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Monogamy properties of quantum and classical correlations
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In contrast with entanglement, as measured by concurrence, in general, quantum discord does not possess the
property of monogamy; that is, there is no tradeoff between the quantum discord shared by a pair of subsystems
and the quantum discord that both of them can share with a third party. Here, we show that, as far as monogamy is
considered, quantum discord of pure states is equivalent to the entanglement of formation. This result allows one
to analytically prove that none of the pure three-qubit states belonging to the subclass of W states is monogamous.
A suitable physical interpretation of the meaning of the correlation information as a quantifier of monogamy
for the total information is also given. Finally, we prove that, for rank 2 two-qubit states, discord and classical
correlations are bounded from above by single-qubit von Neumann entropies.
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I. INTRODUCTION

Entanglement, first recognized as the characteristic trait of
quantum mechanics [1], has been used for a long time as the
main indicator of the quantumness of correlations. Indeed,
as shown in Ref. [2], for pure-state computation, exponential
speedup occurs only if entanglement grows with the size of
the system. However, the role played by entanglement in
mixed-state computation is less clear. For instance, in the
so-called deterministic quantum computation with one qubit
(DQC1) protocol [3], quantum speedup can be achieved using
factorized states. As shown in Ref. [4], speedup could be due
to the presence of another quantifier, the so called quantum
discord [5,6], which is defined as the difference between two
quantum analogs of the classical mutual information.

The relationship between entanglement and quantum dis-
cord has not been completely understood, since they seem
to capture different properties of the states. In Ref. [7], it is
shown that, even if quantum discord and entanglement are
equal for pure states, mixed states maximizing discord in a
given range of classical correlations are actually separable. The
relation between discord and entanglement has been discussed
in Refs. [8–10], and an operational meaning in terms of state
merging has been proposed in Ref. [11].

Recently, the use of quantum discord has been extended
to multipartite states. A measure of genuinely multipartite
quantum correlations has been introduced in Ref. [12]. In
Ref. [13], an attempt to generalize the definition of quantum
discord in multipartite systems based on a collective measure
has been proposed. In Ref. [14], the authors proposed different
generalizations of quantum discord depending on the mea-
surement protocol performed. Entanglement in multipartite
systems has been shown to obey monogamy in the case
of qubits [15,16] and continuous variables [17]. Monogamy
means that, if two subsystems are highly correlated, the
correlation between them and other parties is bounded. Prabhu
et al. proved that, unlike entanglement, quantum discord is in
general not monogamous [18]. They also suggested, based on
numerical results, that W states are likely to violate monogamy.

In this Brief Report, using the Koashi-Winter formula
[19], we prove that, for pure states, quantum discord
and entanglement of formation obey the same monogamy

relationship, while, for mixed states, distributed discord
exceeds distributed entanglement. Then, we give an analytical
proof of the violation of monogamy by all W states. Further-
more, we suggest the use of the interaction information [20] as
a measure of monogamy for the mutual information. Finally, as
a further application of Koashi-Winter equality, we prove the
conjecture on upper bounds of quantum discord and classical
correlations formulated by Luo et al. [21] for rank 2 states of
two qubits.

II. QUANTUM DISCORD

In classical information theory, mutual information be-
tween parties A and B is defined as J (A : B) = H (A) −
H (A|B), where H (·) is the Shannon entropy and H (A|B)
is the conditional Shannon entropy of A after B has been
measured. An equivalent formulation [I(A : B) = H (A) +
H (B) − H (AB)] can be obtained using Bayes’ rules, because
of which I(A : B) = J (A : B). On the other hand, if we
try to quantize these quantities, replacing probabilities with
density matrices and the Shannon entropy with the von
Neumann entropy, their counterparts differ substantially [5].
The quantum mutual information is defined as

IA,B = S(�A) + S(�B) − S(�A,B), (1)

where S(·) is the von Neumann entropy and �A(B) are
the reduced states after tracing out party B(A), while the
quantized version of J (A : B) measures the classical part of
the correlations [6] and is given by

