean
of the lower distribution. This method assumed both distributions were normally
distributed but by inspection they are skewed (Fig. A.1). The cut off is therefore a
rough estimate to try and remove the majority of (false) sequences modelled by the
lower bit score mode distribution. As seen in the graphical representation of the bit
score distribution for 16srRNA the cut off removes the bulk of the lower distribution
sequences (Fig. A.1). The lower distribution generally contains noise or fragment
matches to the Rfam CM (86, 87). As the two distributions overlap it isn’t possible
to determine a cut off that divides the true homologs from other sequences however
this cut off removes the majority of sequence that are partial or sequence composi-
tion matches. The length cut offs of 1000 to 2000 were chosen to select sequences
of approximately the expected length (around 1500 nucleotides) and remove very
short or very long matches that may have made the bit score threshold. The average
length of 16srRNA was 1542 nucleotides long and the seed alignment for the Rfam
16srRNA model had sequences that range in length from 1424 to 1629 nucleotides
long (74).

One final test was used to check genome quality in terms of whether multiple pro-
tein coding genes required for an essential function, such as DNA replication, could
be located (88). Six DNA replication genes are in the core gene set and the profile
HMMs were searched against a 6 frame translation of every genome using hmm-
search v3.1b2 with E-value threshold 1 (89). The high E-value threshold was selected
after a previous run with E-value of 1e-10 caused no sequences to be found for more
diverged species. One of these species, Deinococcus ficus, was searched individually
and all six DNA replication genes were found so the sequences were present in the
genome. A re-run of the original search with E-value of 1 saw all six DNA replication
genes for D.ficus found.

This occurred due to the E-value thresholds dependence on the database size. A high
bit score is considered less significant for a larger database than a smaller database
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FIGURE 2.2: Selection of a genus representative genome set:
Schematic demonstrating the steps taken to reduce the available set
of bacterial genomes from RefSeq down to a much smaller set of good

quality genus representatives

as the larger database has more sequences that could produce high bit scores purely
by chance (20). Therefore it is easier to find more diverged homologous sequences
when using an E-value threshold if the database is smaller as their lower bit scores
will be considered more significant. There were 10,002,411,364 open reading frames
(ORF) in the search database of length greater than 20 amino acids for 101,133 NCBI
genomes. Genomes where the 6 DNA replication and 16srRNA genes were found
were grouped based on their genus. The genome with the highest scoring 16srRNA
gene sequence to the Rfam CM was selected to represent each genus (Fig. 2.2). There
were 1,912 unique genera available (any with genus of NA or Candidatus were ex-
cluded from analyses as both denote undetermined taxonomic status so their true
genus classification is unknown). This set of genomes is called the genus represen-
tative set (Tab. C.3 Link A).

Genus representative core gene set

mRNA and ncRNA homologs were found using sequence similarity to correspond-
ing probabilistic models (Tab. B.3 & B.2). CMs contain information about consensus
secondary structure alongside nucleotide sequence so the ncRNA sequences for each
gene are found using structural and sequence similarity (61). HMMs do not include
structure information as the structure of proteins is hard to predict from a sequence,
so it is not as easy to encode structural conservation into a probabilistic model as it is
for ncRNA. Therefore the protein sequences in the data set are found using sequence
similarity to the HMM. The models used in the core gene set consist of 146 mRNAs,
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9 ncRNAs and 21 tRNAs (Tab. B.3, B.2). These genes were all extracted from the
genus representative genome set via three different methods.

For the mRNA core gene set each genus representative genome was translated in 6
frames using esl-translate v0.44 (Easel 0.44). This step is required due to EggNOG
profile HMMs only modelling the amino acid sequence for each gene rather than the
nucleotide sequence. The next release of HMMER would circumvent this problem
as a translated search option will be added to hmmsearch (54). hmmsearch v3.1b2
was used to annotate sequences for each gene in the mRNA core gene set for each
genome using the corresponding EggNOG profile HMM. Sequences were only re-
ported if their bit score was more than a third of the maximum bit score possible for
each profile HMM and only the highest bit score match per gene for each genome
was selected. The bit score cut off was chosen after visual inspection of the distribu-
tions of bit scores for each model which are all bimodal (86). The smaller bit score
mode distribution for each gene can usually be attributed to sequence fragments and
other unrelated sequences therefore these need to be removed from the sequence set.
Allprotein and ncRNA models had a smaller bit score mode distribution that con-
tained non-homologous sequences with bit scores smaller then one third the maxi-
mum bit score. This value was therefore used to exclude the sequences in the smaller
bit score mode distribution.(Fig. A.1). Rather than set the cut offs by hand for all 146
genes the more automated 1/3 max bit score approach was applied as it roughly
approximated where each cut off would manually be set. The maximum bit score
for each model was calculated by omitting the consensus sequence for each profile
HMM using hmmemit v3.1b2 and aligning it back to the profile HMM using hm-
malign v3.1b2. Default parameters were used for both algorithms. The mRNA core
gene sequences found were aligned to their corresponding profile HMM using hm-
malign v3.1b2 to obtain a protein sequence alignment to be used to calculate amino
acid sequence PID.

For the ncRNAs, each of the 9 Rfam CMs was searched against the genomes in the
genus representative set using cmsearch v1.1.2 with a bit score threshold of one third
the maximum bit score possible for each model. For consistency the same bit score
cut off was used for ncRNA as mRNA despite the small number of models mak-
ing hand curation of thresholds more reasonable (Fig. A.1). The highest bit score
match for each genome was selected and these sequences were aligned to their cor-
responding CM using cmalign v1.1.2 to obtain an alignment to be used to calculate
PID.

tRNAscan-SE v1.3.1 was used to annotate the 21 tRNAs from the tRNA core gene set
for each genus representative genome. tRNAscan-SE v1.3.1 utilises its own internal
CMs. Default settings were used for tRNAscan-SE v1.3.1. For each of the 21 core
tRNAs the highest bit score match was selected for each genome. These sequences
were aligned in their individual tRNA groups to the Rfam general tRNA CM using
cmalign v1.1.2 to obtain an alignment to calculate PID from.
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Each sequence in the ncRNA, tRNA and mRNA (amino acid sequences) alignment
was further quality checked for length to remove sequences that cannot be con-
fidently determined as homologous. Anything greater than 2/3 or less than 1/3
the median length of sequences in the alignment was discarded using esl-alimanip
(Easel 0.44). These thresholds were chosen to remove sequences that had large indels
or were truncated as these are harder to confidently determine the true homology
status of. As these are core genes required for day to day function it is unlikely that
shorter or longer versions will be functional genes.

Due to the large number of mRNA profile HMMs in the core gene set, any gene
that had sequences for less than 900 genus representative genomes were removed
from the mRNA core gene set. This left 127 mRNA core genes with a representative
sequence for at least half the genomes. The remaining mRNA amino acid sequences
were then reverse translated in frame of their amino acid alignment to a nucleotide
alignment using pal2nal v14 (Fig. 2.3) (90). The codons to be used for each amino
acid in the reverse translation are taken from the nucleotide coordinates in the contig
associated with the open reading frame that the protein sequence was obtained from.
This resulted in an alignment of the nucleotide sequences that is in the same frame
as the protein alignment.

T
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A T G C A G

A T G G A A AC A C C

G A T TT A

M D Q F

M E Q T

FIGURE 2.3: Amino acid to nucleotide translation in frame: The
amino acid alignment is reverse translated to a nucleotide alignment
keeping the codons in frame of the amino acid alignment. The codons
used are from the nucleotide ORFs that correspond to the protein se-

quences.

This was done as the amino acid sequence is the structured, functional product of
the mRNA and is the level at which natural selection acts. Therefore the nucleotide
alignment should reflect the conservation of amino acids in order to be biologically
more informative of evolutionary events (19, 20, 29, 90).

The core gene set consists of 157 gene families from mRNA, ncRNA and tRNA that
have representative sequences from genomes in the genus representative set. In total
there are 275,394 sequences in this set comprised of 225,632 mRNA sequences, 37,768
tRNA sequences and 11,994 ncRNA sequences.



2.1. Database curation 27

2.1.4 Pairwise identity and subset selection

Pairwise identity (PID) is a measure of similarity independent of the alignment bit
score that is easy to calculate from an alignment. It was used as it is an easily cal-
culated measure of evolutionary distance between two homologous sequences and
is strongly correlated to more complex phylogenetic distance measures (e.g. F84
DNA distance) (Pearson correlation coefficient of -0.995) (Fig. A.3) (20, 91). It was
also used as the measure of similarity in previous twilight zone calculations for both
protein and nucleotide sequences (11, 29, 32, 52, 53). PID can be calculated four
different ways using different denominators; shortest sequence length, number of
aligned residues including gaps, number of aligned residues excluding gaps or the
mean length of both sequences (71). The research described in this thesis uses the
most commonly found PID calculation for twilight zone analyses which divides by
the shortest sequence length (Eqn. 2.2) (11, 19, 29, 32, 52, 53). The core gene set
alignments were used to calculate PID, as a percentage, using esl-alipid (Easel 0.44).
All PIDs were rounded to the nearest 1%. There were 243,558,970 sequence pairs in
total.

Pairwise sequence Identity = PID =
∑ mij

ni
, for ni ≤ nj

ni, nj are the number of residues in sequence i or j respectively

mij are the number of matches between pairwise aligned sequences i and j

(2.2)

For each PID value (from 1-100%) a subset of 201 aligned sequence pairs was selected
where available. This means the maximum number of pairs for this subset was
20,000. For each PID no more than 20% of the pairs comprised of one gene and all
21 tRNAs were treated as one gene (Fig. 2.4). 0% PID values were excluded from
further analysis. The pairs of sequences selected are called the 201 pairs subset.

49%
PID

Gene A Gene B Gene C

G
en

e 
D

G
en

e 
E

G
e
n
e
 F

20% 20% 18% 16%16%
Percent of 

pairs per gene 10%

FIGURE 2.4: PID value breakdown of pairs: Example of the break-
down of pairs for a PID value (49%). Each gene makes up 20% or less
of the pairs for the PID value and there are multiple different genes

represented.
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Additional PID subset

Between 68% and 100% of the 201 pairs subset, tRNA sequences were found to be
over represented (≥75% of pairs) in a subsequent analysis of gene types. This re-
sulted from a code specifier failing to count the 21 different tRNA families as a single
group, and instead they were treated as 21 unique groups. As each gene, or group,
can be up to 20% of the pairs per PID value this allowed tRNA to saturate the pairs
for higher PID values. This is the previously reported problem that this experimen-
tal design was trying to avoid with our approach (64). As this problem was found
late in the period of research it was unable to be rectified fully due to the time some
algorithms take to run (Tab. 3.4). A second smaller subset of 50 pairs per PID was
created and tRNAs were excluded from all PID values. This set of pairs is called the
50 pairs subset

2.1.5 Shuffled genes

In a database the majority of sequences are non-homologous to the query, so a neg-
ative control set of non-homologous genes was required to mimic true homology
search space. Each gene in the core gene set was shuffled using esl-shuffle (Easel
0.44) to create a set of sequences that are known to be non-homologous but have
similar sequence composition to the core gene set. ncRNA and tRNA genes were
di-nucleotide shuffled whilst mRNA genes were codon preserving shuffled.

The dinucleotide and codon preserving non-homologous controls are one of the
more conservative controls that could be used (72). They are a more challenging
control set then mono-order Markov-model based sets and this reduces the risk of
falsely claiming a high sensitivity when the real sensitivity is much lower (92–94)
These sequences make up the bulk of the search space for each alignment algorithm
to be tested. This set of shuffled sequences is called the non-homologous database.

A smaller non-homologous database was also created that included two shuffled
versions of each of the sequences in the 50 pairs subset. This was done to decrease
the amount of compute time it took to align sequences to the large non-homologous
database. This smaller set of shuffled sequences is referred to as the 50 pairs non-
homologous database.

Two further shuffled variations of each gene in the 50 pairs per PID subset were gen-
erated as a control experiment to determine the distribution of PIDs for sequences
that are not homologous but preserve some higher order sequence features. The
shuffled mRNA nucleotide sequences were translated in frame 1 to amino acid se-
quences. The real mRNA sequences do not include the stop codon at the end of each
sequence (due being obtained by reverse translation from amino acid sequences) so
shuffling these sequences did not cause premature stops within the amino acid se-
quence. Each set of shuffled sequences (amino acid or nucleotide) were aligned to
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the corresponding EggNOG profile HMM or Rfam CM for the gene they were de-
rived from. The mRNA amino acid sequences were then reverse translated in frame
the same way as for the PID subsets. The PID was calculated as above. This set is
called the shuffled gene control set.

2.1.6 G+C and length simulation

Guanine-cytosine (G+C) content and sequence length can affect the ability to infer
homology from an alignment. The repetitive nature of G+C rich regions and short
sequences may result in two sequences having a similar bit score to true homologs
purely by chance (20, 29). To determine the effect of G+C content and sequence
length on the distribution of PID values for random sequences a set of sequences
with fixed G+C and length requirements was randomly generated. There were equal
numbers of 28% and 74% G+C content sequences (minimum and maximum G+C
content for the genomes in the core gene set) with a length distribution that mimics
that of the core gene set.

All sequence pairs were aligned one pair at a time using ggsearch36 and their PID
calculated based off that alignment using esl-alipid (Easel 0.44). Only sequence pairs
where both sequences were between 1/3 and 5/3 of the length of the other sequence
in the pair were included in the final PID distributions. The mode, minimum and
maximum values of each distribution of PID’s was calculated to determine how se-
quence features affect PID. This set is called the random sequence set.

2.1.7 G+C and length labelling

In order to explore how G+C content and length affects homology prediction, each
sequence in the database was labelled based on its G+C content and length. The G+C
content and length of each sequence was calculated using the sequence statistics
from esl-seqstat (Easel 0.44). Sequences with a maximum G+C content of 40% were
classed as low G+C content and labeled as G0. Sequences between 40% and 60%
G+C content were considered medium G+C content and labelled G1. Sequences
with a G+C content of 60% and above were considered to have high G+C content
and labeled as G2. Similarly sequences were labelled as short (L0) if their length
was less than 100 nucleotides, medium (L1) if their length was 100 to 999 nucleotides
long and long (L2) if their length was 1000 nucleotides or longer. The shuffled gene
control and random sequence sets were also labelled based on the G+C content and
length.

The G+C content of the 1912 genus representative genomes (based on the median
G+C content of the core genes found for that genome) ranged from 28% to 74% so
the groups G0-G2 roughly divide this range into thirds.
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The length groups were decided based on previous research as well as the range of
lengths in the core gene set. Capriotti et al. 2010 found that the E-value threshold
required to separate true and false homologs of length 100 or more was the same
but sequences of shorter length required more stringent, lower E-value thresholds
(53). E-values can be used to determine the level of acceptable background noise
for determining significant sequence matches. In general sequences shorter than
100 nucleotides long require a more significant score in order to be included above
the E-value threshold as E-value and score are inversely related. Therefore, 100
nucleotides was chosen as the threshold for sequences to be grouped as short se-
quences. The other threshold, 1000 nucleotides, was chosen as it was between the
median and upper quartile of the sequence length distribution for the core gene se-
quences.

2.2 Twilight Zone

2.2.1 Homology search

Four commonly used homology search algorithms (nhmmer v3.1b2, ssearch36, ggsearch36
and BLASTn v2.6.0+) were evaluated to determine how well they could distinguish
true homologs from non-homologous sequences for each PID value (Appendix C.1
& C.2). All sequences in the PID subset being analysed (201 pairs or 50 pairs) from
the same gene were grouped together, regardless of PID, and each gene was aligned
independent of the others. The set of sequences for a gene along with the corre-
sponding shuffled database make up the homology search space for each alignment
algorithm. Each query sequence (one sequence from each pair of sequences in the
gene) was aligned to this database and a bit score calculated (Fig. 2.5). All alignment
algorithms parameters were set to ensure a consistent scoring scheme for match (+4),
mismatch (-5), gap open (-10) and gap extension (-6) were used except for nhmmer

which uses a probabilistic scoring scheme so the default scoring scheme was used
(36, 95). Parameters were selected such that as many matches in the database as
possible were reported to ensure bit scores for shuffled sequences as well as true
homologs were reported for each gene (Tab. C.2). In order to set the similarity
threshold for determining homology a certain number of shuffled sequences need
to have been reported.

Older versions of software

All alignment algorithms used in the twilight zone calculation have been available
since the 90’s except nhmmer which was a new addition to the HMMER suite of
tools in 2013 (9, 30, 36). The oldest online version for each algorithm was located
and tested for the ability to function in a Linux Ubuntu 17.10 environment. ssearch
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FIGURE 2.5: Alignment procedure for each gene: The pairs selected
for a gene are collated together regardless of the PID value. One se-
quence for each pair is chosen as the query sequence. Each query se-
quence for the gene, in this case two (A and C), is aligned (using each
of the different alignment algorithms) to the rest of the sequences for
the gene as well as the shuffled database. The bit score of each query-
database sequence match is recorded for each alignment algorithm.

v34.26.5 from April 2007 was the only software version that was still supported and
could be installed. The same homology search procedure and algorithm parameters
were used for ssearch34 as ssearch36 (Tab. C.2).

