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Abstract

The primary health care (PHC) system must manage the growing demand

for care due to patients with long-term conditions (LTCs) such as dia-

betes, hypertension and asthma. Population-based care can help address

this workload management problem, specifically by enabling a shift from

a reactive to a proactive patient management approach. However, current

PHC systems lack the ability to provide population-based care. This thesis

presents a tool to predict the future workload generated by a population of

patients.

We use a rule-based system, for its modularity, flexibility and the auto-

mated modifiability behaviour, to develop the care pathways as rules that,

when given the patient data, would simulate the patient visits for the up-

coming year (since some start date). It is assumed that the GPs follow

best practice and their patients adhere to their plan-of-care, making visits

to the medical practice on their scheduled LTC appointments. Then, these

visits are aggregated to a population-level as a count of appointments per

week from these LTC patients, referred to as the workload to be managed

within the capacity of the practice. Knowing this predicted workload, the

PHC organisation can then plan and deliver care accordingly. In this thesis,

we also explore using seven what-if scenarios the impacts of alternatives in

practices and evaluate the strategies to address them. We then propose

the use of Bayesian inference in our workload prediction model, in order to

incorporate the variation in patient visits due to the impact of renewal of

their LTC prescriptions.

This work is done in collaboration with BPAC, a non-profit organisation

that promotes best practice for primary care within New Zealand. The

collaborations on this work were in the form of
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1. health data from a medical practice;

2. the knowledge base to understand the primary health care domain,

and the practical issues at a medical practice.

Approval for this research using the anonymised patient data provided by

BPAC has been given by the University of Otago Human Ethics Committee

(Health).

We follow the design science research (DSR) methodology to develop our

adaptable best practice based workload prediction model for a PHC due to

its LTC patients. From a DSR perspective, we developed a construct called

the three-layer LTC PHC construct, and a process called the encounter-

based unfolding plan-of-care process, which are used to build our artefact:

the adaptable best practice based workload prediction model. In DSR,

much emphasis is on communicating the developed artefact or model to

wider community and the feedback guides further improvement of the model

or the artefact developed. We followed seven iterative cycles to incremen-

tally build the rule base, and the feedback served as a guide to improve

the simulation capability of our ABP-WPM. Apart from the feedback from

the collaborator on this work, feedback was also collected through informal

meetings with the care providers of a medical practice at Mosgiel, the ex-

ecutive members of two different PHOs (one in the North Island and the

other in the South Island of New Zealand) at various stages of develop-

ment of this artefact. The artefact developed was also communicated to

the research community through two publications.

In the process of developing this population-level workload prediction model,

we identified shortcomings (for example, the LTC status of a patient is not

explicit) in the current health data models and in the PHC data shared

with us, which is needed to support a population-level workload analysis.

We therefore developed a patient information data model that makes this

information explicit.

iii



Acknowledgements

This journey would not have been possible without the support of my fam-

ily, professors and mentors, and friends. The gratitude, respect, admiration

and love I have for my mother-in-law Radhamoni, my husband Devanand,

and our maid Vimala, who took the inimitable responsibility and gave all

the love and happiness to my wee boy Dyutit (4 year old now), is beyond

words. I must say I am indebted to them for bringing up my son just as I

would have if I were around him. Although it is very hard for a mother to

be away from her child, their love and care made the pain bearable.

I am extremely grateful to my supervisors Prof. Stephen Cranefield, Prof.

Michael Winikoff and Dr. Hywel Lloyd for their unrivalled support and

guidance throughout this journey. I enjoyed and learned a lot from them,

especially I loved them challenging my thinking by helping me question

assumptions and view issues from multiple perspectives. Above all, I am

very grateful to them for giving me a feeling that I am part of a great team.

I am more than grateful to the Best Practice Advocacy Centre (BPAC)

for providing the anonymised dataset required for this study. I sincerely

appreciate the comments and suggestions received from the members of

the Pinnacle Midlands Health Network (a PHO of North Island), the Well-

South Primary Health Network (the PHOs of Otago and South Island) and

the health professionals of Mosgiel primary health centre. I am grateful

to Matthew Schofield and Matthew Parry from the Department of Mathe-

matics & Statistics of our university for their advice on the Bayesian model

developed in this work.

I must thank all the faculty members and colleagues of my department (In-

formation Science) for providing me with feedback on this both formally

iv



and informally during our research group meetings. Special thanks to As-

sociate Prof. Tony Saviramuthu for our (constructive) informal chats and

long coffee breaks. Also, special thanks to our department manager Stephen

Hall-Jones and the department administrators Heather and Gail for their

support and services (including printing of this thesis) received during this

study period.

I am grateful to the Graduate Research School and the Scholarships office

for the financial support granted (Doctoral scholarship) for the past three

years. I also take this opportunity to thank the Collaborative On-Demand

Learning (CODeL) team, HEDC department, librarians of our Science and

Health Science divisions and the postgraduate student community of Com-

merce division for providing help and support through workshops and other

gatherings.

I am grateful to my friends, especially Stephy Simon for all our long drives,

bush walks and of course the food. To my teachers and friends of Natyaloka

School of Indian Dance, for adding dance and music to my life and making

this journey more enjoyable. To my Lovelock house mates, thank you for

listening, offering me advice, and supporting me through this entire process.

To my friends and relatives scattered around the globe, thank you for your

thoughts, well-wishes/prayers, phone calls, e-mails, texts, and being there

whenever I needed a friend.

I take this opportunity to thank the Almighty God, for blessing me with

the right people (which includes my supervisors and friends) at the right

time who gave me the right advice to be a happy person (I smile always).

v



Contents

1 Introduction 1
1.1 The PHC workload management challenge . . . . . . . . . . . . . . . . 2
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Collaboration and Ethical approval for this work . . . . . . . . . . . . . 7
1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and Related Work 12
2.1 Care at a PHC level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Terminologies used for planning care . . . . . . . . . . . . . . . 13
2.1.2 Planning LTC care at a PHC level . . . . . . . . . . . . . . . . 15
2.1.3 The Chronic Care Model (CCM) . . . . . . . . . . . . . . . . . 17

2.2 Adopting CCM components at a PHC level . . . . . . . . . . . . . . . 19
2.2.1 Evidence-based care (EBC) . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Patient-centred care (PCC) . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Population-based care (PBC) . . . . . . . . . . . . . . . . . . . 22
2.2.4 Team-based care (TBC) . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Use of IT in health care . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Workload at a PHC centre . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Models of Care . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Simulation in health care . . . . . . . . . . . . . . . . . . . . . . 36
2.3.4 Workload management in health care . . . . . . . . . . . . . . . 39

3 Research Model and Methodology 43
3.1 Our model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 The three-layer LTC PHC construct . . . . . . . . . . . . . . . 44
3.1.2 The encounter-based unfolding plan-of-care process . . . . . . . 44
3.1.3 The Adaptable Best Practice based Workload Prediction Model

(ABP-WPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Our DSRM approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 The holistic view of our research . . . . . . . . . . . . . . . . . . 47
3.2.2 The iterative-cycle approach . . . . . . . . . . . . . . . . . . . . 49

3.3 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



4 Workload Prediction: Initialisation 62
4.1 The workload management challenge - a recap . . . . . . . . . . . . . . 62
4.2 The workload prediction process . . . . . . . . . . . . . . . . . . . . . . 63
4.3 The Drools rule engine and our rules . . . . . . . . . . . . . . . . . . . 65

4.3.1 The Drools objects and facts . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Drools rules formats . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Initial dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Shortcomings of the dataset and compensating with inferences . 73

4.5 Data pre-processing for simulation . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Decision table: to map Read codes to problem class(es) . . . . . 77
4.5.2 Decision table: to identify the CKD stage in a patient . . . . . . 78
4.5.3 Decision table: to calculate the diabetic risk score of a patient . 84
4.5.4 Decision table: to decide recall period for a patient . . . . . . . 87

4.6 The initial patient model for simulation . . . . . . . . . . . . . . . . . . 88
4.6.1 Our cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.2 The LTC appointments that drive the simulation . . . . . . . . 89

4.7 Validation of assumptions, eGFR calculation and the rules . . . . . . . 93

5 Workload Prediction: The Simulation Process 97
5.1 Workload prediction process . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 The rules and the workload simulation . . . . . . . . . . . . . . . . . . 99

5.2.1 Rule to create a patient visit when the recall date is reached for
a patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Rule to create a recall when a patient visit happens. . . . . . . . 103
5.2.3 Rule to update a recall date that falls on a holiday day . . . . . 104

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Patient visits of patients registered with a particular GP . . . . 109

6 What-if Scenario Analysis 111
6.1 Resource-bound scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 Making GPs available for a specific number of LTC patients per
working day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.2 Make nurse appointments available . . . . . . . . . . . . . . . . 118
6.1.3 Every LTC patient with multiple visits with the practice visits a

nurse once a year . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Change in practice policy . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Saturday practice for LTC patients . . . . . . . . . . . . . . . . 123
6.2.2 All patients should have a screening for CVD once a year. . . . 125

6.3 Impact of external factors on the workload . . . . . . . . . . . . . . . . 126
6.4 Implementing new models of care . . . . . . . . . . . . . . . . . . . . . 129

7 Using Bayesian inference in the Workload Prediction Model 133
7.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Prediction Model considering Bayesian inference . . . . . . . . . . . . . 141

7.2.1 A pre-test of using our Bayesian model in simulation . . . . . . 143
7.2.2 Applying Bayesian model to simulate LTC visits for all patients 145

vii



8 Patient Information Model: Support for the population-level work-
load analysis 151
8.1 Ontologies in health domain . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 The three cycle approach . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3 The Relevance cycle and the Environment . . . . . . . . . . . . . . . . 156

8.3.1 Primary Health (PH) data quality . . . . . . . . . . . . . . . . . 156
8.3.2 The missing data puzzle for a population-focused care . . . . . . 157

8.4 The Design cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.4.1 The information inference logic . . . . . . . . . . . . . . . . . . 158
8.4.2 The Patient Information Model . . . . . . . . . . . . . . . . . . 160

8.5 The Rigour cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9 Conclusion 166
9.1 Learnings from related work . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Addressing what is required in a data model. . . . . . . . . . . . . . . . 172
9.3 The choice to use a rule-based system. . . . . . . . . . . . . . . . . . . 173
9.4 The holistic view of our approach . . . . . . . . . . . . . . . . . . . . . 173
9.5 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.5.1 Answering our research questions . . . . . . . . . . . . . . . . . 174
9.5.2 The DSR outputs from this work . . . . . . . . . . . . . . . . . 175
9.5.3 Further contributions . . . . . . . . . . . . . . . . . . . . . . . . 176

9.6 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . 177
9.7 Longer term impact of this line of work . . . . . . . . . . . . . . . . . . 178

References 181

A Appendix 205
A.1 Ethics Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.2 Drools working memory classes and attributes list . . . . . . . . . . . . 208
A.3 Read codes to Problem class mapping . . . . . . . . . . . . . . . . . . . 214
A.4 Chronic Kidney Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.5 Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.6 Hypertension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.7 LTC encodes (aka generic names) and their care plans . . . . . . . . . . 233
A.8 Decision table that decides individual recalls for each LTCs in a patient. 233
A.9 Drools Rules of workload simulation . . . . . . . . . . . . . . . . . . . . 236
A.10 Preprocessing postgreSQL query . . . . . . . . . . . . . . . . . . . . . . 239
A.11 Mapping MedTech32 data to our dataset . . . . . . . . . . . . . . . . . 247

A.11.1 The data mapping process . . . . . . . . . . . . . . . . . . . . . 247
A.11.2 The mapping process for laboratory results . . . . . . . . . . . . 252

A.12 Our PyMC3 Bayesian Inference Model . . . . . . . . . . . . . . . . . . 254
A.13 Bayesian probability calculation for each patient . . . . . . . . . . . . . 258

viii



List of Tables

1.1 Table of refereed publications and corresponding chapters . . . . . . . . 11

2.1 Some case studies that incorporated CCM components . . . . . . . . . 16
2.2 Components of the CCM with their purpose and examples. . . . . . . . 18
2.3 Summary of key features of our workload management model that follow

from the CCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 CCM components emphasised in other studies referred to in this section 26
2.5 Comparison of questions addressed in Hall (2012) and our research ques-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Summary of the approach to develop our model and the studies that

motivated this approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Multi-morbidity matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Comparison of our ABP-WPM to other uses of care pathways. . . . . . 59

4.1 Diabetic risk score calculation factors taken from NZGG (2011). . . . . 67
4.2 CKD-EPI parameter-values . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 ACR stage assign criteria. . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Mapping latest eGFR values from Figure 4.6 and ACR from Figure 4.7

to CKD Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Diabetic care action plan. . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Individual Recall table . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Multi-morbidity matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Income based on consultation. . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Comparison of income in three different cases of workload management 117
6.3 Financial risk analysis for including nurse consultations for low-severity

LTC patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 Financial risk analysis if shifting one visit among many visits of a patient

to a nurse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5 Financial risk analysis if practice dedicate a GP and 3 nurses for its LTC

patients for one more day each week at the practice . . . . . . . . . . . 125
6.6 Summary of financial analysis of the various scenarios discussed in this

chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 Summary of concepts of our patient information model borrowed from
other related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

ix



9.1 Features of related work that motivated our approach to built the work-
load prediction model, and how they differ from our work. . . . . . . . 167

A.1 Care plans applied to generic names of LTCs used in this work. . . . . 233

x



List of Figures

1.1 Structure of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 KP model from WHO (2016b) incorporated with the business entities
from Pines et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 CCA framework redrawn based on (Struijs et al., 2015, p. 525). . . . . 33

3.1 Theoretical constructs used in our model. . . . . . . . . . . . . . . . . . 45
3.2 The encounter based unfolding plan-of-care process. . . . . . . . . . . . 46
3.3 The holistic view of our research process. . . . . . . . . . . . . . . . . . 48
3.4 Our DSRM process (adapted from DSR process presented by Vaishnavi

and Kuechler (2007) (p. 15). . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Iterative cycles followed to develop our rule-based workload simulation

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Initial results of simulation for 3-monthly recalled patients. . . . . . . . 54
3.7 Comparison of simulated workload (the red line) with historic LTC visits

(including visits for medication prescription (the black line) and without
medication prescription (the green line)) by the hypertensive patients. . 56

3.8 Comparison of simulated workload with historic LTC visits by the same
patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Our contribution to using care pathways. . . . . . . . . . . . . . . . . . 60

4.1 Overview of the workload prediction process modified1 from Devananda
et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 A partial entity-relationship diagram. . . . . . . . . . . . . . . . . . . . 66
4.3 Drools decision table to calculate diabetic risk score. . . . . . . . . . . 70
4.4 CKD stage recall plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Mapping Read codes to problem classes: a partial Drools decision table. 79
4.6 eGFR parameter assign table. . . . . . . . . . . . . . . . . . . . . . . . 81
4.7 ACR calculation in a decision table. . . . . . . . . . . . . . . . . . . . . 82
4.8 eGFR and ACR used to determine CKD stage. . . . . . . . . . . . . . 85
4.9 Diabetes risk score of a patient. . . . . . . . . . . . . . . . . . . . . . . 86
4.10 Trend of last visits of patients per year categorised by their recall period

and quarterly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.11 Comparison of simulated visits of patients with only CKD (using their

most recent visit in 2013) vs actual LTC visits for the year 2014. . . . . 91
4.12 Comparison of number of expected visits as per care plan and actual

number of visits categorised by year and morbidity. . . . . . . . . . . . 92

xi



4.13 Trend of randomly chosen last visits of patients for the year 2013. . . . 93

5.1 Overall process showing inputs and how the recalls are mapped to a
calendar, and then aggregated to weekly workload. . . . . . . . . . . . 100

5.2 Comparison of (per year) total number of actual LTC visits and expected
number of LTC visits from LTC patients (categorised by their most
frequent recall period) whose workload is generated for 2014. . . . . . . 106

5.3 Average number of visits per patient per year differentiated by number
of LTCs (multi-morbidity). . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Comparison of simulated visits, the 12-monthly recalls updated to six-
monthly recalls and choosing a last visit date from multiple visits for
each patient over the last year, vs actual LTC visits of cohort patients
for the year 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Patient visit vs simulated visit for patients registered with a specific GP. 110

6.1 The New Zealand’s Ministry of Health Funding model (Ministry of
Health NZ, 2016e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 The capacity-mismatch problem. . . . . . . . . . . . . . . . . . . . . . 115
6.3 Making GPs available for 10 LTC patients per working day. . . . . . . 118
6.4 Impact of shifting less severe patients to nurses on the predicted workload.120
6.5 Impact of having Saturday practice. . . . . . . . . . . . . . . . . . . . . 125
6.6 Requirement to have fewer LTC appointments during influenza outbreak

will have adverse impact on predicted workload. . . . . . . . . . . . . . 128
6.7 Increase in workload due to a new model of care. . . . . . . . . . . . . 130

7.1 Initial results of simulation for 3-monthly recalled patients. . . . . . . . 134
7.2 Likelihood of a visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Comparison the (unnormalised) likelihood of patient visits with and

without skewing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4 Trace plot for parameter posterior distribution samples given observed

visit values for a patient (Run 1). . . . . . . . . . . . . . . . . . . . . . 140
7.5 Trace plot for parameter posterior distribution samples given observed

visit values for a patient (Run 2). . . . . . . . . . . . . . . . . . . . . . 141
7.6 The time line reference dates in context for Bayesian inference. . . . . . 143
7.7 Simulation results for three-monthly recalled patients (clean data) [Run

1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.8 Bayesian inference applied to all LTC patients using their recall period. 146
7.9 Bayesian inference (using distance function that predicts late or early

visits) applied to all LTC patients using their recall period. . . . . . . . 147
7.10 Simulation results for Method A. . . . . . . . . . . . . . . . . . . . . . 148
7.11 Simulation results for Method B. . . . . . . . . . . . . . . . . . . . . . 149
7.12 Simulation results for three-monthly recalled patients (clean data) [Run

2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.1 SNOMED CT Design from taken main page of SNOMED International
(2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xii



8.2 Hevner’s three-cycle DSRM approach applied to develop our patient
information data model. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 The Patient Information Model. . . . . . . . . . . . . . . . . . . . . . . 161

xiii



List of Abbreviations

ABP-WPM Adaptable Best Practice based Workload Prediction Model
ABS Agent-Based Systems
BPAC Best Practice Advocacy Centre
CCA Care Continuum Alliance
CCM Chronic Care Model
CDSSs Clinical Decision Support Systems
CIGs Computer Interpretable Guidelines
DES Discrete Event Simulation
DSRM Design Science Research Methodology
EBC Evidence Based Care
GP General Practitioner
II Information Interpretation
KP Kaiser-Permanente
LTCs Long-Term Conditions
MCNs Managed Clinical Networks
PBC Population Based Care
PCA Primary Care Advisor
PCC Patient Centred Care
PH Public Health
PHC Primary Health Care
PHO Primary Health Organisation
QDM Quality Data Model
RBD Rule-Based Development
SC Simulation Capability
SD System Dynamics
TBC Team Based Care
WHO World Health Organisation

xiv



Glossary

Active medication A medicine prescribed for a patient within four months
of the date of appointment of the patient.

Best practice guidelines Clinical guidelines reviewed to meet the health care
management needs locally within a country, region or
a medical practice.

Care pathway Focuses on a specific LTC management needs.
Care plan Focuses on a specific LTC management need in an indi-

vidual.
Longterm Condition The health condition of a patient that is longterm and

can be managed through timely interventions; e.g., dia-
betes, hypertension and asthma.

Multi-morbidity Coexistence of more than one LTC in a patient.
Plan-of-care Addresses multi-morbidity management needs in a pa-

tient.
Population-based care Planning and delivering care for a group of patients who

share common health care needs.

xv



Chapter 1

Introduction

Worldwide, long-term conditions (LTCs) such as diabetes, hypertension and asthma

are becoming more common as the population ages (He et al., 2016; Ministry of Health

NZ, 2016b). The New Zealand Burden of Diseases, Injuries and Risk Factors Study

found that older people will live longer with multi-morbidity1 and associated health care

needs (Ministry of Health NZ, 2016c). Consequently, costs for care and the challenge

of providing care to patients with LTCs are expected to grow significantly in the next

20-30 years (Mabotuwana and Warren, 2010; Mays, 2013; National Health Board NZ,

2010). This thesis addresses managing this growing demand for care due to LTC

patients at a primary health care level.

A primary health care (PHC) system is usually the first point of contact with the

health system of a country (WHO, 1978). The Ministry of Health NZ (2017i) describes

a PHC as “the professional health care provided in the community, usually from a gen-

eral practitioner (GP), practice nurse, pharmacist or other health professional working

within a general practice”. Likewise, most countries usually aim to provide the general

health care services through a general practitioner (GP) or a practice nurse at a PHC

centre (Montague, 2014).

LTCs are defined as “any ongoing, long-term or recurring conditions that can have

a significant impact on people’s lives” (Ministry of Health NZ, 2017c). Due to the LTCs

becoming more common, recently, in addition to providing general care, the focus of

PHC systems is turning towards prevention, early detection and well-management of

LTCs in a patient (Ministry of Health NZ, 2016b,d; WHO, 2016b). As most LTC

patients live with multi-morbidity, more complex care is needed to meet their LTC

management needs (Johnson, 1997; WHO, 2016c). So, ideally, multiple care providers

1Multi-morbidity is the coexistence of more than one LTC in a patient.

1



should provide care, following a care planning process that considers all the LTCs in a

patient, and results in a shared plan-of-care2 for the patient (Burt et al., 2014; Wagner,

1998; WHO, 2016c). A plan-of-care is thus expected to address the health care needs

of all the LTCs, including shared goals and benefits of interventions by various care

providers, as required for the patient (Burt et al., 2014).

In order to meet the demand of care for (multi-morbid) LTC patients, the PHCs

need to plan. Planning is required for individual patient care, but LTC patients bene-

fit better from planning for a population of patients (Wagner, 1998), which has led to

more attention being given to population-based care. Population-based3 care considers

care for a group of patients who share a common trait (Wagner, 1995). This common

trait could be sharing the same GP, being diagnosed with the same LTC, or follow-

ing a similar plan-of-care (WHO, 2005, pp. 45). Population-based care, according to

Wagner (1995) “uses guidelines, and epidemiologic data and techniques to plan, orga-

nize, deliver and monitor care to specific clinical sub-populations such as diabetics”.

Population-based care can thus help a PHC system to address the LTC management

needs of a group of LTC patients, and also, to equip the PHC system dynamically,

i.e., according to the growing demand of care due to these LTC patients (Mays, 2013;

Ministry of Health NZ, 2017k; WHO, 2016c). This planning for a population of LTC

patients can also allow a shift from reactive, episodic patient management to a proac-

tive, continuous and systematised care.

1.1 The PHC workload management challenge

Currently, the PHC system is a patient-initiated, reactive system (Montague, 2014).

Moreover, the PHC system is designed for acute, shorter period appointments (Wagner,

1998). Usually, GP appointments are fixed 8, 10 or 15-minute slots (Wallace et al.,

2015; WHO, 2002). However, LTC patients require longer appointments to address the

health care needs of multiple LTCs (if any) in them (Johnson, 1997). Therefore, the

growth in the number of people with LTCs will impact adversely on the performance

(both clinical and financial) of PHCs. Hence, there is a need to shift this current

practice from a patient-initiated, reactive care setting to a proactive, systematised

PHC setting for better, efficient and effective chronic care (Ham, 2010; Ministry of

2Chapter 2 provides a detailed discussion of plans-of-care, as well as related concepts such as care

plans, and care pathways.
3In this work, population-focused, population-based and population-level are used interchangeably

to relate to care targeting a group of patients.
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Health NZ, 2000). A population-based approach will help to make this transformation

systematic and smooth (Pines et al., 2015). However, a PHC system faces three major,

interlinked, challenges that hinder planning care for a population of patients.

1. LTC patients account for the vast majority of appointments within the PHC

system (McPhail, 2016). Furthermore, their multi-morbidity requires longer ap-

pointments (Johnson, 1997), which in turn, adversely affects the overall efficiency

of a medical practice.

2. There is a gap between the demand for care and the capacity of a medical practice

to handle the challenges due to LTCs (Hefford, 2006; Ministry of Health NZ, 2000;

Townsville Mackay Medicare Local, 2012). Moreover, government health strate-

gies such as Victoria’s International Health Strategy 2016-2020 (Department of

Health & Human Services, 2016), New Zealand Health Strategy 2016 (Ministry of

Health NZ, 2017h), and the Public Health Strategy by the Department of Health

Nunavut (2018), that aim to improve LTC patient outcomes through integrated

care, unfortunately have adverse affects on the workload of health professionals

(Stokes et al., 2017).

3. Usually, due to various barriers in a PHC context, both primary care providers

and patients tend not to adhere to clinical guidelines (Fischer et al., 2016; Haynes

and Haines, 1998; Overington et al., 2014). Moreover, though studies (Chaudhry

et al., 2006; Woolf et al., 1999) show that adherence to clinical guidelines improves

the quality of care and enables patients to manage their LTCs better, intervention

by multiple care providers often leads to fragmented LTC care (Stokes et al., 2017;

WHO, 2016c).

1.2 Research questions

The increase in the number of patients with LTCs poses a major challenge to managing

the workload at a PHC centre. Population-based care can help address this workload

management problem, specifically by shifting from a reactive to a proactive patient

management approach. However, managing patients proactively requires planning tools

that can plan, organise and deliver care (Wagner, 1995). Currently, PHC systems lack

such planning tools (Ministry of Health NZ, 2017k). Hence, for this research, the

problem is identified as to “predict the workload, if a medical practice followed
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the best practice4 for its LTC patients. The PHCs also need a tool to explore various

ways to manage this workload within the capacity of a practice, which may also include

variations in the health policies at a practice.”

Specifically, this thesis addresses the following research questions:

RQ1 Given a medical practice that follows best practice plans-of-care, what

model(s) can be used to predict the population-based care workload? This ques-

tion specifically focuses on the workload that is expected to arise from the demand

of care to meet the LTC management needs in a PHC context.

RQ2 How can this predicted workload be analysed in various what-if scenarios? For

example, if the less severe patients are attended by nurses, or if a new model of

care is adopted for their LTC patients, what is the change in workload of the

GPs?

RQ3 How can the impact of various health policies be studied at an organisational

level? For instance, what is the impact on workload if all LTC patients at the

practice should have an annual CKD screening?

(RQ1) Workload prediction

A PHC centre provides “general” care, which includes care for acute cases, immuni-

sations, LTC management needs and acute exacerbation of LTCs in a patient (WHO,

1978). Attending to these health care needs, the required interventions could be events

such as clinical reviews, observing lab measurements and prescribing medications, that

contribute to the workload on various care providers at a PHC centre. We address this

workload from three dimensions.

1. Stratify LTC workload from other cases; We focus on the workload that arises

specifically from LTC management in a patient population at the PHC centre.

2. Focusing on the workload of the GPs; Assuming that currently the LTC patients

are attended by GPs, we focus on the workload on the GPs.

3. Aggregating the number of clinical reviews (hereafter referred to as recalls) of LTC

patients for their LTC management needs, to present weekly workload figures;

4Best practice guidelines are clinical guidelines reviewed to meet the health care management needs

locally within a country, region or a medical practice (Johnson, 1997).
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We assume that GPs follow the best practice to manage their LTC patients, hence the

recall decision for a patient is driven by care pathways (see Section 2.1.1) applicable

to them.

(RQ2) What-if scenarios

Knowing the upcoming workload can help to plan resources accordingly (Heroman

et al., 2012). What-if scenarios explore various options to manage the predicted work-

load at a PHC practice. A few examples include shifting low risk patients from a GP to

a practice nurse which would obviously, make the GP more available for other patients.

This analysis would justify the measures taken to manage the LTC workload efficiently

within the capacity of the practice. This would also help the organisation equip itself

with the right mix of various care provider roles to meet their LTC patients’ needs. A

change in policy or practice could have both clinical risks (i.e., related to the quality

of care delivered) and financial risks (i.e., the financial impacts) on the practice. In

our what-if scenarios, therefore, we also explore the impact of financial risks for the

practice.

(RQ3) The impact of health policies

Most government health strategies are implemented at a national level. For example,

recently, the Ministry of Health NZ (2016a) implemented their “Living well with Dia-

betes” plan to address the prevalence of diabetes among the New Zealanders. However,

currently medical practices lack the ability to predict and understand the impact of

a health strategy at an organisational level - the volume of increased access to health

care services and its impact on health professionals is unknown. This thesis presents

a model that enables the impact of such policies for a PHC centre to be simulated.

This would help the organisation to review the best practice guidelines and re-adjust

its policies accordingly.

While RQ 2 and RQ 3 are closely related, they address two different aspects. Specif-

ically RQ 2 addresses aspects within the medical practice where there is more autonomy

for the practice to tackle the workload changes. While RQ 3 addresses specifically the

impacts of national level strategies where the medical practice has less autonomy but

can address the impact in some way within its capacity.

Having the care pathways depicted in an “If-Then” format (Alther and Reddy,

2015), we use a rule-based approach in this work to simulate the care pathways and
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patient visits to predict the workload of a GP, and to explore various what-if scenarios

to manage this predicted workload. The use of rule-based models in health care domain

is widely accepted.

The benefits of using a rule-based system include the following. (Minutolo et al.,

2017; Shiffman, 1997; Shortliffe, 1974):

1. We can extend the rule-base by adding new rules, i.e., the modularity feature

of rule-based systems where rules can be added (extended) without need for

change of other rules; this feature helps us to incrementally build and evaluate

our workload prediction model through an iterative cyclic approach presented in

Chapter 3.

2. We have the flexibility to choose different rules based on the facts expressing the

current context, i.e., the openness feature of the rule-based systems enables us

to have rules for an environment and only those rules that match the specific

context would fire. This feature is extensively helpful in medical systems. In our

case, this feature helps us to apply a plan-of-care to a patient.

3. It enables dynamic handling of changes through rules being re-activated based on

changes to facts during the execution of rules, i.e., the automated modifiability

behaviour of rule based systems. This feature is essential to explore our what-if

scenarios. In our what-if scenarios, we require to change the rules based on the

context. For instance, in a scenario it would first allocate workload to the GPs,

which later need to be re-scheduled to the nurses.

In a nutshell, this study aims to simulate patient visits for the upcoming year (since

some start date). It is assumed that the GPs follow best practice and their patients

adhere to their plan-of-care, making visits to the medical practice on their scheduled

LTC management recalls5. Then, these visits are aggregated to a population-level as a

count of appointments per week from these LTC patients, referred to as the workload

to be managed within the capacity of the practice.

Apart from answering these research questions, this work makes two more contri-

butions.

1. We built a workload prediction model which assumes that the patient will visit

on the scheduled recall date, calculated based on the care pathways applicable

to them. However, in reality the patient’s decision to visit may be before, on, or

5In this work, we refer to follow-ups or subsequent appointments for a patient as their recalls.
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after this scheduled recall; we observed that this behaviour varies across patients

and across visits. Hence, we also propose the use of Bayesian inference in our

workload prediction model (see Chapter 7).

2. In the process of developing the population-level workload prediction model, we

identified shortcomings in current health data models (for example, the LTC

status of a patient is not explicit), which is needed to support a population-level

workload analysis. We therefore developed a patient information data model.

This work follows a design science research methodology (DSRM). The DSRM

address(es) the identified problem(s) in a domain through iterations of a “build-and-

evaluate loop” to develop a final design of an artefact with evaluation, feedback, and

contributions to the literature occurring at the end of each cycle (Hevner et al., 2004).

In this work, the identified problem is the lack of a workload planning tool for a PHC

centre. We also present the DSR constructs, the process and the artefact, an adaptable

best practice based workload prediction model (ABP-WPM). The iterations to generate

this PHC workload management simulation model were primarily driven by feedback

from Dr. Hywel Lloyd (hereafter referred to as the “Primary Care Advisor” (PCA)).

1.3 Collaboration and Ethical approval for this work

This work is done in collaboration with the Best Practice Advocacy Centre New

Zealand (BPAC), a non-profit organisation that aims to promote best practice for

primary health care in New Zealand (see Best Practice Advocacy Centre New Zealand

(1997)). The collaborations were in the form of

1. health data from a medical practice;

2. the knowledge base to understand the primary health care domain, and the prac-

tical issues at a medical practice.

PCA is a representative of BPAC and is the collaborator of this work. Recently,

he changed his role from the Director of Informatics, South Link Health to the Medi-

cal Director of Strategy, Primary and Community of Southern District Health Board

(DHB). He is a GP himself and also holds an honorary lecturership at the Department

of Rural Health and General Practice, University of Otago. Approval for this research

using the anonymised patient data provided by BPAC has been given by the University
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of Otago Human Ethics Committee (Health) (refer to Appendix A.1 for the approval

letter).

A major step in following DSRM is communicating the developed artefact to a

broader community (both technology and management oriented audience) including the

potential beneficiaries of the study (Hevner et al., 2004; Vaishnavi and Kuechler, 2007).

Apart from the feedback from the PCA, feedback was also collected through informal

meetings with the care providers of a medical practice at Mosgiel, the members of

the Waikato Primary Health Organisation (PHO) including chief medical officers, and

members of Southern and Otago DHB including the chief executive officer (CEO), chief

information officer (CIO), general manager and others of WellSouth PHO, at various

stages of development of this artefact. The artefact developed was also communicated

to a research community through two publications (refer to Table 1.1 for the list of

publications).

1.4 Organisation

This thesis is structured as follows. Chapter 2 provides an overview of planning care

at PHC level and why planning care for a population is important. This chapter also

discusses the challenges for an effective PHC workload management and the various

workload management systems in health care. This chapter also covers the use of

health information technology to support LTC management, with a specific focus on

the application of rule-based systems in the health care domain.

Chapter 3 presents our research model and the design science research methodology

(DSRM) used to develop our workload prediction model. This chapter covers the

holistic view of our research process. We also discuss the cyclic approach followed to

develop the workload simulation model according to the DSRM.

The workload prediction model is explained in Chapters 4 and 5. Chapter 4 explains

the data pre-processing process and presents the initial patient model that drives the

simulation process. This chapter gives more details of the micro-iterations of DSRM

that helped to define the rule base for workload prediction. Chapter 5 explains the

simulation process and the results of our workload prediction model.

Knowing the workload can help the organisation manage it effectively. Chapter 6

analyses seven what-if scenarios which demonstrate the ability to analyse the impacts

of resource bound policies, external factors, changes in practice policies and adopting

new models of care and evaluate strategies to address them.
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Chapter 7 presents a Bayesian inference approach applied to patient’s prescription

renewal cycles and their likelihood of visiting early or late for an appointment. This is

then applied in the context of predicting patient visits.

Chapter 8 presents current health ontologies and how the shortcomings in current

health data models prompted us to develop the patient information data model to

support a population-level workload analysis.

Chapter 9 discusses the contribution of this thesis, its limitations and scope for

future research.

Figure 1.1 presents the structure of this thesis.
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Chapter 1: Introduction

•Motivation

•Research questions

Chapter 2: Literature review

•Background

•Related work

Chapter 3: Research methodology

•Research model

•Research process (DSRM)

Chapters 4&5: Workload prediction

•Chap 4: Initialization

•Chap 5: Simulation process

Chapter 6: What-if scenarios

•Resource bound management

•External event impact analysis

•New models of care

•Change in Practice policies

Chapter 7: Bayesian Inference 
model

• Likelihood of medication 
prescription and patient visit

Chapter 8: Patient Information 
Model

•Data inference rules applied

•Population-level workload 
analysis data model

Chapter 9: Conclusion

• Findings 

• Limitations and future work

Figure 1.1: Structure of this thesis.
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1.4.1 List of publications

The papers published from the work presented in this thesis are summarised in Table

1.1. The table also shows the chapters that each paper is related to.

Table 1.1: Table of refereed publications and corresponding chapters

Devananda, Manjula; Cranefield,

Stephen; Winikoff, Michael; and

Lloyd, Hywel, (2017). “Workload

prediction model of a primary

health centre”. In Proceedings

of the 25th European Conference

on Information Systems (ECIS),

Guimarães, Portugal, June 5-10,

2017 (pp. 1192-1204). ISBN 978-

989-20-7655-3.

This paper presents the rule-based

workload simulation model of a PHC

centre, initial results of the work-

load simulation model considering

patients with CKD6 and diabetes

only. I developed the workload pre-

diction model and was the primary

contributor to the writing. The

other authors were my PhD super-

visors and the collaborator of this

work (Lloyd, Hywel).

Chapters

2, 4 and

5.

Devananda, Manjula; Cranefield,

Stephen; Lloyd, Hywel; and

Winikoff, Michael, (2017). “Pa-

tient Information Model to Sup-

port Population-level Workload

Analysis”. In Proceedings of the

28th Australasian Conference on

Information Systems (ACIS), Ho-

bart, Australia, Dec 4-6, 2017.

This paper presents the shortcom-

ings of current PHC data models to

enable a population-level workload

analysis of a PHC medical practice.

It proposes a patient information

model developed following Hevner’s

Three cycle DSRM approach. I

developed this patient information

model for population-level workload

analysis and was the primary con-

tributor to the writing. The other

authors were my PhD supervisors

and the collaborator of this work

(Lloyd, Hywel).

Chapters

2 and 8.

6Chronic Kidney Disease

11



Chapter 2

Background and Related Work

Demand for care is growing dramatically due to an increasing number of people with

long-term conditions (LTCs). Long-term conditions are defined as “any ongoing, long-

term or recurring conditions that can have a significant impact on people’s lives” (Min-

istry of Health NZ, 2017c). Generally, LTCs exist for a prolonged duration (months

or years), that tend to eventually lead to associated complications such as developing

multi-morbidity in a patient (O’Halloran et al., 2004; Starfield, 2001). Therefore, the

care for such LTC patients can span across various levels of the health care system.

A health care system is a multi-tier care delivery system with primary, secondary

and tertiary tiers, with the primary health care (PHC) level being the first point of

contact with the health care system (Ministry of Health NZ, 2017b; Montague, 2014).

While the PHC level provides more “generalist care”, the secondary and tertiary care

levels provide more specialist and advanced care (WHO, 1978). In other words, these

three tiers of care delivery differ in their mode of care delivery, the speciality of their

care team, and thus the care itself as well as the cost of the care (Ministry of Health

NZ, 2000; WHO, 1978). However, when required, care for LTC management at a

primary health care level may involve specialists from the secondary or tertiary levels

(Ministry of Health NZ, 2016e). Consequently, for effective and efficient LTC care, the

care must be coordinated or sometimes integrated into primary health care planning

(Ham, 2010).

As mentioned in the introduction, this work focuses on workload from LTC man-

agement needs for patients at the PHC level. Therefore, in this chapter we discuss

work related to care at a PHC level, how LTCs are usually managed, the role of IT

systems in clinical decision-making regarding care delivery, and what health care work-

load management strategies are in place or are discussed in the literature.
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Sections 2.1 and 2.2 will therefore set the background for this research and the

following sections present related work.

2.1 Care at a PHC level

A PHC system is often the first point of contact with the health system for any person

(WHO, 1978). In order to access the health care facilities within a PHC centre, the

patients initially enrol with a medical practice or a general practitioner (GP) at a

medical practice (Montague, 2014). Once enrolled, these patients book appointments

with care providers when needed (Johnson, 1997). A health care provider attends to

the health care needs of a patient (Johnson, 1997). In other words, a PHC provides a

patient-centred, general care to the public, i.e., it aims to meet the individual health

care needs of a patient registered with it (Montague, 2014; WHO, 1978). Hence,

patient-driven appointments account for the workload at a PHC level.

According to World Health Organisation (WHO, 1978), the primary health care

system of a country must implement the Eight Program Elements of PHC, which in-

clude immunisations, the prevention, control and appropriate treatment of common

diseases and injuries, and health education. Managing the health of a patient may

include patient education, timely recalls, repeated medication prescriptions and labo-

ratory tests (Silagy and Weller, 2001). Hence, although a person is enrolled with a GP

at a PHC centre, subsequent care delivery may involve other care providers such as

nurses and lab technicians. Moreover, in the case when the GP assesses the health care

needs of a patient to be beyond the care provided at a medical practice, the patient is

referred to secondary or tertiary care (Ministry of Health NZ, 2000; Montague, 2014).

Therefore, proactive planning of care delivery at a PHC level is essential.

2.1.1 Terminologies used for planning care

Care delivered at a PHC is usually evidence-based. Evidence-based care (EBC) is

where a clinician applies both their clinical expertise, gained through experience, and

the available external evidence, usually developed through research, experience and

technology, to meet a patient’s health care needs (Campbell-Scherer, 2010; Silagy and

Weller, 2001; Weiner, 2009). This available external evidence is usually published

as a care pathway which clearly defines the timely interventions, the types of these

interventions, and what must be done in order to manage that specific health condition

of a patient (Sackett, 1997; Silagy and Weller, 2001).
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In order to understand how this evidence-based care is used to plan care for a

patient, it is important to understand the concepts of care pathways, care plans and a

plan-of-care (also called a treatment plan) as used in the health care context. There are

several studies, such as those by Calvan et al. (2011); Fox et al. (2006); Johnson (1997);

Mathers et al. (2011) and Smith et al. (2012), that use these terms interchangeably.

For example, Fox et al. (2006) uses care plans to schedule the activities that should

take place to meet individual management needs, while Mathers et al. (2011) refers

to a treatment plan to schedule activities to meet the LTC management needs of a

patient. Therefore, in this thesis we make a clear distinction between these terms as

described below.

The Institute of Medicine (US) Committee on the Future of Primary Care (1996)

defined guidelines as “systematically developed statements to assist practitioner and pa-

tient decisions about appropriate health care for specific clinical circumstances”. Since

then, health care agents such as the Guideline Clearing House of the Agency for Health-

care Research and Quality (2014b), the UK National Institute for Health and Clini-

cal Excellence (NICE, 1999) and Scottish Intercollegiate Guidelines Network (SIGN,

2001), review and publish clinical guidelines based on the most recent scientific evi-

dence available. These clinical guidelines, usually represented as flowcharts, are called

care pathways1.

While care pathways document intervention details, such as when a patient must

be recalled, which lab tests should be done and how frequently, to meet the health

care needs of a specific health condition of a patient, care plans instantiate a care

pathway in a patient (Burt et al., 2014; Sackett, 1997). Thus, care pathways focus

on standardising the process of care for a specific health condition and care plans are

more specific to which path of the care pathway applies to a patient (Best Practice

Advocacy Centre New Zealand, 2012; Burt et al., 2014; Calvan et al., 2011; Fox et al.,

2006; Government of Canada Health, 2004; Smith et al., 2012).

Generally, a GP addresses every LTC present in a patient (Johnson, 1997). There-

fore, in the context of LTC care, in order to plan care that addresses all the LTC

management needs of a multi-morbid patient, more than one care pathway has to be

considered (Wagner, 1998). For us, this is equivalent to following a step-by-step pro-

cess, which initially builds a care plan for each LTC in the patient and then merges

these care plans to form a single plan-of-care for the patient.

The box below highlights these terminologies and their definitions in the context of

1Care pathways are also referred to with many other names, see Johnson (1997) (p. 4)
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this thesis.

Care pathway: focuses on a specific LTC’s management needs.

Care plan: focuses on a specific LTC’s management need in an individual.

Plan-of-care: addresses multi-morbidity management needs in a patient.

2.1.2 Planning LTC care at a PHC level

Wagner (1995) identified that the usual primary care is designed to provide easy access

and care for acute cases with an emphasis on patient flow, short appointments and

patient-initiated follow-ups. On the other hand managing LTCs in a patient requires

more planned, systematic assessments and attention to treatment guidelines. Most

often, intervention by various care providers is inevitable to manage multi-morbidity

in a patient (Reeves et al., 2014). It is clear that when multiple such roles intervene,

they must work collaboratively and coordinate to plan care and, would need to refer to

the same plan-of-care developed for a patient (DHS Primary Health Branch Victoria,

2008; Harris and Zwar, 2007). Hence, an evidence-based care planning process is needed

to develop a shared plan-of-care for an LTC patient (Amir et al., 2015; Johnson, 1997;

Weiner, 2009). Thus, care planning is a process that may involve multi-disciplinary

roles, to plan care for a patient, and a plan-of-care is an outcome of that process.

A plan-of-care developed following a comprehensive care planning process plays a

vital role in the quality of care delivered (Young et al., 2017). Studies (Amir et al.,

2015; Reeves et al., 2014; Utley and Worthington, 2012; Weiss, 1998; Woolf et al.,

1999) show that following a care planning process for LTC management has many

advantages, such as:

• multi-morbidity in an LTC patient is addressed through a single plan-of-care for

the patient; therefore, a care planning process will be patient-centred rather than

treating LTCs in isolation.

