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Abstract 

Aviation accident reports indicate that preventable incidents are developing into 

tragedies with pilots responding incorrectly to well-trained events e.g. engine failures. Recent 

research suggests that startle (an autonomic response to an acute stimulus with a sudden 

onset), following unexpected abnormal flight events is impacting pilot performance, leading 

to accidents. The present study was designed to investigate whether a simulated unexpected 

abnormal flight event can lead to startle. Information processing and performance differences 

between expected and unexpected flight events were also measured. Furthermore, the 

influence of expertise on arousal, information processing and performance in these events 

was investigated. Two studies were conducted. The first study employed university students 

recruited through the University of Otago Psychology Database. The second study employed 

general aviation pilots recruited through social media advertising. Students and pilots flew a 

series of flights in a fixed-base flight simulator including four experimental flights which 

included an unexpected or an expected, engine failure or aerodynamic stall. During the 

flights, heart rate, eye-tracking, and flight data were recorded. Increased heart rate and larger 

pupil dilation during the unexpected engine failure indicated the presence of startle in pilots. 

During the unexpected engine failure pilots showed a disrupted information processing 

strategy that indicated attentional tunnelling. Whereas, during the unexpected stall the 

information processing patterns indicated lack of recognition. During the unexpected events 

performance was impaired when compared to the expected events. However, poor 

performance was not associated with higher levels of arousal. In a third comparative study, 

data from novice (university students), intermediate (student and private licenced) and expert 

(commercial licenced) pilots were compared to investigate the effects of expertise. 

Information processing, arousal, and performance did not differ significantly over the three 
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levels of expertise. This research supports a recently formulated theory on startle and surprise 

and has implications for successful training. 
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Chapter 1: Introduction and Literature Review 

 “Aviation in itself is not inherently dangerous. But to an even greater degree than the 

sea, it is terribly unforgiving of any carelessness, incapacity or neglect”. 

— Captain A. G. Lamplugh circa 1930s. 

Stress and Emergency Situations 

The influence of stress during emergency situations on human behaviour and 

performance has been of interest throughout the history of psychology, particularly for 

governmental agencies and the military (Bourne Jr & Yaroush, 2003; Driskell & Salas, 2013; 

Lazarus, Deese, & Osler, 1952; Staal, 2004). Today’s modern world contains vastly complex 

and highly technological systems throughout industries such as aviation, maritime, 

petroleum, mining, rail, and nuclear. These systems are now more complex than ever before, 

for example, the Airbus A380 planes can now carry more than 800 passengers, and modern 

oil tankers can now get up to 1000 feet long. Emergency events can occur suddenly and 

unexpectedly, and fast, accurate decisions are needed from human operators who are 

commonly under extreme stress (Driskell & Salas, 2013; Proctor & Van Zandt, 2018; 

Woodson, Tillman, & Tillman, 1992). Due to the complexity of the systems, errors made, can 

lead to instant and destructive consequences, therefore research into the impact of stress on 

performance is of great importance. 

Driskell and Salas (2013) defined stress as “A process by which certain environmental 

demands evoke an appraisal process in which perceived demand exceeds resources, and 

results in undesirable physiological, psychological, behavioural, or social outcomes” (p.6). 

Acute stress was defined as an affect which is “sudden, novel, intense and of relatively short 

duration, disrupts goal-oriented behaviour, and requires a proximate response” (Driskell & 

Salas, 2013, p.6). Startle or surprise can lead to acute stress in complex systems e.g. abnormal 

flight events (Landman, Groen, van Paassen, Bronkhorst, & Mulder, 2017a). The presence 
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and effects of startle due to unexpected abnormal flight events in general aviation is the focus 

of this present study. 

Stress and Performance 

The function of stress is to recruit and allocate mental resources to enable an 

individual to respond optimally in demanding situations (Landman et al., 2017a). However, 

previous research on the effects of psychological stress on behaviour shows that aspects of 

stress (e.g. impaired top down performance, changes in attentional control, physiological 

arousal, and performance rigidity) can be detrimental to performance (Dismukes, Goldsmith, 

& Kochan, 2015; Eysenck, Payne, & Derakshan, 2005; Landman et al., 2017a; Wickens, 

Stokes, Barnett, & Hyman, 1993). Early research has focused on simple motor and perception 

tasks. These investigations have consistently shown that stressful conditions degrade 

performance (Bourne Jr & Yaroush, 2003; Jensen, 1995; Staal, 2004). More recent findings 

show that higher order cognitive processes tend to be more sensitive to psychological stress 

in comparison to simple perceptual motor skills (Bourne Jr & Yaroush, 2003; Staal, 2004). 

Kivimäki and Lusa (1994) found a negative relationship between stress and controlled task-

focused thinking, when investigating fire fighter’s performance and cognitive functioning 

under severe stress. Consistent with this finding, stress has been shown to cause a failure to 

think beyond prescribed procedures, and reduce problem solving capacities during complex 

or ambiguous situations (Broadbent, 1971). Training that improved cognitive processing 

during stressful situations has been found to be the most helpful, leading to the least degraded 

performance in stressful operations (Kivimäki & Lusa, 1994). In summary, whilst the 

cognitive impact of stress impairs performance, training targeting processing during stressful 

situations can mediate this problem to some extent.  

Stressful and threatening stimuli have been found to monopolize attentional resources 

when they are perceived (Staal, 2004). Therefore, stress can lead to a reduction in peripheral 
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cue utilisation and narrowing of the attentional field (Baddeley, 1972; Combs & Taylor, 

1952; Easterbrook, 1959; Staal, 2004). Stimuli that are perceived as salient or important by 

an individual, generally receive preferential attentional processing (Staal, 2004). Stressful and 

threatening stimuli tend to be perceived as salient and important and therefore monopolise 

more attentional resources (Staal, 2004). Concordant with this, Combs and Taylor (1952) 

found that when translating sentences into code, participants took longer when the sentences 

contained threats. Furthermore, military and open sea diving research shows that with 

increasing amount of danger, stress leads to attentional narrowing and a decrement in 

performance (Baddeley, 1972). This can sometimes be exacerbated to the point where 

individuals will completely abandon operation of the control systems (Baddeley, 1972). 

Expertise has been shown to mediate this effect (Baddeley, 1972). Stress can also cause 

attentional processing to become disordered due to unusually high levels of arousal and 

vigilance (Staal, 2004). This condition often results in an indiscriminate search, fast 

disordered attentional shifting, and a reduction in the number and quality of other courses of 

action considered (Staal, 2004). Streufert and Streufert (1981) reported that with increased 

stress due to time pressure participants made faster decisions. As well as this, there was a 

decrease in information utilisation and search behaviour with the increased stress caused by 

time pressure (Streufert & Streufert, 1981). This research concluded that stress affects 

performance by impacting an individual’s breadth of attention and ability to logically and 

calmly process information. 

Working memory refers to the mental ability of temporarily retaining, updating and 

manipulating information (Baddeley, 2003; Jiang & Rau, 2017). Working memory is thought 

to be the basis of crucial cognitive processes including planning, logical thinking, and 

problem solving (Porcelli et al., 2008). Research shows that different stressors, e.g. noise, 

social stress, or time pressure impair the ability to perform working memory tasks, and 
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reduces the working memory capacity (Gomes, Martinho Pimenta, & Castelo Branco, 1999; 

Jiang & Rau, 2017; Staal, 2004; Wickens et al., 1993). For example, Recently Jiang and Rau 

(2017) found that the Trier social stress test (public speaking and mental arithmetic in front of 

an audience) increased response time on an n-back task. However, Duncko, Johnson, 

Merikangas, and Grillon (2009) found that in response to a cold pressor test, participants had 

a reduced reaction time, even in trials with greater cognitive load. However, they also found 

that those in the cold pressor condition tended to show higher number of false recognitions in 

target absent trials, but no such trend was found in target present trials. The authors suggest 

that target absent trials represent a slightly higher cognitive challenge than target present 

trials (Duncko et al., 2009). This improvement in reaction time could be helpful in stressful 

and threatening situations if it’s produced by faster information processing (Duncko et al., 

2009). However, the authors noted that these findings may have only occurred because the 

cold pressor task did not increase salivary cortisol level and therefore may not be causing a 

high level of stress (Duncko et al., 2009). Therefore, stress has been shown to significantly 

affect working memory processes which underlie complex tasks. However, whether the effect 

is detrimental or beneficial may depend on the task. 

Decision making refers to the cognitive process of choosing a particular course of 

action, strategy, or belief among other options on the basis of their subjective value (Vaidya 

& Fellows, 2017). Decision making underlies flexible and goal-orientated behaviour (Vaidya 

& Fellows, 2017). Research has shown that stress can impair decision making (Lehner, 

Seyed-Solorforough, Connor, Sak, & Mullin, 1997; Staal, 2004; Streufert & Streufert, 1981; 

Wickens et al., 1993). Stress tends to cause decision making to become more rigid, where 

fewer options are considered or processed (Broadbent, 1971; Staal, 2004; Streufert & 

Streufert, 1981). Lehner et al. (1997) investigated control team decision making under stress. 

They found that with increasing time stress, teams used more familiar but less effective 
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decision making strategies than they were trained to use (Lehner et al., 1997). Wickens et al. 

(1993) investigated the idea that anxiety provoking situations may negatively influence the 

quality of aviation pilot decision making. Wickens et al. (1993) found that various stressors 

(noise, time pressure, financial risk) impaired pilot decision making and optimality in a 

microcomputer-based simulation of pilot decision tasks when compared to a non-stressed 

group. These pilot decision tasks varied in spatial processing, working memory processing, 

and knowledge. In summary it is well accepted that stress can impair cognitive abilities such 

as attention, memory and decision making, and this can affect performance on both basic and 

higher order tasks e.g. aviation pilot performance. 

The Startle Response and Performance 

In the early 20th century there was a need to expand the number of aviators in America 

due to the impending war. For recruitment purposes, the council of the American 

Psychological Association established a Committee on Psychological Problems of Aviation 

which developed a battery of 10 psychological tests predicting performance in flight training. 

The best predictors of good performance were emotional stability, perception of tilt, and 

mental alertness (Koonce, 1984). Emotional stability referred to a test of an individual’s 

response to sudden excitation, typically from a loud noise (Koonce, 1984). This kind of 

testing has been phased out, however the startle reflex appears to be a major contributor to 

pilot malfunction in modern abnormal flight events (Landman et al., 2017a; Li, Baker, 

Grabowski, & Rebok, 2001; Rivera, Talone, Boesser, Jentsch, & Yeh, 2014). 

The startle reflex is an autonomic response to an unexpected auditory, visual, or 

tactile stimulus with an abrupt onset (Davis, 1984). The physical reflexive startle response 

begins with muscle contractions (eye-blinks, head ducks, and crouched shoulders) followed 

by a quick movement away from the stimulus (Davis, 1984; Rivera et al., 2014). The startle 

response includes the startle reflex as well as emotional and cognitive responses where 
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attentional resources are oriented towards the startling stimulus, (Davis, 1984). Research on 

fear conditioning has shown that when startle occurs in the presence of perceived threat the 

response can become exacerbated leading to what is known as fear potentiated startle 

(Bradley, Moulder, & Lang, 2005; Eysenck et al., 2005). This refers to when startle initiates a 

sympathetic nervous system ‘fight or flight’ response, including changes in blood pressure, 

increased heart rate (tachycardia), as well as neuroendocrine hormone release (LeDoux, 

2003). Fear potentiated startle has also been found to be related to heart bradycardia, which is 

associated with the defensive mechanism of freezing (Bradley, Moulder, Lang, 2005).   

Startle and surprise in a complex system can lead to acute stress (Landman et al., 

2017a). Acute stress is when an individual appraises the situation to be threatening, taxing or 

exceeding ones resources (Landman et al., 2017a; Staal, 2004). Similar to other stress types, 

research shows that stress from startle can impair information processing (Eysenck et al., 

2005; Thackray & Touchstone, 1983), as well as reduce working memory capacity (Bradley 

et al., 2005). Restriction of cue sampling and a narrowing of perceptive field (also known as 

tunnel vision) also occurs during startle which can lead to decisional errors (Driskell & Salas, 

2013; May & Rice, 1971; Staal, 2004).  

Early research investigated the impact of startle on simple perceptual motor tasks. 

May and Rice (1971) found that startle due to a loud pistol shot disrupted performance on a 

simple motor task (time required to press a button) and increased response time. Sternbach 

(1960) showed that individuals with a larger physiological startle reaction to an unexpected 

pistol shot had slower reaction times. Carlsen et al. (2008) investigated the effects of startle 

caused by a loud noise on a simple go or no go task (pressing or not pressing a button 

depending on colour shown). Pre-motor response time was similar in the startle and non-

startle trials, however participants made more errors in the startle trials. This research 
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provides evidence that startle can negatively impact ongoing cortical processes during simple 

tasks.  

The research into the impact of surprise and startle on performance has shown 

variable findings. Research has shown that response impairment for simple reactions after 

startling stimuli is around 1-3 seconds (Thackray, 1965; Thackray & Touchstone, 1983). 

Whereas when the task is more complex and requires continuous psychomotor control, startle 

has been shown to cause maximum disruption during the first 3 seconds, however the 

disruption continued for another 10 seconds following the stimulus (May & Rice, 1971; 

Thackray & Touchstone, 1970). Other research suggests that after a startling stimulus 

information processing can be impaired for up to 60 seconds (Thackray, 1988; Thackray & 

Touchstone, 1970; Vlasak, 1969; Woodhead, 1969). Vlasak (1969) found that following 

startle, participants were impaired on a mental subtraction task for the first 30 seconds. 

Woodhead (1969) observed that on a continuous symbol matching task, there were 

decrements in performance ranging from 17-31 seconds after startle induced by a loud 

reproduced sonic bang (Woodhead, 1969). Additionally, when participants respond after a 

startling stimulus, a larger range of response times are found (Thackray, 1965; Thackray & 

Touchstone, 1983). Thackray (1988) also observed that response times were generally 

unaffected by startle however more incorrect responses were made in the startle group 

compared to the non-startle group, representing information processing errors. In conclusion, 

startle appears to negatively impact information processing for differing amounts of time. 

This appears to be dependent on the task, with complex tasks being more disrupted compared 

to simple perceptual motor tasks.  

Research into Stress, Startle and Pilot Performance 

Pilots practice abnormal flight events in training which are unlikely to occur but are 

important to be prepared for (Casner, Geven, & Williams, 2012). These abnormal events 
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include aerodynamic stalls, engine failures, and hazardous weather encounters (Casner et al., 

2012). Standard operating procedures are devised by airline companies to teach uniform 

responses to abnormal emergency aviation events and pilots practice these thoroughly 

(Casner et al., 2012). However, training for abnormal flight events may not always be 

effective. America’s National Transportation Safety Board (NTSB) aviation accident reports 

reveal that pilots are sometimes responding inappropriately to what should be well-practiced 

emergency events (NTSB; 1995, 2004, 2010a, 2010b). For example; on July 13, 2003 Air 

Sunshine Flight 527 ditched into the Atlantic Ocean just 7.35 nautical miles from an airport in 

the Bahamas; two passengers died from their injuries. The cause of the crash was an in-flight 

failure of the right engine and the pilot’s failure to manage the airplane’s performance after 

the engine failed. The pilot had 8000 total flying hours and engine failures are extensively 

practiced abnormal events (NTSB, 2004). Additionally it has been shown that pilots have 

trouble recovering from aerodynamic stalls when they have not reviewed the recovery 

procedures immediately beforehand (Ledegang & Groen, 2015). Incidents such as the Air 

Sunshine Flight are too common and suggest some shortcomings in the pilot training 

paradigm for abnormal flight events. Concordant with this faulty pilot judgement is accepted 

as a leading cause of pilot accidents (Jensen, 1995; Landman et al., 2017a; Li et al., 2001; 

Rivera et al., 2014; Wickens et al., 1993).  Accident reports such as this have stimulated 

research into stress and pilot performance. 

Research at the Aviation Psychology Program of the Army Air Force in 1947 

investigated the use of stress as a psychometric device for personnel selection. Specifically 

they looked at the effect of verbal threat and distraction on performance on various 

psychomotor tasks such as steadiness and aiming (Melton, 1947). Stress produced a small 

decrement in performance, which was worse when the stress test occurred first in the battery 

(Melton, 1947). The Federal Aviation Association (FAA) has stated that in high stress 



9 

situations such as emergency events, pilot information scan can be severely reduced even to 

the point that a pilot is only focusing on one instrument (FAA, 1988). Thus, there needs to be 

an increase in the focus of developing the training systems to promote better acquisition of 

complex skills and emergency situation stress resilience i.e. generalisability to a wider range 

of emergency conditions (Casner et al., 2012; Salas, Bowers, & Rhodenizer, 1998).  

Emergency situations are considered to be dynamic as each reaction and decision 

made by the responder will directly influence the resulting situation and following sequence 

of events (Bourne Jr & Yaroush, 2003). Emergencies are generally dependent on time, are 

complex, and can be stressful due to creating intense psychological demands on responders 

(Bourne Jr & Yaroush, 2003). There is evidence that impaired pilot performance in many 

incidents and accidents is due to the development of fear potentiated startle in response to an 

abnormal event (Bürki-Cohen, 2010; Green, 1985; Landman et al., 2017a; Landman, Groen, 

Van Paassen, Bronkhorst, & Mulder, 2017b; Martin, Murray, Bates, & Lee, 2015; Martin, 

Bates, & Murray, 2010; Martin, Murray, Bates, & Lee, 2016; Rivera et al., 2014). Concordant 

with this, there is evidence that impaired cognitive processing following startle causes the 

pilot to forget the proper standard operating procedures and aerodynamic theory applicable to 

the situation (Bürki-Cohen, 2010). Recent research has explored the effect of startle and 

surprise on pilot performance. Results show that there are detriments to the pilot’s ability and 

response time to apply standard operating procedures during startling stimuli and unexpected 

events (Casner et al., 2012; Martin et al., 2016; Schroeder, Burki-Cohen, Shikany, Gingras, & 

Desrochers, 2014).  

Startle and the subsequent cognitive impairment has been documented as a factor in 

reported pilot malfunction during an emergency (Martin et al., 2016; Rivera et al., 2014).  

Rivera et al. (2014) analysed incident and accident reports in the Aviation Safety Reporting 

System (ASRS) from 1994 to 2013. They found 902 reports of surprise and 134 reports of 
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startle. Surprise has a cognitive-emotional response to a stimulus which is similar to startle, 

however it can also be elicited due to the absence of an expected stimulus (Rivera et al., 

2014). The analysed reports only included startle and surprise in reference to flight crew 

behaviour, excluding flight attendants, passengers or mechanics (Rivera et al., 2014). Of the 

incidents encoding startle, 37% involved high intensity stimuli which interrupted an ongoing 

task or elicited a protective reaction (e.g. ducking). All of the 902 surprise incidents were 

consistent with the definition of surprise. The majority of the incidents included an 

unexpected event or the absence of an expected event (Rivera et al., 2014). 

 ASRS reports are voluntary therefore many incidents are likely to go unreported. 

Thus startle and surprise are likely to be more prevalent in actual operations than the statistics 

reported by Rivera et al. (2014). Rivera and colleagues’ (2014) analysis suggests that startle 

can be distracting, and interruptive, negatively impacting on the safety of flight deck 

operations. Green (1985) investigated the relationship between pilot error and aviation 

crashes and three types of stressors that pilots commonly encounter; environmental, acute 

reactive, and life events. Reviews of experiments, surveys, and accident and incident reports, 

showed that acute reactive stress is a factor in many accidents (Green, 1985). Pilots that dealt 

well with acute stress attributed their performance to simulation training (Green, 1985). It 

appears imperative to prepare pilots for unexpected, unusual and distracting events to 

enhance their ability to recover from them.  

Pilots that have failed to recognize relevant cues to a developing situation and are 

surprised by an emergency event occasionally yield to an instinctual reflex to increase their 

distance to the ground by pulling back on the control column stick (Bürki-Cohen, 2010). The 

Colgan Air flight 3407 crashed into a house killing 50 people following a stall on an 

instrument landing approach (NTSB, 2010a). The Captain had a total of 3379 total flight 

hours and the first officer had 2244 total hours (NTSB, 2010a). A stall on approach is an 
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emergency event that is routinely practiced by pilots; the first officer on Air Colgan flight 

3407 had performed between 600-1000 approach-to-stall recoveries (NTSB, 2010a). The 

proper stall recovery is to lower the nose and apply full power, however when the aircraft 

warned the captain of the impending stall the captain responded by pulling back on the 

control column stick, and increasing power to only 75% (NTSB, 2010a). The reaction of the 

captain of flight 3407 is consistent with an instinctive reflex following startle. Loss of control 

includes significant, unintended departure of the aircraft from controlled flight, the 

operational flight envelope, or usual flight attitudes, including ground events (Jacobson, 

2010). Loss of control incidents such as the Air Colgan tragedy are one of the leading causes 

of fatalities in the worldwide commercial jet fleet (Advani, Schroeder, & Burks, 2010; 

Belcastro & Foster, 2010).  Although commercial aviation is overall incredibly safe with very 

few such events, accidents do sometimes occur. Thus, inappropriate responses due to startle 

may increase the probability of a negative outcome following an inflight abnormal incident. 

Martin et al. (2016) investigated the effects of a startling stimulus on flight 

performance. They tested pilots on a simulated task involving two hand-flown instrument 

landing system approaches where the weather was such that a missed approach would be 

required on reaching the decision altitude. On the first approach, there was a startling 

stimulus in the form of a cargo fire bell and then an immediate loud bang. Following the first 

missed approach the pilots were vectored for a second approach. The second approach did not 

use a startling stimulus; the pilots were required to commence a standard missed approach 

when they failed to become visual at the minimum altitude required to allow pilots to land on 

a runway. Height loss during this second missed approach was compared to the height loss of 

the missed approach following the startle. Martin et al.’s (2016) results indicated that when a 

startling stimulus immediately preceded a decision-making event, the performance of one-

third of the pilots was impaired. The results also indicate that the responses and recovery 
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from startle showed individual variation; some pilots were only slightly affected and 

recovered quickly, while others were badly affected and took some time to recover. 

Experience (total number of flying hours and time on aircraft type), and age did not correlate 

with post-startle performance.  It was concluded that the disruption in flying performance and 

response to abnormal flight events is likely due to startle.  

Martin et al.’s (2016) research is one of the very few empirical investigators of the 

effect of startle on pilot performance in abnormal events. However, there is no evidence 

presented that shows that the cargo fire bell produced a startle reaction from the pilots. Startle 

leads to a number of physiological reactions, such as tachycardia, bradycardia, changes in 

skin conductance, eyeblink, and pupil dilation (Rivera et al., 2014), however none of these 

were measured in Martin et al.’s (2016) study. It is possible that the cargo fire bell sounding 

distracted the pilots. Distraction is known to cause impairments in flight performance (Barnes 

& Monan, 1990). Another possibility is that the cargo fire bell may have confused the pilots 

as there was no cargo fire to deal with, therefore, the bell was simply an extraneous sound 

and false alarm, and such confusion could have also led to the impaired performance. 

Therefore, an improvement on this study would be to have a physiological measure to 

provide evidence that startle occurred. 

Recently, Landman et al. (2017b) investigated the performance of airline pilots during 

expected versus unexpected stall events. In the unexpected condition pilots were misled and 

distracted by the experimenter by being asked to focus on irrelevant controls, and asked to 

give a rating on a sickness scale, before the unexpected event. Likert scales, heartbeat interval 

durations, and galvanic skin response indicated that pilots were surprised by the unexpected 

aerodynamic stall. Surprise negatively impacted on their stall recovery, with only three 

quarters of the pilots successfully adhering to the standard recovery procedure. In the surprise 

condition mental workload was increased. However, pilots were able to recover without 
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major altitude loss or overspeed indicating that performance was adequate. Although Martin 

et al. (2015) have suggested the use of distraction to help induce startle, that pilots were 

highly distracted before the event in Landman et al.’s (2017b) study, will confound the effect 

of startle and distraction on performance. Therefore it cannot be concluded that startle caused 

the response impairments, as it would be equally as likely to have been caused by the 

distraction. 

Lack of variation in the presentation of abnormal fight events during training may not 

be providing pilots with generalizable skills. Casner et al. (2012) investigated the 

effectiveness of airline pilot training for abnormal events. They sought to establish whether 

routine simulation training teaches pilots skills that generalise to novel abnormal events. 

They tested eighteen pilots (nine captains and nine first officers) on three abnormal events: 

aerodynamic stall, low level wind shear, and engine failure on take-off. These abnormal 

events were presented in an expected (how they are practiced in airline training) and 

unexpected fashion (novel situations that could be encountered in real life). When abnormal 

events were presented in routine ways the pilots reacted appropriately with little variability. 

However, when they were presented unexpectedly, the responses were less appropriate, more 

variable, and some pilots were unable to recognize the nature of the event (Casner et al., 

2012). The authors suggested that the training system may be faulty because abnormal flight 

events are presented and practiced in the same manner every time, encouraging pilots to rote 

learn the singular event signs and responses. Due to this rote learning pilots may not be 

trained to the level of true expertise as they were unable to generalize their skills to the 

presentation of events they are well versed in when they were presented in an unexpected 

manner (Casner et al., 2012). As unexpected events have been shown to lead to startle 

(Ziperman & Smith, 1975). Casner et al.’s (2012) performance decrement in unexpected 

events findings may actually be the result of a surprise and/or startle reaction.  
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Casner et al.’s (2012) study had some obvious methodological flaws. During the 

briefing the experimenter informed the pilots that their personal skills were not being 

assessed, however their dependent variables were various performance measures. This 

briefing may have influenced the pilots not to perform naturally or at their optimum, as they 

would in a real-life emergency. As well as this Casner et al. (2012) tested the pilots in their 

normal role (either first officer or captain) then had a confederate pilot in the remaining 

position. The confederate pilot regardless of cockpit position would only respond or act when 

requested by the participant pilot. Encountering abnormal events is a situation where pilots 

are trained to rely on one another and use teamwork to problem solve. Casner et al.’s (2012) 

experimental paradigm possibly created an unnatural environment for the pilots leading to 

impaired performance. First officers are subordinate to the Captain, although they can both 

act as either the pilot-flying or the pilot-not-flying. The Captain would generally take over in 

an emergency event and has the ultimate responsibility for the welfare of the flight (Nevile, 

2001). A subordinate captain would not be very realistic. Therefore, in attempt to keep the 

first officers in their normal environment by having a confederate pilot as Captain, the 

researchers may have produced the opposite effect; an abnormal environment. Simulator 

conditions should have been kept consistent with normal airline testing where pilots are 

generally tested as a team or individually. A further limitation of this study is that the results 

of captains and first officers were not separated in statistical analysis so there was no control 

or comparison to see whether the cockpit positioning affected the results. The proposed study 

is designed to extend Casner et al.’s (2012) study using tighter controls, solitary general 

aviation pilots, as well as measuring several physiological parameters that would be 

indicative of the startle response. 

Consistent with Casner et al.’s (2012) conclusions, familiarity due to practice has been 

shown to impact performance. McKinney Jr and Davis (2003) examined the effects of 
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deliberate practice on pilot decision making during emergency events. They defined a wholly 

practiced event as a scenario including a malfunction that pilots had deliberately practiced. 

Whereas a partially practiced event was one where the malfunction occurred within a wider 

emergency situation which was novel, and had not been practiced. Experienced pilots rated a 

series of US Air Force Aircraft accident reports. They found that when events had been 

completely practiced previously performance and decision making was optimal. It was 

theorized that the practice aided the performance and decision making, as responses were 

automated and the pilot was able to recognize important cues (McKinney Jr & Davis, 2003). 

Furthermore, effectiveness in the wholly practiced scenarios was also related to pilots’ total 

number of flight hours, but not in the partially practiced scenarios. However, when the event 

was only partially practiced (including a novel component that pilots could not have prepared 

for more experienced pilots made mistakes in the action selection phase and less experienced 

pilots made mistakes in the evaluation phase. This research suggests that training can 

improve performance on wholly practiced emergency situations. However this training does 

not improve pilot’s skill for novel elements in emergency events. 

When pilots are given a distracting flight task before an abnormal event is induced, 

the abnormal event appears to induce startle (Landman et al., 2017b; Schroeder et al., 2014). 

Schroeder (2014) trained pilot participants on two stall manoeuvres; high altitude and low 

altitude; 73% of pilots applied correct procedure first time for both stall types, but eventually 

they were all trained to proficiency. The surprise scenario consisted of a global positioning 

system (GPS) approach. The instructors informed pilots that when they reached the missed 

approach point (MAP) at 480ft they were going to hand-fly the aircraft to the holding fix 

where weather may or may not be a factor. However, before they reached the MAP they 

experienced a large tailwind which rapidly induced a stall at 2100ft. As the pilots had the 

expectation that there would be an event later in the flying, the early scenario led to startle. It 
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was reported that pilots appeared ‘flustered’, suggesting startle or surprise reaction. Only 

22% of the pilots applied the correct stall recovery procedure when they were surprised. It 

was concluded that unexpected abnormal events led to impairment in pilot’s response and it is 

important that surprise scenarios are developed and incorporated into training (Schroeder, 

2014). However, this research also has the same drawbacks as the Martin et al. (2016) study 

as there was no physiological measure of startle. As suggested by Bourne Jr and Yaroush 

(2003) the strength of a stressor can only be determined by measuring physiological and 

subjective responses of an individual.  

Researchers have suggested that pilot training methods should embrace the scenario-

based training for upset recovery and invoke some surprise instead of using today’s scripted 

approach (Advani et al., 2010; Casner et al., 2012; McKinney Jr & Davis, 2003). The FAA 

has also recommended implementing startling and surprising situations during pilot upset 

recoveries (FAA, 2015). However, there is a lack of research and technology for methods that 

induce startle during simulator sessions (Advani, Schroeder, & Burks, 2010). Suggested 

methods include: creating immersion by making simulator training environment more like an 

airplane (e.g. wear uniforms, more realistic air traffic communication), increasing workload 

via the addition of distractions, and invoking a startling situation (e.g. wake upset) after a 

distraction stimulus (Bürki-Cohen, 2010; Martin et al., 2015; Martin et al., 2016). Martin et 

al. (2016) suggest that it is possible to program training scenarios in flight simulators that 

deviate from pilots’ expectations, and thus foster startle or surprise. Airlines and regulatory 

agencies are becoming increasingly aware of startle and its associated negative effects during 

abnormal flight events; however, to date there has been little research in an operational 

context that quantifies the potential effects of startle among airline pilots, and none on 

general aviation pilots (Martin et al., 2016). Furthermore, the empirical research concerning 

startle within aviation has lacked physiological measurement.  
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Understanding factors that affect pilot performance during abnormal flight events is 

crucial in developing techniques that increase the safety of aviation. To understand and to 

develop strategies addressing the startle response, it is important to ensure that the simulator 

conditions designed to produce startle are actually leading to a physiological startle response. 

Some researchers are currently postulating that startle underlies the degraded performance in 

unexpected aviation events (Landman et al., 2017a, 2017b; Martin et al., 2015; Martin et al., 

2010; Martin et al., 2016; Schroeder et al., 2014). However, most of the empirical research 

investigating the effect of startle on performance, uses loud sudden noises or distraction 

(Landman et al., 2017b; Martin et al., 2016). To support the theory that startle due to the 

unexpectedness of the emergency event is causing the degradation in performance, there 

needs to be physiological evidence that startle and surprise can occur due to unexpectedness 

i.e. without a loud noise or distraction.  

Startle and Surprise Conceptual Model 

Recently Landman et al. (2017a) proposed a conceptual model of startle and surprise 

in terms of sense-making and decision making (Figure 1). The model is an extension of 

Klein, Phillips, Rall, and Peluso’s (2007) data-frame model of sense-making. Cognitive 

psychology research and theory postulate that knowledge, plans, and theories are grouped in 

mental structures called schemata or frames (Klein et al., 2007; Landman et al., 2017a). It is 

thought that information is processed using the currently active frame (Landman et al., 

2017a). According to the model, if there is a mismatch between the active frame and the 

perceived information, a frame switch (reframing) may be required (Landman et al., 2017a). 

