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ABSTRACT 

In New Zealand ship rats (Rattus rattus) are one of the major threats to endemic fauna and 

flora. Rural ship rat populations have been implicated in the ongoing decline and extinction 

of many species of endemic wildlife. The role ship rats have in structuring urban ecosystems, 

directly through predation, and indirectly through food and habitat competition is poorly 

understood in New Zealand. Understanding the role of ship rats in the urban environment is 

impeded by a lack ofinfonnation on their distribution and robust estimates of their density. 

Rat presence and distribution across different urban habitats was determined by the 

identification of genus-specific bite marks on wax blocks. The results from the wax block 

survey suggest that rats are either absent from, or at very low densities within the housed 

residential sites sampled in this study. In urban bush fragments rats were detected 

infrequently using wax blocks. High rates of non-target species interference may obscure the 

rate of rat detection in urban areas. 

Density is a fundamental biological parameter, however unbiased density estimation can be 

extremely difficult for certain species. Ship rats are nocturnal and highly dispersed, which 

makes them particularly difficult to sample using conventional techniques. Currently the most 

accurate and reliable estimates of absolute ship rat density are obtained through cage-trapping 

and spatially explicit capture-recapture analysis. This sampling method is both laborious and 

intrusive. Invasive sampling methods are also not always suitable for use in urban areas. 

This study describes the application of a non-invasive genetic technique for the estimation of 

urban ship rat density. Individual genotyping of ship rats was facilitated by analysing nine 

microsatellite loci amplified from the tissue of ship rat hair follicles. Hair samples were 

collected using hair-snag tubes (220 mm lengths of 65 mm PVC down pipe). Hair samples 

were retained on adhesive coated rubber bands that partly occluded the opening at both ends 

of the hair tubes. Hair tubes were baited with peanut butter and set in a known array. Ship rat 

density was estimated using spatially explicit capture-recapture analysis (DENSITY 4.1 ). 

Maximum likelihood was used to fit a range of candidate models to the spatial dimensions of 

hair tube re-visitation data. 
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The efficacy of the hair tube methodology was initially verified in the Orongorongo Valley on 

a well studied population of ship rats. In the Orongorongo Valley the density estimate of 1.17 

± 0.42 (SE) rats/ha was in accordance with recent cage-trapping estimates from the same 

sampling grid. 

Very low densities (0.26 ± 0.10 (SE) ha) of ship rats were found in Dunedin urban bush 

fragments. The overall effect of ship rats as predators on urban birdlife is inferred to be much 

less than in rural areas, where higher ship rat densities exist. If rats exist in high densities 

within urban Dunedin it seems likely they do so within small pockets of favourable habitat i.e. 

areas that are not frequently controlled, where food is abundant or where domestic cat 

densities are low. 

Systematic sampling and genetic profiling of ship rat hair for spatially explicit density 

estimation requires fewer human resources than cage-trapping and provides robust estimates 

of absolute density, but involves increased costs in laboratory analysis. 
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1 INTRODUCTION 

1.1 Urban ecology 

In the year 2007 the Population Reference Bureau estimated that 75% of people in the 

developed world live in urban areas; in New Zealand this figure is 86% (Haub et al. 2007). 

Movement of the human population into cities is a global phenomenon, with subsequent loss 

of surrounding rural land to urban sprawl. In Great Britain 6,000 ha of rural land is converted 

to urban use each year (Department of Environment Food and Rural Affairs 2003). When 

averaged New Zealand's rate of rural to urban expansion has been in the order of 4-5% per 

year over the last 25 years (Ward et al. 1996). With the ongoing transition of rural to urban 

habitats there is an increasing need to understand urban ecosystems better. Despite the fact 

that most of us live in the urban environment surprisingly little is known about the ecological 

interactions that take place within it. 

The aggregation of people in urban areas is generally considered to be detrimental to global 

biodiversity (Harrison & Davies 2002), although some rare and threatened species can exist in 

urban areas, after being reduced in numbers or extirpated from other parts of their former 

range (Bland et al. 2004). Whether a species survives in the urban environment is dependent 

on its ability to live and reproduce in highly modified and regularly disturbed habitat that is 

continually being manipulated by humans. Modified habitats have been viewed as having 

little value for wildlife, but this attitude is changing. For example, Miller and Hobbs (2002) 

showed that a large proportion of the world's 'biodiversity hotspots' (Myers et al. 2000) 

currently harbour higher than average human population densities. 

1.2 Valuing urban ecosystems 

More often than not, conservation programmes focus on saving larger blocks of non-urban 

habitat as opposed to smaller urban habitat fragments. Prioritising conservation effort solely 

towards larger reserves using the 'bigger is better' approach is, however, not always justified. 