Iterative nhmmer

nhmmer v3.1b2 is unique compared to the other algorithms as it makes a profile
HMM from the query sequences to search the database. The use of a single query
sequence does not allow for the full possibility of a profile HMM to be utilised. This
is due to the ability of profile HMMs to include information about the probability of
indels, matches and mismatches at each position when a profile HMM is computed
from more than one sequence. To test if nhmmer v3.1b2 would be more accurate at
determining homologs in the twilight zone if given more evolutionary information
about the query sequence, an iterative approach was designed.

The first nhmmer alignment iteration used a single sequence query to search against
the database with an E-value threshold (0.1 for 201 pairs, 1e-10 for 50 pairs) to only
include sequences that were a good match to the sequence, and therefore likely to be
true homologs. The alignment of sequences above the E-value threshold was used to
build a profile HMM using hmmbuild v3.1b2. The newly created profile HMM was
then used as the query for the second iteration of nhmmer v3.1b2 to search against
the database again but this time using a multi-sequence generated profile HMM. The
same E-value threshold was used on the results from the second iteration to deter-
mine the set of sequences to be used to build the second profile HMM using hmm-
build v3.1b2. The second generation profile HMM was used for the final nhmmer
v3.1b2 search of the database. The parameter choice for filtering and the report-
ing threshold was the same as the single sequence nhmmer v3.1b2 homology search
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(Tab. C.2). The output of the third nhmmer v3.1b2 homology search was taken as the
final result.

The E-value threshold for the 50 pairs subset was chosen to be smaller then the 201
pairs subset. This is because evaluation of the sequences from the 201 pairs subset
used to create profile HMMs for each iteration of nhmmer v3.1b2 homology search-
ing showed a very small number of non-homologous sequences were included in the
second generation profile HMM. Thus, when the 50 pairs subset was analysed using
the iterative nhmmer v3.1b2 approach a much stricter E-value inclusion threshold
was chosen.

2.2.2 Similarity threshold

In order to determine how accurately each homology search algorithm distinguishes
true and false homologs a similarity threshold was set (Appendix C.1). All true
homologs are expected to be above this threshold. To determine the sensitivity of
each alignment algorithm at each PID value a fixed false positive rate (FPR) was used
to set the similarity threshold (Eqn. 2.3 A & B). For a FPR of 1 in 10,000 a database
with 10,000 sequences would have one 1 false positive (shuffled sequence) above the
threshold. The relationship between sensitivity and FPR was tested for a range of
1 in 1250 and 1 in 275,000 FPRs. Total sensitivity was calculated by summing the
number of true positives found above the threshold for all PID values and dividing
it by the total number of true homologs in the 201 pairs per PID subset. The FPR
was chosen to be the lowest value above which very little change in sensitivity was
observed.

Sensitivity for each alignment algorithm and PID value was calculated by counting
the number of homologs above the threshold (true positives) and dividing by the
total number of homologs that were in the database for that gene (true positives and
false negatives) (Eqn. 2.3 B). Sensitivity versus PID was graphed for each alignment
software and the PID at which sensitivity reached 0.5 is defined as the twilight value
for that alignment algorithm.

A: False Positive Rate = FPR =
Fp

Tn+Fp

B: Sensitivity =
Tp

Tp+Fn

Tn is a count of the true negatives (shuffled sequences found below the similarity threshold)

Tp is a count of the true positives (gene sequences found above the similarity threshold)

Fn is a count of the false negatives (gene sequences found below the similarity threshold)

Fp is a count of the false positives (shuffled sequences found above the similarity threshold)

(2.3)
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2.2.3 Bootstrapping and 95% confidence interval

In order to gain a measure of variability in the sensitivity a bootstrap analysis was
performed. Each pair from the PID subset was labeled as a true positive (above the
homology threshold set) or a false negative (below the threshold) for each alignment
algorithm. Using an R custom code with built-in bootstrapping function for each
PID percent, pairs were selected with replacement (the same number as were avail-
able for each PID value) and the sensitivity recalculated (Appendix C.1). This was
repeated 10,000 times to create a distribution of values for the sensitivity of each PID
percent. The 95% confidence interval (CI) of each distribution was calculated and
these bounds used to apply error bars for each PID value and alignment algorithm
on the twilight zone sensitivity versus PID graph (96, 97).
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Chapter 3

Results

3.1 Genus representative core gene set database

The core gene set database has 10,005,524 ncRNA, 35,524,865 tRNA and 198,628,581
mRNA sequence pairs from 1912 genus representative genomes (Tab. C.3 Link A).
In total there were 243,558,970 pairs of sequences. These pairs all had PID values
between 0% and 100%. ncRNA sequence pairs (excluding tRNA) had PID values
between 21% and 100% whilst tRNA sequence pairs had between 19% and 100%
PID (Fig. 3.1). Therefore all ncRNA sequence pairs range between 19-100%. Below
19% there were only mRNA sequence pairs (Fig. 3.1 & A.2). mRNA sequence pairs
range in PID from 0% to 100% (Fig. 3.1). Pairs with 0% PID were excluded from the
twilight zone analyses. The median PID for each gene type was 72% for tRNA, 62%
for ncRNA and 50% for mRNA. The mode for each distribution was very similar
(on average +/- 2%) to the median except for ncRNA (excluding tRNA) (Fig. 3.1).
The mode for the ncRNA distribution was 71% PID. The shape of the ncRNA dis-
tribution shows a secondary smaller mode at 45% PID. The PID distribution for the
shuffled variants of each gene has a much lower median and mode (22% and 24%
respectively) then both all of the other PID distributions.

There were 142 mRNA, 7 ncRNA and 21 tRNA genes therefore there were just over
five times more mRNA genes then ncRNA and tRNA combined. There are 15 mRNA
genes with less than 900 sequences from the 1912 genus representative genome set
that were removed from the data set to reduce the number mRNA genes. This left
127 mRNA genes. All genes had sequence pairs across multiple PID values. The
ratio of ncRNA, tRNA and mRNA in the genus representative core gene subset was
unequal for all PID values (Fig. A.2). mRNA genes were 50% or more of the data set
for PID values of 68% or less. tRNA was the majority of sequence pairs above this
PID value. ncRNA was never the majority for any PID value.

The length of genes in the genus representative core gene subset ranged from 58 to
6306 nucleotides long with a median length of the 783 nucleotides (Fig. 3.2). The
length of genes in the database is skewed towards longer lengths.
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FIGURE 3.1: PID distributions for each gene type (ncRNA, tRNA,
mRNA) and the shuffled version of each gene The percentage of
pairs of the total number of pairs for each group (tRNA, ncRNA,
mRNA, amino acid mRNA, shuffled genes) for each PID value. The

ncRNA sequence set excludes tRNA sequence pairs.

The median genome GC content for the 1912 genus representative genomes was 55%
with a minimum genome GC content of 28% and a maximum of 74% (Fig. 3.2). The
G+C content range for all the sequences was 18% to 80%.

The genome set from the NCBI RefSeq database contained a large number of genomes
from Proteobacteria, Firmicutes, Bacteriodetes and Actinobacteria (Fig. 3.3). In
particular there were 9385 Escherichia genomes of which 9324 were E.coli. In the
genus representative genome set there is one Escherichia representative, E.coli strain
FC10223 (Tab. C.3 Link A). Other commonly used bacterial genera such as Steptococ-
cus and Staphylococcus also had more then 9,000 genomes. The reduction of genomes
to a genus representative genome set reduced these over represented genera down
to one genome and this in turn increased the proportion of genomes in the set from
phylum where only a small number of genomes have been sequenced (e.g. Caldis-
erica, Lentisphaerae)(Fig. 3.3)(Tab. C.3 Link D). There was still a large number of
Proteobacteria, Firmicutes, Bacteriodetes and Actinobacteria as genomes had been
sequenced from multiple different genera for these phylum (Fig. 3.3).

3.1.1 201 pairs per PID subset

The 201 pairs per PID subset had 18,155 sequence pairs from 154 genes from mRNA
(127), ncRNA (6) and tRNA (21).

The most abundant gene was ENOG4105BZH (828 pairs, 4.6% of the total number
of pairs) and the least abundant gene was SeC (1 pair, <1% of the total number of
pairs) (Tab B.4).
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FIGURE 3.2: G+C content for each genome and length distribution
of mRNA and ncRNA sequences in the core gene set, 201 pairs and
50 pairs subset Left Panel: G+C content of each genome calculated
using the median G+C content of the core gene sequences for that
genome. The G+C content spread is very similar across all three sets.
Right Panel: Length of each gene in the different sets. The length dis-
tributions are also similar although there is more variation in the me-
dian, lower quartile and maximum sequence length than the G+C

content distributions

Not all PID values in this subset had 201 pairs. PID values of 15% and above had 201
pairs whereas values below 15% had varying numbers of pairs. PID values between
15% and 11% had more then 100 pairs whereas PID values below 11% had 41 pairs
or less. There were 168 sequence pairs from 7 mRNA genes for 14% PID, 146 pairs
from 7 mRNA genes for 13% PID and 135 pairs from 6 protein genes for 12% PID 3.1.
The 11% PID value had 41 pairs from 5 protein genes (Tab. 3.1). 9% and 10% PID
had the least number of pairs with 36 and 30 pairs respectivly. All sequence pairs
are from the ENOG4105CEY gene except for one pair (ENOG4105DHW) for 9% PID.
The 10% PID subset also has the majority of its pairs from the same two genes (14
pairs and 8 pairs respectively) as well as one pair from the ENOG4105BZH gene.
From 8% to 1% each PID value had 40 pairs all from the ENOG4105CEY gene.

The proportion of sequence pairs per gene type was unevenly weighted in favour of
tRNAs (on average 75%) PID between 100% to 62% (Tab. B.5). Below 62% tRNA’s
make up 20% or less of the sequence pairs and only populate PID values as low as
32%. From 67% to 1% mRNA sequence pairs are at least half of the sequence pairs
for each PID and below 27% there are no ncRNA’s. No individual gene has more
then 40 pairs per PID value.

The median G+C content per genome, based on the sequences in the 201 pairs per
PID subset, is 56% which is 1% greater than the genus representative core gene sub-
set it is derived from (Fig. 3.2). The GC content per genome ranges from 25% to 75%
which is similar to the range of the genus representative core gene subset.
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FIGURE 3.3: Taxonomic phylum and class rank for all NCBI Refseq
genomes and the genus representative genome set: Left Tree: Num-
ber of genomes broken down by phylum and class for all genomes in

NCBI Refseq
Right Tree: Number of genomes broken down by phylum and class
for all genomes in genus representative genome set. A copy of the

tree can be found online (Tab. C.3 Link D)
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Genes 14% 13% 12% 11%
ENOG4105BZH
ENOG4105C1H
ENOG4105C90
ENOG4105CEY
ENOG4105CGR
ENOG4105CWT
ENOG4105DA0

ENOG4105DHW
ENOG4105KNM

TABLE 3.1: Number of protein Genes found for PID values with
less then 201 pairs: All the genes are protein coding genes as the PID

of ncRNA does not range below 19%.

The median length for all the sequences in the 201 pairs per PID subset is 552 nu-
cleotides and is 231 nucleotides shorter than the genus representative core gene set
(Fig. 3.2). The length of sequences ranges from 60 to 4,959 nucleotides which is a
much smaller range than the core gene set. The length of sequences in the 201 pairs
per PID subset also has a skew towards longer sequences, with the lower quartile
(77) only 17 nucleotides longer than the minimum sequence length. This is likely
due to over representation of tRNA genes which are on average 78 nucleotides long.
The upper quartile is 1,422 nucleotides long. Therefore approximately three quarters
of the data is 1,422 nucleotides in length or less (not exactly three quarters as some
longer sequences were separated from the data set and treated as outliers).

3.1.2 50 pairs per PID subset

A 50 pairs per PID dataset with a different ratio of genes was constructed as a further
independent small-scale test to validate the 201 pairs subset, due to the tRNA over
representation. The subset has 4,578 sequence pairs from 134 different genes from
mRNA (127) and ncRNA (7). The tRNA genes were excluded from the subset so a
comparison of the twilight zone could be made with the 201 pairs subset twilight
zone to determine if the tRNA over representation for high PID values had an effect
on the twilight zone.

For the 50 pairs per PID subset the most abundant gene was RF00177 (273 pairs,
6.0% of the total number of pairs) and the least abundant gene was ENOG4105C38
(2 pairs, <1% of the total number of pairs) (Tab B.4).

Not all PID values had 50 pairs of sequences that satisfied the inclusion criteria for
all PID values (Methods 2.1.4). PID values of 13% and higher all had 50 sequence
pairs. For each PID value below this there was a varying number of pairs; 12% PID
had 41 pairs from 5 protein genes, 11% PID had 28 pairs from 5 protein genes and
10% PID had 17 pairs from 3 protein genes (Tab. 3.2). From 9% to 1% PID each had
10 pairs all from ENOG4105CEY.
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For 69% to 99% PID ncRNA made up at least 30% of the pairs for each PID value.
100% PID had 8 ncRNA sequence pairs (Fig. 3.13). Between 28% to 68% PID only
had a maximum of one fifth of its total pairs as ncRNA genes and below 28% PID
there are no ncRNAs (Tab. B.5). No individual gene had more than 10 pairs per PID
value.

Genes 12% 11% 10%
ENOG4105C1H
ENOG4105C90
ENOG4105CEY
ENOG4105DHW
ENOG4105KNM
ENOG4105DA0
ENOG4105BZH

TABLE 3.2: Number of protein genes found for PID values with less
then 50 pairs

The median G+C content per genome, based on the sequences in the 50 pairs per
PID subset, was 54% and was only 1% smaller than the genus representative core
gene subset it was derived from (Fig. 3.2). The GC content per genome ranged from
23% to 76% which is similar to the range of the genus representative core gene subset
and the 201 pairs per PID subset.

The median length for all the sequences in the subset was 1,119 nucleotides, 336
nucleotides longer than the genus representative core gene subset (Fig. 3.2). The
length of sequences ranges from 83 to 4,650 nucleotides which is smaller in range
than both the genus representative core gene subset and 201 pairs per PID set. Like
the other two subsets the length of sequences in the 50 pairs per PID subset was
skewed towards longer lengths (Fig. 3.2).

3.1.3 Duplicates

A small number of ORFs were the top scoring sequence for their genome for two
different Eggnog HMMs, meaning they were assigned two different annotations
(Tab. B.9). They were above the bit score and length cut offs used to find gene
homologs for both HMMs (1/3 maximum bit score possible and between 1/3 and
5/3 the medium length in the alignment). Duplicates were identified after PID selec-
tion and removed from the PID subset. All the duplicate annotations were to three
HMMs that were different types of GTPases (Tab. B.9). GTPase proteins trigger the
GTPase activity of activated G proteins they are bound to in order to halt signalling
(98).

A visual inspection of the alignment for one sequence (orf178332101) shows that it
aligns to other sequences in a highly conserved core region in the middle of the gene
that is rich in codons that represent hydrophobic amino acids (Tab. C.1 Link C).
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However, it lacks sequence matches to other regions at the start or end of the gene
that also show high conservation (also rich in hydrophobic amino acids) (Tab. C.1
Link C) (99). Therefore it is only a partial match to the gene but as the sequence is
within the bit score and length thresholds applied when determining true homolog
core gene sequences it was not excluded. The conserved sections are likely due to
all GTPases having similar function and therefore similar functional domains, so a
sequence aligning well to the domain in one GTPase will align similarly to another
(e.g. the G domain) (100). Without further computational analyses it is not possible
to determine if these sequences are one of the GTPases or not related to any of the
genes.

In the 201 pairs per PID subset there were six different ORFs with duplicate anno-
tations (Tab. B.9). The PID values ranged from 11% to 50% with the majority being
below 28%. In the 50 pairs per PID subset there were two different ORFs with du-
plicate annotations (Tab. B.9). These two ORFs were also found as duplicates in the
201 pairs per PID subset. The PID values ranged from 13% to 28% with the majority
being around 20%. All duplicate sequences were removed from all gene sequence
sets.

3.1.4 Nucleotide versus protein sequence PID

The protein and nucleotide PID for pairs of mRNA sequences were graphed to de-
termine how they related to each other (Fig. 3.4). The spread of data is monotonic
and an almost linear relationship with only a small amount of variation in nucleotide
PID (on average around 10%) per amino acid PID value. The association between
amino acid and nucleotide PID has a Spearmans correlation of 0.99 (two decimal
places)(101).