JA,B = max
{EB

j }

[
S(�A) − S

(
A

∣∣ {EB
j

})]
, (2)

with the conditional entropy defined as S(A|{EB
j }) =∑

j pjS(�A|EB
j

), pj = TrAB(EB
j �), and where �A|EB

j
=

EB
j �/pj is the density matrix after a positive operator

valued measure (POVM) {EB
j } has been performed on B. In

some cases, orthogonal measurements are enough to find the
maximum in Eq. (2) [22].
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Quantum discord is thus defined as the difference between
I and J :

DA,B = min
{EB

j }

[
S(�B) − S(�A,B) + S

(
A

∣∣{EB
j

})]
. (3)

Quantum discord can be considered as a measure of how much
disturbance is caused when trying to learn about party A when
measuring party B and has been shown to be null only for a
set of states with measure zero [23].

Both classical correlations and quantum discord are asym-
metric under the exchange of the two subparties (i.e., JA,B �=
JB,A and DA,B �= DB,A).

While J is invariant under local unitary transformations
and cannot increase under local operations and classical
communication, D is not monotonic under local operations.
For instance, in Ref. [24], it is shown how to create quantum
correlations under the action of local noise.

III. MONOGAMY PROPERTIES OF QUANTUM DISCORD

Given a measure of correlation Q, monogamy implies
a tradeoff on bipartite correlations distributed along all the
partitions pi (i = 1, . . . ,N):

Q(p1|p2 · · · pN ) �
∑

l �=1

Q(p1|pl). (4)

Coffman, Kundu, and Wootters [15] showed that this property
applies to three-qubit states once the square of the concurrence
[25] (C2) plays the role of Q. The extension of the proof
to n-partite (n > 3) qubit systems has been given in Ref.
[16]. As pointed out in Ref. [15], however, entanglement
of formation does not satisfy the criterion given in Eq. (4).
Then, even if people usually refer to entanglement as a
monogamous quantity, it would be worth paying attention to
the entanglement monotone in use.

In trying to apply this property to quantum discord, Prabhu
et al. showed that monogamy is obeyed if and only if the
interrogated interaction information is less than or equal to the
unmeasured interaction information [18]. Then, the authors
found through numerical simulations that the subset of W

states are not monogamous, in contrast with Greenberger-
Horne-Zeilinger (GHZ) states, which can be monogamous or
not.

Here, we prove that, for pure states, the monogamy
equations for quantum discord and for entanglement of
formation coincide. Let us consider the pure tripartite state
|ψABC〉. Quantum discord of any of the couples of subparties
is given by Di,k = S(�k) − S(�l) + S(�i|k), where S(�i|k) =
min{Ek

j } S(i|{Ek
j }), while Di,jk = S(�i). As shown in Ref. [19],

the following relationships between conditional entropies and
entanglement of formation (E) holds:

S(�i|k) = S(�l|k) = E(�i,l). (5)

This formula allows one to write

Di,k = S(�k) − S(�l) + E(�i,l). (6)

Using Eq. (5), monogamy equation

DA,B + DA,C � DA,BC (7)

is then equivalent to

EA,B + EA,C � EA,BC, (8)

where S(�A) = EA,BC has been employed. The equality of
conservation law for distributed entanglement of formation
and quantum discord, even if not associated to monogamy,
was already noticed by Fanchini et al. [26]. Because of this
equivalence, the violation of Eq. (8) by W states, whose
numerical evidence has been given in Ref. [18], admits an
analytical proof. Let us recall that, apart from local operations,
a generic pure state of three qubits, belonging to the GHZ
class, can be written as |ψ〉 = λ0|0,0,0〉 + λ1e

iθ |1,0,0〉 +
λ2|1,0,1〉 + λ3|1,1,0〉 + λ4|1,1,1〉 [27]. The family of W

states is obtained fixing λ4 = 0. As shown by Coffman, Kundu,
and Wootters [15], W states have zero three tangle; that is, they
obey

C2
A,B + C2

A,C = C2
A,BC. (9)

To show that Eq. (9) implies EA,B + EA,C � EA,BC , it is
enough to note that E is a concave function of C2, since
E = h[(1 + √

1 − C2)/2], where h is the binary entropy
h(x) = −x log2 x − (1 − x) log2(1 − x), and both E and C
admit values between 0 and 1. Then, if we apply the mapping
from C2 to E to the three elements of Eq. (9), we find
EA,B + EA,C = EA,BC if EA,BEA,C = 0 (i.e., for biseparable
states) and EA,B + EA,C > EA,BC otherwise.