When the active frame and the perceived information are not concordant, the mismatch can 

lead to surprise or startle (Figure 1). Reframing is a controlled process requiring effort, and 

reasoning. Thus reframing is susceptible to the negative impact of stress. Stress may lead to 

the issues with reframing such as choosing an incorrect frame, confusion, or loss of 
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situational awareness (Landman et al., 2017a). The conceptual model is illustrated in Figure 1 

which was designed by Landman et al. (2017a).  

 

Expertise and Performance in Abnormal Flight Events 

Pilot’s levels of skills and experience can vary greatly. Previous encounters with 

abnormal flight events may lead a pilot to find an emergency situation challenging, whereas a 

pilot with no prior experience with the event may find the situation hopeless (Martin et al., 

2015). Experts have been found to solve problems faster and consider fewer alternative 

solutions than do novices (Kirschenbaum, 1992). A study by Li et al. (2001) investigated the 

factors associated with pilot error in aviation crashes. They examined the prevalence and 

correlates of pilot error in a large sample of aviation crashes using multiple data files 

compiled by the NTSB over 14 years. The analysis focused on examining the associations 

Figure 1.Conceptual model of startle and surprise. Solid lines indicate sequenced events. Dashed 

lines indicate potential influences, with plus signs indicating an increasing effect and minus 

signs indicating an impaired effect. Double lines indicate thresholds. Reprinted from “Dealing 

with unexpected events on the flight deck: A conceptual model of startle and surprise” by A 

Landman, E Groen, MM van Paassen, AW Bronkhorst, and M Mulder, 2017, Human Factors, 

59, p. 1163. Copyright 2017, by the Human Factors and Ergonomics Society. 
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between pilot error and pilot characteristics. It found pilot error to be stated as the cause of 

38% of 329 major airline crashes, 74% of 1627 commuter/air taxi crashes, and 85% of 

general aviation crashes. Additionally the probability of pilot error in general aviation crashes 

decreased as total flight time and certificate rating of the pilot increased. Thus, expertise may 

be protective against poor performance in unexpected emergency events.  

Research indicates that when a task is well learnt, it becomes more resistant to the 

negative effects of stress (Baddeley, 1972; Staal, 2004; Wiggins, Stevens, Howard, Henley, & 

O'Hare, 2002). This is thought to be due to well learnt and well-practiced tasks being 

committed to long term memory (Staal, 2004; Wickens et al., 1993). Tasks are committed to 

long term memory through frequent retrieval, activation, rehearsal and recollection (Staal, 

2004). When procedural information and knowledge are committed to long term memory, 

recognition of the cues and retrieval of the related information becomes direct, automatic, and 

easy (Staal, 2004; Wickens et al., 1993). Automatic retrieval of well-known information from 

long term memory, is likely to be relatively immune to the negative impact of stress (Wickens 

et al., 1993). Concordant with this an expert pilot may immediately recognise an emergency 

or failure, this automatic processing will consume less time and mental resources facilitating 

the logical reasoning process. (Stokes, Belger, & Zhang, 1990; Wickens et al., 1993).  

Expertise and Startle 

Empirical research on expertise and startle in aviation has failed to find any positive 

effects of increased total flight time on performance in simulated tasks (Casner et al., 2012; 

Martin et al., 2016). Martin et al. (2016) found expertise measured in terms of total flight 

hours had no effect on pilot performance when faced with a critical flight decision after 

startle. Furthermore, Casner et al (2012) also failed to find a protective effect of expertise on 

performance on unexpected abnormal events. McKinney Jr & Davis’s (2003) research found 

that performance in wholly practiced scenarios was positively related to pilots’ total number 
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of flight hours, but not in the partially practiced scenarios. Furthermore, McKinney (1993) 

found that flight lead pilots with more experience (over 500 hours) showed more degraded 

diagnostic performance on non-routine malfunctions, in comparison to less experienced (less 

than 500 hours) flight lead pilots. This suggests that true expertise which would improve 

performance in emergency flight events may not be revealed via total flight hours. This 

research suggests that overall experience as measured by flight hours does not necessarily 

produce expert performance in startling and unexpected events. 

Effect of Expertise and Pilot Type 

  Previous empirical research concerning abnormal events and startle has investigated 

airline pilots whereas the proposed study will use general aviation pilots. There are rigorous 

experience and standard requirements to become an airline pilot. As airline pilots would be at 

the upper level of experience, more or less flight time might only impact marginally on 

performance (Li et al., 2001). Airline pilots require a minimum of 1500 hours for 

certification. Differing amounts of total flight time at higher experience levels (e.g. 1500 

hours and upwards) between the participant airline pilots may not translate to any qualitative 

differences in performance. This may explain the lack of observed effect of experience in 

some of the studies investigating startle and response to abnormal events (Casner et al., 2012; 

Martin et al., 2016). General aviation pilots do not go through the same rigorous training and 

regular assessment, and therefore there is likely to be a larger variation in ability and 

experience in a population of general aviation pilots (e.g. 50-250 hours). Using general 

aviation pilots as the participants in a research may be beneficial in uncovering the effects of 

experience on the ability to respond optimally to an abnormal aviation event. 

Expertise and Information Gathering Systems 

Research on expertise has shown qualitative differences between experts and novices 

in different fields. Kirschenbaum (1992) investigated information gathering strategies used 
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for situational assessment and decision making by twelve Navy officers differing in 

experience (students, instructors, and former submarine commanding officers). The officers 

performed a decision task involving response to a passive sonar target. Computer processed 

and raw sonar data were presented in matrix form where values could only be seen via 

selecting the box with the mouse cursor. A computer program traced participant’s information 

gathering sequence. Participants were given 90 seconds to examine the matrix of data, and 

instructed to identify the sonar target and indicate their response to the target. Typical expert 

information search strategy consisted of smaller total quantity of information used (low 

number of looks), even divide between raw and processed information (processed data is raw 

sensor data transformed via algorithms which are easier to interpret e.g. speed and distance), 

and emphasis on history (integration of information over time) and sets (short transition time 

between technically related information). The typical novice search strategy consisted of high 

number of looks (large total quantity of information used) and transitions driven by ease 

(looking at display items that were close to one another as opposed to technically related). 

Experts also showed superior situational understanding and decision accuracy. Although 

Kirschenbaum’s (1992) sample size was small, the results provide evidence for qualitative 

differences in the way experts and novices approach a problem-solving task. Exploring pilot’s 

pattern of information gathering during the encounter of an unfamiliar emergency flight event 

may provide insight useful for emergency event training. 

Wiggins and O'Hare (1995) investigated information processing and search patterns 

of pilots from different levels of expertise during simulated pre-flight decision making with 

different time constraints. Wiggins and O'Hare (1995) used a computer-based process tracing 

methodology to record information acquisition sequence, type of information accessed, 

decision of whether or not to undertake flight, and response latency. More expert pilots 

indicated that they would undertake the flight compared to intermediate and novice pilots. 
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Intermediate pilots accessed a greater number of screens, and seemed to be trying to acquire 

as much information as possible during the allocated time. This research suggests that expert 

pilots are better and more efficient at information acquisition and integration (Wiggins & 

O'Hare, 1995). This finding is concordant with previous research where, O'Hare, Wiggins, 

Batt, and Morrison (1994) showed that intermediate type pilots are over-represented in 

aviation accidents caused by decision making errors.  This research indicates that compared 

to pilots of intermediate experience, experts have better decision making skills which allow 

them to quickly identify a situation and then efficiently implement an appropriate information 

acquisition strategy.  

Eye Tracking  

Eye tracking is a valuable tool which can be used in addition to normal performance 

measures. Eye tracking provides data regarding participant’s fixation positions, screen 

fixation durations, and the scan path structure of a presented stimulus (Raschke, Blascheck, & 

Burch, 2014). This information can be recorded to later study the task solution strategies and 

cognitive workload from study participants (Raschke et al., 2014). Pupil dilation also 

measured via eye-tracking has been shown increase during the startle reaction (Bradley et al., 

2005; Rivera et al., 2014), with an increase in autonomic arousal (Bradley, Miccoli, Escrig, & 

Lang, 2008), and with increasing cognitive workload (Bradley et al., 2008; Einhäuser, Stout, 

Koch, & Carter, 2008; Hyönä, Tommola, & Alaja, 1995; Kahneman, 1973; Marinescu et al., 

2018; Marshall, 2002). Eye tracking analysis can also be used to find common eye movement 

patterns, which can be interpreted as similar cognitive strategies to perform a given task 

(Raschke et al., 2014). Eye tracking data is commonly analysed in terms of fixations (pauses 

over informative Areas of Interest (AOI)), and saccades (rapid movements between fixations) 

(Salvucci & Goldberg, 2000). Visual and cognitive processing is thought to occur during 

fixations (Salvucci & Goldberg, 2000). Eye tracking data will be collected in the current 
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proposed study to investigate whether there are common information search strategies used 

by pilots that have superior performance on unexpected abnormal flight events. This analysis 

may reveal new information which may help to inform training of pilots in preparation for 

unexpected abnormal flight events.  

The Current Investigation: Research Questions 

1. Do simulated unexpected emergency flight events cause physiological startle? 

2. What are the differences in information processing when comparing responses to 

an expected emergency event and an unexpected emergency event? 

3. Does physiological startle impair response performance following unexpected 

emergency events? 

4. Does expertise mediate the startle response during unexpected emergency flight 

events? 

5. Does expertise affect information processing differentially during unexpected 

emergency flight events? 
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Chapter 2: Study 1  

Overview 

Method 

The first phase of the investigation was a trial study employing university students. 

Using university students allows control over participant background and experience in terms 

of piloting a plane. Furthermore, pilots are both expensive and hard to recruit therefore it was 

helpful to first complete a trial study to help develop experimenter expertise with the 

procedure e.g. fixing and problem solving frequent computer bugs and issues that occurred in 

the experiment set up. The study investigated arousal, information processing, and 

performance during unexpected flight events compared to expected flight events. In this first 

proof-of-concept study, university students completed first a flight school PowerPoint 

(Appendix A), and then nine short simulated flights including five training flights, two 

unexpected emergency events flights, and two non-event flights (Table 1). The first three 

training flights involved teaching the students how to fly a Cessna 172SP aircraft in a flight 

simulator. The second two training flights were designed to teach students how to practice an 

engine failure and an aerodynamic stall. Two of the remaining flights contained either an 

unexpected engine failure or an unexpected stall, the other two flights had no events and one 

was used for baseline data (Table 1). Flight data, eye movements, and heart rate were 

recorded during these simulator tasks to assess response to abnormal events, information 

gathering systems, and startle response respectively. 

Hypotheses 

It was hypothesized that university students would have higher heart rates and larger 

pupil dilation during the unexpected flight events (engine failure and stall) compared to the 

expected flight events and either baseline (heart rates), or before the events (pupil dilation). It 

was also hypothesized that university students would have a higher heart rate and larger pupil 
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dilation during the expected events compared to the baseline flight or before the events, 

respectively. It was hypothesized that individuals would spend more time looking at the 

cockpit flight display screen in the unexpected engine failure as they needed to spend time 

appraising the situation and they had not been taught to focus on the external environment 

during engine failures.  It was hypothesized that university students would spend less time 

looking at the flight displays in the unexpected stall as it is a quick event and they may not 

realise it is occurring. Furthermore, it was hypothesized participants that crash in the 

unexpected engine failure would spend more time looking at the flight displays than students 

that landed safely, as the students that landed safely will concentrate on finding a place to 

land. It was hypothesized that in the unexpected events university students would have a 

poorer performance (e.g. more crashes in engine failure, and more altitude lost in the stall) 

compared to the expected events. It was also hypothesized that participants that had poor 

performance would show high arousal analogous to the startle reflex when compared to 

participants that performed well.  

Method 

Participants 

Forty first and second year students from the University of Otago were recruited to 

undergo a flight simulator study. Only twenty one students were able to pass an orientation 

flight test (described later) and were therefore included in the study. The students were 

recruited through a psychology database where they obtained course credit for participation 

in studies run by the psychology department. The ages of the students ranged from 18 to 21 

years old, and there were 12 female participants and 9 male participants.  

Apparatus 

Students were tested on the commercially available Microsoft Flight Simulator X 

(MFSX) set in a custom made grey fibreglass cabin with an overhead light (Figure 2 and 
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Figure 3). The MFSX program was equipped with scenery updates including the ‘Southern 

lakes adventure: Wanaka and Tekapo’, ‘Real New Zealand Marlborough’ (“Godzone Virtual 

Flight”, n.d.) as well as the Orbx New Zealand South Island Scenery (Orbx Simulation 

Systems, 2017). These scenery add-ons were used to enhance the quality and realism of the 

visual graphics. 

Figure 2. The flight simulator’s custom made fibreglass cabin. The cabin is facing a blank 

white wall where the external imagery is projected.   

A glass window at the front of the cabin mimicked the windshield of an aircraft by 

facing a blank white wall background on which the external image was projected via a high-

resolution Viewsonic LS820 Full HD 1080p, 0.23 ultra-short-throw projector (Figure 2 and 

Figure 3). Just below the window, on a desk inside the fibreglass cockpit, flight instruments 

were presented on one 20” Viewsonic liquid crystal display (LCD) flat panel monitor, below 

the LCD were the flight controls (Figure 3 and Figure 4). The monitor displayed both the 

primary flight display (PFD) and the multifunction display screen (MFD) (Figure 5). The 

PFD displayed the basic flight instruments, such as the airspeed indicator, the altimeter, the 

attitude indicator, the directional gyro and vertical speed indicator (Figure 5). The MFD 

presented a moving map display (GPS) (Figure 5). The simulated aircraft was controlled by 

Cirrus II precision flight controls (Figure 4). These fully functional analogue flight controls 
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are similar to those of a Cessna 172 aircraft featuring all electrical switches, carburettor heat, 

flaps, gear, and throttle quadrant, along with a metal yoke (Figure 4). Participants were seated 

facing the window viewing the external image and LCD screen, simulating the feeling of 

being inside the cockpit of an aircraft (Figure 2 and Figure 4).  

 

Figure 4. Cirrus II precision flight controls set up located below the LCD screens, used to 

control the plane. 

 

Figure 3. Flight simulator set up, a photo from inside the cockpit. The image includes 

the window and projected external image, the flight display (PFD and MFD) displayed 

on a LCD screen situated below the window, and the Cirrus II precision flight controls 

situated below the PFD. To the left of the LCD is a PowerLab running the ear mounted 

plethysmograph. 
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The dependent variables measured from each experimental flight were eye-tracking, 

heart rate in beats per minute (bpm), and flight data (e.g. altitude). Demographics were 

recorded using a paper questionnaire (Appendix B). Eye tracking data associated with 

participant focus on the PFD and MFD were recorded and analysed with the Gazepoint GP3 

eye-tracking device and software. The Gazepoint GP3 system provided data for each eye at 

60Hz. Gazepoint pupil dilation has been recently evaluated and found to be viable and useful 

in research (Mannaru, Balasingam, Pattipati, Sibley, & Coyne, 2017).  Heart rate was tracked 

using an ADInstruments infrared Plethysmograph (Ear Clip II) connected to a PowerLab 

version 4/SP, which was in turn connected to a laptop running LabChart7 set up adjacent to 

the simulator cabin (Figure 6). The Plethysmograph has an infrared photoelectric sensor 

which recorded changes in pulsatile blood flow in the ear. Flight data were recorded using 

Burlingame software’s Flight Data Recorder version 1.4 (Burlingham Games, 2009). This 

software uses flight simulator universal inter-process communication to record and analyse 

data directly from Microsoft Flight Simulator X. Outside and adjacent to the simulator cabin, 

there was two extra screens, one providing external control of the simulator computer and 

one which was an extension of the simulator computer screen (Figure 6). The screen set-up 

Figure 5. The flight display; the PFD and MFD displayed on the LCD monitor screen inside 

the cockpit. 
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outside and adjacent to the simulator cabin allowed for experimenter remote control and 

monitoring of the MFSX program, the Gazepoint software, and the flight data recorder 

(Figure 6).   

Procedure 

Each session took between 1 to 2 hours depending on how fast students completed 

each flight. Each session only involved one student at a time. Students were first asked to 

read an information sheet about the study (Appendix C), and then asked to fill out a consent 

form (Appendix D) and a questionnaire regarding their age and gaming experience 

(Appendix B). Participants were then seated in the flight simulator where they watched a 

flight school PowerPoint which explained controls in the simulator, the basics of flight, and 

stalls and engine failures (Appendix A). Participants were then given a headset. Throughout 

Figure 6. Picture of external control screens and laptop. The largest monitor is reflecting the 

screen inside the cockpit (displaying the PFD and the MFD) and allows for external 

experimenter control. The laptop runs the LabChart7 connected to the PowerLab and 

plethysmograph. The small top monitor shows the Gazepoint control screen. 
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each flight verbal instructions were played through the right side of the headset. The left side 

of the headset was placed behind the left ear. The headset was configured so that no sound 

came through the left ear.  

Each participant then underwent their first flight which included taking over a mid-air 

flight at 6000ft over Mount Maunganui (Table 1). This flight was designed to get them used 

to the feel of the plane and lasted around 5 minutes. No data were collected in this flight. In 

the next flight participants were introduced again to all of the flight controls, and were then 

given verbal instruction regarding how to turn on and take off in the plane (Table 1). After 

participants successfully completed this flight the eye-tracker was set up and calibrated to 

their eyes, and the plethysmograph clip was attached to the earlobe of the left ear of each 

participant. The flight data recorder was also turned on and subsequently recorded data for 

the third flight. The third flight was the orientation flight (Table 1). In this flight participants 

were required to take off, fly through a series of virtual hoops over Queenstown and circle 

around to land back at Queenstown airport. Participants were allowed three resets through the 

orientation flight before their data were excluded from the analysis (orientation test). 

Nighteen participants out of 40 failed to meet this criteria and were subsequently excluded 

from the data analysis. 

For the orientation flight and the next seven flights the eye-tracking, heart rate, and 

flight data were recorded for each flight. After the orientation flight participants flew flights 

four and five (table 1), which were loosely based off normal pilot training and for engine 

failures and aerodynamic stalls. In these flights students learnt how to respond to an engine 

failure, and how to induce and respond to a power-off stall. Over all participants, the 

presentation of these two flights was counter-balanced. For the remaining four flights (flights 

6 to 9) the presentation order was randomized and the presentation of the unexpected events 

was balanced over all participants.  



 

 

Table 1.  Descriptions of the flights university students underwent in the experiment. 

Flight Origin Destination Event/description Approximate 

flight time 

(minutes) 

1 Mount 

Maunganui 

Not applicable Participants took over the plane 6000ft high in the air and flew around to 

get a feel for plane and controls. 

5 

2 Edward’s Air 

Force base 

runway 

(America) 

Not applicable Longest air strip in America (7.5 miles). Participants were re-orientated to 

the controls via verbal instructions and learnt to take off and fly.  

5 

3 Queenstown  Queenstown  Orientation flight, participants learnt to taxi, take off, manoeuvre the 

plane, and land. The majority of the flight consisted of flying through 

large virtual hoops. If participants needed more than three resets to 

complete the flight, their data was excluded.  

15 

4 Pukaki Omarama Engine failure training event, participants flew through a series of virtual 

hoops which led them to safe landing ground where they were informed 

that the engine will fail. Participants then had to land the plane safely on 

the flat grassland.  

10 

5 Dunedin  Taieri Aerodynamic stall training event. Participants flew through a series of 

virtual hoops which led them to safe altitude where they were told how to 

induce a stall and recover. They subsequently completed the stall.  

5 

6 Invercargill  Ryan’s creek Participants took off into a 40 knot headwind. At 500feet the headwind 

ceases leading to stall. Due to variation in flight behaviour, only some 

participants experienced a stall horn. Data was only included from 

participants that heard the stall warning horn.  

5 
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7 Glenorchy Queenstown Participants took control of the plane mid-flight. The flight is following 

Lake Wakatipu. An unexpected engine failure occurred after 

approximately 5 minutes of flight. There were 2-3 safe places to land 

when the engine failure occured, but the terrain is not optimal.  

8 

8 Glentanner Mount cook  No event. Participant flew entire flight eventually landing at Mount Cook, 

there were a series of virtual hoops on the way which led them to line up 

with the runway, which they then landed on.  

8 

9 Te Anau Not applicable Participants took over a flight in Te Anau where they were on a ‘rescue 

mission’ they flew towards indicated lost hikers (using the flight 

simulators mission compass) and dropped water at the hikers position.  

5 



 

 

Results 

Data Screening 

For each analysis the distribution of the data was examined via boxplots, frequency 

histograms, and with Shapiro-Wilk tests. The data were considered normally distributed if the 

Shapiro-Wilk test was not significant (p>0.05).  Tukey’s (1977) method of identifying 

outliers via boxplots was used for each statistical test. Accordingly, outliers were defined as 

being more than 1.5 time the interquartile range of the boxplots, and extreme outliers were 

values that were more than 3 times the interquartile range of the boxplots. In all analyses 

where outliers were present they were further investigated to determine whether they were 

plausible values. For example a resting heart rate of 150bpm is highly unlikely, and probably 

a measurement fault. However, a heart rate of 120bpm is plausible. What is a plausible value 

was determined from the scientific literature on normative ranges of physiological 

measurements e.g. Froelicher and Myers (2007). If the value was plausible and the data 

normally distributed, the outliers were kept. If the data was not normal or the outliers were 

not plausible the outliers were removed, except for where the sample sizes were small and 

needed to be conserved. There upon outlier’s values were replaced with the next highest or 

lowest values. If the data were not normally distributed after outliers were addressed, a 

transformation of the data with the outliers was completed depending on the distribution. A 

moderately skewed distribution was treated with the square root transformation. A strongly 

skewed distribution was transformed using a log transformation.  

Heart Rate 

For expected and unexpected events, the mean heart rate scores were calculated using 

LabChart7. For engine failure events, the heart rate scores were calculated for one minute 

after the event started, for each student, separately. One minute was chosen as following the 

engine failure pilots took a minimum of 1 minute to land and up to 4 minutes. For the 
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aerodynamic stall events, the mean heart rate for the 30 seconds after the beginning of the 

event were taken for each student, separately. Thirty seconds were used as the two stall events 

took between 10 seconds and 60 seconds. For the baseline heart rate, the mean heart rate of 

the five central (1 minute after start of file until the sixth minute) minutes of the baseline 

flight which was from Glentanner to Mount Cook (after take-off and before landing), were 

calculated for each student separately. Heart rate difference between baseline and event heart 

rate was calculated for each event by subtracting the mean baseline heart rate from the mean 

heart rate for each event for each participant.  

Engine Failure 

Mean Heart Rate 

Student participants had a similar heart rate in the unexpected engine failure (M = 

82.96bpm, SD =13.10) and the expected engine failure (M = 83.01bpm, SD =13.70). During 

both engine failure events, participants had a slightly higher mean heart rates compared to the 

baseline flight (M = 81.46bpm, SD = 12.16) (Figure 7). A one-way repeated measures 

ANOVA indicated there were no statistically significant differences in participants’ mean 

heart rates during the two different engine failure events and the baseline flight.   

Difference from baseline 

The mean increase in heart rate from baseline in the expected engine failure was 

smaller (M = 1.50bpm, SD = 4.92) compare to the unexpected engine failure (M = 1.55bpm, 

SD = 5.77). A paired t-test showed that this was not a significant difference. 
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Figure 7. Students mean heart rates (BPM) during the expected and unexpected engine 

failure event, as well as the baseline flight, with error bars (+/- 2 SE). 

Aerodynamic Stall 

Mean heart rate 

Students had a higher heart rate in the expected stall flight (M = 87.68bpm, SD 

=13.69), compared to the unexpected stall flight (M = 83.71bpm, SD =12.48), and the 

baseline flight (M = 86.06bpm, SD = 13.16) (Figure 8). The students mean heart rate in the 

unexpected stall was also slightly lower than during the baseline flight. A one-way repeated 

measures ANOVA was conducted to determine whether these were statistically significant 

differences. There were no statistically significant differences in mean heart rate in 

participants over the three different flights.   

Difference from baseline 

The mean increase in heart rate from baseline in the expected stall was larger (M = 

1.62bpm, SD = 4.49) compared to the unexpected stall (M = -2.36bpm, SD = 4.65). The 

difference scores were normally distributed as shown by a Shapiro-Wilk test (p > .05), there 

was one outlier as assessed by a boxplot. The outlier was a plausible value and due to small 
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sample size the outlier was retained. A paired t-test indicated that this was a statistically 

significant mean difference of 3.98bpm, 95% CI[0.28, 7.67], t(8) = 2.484, p = .038, d = 0.83. 

The t-test with the outlier removed was not significant.  

Figure 8.  Students mean heart rates (BPM) during the expected and unexpected stall events, 

as well as the baseline flight, and error bars (+/- 2 SE). 

 

Pupil Dilation 

The Gazepoint software tracks pupil size in pixels (pupil dilation) for both eyes 

separately over the course of the recording. Using the eye-tracking video it was determined 

what time the event started and ended. These times were used to calculate separate pupil 

dilation averages for the left pupil and the right pupil, for before and during each event, for 

each participant. The averages of the left and right pupil data were then calculated producing 

before-event and during-event pupil dilation averages for each flight. The difference between 

these were calculated by subtracting the average pupil dilation before the event from the 

average pupil dilation during the event. The difference was compared between expected and 

unexpected flights. Comparing the differences controlled for the variances in the amount of 

light in each flight as the flights were programmed at different times of the day, for example 
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the Glentanner (baseline) flight was programmed early in the morning therefore the lighting 

may have affected the pupil dilation.  

 

Figure 9. Student’s mean pupil dilation (pixels) for before and during each expected and 

unexpected stall and engine failure event, with standard error bars (+/-2SE).  

Engine Failure 

Expected: As shown in Figure 9, participants on average had a smaller pupil dilation 

before the expected engine failure (M = 17.35 pixels, SD = 2.00) and larger pupil dilation 

during the expected engine failure (M = 19.55 pixels, SD = 2.11). The difference in pupil 

dilation before the expected engine failure and during the expected engine failure was 

calculated (pupil dilation before minus pupil dilation during). These difference scores were 

assessed, no outliers were found and the data were normally distributed as assessed by 

boxplot and the Shapiro-Wilk test (p > .05), respectively. A paired t-test indicated that this 

was a statistically significant mean difference of 2.20 pixels, 95% CI[1.863, 2.542], t(17) = 

13.677, p < .001, d = 3.22. 
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Unexpected: As shown in Figure 9, participants on average had a smaller pupil 

dilation before the unexpected engine failure (M = 16.37 pixels, SD = 2.03) and larger pupil 

dilation during the unexpected engine failure (M = 18.92 pixels, SD = 2.26). The difference in 

pupil dilation before the unexpected engine failure and during the unexpected engine failure 

was calculated. This difference score was assessed, one outlier was found and the data were 

not normally distributed as assessed by boxplot and the Shapiro-Wilk test (p < .05), 

respectively. The outlier was determined to be not a plausible increase in pupil dilation value 

and was therefore excluded. Removal of the outlier led to the data having no further outliers 

and being normally distributed as assessed by boxplot and the Shapiro-Wilk test (p > 0.05), 

respectively. A paired t-test indicated that this was a statistically significant mean difference 

of 2.26 pixels, 95% CI[1.940, 3.171], t(17) = 8.758, p < .001, d = 2.60. The t-test with the 

outlier included was also significant.  

Change in pupil dilation: The unexpected engine failure led to a larger increase in 

pupil dilation (M = 2.41 pixels, SD = 0.68), compared to the expected engine failure (M = 

2.17, SD = 1.12). A paired t-tested indicated that this difference was not significant.  

Aerodynamic Stall 

Expected: As shown in Figure 9, participants on average had a smaller pupil dilation 

before the expected stall (M = 16.47 pixels, SD = 1.70) and larger pupil dilation during the 

expected stall (M = 17.86 pixels, SD = 2.53). The difference pupil dilation data were assessed 

and it was found that there was one outlier and the data were normally distributed, as 

assessed by boxplot and Shapiro-Wilk test (p > 0.05), respectively. The outlier was examined 

and it was determined to be a plausible value and was therefore included. The paired t-test 

completed with and without the outlier were both found to be significant. A paired t-test 

indicated that there was a statistically significant mean difference of 1.40 pixels, 95% 

CI[0.493, 2.298], t(8) = 3.567, p = .007, d = 1.19.  
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Unexpected: As shown in Figure 9, participants on average had a smaller pupil 

dilation before the unexpected stall (M = 16.08 pixels, SD = 1.67) and larger pupil dilation 

during the unexpected stall (M = 17.17 pixels, SD = 1.91) .The difference pupil dilation data 

were assessed and it was found that there were no outliers, and the data were normally 

distributed, as assessed by boxplot and Shapiro-Wilk test (p > 0.05), respectively.  A paired t-

test determined that the pupil dilation before and during the unexpected stall had a 

statistically significant mean difference of 1.08 pixels, 95% CI[0.241, 1.925], t(8) = 2.965, p 

= .018, d = 0.99.  

Change in pupil dilation: The expected stall had on average a larger change in pupil 

dilation (M = 1.40 SD = 1.17), compared to the unexpected practice stall (M = 1.08, SD = 

1.10). A paired t-test indicated that difference in the change in pupil dilation was not 

statistically significant. 

Information Gathering and Processing 

Engine Failure 

Airspeed Indicator 

Participants spent a lower percentage of their time observing the airspeed indicator in 

the expected engine failure (M = 0.34%, SD = 0.36) as opposed to the unexpected engine 

failure (M = 0.63%, SD = 0.63) (Figure 10). A paired t-test showed that this difference was 

not significant. 

Attitude Indicator 

Participants spent a slightly larger percentage of their time observing the attitude 

indicator in the expected engine failure (M = 0.69%, SD = 0.80) as opposed to the unexpected 

engine failure (M = 0.61%, SD = 0.59) (Figure 10).  A paired t-test showed that this 

difference was not significant. 
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Altimeter 

 Participants spent a similar percentage of their time observing the altimeter in the 

expected engine failure (M = 0.21%, SD = 0.28) as opposed to the unexpected engine failure 

(M = 0.20%, SD = 0.28) (Figure 10). A paired t-test indicated that this difference was not 

significant. 

GPS 

Students spent more time looking at the GPS display during the unexpected engine 

failure (M = 1.04%, SD = 0.19), compared to the expected engine failure (M = 0.17%, SD = 

0.21) (Figure 10).  The difference data were assessed. It was found that there was one outlier 

and the data were normally distributed, as assessed by boxplots and the Shapiro-Wilk test (p 

> .05). The outlier was examined and determined to be a plausible value and was therefore 

retained in the analysis. A paired t-test indication that there was a statistically significant 

difference of 0.87%, 95% CI[0.475, 1.269], t(17) =4.638, p < .0005, d = 1.09. When the 

paired t-test was completed with and without the outlier, the tests remained significant. 

Inside Cockpit (Head Down display) 

Participants spent a lower percentage of their time observing the instrument screen 

inside the cockpit (displaying the MFD and PFD) in the expected engine failure (M = 4.18%, 

SD = 3.11) as opposed to the unexpected engine failure (M = 5.08%, SD = 3.19) (Figure 11). 

A paired t-test showed that this difference was not significant. 
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Figure 10. Mean percentage gaze time for each flight instrument that participants were taught 

in the PowerPoint (Appendix A) during both expected and unexpected engine failure and stall 

flight events, with standard error bars (+/- 2SE). 

 

 

Figure 11. Mean percentage gaze time students spent looking inside the cockpit at the PFD 

and MFD displayed on the LCD screen during both expected and unexpected engine failure 

and stall flight events, with standard error bars (+/- 2SE). 
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Stall 

Airspeed Indicator 

Participants spent a greater percentage of their time observing the airspeed indicator 

speed indicator in the expected stall (M = 0.22%, SD = 0.29) as opposed to the unexpected 

stall (M = 0.15%, SD = 0.14) (Figure 10). A paired t-test showed that this difference was not 

significant. 

Attitude Indicator 

Participants spent a slightly lower percentage of their time observing the attitude 

indicator in the expected stall (M = 0.31%, SD = 0.56) as opposed to the unexpected stall (M 

= 0.34%, SD = 0.47) (Figure 10). A paired t-test showed that this difference was not 

significant. 