Amino acid and nucleotide PID are surprisingly tightly correlated given the redun-
dancy of the genetic code allowing for different codons to encode the same amino
acid. This allows us to see that amino acid PID values in the twilight zone for protein
alignments have approximately 20% nucleotide PID or less (Fig. 3.4). Codon pre-
served shuffled variants of each gene do not have the same PID relationship. They
group below and near the intersection between the nucleotide and protein twilight
zones from previously published literature (11, 29, 52–54). For higher amino acid
PID values the nucleotide PID value tended to be the same or lower than the amino
acid PID value (Fig. 3.4). Around 60% amino acid PID this trend changed and the
nucleotide PID was the same or higher than the amino acid PID value.
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FIGURE 3.4: PID of protein alignments and the corresponding
mRNA alignment for each sequence pair in the 50 pairs subset:
Amino acid PID and nucleotide PID are highly correlated by Spear-
mans rank correlation coefficient which determines the strength and
direction of the association between the two PIDs (0.99 (two decimal
places)) (101). All four known twilight zone of homology estimations
for protein and nucleotide are shaded on the graph along with the
estimation calculated in this thesis using the 50 pairs per PID subset

which is labelled as ’Thesis’ (29, 52–54).

3.2 Twilight Zone

3.2.1 False positive rate determination

A range of false positive rates (FPR) between 1 false positive out of every 1,000 true
negatives above the homology threshold and 1 false positive out of every 200,000
true negatives above the homology threshold were tested to determine how sensitiv-
ity correlated to FPR (Fig. 3.5). For both BLASTn and ssearch, sensitivity increased as
FPR increased until the FPR reached 0.0001 (1 false positive out of every 10,000 true
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negatives above the homology threshold) (Fig. 3.5). From a FPR of 0.0001 or larger
the sensitivity remained fairly constant. A FPR of 0.0001 was chosen to maximise
sensitivity but minimise the number of false positives to include above the homol-
ogy threshold. The homology threshold for each gene was set to include 28 shuffled
sequences (known false positives) for the 201 pairs per PID subset (Eqn. 3.1). The 50
pairs per PID subset homology threshold was set for each gene to include 2 shuffled
sequences above it (Eqn. 2.3).
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FIGURE 3.5: The relationship between sensitivity and FPR: A) De-
piction of the relationship between sensitivity and FPR for ssearch
and BLASTn. B) The relationship between sensitivity and FPR for
ssearch magnified. C) The relationship between sensitivity and FPR

for BLASTn magnified

FPR = 0.0001 =
Fp

Tn+Fp
=

Fp
All shuffled sequences

0.0001×All shuffled sequences = Fp

Fp = 28 (201 pairs per PID set - 275,351 shuffled sequences = Tn)
Fp = 2 (50 pairs per PID set- 15,996 shuffled sequences = Tn)

(3.1)

3.2.2 Shuffled sequence database

A database of shuffled versions of the real gene sequences in the core gene subset
was generated for both the 201 and 50 pairs per PID subsets. The shuffled database
for the 201 pairs per PID subset contained one shuffled copy of every gene in the core
dataset (275,351 sequences). This is much larger than the dataset of real homologs
which contained 28,982 sequences. The 50 pairs per PID subset shuffled database
was much smaller at 15,996 sequences (two shuffled copies of each sequence in the
50 pairs subset). There are 7,998 sequences in the homologous 50 pairs subset.
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3.2.3 201 pairs per PID subset

The 201 pairs per PID subset twilight zone was between 40% and 47% for the four
core alignment algorithms tested (Fig. 3.6). BLASTn has the highest twilight value of
47% followed by ggsearch which was 44%. ssearch and nhmmer both have the same
twilight value of 40%.
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FIGURE 3.6: Twilight zone of nucleotide homology for the 201
pairs subset: The twilight value for each alignment software (BLASTn,
ggsearch, nhmmer, ssearch36, ssearch34 and nhmmer iterative) was
plotted by connecting each sensitivity value for each PID. No trend

line or smoothing has been applied.

ssearch34 is a version of ssearch36 that is seven years older however both have the
same alignment output and subsequently have the same twilight value (Fig. 3.6).

The nhmmer iterative approach was the best at correctly inferring homology for low
PID values (Fig. 3.6). It had a twilight value of 12% which was 28% lower than the
next closest twilight value (ssearch and nhmmer, 40%) (Fig. 3.6). Over the twilight
zone of the four core alignment algorithms tested (40-47%) the nhmmer iterative ap-
proach had on average a sensitivity of 0.97. That is almost double the sensitivity of
all the other alignment software for that range.

BLASTn had an unexpected dip in its sensitivity, compared with the other alignment
algorithms, between 60% to 80% (Fig. 3.6). This could be potentially due to these
PID values having large proportions of tRNA genes. The short length of the tRNA
genes increases the chance of finding non-homologous sequences from the database
with a similar bit score to true homologs (including their own shuffled variant). The
heuristic approach taken by BLASTn means the optimal alignment for a pair of ho-
mologs is not always found so the alignment bit score can be lower then it should
be (9). As there is a higher chance of finding non-homologous sequences with more
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similar bit scores to true homologs and the potential for lower bit scores for true ho-
mologous sequence pairs, this may mean BLASTn is struggling to separate true tRNA
sequences from the shuffled counterparts.

Below 20% PID the four core alignment algorithms show an increase in sensitivity
that is unexpected (Fig. A.4).These PID values should be ignored as they likely cor-
respond to protein pairs that have an amino acid PID in the twilight zone so they
may not be true homologs (Fig. 3.4).

3.2.4 50 pairs per PID subset

The twilight zone of nucleotide alignment for the 50 pair per PID subset is consistent
with the 201 pairs per PID subset and is between 40-49% (Fig. 3.6 & 3.7). BLASTn has
the highest twilight value of 49%, followed by ggsearch with 45% (Fig. 3.7). ssearch
and nhmmer are both the same and have a twilight value 40% (Fig. 3.7). The twilight
value for ssearch34 and ssearch36 are also identical for the 50 pairs per PID subset.
The nhmmer iterative approach again has the lowest twilight value (12%). The same
increase in sensitivity for PID values of less than 20% is observed in the 50 pairs
per PID subset as well (Fig. A.5). Below 39% BLASTn has equal or higher sensitivity
values than ggsearch.
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FIGURE 3.7: Twilight zone of nucleotide homology for the 50 pairs
subset: The twilight value for each alignment software (BLASTn,
ggsearch, nhmmer, ssearch36, ssearch34 and nhmmer iterative) was
plotted by connecting each sensitivity value for each PID. No trend

line or smoothing has been applied.

Bootstrapping gave a measure of accuracy to the sensitivity calculation for each PID
value and this allowed identification of a range of PID values for which their error
bars included 0.5 sensitivity (aka. the twilight zone). The lowest and highest PID
values that include 0.5 sensitivity in their range were used to determine the range of
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values for the twilight zone of each alignment algorithm individually as well as the
overall twilight zone (Fig. 3.8 & 3.13)(Tab. 3.3).

Alignment Algorithm Bootstrap Twilight Range
ggsearch 41-49%
ssearch 38-40%
BLASTn 43-50%
nhmmer 37-40%

TABLE 3.3: Twilight zone range for each alignment algorithm based
on bootstrap error bars

For all alignment algorithms the error bar size for most PID values is around 0.2 on
average until 12% where the error bars in some case almost span the whole range
of sensitivities possible (0 to 1) (Fig. 3.8). As shown above, nucleotide PID values
of 20% and below correspond to homologous pairs of proteins with around 11%
amino acid PID or below (Fig. 3.4). HMMER 3.0 was used (hmmsearch) to find these
protein sequences and twilight zone for HMMER 3.0 begins at 11% (Fig. 1.6)(54).
Therefore mRNA pairs with nucleotide PID of 20% or lower that have been called
true homologs in this research may in fact not be due to their amino acid alignment
lying in the twilight zone for protein homology. So the sensitivity values for each
PID can’t be trusted as sequence pairs may be counted as true homologs that are
not.

From around 35% to 12% ggsearch has very small error bar ranges (<0.1) compared
with all other alignment software which shows there is very little variation in the
measurement (Fig. 3.8). nhmmer iterative on average has the smallest error bars
(above 12%).

G+C content

The G+C content of sequence pairs affected the position of the twilight value for
each alignment software (Fig. 3.9). Sequence pairs that both have low G+C content
(<40%) or high G+C content (>60%) shift the twilight value lower for all four core
alignment algorithms (Fig. 3.9). Sequence pairs where one sequence has low G+C
content and the other has high G+C content shift the twilight value higher for all
four core alignment algorithms.

ggsearch appears to be less affected by G+C content than the other three as the
change in twilight value is only +/- 1% (Fig. 3.9). The other three alignment algo-
rithms are more affected by G+C content of sequence pairs being the same (G0-G0
or G2-G2) than pairs that have opposite high and low G+C content (G0-G2).

As the 50 pairs per PID value are split between 6 possible G+C content groupings
for sequence pairs the number of pairs for each group is very small (Tab. 4.1). This
meant a smoothing spline was applied in R with 12 degrees of freedom to identify
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FIGURE 3.8: Twilight zone of nucleotide homology for the 50 pairs
subset bootstrap analyses: The bootstrap analyses selected sequence
pairs with replacement for each PID and calculated the fraction of
those chosen that were above the similarity threshold (aka sensitiv-
ity). This returned a distribution of sensitivities for each PID and the
95% CI was calculated from the distributions to produce error bars

for each alignment algorithm.

the overall trend. The lack of pairs for each PID grouping means the trend lines can
be used as an indication of how G+C content affects the twilight zone for each align-
ment algorithm but conclusions can not be drawn due to it being underpowered.

Length

Length also affects the location of the twilight zone (Fig. 3.10). Sequence pairs that
are both short (less than 100 nucleotides) cause the twilight value to shift higher
(although the lack of short pairs for each PID means this trend does not hold for the
whole PID range for BLASTn and ggsearch) (Fig. 3.10). Sequence pairs between 100
and 1000 nucleotides also cause the twilight value to shift higher (Fig. 3.10). When
sequence pairs are 1000 nucleotides or longer the twilight value is shifted lower.

ggsearch is less affected by length than the other three alignment algorithms (Fig.
3.10). The other algorithms are all local alignment tools so this result indicates global
alignment algorithms (such as ggsearch) may be less affected by sequence length.
More global alignment algorithms would need to be tested to confirm this.

The twilight value of BLASTn is most affected by sequences shorter than 1000 nu-
cleotides long whereas ssearch36 and nhmmer are more affected by sequences that
are 1000 nucleotides or longer (Fig. 3.10).

The affect of sequence length can only be considered an indication of the potential
impact on the twilight value location. This is because under powered samples may
result when splitting 50 pairs between five length groups, and is similar to the issue
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FIGURE 3.9: Assessing the G+C content effects on the twilight zone
for the 50 pairs subset: Each colour corresponds to an alignment al-
gorithm as denoted in the legend and each line and point type indi-
cates which G+C group the data belongs to. The solid line for each
alignment algorithm is the twilight value for all G+C contents com-
bined. A smoothing spline was applied in R with 12 degrees of free-
dom to each G+C content group to identify the overall trend. This
was done to smooth out the effect of having a small number of pairs

for each group.
Key: Large filled circles with a dotted line indicate sequence pairs with G0-
G2 G+C content, Plus shaped points with dash-dot perforated lines indicate
sequence pairs with G0-G0 and G2-G2 G+C content. The color denotes the

corresponding alignment software tool.

presented by G+C content (Tab. 4.1). There are only five length groups, not six,
because there can be no short versus long sequence pairs (L0-L2) due to the length
restrictions placed when finding the core gene set.

3.2.5 Computational timings

For the 50 pairs per PID subset all alignments were done in parallel (each group
of sequences for one gene is independent to the alignment of another gene so can
be run in parallel) to decrease the time taken to align all the sequences to the re-
quired algorithms (Tab. C.1). For the 50 pairs subset all three alignment procedures
(four core alignment algorithms, nhmmer iterative, ssearch34) were ’clock’ timed us-
ing /usr/bin/time (Tab. 3.4). The four core alignment algorithms took the least
amount of time and the smallest number of parallel threads were utilized however
each alignment algorithm used the most CPU (computational cores) of all the align-
ment algorithms (Tab. 3.4). ssearch34 was the slowest however it can only run on
one CPU whereas all the other software can run on any specified number of CPUs
(Tab. 3.4).

Not all computational runs were timed for the 200 pairs per PID subset so it is not
possible to make direct comparisons for every alignment software. nhmmer iterative
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FIGURE 3.10: Assessing the length effects on the twilight zone for
the 50 pairs subset: Each colour corresponds to an alignment algo-
rithm as denoted in the legend and each line and point type indi-
cates which sequence length group the data belongs to. The solid line
for each alignment algorithm is the twilight value for all sequence
lengths combined. A smoothing spline was applied in R with 12 de-
grees of freedom to each length group to identify the overall trend.
This was done to smooth out the effect of having a small number of

pairs for each group.
Key: Cross shaped points with dotted lines indicate short sequence pairs,
Plus shaped points and dash-dot perforated lines indicate long sequence
pairs, Large filled circles with a dashed line indicate medium length sequence

pairs. The color denotes the corresponding alignment software tool.

took 168 hours using 15 cores at 3 CPU for the 201 pairs per PID subset. ssearch34
was run in two different ways for the 201 pairs per PID subset due to the amount
of time it takes to run. Initially it ran for 679 hours on 1 core at 1 CPU. Then the
remaining 118 models were run in parallel on 8 cores at 1 CPU for 908 hours. In total
ssearch34 took 1,587 hours ( 66 Days) for the 201 pairs subset which is a long time
compared with current day versions.

Alignment Software CPU Clock Time
ssearch36, ggsearch, BLASTn, nhmmer 15 5 Hours

nhmmer iterative (3 rounds) 30 12 Hours
ssearch34 (old version of ssearch36) 20 16 Hours

TABLE 3.4: Computational timings of different alignment soft-
ware: The reported time each process took to run is "wall time" not
CPU time. e.g. The four core alignment algorithms tested (nhmmer,
ssearch, BLASTn and ggsearch) took 5 hours in total to run all four
algorithms for the 50 pairs subset using five parallel runs of the code

each using 3 CPU therefore 15 CPU total.
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3.2.6 PID distributions of shuffled or random Sequences

Shuffled gene control set

The shuffled gene set sequences were split into G+C content and sequence length
groups to determine what effect they had on the PID distribution. The modes of
each distribution range between 19-29% PID and the maximum value for each dis-
tribution ranges between 33-43% PID (Fig. A.6 A-I).

The largest maximum PID value for the G+C content groups was 43% for sequence
pairs where both sequence have high or low G+C content (Fig. 3.11). The G+C
content group with the lowest maximum PID value was sequence pairs where one
sequence has low and the other has high G+C content (33%) (Fig. 3.11). The modes
of the two distributions also have a similar difference (22% to 29%). This shows that
G+C content can affect the background PID values expected. It also shows that PID
values of 43% or lower are possible for randomly aligned sequences.
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FIGURE 3.11: PID distributions of shuffled gene sequences based
on G+C content and sequence length: The distribution for short se-
quences (L0-L0, yellow) has a mode of 20% and a maximum value of
43%. The distribution of medium length sequences (L1-L1, brown)
has a mode of 22% and a maximum value of 42%. The distribution of
long length sequences (L2-L2, orange) has a mode of 24% and a max-
imum value of 39%. The distribution of sequence with the same high
or low G+C content (G0-G0 or G2-G2, pink) has a mode of 29% and a
maximum value of 43%. The distribution of sequences with one high
and one low G+C content sequence (G0-G2, purple) has a mode of

22% and a maximum value of 33%.
Key: L0 is sequences less then 100 nucleotides long. L1 is sequences between
100 and 999 nucleotides long. L2 is sequences 1000 nucleotides or longer. G0
is sequences with 40% or less G+C content. G2 is sequences of 60% or more

G+C content.
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The length of sequence pairs also causes variation in the range of PID values for
each sequence length distribution. Short sequence length pairs had the highest max-
imum value (43%) however long sequence pairs had the highest mode (24%) (Fig.
3.11). The maximum value for long sequence pairs is 39%. The number of pairs for
each sequence groups is not even, as highlighted by the distributions, with the long
sequence group having more sequences than any other G+C content or sequence
length group (Fig. A.6). There is a smaller range of modes (20-24%, where 20% is the
mode for short sequence pairs) and maximum values (38-43%) for sequence length
groups than G+C content groups (Fig. 3.11). This indicated G+C content had a larger
effect on PID than sequence length.

Random sequence set

The random sequence set had sequence lengths chosen to mimic distribution of se-
quence lengths in the core gene set and had two different G+C contents; 28% or 74%.
These two G+C contents were chosen as they are the highest and lowest genome
G+C content for the genus representative set based on the core genes (Fig. 3.2).

The sequences were split into the same length groups as the shuffled sequence set.
The four distributions show that G+C content has a larger effect on PID then se-
quence length (Fig. 3.12). The difference in the modes between short (less then 1000
nucleotides long) sequences that had either the same or opposite G+C content is
17% (40-57%) (Fig. 3.12). The difference in modes is similar for long sequences (16%,
41-57%). There is a 1% difference in the modes between long sequences with oppo-
site G+C content and short sequences with opposite G+C content (40-41%). There is
no difference in the modes between sequences of long and short length of the same
G+C content (both 57%). The maximum value for each PID distribution also follows
the same pattern as the mode, where very little difference is seen due to sequence
length. The highest PID value for all distributions was 89% for a sequence pair that
was long and had the same G+C content (Fig. 3.12). This shows that for this se-
quence set, length does not affect PID whereas G+C content does.