Some smaller reserves are functionally very important for certain species that are not present, 

or protected, within larger non-urban reserves (Shafer 1995). Most cities contain remnant 
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patches of semi-natural habitat and often substantial areas of residential gardens. These areas 

provide habitat for a diverse array of species as well as providing connectivity for animals 

travelling from one area of habitat to another (Rudd et al. 2002). Small patches of remnant 

habitat can contain genetically diverse sub-populations that are important for the long term 

genetic viability and persistence of surrounding populations (Trewick 1999). For example in 

Dunedin city a genetically distinct population of peripatus (Peripatoides novaezealandiae) 

persists within a 3.4 ha bush fragment in Caversham Valley (Trewick 1999). Likewise a 

small population of the declining jewelled gecko (Naultinus gemmeus) exists in tiny patches 

of remnant bush on the Otago Peninsula (Jewell & McQueen 2007). These populations are 

small but have high conservation value nationally (Trewick 1999; Whitaker et al. 2002). 

The intrinsic values of urban wildlife should also not be underestimated. With the exception 

of commensal rodents, most urban residents highly value the presence of wildlife in their 

gardens (Baker & Harris 2007). For many city dwellers an experience with urban wildlife 

may be as close to 'wild nature' as they ever get. As cities continue to grow in both human 

population size and area, children will become increasingly cut-off from wild nature. If 

conservation programmes are to be sufficiently supported in the future then it is important that 

children nowadays are brought up with a basic understanding of conservation and the 

environment. Remnant patches within urban habitat and the species that live within them 

have the potential to be the primary focus of environmental education programmes for future 

generations. 

1.3 Urban aliens 

Biogeographic dispersal barriers no longer prevent the spread of alien spec1es from one 

country to the next (Kowarik 2008). The spread of alien species into novel habitat has 

become one of the major focuses of urban ecology (Wittenberg & Cock 2001). Falinski 

(1998) states that the invasion and establishment of alien plant species is favoured by 

disturbance of community structure, human changes to the environment, fragmentation and 

enhanced migration. These features are pervasive in the urban environment. 

As well as invasive plant species, the New Zealand urban environment is home to a suite of 

alien predators. Exotic mammalian predators have been implicated both directly and 
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indirectly in the decimation of New Zealand's endemic flora and fauna (Bell 1978). Species 

such as hedgehogs (Erinaceus europaeus), domestic cats (Felis catus), possums (Trichosurus 

vulpecula), rats (Rattus spp.), and mice (Mus musculus) are common in many urban areas. 

The majority of these species have been extensively studied in the non-urban environment 

(e.g. Fitzgerald & Karl 1979; Alterio 1996; King et a!. 1996; Ruscoe et a!. 2001; Sanders & 

Maloney 2002; Wilson et a!. 2003a), but the influence these species exert as predators on 

urban wildlife has mostly been neglected. If urban ecosystems are to be enhanced or 

preserved it is essential to understand the impact that these predators have on other urban 

wildlife. 

1.4 Commensal rats: a worldwide pest 

Throughout the world rats are found living in close association with human settlements 

(Traweger et a!. 2006). This is probably due to their ability to adapt to a generalist diet and 

occupy a variety of habitats (Innes 1990b ). Commensal rats act as a vector for a number of 

virulent pathogens, making them a significant public health risk (Battersby et a!. 2002). Rats 

are also a common agricultural and horticultural pest (Traweger et a!. 2006). Despite these 

factors surprisingly little is known about the population ecology of commensal rats. Scientific 

studies investigating the ecology of rat populations in cities are uncommon, and reliable 

estimates of rat densities in urban areas are almost non-existent (Traweger eta!. 2006). 

1.5 Rats in New Zealand forests 

In New Zealand rats have decimated endemic fauna and in some areas are subject to ongoing 

control programmes (Innes eta!. 1995). Three species of rat exist in New Zealand, Pacific 

rats (Rattus exulans), ship rats (R. rattus) and Norway rats (R. norvegicus). Pacific rats came 

to New Zealand with the first Polynesians. They are the smallest of the three rat species with 

adults generally weighing between 60-80 grams (Atkinson & Moller 1990). Norway rats 

arrived in New Zealand with the first Europeans between 1790-1800 (Atkinson 1973) and are 

the largest of New Zealand's rat species, with most individuals weighing between 200-300 

grams (King 2005). Ship rats spread throughout New Zealand after c. 1880 but may have 

arrived much earlier (Atkinson 1973); most adult ship rats weigh between 120-160 grams 
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(Innes 2005). Competitive exclusion has been observed as each successive species of rat has 

established in New Zealand (Harper 2002); with ship rats considered the superior competitor 

(Russell & Clout 2004). The once widespread Pacific rat is now rare on the mainland and 

found almost exclusively on offshore islands free of the ship and Norway rats (Atkinson & 

Moller 1990). Likewise, Norway rats were displaced from areas of previously suitable habitat 

following the introduction of ship rats (Atkinson 1973). Norway rats are now found most 

frequently in small local colonies near water, or on offshore island (Innes et al. 2001 ). 