• it involves multidisciplinary roles to plan and deliver care, and thus avoids frag-

mented care and ensures continuity of care for an LTC patient;

• adherence to a plan-of-care avoids clinical errors such as repeated lab tests and

prescribing interacting medications for an LTC patient. Planning of care will

consider all LTCs present in a patient, which in turn, will have a view of all the

care actions needed; for example, a list of all the lab tests required, and thus a

care provider can easily avoid repeated lab tests.
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• it clearly articulates the role of each care provider of the patient. This trans-

parency invokes coordinated, integrated care as well as motivates an LTC patient

to manage health better (Babiker et al., 2014), which in turn leads to better health

at a lower cost.

Wagner (1995) claims that rather than planning care for an individual, planning

care for a population of patients would benefit chronic patients. Later in 1998, he

proposed a theoretical framework, the chronic care model (CCM) that clearly specifies

the elements of change required to deliver effective and efficient chronic care. As

described below, Bodenheimer et al. (2002a) then enhanced the CCM further to add

patient safety, care management and case management to the CCM model. Therefore,

since it is widely accepted (Table 2.1 lists a few case studies) to improve quality of

chronic care delivered, in the following subsection I will describe the components of

CCM and which aspects of CCM are incorporated in the work presented in this thesis.

Table 2.1: Some case studies that incorporated CCM components

Name CCM components imple-

mented

Chronic illness

considered

Premier Health Partners

(US) (Premier Health,

2018)

Decision support, physician

performance feedback

Diabetes

HealthPartners Medical

Group (US) (HealthPart-

ners, 2018)

Disease registry, case man-

agement, primary care teams

Diabetes

Clinica Campesina (US)

(Clinica, 2018)

Self-management, disease

registry, reminder systems

and primary care teams

Diabetes, cardio-

vascular disease,

asthma, and hyper-

tension

Kaiser-Permanente

Northern California

(US) Pines et al. (2015)

Primary care team, dis-

ease specific care manage-

ment, asthma registry, self-

management for asthma pa-

tients, clinical information

systems

Diabetes, coronary

artery disease,

hyperlipidemia,

asthma and con-

gestive heart failure
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Chains of Care (Sweden)

(Åhgren, 2003)

Primary care teams, care-

management, delivery system

design

Patients with simi-

lar conditions were

grouped together

Disease Management

Programs (Germany)

(Institute for Quality

and Efficiency in Health

Care, 2016)

Evidence-based guide-

lines, clinical information

systems, health care organ-

isation, self-management,

population-based prevention

oriented

Diabetes

Managed Clinical Net-

works (UK) (Skipper,

2010)

Coordinated care, link be-

tween various levels of health

care system, health care or-

ganisation, delivery system

Cardiac services,

neonatal care and

cancer.

2.1.3 The Chronic Care Model (CCM)

In 1995, Wagner identified that complex needs due to multi-morbidity requires more

planned, systematic assessments and attention to treatment guidelines and so proposed

the chronic care model (CCM). In his CCM, he highlights six components required to

improve care for chronic patients.

As given in Table 2.2, the components emphasise the role of community resources

such as exercise groups and patient education classes. CCM also mentions how to

reorient a health care organisation, specifically the link between the care provider

organisation and the insurance providers and other stakeholders. He portrays in his

CCM that self-management of LTCs plays an important role in chronic care.

In order to self-manage LTCs in patients, they must be educated and trained to

exercise, diet and use monitoring tools such as blood pressure cuffs and glucometers.

Wagner claims that creating care teams with a clear division of roles and responsibil-

ities, including training non-physician roles to support patient care, can improve care

delivery. He also asserts that evidence-based care must be integrated into the daily

care delivery process to standardise and systematise chronic care.

Finally, the CCM emphasises the use of computerised information systems to aug-

ment care delivery. Wagner claims that computerised information can be used effec-

tively to generate timely reminders for the follow-ups, to maintain disease registries

for population-based information and, also as a feedback system for the physicians to
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Table 2.2: Components of the CCM with their purpose and examples.

CCM components Purpose of the CCM component Examples

Community resources

and policies

To associate care provider organisations with

community-based resources

Exercise programs, senior centres, self-

help groups

Health care Organisa-

tion

Structure the values and goals and its relationship with

insurers to prioritise chronic care

Reimbursement environment, pur-

chasers and insurers

Self-management Sup-

port

Involves collaboratively helping patients and their fam-

ilies to acquire skills and confidence to manage their

conditions, provide self-management tools such as blood

pressure cuffs and glucometers

Diet, exercise, self-monitoring, medica-

tion use

Delivery System Creating practice teams with clear roles and responsi-

bilities.

Non-physician personnel are trained to

arrange routine periodic tasks such as

foot examinations.

Clinical Information

Systems

Plays three important roles namely as reminder systems

to help comply with practice guidelines, as feedback sys-

tem to physicians and as registries for planning individ-

ual patient care and conducting population-based care.

Registries lists all patients with a par-

ticular chronic condition

Decision Support Evidence-based clinical practice guidelines are inte-

grated into daily practice

Guidelines are reinforced for practice

teams.

18



reflect on how their patients are managing their LTCs, which in turn, can help improve

effectiveness and efficiency of care delivered.

Later, Bodenheimer et al. (2002b) enhanced the CCM with an emphasis on pa-

tient safety, case management and care management. It is thereafter referred to as

the enhanced CCM model. Ever since the enhanced CCM was introduced, it is seen

as a guide to design and deliver effective chronic care. It advocates organising princi-

ples that help identify the changes required to improve care coordination and for the

care delivered to be evidence-based, population-based and patient-centred for chronic

patients (Bodenheimer et al., 2002a; Glasgow et al., 2001).

2.2 Adopting CCM components at a PHC level

Although, the case studies in Table 2.1 implement only some aspects of the CCM in

their care delivery, they demonstrate that adopting one or more components of CCM

improved quality of care. Moreover, based on Wagner (1995) and Kane et al. (2005),

Ham (2010) describes ten characteristics of a high performing chronic care system

which emphasise care teams, population-based care, emphasis on evidence-based care,

integrated care and coordinated care for chronic patients. Therefore, we chose to

implement some components of CCM components in our workload prediction model.

Table 2.3 summarises features of our workload management model and showcases the

various components of CCM being considered through those features.

In our workload management model, we use the best practice guidelines for manag-

ing LTCs as a tool to decide the frequency of recalls of the patient. We then aggregate

these predicted recalls on a weekly basis for a population-level workload analysis. In

order to identify which care pathways apply to these patients, to predict the upcoming

workload from these LTC patients and, to analyse the predicted workload, we use rule-

based systems. It also thus makes our proposed model align with the characteristics of

a high performing chronic care model.

The rest of this section, therefore, discusses these aspects, namely, evidence-based,

patient-centred, population-based care, team-based care, and the use of IT in the health

care domain. In Section 2.2.4 where we present work related to team-based care, we

will also discuss work related to coordination and integrated care.
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Table 2.3: Summary of key features of our workload management model that follow

from the CCM.

Features of our model Components of the CCM considered in

our model

Care pathways, care plans and

plans-of-care

Evidence based care

Plans-of-care, recalls of a patient Patient-centred care

Population-level workload Population-based approach

Best practice guidelines Evidence-based, population-based approach

Shifting patients among various

roles

Team-based care

Stratify patients based on severity Can help to coordinate and integrate care

Rule-based system Use of computerised systems for decision-

making

2.2.1 Evidence-based care (EBC)

I briefly introduced evidence-based care in Section 2.1.1 to distinguish various termi-

nologies used in the literature and our choice of terminology. In this section, I discuss

evidence-based care as more than just the terminologies used for planning care.

During an appointment, a clinician assesses the health care needs of the patient

(Silagy and Weller, 2001). Most often, multi-morbidity requires the clinician to con-

sider, simultaneously, the evidence for treatment (i.e., the care pathways) for every LTC

in the patient (Bodenheimer et al., 2005, 2002a,b). When more than one care pathway

applies, selecting which interventions to prioritize can be difficult (Calvan et al., 2011).

Furthermore, it can be even more difficult to determine the effectiveness of the care de-

livered (Fetherstonhaugh et al., 2013). The expertise of a clinician aids in making such

complex health care decisions (De Bleser et al., 2006). This is specifically the case with

multi-morbidity, where the potential for medication interactions, unwanted or unan-

ticipated effects or contraindications to interventions are greatly increased (Sackett,

1997).

Moreover, self-management is an essential part of LTC management in a patient

(Wagner, 1998). The patient and the clinician have to come to a consensus on the

treatment plan, which may include change in the patient’s life style (Burt et al., 2014).

This treatment plan should incorporate patient preferences as well (Silagy and Weller,
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2001). Therefore, in order to apply existing evidence to individual patient situations,

the most valid approach is to embrace evidence-based patient choice (Johnson, 1997;

Sackett, 1997; Silagy and Weller, 2001).

Evidence-based care blends a clinician’s experience with available external evidence

to decide the care required for a patient’s well-being and health, taking into consid-

eration the patient preferences (Campbell-Scherer, 2010; Fetherstonhaugh et al., 2013;

Sackett, 1997; Silagy and Weller, 2001; Weiner, 2009). It is clear that with evidence-

based care, use of external evidence can eliminate the practice risks that may occur

otherwise. And, with clinical expertise, care can be planned even when excellent ex-

ternal evidence may not be applicable to a patient (Sackett, 1997).

Sackett (1997) claims that evidence-based care can track down which evidence best

applies in a situation, and integrate it with clinical expertise and patient preference,

and can evaluate the performance. However, Fetherstonhaugh et al. (2013) point out

that evidence about effectiveness of an intervention, i.e., that it works in a controlled

population, does not answer the question about applicability or feasibility in a specific

client-clinician context. So, generally, evidence-based care is applied in conjunction

with patient-centred care.

2.2.2 Patient-centred care (PCC)

The Institute of Medicine (US) Committee on Quality of Health Care in America (2001)

defines patient-centered care as: “providing care that is respectful of, and responsive

to, individual patient preferences, needs and values, and ensuring that patient values

guide all clinical decisions” (p. 6). Robinson et al. (2008) identifies the fundamen-

tal characteristics of patient-centered care (PCC) as individualised care involving the

patient in the care planning process. Thus, PCC considers the patient as central to

care provision, which requires the patient to be involved in their care and to have the

knowledge, skills, and motivation to do so (Bilello et al., 2018). Consequently, in PCC,

the doctor-patient interaction will have a shared goal, written plan-of-care and regular

follow-up (Bauman et al., 2003).

Considering patient preferences in health care decisions (evidence-based care) is dif-

ferent from involving patients in the care process (patient-centred care). For instance,

a patient may not agree to exercise every day (a patient preference) but may agree

to self monitor blood pressure (a patient involvement in care). Therefore, PCC em-

phasises that the treatment plan should be organised around whole-person goals (e.g.,

school readiness) rather than organ-system goals (e.g., brain, lung) (Burt et al., 2014).
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At a PHC level, there are many LTC patients. Hence, planning care for a group

of patients at once is useful (Bodenheimer et al., 2002a). This approach to consider

care for a group of people is usually referred to as a population-based approach (Kindig

and Stoddart, 2003). Wagner (1995) and Ham (2010) in their studies emphasise that

patient-centred care along with population-based care can improve effectiveness and

efficiency of care for LTC patients.

2.2.3 Population-based care (PBC)

Population-based care (PBC) considers care for a group of patients who share a com-

mon trait (Wagner, 1995). This common trait could be sharing the same GP, being

diagnosed with the same LTC, or following a similar plan-of-care (WHO, 2005, p. 45).

For planning care, the needs of a population (or a cohort) is identified to plan, organise

and deliver care accordingly (Ibrahim et al., 2001; Wagner, 1995). In other words, PBC

planning develops a plan-of-care that ensures systematised care for a group of LTC pa-

tients at a medical practice (Institute of Medicine (US) Committee, 2002). Therefore,

population-based care involves

1. identifying (defining) the population; i.e., the health care needs that can be

addressed for a group of patients.

2. involving a multidisciplinary team, and

3. use of IT systems to promote, provide and evaluate population-based care (Grundy

and Hodach, 2016; Weiss, 1998).

Although, PBC can be provided by multiple physicians, usually a (chosen) GP

serves as the central figure for delivering population-based health care to the entire

community (Weiss, 1998). Ibrahim et al. (2001) list five characteristics of a population-

based approach for care: “a community perspective, a clinical epidemiology perspective

using population-based data, evidence-based practice, an emphasis on outcomes, and

an emphasis on prevention”. Furthermore, a high performing chronic care system is

also characterised by population-based care and adherence to best practice for the

group of patients (Ham, 2010; Wagner, 1995).

With a good understanding of the common health care needs of a sub-population of

patients, care planning also involves coordinating the intervention of various health care

providers and in turn meeting the characteristics of PBC (Kindig and Stoddart, 2003;

Payne et al., 1995; Public Health Agency of Canada, 2001). For example, following PBC
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for diabetic patients, a medical practice can plan a week for the annual diabetic checks

and screening for other associated complexities, which may involve availability of a

dietitian or an exercise coach as needed (Ministry of Health NZ, 2016a). Consequently,

medical practices will perform more efficiently with a population-based care model for

their LTC patients.

While patient-centred care considers the patient as a whole, population-based care

considers commonalities in health care needs of groups of patients (Kane et al., 2005).

Planning care for a patient considers multiple care pathways applicable to the patient,

while a population-based care would consider a care pathway applicable to a group

of patients and the common needs of these group of patients (Wagner, 1995). In the

context of LTCs, a chronic condition can be related to another in different ways: they

are independent or one is an associated complication of the other (Ash et al., 2000).

2.2.4 Team-based care (TBC)

According to the Ministry of Health NZ (2016b, 2017c), within an effective PHC system

for LTC management, GPs and other care providers work collaboratively to identify

the severity of an LTC, address associated complications and take measures to avoid

the occurrence of other LTCs in a patient. It is evident that involvement of multidis-

ciplinary roles makes LTC management better (Stellefson, 2013). Apart from those

by Wagner (1998) and Bodenheimer et al. (2002a), a few other studies emphasise the

requirement of creating care teams to work closely with GPs to offer LTC manage-

ment support, including specialist care and self-management advice (Ash et al., 2000;

Babiker et al., 2014; Dale, 2015; Mays, 2013; Ministry of Health NZ, 2000).

The common strategy in team-based approaches (e.g., Patient-Centered Home

(Robinson et al., 2008), Health Care Home Model (Grant and Greene, 2012) and Fam-

ily Medicine Group Home Model (Breton et al., 2011)), is that the primary GP of a

patient continues to offer health services, but as a member of a team of care providers

who work together under “one roof” (Babiker et al., 2014). This team is willing to com-

municate and share the plans-of-care for their patients, and thus share accountability

for their patients within the team (Babiker et al., 2014; Mickan and Rodger, 2005).

The patient, having been made aware of this shared plan-of-care and its importance,

is ready to follow up, in accordance with their timely recall, with any member of the

care team (Payne et al., 1995). Thus, having a care team ensures continuity of care

and improves quality of care (Aysola et al., 2015; Davy et al., 2015; Ham, 2010; Stokes

et al., 2017). Although team-based care involves multiple care provider roles, much
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emphasis is on coordinating and integrating care for their LTC patients (Davy et al.,

2015; Mickan and Rodger, 2005).

Care coordination has been mentioned in various studies (Ash et al., 2000; Babiker

et al., 2014; Stellefson, 2013): however, there is no consensus on its definition and scope

of application (Agency for Healthcare Research and Quality, 2014a). For instance,

while some of these studies highlight the need for communication among various care

providers, patients, and patient families, as needed to plan care for the patient (Åhgren,

2003; Babiker et al., 2014), a few others use care coordination to bring forth the idea of

shared decision making to decide the interventions required for the patient (Baud, 2003;

Bauman et al., 2003; Harris and Zwar, 2007). For us, we consider care coordination to

be when more than one care provider shares the responsibility of care for a patient or

a group of patients amongst themselves.

While care coordination focuses on what is required to be agreed on for an effective

plan-of-care for a patient, integrated care focuses on the roles, and the scope of those

roles that are involved (Busetto et al., 2017; Young et al., 2017). Specifically for LTC

patients, as the complexities of health care needs increase, multiple roles spanning

across various health care levels need to be integrated into the care planning process

(Young et al., 2017). For instance, for a diabetic population, in order to address the

associated complexities, care planning needs to involve roles such as ophthalmologists

(for diabetic eye tests) and podiatrists (for foot checks) (Best Practice Advocacy Centre

New Zealand, 2012). These roles may be in the secondary or tertiary health care levels

(Ministry of Health NZ, 2016a).

In summary, team-based care with coordinated and integrated involvement of var-

ious roles can help enhance the efficiency and effectiveness of PHC.

2.2.5 Use of IT in health care

Yet another characteristic of a high performing health care system is utilisation of

information technology (IT) to the fullest in improving chronic care (Ham, 2010; Wag-

ner, 1998). The use of IT in health care spans from developing formal concept models

(ontologies) (NHS Digital, 2017a; openEHR, 2016) to using sophisticated measures like

deep learning (Archenaa and Anita, 2015; Kim et al., 2018; Krittanawong et al., 2018)

to utilise available data to make informed health care decisions.

The use of ontologies2 in medicine is mainly focussed on the representation and

2Ontologies mean concepts and the relationship between these concepts
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(re-)organisation of medical terminologies. Physicians developed their own special-

ized languages and encodings such as Read codes (NHS Digital, 2017a), SNOMED-CT

codes (NHS Digital, 2017b) and ICD-10 (WHO, 2004) to help them store and com-

municate general medical knowledge and patient-related information efficiently. Such

terminologies are characterized by a significant amount of implicit knowledge. Medical

information systems need to be able to communicate complex and detailed medical

concepts (possibly expressed in different languages) unambiguously. Health data mod-

els such as HL7 (HL7, 2016) and openEHR (openEHR, 2016) were developed to achieve

this requirement. Moreover, in order to achieve specific requirements of various studies,

e.g., ChronoMedIt (Mabotuwana and Warren, 2010), they define study-specific ontolo-

gies in health care domain. Section 8.1 presents a detailed discussion on the current

health ontologies (used or referred to in this work).

Deep learning techniques are recently gaining attention due to their applications

in data-driven decisions. Using deep learning is known to improve efficiency (through

multi-layer processing with less time and better accuracy performance) over other com-

peting methods such as logic regression and decision trees (Kim et al., 2018). It is also

widely used in contexts such as to predict the health deterioration of a specific condition

e.g., hypertension in a patient (Krittanawong et al., 2018), or to perform a real-time

analysis of patient health data and avoid emergency situations (Archenaa and Anita,

2015). However, we focus on computer based clinical decision support systems where

knowledge rich clinical guidelines play an important role in decisions related to one’s

care delivery. In contrast deep learning uses historic and current health data to extract

features to represent its knowledge base.

Advancement of IT in health care has led to acceptance of computer-based clini-

cal decision support systems (CDSSs). These CDSSs are built on formalised clinical

guidelines. Shiffman (1997) justifies the use of rule-based models in formalising clinical

guidelines.

Rule based systems are built on fixed “When-If-Then” formulae, and draw con-

clusions based on all the facts in their working memory (Kuo and Fuh, 2009). For

example, a diagnosis of various stages of diabetes follows:

• if HbA1C below 6.0%, then normal (no diabetes)

• if HbA1C between 6.0% to 6.4%, then pre-diabetes

• if HbA1C 6.5% or above, then diabetes.
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Therefore, knowledge-based clinical decision support systems use an “If-Then” rule

base applied onto the patient data to propose care actions for the patients (Alther and

Reddy, 2015). In addition to Shiffman (1997), Minutolo et al. (2017) also highlight the

benefits of using a rule-based system in medical settings, which include:

1. flexibility to choose different rules based on the facts expressing the current con-

text, and

2. dynamic handling of changes through rules being re-activated based on changes

to facts during the execution of rules.

Calcaterra et al. (2018); Fernandez-Millan et al. (2015); Lin et al. (2018) and Se-

menov et al. (2018) underline the strength of rule-base systems to provide physicians

with real-time guidance for health care decisions with an emphasis on the role of clinical

guidelines as rules to achieve a patient’s health care encounter outcomes.

Table 2.4 summarises the studies we have referred to under each of these CCM

components. Although we discussed these components one-by-one, most studies that

implement CCM components implement more than one component. Although they

might refer to more than one component in their study, we list them under specific

CCM components based on the emphasis they give to that CCM component in their

work.

Table 2.4: CCM components emphasised in other studies referred to in this section

Work referred to E

B

C3

P

C

C4

P

B

C5

T

B

C6

Use

of

IT

Bodenheimer et al. (2005); Calvan et al. (2011);

Campbell-Scherer (2010); De Bleser et al. (2006); Fether-

stonhaugh et al. (2013); Johnson (1997); Sackett (1997);

Silagy and Weller (2001)

X

Bauman et al. (2003); Bilello et al. (2018); Institute of

Medicine (US) Committee on Quality of Health Care in

America (2001)

X

3Evidence Based Care
4Patient Centred Care
5Population Based Care
6Team Based Care

26



Grundy and Hodach (2016); Ibrahim et al. (2001);

Institute of Medicine (US) Committee (2002); Kane

et al. (2005); Kindig and Stoddart (2003); Public Health

Agency of Canada (2001); Weiss (1998); WHO (2005)

X

Åhgren (2003); Babiker et al. (2014); Breton et al. (2011);

Busetto et al. (2017); Dale (2015); Davy et al. (2015);

Grant and Greene (2012); Mays (2013); Mickan and

Rodger (2005); Ministry of Health NZ (2000, 2017c);

Payne et al. (1995); Stellefson (2013); Stokes et al. (2017);

Young et al. (2017)

X

Alther and Reddy (2015); Archenaa and Anita (2015);

Calcaterra et al. (2018); Chute (2000); Fernandez-Millan

et al. (2015); Goertzel (1969); Kim et al. (2018); Kuo

and Fuh (2009); Lin et al. (2018); Ministry of Health

NZ (2017j); Minutolo et al. (2017); NHS Digital (2017a);

ONC (2016); openEHR (2016); Semenov et al. (2018);

Shiffman (1997); Spackman et al. (1997); Tsiknakis et al.

(2002); WHO (2016a)

X

Burt et al. (2014) X X

Best Practice Advocacy Centre New Zealand (2012) X X X

Aysola et al. (2015); Robinson et al. (2008) X X

Wagner (1995) X X

Ash et al. (2000); Ministry of Health NZ (2016a) X X

Bodenheimer et al. (2002a,b); Ham (2010); Wagner (1998) X X X X X

2.3 Related work

The main aim of our model is to predict (or forecast) the upcoming workload (activities

to be scheduled) from LTC patients. In order to schedule the activities, it is important

to know what these activities are and who can perform these activities (Decouttere

and Vandaele, 2014).

Given, that primary health care is generalist care, which means it covers health care

needs related to short acute consultations, immunisations, LTC management needs and

referrals to secondary and tertiary care levels (WHO, 1978), there is a huge body of
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literature in this domain. Therefore, in order to narrow down the literature, we scoped

our search for related work specifically to research that helped us identify what the

workload variables are and how the various services related to care are delivered. We

also discuss work related to simulation in health care.

One of the benefits of having a tool that can anticipate future workload is that it can

help the organisation equip itself with the right mix of roles to manage the upcoming

workload. Therefore, we also looked at different workload forecasting, analysis and

management tools or techniques. Finally, I compare each work discussed in this section

to the focus of our work.

2.3.1 Workload at a PHC centre

It is very important for practices to understand patient demand and manage their

workloads well (Anonymous, 2006b). In the context of LTC management, much em-

phasise is placed on educating patients, involving patients in their care planning pro-

cess, and coordinating and integrating care within the care team (Babiker et al., 2014;

Bodenheimer et al., 2002a; Wagner, 1998). However, variance in practice, shortage in

workforce, short appointments, fixed policies around roles and responsibilities, condi-

tion based funding structure, and excessive use of IT such as use of health apps by

patients hinders adopting an efficient and effective model of care for their LTC patients

(Harris and Zwar, 2007; O’Leary et al., 2013; Reeves et al., 2014; Terry, 2017; Trindade

and Pires de, 2013).

In a PHC context, the volume of care, including the number of visits, reflects the

PHC’s effectiveness and efficiency (Anonymous, 2006b; Heroman et al., 2012). One of

the ways to anticipate this volume of care is to analyse how the visits of patients are

planned (Jordan et al., 2003; Ministry of Health NZ, 2017k).

Hall (2012), in an introduction to a Handbook of Healthcare System Scheduling,

gives an overview of issues and options in scheduling healthcare resources. Table 2.5

shows a comparison of a few questions asked by Hall (2012) with our research questions.

He notes that health conditions emerge randomly due to various reasons such as an

injury or illness, and the patients do not always show-up promptly. In this way, he

projects that uncertainty in patient visits should be addressed to achieve best-planned

workload management schedules. In contrast, we model workload at the population

level, and so do not consider changes in health conditions, but address uncertainty in the

timing of patient visits. Moreover, his questions focus on the emergency department

of a hospital and also have more of a patient perspective rather than a population
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perspective.

Table 2.5: Comparison of questions addressed in Hall (2012) and our research questions.

Hall (2012) Our study

How many patients can we expect to

present for care in an emergency de-

partment on a given day of week, time

of day and time of year?

How many patients are expected to visit

the practice during a given period of the

year? (We use a weekly basis to present

the results).

What is the projected future need to

care for a patient of a particular age,

weight and blood glucose level, who has

been diagnosed for type 2 diabetes?

What is the future number of appoint-

ments from patients with low severity of

LTCs in them? (Addressed in one of our

what-if scenarios).

How will the demand for appointments

depend on the prevalence of influenza,

given the time of year and cases seen to

date?

What is the impact of (a 3-week long) flu

outbreak on the predicted workload? (Ad-

dressed in our what-if scenarios).

How likely is it that a particular patient

will be a no-show for a scheduled ap-

pointment, made a set number of weeks

in advance?

How likely is a patient to visit the practice

knowing when their medication would run

out? (We analyse this through a Bayesian

model)

Fox et al. (2006) present the CREDO framework for cancer care to “evaluate the

use of decision support and workflow services at many points in the patient journey

...”. A patient journey comprises an initial encounter, work-up, followed by delivery of

treatment, and long term follow-up. The services advocated in this CREDO framework

include providing personalised schedules. These personalised schedules are embedded

within a patient’s care plan7. As described in Section 2.1.1, care plans in the CREDO

framework is equivalent to our plan-of-care. The CREDO framework focuses on how

the services are delivered rather than anticipating what services will be required (the

aim of our work).

Mathers et al. (2011) characterise care planning as an “example of putting self

management support into practice, in a systematic way, as part of routine care for

people with LTCs” (p. 9). They highlight that care planning can help collect and

7For Fox et al. (2006) care plans are plans of future activities, specific to a patient’s problem(s),

treatment and goals, which are signed and time-stamped (p. 838).
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aggregate information such as the services needed and who needs those services, and

thus can determine the unmet health care needs of their population. Just as they

aggregate data to decide to integrate self-management into their care planning process

and monitor outcomes of the care planning process, we aim to aggregate the patient’s

health care needs to determine the workforce changes needed or the alternatives in

practice policies that could help meet the upcoming workload.

Brown et al. (2018) analyse how care planning is applied in a primary care con-

text, how multi-morbid patients benefit from care planning and in what contexts care

planning works best for the patients. Thus, their study focuses on the patient per-

spectives. In our case, we aim to use care planning (planning patient visits of LTC

patients including multi-morbid patients) in order to estimate the upcoming workload

as a number of appointments required per week. Just as a patient, being aware of the

impacts of lab results and what needs to be discussed during consultation, can be ac-

tively participating in the care planning process, we argue that knowing the upcoming

workload can help care providers to be more proactive in planning care for their LTC

patients.

There are studies that use patient data and historic visit information in mathe-

matical or statistical tools to forecast demand for care. For instance, Green (2013);

Green and Savin (2008) and Utley and Worthington (2012) use queueing models, while

Abdel-Aal and Mangoud (1998); Potts et al. (2011) and Murray and Berwick (2003)

use statistical models including Bayesian models. However, little is discussed about

adherence to guidelines and patient-centredness. On the other hand, we use Bayesian

Inference along with adherence to clinical guidelines to predict the upcoming workload

(refer to Chapter 7 for our Bayesian inference model).

In summary, although previous work did not address evidence-based care or patient-

centred care in their studies, attempts to forecast demand for care using mathematical

and statistical models show that the capacity planning issue existed decades ago. Some

other studies show that treatment plans can be used to schedule activities to manage

individual health care needs (Amir et al., 2015; Burt et al., 2014; Fox et al., 2009; Math-

ers et al., 2011). These activities, in turn, help to understand the volume of required

and delivered care. Moreover, the implementation of a care pathway has reduced the

variability within the clinical practice, reduced health care costs and improved patient

outcomes (Best Practice Advocacy Centre New Zealand, 2012). Thus, our study using

plans-of-care, developed from care plans using care-pathways (see Section 2.1.1) to an-

ticipate the upcoming number of visits from LTC patients addresses the requirements
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of an effective and efficient chronic care model.

2.3.2 Models of Care

Yet another aspect of care delivery is to address how the health care services are

delivered to those who require those services. The term “Models of Care”, though

definitions vary, is usually a general term referring to how the health care services are

provided to a patient or a population of patients in a specified care setting (Davy et al.,

2015; Jackson et al., 2013; Stokes et al., 2017). Therefore, based on the health care

setting and whether the services are provided for a patient or a group of patients, the

model of care applied varies. There are also models of care that emphasise care teams.

It has to be noted that these models of care, most often, do not explicitly refer to

whether they can be applied to a single patient context or not.

While Wagner’s Chronic Care Model (CCM) is a generic model widely accepted for

chronic care, there are other models of care that emerged to address various aspects of

care. For instance, the Chain of Care was developed in Sweden to address the problem

due to fragmented care (Åhgren, 2003) and the Managed Clinical Networks (MCNs)

was developed in Scotland to bring together health professions from primary, secondary

and tertiary care to work collaboratively to provide high quality clinically effective

services (Skipper, 2010). For an effective Chain of Care, the values of the health care

provider, involvement of patients and the agreed activity plans are important. Thus, it

emphasises patients as contributors to their care rather than as receivers. On the other

hand, MCNs consider the expertise of health professionals and coordination among

them as important factors. While the role of patients in a Chain of Care is explicit,

MCNs assume that their patients benefit from ease of access and continuity of care

(Åhgren, 2003; Skipper, 2010).

The earliest population-based model of care was the Kaiser-Permanente (KP) Risk

Stratification Model (Pines et al., 2015). It was the first model of care to consider

grouping patients based on their health care needs. According to the KP stratification

model, the chronic disease population is organised into three categories: people requir-

ing standard care and support to self manage; people needing regular contact with

a multidisciplinary team to ensure effective management of their disease; and people

requiring more intensive support, perhaps from a specialist case manager, often when

they are coping with the complications of co-morbidities (WHO, 2016b). According

to Pines et al. (2015), the KP model has three distinct inter-related business entities,

namely a health plan, medical groups of physicians and a hospital system. Figure 2.1
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shows that the stratified population is considered for the health plan (Kaiser Foun-

dation Health Plan, or KFHP), while medical groups and hospitals are linked to the

members of the care funding team and share a central view of the KFHP. Therefore,

the KP model is focused on chronic care within a multi-speciality practice rather than

primary and secondary care level. However, there is some work that partially incor-

porated KP into their primary health care delivery context (e.g., ICARE4EU (van

Ginneken and Rijken, 2016)).

more 

intensive 

support

multidisciplinary 
team 

usual care and support to 
self manage

Kaiser Foundation 
Health Plan (KFHP)

Members-
Individuals and 

employer groups

Medical Groups
Kaiser Foundation 

Hospitals

Figure 2.1: KP model from WHO (2016b) incorporated with the business entities from

Pines et al. (2015).

Similar to the KP stratification model, Struijs et al. (2015) developed the Care

Continuum Alliance (CCA) model, a model for population health at the primary care

level. It introduces a best-practice framework that depicts six steps of shifting patient-

centred care to population-based care (see Figure 2.2). It starts by identifying the

population, then performs health assessment on the identified population. The third

step stratifies the population based on the assessment in Step 2. Step 4, patient-centred

interventions, covers interventions across the whole spectrum; from public health in-

terventions to stimulating healthy lifestyle till palliative care interventions to provide

the best possible quality of life for people approaching the end of life. Step 5 then
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evaluates the effects of these interventions. Step 6 is the quality improvement process

which is a feedback loop that helps to refine the processes that identify the population,

their commonalities and care activities required to meet their LTC management needs

and thus reflect on the patient and the patient-clinician interaction.

Step 1
• Identify Population

Step 2
• Perform health 

assessment

Step 3
• Stratify population

Step 4
• Patient centred 

interventions

Step 5
• Assess effectiveness 

of interventions

Step 6
• Quality improvement 

process

Figure 2.2: CCA framework redrawn based on (Struijs et al., 2015, p. 525).

The House of Care (Taylor, 2015) is yet another population-based model of care,

specifically for LTC patients. It considers the local resources available, including the

non-clinical staff for planning care to support LTC patients in a community. This model

of care comprises two components, namely execution and realisation. The execution

part deals with the practical issues of integrating the new model of care, while the

realisation part reduces the risks of change due to the incorporation of a new model

of care. However, due to the ever-changing nature of the demands of care and almost

fixed health care policies of an organisation, the flexibility to adopt this model of care

in different PHC contexts is unknown.

These population-based models of care are based on the idea that stratifying the

patient population based on their health care needs will help to equip local resources,

and train the non-clinical staff to support planning care for their patients. Moreover,

having a best-practice framework will lead to better coordination and integration of

health care professionals into the planning process.

Patient-Centred Medical Home (PCMH), developed from Medical Care Home Mod-

els, is a physician-directed practice that provides accessible, continuous, comprehensive,
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coordinated and delivered care within the context of family and community (Grant and

Greene, 2012; Reid et al., 2009; WHO, 2016b). It features personalised care in which

the patients know who is responsible for their health and the providers know the pa-

tients they are responsible for (Reid et al., 2009). PCMH is often seen as a model of care

for coordinating care across various levels of health care. It involves multi-disciplinary

care teams as well as, if required, primary physician buying care from a specialist team

(Jackson et al., 2013). This integration of care invokes a shared responsibility for the

health of their patients. Reid et al. (2009) in their study, found PCMH improves the

patient experience, and quality of care with less staff burnout.

New Zealand’s health model, built on the Ottawa charter (WHO, 1986) for health

promotion, highlights that health promotion actions and planning must consider the

local needs of people rather than following “one size fits all” strategy. Therefore, in

order to incorporate Māori cultural aspects, New Zealand has three additional models

of health (Ministry of Health NZ, 2017d). The first one addresses the health care

needs from four different perspectives, namely physical, spiritual, family and mental

health (Ministry of Health NZ, 2017f). The second model is represented as an octopus

with the head representing family, eyes the individual well-being and the eight tentacles

depicting various dimensions of health for well-being. These eight dimensions represent

“spirituality, the mind, physical fitness, extended family, life force in people and objects,

unique identity of individuals and family, breath of life from forbears, and the open

and healthy expression of emotion” (Ministry of Health NZ, 2017g). The third model

of care attempts to include modern medicine into Māori health services. It is called the

“Southern Cross Star Constellation” with four main stars representing cultural identity,

physical environment, healthy lifestyles and participation in society (Ministry of Health

NZ, 2017e). It also includes two “pointers”8 to represent community leadership and

autonomy to incorporate flexibility to address the changing demand for care.

A study on the implications of general care models on the workload of health

professionals found that adopting models of care increased the workload on health

professionals (Trindade and Pires de, 2013). Furthermore, a thematic review of the

factors that influence a health care system into accepting models of care, found that

most studies emphasised a patient’s perspective and only a very few addressed a health

care provider’s perspective (Davy et al., 2015; Harris and Zwar, 2007; Walley et al.,

2008). For patients, it found that the severity of their condition and the information

available to them were major factors in their acceptance of new ways of care. On the

8These pointers refer to the two stars that “point” to the Southern Cross constellation.
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other hand, health care providers were more open to accept new ways of care delivery

provided they are confident in the ability of alternate provider roles to attend to the

patient’s needs (Harris et al., 2017).

There are models of care that encourage self-directed care where patients self-

coordinate their care with other care providers based on their assessment of their own

health. Although these models of care are proved to have better patient satisfaction, it

heavily depends on the patient’s ability to appropriately assess their own health needs.

The Guided Care Model (Hawkins and Novak, 2011) is one of the models of care

that closely follows the CCM model. It involves a specially educated and trained nurse

working collaboratively with multiple physicians to meet the needs of their chronic pa-

tients at an individual patient level. Although, Hawkins and Novak (2011) claims that

this model of care was successful and effective, they did not mention the increased (or

decreased) workload due to the changes in the practice. Likewise, most studies (Amir

et al., 2015; Bodenheimer et al., 2005, 2002a; Dennis et al., 2008; Reeves et al., 2014)

that refer to CCM, though they emphasise LTC management and focus on individual

patient outcomes, do not mention the impact of adopting the model of care on the

workload of health professionals.

Yet another model of care widely accepted is the UK’s Quality and Outcomes

Framework (QOF), introduced in 2004 (Downing et al., 2007). This framework pri-

marily focused on achieving QOF scores, defined in terms of number of physician

appointments, number of hospitalisation, etc., set as targets for ten specific conditions.

The primary aim of this framework was to motivate GPs, through pay-for-service, to

attend to longterm conditions. However, these QOF scores were not directly linked

to adherence to guidelines, but rather to how health outcomes were recorded by the

clinicians. Moreover, indicators considered those longterm conditions in isolation, and

most recommendations on improving QOF suggested considering multimorbidity with

a focus on population health (Downing et al., 2007; Forbes et al., 2017; Roland and

Guthrie, 2016).

Although adopting one or more components of these models of care has improved

the quality of care, with an emphasis on the requirement for training various roles as

needed in the local context to attend to their population management needs, Davy

et al. (2015) highlight the need of a system to predict the increase in workload due to

adopting the right model of care for a medical practice. In this study, Davy et al. also

discuss the importance of clinical information systems in adopting a model of care.
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2.3.3 Simulation in health care

Simulation has been widely used in the health care domain. Simulation techniques

used in health care include discrete event simulation (DES), system dynamics (SD) and

agent-based simulation (ABS). In this section we discuss and compare these simulation

techniques to our rule-based approach.

DES is applied in contexts where the environment (domain) can be represented

as state variables, and simulation proceeds as these state variables change (Brailsford

and Hilton, 2001; Law and Kelton, 1991). An advantage of using DES is improving

efficiency of the simulation, as the internal clock of the simulation system can advance

to a point where the next event is scheduled to occur (Zhang, 2018). Studies that

apply DES include those of Eatock et al. (2015); Günal and Pidd (2010); Konrad et al.

(2017) and Jun et al. (1999).

In our case, the medical practice has no data that reflects how well it adhered to

guidelines in the past. Moreover, the patient information needed to apply guidelines

is better suited to a knowledge-based representation than one using state variables.

Therefore, DES is not an apt choice for our requirement of workload prediction from

adherence to clinical guidelines. As discussed in Section 2.2.5, we unfold plan-of-care

for each patient from the care plans. With an if-then format, care plans are rules in

themselves. Therefore, a rule-based approach seemed appropriate in our context.

Systems dynamics (SD) is used to understand how a system changes over time,

represented using “stock” and “flows” (Sweetser, 1999). In contrast to DES, SD models

state changes as continuous processes. Therefore, SD is not suited to provide a detailed

representation of a system where the state changes occur at discrete times (Brailsford

and Hilton, 2001; Sweetser, 1999).

Agent-based simulation (ABS) is usually applied to understand the emergent be-

haviour of agents (Davidsson, 2001). This emergent behaviour may account for inter-

actions between agents or interactions of agents with their environment. Either way,

there is no requirement for agent-based simulation in our context, as we simulate the

care pathways and not interactions between patients or health providers.

Shortliffe (1974) claims that the use of rule-based systems (RBS) in health care

was started in 1973 through MYCIN. MYCIN is an artificially intelligent computer

program that uses decision rules to help physicians make decisions regarding infec-

tious disease treatment. It has a consultation system, an explanation system and a

rule-acquisition system. The rule-acquisition system accepts and codes the rules for

consultation from the physicians or experts. During an interaction with a physician,
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its consultation system uses this rule-base along with the information provided by

the physician, to recommend the clinical decision for the physician. The explanation

system helps to answer the physician’s questions regarding its decision (made by its

consultation system). In MYCIN, each rule consists of a set of preconditions (called

PREMISEs) which, if true, permit a conclusion to be made or an action to be taken,

according to the ACTION part of the rule (Shortliffe, 1974; Shortliffe et al., 1975).

Fuzzy Cognitive Maps (FCMs) can be used to represent and reason with causality

and uncertainty. FCMs are networks consisting of nodes and connections. The nodes

represent clinical concept variables, such as observations and therapies and may take

discrete or fuzzy values. The connections between the concepts and their strengths are

drawn from clinical guidelines and are represented as ifthen rules that denote how one

concept is used to infer another concept (i.e., a therapy option could be linked to its

indications and contra-indications and fuzzy weights of the connections, in the range

of 0 and 1, would mark the strength of evidence). The authors demonstrated their

approach by modeling part of a urinary tract infection guideline through FCMs using

semantic web tools. When patients data are input, the reasoning engine infers the

values of activated nodes, ranking the different therapies. The modular representation

of rules in FCMs could potentially facilitate knowledge reuse, sharing, and knowledge

management.

While Papageorgiou (2011); Pawlak (1997) and Anooj (2012) use fuzzy (rule-based

network) systems to make clinical decisions, Weiss et al. (1978) present a causal-

associational network (CASNET) model. These rule-based network clinical decision

support systems are flexible in terms of adherence to guidelines. A fuzzy rule-based

clinical decision support systems has clinical concepts (e.g., observations or laboratory

tests) connected to each other based on the the clinical guidelines represented as fuzzy

inference rules (Anooj, 2012; Pawlak, 1997). When there are more than one connec-

tion between nodes, a measure such as the fuzzy weights or a probabilistic approach

is taken to decide which path in the network to choose (Papageorgiou, 2011; Peleg,

2013). While in CASNET, observations of a patient are associated with a state of a

disease, which is then linked to its classification. Because the observation can lead to

various diseases, these states of disease and observations are represented as a network.

However, this system is enriched with rules to associate states with observations and,

to associate disease categories with states. Weiss et al. (1978) also illustrate how the

CASNET model based system was used by ophthalmologists for long-term diagnosis

and treatment of many types of glaucoma.
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Pestotnik et al. (1996) embed clinical pathway decisions as rules in their clinical de-

cision support system to implement decisions related to antibiotic prescriptions. They

developed the rules thorough evaluations of published reports, use of national guide-

lines and local expert opinion, and exhaustive analyses of the LDS Hospital patient

database. Although this system was deployed in a hospital setting, we follow a sim-

ilar approach in the context of a PHC setting. We use the anonymised PHC patient

data (of a medical practice) shared with us by our PCA; referred to national standard

guidelines and local expert opinion to develop rules that unfold recall decisions from

care pathways (care plans as some may refer to them).

A recent study by Azadmanjir et al. (2017) uses a rule-based system to develop

a computer-aided coding system for the Iranian Classification of Health Interventions

(IRCHI). Mabotuwana and Warren (2010) presents use of problem class that represent

generic names for clinical encodings. Based on these studies, we map clinical encodings

of classifications in our dataset to their generic names to support population-level

reasoning.

Kahn et al. (1991) shows that reasoning methods (rules) can determine the temporal

dependency between multiple clinical events. This study informs the strength of rules

to embed temporal dependency required in our work (we require to anticipate “when”

would a patient require a follow up appointment).

These studies show that, although the logic may be represented using different

notations (e.g., fuzzy rules, network nodes and associations) rule-based systems are

extensively used in clinical decision support systems. Moreover, a rule-base is scalable

i.e., new rules can be added, modified or deleted; and, a rule-based system can use

its rule-base to reason how and why it made the a decision (Archenaa and Anita,

2015; Davis et al., 1977; Krittanawong et al., 2018; Shortliffe et al., 1975). Although,

initially rule-based systems were more uncertain on how to handle changes in facts

or modified rules (Spiegelhalter and Knill-Jones, 1984), they have evolved through

techniques allowing rule-based systems to react to the addition, modification or deletion

of rules (Lhotska et al., 2001; Salatino et al., 2016).

We aim to predict workload from LTC management needs of patients at a PHC.