It should be noted that, whilst the equation used to calculate PID was the same as for
the shuffled gene and PID subsets, the method in which alignments were made is
not the same. As the randomly generated sequence set have no corresponding HMM
or CM ggsearch was used to align these instead, however the shuffled sequences do
have corresponding HMMs or CMs, therefore the hmmalign or cmalign were used
for these. The PID values are likely to be higher for this set of sequences due to the
method (Eqn. 2.2). Thus, a direct comparison of PID values cannot be made with
the PID subsets and shuffled gene sequences. Therefore the PID distributions for the
shuffled gene control set is the only null distribution that can be directly compared
to understand underlying chance sequence similarity.
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FIGURE 3.12: PID distribution of randomly generated nucleotide
sequences: The four distributions represent different length and G+C
combinations and their effect on the PID values possible for random

sequences (background noise to expect)

3.2.7 Final twilight zone estimation

The overall twilight zone for the four core alignment algorithms is between 37-50%
PID based on the data from the 50 pairs subset (Fig. 3.13). The bootstrap error bars
were used to identify the range of PIDs in the twilight zone (sensitivity of 0.5) for
each alignment software (Tab. 3.3). nhmmer (37-40%) and ssearch (38-40%) have
fairly small twilight zone ranges whereas ggsearch (41-49%) and BLASTn (43-50%)
have much larger variation in the twilight zone (Fig. 3.13). The ranges for nhmmer

and ssearch overlap as do the ranges of BLASTn and ggsearch (Fig. 3.13). There is
no overlap between these two groups of alignment algorithms.
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FIGURE 3.13: Twilight zone for nucleotide homology summary:
Graph summarises all the data used to determine the twilight zone
range for each alignment algorithm (top graph) as well as the pro-
portion of ncRNA and mRNA sequence pairs for each PID (bottom
graph). The largest mode for a distribution of PID from the shuffled
sequence set (orange dashed line) shows the PID value around which
most random sequences are found (Fig. 3.11). It corresponds to the
mode for shuffled sequences pairs with G0-G0 or G2-G2 G+C content.
The black shaded region identifies the nucleotide PID range in which
protein sequence pairs are likely in the amino acid homology twilight

zone. Therefore these PID values were excluded.
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Chapter 4

Discussion

4.1 Twilight Zone

This research set out to better define the twilight zone for nucleotide homology. The
twilight zone is defined as the range of sequence similarity for which the relationship
between similarity and homology breaks down to the extent it is not possible to
accurately infer homology using sequence similarity (29, 52). A better definition
of the nucleotide homology twilight zone will allow for further understanding of
the limitations of homology search algorithms and inform researchers when further
evidence, other then a significant alignment score, is required to infer homology
between two sequences.

4.1.1 50 pairs subset

The twilight zone for nucleotide homology was found to be between 37-50% for
the 50 pairs per PID subset (Fig. 3.13. This agrees within the zone calculated by
Capriotti et al. 2010 which was 30-60%, although the zone found by this research is
smaller (53). The twilight zone calculated is lower than expected based on discussion
with experts in homology search algorithms, although the order of each algorithms
twilight zone is as expected (Personal Correspondence with S.Eddy & T.Wheeler)
(54).

The twilight zones for ssearch36 (38-40%) and nhmmer (37-40%) were almost indis-
tinguishable and had the lowest twilight zones of the four single-sequence query al-
gorithms (Fig. 3.13)(Tab. 3.3). Their similarity is due to the power of HMMs used in
nhmmer being reduced due to the profile being generated from one query sequence.
The query HMM therefore lacked information about the probabilities of a match,
mismatch or gap at each position so is similar to aligning with a query sequence
rather then a probabilistic model(10, 31). BLASTn had the highest twilight zone (43-
50%) as expected based on previous research (Fig. 3.13)(Tab. 3.3) (52). This is because
BLASTn uses k-mer (word) based heuristics to accelerate homology searches of large
databases so the optimal alignment for a pair of true homologs may not be found (41,
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42). This leads to bit scores of true homologs being more similar to non-homolog bit
scores with high similarity by chance (34).

ggsearch was expected to have a lower twilight zone than ssearch36 which was
confirmed by this research (41-49%) (Fig. 3.13)(Tab. 3.3). This is because ggsearch

uses global alignment whereas ssearch36 aligns locally conserved regions (4, 5, 39).
So the score for ggsearch is likely to be less than or equal to the score from ssearch36

(for the same scoring scheme) due to penalising dissimilar regions that are aligned
by ssearch.

Between 65-85% ggsearch had a lower sensitivity then BLASTn although there is no
obvious reason for this (Fig. 3.7). The same range for the 201 pairs subset shows
ggsearch to be more sensitive than BLASTn for all PID values (Fig. 3.6). The error
bars for sensitivity at each PID for the 50 pairs subset are much larger for ggsearch
in this range than the other alignment algorithms (Fig. 3.8). In most cases the error
bars reach a sensitivity of 1 (the sensitivity values of all the other alignment algo-
rithms over most of this range) or overlap with the BLASTn error bars. As the sen-
sitivity error bars overlap this means the difference between BLASTn and ggsearch

in this range is not significant and is within the range of variation for the sensitivity
calculation for that PID value.

The number of pairs for each PID could explain this small sensitivity difference be-
tween ggsearch and the rest of the four core alignment algorithms. The 50 pairs
subset has 50 different potential sensitivity values for each PID and the 201 pairs
subset has 201 potential sensitivity values. Therefore, missing 5 homologs in the
50 pairs subset causes a more drastic change in sensitivity (0.9) than the 201 pairs
subset (0.98), as 10% of the pairs are below the similarity threshold (Fig. 4.1). This
results in the 50 pairs subset placing more weight on a missing homologous pair
for a PID value then the 201 pairs subset and has less statistical power than the 201
pairs subset. The 50 pairs subset was kept small to decrease the compute time of the
analyses after an error in the proportion of genes for each PID was found in the 201
pairs subset (Tab. B.5).

4.1.2 201 pairs subset

The 201 pairs subset has an unbalanced proportion of tRNAs for PID values 62%
and above (Tab. B.5). However, the twilight value for each alignment algorithm is
within the range found for the 50 pairs subset that has no tRNA pairs in its subset
(ssearch 40%, nhmmer 40%, ggsearch 44% and BLASTn 47%) (Fig. 3.6 & 3.13).

tRNAs presented significant issues for the structural alignment algorithms used in
the work of Gardner et al. 2007. This BRaliBase dent problem was avoided in this
study as the alignment algorithms do not use structure to align sequence pairs, just
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FIGURE 4.1: Illustration of the difference in sensitivity for the 50
and 201 pairs subset: The sensitivity of the 50 pairs subset decays
faster and is always smaller then the 201 pairs subset for the same
number of true homolog pairs below the similarity threshold. This
shows that the 50 pairs subset is more sensitive to a missing homolog

pair then the 201 pairs subset.

sequence similarity (64). However, having tRNA in abundance does cause a differ-
ent problem due to their short length (78 nucleotides on average). Short sequences
have an increased chance of non-homologous sequences aligning with a similar bit
score to true homologs than longer sequences (20, 29). As shown for the 50 pairs
subset this causes the twilight value to shift higher (by up to 3%) for each alignment
software (except ggsearch (Fig. 3.10).

BLASTn has a dip in sensitivity between 60-80%, similar to the BRaliBase dent, that
isn’t seen in any of the other alignment algorithms for the 201 pairs subset (Fig.
3.6)(64). This may be due to over representation of tRNA in this range combined
with the relatively short length of tRNA sequences compared with most the other
genes (3/4 of 201 pairs subset sequences have length of 77 nucleotides or longer)
(Fig. 3.2)(Tab. B.10). The short length of tRNAs, and the fact that the shuffled
database contains a large number of shuffled tRNA sequences (37,768) may mean
that the BLASTn heuristic approach struggles to separate the di-nucleotide shuffled
tRNA sequences from the true tRNA homologs. As the tRNAs make up the major-
ity of the pairs in this region, their length biases the combined sensitivity outcome
for each PID value. This would explain why the dip in sensitivity is nonexistent for
the 50 pairs subset that has no tRNAs. Whilst there is no caveat on length of pairs
selected for each PID value, by restricting each gene to be no more than 20% of the
pairs, the chance of diversity in the length of pairs that are selected is increased.

4.1.3 Old version of ssearch

ssearch34 and ssearch36 have the exact same sensitivity for each PID for both the
50 and 201 pairs subset (Fig. 3.6 & 3.6). This is because both use a dynamic imple-
mentation of Smith-Waterman to determine the optimum alignment and thus the
underlying mechanisms for scoring the alignments is the same (30, 39). ssearch36 is
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a lot faster due to the implementation of Streaming SIMD Extensions 2 (SSE2), a fast
mechanism for calculating score matrices in parallel and determining the possible
local alignments for each pairing (Tab. 3.4)(40). ssearch36 also allows for multi-
ple CPU threads to be used by the algorithm. A direct comparison of the ’clock’ time
each version of ssearch took to run cannot be made due to utilising a different num-
ber of parallel threads and CPU (Tab. 3.4). However ssearch34 took three months
to run the 201 pairs subset compared with all four core alignment algorithms that
took 7.5 days. Regardless of the comparability of the times, that is a much shorter
time frame.

In hindsight, ssearch was not the best algorithm to use for a comparison to the old
version due to the underlying mathematics not changing. Instead, the same algo-
rithm is employed, but it is done in parallel (40). Older versions of BLASTn are likely
to have different results as the underlying mathematics have changed over the years
which will give different twilight zones (9, 38). Future work could compare older
versions of BLASTn, that are compatible with a Linux Ubuntu 17.10 environment, to
identify if new versions are more accurate at detecting homologs in the twilight zone
then older versions.

4.1.4 nhmmer iterative approach

nhmmer was utilised in an iterative approach where multiple sequences from the
database that had a significant E-value were included alongside the query sequence
to build the HMM to be used for the alignment. Two database search rounds, the
first with a single query HMM and the second with a HMM built from the se-
quence alignment of significant sequence matches from the first round, were used to
build the final HMM. This HMM was then used to search the database for sequence
matches.

The nhmmer iterative approach has a much lower twilight zone than any of the other
alignment algorithms for both the 201 and 50 pairs subset (12% for both) (Fig. 3.6
& 3.7). The low twilight zone is not unexpected due to the power of multiple se-
quence alignment based profile HMMs (61). The probability based scoring scheme
for nhmmer iterative is more powerful than the +4 match, -5 mismatch scoring scheme
used by BLASTn, ssearch36 and ggsearch as it can penalise matches and mismatches
at residues in the sequence differently depending on how well they are conserved,
or not, amongst the sequences used to build the hmm (10, 31, 43).

Whilst the iterative nhmmer approach appears superior, there is a problem with the
calculation of its twilight zone. The twilight zone for the nhmmer iterative approach
lies in the nucleotide PID range that corresponds to the protein homology twilight
zone determined by Sean Eddy for HMMER 3.0 (Fig. 3.4) (54). Tools from the HM-
MER 3.0 suite were used to determine the set of homologous sequences for each pro-
tein gene in the core gene set (46). Therefore pairs of sequences that were determined
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to be homologous that are found in this twilight zone may in fact not be. These pairs
should have been excluded or structurally verified to determine if they were true
homologs. As only sequence similarity has been used to infer homology, there is a
lower confidence in the sequence pairs in this PID range being true homologs so the
measure of sensitivity for these PID values is possibly erroneous. Further work to
ensure pairs of sequences with very low PID are in fact true homologs is required
(e.g. determining structural similarity, genomic context, shared motifs or domains,
and functional assays).

4.1.5 Confidence in the FPR

In order to calculate a measure of sensitivity for each PID value, the false positive
rate (FPR) was set to 1 in 10,000 (Fig. 3.5)(Eqn. 3.1). This allowed a bit score thresh-
old to be set for each gene in order to determine which sequence pairs would be
considered homologous based on the sequence similarity for that alignment algo-
rithm (Eqn. 2.3). The distribution of false positive bit scores is dependent on the
sequences in the database and the size. If there are more sequences in the database,
high bit scores would occur at a greater frequency by chance based on the E-value
(Eqn. 1.1)(20). Most databases are very large (e.g. BLAST had 51,150,124 nucleotide
sequences in its database on the 23rd of March 2019). Therefore the number of false
positives with high bit scores by chance would be greater than the number found
for the databases in this body of research (275,351 for the 201 pairs analyses and
15,996 for the 50 pairs analyses). The database sizes were chosen to minimise the
amount of compute time for the alignment algorithms. This may mean the number
of false positives found above the score threshold are being underestimated when
compared to larger databases that are generally used. As FPR influences sensitivity
a larger database may give more confidence in the bit score threshold chosen for each
gene. Future research will determine the balance point between increasing database
size and compute time for alignment algorithms by running test sets of various sizes
and calculating how time scales with increasing database size. This will allow future
research to utilise the largest database the time available for analyses.

4.1.6 PID calculation

The PID values were determined for each sequence pair in the data set by compar-
ing their similarity to reference alignments. This reference alignment was made by
structurally aligning ncRNAs with Rfam CMs and reverse translating protein align-
ments to EggNOG HMMs. This means the sequences in the alignment are aligned
using information in addition to the nucleotide sequence. This was done to obtain
an alignment that reflects a reliable estimate of the potential evolutionary events that
generated the sequence divergence rather than just being influenced by sequence
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composition that can have biases (e.g. G+C content). Therefore the PID for each
pair of sequences is a representation of their evolutionary divergence, not just se-
quence composition similarity (Fig. A.3) (20). This, however means the PID may be
a lower estimation of the sequence similarity in some cases compared with aligning
two sequences with respect to each other and maximising similarity.

To examine this further a small sample of sequence pairs, two mRNA and two
ncRNA, were chosen from a range of PID values (40-80%). They were aligned using
ggsearch with the same parameters as for the twilight zone alignment to see how
much the PID differed (Tab. B.10 & C.2). The biggest increase was of 17% PID and the
smallest was of 3% PID. This shows that calculating the PIDs using direct pairwise
comparison, rather than the method used for this thesis, would likely cause the twi-
light zone to shift higher for each alignment algorithm. mRNA has a further differ-
ence in how nucleotide PID is calculated as codons are aligned in-frame of the amino
acid alignment. It was calculated this way as natural selection generally acts on the
amino acid sequence for proteins not the nucleotide sequence. Therefore, in order
for the nucleotide alignment to reflect evolutionary events the nucleotide alignment
should reflect that of the protein sequence. This can give a lower nucleotide PID
value for each mRNA as it disregards the actual sequence of nucleotides (Tab. B.10).
Therefore, the twilight zone range found in this thesis is likely influenced by the way
PID is determined for each pair. This may explain why the twilight zone is lower
then experts expected (Personal Correspondence with S.Eddy & T.Wheeler) (54).

The strong correlation between nucleotide and amino acid PID

There was an unexpected strong correlation between nucleotide and amino acid PID
(Spearmans ranked correlation coefficient of 0.99)(Fig. 3.4). It was surprising due to
the redundancy in the genetic code allowing different codons to encode the same
amino acid, hence allowing the nucleotide sequence to vary more then the amino
acid sequence. Some amino acids have one codon and therefore will have 100% PID
for each codon in the sequence alignment where these matching amino acids are
found. Other amino acids have more codons so the PID of two identical amino acid
sequences can in theory range from 100% to 0% nucleotide PID depending on the
amino acids in the sequence. It is unlikely to be 0% as that is only possible if the
sequence only contains serine. However this full range is not seen for the 50 pairs
dataset as the nucleotide PID range is 90-100% for identical amino acid sequences
(100% amino acid PID) (Fig. 3.4). This is the same for every amino acid PID value
where the range of nucleotide PIDs is in general approximately 10% (Fig. 3.4). For
higher amino acid PID values the nucleotide PID tends to be the same or lower than
the amino acid PID value (Fig. 3.4). At around 60% this trend changes and the
nucleotide PID is the same or higher than the amino acid PID value. This is be-
cause mismatched codons for the same amino acid can have nucleotide similarities
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≤66.7%. Therefore, while the amino acids are different, a percentage of similarity
can occur for mismatched amino acids at the codon level (24% on average). This
penalises the amount of change between mismatched amino acids at the nucleotide
level differently depending on if one, two or three mutations have occurred to cause
the amino acid change. This means the nucleotide sequence gives more information
on the amount of divergence between homologs then the amino acid sequence.

Accessing the influence of G+C content and sequence length

The shuffled and randomly generated sequence sets were created as a set of control
sequences to show the distribution of PIDs expected for aligned unrelated sequences
as well as to help identify the effect of sequence composition on sequence similarity
(Fig. 3.11, 3.12 & 4.2). Of particular interest was the effect of sequence composition
factors G+C content and sequence length on the PID distribution.