Rats are omnivorous and are relentless predators of native invertebrates, amphibians, reptiles 

and birds (Atkinson 1985; Newman & McFadden 1990; Thurley & Bell 1994; Cree et al. 

1995; Towns et al. 2006). Rats may also affect non-prey species indirectly through food and 

habitat competition The detrimental effect of rats on plant communities is also often 

overlooked (Wilson et al. 2003a). Rats forage heavily on seeds, growth stems, leaves and 

fruits (Campbell & Atkinson 2002; Wilson et al. 2003a). 

Ship rats are highly arboreal, whereas both Norway and Pacific rats are almost always found 

on the ground (Daniel1972; Dowding & Murphy 1994; Hooker & Innes 1995). Ship rats are 

therefore considered a much greater threat to tree-nesting avifauna than other rat species 

present in New Zealand (Innes et al. 1999). The efficacy of ship rats as predators was cruelly 

demonstrated in 1964 when ship rats invaded Taukihepa (Big South Cape Island) (Bell 1978). 

Direct predation by ship rats on the fauna present on Big South Cape led to the extinction of 

the endemic Stead's bush wren (Xenicus longipes), Stewart Island snipe (Coenocorypha 

aucklandica iredalei) and the greater short-tailed bat (Mystacina robusta) (Bell 1978). The 

local extinction of the South Island saddleback (Philesturnus carunculatus carunculatus), the 

Stewart Island robin (Petroica australis rakiura), the South Island fern bird (Bowdleria 

punctata), the brown creeper (Mohoua novaseelandiae) and a large flightless weevil 

(Hadramphus stilbocarpae) also resulted (Bell1978) . 

Ship rat densities recorded on mainland New Zealand and its associated offshore islands range 

substantially; from 1.7 rats/ha in the Orongorongo Valley (Daniel1972), to 37.6-62.7 rats/ha 

on Taukihepa (Rutherford 2005). 



;' 

5 

1.6 Ship rats in the New Zealand urban environment 

In New Zealand ship rats are the most common rat species found in urban areas (prey of 

household cats: Gillies 1998 andY. van Heezik, unpubl. data; cage-trapping data: Morgan et 

al. 2009). The specific role ship rats have in structuring urban ecosystems, directly through 

predation and indirectly through food and habitat competition is poorly understood in New 

Zealand. In Canberra, Barratt (1997) showed commensal rats were a significant proportion of 

prey killed by household cats. Remarkably few estimates of urban rat density exist, 

considering the degree to which rats influence human populations (e.g. Emlen et al. 1949; 

Traweger et al. 2006). Ship rats are both nocturnal and highly dispersed making them 

particularly difficult to sample using conventional methods. Robust density estimates may 

provide an indication of the degree to which ship rats influence urban bird populations. 

Currently there is no low cost method readily available to estimate accurately absolute ship rat 

density. 

The exact extent to which ship rats influence populations of urban wildlife is complicated by 

the presence of the domestic cat. Domestic cats are a 'super predator' in the urban 

environment due to the fact that they exist in unnaturally high densities (Woods et al. 2003; 

Baker et al. 2008; Sims et al. 2008). Few domestic cats rely on hunting prey for sustenance, 

but high cat densities ensure a substantial effect of secondary predation on certain prey 

species (Baker et al. 2005). Churcher and Lawton (1987) estimated that 30% of house 

sparrow (Passer domesticus) deaths in Bedfordshire England were due to cats. The flow-on 

effects caused by such levels of predation must influence the structure and functioning of 

urban ecosystems. However, eradication of cats from the urban environment could 

potentially have a paradoxical effect if meso-predators, such as ship rats exist. Uncontrolled 

populations of these predators could threaten wildlife to a far greater extent than the presence 

of cats (Fitzgerald 1988; Courchamp et al. 1999). The process whereby a reduction in 

superpredator abundance leads to a population explosion of mesopredators has been termed 

'mesopredator release' (Fitzgerald 1990; Courchamp et al. 1999). In the urban environment 

the presence of a superpredator 'domestic cats' may in fact be indirectly beneficial to prey 

species (Baker et al. 2005). Fitzgerald and Karl ( 1979) suggest this is the case in the 

Orongorongo Valley forest, New Zealand, where a more dense population of native birds 

exist than would be expected if feral cats, that suppress the rat population, were not present. 