We needed to predict the follow up appointments of LTC patients who follow (best

practice) guidelines. We were informed, by the study of Archenaa and Anita (2015);

Kim et al. (2018); Pestotnik et al. (1996) and Shiffman (1997), that implementing

clinical guidelines as rules support the “if -then” structure embed in clinical decisions,

and can be made adaptable to the changing context of the health care domain.
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2.3.4 Workload management in health care

The Workforce Evidence-Based (WEB) planning model by Segal and Leach (2011)

maps individual patient types to one of the following four levels: (1) promotion, preven-

tion, and screening of the general or high-risk population; (2) type or stage of disease;

(3) complications; and (4) threats to self-care capacity, depending on the severity of

their health care needs. Given patient information, it suggests a unique clinical team to

address each patient’s health care needs. The authors argue that an organisation can,

thus, estimate the total health force required. Following a similar approach as Seddon

et al. (2001), we can analyse the financial and clinical risks in changing the practice’s

workforce. They also highlight the problems of quality of data and the difficulty in

making decisions regarding how to combine care provider roles when patient attributes

and health care needs vary across the population. They present involvement of clini-

cians and other care provider roles to define best practice for their population (diabetes

in this case), which motivated us to follow the design science research approach (pre-

sented in the following chapter), which suggests involvement of various roles including

GPs and chief medical officers in different phases of development and validation of our

model.

The Working in Partnership Programme (WiPP), which included 13 initiatives,

was developed by the NHS in the UK to support workload and capacity issues (Anony-

mous, 2006a). One of the initiatives was to have a workload analysis tool to improve

workload management in general practice (Anonymous, 2006b). It was piloted in 60

GP surgeries, used to identify children with minor ailments or, to study the impact

of including pharmacists to review LTC medications for their patients (Anonymous,

2006b). However, the details about how this toolkit was developed and deployed are

not available for public access. Moreover, there were certain criteria in order to identify

the pilot sites for WiPP programme (Prime, 2005), which suggests that the toolkit was

not a generalised one.

Warwick and Bell (2007) propose a “Holon Framework” which has two modes (‘soft’

and ‘hard’) to address the soft W’s (the What, Where and Who) as well as the hard

elements (the Why, How and When) of health care planning. They showed that what-

if scenarios can help to examine and enhance understanding of the effects of macro-

management intervention in planning. Based on their approach, we chose to use what-if

scenarios in our work to examine the impacts of alternatives in practices to meet the

predicted workload.

The Care Management Event Tracking (CMET) feature of the Indian Health Ser-
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vice’s 2014 iCare project can track care events such as cervical screening, if a patient

chooses to allow this. However, it can only track events related to breast, cervical,

colon, liver, skeletal, prostate or STI events. Moreover, it is not clear what information

will be presented (if any) if a patient chooses not to track the events, but a physician

would like to track how many patients are postponing their care events. Furthermore,

being a commercial product, it is not evident how the tool is developed. However, it is

interesting to see from the tool’s description that workload management issue is being

addressed in different explicit and implicit ways.

Maher et al. (2009) suggest a framework that integrates chronic care services and

has indicators that show the programme performance as well as how well the ser-

vices are accessed in adherence to “standard” protocols of care management. They

state that in order to deliver structured quality care, organisations need to establish

a simple standard protocol for diagnosis, treatment and follow-ups. However, they do

not address how these requirements can be met by the organisations. On the other

hand, our tool can address such requirements; knowing the population and volume of

sub-population visiting, the practice can plan and organise care actions accordingly.

The work of Massimi et al. (2017) and Busetto et al. (2017) emphasises the role of

nurses in meeting the LTC management needs of their patients. Massimi et al. (2017)

lists what interventions are possible by a nurse, and a review study by Busetto et al.

(2017) found that most studies emphasised nurse involvement as part of their integrated

care for LTC patients. We also examine the impact of shifting patients to nurses (task

shifting) on the predicted workload. Moreover, there is a significant increase in the

number of medications per day, visits to health professional and time spent for health-

related activities, depending on the co-morbidity of the patients (du Vaure et al., 2016).

Table 2.6: Summary of the approach to develop our model and the studies that moti-

vated this approach.

Our approach to develop our

workload management model

Studies that motivated the approach

Workload prediction at a PHC

centre is a known challenge

Abdel-Aal and Mangoud (1998); Green (2013);

Green and Savin (2008); Harris and Zwar

(2007); Murray and Berwick (2003); O’Leary

et al. (2013); Potts et al. (2011); Reeves et al.

(2014); Terry (2017); Trindade and Pires de

(2013); Utley and Worthington (2012)
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The volume of appointments or

care activities is considered as the

workload of a PHC

Amir et al. (2015); Anonymous (2006b); Burt

et al. (2014); Fox et al. (2006, 2009); Hall

(2012); Heroman et al. (2012); Jordan et al.

(2003); Mathers et al. (2011); Ministry of

Health NZ (2017k)

Recalls of a patient can be pre-

dicted by analysing care path-

ways, care plans or treatment

plans of patients

Best Practice Advocacy Centre New Zealand

(1997); Brown et al. (2018); Davy et al. (2015);

Fox et al. (2006); Jackson et al. (2013); Kahn

et al. (1991); Mathers et al. (2011); Stokes et al.

(2017)

Multi-disciplinary team can ad-

dress workload better

Åhgren (2003); Davy et al. (2015); Grant and

Greene (2012); Jackson et al. (2013); Pines

et al. (2015); Reid et al. (2009); Skipper (2010);

Stokes et al. (2017); Struijs et al. (2015); Taylor

(2015); WHO (2016b)

Ability to foresee the upcoming

workload can help analyse and

improve efficiency and effective-

ness of care delivered

Anonymous (2006a); Bodenheimer et al. (2009);

Davy et al. (2015); Harris et al. (2017); Seddon

et al. (2001); Segal and Leach (2011); Wagner

(1995)

A rule-based approach would be

most appropriate to implement

care pathways

Archenaa and Anita (2015); Azadmanjir et al.

(2017); Kim et al. (2018); Mabotuwana and

Warren (2010); Pestotnik et al. (1996); Shiff-

man (1997)

In summary, delivering effective and efficient chronic care at a PHC level has been

challenging for decades. Bodenheimer et al. (2002a,b); Wagner (1998) and Ham (2010)

discuss the changes that are required to be a high performing chronic care system. We

outlined a few case studies that incorporated one or more CCM components in their

care delivery. We discussed the CCM components, specifically those related to the

features of our model. We also saw that although the emphasis of CCM components

varies across studies, most of them had more than one CCM component addressed in

their work. Then, we discussed those works which either discuss the workload at a

PHC, how services are planned and delivered, various simulation techniques, and the

workload management strategies that relate to our work in some way.

In brief, we use a rule-based approach to implement care pathways and simulate
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patient visits depicted as the workload that needs to be managed within the capacity

of the practice. Table 2.6 highlights the related work that motivated our approach. In

our discussion in Section 9.1, Table 9.1 gives an extensive comparison of our work to

related work discussed here.
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Chapter 3

Research Model and Methodology

Our research is partially motivated by the requirement from our PCA, whose role

involved planning care and resources at an organisational level. According to the PCA,

he needed some “way” to measure the volume of work that needed to be planned. He,

being a part of an organisation that promotes best practice in PHC in New Zealand,

also needed a tool that would help the practices understand the impacts adopting best

practice of care delivery. This requirement for gathering data and building awareness of

the problem in the PHC domain initiated our design science research (DSR) to develop

our Adaptable Best Practice based Workload Prediction Model (ABP-WPM).

According to March and Smith (1995) in a DSR approach much emphasis is on that

the research outputs serve human purposes. In that study, March and Smith present

a research framework for information technology, that separates research activities

from research outputs. They claim that in a design science research (DSR), research

activities (build and evaluate) create the research outputs (constructs, models, methods

and implementations) using a ‘technology oriented’ approach.

As aforementioned, according to March and Smith (1995), constructs, models,

methods, and implementations are the four types of research outputs. Constructs

are the concepts that are used to define problems, the phenomenon or specify solutions

in a domain. These constructs (concepts) can be combined to form a model. Such a

model would describe the tasks, activities or processes. For example, variables in a

mathematical equation form the constructs and the equation can be a model and the

operators used in the equation is the process. In other words, a model describes the

relationships between constructs. They also say that natural science researchers use

theory as a synonym for model.

March and Smith also consider that design scientists may develop methods to
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achieve or describe goal-oriented activities. Thus, methods are based on constructs

(or the concepts) and a model (representation of the solutions). Finally, developing

specific products or instantiations of a process can also be considered as an outcome

of DSR. They emphasise that “rather than posing theories, design scientists strive to

create models, methods and implementations that are innovative and valuable” (p.254).

The research activities set out by March and Smith also focus on building an artefact

and demonstrating that such an artefact can be built. Evaluation refers to assessing the

performance of the developed artefact against some (pre-identified) criteria. According

to them, “theories explicate the characteristics of the artefact and its interaction with

the environment that result in the observed performance” (p.259). In that way, they

consider that theory building and justifying that theory are also research activities.

The following section describes our research model in these aspects.

3.1 Our model

3.1.1 The three-layer LTC PHC construct

Our aim is to help medical practices foresee the workload from their LTC patients.

Therefore, in our domain we focus on LTCs, LTC patients and LTC population (refer

to Figure 3.1). A care pathway sets guidelines to manage an LTC, and a care plan is an

instantiation of the care pathway for that LTC in a patient (see Level 1: Instantiations

in Figure 3.1). Multiple LTCs in a patient means that multiple care plans applied are

to a patient. We then merge these care plans applicable to a patient as an individual

plan-of-care (this is depicted as Level 2: Care plan Aggregation), which then is used to

predict the workload from the LTC population (depicted as Level 3: Abstraction and

Aggregation). In terms of our DSR outputs, we have a three layer LTC PHC construct

to predict workload due to LTC patients at a PHC level.

3.1.2 The encounter-based unfolding plan-of-care process

Figure 3.2 presents our research model. During a patient visit, based on the patient

information (in the figure, the dashed line from PHC patient data shows this depen-

dency), our model first creates disease specific individual care plans. Our rules then

merge these disease specific individual care plans to create individual plans-of-care

(this considers multi-morbidity in a patient), and the next intervention required for

the patient is planned. These individual plans-of-care are then aggregated to create
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Level 2: Care plan 
Aggregation

LTC Patients

LTCs

Figure 3.1: Theoretical constructs used in our model.

the population-level plan-of-care. Thus, the care for an LTC patient, as required by

the best practice guidelines, “unfolds” visit by visit of an LTC patient. Because this

phenomenon occurs at patient visits, and unfolds care during each visit, we call this

process an “encounter-based unfolding plan-of-care” process. Our PCA advised that

this is the way in which GPs experience plan-of-care.

3.1.3 The Adaptable Best Practice based Workload Predic-

tion Model (ABP-WPM)

Our workload prediction model is based on the above theoretical constructs, and fol-

lows the encounter-based unfolding plan-of-care process to predict the population level

workload at the primary health centre. Within our workload prediction model, we

encoded these care pathways (the best practice guidelines shared by our advisor) as

rules. This enhances our workload prediction model as an adaptable best practice

based workload prediction model (ABP-WPM).

We evaluated whether this aggregated plan-of-care is of use by applying it (through

simulation) to predict the workload from the LTC patients at a PHC centre. We found
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Figure 3.2: The encounter based unfolding plan-of-care process.

that it can help the primary health care centre to foresee their upcoming workload

and plan accordingly. Agreeing with March and Smith (1995), this instantiation of

our model to predict the workload, demonstrates the utility and usability of our three

layer LTC PHC construct, encounter-based unfolding plan-of-care process as well as

our model.

Thus, our domain is a primary health care centre. We use a three layer LTC

PHC construct with care pathways, care plans and individual plans-of-care for LTCs,

LTC patients and LTC population, respectively, in a primary health care context. We

built our workload prediction model (i.e., the artefact) which follows an encounter

based unfolding plan-of-care to create an aggregated plan-of-care for LTC patients.

We evaluate this plan-of-care by applying it to predict the upcoming workload from

the LTC patients at a PHC centre. This workload then informs the resources, policies

and assumptions and update the rule-base accordingly.
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3.2 Our DSRM approach

The work presented in this thesis follows the design science research methodology

(DSRM). DSRM comprises iterative steps involving identifying (and motivating) a

problem, defining the desired properties of a solution, designing and developing an

artefact (software in this case), and evaluating the developed prototype through vari-

ous iterations of system development (Baskerville et al., 2009; Hevner, 2007; Vaishnavi

and Kuechler, 2007). An important step, which distinguishes DSRM from solution de-

velopment, is identifying the (general) lessons learned, communicating them, and using

the feedback from a broader community for the subsequent iterations of development

of the artefact. The process is informed by relevant literature as stated by Peffers et al.

(2007): “development of the artefact should be a search process that draws from exist-

ing theories and knowledge to come up with a solution to a defined problem” (p. 48).

As aforementioned, DSRM requires one to communicate and collect feedback on the

prototype developed from a broader community; for this work, the broader community

included our Primary Care Advisor of this work, members including GPs, health op-

eration officers, and chief medical advisers for the Waikato PHO and the various care

providers at Mosgiel PHC centre.

3.2.1 The holistic view of our research

As presented in our research questions in Section 1.2, the main aim of our work is

to find what model(s) of care can help manage the workload at a PHC centre. We

initially started focusing on the care activities at a PHC centre, which later required

us to identify specific patient care needs. As mentioned in Section 1.3, we used a

de-identified dataset of a PHC centre.

Our major challenges were due to

1. specific clinical encodings in health data and missing information, such as whether

a patient is a longterm patient or not, added more complexity. For example, C109

and C108 are Read codes that represent diabetes in a patient, and the clinical

guidelines do not reflect explicitly which Read code corresponds to the path in

the clinical guideline.

2. inconsistent usage of terminologies in health literature; although in this work, we

have a clear distinction between the terms used for planning care, as discussed

in Section 2.1.1, the health care domain uses these terms interchangeably.
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3. not having a complete understanding of how care planning for LTC patients

is performed in a real-world scenario. The clinical guidelines do not explicitly

represent which paths to follow for different Read codes. Therefore, we primarily

relied on the feedback from our PCA to map the health care knowledge and

decision-making process to an IT domain.

These challenges initiated our cyclic approach to develop our ABP-WPM. This

research follows an intertwined three-phase process. Figure 3.3 shows a timeline for

these three phases, namely the information interpretation (II), the rule-base develop-

ment (RBD) and the phase to improve simulation capability (SC).

Information 
Interpretation (II)

Rule-base development (RBD)

Simulation Capability (SC) C1 C2

II-RBD interactions

RBD-SC interactions

II-SC interactions

Figure 3.3: The holistic view of our research process.

Consider the SC time line. The stars, named C1, C2 and so on, are the iterative

cycles (presented in Section 3.2.2) for improving simulation capability (SC). These

require interactions with the rule-base development (RBD) phase. The RBD phase

developed the simulation rules, which in turn, were evaluated in the context of each

cycle in the SC time line. These interactions (although the figure shows only one line,

there are more and were frequent interactions) are shown using RBD-SC interactions

line.

Furthermore, the rule-base was also impacted by the information in the patient

data. And, due to the aforementioned challenges, this required us to undergo rigor-

ous iterative feedback cycles within the II phase. The feedback of some of these II-II

cycles were fed into the RBD phase. Thus, apart from the more frequent II-II cycles

(represented by the circles on the II time line), there were also interactions with the

RBD phase (represented by the II-RBD interactions line). Because the information re-

quired depended on the SC context, at times these II-II interactions directly impacted

our SC phase, which is depicted the II-SC interactions line. Chapter 8 presents these

interactions related to the II phase.

For example, we needed to know how many patients are recalled every three months

for diabetes. In order to have this capability (SC), we needed to understand how dia-
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betes patients can be identified from the data. There were more frequent II-II interac-

tions in order to understand the required information such as what clinical encodings

were used in the data and how these clinical encodings can be mapped to identify

the diabetic patients. This feedback help us understand what care plans mean in the

context of deciding the recall period (II-RBD interactions) and how rules can be formu-

lated (RBD-RBD interactions). In order to decide recalls in case of multiple conditions

in diabetic patients (RBD-SC interactions), the information of which were fed back to

the II phase. Thus, our rule base was developed in an iterative feedback driven manner

as described in the following section. Please do bear in mind that although we explain

these iterative cycles separately, in reality these cycles are intertwined. For now, we

will focus on the iterative cycles of development of the workload prediction phase of

our ABP-WPM.

3.2.2 The iterative-cycle approach

The DSRM approach as presented by Vaishnavi and Kuechler (2007) comprises six

iterative steps. Figure 3.4 shows our DSRM process adapted to follow the DSR process

by Vaishnavi and Kuechler (2007).

Knowledge Flows Process Steps Outputs

Organise workload at a PHC centre
(Awareness of the problem)

Knowledge 
Contribution

Proposed: Identify what drives the 
workload

Tentative design: Anticipate LTC 
management workloadPredict the workload from LTCs 

(Suggestion)

A rule-based aggregated care pathway for LTC care 
(Development)

Artefact: Encounter based 
unfolding plan-of-care

Patient-level, disease-level, population-
level workload predicted (Evaluation)

Performance measures: 
Compared predicted workload 
with historic workload with same 
patient database.

Workload due to LTCs is predictable 
(Conclusion)

Results: Aggregated care pathways 
are flexible and can predict 
workload from LTC care.

Design 
Science 
Knowledge

Feedback

Figure 3.4: Our DSRM process (adapted from DSR process presented by Vaishnavi

and Kuechler (2007) (p. 15).

Our work is to help a PHC organise its workload (i.e., the awareness of the problem).

Therefore, our initial proposal was to identify what contributes to this workload. We,
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then, identified that growing demand for care due to LTCs pose a major challenge to

manage their workload. Hence, our tentative design involved anticipating the workload

due to LTC management needs. Therefore, our first step is to predict LTC load on

primary health care. Having the problem identified, the next step was to support LTC

workload prediction at a population level. This involved identifying and stratifying the

patient population based on LTCs present in them. In order to do so, we developed

a rule-based system that simulates and aggregates the LTC patients’ individual plans-

of-care to a plan-of-care i.e., the encounter based unfolding plan-of-care for the LTC

population at the PHC centre. This aggregated care pathway, for LTC care needs, when

applied to the patient data can anticipate the care needs at a patient-level, disease-level

and population-level (as discussed below). This demonstrates that the workload at a

PHC centre is predictable. Specifically the knowledge contributions are

1. the individual plans-of-care can be aggregated into a single care pathway for LTC

population using a rule-based approach,

2. the workload at a patient-level, disease-level and population level is predictable.

The final steps of iteration evaluated the model developed by comparing the predicted

workload to the actual historic workload from the same LTC patients.

The goodness of fit of a predictive model describes how well it fits a set of ob-

servations. However, in this work, we do not have such a set of observations with

which to compare the goodness of fit, as the historic workload does not comply to

best practice guidelines and we aim to simulate the workload arising from adherence

to these guidelines. Similarly, it is not useful to measure the difference (error) between

these simulated and historic workloads, which rules out applying standard statistical

measures such as RMSE for comparison of simulated workload. We expect the two

workloads to differ, and a numeric measure of the difference would not help to validate

our model, as there is no level of difference that is known a priori.

Dahabreh et al. (2017) defines “face validity” to refer to “whether the model is

deemed a satisfactory representation of the salient aspects of reality and whether the

model results appear to be plausible”. Some recent studies such as those of Connell

et al. (2018); Jorgensen et al. (2018) and Luke et al. (2018) use face validity as a

measure to evaluate models, where usefulness is based on the understanding of a group

of experts in the domain. Similarly, Gacenga et al. (2012) and Leukel et al. (2014)

uses “expert evaluation” instead of the term face validity to refer to the DSR phases

of validation and evaluation of their frameworks.
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In this work we also chose to evaluate our model using expert evaluation. At various

stages of development of our model, the results were communicated and feedback was

collected from our PCA, the Planning and Funding Manager of Waitemata DHB,

the members of Waikato PHO, the health professionals at Mosgiel Health Centre and

the executive members of South Island PHO. Based on the feedback, the model was

extended to include more LTC care pathways, and also corrected (tuned) to adapt

the best practice guidelines for managing these LTCs in a patient. The model was

further evaluated for the ease of predicting workload under various what-if scenarios

(as presented in Chapter 6).

Figure 3.5 shows the iterations at a macro-level (the RBD - SC interactions in

Figure 3.3, although there are inputs from the II phase as presented in Chapter 8).

Please be informed that in practice there were micro-level iterations within steps A, B

and C of each cycle (as depicted in Figure 3.3).

Chronic Kidney Disease (CKD) is one among the various LTCs that is believed to

be stable in a patient for a year (National Kidney Foundation, 2015). Hence, we ini-

tially looked at the CKD care pathway (see Appendix A.4). In order to address cases

of multi-morbidity, we extended the model to include patients with diabetes. In the

following cycle, we included the wider population of LTC patients by including hyper-

tensive patients. The final model addressed the complete LTC patient population at

the practice. This predicted workload is then used to analyse various what-if scenarios.

The same cohort of patients is used to implement our Bayesian inference. The rest of

this section will detail these macro-level cycles and how the feedback from each cycle

drove/set requirements for the cycle that follows it.

Cycle 1: Develop the patient recall rule engine for the CKD patients only.

Chronic Kidney Disease (CKD) care plans were decided based on the CKD stage in

a patient. The challenge was to identify the CKD stage in a patient, given that it is

not identified by Read codes but by their eGFR and albumin-creatinine ratio (ACR)

laboratory values (presented in Section 4.5.2). I take this opportunity to remind the

reader that this study does not consider changes in the plan-of-care for a patient during

the simulation period. Therefore once the CKD stage in a patient is identified, the recall

period for the patient due to CKD is fixed for the simulation period.

Having the care pathway for CKD implemented, we extended the rule-base to simu-

late patient visits and schedule corresponding recalls1 (See Section 5.2 for the complete

1In this work, subsequent appointments for LTC management needs are referred to as recalls.
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Figure 3.5: Iterative cycles followed to develop our rule-based workload simulation

model.
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Table 3.1: Multi-morbidity matrix.

Care plan code asthma Atrial CKD COPD Diabetes heartdisease heartfailure Hypertension PAD psychosis stroke

asthma 1406 52 177 45 92 83 20 174 5 8 18

Atrial 52 393 253 43 68 148 73 114 20 2 42

CKD 177 253 1498 130 342 406 131 0 62 8 102

COPD 45 43 130 288 50 81 20 78 19 1 18

Diabetes 92 68 342 50 640 159 45 0 32 7 42

heartdisease 83 148 406 81 159 764 93 281 43 4 60

heartfailure 20 73 131 20 45 93 162 22 15 2 15

Hypertension 174 114 0 78 0 281 22 1399 24 9 67

PAD 5 20 62 19 32 43 15 24 97 0 15

psychosis 8 2 8 1 7 4 2 9 0 46 1

stroke 18 42 102 18 42 60 15 67 15 1 190
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discussion of the rule-base for our simulation). Since only one condition was considered

to simulate the workload, it was unlikely to be accurate. However, the findings and the

feedback on the findings were used to improve the workload simulation as discussed in

Chapter 4, Section 4.6.2. Knowing that the workload from the CKD patients was pre-

dictable, the rule-base was, then, extended to address the multi-morbidity in patients.

In order to get predictions right, we need to consider all conditions (in case patient

is recalled more frequently due to another condition). And, for the cohort of patients

with diabetes, the most commonly recurring co-mortality is CKD (see Table 3.1, out of

640 diabetic patients, 324 has CKD). Hence, we chose to implement the best practice

guidelines for diabetes.

Cycle 2: Extend the simulation model to include diabetes patients.

The care pathway for diabetes shared by the PCA was converted into Drools rules

(presented in Section 4.5.3) and added to the rule-base for the workload simulation.

Although the predicted workload data looks appealing, there were peaks and dips in

the predicted workload which were not evident in the historic visits of these patients,

as shown in Figure 3.6 which depicts the recalls for 3-monthly recalled patients.

Figure 3.6: Initial results of simulation for 3-monthly recalled patients.
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As evident from the figure, there is periodicity in our simulated recalls. This could

be due to most recent visits in 2013 accumulating towards the end of the year. An-

other reason could be the presence of other LTCs meaning that the patients would be

recalled more frequently than required by their CKD and diabetes care plans. Based

on the multi-morbidity table, prevalence of hypertension in patients suggests that the

workload from co-morbid patients could be more accurate if the care plans for hyper-

tension was also implemented. Initially, our plan was to apply hypertension care plan

to all the hypertensive Read-coded patients. However, the guidelines to manage hy-

pertension recommended care actions for those who are not Read-coded with diabetes

or CKD (the first line of care pathway for hypertensive patients given in Appendix A.6

recommends this. Therefore, in Table 3.1 it shows zero for the row CKD and column

for hypertensive patients, and row for diabetic and column for hypertensive patients).

The reviewers of our ECIS paper, (Devananda et al., 2017), were also keen to see the

implementation details of the care pathway for hypertension. Hence, the next cycle

included the care pathway for hypertension to simulate the workload due to LTCs.

Cycle 3: Extend the simulation model to include hypertensive patients

Most often, hypertension is not considered as an LTC, but a consequence of LTCs in

a patient (Sarafidis et al., 2017). There is an on-going debate among general practi-

tioners on acceptance of a care pathway for hypertension, especially in a PHC setting

(Borgmeyer, 2013). The complexity of applying the care pathway for hypertension in

the context of workload prediction is that a few GPs do not record hypertension for

the patients, as they consider it as an exacerbation of one’s blood pressure due to some

factors. Therefore, there are two categories of hypertensive patients in our data: the

Read-coded and the non-Read-coded hypertensive patients.

Another aspect that complicates delivering care was planning care for patients

with extreme blood pressure (BP) readings. For such patients, intensification of care

involved frequent visits (e.g., weekly or two-weekly recalls) and frequent medications

to control the extreme blood pressure readings of a patient (Sarafidis et al., 2017).

However, due the complexity of identification and application of intensified care for

such patients, this study does not consider intensification as a part of the normal PHC

workload. We consider intensification of care for hypertensive patients as a case for

special care similar to an emergency care or the after-hours care.

Multiple BP readings for the same patient at different times of the day added

more complexity to decide which care plan of the hypertensive care pathway should
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be applied to a patient. In such cases, guided by the Primary Care Advisor, this work

considers the most recent BP reading for the patient.

As aforementioned, there were Read-coded and non-Read-coded hypertensive pa-

tients. However, irrespective of whether the patient is Read-coded or not, the GPs

prescribe medications for controlling the hypertension in their patients (Sarafidis et al.,

2017). Hence, in this work, a factor that determined inclusion of a patient in the hy-

pertensive patient cohort was their medication status. The subsequent feedback cycle,

therefore, focussed on defining the medications, such as diuretics and non-diuretics

medications, and how long they are on these medications, to help identify the severity

of hypertension in them. This, in turn, decides the care plan applicable to a patient.

The resulting care pathway for hypertensive patients is given in Appendix A.6.

The resulting predicted workload from the hypertensive patients (refer to Figure

3.7) seemed reasonable (as for hypertensive patients medications to control extreme BP

values play an import role in their more frequent visits, which we do not address due

to its complexity at an individual patient level) to our PCA, although the periodicity

in simulated recalls (the red line in Figure 3.7) was not completely resolved.
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Figure 3.7: Comparison of simulated workload (the red line) with historic LTC visits

(including visits for medication prescription (the black line) and without medication

prescription (the green line)) by the hypertensive patients.

The predicted workload, these challenges and assumptions were discussed with

members at the Waikato PHO which included various roles such as GPs, health op-

eration officers, and chief medical advisers for the Waikato PHO. They also gave an

insight into realistic assumptions as discussed in the following cycle. Having addressed

the multi-morbidity, complexities of LTC patients and delivering care using care path-
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ways, we were then interested to include all the LTC patients for our workload sim-

ulation. Extending our model to include all the LTC patients also, thus, tested the

scalability of our rule-base.

Cycle 4: Extend the model to include all the LTC patients

There was no explicit information regarding the LTC status of a patient. Hence, we

had a workaround to identify LTC patients and their corresponding appointments (see

Section 4.4.1) to drive our workload simulation. As the scope of this work is limited

to producing a proof-of-concept workload model, it is not necessary to implement care

pathways of all LTCs. However, in order to include most LTC patients, agreeing

with O’Halloran et al. (2004), we consider a six-monthly recall for general care plan

reasonable for patients with other LTCs, since the vast majority2. of cohort patients

have CKD, diabetes or are hypertensive. This base care plan aligns with the New

Zealand’s Ministry of Health Strategy to prevent, identify or early diagnosis of other

LTCs (Ministry of Health NZ, 2016b). The generated workload was then compared to

the historic LTC visits by these patients. According to our Primary Care Advisor on

this work, Figure 3.8 comparing the generated workload with historic visits by these

patients is reasonable.
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Figure 3.8: Comparison of simulated workload with historic LTC visits by the same

patients.

2Out of 9 576 LTC patients, 7 047 patients were classified with at least one of the LTCs: CKD,

diabetes or hypertension
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After Cycle 4, the suggestions from our PCA, the Planning and Funding manager

of Waitemata DHB, and the healthcare decision makers of Waikato PHO were the

following.

• We should try to learn, in some way, the patients’ visit patterns;

• We should consider shifting workload to nurses. It was also recommended that

we could use severity of LTCs as a parameter to decide which patients could be

attended by nurses;

• They also observed that usually when a policy changes, the health professionals

are well aware of the clinical risks, so recommended that it would be valuable to

address the financial risks even if it is a basic model.

Therefore, we proceeded with Cycle 5 and Cycle 6 in parallel, which both depend on the

outputs of Cycle 4. Cycle 7 considers feedback from PCA and Southern PHO members

and gives an insight to the usability of what-if scenarios and future directions. Thus, I

added Cycle 7 as a phase of DSR that closes the loop, discussing the scope for future

work.

Cycle 5: What-if scenarios

First, I explore the alternatives of practices that can be deployed, knowing the up-

coming workload, at this PHC centre. In an informal meeting with the Planning and

Funding Clinical Manager for Primary Care of Waitemata DHB, he suggested to have

an analysis from a financial perspective would be good. He reflected, with his experi-

ence with PHOs and DHBs, that usually when a health scheme is recommended, what

the clinicians need is to know how it impacts them financially (because the clinicians

think the clinical risks can be handled by them). From a DSRM perspective, this step

had more micro-level cycles of iterations to decide which scenarios to choose and how

the financial aspects should be considered. In this exploratory study, I cover both the

clinical and financial impacts of a few such alternative practices as discussed in Chapter

6.

Cycle 6: Bayesian inference in workload prediction

Second, we agree that our rule-base model (presented till now) assumes that patients

turn up promptly (more rigidly) for their recalls when their medications run out. How-

ever, the appointments data of these patients reveal that it is not the case. Therefore,
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we apply the Bayesian inference to learn about the patient visits and, further use that

learning in our workload simulation (presented in Chapter 7). This step was guided by

statistical advice from the experts from the Department of Statistics and Mathematics

of our university.

Cycle 7: Identify the future work

We presented our work to the Southern PHO members and our PCA. There was

feedback on how we can extend the model for future work. Based on Cycles 4 and 5,

we also need to identify how the rule-base can be extended giving the practitioner the

autonomy to define the what-if scenario they need to analyse in their context. Based

on the output from Cycle 6, we ourselves identified that a future work would address

incorporating Bayesian inference for all (LTC) patients.

3.3 Our contributions

Table 3.2: Comparison of our ABP-WPM to other uses of care pathways.

Our DSR outputs Characteristics

Three layer LTC PHC constructs Layered approach to decide plan-of-

care for a population of LTC patients.

Specific focus on LTC context.

Encounter-based unfolding plan-of-care

process

Unfolds care during each visit of an

LTC patient. In our case, we follow

a dynamic approach of merging care

plans during a patient visit.

Adaptable best practice based work-

load prediction model (ABP-WPM)

Three layered LTC PHC constructs.

Follows the encounter based unfolding

plan-of-care process. Can predict the

upcoming workload from LTC manage-

ment needs of patients at a PHC level.

Following DSRM, we make three main contributions. Firstly, the three-layer LTC

PHC construct addresses the requirement of a terminologies and the relationship be-

tween them to plan LTC care at a population level. Secondly, we contribute to the
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process of transferring care requirements from disease specific care pathways to a pop-

ulation of LTC patients at a PHC through our encounter-based unfolding plan-of-

care process. Finally, our adaptable best practice based workload prediction model

(ABP-WPM) that given patient information, can predict the upcoming workload, for

a specified period, at a PHC centre. Table 3.2 summarises characteristics of our DSR

outputs.

Care  pathways / Care plans

Documentation of  
diagnoses, 

medication etc

Evidence-based 
care for specific 

disease

Reference tool for 
shared decision 

specific to individual

Predict population-level workload

Our contribution

Figure 3.9: Our contribution to using care pathways.

In a broad sense, we add to knowledge on how care pathways can be used to predict

upcoming LTC workload. As presented in Chapter 2, care pathways3 are used in various

contexts, we contribute to this list through our ABP-WPM as shown in Figure 3.9.

As discussed in Section 2.1.1 care pathways, presented as flowcharts (NICE, 1999), are

disease specific and guide to manage that specific disease in any patient (Best Practice

Advocacy Centre New Zealand, 2012; NICE, 1999). Practices adhering to these care

pathways reduces variance in providing care for a specific disease (Burt et al., 2014).

However, in isolation, they may cause fragmented care in the case of multi-morbid

patients. Some studies such as those by Ash et al. (2000); Busetto et al. (2017) and

Fox et al. (2009) refer to care plans (usually in the form of electronic health records

3In literature, care pathways, care plans and treatment plans (or plans-of-care) are used inter-

changeably. Here I use this term to refer to care delivered to patients.
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(EHRs)) for a shared decision for an individual. However, they do not use care plans

(in any form) apart to make shared decisions for an individual. A few studies (e.g.,

(Babiker et al., 2014; Bauman et al., 2003)) use care plans to record a patient’s health

condition (similar to in EHRs). Sometime these documentations could be paper-based

records. As the data recorded is specific to who provides care, chances are that the data

recorded may be incomplete. In comparison to the above uses, our ABP-WPM is best

practice based ( uses care pathways and is adaptable based on patient needs), flexible

(our rule base is extendible as required) and can be used to predict the upcoming

workload from a group of patients. Currently, the scope of our work is a PHC context.

Having discussed our research model and methodology, in the next chapter, I present

the rules in our rule engine that enacts on our three layer LTC PHC construct and

follows the encounter based unfolding plan-of-care process, and the initialisation of our

ABP-WPM.
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Chapter 4

Workload Prediction: Initialisation

The previous chapter presented the aspects considered to build our rule-base incremen-

tally, walking through the various cycles of the DSRM approach. This chapter presents

the steps followed to build the initial patient model that drives the subsequent predic-

tion process presented in the next chapter.

Our adaptable evidence-based workload prediction model (AE-WPM) operates in

two phases, namely initialisation and prediction. In this chapter, first I discuss, in

the context of initialisation of the model, the various aspects of this workload prob-

lem. I then discuss the challenges, assumptions, and definitions; and further, explain

the rules (decision tables) developed to prepare data for the subsequent prediction

phase. Finally, I discuss the validation of a few assumptions and rules developed for

preprocessing and preparing the patient model for the simulation.

4.1 The workload management challenge - a recap

A primary health care system provides general care including acute needs, LTC man-

agement needs and immunisations (WHO, 1978). In order to access these services, a

patient books an appointment with a GP at the PHC centre (Montague, 2014). Dur-

ing the consultation, the GP goes through the patient’s current and previous medical

history, then accordingly, lab tests may be requested, medications may be prescribed

and a follow-up1 may also be suggested. Accordingly, the next appointment may be

booked by or scheduled for the patient.

However, the growing demand for care due to patients with LTCs is posing a ma-

1The terms follow-up, next appointment and recalls are used interchangeably in this work to refer

to the subsequent appointments by a patient.
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jor challenge on the health care domain. Consequently, it is possible that a patient

might not be able to make an appointment on the date as advised by the GP due

the unavailability of GPs. Moreover, (multi-morbid) LTC management requires timely

recalls to prevent and detect associated complexities early, and to better manage the

LTCs present in a patient. Therefore, much emphasis is placed on the need to manage

workload to provide better care (Bodenheimer et al., 2009). Hence in this work, we

make an attempt to predict the upcoming workload as a volume of the number of

appointments from the LTC patients following their plan-of-care.

4.2 The workload prediction process

The workload prediction process operates in two steps, namely initialisation and sim-

ulation. Figure 4.1 gives an overview of this prediction process. As depicted in the

figure, medical practice refers to care pathways to meet the LTC management needs of

their patients. These care pathways are fed (as rules) into the simulation phase. The

original patient dataset is missing information required for our work (see Section 4.4.1)

and therefore needs to undergo a pre-processing step (shown as an arrow marked A)

to enrich the data with inferred patient information needed for our work. The patient

records are then filtered to retain information up until the simulation start date2.

Along with the care pathways, this initial patient model is an input to the simulation

phase. The simulation then builds care plans (the arrow B denotes the iterative cyclic

approach presented in Section 3.3 that extends the rule-base for simulation) for each

individual. Based on these individual care plans, our simulation predicts the recalls for

these LTC patients, which is then aggregated as the predicted workload.

Our simulation walks through time (from a given simulation start date to a sim-

ulation end date). Therefore, the initial patient model has the patient details such

as individual patient problem classes and their corresponding LTC appointment dates

(derived from the pre-processing steps) prior to the simulation start date.

Based on the individual problem classes applicable to a patient, for each patient

our rules aggregate their care plans to decide the patient’s recall period as the most

frequent recall period for the patient’s various conditions. Then, based on their most

recent LTC visit date prior to the simulation start date, and the most frequent recall

period for a patient, the subsequent recall decision is made for each patient. This next

2We have real visit data for the year 2014. We simulate workload for 2014 so that we can compare

the simulation results with the actual behaviour
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Figure 4.1: Overview of the workload prediction process modified3 from Devananda

et al. (2017).

appointment is calculated as their visit date plus the most frequent recall period (in

months) for the patient. This recall is recorded as a fact in the rule engine’s working

memory. This continues for the simulation period. Finally, after the simulation ends,

these recorded recalls are aggregated to a weekly basis to give the predicted workload.

As discussed in Section 2.2.5, the use of rule-based models in the health care domain

is widely accepted. Knowledge-based clinical decision support systems use an “If-Then”

rule base applied onto the patient data to propose care actions for the patients (Alther

and Reddy, 2015). Shiffman (1997) and Minutolo et al. (2017) also highlight the

benefits of using a rule-based system in medical settings, which includes the following.

1. We can extend the rule-base by adding new rules; this feature helps us to incre-

mentally build and evaluate our workload prediction model through the DSRM

cycles presented in Chapter 3.

2. We have the flexibility to choose different rules based on the facts expressing the

current context; this feature help us to build the plan-of-care from care plans.

3. It enables dynamic handling of changes through rules being re-activated based

on changes to facts during the execution of rules.

3Updated problem ‘codes’ to problem ‘class(es)’.
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The above two (2 & 3) features are essential to explore our what-if scenarios. Therefore,

we use a rule-based approach in this work.

The following section presents the rule engine Drools and our rules in Drools rule

formats.

4.3 The Drools rule engine and our rules

This work uses the Drools rule engine (Salatino et al., 2016). Drools is a Business Logic

integration Platform (BLiP). The use of Drools has two main stages:

1. Authoring: During authoring, we create rules in .drl format for Drools. These

files contain the rule definitions in a declarative form. Drools also supports a

decision table format, which gets converted (internally) to .drl format at run

time.

2. Runtime: At runtime, we create the working memory, which is a representation

of the input data as ‘facts’. The rules are then applied repeatedly to the incoming

data, until no more rules are triggered.

A Drools rule (hereafter referred to as a D-rule) has a condition and an action

part. Every D-rule is identified by a rule name. Conceptually, at each point all rules’

conditions are evaluated against the state of working memory. Rules with true condi-

tions are activated. Once all the rules are evaluated, the activated rules get fired and

subsequently, some facts are modified, inserted or deleted.

One problem that can arise from rule-based systems is potential conflict between

multiple rules that are triggered in the same context. In our work, the number of rules

was small and the rules are designed to avoid conflict.

By default the choice of the rule to fire next is random; the salience feature can be

used to control the logical sequence of the rules’ evaluation and execution. We have

used salience extensively in our pre-processing and in simulating what-if scenarios. For

example, when one visit among multiple visits of a patient is shifted to nurses, the

logic applied is to schedule all the visits to GPs initially and on the simulation end day,

one random visit among various visits of the patients is shifted to nurses. This should

happen only after the visits for that day are scheduled to GPs. So, salience is used to

order the execution of activated rules.

By default whenever the state of working memory changes, i.e., when a fact gets

inserted, modified or deleted, all rules are (re)evaluated and consequently the set of
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activated rules may change. The no-loop feature of a rule can be used to avoid re-

evaluation of the rule. Similarly, there are other features in Drools that provide flexi-

bility in using Drools. Salatino et al. (2016) give an exhaustive list of features available

in Drools.

4.3.1 The Drools objects and facts

Every fact in the working memory is associated with an object in the Java programming

language. Objects comprise attributes or members. Facts associate values to these

attributes. In our case, we define object classes based on our data tables (see Figure

4.2). These classes include Patient, Classification, LatestLabResult, and Recall

(see Appendix A.2 for a complete list of classes and related attributes used in our

work).

Figure 4.2: A partial entity-relationship diagram.

A Patient object has patientId, age, ethnicity, prov4 and other attributes. A

4prov captures the provider role code
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Classification has patientId, dateOfClassification, Readcode and so on. Likewise,

a Recall has patientId, recallDate and so on. In order to specify a condition, we

use a class name and corresponding criteria on the attribute to be met. For example

to check if a patient is above age 50, we write:

Patient(age>50)

Having given a brief idea on how facts are represented and accessed, the following

section will discuss the Drools rule formats.

4.3.2 Drools rules formats

Drools supports two different styles of rule representations: the .drl format and the

decision table format. In this work, while preprocessing of data for initialisation uses

decision tables, the prediction process uses the .drl rule format. Before diving into a

more detailed discussion of rule formats, let us consider an example of the diabetic

risk score calculation for a patient as taken from NZGG (2011). Table 4.1 shows a

tabular form of variables and conditions that is used to calculate the risk score for

diabetes ($drs). The column Variable indicates various parameters coded using a

corresponding Code. If a patient’s data values of the corresponding coded parameter

match the Criteria, then the risk factor of diabetes for the patient increases by the

Score given in the respective row. For example, the first row of the table reads: If a

patient’s Hba1c in mmol/mol coded using Code 44TB is greater than 55, then add 1

to the risk score of the patient.

Table 4.1: Diabetic risk score calculation factors taken from NZGG (2011).

.drl format

Traditional rules with a “when-then-end” format are stored as .drl rules. The first

row of Table 4.1 is given as a rule in Listing 4.1, which reads: If a patient’s Hba1c
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coded using Code 44TB is greater than 55, then add 1 to the risk score of the patient.

In Listing 4.1, we use $ to indicate it is a variable of that class. For example, line

4 indicates that $p is a variable of type Patient class. So, all the attributes of the

Patient class are available to $p.

The first row of drs calculation table (line 1) is the rule name. The when

keyword denotes start of conditions of the rule. Every condition within the when block

are “AND”ed together. The then keyword marks the action part of the rule. The

statements in the then block are executed sequentially. The end marks the end of the

rule.

In this example, we need to update those patients ($p) whose lab results for 44TB

value is greater than 55 (line 5), and have a diabetic risk score $drs associated with

them (line 6), then add one to their risk score ($drs) (line 9).

Listing 4.1: .drl rule for first row in Table 4.1.

1 rule "first_row_of_drs_calculation_table"

2 when

3 // conditions are "AND"ed together in this block.

4 $p:Patient ()

5 $lab:LatestLabResult(patientId == $p.patientId ,readCode =="44

TB", labValue >55)

6 $drs:DiabeticRiskScore (patientId == $p.patientId)

7 then

8 //The statements in the then block are executed sequentially.

9 $drs.riskScore = $drs.riskScore + 1;

10 modify{$drs};

11 end

Subsequent rows are appended, similarly, as individual rules to the rule above.

Another way to represent rules in Drools is using decision tables.

Decision table format

A decision table is a matrix of rows and columns, where each row of a decision table

forms a rule. Columns represent the criteria of the conditions. Each such decision rule

states what procedure to follow when certain conditions exist (Salatino et al., 2016;

Senn, 1989).

In Drools, decision tables can be represented using a spreadsheet in either .xls or
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.csv format5. Figure 4.3 implements Table 4.1 as a Drools decision table. Internally

each row of the decision table is converted into a D-rule. Listing 4.2 presents D-rules

for rows 38 and 39 of the decision table in Figure 4.3.

Listing 4.2: Example of rows 38 and 39 in the decision table in Figure 4.3 converted

internally to .drl rules.