The shuffled sequences were generated by di-nucleotide or codon shuffling the 50
pairs subset sequences. These sequences were then aligned to the CM or HMM for
the gene they originated from. The CMs for two genes, 16s rRNA and 23s rRNA,
would not align the shuffled sequences to the CM. This occurs when the sequences
lack complexity or the sequence cannot be classified by the CM. So these two genes
were excluded from the shuffled set. The random sequences were generated by
random arrangement of sequences at specified length with either 24% or 78% G+C
content. They were then grouped by length (short, medium, long) and aligned in
pairs using ggsearch. Therefore, the shuffled sequences PID was calculated from a
reference alignment of all shuffled sequences for a gene and the random sequences
from individual pairwise alignments that were maximised for sequence similarity
between the sequences (Fig. 4.2). This means the PIDs for the shuffled sequences
will be lower than the random sequences.

			

Random	Sequence	Set	 ggsearch	alignment	

PID	distribu8ons	for	G+C	
content	and	sequence	

length	groups	

Fig.	3.12	

Shuffled	Sequence	Set	 CM/HMM	alignment	

PID	distribu8ons	for	G+C	
content	or	sequence	

length	groups	

Fig.	3.11	

FIGURE 4.2: Overview of shuffled and random sequence set analy-
ses: Highlighting the different alignment processes for each set and
the resulting distributions. As the randomly generated set had more
sequence pairs than the shuffled set, pairs could be separated by both
G+C content and sequence length. The shuffled sequences could not.
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The highest PID of a shuffled sequence pair is 43% whereas the highest random
sequence pair is 89% (Fig. 3.11 & 3.12). There is also a large difference between the
modes (lowest random sequence mode is 41% and the highest shuffled sequence
mode is 29%) (Fig. 3.11 & 3.12). The difference in the PID values is likely due to
how they were aligned to calculate PID and the low complexity features (a lot of
mono-nucleotide segments) in the random sequences increasing sequence similarity
compared with the shuffled sequences (Tab. C.3 Link F). In future research a more
stringent approach to random sequence generation where sequence complexity is
considered will be utilised (102).

The shuffled and random sequences distributions also highlights how the method
for PID calculation used in this research likely causes a lower PID estimate when
compared with pairwise aligning sequences (Fig. 3.11 & 3.12). As the sequences
used for each set are not the same, definitive conclusions can not be drawn as to how
much of the difference is due to the alignment procedure. Comparison of the current
PIDs of the shuffled sequences to the PIDs generated using the random sequences
alignment method would be required to make an actual comparison. A detailed
check of one pair of shuffled mRNA sequences (two different shuffled variations
of the same gene so the sequence length and G+C content is the same) showed the
nucleotide PID increased by 9%. The increase in the nucleotide PID is because the
nucleotide sequences have the flexibility to align outside their codons when aligned
without reference to the amino acid alignment. Future research will explore the
effect on PID of different alignment strategies.

Despite the differences in the PIDs for the random and shuffled sequence sets, the
overall trend is that both G+C content and sequence length has an effect on sequence
similarity (as measured by PID) (Fig. 3.11 & 3.12). This was further explored using
the 50 pairs subset sequence pairs to see how the twilight values shifted for each
alignment algorithm with respect to G+C content and sequence length.

4.2 Confounding factors

During the course of this research confounding factors were identified that could
have been taken into account while designing the selection procedure for the PID
subsets. G+C content, sequence length and the balance of genes for each PID all
have the ability to affect the twilight zone (Fig. 3.9 & 3.10).

4.2.1 G+C content and length

The G+C content and the length of sequence pairs in the 50 pairs subset caused
variation in the twilight value for each of the four core alignment algorithms tested
(Fig. 3.9 & 3.10). The overall G+C content trend for all alignment algorithms was



4.2. Confounding factors 63

that pairs of sequences where both have high or low G+C content (G0-G0 or G2-G2)
cause the twilight value to shift lower, and pairs of sequences where one has high
and the other has low G+C content (G1-G2) cause the twilight value to shift slightly
higher (Fig. 3.9). Sequence length also had a shared trend among all four alignment
algorithms. Short or medium length sequence pairs shifted the twilight value higher
whereas long length sequence pairs shifted the twilight value lower (Fig. 3.10).

G+C content

Sequence pairs with one high and one low G+C content sequence (G0-G2) shifted
the twilight value 1% higher than the overall twilight value for ssearch36, nhmmer
and ggsearch (Fig. 3.9). The twilight value decreased by 5% for pairs of sequences
with the same high or low G+C content (G0-G0, G2-G2) for all alignment algorithms
(Fig. 3.9). Therefore, having the same high or low G+C content has more effect on
ssearch36, nhmmer and ggsearch than having opposite G+C content for this data
set. The twilight value for BLASTn was 4% higher for sequence pairs with one high
and one low G+C content which is a larger increase than all the other alignment
algorithms (1%)(Fig. 3.9). There was a dip in the trend around the twilight value
for BLASTn that may be due to the small number of pairs for each group rather than
the effect of G+C content on sensitivity (Fig. 3.9). Using a larger number of pairs
in future analyses will help determine if BLASTn is as equally effected by sequence
pairs with one high and one low G+C content and pairs with the same high or low
G+C content.

The effect of G+C content on the twilight zone is due to alignment algorithms max-
imising for similarity when aligning a pair of sequences. If sequences have similar
high or low G+C content (G0-G0 or G2-G2) they will appear more similar then se-
quences with a large difference in G+C content, as shown by the PID distributions
for the random and shuffled sets (Fig. 3.11 & 3.12). The PID of each sequence pair
was calculated as measurement of divergence between sequences from a reference
alignment determined by the CM or HMM for each gene (Fig. A.3) (74, 75). When
the homology search algorithms were used to search the database they used one
query sequence (nhmmer HMMs are made from a single sequence query) and aligned
the query to database sequences maximising for sequence similarity. Therefore, se-
quence pairs that both have the same high or low G+C content (G0-G0 or G2-G2)
can appear to be more similar, then they were based on the alignment to the HMM
or CM, due to their skewed nucleotide frequency. This means homology search al-
gorithms are more likely to assign a more significant score to these sequences than
a sequence pair of the same PID that has less similar G+C content. Therefore, the
bit scores for non-homologous database sequences will be more similar to homolog
pairs where one has high and the other low G+C content than homologs with the
same high or low G+C content. This means the G+C content group where pairs
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have one high and one low G+C content with have a lower sensitivity. This causes
the twilight zone to shift higher as these pairs reach a sensitivity of 0.5 for a higher
PID.

Sequence length

The length of sequences in the subset also affected where the twilight value was
for each alignment algorithm (Fig. 3.10 & 3.7). Sequence pairs with less then 1000
nucleotides shifted the twilight value higher (by a maximum of 3%) and those with
1000 nucleotides or more shifted the twilight value lower (by a maximum of 2%) for
all alignment algorithms. This means that longer sequences have higher sensitivity
for each PID value (on average) than the overall twilight value for each alignment
algorithm (Fig. 3.10). They also have higher sensitivity than sequence pairs less than
1000 nucleotides long.

This is due to a similar phenomenon as G+C content has on alignment algorithms.
The chance that a random sequence aligns to a query with a similar bit score to
true homologs is dependent on the query length. Short query sequences have a
smaller maximum bit score (query aligned to itself) then longer sequences, as there
are fewer nucleotides to contribute to the bit score. Therefore, similarities between
the query and the non-homologous sequence by chance, appear more significant
for short queries as they are larger proportional to the maximum bit score possible
and thus more similar to true homologs bit scores (Fig. 4.3). Sensitivity is calculated
based on the number of true homologs found above the similarity bit score threshold
set for a fixed FPR. Thus, short genes will have fewer true homologs included above
the threshold compared with longer genes for the same PID value, due to the similar
bit scores of non-homolgous and homologous sequences. This is why short sequence
pairs had higher twilight values than long sequence pairs (Fig. 3.10). This is true
for both global and local alignment algorithms, however local algorithms have the
potential to have a higher bit score for non-homologous sequences than global as
only locally conserved regions are scored (4, 5). This allows for only the similar part
of the query and the non-homolog to be aligned, rather than the whole length. This
may explain why the variation in the twilight value due to length is smallest for
ggsearch (Fig. 3.10)

The combined effect of G+C content and sequence length

Each sequence length group contains pairs with different G+C content. As G+C
content also impacts the location of the twilight value, an even representation of
G+C content groups would be required to minimise the effect of G+C content bias
on the twilight value for each sequence length group. When selecting sequences for
each PID value, G+C content and length were not taken into consideration. The 50
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FIGURE 4.3: Illustration of the affect of sequence length on local
alignment algorithms: A) B)

Green: True Homologs, Orange: Non-Homologs

pairs subset therefore does not have pairs for each sequence length and G+C content
combination (Tab. 4.1). This is illustrated by the fact there is only one sequence
pair with high G+C content for the short length sequence pairs with 40% PID (Tab.
B.11). Therefore, the effects of G+C content and sequence length cannot be isolated
from each other so the effect of each on the location of the twilight value cannot be
independently tested for this data set.

G0-G0 G0-G1 G0-G2 G1-G1 G1-G2 G2-G2 Total
L0-L0 524 91 150 765
L0-L1 0
L1-L1 52 179 176 602 344 229 1,582
L1-L2 2 15 29 51 21 118
L2-L2 37 255 433 17 528 371 1,641
Total 91 449 638 1,146 1,014 771

TABLE 4.1: Number of pairs in each G+C content and sequence
length group: Illustration of the current gaps in G+C content and
sequence length groups (e.g. L0-L0+G0-G0) for the 50 pairs sub-
set as well as the total number of sequences for each G+C content
or sequence length group. The majority of pairs are of medium or
long length with short sequences have fewer than half the number of
medium or long sequences. The G+C content is more evenly spread
although there are fewer pairs with low G+C content (G0-G0) then
any other G+C content group. L0: Short sequence, L1: Medium
length sequence, L2: Long length sequence. G0: Low G+C content,

G1: Mid G+C content, G2: High G+C content

In order to determine the extent of each effect on the twilight value shift each G+C
content group needs to be split into length groups for every PID value. There are
30 different G+C content and sequence length combinations made up of six G+C
content and five sequence length groups (no short versus long sequence pairs) (Tab.
4.1). This would mean an average of 1.67 sequences for each combination per PID
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value. That means there are unlikely to be sufficient pairs if any, for each combi-
nation making it almost impossible to determine which set of factors is having an
effect on the alignment algorithms for the 50 pairs PID subset. A quick check of the
possible numbers per grouping for the 40% PID value shows that 18 different G+C
content and sequence length combinations have no pairs and only five groupings
have five pairs or more (10% of the subset) (Tab. B.11). This means the sensitivity
calculated for each PID value based on the G+C content or sequence length groups
is likely from an under powered sample of pairs. Therefore, the sparse nature of
the data populating the G+C content and length groups likely does not capture the
variation in the twilight value caused by G+C content and length. Hence the range
of twilight values for different G+C content and sequence length groups where not
included in the overall twilight zone reported (Fig. 3.13)(Tab. 3.3). If it was included
this would have resulted in all alignment algorithms having a slightly larger range
(+/- 3% at most) for their twilight zone (Fig. 4.4).

nhmmer ssearch ggsearch BLASTN
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FIGURE 4.4: G+C content and sequence length ranges for the twi-
light zone: Each range shows the upper and lower bound for the
twilight zone for each alignment algorithm. Combined: The range
determined from the bootstrap data (Fig 3.8. Length: The range deter-
mined by the highest and lowest PID value from where each sequence
length group (e.g. L0-L0) reached a sensitivity of 0.5 (Fig. 3.10). The
upper bound (highest PID) is from the L0-L0 or L1-L1 group and the
lower bound (lowest PID) is from the L2-L2 group. G+C Content: The
range determined by the highest and lowest PID value from where
each G+C content group (e.g. G0-G1) reached a sensitivity of 0.5 (Fig.
3.9). The upper bound is from the G0-G2 group and the lower bound

if from the G0-G0 and G2-G2 groups combined.

The small number of pairs for each G+C content or sequence length group was
also the reason smoothing splines were used to determine the trend for each group,
rather then connected points like for the overall twilight values for each alignment
algorithm (Fig. 3.9 & 3.10). This was required to smooth the effect of PID values
where a group had only one pair available and so could only have a sensitivity of
1 or 0. This is why a few PID values between 40-70% have sensitivity values of 0
for both sequence length and G+C content groups (Fig. 3.9 & 3.10). There are also
some sensitivities of 1 for PID values between 20-50% for the G+C content group
with sequence pairs with the same high or low G+C content ((Fig. 3.9).

Ideally for future analyses, each PID value should have the same number of pairs
for each G+C content and sequence length group to allow the comparison of the
three groups with confidence that the effect seen is due to sequence composition.
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A power analyses will be required to determine the minimum number of pairs to
select that will allow detection of the effect of G+C content and sequence length.
Then a mixed-effects logistic regression approach could be used to determine which
sequence composition factor has the most effect on the twilight zone.

4.2.2 Representative gene set

In Gardner et al. 2007 it was shown that an unbalanced set of genes caused bias in the
data set that led to a conclusion being drawn about the twilight zone of alignments
that may be inaccurate (11, 64). In the data set generated for this thesis, sequences
were selected from a wide range of core genes and genera (Fig. 3.3)(Tbl. B.2 & B.3).
This meant that most genes had sequence pairs from a wide range of PID values due
to the wide taxonomic range of the bacteria chosen. This allowed a set of pairs for
each PID value to be chosen that was not heavily weighted towards one gene (≤20%
of pairs). Although this was not the case below 10% for both PID subsets due to the
lack of genes in this subset (Tab. 3.1 & 3.2). These PID values were ignored for the
overall twilight zone estimation due to the protein pairs likely being in the protein
homology twilight zone (Fig. 3.4).

The database generated was an improvement on the four ncRNA gene database
used by Gardner et al. and the 452 unique RNA chains from PDB used by Capriotti
et al. 2010. However, knowledge gained during this thesis about factors that effect
the range of each alignment algorithms twilight zone mean that further steps can be
taken to improve the suitability of the database for calculating the twilight zone of
nucleotide homology.

4.3 Future Work

The research carried out in this thesis has lead to further understanding of where
the twilight zone of nucleotide homology lies. However it has also shown that there
are some confounding factors that need to be factored into the experimental design
in order to confidently assess the twilight zone.

4.3.1 True homolog set

There were two issues with determining the true homolog set for mRNA core genes
that had to be resolved during the course of the analyses; ignoring nucleotide PIDs
that correspond to the protein homology twilight zone and removal of duplicate
sequences (Fig. 3.4)(Tab. B.9). Both of these problems could be resolved earlier in
the analyses by the addition of processes during PID subset selection (e.g. removal
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of sequence pairs in the amino acid twilight zone) or the determination of core gene
sequences (e.g. using protein structure).

Some of the sequence pairs included for the twilight zone analyses had amino acid
PID values that were in the protein twilight zone for HMMER 3.0 (54). As nucleotide
and amino acid PID were strongly correlated sequence pairs with nucleotide PID
with ≤20% were ignored as they correspond to the amino acid twilight zone (Fig.
3.4). In future work sequence pairs that have amino acid PID values in the twilight
zone for HMMER 3.0 will be removed from the pool of potential sequence pairs dur-
ing PID subset selection (54). Sequences with PID values in the twilight zone could
be true homologs but it is not possible to determine their homology with confidence
based on sequence similarity, so they need to be excluded (52).

In the analyses performed in this thesis a set of protein sequences were found to
have ambiguous homology as they were the top scoring sequence for a genome to
two different genes (Tab. B.9). These sequences were all from bacteria in the Chlo-
roflexi phylum and matched to multiple GTPase profile HMMS. All but three of the
pairs of sequences had amino acid PIDs in or below the twilight zone (11%) (54).
These sequences are either the homolog of one of the GTPases or a random high
scoring match to the model. Although the easiest solution in the case of duplicate
matches to genes is to remove the sequence, it does highlight a need to include more
information than amino acid sequence to determine the true homologs. There are
two possible improvements to the current method that would increase the informa-
tion used to infer homology; including structural similarity or utilising Pfam and
EggNOG HMMs to infer the homology of proteins.

SCOP

The structural classification of proteins database (SCOP) is a database of proteins col-
lated into families based on their structure and amino acid sequence (103, 104). Each
peptide chain (individual chain of amino acids) in a protein is considered as a pro-
tein domain and is classified into families based on structure. Using the sequences
in protein families from SCOP for our protein core gene sequences, rather than the
current approach, would give a higher level of evidence for calling sequences true
homologs as the inference would be based on structural and sequence similarity
(Tab. 4.2)(104). However, SCOP may not have sequence representatives of some
of the core protein genes and there may not be a sequence for each genome from
the representative subset due to all sequences in SCOP originating in PDB (56, 104).
Therefore, the proteins available are dependent on which proteins are able to be
structurally characterised experimentally as well as which proteins researchers are
interested in.
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Method Advantages

SCOP Sequences are assigned homology based
on shared structural and sequence simi-
larities

Pairmark Simulates sequences found in databases
(i.e. full contigs)

EggNOG + Pfam HMMs + Rfam CMs Allows own choice of genomes and for
a wide taxonomic range to be utilised.
EggNOG and Pfam HMM combination
allows both the whole sequence and con-
served domains to inform homology as-
signment for the core genes.