,, 

> 

-> 

-) 

,> 

'/ 

6 

The findings of Efford et a!. (2006) also suggest an inverse relationship of cat and rat density 

in the Orongorongo Valley. Reducing the abundance and distribution of domestic cats in 

urban areas may therefore not be the best solution to protect endemic wildlife when 

mesopredators such as ship rats are present. 

1.7 Abundance estimation 

One of the fundamental issues involved in the research, conservation and management of rare 

or invasive species is determining precisely 'how many there are'. A range of techniques 

have been used for estimating the abundance of rare or highly dispersed species. The most 

accurate system is a complete enumeration where all individuals within the population are 

recorded. Counts like these are, however, seldom possible (Thompson et al. 1998; Stanley & 

Royle 2005), and in rats a complete population census would almost certainly be impossible. 

In most instances complete counts are only possible when a population is confined to a 

manageable area (island or fenced site), consists of a large conspicuous species, and exists in 

low numbers. For example mule deer (Odocoileus hemionus) in north western Colorado 

(Bartmann et al. 1986) or nesting northern royal albatross (Diomedea sanfordi) on the Otago 

Peninsula. 

Indices of relative population density are almost always easier and quicker to obtain, making 

them cheaper than conventional methods for estimating absolute population density 

(Caughley 1977; Ruscoe et al. 2001). To estimate relative rat densities in New Zealand, snap 

trapping and ink tunnels are two commonly used methods (e.g. Taylor & Thomas 1993; Innes 

et al. 1995; King & Moller 1997; Innes et al. 1999; Harper 2005; Efford et al. 2006). 

However, there are several limitations to using these methods: (1) density indices vary 

significantly with sampling protocol and index type (Blackwell et al. 2002); (2) the 

assumption that an index value is correlated to the true population density is almost always 

unknown and rarely tested (Wilson et al. 2007); (3) indices make the possibly unwarranted 

assumption of equal catchability (or detectability) over time, and between different habitat 

types (Brown et al. 1996); (4) density indices cannot be compared between trapping sessions 

if factors such as trapping effort vary (McDonald & Harris 1999); and (5) seasonal variation 

in captures (or detections) may reflect changes in animal activity (Dowding & Murphy 1994), 

rather than changes in population density. 
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Measures of relative density appear most valuable in long-term studies that target a single 

study site where sampling methodology remains constant over the study period. For example, 

snap trap indices of Efford et al. (2006) show how a population of ship rats fluctuated over a 

27-year period in the Orongorongo Valley. However, the inherent biases associated with 

index values reduce the wide-scale applicability of most conclusions (Blackwell et al. 2002). 

Repeated live trapping and marking is a common technique for estimating the absolute 

abundance of small mammals (Otis et al. 1978). The profound cost associated with 

measuring absolute abundance currently limits its wide scale applicability. 

Absolute abundance can be calculated by dividing a count by an estimate of the detection 

probability, obtained by fitting a statistical model to the captures and recaptures (Wilson & 

Delahay 2001). A range of alternative models have been developed to deal specifically with 

data collected from incomplete counts (see Pollock 1991). 

1.8 Density estimation 

In the past, converting estimates of abundance to estimates of absolute density has been 

complicated by the issue of defining an effective trapping area (ETA). Funding rarely allows 

for complete areas of habitat (e.g. national parks) to be sampled as a whole. In most instances 

the population being sampled is part of a much greater population in the surrounding region. 

Estimating density in this manner is clearly biased by an unknown 'edge effect' (Efford et al. 

2005). In an undefined sample area animals are free to move in and out of the study site at 

any time. The population susceptible to sampling is therefore never constant. Attempts have 

been made to overcome this issue by estimating an ETA. Dice (1938) calculated an ETA by 

adding a boundary strip to the actual trapped area. Dice (1938) defined the boundary strip as 

the area equal to the average home-range radius of the animals within the trapped area. A 

severe limitation of this approach is that the size of an animal's home range can vary over 

time and between habitat types. Estimates of density that have been derived from an initial 

abundance estimate and an arbitrary approximation of ETA should therefore be treated with 

caution (Efford et al. 2004; Borchers & Efford 2008; Efford et al. 2009). Edge effect can be 

minimised by increasing the ratio of the size of the study area to the home range size of the 
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study species. However, increasing the area of a field site can make sampling unmanageable. 

This is particularly apparent in smaller studies that sample species with comparatively large 

home ranges. 