Altimeter 

Participants spent less percentage of their time observing the altimeter in the expected 

stall (M = 0.01%, SD = 0.02) as opposed to the unexpected stall (M = 0.05%, SD = 0.06) 

(Figure 10). A paired t-test showed that this difference was not significant. 

GPS 

Participants spent a larger percentage of their time observing the GPS in the 

unexpected stall flight (M = 0.98%, SD = 1.09) as opposed to the expected stall (M = 0.02%, 

SD = 0.03) (Figure 10). The difference data was assessed and it was found that there were no 

outliers and the data were normally distributed for each flight, as assessed by boxplot and 

Shapiro-Wilk test (p >.05), respectively. A paired t-test indicated that this was a statistically 

significant mean difference of 0.97%, 95% CI[0.368, 1.813], t(8) = 2.626, p = .030, d = 0.88. 
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Inside Cockpit (Head Down) 

Participants spent less time observing the flight displays (MFD and PFD) inside the 

cockpit in the expected stall (M = 1.04%, SD = 0.86) as opposed to the unexpected stall (M = 

2.08%, SD = 1.67) (Figure 11). A paired t-test showed that this difference was not significant. 

Performance 

Engine Failure 

During the expected engine failure, one student crashed upon landing. During the 

unexpected engine failure 14 (66.67%) students crashed the flight and seven (33.33%) 

students landed safely. The criteria for a crash, was that the students had not successfully 

touched down on the ground, i.e. there was loss of control on first impact with the ground. 

Participants that attempted to land in the water were also classed as crashing.  

Stall 

Stall Recovery Time 

The time to recover from the expected stall was calculated from the time that the pilot 

retarded the throttle, and the airspeed was reduced to 60 knots, to when the stall occurred and 

the plane returned to level flight. The time to recover from the unexpected stall was 

calculated from the time that the plane reached 500ft till the time that the pilot successfully 

passed the wind shear and reached 550ft. This method was used as unfortunately the resulting 

flight video from the trials did not have audio, so the point where the stall horn occurred was 

not able to be determined. On average students took longer to recover in the unexpected stall 

(N = 7, M = 0.20 seconds, SD = 0.08) compared to the expected stall flight (N = 7, M = 0.14 

seconds, SD = 0.03). Due to the difference in flight configuration this is not comparable (see 

Table 1).  
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Altitude lost 

The altitude lost was calculated as the maximum altitude at the point of the stall 

minus the minimum altitude reached after the stall. On average students lost a larger amount 

of altitude in the expected stall flight (N = 8, M = 922.50 feet, SD = 498.16) compared to the 

unexpected stall flight (N = 8, M = 80.62, SD = 11.65). Due to the difference in flight 

configuration this is not comparable (see Table 1). Students tended to lose a large amount of 

altitude in the expected stall as they would pitch the plane up until it was almost vertical, and 

then after the stall they would pitch it down until it was almost vertical. 

Other 

During the unexpected stall flight, one participant that encountered a successful stall 

horn, incorrectly pulled back on the throttle.  

Performance and Heart Rate 

Engine Failure 

Students that landed safely in the unexpected engine failure flight had a slightly lower 

heart rate (N = 7, M = 82.37, SD = 13.60), than those that crashed in the unexpected engine 

failure flight (N = 14, M = 83.33, SD = 14.25). An independent t-test showed that this 

difference was not significant.  

Stall 

There was no correlation between altitude lost, recovery time and heart rate in both 

the expected and unexpected versions of the stall.  

Performance and Pupil Dilation.  

Engine Failure 

Student participants who crashed had a slightly smaller pupil dilation (N = 7, M = 

18.99, SD = 2.37) compared to students whom landed safely (N = 14, M = 19.09, SD = 2.14), 

however participants that crashed had a larger increase in pupil dilation after the engine 



45 

failure (N = 7, M = 3.16, SD = 2.07), compared to participants who landed safely (N = 14, M 

= 2.20, SD = 0.60). Independent t-tests showed that these differences were not significant.   

Stall  

There was no correlation between altitude lost, recovery time and pupil dilation or 

change in dilation in both the expected and unexpected versions of the stall.  

Performance and AOI 

Engine Failure 

Airspeed 

Students who crashed in the unexpected engine failure flight spent a larger percentage 

of their time looking at the airspeed indicator (N =14, M = 0.86, SD = 0.64), compared to 

students who landed safely (N = 7, M = 0.14, SD = 0.12). The distribution of the data was 

examined. There were no outliers in both groups, and the data were normally distributed as 

assessed by boxplots, and Shapiro-Wilk tests (p > 0.05), respectively. Due to a violation of 

the homogeneity of variance assumption. A Welch t-test was used to assess whether these 

differences were significant. The t-test indicated that there was a statistically significant 

difference of 0.72%, 95% CI[0.32 to 1.12], t(13.79) = 3.887, p = .002. 

Attitude Indicator 

Students that crashed during the unexpected engine failure spent slightly less time 

looking at the attitude indicator (N = 14, M = 0.60, SD = 0.55), than the students that landed 

safely (N = 7, M = 0.64, SD = 0.71). An independent samples t-test showed that this 

difference was not significant.  

Altimeter 

Students that crashed during the unexpected engine failure spent a greater percentage 

of their time looking at the altimeter (N = 14, M = 0.22, SD = 0.31), than the students that 
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landed safely (N = 7, M = 0.16, SD = 0.21). An independent samples t-test showed that this 

difference was not significant.  

GPS 

Students that crashed during the unexpected engine failure spent a larger percentage 

of their time looking at the GPS (N = 14, M = 1.34, SD = 0.1.06), than the students that 

landed safely (N = 7, M = 0.74, SD = 0.27). An independent samples t-test showed that this 

difference was not significant.  

Inside Cockpit (Head Down) 

Students that landed safely after the unexpected engine failure spent a lower 

percentage of their time looking inside the cockpit at the flight display (PFD and MFD), (N = 

7, M = 3.26, SD = 1.65), compared to student who crashed (N = 14, M = 5.92, SD = 3.42). An 

independent t-test revealed that this was not a significant difference. 

Stall 

There were no significant correlations between the percentage time students spent 

looking at the airspeed indicator, the attitude indicator, the altimeter, the GPS, or inside the 

screen and stall recovery time, or altitude lost in either the expected or the unexpected stall 

flight. 

Discussion 

Physiological Measures 

It was proposed that participants would show more physiological arousal during 

unexpected emergency events than in the expected emergency events. Specifically, it was 

hypothesized that university students would have higher heart rates and larger pupil dilation 

during the unexpected flight events (engine failure and stall) compared to the expected flight 

events and either baseline (heart rates), or before the events (pupil dilation).  It was also 
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hypothesized that the expected versions of events would show more arousal than the baseline 

flight.  

Consistent with the hypotheses during both expected and unexpected engine failure 

and stall events there was a significant increase in pupil dilation compared to before the 

event. These increases in pupil dilation indicate autonomic arousal during both the expected 

and unexpected events. Contrary to the hypotheses the unexpected stall had a decrease in 

heart rate compared to baseline, and the expected stall had an increase in heart rate compared 

to baseline. Furthermore the expected stall event had a significantly larger mean difference in 

heart rate when compared to baseline in comparison to the unexpected stall. Contrary to the 

hypotheses, there were no significant differences in heart rate or change in heart rate during 

the unexpected engine failure compared to the expected engine failure and baseline. 

Inconsistent with the hypotheses there were also no significant differences in heart rate 

during the unexpected stall compared to the expected stall event and the baseline flight. The 

heart rate data do not indicate any differences in autonomic arousal across the flights. 

However, the significant increases in pupil dilation during both aerodynamic stall events and 

both engine failure events suggests the presence of a physiological autonomic response. 

Contrary to hypotheses the data do not indicate any significant differences in 

participant’s physiological reactions to the expected engine failure compared to the 

unexpected engine failure. Also inconsistent with the hypothesis there is some evidence that 

the expected stall led to more autonomic arousal than the unexpected stall, which in turn 

elicited less physiological arousal than the baseline flight. The expected engine failure and 

stall, and the unexpected engine failure led to small increases in heart rate of approximately 

2bpm when compared to baseline. However, these increases were not statistically different 

from baseline.  
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Research that has investigated the effect of the startle response on heart rate has found 

a mean increase in heart rate of approximately around 7.50-15bpm in response to a loud noise 

(Chou, Marca, Steptoe, & Brewin, 2014; Deuter et al., 2012; Holand, Girard, Laude, Meyer-

Bisch, & Elghozi, 1999). Research investigating high workload has shown a mean increase in 

heart rate from baseline to high workload condition of approximately 3-6bpm (Fallahi, 

Motamedzade, Heidarimoghadam, Soltanian, & Miyake, 2016; Grassmann, Vlemincx, Von 

Leupoldt, & Van Den Bergh, 2017). As well as this, an increase in pupil dilation is indicative 

of a higher cognitive workload (Bradley et al., 2008; Hyönä et al., 1995; Kahneman, 1973; 

Marinescu et al., 2018; Marshall, 2002), and autonomic arousal (Bradley et al., 2008). There 

were also significant increases in pupil dilation from before the flight events to after which 

suggests increase in workload. Furthermore, the increase in heart rate from baseline for both 

engine failure event flights, and the expected stall event flight was approximately 2bpm. 

Although these increases were not significant, it can be speculated that they might indicate a 

slight increase in workload, in line with the pupil dilation data. Consequently, the data 

indicate that in all flight events students did not have a startle reaction. Instead the data 

suggest physiological changes may be indicative of a slight increase in workload during the 

expected stall and engine failure, and during the unexpected engine failure. 

It is unlikely that students were motivated to perform well, which may have impacted 

the effect of unexpectedness emergency events on arousal. University students enrolled in 

psychology courses are rewarded course credit for participation (approximately 0.667 credits 

per hour). These are the students that were recruited for this experiment. Most of the students 

therefore would not have had a real interest in piloting aircraft and are likely to have just 

wanted to get through the experiment as fast as possible. Lack of motivation or care about 

performance may have impacted the probability of startle or stress during the unexpected 

events. Supporting this idea, Lazarus et al., (1952) suggested that one of the largest problems 
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of the failure-stress technique is controlling for the subject’s motivation. For a participant to 

be stressed, they must have the motivation to do well or avoid failure (Lazarus et al., 1952; 

Skinner & Brewer, 2002). Thus the effect of stress is generally dependent on the expectation 

an individual has on themselves (Lazarus et al., 1952; Skinner & Brewer, 2002). Concordant 

with this, research investigating arousal in response to psychological stressors in terms of 

motivation level has found a positive relationship between motivation and stress response 

(Bergman & Magnusson, 1979; Vogel, Raymond, & Lazarus, 1959). For example Vogel et al. 

(1959) found that high school boys low in achievement motivation but high in affiliation 

motivation elicited more physiological arousal when tested on a measure of warmth and 

friendliness compared to a test of achievement ability. While boys with the opposite 

motivations had higher arousal on the test of achievement ability. Therefore this research by 

Vogel et al. (1959) found that physiological arousal levels are higher when a more valued 

goal is threatened compared to when a less valued goal. Lack of motivation from student 

participants would lead to a low probability of a startle reaction, and explain the small, non-

significant changes in heart rate. The study tried to ensure participants were motivated by 

having a reasonably hard orientation test, where participants needed to be engaged or 

somewhat skilled to pass. However, due to the length of the study and a minimal baseline 

level of interest in aviation, motivation likely impacted the degree of physiological responses 

to the unexpected events from the university students.  

This experiment was the students first time flying a flight simulator, and students had 

very minimal exposure to piloting aircraft before participating (one participant had flown in a 

small aircraft with a family member once before). Therefore, before practicing the expected 

flight events, students had little experience (three learning flights (Table 1)). By the time the 

participants encountered the unexpected flight they would have at least ‘flown’ five short 

simulated flights. This may have led to flying in the unexpected events requiring less 
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cognitive workload or being less stressful than the first few flights including the expected 

versions of the emergency events. This may explain why the expected flight events had a 

higher heart rate compared to the unexpected flight events. Unfortunately, it wasn’t possible 

to control for this potential order effect as it is very difficult to rely on students that earn 

course credit to come in for two separate sessions. For example, over 20 participants failed to 

turn up for their scheduled session. Therefore, all flights needed to be completed in one 

session, and obviously students needed to be taught how to respond to abnormal flight events 

before experiencing the events unexpectedly. If the students had a few more training sessions 

before the expected and unexpected events there may have been a more pronounced effect of 

unexpectedness. The ideal novice experiment would be to have the students practice flying 

and emergency events for around five hours before encountering the unexpected versions of 

events. However, this was not feasible in this trial experiment. 

Student participants in this experiment had relatively high baseline heart rates 

compared to data from other studies and for their age. Other research has consistently 

reported a mean resting heart rate over a sample of around 70-78bpm (Basner, 2009; Chou et 

al., 2014; Fallahi et al., 2016; Grassmann et al., 2017; Main, Wolkow, & Chambers, 2017; 

Orr, Solomon, Peri, Pitman, & Shalev, 1997). Agelink et al. (2001) reported that young male 

adults (17-25years) have a mean heart rate of 68.9, and young female adults had a mean heart 

rate of 76.7 (17-25years). Therefore it would be expected that university students ranging 

from 18-21 years old would have mean baseline heart rate of around 70-75bpm (Agelink et 

al., 2001). Fallahi et al. (2016) investigated the changes in physiological measures (heart rate 

and electroencephalography) over different mental workloads for operators in cement, city 

traffic and power plant control centres. Fallahi et al. (2016) reported a mean resting heart rate 

of 75.9bpm, which increased with increasing mental workload; high mental workload 

condition had a mean heart rate of 79.7bpm. Grassmann et al. (2017) investigated 
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cardiorespiratory measures over different mental workloads and found a mean baseline rate 

of 71.32bpm and in the multiple task (high workload) condition mean heart rate was 

77.37bpm. Therefore, in comparison to previous research, the university students had a high 

baseline heart rates this may have impacted the probability of finding a further increase in 

heart rate in response to the flight events. 

The high baseline heart rate of the university students in the current study could 

indicate that all flights, even after five training flights, were high workload tasks. Chou et al. 

(2014) found that participants with a high baseline heart rate had a low startle response. 

Concordant with this, previous research has also found that concurrent working memory 

tasks can disrupt the emotional regulation of the startle reflex (King & Schaefer, 2011). The 

workload may have been already high in all of the student flights indicated by high heart 

rates. Therefore in the present study high workload and high heart rate during the 

experimental flights may have moderated any startle response to the unexpected events. In 

other words, the high baseline heart rate may have impaired the ability to find significant 

changes in heart rate for the flight events.  

It is likely that student participants are not conscious of the danger a real aerodynamic 

stall at 500ft could engender. This could also lead to small or no change in heart rate in 

response to the unexpected stall. However, this does not explain a decrease in heart rate when 

compared to baseline in the unexpected stall. In the baseline flight the students were required 

to fly through virtual hoops to help them find and land at the airstrip (Table 1). Virtual hoops 

were used in most of the university student flights as it took away the requirement of 

navigation. There were no such hoops in the unexpected stall flight. Flying through the 

virtual hoops in the expected stall may have been harder requiring more cognitive workload 

than encountering the plane upset and stall horn in the unexpected stall event. High cognitive 

workload leads to higher autonomic arousal (Hyönä et al., 1995; Marinescu et al., 2018; 
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Marshall, 2002). Therefore the virtual hoops may be why there was higher heart rates and 

larger pupil dilation the expected stall flight than in the unexpected stall.  

Information Processing 

It was hypothesized that individuals would spend more time looking inside the 

cockpit at the MFD and PFD head-down flight displays during the unexpected engine failure 

as opposed to the expected engine failure. This was anticipated as the participants would have 

needed to spend more time appraising the situation in comparison to the expected engine 

failure in which they were briefed on the upcoming event. As well as this, the university 

students had not been taught to focus on the outside environment to help find a landing spot, 

and to help safely aviate during an engine failure. It was hypothesized that university students 

would spend less time looking at the different flight instruments in the unexpected stall as it 

is a quick event and they may not realise it is occurring. Contrary to both of the hypotheses 

there were no significant differences in time spent looking at the combined MFD and PFD 

displays during either of the unexpected events.  

The following discussion in the information processing section contains speculation 

on possible differences in gaze time for the entire MFD and PFD, and the airspeed indicator 

during the expected and unexpected events and therefore conclusions should be viewed as 

tentative. 

The only significant difference in terms of gaze behaviour between the expected and 

unexpected versions of both event types, was percentage time spent viewing the GPS. 

University students spent significantly more time viewing the GPS in the unexpected engine 

failure and stall compared to the expected engine failure and stall, respectively. This could be 

because to navigate in the expected events students followed mission compass and virtual 

hoops, however for navigation in the unexpected events the GPS was used. The participants 

spent a similar amount of time viewing the attitude indicator, and the altimeter during all stall 
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and engine failure events. There is a possibility that there is an undetected true difference in 

percentage time spent viewing the airspeed indicator.  Although non-significant, participants 

spent more time looking at the airspeed indicator in the unexpected engine failure and stall 

compared to the expected engine failure and stall, respectively. However, this is just 

speculation.  

Visual and cognitive processing is thought to occur during fixations (Salvucci & 

Goldberg, 2000). In this study, fixations are the percentage time participants spent looking at 

the individual AOIs. The GPS and the airspeed indicator are arguably the most recognisable 

and familiar displays to non-pilots. The altimeter requires a mental translation, similar to that 

of reading an analogue clock, and thus requires a degree of effort and learning. The attitude 

indicator is possibly the most helpful instrument for novices, to ensure stable plane handling 

as well as enabling the participant to maintain altitude without stalling while gliding during 

engine failure recovery. The attitude indicator, although visual is not comparable to anything 

laypeople would see or use in everyday life. The airspeed indicator, is very straightforward 

and is similar to a car speedometer. Furthermore, students were taught to use the airspeed 

indicator at each take-off and landing throughout the experiment. The GPS is also similar to 

any GPS used on the ground e.g. Google maps. Therefore participants would have likely had 

a degree of familiarity with the GPS. Kirschenbaum (1992) found that novice operator’s 

information gathering strategy was driven by ease, as participants tended to look at controls 

that were close to each other. Consistent with this, in the unexpected flight events university 

students appear to be focusing their attention on the controls that are familiar, easy to use, and 

easy to comprehend (the airspeed indicator and the GPS). This suggests that during the 

unexpected engine failure university students may have adopted an information processing 

strategy that reduced their cognitive load.   
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The unexpected stall was a very quick event, and it is possible that the students did 

not actually realise that it was occurring. It was common for participants to induce the stall 

horn via bad plane handling in the training phases, which may have caused the stall horn to 

be less salient as an indicator of an emergency event. The lack of change in heart rate 

supports this, however the increase in pupil diameter does not. Participants may have a higher 

workload due to the plane upset, occurring in the unexpected stall regardless if they did not 

recognize the event, this would explain the increase in pupil dilation. Participant’s pattern of 

information search in the unexpected stall also supported the idea that they did not recognize 

that there was an abnormal event occurring. In the unexpected stall the airspeed indicator 

would be the most useful instrument in the diagnoses of the situation as observing it would 

reveal that at 500feet there was a sharp drop in airspeed leading to stall. Although it was not 

significant, University students spent less time viewing the airspeed indicator in the 

unexpected stall than in the expected stall. If students were trying to diagnose the situation 

they should have noticed the sharp change in airspeed occurring at the same time as 

turbulence and loss of smooth controlled flight. The finding that students spent significantly 

more time viewing the GPS in the stall suggest that students did not recognise the event was 

occurring, and therefore continued to fly and navigate towards their end goal of Stewart 

Island. Participants continued to view the GPS, even though it would provide minimal help 

for recovery in a stall. 

Although the differences were not significant, the data indicate that students may have 

spent longer on average looking inside the cockpit (heads down) at the MFD and the PFD 

during the unexpected compared to the expected engine failure and stall events (Figure 11). 

In the expected event flight participants were informed of what was going to occur at the start 

of each flight. Therefore participants did not need to spend time diagnosing the situation 

when it occurred. However, during the unexpected event flights, participants would have 
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needed to assess and try and diagnose the situation. This may explain why participants spent 

longer looking inside the cockpit at the head down display showing the MFD and the PFD 

during the unexpected engine failure and stall events.  

Performance 

It was hypothesized participants that crashed in the unexpected engine failure would 

spend more time looking at the displays than students that landed safely. This is because the 

students that landed safely would have concentrated on the external environment to find a 

safe place to land. Contrary to the hypothesis there were no significant differences in the 

amount of time participants spent looking inside at the cockpit (head down display) at the 

PFD and PFD between those that crashed and those that landed safely. Those that crashed 

spent significantly longer looking at the airspeed indicator. Participants that crashed spent 

similar amounts of time looking at the attitude indicator, and the altimeter. Although not 

significant participants that crashed had a larger mean percentage time looking at the GPS 

compared to the students that landed safely. As well as this, participants that crashed spent 

longer overall looking inside at the cockpit (head down display) at the PFD and PFD than 

those that landed safely, however these differences were not significant. Therefore the 

tendency for students to spend more time looking at the airspeed indicator and the GPS in the 

unexpected compared to the expected engine failure is likely to have been a change in 

information processing strategy that was detrimental to performance.  

It was hypothesized that in the unexpected events university students would have a 

poorer performance (e.g. more crashes in engine failure, and more altitude lost in the stall) 

compared to the expected events. As hypothesized more participants crashed during the 

unexpected engine failure than the expected engine failure. However, this may simply be due 

to the complexity of the landing. Consistent with the hypotheses individuals that crashed in 

the engine failure had higher heart rates, and slightly larger increases in pupil dilation during 



56 

the engine failure than participants who landed safely, however these differences were not 

significant. Heart rate and pupil dilation was not associated with recovery time or altitude lost 

in the either stall event. 

Conclusion 

Although this study was good for a proof-of-concept, a majority of the physiological 

and performance measurements were not significantly different between the unexpected and 

the expected events as expected. Although students had only just learned to fly it was still 

expected that they may have an autonomic response to unexpected emergency events. Thiese 

lack of differences were hypothesized to be due to a lack of motivation, existing high 

workload, or a lack of recognition of emergency cues and danger. The results of this first 

study indicate that students have higher arousal during both expected and unexpected flight 

events compared to before the events. This is suggested by and the significantly larger pupil 

dilations during the event compared to before the event. However, the small increases in heart 

rate in the unexpected events when comparing to baseline indicate that there was no startle 

reaction. Instead it is speculated that the small increases in heart rate indicate increases in 

cognitive workload. 

 In the unexpected abnromal participants tended to focus on the GPS which provides 

navigation information as well as an estimated time until flight completion. Therefore the 

information participants gathered during the unexpected events does not indicate any 

inclination of trying to assess and safely recover from the events. This may indicate that 

participants did not recognize the events, or did not care that they had occurred, which also 

may explain the lack of the hypothesized arousal. The information search strategy could also 

indicate that when encountering abnormal events the university students relied on the 

information that was the easiest to process even when that information was not particularly 

helpful concerning the current flight situation. 
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Chapter 3: Study 2  

Overview 

Method 

The second phase of the study investigated the same research questions as Study 1 but 

with general aviation pilots. The study investigated physiological arousal, information 

processing, and performance during unexpected flight events compared with expected flight 

events. General aviation pilots completed a series of seven short simulator flights (Table 2). 

The first flight was an orientation flight where pilots first flew in the simulator and the 

experimenter checked all recordings. Amongst the flights were expected and unexpected 

presentations of two abnormal events; aerodynamic stalls, and engine failures. The expected 

abnormal event was presented to the participants consistent with normal flight training (CAA, 

2012), which pilots would have practiced before. The unexpected abnormal event was 

presented in a novel and unexpected manner consistent with a real life emergency (Table 2). 

The other two flights were non-event flights. One of these flights were used for the baseline 

data (Table 2). Flight data, eye movements, and heart rate was recorded during these 

simulator tasks to assess physiological responses, information gathering systems, and 

performance to the flight events. 

Hypotheses 

It was hypothesized that pilots would have a higher heart rate and larger pupil dilation 

during the unexpected flight events (engine failure and stall) compared to the expected flight 

events, and baseline (heart rate), or before the event (pupil dilation). It was also hypothesized 

that pilots would have a higher heart rate and larger pupil dilation during the expected events 

compared to the baseline flight or before the events, respectively. In unexpected flight events 

pilots would have needed to assess and diagnose the situation, compared with the expected 

events where they were informed of what was happening and therefore could skip the 
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assessment phase. Therefore, it was hypothesized that pilots will spend more time looking 

inside at the cockpit (head down display) during unexpected events. It was hypothesized that 

in the unexpected events pilots would perform more poorly than in the expected events (e.g. 

more crashes in engine failure, more altitude lost in the stall, and more incorrect responses) 

compared to the expected events. It was also hypothesized that those pilots that showed 

impaired performance would also show high arousal indicative of the startle reflex. 

Furthermore, it was hypothesized pilots that crashed in the unexpected engine failure would 

have spent more time looking at the controls than pilots that landed safely, as the pilots may 

have forgotten to prioritise aviating and focus on the flight displays and instruments. Lastly it 

was hypothesized that pilots that performed better on unexpected abnormal events would 

have similar information gathering strategies as revealed by the eye tracking data. 

Method 

Participants 

Twenty-two pilots from the local Otago area were recruited through posters at local 

institutions, word of mouth, and social media advertising. Pilots were given $40 for their 

participation in the research. Pilots were required to have at minimum solo flight 

certification. The ages of the pilots ranged from 16 to 61, and their level of experience ranged 

from 15 hours to 2050 hours. There was 1 female pilot and 21 male pilots.  

Apparatus  

The apparatus used was similar to Study 1. The flight simulator set-up remained the 

same.  Pilot participants were not shown the flight school PowerPoint, or given any training 

flights, as ability was assumed. The information sheet (Appendix E), and the consent form 

(Appendix F) were altered to reflect the pilot participants and the associated monetary 

reimbursements for their time. As well as this, demographics were recorded using an online 

SurveyMonkey questionnaire https://www.surveymonkey.com/r/YYYNR83 (Appendix G).  
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Furthermore, before each flight pilots received introductory pages describing a fictitious 

purpose behind each flight, including the current position of the aircraft, the flight’s weather 

forecast, an aeronautical map of the area, and the goal of the flight (Appendix H).  The 

introduction also included the aerodrome charts for the airstrips or airports involved in the 

flight. The aerodrome charts were sourced from the Aeronautical Information Publication 

New Zealand website (AIPNZ, 2002). 

Procedure 

Introduction to the simulator 

Each session took between 1 to 2 hours depending on how quickly pilots completed 

each flight. Each session only involved one pilot at a time. Pilots first read the information 

sheet (Appendix E), signed the consent form (Appendix F), and then completed the Survey 

Monkey questionnaire in an adjacent room (Appendix G). Pilots were then verbally 

introduced to the simulator and the MFSX program, and briefed on the outline of the general 

experimental procedure and what was required of them.  Afterwards, pilots were seated in the 

simulator, where the seat position and/or the external image were repositioned to ensure they 

had optimal viewing of the simulated image through the windshield of the simulator cabin. 

The plethysmograph was attached to the pilot’s ear and the eye tracking camera was 

positioned and calibrated. 

To prepare the pilot for each flight they were handed introductory pages describing a 

fictitious purpose behind each flight (Appendix H).  Before each flight pilots were instructed 

to read these pages, and after each flight the experimenter set up the next flight while the pilot 

viewed the charts, maps, and instructions for their next flight.  

Flights 

After viewing the flight briefing information for the orientation flight between Cape 

Foulwind and Westport, pilots were asked to inform the experimenter when they were ready 
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to start the flight. The experimenter then un-paused the loaded simulated flight and then the 

pilot completed the task. This process was repeated for all remaining flights which were 

presented in a randomized order. The randomization was done using 

https://www.randomizer.org/ (Urbaniak & Plous, 1997).  

The aircraft chosen for the experiment was the Cessna 172SP which is the most widely 

available rental aircraft and is used by most flight schools. This ensured that most of the 

pilots had some level of familiarity with the aircraft or at least experience with a very similar 

aircraft. After the orientation flight from Port Foulwind to Westport pilots completed seven 

further flight simulation tasks which are described in Table 2. Four of these flights included 

inducing or responding to two types of abnormal flight events; aerodynamic stall (unexpected 

and expected versions), engine failure (unexpected and expected versions). In the ‘expected’ 

simulation conditions the stall and engine failure flight events were presented in a manner 

that the pilots are likely to be familiar with. These expected abnormal events refer to the 

standardized practice presentations that are commonly taught in all flight training schools 

(FAA, 1988, 1999; CAA, 2012). In contrast, in the ‘unexpected’ flight event simulation 

condition tasks included stall and engine failure flight events presented in a novel manner 

with no forewarning. The abnormal events were designed to be similar to how they could 

present in a real-life situation. 

 

 

 

 

 

 

 



 

 

Table 2. Descriptions of the flights pilot participants underwent in the experiment. 

Flight Origin Destination Event/Description Approximate 

flight time 

(minutes) 

1 Cape 

Foulwind 

Westport Orientation flight. Pilots took off on a small rural air strip and flew for a few 

minutes, before landing at Westport. This flight was designed to allow pilots 

to get used to the feel of the simulator 

5 

2 Invercargill Ryan’s Creek Pilots were presented with a stall at 500 feet while climbing out after take-off 

from Invercargill airport in high winds. This stall was created by rapidly 

shifting prevailing winds from a strong headwind to a slight tailwind. This 

wind change caused a sudden loss in airspeed leading to a stall horn warning. 

The correct response was the same as flight 5 (the expected stall flight). 

5 

3 Pukaki Omarama Expected engine failure (informed on briefing sheets). Five minutes after 

taking off from Pukaki airstrip a total engine failure occured. Pilots were 

required to find a safe place to land.  

5 

4 Glenorchy  Queenstown After taking off from Glenorchy pilots fly along Lake Wakatipu. The 

unexpected engine failure, occured approximately eight minutes into the 

flight after the pilots reached the large bend in the Lake and turned towards 

Queenstown. Pilots were required to find a safe place to land. 

13 

5 Dunedin  Taieri In this flight pilots were required to take off from Dunedin airport and fly to a 

safe altitude and practice a power-off stall. This is where the pilot retards the 

throttle and pitches the plane slightly up leading to a decay of airspeed. As 

soon as the stall horn occurs the pilot pitches the plane downwards and 

moves the throttle to maximum thrust. 

10  

6 Manapouri Te Anau Pilots took off in good conditions and land at Te Anau. There were no events 

in this flight. 

5  
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7 Glentanner  Mount Cook Pilot took off from Glentanner and landed at Mount Cook. There were no 

events in this flight. The recordings from this flight were used as a baseline 

measurement.  

8  

8 Roxburgh Alexandra Pilots took off from Roxburgh and landed at Alexandra.  12 

 

 



 

 

Results 

Data Screening 

The data screening process was the same as Study 1. 

Physiological Startle Measures 

Heart Rate 

For expected and unexpected events, the mean heart rate scores were calculated using 

LabChart7. For engine failure events, the heart rate scores were calculated for one minute 

after the event started, for each pilot, separately. One minute was chosen as following the 

engine failure, pilots took a between one to four minutes to land. For the aerodynamic stall 

events, the mean heart rate for the 30 seconds after the beginning of the event were taken for 

each pilot, separately. Thirty seconds were used as the two stall events took between 10 and 

60 seconds. For the baseline heart rate, the mean heart rate of the five central (1 minute after 

start of file until the sixth minute) minutes of the baseline flight, were calculated for each 

pilot separately.  