Parametric Block Design Allows better control of sequence con-
founders such as G+C content, sequence
length and disproportionate gene repre-
sentation

Simulated Evolution (e.g. Rose) Can determine the G+C content and se-
quence length so each PID value has a lot
of sequence pairs to choose from. Align-
ment accurately describes evolutionary
events.

TABLE 4.2: Method improvement summary: Potential method im-
provements and the associated advantages and disadvantages.

EggNOG and Pfam HMMs

A more rigorous approach to using HMMs could also be adopted. Pfam HMMs
are manually curated to include a gathering threshold that separates true and false
homologs as best as is possible (15). Unlike EggNOG HMMs, Pfam HMMs are not
always for the whole peptide chain sequence, instead they are probabilistic models
for protein domains (15, 83). Protein domains are segments of a protein that are
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functionally and or structurally distinct from the rest of the protein sequence and
usually play a functional role or facilitate interactions with other substrates or pro-
teins (15). One protein sequence can have multiple copies of the same domain and
one domain can be in many different proteins. Proteins contain highly conserved
areas (e.g. functional domains) and variable regions in which the sequence of amino
acids is not conserved as much. Pfam HMMs could be used in conjunction with the
EggNOG HMMS to find sequences that have a significant bit score for the whole
gene sequence and for conserved functional domains. This would have potentially
circumvented the GTPase duplicate sequence problem as highly conserved regions
were lacking in some of these sequences (Tab. C.1 Link C). As HMMs can be used
on any genome this approach is preferred to SCOP as there is more control over the
taxonomic diversity of the sequences and the genes to be included in the database.

4.3.2 Parametric block design

The impact seen on the nucleotide homology twilight value due to G+C content
and sequence length requires a more stringent approach to the selection of pairs
for each PID value than the current block design. At present, the only stipulation
on each PID value subset is that each gene can only be up to 20% of the homolog
pairs. An even distribution of G+C content and sequence lengths for each PID value
will balance out any bias caused by either, and allow for exploration of the effect of
each on the twilight zone. This will require relatively large numbers of pairs from
each G+C content and sequence length group to prevent the sensitivity calculation
for each group being strongly affected by small changes in the number of sequence
pairs above the similarity threshold.

The range of G+C content and sequence lengths in the core gene set will be roughly
cut into thirds to facilitate this whilst allowing a large enough set of sequences to
populate each group. The G+C groups will remain the same, less than 40% (G0),
40-50% (G1) and greater than 50% (G2) as they already roughly cut the database
and the known range of PID for all bacteria (13-75%) into three (Fig. 3.2) (105). The
sequence length groups will change to allow for more even numbers of pairs in each
length category. The lower quartile and upper quartile of core gene set will be used
(rounded to a sensible number) to group the sequences into lengths that roughly
divide the data into three. The short group will have sequences of less than 400
nucleotides in length (L0), the medium length group will have sequences between
400 - 1500 nucleotides (L1) and the long group will be sequence of 1500 nucleotides
or more (L2).

This will make six possible combinations of G+C content and five possible combi-
nations of sequence length for sequence pairs. It is not possible to have a sequence
pair with one short and one long sequence as the thresholds we impose to determine
homology prevent this combination from being possible. This means there will be 30
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possible G+C content and sequence length combinations for each PID value. To dis-
cern the number of pairs required for each G+C content and length group a power
analysis to determine the minimum sample size would need to be performed (106).
This is to prevent the same problems that occurred for the length and G+C content
division of the 50 pairs subset due to under powered sample sizes (Fig. 3.9 & 3.10)
(107).

For each G+C content and sequence length group for each PID value the pairs will
be as evenly split between ncRNA and mRNA as possible whilst maintaining ≤20%
of pairs per gene. There are likely to be some PID values where there aren’t enough
ncRNA pairs due to the small number (9) of core ncRNA genes pairs are selected
from (Tab. B.2). More ncRNA genes could be added, although they need to have
a CM available. A quick search of the Rfam database shows other Rfam CMs with
similar numbers of species (more than 2,000 species) to some of the core genes used
in this research (74, 108). These CMs would need to be checked to see if the gene
is vertically inherited and found in a wide phylogenetic range of species like the
ncRNA core genes already selected.

A potentially less time consuming method to find pairs of sequences to fill gaps in
PID value groups would be to simulate evolution using ROSE, or a similar tool, to
create sets of ‘homologous’ sequences (109). ROSE allows for a sequence of specified
length to be given as a starting point as well as the frequency of each nucleotide for
insertions and substitutions to be set which would allow for G+C content to be in-
creased or decreased compared with the ancestral sequence (109). This would allow
us to control the sequence set to include sequences for specific PIDs, G+C contents
and sequence lengths. The level of control this method affords the researcher may
make finding sequence pairs to fill gaps faster than trying multiple new ncRNA CMs
in the hope that the sequences for each genome fill the gaps. ROSE also produces
an alignment based on the mutations that took place during the simulated evolution
that could be used as the reference alignment for calculating PIDs.

The improved method described above for the selection of pairs based on sequence
composition for each PID, as well as gene type, will give a more balanced and di-
verse data set to perform twilight zone analyses on.

4.3.3 A more realistic sequence database design

The majority of nucleotide sequences in databases available online have large se-
quences such as whole genomes, chromosomes or contigs, not individual gene se-
quences like the database utilised in this thesis. Therefore, embedding true ho-
mologs and shuffled variants into long, randomly generated contigs for future anal-
yses will allow for a similar database design to those used in other analyses (Tab.
2.1) (54, 59, 110).
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4.4 Conclusions

From this research it can be concluded that, whilst this most recent calculation of the
nucleotide homology twilight zone has shown that the twilight zone is lower than
expected, more work is required to further enhance the balance of the database. In
particular this is with respect to balancing G+C content and sequence length in the
PID subset.

The research detailed in this thesis has addressed the three original aims. The first
aim was to assemble a representative sample of RNA sequences to create a balanced
database. The database created contains a taxonomically diverse set of sequence
pairs from core gene sequences that range from 0-100% PID (Fig. 3.1 & 3.3). The next
aim was to observe any difference between old and current versions of the alignment
algorithms. In this instance there was no difference between the old and new version
of ssearch in terms of the twilight value although ssearch34 is much slower than
ssearch36 (Fig. 3.7)(Tab. 3.4). The final aim was to identify the twilight zone of
nucleotide homology which was found to be between 37-50% (Fig. 3.13). This means
when researchers are using homology search algorithms to infer homology between
nucleotide sequences they should only do so if the PID of the sequence pair is above
50%. If the PID is in the twilight range, they are required to perform further analyses
to determine if the sequence pair is homologous or not (e.g. determining structural
similarity, genomic context, shared motifs or domains, and functional assays).
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FIGURE A.1: Distribution of bit scores of sequences in the NCBI
RefSeq genomes to the ENOG4105C3H HMM and RF00177 CM: Bit
score distributions showing the characteristic bimodal distributions
for HMM and CM alignments. The green line shows the maximum
bit score possible, gained by emitting the consensus sequence for each
HMM or CM and aligning it back to the model. The red line shows
how 1/3 of the maximum bit score cuts off the lower mode distri-
bution that is generally partial matches and noise. This same trend
where 1/3 the maximum bit score removes the ’noise’ mode distribu-

tion can be seen for all other models.
Left: ENOG4105C3H. Right: RF00177
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FIGURE A.2: Proportion of gene type for each PID value for the
core gene set: This shows the balance of mRNA, tRNA and ncRNA
for each PID value. tRNA is the majority of pairs for high PID values
whereas mRNA is the majority of pairs for low PID values. ncRNA is

always less then 20% of the pairs available per PID.
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FIGURE A.3: PID versus F84 phylogenetic measure for 16s rRNA se-
quence pairs: The Pearson correlation coefficient between 16s rRNA
PID and the F84 is -0.995 (three decimal places). This shows there is
a strong negative correlation between the F84 DNA distance measure

and PID.
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FIGURE A.4: Twilight zone for the 201 pairs subset showing the
full range of PID values: This graph illustrates how the trend for
sensitivity as PID decreases. Each trend line is a R smooth.spline with
12 degrees of freedom. Below 20% the sensitivity of the four core

alignment algorithms and ssearch34 increases again.
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sitivity as PID decreases. Below 20% the sensitivity of the four core

alignment algorithms and ssearch34 increases again.
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FIGURE A.6: PID distribution for G+C content and sequence length
groups for the shuffled sequence set: A) Same GC content for both
sequences either high or low (G2-G2 or G0-G0), mode = 29%, max-
imum value = 43% B) Opposite GC content for each sequence, high
and low (G0-G2), mode = 22%, maximum value = 33% C) Medium
G+C content sequence pairs (G1-G1), mode = 24%, maximum value
= 40% D) G+C content where one sequence has medium and the other
has high or low G+C content (G0-G1 or G1-G2), mode = 24%, maxi-
mum value = 41% E) Two short sequences (L0-L0), mode = 20%, max-
imum value = 43% F) Two medium length sequences (L1-L1), mode
= 22%, maximum value = 42% G) Two long length sequences (L2-L2),
mode = 24%, maximum value = 39% H) One short and one medium
length sequence (L0-L1), mode = 19%, maximum value = 42% I) One
medium and one long length sequence (L1-L2), mode = 24%, maxi-

mum value =38%
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Software Citations of Original Paper Citations of Newest Paper
Blast 76,015 (1990) 4,775 (2009 - BLAST+)

HMMER 583 (1995) 1,838 (2011 - HMMERv3)
FASTA 13,502 (1988) 70 (2016 - FASTA36)

TABLE B.1: Number of citations for BLAST, HMMER and FASTA:
Number of Google Scholar citations for each method on the 10th
Feburary at 1:30pm to the original paper (column 2) and the most
recent full version release (column 3). All three suites of algorithms
are widely used, as shown by the large number of combined citations.

TABLE B.2: mRNA and tRNA core gene annotations: The annota-
tions for each CM from Rfam for each ncRNA gene. The tRNA anno-
tations are expansions of the tRNA three letter codes used to identify

the tRNAs by tRNAscan-SE.

Start of Table B.2

Gene Name Gene Annotation
Ala Alanine tRNA

Arg Arginine tRNA

Asn Asparagine tRNA

Asp Aspartic acid tRNA

Cys Cysteine tRNA

Gln Glutamine tRNA

Glu Glutamic acid tRNA

Gly Glycine tRNA

His Histidine tRNA

Ile Isoleucine tRNA

Leu Leucine tRNA

Lys Lysine tRNA

Met Methionine tRNA

Phe Phenylalanine tRNA

Pro Proline tRNA

SeC Selenocysteine tRNA
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Continuation of Table B.2

Gene Name Gene Annotation
Ser Serine tRNA

Thr Threonine tRNA

Trp Tryptophan tRNA

Tyr Tyrosine tRNA

Val Valine tRNA

RF00001 5S Ribosomal RNA

RF00010 Bacterial RNase P class a

RF00011 Bacterial RNase P class b

RF00013 6S SsrS RNA

RF00023 Transfer messanger RNA (tmRNA)

RF00169 Bacterial small signal recognition particle RNA (small SRP)

RF00177 Bacterial small subunit RNA (16s Ribosomal RNA)

RF01854 Bacterial large signal recognition particle RNA (large SRP)

RF02541 Bacterial large subunit RNA (23s Ribosomal RNA)

End of Table B.2

TABLE B.3: mRNA EggNOG HMM gene annotations: The anno-
tations of the core gene HMMs that were selected from EggNOG
to be used to find sequences within the genus representative bac-
terial genome set. Annotations were extracted from accompany-
ing bactNOG annotations file from EggNOG. Bold HMM names are
genes used in the DNA replication genome completeness test (6

hmms).

Start of Table B.3

Eggnog ID Annotation
ENOG4105BZ3 General (non sugar-specific) component of the

phosphoenolpyruvate-dependent sugar phosphotransferase
system (sugar PTS). This major carbohydrate active-transport
system catalyzes the phosphorylation of incoming sugar
substrates concomitantly with their translocation across the
cell membrane. Enzyme I transfers the phosphoryl group
from phosphoenolpyruvate (PEP) to the phosphoryl carrier
protein (HPr) (By similarity)

ENOG4105BZ5 ATP binding to DnaK triggers the release of the substrate pro-
tein, thus completing the reaction cycle. Several rounds of
ATP-dependent interactions between DnaJ, DnaK and GrpE
are required for fully efficient folding. Also involved, to-
gether with DnaK and GrpE, in the DNA replication of plas-
mids through activation of initiation proteins (By similarity)
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Continuation of Table B.3

Eggnog ID Annotation
ENOG4105BZ6 Presumably involved in the processing and regular turnover

of intracellular proteins. Catalyzes the removal of unsubsti-
tuted N-terminal amino acids from various peptides (By sim-
ilarity)

ENOG4105BZH Provides the precursors necessary for DNA synthesis. Cat-
alyzes the biosynthesis of deoxyribonucleotides from the cor-
responding ribonucleotides (By similarity)

ENOG4105C0B DNA polymerase III (alpha subunit)

ENOG4105C0V Provides the sole de novo source of dTMP for DNA biosyn-
thesis (By similarity)

ENOG4105C17 glyceraldehyde-3-phosphate dehydrogenase

ENOG4105C1H Exhibits a very high intrinsic GTPase hydrolysis rate. In-
volved in the addition of a carboxymethylaminomethyl
(cmnm) group at the wobble position (U34) of certain tRNAs,
forming tRNA- cmnm(5)s(2)U34 (By similarity)

ENOG4105C20 Catalyzes the attachment of glutamate to tRNA(Glu) in a two-
step reaction glutamate is first activated by ATP to form Glu-
AMP and then transferred to the acceptor end of tRNA(Glu)
(By similarity)

ENOG4105C22 threonyL-tRNA synthetase

ENOG4105C24 DNA gyrase negatively supercoils closed circular double-
stranded DNA in an ATP-dependent manner and also cat-
alyzes the interconversion of other topological isomers of
double-stranded DNA rings, including catenanes and knot-
ted rings (By similarity)

ENOG4105C2M dna polymerase I

ENOG4105C31 Tryptophanyl-tRNA synthetase

ENOG4105C38 Glycyl-tRNA synthetase beta subunit

ENOG4105C3G gtp-binding protein

ENOG4105C3H Acts as a processive, ATP-dependent zinc metallopeptidase
for both cytoplasmic and membrane proteins. Plays a role in
the quality control of integral membrane proteins (By similar-
ity)

ENOG4105C3J Cysteine desulfurase

ENOG4105C3M thioredoxin reductase

ENOG4105C4J Produces ATP from ADP in the presence of a proton gradient
across the membrane. The catalytic sites are hosted primarily
by the beta subunits (By similarity)
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Continuation of Table B.3

Eggnog ID Annotation
ENOG4105C4S Required for accurate and efficient protein synthesis un-

der certain stress conditions. May act as a fidelity fac-
tor of the translation reaction, by catalyzing a one-codon
backward translocation of tRNAs on improperly translo-
cated ribosomes. Back- translocation proceeds from a post-
translocation (POST) complex to a pre-translocation (PRE)
complex, thus giving elongation factor G a second chance to
translocate the tRNAs correctly. Binds to ribosomes in a GTP-
dependent manner (By similarity)

ENOG4105C5S asparaginyl-tRNA synthetase

ENOG4105C5T Phosphoribosyl pyrophosphate synthase

ENOG4105C62 Involved in mRNA degradation. Hydrolyzes single-stranded
polyribonucleotides processively in the 3’- to 5’-direction (By
similarity)

ENOG4105C64 Binds directly to 23S rRNA. The L1 stalk is quite mobile in the
ribosome, and is involved in E site tRNA release (By similar-
ity)

ENOG4105C65 Catalyzes the reversible interconversion of serine and glycine
with tetrahydrofolate (THF) serving as the one-carbon car-
rier. This reaction serves as the major source of one-carbon
groups required for the biosynthesis of purines, thymidy-
late, methionine, and other important biomolecules. Also
exhibits THF- independent aldolase activity toward beta-
hydroxyamino acids, producing glycine and aldehydes, via
a retro-aldol mechanism (By similarity)

ENOG4105C6A phenylalanyl-tRNA synthetase (beta subunit)

ENOG4105C6P ATP-dependent serine protease that mediates the selective
degradation of mutant and abnormal proteins as well as cer-
tain short-lived regulatory proteins. Required for cellular
homeostasis and for survival from DNA damage and devel-
opmental changes induced by stress. Degrades polypeptides
processively to yield small peptide fragments that are 5 to 10
amino acids long. Binds to DNA in a double-stranded, site-
specific manner (By similarity)

ENOG4105C70 Catalyzes the reversible conversion of 2- phosphoglycerate
into phosphoenolpyruvate. It is essential for the degradation
of carbohydrates via glycolysis (By similarity)
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Eggnog ID Annotation
ENOG4105C77 DNA ligase that catalyzes the formation of phosphodiester

linkages between 5’-phosphoryl and 3’-hydroxyl groups in
double-stranded DNA using NAD as a coenzyme and as the
energy source for the reaction. It is essential for DNA replica-
tion and repair of damaged DNA (By similarity)