1.9 Spatially explicit estimation of absolute density 

Efford (2004) and Efford et al. (2004) demonstrated that absolute density could be estimated 

directly using spatially explicit capture-recapture (SECR). This eliminated the bias associated 

with relying on estimates of absolute abundance and the existence of an ETA to calculate 

density. In conventional capture-recapture (CR) the spatial dimensions of the trapping 

process are almost always ignored (Efford et al. 2009). Closed population capture histories 

are generally recorded in binary format with (1) representing a capture, and (0) no capture 

(Otis et al. 1978). A spatial capture history also records the location at which each capture 

occurred (Efford et al. 2009). Efford (2004) estimates density (D) directly by fitting a 

statistical model to the spatial dimensions of the trapping data (software: DENSITY). 

Estimating absolute density is technically challenging, time consuming and expensive to 

perform (Innes 2005). However, an unbiased estimate of absolute population density is 

almost always a more useful and versatile parameter than an index (Efford 2004). Estimates 

of absolute density allow for direct comparison between sites, over time, and are free from 

many of the untested assumptions associated with indexing methods. 

Currently in New Zealand the most reliable method for obtaining estimates of absolute ship 

rat density is thought to be live trapping and SECR analysis (e.g. Wilson et al. 2007). CR and 

live trapping of ship rats requires a grid of cage traps to be baited and set over a number of 

regular occasions. On each occasion rats are caught, possibly anaesthetised, marked in some 

manner (commonly ear tagged e.g. Latham (2006)), and released. The software DENSITY 

(Efford 2008) can then be used to estimate density directly from the spatial dimensions of the 

CR data. This approach relies heavily on recaptures of marked individuals on several 

subsequent occasions. For logistical reasons intense sampling effort like this is rarely 

possible on a large scale, which means most researchers resort to less desirable estimates of 

relative density. 
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1.10 Non-invasive sampling 

Conventional CR using body tags requires direct capture and handling of animals at least once 

(Foran et al. 1997). Non-invasive sampling does not require direct human-target species 

contact at any stage during sampling. Sampling in this manner is particularly beneficial if the 

species in question is cryptic, secretive, elusive, vulnerable to human contact, highly 

dispersed, nocturnal or rare (Foran et a!. 1997). Rats fit into nearly all of these categories; 

this makes them an ideal candidate for non-invasive sampling. 

Injuries or death of target species resulting from hands-on capture is counterproductive when 

attempting to estimate population size, as well as being unethical in small or endangered 

populations. Direct handling oflarge carnivores, such as brown bear (Ursus arctos), can also 

be hazardous for researchers (Solberg eta!. 2006). 

Advances in modem photography and molecular techniques have allowed species that were 

previously difficult to sample, to be sampled more readily, and at a substantially reduced cost 

(Wilson & Delahay 2001 ). Remote camera trapping has been used where target species are 

individually distinguished by their external appearance. Karanth eta!. (2004) estimated the 

density of tigers (Panthera tigris) in this manner using stripe patterns to recognise unique 

individuals. Advances in molecular genetic techniques have also lead to a proliferation of 

ecological studies investigating the abundance and distribution of species previously too 

difficult and costly to sample using invasive methods (Fernando et al. 2003). 

1.11 Genetic sampling 

In the last decade there has been a realisation that sloughed skin, saliva, feathers, regurgitates, 

faecal material, hair and eggshells are ready sources of template DNA (Taberlet & Luikart 

1999). At present hair and faecal samples are used most frequently in non-invasive genetic 

studies (Waits 2004). Currently the most popular molecular markers in CR studies are 

microsatellites. By combining a number of independent polymorphic microsatellites a 

'multilocus genotype' can be ascertained that is unique to each individual within a population 

(Palsboll 1999; McKelvey & Schwartz 2004). In the past macroscopic or microscopic 

examination of hair samples was used primarily to gain an indication of species or genera 
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present (Foran et al. 1997; Lindenmayer et al. 1999). Now a single hair follicle can be 

distinguished to the level of the individual by the analysis of polymorphic microsatellite loci 

(Goossens et al. 1998). 

Non-invasive genetic techniques have been used to obtain population parameters of 

previously difficult-to-sample species without the need to capture, observe, or directly disturb 

the animal (Table 1.0). In addition to population parameters, collection of DNA can be 

utilised for auxiliary purposes such as information on sex ratio, home ranges, geographic 

distribution of genotypes, paternity and genetic relatedness (Kohn et al. 1999; Solberg et al. 

2006). A further benefit of non-invasive genetic sampling is that it does not suffer the same 

issues of tag loss that traditional population studies have to deal with (Mills et al. 2000). 