Engine Failure 

Mean Heart Rate 

The unexpected engine failure elicited the highest mean heart rate (M = 98.25bpm, SD 

=14.74), compared to the expected engine failure (M = 93.74bpm, SD=15.88), and the 

baseline flight (M = 89.24bpm, SD = 12.90) (Figure 12).  A one-way repeated measures 

ANOVA was conducted to determine whether there was a statistically significant difference 

in mean heart rate over the different engine failure flight types (expected and unexpected), 

and the baseline heart rate flight in pilots. Boxplot diagrams identified one outlier in both 

engine failure flights. These results were excluded as they appear to be due to a measurement 

malfunction where the pilots heart rate in all conditions was over 150 beats per minute. After 

removal two further outliers appeared which were; a low heart rate (approximately 60bpm), 
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and a high heart rate (approximately 120bpm). These heart rates can be considered within the 

normal physiological range and were therefore kept for the analysis (Froelicher & Myers, 

2007). The data were normally distributed for each flight, as assessed by the Shapiro-Wilk 

test (p >.05 ). The assumption of sphericity was met, as assessed by Mauchly’s test of 

sphericity, χ2(2) = 0.898, p = .359. There were statistically significant differences in mean 

heart rates over the expected and unexpected engine failures and the baseline flight, F(2,40) = 

15.902, p <.001, partial η2 = .443. Post hoc analysis with a Bonferroni adjustment revealed 

that heart rate was statistically significantly higher for the unexpected compared to both the 

expected engine failure (4.51bpm, 95% CI [0.074, 8.935], p =.045), and the baseline flight 

(9.01bpm, 95% CI [4.455, 13.563], p < .0005). The heart rate was also significantly higher 

for the expected engine failure compared to baseline flight (4.50bpm, 95% CI [1.057, 

7.952], p < .0005). The ANOVA was significant with the outlier included and continued to be 

significant after the removal.   

Figure 12. The mean heart rates (BPM) for pilot participants, for the expected and 

unexpected engine failure and stall flights, as well as the baseline flight, with standard error 

bars (+/-2 SE). 
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Difference from baseline 

The mean increase in heart rate from baseline in the expected engine failure was 

smaller (M = 4.50bpm, SD = 6.05) compared to the unexpected engine failure (M = 9.01bpm, 

SD = 7.99). A difference score was obtained by subtracting the unexpected engine failure 

difference from the expected engine failure difference. The difference score was normally 

distributed as shown by a Shapiro-Wilk test (p < .05), there was no outliers as assessed by a 

boxplot. A paired t-test indicated that this was a statistically significant mean difference of 

4.50bpm, 95% CI[0.97, 8.04], t(21) = 2.656, p = .015, d = 0.58. 

Aerodynamic Stall 

Mean heart rate 

Pilots had a higher heart rate in the expected stall flight (M = 97.25bpm, SD = 22.14) 

compared to the unexpected stall flight (M = 92.02bpm, SD =14.77) and the baseline flight 

(M = 90.70bpm, SD = 14.33) (Figure 12). A one-way repeated measures ANOVA was 

conducted to determine whether there was a statistically significant difference in mean heart 

rate between the two different stall flight types (expected and unexpected), and the baseline 

heart rate flight. There were no statistically significant differences in mean heart rate between 

the different stall flights and the baseline flight.   

Difference from baseline 

The mean increase in heart rate from baseline in the expected stall was larger (M = 

4.93bpm, SD = 6.96) compared to the unexpected stall (M = 1.27bpm, SD = 11.98). The 

difference score was obtained by subtracting the unexpected stall heart rate increase from the 

expected stall heart rate increase. The difference score was not normally distributed as shown 

by a Shapiro-Wilk test (p > .05), there was two outliers (one extreme and one normal) as 

assessed by a boxplot. Removal of both outliers led to a normal distribution and no outliers as 

assessed by boxplots. A paired t-test indicated that this was a statistically significant mean 
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difference of 4.78bpm, 95% CI[0.63, 8.94], t(13) = 2.489, p = .027, d = 0.67. The paired t-test 

was significant with both the outliers included in the analysis, as well as only the extreme 

outlier excluded. 

Pupil Dilation 

The Gazepoint software tracks pupil size in pixels (pupil dilation) for both eyes 

separately over the course of the recording. Using the eye-tracking video it was determined 

what time the event started and ended. These times were used to calculate separate pupil 

dilation averages for the left pupil and the right pupil, before and during each event, for each 

pilot. The average of the left and right pupil was calculated for each participant, separately, 

producing before event and during event pupil dilation averages for each flight. The 

difference between these were calculated by calculating the average pupil dilation during the 

event minus average pupil dilation before the event. The difference was compared between 

expected and unexpected flights. Comparing the differences controlled for the fact that to 

keep the flights variable they were programmed at different times of the day which meant 

different amounts of sunlight. For example the Glentanner (baseline) flight was programmed 

early in the morning therefore the lighting could have affected the pupil dilation.  

Engine Failure 

Expected: As shown in Figure 13, participants on average had a smaller pupil dilation 

before the expected engine failure (M = 17.18 pixels, SD = 3.02) and larger pupil dilation 

during the expected engine failure (M = 18.55 pixels, SD = 3.15). The difference (during 

engine failure average pupil dilation – before engine failure pupil dilation) pupil dilation data 

were assessed and it was found that there was one outlier but the data were normally 

distributed, as assessed by boxplot and Shapiro-Wilk test (p >.05), respectively. The outlier 

was examined and it was determined to be plausible. A statistically significant mean change 

in pupil dilation of 1.38 pixels was found, 95% CI[1.014, 1.738], t(16) = 8.059, p < .0005, d 
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= 1.95. A paired t-test was completed with the outlier removed and with the outlier in place 

both resulted in significant tests, therefore the outlier was included 

Unexpected: As shown in Figure 13, participants on average had a smaller pupil 

dilation before the unexpected engine failure (M = 16.17 pixels, SD = 2.84) and larger pupil 

dilation during the unexpected engine failure (M = 18.11 pixels, SD = 3.25). The difference 

pupil dilation data were assessed and it was found that there was one outlier but the data were 

normally distributed, as assessed by boxplot and Shapiro-Wilk test (p > .05), respectively. 

The outlier was examined and it was determined to be plausible. A paired t-test completed 

with the outlier removed and with the outlier in place both resulted in significant tests, 

therefore the outlier was included. A statistically significant mean change in pupil dilation of 

1.94 pixels was found, 95% CI[1.485, 2.392], t(16) = 9.062, p < .0005, d = 2.20.  

Change in pupil dilation: As shown in Figure 13, during the unexpected engine 

failure pilots had a larger increase in pupil dilation (M = 1.83 pixels, SD = 0.72), compared to 

the expected engine failure (M = 1.32 pixels, SD = 0.50).  The change in pupil dilation in the 

expected engine flight was subtracted from the change in pupil dilation in the unexpected 

engine failure flight. The resulting difference variable was analysed for normality and 

outliers. The difference pupil dilation data were assessed and it was found that there were two 

outliers, one extreme outlier, and one standard outlier, the data were not normally distributed, 

as assessed by boxplot and Shapiro-Wilk test (p = .050), respectively. Removal of both the 

outliers, resulted in a normal distribution of data with no outliers, as assessed by boxplot and 

Shapiro-Wilk test (p >.05), respectively. A paired t-test indicated there was a statistically 

significant larger mean increase in pupil dilation of 0.54 pixels in the unexpected engine 

failure, 95% CI[0.177, 0.837], t(14) = 3.296, p = .005, d = 0.85. It is important to note that 

before the removal of the outliers the paired t-test was only marginally statistically significant 
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(p = .057). Only removing the extreme outlier also resulted in a non-significant paired t-test 

(p = .091). 

Figure 13. Mean pilot pupil pixels (dilation) for before and during each expected and 

unexpected stall and engine failure with standard error bars (+/-2 SE). 

 

Aerodynamic Stall 

Expected: Pilots on average had a smaller pupil dilation before the practice stall (M = 

16.36 pixels, SD = 2.79) and slightly larger pupil dilation during the practice stall (M = 16.96 

pixels, SD = 2.26) (Figure 13). There was no significant difference between pupil dilation 

before and after the practice stall.  

Unexpected: As shown in Figure 13, participants on average had a smaller pupil 

dilation before the unexpected stall (M = 17.10 pixels, SD = 3.42) and larger pupil dilation 

during the unexpected stall (M = 17.75, SD = 3.30). The difference pupil dilation data were 

assessed and it was found that there were two outliers, one extreme and another standard, and 

the data were not normally distributed, as assessed by boxplot and Shapiro-Wilk test (p = 

.001), respectively. The extreme outlier was examined and it was determined to not be 
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plausible when comparing to all other pupil dilation data. It was excluded from the analysis, 

the other outlier was kept as it was considered plausible when compared to other difference 

scores. After excluding the extreme outlier, the data were assessed, and found to be normally 

distributed (Shapiro-Wilk test (p > 0.05)). However, the secondary analyses of the boxplot 

showed two further outliers which were assessed and were found to be plausible. Paired t-test 

completed on data with the two further outliers removed and with the outliers in place both 

resulted in significant results, so it was decided to report the results with the included outliers. 

A paired t-test indicated aa statistically significant mean difference of 0.65 pixels, 95% 

CI[0.248, 1.051], t(11) = 3.562, p = .004, d = 1.03.  

Change in pupil dilation: The unexpected stall had on average a slightly larger change 

in pupil dilation (M = 0.65 pixels SD = 0.63) compared to the expected practice stall (M = 

0.61 pixels, SD = 1.11). A paired t-test indicated that this difference was not significant. 

Information Gathering and Processing 

Eye tracking data were used to calculated duration of fixation on AOI. AOI were the 

different flight instruments displayed on the PFD and the MFD e.g. the altimeter (Appendix 

I).  The percentage time spent looking at each of the AOI was recorded from the beginning to 

the end of each event (Appendix I). The percentage of time pilots time spent looking inside 

the cockpit (head down display) at the flight display (PFD and MFD) was calculated.  

As Appendix I shows the instruments on the PFD and MFD were split into 10 AOI; 

Airspeed indicator; Attitude Indicator; Altimeter; Engine Instruments; Turn Coordinator, 

Directional Gyro, Vertical Speed Indicator, GPS, Navigational Instruments (grouping of 

VOR1, VOR2, and ADF), and the entire flight display (MFD and PFD).  The differences 

between the percentage time viewed in the unexpected compared to the expected engine 

failure were calculated for each AOI (expected – unexpected). Before inferential testing, this 

difference data was assessed for outliers and the normality. 
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Due to multiple testing occurring, an adjustment was made in so that only analyses 

where the p value as under 0.025 were considered significant. This value was chosen to 

prevent Type I and Type II errors.  

Engine Failure 

Airspeed Indicator 

As shown in Figure 14, pilots spent a larger percentage of their time observing the 

airspeed indicator in the expected engine failure practice (M = 1.85%, SD = 1.36) as opposed 

to the unexpected engine failure emergency (M = 0.79%, SD = 0.65). The difference data 

were assessed and it was found that there were no outliers and the data were normally 

distributed, as assessed by boxplot and Shapiro-Wilk test (p >.05), respectively. A paired t-

test indicated that there was a statistically significant mean difference of 1.06%, 95% 

CI[0.380, 1.737], t(16) = 3.308, p = .004, d = 0.80. 

Attitude Indicator 

As shown in Figure 14, pilots spent a larger percentage of their time observing the 

attitude indicator in the expected engine failure practice (M = 0.28%, SD = 0.20) as opposed 

to the unexpected engine failure emergency (M = 0.15%, SD = 0.11).. A paired t-test 

indicated that there was no statistically significant differences (p = .028). 

Altimeter 

As shown in Figure 14, the untransformed data showed that pilots spent a larger 

percentage of their time looking at the altitude meter in the expected engine failure flight (M 

= 0.84%, SD = 0.91) compared to in the unexpected engine failure (M = 0.22%, SD = 0.18). 

The difference data were assessed and it was found that there were 4 outliers and the data 

were not normally distributed, as assessed by boxplot and Shapiro-Wilk test (p = .001), 

respectively. Histograms show that data were moderately positively skewed. Therefore, a 

square root transformation was conducted. The transformed difference data were assessed 
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and it was found that there were no outliers and the data were normally distributed for each 

flight, as assessed by boxplot and Shapiro-Wilk test (p >.05), respectively. A paired t-test 

performed on the transformed data showed that this was a significant difference, t(16) 

=3.304, p = .004. The paired t-test completed on the untransformed data was also significant.  

GPS 

As shown in Figure 14, the untransformed data showed that pilots spent a greater 

percentage of their time looking at the GPS in the expected engine failure flight (M = 0.53%, 

SD = 0.61) compared to in the unexpected engine failure (M = 0.29%, SD = 0.18). The 

difference data were assessed and it was found that there were two outliers and the data were 

not normally distributed, as assessed by boxplot and Shapiro-Wilk test (p < .0005), 

respectively. Histograms show that the both the expected and unexpected data were 

moderately positively skewed. Therefore, a square root transformation was conducted on 

both the percentage time expected and unexpected attitude indicator AOI data. The difference 

of these two scores was computed. The square root difference data were assessed and it was 

found that there were two outliers and the data were normally distributed, as assessed by 

boxplot and Shapiro-Wilk test (p >.05), respectively. The outliers were retained as they very 

close to the next highest acceptable value (0.57 and 0.56 versus 0.53). A paired t-test 

performed on the transformed data showed that this was a significant difference, t(16) 

=3.104, p = .007. The paired t-test completed on the untransformed data were also significant. 

Turn Coordinator 

As shown in Figure 14, the untransformed data showed that participants spent a larger 

percentage of their time looking at the turn coordinator in the expected engine failure flight 

(M = 0.24%, SD = 0.25) compared to in the unexpected engine failure (M = 0.12%, SD = 

0.10). The difference data were assessed and it was found that there were two outliers (Pilot 

20; -0.51, and pilot 10, -0.57) and the data were not normally distributed for each flight, as 
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assessed by boxplot and Shapiro-Wilk test (p = .014), respectively. These outliers were 

considered as plausible values, therefore, a square root transformation was conducted on both 

the percentage time expected and unexpected turn coordinator AOI data. The difference of 

these two scores was computed. The square root difference data were assessed and it was 

found that there were no outliers and the data were normally distributed, as assessed by 

boxplot and Shapiro-Wilk test (p >.05), respectively. A paired t-test performed on the 

transformed data showed that this was a significant difference, t(16) =2.944, p = .010. The 

paired t-tests completed on the untransformed data with and without the outliers were also 

significant.  

Directional Gyro 

As shown in Figure 14, the untransformed data showed that pilots spent a longer 

percentage of their time looking at the directional gyro in the expected engine failure flight 

(M = 0.14%, SD = 0.14) compared to in the unexpected engine failure (M = 0.07%, SD = 

0.06). The difference data were assessed and it was found that there was one outlier and the 

data were not normally distributed for each flight, as assessed by boxplot and Shapiro-Wilk 

test (p = .036), respectively. The data were positively skewed, therefore, a square root 

transformation was conducted on both the percentage time expected and unexpected 

directional gyro AOI data. The difference of these two scores was computed. The square root 

difference data were assessed and it was found that there were no outliers and the data were 

normally distributed, as assessed by boxplot and Shapiro-Wilk test (p >.05), respectively. A 

paired t-test performed on the transformed data showed that this was a significant difference, 

t(16) =2.862, p = .011. Paired t-tests completed on the untransformed data with and without 

the outlier were also significant. 
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Vertical Speed Gauge 

Pilots spent a larger percentage of their time observing the vertical speed indicator in 

the expected engine failure practice (M = 0.21%, SD = 0.22) as opposed to the unexpected 

engine failure (M = 0.10%, SD = 0.07) (Figure 14). A paired t-test showed that this difference 

was not significant. 

Navigational Instruments (grouping of VOR1, VOR2, and ADF) 

 Pilots spent a greater percentage of their time observing the navigational instruments 

in the expected engine failure practice (M = 0.25%, SD = 0.22) as opposed to the unexpected 

engine failure (M = 0.15%, SD = 0.11) (Figure 14). A paired t-test showed that this difference 

was not significant. 

Engine Instruments 

Pilots spent a larger percentage of their time observing the engine instruments in the 

expected engine failure practice (M = 0.12%, SD = 0.18) as opposed to the unexpected engine 

failure (M = 0.07%, SD = 0.10) (Figure 14). A paired t-test showed that this difference was 

not significant. 

Inside  

As shown in Figure 15, pilots spent a larger percentage of their time observing the 

PFD and MFD displayed on the LCD screen inside the cockpit in the expected engine failure 

practice (M = 6.51%, SD = 2.17) as opposed to the unexpected engine failure emergency (M 

= 3.73%, SD = 1.44). The difference data were assessed and it was found that there were no 

outliers and the data were normally distributed for each flight, as assessed by boxplot and 

Shapiro-Wilk test (p > .05), respectively. There was a statistically significant mean difference 

of 2.82%, 95% CI[1.333, 4.228], t(16) = 4.073, p = .001, d = 0.99. 
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Figure 14.  Mean percentage time pilots spent looking at the different AOI (flight 

instruments) from the PFD and MFD during the expected and unexpected engine failures and 

aerodynamic stall flights with standard error bars (+/-2 SE). 

 

Figure 15. Mean percentage time pilots spent looking at the combined PFD and MFD during 

the expected and unexpected engine failure and aerodynamic stall flights with standard error 

bars (+/-2 SE). 
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Stall 

 Airspeed Indicator 

 As shown in Figure 14, pilots spent a larger percentage of their time observing the 

airspeed indicator during the unexpected stall (M = 1.16%, SD = 1.04) as opposed to the 

expected stall (M = 0.15%, SD = 0.10) The difference data were assessed and it was found 

that there were no outliers and the data were normally distributed, as assessed by boxplot and 

Shapiro-Wilk test (p >.05), respectively. There was a statistically significant mean difference 

of 1.01%, 95% CI[0.399, 1.629], t(12) = 3.594, p = .004, d = 1.00. 

Attitude Indicator 

As shown in Figure 14, pilots spent a larger percentage of their time observing the 

attitude indicator during the unexpected stall (M = 0.13%, SD = 0.09) as opposed to the 

expected stall (M = 0.06%, SD = 0.07). The difference data were assessed and it was found 

that there were no outliers and the data were normally distributed for each flight, as assessed 

by boxplot and Shapiro-Wilk test (p >.05), respectively. There was a statistically significant 

mean difference of 0.07%, 95% CI[0.017, 0.125], t(12) = 2.887, p = .014, d = 0.80. 

Altimeter 

 Pilots spent a smaller percentage of their time observing the altimeter speed 

indicator during the expected stall (M = 0.15%, SD = 0.16) as opposed to the unexpected stall 

(M = 0.28%, SD = 0.28) (Figure 14). A paired t-test showed that this difference was not 

significant. 

GPS 

 As shown in Figure 14, pilots spent a larger percentage of their time looking at the 

GPS in the unexpected stall (M = 0.29%, SD = 0.29) compared to in the expected stall (M = 

0.01%, SD = 0.02). The difference data were assessed and it was found that there was one 

outlier and the data were normally distributed, as assessed by boxplot and Shapiro-Wilk test 
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(p > .05), respectively. The outlier was assessed and decided to be plausible, and thus was 

kept in the analysis. A paired t-test performed showed that there was a significant difference 

of 0.28%, 95% CI[0.107, 0.450], t(12) = 3.539, p = .004, d = 0.98.  

Turn Coordinator 

As shown in Figure 14, the untransformed data showed that participants spent a larger 

percentage of their time looking at the turn coordinator in the unexpected stall flight (M = 

0.24%, SD = 0.36) compared to during the expected stall (M = 0.04%, SD = 0.04). The 

difference data were assessed and it was found that there were two extreme outliers and the 

data were not normally distributed (positively skewed, as assessed by boxplot and Shapiro-

Wilk test (p < .0005), respectively. These outliers were considered as plausible values, 

therefore, a square root transformation was conducted on both the percentage time expected 

and unexpected turn coordinator AOI data. The difference of these two scores was computed. 

The square root difference data were assessed and it was found that there were no outliers and 

the data were normally distributed, as assessed by boxplot and Shapiro-Wilk test (p >.05), 

respectively. A paired t-test performed on the transformed data showed that there was a 

significant difference, t(12) =2.555, p = .025. The paired t-test completed on the 

untransformed data excluding the outliers was also significant. The paired t-test completed on 

the untransformed data with the outliers was not significant. 

Engine Instruments  

As shown in Figure 14, the untransformed data indicates that participants spent a 

slightly greater percentage of their time looking at the engine instruments in the unexpected 

stall (M = 0.03%, SD = 0.04) compared to during the expected stall (M = 0.002%, SD = 

0.004). The difference data were assessed and it was found that there were no outliers and the 

data were not normally distributed, as assessed by boxplot and Shapiro-Wilk test (p = .007), 

respectively. Observation of a frequency histogram revealed a positively skewed distribution 
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therefore a square root transformation was applied to both the percentage time expected and 

unexpected engine instrument group AOI data. The difference of these two scores was 

computed. The square root difference data were assessed and it was found that there were no 

outliers and the data were normally distributed, as assessed by boxplot and Shapiro-Wilk test 

(p >.05), respectively. A paired t-test performed on the transformed data indicated that there 

was a significant difference, t(12) =2.770, p = .017. The paired t-test completed on the 

untransformed data was also significant.  

Navigational Instruments (grouping of VOR1, VOR2, and ADF) 

As shown in Figure 14, pilots spent a larger percentage of their time looking at the 

navigational instrument group in the unexpected stall flight (M = 0.06%, SD = 0.06) 

compared to in the expected stall flight (M = 0.01%, SD = 0.03). The difference data were 

assessed and it was found that there was no outliers and the data were normally distributed, as 

assessed by boxplot and Shapiro-Wilk test (p > .05), respectively. A paired t-test performed 

showed that there was a significant difference of 0.05%, 95% CI[0.012, 0.022], t(12) = 4.069, 

p = .002, d = 1.13.  

Directional Gyro  

 Participants spent a similar percentage of their time observing the directional gyro in 

the expected stall practice (M = 0.02%, SD = 0.03) and the unexpected stall (M = 0.03%, SD 

= 0.04) (Figure 14). A paired t-test showed that this difference was not significant. 

Vertical Speed Gauge 

 Participants spent a slightly lower percentage of their time observing the vertical 

speed gauge in the expected stall practice (M = 0.09%, SD = 0.08) as opposed to the 

unexpected stall (M = 0.12%, SD = 0.13) (Figure 14). A paired t-test indicated that this 

difference was not significant. 
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Inside  

As shown in Figure 14, pilots spent a larger percentage of their time observing the 

PFD and MFD displayed on the LCD screen inside the cockpit during the unexpected stall 

event (M = 3.16%, SD = 1.68) as opposed to the expected stall e (M = 0.83%, SD = 0.30). 

The difference data were assessed and it was found that there were no outliers and the data 

were normally distributed, as assessed by boxplot and Shapiro-Wilk test (p > .05), 

respectively. A paired t-test indicated that there was a statistically significant mean difference 

of 2.33%, 95% CI[1.320, 3.332], t(12) = 5.037, p < .0005, d = 1.40. 

 

Performance 

Engine Failure 

Crash 

In the unexpected engine failure 54.5% (12 of 22) of the pilots landed safely and 

45.5% (10 of 22) of the pilots either crashed or attempted to land on the water. No pilots 

crashed in the expected engine failure crash.  

Time to pull back on throttle to prevent engine surges affecting glide 

The time to pull back on the throttle was calculated from when the engine failure occurred to 

when the throttle was completely closed. This is done during an engine failure to prevent any 

engine surges affecting the planes glide (CAA, 2012). In both flights six pilots out of 19 

(31.60%) failed to retard the throttle after engine failure. These pilots were excluded from the 

analysis. In the unexpected engine failure flight pilots took longer to retard the throttle (N = 

12, M = 3.42 seconds, SD = 2.11), than in the expected engine failure condition (N = 12, M = 

2.67 seconds, SD = 2.42). A paired t-test showed that this difference was not significant.  
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Stall  

Stall Recovery Time 

 The time to recover from the expected practice stall was calculated from the time that 

the pilot retarded the throttle, and the airspeed was reduced to 60 knots, then after the stall 

occurred till the plane returned to level flight. The time to recover from the unexpected stall 

was calculated from the time that the plane reached 500ft till the time that the pilot 

successfully passed the wind shear and reached 550ft. On average pilots took longer to 

recover in the unexpected stall flight (N = 12, M = 36.98 seconds, SD = 20.49) compared to 

the expected stall flight (N = 12, M = 17.95, SD = 3.47). Due to differences in calculation 

method, and flight configuration, recovery time is not comparable between the unexpected 

and the expected stall flights.  

Altitude lost 

On average pilots lost more altitude in the expected stall flight (N = 12, M = 215.00 

feet, SD = 73.31) compared to the unexpected stall flight (N = 12, M = 59.62, SD = 67.03). 

The altitude lost is not comparable between the two due to the fact that the tail wind change 

was only between 500 and 550 feet, therefore when the pilots dropped below 500feet in the 

unexpected condition, the head wind picked up, this minimised the altitude loss. This 

probably explains why the mean altitude lost was only around 50 feet.  

Applying the correct recovery 

In the unexpected stall flight 30.8% (4 of 13) pilots incorrectly pulled back on the 

throttle after hearing the stall warning. As well as this in the unexpected stall flight 38% (5 of 

13) pilots incorrectly did not lower the nose of the plane and pitch it downwards in response 

to the stall horn 
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Time to apply maximum power  

As in the Casner et al. (2012) study, the time to apply maximum power was examined, 

however all pilots already had the throttle at maximum power before the stall occurred. 

Performance and Heart Rate 

Pilot 15 was excluded from all heart rate analyses due to having abnormal heart rate 

measurements.  

Engine Failure 

Pilots that landed safely in the unexpected engine failure flight had a higher heart rate 

(N = 11, M = 100.57, SD = 14.31), than those that crashed in the unexpected engine failure 

flight (N = 10, M = 95.69, SD = 15.53). An independent t-test showed that this difference was 

not significant.  

Stall 

Pulled back on throttle 

Pilots who incorrectly pulled back on the throttle after the stall horn sounded showed 

higher heart rates (N = 4, M = 91.03, SD = 7.51), than pilots who did not move the throttle (N 

= 9, M = 89.25, SD = 12.84). An independent t-test showed that this difference was not 

significant.   

Pitched the nose downwards 

 Pilots who correctly pitched the nose downwards after the stall horn sounded had 

lower heart rates (N = 9, M = 87.29, SD = 4.11), than pilots who did not pitch the nose 

downwards (N = 4, M = 94.21, SD = 8.75). An independent t-test showed that this difference 

was not significant.   
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Performance and Pupil Dilation.  

Engine Failure 

Crash landing or safely landing in unexpected engine failure and heart rate 

Participants that landed safely in the unexpected engine failure flight had slightly 

smaller pupil dilation (N = 12, M = 18.04, SD = 2.95), than those that crashed in the 

unexpected engine failure flight (N = 10, M = 18.20, SD = 3.77). An independent t-test 

showed that this difference was not significant.  

Participants that landed safely in the unexpected engine failure had a slightly larger 

increase in pupil dilation from before the engine failure to during the engine failure (N = 12, 

M = 1.97, SD = 0.96), compared to those that crashed (N = 10, M = 1.91, SD = 0.86). An 

independent t-test showed that this difference was not significant.  

Stall  

In the stall flights, one pilot had extreme outlier data for pupil dilation indicating a 

likely measurement error for one of the stall flights; his data was excluded from the analyses. 

Pull back on throttle 

Pilots who incorrectly pulled back on the throttle had a larger pupil dilation during the 

unexpected stall (N = 4, M = 18.33, SD = 4.50), compared to pilots who did not pull back on 

the throttle (N = 8, M = 17.47, SD = 2.84). An independent t-test showed that this difference 

was not significant.  

Pilots who incorrectly pulled back on the throttle had a smaller increase in pupil 

dilation from before the stall to during the stall (N = 4, M = 0.48, SD = 0.35), compared to 

pilots who did not pull back on the throttle (N = 8, M = 0.73, SD = 0.74). An independent t-

test showed that this difference was not significant.  
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Pitched nose downwards 

Pilots who correctly pitched the nose downwards after the stall horn showed a smaller 

pupil dilation (N = 4, M = 17.58, SD = 2.75), compared to pilots who did not pitch the nose of 

the plane down (N = 8, M = 18.10, SD = 4.69). An independent t-test showed that this 

difference was not significant.  

Pilots who correctly pitched the nose downwards after the stall horn sounded showed 

smaller increase in pupil dilation (N = 8, M = 0.52, SD = 0.51), whereas pilots that did not 

pitch the nose downwards showed a larger increase in pupil dilation (N = 4, M = 0.91, SD = 

0.86). An independent t-test showed that this difference was not significant.  

Performance and AOIS 

Engine Failure 

Airspeed 

Pilots that landed safely after the unexpected engine failure spent a larger percentage 

of their time looking at the airspeed indicator (M = 0.94, SD = 0.76), compared to pilots who 

crashed (M = 0.63, SD = 0.50) (Figure 16). An independent t-test revealed that this was not a 

significant difference. 

Attitude Indicator 

Pilots that landed safely after the unexpected engine failure spent a greater percentage 

of their time looking at the attitude indicator (M = 0.17, SD = 0.13), compared to pilots who 

crashed (M = 0.13, SD = 0.10) (Figure 16). An independent t-test revealed that this was not a 

significant difference. 

Altimeter 

Pilots that landed safely after the unexpected engine failure spent a greater percentage 

of their time looking at the altimeter (M = 0.26, SD = 0.21), compared to pilots who crashed 



83 

(M = 0.18, SD = 0.15) (Figure 16). An independent t-test revealed that this was not a 

significant difference. 

Navigational Instruments 

Pilots that landed safely after the unexpected engine failure spent a smaller percentage 

of their time looking at the navigational instruments (M = 0.11, SD = 0.06), compared to 

pilots who crashed (M = 0.20, SD = 0.14) (Figure 16). An independent t-test revealed that this 

was not a significant difference. 

GPS 

 Pilots that landed safely after the unexpected engine failure spent a smaller 

percentage of their time looking at the GPS (M = 0.27, SD = 0.17), compared to pilots who 

crashed (M = 0.31, SD = 0.39) (Figure 16). An independent t-test revealed that this was not a 

significant difference. 

Engine Instruments 

Pilots that landed safely after the unexpected engine failure spent a similar percentage 

of their time looking at the engine instruments (M = 0.08, SD = 0.13), as the pilots who 

crashed (M = 0.06, SD = 0.08) (Figure 16). An independent t-test revealed that there were no 

significant differences. 

Turn Coordinator 

Pilots that landed safely after the unexpected engine failure spent a similar percentage 

of their time looking at the turn coordinator (M = 0.11, SD = 0.06), as the pilots who crashed 

(M = 0.12, SD = 0.14) (Figure 16). An independent t-test revealed that there were no 

significant differences. 

Directional Gyro 

Pilots that landed safely after the unexpected engine failure spent a similar percentage 

of their time looking at the directional gyro (M = 0.08, SD = 0.06), as the pilots who crashed 
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(M = 0.06, SD = 0.06) (Figure 16). An independent t-test revealed that this was not a 

significant difference. 

Vertical Speed Indicator 

 Pilots that landed safely after the unexpected engine failure spent a similar 

percentage of their time looking at the vertical speed indicator (M = 0.09, SD = 0.08), as the 

pilots who crashed (M = 0.10, SD = 0.08) (Figure 16). An independent t-test revealed that 

there were no significant differences. 

Inside Cockpit (Head down display) 

Pilots that landed safely after the unexpected engine failure spent a smaller percentage 

of their time looking inside the cockpit at the screen displaying the MFD and the PFD (M = 

3.58, SD = 1.02), compared to pilots who crashed (M = 3.89, SD = 1.87) (Figure 17). An 

independent t-test revealed that this was not a significant difference. 
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Figure 16. Mean percentage gaze time for each different AOI (flight instrument) for pilots 

who crashed or landed safely in the unexpected engine failure flight with standard error bars 

(+/-2SE). 

Stall  

Airspeed 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a larger percentage of their time looking at the airspeed indicator (M = 1.61, SD = 

0.83), compared to pilots who responded incorrectly (M = 1.52, SD = 1.13). An independent 

t-test revealed that this was not a significant difference. 

Pilots that correctly left the throttle at full power following the stall spent a larger 

percentage of their time looking at the airspeed indicator (M = 1.52, SD = 0.83), compared to 
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pilots who responded incorrectly by pulling back the throttle (M = 1.16, SD = 1.13). An 

independent t-test revealed that this was not a significant difference. 