As noticed in Ref. [18], GHZ states can be monogamous
or not. Actually, a numerical analysis shows that about half
of them do not respect monogamy. To see a transition from
observation to violation of monogamy, we consider the fam-
ily of states |ψ̃(p,ε)〉 = √

pε|0,0,0〉 + √
p(1 − ε)|1,1,1〉 +√

(1 − p)/2(|1,0,1〉 + |1,1,0〉). Note that |ψ̃(1,1/2)〉 is the
maximally entangled GHZ state (|0,0,0〉 + |1,1,1〉)/2, while
|ψ̃(1/3,1)〉 coincides with the maximally entangled W state
(|0,0,0〉 + |1,0,1〉 + |1,1,0〉)/√3. For ε = 0, qubit A is fac-
torized, and (7) becomes an equality. In Fig. 1, EA,B + EA,C −
S(�A) is plotted as a function of p for different values of ε.
As expected, for any ε �= 1, there is a threshold for p above
which the states are monogamous.

Once the assumption of pure state is relaxed, Eq. (5) be-
comes an inequality: S(�i|k) � E(�i,l). Then, DA,B + DA,C �
S(�B) − S(�AB) + EA,C + S(�C) − S(�AC) + EA,B , or, using
the subadditivity of von Neumann entropy,

DA,B + DA,C � EA,B + EA,C. (10)

Thus, for mixed states, monogamy of quantum discord has a
stricter bound than monogamy of entanglement.

IV. MONOGAMY PROPERTIES OF CLASSICAL AND
TOTAL CORRELATIONS

The search for monogamy of correlations can be extended
toJ (�). It is actually easy to note that, for pure tripartite states,
monogamies of quantum discord and classical correlations are
complementary; that is, DA,B + DA,C − DA,BC = −(JA,B +
JA,C − JA,BC). To prove it, it is sufficient to observe that
mutual information obeys

IA,BC = IA,B + IA,C. (11)
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FIG. 1. (Color online) Quantum discord monogamy of |ψ̃(p,ε)〉,
as quantified by DA,BC − (DA,B + DA,C) = EA,BC − (EA,B + EA,C),
as a function of p for different values of ε (see the main text). States
are monogamous where the respective curves are positive. Black
solid line is for ε = 1, black dashed line is for ε = 0.75, orange
(gray) solid line is for ε = 0.5, and orange (gray) dashed line is for
ε = 10−2. According to the analytical proof, for W states (ε = 1),
EA,B + EA,C − S(�A) is always positive (i.e., these states are never
monogamous). For GHZ states, there exists a threshold value of p

above which monogamy is satisfied. This threshold goes to zero for
vanishing p, since in this case qubit A becomes factorized and all the
related entanglement quantifiers vanish as well.

The generalization of Eq. (11) to mixed states presents some
interesting aspects. We have

IA,BC = IA,B + IA,C + IABC, (12)

where IABC is called correlation information [20]. In the
language of density matrices, it can be defined as

I12···n =
∑

�j
(−1)|| �j ||+N+1S(� �j ), (13)

where �j = {j1, . . . ,jr} are all the possible strings containing
integer numbers between 1 and n, with ji �= jl for any i �= l,
and || �j || = r counts the length of each string. For instance,
for a bipartite system, IAB = S(�A) + S(�B) − S(�AB) co-
incides with the ordinary mutual information, and in the
tripartite case IABC = −S(�A) − S(�B) − S(�C) + S(�AB) +
S(�AC) + S(�BC) − S(�ABC). It can be checked that, for n

odd, I12···n = 0 for any pure state.
In classical information theory, the interaction information

has been introduced with the aim of measuring the information
that is contained in a given set of variables and that cannot
be accounted for considering any possible subset of them. It
should then measure genuine n-partite correlations. Actually,
I12···n can be negative. Thus, according to the criteria given
in Ref. [6], it cannot be used as a correlation measure. Then,
its meaning is widely debated. Equation (12) suggests that
it plays the role played by the tangle in the distribution of
C2 [15], since it is invariant under index permutation, and it
can be called a “mutual information tangle.” When IABC is
negative, it quantifies the lack of monogamy of the mutual
information. As shown by Prabhu et al., monogamy of discord
relies on the relationship between IABC and its interrogated
version [18].