Nocturnal species like Rattus spp. can be extremely difficult to trap, and have been known to 

display trap avoidance behaviour. Cowan (1977) recorded neophobia or 'new object reaction' 

of ship rats to food baskets. Likewise Howard et al. (1987) suggests it may take up to several 

weeks for ship rats to enter foreign bait stations. Rats may also exhibit trap avoidance 

behaviour if the stress of the initial capture was substantial. In a cage-trapping study of ship 

rats, Innes (1977) failed to recapture 59% of rats after initial captures. Daniel (1972) also 

failed to recapture 53% of individual ship rats after initial captures. Innes (1977) proposed 

this could be due to death of individuals, migration, or trap shyness. Both migration and loss 

of individuals seem unlikely given the sample sessions of each of the aforementioned studies 

was run over a brief period of time i.e. days rather than months or years. Ship rats may 

therefore exhibit a strong behavioural response to cage-trapping in the form of trap avoidance. 

A non-invasive approach to sampling ship rats may decrease the likelihood of a 'trap 

avoidance response'. If rats are not constrained at any time then it is likely that they will not 

suffer the same capture related sampling stress of conventional CR using cage-trapping. 
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Table 1.0: Recent studies which have utilised non-invasive genetic sampling 

Species 

Grizzly bear (Ursus arctos) 

Common wombat (Vombatus ursinus) 

American marten (Martes americana) 

Black bear (Ursus americanus /uteo/us) 

Humpback whale (Megaptera novaeang/iae) 

European badgers (Meles meles) 

Hairy-nosed wombat (Lasiorhinus krefftii) 

Brown bear (Ursus arctos) 

Mountain lion (Puma concolor) 

Wolves (Canis lupus) 

Stoat (Mustela erminea) 

Coyote (Canis latrans) 

African elephant (Loxodonta eye/otis) 

DNA source 

Hair 

Faeces 

Hair 

Hair 

Skin biopsy and 

sloughed skin 

Faeces 

Faeces 

Hair 

Hair and faeces 

Faeces 

Faeces 

Faeces 

Hair 

Faeces 

Faeces 

Source 

(Mowat & Strebeck 2000) 

(Banks et a/. 2002) 

(Mowat & Paetkau 2002) 

(Triant eta/. 2004) 

(Palsboll et a/. 1997) 

(Wilson eta/. 2003b) 

(Frantz eta/. 2003) 

(Sloane eta/. 2000) 

(Taberlet eta/. 1997) 

(Solberg eta/. 2006) 

(Ernest eta/. 2000) 

(Creel eta/. 2003) 

(Efford et a/. 2009) 

(Kohn et a/. 1999) 

(Eggert eta/. 2003) 

Ship rats are a typical nocturnal predator for which direct density estimation is often difficult. 

Ship rats are sensitive to human disturbance and can be difficult to recapture using 

conventional techniques such as cage-trapping, limiting the application of these methods to 

high density populations. A widely applicable technique to measure ship rat density, non

invasively and at low cost, stands to benefit conservation programmes throughout New 

Zealand. 

1.12 Sampling in an urban area 

People are a major component of the urban environment and it is important that their presence 

is taken into careful consideration before planning an urban ecology study. The presence of 

people and their pets constrains the methods that can be used in studies of urban ecology. For 
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example, lethal sampling of rats, using snap traps or poison, may pose an unacceptable risk to 

household cats or young children in urban areas. Urban residents may also interfere with field 

equipment either deliberately or accidently. This can complicate and compromise the results 

of urban ecology studies. Solving these methodological problems is a prerequisite for 

studying urban ecology. 

1.13 Aims of this study 

The overarching mm of this research was to gam an increased understanding of the 

distribution and density of ship rats within urban Dunedin: This constitutes an initial step 

towards ascertaining the role of ship rats as predators on urban bird populations. Knowledge 

regarding the distribution and density of ship rat populations may be useful for the planning 

and implementation of effective rat control measures. 

This study focuses primarily on partly arboreal ship rats as opposed to ground-based Norway 

rats. Ship rats are of greater ecological interest in this study due to their potential ability to 

prey on, and suppress tree-nesting urban bird populations. Unpublished data on prey of 

household cats suggests that ship rats are the primary species present in urban Dunedin (Y. 

van Heezik, unpubl. data); assuming that household cats prey on either species of rat equally. 

In the following chapters I will refer to populations of ship rats that live in close association 

with humans as 'urban' or 'commensal' rats to distinguish them from 'non-urban' 

populations. 

1.13.1 Specific objectives 

The specific objectives of the project were to: 

1. 

2. 

Determine the presence and distribution of rats (R. Rattus and R. 

norvegicus) within four distinct areas of the Dunedin urban environment: 

inner-urban bush fragments, peri-urban bush fragments, housed 

residential areas and an urban island. 