Attitude Indicator 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a slightly larger percentage of their time looking at the attitude indicator (M = 0.16, SD 

= 0.08), compared to pilots who responded incorrectly (M = 0.12, SD = 0.10). An 

independent t-test revealed that this was not a significant difference. 

Pilots that correctly left the throttle at full power following the stall spent a smaller 

percentage of their time looking at the attitude indicator (M = 0.14, SD = 0.96), compared to 

pilots who responded incorrectly by pulling back the throttle (M = 0.16, SD = 0.06). An 

independent t-test revealed that this was not a significant difference. 

Altimeter 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a larger percentage of their time looking at the altimeter (M = 0.46, SD = 0.25), 

compared to pilots who responded incorrectly (M = 0.10, SD = 0.18).  The data from the 

correct pilot group had no outliers and their data was normally distributed. The data from the 

incorrect pilots was not normally distributed and they had 1 extreme outlier and 1 standard 

outlier. This is likely due to the very small sample numbers. It was decided not to transform a 

distribution based on very small numbers. An independent samples t-test showed statistically 

significant mean difference of 0.36%, 95% CI[0.070, 0.655], t(10) = 2.763, p = .020, d = 

0.771. 

Pilots that correctly left the throttle at full power following the stall spent a smaller 

percentage of their time looking at the altimeter (M = 0.28, SD = 0.28), compared to pilots 

who responded incorrectly by pulling back the throttle (M = 0.38, SD = 0.34). An 

independent t-test revealed that this was not a significant difference. 
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Navigational Instruments 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a larger percentage of their time looking at the navigational instruments (M = 0.07, SD 

= 0.07), compared to pilots who responded incorrectly (M = 0.04, SD = 0.04). An 

independent t-test revealed that this was not a significant difference. 

Pilots that correctly left the throttle at full power following the stall spent a larger 

percentage of their time looking at the navigational instruments (M = 0.07, SD = 0.06), 

compared to pilots who responded incorrectly by pulling back the throttle (M = 0.03, SD = 

0.04). An independent t-test revealed that this was not a significant difference. 

GPS 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a smaller percentage of their time looking at the GPS (M = 0.23, SD = 0.23), compared 

to pilots who responded incorrectly (M = 0.41, SD = 0.39). An independent t-test revealed 

that this was not a significant difference. 

Pilots that correctly left the throttle at full power following the stall spent a smaller 

percentage of their time looking at the GPS (M = 0.29, SD = 0.22), compared to pilots who 

responded incorrectly by pulling back the throttle (M = 0.34, SD = 0.56). An independent t-

test revealed that this was not a significant difference. 

Engine Instruments 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a similar percentage of their time looking at the engine instruments (M = 0.03, SD = 

0.04), compared to pilots who responded incorrectly (M = 0.03, SD = 0.04).  

Pilots that correctly left the throttle at full power following the stall spent a similar 

percentage of their time looking at the engine instruments (M = 0.03, SD = 0.04), compared 

to pilots who responded incorrectly by pulling back the throttle (M = 0.03, SD = 0.04).  
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Turn Coordinator 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a larger percentage of their time looking at the turn coordinator (M = 0.36, SD = 0.47), 

compared to pilots who responded incorrectly (M = 0.07, SD = 0.07). An independent t-test 

revealed that this was not a significant difference. 

Pilots that correctly left the throttle at full power following the stall spent a larger 

percentage of their time looking at the turn coordinator (M = 0.30, SD = 0.43), compared to 

pilots who responded incorrectly by pulling back the throttle (M = 0.08, SD = 0.10). An 

independent t-test revealed that this was not a significant difference. 

Directional Gyro 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a similar percentage of their time looking at the directional gyro (M = 0.04, SD = 0.05), 

compared to pilots who responded incorrectly (M = 0.03, SD = 0.04). An independent t-test 

revealed that there was no significant differences. 

Pilots that correctly left the throttle at full power following the stall spent a similar 

percentage of their time looking at the directional gyro (M = 0.03, SD = 0.05), compared to 

pilots who responded incorrectly by pulling back the throttle (M = 0.04, SD = 0.05). An 

independent t-test showed that this was not a significant differences. 

Vertical Speed Indicator 

 Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a larger percentage of their time looking at the vertical speed indicator (M = 0.20, SD = 

0.11), compared to pilots who responded incorrectly (M = 0.02, SD = 0.04). The data from 

the correct pilot group had two extreme outliers and their data was normally distributed. The 

data from the incorrect pilots was not normally distributed and they had 1 extreme outlier. 

This is likely due to the very small sample numbers. It was decided not to transform a 
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distribution based on very small numbers. An independent samples t-test showed statistically 

significant mean difference of 0.18%, 95% CI[0.060, 0.300], t(10) = 3.350, p = .007, d = 

0.616. 

Pilots that correctly left the throttle at full power following the stall spent a larger 

percentage of their time looking at the vertical speed indicator (M = 0.14, SD = 0.14), 

compared to pilots who responded incorrectly by pulling back the throttle (M = 0.09, SD = 

0.09). An independent t-test showed that this was not a significant difference. 

Inside Cockpit (Head down display) 

Pilots that correctly pointed the nose of the plane downwards following the stall horn 

spent a smaller percentage of their time looking inside the cockpit at the screen displaying the 

MFD and the PFD (M = 4.07, SD = 1.29), compared to pilots who responded incorrectly (M = 

2.36, SD = 1.54). An independent t-test revealed that this was not a significant difference. 

Pilots that correctly left the throttle at full power following the stall spent a smaller  

percentage of their time looking inside the cockpit at the screen displaying the MFD and the 

PFD (M = 3.24, SD = 1.72), compared to pilots who responded incorrectly by pulling back 

the throttle (M = 3.71, SD = 1.36). An independent t-test showed that this was not a 

significant difference. 
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Discussion 

Physiological Measurements 

It was hypothesized that pilots would have a higher heart rate and larger pupil dilation 

during the unexpected flight events (engine failure and stall) compared to the expected flight 

events and baseline (heart rate) or before the event (pupil dilation). It was also hypothesized 

that pilots would have a higher heart rate and larger pupil dilation during the expected events 

compared to the baseline flight or before the events, respectively. Consistent with the 

hypotheses pilots had significantly higher heart rates in the unexpected engine failure, 

compared to the expected engine failure, and the baseline flight. The pilots’ heart rates in the 

expected engine failure were also significantly higher than during the baseline flight. In 

support of the hypothesis, during the unexpected engine failure and the expected engine 

failure, pilots had significantly larger mean pupil dilations during the event compared to 

before the event. Furthermore, the unexpected engine failure led to a significantly larger 

mean increase in pupil dilation than the expected engine failure. These findings indicate that 

both the expected and unexpected engine failures led to increases in autonomic arousal, and 

the unexpected engine failure had the largest autonomic response.   

When comparing the data with other research, the unexpected engine failure resulted 

in arousal analogous to startle, whereas the expected engine failure showed arousal consistent 

with an increased mental workload. The pilots mean heart rate increase compared to the 

baseline flight in the unexpected engine failure was 9.01bpm. This value is very similar to the 

mean increase in heart rate found by other research that has investigated physiological 

responses to an auditory startle stimulus (Chou et al., 2014; Deuter et al., 2012; Holand et al., 

1999). Lahtinen, Koskelo, Laitinen, and Leino (2007) found that during extremely difficult 

tactical manoeuvres in combat missions, pilots’ heart rates increased by approximately 10-

15bpm. Therefore the data suggest that the mean increase in heart rate found during the 
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unexpected engine failure in the current study was similar to startle and pilots’ physiological 

reactions in high stress situations. Additionally, pupil dilation has been shown to increase 

during the startle reaction (Bradley et al., 2005; Rivera et al., 2014).  During the expected 

engine failure pilots had a mean increase in heart rate of 4.50bpm. This heart rate increase 

was similar to the findings of Fallahi et al. (2016) and Grassmann et al. (2017) who 

investigated the changes in heart rate in response to increasing workload. In support of this, 

Lahtinen et al. (2007) showed that pilots had an increase of around 5bpm above baseline 

during the simpler parts of their combat flight task. Furthermore, pupil dilation has also been 

shown to increase with an increase in autonomic arousal, and with increasing cognitive 

workload (Bradley et al., 2008; Einhäuser et al., 2008; Hyönä et al., 1995; Kahneman, 1973; 

Marinescu et al., 2018; Marshall, 2002). Therefore, when comparing the physiological data 

from other research, the results from the current study indicate that in response to an 

unexpected engine failure, pilots show arousal consistent with the startle reaction or high 

stress. Furthermore, pilots appear to have arousal analogous to high workload in the expected 

engine failure.  

Consistent with the hypothesis, during the unexpected stall, pilots had a significantly 

larger pupil dilation compared to before the event. In contrast, there was no significant 

difference in pupil dilation during the expected stall event, compared to before the event. 

Contrary to the hypothesis, the increase in mean increase heart rate compared to the baseline 

flight was significantly larger for the expected stall, compared to the unexpected stall. There 

were no significant differences in mean heart rate between the unexpected and expected stall 

events and the baseline flight. These data are conflicting as the pupil dilation shows a 

significant increase in arousal in the unexpected stall only, while the heart rate data indicates 

a larger change in heart rate from baseline in the expected stall compared to the unexpected 

stall. Both increases in pupil dilation and heart rate can indicate an increase in cognitive 
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workload and autonomic arousal (Bradley et al., 2008; Einhäuser et al., 2008; Hyönä et al., 

1995; Kahneman, 1973; Marinescu et al., 2018; Marshall, 2002). On account of this, it is 

concluded that both stall types appear to have led to physiological arousal in the pilots.  

To arrange an unexpected stall independent of the pilots’ actions required the 

simulator to be programmed with major changes in wind speed and direction. The coding of 

the aerodynamic stall only led to just over 50% of pilots encountering the stall horn. The 

pilots that did not encounter the stall horn were excluded from the stall analyses. Therefore, 

for the stall flights the sample size was quite small (N = 13). Due to this the power of the 

statistical tests were limited. Therefore, some of the following trends that are described were 

based on data from non-significant analyses. The non-significant data suggest that pilots had 

a higher heart rate in the expected stall event, compared to the unexpected stall event. 

Additionally, both stall events elicited higher heart rates than the baseline flight.  

Pilots showed a similar increase heart rate for the expected stall (4.93bpm) as the 

expected engine failure. This heart rate increase value (around 4-5bpm) is thought to be 

consistent with increases in heart rate in response to an increased cognitive workload, as 

shown by previous research (Fallahi et al., 2016; Grassmann et al., 2017). Compared to the 

expected stall, in the unexpected stall the mean increase in heart rate from the baseline flight 

value was small (less than 1.5bpm). Fallahi et al. (2016) found that workers from cement, city 

traffic control and power plant control had an increase in heart rate of approximately 2bpm 

during low mental workload tasks in comparison to baseline. In relation to this finding, the 

heart rate increase in the unexpected stall may be due to arousal from a small increase in 

mental workload. Neither stalls showed physiological arousal consistent with the startle 

response (Chou et al., 2014; Deuter et al., 2012; Holand et al., 1999). Due to the very 

different nature of the two stall events as well as the contradicting pupil dilation and heart 
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rate findings, it is not possible to make comparative conclusions between the expected and 

unexpected stall.  

 Inducing startle or high levels of stress via unexpected events may rely on the type of 

abnormal flight event encountered and the subjective appraisal of its severity. It is possible 

that the unexpected engine failure led to a higher increase in heart rate than the unexpected 

stall due to the pilots realizing that they would be required to land. In contrast, the unexpected 

stall only required an adjustment to plane handling. Previous research has shown that 

subjective appraisals of threat have an impact on the physiological stress response. Hodges 

and Spielberger (1966) investigated the effects of severity of fear (of electric shock) on 

participants’ heart rates. Participants were required to perform a pursuit-rotor task, this 

involved following a small circle on a rotating turntable. After a few practices, some subjects 

were threatened with shock if they performed poorly, others were threatened with shock 

regardless of performance and some participants were not threatened. No shocks were 

actually given, however subjects with a high fear of shock subjects reacted to the threat of 

inevitable shock with significantly greater increases in heart rate than low fear of shock 

subjects. Therefore, the results of Hodges and Spielberger (1966) study as well as the present 

study support the intuitive idea that the consequences of each event impact the magnitude of 

the physiological response. These findings are also consistent with Landman’s (2017a) 

conceptual model, where the perceived intensity of the event can lead to startle (Figure 1, 

repeated below). Pilots may have had a higher fear of emergency landing than stall. As a stall 

that is encountered and safely recovered from is not an emergency. This may explain the 

larger physiological responses in the engine failure events compared to the stall events. 

The physiological changes found in response to an unexpected engine failure in the 

simulator are a positive finding in terms of its implications for training. It appears that 

unexpected flight events, even without a concordant loud noise, or preceding distraction can 
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lead to physiological response analogous to startle. In her article on the technical difficulties 

of simulating the element of surprise in upset recovery training; Bürki-Cohen (2010) stated 

that it may be impossible to generate the exact physiological response in the safety of a 

simulator. However the current research shows that it is possible to create a physiological 

response analogous to startle in a fixed- base simulator. Bürki-Cohen (2010) and Martin et al. 

(2015) suggest creating an in-flight atmosphere conducive to startle; stressing pilots with 

realistic tasks and distractions, or placing a loud auditory stimulus before the startling or 

surprising event. This is to moderate the “simulator mindset” and offset the absence of real-

life risk. Although these suggestions would be helpful for pilot training, they may be 

confounding in quantitative research on startle. The current research shows that these 

confounding stimuli are not necessarily required and some events will lead to arousal 

consistent with startle simply when they occur unexpectedly and in conditions analogous to 

real life.  

Information Processing 

When an unexpected flight event occurs, pilots need to assess and diagnose the 

situation. Therefore, it was hypothesized that pilots would spend more time looking inside at 

the cockpit flight display screen and key instruments during unexpected events compared to 

expected events. Contrary to the hypothesis, during the unexpected engine failure pilots spent 

significantly less time overall looking at the MFD and PFD displayed on the LCD monitor 

compared to the expected engine failure. Furthermore, contrary to the hypothesis during the 

unexpected engine failure, the pilots spent significantly less time looking at the airspeed 

indicator, the altimeter, the GPS, the turn coordinator, and the directional gyro compared to 

the expected engine failure. There were no significant difference in the time spent viewing 

the attitude indicator, the vertical speed gauge, the navigational instruments or the engine 

instruments.  
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Consistent with the hypothesis pilots spent significantly more time viewing inside the 

cockpit (head down display) at the MFD and the PFD during the unexpected stall compared 

to the expected stall.  Specifically, pilots spent significantly more time looking at the airspeed 

indicator, the attitude indicator, the GPS, the turn coordinator, and the engine instruments in 

the unexpected stall. There were no significant differences in the amount of time pilots spent 

time viewing the vertical speed indicator, the directional gyro and the altimeter in the 

unexpected stall compared to the expected stall.  

Pilots are taught that during an engine failure they should rely on external cues instead 

of relying solely on the internal controls. This is reflected in the fact that during both engine 

failures the pilots spent more than 90% of their time viewing outside of the cockpit. However, 

the significant difference between the amount of time spent viewing the controls during the 

expected engine failure (M = 6.51%) compared to the unexpected engine failure (M = 3.73%) 

may reflect a harmful decrease in viewing the flight displays. This may suggest that pilots are 

not spending enough time viewing crucial instruments which will help them to land safely 

during the unexpected engine failure.  

The investigation into the percentage time spent by the pilots looking at the different 

controls is exploratory research. No specific hypotheses were made regarding this data. It is 

also recognized that multiple comparisons are occurring. The significance level was adjusted 

so that any analyses where p >.025 were not considered significant. This was done to prevent 

against Type I errors, as well as Type II errors that occur with a full Bonferroni correction. 

However it is recognized that this correction may not have been conservative enough.  

A reduction in the observation of the critical instruments during the unexpected 

engine failure could be attributed to attentional tunnelling. Visual and cognitive processing 

are thought to occur during fixations (Salvucci & Goldberg, 2000). The physiological data 

suggest that the unexpected engine failure led to more autonomic arousal than the expected 
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engine failure. Therefore, the unexpected engine failure was likely more stressful than the 

expected engine failure. Stress has also been shown to lead to a reduction in peripheral cue 

utilisation and narrowing of the attentional field (Baddeley, 1972; Combs & Taylor, 1952; 

Easterbrook, 1959; Staal, 2004). Furthermore, Streufert and Streufert (1981) concluded from 

their research that danger affects performance by impacting an individual’s breadth of 

attention and ability to logically and calmly process information. In the present study, 

fixations are the percentage time participants spent looking at the individual AOI. Pilots spent 

significantly less time observing the airspeed indicator, altitude meter, GPS, and directional 

gyro, in the unexpected engine failure flight compared to the expected engine failure. The 

data in the present study could indicate attentional tunnelling in response to unexpectedness 

or high arousal; where attention is focused on the threat, possibly the external environment in 

this case, and less concentration on peripheral cues, in this case the flight display instruments.  

Disordered attentional processing due to unusually high levels of arousal and 

vigilance has been shown to result in an indiscriminate search, fast disordered attentional 

shifting and a reduction in the number and quality of other courses of action considered 

(Staal, 2004). The decrease in percentage time spent viewing the flight display during the 

unexpected engine failure may be suggestive of fast disordered attentional shifting. In which 

information processing was disrupted and the pilots shifted their attention so quickly that the 

Gazepoint software did not recognize some fixations. The Gazepoint samples at 60Hz, which 

is a relatively low modern sampling rate (Raney, Campbell, & Bovee, 2014). A sampling rate 

of 60 Hz samples the eye position every 16.7 msec (Raney, Campbell, & Bovee, 2014). A 

60Hz sampling rate will lead to an average error of approximately 8 msec, which could be 

considered too large to study the duration of saccades, but not too large to study the duration 

of fixations (Raney, Campbell, & Bovee, 2014). Thus, pilots decrease in fixations during the 

unexpected engine failure may indicate fast disordered attentional shifting in the form of brief 
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saccades. The eye-tracking data therefore support and extend a previous plethora of research 

on attentional tunnelling and information processing disruption under stress in an operational 

context.  

Pilots spent almost four times as long looking at the flight display screen in the 

unexpected stall compared to the expected stall. Pilots spent more of their time looking at 

most of the instruments during the unexpected stall, even unrelated instruments such as the 

GPS and the engine instruments. Therefore, pilots appear to be attempting to gather and 

process as much information as possible. This is likely to indicate information search 

strategies aiming at assisting situational diagnosis. Previous research has found that less 

experienced operators spend a longer amount of time looking at displays, as well as looking 

at a larger percentage of the information (Kirschenbaum, 1992; Wiggins & O'Hare, 1995). 

The search strategy seen in the unexpected stall is similar to the search strategies used by less 

experienced operators.  

Only the pilots that had a stall horn sound following the decrease in headwind were 

included in the analysis. It would be expected that training and experience would lead the 

stall horn to be a salient indicator of a stall. However, these eye-tracking findings suggest that 

the stall horn may not automatically initiate the required aerodynamic stall schema or frame 

(Landman et al., 2017a) (Figure 1, repeated below). Furthermore, during the experiments, it 

was common for the pilots to express confusion about the event after the unexpected stall 

flight. Therefore, the practice stall template may not be creating automatic associations with 

the stall horn because the practice stall is too different than real-life windshears and stalls. 

This may lead to pilots having to spend a long time uncertain of the flight situation, and 

trying to diagnose it. This is dangerous as a stall requires immediate recovery response, 

especially at low altitudes. 
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Performance 

When comparing performance data, it is almost certain that the analyses were limited 

by low power due to small sample sizes. Therefore this part of the study was mostly 

exploratory in nature, and therefore the findings and conclusions should be viewed and 

considered as such. Perhaps these findings will inspire future research.  

It was hypothesized that in the unexpected events pilots would perform more poorly 

compared to the expected events (e.g. more crashes in engine failure, more altitude lost in the 

stall, and more incorrect responses). Concordant with this in the unexpected engine failure 

approximately 45% of the pilots crashed, where no pilots crashed in the expected engine 

failure. Contrary to the hypotheses, the same percentage of pilots in both engine failure 

flights forgot to pull back the throttle after the engine had failed to prevent engine surges 

affecting the plane’s glide. Concordant with the hypothesis, the remaining participants 

showed a slower response time to pull back the throttle in the unexpected engine failure 

compared to the expected engine failure. However, this difference was not significant.  

The altitude lost and the time to recover in the stall conditions were not comparable 

between the expected and unexpected stall flights as the configuration of the two flights were 

too different. In the unexpected stall flight, pilots already had maximum power before the 

stall occurred. However, concordant with the hypothesis during the unexpected stall 

approximately 31% of pilots incorrectly pulled back on the throttle in response to the stall 

horn, compared to zero percent in the expected stall. As well as this, in the unexpected stall 

38% of pilots did not lower the plane nose in response to the stall horn, compared to zero 

percent in the expected stall. This indicates that in unexpected events pilots can show 

impaired performance whereas in the expected stall events pilot’s performance was optimal 

across the board. This may be due to pilots not recognizing the unexpected stall, lack of 

recognition combined with an incorrect response to the stall horn at 500ft could prove a lethal 
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combination in a real life setting. Consequently, such a high percentage of incorrect responses 

is alarming.   

Pilots showed poorer performance in unexpected events compared to expected events. 

The poorer performance in the unexpected events is consistent with aviation safety reports 

and previous research. In a similar study, Casner et al. (2012) showed that pilots’ 

performance is inferior in unexpected events, compared to when they are expected. As well as 

this aviation accident reports show that pilots are sometimes responding inappropriately to 

what should be well-practiced emergency events, for example not directing the plane 

downwards following a stall warning (NTSB; 1995, 2004, 2010a, 2010b). This research also 

supports findings from Ledegang and Groen (2015) who reported that pilots have trouble 

recovering from aerodynamic stalls when they have not recently reviewed the procedure. As 

pilots in the present study had not always reviewed the stall recovery procedure before 

encountering the unexpected stall. Furthermore, the findings support Landman et al. (2017b) 

and Schroeder et al. (2014) who also found that in response to an unexpected stall a large 

percentage of pilots did not adhere to the standard operating procedures. The current research 

combined with previous findings, and accident reports suggest that pilot performance suffers 

when abnormal events are encountered in an unexpected manner.  

Performance and Arousal 

 It was hypothesized that pilots that show impaired performance would show high 

arousal consistent with the startle reflex. Contrary to this hypothesis there were no significant 

differences in heart rate or pupil dilation between those participants that crashed and those 

that landed safely. Contrary to the hypothesis there were no significant differences in the 

heart rates or pupil dilations of pilots that responded correctly and pilots that responded 

incorrectly following the stall horn. 
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The following discussion is speculation on non-significant data trends. When looking 

at the non-significant values there are both trends that support and do not support the 

hypotheses that pilots that show impaired performance would show high arousal consistent 

with the startle reflex. Contrary to the hypotheses pilots who crashed in the unexpected 

engine failure had lower mean heart rates during the event compared to the individuals that 

landed safely. Concordant with the hypothesis pilots who correctly kept the throttle at full 

power and pilots who correctly directed the nose downwards had lower heart rates than pilots 

that implemented incorrect responses to the stall horn. Furthermore, pilots that incorrectly 

pulled back on the throttle had a larger pupil dilation but a smaller change in pupil dilation 

compared to pilots that exhibited the correct response. Consistent with the hypothesis, pilots 

that failed to pitch the nose downwards following the stall horn had a larger pupil dilation and 

a larger increase in pupil dilation compared to the pilots that responded correctly. Thus, there 

is some preliminary evidence supporting the idea that increased arousal may lead to incorrect 

responses to the unexpected stall, however due to lack of power and small sample size this 

conclusion is tentative at best. Future research should investigate this relationship, and its 

causality.  

Contrary to what was expected, this present study did not find that pilots that 

performed poorly had high autonomic arousal analogous to startle. Research on fear 

conditioning has shown that when startle occurs in the presence of perceived threat the 

response can become exacerbated leading to what is known as fear potentiated startle 

(Bradley, Moulder, Lang; 2005). The fear potentiated startle that occurs due to a combination 

of a startling stimulus, and the perception of threat can lead to a fully developed stress 

reaction (Eysenck, Payne, & Derakshan, 2005). Research shows that this stress can impair 

information processing (Eysenck et al., 2005; Thackray & Touchstone, 1983), as well as 

reduce working memory capacity (Bradley et al., 2005).  An increase in heart rate and pupil 
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dilation in the simulated unexpected engine failure in the present study, supports the well-

accepted idea that startle due to an unexpected flight emergency may lead to fear potentiated 

startle and consequently impaired decision making and behaviour. The presence of the 

arousal analogous to startle is suggestive that in the presence of real threat, the startle could 

develop into to a fully-fledged fear potentiated startle response.  

Performance and Information Processing 

It was hypothesized pilots that crash in the unexpected engine failure would spend 

more time looking at the displays than pilots that landed safely, as the pilots may forget to fly 

the plane and focus on the controls. Contrary to the hypotheses there were no significant 

differences in the amount of time pilots spent looking at the flight display (MFD and PFD) 

between pilots that crashed and pilots that landed safely. It was also hypothesized that pilots 

that performed better on the unexpected engine failure would have similar information 

gathering strategies as revealed by the eye tracker data. Contrary to the hypothesis there were 

no significant differences in the amount of time pilots that crashed and pilots that landed 

safely spent looking at the individual flight instruments.  

This section was limited by small sample sizes due to between-subjects comparisons. 

It is thought that these statistical analyses were limited by lower power due to these small 

sample sizes. For example, thirteen pilots incorrectly did not lower the nose of the plane and 

pitch it downwards in response to the stall horn. However, the non-significant findings are 

interesting and consistent with aforementioned findings and theories, therefore the following 

examination of the nonsignificant trends was reported. However, these observations are 

tentative and only indicate future research possibilities instead of conclusive findings. 

Following an engine failure in a small aircraft under visual flight rules, pilots are 

taught to focus on the environment outside the aircraft, with some reliance on the airspeed 

indicator and the altimeter. The airspeed is used to stay on the best glide speed and ensure a 
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safe landing speed, and the altimeter is used for constantly checking height above ground 

when working out where to land. A quick scan of other instruments is also useful to watch for 

any change in aircraft state, for example partial power may return. Pilots that landed safely 

spent more time observing the airspeed indicator and the altimeter compared to pilots that 

crashed, although these differences were not significant. Pilots that crashed spent more time 

focusing on the navigational instruments, and the GPS. There were no substantial differences 

for the remaining AOIS or instruments. Consequently, it appears that pilots that perform well 

are better able to simplify their focus to the important instruments which will help them to 

retain control of the aircraft and operate in a safe manner. 

When looking at the non-significant differences pilots that landed safely spent more 

time viewing the airspeed indicator, the attitude indicator, and the altimeter. Whereas, pilots 

who crashed spent more time viewing the navigational instruments and the GPS. Pilots that 

crashed and pilots that landed safely spent a similar percentage of time viewing the turn 

coordinator, the engine instruments, the directional gyro, and vertical speed indicator. 

Interestingly when comparing Figure 14 and Figure 16, pilots that landed safely had similar 

information search strategy as pilots did in the expected engine failure. Both pilots that 

landed safely in the unexpected engine failure, and pilots overall in the expected engine 

failure, spent more time observing the airspeed indicator, the attitude indicator, and the 

altimeter. These findings suggest that the unexpectedness of the engine failure disrupts the 

effectiveness and efficiency of some pilots search strategies.  

Pilots that crashed appear to be spending longer looking at instruments that are 

informative about their location. Pilots are taught that while flying they should be observant 

of possible landing places in case of an engine failure. In the simulated flight it was not 

possible to look outside the side windows of the cockpit. Therefore, after the occurrence of 

the engine failure, pilots were required to rely on their memory of the terrain they had 
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subsequently passed, or pick a landing point in front of them. It is possible the pilots that 

crashed had a lack of situational awareness, were unsure of where to land, and therefore spent 

more time observing the navigational instruments and the GPS. This time may have been 

better spent attempting to safely landing the plane in an area in their direct line of sight. 

It was also hypothesized that pilots that performed better during the unexpected stall 

would have similar information gathering strategies as revealed by the eye tracker data. Pilots 

that incorrectly did not point the nose of the plane down spent significantly less time viewing 

the altimeter, and the vertical speed indicator. When looking at the nonsignificant differences, 

pilots that did not pitch the nose of the plane downwards, spent less time viewing inside the 

flight displays than the pilots that responded correctly. Pilots that incorrectly did not pitch the 

nose of the plane down spent more time looking at the GPS, and less time viewing the turn 

coordinator.  

Contrary to the hypothesis there were no significant differences when looking at the 

information search strategies for pilots who incorrectly pulled back on the throttle following 

the stall horn. However, these investigations are almost certainly limited by low power as 

only four of thirteen pilots incorrectly pulled back on the throttle after hearing the stall 

warning. Therefore, again, the following data trends, can only suggest tentative conclusions.  

Pilots that incorrectly pulled back on the throttle following the stall horn, spent longer 

viewing the flight displays. Pilots that incorrectly pulled back on the throttle following the 

stall horn spent less time looking at the airspeed indicator, and the turn coordinator.   

Collectively the data support the hypothesis and indicate that there may be differences 

in the information processing strategies between pilots that perform poorly in unexpected 

abnormal events. As even with a low powered analysis it was found that pilots that 

incorrectly did not point the nose of the plane down spent significantly less time viewing the 
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altimeter, and the vertical speed indicator. It is possible that with a higher powered analysis 

other non-significant differences mentioned might also be confirmed differences.  

The pilots that performed poorly may not have recognized the unexpected stall. This 

is proposed as the pilots that did not pitch the nose down spent significantly less time viewing 

the altimeter and the vertical speed indicator, which are the two instruments that are 

important and helpful in stall recovery. Although non-significant, there was a trend that the 

pilots that did not pitch the nose down spent a larger percentage time viewing the GPS. The 

GPS is a goal orientated instrument displaying the flight path to Stewart Island (the landing 

destination). This suggests that the pilots that did not pitch the nose down, may have just 

continued to fly towards their destination not recognizing the presence of the abnormal stall 

event. Additionally pilots that did not pitch the plane down, spent less overall time viewing 

the flight display. This may indicate pilots that did pitch the nose of the plane down spent 

more time diagnosing the abnormal stall. In contrast pilots that incorrectly pulled back on the 

throttle recognized that there was an abnormal event but initially diagnosed it incorrectly, as 

they implemented a response directly opposite to the trained stall recovery response. This is 

also indicated by the fact that they spent longer looking at the flight display (PFD and MFD), 

which may indicate a longer percentage time spent diagnosing the situation.  

Landman et al’s (2017a) conceptual model of startle and surprise 

Pilots physiological responses to the unexpected engine failure in the current research 

supports Landman et al. (2017b), indicating that surprise and startle can be produced in 

simulated environments following an unexpected event and can therefore be implemented to 

help train upset recovery responses. When looking at the results of this study in terms of 

Landman et al’s (2017a) conceptual model, the findings suggest that in the engine failure 

flights the unexpected event was more startling than the expected event due to its intensity or 

perceived threat (Figure 1). According to Landman et al’s (2017a) conceptual model of startle 
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and surprise in terms of sense-making and decision making, in the unexpected event the 

pilots will likely be operating in a normal flight frame or schema (Figure 1).When the 

abnormal flight event occurs, there will be a frame mismatch and pilots will have to switch to 

a recovery schema specific to the abnormal event which they would have learnt throughout 

their training (Landman et al., 2017a).  However, the finding that pilots spent less time 

looking at the flight instruments during the unexpected engine failure does not support this 

idea, and indicates fast appraisal and selection of response (Figure 1). This may be due to 

emergency landings having the same principles as normal landing, therefore the selection and 

execution of actions can be completed within the active frame of normal flight and require no 

frame switch. However it may also indicate, that because an engine failure is very salient and 

well-practiced, the frame switch may be automatic.  