1 // rule values at C38 , header at C33

2 rule "DiabeticsRiskScoreCalculator_38"

3 when

4 $classifi:Classification(problemCode == "DM_COD")

5 $latestlabresult:LatestLabResult(patientId == $classifi.

patientId ,labCode =="44TB",labValue >55)

6 $drs:DiabeticRiskScore(patientId == $classifi.patientId ,

riskScore <4)

7 then

8 $drs.riskScore = $drs.riskScore +1; update($drs);

9 end

10 // rule values at C39 , header at C33

11 rule "DiabeticsRiskScoreCalculator_39"

12 when

13 $classifi:Classification(problemCode == "DM_COD")

14 $latestlabresult:LatestLabResult(patientId == $classifi.

patientId ,labCode =="2469",labValue >130)

15 $otherlabresult:LatestLabResult(patientId == $classifi.

patientId ,labCode =="246A",labValue >80)

16 $drs:DiabeticRiskScore(patientId == $classifi.patientId ,

riskScore <4)

17 then

18 $drs.riskScore = $drs.riskScore +1; update($drs);

19 end

Every decision table has a global configuration section (rows 32 to 37 in the figure)

and a rule declaration section (rows 38 and below).

The global configuration section has keywords to indicate the rule package, the

start of a rule table, the table name to be used to auto generate rule names, to specify

if the cell contents belong to the left hand side (LHS) i.e., the condition or the right

hand side (RHS) i.e., the action of a rule, and the classes of object to which these

5I use .xls format in this work.
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32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48

B C D E F G H I
RuleSet

RuleTable  DiabeticsRiskScoreCalculator

CONDITION CONDITION CONDITION CONDITION CONDITION CONDITION ACTION

$classifi:Classification $latestlabresult:LatestLabResult $otherlabresult:LatestLabResult $otherclass:Classification $p:Patient $drs: DiabeticRiskScore

problemCode == "$param" 
patientId == $classifi.patientId, 
labCode=="$1", labValue $2

patientId == $classifi.patientId, labCode =="$1", 
labValue $2

patientId == $classifi.patientId, 
problemCode == "$param"

ethinrange(ethCode), 
patientId==$param

patientId==$param,riskScore 
<4

$drs.riskScore = 
$param; 

update($drs);
Recall Decision Check problemCode decide recall

DM_COD 44TB,>55 $classifi.patientId

DM_COD 2469,>130 246A,>80 $classifi.patientId

DM_COD 46TD,>3 $classifi.patientId

DM_COD 44J3,<60 $classifi.patientId

DM_COD 44Q,>=1.7 44P, >=4.0 $classifi.patientId

$classifi.patientId $classifi.patientId

DM_COD CSMOK_COD $classifi.patientId

heartdisease $classifi.patientId

stroke $classifi.patientId

TIA $classifi.patientId

PAD $classifi.patientId

4DM_COD

$drs.riskScore+1 DM_COD

predictionPack

Figure 4.3: Drools decision table to calculate diabetic risk score.
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conditions or actions apply. The rule declaration section specifies the criteria on the

objects specified in the global configuration section. Thus, the global configuration

section depicts how to map rows of the rule declaration section to the corresponding

“rule-when-then-end” sections of a D-rule.

The RuleSet keyword (in row 32 in the figure) indicates the name to be used in

the rule package that will encompass all the rules. The RuleTable keyword (on row

33) marks the start of this decision table. Any text following the RuleTable keyword

(DiabeticsRiskScoreCalculator, here) on the same row is considered as a part of the

auto generated rule-name for each row of that table. The row numbers are appended

to guarantee unique rule names. For instance, the rule name corresponding to row 38

will be “DiabeticsRiskScoreCalculator 38” (see the first rule in Listing 4.2).

The keywords CONDITION and ACTION indicate that the data in the columns below

are for the when and the then parts of a rule, respectively. For a given row, the column

of the RuleTable entry indicates the column in which the rules start; columns to the left

are ignored. Therefore, entries in columns A and B are ignored in this case. The rule

is built from rows 38 onwards and conditions for the rules are decided from columns C

to H.

In Listing 4.2, you can infer that the rules are built horizontally, based on condi-

tions built vertically from the columns. In other words, the conditions are “AND-ed”

horizontally to form a rule and are “OR-ed” vertically to append new rules to the rule-

base. Also, as seen in Listing 4.2, the values in the cells below the condition classes

become constraints on that object type. For instance, in the figure, consider column

C. The cell entry $classifi:Classification indicates that the condition must be

applied to facts of type Classification. They can use the notation $param as a place

holder to indicate where data from the cells below should be interpolated. In the figure,

the criterion for this column is specified as problemCode == $param. This is replaced

with problemCode == "DM COD" as the first condition in rules, when the Column C

cells in these rules have the value “DM COD”. For multiple insertions, we use $1, $2,

etc., indicating positions of parameters in a comma-separated list in a cell below.

A separate column is used to define each subsequent condition for a rule, as shown

in columns D to H. It is possible that certain conditions apply only to some rules in

the set. For instance, the second rule row of Table 4.1 sets criteria for both 2469

and 246A. In order to specify this (additional) “AND” condition, in the decision table

we use CONDITION column D. As seen in the second rule in the listing, there are two

conditions (DiabeticsRiskScoreCalculator 39). When the conditions don’t apply
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to a rule, the corresponding cell is left empty (e.g., in row 38, columns E, F and G are

left empty and indicate those conditions do not apply to this rule).

An ACTION defines the rule action. Here, the rule action is to update $drs of the

patient by adding 1 to its riskScore attribute (see column I). Rule rows are read until

there is a blank row.

Apart from these basic features, each rule can also be assigned a different name

using a NAME column type. We can also use a column to indicate the PRIORITY of a

rule. It has to be noted that multiple RuleTables can exist in a sheet. More features

and implementation details are given by Salatino et al. (2016).

Having introduced a broad idea of how the rule base is represented, we describe

the initial dataset, the rules for pre-processing this initial dataset, and the validation

results of the developed rule base.

4.4 Initial dataset

The dataset6 includes a patient Register which records details of 29 974 patients,

an Appointments table, a Scripts table to store the medication prescription details, a

Classifications table, a Transactions table, an Invoice table, an Immunisations table, a

table Ethnicity that records details of various ethnic codes used in the dataset and a

Labs table.

New Zealand has a public-share-funded health care system (Ministry of Health NZ,

2016e), and our collaborator in this work was interested in the workload from their

funded patients. Hence, we consider only the 9 895 publicly7 funded patients and only

a subset of these funded patients (as described in the following section) belong to our

cohort. For instance, to be included in our cohort a patient must be an LTC patient

and must have made an LTC appointment within a defined period.

The clinical support system of our collaborator uses MedTech32 (MedTech Limited,

2013), and so queries to define the cohort use tags specific to the MedTech32 data for-

mats. For instance, funded patients are recorded with an ‘F’ for enrolmentfundingcode

attribute of a patient in the patient register. (See Appendix A.11 for a partial descrip-

6As mentioned in Chapter 1, the data was anonymised before being supplied and the University

of Otago Human Ethics Committee (Health) approved the use of this anonymised data in our study.
7In a New Zealand context, there is no notion of “privately funded” patients. There are either

publicly funded or non-funded patients. To be eligible for public funding, the patients should meet the

eligibility criteria as required by the Minister of Health under section 32 of the New Zealand Public

Health and Disability Services Act 2000 (Ministry of Health NZ, 2016e).

72



tion of the mapping from the underlying MedTech32 database to the tables used in

this study).

I take this opportunity to remind the reader that once the patient data has been

preprocessed, it represents a generic patient with similar LTC conditions rather than

the actual patient. Our simulation model does not simulate patients leaving or join-

ing the practice. We also do not simulate new LTCs being diagnosed or the LTC

deterioration in a patient, and so do not simulate patient outcomes.

4.4.1 Shortcomings of the dataset and compensating with in-

ferences

The dataset captures individual patient data. However, the dataset is missing certain

information that is needed, and has more granular data than required for this study.

Hence, the data needed to undergo some preprocessing, in order to infer our required

information.

For instance, consider a patient A. The patient register does not explicitly identify

A as an LTC patient. It is not evident from the appointments by A whether they

were related to LTCs or not. Apart from the most recent script of an LTC-related

medication for A being tagged with a ‘T’, no information explicitly indicates that the

medication was prescribed to manage a specific LTC in A. Similarly, in other tables,

no data or information explicitly captures whether an event, action or data captured

in these tables relate to LTC(s) in a patient. Thus, one major shortcoming found from

analysing this health data was that it does not explicitly represent the LTC status of

an entity in these tables. Hence, we applied some general assumptions to identify LTC

medications and the currently active medications in a patient which, in turn, were used

to identify LTC-related appointments (hereafter referred to as LTC appointments) of a

patient. These assumptions and definitions were fine-tuned over many iterative cycles

of evaluation via feedback from our PCA after studying statistics on the resulting

patient database, simulated workload, and examining generated appointment traces

for individual patients.

The information inference logic adopted for this study is primarily advised by our

PCA. Here, his expertise as a clinical manager and as a GP play a major role. So, note

that these definitions and assumptions could vary from practice to practice and care

provider role to role.

73



Identifying LTC appointments

In order to start the patient visits simulation, the model needs to know when the last

LTC appointment was made by each patient of the cohort, given the simulation runs

for a given time-frame specified by a start date and an end date. As the appointments

table lacked explicit representation of the reason (such as LTC, acute, exacerbation of

an LTC and so on) for an appointment, one of the major challenges was to identify the

LTC appointments by these patients.

Generally, administrative and billing systems capture a limited but consistent set of

data about a patient and the service provided (Steinwachs and Hughes, 2008). In our

case, the transactions table records which role is responsible for a transaction in the

sercode of the transaction table. Hence, we looked for those appointments whose

transactions were related to a GP or a nurse. In addition to that, we also assume that

LTC medications are prescribed every 3 months, and patients tend to visit a practice

when their medications are due to run out. Although usually patients come earlier

than their medications run out, there are cases when they come later. Hence, in this

work, we define an LTC appointment as any appointment that

• involves a consultation with a GP or nurse (sercode of the transaction is

encoded with a ‘C’ or an ‘NC’); and,

• has a percentage (see below) of active long-term medications prescribed within

a three-week window (two weeks before and one week after) of the appointment

date of a patient.

During an appointment related to non-LTC related needs, only those LTCs (if any)

that may be affected by medications to that non-LTC will be addressed. However,

during an appointment related to an LTC(s), usually all the LTCs and their medication

requirements are discussed and medications are prescribed accordingly for the patient.

Therefore, we consider the percentage of active long-term medications prescribed.

The reason for considering a three-week window is because the medications may be

prescribed before or after an appointment. For instance, some patients come earlier

than their medications run out. It is also possible that during an appointment the

GP would suggest some lab tests and later during the week, the GP may prescribe (or

change) medications based on those lab test results. Therefore, we consider a three-

week window (two weeks before and one week after) of the appointment date of a

patient.
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Identifying LTC prescriptions

The scripts table records details including the patient (patientId), the drug code,

the generic name of the medicine and the brand of the medicine. However, it does

not capture the reason for prescribing a specific medication for a patient. Moreover,

medications belonging to the same generic medications may differ in their brand and

dosage. The generic names were not null, however, there were incomplete8 generic

names in the table. For example, the encoding of PARACETAMOL (the generic name of

the drug) prescribed varied based on the drug code (such as MT-2902 and MT-511) and

the brand name (such as PARACETAMOL, PAMOL, and PANADOL). Hence, we considered

the first six letters of the generic name of the medications to decide the count of

medications prescribed to a patient. For the above example, we use PARACE for all

medications prescribed with a generic name PARACETAMOL.

The calculation of the number of medications prescribed on a date of prescription

for a patient involved three steps. For each patient:

Step 1 : We made a list of the T-tagged medications prescribed historically for that

patient. Please recall that the MedTech32 database uses a data tag ‘T’ in the

most recent prescription of a medication to indicate that it was prescribed for an

LTC in the patient (although it does not explicitly say which LTC(s)). Then,

Step 2 : We counted how many T-tagged medications were active on a date of appoint-

ment of the patient. An active medication is a medicine prescribed for a patient

within four months of the date of appointment of the patient. This is because

LTC medication prescriptions may be valid for up to four months. Next,

Step 3 : We compared the number of total active medications the patient is on and the

number of medications prescribed within the three week window (as mentioned

above) of the date of appointment of the patient9. Then, we defined a patient as

prescribed with an LTC prescription if the patient was:

• not on any active LTC medicine but an LTC medication was prescribed

within the three week window (this is probably due to a new diagnosis or a

change of medication for an LTC in the patient); or

• on one active LTC medicine and there was one (or more) LTC medication

prescribed within the three week window; this may be due to one or more

8Only the first few characters of the name were recorded.
9These rules were validated by our PCA.
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factors such as other LTCs being diagnosed or prevention medications pre-

scribed or LTC severity having changed in the patient; or

• on two active LTC medicines and at least one LTC medicine was prescribed

within the three week window i.e., at least one LTC in the patient has to

be managed through medication; or

• on three active LTC medicines and at least two LTC medicines were pre-

scribed within the three week window; or

• on more than three active medicines and at least half of the number (rounded

down) of the active medicines were prescribed within the three week window

for the patient.

Yet another shortcoming was related to care delivery decisions. The data captures

neither the reasons for the care actions nor the care plan identifiers or the care pathways

applied to a patient. Hence, a few decision tables were developed to infer which care

plans of a care pathway were applied to a patient. Furthermore, we also needed to

classify LTC severity in the patients. The following sections discuss these decision

tables, which form a rule base to filter and refine data according to our requirements.

The resulting data set was then used to seed to execute our workload simulation model.

In New Zealand, the Ministry of Health makes effort to record patient demographics

specifically Māori and Pacific Islanders (M&P) and their issues. However, the clinical

guidelines applied or referred to manage a specific LTC are those developed in the US

or the UK. According to our PCA, there are no clinical guidelines to manage an LTC

specifically in a M&P group, although there are health strategies (Ministry of Health

NZ, 2000) that aim to improve access to care, low cost access and so on to address

health issues of the M&P group. So, for M&P group, the practitioners continue to

refer to the standard guidelines available.

4.5 Data pre-processing for simulation

A partial entity-relationship (ER) diagram of the dataset was introduced in Chapter

3. Here, I will discuss the preprocessing steps required to prepare data (i.e., our initial

patient model) for seeding the simulation of patient recalls.
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4.5.1 Decision table: to map Read codes to problem class(es)

As noted earlier, in this study we do not simulate patient outcomes. Hence, the infor-

mation we needed to know was the LTC in a patient (the general name rather than the

specific clinical encoding of the LTC), and the corresponding recall period for the pa-

tient. However, clinical coding is used extensively within the PHC system (Alther and

Reddy, 2015). In this practice dataset, the clinical coding system was Read V2. Clin-

icians are encouraged to code as far down the coding hierarchy as possible to increase

the accuracy and specificity of disease coding (Mabotuwana and Warren, 2010). So,

there are multiple Read codes associated with each LTC, e.g., any Read code starting

with G2, such as G20 and G27, is used to represent hypertension and more information

related to hypertension in the patient. Since these Read codes capture more details

than we need, we mapped these Read codes to problem classes. Problem classes are a

more generic name for the LTCs; e.g., following on from the previous example, both

the Read codes G20 and G27 will be mapped to a problem class hypertension (which

we encode as HYP COD10).

In this work, we focus on Read codes that identify one of the 12 LTCs listed below.

The label for each LTC in this work is given in parentheses.

1. Chronic Kidney Disease (CKD)

2. Hypertension (HYP COD)

3. Diabetes diagnostic codes (DM11 COD)

4. Coronary Heart Disease diagnosis codes (heartdisease)

5. Stroke diagnosis codes (stroke)

6. TIA diagnosis Codes (tia)

7. PAD diagnostic codes (pad)

8. Atrial Fibrillation (atrial)

9. Congestive Heart Failure (heartfailure)

10. COPD Diagnostic codes (COPD)

10COD stands for condition.
11Diabetes Mellitus
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11. Asthma Diagnostic codes (asthma)

12. Psychosis, schizophrenia & bipolar affective disease codes (psychosis)

Figure 4.5 presents a partial Drools decision table that maps Read codes to problem

class(es) (please refer to Appendix A.3 for the complete decision table).

4.5.2 Decision table: to identify the CKD stage in a patient

As already mentioned in Section 3.2.2, the severity or presence of Chronic Kidney

Disease (CKD) in a patient is not recorded by Read codes, instead the CKD stage in a

patient is determined by two factors, namely the Gfactor (eGFR) and ACR12 stage of

the patient. With the Gfactor and ACR values, the recall is decided according to the

recall plan matrix given in Figure 4.4. It defines CKD recall periods based on the two

factors. It also presents the severity of the CKD stage in a patient. Here, note that

green means no CKD (hence no recall), yellow means low severity (12 month recall),

orange means medium severity (six month recall) and red means most severe (three

month recall).

Figure 4.4: CKD stage recall plan.

We use the CKD-EPI equation13, which is a standard one for calculating the G-

factor of a patient (Levey et al., 2009). Because the parameter values depend on patient

details (see Table 4.2), the decision table in Figure 4.6 selects the right parameters to

12Albumin-Creatinine Ratio
13eGFR = factor*(((serum creatinine in µmol/L)*0.0113/denominator)ˆexponent)*0.933ˆage
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Figure 4.5: Mapping Read codes to problem classes: a partial Drools decision table.
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be used in the equation. The AssignFactor function in Listing 4.3 then takes these

corresponding parameter values to calculate the Gfactor. Our data (as part of the

anonymisation) does not capture the date of birth but has the age of the patient in

2015. Therefore, we calculate newage to be used in the equation. The data also

has records that incorrectly recorded the serum creatinine values, hence we needed to

correct it with a multiplication factor 1000 (when the value is less than 2).

Listing 4.3: User defined function to assign Gfactor based on various parameters.

1 function int AssignGFactor(int factor , double ser_creat , double

denom , double expo , Date labreceiveddate ,int age)

2 {

3 int newage = age - (2015 - labreceiveddate.toLocalDate ().

getYear ());

4 if(ser_creat < 2)

5 ser_creat = ser_creat * 1000;

6 double eGFR = factor * Math.pow ((( ser_creat *0.0113)/denom),

expo) * Math.pow (0.993 , newage);

7 int eGFRValue = (int) eGFR; // floor value of the double

needed

8 return (eGFRValue);

9 }

Table 4.2: CKD-EPI parameter-values

Ethnicity Gender Serum Creatinine Factor Denominator Exponent

Black Female <=62 166 0.7 -0.329

Black Female >62 166 0.7 -1.209

Black Male <=80 163 0.9 -0.411

Non Black Female <=62 144 0.7 -0.329

Non Black Female >62 144 0.7 -1.209

Non Black Male <=80 141 0.9 -0.411

Non Black Male >80 141 0.9 -1.209
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RuleSet
RuleTable CKD 
Gfactor 
Calculation

CONDITION CONDITION CONDITION CONDITION CONDITION CONDITION ACTION ACTION ACTION ACTION

ethCode == 
$param

ethCode != $param gender == 
'$param'

patientId == 
$p.patientId, 
labCode == "$1" 

(int)labValue 
<=$param

(int)labValue > 
$param

System.out.println("In the rule Gfactor 
Calculation");int $factor = $param;

double 
$denom = 
$param;

double $expo = 
$param;

CKDLabResult $newlabresult = 
new CKDLabResult(); 
$newlabresult.patientId = 
$latestlabresult.patientId; 
$newlabresult.receivedDate= 
$latestlabresult.receivedDate;$ne
wlabresult.labCode = "eGFR"; 
$newlabresult.labValue = $param;  
insert($newlabresult);retract($late
stlabresult);

Problem Types Check Ethnicity 
Black

Check Ethnicity 
NonBlack

Check Gender
Lab Code for 

Serum 
Creatinine

<= condition > condition Factor Denominato
r

Exponent Assign G Factor and update 
the same

62 -0.329
62 -1.209

80 -0.411
80 -1.209

62 -0.329
62 -1.209

80 -0.411
80 -1.209

44J3

166

predictionPack

$p:Patient $latestlabresult: LatestLabResult

BLACK Female
54

F

AssignGFactor($factor,Double
.valueOf($latestlabresult.labV
alue),$denom,$expo,$latestla
bresult.receivedDate,$p.age)

Non-BLAck Male M 141 0.9

0.7

F

BLACK Male M 163 0.9

Non-BLACK Female
54

144 0.7

Figure 4.6: eGFR parameter assign table.
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RuleSet

RuleTable CKD ACR Factor Calculation

CONDITION CONDITION CONDITION CONDITION CONDITION ACTION ACTION PRIORITY UNLOOP

labCode == "$1"
(int)labValue == 
$param

(int) labValue != 
0 && (int) 
labValue < 
$param

(int) labValue 
>=$1  &&  (int) 
labValue <=$2

(int) labValue > $1
int ACRStage = 
$param;

CKDLabResult  $newlabresult = new 
CKDLabResult(); 
$newlabresult.patientId = 
$latestlabresult.patientId; 
$newlabresult.labCode = "ACR"; 
$newlabresult.labValue = $param; 
$newlabresult.receivedDate= 
$latestlabresult.receivedDate; 
retract($latestlabresult); 

Lab Code for 
Serum Creatinine 0 condition

>= and <=  
condition > condition ACR stage AssignACRand update the same Salience no-loop

0 1

3 1

3,30 2

30 3

100 TRUE

predictionPack

$latestlabresult: LatestLabResult

46TD ACRStage

Figure 4.7: ACR calculation in a decision table.
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Similarly, the decision table in Figure 4.7 assigns the ACR-stage in a patient based

on values of the ACR lab test results (ACR lab tests are Read coded as 46TD; and

see Table 4.3). Table 4.4 maps the results of eGFR and ACR stage to decide the CKD

stage in a patient. Therefore, the results of these two decision tables are inserted into

the working memory which then, together, determine the CKD-stage as given in Figure

4.8. Please refer to Appendix A.4 for the complete CKD care pathway used in this

work.

Table 4.3: ACR stage assign criteria.

ACR Stage of Protein Loss

absent (0) A114

<3 A1

>=3 and <=30 A2

>30 A3

Table 4.4: Mapping latest eGFR values from Figure 4.6 and ACR from Figure 4.7 to

CKD Stage.

eGFR ACR Stage of CKD

<=14 A3 G5 A3

<=14 A2 G5 A2

<=14 A1 G5 A1

<=14 Null G5

>=15 and <=29 A3 G4 A3

>=15 and <=29 A2 G4 A2

>=15 and <=29 A1 G4 A1

>=15 and <=29 Null G4

>=30 and <=44 A3 G3b A3

>=30 and <=44 A2 G3b A2

>=30 and <=44 A1 G3b A1

>=30 and <=44 Null G3b

>=45 and <=59 A3 G3a A3

>=45 and <=59 A2 G3a A2

14As per the care plan, it should assign Null. We use A1 as per the best practice guidelines suggested

by our PCA.
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>=45 and <=59 A1 G3a A1

>=45 and <=59 Null G3a

>=60 and <=90 A3 G2 A3

>=60 and <=90 A2 G2 A2

>=60 and <=90 A1 No CKD

>=60 and <=90 Null No CKD

>=90 A3 G1A3

>=90 A2 G1A2

>=90 A1 No CKD

>=90 Null No CKD

4.5.3 Decision table: to calculate the diabetic risk score of a

patient

Diabetes in a patient can become more complicated due to prolonged glycosylated

haemoglobin level in one’s blood stream (Papatheodorou et al., 2015). This complexity

is depicted by a risk score of diabetes in a patient. As depicted in the care pathway for

diabetes, (please refer to Appendix A.5 for the complete diabetes care pathway used

in this work), patients are classified based on their risk score (from 0 to 3 where 3 is

high risk). However, if the patient has been diagnosed with heart disease, stroke, TIA

or PAD, then they are categorised as a very high risk patient. We use risk score 4 to

depict these very high risk patients (refer to the last four rows in Figure 4.9). The

other rows, based on laboratory results, add one to the risk score of a patient.

As depicted in the care pathway, the smoking status of a patient also plays an

important part in deciding the risk score of the patient. The smoking status of the

patients are current smokers, ex-smokers and non-smokers. I would like to highlight the

difference between the most accepted NICE15 guidelines and the best practice guidelines

for diabetes management followed in this work. The NICE guideline for diabetes takes

into account whether the patient has ever smoked, how long this smoking status was

unchanged and the current smoking status to determine the risk factor for a patient

(NICE, 1999). On the other hand, the best practice guidelines for diabetes applied

in this study are those of the NZGG (2011) and consider only the current smoking

status of the patient as a factor to calculate the diabetic risk score. According to the

15The National Institute for Health and Care Excellence, UK.
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RuleTable Assign CKD Stage
CONDITION CONDITION CONDITION CONDITION ACTION
$ACRlabresult: 
CKDLabResult 

labCode == "ACR" , 
(int) labValue == 
$param

labCode == "eGFR", 
patientId == 
$ACRlabresult.patientId,lab
Value <= $1

labCode == "eGFR", patientId 
== $ACRlabresult.patientId, 
labValue >= $1 && labValue 
<=$2

labCode == "eGFR", 
patientId == 
$ACRlabresult.patientId,(i
nt) labValue >= $1

System.out.println( "Rule fired for CKD stage 
for idno " + $eGFRlabresult.patientId); 
Classification $class = new 
Classification();String CKDStage = 
"$param"; $class.patientId = 
$eGFRlabresult.patientId; 
$class.problemCode = "CKD"; 
$class.latestReadCode = "$param"; 
$class.dateOfClassification=$eGFRlabresult.r
eceivedDate; insert($class);

Lab Code for ACR check the eGFR avlue check the eGFR avlue check the eGFR avlue
3 G5 A3
2 G5 A2
1 G5 A1
3 G4 A3
2 G4 A2
1 G4 A1
3 G3b A3
2 G3b A2
1 G3b A1
3 G3a A3
2 G3a A2
1 G3a A1
3 G2 A3
2 G2 A2
1 No CKD
3 G1 A3
2 G1 A2
1 No CKD

14

90

60,89

15,29

$eGFRlabresult: CKDLabResult 

45,59

30,44

Figure 4.8: eGFR and ACR used to determine CKD stage.
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RuleSet
RuleTable  DiabeticsRiskScoreCalculator

CONDITION CONDITION CONDITION CONDITION CONDITION CONDITION ACTION UNLOOP

$classifi:Classification
$latestlabresult:LatestLabR

esult
$otherlabresult:LatestLabResul

t
$otherclass:Classification $p:Patient

$drs: 
DiabeticRiskScore

problemCode == 
"$param" 

patientId == 
$classifi.patientId, 
labCode=="$1", labValue 
$2

patientId == 
$classifi.patientId, labCode 
=="$1", labValue $2

patientId == 
$classifi.patientId, 
problemCode == 
"$param"

ethinrange(ethCode), 
patientId==$param

patientId==$para
m,riskScore <4

$drs.riskScor
e = $param; 
update($drs)
;

Recall Decision Check problemCode
decide 
recall

no-
loop

DM_COD 44TB,>55 $classifi.patientId TRUE

DM_COD 2469,>130 246A,>80 $classifi.patientId TRUE

DM_COD 46TD,>3 $classifi.patientId TRUE

DM_COD 44J3,<60 $classifi.patientId TRUE

DM_COD 44Q,>=1.7 44P, >=4.0 $classifi.patientId TRUE

$classifi.patientId $classifi.patientId TRUE

DM_COD CSMOK_COD $classifi.patientId TRUE

heartdisease $classifi.patientId TRUE
stroke $classifi.patientId TRUE
TIA $classifi.patientId TRUE
PAD $classifi.patientId TRUE

4DM_COD

$drs.riskSc
ore+1 

DM_COD

predictionPack

Figure 4.9: Diabetes risk score of a patient.
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Best Practice Advocacy Centre New Zealand, a factor should be considered as a risk

factor only if it directly applies to the current health condition of the patient. From a

Table 4.5: Diabetic care action plan.

Review Name Low Risk Medium High Risk Very High Risk

Clinical Review 6 3 3 3

HbA1c 6 3 3 3

Blood pressure 6 3 3 3

Lipids 12 12 12 12

ACR 12 6 6 6

eGFR 12 3 3 3

Foot check 12 12 6 3

workload point of view, this diabetic risk score of a patient determines the frequency

of recalls for the patient, where low risk patients are on a 6 month recall, and medium,

high risk and very high risk patients are on a three month recall (refer to the first row

in Table 4.5).

4.5.4 Decision table: to decide recall period for a patient

From the discussions above, we can conclude that based on the severity of a specific

LTC in a patient, we could decide the frequency of recalls required to manage that

LTC in a patient. But, for multi-morbid patients more than one care plan applies.

Also, from the dataset it is difficult to have an explicit understanding of the care plans

applied to the patients. For example, for a given patient A suffering from multiple

LTCs, say, condition 1, condition 2, and condition 3, currently it is difficult to draw a

conclusion, from the data, on how the recall decision is made. This makes it difficult

to develop a rule that directly decides the recall frequency required for a patient to

provide the best practice care. Therefore, deciding the recall period for a patient (to

be used in simulation) involves a two-step process as follows.

Step 1 Find, for each patient:

(i) which LTCs are present. As presented in Section 4.5.1, we map the clas-

sification Read codes to generic names. This help us identify which LTCs are

present in them;
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(ii) identify the corresponding recall periods for the LTCs present in them.

We implemented care plans for three selected LTCs, namely diabetes, CKD and

hypertension. As mentioned in Section 3.2.2, the scope of this work is limited to

producing a proof-of-concept workload model. Therefore, we applied a 6-monthly

recall period for all the other LTCs in Section 4.5.1 as well as to those patients

who are not associated with a care plan for the listed LTCs but have made an

LTC appointment historically. Thus, we assign a recall period for each LTC in a

patient based on the care plans that apply to them.

Step 2 Decide from the multiple recall periods of a patient, which recall period drives

their recalls. As the severity of a condition worsens, frequent interventions are

required to manage that LTC in a patient (Best Practice Advocacy Centre New

Zealand, 2012). Hence, we assume that the most frequent period among multiple

recalls periods for a patient drives their recalls and we therefore calculate the

recall period as simply the minimum of the recall periods of a patient’s LTCs.

Table 4.6: Individual Recall table

idno careplan code recallinfreq

A DM COD PLAN 3

A heartdisease PLAN 6

A CKD PLAN 12

For instance, refer to Table 4.6. In our context, the patient A would be

recalled every 3 months. Later in Chapter 5, I will explain how these individ-

ual recall decisions are encoded as rules in our workload prediction model to

determine a patient’s recall period and simulate the workload.

Having presented the pre-processing steps, the following section describes the ini-

tialisation of our workload prediction model.

4.6 The initial patient model for simulation

Preprocessing of the data involved “cleaning” the data to fill the gaps and adopting

assumptions and definitions that help us to infer information required for this study.

In this section, I explain the preparation of data as an initial patient model for our

simulation. Our first step is to identify the cohort of patients. Once the cohort is

88



decided, the associated LTC appointment details of these patients are required to

drive the simulation process to simulate patient visits. The PostgreSQL queries for the

preprocessing are appended in Appendix A.10. Please remember that these queries

will include MedTech32 specific tags and hence will need to be updated according to

one’s dataset, if trying to reproduce the results following the steps discussed in this

thesis.

4.6.1 Our cohort

Following the preprocessing step, an LTC patient associated with a recall period is

considered for simulation. However, based on our simulation period, we further filter

these patients to those who have made an appointment historically for the simulation

period (this step helps us to compare the historic workload to the predicted workload

from the same set of patients and for the same period of time).

4.6.2 The LTC appointments that drive the simulation

Following the steps described in Section 4.4.1, we identified the LTC visits of the cohort

patients. The next step is to identify which LTC appointment should be considered

as a starting point to decide the recalls for the patient during the simulation period.

Given there are multiple LTC appointments for a patient, there are two ways to handle

this.

Method 1 Consider the most recent visit that falls prior to the simulation start date. How-

ever, we found out that vast majority of the patients (irrespective of their recall

period) have their last visit for the year in the last quarter of the year (refer

to Figure 4.10). This could be mainly due to the forthcoming (southern hemi-

sphere) summer holidays. In the figure, we have not included patients with 1 and

2 month recall periods, as they would have a visit in the last quarter anyway. The

3-monthly recalled patients will have a visit in the year end; for 6 monthly pa-

tients the Q2 and Q4 patients will have visits in Q4; and, all 12 monthly patients

in Q4 will have visits in Q4 in our simulation. Hence, choosing the most recent

visit prior to the simulation start date will have a bias that would accumulate

simulated visits towards the end of the year, as observed (see Figure 4.11) in our

initial results with cohort of patients with CKD only.
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Figure 4.10: Trend of last visits of patients per year categorised by their recall period and quarterly.
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Figure 4.11: Comparison of simulated visits of patients with only CKD (using their

most recent visit in 2013) vs actual LTC visits for the year 2014.

We also observed that there were more frequent visits from patients who would

visit less frequently as per the care plans (refer to Figure 4.12 see 6-monthly and

12 monthly recalled patients number of visits). And, some patients visited less

frequently than required by their care plans (refer to Figure 4.12 see 1, 2 and

3 monthly recalled patients number of visits). There were patients who made

frequent visits during the first half of the year, and did not visit the practice for

the rest of year. Therefore, we chose a generalised Method 2 described below to

choose the visit of a patient that would simulate their subsequent recalls.

Method 2 When there are multiple LTC visits in the year prior to our simulation start date,

we randomly chose one visit as their last visit of the year that drives their timely

recalls.

It is evident from Figure 4.13 that randomly choosing the last visit would break

that periodic pattern of visits that accumulates towards the end of the year (for

2013).

Hence, our initial patient model has LTC patients with their LTC recall periods

and an LTC appointment date which is considered as the starting point for timely

recalls for them in our simulation. We also did a more sophisticated approach using
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Figure 4.12: Comparison of number of expected visits as per care plan and actual number of visits categorised by year and

morbidity.
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Figure 4.13: Trend of randomly chosen last visits of patients for the year 2013.

Bayesian inference to decide the visit pattern of patients (see Chapter 7 for more

detailed discussed on using Bayesian inference in our workload prediction model.)

The following section will describe our approach to validating a few assumptions,

eGFR calculation and rules of our rule set.

4.7 Validation of assumptions, eGFR calculation

and the rules

Validation of assumptions

One of the assumptions that we used in our preprocessing step was that the LTC

medication prescriptions may be valid for four months (although they are prescribed

three-monthly). We validated this assumption by checking, for each patient, that these

LTC medications (which are T-tagged, see Section 4.4.1) are prescribed at least three

times in the previous year from the (considered) date of LTC appointment of the pa-

tient. We also manually checked that those medicines that were not prescribed at least

three times in the past were prescribed in the last six months from the date of appoint-

ment, which accounts for either a new diagnosis of an LTC, a change of medication for

an LTC, or a change of severity of an LTC in the patient. From the results, we found

that it is a reasonable assumption that the LTC medications are prescribed at least

three times in the previous year of the date of appointment. However, we also observed
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that there are certain medications that are usually prescribed for acute conditions that

were included in the T-tagged medications list. According to our PCA, there are cases

where medications for acute cases such as paracetamol may be prescribed as part of

a bulk prescription for LTC medications. Therefore, we chose to include all T-tagged

medications, although some of them may be for acute problems in the patient.

Validation of the eGFR of a patient

According to the National Kidney Foundation (2015), “GFR is the best test to measure

your level of kidney function and determine your stage of kidney disease. Your doctor

calculates it from results of your blood creatinine test, your age, body size, and gender.”

Hence, apart from the serum creatinine and ACR tests, doctors may advise GFR (Read

coded using “451F”) tests (National Kidney Foundation, 2015). However, not all GPs

request GFR (451F) lab tests, as the standard way of measuring kidney disease used

to be through serum creatinine (44J3) tests. According to the labs data for our cohort,

there are 2 531 patients who had lab test results recorded for their GFR (Read code:

451F) and serum creatinine (Read code: 44J3) values. Out of these 2 531 patients,

only 931 patients are on CKD plan, which seemed to be a significantly low number to

our PCA. Therefore, our CKD care plan involved (for each patient) calculations of the

Gfactor (from the 44J3 lab results) and ACR stage, and then using them together to

decide the CKD stage, which turns out that our cohort has 1 498 CKD patients.

In order to validate our eGFR calculation, we cross-checked the readings for 451F

on a date for a patient with the corresponding eGFR value calculated using the function

in Listing 4.3 for the (931) patients, for whom the results were available. We found that

except for a few cases (nine patients in their advanced CKD stage), the values matched.

Patients in their advanced CKD stage (G5) decrease their eGFR dramatically within

a year (National Kidney Foundation, 2015). However, as we are not simulating patient

outcomes and, also simulating the steady state of the practice, we chose to include

them in our cohort.

Validation of preprocessing rules

Identifying LTC patients involved mapping Read codes to generic problem classes.

Hence, a measure adopted to validate the decision table that maps Read codes to

the respective problem class(es) was to check whether the number of patients with

LTCs was identified correctly. In order to check the number of patients with LTCs,

we generated the multi-morbidity matrix given in Table 4.7. As we do not have access
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Table 4.7: Multi-morbidity matrix.

Care plan code asthma Atrial CKD COPD Diabetes heartdisease heartfailure Hypertension PAD psychosis stroke

asthma 1406 52 177 45 92 83 20 174 5 8 18

Atrial 52 393 253 43 68 148 73 114 20 2 42

CKD 177 253 1498 130 342 406 131 0 62 8 102

COPD 45 43 130 288 50 81 20 78 19 1 18

Diabetes 92 68 342 50 640 159 45 0 32 7 42

heartdisease 83 148 406 81 159 764 93 281 43 4 60

heartfailure 20 73 131 20 45 93 162 22 15 2 15

Hypertension 174 114 0 78 0 281 22 1399 24 9 67

PAD 5 20 62 19 32 43 15 24 97 0 15

psychosis 8 2 8 1 7 4 2 9 0 46 1

stroke 18 42 102 18 42 60 15 67 15 1 190
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to the actual database, we shared this multi-morbidity table with our PCA16, who

confirmed that it is a “reasonable” result and that our results appeared suitable as input

to continue with our workload prediction phase. In summary, due to the database

available not including certain information that was needed, we had to preprocess

the anonymised dataset and further prepare the data to be seeded into our workload

simulation model. After these data filtering and preparation steps, the final dataset

i.e., our initial patient model, included:

• the cohort patient details with their recall periods per LTC; and,

• the LTC appointment date of each patient that would be considered as the start-

ing point to drive their recalls (see Subsection 4.6.2).

In the following chapter, I will explain how our initial patient model drives the simula-

tion of patient visits, and how the workload is then aggregated to a weekly basis for a

year. That chapter will also revisit some of the assumptions and definitions presented

in this chapter.

16Only the PCA has access to the original database.
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Chapter 5

Workload Prediction: The

Simulation Process

In the previous chapter I presented the initialisation phase which gives the individual

recall details, and explained how the associated LTC appointments are identified for

the given patients. Given the patient visits and the recall frequencies corresponding to

their LTCs, our adaptable best practice based workload prediction model (ABP-WPM)

simulates patient visits. These patient visits are aggregated at a population level on

a weekly basis to give the workload due to LTC patient visits at the medical practice

for a specified future period (set to one year in this thesis). We will first discuss our

assumptions in the context of a patient visit and then discuss the workload prediction

process. Next, the results of workload simulation are presented, where we also discuss a

few unanticipated challenges in predicting workload for the medical practice following

the best practice guidelines. Furthermore, we also discuss a few variations in the

guideline rules to adopt the best practice for this cohort of patients. For example, we

assume a six-monthly recall period as a baseline recall period, which means an LTC

patient will be seen at least once in six months.

Assumptions

There are a few assumptions we make in order to design the rules for our simulation.

These assumptions are listed below.

• Multi-morbid patients need to be seen more often to manage their LTC manage-

ment needs. Hence, we assume that their most frequent recall period should be

considered to decide the follow-up appointment;
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• We assume the patient population at the practice is in a steady state. Thus,

during simulation we do not attempt to predict changes in patient conditions,

or patients joining or leaving the practice. In other words, during simulation

each patient represents a prototypical patient with certain conditions and not a

specific patient at the practice.

• We assume that patients turn up for their recalls as required by their respective

plan-of-care, and that they turn-up exactly on their recall date (with those recalls

that fall on a holiday pushed to the next working day, but we explore the effects

of relaxing this assumption in our evaluation).

• We assume that the practice attends to LTC patients only on weekdays.

A few variations on these assumptions and their impacts are discussed in Chapter

6 with a few what-if scenarios.

5.1 Workload prediction process

Let us consider an example of three patients, A, B and C in our initial patient model

from our preprocessing step, with their last visit dates in the year prior to simulation

start date and their most frequent recall periods calculated. The simulation period is

the year 2014. The following steps are summarised in Figure 5.1 which depicts three

patients with their chosen last visit date and most frequent recall period1. Their next

recall date is calculated as:

recallDate = LastVisitDate + MostFrequentRecallPeriod

Then each of these recall dates are compared to our simulation start date. If the

recall date falls prior to our simulation start date, then the most frequent recall period

is repeatedly added to the last visit date until the recall date falls on or after our

simulation start date (shown in the recalls initialisation block in Figure 5.1). These

updated recalls then initiate patient visits within the simulation period. We assume

that when a recall is scheduled, patient visits occur on that recalled date. When a

patient visit occurs, the subsequent recall date is scheduled as follows:

recallDate = VisitDate + MostFrequentRecallPeriod

1the smallest recall period, e.g., 3 months recall is smaller, and hence yields more frequent recalls,

than six months.
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This is shown in the recalls simulation block in Figure 5.1. This scheduling of recalls

and corresponding patient visits happens until the simulation end date. When the

simulation ends, the recall dates in the model are mapped to a calendar year. This is

highlighted with the Patient Ids (A, B and C) in the calendar in the figure. As seen in

the figure, the visits that fall on a weekend or a holiday are pushed (by a rule) to the

next working day. For example, the visit of A that falls on Sunday the 13th of July is

pushed to the 14th of July. Then on the 14th of July, patient A visits, and a new recall

date is calculated. This calculated recall happens to fall on the 14th of September which

is, again, a Sunday and hence is pushed to the 15th of September. Then, the recalls

are aggregated as given in the aggregated workload graph in the figure. Although, in

this figure, the aggregation is shown on a monthly basis, in this work we aggregate the

workload on a weekly basis.

In short, with the individual recall details and LTC appointment dates, the rules

in our model instantiate a care pathway in an iterative fashion, for each patient, visit-

by-visit, resulting in a plan-of-care for the patient. This gives an anticipated frequency

of required GP appointments for each patient over a period (a year, in this study).

Aggregating this, for all the patients, gives the overall workload for the specified time

frame, on a weekly basis. The following section presents the rules that simulate the

patient visits and calculate the corresponding recalls. The rules are presented in Drools

.drl format.

5.2 The rules and the workload simulation

In order to initiate the simulation, we have Today (the current day during the sim-

ulation period), IndividualRecallDetail (that records the recall period for a patient),

PatientVisit (which is an event that simulates the consultation with a role in the prac-

tice) and Recall (records the recall date of a patient, and the role for which the recall

is scheduled for a patient) facts in the working memory. Please note PatientVisits

are equivalent to Recalls, in a way that recording either one of them would give the

predicted workload. We chose to record Recalls, and delete the PatientVisit once a

corresponding Recall is created by the PatientVisit.

Our simulation starts on a SimulationStartDate and runs until SimulationEndDate.

On each day of simulation, if the conditions of the rules hold, the rules listed below

are fired (refer to Algorithm 1). Please refer to Appendix A.9 for their Drools imple-

mentation.
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C

C

No

Date of last visit: 
2013-04-24

Recall in 3 months

Date of last visit: 
2013-08-30

Recall in 6 months

Date of last visit: 
2013-05-13

Recall in 2 months

Figure 5.1: Overall process showing inputs and how the recalls are mapped to a calendar, and then aggregated to weekly workload.
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The following lists the rules used in our simulation:

• Rule to create a patient visit when the recall date is reached for a patient. On a

day in simulation, if there are recalls scheduled to be on that day, then patient

visits occur (see Section 5.2.1).

• Rule to create a recall date when a patient visits. In a real-world scenario, we

expect that the date for a follow-up for LTC patients will be discussed and agreed

on during the patient visit. So, in our rules we also create a next recall date on

a patient visit (see Section 5.2.2).

• Rule to update the recall date to fall on a working day. We assume that LTC

patients are consulted only on business days of the practice (see Section 5.2.3).

In the algorithm we have presented the conditions in the order they would be executed

in the rule engine. In the actual rules discussed below, we use the salience attribute

of the rule to set the priority for each rule. Then, higher the salience value, the higher

the priority. Having these rules layered with priority eases the capability to extend the

rule base for our what-if scenarios presented in Chapter 6.