V. UPPER BOUND OF QUANTUM AND CLASSICAL
CORRELATIONS

In Ref. [21], it has been conjectured that, given a bipartite
state �AB , defined in the Hilbert spaceHA ⊗ HB , the following
upper bounds for quantum discord and classical correlations
could exist:

DA,B � min[S(�A),S(�B)], (14)

JA,B � min[S(�A),S(�B)]. (15)

It is trivial to prove the existence of such an upper bound for
entanglement of formation, its definition being based on the
convex roof construction. If inequality (10) were an equality,
it would be easy to extend the proof to discord. Actually,
inequality (10) is telling us that distributed discord could
exceed distributed entanglement, and these upper bounds could
be violated. While a a partial proof of the conjecture has been
given in Ref. [28] using the language of quantum operations, a
full proof for the case of rank 2 states of two qubits can be given
using the Koashi-Winter formula. By applying a purification
procedure, we add an ancillary Hilbert space HC and write a
pure tripartite state |φABC〉 such that TrC |φABC〉〈φABC | = �AB .
Since �AB has rank 2, |φABC〉 is a three-qubit state. As a
consequence of Eq. (5), we have

DA,B = S(�B) − JC,B, (16)

JA,B = S(�A) − EA,C. (17)

Then, inequalities DA,B � S(�B) and JA,B � S(�A) are im-
mediately verified.

Let us now separately discuss the cases S(�A) > S(�B)
and S(�A) < S(�B). In the first case, we only need to prove
JA,B � S(�B). In Ref. [12], using the invariance under index
permutation of the three tangle introduced by Coffman, Kundu,
and Wootters [15], we proved that, for the case of three qubits,
if S(�A) > S(�B), then S(�A) + EB,C < S(�B) + EA,C . This
chain rule implies S(�A) − EA,C < S(�B) − EB,C , and then

JA,B < S(�B) − EB,C < S(�B), (18)

as we wanted to prove.
Assuming now S(�A) < S(�B), we are left to show that

DA,B � S(�A). Writing explicitly DA,B = S(�B) + EA,C −
S(�C), we use the chain rule to write S(�B) + EA,C < S(�A) +
EB,C and to obtain

DA,B < S(�A) − JC,B < S(�A). (19)

This ends the proof.

VI. CONCLUSIONS

We have studied the monogamy properties of pure tripartite
state. We have shown that quantum discord and entanglement
of formation obey the same monogamy relationship. Applying
this equivalence to the case of three qubits, we have shown by
analytical demonstration that, for all the W states, quantum
discord is not monogamous, in contrast with GHZ states, where
discord can be monogamous or not. In an example, we have
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shown the transition from monogamy to absence of monogamy
for a subfamily of GHZ states.

The equivalence between quantum discord and entangle-
ment of formation concerning monogamy raises a subtle
question that it is worth considering. While people usually
claim that, for qubits, entanglement is monogamous, all we
know is that there exists an entanglement monotone (the square
of the concurrence) that is in fact monogamous. By analogy,
we can say that the results of Ref. [18] do not exhaust the
search for monogamy of quantum discord and other corre-
lations, where monogamous monotone indicators could be
found.

Using the connection between discord end entanglement
of formation, we have also shown that, in the case of rank 2

states of two qubits, as conjectured by Luo et al. [21], quantum
discord and classical correlations are bounded from above by
the single-qubit von Neumann entropies. A full proof cannot be
given because, for mixed states, the equality of conservation
law for distributed entanglement of formation and quantum
discord is broken.
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