DUPLICATE Figure 1. Conceptual model of startle and surprise. Solid lines indicate 

sequenced events. Dashed lines indicate potential influences, with plus signs indicating an 

increasing effect and minus signs indicating an impaired effect. Double lines indicate 

thresholds. Reprinted from “Dealing with unexpected events on the flight deck: A conceptual 

model of startle and surprise” by A Landman, E Groen, MM van Paassen, AW Bronkhorst, 

and M Mulder, 2017, Human Factors, 59, p. 1163. Copyright 2017, by the Human Factors and 

Ergonomics Society. 
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According to Landman et al’s (2017a) conceptual model the results from this study 

suggest that the frame switch for the unexpected stall, was less efficient or less accurate 

compared to the unexpected engine failure. Pilots spent a significantly larger percentage of 

time looking at the flight displays (PFD and MFD) during the unexpected stall event, 

compared to the expected stall. According to the model this may indicate that there was a 

mismatch after fast appraisal leading to surprise and then slow appraisal (Figure 1). Some 

pilots incorrectly pulled back on the throttle following the stall horn, which indicates that the 

mismatch occurred after the first selection of actions (Figure 1). According to the model the 

pilots would then start back again at the stimuli perception stage (Figure 1). This is supported 

by the nonsignificant trend that pilots who incorrectly pulled back on the throttle spent longer 

looking at the flight instruments than those that responded correctly.  

When looking at other nonsignificant differences, pilots that did not pitch the nose of 

the plane downwards spent less time viewing the flight display (PFD and MFD) than pilots 

that correctly responded. In terms of Landman et al’s (2017a) model, these pilots did not 

recognise the cues or stimuli, and therefore incorrectly remained in the same frame of normal 

flying (Figure 1).The lack of physiological arousal in the unexpected stall, indicates that 

although the pilots may have been surprised, they were not startled, which according to the 

model is due to lack of perceived threat or intensity (Figure 1). Although overall pilots had 

lower arousal levels in the unexpected stall compared to the expected stall, the results showed 

that pilots that responded incorrectly to the stall had higher heart rates, and larger pupil 

dilations compared to those who implemented the correct recovery. These findings are 

concordant with Landman et al’s (2017a) theory that stress leads to issues with reframing 

such as choosing an incorrect frame, confusion, or loss of situational awareness. Further 

research could investigate the differential responses to abnormal events in accordance to 

Landman et al. (2017a) model.  



107 

The findings of the current research support McKinney Jr and Davis’s (2003) 

conclusions that familiarity due to practice impacts performance. McKinney Jr and Davis 

(2003) defined a wholly practiced event as a scenario including a malfunction that pilots had 

deliberately practiced. Whereas a partially practiced event was one where the malfunction 

occurred within a wider emergency situation which was novel, and had not been practiced. 

The unexpected stall was induced in a manner that pilots would not likely have experienced 

before. Furthermore, after the unexpected stall flight many pilots indicated that that type of 

event is very rare in New Zealand. Concordant with this, a report by the FAA suggests that 

windshear encounters occur infrequently (FAA, 1988). Therefore the unexpected stall 

condition induced by sudden change of wind speed direction would likely fall into McKinney 

Jr and Davis’s (2003) category of ‘partially practiced’. In support of McKinney Jr and 

Davis’s (2003) findings, this present research found impaired responses to an unexpected and 

unfamiliar stall. This calls into question the practice stall method used in normal general 

aviation training as pilots induce the stall themselves. As this would not likely occur in real 

life, stalls occurring during actual flight would always be ‘partially practiced’.  

Flight training occurs in ideal conditions (i.e. perfect landing terrain, and high 

altitude) which is not likely to always be comparable to real life flight emergencies. In the 

unexpected engine failure there were a number of potential areas to land in, however the 

terrain was hazardous and uncertain. Furthermore, in engine failure training pilots are not 

required to land (CAA, 2012) . Differences between training engine failures and the 

unexpected engine failure that occurred in this study, would define the unexpected engine 

failure as partially practiced as well. Performance was impaired in the unexpected versus the 

expected flight conditions, which is consistent with the findings of McKinney Jr and Davis 

(2003) where performance was not improved for event that were only partially practiced. 
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Therefore, training pilots for abnormal events in ideal conditions may not help them deal with 

actual real-life emergencies which require quick thinking and flexibility.  

Conclusion 

Consistent with the hypotheses both expected and unexpected versions of abnormal 

flight events lead to increases in physiological arousal in pilots. Furthermore, the unexpected 

engine failure lead to arousal similar to startle, however it was not possible to make 

comparative conclusions about arousal in the expected and unexpected stall. These 

differences were hypothesized to be due to different subjective appraisal of severity, intensity 

or threat. Results from this study show that it is possible to induce arousal indicative of startle 

in a flight simulator. This has positive implications in terms of the possibility of using 

simulators to train for unexpected abnormal events, which may mediate the negative 

cognitive effects of startle. Pilots have differential information processing strategies for 

unexpected and partially practiced events compared with expected and wholly practiced 

events. This may be due to attentional tunnelling or lack of recognition, and may indicate that 

pilots require more training in controlling the information search strategies upon 

encountering abnormal flight events.  The current research combined with previous findings, 

and accident reports suggest that pilot performance suffers when abnormal events are 

encountered in an unexpected manner. This may be due to lack of recognition and ability to 

adapt training to novel situations. The results of this study extend the evidence supporting 

Landman et al’s (2017a) recent conceptual model of startle and surprise. Furthermore, there 

are many indications of areas that could be further investigated, e.g. characterising the 

different main incorrect responses to abnormal events, in terms of Landman et al’s (2017a) 

study, which may help to inform training templates.  
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Chapter 4: Study 3  

Overview 

Method 

This study used the combined data from Studies 1 and 2 to investigate hypotheses 

related to expertise and performance. Data from Study 1 were used as a ‘novice’ comparison, 

and pilots were separated into ‘intermediate’ (student and privately licenced) and ‘expert’ 

(commercially licenced) pilots. This third phase of the research compared the data over the 

three difference experience levels.  

Hypotheses 

It was hypothesized that during the engine failure and stall flight events, expert pilots 

would have the lowest heart rate and smallest heart rate difference from baseline, compared 

to intermediate pilots and novices, with novices having the highest. It was hypothesized that 

during the engine failure and stall flight events, expert pilots would have the smallest pupil 

dilation and change in pupil dilation compared to intermediate pilots and novices, with 

novices having the largest.  It was hypothesized that expert pilots would spend less time 

looking inside the cockpit at the MFD and PFD, than the intermediate pilots during the 

unexpected events, because they would be faster at diagnosing the situation and quicker to 

implement an effective information search protocol. It was hypothesized that intermediate 

pilots would have the greatest amount of time spent looking inside the cockpit (head down 

display) at the MFD and PFD, as Wiggins and O'Hare (1995) found intermediate pilots 

appear to try and gather as much information as possible. It was hypothesized that novices 

would spend the least amount time viewing the flight display (MFD and PFD) during the 

unexpected stall, as it is likely that they will not identify that there is an abnormal flight 

event. It was hypothesized that novices will spend the most ‘head down’ time looking at the 

flight displays in the unexpected engine failure as they will need to spend more time 
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diagnosing the situation and they had not been taught to focus on the external environment 

during engine failures. It was hypothesized that expert pilots would perform the best 

compared to intermediate pilots and university students, and intermediate pilots would 

perform better than university students. Furthermore, it was hypothesized that expert’s search 

strategies would be more efficient in regards to each specific event, compared to the 

intermediate pilots or the university students.  

Method 

The Survey Monkey questionnaire which pilots filled out before the simulator tasks 

included questions regarding pilot’s personal information and pilot experience (Appendix G). 

Information collected from this included: pilot’s total flight hours, and pilot’s recent flight 

hours, and pilot’s licence. Participants were separated into three groups according to their 

licence; University students (no licence), Student and private licenced (intermediate) pilots, 

and commercial licenced (experts) pilots. Physiological response, information search strategy, 

and performance data were compared over the three different levels of experience.  

Results 

Data Screening 

The data screening process was the same as Study 1. 

Heart Rate 

The design of the of the following analyses was a 2 way mixed ANOVA where 

Expertise had three between subject levels (university students, intermediate pilots, and 

expert pilots) and flight type had three within subject levels (baseline, expected event, and 

unexpected event). 

Pilot 15 was excluded from heart rate analysis as their heart rate values were 

abnormal (see Study 2 for further information).  
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Engine Failure 

Mean Heart Rate 

The sample sizes for the engine failure flights were as follows; University students (N 

= 21), intermediate pilots (N = 12), and expert pilots (N = 9). A two-way mixed ANOVA was 

completed to assess the effect of expertise on mean heart rate during the different flight 

events.  

University students had a similar heart rates in the unexpected engine failure (M = 

83.01, SD = 13.70), and the expected engine failure (M = 82.96, SD = 13.10), which were in 

turn slightly higher than the baseline heart rate (M = 81.46, SD = 12.16) (Figure 17). 

Intermediate pilots had a higher heart rate in the unexpected engine failure (M = 100.44, SD = 

15.09), compared to the expected engine failure (M = 95.66, SD = 16.56), which was in turn 

higher than the baseline heart rate (M = 91.65, SD = 11.60) (Figure 17). Expert pilots had a 

higher heart rate in the unexpected engine failure (M = 95.32, SD = 14.59), compared to the 

expected engine failure (M = 91.19, SD = 15.50), which was in turn higher than the baseline 

heart rate (M = 86.03, SD = 14.51) (Figure 17).  

The presence of outliers in the different heart rate data for each flight was examined 

over each level of experience using boxplots. There was one outlier in the expected engine 

flight for intermediate pilots, the outlier was assessed and was considered plausible, and 

therefore it was kept in the analysis. There were no outliers in the unexpected engine failure 

and baseline flights over the three different expertise levels. The data were normally 

distributed for each flight type over each of the three levels of expertise (Shapiro-Wilk, p > 

.05). There was homogeneity of variances (p > .05) and covariances (p > .05), as assessed by 

Levene's test of homogeneity of variances and Box's M test, respectively. Mauchly's test of 

sphericity indicated that the assumption of sphericity was met for the two-way interaction, 

χ2(2) = 4.222, p = .121.  
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There was a statistically significant interaction between the flight type and experience 

level on mean heart rate, F(4, 78) = 3.8633, p = .009, partial η2 = .157. There were no 

statistically significant differences in mean heart rate (BPM) between experience levels 

during the baseline flight. There was no statistically significant difference in the mean heart 

rate (BPM) between experience levels during the expected engine failure event. There was a 

statistically significant difference in mean heart rate (BPM) over the three different 

experience levels during the unexpected engine failure event, F(2, 39) = 6.300, p = .004, 

partial η2 = .244. 

 Data reported are mean differences between groups. Bonferroni post hoc tests 

indicated that heart rate was significantly higher in the intermediate pilot group (M = +17.43, 

SE = 5.17, p = .005), compared to the university students (Figure 17). Expert pilots had a 

lower heart rate than intermediate pilots (M = -5.12, SE = 6.30, p =.698), but this was not 

significant (Figure 17). Expert pilots had higher mean heart rates than the university student 

group (M = +12.31, SE = 5.69, p =.091), however this was not statistically significant (Figure 

17).  

Change in Heart Rate 

University students had the smallest change in heart rate during the expected engine 

failure compared with baseline (M =1.50, SD = 4.29). The university students were followed 

by the intermediate pilots (M = 4.01, SD = 7.18), who had a smaller change in heart rate than 

the expert pilots (M = 5.16, SD = 4.43). During the unexpected engine failure university 

students had the smallest increase in heart rate compared to baseline (M = 1.55, SD = 5.77), 

followed by the intermediate pilots (M = 8.80, SD = 7.61), who had a slightly smaller 

increase in heart rate than the expert pilots (M = 9.29, SD = 8.92). A two-way mixed ANOVA 

was completed to assess the effect of expertise on change in mean heart rate compared to 

baseline over the expected and unexpected engine failures. 
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Due to outliers and homogeneity of variance being violated the data was transformed 

via a square root transformation. The presence of outliers in the change in heart rate data for 

each flight over each level of experience was examined using boxplots. There were no 

outliers in the unexpected engine failure flight or the expected engine failure for the 

intermediate and expert pilots. Also there was no outliers in the expected engine failure for 

the university students. There was one outlier in the unexpected engine flight for university 

students. The data were normally distributed for each flight type over each of the three levels 

of expertise (Shapiro-Wilk, p > .05). The outlier in the university student group was assessed 

and was considered erroneous and was therefore removed from the analysis. There was 

homogeneity of variances (p > .05) and covariances (p > .05), as assessed by Levene's test of 

homogeneity of variances and Box's M test, respectively.  

The two way mixed ANOVA indicated that there was no significant interaction effect 

between flight type and expertise (p = .466). There was no significant main effect of flight 

type on change in heart rate (p = .255). However, there was a significant main effect of 

expertise level on change in heart rate F(2, 20) = 11.216, p = .001, partial η2 = .529. Post hoc 

analysis with a Bonferroni adjustment revealed that university students had a mean change in 

heart rate 1.17bpm, 95% CI [0.38, 1.95] lower than intermediate pilots, a statistically 

significant difference p =.003. As well as this university students had a mean change in heart 

rate 1.47bpm, 95% CI [0.38, 1.95] lower than expert pilots, a statistically significant 

difference p =.002. There was no statistically significant differences in change in heart rate 

between the expert and the intermediate pilots.  
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Figure 17. Mean heart rate (BPM) for university students, student and private (intermediate) 

pilots, and commercial (expert) pilots for each experimental flight with standard error (+/- 

2SE). 

Aerodynamic Stall 

Mean Heart Rate 

Sample sizes for the stall flights were as follows; University students (No licence) (N 

= 9), Student and private licenced (intermediate) pilots (N = 8), and commercial licenced 

(expert) pilots (N = 8). A two-way mixed ANOVA was completed to assess the effect of 

expertise on mean heart rate during the different flight events.  

University students had a higher heart rate during the expected aerodynamic stall (M 

= 87.68, SD = 13.69), compared to the unexpected stall (M = 83.71, SD = 12.48), which was 

in turn lower than the baseline flight heart rate (M = 86.06, SD = 13.15) (Figure 17). 

Intermediate pilots had a higher heart rate during the expected aerodynamic stall (M = 99.17, 

SD = 15.41), compared to the unexpected stall (M = 89.68, SD = 10.48), which was also 
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lower than the baseline heart rate (M = 92.12, SD = 11.19) (Figure 17). Commercial pilots 

had a higher heart rate during the unexpected aerodynamic stall (M = 86.47, SD = 10.83), 

compared to the expected stall (M = 83.71, SD = 12.48), both stall events elicited a higher 

heart rate from the expert pilots than in the baseline flight (M = 84.37, SD = 14.56) (Figure 

17). A two-way mixed ANOVA indicated that there was no statistically significant interaction 

between the flight type and experience level on mean heart rate (p = .066). There was no 

significant main effect of flight type on mean heart rate (p = .069). There was also no 

significant main effect of expertise level on mean heart rate (p = .094). 

Change in Heart Rate 

University students had the smallest change in heart rate compared to the baseline 

flight during the expected stall (M =1.62, SD = 4.49). The expert pilots also had a small 

change in heart rate in the expected stall (M = 2.80, SD = 6.27), compared to the intermediate 

pilots who had the largest change in heart rate compared to the baseline flight (M = 7.05, SD 

= 7.36). During the unexpected stall the expert pilots had a larger mean increase in heart rate 

(M = 5.32, SD = 15.70), whereas both the intermediate pilots (M = -2.78, SD = 4.86), and the 

university students (M = -2.36, SD = 4.65) had a decrease in heart rate compared to the 

baseline flight. The intermediate pilots had a larger decrease in heart rate than the university 

students.  

A two-way mixed ANOVA was completed to assess the effect of expertise on change 

in mean heart rate compared to baseline over the expected and unexpected stalls. The analysis 

indicated that there was no significant interaction between flight type and expertise (p = 

.063). There was no significant main effect of flight type on change in heart rate (p = .378). 

Additionally there was no significant main effect of expertise on change in heart rate (p = 

.069).  
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Pupil Dilation  

The design of the of the following analyses was a 2 way mixed ANOVA where 

Expertise had three between-subject levels (university students, intermediate pilots, and 

expert pilots) and flight type had two within-subject levels (expected event, and unexpected 

event). 

Engine Failure 

Mean Pupil Dilation 

 University students had the largest pupil dilation (N= 18, M = 19.55, SD = 2.11) in 

the expected engine failure, followed by the commercial pilots (N= 6, M = 19.37, SD = 3.78), 

and then the student and private licenced pilots (N= 11, M = 18.11, SD = 2.85) who had the 

smallest pupil dilation (Figure 18). University students had the largest pupil dilation (N= 18, 

M = 18.75, SD = 2.12) in the unexpected engine failure, followed by the commercial pilots 

(N= 6, M = 18.70, SD = 3.70), and then the student and private licenced pilots (N= 11, M = 

17.22, SD = 3.19) who had the smallest pupil dilation (Figure 18). 

The presence of outliers in the different mean pupil dilation data for each flight over 

each level of experience was examined using boxplots. There were no outliers in the 

unexpected engine failure flight or the expected engine failure for any of the three levels of 

expertise. The data were normally distributed for each flight type over each of the three levels 

of expertise (Shapiro-Wilk, p > .05). There was homogeneity of variances (p > .05) and 

covariances (p > .05), as assessed by Levene's test of homogeneity of variances and Box's M 

test, respectively. 

A two way mixed ANOVA indicated that there was no significant interaction between 

expertise and flight type (p = .827). There was no significant main effect of expertise on 

mean pupil dilation (p =.423). However, there was a significant main effect of flight type on 

mean pupil dilation F(2, 31) = 5.481, p = .026, partial η2 = .146.  
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 Change in pupil dilation 

 University students had the largest increase in pupil dilation (M = 2.20, SD = 0.68) 

from before the expected engine failure to during the expected engine failure, this was larger 

than the intermediate pilots (M = 1.28, SD = 0.51). Experts pilots (M = 1.55, SD = 1.00) had a 

smaller change in pupil dilation compared to the university students, and a larger increase in 

pupil dilation than the intermediate pilots (Figure 19). University students had the largest 

increase in pupil dilation (M = 2.66, SD = 1.09) from before the unexpected engine failure to 

during the unexpected engine failure, followed by the commercially licenced pilots (M = 

1.97, SD = 0.55), and then the student and private licenced pilots (M = 1.69, SD = 0.96) who 

had the smallest increase pupil dilation (Figure 18).  

The presence of outliers in the different change in pupil dilation data for each flight 

over each level of experience was examined using boxplots. There were no outliers in the 

expected engine failure flight for any of the three levels of expertise. In the unexpected 

engine failure the university students had one outlier, and the intermediate pilots had one 

extreme outlier and one regular outlier. The expert pilots had no outliers in the unexpected 

engine failure flights. The data were normally distributed for the expected engine failure over 

each of the three levels of expertise (Shapiro-Wilk, p > .05). The expert pilots also had 

normally distributed data for the unexpected engine failure (Shapiro-Wilk, p > .05). However 

the data were not normally distributed in the unexpected engine failure for the university 

students (Shapiro-Wilk, p = .008), or the intermediate pilots (Shapiro-Wilk, p = .012). 

Removal of all outliers led to a normal distribution in each flight over the difference expertise 

levels, and one further outlier that was assessed and kept in the analysis. There was 

homogeneity of variances (p > .05) and covariances (p > .05), as assessed by Levene's test of 

homogeneity of variances and Box's M test, respectively. 
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The two way mixed ANOVA indicated that there was no significant interaction 

between expertise and flight type on change in pupil dilation (p =.905). There was a 

significant main effect of expertise on change in pupil dilation F(2, 29) = 3.624, p = .039, 

partial η2 = .200. Post hoc analysis with a Bonferroni adjustment revealed that university 

students had an increase in pupil dilation 0.76 pixels. 95% CI [0.03, 1.49] larger than 

intermediate pilots, a significant difference p = 0.041. There was no significant differences 

between expert pilots and university students or expert pilots and intermediate pilots. There 

was a marginally significant main effect of flight type on change in pupil dilation F(2, 29) = 

3.973, p = .056, partial η2 = .120.  

 

Figure 18. Mean pupil dilation (pixels) for university students, student and private 

(intermediate) pilots, and commercial (expert) pilots during the expected and unexpected 

engine failure and stall events, with error bars (+/- 2SE).  
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Figure 19. Mean change in pupil dilation (pixels) for university students, student and private 

(intermediate) pilots, and commercial (expert) pilots during the expected and unexpected 

engine failure and stall events compared to the baseline flight, with error bars (+/- 2SE). 

Stall 

Mean pupil Dilation 

 University students had the largest pupil dilation (N= 9, M = 17.86, SD = 0.84) in the 

expected stall, followed by the expert pilots (N= 6, M = 17.16, SD = 3.57), and then the 

intermediate pilots (N= 7, M = 16.80, SD = 2.73) who had the smallest pupil dilation (Figure 

18). Expert pilots had the largest pupil dilation (N= 6, M = 18.24, SD = 3.91), in the 

unexpected stall followed by the university students (N= 9, M = 17.17, SD = 1.91), and then 

the intermediate pilots (N= 7, M = 16.97, SD = 2.73) who had the smallest pupil dilation 

(Figure 18).  

The presence of outliers in the different change in pupil dilation data for each flight 

was examined over each level of experience using boxplots. There were no outliers in the 

unexpected stall flight for any of the three levels of expertise. In the expected stall the 



120 

university students had two outliers. The intermediate pilots and the expert pilots had no 

outliers in the expected stall flight. The data were normally distributed for the expected and 

unexpected stall flights over each of the three levels of expertise (Shapiro-Wilk, p > .05). The 

two outliers were assessed and determined to be plausible and were therefore kept in the 

analysis. There was homogeneity of variances (p > .05) and covariances (p > .05), as assessed 

by Levene's test of homogeneity of variances and Box's M test, respectively. 

A two way mixed ANOVA indicated that there was a significant interaction of flight 

type and expertise on mean pupil dilation F(2, 19) = 3.668, p = .045, partial η2 = .279. 

However, there was no significant main effect of flight type on mean pupil dilation (p = 

.502), and there was also no significant main effect of licence on mean pupil dilation (p = 

.853). 

Change in pupil dilation 

University students had the largest increase in pupil dilation (M = 1.40, SD = 1.17) 

from before the expected stall to during the expected stall, followed by intermediate pilots (M 

= 0.67, SD = 1.01), and then expert pilots (M = 0.52, SD = 1.20), who had the smallest 

increase pupil dilation (Figure 19). University students had the largest increase in pupil 

dilation (M = 1.08, SD = 1.10) from before the unexpected stall to during the unexpected 

stall, followed by the expert pilots (M = 0.47, SD = 0.57), and then the intermediate pilots (M 

= 0.15, SD = 1.89), who had the smallest increase in pupil dilation (Figure 19). A two-way 

mixed ANOVA indicated there was no significant interaction between flight type and 

expertise on change in pupil dilation (p = .849). There was no main effect of expertise on 

change in pupil dilation (p = .206), and there was no main effect of flight type on change in 

pupil dilation (p = .367). 
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Information Processing 

Due to multiple testing occurring, an adjustment was made in so that only analyses 

where the ANOVA p-value as under 0.025 were considered significant. This value was 

chosen to prevent Type I and Type II errors.  

Engine Failure 

Airspeed Indicator 

Expected: Intermediate pilots spent more time looking at the airspeed indicator (N = 

11, M = 1.92%, SD = 1.53) compared to expert pilots (N = 6, M = 1.71%, SD = 1.11), and 

university students who spent the least percentage time viewing the airspeed indicator (N = 

18, M = 0.33%, SD = 0.36) (Figure 20). Due to the data not being normally distribution 

(positively skewed) Shapiro-Wilk test (p > 0.05), as well as outliers as assessed by boxplots, 

a square root transformation was completed. This resulted in a normal distribution of data and 

no outliers. Homogeneity of variance assumption was met as Levene’s statistic was not 

significant; p > .05. A one-way ANOVA on the transformed data revealed a significant 

difference in the amount of percentage gaze time spent viewing the airspeed indicator over 

the three groups F(2, 32) = 11.92, p < .001. Post hoc Tukey tests indicated that the university 

students spent a significantly longer percentage of time viewing the airspeed indicator than 

the intermediate pilots (p <.001), and the expert pilots (p = .006). However, there were no 

significant differences between the expert pilots and the intermediate pilots.  

Unexpected: Intermediate pilots spent more time looking at the airspeed indicator 

during the unexpected engine failure (N = 11, M = 0.90%, SD = 0.68), compared to university 

students (N = 18, M = 0.60%, SD = 0.63), and expert pilots (N = 6, M = 0.58%, SD = 0.59), 

(Figure 20). A one-way ANOVA showed that these differences were not significant. 
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Attitude Indicator 

Expected: University students spent a larger percentage of their time viewing the 

attitude indicator (N = 18, M = 0.70%, SD = 0.80) compared to intermediate pilots (N = 11, M 

= 0.28%, SD = 0.19), and expert pilots (N = 6, M = 0.28%, SD = 0.24) (Figure 20). A one-

way ANOVA showed that these differences were not significant.  

Unexpected: University students spent more time looking at the attitude indicator (N 

= 18, M = 0.62%, SD = 0.60) compared to intermediate pilots (N = 11, M = 0.17%, SD = 

0.13), and expert pilots (N = 6, M = 0.10%, SD = 0.07) (Figure 20). Due to the data not being 

normally distribution (positively skewed) as well as outliers as assessed by boxplots and 

Shapiro-Wilk test (p > 0.05), a square root transformation was completed. This resulted in a 

normal distribution of data and no outliers. Homogeneity of variance assumption was not met 

as Levene’s statistic p = .007. A one-way Welch ANOVA on the transformed data revealed a 

significant difference in the amount of time spent viewing the attitude indicator over the three 

groups Welch's F(2, 20.251) = 6.373,  p = .007. Games-Howell post hoc tests showed that 

university students had significantly less viewing time than intermediate pilots (p = .026). 

University students also had significantly more viewing time than expert pilots, with a mean 

difference of (p = .004). However, there were no significant differences between the expert 

pilots and the intermediate pilots. 

Altimeter 

Expected: University students spend less time viewing the altimeter (N = 18, M = 

0.21%, SD =0.28), compared to expert pilots (N = 6, M = 0.58%, SD = 0.80) and intermediate 

pilots (N = 11, M = 0.98%, SD = 0.98), who spent the most time viewing the altimeter (Figure 

20). Due to the data not being normally distributed (positively skewed) as well as outliers as 

assessed by boxplots and Shapiro-Wilk test (p > 0.05), a square root transformation was 

completed. This resulted in a normal distribution of data and no outliers. Homogeneity of 
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variance assumption was met as Levene’s statistic p = .163. A one-way ANOVA on the 

transformed data revealed a significant difference in the amount of gaze time spent viewing 

the altimeter over the three expertise levels F(2, 32) = 5.389, p = .010. Post hoc Tukey tests 

indicated that university students spent significantly longer viewing the altimeter than the 

intermediate pilots (p = .007). However there were no significant differences between the 

expert pilots and the university students or the intermediate pilots. 

Unexpected: Expert pilots spent less time looking at the altimeter (N = 6, M = 0.15%, 

SD = 0.20), than the intermediate pilots (N = 11, M = 0.26%, SD = 0.17), and the university 

students (N = 18, M = 0.21%, SD = 0.28) (Figure 20). A one-way ANOVA showed that these 

differences were not significant.  

GPS 

Expected: Expert pilots spent more time looking at the GPS (N = 6, M = 0.94%, SD = 

0.92), than the intermediate pilots (N = 11, M = 0.30%, SD = 0.14), and the university 

students (N = 18, M = 0.17%, SD = 0.21) (Figure 20). Due to the data not being normally 

distributed (positively skewed) as well as outliers as assessed by boxplots and Shapiro-Wilk 

test (p > 0.05), a square root transformation was completed. This resulted in a normal 

distribution of data and no outliers. Homogeneity of variance assumption was met as 

Levene’s statistic was not significant; p > .05. A one-way ANOVA on the transformed data 

revealed a significant difference in the amount of percentage gaze time spent viewing the 

GPS over the three groups F(2, 32) = 10.719, p < .0005. Post hoc Tukey tests indicated that 

expert pilots spent significantly longer viewing the GPS than the intermediate pilots (p = 

.020), and the university students (p <.001). There were no significant differences between 

the university students and the intermediate pilots.  

Unexpected: Expert pilots (N = 6, M = 0.47%, SD = 0.40) spent more time looking at 

the GPS than the university students (N = 18, M = 0.21%, SD = 0.28), and the intermediate 
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pilots (N = 11, M = 0.19%, SD = 0.13), in the unexpected engine failure (Figure 20). Due to 

the data not being normally distributed (positively skewed) as well as outliers as assessed by 

boxplots and Shapiro-Wilk test (p > 0.05), a square root transformation was completed. This 

resulted in a normal distribution of data and no outliers. Homogeneity of variance assumption 

was met as Levene’s statistic was not significant (p > .05). A one way ANOVA on the 

transformed data revealed a significant difference in the amount of percentage gaze time 

spent viewing the GPS over the three groups F(2, 32) = 9.708, p = .001. Post hoc Tukey tests 

indicate that the university students spent significantly longer viewing the GPS than the 

intermediate pilots (p <.001). However, there were no significant differences between the 

expert pilots and intermediate pilots, or the university students.  

Figure 20. The mean percentage gaze time for the airspeed indicator, the attitude indicator, 

and altimeter, and the GPS AOI, for university students, student and private (intermediate) 

pilots, and commercial (expert) pilots for the expected and unexpected engine failures with 

standard error bars (+/-2SE).  
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Inside 

Expected: University students spent less time looking at the PFD and the MFD on the 

LCD monitor (N = 18, M = 4.18%, SD = 3.11), than the intermediate pilots (N = 11, M = 

6.59%, SD = 2.60), and the expert pilots (N = 6, M = 6.35%, SD = 1.21) (Figure 21). There 

was one outlier in the university student group, and the data were not normally distributed. 

When the outlier was removed, the data became normally distributed with no outliers. 

Homogeneity of variance assumption was met as Levene’s statistic was not significant; p = 

.072. A one-way ANOVA on the transformed data revealed a significant difference in the 

amount of time spent viewing the PFD and MFD on the LCD monitor over the three groups 

F(2, 31) = 9.204, p = .001. Post hoc tests show that university students spent significantly less 

time viewing the flight display than intermediate pilots, with a mean difference of 3.02%, SE 

= 0.77, p = .001. University students also had significantly more viewing time than the expert 

pilots, with a mean difference of 2.78%, SE = 0.95, p = .017. Intermediate pilots spent more 

time looking at the flight display, compared to commercial pilots, however this difference 

was not significant (p = .950). 

Unexpected: University students spent more time looking at the PFD and the MFD on 

the LCD monitor (N = 18, M = 4.87%, SD = 3.14), than the intermediate pilots (N = 11, M = 

3.81%, SD = 1.56), and the expert pilots (N = 6, M = 3.57%, SD = 1.31) (Figure 21). A one 

way ANOVA showed that these differences were not significant.  
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Figure 21. Mean percentage time university students, student and private (intermediate) 

pilots, and commercial (expert) pilots, spent viewing the overall PFD and MFD during the 

expected and unexpected engine failure event with standard error bars (+/-2 SE). 

Stall  

Airspeed indicator 

Expected: Expert pilots spent less time looking at the airspeed indicator in the 

expected stall (N = 6, M = 0.11%, SD = 0.11), than both intermediate pilots (N = 7, M = 

0.18%, SD = 0.09) and the university students (N = 9, M =0.21%, SD = 0.29) who spent the 

most time looking at the airspeed indicator (Figure 22). A one-way ANOVA showed that 

these differences were not significant.  

Unexpected: Expert pilots spent more time looking at the airspeed indicator in the 

unexpected stall (N = 6, M = 1.24%, SD = 0.91), than the intermediate pilots (N = 7, M = 

1.10%, SD = 1.22), and the university student (N = 9, M =0.15%, SD = 0.15), who spent the 

least time looking at the airspeed indicator (Figure 22). The intermediate pilot group had one 

outlier, but for all three groups the data was normally distributed. The outlier value of 3.61%, 

this was reduced down to the next largest value; 1.27%. Following this the data was normally 
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distributed in each group, and there were no outliers as assessed by Shapiro-Wilk tests (p < 

0.05), and box plots respectively. The homogeneity of variance assumption was not met as 

Levene’s statistic was significant (p = .001). A one-way Welch ANOVA revealed a significant 

difference in the amount of time spent viewing the airspeed indicator over the three groups 

Welch's F(2, 7.713) = 7.528,  p = .015. However, Games-Howell post hoc tests show no 

significant differences between the groups.   