ENOG4105C7D DNA gyrase negatively supercoils closed circular double-
stranded DNA in an ATP-dependent manner and also cat-
alyzes the interconversion of other topological isomers of
double-stranded DNA rings, including catenanes and knot-
ted rings (By similarity)

ENOG4105C8D Catalyzes the ATP-dependent amination of UTP to CTP with
either L-glutamine or ammonia as the source of nitrogen (By
similarity)

ENOG4105C8K Peptide chain release factor 1 directs the termination of trans-
lation in response to the peptide chain termination codons
UAG and UAA (By similarity)

ENOG4105C8N cysteinyl-tRNA synthetase

ENOG4105C8T Leucyl-tRNA synthetase
ENOG4105C90 Catalyzes the attachment of proline to tRNA(Pro) in a two-

step reaction proline is first activated by ATP to form Pro-
AMP and then transferred to the acceptor end of tRNA(Pro).
As ProRS can inadvertently accommodate and process non-
cognate amino acids such as alanine and cysteine, to avoid
such errors it has two additional distinct editing activities
against alanine. One activity is designated as ’pretransfer’
editing and involves the tRNA(Pro)-independent hydrolysis
of activated Ala-AMP. The other activity is designated ’post-
transfer’ editing and involves deacylation of mischarged Ala-
tRNA(Pro). The misacylated Cys- tRNA(Pro) is not edited by
ProRS (By similarity)

ENOG4105C9G DNA primase is the polymerase that synthesizes small RNA
primers for the Okazaki fragments on both template strands
at replication forks during chromosomal DNA synthesis (By
similarity)

ENOG4105C9M aspartyl-trna synthetase
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Eggnog ID Annotation
ENOG4105C9R An essential GTPase which binds GTP, GDP and possibly

(p)ppGpp with moderate affinity, with high nucleotide ex-
change rates and a fairly low GTP hydrolysis rate (By simi-
larity). It may play a role in control of the cell cycle, stress
response, ribosome biogenesis and in those bacteria that un-
dergo differentiation, in morphogenesis control

ENOG4105CA1 Removes the N-terminal methionine from nascent proteins
(By similarity)

ENOG4105CA4 amino acids such as threonine, to avoid such errors, it has a
posttransfer editing activity that hydrolyzes mischarged Thr-
tRNA(Val) in a tRNA-dependent manner (By similarity)

ENOG4105CA9 Pyruvate kinase

ENOG4105CB9 Involved in targeting and insertion of nascent membrane pro-
teins into the cytoplasmic membrane. Binds to the hydropho-
bic signal sequence of the ribosome-nascent chain (RNC) as it
emerges from the ribosomes. The SRP-RNC complex is then
targeted to the cytoplasmic membrane where it interacts with
the SRP receptor FtsY

ENOG4105CC8 Catalyzes the reversible transfer of the terminal phosphate
group between ATP and AMP. Plays an important role
in cellular energy homeostasis and in adenine nucleotide
metabolism (By similarity)

ENOG4105CCJ Catalyzes the 2-thiolation of uridine at the wobble position
(U34) of tRNA, leading to the formation of s(2)U34 (By simi-
larity)

ENOG4105CDG Produces ATP from ADP in the presence of a proton gradient
across the membrane. The alpha chain is a regulatory subunit
(By similarity)

ENOG4105CDK Essential cell division protein that forms a contractile ring
structure (Z ring) at the future cell division site. The regula-
tion of the ring assembly controls the timing and the location
of cell division. One of the functions of the FtsZ ring is to
recruit other cell division proteins to the septum to produce
a new cell wall between the dividing cells. Binds GTP and
shows GTPase activity (By similarity)

ENOG4105CDU Replicative dna helicase

ENOG4105CE9 30S ribosomal protein S2
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ENOG4105CEJ Catalyzes the GTP-dependent ribosomal translocation step

during translation elongation. During this step, the ribo-
some changes from the pre-translocational (PRE) to the post-
translocational (POST) state as the newly formed A-site-
bound peptidyl-tRNA and P-site-bound deacylated tRNA
move to the P and E sites, respectively. Catalyzes the coor-
dinated movement of the two tRNA molecules, the mRNA
and conformational changes in the ribosome (By similarity)

ENOG4105CEY Amp-dependent synthetase and ligase

ENOG4105CFD One of the primary rRNA binding proteins. Required for as-
sociation of the 30S and 50S subunits to form the 70S ribo-
some, for tRNA binding and peptide bond formation. It has
been suggested to have peptidyltransferase activity

ENOG4105CFG Acts as a chaperone (By similarity)

ENOG4105CGG The central subunit of the protein translocation channel Se-
cYEG. Consists of two halves formed by TMs 1-5 and 6-10.
These two domains form a lateral gate at the front which open
onto the bilayer between TMs 2 and 7, and are clamped to-
gether by SecE at the back. The channel is closed by both a
pore ring composed of hydrophobic SecY resides and a short
helix (helix 2A) on the extracellular side of the membrane
which forms a plug. The plug probably moves laterally to
allow the channel to open. The ring and the pore may move
independently (By similarity)

ENOG4105CGJ Specifically methylates the N4 position of cytidine in position
1402 (C1402) of 16S rRNA (By similarity)

ENOG4105CGR Catalyzes the attachment of serine to tRNA(Ser). Is also able
to aminoacylate tRNA(Sec) with serine, to form the misacy-
lated tRNA L-seryl-tRNA(Sec), which will be further con-
verted into selenocysteinyl-tRNA(Sec) (By similarity)

ENOG4105CGV This protein promotes the GTP-dependent binding of
aminoacyl-tRNA to the A-site of ribosomes during protein
biosynthesis (By similarity)

ENOG4105CHV Transcription elongation factor NusA

ENOG4105CI6 Part of the Sec protein translocase complex. Interacts with the
SecYEG preprotein conducting channel. Has a central role in
coupling the hydrolysis of ATP to the transfer of proteins into
and across the cell membrane, serving
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ENOG4105CIM Catalyzes the attachment of alanine to tRNA(Ala) in a two-

step reaction alanine is first activated by ATP to form
Ala- AMP and then transferred to the acceptor end of
tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala)
and Gly-tRNA(Ala) via its editing domain (By similarity)

ENOG4105CJ9 Prevents misfolding and promotes the refolding and proper
assembly of unfolded polypeptides generated under stress
conditions (By similarity)

ENOG4105CJS Phosphopantothenoylcysteine decarboxylase

ENOG4105CKE Binds the lower part of the 30S subunit head. Binds mRNA in
the 70S ribosome, positioning it for translation (By similarity)

ENOG4105CKH Is required not only for elongation of protein synthesis but
also for the initiation of all mRNA translation through initia-
tor tRNA(fMet) aminoacylation (By similarity)

ENOG4105CP7 Triose-phosphate isomerase

ENOG4105CPH Catalyzes the formation of S-adenosylmethionine from me-
thionine and ATP

ENOG4105CPM Required for the formation of a threonylcarbamoyl group on
adenosine at position 37 (t(6)A37) in tRNAs that read codons
beginning with adenine (By similarity)

ENOG4105CRK lysyL-tRNA synthetase

ENOG4105CSF NADPH-dependent glycerol-3-phosphate dehydrogenase

ENOG4105CSM endonuclease III

ENOG4105CSS phenylalanyl-tRNA synthetase (alpha subunit)

ENOG4105CTF DNA-dependent RNA polymerase catalyzes the transcrip-
tion of DNA into RNA using the four ribonucleoside triphos-
phates as substrates (By similarity)

ENOG4105CU0 Catalyzes the 2’-O-methylation of the ribose of cytidine 1402
(C1402) in 16S rRNA (By similarity)

ENOG4105CU7 Associates with the EF-Tu.GDP complex and induces the ex-
change of GDP to GTP. It remains bound to the aminoacyl-
tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on
the ribosome (By similarity)

ENOG4105CV1 Transketolase (EC 2.2.1.1)

ENOG4105CW6 This is 1 of the proteins that binds and probably mediates the
attachment of the 5S RNA into the large ribosomal subunit,
where it forms part of the central protuberance. In the 70S
ribosome it contacts protein S13 of the 30S subunit (bridge
B1b), connecting the 2 subunits
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ENOG4105CWT An essential GTPase that binds both GDP and GTP, with

rapid nucleotide exchange. Plays a role in 16S rRNA process-
ing and 30S ribosomal subunit biogenesis and possibly also in
cell cycle regulation and energy metabolism (By similarity)

ENOG4105CZ5 Catalyzes the conversion of uracil and 5-phospho-alpha- D-
ribose 1-diphosphate (PRPP) to UMP and diphosphate (By
similarity)

ENOG4105CZ8 DNA polymerase III is a complex, multichain enzyme respon-
sible for most of the replicative synthesis in bacteria. This
DNA polymerase also exhibits 3’ to 5’ exonuclease activity.
The beta chain is required for initiation of replication once it
is clamped onto DNA, it slides freely (bidirectional and ATP-
independent) along duplex DNA (By similarity)

ENOG4105D1X Specifically dimethylates two adjacent adenosines (A1518
and A1519) in the loop of a conserved hairpin near the 3’-end
of 16S rRNA in the 30S particle. May play a critical role in
biogenesis of 30S subunits (By similarity)

ENOG4105D27 DNA-dependent RNA polymerase catalyzes the transcrip-
tion of DNA into RNA using the four ribonucleoside triphos-
phates as substrates (By similarity)

ENOG4105D5S Excises uracil residues from the DNA which can arise as a
result of misincorporation of dUMP residues by DNA poly-
merase or due to deamination of cytosine (By similarity)

ENOG4105DA0 Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-
step reaction tyrosine is first activated by ATP to form Tyr-
AMP and then transferred to the acceptor end of tRNA(Tyr)
(By similarity)

ENOG4105DHW Required for the insertion and or proper folding and or com-
plex formation of integral membrane proteins into the mem-
brane. Involved in integration of membrane proteins that in-
sert both dependently and independently of the Sec translo-
case complex, as well as at least some lipoproteins

ENOG4105DJ4 phosphatidylserine decarboxylase

ENOG4105DJV ribulose-phosphate 3-epimerase

ENOG4105DKZ GTPase that plays an essential role in the late steps of ribo-
some biogenesis (By similarity)
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ENOG4105DRH Involved in peptide bond synthesis. Stimulates efficient

translation and peptide-bond synthesis on native or reconsti-
tuted 70S ribosomes in vitro. Probably functions indirectly
by altering the affinity of the ribosome for aminoacyl-tRNA,
thus increasing their reactivity as acceptors for peptidyl trans-
ferase (By similarity)

ENOG4105DTN riboflavin biosynthesis protein ribF

ENOG4105E5V Participates in transcription elongation, termination and an-
titermination (By similarity)

ENOG4105EEE One of the primary rRNA binding proteins, it binds directly
near the 3’-end of the 23S rRNA, where it nucleates assembly
of the 50S subunit (By similarity)

ENOG4105EQY Methylates the class 1 translation termination release factors
RF1 PrfA and RF2 PrfB on the glutamine residue of the uni-
versally conserved GGQ motif (By similarity)

ENOG4105F8V Hydrolase, tatD family

ENOG4105G6W One of the primary rRNA binding proteins, it binds directly
to 16S rRNA where it nucleates assembly of the body of the
30S subunit (By similarity)

ENOG4105J80 Produces ATP from ADP in the presence of a proton gradient
across the membrane. The gamma chain is believed to be im-
portant in regulating ATPase activity and the flow of protons
through the CF(0) complex (By similarity)

ENOG4105K46 50S ribosomal protein l27

ENOG4105K4C This is one of the proteins that binds and probably mediates
the attachment of the 5S RNA into the large ribosomal sub-
unit, where it forms part of the central protuberance (By sim-
ilarity)

ENOG4105K63 Thioredoxin

ENOG4105K77 Forms an intersubunit bridge (bridge B4) with the 23S rRNA
of the 50S subunit in the ribosome (By similarity)

ENOG4105K7S Protein S19 forms a complex with S13 that binds strongly to
the 16S ribosomal RNA (By similarity)

ENOG4105K87 One of the primary rRNA binding proteins, it binds specifi-
cally to the 5’-end of 16S ribosomal
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ENOG4105K90 Participates actively in the response to hyperosmotic and heat

shock by preventing the aggregation of stress-denatured pro-
teins, in association with DnaK and GrpE. It is the nucleotide
exchange factor for DnaK and may function as a thermosen-
sor. Unfolded proteins bind initially to DnaJ

ENOG4105K9U however, it seems to stimulate more or less all the activities of
the other two initiation factors, IF-2 and IF-3 (By similarity)

ENOG4105KAP The globular domain of the protein is located near the
polypeptide exit tunnel on the outside of the subunit, while
an extended beta-hairpin is found that lines the wall of the
exit tunnel in the center of the 70S ribosome (By similarity)

ENOG4105KAR One of the proteins that surrounds the polypeptide exit tunnel
on the outside of the subunit (By similarity)

ENOG4105KBC Seems to be the binding site for several of the factors involved
in protein synthesis and appears to be essential for accurate
translation (By similarity)

ENOG4105KG7 Associates with free 30S ribosomal subunits (but not with 30S
subunits that are part of 70S ribosomes or polysomes). Essen-
tial for efficient processing of 16S rRNA. May interact with
the 5’-terminal helix region of 16S rRNA (By similarity)

ENOG4105KGE Single strand-specific metallo-endoribonuclease involved in
late-stage 70S ribosome quality control and in maturation of
the 3’ terminus of the 16S rRNA (By similarity)

ENOG4105KK9 This protein binds to 23S rRNA in the presence of protein L20
(By similarity)

ENOG4105KNM Produces ATP from ADP in the presence of a proton gradient
across the membrane (By similarity)

ENOG4105VH8 Binds as a heterodimer with protein S6 to the central domain
of the 16S rRNA, where it helps stabilize the platform of the
30S subunit (By similarity)

ENOG4106U5A One of the primary rRNA binding proteins, this protein ini-
tially binds near the 5’-end of the 23S rRNA. It is important
during the early stages of 50S assembly. It makes multiple
contacts with different domains of the 23S rRNA in the as-
sembled 50S subunit and ribosome (By similarity)

ENOG4108R5J This protein binds to the 23S rRNA, and is important in its
secondary structure. It is located near the subunit interface in
the base of the L7 L12 stalk, and near the tRNA binding site
of the peptidyltransferase center (By similarity)
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ENOG4108R70 Binds 23S rRNA and is also seen to make contacts with the A

and possibly P site tRNAs (By similarity)

ENOG4108RA9 Located at the back of the 30S subunit body where it stabi-
lizes the conformation of the head with respect to the body
(By similarity)

ENOG4108UGX Major role in the synthesis of nucleoside triphosphates other
than ATP. The ATP gamma phosphate is transferred to the
NDP beta phosphate via a ping-pong mechanism, using a
phosphorylated active-site intermediate (By similarity)

ENOG4108UH4 Binds specifically to the SsrA RNA (tmRNA) and is required
for stable association of SsrA with ribosomes (By similarity)

ENOG4108UHA Essential for recycling GMP and indirectly, cGMP (By similar-
ity)

ENOG4108UHH Located on the platform of the 30S subunit, it bridges several
disparate RNA helices of the 16S rRNA. Forms part of the
Shine-Dalgarno cleft in the 70S ribosome (By similarity)

ENOG4108UHY One of the primary rRNA binding proteins, it binds directly
to 16S rRNA where it nucleates assembly of the head domain
of the 30S subunit. Is located at the subunit interface close to
the decoding center, probably blocks exit of the E-site tRNA
(By similarity)

ENOG4108UIK This protein binds directly to 23S ribosomal RNA (By similar-
ity)

ENOG4108UIQ Methylates the ribose at the nucleotide 34 wobble posi-
tion in the two leucyl isoacceptors tRNA(Leu)(CmAA) and
tRNA(Leu)(cmnm5UmAA). Catalyzes the methyl transfer
from S- adenosyl-L-methionine to the 2’-OH of the wobble
nucleotide (By similarity)

ENOG4108UJD 30S ribosomal protein S9

ENOG4108UJY One of the primary rRNA binding proteins, it binds directly to
16S rRNA central domain where it helps coordinate assembly
of the platform of the 30S subunit (By similarity)
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ENOG4108UKE Interacts with and stabilizes bases of the 16S rRNA that are

involved in tRNA selection in the A site and with the mRNA
backbone. Located at the interface of the 30S and 50S sub-
units, it traverses the body of the 30S subunit contacting pro-
teins on the other side and probably holding the rRNA struc-
ture together. The combined cluster of proteins S8, S12 and
S17 appears to hold together the shoulder and platform of the
30S subunit (By similarity)