Result: today = SimulationEndDate + 1

today= SimulationStartDate;

while today <= SimulationEndDate do

if recall date for a patient==today then

create Patient Visit for that patient with today as the date of visit;

end

if date of visit for a patient==today then

Get the least frequent recall period (in months) of the patient;

next appointment date = today + the least frequent recall period;

end

if the next appointment date for a patient is a holiday then

next appointment date = next appointment date + 1;

end

today = today + 1

end
Algorithm 1: The encounter based unfolding of a plan-of-care for an individual on a

simulation day within our adaptable best practice based workload prediction model.
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The Drools Fusion CEP2 rule engine has an inbuilt “pseudo-clock” that can be

accessed and advanced through its in-built function to add hours, minutes or seconds

or days, months or years too. Our simulation walks through each day (of the year 2014).

During the patient visit on their scheduled recall i.e., the encounter based unfolding

of a plan-of-care for an individual, the next recall is scheduled. Algorithm 1 presents

this walk through of the events on a simulation day. “today” refers to the current day

of simulation within the simulation period. If there are recalls scheduled for “today”,

the corresponding patient visit occurs, and thus, the patient’s date of visit is “today”.

A corresponding recall date is created from that date of visit. This continues until no

more rules are activated. Then the clock advances to next day.

5.2.1 Rule to create a patient visit when the recall date is

reached for a patient

When the recall date of a patient is reached within the simulation period, a patient

visit occurs (we denote it by a PatientVisit fact in the working memory, see line 7 in

Listing 5.1). This fact depicts patient visits (the event of a visit of a patient). Having

it as a separate fact can give more flexibility for our model. For example, this rule

enables us to record if a recall is scheduled for a particular role (e.g., a GP) and later if

the patient is required to visit another role outside the practice such a physiotherapist.

In this work we focus on recalls with a GP or a nurse (roles within a practice), so

recalls and patient visits are complementary.

Listing 5.1: Rule to create patient visit when the recall date is reached for a patient.

1 rule "If working day today , and recalls are there , then create

patient visits."

2 salience 5000

3 when

4 $t:Today()

5 $recalltoday:Recall(recallDate.getTime () == $t.today)

6 then

7 PatientVisit $newpv = new PatientVisit ();

8 $newpv.patientId = $recalltoday.patientId;

9 $newpv.dateOfVisit = $recalltoday.recallDate;

10 insert($newpv);

2complex event processing
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11 end

5.2.2 Rule to create a recall when a patient visit happens.

In a real-world scenario, we assume that a GP considers all the information about the

patient to decide the next follow-up. Hence, during a patient visit, our simulation rules

collect the recall frequencies for with different care plans associated with that patient,

and use the most frequent (minimum) recall period, if there is more than one recall

period for that patient. I use the Drools CEP’s accumulate feature to gather and take

the minimum value among all the individual recall details of the patient (patientId) to

decide the next follow-up date for that patient as given in Listing 5.2.

This rule reads as follows: when it is Today, and a patient visits whose individual

recall details are available, and their minimum recall frequency ($minrecallInFreq, see

line 5 in Listing 5.2) can be calculated by accumulating all the individual recall details

for this patient (see line 4 in the listing), then create a new recall for the patient with

a new recall date as date of visit ($t) plus $minrecallInFreq (line 11 in the listing).

Insert this new recall into the working memory (line 12 in the listing) and remove the

patient visit from the working memory. We need to record either patient visit dates or

the recall dates for later aggregation. I chose to keep a record of recall dates. Hence,

once the next recall date is scheduled, the patient visit is retracted from the working

memory (line 13 in the listing). Please note that this rule is later extended to choose

a deviation from the expected recall date (see our Bayesian approach in Chapter 7).

Listing 5.2: Rule to create patient recall when a patient visits

1 when

2 $t:Today ()

3 $pv:PatientVisit(dateOfVisit.getTime () == $t.today)

4 exists (IndividualRecallDetail(patientId == $pv.patientId))

5 $minrecallInFreq: Number (intValue > 0) from accumulate ($ind :

IndividualRecallDetail(patientId ==

$pv.patientId,$recallinfreq:recallInFreq), min($recallinfreq)))

6 then

7 long min_freq = (long)$minrecallInFreq.intValue ();

8 Recall $newrecall = new Recall ();

9 $newrecall.patientId = $pv.patientId;

10 $newrecall.recallInFreq = min_freq;
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11 $newrecall.recallDate =

java.sql.Date.valueOf($pv.dateOfVisit.toLocalDate().plusMonths(min freq));

12 insert($newrecall);

13 retract($pv);

14 end

5.2.3 Rule to update a recall date that falls on a holiday day

Once the recall date for a patient is created, the rule evaluates whether this recall date

is a working day or not. If it is not a working day then, the recall date is updated

to be in the next day in the calendar year. Please remember that the rules are first

evaluated against the facts and those matched rules are added to a list of activated

rules. Hence, this rule’s conditions are written in such a way that it checks that all

the recall dates that fall in future are on a working day. All the recalls that fall on a

holiday are pushed to the next day (the line 11 in Listing 5.3).

Listing 5.3: Rule to push recall date to a working day

1 rule "Push recalls to next week if recalls falls on a holiday"

2 salience 5000

3 when

4 $t:Today()

5 $recalltoday:Recall(recallDate.getTime () > $t.today)

6 not(eval (workingday($recalltoday.recallDate.getTime ())))

7 then

8 Recall $newrecall = new Recall ();

9 $newrecall.patientId = $recalltoday.patientId;

10 $newrecall.recallInFreq = $recalltoday.recallInFreq;

11 $newrecall.recallDate =

java.sql.Date.valueOf($recalltoday.recallDate.toLocalDate().plusDays(1));

12 retract($recalltoday);

13 insert($newrecall);

14 end

The function workingday() takes a day and checks if it belongs to a list of holidays

(New Zealand public holidays in this case), or if it is a weekend. In either case,

workingday() returns False, otherwise it returns True. For every recall for which the

eval is False (line 6), the recall is pushed to next day (line 11 in the Listing) which

re-evaluates the rule with the new recall fact. This runs multiple times so if the recall
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is Sunday, and adding one day returns Monday, and Monday is a public holiday, then

it rolls over to Tuesday.

5.3 Results and Discussion

We know from the literature that adherence to clinical guidelines is suboptimal at

the primary care level (Dee Mangin, 2012; Fischer et al., 2016; Haynes and Haines,

1998). Therefore, there will be a difference between the predicted workload following

the best practice and the workload attended historically (we refer to this as the capacity

mismatch). Our dataset, too, is not different in that perspective. We compared the

number of actual LTC visits (according to the LTC definition given in Section 4.4.1)

and the number of visits required if best practice for LTCs is followed for these patients.

Figure 5.2 shows that patients who must be seen more frequently (1-monthly, 2-monthly

and 3-monthly recalled patients) visited historically less frequently than required by

their care plans, and patients who need to be seen less frequently visited more often

than required by the care plans applicable to them (see the six-monthly and 12-monthly

recalled patients in the figure). This implies that there will be a difference when the

predicted workload is compared to the historical LTC appointments of the patients.

More complex the LTC needs are in a patient, more frequent the visits must be.

We also found it interesting to see (refer to Figure 5.3) that the average number of

visits per patient per year is the same irrespective of number of LTCs in a patient

(except for the year 2012 for patients with 11 LTCs in them). This highlights that the

historic recall data does not adhere to the best practice guidelines, as some patients

who are expected to visit less frequently visit more often, and on the other hand,

patients who are expected to visit more frequently, visit less frequently than expected.

These historic visits may due to requirements other than their LTC management; for

example an acute exacerbation of an LTC in a patient.

The best practice at a PHC not only aims to adopt the guidelines, but also adapt

according to what works best for its patients (Johnson, 1997). Hence, at the particular

healthcare centre whose data is used in this study, according to its Clinical Manager,

every LTC patient is seen at least once in six months. Therefore, we updated the

12-monthly recalls for LTCs to a six-monthly recall (please bear in mind that this may

vary across practices). This variation in the guidelines made our model align better

to the actual workload that occurs at the practice. We emphasise that the aim of this

workload prediction model is to predict the upcoming workload from the patients who
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Figure 5.2: Comparison of (per year) total number of actual LTC visits and expected number of LTC visits from LTC patients

(categorised by their most frequent recall period) whose workload is generated for 2014.
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Figure 5.3: Average number of visits per patient per year differentiated by number of LTCs (multi-morbidity).
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are recalled according to their care plan requirements, and not to match the predicted

workload to the actual workload that was observed at the practice in the past, and, at

the same time not to rigidly follow guidelines without considering the reality.

The workload simulation model was built through DSRM cycles discussed in Chap-

ter 3. In this section, I discuss the results of simulating patient visits of all the LTC

patients (corresponding to Cycle 4 of Figure 3.5).

For this phase, our initial patient model from the preprocessing step included:

1. patients who had face-to-face consultations in both 2013 and 2014. In our dataset,

we have patient details where they are prescribed medications over phone. Our

PCA was interested in the workload which accounts for GP time slots. We

also needed a measure to compare our predicted workload and its impact on

the practice. In order to do this comparison, we chose only those patients who

had visited both in 2013 and 2014. Therefore, although, 6 154 patients had

visited in 2013 and in 2014, including visits to collect medication prescriptions,

we consider only the 4 190 patients who have made face-to-face consultations

during both 2013 and 2014.

2. for each patient, a chosen last visit date to seed the simulation (see Section 4.6.2).

3. all individual LTC recall periods (with all 12-monthly individual recall periods

for LTCs updated to six-monthly periods).

Within the simulation we simulated recalls that fell prior to the simulation start date.

For instance, a patient whose chosen visit to initiate their recall may be in June 2013,

and their corresponding simulated recall may fall in December, 2013. We tried two

ways to handle such recalls that fall prior to simulation start date.

Method 1 Ignore those patient visits that fall prior to the simulation start date. It is

evident from Figure 5.4 (the bottom line in the figure, the Simulated recalls -

updated assumptions) that the simulated workload in this case is much less than

the actual workload.

Method 2 Assume that they followed their best practice during their visits in 2013, and roll

over their visits to fall within the simulation period. Then the predicted workload

aligns with the actual workload of the practice. There are two reasons why this

is required. Firstly, as discussed in Section 4.6.2 we are randomly choosing one

visit among multiple visit, it is therefore possible that the chosen visit was the
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one from the first half of the year (so it need to be extrapolated to fall within the

Simulation period). Secondly, it is possible that patients would have visited less

frequently than required and those visits could have been in the first half of the

year. (In Figure 5.4 the simulated recalls corrected corresponds to the workload

including this variation in patients’ recall periods).
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Figure 5.4: Comparison of simulated visits, the 12-monthly recalls updated to six-

monthly recalls and choosing a last visit date from multiple visits for each patient over

the last year, vs actual LTC visits of cohort patients for the year 2014.

I emphasise again that the aim of this work is not to make the prediction align

with what happened but to give a sense of what would happen when the practice

follows best practice guidelines for LTC patients. Thus, the simulation model takes

into consideration both the evidence of visit (i.e., considering only those patients who

have visited during both the years, 2013 and 2014) and the best practice guidelines to

decide recalls to anticipate future workload.

5.3.1 Patient visits of patients registered with a particular GP

One measure we used to evaluate our model, in order to try and reconcile the difference

between not following best practice guidelines and historical approach for care, is by

selecting a cohort of patients of particular GP who, we were adviced by the Clinical
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Manager of the practice, did follow best practice for his LTC patients. Multi-morbidity

(a combination of these LTCs) would influence the visit pattern of LTC patients and

is complex. Therefore, since we have implemented only three care pathways (i.e., for

CKD, diabetes and hypertension) and need to avoid patients with multi-morbidity, we

chose to look at patients who have only one of these three LTCs and are registered

with this GP. This constraint helps us to be more accurate about their visit patterns.

Although the historic number of visits per patient matches (in the sense the total

number of actual visits in a year matches with the number of visits predicted through

simulation given in Figure 5.5), the cohort (three patients) is not big enough to draw

a conclusion.

Figure 5.5: Patient visit vs simulated visit for patients registered with a specific GP.

110



Chapter 6

What-if Scenario Analysis

In the previous chapter, we saw how care pathways unfold into a plan-of-care to follow

the best practice guidelines to manage LTCs in a patient, and we focussed, in particular,

on their frequency of recall. In this way we were able to predict the workload at a

PHC centre as a volume of number of visits from its LTC patients. Until now, we

were considering a PHC as a whole and the workload was addressed to the GPs at

the practice. However, from a practitioner’s1 point of view, they need a measure to

manage their workload within the practice’s resources, which also include nurses in the

care planning and delivery process.

In this chapter, therefore, we will consider various roles, specifically the GPs and

the nurses who can attend their LTC patients. We use using what-if scenarios to

explore how knowing the workload can help a PHC manage the LTC workload. This

way knowing the population-level workload can help make a shift from patient-initiated

reactive care to a proactive LTC care, considering various alternatives of practices for

managing LTC patients.

We also explore how knowing what the health strategies have in-store for a nation-

wide population could help a PHC centre understand and handle the impacts of such

health schemes. This foreseeing of the impacts and taking measures to handle the

changes is addressed using various names such as process (re)engineering, and change

management. In this thesis, we call it “what-if scenario analysis”.

Broadly, the factors that impact workload management could be within the or-

ganisation, such as availability of various roles, external factors beyond the control of

organisation such as a flu outbreak that adversely impacts the workload, or the im-

1The PCA, whose feedback drives our assumptions and definitions, is a GP himself. In this work,

we consider him as a representative of the GPs’ viewpoints.
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pact of new policies or procedures. According to the Planning and Funding Clinical

Director of Primary care, Waitemata, a change in policy or procedure can impact an

organisation in two ways2:

1. Clinical Risk Analysis: Whenever a policy changes, the patients and their care

providers are affected equally. The GPs have a better understanding of the

impact on the care delivered than the volume of patients affected by the change

in policy. Therefore, usually GPs do not consider the impacts of policy changes

at the practice.

2. Financial Risk Analysis: This considers the financial aspect of the organisation.

The New Zealand Ministry of Health funding schemes are complex, involving di-

rect funding, funding through public health organisations (PHOs) and the district

health boards (DHBs), and are designed around specific health requirements and

the health care level that address these requirements (see Figure 6.1). These are

reflected in the nation’s health strategies too. For example, a Ministry of Health

NZ (2016a) scheme provides funding to address diabetes and prevent associated

complexities. However, a PHC organisation lacks a holistic view of how this fund-

ing scheme would impact meeting other patients’ LTC management needs, and

what are the financial aspects the organisation should consider to implement these

health strategies to gain their full potential. Based on this feedback, therefore,

although we do not consider this to be a complete financial model, we attempt

to address the impact of change on the practice in terms of the co-payment and

revenue from patient consultations with different roles at the practice.

In this study, we focus from an organisation’s point of view and hence attempt

to simplify the financial model in Figure 6.1 to Table 6.1. we assume every GP

consultation is a 15-min slot and every nurse consultation is a 20-min slot. As

nurse roles usually involve monitoring services (NZNO, 2016), we assume longer

consultation time for the nurses. Knowing the workload would help the PHC

centre to better manage their LTC patients, therefore, we assume that every

consultation strictly follows these slot timings; which highlights that a GP can

consult four patients and a nurse can consult three patients per hour. The PCA

suggested to consider that every GP consultation will cost $40 for the patient

and each nurse consultation costs $20, for a patient with these roles paid a salary

of $100 (PayScale New Zealand, 2018) and $30 per hour (NZNO, 2016, p.9)

2This was a learning from the feedback through an informal meeting with the said role.
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Maternity services $146.8m
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Figure 6.1: The New Zealand’s Ministry of Health Funding model (Ministry of Health

NZ, 2016e).
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respectively. Table 6.1 summarises the net income from a GP and a nurse hour

at a primary care centre. We also emphasise that these calculations are made

simple for clarity, without taking into considerations the funding from the PHOs.

Please note that we consider additional overhead only in case where we shift

patients to nurses (we assume the nurses need to be provided with a consultation

room to attend to these shifted patients, while the GPs continue to use the same

resources).

Table 6.1: Income based on consultation.

Role Revenue/hour Salary/working hours Total income per hour

GP $40 * 4 = $160 $100 $60

Nurse $20 * 3 = $60 $30 $30

Overhead -$25

Total $220 $130 $65

In the following section, we analyse a few what-if scenarios, with a comparison of

our predicted workload (Predicted Workload in the graphs), how the LTC workload

from the same patients was handled historically (the Historical Workload in the graphs)

and the workload if the scenario is implemented. We consider their impacts including

both the clinical and the financial risks involved for the year 2014. These analyses

would help understand to what extent the organisations can reform to be proactive

• within their limited resources (discussed under Section 6.1), or

• with the changes in practice policies (discussed under Section 6.2), or

• when external factors impact the workload (discussed under Section 6.3), or

• when new models of care are considered for LTC patients (discussed under Section

6.4).

6.1 Resource-bound scenarios

The predicted workload impacts the resources at the practice. Usually, the number

of resources available at a practice is limited. When the predicted workload is higher

than the capacity of the practice, we say there is a capacity mismatch. The historical

workload and predicted workload (number of LTC appointments per week in y-axis)
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in Figure 6.2 clearly depicts this capacity mismatch problem. In our case, the capac-

ity mismatch is a reflection of how the medical practice would need to address the

(increased) workload if the practice chose to follow best practice guidelines for LTC

patients. This also requires the medical practice to plan for either more resources or

to shift the patients among the resources available, as discussed in the following sec-

tions. Please note here we are considering the capacity of partner GPs of the practice.

Partner GPs of a practice are the GPs who have permanent contract with the practice

and are unlikely to leave a practice. So, the practice registers LTC patients with them,

although the patients can book appointment with any available GP. Other GP roles at

the practice are considered as additional resources to meet the workload at the prac-

tice. The practice, whose data used in this study, has 5 GPs who have LTC patients

registered with them.

N
um

be
r o

f L
TC

 a
pp

oi
nt

m
en

ts
/s

im
ul

at
ed

 re
ca

lls

Week of calendar year

Figure 6.2: The capacity-mismatch problem.

A clinical risk analysis would say the practice should equip itself with a care provider

capacity to address the excess 4 731 LTC appointments spread across the year 2014.

Henceforth, in this section we discuss a few scenarios on the impact of proactive mea-

sures presented on the predicted workload.
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6.1.1 Making GPs available for a specific number of LTC pa-

tients per working day

According to the dataset used in this study, the medical practice has five GPs who

have LTC patients registered with them. These GPs are considered available for LTC

patients; however historical availability of these GPs varies across weekdays. Heroman

et al. (2012) argues that, under any circumstance, making the gap between the demand

for care and the resource availability to zero would require over staffing and is not

desirable. Therefore, here we enhance our rule-based model to have an additional

capability to schedule recalls based on the total number of slots (i.e., the number of

patient appointments a specific care provider can attend).

As highlighted (lines 8 and 9) in Listing 6.1, this rule accumulates the total number

of slots available for the role “GP”, and when there are more recalls scheduled, our

rule randomly selects one recall (line 10 in the listing) and pushes them into the next

working day (line 15). This continues until no more extra recalls are available (line 9

will then no longer hold true). In our case we set the canAttend field for all GPs as 10

(assuming the half of a weekday of available GPs is assigned to attend LTC patients),

so if there were two GPs who attended LTC patients historically on a day in 2014, in

our simulation this rule will assume the GPs can attend twenty LTC patients in total

on that day. Figure 6.3 shows that imposing such a resource bound policy can help

reduce the gap in capacity mismatch in attending LTC patients at the practice. This

works because (as evident in the figure), historically canAttend per GP was less than

10. Assuming different values for such constraints can help the PHC to plan availability

if more (or less) GPs will be available during a week.

Listing 6.1: The additional rule part needed to define the resource bound scenario.

1 rule "push recalls to next day if GPs non -available scene two"

2 salience 4700

3 when

4 $t:Today()

5 eval (workingday($t.today ,Scenarios))

6 eval (Scenarios == 2)

7 $recall:Recall(recallDate.getTime () == $t.today)

8 $num GPs slots available: Number(intValue >= 0) from accumulate ($role:

CareProviderRole(roleName =="GP",dateOfAppointment ==

convertToDate($t.today),$total slots:canAttend), sum($total slots))

9 $recalls: List(size>=0, size > $num GPs slots available.intValue()) from
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collect (Recall(recallDate.getTime() == $t.today))

10 $randomRecall:Recall () from $recalls

11 then

12 Recall $newrecall = new Recall ();

13 $newrecall.patientId = $randomRecall.patientId;

14 $newrecall.recallInFreq = $randomRecall.recallInFreq;

15 $newrecall.recallDate = java.sql.Date.valueOf($randomRecall.

recallDate.toLocalDate ().plusDays (1));

16 $newrecall.recallComment = "pushed recall due to GP

unavailability scene two";

17 $newrecall.consulted = "GP";

18 insert($newrecall);

19 retract($randomRecall);

20 end

For now, let us consider that these appointments are attended by GPs only. The

comparison of net income from the historic GP workload, if the predicted workload is

attended by GPs and if GPs are made available for 10 LTC patients per working day is

given in Table 6.2. Also, adding those constraints means that these GPs attend those

scheduled patients only. As depicted in the table, ideally if the practice attends all

the predicted LTC patient appointments (although it is not desirable (Heroman et al.,

2012)), the net income would bring an additional $70,965. If the practice makes the

available GPs to attend 10 LTC patients per working day, would bring an additional

income of $40,140 i.e., an additional income equivalent to (approximately) 50% of the

current net income.

Table 6.2: Comparison of income in three different cases of workload management

Scenario Number of appointments Net In-

come

Historical number of appointments 5 454 $81,810

Predicted number of appointments 10 185 $152,775

Making the available GPs to attend

10 LTC patients per working day

8 130 $121,950

As depicted in Figure 6.3, the comparison between predicted workload and this

what-if scenario also shows that there will still be unmet demand for care. We remind

the reader that these what-if scenarios highlight the impact of different scenarios on the
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predicted workload. Therefore, the organisational manager (with a basic knowledge

about the rules in this tool) can use this tool to analyse the availability of the number

of GPs as well as the number of LTC patients needing to be assigned to those available

GPs. We acknowledge that having more LTC patient slots makes the GPs less available

for the non-LTC cases. We argue that having an understanding of how long (number

of time slots) the partner GPs are unavailable to attend non-LTC patients, the practice

will be able to equip with other non-partner GPs or nurse roles to attend the non-LTC

cases accordingly.

Week of calendar year
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Figure 6.3: Making GPs available for 10 LTC patients per working day.

6.1.2 Make nurse appointments available

Nurse appointments are not new in primary care, for instance, there are nurse clinics

for severe CKD patients (Potts et al., 2011). However, usually, clinical conditions

and prevalence of the condition among other factors determine the funding model for

managing that condition, which in turn impacts implementation of nurse appointments.

Moreover, a PHC practice receives funding based on the enrolled patients and the GP
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services they use (Ministry of Health NZ, 2014). Although there are initiatives such

as the Practice Nurse Subsidiary by the Ministry of Health NZ (2017a), most general

practices provide GP services in preference to nurse services because of the funding

model. This makes the clinical managers sceptical about what would happen to the

income if their patients visited nurses instead of GPs. In this section, we argue that

nurse clinics will not only reduce clinical risks but also will help to bring more revenue

to the clinic.

Clinically, less severe patients require timely health assessments to manage and

prevent LTC associated complexities, and motivation to self-manage their conditions.

Having longer appointments with nurses would help to build a good relation between

the nurses and their patients, which in turn, motivates patients to better self-manage

their health (Busetto et al., 2017). In order to have more generalisable rules, patient

classifications are updated with an attribute to denote the severity of a condition in

them. In this way, new patients can be stratified at the time of diagnosis and added

with a care plan that depicts the severity of the condition in them.

Let us consider a scenario where the less severe3 patients are attended by the nurses.

We remind the reader that we assume that the various roles are competent to attend

these shifted patients.

Our rules can, then along with other conditions and one more condition (given in

line 8 in Listing 6.2) select these less severe patients and assign them to be consulted

by a nurse (line 14 in the listing).

Listing 6.2: The additional rule part added to shift less severe patients to a nurse.

1 rule "Push low severe patient recalls to Nurse"

2 salience 4700

3 when

4 $t:Today()

5 eval (workingday($t.today ,Scenarios))

6 eval (Scenarios == 3)

7 $recalltoday:Recall(recallDate.getTime () >= $t.today ,consulted

!= "Nurse")

8 $cp: CarePlan(patientId == $recalltoday.patientId,severity == "low")

9 then

3Severity of LTCs in a patient is determined by the care plans applicable to them. For this what-if

scenario, we consider the severity of diabetes, depicted in the diabetic risk score of a patient, and

severity of CKD depicted in the CKD stage for a patients.
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10 Recall $newrecall = new Recall ();

11 $newrecall.patientId = $recalltoday.patientId;

12 $newrecall.recallInFreq =$recalltoday.recallInFreq;

13 $newrecall.recallDate = $recalltoday.recallDate;

14 $newrecall.consulted = "Nurse";

15 $newrecall.recallComment = "This is a Nurse consultation for

low severe patients"

16 insert($newrecall);

17 retract($recalltoday);

18 end

Figure 6.4 shows the predicted workload and the workload for GPs and nurses if less

severe patients of our cohort are shifted to nurses. In our case, we assume that more

nurse slots will be allocated to attend the patients shifted to them. This also means

the GP slots which were scheduled for the less severe patients are now freed (the GPs

line depicts this reduced workload) and those slots are available for other patients.
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Figure 6.4: Impact of shifting less severe patients to nurses on the predicted workload.

Financially, shifting patients to nurses would bring more revenue (i) as more GP

slots are available for other patients, and (ii) nurse consultations, too, bring revenue.

Based on the financial model at the beginning of this chapter and Figure 6.4, if, out

of the predicted workload (10 185 appointments in 2014), the less severe patients are

attended by nurses (out of 10 185, 2 098 appointments can be shifted to nurses). This
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will free 2 098 GP slots for more patients as well as providing more income through

nurse consultations. Adding the GP consultations and nurse consultations with the GP

slots freed to be available for other patients would give $173,820. However, assuming an

overhead of $25 per hour for nurse consultations, will decrease the income by $17,500.

Considering the income based on Table 6.1, subtracting that overhead from the income

would give a total of $156,320. Compared to the current practice, this would bring an

additional income of $74,510. This is summarised in Table 6.3.

Table 6.3: Financial risk analysis for including nurse consultations for low-severity LTC

patients.

Role Number

of patients

Number of role

hours needed

Total income

GP 8 087 2 022 $121,320

Nurse 2 098 700 $21,000

GP fill slots 2 098 525 $31,500

Practice overhead 2 098 700 -$17,500

Scenario net income $156,320

Current practice in-

come

$81,810

In a similar way, the model can be used to analyse shifting patients from GPs to

other care provider roles and can also be scaled to choose the cohort of patients to be

shifted. By scaling, we mean to increase the number of patients to shift to other care

provider roles. For example, instead of less severe patients, considering one visit of

every LTC patient to be attended by nurses, in our case, this would account for 4 190

patient appointments shifted to nurses. The following section describes the impacts of

this what-if scenario.

6.1.3 Every LTC patient with multiple visits with the practice

visits a nurse once a year

One another proactive way to make GPs available for other patients is to shift one visit

among the multiple visits of a patient to a nurse. This will help to maintain continuity

of care as well as the nurses becoming familiar with their patients’ needs (McPhail,

2016). Financially, this shift will have a similar impact as discussed in the previous
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section.

The best practice followed for this work emphasises to recall an LTC patient at

least every six months, which means there are at least two visits per LTC patient in

a year. If one of these LTC related visits are shifted to nurses, then in our case 4 190

visits will be shifted to nurses. This will account for freeing 4 190 GP slots and making

them available for more patients. This will produce a total income of $159,805 as given

in Table 6.4, which means an additional income of $77,995. In Listing 6.3, the rule

considers that all the scheduling is initially made and one visit among the many visits

scheduled for a patient is assigned to a nurse. Hence, we add a constraint that this

rule is evaluated at the end of the simulation (line 5) and that it should be evaluated

last among the other rules activated (line 2). We also ensure that this rule should not

cause the rule engine to re-evaluate the rule set because of changes in the consequence

of this rule (line 3). We also check that the same patient is not assigned to a nurse

twice (line 8 in the listing), however, the practice can change these rules to fit their

requirements. The model can be used to analyse other similar scenarios as well.

Listing 6.3: The additional rule part added to shift one visit among multiple visits of

a patient to a nurse.

1 rule "Shift one recall from multiple recalls of a patient to a

Nurse"

2 Saliance -1

3 no loop true

4 when

5 $t:Today(today == SimulationEndDate)

6 eval(Scenarios == 4)

7 $recall: Recall(recallDate.getTime () <= SimulationEndDate)

8 not (exists Recall(patientId==$recall.patientId,consulted == "Nurse"))

9 $multipleRecalls: List(size >1) from collect

(Recall(patientId==$recall.patientId,recallDate.getTime()<=SimulationEndDate)

)

10 $randomRecall: Recall() from $multipleRecalls

11 then

12 Recall $newrecall = new Recall ();

13 $newrecall.patientId = $randomRecall.patientId;

14 $newrecall.recallInFreq = $randomRecall.recallInFreq;

15 $newrecall.recallComment = "This is a random recall among many

recalls to a Nurse"
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16 $newrecall.recallDate = $randomRecall.recallDate;

17 $newrecall.consulted = "Nurse";

18 insert($newrecall);

19 retract($randomRecall);

20 end

Table 6.4: Financial risk analysis if shifting one visit among many visits of a patient

to a nurse.

Role Number

of patients

Number of role

hours needed

Total

income

GP 5 995 1 499 $89,940

Nurse 4 190 1 397 $41,910

GP-fill appointments 4 190 1 048 $62,880

Overhead 4 190 1 397 -$34,925

Scenario net income $159,805

Current practice income $81,810

6.2 Change in practice policy

In this section we discuss what the predicted workload would be if there are changes in

availability of GPs at the practice. One such scenario is when the practice decides to

increase its GP and nurse availability for their LTC patients, for example, a Saturday

practice for LTC patients. We take this opportunity to highlight that this scenario is to

analyse the impact of increasing GP and nurse slots during a week. We also highlight

that we are considering Saturday as a (normal) working day and do not consider it as

overtime or a weekend pay for the GPs and nurses available on Saturdays.

6.2.1 Saturday practice for LTC patients

Let us assume that the practice decides to increase the availability of LTC appointment

slots, with a GP (i.e., 20 more GP slots) and 3 nurses (i.e., 40 more nurse slots) on a

Saturday for their LTC patients. The flexibility in our rules allows us to avoid including

Saturdays as part of weekends, and to have the capability to add the additional number

of slots for a specific day. Listing 6.5 highlights this capability. Please note here we
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have used totalPatientsAttendedActualData (line 6) so that this decision on the

number of patients to be assigned to other roles can also come from the actual data.

When there are more patients to be assigned to care provider roles than the total

number of slots available (line 7), a recall (line 8) is pushed to the next day (line 13).

This continues until no more recalls need to be pushed to another day (i.e., the line

7 no longer hold true). Our rule base also considers holiday list based on scenarios

(value 7 on line 4 here means: Saturday also should be considered as a working day).

The solid line in Figure 6.5 below shows that the workload is managed better with an

extra working day (Saturday in this case) for the LTC patients.

Listing 6.4: The additional rule part added to add additional slots for its LTC patients

for one more day at the practice.

1 when

2 $t:Today()

3 eval (workingday($t.today ,Scenarios))

4 eval (Scenarios == 7)

5 $recall:Recall(recallDate.getTime () == $t.today)

6 $no GPs slots available: Number(intValue >= 0) from accumulate ($role:

CareProviderRole(dateOfAppointment ==

convertToDate($t.today),$total slots:totalPatientsAttendedActualData),

sum($total slots))

7 $recalls: List(size>=0, size > $no GPs slots available.intValue()) from

collect (Recall(recallDate.getTime() == $t.today))

8 $randomRecall:Recall () from $recalls

9 then

10 Recall $newrecall = new Recall ();

11 $newrecall.patientId = $randomRecall.patientId;

12 $newrecall.recallInFreq = $randomRecall.recallInFreq;

13 $newrecall.recallDate = java.sql.Date.valueOf($randomRecall.

recallDate.toLocalDate ().plusDays (1));

14 $newrecall.recallComment = "pushed recall due to GP

unavailability scene seven";

15 $newrecall.consulted = "pushed from sat_practice";

16 insert($newrecall);

17 retract($randomRecall);

18 end
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Given a GP can attend 20 patients per Saturday, except three public holidays

that fell on a Saturday in 2014, there are 49 working Saturdays at the practice. This

accounts for a total of 980 GP appointments in the year 2014. Similarly, there are

1 960 nurse appointments. Deducting the overhead of running this extra working day

at the practice, the net income will be $17,940. Table 6.5 summarises these financial

aspects.
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Figure 6.5: Impact of having Saturday practice.

Table 6.5: Financial risk analysis if practice dedicate a GP and 3 nurses for its LTC

patients for one more day each week at the practice

Role Income per hour No: of patients Total income

GP $60 980 $14,700

Nurse $30 1960 $19,620

Overhead -$25 1960 -$16,350

Net income $17,970

6.2.2 All patients should have a screening for CVD once a

year.

Knowing how many patients are affected by a new health scheme can help the practice

decide the right role to attend this additional workload. Let us assume that the Ministry
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of Health NZ, has announced a new health strategy to have CVD4 screening for all LTC

patients at the practice, which means (in our case) there is an extra workload from 4 190

patients in the coming year. Please remember that this is an additional workload to the

predicted workload. With a 15-min slot for GPs, this additional workload will require

1 048 GP hours. However, the main competencies of nurses include monitoring and

patient education (NZNO, 2016). Hence, assuming this workload is handled by nurses,

it would require 1 397 nurse slots which will bring $41,910. With a total overhead

$34,925, the net income would be $6,985. Having nurses attending this additional

workload, the organisation can manage the predicted workload as well the additional

workload due to the (new) health scheme.

6.3 Impact of external factors on the workload

At times, the workload at the practice is affected by factors external to the organisa-

tion. For example, during the winter time there is a high probability of an increase in

workload due to an influenza outbreak, although the timing cannot be forecast. Even

though the practice could equip itself with more GPs and nurses, the workload due to

LTC management will have to be managed separately.

Consider the following scenario: a flu outbreak happens in the first week of May and

the workload from LTC patients for the next two weeks has to be managed. Listing

6.5 shows one possible way to tackle this workload. All the three-monthly recalled

patients (line 8) are prescribed their medications over the counter (or a Nurse see line

17) and scheduled to have a recall in another three months (line 16 in the listing) and

thus avoid an appointment with a GP during the flu period. And, the patients who

are on a six-monthly review (line 29) will have their follow-up booked with a nurse (see

line 37) in another three months (line 36). According to our PCA, this measure will

address clinical risks for LTC patients, and the six-monthly recalled patients are not

left on their own for a long period (another six months if they are not able to make

an appointment during the influenza period). Please note that the rules (lines 9 and

30) select a random recall among the three-monthly and six-monthly recalled patients.

However, we can provide a constraint to consider a subset of n patients (by modifying

List size equals some value n as List (size = n) instead of List (size > 0) where it

selects all patients).

4Cardio-Vascular Disease
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Listing 6.5: The additional rule part added to handle external factors (influenza out-

break).

1 rule "manage scenario five 3 monthly recalls"

2 salience 7000

3 when

4 $t:Today(today > FluStartDate && today <FluEndDate)

5 eval (workingday($t.today ,Scenarios))

6 eval (Scenarios == 5)

7 Recall(recallDate.getTime () == $t.today)

8 $3monthlyRecalls: List(size >0) from collect (Recall(recallDate.getTime()

== $t.today,recallInFreq == 3 ) )

9 $randomRecall:Recall () from $3monthlyRecalls

10 then

11 System.out.println("********************* in rule : Date = " +

convertToDate($t.today))

12 Recall $newrecall = new Recall ();

13 $newrecall.patientId = $randomRecall.patientId;

14 $newrecall.recallInFreq = $randomRecall.recallInFreq;

15 $newrecall.recallComment = "Recall skipping a regular 3 monthly

"

16 $newrecall.recallDate =

java.sql.Date.valueOf($randomRecall.recallDate.toLocalDate().plusMonths(3));

17 $newrecall.consulted = "Nurse";

18 insert($newrecall);

19 retract($randomRecall);

20 end

21

22 rule "manage scenario five 6 monthly recalls"

23 salience 7000

24 when

25 $t:Today(today > FluStartDate && today <FluEndDate)

26 eval (workingday($t.today ,Scenarios))

27 eval (Scenarios == 5)

28 Recall(recallDate.getTime () == $t.today)

29 $6monthlyRecalls: List(size >0) from collect (Recall(recallDate.getTime()

== $t.today,recallInFreq == 6 ))

30 $randomRecall:Recall () from $6monthlyRecalls
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31 then

32 Recall $newrecall = new Recall ();

33 $newrecall.patientId = $randomRecall.patientId;

34 $newrecall.recallInFreq = $randomRecall.recallInFreq;

35 $newrecall.recallComment = "Recall making a 3 monthly of a

regular 6 monthly"

36 $newrecall.recallDate =

java.sql.Date.valueOf($randomRecall.recallDate.toLocalDate().plusMonths(3));

37 $newrecall.consulted = "Nurse";

38 insert($newrecall);

39 retract($randomRecall);

40 end
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Figure 6.6: Requirement to have fewer LTC appointments during influenza outbreak

will have adverse impact on predicted workload.

Our model will predict this proactive action to accommodate the incoming acute

cases with a drop in the number of LTC appointments in the first week of May and have

an increased workload in the last week of July and the first two weeks of August (refer

to Figure 6.6). This will also have an impact on the workload in late-October early-

November weeks where only the regular three monthly patients are recalled. Being

informed of this impact, the organisation can plan to make more GPs or nurses available

during that period. On the other hand, rather than pushing the six-monthly reviews to
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three months, the organisation can also evenly distribute the workload in the following

weeks of influenza, if the organisation can make GPs and nurses available accordingly.

6.4 Implementing new models of care

One of the major problems with the models of care discussed in Chapter 2 is that they

generally lack the ability to adapt to the changing care needs of their LTC population

(Bodenheimer et al., 2002a). In this section, we show our model is also able to incorpo-

rate new models of care in the form of new care plans for a population. For instance,

Ministry of Health NZ (2017b) defines Care Plus as an initiative to support people

with high health needs, including those related to LTCs. It is stated that eventually

the High Use Health Card (HUHC) patients will be assessed to move to Care Plus.

Moreover, the overall funding for Care Plus patients depends on number of Care Plus

patients and the services used by these patients.

Listing 6.6 considers a scenario where the organisation plans to recall HUHC pa-

tients (we refer HUHC patients as carePlus patients, hence using carePlus == true in

line 6) every three months (line 11). This recall for three months is applied to patients

who are on recall frequencies greater than three months (line 7). Please recall from

Chapter 4 that individual recall periods for each LTC in a patient are recorded as the

IndividualRecallDetail facts for the patient, which are accumulated to decide the

recall date a patient (see Section 5.2.2). Therefore, in order to add this new model

of care, we add an IndividualRecallDetail fact (line 9) which recalls a patient in

three months (line 11) on a care plan coded “careplus” (line 12). This will obviously

increase the workload as shown in Figure 6.7.

Listing 6.6: The additional rule part added to adapt new models of care.

1 rule "Insert CarePlus care plan"

2 salience 7000

3 when

4 $t:Today(today == SimulationStartDate)

5 eval(Scenarios == 6)

6 $p:Patient(carePlus == true)

7 not (exists IndividualRecallDetail(patientId == $p.patientId ,

recallInFreq <= 3))

8 then

9 IndividualRecallDetail $newindrecall = new
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IndividualRecallDetail ();

10 $newindrecall.patientId = $p.patientId;

11 $newindrecall.recallInFreq = 3;

12 $newindrecall.carePlanCode = "careplus"

13 insert($newindrecall);

14 end
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Figure 6.7: Increase in workload due to a new model of care.

The Ministry of Health Care Plus scheme has much more impacts than the financial

analysis presented in this section. Please bear in mind that the scenario shows the

capability of our model to add new plans-of-care for a patient, and the model can

predict and analyse the workload if that plan-of-care is present for a patient. On the

financial side, there will be an additional 744 appointments in 2014. Given that the

funding is for GP appointments, assuming these appointments are consulted by GPs

this will account for additional income of $11,160.

Table 6.6 summarises the financial analysis of the various scenarios discussed in this

chapter (except the impact of influenza). These scenarios are for the year 2014. The

GP funding models are complex and hence the calculations are kept simple (for clarity)

to consider the income from patient consultations and costs of employing the GPs and

nurses. The net income shown in the table considers the overhead cost as well. The

figures used are approximate values that are closely related to the values from various

sources such as PayScale New Zealand (2018) and New Zealand Nurses Organisation

(NZNO, 2016). As presented above, with these scenarios being implemented as rules,

the practice has the flexibility to add more rules to analyse different scenarios applicable
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to their context and practice policies.

Table 6.6: Summary of financial analysis of the various scenarios discussed in this

chapter.

Scenario Total number of

appointments

Net In-

come

Additional

income

Historical number of LTC

appointments

5 454 (GP) $81,810 $0

Predicted number of LTC

appointments

10 185 (GP) $152,775 $70,965

Available GPs attend 10 pa-

tients per working day

8 130 (GP) $121,950 $40,140

Less severe patients shifted

to nurses

8 087 (GP) + 2 098

(nurse) + 2 098 (GP-

fill slots)

$156,320 $74,510

One visit of every LTC pa-

tient shifted to nurse

4 190 (nurse) + 5 995

(GP)

$159,805 $77,995

Increase GP and nurse

availability in a week

980 (GP) + 1 960

(nurse)

$99,780 $99,780

CVD screening for all pa-

tients

4 190 (nurse) $88,765 $88,765

Implementing new model of

care

744 (GP) $92,970 $92,970

In summary, unavailability of GPs and growing demand for LTC care emphasise the

need for a tool to help PHC practices manage their LTC workload better. We developed

a workload prediction model that, given the LTC patient information, predicts the

upcoming workload as a volume of number of appointments from its LTC patients.

Knowing that any new policy or procedure can have clinical and financial impacts, we

analysed a few what-if scenarios in these aspects. We showed that our model can be

used to analyse different scenarios, including implementation of new models of care.

Having shown the strength of our model to analyse the alternatives at a PHC centre,

we claim that our model can help practices to shift from a patient-initiated reactive

system to a proactive systematized LTC care system.

As part of DSRM methodology, we presented these scenarios to the members of
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Otago and Southern PHO including CEO, CIO and general manager of WellSouth

Primary Health Network, a representative of nursing organisation, and the Medical

Director Strategy, Primary and Community of Southern DHB. They found the work

to be useful and informative. A major feedback was that the practice managers are

aware that there are “swings” in the availability of GPs during a year but “we are not

aware of how much these swings impacts and the variations are on the workload of the

organisation as a whole. That is very interesting...”. Another feedback was along the

lines of having such a tool will improve the ability of a practice to have an informed

decision about its “workforce development” (this justifies our RQ2 and RQ3 in Section

1.2). They also acknowledge that stratifying patients based on their LTC needs is

essential, and that they currently are working on a home care model for patients with

very high need for LTC care.
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Chapter 7

Using Bayesian inference in the

Workload Prediction Model

A care pathway (CP) suggests the time line for various care actions to be followed to

manage a specific LTC in a patient (NICE, 1999). This includes patient recalls1. How-

ever, in a patient database, although it captures the care actions and their timestamps,

it is not explicit which care pathway was applied or the reason for these care actions.

Therefore, (revisiting Chapter 4) in order to identify LTC visits we consider the pre-

scriptions of active LTC medications of our patients. We assume that medications are

prescribed following a 90-day repeat cycle for LTC medications as is required in New

Zealand, and patients are implicitly reminded to visit or at least contact the practice

when they need to get their prescription reissued.

In other words, our simulation model assumes that patient visits will be driven

by best practice rules for recalling patients, but the dates of those visits will align

with the cycle of 90-day prescription periods. In our predicted workload, in rigidly

following the best practice guidelines, we assumed that the patients visited on their

90-day medication run-out day. However, we observed periodic peaks (specifically in

the visit pattern of the three-monthly recalled patients) that are not observed in the

historic pattern of visits for these patients (see Figure 7.1). We suspect that it could

be due to using the most recent visit in year 2013 (the line labelled as visits in 2013

that predict the recalls) to simulate subsequent visits for these patients. We, also,

have observed that in historic data (as highlighted in Section 5.3) some patients have

more frequent visits than our rules would predict. This could be because, for patients

1Please remember that, here, recalls are the follow-up appointments required to manage a specific

LTC in a patient.
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Figure 7.1: Initial results of simulation for 3-monthly recalled patients.

with recall periods greater than 90 days, some reissuing of prescriptions would happen

over the phone between their scheduled visits, or a few visits may not be related to

medication running out, e.g., those due to acute exacerbation of their LTCs.

In Chapter 4, we also showed that for the case of patients with CKD only, when

the most recent visit of a patient in the year prior to our simulation period is used to

initiate our simulation, this resulted in an accumulation of simulated visits towards the

end of the year (see Section 4.6.2).