Attitude indicator  

Expected: University students spent the most time viewing the attitude indicator in the 

expected stall flight (N = 9, M = 0.13%, SD = 0.56), followed by expert pilots (N = 6, M = 

0.09%, SD = 0.08), and then the intermediate pilots (N = 7, M = 0.04%, SD = 0.07) (Figure 

22). A one way ANOVA showed that the differences were not significant.  

Unexpected: University students spent the most time viewing the attitude indicator (N 

= 9, M = 0.34, SD = 0.47), followed by the expert pilot group (N = 6, M = 0.15%, SD = 

0.09), and then the intermediate pilots (N = 7, M = 0.12%, SD = 0.09) (Figure 22). A one way 

ANOVA showed that these differences were not significant. 

Altimeter 

Expected: University students spent less time viewing the altimeter (N = 9, M = 

0.01%, SD = 0.02), compared with the expert pilots (N = 6, M = 0.15%, SD = 0.22), and the 

intermediate pilots (N = 7, M = 0.15%, SD = 0.12) (Figure 21). A one way ANOVA showed 

that these differences were not significant. 

Unexpected: Expert pilots spent a larger percentage of their time looking at the 

altimeter (N = 6, M = 0.46%, SD = 0.27), followed by the private and student pilots (N = 7, M 

= 0.13%, SD = 0.21), and then the university students (N = 9, M = 0.05%, SD = 0.06) (Figure 

22). A one way ANOVA showed that these differences were not significant.  
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GPS 

Expected: Intermediate pilots spent no time observing the GPS (N = 7, M = 0.00, SD 

= 0.00), compared to the university students (N = 9, M = 0.02%, SD = 0.03), and the expert 

pilots (N = 6, M = 0.03%, SD = 0.03), who both spent very little time viewing the GPS 

(Figure 22). A one way ANOVA showed that these differences were not significant.  

Unexpected:  In the unexpected stall university students spent the most time looking 

at the GPS (N = 9, M = 0.98, SD = 01.09), followed by the expert pilots (N = 6, M = 0.41, SD 

= 0.36), and the then private and student pilots (N = 7, M = 0.20, SD = 0.19) (Figure 22). A 

one way ANOVA showed that these differences were not significant.  

Figure 22. The mean percentage gaze time for the airspeed indicator, the attitude indicator, 

and altimeter, and the GPS AOI, for university students, student and private (intermediate) 

pilots, and commercial (expert) pilots for the expected and unexpected stall events, with 

standard error bars (+/-2SE). 
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Inside 

Expected: University students spent more time looking at the PFD and the MFD on 

the LCD monitor (flight display)(N = 9, M = 1.04%, SD = 0.86), than the expert pilots (N = 6, 

M = 0.96%, SD = 0.34) the intermediate pilots (N = 7, M = 0.73%, SD = 0.23) (Figure 23). A 

one way ANOVA showed that these differences were not significant.  

Unexpected: During the unexpected stall, expert pilots spent more time looking at the 

PFD and the MFD on the LCD monitor (flight display)(N = 6, M = 3.97%, SD = 1.08), 

followed by the intermediate pilots (N = 7, M = 2.47%, SD = 1.86), and then the university 

students (N = 9, M = 2.08%, SD = 1.67) (Figure 23). A one way ANOVA showed that these 

differences were not significant.  

Figure 23. Mean percentage time university students, student and private (intermediate) 

pilots, and commercial (expert) pilots, spent viewing the overall PFD and MFD during the 

expected and unexpected aerodynamic stall events, with standard error bars (+/-2 SE). 
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Expertise and Performance 

Engine Failure 

Crash or Safe landing 

Four out of nine (44.40%) expert pilots, six out of 13 (46.20%) of intermediate pilots, 

and 14 out of 21 university student (66.70%) crashed after the unexpected engine failure, or 

attempted to land in Lake Wakatipu. A chi squared analysis showed no significant difference 

in the distribution of pilots that crashed and landed safely in the unexpected engine failure 

flight over licence type. However, over 50% of both pilot groups were able to land safely 

where only around one third of university students were able to land safely.  

Retard throttle  

Half (50%) of expert pilots (3 of 6) did not pull back on the throttle in both the 

expected and unexpected engine failure. Where 3 out of 13 intermediate pilots (23.1%) did 

not pull back on the throttle in both the engine failure flights. Expert pilots that did remember 

to pull back on the throttle did so faster in the expected (N = 3, M = 1.33 seconds, SD = 0.58) 

compared to the unexpected engine failure (N = 3, M = 2.00 seconds, SD = 1.00. Intermediate 

pilots that did remember to pull back on the throttle did so faster in the expected (N = 9, M = 

3.11seconds, SD = 2.67) compared to the unexpected engine failure (N = 9, M = 3.89seconds, 

SD = 2.20).  Intermediate pilots took longer than commercial pilots to pull back on the 

throttle in both flights. Due to the very small difference in sample size these differences are 

not comparable. 

Stall 

Response 

One of eight (12.50%) university students, two of seven (28.57%) intermediate pilots, 

and two of six (33.33%) expert pilots incorrectly pulled back on the throttle following stall. 
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Five of eight (62.50%) university students, four of seven (57.14%) intermediate pilots, and 

one of six (16.67%) of expert pilots did not pitch the plane down following the stall horn.  

Recovery time 

Expected: The time to recover from the expected practice stall was calculated from 

the time that the participant retarded the throttle, and the airspeed was reduced to 60 knots, 

then after the stall occurred till the plane returned to level flight. University students spent 

less time recovering from the expected stall (N = 7, M = 13.86seconds, SD = 3.48), compared 

to intermediate pilots (N =7, M = 22.42seconds, SD = 16.19), and expert pilots (N = 6, M = 

19.71seconds, SD = 3.17). 

Unexpected: The time to recover from the unexpected stall was calculated from the 

time that the plane reached 500ft till the time that the participant successfully passed the wind 

shear and reached 550ft. University students spent less time recovering from the unexpected 

stall (N = 7, M = 19.71seconds, SD = 7.61), compared to intermediate pilots (N =7, M = 

27.48seconds, SD = 8.07), and expert pilots (N = 6, M = 47.20seconds, SD = 24.47).  

Altitude lost 

Expected: University students lost a large amount of altitude in the expected stall (N = 

7, M = 918.57feet, SD = 537.94), compared to intermediate pilots (N = 7, M = 192.14feet, 

SD = 56.71), and expert pilots (N = 6, M = 241.67feet, SD = 86.35). 

Unexpected: In the unexpected stall the expert pilots lost the most altitude (N = 6, M 

= 81.67feet, SD = 89.54), followed by the university students stall (N = 7, M = 63.57feet, SD 

=113.53), and then the intermediate pilots (N = 7, M = 40.71feet, SD = 37.46). 
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Discussion 

Due to very small sample sizes this third comparative study is mostly exploratory in 

nature. The small sample sizes reduce the probability of finding any significant differences. 

However, this exploratory study may provide some insights which could lead to further 

research initiatives. It would seem to be a wasted opportunity if the comparisons between the 

three levels of expertise were not made. However, this third investigation and the tentative 

conclusions made would clearly have benefited by having more pilot participants.  

Physiological measures  

It was hypothesized that during the expected and unexpected engine failure and stall 

flight events, expert pilots would have the lowest mean heart rate when compared to 

intermediate pilots and novices. It was further hypothesized that novices would have larger 

mean heart rates when compared to intermediate pilots. 

 There was a significant interaction between flight type and experience level on mean 

heart rate engine failure flights as well as baseline. Post hoc analyses indicated that contrary 

to the hypothesis there was no statistically significant effect of expertise on heart rate during 

the expected engine failure or the baseline flight. There was a significant difference in heart 

rate over the three levels of expertise for the unexpected engine failure. However, contrary to 

the hypothesis the intermediate pilots had a significantly higher heart rate compared to the 

university students (novices) in the unexpected engine failure. There were no further 

significant differences between expertise levels in the unexpected engine failure.  

Consistent with the hypothesis there was a significant overall effect of expertise on 

change in heart rate in the engine failure flights compared to baseline. Contrary to the 

hypothesis university students had significantly smaller mean change in heart rate than both 

the intermediate and expert pilots.  
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There was no significant interaction between flight type and expertise on mean heart 

rate during the expected and unexpected stall and the baseline flight.  There was only no 

significant main effects of flight type or expertise. There was no significant interaction 

between flight type and expertise on change in mean heart rate compared to baseline during 

the stall flights. There was also no significant main effects of expertise or flight type on 

change in heart rate in the stall flights.  

Although there was a lack of significant differences in mean heart rate between the 

levels of expertise, over the different event flight types, there are speculations that can be 

made on some of the data trends as shown in Figure 17. Intermediate pilots had the highest 

heart rate in all experimental flights. While university students had the lowest average heart 

rate in all flights apart from the expected stall. Expert pilots had a lower heart rate than 

intermediate pilots in all flights and a slightly lower heart rate than the university students in 

the expected stall flight. Furthermore, both intermediate pilots and university students had a 

decrease in heart rate in the unexpected stall event compared to baseline, while expert pilots 

had an increase. Expert pilots show an autonomic arousal trend consistent to what was 

expected, a low heart rate in the baseline flight and expected versions of the two events and a 

higher heart rate in the unexpected engine failure and stall (Figure 17).  

It was hypothesized that during the engine failure and stall flight events, experts 

would have the smallest pupil dilation and change in pupil dilation compared to intermediate 

pilots and novices, with novices having the largest. Inconsistent with the hypothesis, there no 

significant interaction between flight type and expertise on mean pupil dilation for the engine 

failure events. There was also no significant main effect of expertise on mean pupil dilation 

in the engine failure flights. There was however a significant effect of flight type on mean 

pupil dilation for the engine failure flights.  
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Inconsistent with the hypothesis, there no significant interaction between flight type 

and expertise on mean change in pupil dilation for the engine failure events. There was also 

no significant main effect of flight type on change in mean pupil dilation in the engine failure 

flights. There was however a significant effect of expertise on change in mean pupil dilation 

for the engine failure flights. University students had a significantly larger change in pupil 

dilation during the engine failure compared to intermediate pilots.   

There was a significant interaction between flight type and expertise on mean pupil 

dilation in the stall flights. However there was no significant main effect of expertise or flight 

type on mean pupil dilation in the stall flights. There was no significant interaction or main 

effects of expertise or flight type on change in pupil dilation in the stall flights.  

There was a lack of significant differences in pupil dilation and change in pupil 

dilation over the three different levels of expertise. However when looking at the non-

significant trends, concordant with the hypothesis university students had the largest pupil 

dilation and increase in pupil dilation in both the expected and unexpected engine failures and 

the expected stall flight. Contrary to the hypothesis expert pilots had a larger average pupil 

dilation and increase in pupil dilation compared to the intermediate pilots in both the 

expected and unexpected engine failures. Furthermore, contrary to the hypothesis, expert 

pilots had the largest pupil dilation in the unexpected stall, followed by the university 

students an then the intermediate pilots.  

Consistent with heart rate data both intermediate and expert pilots show an increase in 

pupil dilation for both engine failure types, with the unexpected engine failure leading to a 

larger increase in pupil dilation. The very slight increase in pupil dilation for the intermediate 

pilots in the unexpected stall is consistent with the heart rate findings. Furthermore expert 

pilots also show similar increases in pupil dilation in both expected and unexpected stalls, 

which is also consistent with the heart rate findings. University students had larger changes in 



135 

pupil dilation when compared to both pilot types, which is the opposite of the heart rate data.  

Therefore both the heart rate and pupil dilation have a consistent pattern of autonomic arousal 

for the pilots. However, university students shown larger increases in pupil dilation and very 

low differences in heart rates in respect to the two pilot groups. This indicates that there may 

be a variable or attribute affecting pilots heart rates as well as pupil dilation that is not 

affecting the university students. 

The following interpretation of these non-significant data is tentative at best. The 

differences in heart rate may be due to prior experience with the abnormal events and in a 

flight simulator. Some intermediate pilots had relatively little previous flying experience (i.e. 

four pilots had less than 30 hours). It is possible that the expert pilots’ higher level of 

experience allowed them to feel more comfortable in a flight simulator compared to the 

intermediate pilots. This is supported by the trend that intermediate pilots had a higher mean 

heart rate in the baseline flight than the expert pilots. Furthermore, completing a power-off 

stall practice without a prior refresher may have been stressful as the event would not have 

been as well-practiced compared to the pilots with more flight hours. The expectation of 

remembering and implementing the correct procedures consequently may have been 

demanding leading to the higher mean heart rate for the intermediate pilots during the 

expected stall compared to the expert pilots. Intermediate pilots had a heart rate in the 

unexpected stall similar to during their baseline flight. This may suggest that they did not 

recognize that an event was occurring. In contrast expert pilots showed an elevated heart rate 

compared to baseline. This may suggest that they did recognize the stall event.  

Increases in heart rate are well accepted to be due to the activation of the autonomic 

nervous system (LeDoux, 2003). An increase in heart rate is indicative of startle. (Chou et al., 

2014; Holand et al., 1999), stress (Lahtinen et al., 2007), and cognitive workload (Fallahi et 

al., 2016; Grassmann et al., 2017).  Additionally, pupil dilation has been shown to increase 
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during the startle reaction (Bradley et al., 2005; Rivera et al., 2014),  with autonomic arousal, 

and with increasing cognitive workload (Bradley et al., 2008; Einhäuser et al., 2008; Hyönä 

et al., 1995; Kahneman, 1973; Marinescu et al., 2018; Marshall, 2002). The non-significant 

data suggest that the intermediate pilots found all flights apart from the unexpected stall and 

baseline flight stressful or cognitively demanding, with the expected stall having the largest 

degree of physiological arousal. Expert pilots elicited high physiological arousal suggesting 

high cognitive workload or stress in both the engine failures and the unexpected stall, with 

the unexpected engine failure leading to the most autonomic arousal. The university students 

showed noticeable increases in heart rate for only the expected stall. 

Therefore compared to the other two groups the expert pilots appear not to have had a 

physiological response to the expected stall, suggesting that their experience has led to low 

workload or a lack of stress during this event. The arousal in the expected engine failure 

could be due to the fact that unlike normal training the participants were required to land. 

Lahtinen et al. (2007) showed that combat pilots had an increase in heart rate of around 5bpm 

above baseline during the routine parts of their flight e.g. take-off and landing. Therefore 

landing is likely to increase workload, which may be reflected by an elevated heart rate.  

Computer gaming research has investigated and characterised immersion (AKA 

presence) (Alexander, Brunyé, Sidman, & Weil, 2005; Brown & Cairns, 2004; Cheng & 

Cairns, 2005; Witmer & Singer, 1998). In terms of gaming, immersion describes the level of 

involvement, absorption, or engrossment a person feels when playing a game (Brown & 

Cairns, 2004). There is a plethora of research concerning immersion which is beyond the 

scope of this thesis (see Cairns, Cox, and Nordin (2014) for a recent review). Brown and 

Cairns (2004) conducted a qualitative study investigating game immersion. They 

characterized three different levels of immersion which are now widely used; engagement, 

engrossment, and total immersion (ascending order). An individual needs to pass the first 
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level to enter the second and so forth. The lowest level of immersion, engagement requires 

time, effort, and attention where the individual learns the game and its controls. The second 

level is engrossment, where an individual is familiar with the game, their emotions are 

directly affected by the game. and they have less awareness of their surroundings (Brown & 

Cairns, 2004; Cheng & Cairns, 2005). The third level is total immersion whereby individuals 

are further involved and completely focused in the game’s reality, their awareness of the 

outside world is minimal (Brown & Cairns, 2004; Cheng & Cairns, 2005). Research has 

indicated that higher levels of perceived control over the game leads to higher subjective 

immersion (Sadowski & Stanney, 2002; Witmer & Singer, 1998). Extrapolating these 

findings to the flight simulator set-up used in the current experiment, it would suggest that 

piloting experience or lack of piloting experience would affect immersion.  

University students are likely to only be operating in the engagement stage of 

immersion during the experiment. Before undergoing the experiment, the students had simply 

been introduced to the simulator and had learnt the bare minimum skills required to pilot an 

aircraft without major issues. Therefore it is unlikely students would have felt high levels of 

control during the flights, which in turn may have meant low levels of immersion (Sadowski 

& Stanney, 2002; Witmer & Singer, 1998).  MSFX is a computer game, and according to the 

three levels of immersion the participants were likely only at the engagement stage of 

immersion during the flight tasks, where their emotions would have been minimally affected. 

Low immersion in the MFSX would lead to a low probability of a startle reaction, or 

emotionally driven autonomic arousal, and therefore could explain the small, non-significant 

changes in heart rate. 

As both heart rate and pupil dilation are functions of the autonomic nervous system, it 

is thought that their patterns of arousal in participants would align. However, this was not the 

case for university students. A very tentative theory behind this is that elevated heart rate was 
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not increased due to lack of immersion and then lack of emotional response by university 

students in the flight simulator. Brosschot and Thayer (2003) found that heart rate response is 

increased following negative emotions. It is possible that the university students have a high 

workload following the commencement of both the expected and unexpected stalls and 

engine failure. This may have been reflected by their increases in pupil dilation. However 

they are not emotionally responsive to the flight simulator, therefore their heart rate response 

may be shorter than the pilot groups.  

It has been suggested that lack of variable training for emergency events, could lead to 

an underdevelopment of true expertise, where pilots would not be able to generalise their 

skills to an unexpected flight event (Casner et al., 2012). In the present study it was found 

that pilots with a higher number of flight hours (>100), had a lower heart rate than 

intermediate pilots in all flights. This suggests that with more experience, pilots may develop 

coping skills allowing them to be less reactive in emergency events. Furthermore, while both 

intermediate pilots and university students did not show a large response to the unexpected 

stall, expert pilots’ data suggests an increase in pupil dilation and heart rate compared to 

baseline. This suggests that the expert pilots may be better at recognizing when an event is 

occurring i.e. have better awareness of the plane’s condition. This is a promising finding as it 

supports the current training paradigm as well as suggesting that expertise does promote 

situational awareness in pilots and their ability to help pilots maintain focus during a real 

emergency.  

Information processing 

It was hypothesized that expert pilots would spend less over all time looking inside 

the cockpit at the MFD and PFD, than the intermediate pilots during the unexpected engine 

failure and stall. This is because expert pilots should be faster at diagnosing flight situations 

and therefore would be quicker to implement an effective response and information search 
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protocol. Additionally, Wiggins and O'Hare (1995) found intermediate pilots appear to try 

and gather as much information during pre-flight decision making. Furthermore, it was 

hypothesized that university students would spend the most time looking at the flight display 

in the unexpected engine failure as they would need to spend more time diagnosing the 

situation. University students also were not taught to focus on the external environment 

during engine failures. Compared to both pilots groups, it was hypothesized that novices 

would spend the least amount time viewing the flight display (MFD and PFD) during the 

unexpected stall, as it was likely that they would not identify that there is a flight event.  

Contrary to the hypotheses there were no significant differences in the amount of time 

each different group spent viewing the flight displays in the unexpected engine failure. 

However when examining the trends, consistent with the hypothesis, university students 

spent more time viewing the flight displays (MFD and PFD) in the unexpected engine failure 

than the two groups of pilots. Contrary to the hypothesis in the unexpected engine failure 

both groups of pilots spent a similar amount of time viewing the flight displays. This is 

possibly because an engine failure is quite a salient abnormal event, which is easily 

recognizable by any pilot. 

The investigation into time spent by participants looking at the different displays is 

exploratory research. No specific hypotheses were made regarding this section of data. It is 

also recognized that multiple comparisons are occurring. Therefore data not significant at the 

one percent (p <.025), were not considered as significant. During the unexpected engine 

failure the university students spent significantly more time viewing the attitude indicator 

compared to the two pilot types. University students also spent significantly more time 

viewing the GPS compared to the intermediate pilots in the unexpected engine failure. 

Therefore, the data indicate that there are detectable differences in the information processing 

strategies used by novices compared to pilots in abnormal events.  
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There were no significant differences in time spent looking at the different displays in 

the unexpected engine failure between the two pilot groups. Thus the following differences 

reported were non-significant and therefore could have occurred by chance. Intermediate 

pilots spent a longer percentage time viewing the airspeed indicator, the attitude indicator, 

and the altimeter in the unexpected engine failure compared to the expert pilots. The expert 

pilots spent longer viewing the GPS in the unexpected engine failure compared to the 

intermediate pilots. In the expected engine failure, expert pilots spent significantly longer 

viewing the GPS. The non-significant findings show that intermediate pilots spent slightly 

longer viewing the airspeed indicator and the altimeter, and a similar time viewing the 

attitude indicator and the entire flight display (MFD and PFD) compared to the expert pilots 

in the expected engine failure.  

In the expected and unexpected engine failures intermediate pilots spent slightly more 

time viewing the airspeed indicator and the altimeter. This could possibly indicate less 

efficiency at extracting the required information. Expert pilots spent longer looking at the 

GPS in both flights; this may be because they were trying to maintain their situational 

awareness by compensating for the lack of ability to look out the side windows. Or because 

the expert pilots probably have more exposure to cross-country flights they have developed a 

higher reliance on the GPS compared to pilots that are still in flight school. Either 

possibilities are merely thoughts and suggestions.   

During the unexpected stall there was a significant effect of expertise on time spent 

viewing the airspeed indicator, however post hoc tests showed no significant differences. 

Expert pilots viewed the airspeed indicator more than the intermediate pilots and the 

university students. University students spent the least amount of time viewing the airspeed 

indicator. The rest of the instruments as well as the entire flight display (MFD and PFD) 

showed no significant differences in view time over the three groups of expertise.   
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The following differences were not significant, however they are mentioned because 

there were noticeable differences between the groups, suggesting that with more power, real 

differences could be found. When examining the trends, consistent with the hypothesis 

university students spent less time viewing the flight display (MFD and PFD) in the 

unexpected stall than the two pilot groups. However, contrary to the hypothesis expert pilots 

spent more time looking inside at the MFD and PFD during the unexpected stall, than the 

intermediate pilots. In the unexpected stall expert pilots spent longer looking at the altimeter, 

and the GPS than the intermediate pilots. In the unexpected stall university students spent 

more time viewing the attitude indicator, and the GPS than both classes of pilots. In the 

unexpected stall university students spent less time viewing the airspeed indicator, and the 

altimeter than both classes of pilots. In comparison, during the expected stall intermediate 

pilots and expert pilots spent a similar amount of time viewing the airspeed indicator, the 

attitude indicator, the altimeter, and the GPS. Expert pilots spent slightly more time overall 

viewing the flight displays.  

In the expected stall both pilot groups had a similar pattern of information search. In 

the unexpected stall expert pilots spent more time viewing stall relevant instruments, e.g. the 

altimeter and the overall flight display. Therefore in the unexpected stall there were 

discrepancies that support the theory that expert pilots had more awareness that there was an 

abnormal event occurring.  

Performance  

It is hypothesized that expert pilots would perform the best compared to intermediate 

pilots and university students, and intermediate pilots would perform better than university 

students. Concordant with the hypothesis a smaller percentage of expert pilots crashed in the 

unexpected engine failure, compared to intermediate pilots and university student. 

Additionally university students had the highest crash rate. These differences were not 
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compared due to small sample sizes. Contrary to the hypothesis, a higher percentage of expert 

pilots did not pull back on the throttle in the expected and unexpected engine failure 

compared to the intermediate pilots. However those expert pilots that did pull back the 

throttle had a lower mean response time to than the intermediate pilots in both engine failure 

flights.  

One of eight (12.50%) university students, two of seven (28.57%) intermediate pilots, 

and two of six (33.33%) expert pilots incorrectly pulled back on the throttle following stall. 

Five of eight (62.50%) university students, four of seven (57.14%) intermediate pilots, and 

one of six (16.67%) expert pilots did not pitch the plane down following the stall horn in the 

unexpected stall. In the expected stall university students took the fastest time to return to 

stable flight after implementing a stall but lost the most altitude. Commercial pilots were the 

fastest to recover in the expected stall, but lost more altitude than the intermediate pilots. In 

the unexpected stall university students had the lowest recovery time, followed by the 

intermediate pilots, and then the expert pilots. In the unexpected stall the commercial pilots 

lost the most altitude, followed by the university students, and then the intermediate pilots. 

Performance over the three expertise groups was variable. The performance results 

support the idea that expert pilots recognized that there was an abnormal event occurring in 

the unexpected stall, as a higher percentage pulled back on the throttle and pitched the nose 

downwards. Although pulling back on the throttle was the incorrect response, it is still a 

salient indicator that they were aware that there was something to respond to. A very large 

percentage of intermediate pilots did not pitch the nose down following the stall horn, which 

supports the hypothesis that intermediate pilots would perform more poorly than the expert 

pilots. As well as this intermediate pilots lost the least altitude in the unexpected stall, this is 

due to them not pitching the nose downwards or adjusting their flying following the stall 

horn. Although the results were optimal in this case, this was only due to the computer 
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programming of the stall. If it had occurred in a real life scenario and the pilots did not alter 

their trajectory, or respond to the stall horn an accident could have occurred.  

The definition of intermediate pilots and expert pilots in the current study may not be 

accurate in investigating expertise. O'Hare et al. (1994) and Wiggins and O'Hare (1995) 

defined novice pilots as having under 100 hours, intermediate pilots as having between 100 

and 1000 hours, and expert pilots as those having over 1000 hours. Furthermore they found 

that among aircraft accidents in New Zealand more intermediate level pilots were involved in 

serious aviation accidents. However, in this present study intermediate pilot were defined as 

having between 1 and 250 hours, whereas expert pilots were pilots that had over 250 hours. 

Only three expert pilots had over 1000 hours. Therefore the differences in expertise may not 

have been prominent as the sample in the present study was weighted towards less 

experienced pilots.  

Expertise is generally and subjectively defined by factors such as reputation or 

amount of time spent within a domain (Boot & Ericsson, 2013). However these definitions 

may fail in identifying individuals with genuine exceptional performance (Boot & Ericsson, 

2013; Loveday, Wiggins, Festa, Schell, & Twigg, 2013). A more valid measure of an 

individual’s skill can come from observing his or her objective performance (Boot & 

Ericsson, 2013). The expert performance approach focuses on identifying tasks that reliably 

discriminate levels of performance within a domain (Boot & Ericsson, 2013). O’Hare (2003) 

has reported that the quality of pilot decision making depends on many factors, a critical 

factor being recent and/or specific flying experience rather than total number of hours. Flying 

experience is thought to improve a pilot’s ability to understand and respond to problems 

(O’Hare, 2003). It is possible other performance factors, behavioural tendencies, or pilot 

characteristics may have been better suited to define expertise e.g. recent flight hours.  
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Conclusion 

In conclusion this third comparative study investigating the effects of expertise has 

some tentative and preliminary findings that with an increase in expertise, comes a decrease 

in autonomic arousal associated with flying and encountering abnormal events. Both 

intermediate pilots and expert pilots had spent a similar amount of time viewing the flight 

displays and different instruments, however intermediate pilots data may tentatively suggest 

less efficiency processing information compared to the expert pilots. Furthermore, the data 

suggests that pilots with more experience are better able to recognize an important aircraft 

upset and respond where less experienced pilots may not respond to flight events they do not 

recognize. Overall the comparisons made in this third study were mostly not significant. 

However, the patterns in the data may pique other researcher’s interests and therefore are 

worth discussion.  
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Chapter 5: General Discussion and Conclusions 

Research Questions: 

Do simulated unexpected emergency flight events cause physiological startle? 

The findings in the current study support the idea that unexpected events in a flight 

simulator can lead to physiological arousal that is consistent with startle (Bradley et al., 2005; 

Chou et al., 2014; Deuter et al., 2012; Holand et al., 1999; Lahtinen et al., 2007; Rivera et al., 

2014). However, physiological responses similar to startle were only found in response to an 

unexpected engine failure, but not to an unexpected stall. An unexpected stall due to sudden 

changes in wind direction, is not an emergency unless it is not recovered from. Therefore the 

lack of startle, is in line with Landman et al.’s (2017a) conceptual model of startle and 

surprise, as startle only occurs after perception of an abnormality when intensity or threat 

reaches a certain threshold (Figure 1; as reproduced in Study 2 Discussion). The unexpected 

stall in the present study recovered when the pilots flew below 500 feet or above 550feet. 

This may have impacted on the intensity or the threat of the unexpected stall impeding the 

probability of the stall escalating to startle.  

A recent theory proposed and investigated by a number of researchers is that startle 

following the commencement of an unexpected abnormal flight event is a major factor in 

aviation accidents (Landman et al., 2017a, 2017b; Martin et al., 2015; Martin et al., 2010; 

Martin et al., 2016; Schroeder et al., 2014). Similar to other stress types, research shows that 

stress from startle can degrade information processing (Eysenck et al., 2005; Thackray & 

Touchstone, 1983), reduce working memory capacity (Bradley et al., 2005) and produce 

decisional errors (Driskell & Salas, 2013; May & Rice, 1971; Staal, 2004). It is thought that 

cognitive impairment that follows startle leads to poor performance in what should be well-

practiced flight events (Landman et al., 2017a, 2017b; Martin et al., 2015; Martin et al., 2010; 
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Martin et al., 2016; Schroeder et al., 2014). This is also supported by findings in aviation 

accident reports and reviews of accident causations (NTSB, 2010a; Rivera et al., 2014). A 

limitation of the previous empirical research investigating this phenomena is that it 

commonly used loud noises or distraction to induce startle (Landman et al., 2017b; Martin et 

al., 2016). Distraction is also known to cause impairments in flight performance (Barnes & 

Monan, 1990), and is therefore a confounding factor. The present study provides 

physiological evidence that startle and surprise can occur due to unexpectedness i.e. without a 

loud noise or distraction. Therefore, the present study supports the previous research, and the 

theory that startle due to the unexpectedness of the emergency event could be a factor in 

performance degradation in unexpected abnormal flight events. 

This is a promising finding as it also indicates that startle can be produced in a 

simulated environments. The present study used a fixed-base simulator, which would be 

considered low-fidelity in terms of modern simulator technology. Pilots may be more 

immersed in higher fidelity simulators, therefore a more pronounced startle effect may be 

found (see Alexander et al. (2005) for a review on fidelity, immersion, and presence in terms 

of training applications). Previous research has shown that startle produced by a loud noise 

can disrupt a participant’s initial reaction in a flight-related task (Thackray, 1965). However, 

with further exposure subjects’ performance in the flight related task improved following the 

startling stimulus (Thackray, 1965). It appears imperative to prepare pilots for unexpected, 

unusual and distracting events to enhance their ability to recover from them. Concordant with 

this, reviews of experiments, surveys, and accident and incident reports by Green (1895) 

indicated that pilots that dealt well with acute stress attributed their performance to 

simulation training (Green, 1985).   Therefore, simulator exposure to variable unexpected 

events could be used in training to try and extinguish fear potentiated startle in response to 

real-life unexpected events.  
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Future research could investigate simulated abnormal events and characterise which 

events have a high probability of leading to arousal indicative of the startle reaction in pilots. 

This would provide a good substrate for training and future research into startle following 

unexpected flight events. A great place to start with that research would be Martin et al.’s 

(2015) formulated list of potential situations that would lead to startle. However, it would 

also be beneficial for future research to find abnormal events that lead to startle by simply 

occurring unexpectedly as opposed to having too many confounding factors e.g. distraction or 

erroneous instructions.  

What are the differences in information processing when comparing responses to an 

expected emergency event and an unexpected emergency event? 

The present research indicates that there are significant differences in fixation patterns 

in expected compared to unexpected events. In the unexpected engine failure pilots spent 

significantly less time viewing all of the flight instruments and the combined MFD and PFD 

compared to the expected engine failure. In the unexpected stall pilots spent a significantly 

longer amount of time viewing the flight instruments and the combined MFD and PFD 

compared to the expected stall. Therefore, this research provides evidence that the pattern of 

information processing is different when comparing expected verses unexpected versions of 

the same abnormal flight event. However, the nature of the changes in information gathering 

and processing are event specific. 