ENOG4108UKH Necessary for efficient RNA polymerase transcription elonga-
tion past template-encoded arresting sites. The arresting sites
in DNA have the property of trapping a certain fraction of
elongating RNA polymerases that pass through, resulting in
locked ternary complexes. Cleavage of the nascent transcript
by cleavage factors such as GreA or GreB allows the resump-
tion of elongation from the new 3’terminus. GreA releases
sequences of 2 to 3 nucleotides (By similarity)

ENOG4108UM5 This protein is one of the early assembly proteins of the 50S
ribosomal subunit, although it is not seen to bind rRNA by
itself. It is important during the early stages of 50S assembly
(By similarity)

ENOG4108UNN Binds to 23S rRNA. Forms part of two intersubunit bridges in
the 70S ribosome (By similarity)

ENOG4108UUX IF-3 binds to the 30S ribosomal subunit and shifts the equili-
brum between 70S ribosomes and their 50S and 30S subunits
in favor of the free subunits, thus enhancing the availability
of 30S subunits on which protein synthesis initiation begins
(By similarity)

ENOG4108UZ0 Binds to the 23S rRNA (By similarity)

ENOG4108VCV Responsible for the release of ribosomes from messenger
RNA at the termination of protein biosynthesis. May increase
the efficiency of translation by recycling ribosomes from one
round of translation to another (By similarity)

ENOG4108VZM 50s ribosomal protein L10

ENOG4108YY1 This protein is located at the 30S-50S ribosomal subunit inter-
face and may play a role in the structure and function of the
aminoacyl-tRNA binding site (By similarity)

ENOG4108YYV Key enzyme in folate metabolism. Catalyzes an essential re-
action for de novo glycine and purine synthesis, and for DNA
precursor synthesis (By similarity)
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ENOG4108YZX Binds directly to 23S ribosomal RNA and is necessary for the

in vitro assembly process of the 50S ribosomal subunit. It is
not involved in the protein synthesizing functions of that sub-
unit (By similarity)

ENOG4108Z04 Located at the top of the head of the 30S subunit, it contacts
several helices of the 16S rRNA. In the 70S ribosome it con-
tacts the 23S rRNA (bridge B1a) and protein L5 of the 50S
subunit (bridge B1b), connecting the 2 subunits

ENOG4108Z10 Involved in the binding of tRNA to the ribosomes (By simi-
larity)

ENOG4108ZBM Digests double-stranded RNA. Involved in the processing of
primary rRNA transcript to yield the immediate precursors to
the large and small rRNAs (23S and 16S). Also processes some
mRNAs, and tRNAs when they are encoded in the rRNA
operon (By similarity)

ENOG4108ZDX Binds together with S18 to 16S ribosomal RNA (By similarity)

ENOG4108ZEF Reversibly transfers an adenylyl group from ATP to 4’- phos-
phopantetheine, yielding dephospho-CoA (dPCoA) and py-
rophosphate (By similarity)

ENOG4108ZMD Phosphorylation of dTMP to form dTDP in both de novo and
salvage pathways of dTTP synthesis (By similarity)

ENOG4108ZQD Catalyzes the phosphorylation of the 3’-hydroxyl group of de-
phosphocoenzyme A to form coenzyme A (By similarity)

ENOG4108ZT0 50S ribosomal protein l17

End of Table B.3

TABLE B.4: The number of sequence pairs for each gene in the 50
and 201 pairs subsets: This table illustrates genes that are found for
multiple PIDs. The highest number of pairs for the 201 pairs sub-
set is from ENOG4105BZH which is annotated as the gene that pro-
vides the precursors necessary for DNA synthesis by catalyzing the
biosynthesis of deoxyribonucleotides from the corresponding ribonu-
cleotides. The highest number sequence pairs for the 50 pairs subset is
from RF00177 which is 16s rRNA (aka small subunit ribosomal RNA).

Start of Table B.4

Gene 201 Pairs 50 Pairs
SeC 1 0

RF01854 3 0

ENOG4105D5S 13 9

ENOG4105EQY 19 7
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Gene 201 Pairs 50 Pairs
ENOG4105C20 20 10

RF00001 22 167

ENOG4105KAP 26 18

ENOG4105C5S 27 8

ENOG4105CRK 28 4

ENOG4105CV1 29 15

ENOG4105C38 30 2

ENOG4108UGX 32 16

ENOG4108UKH 35 12

ENOG4105C9M 35 13

ENOG4105C6P 35 17

ENOG4105CE9 36 11

ENOG4108ZEF 37 14

ENOG4105C8K 37 18

ENOG4105C24 40 16

ENOG4105C8N 40 16

ENOG4105D27 40 17

ENOG4105C8T 40 19

ENOG4105C3G 40 22

ENOG4108UUX 41 13

ENOG4105CA4 41 16

ENOG4105CPH 41 27

ENOG4105CGJ 42 11

ENOG4105BZ6 42 14

ENOG4105CIM 42 16

ENOG4105DJV 42 16

ENOG4105C22 43 8

ENOG4108YY1 43 22

ENOG4105C7D 43 24

ENOG4105C0V 44 11

ENOG4105DRH 44 14

ENOG4108UH4 44 16

ENOG4105CPM 44 18

ENOG4105CJS 45 9

ENOG4108UHA 45 22

ENOG4105CDU 46 13

ENOG4105E5V 46 16

ENOG4105C2M 47 17

ENOG4105K77 47 19
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ENOG4108YZX 48 30

ENOG4105CA1 49 14

ENOG4108UZ0 49 18

ENOG4105KK9 49 21

ENOG4108VCV 50 8

ENOG4105CA9 50 14

ENOG4105C77 50 16

ENOG4105EEE 50 18

ENOG4105CZ5 51 11

ENOG4105BZ5 51 13

ENOG4105D1X 51 14

ENOG4105C62 51 19

ENOG4105C65 51 21

ENOG4108UM5 51 22

ENOG4105DKZ 51 23

ENOG4108UJY 51 30

ENOG4105K46 51 34

ENOG4105CI6 52 13

ENOG4105CCJ 54 11

ENOG4105C9R 54 15

ENOG4105C64 54 19

ENOG4105K87 55 26

ENOG4108R5J 55 29

ENOG4105CSM 56 12

ENOG4108RA9 56 23

ENOG4105CGR 57 18

ENOG4108UHH 57 27

ENOG4105G6W 57 35

ENOG4105K4C 58 15

ENOG4105CSS 58 18

ENOG4108UJD 58 21

ENOG4105CDK 59 12

ENOG4105C8D 59 13

ENOG4105CB9 59 15

ENOG4105C4S 59 27

ENOG4105CFD 59 39

ENOG4105C5T 61 17

ENOG4105CKE 61 18

ENOG4105KAR 61 25
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ENOG4108UHY 61 33

ENOG4105C31 63 12

ENOG4108ZDX 64 20

ENOG4105K9U 64 40

ENOG4105C3H 65 14

ENOG4105C17 66 14

ENOG4105J80 66 20

ENOG4108Z04 67 28

ENOG4108UIK 68 35

ENOG4105C70 69 20

ENOG4105CTF 69 26

ENOG4105C3M 70 17

ENOG4105CDG 70 36

ENOG4105CU0 71 11

RF00023 72 10

ENOG4105CU7 72 21

ENOG4108R70 72 47

ENOG4105CFG 73 35

ENOG4106U5A 74 30

ENOG4105CEJ 74 35

ENOG4105F8V 75 24

ENOG4105CW6 75 38

ENOG4105CJ9 77 44

ENOG4108Z10 81 38

ENOG4105K7S 81 49

ENOG4105DTN 85 23

ENOG4105VH8 92 39

ENOG4108UNN 93 57

ENOG4108ZT0 94 32

ENOG4108VZM 98 26

ENOG4105C6A 101 22

RF00169 104 98

ENOG4105CGV 105 87

ENOG4108UKE 107 53

ENOG4105CHV 124 33

ENOG4108ZBM 136 24

ENOG4105CZ8 138 25

RF02541 155 190

ENOG4105KGE 156 37
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Ser 186 0

ENOG4105K90 187 45

Thr 188 0

ENOG4105KG7 197 49

Arg 226 0

Met 232 0

Leu 234 0

ENOG4105DA0 234 66

His 242 0

Gln 245 0

Tyr 249 0

Asn 250 0

Lys 255 0

Cys 267 0

RF00177 273 257
Val 274 0

Glu 275 0

ENOG4105C9G 278 72

ENOG4105KNM 287 72

Trp 300 0

Pro 352 0

ENOG4105C4J 368 109

Ile 382 0

Ala 393 0

ENOG4105DHW 404 104

Phe 421 0

ENOG4105CWT 440 113

ENOG4105CEY 458 143

ENOG4105C1H 460 121

Asp 484 0

Gly 524 0

ENOG4105C90 765 200

ENOG4105BZH 828 212

End of Table B.4
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TABLE B.5: The number of pairs of mRNA, ncRNA and tRNA for
each PID subset: The 50 pairs subset only has mRNA and ncRNA se-
quences whereas the 201 pairs subset includes tRNA sequences. This
shows the over representation (greater then 20% of the pairs) of tRNA
sequence pairs for PID values higher then 61% and the lack of ncR-

NAs for low PIDs.

Start of Table B.5

PID mRNA 50
Pairs

ncRNA 50
Pairs

mRNA 201
Pairs

ncRNA
201 Pairs

tRNA 201
Pairs

1 10 0 40 0 0

2 10 0 40 0 0

3 10 0 40 0 0

4 10 0 40 0 0

5 10 0 40 0 0

6 10 0 40 0 0

7 10 0 40 0 0

8 10 0 40 0 0

9 10 0 36 0 0

10 17 0 23 0 0

11 28 0 41 0 0

12 41 0 135 0 0

13 50 0 146 0 0

14 50 0 168 0 0

15 50 0 201 0 0

16 50 0 201 0 0

17 50 0 201 0 0

18 50 0 201 0 0

19 50 0 201 0 0

20 50 0 201 0 0

21 50 0 201 0 0

22 50 0 201 0 0

23 50 0 201 0 0

24 50 0 201 0 0

25 50 0 201 0 0

26 50 0 201 0 0

27 50 0 200 1 0

28 49 1 198 3 0

29 50 0 198 3 0

30 49 1 198 3 0

31 49 1 195 6 0

32 49 1 190 10 32

33 50 0 194 7 0
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Continuation of Table B.5

PID mRNA 50
Pairs

ncRNA 50
Pairs

mRNA 201
Pairs

ncRNA
201 Pairs

tRNA 201
Pairs

34 49 1 196 5 0

35 46 4 195 6 0

36 50 0 189 12 0

37 49 1 190 11 0

38 49 1 190 11 0

39 50 0 197 4 0

40 49 1 199 2 0

41 49 1 196 5 0

42 48 2 194 6 42

43 49 1 199 1 43

44 50 0 194 7 0

45 46 4 197 4 0

46 49 1 198 3 0

47 49 1 195 6 0

48 49 1 196 4 1

49 50 0 198 2 1

50 50 0 200 0 1

51 49 1 199 1 1

52 49 1 196 3 2

53 47 3 197 0 4

54 50 0 199 0 2

55 49 1 195 2 4

56 47 3 196 1 4

57 48 2 195 3 3

58 49 1 181 0 20

59 49 1 187 3 11

60 48 2 179 0 22

61 47 3 164 3 34

62 48 2 157 2 42

63 47 3 153 3 45

64 47 3 123 2 76

65 46 4 128 8 65

66 42 8 111 6 84

67 47 3 111 10 80

68 42 8 64 10 127

69 35 15 83 13 105

70 34 16 61 22 118

71 35 15 45 19 137
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Continuation of Table B.5

PID mRNA 50
Pairs

ncRNA 50
Pairs

mRNA 201
Pairs

ncRNA
201 Pairs

tRNA 201
Pairs

72 32 18 31 32 138

73 29 21 44 23 134

74 31 19 40 19 142

75 29 21 30 20 151

76 32 18 28 31 142

77 33 17 22 28 151

78 33 17 22 18 161

79 34 16 12 19 170

80 30 20 15 21 165

81 26 24 12 20 169

82 26 24 14 10 177

83 26 24 6 10 185

84 22 28 6 6 189

85 18 32 18 14 169

86 24 26 10 7 184

87 23 27 2 14 185

88 28 22 4 9 188

89 23 27 3 15 183

90 26 24 10 24 167

91 18 32 9 5 187

92 31 19 5 9 187

93 25 25 6 11 184

94 22 28 13 19 169

95 23 27 5 4 192

96 25 25 1 3 197

97 25 25 1 4 196

98 31 19 70 13 118

99 36 14 3 1 197

100 42 8 3 2 196

End of Table B.5
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ORF Number ENOG4105C1H ENOG4105CWT ENOG4105DKZ
orf178332101A

orf180067068A

orf179254753
orf179642852
orf92089854
orf95036926

ORF Number Phylum Genus and Species
orf178332101A NA* Thermobaculum terrenum
orf180067068A Choloroflexi Thermorudis peleae
orf179254753 Choloroflexi Thermoflexus hugenholtzii
orf179642852 Choloroflexi Thermomicrobium roseum
orf92089854 Choloroflexi Leptolinea tardivitalis
orf95036926 Choloroflexi Longilinea arvoryzae

Eggnog HMM Annotation
ENOG4105C1H Exhibits a very high intrinsic GTPase hydrolysis rate. Involved

in the addition of a carboxymethylaminomethyl (cmnm)
group at the wobble position (U34) of certain tRNAs, forming
tRNA- cmnm(5)s(2)U34 (By similarity)

ENOG4105CWT An essential GTPase that binds both GDP and GTP, with rapid
nucleotide exchange. Plays a role in 16S rRNA processing and
30S ribosomal subunit biogenesis and possibly also in cell cy-
cle regulation and energy metabolism (By similarity)

ENOG4105DKZ GTPase that plays an essential role in the late steps of ribosome
biogenesis (By similarity)

TABLE B.9: ORFs with duplicate annotations: Top Table: Shows the
sequences (identified by orf number) that are top scoring sequence
for a genome for two different genes HMMs. Middle Table: Shows
the taxonomic information for each of the sequence from the top ta-
ble. Bottom Table: Shows the EggNOG annotation for each HMM
that has sequences that are in also the top scoring match for another

HMM.
A=in both 50 and 200 PID subset, *=disputed phylogeny hence the NA in
phylum but a literature review currently indicates it is likely to be from the

Chloroflexi phylum. (111)
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Gene PID from reference alignment PID from pairwise alignment
ENOG4105C4J 60% 65%
ENOG4105KG7 42% 59%

RF00177 80% 83%
RF00169 40% 53%

TABLE B.10: Comparison of PIDs of the same sequence pairs us-
ing different alignment strategies: Nucleotide PID calculations of
sequence pairs from each gene showing the difference in PID from
the reference to the pairwise alignment. All PID values from the pair-
wise, sequence similarity amximised, alignment are higher then the
PID values from the reference alignment. The reference alignment
is made by aligning all sequences for a gene to the corresponding
HMM or CM. The pairwise alignment is made by aligning pairs of

sequences to each other with ggsearch.

G0-G0 G0-G1 G0-G2 G1-G1 G1-G2 G2-G2
L0-L0 0 0 0 0 0 1
L0-L1 0 0 0 0 0 0
L1-L1 1 7 8 5 10 0
L1-L2 0 0 1 0 0 0
L2-L2 0 1 4 3 8 1

TABLE B.11: The combinations of G+C and length for 40% PID:
The G+C content and sequence length groups each sequence pair be-
longs to for pairs in the 50 pairs subset that have 40% PID. L0: Short
sequence, L1: Medium length sequence, L2: Long length sequence.
G0: Low G+C content, G1: Mid G+C content, G2: High G+C content.
The bold number shows the long G0-G2 short length sequence pair

referred to in the discussion.
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Appendix C

Supplementary Github links to
files and code

https://github.com/Gardner-BinfLab/twilight_zone.git /pipeline

TABLE C.1: GitHub code and pipeline instructions: All custom code
(Perl, Bash or R) and a description of the computational pipeline
(README.md) is available at this GitHub link in the pipeline direc-

tory.

BLASTn v2.6.0 ggsearch36/ssearch36/ssearch34 nhmmer v3.1b2
-gapopen 10 -f 10 –toponly
-gapextend 6 -g 6 –dna
-penalty -4 -r "+5/-4" –F1 0.3
-reward 5 -d 0 –F2 0.1

-strand plus -3 –F3 0.03
-task blastn -m 3

-n

TABLE C.2: Alignment parameters: Parameters and their corre-
sponding values for each of the alignment algorithms used.

Link A: Genomes and Taxonomy Ta-
ble

linkA.tsv

Link B: Eggnog HMMs Gene Anno-
tations

linkB.tsv

Link C: Sequence alignment to
ENOG4105BZ5 HMM of two
duplicates and example real
homologs

dup_align.afa

Link D: Taxonomic Tree taxonomic_tree.pdf
Link E: Duplicate Sequence example

of low complexity
low_complexity.fasta

Link F: Randomly generated se-
quence

rand_seq.txt

TABLE C.3: GitHub links to large tables and supplemen-
tary files: All files can be found in the main directory

https://github.com/Gardner-BinfLab/twilight_zone.git
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