Develop a non-invasive method to estimate ship rat density precisely and 

with minimum bias. 
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Test the density estimation technique on a well studied population of ship 

rats in the Orongorongo Valley. 

Measure ship rat densities within urban Dunedin with a particular 

emphasis on areas where native bird populations breed most frequently 

i.e. urban bush fragments. 

Compare the density of ship rats in urban forest fragments with that on an 

urban island free of other mammalian predators (possums, mustelids and 

cats). 
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2 METHODS 

2.1 Field sites 

The main field component of this research took place in Dunedin, New Zealand (45°52'S 

170°30'E) (Figure 2.0). Sampling effort was focused in and around bush fragments, where 

native birds are most abundant and breed most frequently (van Heezik et al. 2008a). Four 

zones were initially defined: inner-urban bush fragment, peri-urban bush fragment, housed 

residential and urban island. Urban island was classified in this study as a body of land 

isolated from the mainland but within close proximity (<1km) to an urban area. The urban 

island was also one of the only sites in the Dunedin area that was free of household cats. 

Specific site selection within each study zone was driven by factors such as accessibility for 

monitoring purposes, suitability of habitat for rats (Morgan et al. 2009), habitat continuity and 

accessibility to the general public. Sites were only sampled if mammalian control operations 

had not taken place within them in the last 12 months. 

2.1.1 Inner-urban: Dunedin town belt 

The inner-urban bush fragment studied was the Dunedin town belt, a narrow stretch of inner 

city bush, ~200m in width and over 5 km long, consisting of multi-tiered tree stands forming 

a closed canopy. The town belt is a patchy mosaic of native and introduced plant species with 

natives confined more to the northern half and exotics to the south. Of the native forest Scott 

(2001) describes two main types: kanuka-dominated and mixed broadleaf forest. This study 

focused sampling effort within areas of mixed broadleaf, which occurs most frequently in 

gullies and shaded sites. The canopy is predominantly mahoe (Melicytus ramiflorus), tree 

fuschia (Fucshia excorticata), lemonwood (Pittosporum eugenioides), kohuhu (Pittosporum 

tenufolium) and three finger (Pseudopanax colensoi). Coprosma areolata is present in an 

often sparse understory, while hounds tongue (Microsorum pustulatum) and hen and chicken 

fern (Asplenium bulbiferum) make up a patchy herb layer (Scott 2001). Two sample sites 

were selected within the town belt: 'Woodhaugh Gardens' (Figure 2.1) and 'Wallace block' 

(Figure 2.2). 
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2.1.2 Peri-urban: McGouns Creek bush 

The peri-urban bush fragment was McGoun's Creek bush, a forested area of approximately 20 

ha (Figure 2.3). McGouns Creek bush consists predominantly of native trees. Mahoe 

(Melicytus ramiflorus ), broadleaf ( Griselinia littoralis ), rimu (Dacrydium cupressinum) and 

fuschia (Fuschia excorticata) form a mixed canopy. Supple-jack (Ripogonum scandens), 

wheki (Dicksonia squarrosa), and crown fern (Blechnum discolor) compose an occasionally 

dense understory. 

2.1.3 Urban Island: Quarantine Island 

Quarantine Island was used as the urban island study site. Quarantine Island is situated in 

Dunedin harbour ~200m from Portobello marine laboratory and ~600 m from the township 

of Port Chambers on the opposite side of the harbour. Quarantine Island is 15 ha in size with 

a small stand (~6 ha) of dense native bush (Figure 2.4). Extensive re-planting has been 

carried out in recent years by the St. Martins Island Community trust to extend the remnant 

patch of forest. The bush consists largely of Halls totara (Podocarpus totara), lancewood 

(Pseudopanax crassifolium), flax (Phormium tenax), miro (Podocarpus ferrugineus) and 

matai (Podocarpus spicatus). The island is free of possums, mustelids and cats, but is 

believed to harbour rats (K. Mason, pers. comm. ). 
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Figure 2.0: (I) Location of Dunedin and the Otago Peninsula in relation to the South Island ofNew Zealand. (II) 
Sample locations in and around urban Dunedin. A) Wallace block (inner-urban bush fragment); B) Woodhaugh 
Gardens (inner-urban bush fragment); C) McGouns Creek bush (Peri-urban bush fragment); D) Residential 1 (as 
defined by Freeman and Buck 2003) (housed residential zone) and E) Quarantine Island (urban island). The 
shaded region represents the central area of Dunedin. The scale bar equals 5 km. 