These issues highlight two shortcomings of our current approach:

• The most recent visit prior to the simulation may not be representative of their

periodic visit behaviour aligned with medication prescription cycles. As presented

in Section 4.6.2, we used a random visit among multiple visits in the previous

year to break the periodicity from choosing the most recent visit. However, the

randomly chosen visit also may not be a periodic visit due to medication running

out.

• Using a single most recent historic visit date means we have no information about

the variance of a patient’s visit dates relative to when their medication is due to

run out. Instead we previously assumed that patients will visit on the date their

medications will run out (adjusted to avoid weekends and public holidays). This
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causes unrealistic repeating pattens in the predicted workload.

To address these problem, in this chapter we propose the use of Bayesian inference on

a sequence of historic visit dates to learn a probability distribution for each patient’s

recurring 90-day cycle of repeat prescriptions relative to a given historic reference date.

This has two benefits:

1. We get a better estimate of when each patient’s medication will run out, based on

more data. We also learn a parameter representing their likelihood of deviating

from this date.

2. Rather than assuming in our simulation that patients will visit in some multiple

of 90 days since their last visit (with the multiplicative factor depending on their

recall period), during the simulation we can sample from a learned probability

distribution representing each patient’s likelihood of visiting on a certain date

relative to the date the medication is due to run out. This gives a more natural

randomness to the visit dates.

To use Bayesian inference, we define a parameterised statistical model, and learn

the conditional probability of these model variables given the observed data (Salvatier

et al., 2016). The belief we have about the probability of a model parameter is defined

as a prior distribution of that parameter. Thus, Bayesian inference uses the information

provided by observed data, formally the likelihood, to update a prior state of beliefs to

become a posterior state of beliefs about a (set of) parameter(s). In other words, the

probability distribution that is learned from the parameters’ prior distribution and the

likelihood is the posterior distribution.

As discussed by Wiecki (2015), given a model that predicts the likelihood P(x |
θ) of observed data x, (where θ is a vector of model parameters), Bayes theorem (see

the equation below) can be used to find a probability distribution over the model

parameters, P(θ).

P (θ | x) =
P (x | θ).P (θ)

P (x)

where P (x) =
∫
θ
P (x | θ) dθ is an integral over all possible values of parameters (θ).

When the prior distribution and likelihood are “conjugate”(belong to the same

family of probability distribution), the integral in the denominator can be determined

analytically. However, in general, this is not possible, i.e., the integral in the denom-

inator of Bayes Theorem cannot be computed in a closed (formulaic) way. Hence,
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the Markov Chain Monte-Carlo (MCMC) process is commonly applied for inferring

posterior distributions in Bayesian inference.

MCMC generates a large set of samples from the posterior probability distribution

defined in a model. The random samples are generated by a special sequential process

where each random sample is used as a stepping stone to generate the next random

sample producing a “chain”. A special property of the chain is that, while each new

sample depends on the one before it, new samples do not depend on any samples before

the previous one (this is the “Markov” property). The sampling techniques (e.g., Gibbs

sampling) used in MCMC aim to ensure that these chains contain sample values in

proportion to the probability distribution being learned (the posterior distribution in

our case). Thus, eventually, the samples MCMC generates would appear as if they

are coming from our posterior distribution. We can then use that sample of posterior

probability to obtain an estimate of each patient’s parameters of interest.

We sought statistical advice from the Department of Statistics and Mathematics

of our university. In response to an initial model of ours, they suggested to use two

parameters: one to represent the prior belief about the dates of medication running out

for each patient (denoted as medsRunOut), and another to represent the likelihood of

variation of visit from this medication run out day (denoted as alpha). In the following

section, we describe our Bayesian inference model (developed based on this advice) in

a mathematical notation (please refer to Appendix A.12 for its implementation using

the PyMC32 library for the Python programming).

7.1 Model Parameters

We model the patient’s cycles of medication running out as a series of 90-day intervals

from a selected historical reference date (referred to as the Bayesian start date). Our

model considers that a patient’s medication will first run out on some day between

0 and 89 days (inclusive) starting from the initial reference date. Initially, we have

no information about which day this is for each patient, so our prior distribution for

this variable, medsRunOut, is a Discrete Uniform distribution over the interval [0,89].

medsRunOut ∼ DiscreteUniform(0, 89)

As described before, medsRunOut denotes a day in the 90-day interval when medi-

cations would run out for a patient. For a given medsRunOut day, the patient visit day

can vary, i.e., the patient may visit early, or later than the medsRunOut day for that

2More on PyMC3 at https://docs.pymc.io/
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Figure 7.2: Likelihood of a visit

patient. We now consider the likelihood of a patient visit on a given day if medsRunOut

is known. We represent an observed visit day as (visit day− reference date) mod 90.

For instance (refer to Figure 7.2), consider a patient visit (Visit v) in interval B, whose

medsRunOut value is 60 i.e., the patient’s medication would run out in the 60th day

in that 90-day interval. The figure shows three 90-day intervals namely intervals A, B

and C. Having observed a patient visit (Visit v) in the Interval B, the visit can be

1. late with respect to the interval A;

2. prompt within the interval B;

3. early with respect to interval C (if Visit v was on the right side of mro in Interval

B);

The likelihood of a visit on a given day is then defined using a function that scales

the likelihood of a visit as an exponential function of the distance of a date from the

medsRunOut date:

f(day) = e−alpha ∗ distance between(day, medsRunOut)

where the distance between function3 is defined in Algorithm 2. The function in Al-

gorithm 2 implements the likelihood defined by considering the minimum distance

between a visit date v and the current, previous and next medsRunOut (mro) dates

3Note that this function is not normalised so that its values sum to 1 over the integers [0,89], but

this not required by the PyMC3 Python library used to implement Bayesian inference using MCMC.
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Result: The distance v from mro in terms of 90-day interval

dist minus = v − (mro− 90);

dist = v −mro;
dist plus = v − (mro+ 90);

skew factor = 5;

value near mro minus = (skew factorsgn(dist minus) ∗ dist minus2);

value near mro = (skew factorsgn(dist)) ∗ dist2;

value near mro plus = (skew factorsgn(dist plus)) ∗ dist plus2;

min val = min(value near mro minus, value near mro, value near mro plus);

return min val;
Algorithm 2: The distance between function.

(i.e., dist, dist minus, and dist plus distances, respectively, in Figure 7.2). The function

squares the distances to increase the likelihood of visits close to the medsRunOut date.

The sgn (i) denotes a function that returns 1 if i is positive, 0 if i is zero, and -1 if i

is negative. The skew factor is discussed below.

The patient visits may vary from the exact day of medications running out. Al-

though we do not know how much this variation is, we assume that it is small (we

assumed a three-week window in our LTC definition in Section 4.4.1). The scaling pa-

rameter (alpha) in the likelihood function f controls the amount that patient visits can

deviate from the medsRunOut date. As a parameter of our model, alpha must have a

prior distribution. Based on statistical advice, we use a weakly informative prior that

is a t-distribution with a small-moderate variation (λ =0.04) with heavy tails (a degree

of freedom 3) (Gelman, 2006; Gelman et al., 2008). In order to consider only positive

values, the prior for alpha uses a HalfStudentT distribution.

alpha ∼ HalfStudentT (λ = 0.04, ν = 3)

We also assume that the likelihood for a patient to visit n number of days before

medsRunOut is higher than n number of days after medsRunOut. Hence, in the dis-

tance function defined in Algorithm 2 we use a skew factor which is used to manipulate

this increased likelihood of a patient visit before medsRunOut. Using a skew factor of

5, the likelihood of coming n number of days earlier is 25 times higher than visiting n

number of days later (Note that this skew factor is not learned for each patient nor from

all patient visits). We use a predetermined value, but have observed that changing this

value does not appear to have a significant effect on our Bayesian analysis. Given a

medsRunOut value of 60 and alpha of 0.000039, Figure 7.3 shows the (unnormalised)
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(a) Plot without skew factor. (b) Plot with skew factor

Figure 7.3: Comparison the (unnormalised) likelihood of patient visits with and with-

out skewing.

likelihood of patient visits without4 and with5 the skew factor.

As mentioned earlier, MCMC draws a large set of samples, and the sampling tech-

nique aims to draw samples proportionate to the probability distribution to be learned

(the posterior distribution of (medsRunOut, alpha) in our case). Each element of the

MCM chain is selected via taking a “step” from the previous element (or re-selecting

the previous element). However, at the lower and upper ends of the medsRunOut in-

terval ([0,89]) it is only possible to step in one direction. To prevent this from biasing

the search, we updated our medsRunOut to a Uniform Distribution[0,(90∗n)-1] where

n is a large number (we chose n=125 in my experiments). Then, we defined a variable

medsRunOutmod which is the value of the sample of medsRunOut, modulo 90.

medsRunOutmod ∼ Deterministic(medsRunOut % 90)

The summary of our statistical model is :

medsRunOut ∼ DiscreteUniform(0, 89)

medsRunOutmod ∼ Deterministic(medsRunOut % 90)

alpha ∼ HalfStudentT (λ = 0.04, ν = 3)

patient visit ∼ f(visit date) = e−alpha∗distance between(visit date,medsRunOutmod)

4Figure 7.3a is plotted using the equation: e(−0.000039Min[(x−60)2,(x−(60−90))2,(x−(60+90))2])

5Figure 7.3b is plotted using the equation:

e(−0.000039Min[(5Sign[x−60](x−60)2,(5Sign[x−(60−90)](x−(60−90))2,5Sign[x−(60+90)](x−(60+90))2])
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Our data has appointment dates since 2010-05-01, so we consider this as our

Bayesian start date. The observed values are calculated based on this Bayesian start

date as follows:

For each observed visit date for a patient, we define:

mod 90 visit = (visit date− bayesian start date) % 90

We then run MCMC search to sample the posterior distributions given a sequence of

mod 90 visit values as observations of the of the variable patient visit. Figure 7.4 shows

the trace of samples of the posterior distribution of the model parameters, given the

observed values for the variable patient visit (for a given patient). As mentioned earlier,

each element of the MCM chain is selected via taking a “step” from the previous element

(or re-selecting the previous element) as more data becomes available. Convergence of

the MCMC trace is indicated by the traces having a “fuzzy caterpillar” shape.

Figure 7.4: Trace plot for parameter posterior distribution samples given observed visit

values for a patient (Run 1).

The following section will describe how this Bayesian inference was used in our

prediction model. Note that each time the Bayesian inference is applied to the same

set of observed values, there is some extent of uncertainty in the learned values. For

instance, for the same patient, re-running the Bayesian model would give a different

sample set as seen in Figure 7.5.
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Figure 7.5: Trace plot for parameter posterior distribution samples given observed visit

values for a patient (Run 2).

7.2 Prediction Model considering Bayesian infer-

ence

In order to apply the results of Bayesian inference in simulation of the patient visits, for

each forecast recall for a patient we need to choose the expected visit date by sampling

from the visit likelihood distribution (f ) for that patient. We need to know which

medsRunOut and alpha value to use for this sampling for each patient.

A pure Bayesian approach samples from the posterior predictive distribution:

P (xnew | x) =

∫
θ∈Θ

P (xnew | θ)P (θ | x)dθ

where xnew is a new value, x is the set of observed values, and θ ranges over the set of

possible parameter values Θ.

In our case, the model parameters are alpha and medsRunOut which we denote

below as α and mro, respectively. Therefore,

θ = (α,mro), and

P (xnew | θ) = P (xnew | α,mro) =

∫
α,mro

e(−α ∗ distance between(xnew,mro))

When using MCMC, because we are using a sample of the posterior distribution

of model parameters, the integral above becomes a sum over sample values. In order
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to use the posterior predictive distribution in our simulation, we would need to have

the (large) sample available to the rule engine. However, having large samples for each

patient (4 190 patients in our case) will take a large amount of memory in the rule

engine and effect the efficiency of the model. Therefore, instead of using large samples

for each patient, we use the common approach in machine learning of using a “plug-in”

approximation to the posterior predictive distribution (Murphy, 2012):

P (xnew | x) = P (xnew | θ̃)

where θ̃ is a ‘best’ estimate for the model parameters from their posterior distribution

P(θ | x) (or, when using MCMC, from the generated sample from that distribution).

In this case, for each patient, we use a maximum a posteriori (MAP) estimate by

choosing the mode of medsRunOut (denoted using m̃ro) in the MCMC sample, and

the central point of the 5% HPD (high probability density) interval for alpha values6 in

the sample that occur when medsRunOut = m̃ro (denoted using α̃). The last equation

above then implies using these parameter values in the exponential scaling function f

(see patient visit distribution in the summary of our model on page 139) as follows:

f(xnew) = e−α̃ ∗ distance between(xnew, m̃ro)

Given a reference date, for each patient we learn the model parameters’ posterior

distribution and calculate m̃ro and α̃. During simulation, we know that the next visit

should correspond to next medsRunOut ( = m̃ro) date. Referring back to Figure 7.2,

this means during visit v, the next recall will be corresponding to mro in Interval C

(in the figure, denoted as mro+90 with respect to Interval B). We then normalise the

f values across integer values in [0,89], and use those probabilities for sampling when

a recall decision has to be made for a patient.

Before diving into details of the implementation of the Bayesian approach in our

workload prediction model, let us look at the different reference dates referred to for

Bayesian inference. For Bayesian inference, we chose a historic reference date as the

Bayesian start date (01/05/2010 in Figure 7.6). The observed values for each patient

visit date are then calculated as (visit date - Bayesian start date) modulo 90 (For

example in Figure 7.6, a visit date 07/12/2011 is an observed value 45). The time line

from the Bayesian start date is then viewed as series of 90-day intervals with a series

of reference dates that each refer to the start of a 90-day interval. The most recent

reference date that falls prior to our simulation start date is the initial reference date

6alpha is a continous distribution and therefore no mode can be calculated
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considered to start the simulation of recalls. Thus, for Bayesian inference, the initial

reference date, rd1, rd2, rd3, and rd4 in the figure are reference dates associated with

patient visits to indicate the starts of 90-day intervals in which the visit should occur

during simulation.

12/04/2010 31/12/2014
1/05/20101/06/20101/07/20101/08/20101/09/20101/10/20101/11/20101/12/20101/01/20111/02/20111/03/20111/04/20111/05/20111/06/20111/07/20111/08/20111/09/20111/10/20111/11/20111/12/20111/01/20121/02/20121/03/20121/04/20121/05/20121/06/20121/07/20121/08/20121/09/20121/10/20121/11/20121/12/20121/01/20131/02/20131/03/20131/04/20131/05/20131/06/20131/07/20131/08/20131/09/20131/10/20131/11/20131/12/20131/01/20141/02/20141/03/20141/04/20141/05/20141/06/20141/07/20141/08/20141/09/20141/10/20141/11/20141/12/2014
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Figure 7.6: The time line reference dates in context for Bayesian inference.

We implemented the Bayesian approach in two steps:

Step 1 Pre-test using “cleaned” data of three-monthly recall patients.

Step 2 Applying the Bayesian model to all LTC patients.

7.2.1 A pre-test of using our Bayesian model in simulation

Initially we did a pre-test, as a trial to see if the Bayesian inference gives results

according to our beliefs of how the patient visits happened historically. Since we

assume that the patient visits are related to the 90-day medication prescription cycle,

and the three-monthly recalled patients must be recalled each 90 days (following the

care plan), we first test the approach by applying it to a subset (see below) of patients

who are on a three-monthly recall period.

We first filtered data for LTC appointments of our cohort patients as follows:

1. Patients are on three-monthly recalls (i.e., the least recall period among various

recall periods for each patient is 3 months).

2. Most consecutive visits for these patients fall around a 90-day cycle, from a chosen

Bayesian start date; this Bayesian start date is the same for all patients. This

ensures the observed data have least variance from the medsRunOutmod values

for these patients, and thus we can check that the approach works in the simplest

case where the data is clean.
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3. When visits of a patient fall too close i.e., more than one visit in a 90-day interval,

one visit is removed; this choice was made (manually) depending on how removing

a visit date affects the overall visit pattern of that patient.

In other words, this makes learning easier for the Bayesian model to check if the

approach works in the simplest case. This filtered data was then used in computation

of the posterior distributions of parameters medsRunOutmod and alpha. Then the

mode (i.e., the point estimate) of medsRunOutmod, and the central value of 5% HPD

of alpha values corresponding to that medsRunOutmod mode value were calculated

for each patient. Given these medsRunOutmod and the alpha values, the probability

for each patient to visit on each day, represented as an offset from the reference date is

calculated (refer to Appendix A.2 for complete implementation details). Thus, apart

from their medsRunOutmod, each patient is also associated with pairs of each possible

offset value and its corresponding probability for the 90-day interval.

When the day in our simulation happens to be a recall date for a patient, for each

such patient:

• patient visits are generated,

• the reference date for that patient is advanced to refer to the next interval period;

• and, the next recall date is calculated as their (new) reference date plus the

sampled offset value for that visit of the patient.

The start date of the 90-day interval (relative to the Bayesian start date) imme-

diately prior to our simulation start date is chosen as the initial reference date for

deciding when the patients are due to visit next (see Figure 7.6). There are chances

that some of these visits may be prior to our simulation start date, in which case, the

reference date for those patients is advanced to the next 90-day interval (referring to

Figure 7.6 the reference date is updated from initial reference date to rd1) and the visit

date is calculated from sampling again for such patients.

When selecting patients with three-monthly recalls, and with clean data matching

our understanding of patient visits, the cohort reduced to 164 LTC patients. Figure

7.7 shows that Bayesian inference makes the workload prediction more realistic and

reasonable because the periodicity due to three-monthly visits has disappeared and the

line representing the predicted workload using the Bayesian approach is intermingling

nicely with the historic visits of these patients.
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Figure 7.7: Simulation results for three-monthly recalled patients (clean data) [Run 1].

It should be noted that the differences between historic and predicted workloads

are not solely to the method used to schedule recalls. Historic visits may also include

visits not related to medications running out for a patient e.g., due to exacerbation of

an LTC in a patient, and our model does not predict these “outliner” visits.

7.2.2 Applying Bayesian model to simulate LTC visits for all

patients

Given that the Bayesian inference gave promising results for a subset of three-monthly

recalled patients, we applied our model to learn the medsRunOutmod and alpha for

each LTC patient in our cohort (i.e., for all 4190 patients). Similar to the three-

monthly recalled cohort, we did a modulo with a multiple of their recall period, i.e., for

three-monthly recall patients, we use modulo 90, and for six-monthly recall patients

we use modulo 180. We also used reference dates that are Bayesian start date plus

some multiple of 90-day intervals or some multiple of 180-day intervals for the three-

monthly and six-monthly recalled patients, respectively. We then learned the best

medsRunOutmod value and the alpha values for each patient as before (subject to

these modifications). Finally, when a recall decision had to be made for a patient to

145



decide the next visit date, we use the distance between function in Algorithm 3 with,

instead of 90, the appropriate interval length. However, we still observed periodicity

in the patient visit patterns (see the solid line in Figure 7.8).

Result: The distance v from mro in terms of 90-day interval

dist = v −mro;
skew factor = 5;

value near mro = (skew factorsgn(dist)) ∗ dist2;

return value near mro;
Algorithm 3: The modified distance between function.

Figure 7.8: Bayesian inference applied to all LTC patients using their recall period.

There could be various reasons for this:

1. There were patients with more frequent recalls (the 1-monthly and 2-monthly)

recalled patients. Their visits are more likely to be driven by their plan-of-care

rather than their medications running out. Moreover, we have no information

about how their medication prescriptions were issued or on which visit do they

get their medication prescription. Therefore, in this simulation we recalled these

patients based on their care plans.

2. Some historic visits might also be a reflection of a change in plan-of-care for some

of these patients, which is not captured accurately in the data.

3. The modified distance function does not consider late or early visits.

First, we considered three cases based on a patient’s recall period, to make a choice

whether the most recent start date of the 90-day interval was referred to a reference date
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corresponding to a visit for these patients or a due date for reissue of their prescription.

For instance, in case of six-monthly recall patients, a reference date could be related

to either an actual visit reference date (denoted as 0) or a medication renewal date

(denoted as 1). This implies that, for six-monthly recalled patients, their visits and

prescription reissue visits were alternative. Similarly, for 12-monthly recalled patients,

there were four options for a given reference date: it could be a reference date for

an actual visit (denoted as 0), the first medication renewal date (denoted as 1) the

second medication renewal date (denoted as 2), or the third a medication renewal date

(denoted as 3). This implies that after an actual visit, the patient gets the prescription

reissued three times and the fourth time it is an actual visit to a GP.

Then, we used the distance function (given in Algorithm 2) that would predict, with

respect to a recall reference date, a late or an early visit, which gave more reasonable

results (see Figure 7.9 ).

Figure 7.9: Bayesian inference (using distance function that predicts late or early visits)

applied to all LTC patients using their recall period.

Given that medication prescriptions run out in 90-day cycles, we also conducted

another simulation in which we applied the mod 90 (i.e., the number of days between

the Bayesian start date and the date of visit) to encode observed values for each patient

(we consider that the patient visit would have happened in some 90-day interval from

the Bayesian start date). We seeded these observed values to our model and calculated

medsRunOutmod and alpha values as described before. Given that our cohort included

patients with 3, 6 or 12-monthly recall periods who required sampling to decide their
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subsequent recalls, and we do not know if any reference date is related to a visit or a

medication renewal date as described above, we approached this in two ways.

1. Method A: Given that six-monthly recalled patients have two options (0 and

1), and for 12-monthly recalled patients have four options (0,1,2, and 3), we

randomly chose one option among these various options available depending on

each patient’s recall period. Figure 7.10 shows the simulation results using this

method.

Figure 7.10: Simulation results for Method A.

2. Method B: We counted, from the Bayesian start date, how frequently a patient

visit happens in the various 90-day intervals and chose the most frequent period

as the visit period. However, there were cases where there was a tie between

various 90-day intervals (especially for 12-monthly recalled patients), then we

randomly chose a 90-day period from the most frequent periods for that patient.

Figure 7.11 shows the simulation results using this method.

To this point, we emphasise that we use the Bayesian inference approach as a proof-

of-concept to show that the workload prediction can be improved by learning from the

patient’s historic visits. Therefore, extending the approach to apply effectively to

improving for all patients is out of scope for this thesis. Moreover, due to the inherent
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Figure 7.11: Simulation results for Method B.

Figure 7.12: Simulation results for three-monthly recalled patients (clean data) [Run

2].
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randomness of MCMC Bayesian inference and our use of sampling during simulation,

the simulated workload varies each time the Bayesian model is applied to decide recalls

(e.g., see Figure 7.7 and Figure 7.12). In our what-if scenarios, we want to compare

simulation results between the workload generated by base simulation logic (our initial

workload prediction logic) and the workload due to a change in practice (with our

scenario logic added). Thus, we expect to analyse the impact of the scenario on the

predicted workload. However, because each time Bayesian inference is applied in initial

workload prediction logic, the initial workload itself varies across runs. Given, we want

the differences in the workload that are due to the changed logic to be evident, in

future, one could address this by allowing the rule-based system’s working memory

to be seeded with facts recording visit dates generated in a previous simulation, and

adding rule logic ensuring that these previously generated dates are chosen for recalls,

except where a scenario-based involves omitting or adding visits.
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Chapter 8

Patient Information Model:

Support for the population-level

workload analysis

Revisiting Section 3.3, our research process has three phases, namely, information inter-

pretation, rule-base development and improving simulation capability. As we have seen

so far, these phases are intertwined. In Section 4.4.1, we presented the shortcomings of

the dataset and the measures we adopted to compensate for these shortcomings. We

had made some assumptions and definitions (through frequent and rigorous feedback

cycles) in order to compensate for those shortcomings. This helped us identify what is

required to support population-level workload analysis. We applied this patient infor-

mation model in Cycle 4 and onwards of our DSR cycles presented in Chapter 3. Initial

part of the chapter discusses current ontologies present in health domain. The rest of

the chapter then presents our “three-cycle” DSRM approach (adopted from Hevner

(2007)) and the developed patient information data model that supports workload

analysis at a population level.

8.1 Ontologies in health domain

In the early days of advancement of IT in the health domain, from the perspective of

a clinician, computer systems were developed to acquire patient data, and present it

as a summary to the clinician to help him/her make an informed decision about the

patient’s health (Chute, 2000; Goertzel, 1969). Over the years, doctors developed their

own terms and terminologies to help them store and share information and knowledge
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among themselves (Chute, 2000). At present, the widely used clinical terminologies

are Read codes (NHS Digital, 2017a) standardised in the UK (e.g., G20, C109), the

SNOMED Reference Terminology (Spackman et al., 1997) developed in the US, the

result of merging and expanding these two coding systems: the SNOMED Clinical

Terms (SNOMED-CT) (Ministry of Health NZ, 2017j), the ICD-10 (WHO, 2016a) in-

troduced by the World Health Organisation and the LOINC created and maintained

by the US for laboratory codes. The International Classification of Primary Care

(ICPC) (O’Halloran et al., 2004) is produced by the World Organization of National

Colleges, Academies and Academic Associates of General Practitioners/Family Physi-

cians (WONCA) now known as the World Organization of Family Doctors (Wonca).

It classifies data as reasons for encounter (RFE), diagnosis or problem, and process

of care. However, ICPC codes are more common in Australia than in New Zealand

(Recently SNOMED-CT is more popular and Read codes were used prior to adopting

SNOMED-CT).

All these clinical terminologies define a hierarchical classification system with codes

associated with each entry (e.g., Figure 8.1 shows the SNOMED-CT design with its

hierarchies). These codes are commonly used within electronic health records (EHRs)

to provide a standard and unambiguous representation of a health condition, body part,

medical test, etc. However, where and how this information is used remains ambiguous.

We acknowledge that these clinical encodings are essential, however from a computer-

assisted workload management’s point of view, there is essential to understand where,

why and what interventions were and are required for a patient.

Furthermore, shared decision-making requires storing, accessing and sharing pa-

tient information across various health IT systems which led to the development of

standard health data models (Demski et al., 2016). While clinical terminologies were

standardised for health care professionals, standard data models for electronic patient

information were developed to allow data exchange between health IT systems (Tsik-

nakis et al., 2002). For example, the standards body Health Level Seven International

(HL7) has developed a family of standards including the HL7 Reference Information

Model (HL7, 2016, p. 7). This includes the key concepts of entities (e.g., people, organ-

isations and places) acting in roles, while participating in acts (e.g., patient encounters,

observations and procedures), which may have relationships with other acts.

152



Figure 8.1: SNOMED CT Design from taken main page of SNOMED International (2018).
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An entry in an openEHR Information Model provides a classification of entry types

data types and data structures. However, the actual meaning of any term in the record

cannot be known in isolation from the rest of the terms in the structure. This means

neither openEHR IM nor its Data Model define relationships between the terms and

the various levels in openEHR architecture. Furthermore, openEHR has an added

functionality to classify plain text to coded terms. However, it does not capture or

inform the clinician whether the same text with a mapping exists within the system.

Both the HL7 and openEHR models can be specialised with domain-specific profiles

(for HL7) or archetypes (for openEHR). However, such specialisations do not seem to

exist for the area of primary health care.

The US Office of the National Coordinator for Health Information Technology has

developed the Quality Data Model (ONC, 2016). This defines the structure for sev-

eral types of data items related to the care of a patient, as well as a language for

defining expressions expressing measures of the patients care, e.g., that certain med-

ication is prescribed within a specified period after a given lab test. The models are

intended to support clinical quality improvement processes. The data items modelled

cover encounters (ordered and performed), diagnoses, medication that is currently pre-

scribed, as well as medication dispensing and administering events, and laboratory

tests, amongst others. The defined attributes include some relationships such as the

diagnosis addressed during an encounter and the severity of a diagnosis or a symptom.

Mabotuwana and Warren (2010) proposed the ChronoMedIt framework to help

practices to audit how well they manage their chronic patients. They found that iden-

tifying patients who receive suboptimal chronic care was difficult due to the temporal

dependency of care actions for such patients. One of the challenges they faced was that

the clinical encodings used in various practices varies, for example in primary health

care sector, Read codes (NHS Digital, 2017a) were common in New Zealand while

ICPC (O’Halloran et al., 2004) codes were common in Australia. Therefore, they used

a Problem class to map these encodings to their generic names of chronic illnesses.

For example, Read code C104.11 means a patient developed renal impairment due to

diabetes and hence in ChronoMedIT, they mapped that Read code to Problem classes

Diabetes and Renal Impairment. We borrow this Problem class concept from this work.

In the following section we present our three-cycle approach to develop the patient

information model presented in Section 8.4.2.
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8.2 The three cycle approach

Figure 8.2: Hevner’s three-cycle DSRM approach applied to develop our patient infor-

mation data model.

Hevner (2007) introduced a DSRM approach with three-cycles, namely the Rele-

vance cycle, the Design cycle and the Rigour cycle, and hence the name “three-cycle”

approach. Figure 8.2 shows these three-cycles in our context. As depicted in Figure

8.2, the relevance cycle iterates to identify the environment and the problems in the

context. The design cycle is the most important iterative cycle among the three-cycles.

It iterates through the development of the prototypes or processes, evaluating them in

the context. This cycle also considers the changes that may happen to the environment.

In our context, the design cycle identifies various entities and the relationships between

those entities that builds the patient information model to support population level

analysis. These entities and the relationships help address the shortcomings identified

in the environment. Section 8.4.2 discusses this patient information model in detail.

The third cycle, the rigour cycle, communicates the lessons learnt through the

relevance cycle and the design cycle to the existing knowledge base. Through the

rigour cycle, we identify the LTC population. Apart from making additions to existing

health data models, we also added to the knowledge base that the workload from LTC

management needs is predictable. We also added population-level analysis measures

to the knowledge-base.

The rest of this chapter presents these three cycles and how their outcomes help us

build our patient information model.
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8.3 The Relevance cycle and the Environment

As depicted in Figure 8.2, the relevance cycle iterates to identify the environment and

the problems in the context. Hence, this specifies various people, tasks, shortcom-

ings and so on in the context. The major roles identified in this cycle were patients,

GPs, nurses and other care provider roles at a PHC centre. Here, we focused on the

shortcomings of data, mainly those related to the appointments and prescribed med-

ications of their LTC patients. In relevance cycle we also discussed the inability of

PHC data to capture the care pathways applied to the patients. Furthermore, the

severity of conditions in a patient was not explicitly represented in the health data.

There was also no explicit representation of individualised plan-of-care for the patient,

which merges and resolves incompatibilities between the recommendations of different

care pathways. This cycle iterates within the environment and the elements of DSRM

(the extended primary health care information model and our rule based workload

simulation system).

8.3.1 Primary Health (PH) data quality

Electronic Health Records (EHRs) or Personal Health Records (PHRs) capture the

individual patient requisites to share the goals and activities set for the patient across

various care providers without the loss of confidentiality (Burt et al., 2014; Mathers

et al., 2011). However, these health records do not give an insight as to how to use that

captured “digitized patient information” (Kohli and Tan, 2016) for a population-based

reasoning. Moreover, according to Ministry of Health NZ (2017a), medical practices

vary in

• compliance to the data capture methods in their clinical decision support systems

(CDSS);

• GPs within practices vary in their mode of care delivery; although the data

capture uses the same CDSS, the data captured regarding care delivered varies;

and

• the established benchmark points; the performance matrices vary which means

the data captured may be only in alliance to the benchmark metrics.

Hence, the data shortcomings discussed in this section may also be due to practice

specific characteristics. However, the feedback from various roles at Pinnacle Midlands
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Health Network1 and the Clinical Director of Primary Care, Waitemata DHB, agree

that most of these shortcomings are common across various practices under them.

8.3.2 The missing data puzzle for a population-focused care

As presented above, healthcare models such as HL7 and QDM, continue to focus on

acute care. The structure of health systems reinforces the acute model with fixed

8, 10 and 15-minute appointment slots (Iacobucci, 2016). This underlines a reflex

response to acute crisis interventions. A more systematic proactive response for the

LTC population is required (Reilly, 2013; Wagner, 1995). However, primary healthcare

information systems and their database architectures are structured to support acute

‘siloed’ unplanned care (Marshall et al., 2016; Salgado et al., 2016). In particular,

while working with an anonymised database from a PHC practice, we have identified

some information and relationships missing from that database that were required to

facilitate population-level analysis, including the following:

• There was no information about whether a patient is an LTC patient, in a con-

venient format required for this study. We were required to identify the LTC

patients in order to understand the LTC population demographics, and the up-

coming LTC management needs of this population.

• There was no explicit representation of whether appointments and prescribed

medications were related to acute conditions or to the management of LTCs in

a patient. Because there was no explicit representation of LTC status associ-

ated to patients, our first work around was to identify those patients who book

appointments for LTC related problems. However, there was no explicit infor-

mation regarding this. Yet another workaround measure was to identify patients

who are on LTC medications. However, information pertaining to which disease

is targeted by a medication prescription for a patient was not captured in the

patient data.

• It is difficult to determine which treatment path of a care pathway was followed

for a patient. Given more than one care plan apply to multi-morbid patients,

in order to understand the reason for a specific care action for a patient, it is

essential to capture which path of care pathway was applied to a patient.

1An organisation that provides clinical decision support systems for practices under Waikato PHO.
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• The severity of the LTC was not explicitly represented and may require an anal-

ysis of the results of lab tests over a period of time. It is known that when an

LTC worsens in a patient, more frequent visits are required to manage the LTC

in them. However, current patient data models do not capture the severity of

a condition in a patient. It may be argued that the clinical encodings embed

severity of a patient’s health condition. But, from a population level reasoning

point of view, what is required is the ability to explicitly capture the severity of

LTCs in a patient. For instance, this would help to identify those patients who

have severe diabetes and are at high risk of developing CKD in them.

• There was no explicit representation of the individualised plan-of-care for the

patient, which merges and resolves incompatibilities between the recommenda-

tions of different care pathways. The ability to identify which LTCs or care plans

apply to a patient is also not enough to reason at a population-level. We need

to identify why and how a care action decision was made for a patient. This

requires us to capture the plan-of-care of a patient.

Having highlighted the shortcomings, the next section will discuss how the workaround

approach we applied to overcome these shortcomings helped us develop our patient

information model, aligned with the development of our workload prediction model.

8.4 The Design cycle

The definitions and assumptions unique to this work are a consequence of the inference

logic applied in our context2. However, we also identify that the data needs to have

the capability to capture patient information that can be used for a population-level

workload analysis.

8.4.1 The information inference logic

To this end, I have introduced the shortcomings in the dataset that hindered us in de-

veloping a workload prediction model without assumptions. We had to infer knowledge

to fill the gaps due to the missing information in the dataset. For instance, in order to

find how many diabetic patients are treated with more than two LTC medications, we

had to find which patients are classified as diabetic and the LTC medications they are

2Following design science research methodology, this inference logic follows the guidance from our

PCA.
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on. In this section, I discuss the inference logic and how it helped design our patient

information model. I also would like to highlight that this patient information model

has been used in our workload prediction model.

The first challenge was to identify LTC patients3. Although the information cap-

tured was not in a convenient format for this study, every patient was classified using

Read codes. Hence, we mapped the Read codes to problem class(es) as described in

Chapter 4 and tag them as LTC patients. Therefore, in addition to the clinical en-

codings, the health data should also capture the generic name (problem class) of the

disease.

In order to simulate patient visits, we need to seed their visit details that instigate

the subsequent patient visits in the simulation. However, such information related

to LTC appointments was also not explicit in the data. Therefore, the next step

was to identify the LTC appointments. The cause of appointments was not captured

in the patient data. Therefore, we had to identify LTC appointments based on the

recommendations (guidance was from experience as a GP) of our PCA.

According to our PCA, in order to address LTC management needs, an LTC patient

usually makes appointment with a GP or a nurse. It that they make an appointment

in order to get their medication reissued. Therefore, as presented in Section 4.4.1, our

definition of LTC visits depended on active medications. We acknowledge that, in our

case, the definitions and assumptions were driven from the perspective of a general

practitioner and it may vary from person to person and from practice to practice.

Therefore, we add a validity period to every prescription, and also to capture an LTC

status that would denote whether the appointment was related to an LTC or not.

In the current GP support system (which aids the PHC practice whose data we use

in this work), if, during a consultation, medications to manage LTCs in a patient are

prescribed, then a MedTech32 ‘T’ status is tagged with all the medications prescribed

during that consultation for the patient. However, the data does not explicitly capture

the condition for which the medication is prescribed, nor the validity period of the

prescription. It is important to know the LTC status or the condition addressed by

that medication and the validity of medications because, generally, an LTC prescription

may be valid for up to four months, and there are medications such as paracetamol,

that could be prescribed for both acute and long-term conditions.

We also assume that as an LTC worsens, the recalls for a patient are more fre-

quent. Although this severity might be embedded within the clinical encodings, for

3The main focus of this work are the LTC patients enrolled at the primary healthcare centre.
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a population-level understanding of the LTC patients, we need to capture severity in

terms of low, medium, high and very high risks. We demonstrated with a what-if

scenario in Section 6.1.2 that having severity explicitly represented can give a tool the

flexibility and adaptability to shift a group of patients to other care provider roles. In

another context, having an understanding of severity of conditions could help stratify

patients based on their needs and plan care accordingly (Pines et al., 2015)

Every LTC patient may be on one or more care plans depending on the multi-

morbidities in a patient, and so may refer to more than one recall period. However,

every patient should have only one plan-of-care, which considers all the LTCs present

in the patient. Every patient, thus, should have only one recall period at a time.

Furthermore, the information required to draw conclusion on a plan-of-care for a

patient is not addressed in the existing health data models. As presented in Section

5.2.2, in our workload prediction model, during a patient visit the care pathways unfolds

into a patient-specific plan-of-care. This step highlights the need to capture the care

plans applied to a patient so that the clinical decisions can reason about care actions

on a population-level. The data should also capture information to identify the criteria

for a population cohort and thus can support population-level analysis.

The next section presents our patient information model.

8.4.2 The Patient Information Model

In this section, I introduce our ontology, and the basic concepts and relationships

of our ontology. We borrow a few basic concepts and relationships from openEHR

(2016), HL7 RIM (HL7, 2016), SNOMED-CT (SNOMED International, 2018), and a

paper by Mabotuwana and Warren (2010). Figure 8.3 represents those concepts and

relationships needed for a population-level workload analysis as an ontology modelled in

OWL (OWL Working Group, 2012). The additions to the existing patient information

model are highlighted using bold rectangles around the class. The green rectangles

are instances, and the dashed lines denote the ‘instance-of’ relationship. The hollow

arrow-headed lines shows the ‘is-a’ relationship between the classes.

The isLTC attribute shows the LTC status of the entity. Box A shows those entities

relating to LTC (e.g., Appointment, Classification). The patientId is an attribute of

a patient, plan-of-care, appointments, classifications, care actions and population. Box

B shows this relationship. Boxes A and B thus explicitly indicate that we add this

attribute to existing classes.
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Figure 8.3: The Patient Information Model.
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One major requirement is to identify the population. Depending on the criteria,

the population varies. Therefore, we tag a patient, based on some (defined) criteria,

belongsTo a population.

A health practitioner may hold various roles within the practice. These roles, such

as general practitioner, practice nurse and chief medical officer, in a PHC context are

shown as instances of a role. A health practitioner can be competent to manage a

specific health condition, denoted by isCompetentIn a ProblemClass.

A patient isRegisteredWith a health practitioner and may have an encounter with

a general practice via an appointment. Hence, an appointment isBookedBy a patient

and isBookedFor a health practitioner. With these two relationships, we provide

the flexibility for a patient to be registered with a health practitioner and can make

an appointment with another health practitioner if required. During a consultation,

a patient may be diagnosedWith a classification or addresses a classification within

a patient. Every classification of a patient will have a diagnosis with a severity

and the date of classification, which help to mine the medical history of a patient. A

classification for a patient will thus, have the patientId, isLTC status, ProblemClass,

a severity of the condition, and the ProblemCode of the condition along with the

dateOfClassification.

A ProblemClass will have ProblemCodes associated with it. These ProblemCodes

can be Read codes, SNOMED-CT or ICD-10 codes. We also emphasise that ProblemClass

is not a replacement for clinical codes like Read codes, but is additional information and

hence it provides more generic information required by both clinical (GPs and nurses)

and non-clinical (clinical decision support developers) users of the clinical data. Fur-

thermore, in our ontology, if a patient does not have a medical condition, the patient

is classified as a normal patient. So normal is shown as an instance of ProblemClass.

This enables the health system to identify normal patients who follow the generic care

pathway for prevention and early detection of LTCs.

One of our major contributions through this ontology is to enable to identify the

care plan applied to a patient. To determine the enacted care plans in a patient,

we broadly classify the patients using ProblemClass. A ProblemClass (which has a

genericName) addresses a medical condition like diabetes, and thus refers to various

care plans for its care pathway. A care pathway specifies the guidelines to manage

a specific LTC in a patient. In our ontology we define a relationship that captures

this association between an LTC and its care pathway. Therefore, a ProblemClass

isManagedBy a care pathway and a care pathway isFor a problem class.
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We analysed the care pathways, derived the care plans based on the interventions

required and the period within which the intervention must be made in a patient, cap-

tured as a recallPeriod within a care plan. For example, a newly diagnosed patient

with a classification C109 (a Read code that classifies as Diabetes) with a reading value

greater than 55 for 44TB (Read code for HBA1C blood test), may be monitored on

3-monthly basis while a patient whose diabetes is stable with the same HBA1C and

who is on medication, will be monitored every 6 months. This intervention based on

severity is captured as different care plans. Thus, a care pathway is composedOf care

plans. Each care plan addressesSpecifically a classification.

The ProblemClass and the severity of the condition in a patient identifies the

care plan for the patient. Every LTC patient may be on one or more care plans

depending on the multi-morbidities in a patient, and so may refer to more than one

recallPeriod. However, every patient will have only one plan-of-care, which considers

all the LTCs present in the patient. Every patient, thus, will have only one recall period,

the leastRecallPeriod. The most severe condition will require interventions that are

more frequent and hence the plan-of-care considers that the most severe condition drives

the recalls (Amir et al., 2015; Burt et al., 2014; Dennis et al., 2008). However, defining

a leastRecallPeriod enables a clinician to use his expertise (i.e., the evidence-based

care) to recall a patient as required than recommended by the plan-of-care for the

patient.

The plan-of-care hasActions from care actions. A care action is a medical activity

that isToManage a health condition in a patient. A care action involves a health

practitioner; for instance, a GP prescribes the medication, and a nurse does lab tests.

Therefore prescription, consultation and laboratory tests are care actions.

We have also considered to represent if a prescription for a drug isActive and

validFor a certain period. For instance, a prescription for paracetamol may be active

for a week i.e., the patient is on medication for a week but the validity of the prescription

could be for 3 days, i.e., the patient will require a new prescription, if they need to

collect the medication after three days from the date of prescription.

A consultation could address an acute condition or, one or more LTCs in a patient.

In order to capture this reason for an encounter of a patient with the PHC, we define

that a consultation addresses a classification.

Laboratory tests may be requested in order to rule out a diagnosis of a suspected

health problem or to confirm the health condition of a patient. Therefore, we define

that a laboratory test isTestedFor a classification.
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It is important to capture which care actions are done for a patient. In order to

capture this information, we explicitly capture that a care action isDoneFor a patient,

and a plan-of-care appliesTo a patient. Aggregation of various care plans into a

patient-specific plan-of-care ensures that medical activities, such as medications and

lab tests, are not duplicated for a patient unnecessarily (Burt et al., 2014). Thus, during

the consultation, a health practitioner considers all the medical conditions present in

the patient to prescribe medication or order the lab tests. At times, this would also

enable a patient to book the follow-up appointment. In other words, the various care

plans mergesInTo a plan-of-care and the care actions depend on this plan-of-care for

a patient. We highlight that this information required to draw the conclusion on a

plan-of-care for a patient is not addressed in the existing health data models.

8.5 The Rigour cycle

We borrowed some of concepts from existing ontologies. Table 8.1 presents a summary

of concepts of our patient information model borrowed from other work. Through the

rigour cycle, we identify the LTC population. Apart from making additions to existing

health data models, we also added to the knowledge base that workload from LTC

management needs is predictable. We also added population-level analysis measures

to the knowledge-base. Though we discussed this ontology from the perspective of

LTCs, this ontology can support acute or non-LTC specifications too. Care actions

Table 8.1: Summary of concepts of our patient information model borrowed from other

related work.

Our concept Concept presented as in other work

Role of a health practitioner role (from openEHR (2016))

Care action act (from openEHR (2016)), care activity (from HL7

(2016))

Severity severe (from Mabotuwana and Warren (2010)), sever-

ity (ONC, 2016)

ProblemClass problem class (from Mabotuwana and Warren

(2010)), openEHR (2016))

ProblemCodes problem codes (from Mabotuwana and Warren (2010)

and HL7 (2016))
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could relate to non-LTC events like screening for pre-diabetes, annual health check-up

or even encounters due to accidents. We emphasise that these additions to the existing

ontology are highlighted with rectangular boxes in Figure 8.3.