An engine failure is a highly salient event, therefore pilot’s information processing 

change may be similar to attentional tunnelling. The pilots had fewer fixations on the flight 

instruments (peripheral cue utilisation) and more focus on the external environment (the 

threat) in the unexpected engine failure. This indicates a change in informational processing 

analogous to attentional tunnelling. Attentional tunnelling involves a reduction in peripheral 

cue utilisation, and a narrowing of the attentional field towards the threat (Baddeley, 1972; 
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Combs & Taylor, 1952; Easterbrook, 1959; Staal, 2004). Furthermore, attentional tunnelling 

has been found to produce decisional errors (Driskell & Salas, 2013; May & Rice, 1971; 

Staal, 2004). The present findings are consistent with statements from the FAA indicating that 

in high stress situations such as emergency events, pilot information scan can be severely 

reduced (FAA, 1988). Additionally the current study supports previous research which 

indicates that startle can lead to disruptions in information processing, as well as extending it 

to a complex operational situation. (Baddeley, 1972; Combs & Taylor, 1952; Easterbrook, 

1959; Staal, 2004).   

It is postulated that the pilots did not recognize the stall or were confused about its 

origin, leading to a longer appraisal period. The stall led to information processing in line 

with the hypothesis, which stated that the pilots would need to spend more time diagnosing 

an unexpected event. In line with this hypothesis pilots spent a greater amount of time 

looking at the flight displays and its various controls following the stall horn in the 

unexpected stall. This is alarming as there should be an automatic association between the 

stall horn, the diagnosis and the action selection. However this information processing pattern 

displayed by pilots in the unexpected stall flight provides evidence suggesting that this may 

not be the case. Future research should focus on establishing the effectiveness of the stall 

horn, or the stick shaker as indicators of stall, and their ability to induce pilots to implement 

the correct recovery procedures. This is especially important in off-normal stall events which 

are more relevant to real-life emergencies in comparison to the practice stall procedure.  

Does physiological startle impair response performance following unexpected emergency 

events? 

There were no significant differences in heart rate or pupil dilation for the pilots or 

students that crashed in the unexpected engine failure compared those that landed safely. In 

fact during the unexpected engine failure, those pilots that landed safely had a higher heart 
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rate and larger pupil dilation than those that crashed. This is the inverse relationship that was 

expected. Additionally, pilots who responded to the stall horn correctly in the unexpected stall 

showed no significant differences in heart rate or pupil dilation compared to those that did not 

respond correctly.   

Recent researchers have postulated that startle, due to its associated cognitive impairment, 

is a potential factor in accident causation (Landman et al., 2017a, 2017b; Martin et al., 2015; 

Martin et al., 2010; Martin et al., 2016; Schroeder et al., 2014). Impairment in the present 

study was not associated with any significant differences in heart rate or pupil dilation. 

However this between-subjects analysis was limited by small sample size leading to small 

power. Further research with larger samples needs to be completed to investigate this research 

question. 

Research on fear conditioning has shown that when startle occurs in the presence of 

perceived threat the response can become exacerbated leading to what is known as fear 

potentiated startle (Bradley, Moulder, & Lang, 2005; Eysenck et al., 2005). As there was no 

real threat to life in the flight simulator, pilots startle reaction is unlikely to have fully 

escalated into fear-potentiated startle. This may be why there were no significant differences 

in autonomic arousal between participants that performed well and those that performed 

poorly. Due to this limitation, it cannot be discounted that fear-potentiated startle could be 

impacting performance in abnormal flight events.  

Unfortunately the effects of fear-potentiated startle be very difficult to investigate. It may 

be possible to research performance and arousal in a high-fidelity simulator with airline pilots 

who are undergoing their six monthly flight simulator testing. This flight testing determines 

whether they can continue to fly or need further training. Even though there is no threat to the 

pilot’s lives, there is threat to their livelihood. In accordance with Landman et al.’s (2017a) 

conceptual model of startle, perception of an abnormal event combined with threat leads to 
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startle (Figure 1). The threat of failure during the six month simulator testing for commercial 

pilots could be threatening enough to lead to fear-potentiated startle in response to an 

unexpected emergency event. Therefore, it may be a promising idea to capitalise on this 

situation by completing a similar study to the present research in an operational testing 

environment.  

Does expertise mediate the startle response during unexpected emergency flight events? 

The results from the present study suggest that expertise does not mediate the startle 

reaction in unexpected emergency events. The present research failed to find any significant 

differences in heart rate or pupil dilation for the expert pilots and the intermediate pilots for 

any of the flights. University students had the lowest heart rate in the unexpected engine 

failure, the expected engine failure, and baseline. There were no significance differences in 

pupil dilation between the university students and both the pilot groups for the unexpected 

engine failure and stall flights or the expected stall flight. This is consistent with Casner et al. 

(2012) and Martin et al. (2016) who found that there was no significant effect of increased 

flight hours on performance in unexpected simulated tasks. 

The low level of arousal for university students may have been due to lack of 

motivation to perform well, (Bergman & Magnusson, 1979; Lazarus et al., 1952; Skinner & 

Brewer, 2002; Vogel et al., 1959) or due to low levels of immersion in the simulator 

(Alexander et al., 2005; Brown & Cairns, 2004; Cairns et al., 2014; Cheng & Cairns, 2005; 

Sadowski & Stanney, 2002; Witmer & Singer, 1998). However surprisingly university 

students had the highest increase in pupil dilation in the expected engine failure compared to 

the intermediate pilots. This could be due to higher cognitive workload for the students, as 

pilots were relatively more experienced at landing.  

 Establishing whether experience mediates the startle effect is very important in 

providing evidence for the viability of the current training methods. There were non-
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significant differences in the mean heart rates over the flights between expert pilots and 

intermediate pilots. Intermediate pilots had higher heart rates in all events. These may be true 

differences that were not significant due to a lack of power in the between-subjects analyses. 

Therefore, it would be interesting to complete a between-subjects analysis with at least 20 

intermediate level general aviation pilots, and 20 expert level general aviation pilots.  

Does expertise affect information processing differentially during unexpected emergency 

flight events? 

Contrary to the hypotheses there were no significant differences in the amount of time 

each group spent viewing the flight displays in the unexpected engine failure. During the 

unexpected stall there was a significant overall effect of expertise on time spent viewing the 

airspeed indicator, however post hoc tests showed no significant differences between 

individual groups. There were detectable slight differences in the information processing 

strategies used by novices compared to pilots overall in the unexpected abnormal flight 

events. Speculation on the non-significant data suggest that there may have been real 

differences in the information processing over the two different pilot groups. However, this 

present research cannot make any definitive conclusions.  

Limitations 

The present study was both challenging, and ambitious. However, it also has a few 

limitations. As previously mentioned the between-subject analyses and the stall analyses were 

limited by a small sample size. Due to the stall horn only sounding in around 60% of pilot’s 

flights, the sample size for the stall analyses was limited, which probably led to low power. 

Also smaller sample sizes when separating the pilots into different groups for between-

subjects analyses also led to low power. However, when comparing with other research in the 

human factors field, twenty-one pilots is a reasonably good sample. However these limited 

samples have likely restricted some of the findings, where some of the non-significant 
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findings may indicate real differences. Therefore, researchers with good access to pilots could 

repeat the between-subjects analyses completed in this study with a larger sample size, or 

with a more sophisticated simulator where the coded stall means pilots have a 100% chance 

of encountering the stall horn.  

 Another limitation is that the performance and information processing in the 

emergency events may have been affected by the fidelity of the simulator. Koonce (1984) 

found that predictors of performance were emotional stability, perception of tilt, and mental 

alertness  In the stall flight students and pilots were unable to perceive the tilt of the aircraft 

this could have affected performance, especially in the stall flight. As well as this, in the 

unexpected engine failure pilots would have been very limited by not being able to look out 

the windows for a 360° view on potential landing spots. Future research in higher fidelity 

simulators would be beneficial in providing evidence supporting the findings of the present 

research. 

Furthermore, in hindsight the conclusions and findings, the study may have benefitted 

from having a questionnaire completed at the end of the simulator session or at the end of 

each of the experimental flights. It could have been beneficial for the clarity of the study to 

have a subjective measure of workload and/or startle in the experimental flights. As well as 

this, in the unexpected stall event flight. It may have been helpful to have a subjective 

measure of recognition and the time to recognize the event. The subjective measures of 

recognition could have supported the conclusions made in the information processing 

analyses. Specifically that the pilots spent more time looking at the flight displays as they 

were diagnosing the unexpected stall. A subjective measure of workload and startle would 

have been able to directly support the conclusions made regarding physiological arousal. 

However, addition of these questionnaires could have been disruptive to the flight task, and 

could have limited immersion in the task. As well as this, the validity of subjective 
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questionnaire answers could have been compounded by the outcome of the flight. Future 

research should make sure they have both subjective and objective measures of the key 

dependent variables, however not at the expense of the quality of the experiment.  

Future Research 

Opportunities for future research have been indicated throughout the thesis and the final 

chapter. The opportunities indicated in the other chapters are summarised in the following 

bullet points: 

 Extend the findings of the present study using a high-fidelity simulator and/or 

commercial pilots.  

 Further research with an experimental design providing increased power to find 

differences when investigating the concept that high arousal analogous to startle leads 

to impaired performance.  

 Further research with an experimental design providing increased power to find 

differences when investigating the concept that expertise may mediate the negative 

impact of startle in unexpected flight events.  

 Investigation into the differential responses to abnormal events in accordance with 

Landman et al.’s (2017a) model.  In particular, specific characterisation of the 

different main incorrect responses to abnormal events. 

 Another possibility of studying expertise would be to have novice pilots practice 

flying and emergency events over time and until proficiency before encountering the 

unexpected versions of events.  

New research idea: Automation is thought to degrade situational awareness (see Endsley 

(1999) for a review). There is another research opportunity in regards to automation and 

unexpected events. It would be very interesting to research startle, expertise, and information 



154 

processing during an unexpected event that has occurred after a prolonged period of partial 

automation.  

Conclusion 

The findings of the current study support the idea that unexpected events in a flight 

simulator can lead to physiological arousal that is consistent with startle. If the abnormal 

event is easily recognized and threatening (e.g. engine failure) information processing can be 

impaired by attentional tunnelling where less time is spent viewing the flight display and 

critical instruments. If the abnormal event is not easily recognized, pilots tend to spend more 

time viewing the flight display and the critical instruments. This could also be viewed as an 

impairment, as in abnormal events where the event should be instantly recognized, pilots may 

be losing critical time diagnosing the situation. There were no significant differences in 

autonomic arousal for pilots that performed well and those that performed poorly in the 

different event types. Furthermore, there was no significant effect of expertise on autonomic 

arousal or information processing. However the non-significant data suggest that there are 

possibly true differences that have not emerged due to lack of power. The present research 

supports Landman et al’s (2017a) conceptual model of startle and surprise. It also supports 

Brown and Cairns’ (2005) theory of the three levels of immersion where novices were not 

affected emotionally by the unexpected emergency events as indicated by their lack of 

autonomic arousal following the commencement of the abnormal events. There are many 

opportunities for future research in this field, and it is certain the effects of startle and surprise 

in unexpected events could be extrapolated to many other human factors fields such as 

surgery, rail operation, driver safety, and other technological industries.  
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Appendix A.  Flight School Powerpoint 

Slide 1 

Welcome to Flight School

 

Slide 2 

Flight School

• Ground School

Part 1: Cockpit Layout and Flight controls

Part 2: Basics of Flight

Part 3: Emergency events

 

Slide 3 
Part 1: Cockpit Layout and Flight 

controls
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Slide 4 

 

Slide 5 

Magnetos

Yoke

Pedals

Throttle

Propeller 

speed 

control

Mixture 

control

Flaps

Examine the controls

 

Slide 6 

Flight Instruments

• Airspeed Indicator

• Attitude Indicator

• Altimeter

• Vertical Speed

• Tachometer

• Heading Indicator

• Trim
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Slide 7 

Airspeed Indicator
Displays current  airspeed in 
knots (nautical miles per hour)

Altimeter
Displays current altitude as feet 
above mean sea level (MSL).
The long needle shows hundreds 
of feet. The short needle points 
to  thousands of feet.

Attitude Indicator
Shows the current relationship (pitch and 
bank) of the aircraft to the horizon. The 
orange lines represent the aircraft wings. 
The blue area represents the sky and the 
brown is the earth. 

Vertical Speed 
Indicator (VSI)
Shows how fast the aircraft is 
climbing or descending.

Heading Indicator
Shows the current direction the 
plane is headed toward.

Tachometer
Shows the RPM (revolutions per 
minute) of the engine.

 

Slide 8 

GPS

• Plane oriented

• The currently active 
waypoint (place to go) 
is highlighted in pink.

 

Slide 9 

Attitude indicator

• The Attitude indicator shows the 
position of the plane in space.

• Blue = sky

• Brown= ground

• Middle= horizon

• When the red dot is in the blue 
region the plane is ascending

• When the Red dot is the brown 
the plane is descending
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Slide 10 

Trim
• The trim control is like the cruise control on a car. It helps you maintain a specific 

control position so that the airplane stays at a specific rate of climbing/descending 
without requiring constant pressure on the control yoke. 

• Your trim is set using the switch on the control yoke underneath your left hand’s 
thumb. Press up to pitch the nose down, and press down to pitch the nose up.

• As you change the trim you will notice the trim-tab control depicted in the cockpit 
screen will also change to reflect it’s current level.

 

Slide 11 

Part 2:Basics of flight 

 

Slide 12 

Flight simulator controls

Yoke

Throttle
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Slide 13 

Basics of Flight
• The yoke controls plane direction in the 

air. 

• Turn the yoke to the left or right to bank.

• To manoeuvre the aircraft, bank to the left 
or right.

• Bank left = the plane turns left

• To fly, move the control yoke with gentle, 
controlled movements.

 

Slide 14 

Basics of flight

• Pulling back on the yoke, directs the nose of 
the plane upwards. 

• Pushing the yoke in, directs the nose of the 
plane downwards.

• This is shown on the Attitude indicator
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Slide 15 

Basics of Flight

• Remember! Pointing the nose above the 
horizon (going up) or below the horizon (going 
down) affects your speed. 

• Push forward (nose down) to go faster, and 
pull back (nose up) to slow down.

• When flying completely level, adjusting the 
throttle allows you to climb and descend. 

 

Slide 16 

Basics of Flight :To turn on the plane

• Push the blue 
(propeller speed) and 
red (mixture control) 
levers up.

• Turn the left magneto 
from OFF to BOTH.

• Push the Engine start 
switch to the left.

 

Slide 17 

Basics of Flight:To take off

• Make sure the parking brake is 
released. If parking brakes are on, it 
will tell you at the bottom of the 
screen.

• Push the flaps control down once to 
get 10 degrees of flaps.

• Increase the throttle to full.

• Use the pedals to direct the plane 
straight down the runway

• When you reach a airspeed of at least 
60 knots, pull back on the yoke to 
ascend.

Airspeed Indicator
Displays current  airspeed in knots 
(nautical miles per hour)
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Slide 18 

Basics of Flight: How to land

• To land you line the plane up with the runway.

• Pull back on the throttle to decrease speed. When you’re 
close to landing pull the throttle back completely

• Increase flaps to 20 degrees, and then again when you’re 
close to landing to 30 degrees.

• Land the plane at less than 60 knots of airspeed. 

• When you are about to land pull the nose up slightly so the 
plane is parallel with the ground. 

• Once you have landed use the pedals to direct the plane and 
push the parking brake to stop. 

 

Slide 19 

Part 3: Emergency Failures

• Engine Failures:

– Engine failures can occur for a large number of 
reasons e.g. fuel leak, carburetor ice.

– When an engine failure occurs the pilot must first 
safely control the plane.

– Then they need to find a area where they can land 
within gliding distance.

– Then apply themselves to safely land the aircraft.

 

Slide 20 
Aerodynamic stall

• Can occur due to low airspeed or when the critical 
angle of attack is exceeded this means the nose is 
pitched up too much. This results in airflow separation 
that means that the wing no longer is generating any 
significant lift.

• To practice a stall pilots will fly to a safe altitude, close 
the throttle and pull back on the yoke (pitching the 
plane up). This will induce a stall and an alarm will 
sound. 

• To recover, the pilot must immediately push the yoke in 
(pitching the plane down), and increase the throttle to 
full power.
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Slide 21 

FINISHED

• Now it is time to fly!
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Appendix B.  University Student Questionnaire 

Flight School: A Flight Simulator Experiment 

Demographics and Experience Questionnaire 

1. How old are you: 

2. What is your gender (circle one):  Male  Female  Neutral 

3. Do you have previous flight experience (circle one)? 

a. Yes – I have flown an aircraft before. 

b. Yes - I have flown a flight simulator before. 

c. No – this will be my first time flying a plane. 

 

If you answered ‘Yes’ please describe the amount of flight/flight simulator experience 

you have: 

_____________________________________________________________________

_____________________________________________________________________

__________________________________________________________ 

4. How much experience with computer or console gaming would you identify as 

having (circle one)? 

a. Gaming Expert (You play every day if possible). 

b. Social Gamer (You play once or twice a week). 

c. Infrequent Gamer (You might play occasionally). 

d. Not a Gamer (You very rarely play games). 

e. Other (please leave 

notes)__________________________________________________________

_______________________________________________________________

_____________________________________________________ 

5. Regardless of your current gaming levels have you ever identified as a gamer in 

the past (circle one)? 

a. Yes (please give some details) 

_______________________________________________________________

_______________________________________________________________

_______________________________________. 

b. No 
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Appendix C.  Information Sheet for Student Participants 

 

 21/17 

27/08/2017 

 

 

Pilot reactions to differential flight conditions. 

INFORMATION  SHEET  FOR  PARTICIPANTS 
 

Thank you for showing an interest in this project.  Please read this information sheet carefully 

before deciding whether or not to participate.  If you decide to participate we thank you.  If 

you decide not to take part there will be no disadvantage to you and we thank you for 

considering our request.   

 

What is the Aim of the Project? 
 

This is an experiment investigating pilot reactions to different flight conditions. You will be 

asked to fly five small flights around New Zealand in our Microsoft flight simulator. We are 

investigating eye movements, heart rate, and flight performance in different flight conditions 

including training events e.g. power-off stalls.  This project is being undertaken as part of the 

requirements for Lana Kinney’s Masters of Science. This study will help improve the 

understanding of pilot behavioural reactions to in-flight events.  

 

What Types of Participants are being sought? 
 

We are seeking at least 30 100 level student participants to be trained on the flight simulator 

and complete the flights. Students must either have good vision or wear contacts as glasses 

can unfortunately interfere with the eye tracking software. Participants will be asked whether 

they would like a copy of the experimental findings when the project is finished. 

 

What will Participants be asked to do? 

 

Should you agree to take part in this project, you will be asked to undergo flight training and 

then fly approximately 8 short flights around New Zealand in the psychology department’s 

flight simulator. The experiment will take around 2 hours. You will be first asked to fill out a 

short demographics questionnaire, then you will watch a flight training PowerPoint. During 

each flight heart rate will be recorded with an unobtrusive ear clip, eye movements will be 

remotely recorded, and flight performance data will be automatically logged.  
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Please be aware that you may decide not to take part in the project without any disadvantage 

to yourself. 
 

What Data or Information will be collected and what use will be made of it? 
 

Your eye movements, heart rate, and flight data during the flights will be collected and stored 

electronically. The questionnaire will ask for your name, age, and flight experience 

information. The data will be used to examine your responses to different flight conditions. 

Apart from your name, and age, no other personal information will be collected. The 

researchers below will have access to the data. Results from this project may be published 

and will be available in the University of Otago Library (Dunedin, New Zealand), but every 

attempt will be made to preserve your anonymity. You will not be identifiable in the 

publications. The data collected will be securely stored in such a way that only those 

mentioned below will be able to gain access to it. At the end of the project any personal 

information will be destroyed immediately except that, as required by the University’s 

research policy, any raw data on which the results of the project depend on will be retained in 

secure storage for at least five years, after which it will be destroyed. You can choose to be 

provided with a summary of the study’s results if you wish.  

 

Can Participants change their mind and withdraw from the project? 

 

You may withdraw from participation in the project at any time during the experiment and 

without any disadvantage to yourself. 

 

What if Participants have any Questions? 
If you have any questions about our project, either now or in the future, please feel free to 

contact either:- 

Lana Kinney or David O’Hare 

Department of Psychology   Department of Psychology 

Telephone Number: 027 399 7122  Telephone Number: (64)3-479-7643 

Email Address: lanakinney92@gmail.com  Email Address: ohare@psy.otago.ac.nz 

 
 

This study has been approved by the Department stated above. However, if you have any concerns 

about the ethical conduct of the research you may contact the University of Otago Human Ethics 

Committee through the Human Ethics Committee Administrator (ph 03 479-8256). Any issues you 

raise will be treated in confidence and investigated and you will be informed of the outcome. 

 

  

mailto:lanakinney92@gmail.com
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Appendix D.  Consent Form for Student Participants 

 
 

 

PILOT REACTIONS TO DIFFERENTIAL FLIGHT CONDITIONS. 

CONSENT  FORM  FOR 

PARTICIPANTS 

 

 

I have read the Information Sheet concerning this project and understand what it is about.  All 

my questions have been answered to my satisfaction.  I understand that I am free to request 

further information at any stage. 

I know that:- 

1. My participation in the project is entirely voluntary; 

 

2. I am free to withdraw from the project at any time without any disadvantage; 

 

3. Personal identifying information (name and age) will be destroyed at the conclusion of 

the project but any raw data on which the results of the project depend will be retained 

in secure storage for at least five years. 

 

4. There is no foreseeable discomfort or distress for the participant while taking part in 

this study 

 

5. The results of the project may be published and will be available in the University of 

Otago Library (Dunedin, New Zealand) but every attempt will be made to preserve my 

anonymity.   

 

I agree to take part in this project. 

 

 

 

.............................................................................   ............................... 

       (Signature of participant)     (Date) 

 

............................................................................. 

       (Printed Name) 
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Appendix E.  Information Sheet for Pilot Participants 

 

 

Pilot reactions to differential flight conditions. 

INFORMATION  SHEET  FOR  PARTICIPANTS 
 

Thank you for showing an interest in this project.  Please read this information sheet carefully 

before deciding whether or not to participate.  If you decide to participate we thank you.  If 

you decide not to take part there will be no disadvantage to you and we thank you for 

considering our request.   

 

What is the Aim of the Project? 
 

This is an experiment investigating pilot reactions to different flight conditions. You will be 

asked to fly eight small flights around New Zealand in our Microsoft flight simulator. We are 

investigating eye movements, heart rate, and flight performance in different flight conditions 

including training events that you will be familiar with e.g. power off stalls.  This project is 

being undertaken as part of the requirements for Lana Kinney’s Masters of Science. This 

study will help improve the understanding of pilot behavioural reactions.  

 

What Types of Participants are being sought? 
 

We are seeking at least 20 local general aviation pilots. Pilots can be at any level of training, 

however they must have solo flight ability. All pilots will be offered a monetary 

reimbursement for participation, and can indicate to the researcher whether they would like a 

copy of the experimental findings when the project is finished. 

 

What will Participants be asked to do? 

 

Should you agree to take part in this project, you will be asked to fly eight short flights 

around New Zealand in the psychology department’s flight simulator. The experiment will 

take around 1 hour and 45minutes. You will be given the aeronautical maps, and flight 

information before each flight, and then will be asked to complete each flight. During each 

flight heart rate will be recorded with an unobtrusive ear clip, eye movements will be 

recorded, and so will the flight performance data.  

Please be aware that you may decide not to take part in the project without any disadvantage 

to yourself. 
 

What Data or Information will be collected and what use will be made of it? 
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Your eye movements, heart rate, and flight data during the flights will be collected and stored 

electronically. The questionnaire will ask for your name, age, and flight experience 

information. The data will be used to examine your responses to different flight conditions. 

Apart from your name, and age, no other personal information will be collected. The 

researchers below will have access to the data. Results from this project may be published 

and will be available in the University of Otago Library (Dunedin, New Zealand), but every 

attempt will be made to preserve your anonymity. You will not be identifiable in the 

publications. The data collected will be securely stored in such a way that only those 

mentioned below will be able to gain access to it. At the end of the project any personal 

information will be destroyed immediately except that, as required by the University’s 

research policy, any raw data on which the results of the project depend on will be retained in 

secure storage for at least five years, after which it will be destroyed. You can choose to be 

provided with a summary of the study’s results if you wish.  

 

Can Participants change their mind and withdraw from the project? 

 

You may withdraw from participation in the project at any time during the experiment and 

without any disadvantage to yourself. 

 

What if Participants have any Questions? 
If you have any questions about our project, either now or in the future, please feel free to 

contact either:- 

Lana Kinney or David O’Hare 

Department of Psychology   Department of Psychology 

Telephone Number: 027 399 7122  Telephone Number: (64)3-479-7643 

Email Address: lanakinney92@gmail.com  Email Address: ohare@psy.otago.ac.nz 

 
 

This study has been approved by the Department stated above. However, if you have any concerns 

about the ethical conduct of the research you may contact the University of Otago Human Ethics 

Committee through the Human Ethics Committee Administrator (ph 03 479-8256). Any issues you 

raise will be treated in confidence and investigated and you will be informed of the outcome. 

 

  

mailto:lanakinney92@gmail.com
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Appendix F.  Consent Form for Pilot Participants 

 
 

 

PILOT REACTIONS TO DIFFERIENTIAL FLIGHT CONDITIONS.  

CONSENT  FORM  FOR PARTICIPANTS 

 
 

I have read the Information Sheet concerning this project and understand what it is about.  All 

my questions have been answered to my satisfaction.  I understand that I am free to request 

further information at any stage. 

I know that:- 

6. My participation in the project is entirely voluntary; 

7. I am free to withdraw from the project at any time without any disadvantage; 

8. Personal identifying information (name and age) will be destroyed at the conclusion of 

the project but any raw data on which the results of the project depend will be retained 

in secure storage for at least five years. 

9. There is no foreseeable discomfort or distress for the participant while taking part in 

this study. 

10. Pilots will received $40.00 for their time and effort. As well as this pilots will gain one 

entry into a draw for one hour of flight time at a nearby Aero Club. This draw will 

consist of only the pilots that participate in the study. 

11. The results of the project may be published and will be available in the University of 

Otago Library (Dunedin, New Zealand) but every attempt will be made to preserve my 

anonymity.   

 

I agree to take part in this project. 

 

 

 

.............................................................................   ............................... 

       (Signature of participant)     (Date) 

 

............................................................................. 

       (Printed Name) 
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Appendix G.  Survey Monkey Questionnaire for Pilot Participants 

 



178 
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Appendix H.  Flight Information Sheet for Pilot Participants 

Cape Foulwind to Westport 

Your first flight will be a short flight from Cape Foulwind to Westport. Your job is to 

simply move the aircraft from the airstrip at Cape Foulwind to the adjacent Westport airstrip. 

Cape Foulwind is a prominent headland on the West Coast of the South Island, overlooking 

the Tasman Sea. It is located ten kilometres west of the town of Westport. Make sure when 

you land you join downwind for 22 (see Aerodrome chart). 
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Flight information:  Weather Forecast 

 

Distance: 8.6km 

Estimated fuel burn: 1.61/1.1kg 

Estimated time en route: 0.02 

Direct Heading: 049 

Wind 162ᵒ at 5kts 

Visibility 80km 

Light clouds 

Temperature 15ᵒC, Dew point 10ᵒC 

QNH 998 
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Invercargill to Ryan’s Creek (Stewart Island)\ 

You will take off from Invercargill airport, flying directly into a strong southerly which is 

common at this airport. Your goal is to fly the aircraft to Ryan’s Creek aerodrome situated on 

Stewart Island. The position of your aircraft is indicated on the aerodrome chart, you will 

need to taxi out to the runway where you can then complete an intersection take-off. 
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Flight information:  Weather Forecast 

Distance: 56.1km 

Estimated fuel burn: 14.41/10.3kg 

Estimated time en route: 0.21 

Direct Heading: 171 

Wind 218ᵒ at 40kts 

Visibility 64km 

Light clouds 

Temperature 7ᵒC, Dew point 4ᵒC 

QNH 1013 

 

Warning: Due to strong winds make sure you taxi out to the runway carefully. 
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Pukaki to Omarama 

In this flight you are instructed to take off from Pukaki airport and land at Omarama 

airport. However, at some point into the flight there will be a programmed engine failure 

which will mean that you will have to complete a forced landing. The aircraft is positioned at 

the southern end of the runway 33. 
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Flight information:  Weather Forecast 

Distance: 29.1km 

Estimated fuel burn: 5.41/3.9 kg 

Estimated time en route: 0.08 

Direct Heading: 176 

 

Wind 334ᵒ at 5kts gusting to 8kts 

Light Cloud 

Temperature 21ᵒC, Dew point 4ᵒC 

QNH 1013 
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Glenorchy to Queenstown 

This flight is a scenic passenger flight between Glenorchy and Queenstown. You 

should fly the aircraft as if you were a paid tour guide. You will take off from Glenorchy 

airstrip and follow along Lake Wakatipu, and finally land at Queenstown airport. The aircraft 

is positioned at the southern end of runway 32. 
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Flight information:  Weather Forecast 

Distance: 46.2km 

Estimated fuel burn: 8.01/5.8 kg  

Estimated time en route: 0.12 

Direct Heading:  

- Waypoint 1: 143 

- NZQN (airport): 047 

 

Wind 317ᵒ at 5kts 

Light Clouds 

Temperature 15ᵒC, Dew point 5ᵒC 

QNH 1013 
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Dunedin to Taieri 

This is a flight in which you will take off from Dunedin airport, you will fly to an area 

and altitude where you feel safe to then practice an engine-off aerodynamic stall. Practice this 

stall just as you would in flight training. Once you have completed the stall and recovered 

you should proceed and land at Taieri airport. The aircraft is parked outside Mainland air 

hangar. You will need to taxi to the runway and take-off.  
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Flight information:  Weather Forecast 

Distance: 13.6km 

Estimated fuel burn: 2.51/1.8kg  

Estimated time en route: 0.03 

Direct Heading: 035 

 

 

Wind 094ᵒ at 2 kts gusting to 6 kts 

Scattered clouds 

Temperature 19ᵒC, Dew point 4ᵒC 

QNH 1013 
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Glentanner to Mount Cook 

This is a short flight from Glentanner airstrip to a neighbouring airstrip at Mount 

Cook. Your goal is to move the aircraft to where it is needed at Mount Cook. The aircraft is 

positioned at the Southern end of runway 33 at Glentanner. Position yourself for a straight-in 

approach to 31 at Mount Cook. 
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Flight information:  Weather Forecast 

Distance: 15.9km 

Estimated fuel burn: .01/2.1kg  

Estimated time en route: 0.04 

Direct Heading: 339 

 

 

Wind Calm 

Visibility 16km 

Light clouds 

Temperature 2ᵒC, Dew Point 10ᵒC 

QNH 1013 
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Manapouri to Te Anau 

This is a short positioning flight from Manapouri to a neighbouring airstrip at Te 

Anau. The aircraft is positioned at the eastern end of runway 26 at Manapouri. 
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Flight information:  

 

 

Weather Forecast 

Distance: 8.5km 

Estimated fuel burn: 1.61/1.2 kg 

Estimated time en route: 0.02 

Direct Heading: 356 

 

Wind 319ᵒ at 10kts gusting to 16kts 

Visibility 64km 

Light Clouds 

Temperature 15ᵒC, Dew point 5ᵒC 

QNH 1013 
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Roxburgh to Alexandra 

This is a short flight in central Otago where you will fly from a rural airstrip in Roxburgh to 

Alexandra. The aircraft is positioned at the southern end of runway 34 at Roxburgh. When 

landing at Alexandra, positon yourself for a straight in approach to 32. 
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Flight information:  Weather Forecast 

Distance: 33.8km 

Estimated fuel burn: 6.91/5.0kg  

Estimated time en route: 0.10 

Direct Heading: 343 

 

 

Wind 336ᵒ at 10kts gusting to 20 kts 

Visibility: 80km 

Broken clouds 

Temperature 6ᵒC, Dew point -3ᵒC 
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Appendix I.  AOI Collection Layout example 
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