In summary, following a three cycle approach adopted from Hevner (2007), we iden-

tified shortcomings in the current health data models and the data shared with us. In

the process of compensating for these shortcomings through information interpreta-

tion, we articulated what is needed in a patient information model in order to support

population-level workload analysis. We also discussed how this patient information

model contributed to the knowledge base. We emphasise that this patient information

model was an outcome of designing what is required to develop a workload predic-

tion model for population level workload analysis. This patient information has been

applied and evaluated through our workload prediction model.
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Chapter 9

Conclusion

This thesis has addressed the challenge due to growing demand for LTC care at a pri-

mary health care (PHC) centre. Our adaptable best practice based workload prediction

model (ABP-WPM) predicts the upcoming workload as a volume of appointments due

to LTCs at a medical practice. This thesis also demonstrates the ability to analyse the

impact of resource bound policies, external factors, changes in practice policies and

adopting new models of care on the predicted workload, and evaluate the strategies to

address them. The patient information model presented in this thesis addresses the

shortcomings of current health data models to support a population-level workload

analysis. This thesis also shows that with a better understanding (using Bayesian in-

ference) of a patient’s prescription renewal cycles and their likelihood of visiting early

or late for an appointment improves the workload prediction capability of the model.

9.1 Learnings from related work

Based on the literature, for example work by Babiker et al. (2014); Harris and Zwar

(2007); O’Leary et al. (2013); Wagner (1995), we realised that understanding and

managing workload in a health care domain is a known challenge for decades. There

have been attempts to understand the workload based on historic data (Abdel-Aal and

Mangoud, 1998; Green Cross Health, 2017; Murray and Berwick, 2003; Potts et al.,

2011). We focus on LTC management in a population of patients. The chronic care

model (CCM) by Wagner (1998) serves as a guide to adopt measures to improve LTC

care for patient population at a PHC level. We also learnt that adherence to clinical

guidelines and a care planning process to address multi-morbidity needs of a patient

are essentials for effective LTC care at a PHC level. However, few studies have focused
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on adherence to guidelines, considering all LTCs at the level of an entire PHC practice.

Table 9.1 gives a comparison of this related work to our work (refer to Chapter 2 for a

fuller discussion on these work).

Table 9.1: Features of related work that motivated our approach to built the workload

prediction model, and how they differ from our work.

Related Work Features that moti-

vated our work

Contrast of the related

work with ours.

Anonymous (2006b);

Babiker et al. (2014); Bo-

denheimer et al. (2002a);

Harris and Zwar (2007);

O’Leary et al. (2013);

Reeves et al. (2014); Terry

(2017); Trindade and

Pires de (2013); Wagner

(1998)

Similar motivation,

need for care planning

at a PHC level

Some studies considers spe-

cific patient population to

analyse care planning at a

PHC level.

Hall (2012) Addresses schedul-

ing resources; Study

attempts to answer

questions very much

similar to our research

questions.

Has more of a patient per-

spective. Questions in their

study focus on the emer-

gency department of hospi-

tal. Ours is a PHC context.

The CREDO framework

(Fox et al., 2006)

Use of care plans to

refer to personalised

schedules and follow-

ups of patients.

The CREDO framework fo-

cuses on how the services

are delivered rather than

anticipating what services

will be required. We focus

on anticipating workload.
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Mathers et al. (2011) Collects and aggregates

data to determine un-

met health care needs of

the population

For them, the main reason

for aggregation is to inte-

grate self-management into

their care planning process.

We aim to help the practice

equip themselves according

to the predicted workload.

Brown et al. (2018) Addresses how care

planning is applied in a

PHC context

Their work has a patient

perspective while our work

has a care provider perspec-

tive.

Abdel-Aal and Mangoud

(1998); Green (2013); Green

and Savin (2008); Murray

and Berwick (2003); Potts

et al. (2011); Utley and

Worthington (2012)

Attempts to forecast

demand for care for a

population of patients

Uses mathematical or sta-

tistical models and has lit-

tle or no discussion about

evidence-based care or pa-

tient centredness.

Grant and Greene (2012);

Pines et al. (2015); Reid

et al. (2009); Struijs et al.

(2015); Taylor (2015);

WHO (2016b)

Analyses how services

are provided.

Some studies focus on

population-based care,

while others focus on

patient-centred care. Sel-

dom do they address both,

or otherwise they address

only a selected few chronic

conditions. In our work, we

address how multiple care

pathways can be integrated

to predict population-level

workload.

Davy et al. (2015); Harris

and Zwar (2007); Trindade

and Pires de (2013); Walley

et al. (2008)

Analysis of impact of

changes on workload

Presents the findings from a

patient perspective. Ours is

a population-level perspec-

tive.
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Hawkins and Novak (2011) Presents benefits in

care from shifting

patients to a trained

nurse

Considers only diabetic

patients; it does not

mention increased or de-

creased workload due to the

changes. In our work, we

address the workload from

following best-practice for

LTC management (not only

diabetes), and also explore

various ways to manage

this predicted workload.

Anooj (2012); Azadmanjir

et al. (2017); Davis et al.

(1977); Kahn et al. (1991);

Lhotska et al. (2001); Pa-

pageorgiou (2011); Pawlak

(1997); Pestotnik et al.

(1996); Salatino et al.

(2016); Shortliffe (1974);

Shortliffe et al. (1975)

All use rule-based sys-

tems for clinical deci-

sions. Some studies

involve expert opinion

and refer to guidelines

to develop their rule

base.

The rule representation

varies. Some studies are

specific to hospital settings.

Ours is a PHC context. We

also involve expert opinion

to develop best practice

guideline rules to predict

the workload.

The WEB planning model

(Segal and Leach, 2011)

Stratifies population;

highlights problems

with quality of data;

involves clinicians and

other care provider

roles in developing

best-practice for their

population

Focuses only diabetic pa-

tients; suggests a unique

clinical team for each pa-

tient and then aggregates to

estimate total work force re-

quired. In our work, we con-

sider multi-morbidity in pa-

tients. Instead for suggest-

ing a clinical team, we ag-

gregate workload to provide

the practice the autonomy

for their workforce develop-

ment.
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WiPP (Anonymous, 2006a) Workload analysis tool More details not available;

not a generalisable tool;

The ability to explore

what-if scenarios makes

our model an adaptable,

generalisable one.

The Holon Framework

(Warwick and Bell, 2007)

Uses what-if scenar-

ios in a health care

planning context.

They view health care

planning similar to a

software process that

can be evaluated using

Goal-Question-Metric

(GQM) method. The

framework considers

a transition from one

state of patient health

to another through

interventions that ad-

dress the who, what,

where, when and

how elements of care

planning.

The impacts of such macro-

interventions are examined

using what-if scenarios. In

our case, we use what-if sce-

narios to predict the im-

pact on the predicted work-

load due to changes in prac-

tice, adopting a new model

of care, posing a resource

bound policy for attending

LTC patients, and external

factors. We do not con-

sider the impacts at a pa-

tient level.

170



The iCare project (Indian

Health Service, 2014)

Workload management

issue addressed

Considers only specific

events such as cervical

screening and prostrate

screening; a patient chooses

if they require to be alerted

about future health care

events applicable to them.

Or work aims to help the

practices to foresee the

future appointments for

LTC patients, rather than

alerting patients about

their appointments.

Maher et al. (2009) Refers to the need for

a standard protocol to

deliver structured, good

quality care.

They do not address how

these requirements can be

met by the organisations.

On the other hand, our tool

refer to the best practice

guidelines and can address

such requirements; know-

ing the population and vol-

ume of sub-population vis-

iting, the practice can plan

and organise care actions

accordingly.
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Busetto et al. (2017); Mas-

simi et al. (2017)

They explore vari-

ous contexts and the

impacts of involving

nurses in the care

planning and delivery

process at a practice

level.

Explicitly mentions roles

and responsibility that the

nurses can perform. We do

not explicitly assign respon-

sibilities, however, we ex-

amine the impact of shift-

ing patients to nurses on the

predicted workload. In our

work, we assume they can

attend the patients shifted

to them.

A PHC system needs a system that can consider best practice guidelines for its

patients registered with the practice. Best practice guidelines are clinical guidelines

that are varied to fit the patients’ care needs (Johnson, 1997). Therefore, adherence to

best practice guidelines for the LTC patients at a PHC level will help address evidence-

based, as well as patient centred LTC care with a population-level perspective.

9.2 Addressing what is required in a data model.

In the process of building our initial patient model (the individual patient data and a

visit date to drive the simulation of patient recalls for a patient), we identified short-

comings in the dataset supplied to us, as well as in the current health data models, to

support population level workload analysis. We followed a rigorous build, self-evaluate

and feedback (from our PCA) cyclic approach to make definitions and assumptions to

compensate for the problems due to missing data. This information inference phase

helped us develop care plans (e.g, CKD care plans) as rules, identify patient informa-

tion (e.g., the LTC status of patients and their appointments) and identify a visit of

a patient to use to simulate the subsequent recalls for the patient. This information

inference phase also helped us to identify what is required in a patient data model to

support population level workload analysis. Thus we developed the patient information

model and applied it in our workload prediction model, presented in Chapter 8.
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9.3 The choice to use a rule-based system.

As the data related to which care pathways were applied to LTC patients was missing

in our dataset, in our ABP-WPM, we have best practice guidelines in the form of

an encounter-based unfolding plan-of-care. This encounter-based unfolding plan-of-

care has layers of rules. The first layer is the disease specific care pathways (best

practice guidelines for the practice, data for which is used in this study) which unfolds

to disease specific care plans. These disease specific care plans (as rules) when seeded

with patient data unfolds to form individualised plans-of-care. This process of unfolding

of care pathways to individualised plans-of-care occur during the (simulated) patient

visit. Therefore, although there are alternative approaches such as agent-based models

and discrete event simulation to model health care roles and activities (Luke et al.,

2018; Mustapha et al., 2018), a rule-based approach seemed the most appropriate in

our context.

One of the strengths of our model is also that it is rule-based. Minutolo et al.

(2017), Shiffman (1997) and Shortliffe (1974) lists (along with many others) modularity,

openness, flexibility and the ability to unwind based on data set as strengths of a

rule base system. In Chapter 3, we showed how following the design science research

methodology (DSRM), each phase of development of our workload prediction model

extended our rule base. We also demonstrated (in Chapter 6) how extending and

adopting that rule-base can improve the capability of our workload prediction model

to support various what-if scenarios. These features can help a PHC practice to know

the upcoming workload, and understand the impacts of various strategies they may

adopt on them as an organisation.

9.4 The holistic view of our approach

Figure 3.3 presented the three phases, namely II, RBD, and SC, and the details of

their interactions required to develop our ABP-WPM. Although, in this thesis (except

in Section 3.2.1), we presented these three phases as standalone interactions, these

interactions were intertwined. For example, we needed to identify LTC patients. How-

ever, the data lacked this information, and so initially, we defined a patient as an LTC

patient if the patient has made a GP or a nurse appointment. But the simulated work-

load was bizarre with periodicity, sharp peaks and dips. Then, analysing the simulated

workload, our PCA, we considered the medication status of the patients. The data
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lacked explicit representation of which LTC or disease is targeted by that medication.

So, we defined active medications and then defined LTC patients based on active med-

ications, which improved the simulated workload. The rule base development (RBD),

thus had interactions with information interpretation (II) phase. Improving simulation

capability (SC phase) thus had interactions with both RBD and II phase.

The following section highlights the contributions of this thesis.

9.5 Contributions of this thesis

In this work, we were informed by both the literature (for the requirement for a system

to predict the workload at the medical practice) and by our PCA who is the collaborator

in this work. The collaboration was in the form of data and the knowledge base to

understand primary health care domain, and practical issues at the medical centre.

Therefore, we followed the design science research (DSR) methodology. In Chapter

3, we presented how each phase of development of this work is driven by feedback

from our collaborator (the PCA), primary health organisations (PHOs, specifically the

Waikato, and the Otago and Southern Island PHOs) of New Zealand, members at

Mosgiel PHC centre, and review comments on our published papers, to develop our

workload prediction model.

9.5.1 Answering our research questions

In this work, we address how a medical practice can become proactive in delivering

chronic care through population-level workload management through three main re-

search questions as discussed below.

RQ1 Given a medical practice follows best practice, what model(s) can be used to

predict the population-based care workload?

This question specifically focuses on the workload that is expected to arise

from the demand of care to meet the LTC management needs in a PHC context.

We demonstrated that using encounter-based unfolding plans-of-care for LTC

patients can predict the population-based workload.

RQ2 How can this predicted workload be analysed in various what-if scenarios? For

example, if the low severe LTC patients are attended by a nurse, what is the

change in workload of the GPs?
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We showed how our rule-based workload prediction model allows simple adap-

tation to provide the capability of analysing what-if scenarios. We first showed

that assigning a certain number of slots per weekday per available GP can re-

duce the gap between the predicted workload and the availability of GPs to meet

the LTC care demand. We showed two scenarios where patients are shifted to

nurses. Through these scenarios we demonstrated that shifting patients from

the GP workforce to a nursing workforce makes GPs more available for other

patients. We also showed, using a simple financial analysis, that shifting patients

to nurses would also bring more returns to the practice.

RQ3 How can the impact of various health policies be studied at an organisational

level? For instance, how would the policy to have annual CKD screening for

LTC patients affect this practice?

We considered the scenario of adding new care plans for high need LTC pa-

tients, where they are recalled at least in every three months. We also considered

in another what-if scenario where patients are required to have a CVD screening

test annually. Yet another scenario considered increasing GP and nurse slots for

LTC patients by offering LTC appointments on Saturdays. Other than the im-

pact on the workload, we also presented a simple financial analysis of the impacts

of such an organisational measures.

9.5.2 The DSR outputs from this work

According to March and Smith (1995), a DSR creates artefacts, methods, artefacts or

instantiations to serve human purposes (PCA’s requirement to be able to manage PHC

centres in our case). In this sense, we have three DSR output elements from our work.

1. The theoretical constructs: According to March and Smith (1995), in DSR the

concepts and the relationship between them is referred to a theoretical concepts.

Care pathways are formalised standard guidelines to address care needs due to

a specific health condition. In this thesis, we consider LTCs. As presented in

Chapter 2, applying care pathways to individual patients may be referred to

as care plans or plans-of-care. So, in this thesis, we make a clear distinction

in using these terms. The box below highlights our definitions of these terms

in the context of this thesis. We also define a clear relationship (instantiation,

abstraction and aggregation) between them (see Section 3.1).
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Care pathway: focuses on a specific LTC management needs.

Care plan: focuses on a specific LTC’s management need in an individual.

Plan-of-care: addresses multi-morbidity management needs in a patient.

2. A process or a method: During a patient visit, our rules determine subsequent

recalls for the patient by considering the disease-specific care plans (then) ap-

plicable to the patient, then merging them into an individual plan of care for

the patient. In a later stage, we aggregate them as a population level work-

load. We call this process of unfolding care visit by visit for a patient as the

encounter-based unfolding plan-of-care process.

3. The artefact: With our encounter-based unfolding plan-of-care process, during

a patient visit, our ABP-WPM decides subsequent recalls for the patient. We

were supplied with an anonymised dataset of a medical practice in New Zealand

as part of the collaboration on this work. In our workload initialisation and

prediction process, we compensated the shortcomings of the dataset by defining a

few assumptions and definitions. We acknowledge that some of these assumptions

maybe practice specific. We seeded our workload prediction model with care

pathways as rules, and the preprocessed version of the anonymised patient dataset

shared with us. The care pathways then undergoes the encounter-based plan-of-

care process for each patient in the patient dataset allowing our workload model to

simulate patient recalls. When the simulation ends, these recalls are aggregated

on a weekly basis as the workload for the simulation period.

9.5.3 Further contributions

Apart from the above mentioned what-if scenarios, we also considered a scenario where

an external factor (influenza outbreak) is expected to impact adversely on the workload.

We showed that having an understanding of the upcoming workload, the practice can

then take measures (as described in Section 6.3) to make slots available (from LTC

appointments) to meet the workload due to an influenza outbreak. We also discussed

financial analysis in these various what-if scenarios.

We also investigated using Bayesian inference to learn patient’s prescription renewal

dates from their full history of visits and incorporate in our simulation the variation in

patient visits (with respect to their prescription renewal date) based on each patient’s

visit pattern. We showed that using Bayesian inference better aligned the predicted

workload with the actual visit pattern of patients. However, there are a few challenges
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that hindered using Bayesian inference to analyse our what-if scenarios. These are left

for future work.

We claim that this encounter-based unfolding plan-of-care contributes to usage of

care pathways in health domain. We discussed how the care pathways with patient

data unfolds to disease specific care plans which then are used to create individualised

plans-of-care during a patient visit. We also presented the iterative cycles of the design

science research methodology (DSRM) followed to develop our adaptable best practice

based workload prediction model (ABP-WPM).

9.6 Limitations and future work

As a proof-of-concept model, we have implemented care plans for three LTCs (namely

CKD, diabetes and hypertension), and if this model is to be adopted at an organisation,

all the care pathways need to be codified.

As presented in Section 3.2.2, in our final phase of development, we collected feed-

back from executive members of WellSouth Primary Health Network in Otago1 includ-

ing chief executive officer (CEO), chief information officer (CIO), nursing director, and

the medical director, the general manager of primary care, Southern District Health

Board, as well as the primary care facilitator, Southern Alliance2. The CEO high-

lighted that having an understanding of the impacts of various scenarios can help in

the workforce development of a practice (which is currently lacking). One point that

was highlighted was a comparison of their initiative to manage patients who are at high

risk for hospitalisation where they try to stratify patients based on their LTC needs

similar to recommended by the KP-risk stratification model (Pines et al., 2015). They

too agree that there is no mechanism to identify acute and LTC workload and so, they

do not consider acute care under this program.

In our work, we focused on the appointments to address the clinical complexities

of LTCs in a patient. The nursing director of WellSouth Primary Health Network

highlighted that social complexities also contribute to workload from LTC patients.

Codifying social complexities of a patient or a group of patients is more complicated

due to lack of a consensus definition of “social”-complexity of a patient (Mount et al.,

2015).

In our work, we do a data pre-processing step in order to improve the underlying

1This is the Primary Health Organisation for Otago and South Island of New Zealand.
2Southern Alliance is a health insurance provider.
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data model to have the capability to support population-level workload analysis. In

that process of information inference, we identified what is required in a data model to

support a population-level workload analysis. We developed the patient information

model presented in Chapter 8 using the Web Ontology Language (OWL) tool. As a

future work, we would extend the patient information model to provide the capability

to reason over data. This would give our patient information model the capability to

answer questions such as how many diabetic patients are currently seen by a specific

GP, and out of them how many are at a high risk of CKD; or, how many young

patients (e.g., age < 30) need to be supported with a group fitness class to manage

their diabetes.

We demonstrated that we can learn using Bayesian inference the variation in patient

visit with respect to their medication renewal period. Currently, we use all the historic

visits of a patient. In our simulation, with the learnt probability of variation, we decide

the next visit for a patient, which could be a weekend. Our rules then push the patient

visits to a working day. As a future work, we could consider avoiding the chances of a

patient visiting on a weekend, so that when a sample gives the offset from a reference

date, it would refer to number of working days since the reference date.

In our work when defining what-if scenarios, the scenarios were encoded in the .drl

rule formats. This means if a practitioner needs the autonomy to define new what-if

scenarios, the practitioner requires some basic knowledge of Drools and its rule formats.

In future, this work can be extended to develop a graphical user interface (GUI) for

specifying various user specific what-if scenarios.

This work currently considers a time frame of a year for its simulation period.

This work could be extended to consider the variability in plan-of care for a longer

simulation period (e.g., 5 years). This would also require to consider patient outcomes

e.g., National Kidney Foundation (2015) highlights the rate of kidney deterioration

over 5 year period based on patient features such as ethnicity and age.

9.7 Longer term impact of this line of work

The findings from this work can be utilised to plan organisational-level policies so that

most of their chronic patients would benefit. This work can also help the medical prac-

tice to strengthen their workforce based on their changing cohort of chronic patients.

This work with further add-ins such as sending alerts for medication due to patient’s

smart phones, and emailing patients reminding them of their upcoming appointment,
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can help medical practices systematise care for their patients. In a wider scope, know-

ing the upcoming workload can also help the funding and primary health organisations

formulate schemes to address practice level needs, in addition to the ‘one size fits all’

strategy at a national level.
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Conclusion

This thesis forms a initial work to understand the workload from the LTC population

at a medical practice. This work has take different paths in future. An immediate

work is to consider all respective care pathways for chronic conditions than assuming

a general pathway for patients other than diabetes, CKD and hypertension. Another

path is to consider the variability in plan-of care for a longer simulation period (e.g.,

5 years). The findings from this work can be utilised to plan organisational-level

policies that most of their chronic patients would benefit. This work can also help

the medical practice to strengthen their workforce based on their changing cohort of

chronic patients. Similar to CCM is adopted in many other care programs like CM+

(care management plus for chronic patients), this thesis with a further add-ins can help

medical practices systematise care for their patients.
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gary.witte@otago.ac.nz

206



jo.farrondediaz@otago.ac.nz

Approval is for up to three years from the date of this letter. If this project has not been
completed within three years from the date of this letter, re-approval or an extension of
approval must be requested. If the nature, consent, location, procedures or personnel of your
approved application change, please advise me in writing.

Yours sincerely,

Mr Gary Witte
Manager, Academic Committees
Tel: 479 8256
Email: gary.witte@otago.ac.nz

 c.c. Professor M Winikoff  Head  Department of Information Science
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A.2 Drools working memory classes and attributes

list

In our Drools classes and attributes, we present the initial classes and their attributes. Then we

present the classes and the attribute(s) added to support our what if scenarios.
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Objects used for data pre-processing and the workload prediction. 

global java.lang.Long SimulationStartDate; 
global java.lang.Long SimulationEndDate; 
global java.lang.Integer RecallDecisionParameter; 

/* 

A Fact that denotes today for simulation 

*/ 

declare Today 

 today:long 

end 

 

/* 

Patient basic details  

The patientId uniquely identifies a patient. 

The other features like age, gender,ethnicity is also recorded. 

The regProv identifies the GP with whom the patient is registered with. 

fundCode represents the funding code for the patient.   

*/ 

declare Patient 

 patientId:String 

 gender:char 

 age:int 

 ethCode:int 

 regProv:String 

 fundCode:char 

end 

 

/* 

Declaring the event when a Patient Visits 

PatientVisit is an event that happens on the dateOfVisit and expires in 24hours. 

*/ 

declare PatientVisit 

 @role(event) 

 patientId:String 

 dateOfVisit:Date 

end 

 

/* 

Declaring the recall as fact  

Recalls are a part of the care plan of each patient. 

The recalls happens within a period that is denoted as recallInFreq and actual date of visit is 

determined as recallDate. 

*/ 
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declare Recall 

 @role(event) 

  

 patientId:String 

 recallInFreq:int 

 recallInterval: String  

 recallDate:Date 

end 

 

/* 

---------------------Declaring the Diabetic risk score as a fact --------------------------- 

Diabetic risk score denotes if the patient is at a low risk, medium, high risk or very high risk 

of diabetes. 

This fact is used in decision table to determine when a diabetis patient should be recalled. 

*/ 

declare DiabeticRiskScore 

 patientId:String 

 riskScore:int 

end 

 

declare Script 

 patientId:String 

 medication_type:String 

 no_of_medications:int 

 dateOfPrescription:Date 

end 

 

declare CarePlan 

 patientId: String 

 problemCode: String 

 latestReadCode: String 

 carePlanCode:String 

end 

 

//---------------------Declaring Lab Requests, receiving the lab results and latest lab results 

available ------------------- 

//LabRequest shows when the lab requests were made for a patient. 

//patientId identifies the patient whose lab tests are requested. 

//labCode identifies the lab test 

//labDetails gives the details about the test requested e.g BP, HbA1C and so on. 

//resultDueDate is the due date when the lab results are expected.  

declare LabRequest 

 patientId:String 

210



 resultDueDate:Date 

 labCode:String 

 labDetails:String 

end 

 

declare IndividualRecallDetail 

 patientId:String 

 carePlanCode:String 

 recallInFreq:int 

 recallInterval: String  

end 

 

/* 

LatestLabResult shows that the last lab results received for a patient for a lab test. 

This is maked as an event of lab results being received. 

patientId identifies the patient whose lab tests are requested. 

labCode identifies the lab test 

labValue gives the numerical value of the results. 

labTestReceived is the date when the lab results are acutally received. 

*/  

declare LatestLabResult 

 patientId:String 

 receivedDate:Date 

 labresultStatus:String 

 labCode:String 

 labDetails:String 

 labValue:double 

end 

 

 

/*---------------------Declaring the Classification for patient ------------- 

FirstClassification shows when the patient was first classified under some LTC. 

patientId identifies the patient. 

problemCode identifies the generic name of the LTC, e.g hypertension, diabetes and so on. 

readCode gives the READCODE for the LTC which classified the patient to be having LTC. 

dateOfClassification gives the date when the patient was first classified to be having LTC. 

This is onset date in the Classification table.  

*/ 

declare FirstClassification 

 patientId:String 

 problemCode:String  

 readCode:String 

 dateOfClassification:Date 

end 
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/*Classification shows when the patient is classified with a LTC. 

patientId identifies the patient. 

problemCode identifies the generic name of the LTC, e.g hypertension, diabetes and so on. 

readCode gives the latest READCODE of the LTC which classifies the patient to be having 

LTC now. 

dateOfClassification gives the date when the patient was classified to be having LTC with the 

readCode. 

This is CLASSDATE in the Classification table.  

*/ 

declare Classification 

 patientId:String 

 problemCode:String 

 latestReadCode:String 

 dateOfClassification:Date 

end 

 

/* 

----------------------CKDLABRESULT --------------------------------------- 

This is very similar to the lab results, but has created classify the results based on the two 

different lab results. eGFR and ACR are calculated based on the lab results and hence once 

these are calculated then, only. 

*/ 

declare CKDLabResult 

 patientId:String 

 receivedDate:Date 

 labresultStatus:String 

 labCode:String 

 labDetails:String 

 labValue:double 

end 
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Additional Attributes for classes to support what-if scenarios 

This lists the classes and their additional attributes to support what-if scenarios presented in 

this work. 

Patient 

 carePlus:boolean 

Recall 

 recallComment:String 

 consulted:String 

 

CarePlan 

 patientId: String 

 problemCode: String 

 latestReadCode:String 

 carePlanCode:String 

 severity:String 

 

CareProviderRole 

 roleName:String 

 regNo:String 

 slotDuration:int 

 totalPatientsAttendedActualData:int 

 numberPatientsScheduledSimulation:int 

 dateOfAppointment:Date 

 canAttend:int 
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A.3 Read codes to Problem class mapping

In order to have information in a format required for this study we map Read codes to their respective

problem class. Problem class are a more generic name of the disease identified using Read codes. For

example, G20 and G27 belong to HYP COD (Hypertension) problem class. The following pages

presents the complete Drools decision table that maps Read codes to problem class(es).
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RuleSet

Notes

ACTION ACTION PRIORITY UNLOOP

readCode matches 

"$param", 

problemCode==null readCode not in ($param)

classifi.problemCode = 

"$param"; 

System.out.println(classifi.patientId +"  " + 

classifi.problemCode);System.out.println("$par

am"); update(classifi);

Problem Types ReadCodes Not ReadCode Problem Code Print Success Salience no-loop
" G2

G20.*

Gyu2

Gyu20

Heart Disease Gyu3.* "Gyu31" heartdisease Problem Code heart disease is set 

G61.* "G617"

G64.*

G66.* "G669"

G6760

G6W

G6X

Gyu6F

Gyu6G

ZV12D

Fyu55

C10.* "C10F8"

C109J

C109K

C10C

C10D

C10E.*

C10F.* "C10F8"

C10G.*

C10H.*

C10M.*

C10N.*

PKyP

66AS

C10P.*

G73

G73z.* "G73z1"

Gyu74

G734

G73y

Atrial Fabrillation G573.* "G5736" Atrial Problem Code Atrial is set

G58.*

G1yz1

H3

H31.* "H3101","H31y0","H3122"

H32.*

H5832

H64640

H4641

Hyu30

Hyu31

a H33.* "H333"

H3120

H3B

173A

E10.*

E110.*

Asthma asthma Problem Code asthma is set

Psychosis pyscosis Problem Code Pyscosis is set

Heart Failure heartfailure Problem Code heart failure is set 

COPD COPD Problem Code COPD is set

DM_COD Problem Code diabetes is set

TIA

PAD PAD Problem Code PAD is set

predictionPack

This table is to assign problem code based on the simple readcode string or 

classifi : FirstClassification

100

RuleTable AssigningFirstClassifcationProblemCodeOnSingleReadCode

CONDITION

HYP_COD Problem Code hypertension is set 

Problem Code TIA is set

TRUE

Stroke stroke Problem Code stroke is set

TIADiagnosis

HyperTensionCode

Diabetes
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E111.*

E1124

E1134

E11y.* "E11y2"

E11z

E11zz

E11z0

E12.*

E13.* "E135"

E2122

Eu2.*

Eu30.*

Eu31.*

Eu323

Eu328

Eu333

Eu32A

Eu329

RuleSet

CONDITION CONDITION ACTION ACTION ACTION PRIORITY

checkInRange(readCode, 

"$1","$2" ) , problemCode 

== null readCode not in ($param)

classi.problemCode = 

"$param"; update($param); System.out.println("$param");

Problem Types Checks in range Not ReadCode Problem Code classi Print Success Salience

"
HyperTensionCode G24,G2z "G24z1","G2400","G2410","G27" HYP_COD Hypertension updated

G30B,G330z

G3,G309

G33z,G3401

G342,G35X

G38,G3z

G63y0,G63y1

Gyu62,Gyu66

Heart Failure 662f,662i heartfailure heartfailure updated

COPD H36,H3z "H3y0","H3y1" COPD COPD updated

RuleSet

CONDITION CONDITION ACTION ACTION PRIORITY UNLOOP

latestReadCode matches 

"$param",problemCode==n

ull latestReadCode not in ($param)

classifi.problemCode = 

"$param"; 

System.out.println(classifi.patientId +"  " + 

classifi.problemCode);System.out.println("$par

am"); update(classifi);

Problem Types ReadCodes Not ReadCode Problem Code Print Success Salience no-loop
" G2

G20.*

Gyu2

Gyu20

Heart Disease Gyu3.* "Gyu31" heartdisease Problem Code heart disease is set 

G61.* "G617"

G64.*

G66.* "G669"

G6760

G6W

G6X

Gyu6F

classifi : Classification

stroke case updated

Stroke stroke

HyperTensionCode

heart disease "G310","Gyu31" heartdisease heartdisease updated

Stroke stroke

25

RuleTable Assigning FirstClassifcation ProblemCode based on range of ReadCodes

classi:FirstClassification

classi

Problem Code stroke is set

HYP_COD Problem Code hypertension is set 

RuleTable Assigning ProblemCode

Psychosis pyscosis Problem Code Pyscosis is set

predictionPack

predictionPack

100

100 TRUE

TRUE
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Gyu6G

ZV12D

Fyu55

C10.* "C10F8"

C109J

C109K

C10C

C10D

C10E.*

C10F.* "C10F8"

C10G.*

C10H.*

C10M.*

C10N.*

PKyP

66AS

C10P.*

G73

G73z.* "G73z1"

Gyu74

G734

G73y

Atrial Fabrillation G573.* "G5736" Atrial Problem Code Atrial is set

G58.*

G1yz1

H3

H31.* "H3101","H31y0","H3122"

H32.*

H5832

H64640

H4641

Hyu30

Hyu31

a H33.* "H333"

H3120

H3B

173A

E10.*

E110.*

E111.*

E1124

E1134

E11y.* "E11y2"

E11z

E11zz

E11z0

E12.*

E13.* "E135"

E2122

Eu2.*

Eu30.*

Eu31.*

Eu323

Eu328

Eu333

Eu32A

Eu329

1371 NSMOK_COD

137F

137K

137j

137l

137J

137M

137V

TIA

asthma

heartfailure Problem Code heart failure is set 

Problem Code COPD is set

TIADiagnosis

Asthma

Problem Code Pyscosis is setpyscosis

Diabetes

Stroke stroke

Heart Failure 

Problem Code asthma is set

Psychosis

COPD COPD

DM_COD Problem Code diabetes is set

Problem Code stroke is set

Problem Code TIA is set

100

PAD PAD Problem Code PAD is set

EXSMOK_COD

CSMOK_COD

SMOKER
ProblemCode for smoker is 

set

TRUE
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137h

137m

137o

137 "137g"

RuleSet

CONDITION CONDITION ACTION ACTION ACTION PRIORITY

checkInRange(latestReadCo

de, "$1","$2" ) , 

problemCode == null latestReadCode not in ($param)

classi.problemCode = 

"$param"; update(classi); System.out.println("$param");

Problem Types Checks in range Not ReadCode Problem Code classi Print Success Salience

"
HyperTensionCode G24,G2z "G24z1","G2400","G2410","G27" HYP_COD Hypertension updated

G30B,G330z

G3,G309

G33z,G3401

G342,G35X

G38,G3z

G63y0,G63y1

Gyu62,Gyu66

Heart Failure 662f,662i heartfailure heartfailure updated

COPD H36,H3z "H3y0","H3y1" COPD COPD updated

1377,137B

137N,137O

137S,137T

1372,1376

137C,137D

137G,137H

137X,137f

RuleSet

CONDITION ACTION ACTION ACTION PRIORITY UNLOOP

classi : Classification

latestReadCode matches 

"$1", problemCode ==null classi.problemCode = "$param"; update(classi); System.out.println("$param");

Problem Types Override Code Problem Code classifi Print Success Salience no-loop
" 21261

212K

21263

212H

Atrial Override Code 212R Atrial Fibrillation resolved

COPD Override Code 2126F COPD Resolved

21262

212G

RuleTable Assigning ProblemCode based on range of ReadCodes

resolved classi 25

classi : Classification

heart disease "G310","Gyu31" heartdisease heartdisease updated

Stroke

predictionPack

25

EXSMOK_COD

CSMOK_COD

RuleTable Assigning ProblemCode based on Override ReadCodes

stroke case updated

predictionPack

TRUE

Diabetes Override Code Diabetes resolved

Asthma Override Code Asthma resolved

stroke

HyperTension Override Code Hypertension resolved

100

SMOKER

classi

smoker status updated

CSMOK_COD

SMOKER
ProblemCode for smoker is 

set

TRUE
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A.4 Chronic Kidney Disease

In this work, we used Gfactor calculation and the ACR lab results to decide the CKD stage in a

patient. The CKD stage decides the frequency of recalls for a patient. The following is the CKD care

plans used in this work.
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Ref CKD 
Stage 

ACR/P
CR 

Status Clinician Review Recall Laboratory 
Tests 

NICECG182.1.
3.2 

G1 A2  Advise: 12 monthly review 
using CKD module 
 

12 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G2 A1  Advise: 12 monthly review 
using CKD module 
 

12 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G2 A2  Advise: 12 monthly review 
using CKD module 
 

12 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G1 A3 Stable 6 monthly review using CKD 
module 

6 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G2 A3 Stable 6 monthly review using CKD 
module 

6 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G3a A1  12 monthly review using CKD 
module 

12 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G3a A2  12 monthly review using CKD 
module 

12 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G3a A3  6 monthly review using CKD 
module 

6 months CBC 
Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

G3b A1  6 monthly review using CKD 
module 

6 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  6 months CBC 
 

NKFKDOQI 
2002 

    12 months PH Ca++ Phos 

NICECG182.1.
3.2 
 

G3b A2  6 monthly review using CKD 
module 

6 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  6 months CBC 
 

     12 months PH Ca++ Phos 

NICECG182.1.
3.2 
 

G3b A3  4 monthly review using CKD 
module 

4 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  4 months CBC 
 

NKFKDOQI 
2002 

    12 months PH Ca++ Phos 

NICECG182.1.
3.2 
 

G4 A1  6 monthly review using CKD 
module 
 

6 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  6 months CBC 
 

NKFKDOQI 
2002 

  3 months Calcium 
Phosphate 
PTH 

NICECG182.1.
3.2 
 

G4 A2  6 monthly review using CKD 
module 
 

6 months CBC 
Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  6 months CBC 
 

NKFKDOQI   3 months Calcium 
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Ref CKD 
Stage 

ACR/P
CR 

Status Clinician Review Recall Laboratory 
Tests 

2002 Phosphate 
PTH 

NICECG182.1.
3.2 
 

G4 A3  4 monthly review using CKD 
module 

4 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  4 months CBC 
 

NKFKDOQI 
2002 

  3 months Calcium 
Phosphate 
PTH 

NICECG182.1.
3.2 

G5 A1  3 monthly review using CKD 
module 

3 months Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  3 months CBC 
 

NKFKDOQI 
2002 

  1months Calcium 
Phosphate 

3 months PTH 

2013 KDIGO G5 A2  2 monthly review using CKD 
module 

2 monthly Creatinine 
Electrolytes 
ACR 

NICECG182.1.
7.8 

  2 monthly CBC 
 

NKFKDOQI 
2002 

  1 monthly Calcium 
Phosphate 

3 monthly PTH 

NICECG182.1.
3.2 

G5 A3  6 weekly review using CKD 
module 

2 monthly Creatinine 
Electrolytes 
ACR 

NICECG182.1.
3.2 

  2 months CBC 
 

NKFKDOQI 
2002 

  1 monthly Calcium 
Phosphate 

3 monthly PTH 

 

 

 

Follow up time period in Months for Chronic Kidney Disease  

 Persistent albuminuria categories 

Description and Range 

 Null A1 A2 A3 

G
FR

 c
at

e
go

ri
e

s 
(m

l/
m

in
/ 

1
.7

3
m

2
) 

D
e

sc
ri

p
ti

o
n

 a
n

d
 r

an
ge

 

G1 No CKD No CKD 12/12 6/12 

G2 No CKD No CKD 12/12 6/12 

G3a 12/12 12/12 6/12 3/12 

G3b 6/12 6/12 3/12 3/12 

G4 3/12 3/12 3/12 2/12 

G5 3/12 3/12 3/12 2/12 

 

VOL 3 | ISSUE 1 | JANUARY (1) 2013 http://www.kidney-international.org modified 
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http://www2.kidney.org/professionals/KDOQI/guidelines_bone/guidestate.htm 

Executive Summaries | Anemia | Hemodialysis | Peritoneal Dialysis  
Vascular Access | Nutrition | CKD 2002 | Dyslipidemias | Bone Metabolism  
History of KDOQI  
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A.5 Diabetes

We followed a modified version of the diabetes care plan by the New Zealand Guidelines Group of

Ministry of Health New Zealand (NZGG, 2011). The modified version of diabetes care plan used in

this work as shared by the PCA is given below.
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Diabetes Care Plans 

Scheduling of diabetes care is dependent on the risk of complications from their diabetes. Classify the risk as: Very High, high, medium , and low. The 

(Quantification of risk reflects the consensus of the Diabetes Advisory Group convened by the New Zealand Guidelines Group.) 
 

If previous diagnosis of: 
 Coronary arteriosclerosis (disorder) | Cerebral arteriosclerosis | Transient ischemic attack | Atherosclerosis of arteries of the extremities 
Classify as Very High Risk 
 

Coronary Heart Disease diagnosis codes  

Include G3... – G309.  
G30B. - G330z  
G33z. - G3401  
G342. - G35X.  
G38.. – G3z..  
Gyu3.%  

    53741008 
Coronary arteriosclerosis 
(disorder) 

Exclude G310. 
Gyu31 

   

Override     

Stroke diagnosis codes 

Include G61..%  
G63y0 - G63y1  
G64..%  
G66..%  
G6760  
G6W..  
G6X..  
Gyu62 – Gyu66  
Gyu6F  
Gyu6G  

    65312002 
Cerebral arteriosclerosis 
(disorder) 

Exclude G617. 
 G669 
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TIA diagnosis Codes 

Include G65..- G654.  
G656.- G65zz  
ZV12D  
Fyu55  

     266257000 
Transient ischemic attack 
(disorder) 

Exclude       

PAD diagnostic codes 

Include G73..  
G73z.%  
Gyu74, G734., 
G73y.  

XE0VP  
G73z.  
Gyu74  
Xa0lV  
XE0VR, XaZJa  

   51274000 
Atherosclerosis of 
arteries of the 
extremities (disorder) 

Exclude G73z1      

 

Variable Code Criteria Score 

Hba1c mmol/mol 44TB >55 +1 

BP Systolic and  
diastolic  mmHg 

2469 
246A 

> 130 and 
> 80 

+1 

ACR mg/mmol 46TD > 3  +1 

eGFR CKD-EPI ml/min/1.732 44J3 (serum Creatinine) <60  +1 

Triglycerides  and 
Tot Chol. 

44Q 
44P 

>= 1.7  and 
>= 4.0 

+1 

Smoking Status*  Smoker +1 

Ethnicity (code 20-39 or 41-43) Maori or Pacific Island or South 
Asian  

+1 

  

Low risk  <2  

Moderate risk    2 

High Risk    3 
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*Smoking Status  is calculated by identifying the latest Smoking habit code and then analysing that code to see if the code 

falls into smoker, ex-smoker or never smoked. 

Code Criteria  Qualifying Diagnostic Codes Time criteria  CDS Term CDS CODE Snomed 

 Read codes v2  CTV3  Snomed CT    

Smoking habit codes  

Include 137.. - 137D.  
137F. - 137H.  
137J., 137K., 137M. – 
137T.  
137V.  
137X. - 137h.  
137j. 
137l.  
137m.  
137o.  

Ub0oo%  
 

365981007% Latest  

 

SMOK_COD  
SMOK_DAT  
[Date of SMOK_COD  
(Latest)] 

 

365980008 

Finding of tobacco use and 
exposure (finding) 

Exclude 137g. XE0oo 
XaIQi% 
Ub0oq 
137L. 
XaQz 
XaXP9 
XaXP8 
XaXP6 
Ub0oo 
XaIuQ 
Ub0p2 
Ub0p3 
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Code for never smoked  

Include 1371.  XE0oh  266919005 
 

Most recent of 
SMOK_COD  

 

NSMOK_COD  
NSMOK_DAT 

266919005 
Never smoked tobacco (finding) 
 

Codes for ex-smoker  

Include 1377. – 137B.  
137F.  
137K.  
137N. – 137O.  
137S. – 137T.  
137j. 
 137l.  

Ub1na%  
Ub0p1  

8517006% 
228486009 

Most recent of 
SMOK_COD  

 

EXSMOK_COD  

 
8517006 

Ex-smoker 

Exclude  XaQzw,  
XaXP8,  
XaXP6 

517211000000106 
766611000000106 
766581000000100 

Current smoker codes  

Include 1372. – 1376.  
137C. - 137D.  
137G. - 137H.  
137J.  
137M.  
137P. - 137R.  
137V.  
137X. - 137f.  
137h.  
137m.  
137o.  
137..  

137R.%  
XE0og%  
137C.  
137G.  
137M.  
XaIIu  
XaItg  
XaJX2  
XaLQh  
XaWNE  

77176002% 
266918002% 
160612007 
160616005 
160619003 
134406006 
44341000000100 
413173009 
203191000000107 
726831000000105 
 

Most recent of 
SMOK_COD  
 

CSMOK_COD  
CSMOK_DAT  

 

77176002 

Smoker (finding) 

 

 

Exclude  XaXP9  

XaIuQ, XE0oo 
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Review Frequency in months 

review  SCTIDs Review  Name Low Risk Med High Very High 

413095006  Clinical Review 6 3 3 3 

26604007 HbA1c 6 3 3 3 

75367002 blood pressure 6 3 3 3 

271244005 lipids, 12 12 12 12 

271075006 ACR 12 6 6 6 

365757006 eGFR 12 3 3 3 

394683006 Foot check 12 12 6 3 

390735007 Retinal screening 24 24 24 12 
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A.6 Hypertension

Initially we started with a care plan (the following few pages) for Read coded hypertensive patients.

Later we realised this practice too do not Read code all hypertensive patients. Hence, we extended

the care plans for non-Read-coded patients (PCA wrote on the left hand side of hypertensive plans

to record the recall frequency for non-Read-coded patients). We also added a constraint based on the

anti-hypertensives taken by the LTC patients.

The following is the SQL query that differentiates patients, who are Read-coded and must be on

a care plan for hypertension and are on anti-hypertensives, from patients who are non-Read-coded

and must be on a care plan for hypertension based on the ant-hypertensives they are on.

Listing A.1: SQL query to create table of count of medications for patients whom the

hypertension care plan will be applicable.

1 create table

rx_antihypertensive_count_applied_hypertensive_plan as (

2 select idno , extract (year from rxdate) as

last_year_of_antihypertensive , count(distinct lower(substr (

genericname ,1,6))) as count_antihypertensives

3 from scripts

4 where

5 idno ||extract (year from rxdate) in (select idno ||max(extract (

year from rxdate))

6 from scripts

7 where drugcode in (select drugcode from

antihypertensives_updated where not thergrpdesc = ’

Diuretics ’)

8 and idno in (select idno from

rx_patients_problemcodes_ltc where problemcode = ’

HYP_COD ’)

9 and not idno in (select idno from

rx_patients_problemcodes_ltc where problemcode in (’

CKD ’,’DM_COD ’) and not latestreadcode = ’No CKD ’)

10 group by idno)

11 and

12 idno ||drugcode in (select idno ||drugcode
13 from scripts

14 where drugcode in (select drugcode from

antihypertensives_updated)

15 and idno in (select idno from
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rx_patients_problemcodes_ltc where problemcode = ’

HYP_COD ’)

16 and not idno in (select idno from

rx_patients_problemcodes_ltc where problemcode in (’

CKD ’,’DM_COD ’) and not latestreadcode = ’No CKD ’))

17 group by idno ,extract (year from rxdate)

18 order by extract (year from rxdate),idno)
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A.7 LTC encodes (aka generic names) and their

care plans

Table A.1 shows generic names and their corresponding care plans. There are a few exceptional

cases such as CKD patients who are mapped to be on annual recall. However, the best practice

followed is to recall any LTC patient in months. Therefore, we have CKD patients who are on a

GENERAL PLAN. Similarly, there are non-Read-coded hypertensive patients. Those patients are

identified as NOT HYP COD but are on a HYP COD PLAN.

Table A.1: Care plans applied to generic names of LTCs used in this work.

Generic name Care plan name

asthma asthma PLAN

Atrial Atrial PLAN

CKD GENERAL PLAN

CKD CKD PLAN

COPD COPD PLAN

DM COD DM COD PLAN

heartdisease heartdisease PLAN

heartfailure heartfailure PLAN

HYP COD HYP COD PLAN

NOT HYP COD HYP COD PLAN

NOT ON PLAN GENERAL PLAN

PAD PAD PLAN

psychosis psychosis PLAN

stroke stroke PLAN

A.8 Decision table that decides individual recalls

for each LTCs in a patient.

This decision table decides the recall frequency for individual patients based on the LTCs and care

plans that apply to them.
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RuleSet predictionPack
No-loop True
Notes This decision table is for deciding the recalls and the required lab tests for each patient visits

RuleTable CKDRecallDecision

CONDITION CONDITION CONDITION ACTION Priority

$drs: DiabeticRiskScore

carePlanCode == "$1" latestReadCode=="$param" carePlanCode!="$param" 
patientId==$careplan.patientId, riskScore 
$param

not (exists IndividualRecallDetail (patientId == $param, carePlanCode 
==$careplan.carePlanCode))

System.out.println("In the decision table to insert  
individual recalls"); IndividualRecallDetail  $recall 

= new IndividualRecallDetail(); $recall.recallInFreq 
= $1;$recall.recallInterval = "months"; 
$recall.patientId = $careplan.patientId; 

$recall.carePlanCode = $careplan.carePlanCode; 
insert($recall);

Check problemCode decide recall
G1 A2 12 1000
G1 A3 6 1001
G2 A2 12 1002
G2 A3 6 1003
G3a 12 1004

G3a A1 12 1005
G3a A2 6 1006
G3a A3 3 1007

G3b 6 1008
G3b A1 6 1009
G3b A2 3 1010
G3b A3 3 1011

G4 3 1012
G4 A1 3 1013
G4 A2 3 1014
G4 A3 2 1015

G5 3 1016
G5 A1 3 1017
G5 A2 3 1018
G5 A3 2 1019

<2 6 1020
==2 3 1021
==3 3 1022
>3 3 1023

COPD_PLAN 6 1024
heartdisease_PLAN 6 1025

stroke_PLAN 6 1026
TIA_PLAN 6 1027
PAD_PLAN 6 1028
Atrial_PLAN 6 1029

heartfailure_PLAN 6 1030
asthma_PLAN 6 1031
pyscosis_PLAN 6 1032
GENERAL_PLAN 6 1033

RuleSet predictionPack
Notes This decision table is to decide on recall for patient readcoded as hypertensive

RuleTable  ReadcodedHypbpsinglevalues

CONDITION CONDITION CONDITION ACTION Priority

$p:Patient $labresult:LatestLabResult

problemCode == "$1" carePlanCode == "$1"

patientId == $careplan.patientId, age$1
labCode =="$1", (int)labValue$2, patientId 

== $p.patientId

not (exists IndividualRecallDetail (patientId == $careplan.patientId, 
carePlanCode == "$1"))

System.out.println("In the decision table to insert  
individual recalls"); IndividualRecallDetail  $recall 

= new IndividualRecallDetail(); $recall.recallInFreq 
= $1;$recall.recallInterval = "months"; 
$recall.patientId = $careplan.patientId; 

$recall.carePlanCode = $careplan.carePlanCode; 
insert($recall);

Check problemCode decide recall
2469,>=140 950
246A,>=90 950
246A,<=60 950
2469,<=110 950
2469,<120 950
246A,<80 950

RuleTable  Readcoded_Hyp_bp_multiple_values

CONDITION CONDITION CONDITION ACTION Priority

$p:Patient $labresult:LatestLabResult

problemCode == "$1" carePlanCode == "$1"

patientId == $careplan.patientId, age$1
labCode =="$1", (int)labValue$2 && 

(int)labValue$3, patientId == $p.patientId

not (exists IndividualRecallDetail (patientId == $careplan.patientId, 
carePlanCode == "$1"))

System.out.println("In the decision table to insert  
individual recalls"); IndividualRecallDetail  $recall 

= new IndividualRecallDetail(); $recall.recallInFreq 
= $1;$recall.recallInterval = "months"; 
$recall.patientId = $careplan.patientId; 

$recall.carePlanCode = $careplan.carePlanCode; 
insert($recall);

Check problemCode decide recall
2469,<140,>=130 940

246A,<90,>=80
246A,>60,<80

2469,>110,<120
940

RuleTable  ReadcodedHypbpsinglevalues

CKD_PLAN

DM_COD_PLAN

CONDITION

HYP_COD

>=80

HYP_COD_PLAN

$careplan:CarePlan

$careplan.patientId

6
>0

<80

>0

<80 3HYP_COD_PLAN

>0

HYP_COD

HYP_COD HYP_COD_PLAN 6

$careplan:CarePlan

CONDITION

CONDITION

$careplan:CarePlan

HYP_COD_PLAN

HYP_COD_PLAN

HYP_COD_PLAN
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CONDITION CONDITION CONDITION ACTION Priority

$p:Patient $labresult:LatestLabResult

problemCode == "$1" carePlanCode == "$1"

patientId == $careplan.patientId, age$1
labCode =="$1", (int)labValue$2, patientId 

== $p.patientId

not (exists IndividualRecallDetail (patientId == $careplan.patientId, 
carePlanCode == "$1"))

System.out.println("In the decision table to insert  
individual recalls"); IndividualRecallDetail  $recall 

= new IndividualRecallDetail(); $recall.recallInFreq 
= $1;$recall.recallInterval = "months"; 
$recall.patientId = $careplan.patientId; 

$recall.carePlanCode = $careplan.carePlanCode; 
insert($recall);

Check problemCode decide recall
2469,>=180 950
246A,>=110 950

RuleTable  Readcoded_Hyp_bp_multiple_values

CONDITION CONDITION CONDITION ACTION Priority

$p:Patient $labresult:LatestLabResult

problemCode == "$1" carePlanCode == "$1"

patientId == $careplan.patientId, age$1
labCode =="$1", (int)labValue$2 && 

(int)labValue$3, patientId == $p.patientId

not (exists IndividualRecallDetail (patientId == $careplan.patientId, 
carePlanCode == "$1"))

System.out.println("In the decision table to insert  
individual recalls"); IndividualRecallDetail  $recall 

= new IndividualRecallDetail(); $recall.recallInFreq 
= $1;$recall.recallInterval = "months"; 
$recall.patientId = $careplan.patientId; 

$recall.carePlanCode = $careplan.carePlanCode; 
insert($recall);

Check problemCode decide recall
2469,<180,>=160 940
246A,<110,>=100
246A,>=140,<150
2469,>=90,<110

246A,>=140,<160 940
2469,>=90,<100
246A,>150,<180
2469,>90,<110

940

<80

>=80

HYP_COD_PLAN 6

HYP_COD_PLAN 2

NOT_HYP_COD HYP_COD_PLAN 1

3

>0

>=80

<80

NOT_HYP_COD HYP_COD_PLAN

NOT_HYP_COD HYP_COD_PLAN

>0 6
HYP_COD_PLAN

NOT_HYP_COD HYP_COD_PLAN

HYP_COD_PLAN

HYP_COD_PLAN

HYP_COD_PLAN

HYP_COD_PLAN

NOT_HYP_COD HYP_COD_PLAN

NOT_HYP_COD

CONDITION

$careplan:CarePlan

HYP_COD_PLAN

CONDITION

$careplan:CarePlan

NOT_HYP_COD HYP_COD_PLAN
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A.9 Drools Rules of workload simulation

We presented the classes and their attributes used in our adaptable best practice based workload

prediction model. The following presents the Drools rules that when given the patient data simulate

the workload.
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Rules used in our adaptable best practice based workload prediction model. 

 
//// ------------------------------------SIMULATE THE REAL WORLD SCENARIO --------
-------------------- 
//This rule will extrapolate the l;ast visit to the first recall in the simulation 
period. 
rule "Update recalls that fall before Simulation startdate to a date within the 
simulation period." 
dialect "mvel" 
salience 5000 
 when  
  $t:Today(today==SimulationStartDate) 
  $recall:Recall(recallDate.getTime() < $t.today) 
  exists IndividualRecallDetail(patientId == $recall.patientId) 
  $minrecallInFreq : Number (intValue > 0) from accumulate ($ind : 
IndividualRecallDetail(patientId == $recall.patientId,$recallinfreq:recallInFreq), 
min($recallinfreq)) 
 then 
  long min =  (long)$minrecallInFreq.intValue(); 
  Recall $newrecall = new Recall(); 
  $newrecall.patientId = $recall.patientId; 
  $newrecall.recallInFreq = min; 
  //$newrecall.problemCode = $minindrecall.problemCode; 
  $newrecall.recallDate = 
java.sql.Date.valueOf($recall.recallDate.toLocalDate().plusMonths(min)) 
  insert($newrecall); 
  retract($recall); 
   
end 
 
rule "Recall creation during a patientVisit" 
salience 250 
 when  
  $t:Today() 
  $pv:PatientVisit(dateOfVisit.getTime() == $t.today) 
  exists (IndividualRecallDetail(patientId == $pv.patientId)) 
  $minrecallInFreq : Number (intValue > 0) from accumulate ($ind : 
IndividualRecallDetail(patientId == $pv.patientId,$recallinfreq:recallInFreq), 
min($recallinfreq)) 
   
 then 
  System.out.println("in rule: Recall creation during a 
patientVisit."); 
  System.out.println("Minimum recall in weeks for " + $pv.patientId + 
"is "+$minrecallInFreq.intValue()); 
  long min_freq =  (long)$minrecallInFreq.intValue(); 
   
  Recall $newrecall = new Recall(); 
  $newrecall.patientId = $pv.patientId; 
  $newrecall.recallInFreq = min_freq; 
  $newrecall.recallDate = 
java.sql.Date.valueOf($pv.dateOfVisit.toLocalDate().plusMonths(min_freq)) 
  insert($newrecall); 
  retract($pv); 
end 
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//This rule checks if it is today and there is recall in future that falls on a 
holiday then the recall is pushed to the week after. 
 
rule "Push recalls to next week if recalls falls on a holiday" 
salience 5000 
 when  
  $t:Today() 
  $recalltoday:Recall(recallDate.getTime() > $t.today) 
  not(eval (workingday($recalltoday.recallDate.getTime()))) 
  eval (RecallDecisionParameter == 1) 
 then 
  Recall $newrecall = new Recall(); 
  $newrecall.patientId = $recalltoday.patientId; 
  $newrecall.recallInFreq = $recalltoday.recallInFreq; 
  $newrecall.recallDate = 
java.sql.Date.valueOf($recalltoday.recallDate.toLocalDate().plusDays(2)); 
   retract($recalltoday); 
  insert($newrecall); 
end 
 
//This rule checks if it is today and there is recall in future that falls on a 
holiday then the recall is pushed to the week before. 
rule "Make recalls to previous week if recalls falls on a holiday" 
salience 5000 
 when  
  $t:Today() 
  $recalltoday:Recall(recallDate.getTime() > $t.today) 
  not(eval (workingday($recalltoday.recallDate.getTime()))) 
  eval (RecallDecisionParameter == 2) 
 then 
  Recall $newrecall = new Recall(); 
  $newrecall.patientId = $recalltoday.patientId; 
  $newrecall.recallInFreq = $recalltoday.recallInFreq; 
  $newrecall.recallDate = 
java.sql.Date.valueOf($recalltoday.recallDate.toLocalDate().minusDays(2));  
  retract($recalltoday); 
  insert($newrecall); 
end 
 
//This rule creates patient visits for a recall scheduled for today, which is a 
working day. 
 
rule "If working day today, and recalls are there, then create patient visits." 
salience 5000 
 when 
  $t:Today()  
  $recalltoday:Recall(recallDate.getTime() == $t.today) 
 then 
  PatientVisit $newpv = new PatientVisit(); 
  $newpv.patientId = $recalltoday.patientId; 
  $newpv.dateOfVisit = $recalltoday.recallDate; 
   
end 
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A.10 Preprocessing postgreSQL query

There were shortcomings in the dataset that required the data to undergo some preprocessing. The

following few pages presents the PostgreSQL queries used of this preprocessing. These queries will

have MedTech32 specific data.
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alter table appointments rename to a_appointments 

alter table scripts rename to a_scripts 

 

alter table classifications rename to a_classifications; 

alter table labs rename to a_labs; 

alter table register rename to a_register; 

alter table transactions rename to a_transactions;  

alter table provider rename to a_provider; 

alter table invoices rename to a_invoices; 

alter table ethnicity rename to a_ethnicity; 

alter table antihypertensives_updated rename to 

a_antihypertensives_updated; 

 

 

alter table funded_patients_register rename to 

b_funded_patients_register; 

--Alter table b_funded_patients_register to hold the LTC status. This 

will be set to true if they are in the list of patients who have made an 

LTC appointment. 

Alter table b_funded_patients_register add column is_ltc boolean; 

Alter table b_funded_patients_register add column is_readcoded boolean; 

Alter table b_funded_patients_register add column is_on_care_plan 

boolean; 

Alter table b_funded_patients_register add column is_cohort boolean; 

 

--Level 2 tables. 

 

--C,NC and RX appointments by funded patients; 

drop table if exists b_appointments_c_nc_rx_fp; 

create table b_appointments_c_nc_rx_fp 

as (select distinct 

appt.idno,appt.whenappoint::timestamp::date,appt.prov,appt.duration,tran.

sercode  

 from a_appointments appt,a_transactions tran  

 where sercode in ('C','NC','RX') 

 and appt.idno = tran.idno 

 and appt.whenappoint::timestamp::date = 

tran.whenseen::timestamp::date 

 and appt.idno in (select idno from b_funded_patients_register) 

) 

 

 

--update the is_ltc status of patients who have an ltc appointment. n,cn 

or rx appointments. 

update b_funded_patients_register 

set is_ltc = True 

where idno in ( 

select distinct idno   

from b_appointments_c_nc_rx_fp) 

 

 

--Getting LTC related appointments. 

--Get the rxdates for LTC medications 

--LTC medications are those prescribed at-least three times in the 

previous year OR is associated with T status for rxstatus. 

--We are using first six letters of generic name and drug code to 

uniquely identify a medication, esp antihypertensive. 
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--t_associated_scripts 

drop table if exists b_T_associated_scripts; 

create table b_T_associated_scripts as ( 

select idno,rxdate,drugcode,lower(substr (genericname,1,6)) 

six_genericname  

from a_scripts  

where rxstatus ='T'  

order by idno,rxdate) 

 

 

--sanity check that these T associated medications are prescribed atleast 

three times in the previous year from the date of appointment. --- It 

holds. 

select distinct appt.idno,whenappoint,lower(substr (genericname,1,6)) 

from a_scripts scr, b_appointments_c_nc_rx_fp appt 

where appt.idno = scr.idno 

--and appt.idno = 'F1S099_B521_M042898' --and lower(substr 

(genericname,1,6)) = 'beclom' 

and rxdate::timestamp::date between whenappoint - interval '1 year' and 

whenappoint 

and appt.idno||lower(substr (genericname,1,6)) in (select 

idno||lower(substr (genericname,1,6)) from a_scripts where rxstatus = 

'T') 

group by appt.idno,whenappoint,lower(substr (genericname,1,6)) 

having count(rxdate::timestamp::date)>=3 

 

--number of active medications as on date of appointment.  

--Active medications for the patient are those T-associated medications 

that are prescribed within last 4 months from the date of appointment.  

drop table b_number_active_ltc_medications; 

create table b_number_active_ltc_medications as ( 

select distinct appt.idno,whenappoint::timestamp::date,count(distinct 

lower(substr(genericname,1,6))) no_of_active_ltc_medications 

 from b_appointments_c_nc_rx_fp appt,a_scripts src 

 where src.idno = appt.idno 

 and rxdate::timestamp::date between whenappoint - interval '4 

months' and whenappoint 

 and appt.idno||lower(substr(genericname,1,6)) in (select 

idno||six_genericname  from b_T_associated_scripts) 

 group by appt.idno,whenappoint 

 order by appt.idno,whenappoint) 

 

--potential ltc appointments - those c,nc and rx appointments which have 

an ltc medication prescription within a three week window. 

drop table b_three_window_prescription_consultation; 

create table b_three_window_prescription_consultation as ( 

 select distinct appt.idno,whenappoint, count(distinct 

lower(substr(genericname,1,6))) no_of_ltc_medications_on_appointment 

 from b_appointments_c_nc_rx_fp appt, a_scripts scr 

 where appt.idno = scr.idno 

 and rxdate::timestamp::date between whenappoint-14 and whenappoint 

+ 7 

 and appt.idno||lower(substr(genericname,1,6)) in (select 

idno||six_genericname  from b_T_associated_scripts) 

 --and appt.idno = 'F1S099_B521_M042898' 

 group by appt.idno,whenappoint 

 order by idno,whenappoint 

) 
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--a table to store values to compare count. 

drop table b_med_compare; 

create table b_med_compare as 

( 

select * from b_three_window_prescription_consultation  

left join b_number_active_ltc_medications  

using (idno,whenappoint) 

order by idno 

) 

 

--update the compare values as zero for null values. 

update b_med_compare 

set no_of_active_ltc_medications = 0 

where no_of_active_ltc_medications is null 

 

--table to find those appointments as ltc appointments where there are 

these many number of medications prescribed. 

--if there is no active medication but a medication is prescribed 

drop table b_ltc_appointment_c_nc_idno_date; 

create table b_ltc_appointment_c_nc_idno_date as 

( 

select distinct idno,whenappoint from  

b_med_compare 

where (no_of_ltc_medications_on_appointment = 1 and 

no_of_active_ltc_medications <=1) 

or (no_of_ltc_medications_on_appointment >= 1 and 

no_of_active_ltc_medications =2) 

or (no_of_ltc_medications_on_appointment >= 2 and 

no_of_active_ltc_medications = 3) 

or (no_of_ltc_medications_on_appointment * 2 >= 

no_of_active_ltc_medications and no_of_active_ltc_medications > 3) 

and idno||whenappoint in (select distinct idno||whenappoint from 

b_appointments_c_nc_rx_fp where sercode in ('C','NC')) 

order by idno,whenappoint 

) 

 

 

 

--Get the ltc appointments including those of Rx appointments. 

create table b_ltc_appointments as 

( 

select distinct idno,whenappoint from  

b_med_compare 

where (no_of_ltc_medications_on_appointment = 1 and 

no_of_active_ltc_mediccations <=1) 

or (no_of_ltc_medications_on_appointment >= 1 and 

no_of_active_ltc_mediccations =2) 

or (no_of_ltc_medications_on_appointment >= 2 and 

no_of_active_ltc_mediccations = 3) 

or (no_of_ltc_medications_on_appointment * 2 >= 

no_of_active_ltc_mediccations and no_of_active_ltc_mediccations > 3) 

and idno||whenappoint in (select distinct idno||whenappoint from 

b_appointments_c_nc_rx_fp) 

order by idno,whenappoint 

) 
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--Run the below initialisation steps of Java Program. 

--getCKDlabresults 

--problemClassAssignmentFunction. 

 

--update funded patients register to mark if they are readcoded. 

update b_funded_patients_register 

set is_readcoded = True 

where idno in (select idno from prgm_patients_problemcodes_ltc) 

 

--create table to store readcoded hypertensive patients. 

create table c_hyp_readcoded_patients as 

( 

select distinct idno  

from prgm_patients_problemcodes_ltc 

where problemcode  = 'HYP_COD' 

) 

--readcoded hypertensive patients and count of antihypertensives for 

them. 

drop table c_antihypertensive_count_since_2011_readcoded_hyp; 

create table c_antihypertensive_count_since_2011_readcoded_hyp as ( 

 

select idno,count( distinct lower(substr(genericname,1,6))) 

from a_scripts 

where drugcode in (select drugcode from a_antihypertensives_updated) 

and extract (year from rxdate)>=2011 

and idno in (select distinct idno from c_hyp_readcoded_patients) 

group by idno 

) 

--nonresadcoded hypertensive patients and number of nondiuretic 

antihypertensives they are on. 

drop table c_antihypertensive_count_since_2011_nonreadcoded_hyp; 

create table c_antihypertensive_count_since_2011_nonreadcoded_hyp as ( 

 

select idno,count( distinct lower(substr(genericname,1,6))) 

from a_scripts 

where drugcode in (select drugcode from a_antihypertensives_updated where 

not thergrpdesc = 'Diuretics') 

and extract (year from rxdate)>=2011 

and not idno in (select distinct idno from c_hyp_readcoded_patients) 

group by idno 

) 

 

--create a table to record the careplans applicable to the patients. 

drop table c_care_plans_applicable; 

create table c_care_plans_applicable(idno text,problemcode 

text,latestreadcode text,careplan_code text); 

 

--insert hyp_plan for readcoded hypertensive patients who are on 

antihypertensive and not on diabetic or CKD care plan. 

insert into c_care_plans_applicable(select distinct 

idno,problemcode,latestreadcode, 'HYP_COD_PLAN' from 

prgm_patients_problemcodes_ltc 

where problemcode = 'HYP_COD' 

and idno in (select idno from 

c_antihypertensive_count_since_2011_readcoded_hyp)  

--who are not diabetic 

and idno not in (select idno from prgm_patients_problemcodes_ltc where 

problemcode = 'DM_COD') 
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--who are not with CKD stage identified 

and idno not in (select distinct idno from prgm_patients_problemcodes_ltc 

where problemcode = 'CKD' and not latestreadcode = 'No CKD')); 

 

insert into c_care_plans_applicable ( 

select distinct idno,'NOT_HYP_COD','NO_READCODE','HYP_COD_PLAN' from 

prgm_patients_problemcodes_ltc 

where not problemcode = 'HYP_COD' 

and idno in (select idno from 

c_antihypertensive_count_since_2011_nonreadcoded_hyp)  

--who are not diabetic 

and idno not in (select idno from prgm_patients_problemcodes_ltc where 

problemcode = 'DM_COD') 

--who are not with CKD stage identified 

and idno not in (select idno from prgm_patients_problemcodes_ltc where 

problemcode = 'CKD' and not latestreadcode = 'No CKD')); 

 

--insert the respective care plans based on readcode. Those patients who 

are readcoded to be HYP_COD are not inserted see query above.  

--Patients with CKD and readcoded as No CKD are also not inserted. 

insert into c_care_plans_applicable(select distinct 

idno,problemcode,latestreadcode, problemcode||'_PLAN' from 

prgm_patients_problemcodes_ltc 

where not problemcode = 'HYP_COD' and not problemcode like '%SMOK%') 

 

--update careplan as a general care plan for those latestreadcode is No 

CKD. 

update c_care_plans_applicable 

set careplan_code = 'GENERAL_PLAN'  

where latestreadcode = 'No CKD' 

 

--insert general care plan for those who are not on any care_plan. 

insert into c_care_plans_applicable(select distinct 

idno,'NOT_ON_PLAN','NO_READCODE','GENERAL_PLAN'  

from b_funded_patients_register  

where idno not in (select idno from c_care_plans_applicable) 

and is_ltc = true) 

 

--update b_funded_patients_register with is_on_careplan to true for who 

have an entry in c_care_plans_applicable. 

update b_funded_patients_register 

set is_on_care_plan = True 

where idno in (select distinct idno from c_care_plans_applicable) 

 

 

--Run java prgm to get the individual recall details. 

select distinct idno from prgm_ind_recalls 

 

update b_funded_patients_register 

set is_cohort = True 

where idno in (select idno from prgm_ind_recalls) 

 

update b_funded_patients_register 

set is_cohort = null 

where is_ltc is null 

 

-----Cohort identification 
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select count(distinct idno),careplancode 

from prgm_ind_recalls 

group by careplancode 

 

select idno from ( 

 

select distinct * from prgm_ind_recalls 

where idno in (select idno from prgm_ind_recalls where careplancode in 

('DM_COD_PLAN','CKD_PLAN''GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where not careplancode 

in ('DM_COD_PLAN','GENERAL_PLAN','CKD_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where idno in (select 

idno from prgm_ind_recalls where careplancode = 'GENERAL_PLAN') 

         group by idno having count(distinct 

careplancode)=1) 

and idno in (select distinct idno from b_appointments_c_nc_rx_fp  

where whenappoint between '2014-01-01' and '2014-12-31') 

order by idno) as t1 

 

select distinct idno from ( 

 

select distinct * from prgm_ind_recalls 

where idno in (select idno from prgm_ind_recalls where careplancode in 

('DM_COD_PLAN','GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where not careplancode 

in ('DM_COD_PLAN','GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where idno in (select 

idno from prgm_ind_recalls where careplancode = 'GENERAL_PLAN') 

         group by idno having count(distinct 

careplancode)=1) 

and idno in (select distinct idno from b_appointments_c_nc_rx_fp  

where extract(year from whenappoint)=2014) 

order by idno) as t1 

 

 

select distinct idno from ( 

 

select distinct * from prgm_ind_recalls 

where idno in (select idno from prgm_ind_recalls where careplancode in 

('CKD_PLAN','GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where not careplancode 

in ('CKD_PLAN','GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where idno in (select 

idno from prgm_ind_recalls where careplancode = 'GENERAL_PLAN') 

         group by idno having count(distinct 

careplancode)=1) 

and idno in (select distinct idno from b_appointments_c_nc_rx_fp  

where extract(year from whenappoint)=2014) 

order by idno) as t1 

 

select distinct idno from prgm_ind_recalls 

where idno in (select idno from prgm_ind_recalls where careplancode in 

('HYP_COD_PLAN','GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where not careplancode 

in ('HYP_COD_PLAN','GENERAL_PLAN')) 

and not idno in (select idno from prgm_ind_recalls where idno in (select 

idno from prgm_ind_recalls where careplancode = 'GENERAL_PLAN') 
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         group by idno having count(distinct 

careplancode)=1) 

and idno in (select distinct idno from b_appointments_c_nc_rx_fp  

where extract(year from whenappoint)=2014) 

 

 

select count(idno),extract (week from max(whenappoint)), extract (year 

from whenappoint) 

from b_ltc_appointments 

 

select * from simulated_recalls_11_1_1 

where recallinweeks > 0 

order by idno 

 

select idno from b_funded_patients_register 

where idno not in (select idno from c_care_plans_applicable) 
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A.11 Mapping MedTech32 data to our dataset

A.11.1 The data mapping process

The data mapping process allows for a standardisation to occur from the underlying primary care

system (PCS) to a generic primary care data set (GPCDS). The codes used within the PCS are

converted to Read codes and SNOMED CT ConceptIDs (SCTID). Where there is a numeric value

the numeric value is extracted from the PCS to the GPCDS. When the value contains a text field the

value of the text field is used with the SCNCODE to map to a specific Read code and SCTID. The

Read codes were used for the purposes of this thesis. The addition of the SNOMED CT codes has

been a recent enhancement of the extraction process. For example, if a patient has an SCNCODE (see

table 3 RDB1375 ) of SM and the VALUE1 Column (see table 3 RDB1376) has the text Yes then this

data item is mapped to the Read code 137R which has the Term Description of Smoker. The following

pagespresents tables used for this mapping.
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Table 1 The mapping table used to map from the underlying GP system Measurement table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

READ_CODE_V2 SNOMED CT SCN_CODE COLUMN_VALUE ISNUMERIC VALUE_MAP_CODE CONV_UNIT SI_UNIT MIN MAX PRECISION SCALE ACTIVE 

2469 163030003 BP VALUE1 TRUE NULL mmHg mmHg 0 300 3 0 TRUE 

246A 163031004 BP VALUE2 TRUE NULL mmHg mmHg 0 200 3 0 TRUE 

137R 77176002 DIAP VALUE16 FALSE Yes NULL NULL NULL NULL NULL NULL TRUE 

137F 8517006 DIAP VALUE16 FALSE Past NULL NULL NULL NULL NULL NULL TRUE 

1371 160601007 DIAP VALUE16 FALSE No NULL NULL NULL NULL NULL NULL TRUE 

137R 77176002 SM VALUE1 FALSE Yes NULL NULL NULL NULL NULL NULL TRUE 

137F 8517006 SM VALUE1 FALSE Past NULL NULL NULL NULL NULL NULL TRUE 

1371 160601007 SM VALUE1 FALSE No NULL NULL NULL NULL NULL NULL TRUE 

137F 8517006 SM VALUE1 FALSE Recently quit NULL NULL NULL NULL NULL NULL TRUE 

137R 77176002 SMOKE VALUE1 FALSE Yes NULL NULL NULL NULL NULL NULL TRUE 

137F 8517006 SMOKE VALUE1 FALSE Recently quit NULL NULL NULL NULL NULL NULL TRUE 

1371 160601007 SMOKE VALUE1 FALSE No NULL NULL NULL NULL NULL NULL TRUE 

137F 8517006 SMOKE VALUE1 FALSE Past NULL NULL NULL NULL NULL NULL TRUE 
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Table 2  The Descriptions for the columns in Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column Name Description 

READ_CODE_V2 The data items from the primary care system are mapped to  Read Codes 

SNOMED The data items from the primary care system are mapped to  Snomed CT ConceptIDs (SCTID) 

SCN_CODE Corresponds to the Code within the measurements table within the primary care system 

COLUMN_VALUE The column name which holds the value to be mapped to the Read and SCTID  

ISNUMERIC If the value in the column is expected to be a numeric 

VALUE_MAP_CODE When the value is text, the values used to map to the Read Code or SCTID 

CONV_UNIT The units used in the primary care system 

SI_UNIT The units used when mapped 

MIN The expected minimum numeric value 

MAX The expected maximum numeric value 

PRECISION The expected precision of the numeric value 

SCALE The expected scale of the numeric value 

ACTIVE If the mapping is currently active or not 
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Table 3 The column definitions for the Measurement table within the primary care system 

RDB$FIELD_NAME RDB$FIELD_NAME_1 RDB$FIELD_TYPE RDB$FIELD_SUB_TYPE RDB$NULL_FLAG RDB$FIELD_LENGTH RDB$FIELD_SCALE RDB$CHARACTER_LENGTH 

RDB$1373 PATIENTID 14 0 1 7 0 7 

RDB$1374 WHENMEASURE 35 0 1 8 0 
 

RDB$1375 SCNCODE 37 0 1 6 0 6 

RDB$1376 VALUE1 37 0 
 

32 0 32 

RDB$1377 VALUE2 37 0 
 

32 0 32 

RDB$1378 VALUE3 37 0 
 

32 0 32 

RDB$1379 VALUE4 37 0 
 

32 0 32 

RDB$1380 VALUE5 37 0 
 

32 0 32 

RDB$1381 VALUE6 37 0 
 

32 0 32 

RDB$1382 VALUE7 37 0 
 

32 0 32 

RDB$1383 VALUE8 37 0 
 

32 0 32 

RDB$1384 VALUE9 37 0 
 

32 0 32 

RDB$1385 VALUE10 37 0 
 

32 0 32 

RDB$1386 VALUE11 37 0 
 

32 0 32 

RDB$1387 VALUE12 37 0 
 

32 0 32 

RDB$1388 VALUE13 37 0 
 

32 0 32 

RDB$1389 VALUE14 37 0 
 

32 0 32 

RDB$1390 VALUE15 37 0 
 

32 0 32 

RDB$1391 VALUE16 37 0 
 

32 0 32 

RDB$1392 VALUE17 37 0 
 

32 0 32 

RDB$1393 VALUE18 37 0 
 

32 0 32 

RDB$1394 VALUE19 37 0 
 

32 0 32 

RDB$1395 VALUE20 37 0 
 

32 0 32 

RDB$1396 VALUE21 37 0 
 

32 0 32 
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RDB$1397 VALUE22 37 0 
 

32 0 32 

RDB$1398 VALUE23 37 0 
 

32 0 32 

RDB$1399 VALUE24 37 0 
 

32 0 32 

RDB$1400 VALUE25 37 0 
 

32 0 32 

RDB$1401 VALUE26 37 0 
 

32 0 32 

RDB$1402 VALUE27 37 0 
 

32 0 32 

RDB$1403 VALUE28 37 0 
 

32 0 32 

RDB$1404 VALUE29 37 0 
 

32 0 32 

RDB$1405 VALUE30 37 0 
 

32 0 32 

RDB$1406 VALUE31 37 0 
 

32 0 32 

RDB$1407 VALUE32 37 0 
 

32 0 32 

RDB$1408 VALUE33 37 0 
 

32 0 32 

RDB$1409 VALUE34 37 0 
 

32 0 32 

RDB$1410 VALUE35 37 0 
 

32 0 32 

RDB$1411 VALUE36 37 0 
 

32 0 32 

RDB$1412 NOTE 37 0 
 

128 0 128 

RDB$1413 SCNOUTCOME 37 0 
 

4 0 4 

RDB$1414 SERPROVCODE 37 0 1 4 0 4 

RDB$1415 SCNGROUP 37 0 1 4 0 4 

RDB$1416 ROWINSERTWHEN 35 0 1 8 0 
 

RDB$1417 ROWINSERTSTAFF 37 0 1 4 0 4 

RDB$1418 ROWINSERTCOMPUTER 37 0 1 15 0 15 

RDB$1419 ROWINSERTLOCATION 14 0 1 1 0 1 

RDB$1420 ROWEDITWHEN 35 0 1 8 0 
 

RDB$1421 ROWEDITSTAFF 37 0 1 4 0 4 

RDB$1422 ROWEDITCOMPUTER 37 0 1 15 0 15 

RDB$1423 ROWEDITLOCATION 14 0 1 1 0 1 

RDB$1424 ROWINACTIVE 7 0 1 2 0 
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A.11.2 The mapping process for laboratory results

The data mapping process allows for a standardisation to occur from the underlying primary care

system (PCS) to a generic primary care data set (GPCDS). There is no agreed single coding standard

for laboratory results in New Zealand. Within the PCS the returning laboratory results from the

laboratory systems are stored within two tables the INBOX and the INLINE table. The PCS converts

the content of the returned laboratory result blob field held in the inbox table into atomised data into

the INLINE table. There are three columns that have to be used to uniquely identify the laboratory

results. The constructed LABKEY from these three columns is used to map to Read codes and

SNOMED CT. The Read codes were utilised for the purposes of this thesis. The addition of the

SNOMED CT codes has been a recent enhancement of the extraction process. For example To map all

the serum creatinine results from the PCS. There are six historic laboratory providers. One laboratory

provider changed the laboratory result description (PROMPT) from CREATININE to CREATININE

(SERUM). All seven combinations (Table 4) are mapped to: 44J3 Creatinine measurement, serum

(procedure) 113075003
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Table 4 The mapping of the laboratory test serum Creatinine 

LABKEY txtResultCode READ_CODE_V2 SNOMED CT MIN MAX PRECISION SCALE ISNUMERIC ACTIVE 

HTHOTAGO$SQ$SERUM CREATININE SQ 44J3 113075003 0.01 9999.99 7 3 1 1 

LABRESULT$cr$CREATININE cr 44J3 113075003 0.01 9999.99 7 3 1 1 

M.P.S$CREA$CREATININE CREA 44J3 113075003 0.01 9999.99 7 3 1 1 

M.P.S$CREA$CREATININE (SERUM) CREA 44J3 113075003 0.01 9999.99 7 3 1 1 

MEDLAB$94$CREATININE 94 44J3 113075003 0.01 9999.99 7 3 1 1 

MEDSOUTH$cr$CREATININE cr 44J3 113075003 0.01 9999.99 7 3 1 1 

SCL$cr$CREATININE cr 44J3 113075003 0.01 9999.99 7 3 1 1 

 

 

The following SQL exert was used to extract the data from the underlying PCS table 

SELECT  ...  WHENRECEIVED AS CCIT_ENTRY_DATE, UPPER(ANYINBOX.EXTERNAPP)||'$'||RESULTCODE||'$'||UPPER(PROMPT) LABKEY, RESULTCODE, 

RESULT, PROMPT, ABNORM STATUS, ANYINBOX.SERPROVCODE FROM INLINE LEFT OUTER JOIN INBOX ANYINBOX ON (ANYINBOX.PATIENTID = 

INLINE.PATIENTID AND INLINE.WHENRECEIVED = ANYINBOX.WHENRECEIVED)  LEFT OUTER JOIN PATIENT ANYBODYPAT ON (INLINE.PATIENTID = 

ANYBODYPAT.PATIENTID) LEFT OUTER JOIN ANYBODY ANYBODYANY ON (INLINE.PATIENTID = ANYBODYANY.ANYBODYID) WHERE   INLINE.RESULT <> '' AND 

RESULTCODE IN ... 

 

All the laboratory results used within the mapping /extraction process used the same methodology. 
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A.12 Our PyMC3 Bayesian Inference Model

The following presents implementation of our Bayesian inference model using the PyMC3 Python

library.
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In [1]: import matplotlib.pyplot as plt 
import csv 
import pandas as pd 
import numpy as np 
import pymc3 as pm 
import scipy.stats as stats 
import theano.tensor as T 
import random 

from pandas import DataFrame 
from collections import defaultdict 

from pymc3 import DiscreteUniform, HalfStudentT, sample, Model, Deterministic,
DensityDist 
from pymc3 import find_MAP 
from pymc3 import traceplot 
from pymc3.math import minimum 

from scipy.stats import binom 

#Load the observed data for one patient for now. 
#This data represents (startdate - visitdate)mod 90 that the patient has visit
ed in the past. 
df_visit_period = pd.read_csv('C:\\My_working_data\\DataAnalysisfromDB\\Bayesi
an\\bayesian_data_june_13.csv') 
df_visit_period.head() 

Out[1]:
idno whenappoint minrecallperiod mod_no_days

0 F1S099_B521_M000000 2012-06-22 6 63

1 F1S099_B521_M000000 2013-04-24 6 9

2 F1S099_B521_M042898 2010-12-10 6 43

3 F1S099_B521_M042898 2011-05-02 6 6

4 F1S099_B521_M042898 2012-06-14 6 55

255



In [ ]: storevalue =[] 

for i in range (0, len(observed_data)): 
    
   minrecallperiod = observed_data.index.tolist()[i][1] 
   modwith = 30 * minrecallperiod 
   patid = observed_data.index.tolist()[i][0] 

   print "modwith = {} ".format(modwith) 

   with Model() as my_model_learn_3_monthly: 

       #List of (start_date - whenappoint) mod 90 for a patient. 

       observed_data_for_a_patient = observed_data[i] 

       alpha = HalfStudentT('alpha',lam =0.04, nu =3) 

       n = 125 
       medsRunOut = DiscreteUniform('medsRunOut',lower = 0, upper = (n * modw

ith)- 1) 
       medsRunOutmod = Deterministic('medsRunOutmod', medsRunOut%modwith) 

       def distance_between(x,y): 

           x_y_minus = x-(y-modwith) 
           x_y = x-y 
           x_y_plus = x-(y+modwith) 

           skew_factor = 5 
           value1 = (skew_factor**T.sgn(x_y_minus))* (x_y_minus**2) 
           value2 = (skew_factor**T.sgn(x_y))* (x_y**2) 
           value3 = (skew_factor**T.sgn(x_y_plus))*(x_y_plus**2) 
          
           min_val_1 = T.switch(T.le(value1,value2),value1,value2) 
           min_val = T.switch(T.le(min_val_1,value3),min_val_1,value3) 
           
           return min_val 

       def mylogp(value): 
           return_value = -alpha * distance_between(value, medsRunOutmod) 
           return return_value 

       PatientVisit = DensityDist('PatientVisit', mylogp, observed = observed
_data_for_a_patient) 

       with my_model_learn_3_monthly: 
           trace = sample(10000) 

       trace_df = pm.backends.tracetab.trace_to_dataframe(trace) 
       def mode(data): 
           lst =[] 
           hgh=0 
           for i in range(len(data)): 
               lst.append(data.count(data[i])) 
           m = max(lst) 
           ml = [x for x in data if data.count(x)==m ] #to find most frequent
values 
           mode = [] 
           for x in ml: #to remove duplicates of mode 
               if x not in mode: 
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                   mode.append(x) 
           print type(mode) 
           return mode 
   
       mode_mromodes = mode(pd.Series.tolist(trace_df['medsRunOutmod'])) 
     
       #if(len(mode_mromodes) > 1): 
           #print "multiple modes here" 
       mode_used = random.sample(mode_mromodes,1) 
        
       mod_mro_index= trace_df.index[trace_df['medsRunOutmod'] == mode_used[0

]].tolist() 

       alpha_values = trace_df.loc[mod_mro_index] 

       #get the hpd values of the corresponding alphs values. 

       result_alpha_hpd = pm.stats.hpd(np.asarray(alpha_values ['alpha']), al
pha=0.95) 

       #get the corresponding alpha central value 

       central_alpha = (result_alpha_hpd[0] + result_alpha_hpd[1])/2 

       print "central_alpha = {} ".format(central_alpha) 

       #append to the values as needed to write to csv file 

       storevalue.append([patid,minrecallperiod,observed_data_for_a_patient,m
ode_used[0],central_alpha]) 

In [5]: with open("C:\\My_working_data\\DataAnalysisfromDB\\Bayesian\\bayesian_output_
june_13.csv", "wb") as f: 
   writer = csv.writer(f) 
   writer.writerows(storevalue) 
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A.13 Bayesian probability calculation for each pa-

tient

For each patient, the posterior probability for medsRunOutmod and alpha is learned, nad then we

chose mode of medsRunOut and alpha for each patient. We then use this medaRunOut and alpha to

calculate the probability of visiting on each day in the interval period. The function below shows the

function that calculates this probability.

Listing A.2: Java function that calculates the probability corresponding to each day in

the recall-period interval.

1 private static double [] get_probability(int medsRunOut , double

alpha , int rp) {

2 int dm = 30*rp;

3 double [] probabilities = new double[dm];

4 for(int j=0;j<(dm);j++){

5 double log_prob = -alpha * distance_between(j,

medsRunOut ,rp);

6 probabilities[j] = Math.exp(log_prob);

7 }

8 return probabilities;

9 }

10

11 private static double distance_between(int x, int mro , int rp)

{

12 // TODO Auto -generated method stub

13 /*

14 * If we do not use the minimum of three distances ,

there is higher probability for all the days

15 * and also if the mro happens to be say 1, then the

probabilities towards 89 is zero , which may not be

the case.

16 * If we do not use the minimum of three distances ,

there is higher probability for all the days

17 * and also if the mro happens to be say 1, then the

probabilities towards 89 is zero , which may not be

the case.

18 * We set rp =3 when we need to choose 90-day cycle and

rp = least recall period when using their recall
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period interval to decide their next recall.

19 */

20 int modwith = 30*rp;

21 int skew_factor = 5;

22 int dist_minus = x-(mro -modwith);

23 int dist = x-mro;

24 int dist_plus = x-(mro+modwith);

25

26 int sign_minus = (int) Math.signum(dist_minus);

27 int sign = (int) Math.signum(dist);

28 int sign_plus = (int) Math.signum(dist_plus);

29

30 double dis_minus = Math.pow(skew_factor , sign_minus) *

Math.pow(dist_minus , 2);

31 double dis = Math.pow(skew_factor , sign) * Math.pow(

dist , 2);

32 double dis_plus = Math.pow(skew_factor , sign_plus) *

Math.pow(dist_plus , 2);

33 double smallest = Math.min(dis_minus , Math.min(dis ,

dis_plus));

34 return smallest;

35 }
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