Figure 2.1: Composite aerial photography of (B) Woodhaugh Gardens study site (inner-urban bush fragment). 
The scale bar equals 300m. 
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Figure 2.2: Composite aerial photography of(A) the Wallace block study site (inner-urban bush fragment). The 
scale bar equals 500 m . 

Figure 2.3: Composite aerial photography of (C) McGouns Creek bush study site (peri-urban bush fragment). 
The scale bar equals 300m. 
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Figure 2.4: Composite aerial photography of (E) Quarantine Island bush fragment (urban island) . The scale bar 
equals 500 m. 

2.1.4 Housed residential 

A 24 ha block of housed residential area was sampled with wax blocks only (Residential 1, as 

defined by Freeman & Buck 2003). This area contained garden-rich housing (113 of lot size 

as garden), with structured tree and shrub vegetation (Figure 2.5). The area of Residential 1 

sampled was directly adjacent to the north-western extent of the town belt. Freeman and 

Buck (2003) distinguish two further housed residential areas (Residential 2 and 3). These 

contain smaller and less complex gardens and therefore most probably provide less habitat for 

rodents to live. These areas support lower densities of native birds, probably due to a 

reduction in suitable foraging and nesting habitat (van Heezik eta!. 2008a). Residential sites 

2 and 3 (Freeman & Buck 2003), were therefore considered oflower priority in this study. 
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Figure 2.5: Composite aerial photography of (D) Residential 1 study site (housed residential area). The scale bar 
equals 300m. 

2.1.5 Verification ofmethods: Orongorongo Valley 

Non-invasive hair tube methodology has only recently been developed (results from stoat 

(Mustela erminea) hair tube data published in (Efford eta!. 2009)) and hasn't previously been 

used to estimate rat density. Validation of the hair tube technique in an area known to support 

ship rats was therefore considered necessary. 

Hair tube methodology was implemented in the Orongorongo Valley, New Zealand (41 °21 'S 

174°58'E) (Figure 2.6 and 2.7). The Orongorongo field site harbours a population of ship rats 

which have been extensively studied since 1966 (Efford et a!. 2006). The Orongorongo 

Valley consists of a mosaic of mixed podocarp-broadleaf forest and beech forest. By using 

existing trapping lines, the initial time consuming step of establishing a new survey grid could 

be avoided. Density estimates obtained in the Orongorongo Valley were compared to recent 

cage-trapping estimates (D.J. Wilson, A.E. Byrom, R. Pech, M. Perry, D.P. Anderson, 

Landcare Research, unpubl. data). 
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Figure 2.6: Location of(F) 'Woottons grid ' at the Orongorongo Valley field site, in relation to the North Island 
ofNew Zealand. The scale bar equals 10 km. 

Figure 2.7: Composite aetial photography of(F) Woottons grid study site (Orongorongo Valley). The scale bar 
equals 200 m. 
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2.2 Field protocol 

2.2.1 Phase 1: Using wax blocks for the detection of rat presence and assessment of rat 

distribution in the Dunedin urban environment 

Wax blocks are a bait interference method of sampling species presence (Thomas eta!. 2003). 

In this study rat presence and distribution across various urban habitats was determined by the 

identification of genus-specific bite marks on wax blocks. Wax blocks were used in this 

study because they are non-toxic, small, lightweight, easy to use in the field and cheap (NZ 

$0.85). These features of wax blocks are all highly desirable when sampling in urban 

localities. The nature of wax blocks also meant a wider sampling area could be covered 

compared with alternative techniques such as rodent tracking tunnels. 

This study used wax blocks sold under the trademark 'Waxtag®' (Pest Control Research Ltd, 

Christchurch); each unit consisted of a small triangular piece of fluorescent plastic with a 

lump of non-toxic wax at the apex (Figure 2.8). Using a compass and handheld GPS, a single 

sampling grid was established at each field site. The locations of the sample points on each 

grid were recorded to within 10m and uploaded to MapSource Version 6.13.7. Sample points 

were then overlaid on a topographic image of each sample site. 

Figure 2.8: Wax block. The scale bar equals 30 mm. 
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A single wax block was placed at each sampling point. The number of sampling points (n) 

and their arrangement, varied between field sites, depending on the size and shape of each 

site. At McGouns Creek six lines of 17 wax blocks (nrotai = 101) were spaced at 50 m 

intervals between lines and 25 m intervals along lines (Figure 2.9). To install a similar 

number of wax blocks in each study site it was necessary to restrict the distance between 

sampling points in inner-urban study sites. In the town belt Wallace block five lines were 

established, with wax blocks spaced at 25 m between lines and 25m along lines (n = 91 wax 

blocks, Figure 2.1 0). In the housed residential study site a regular grid was less feasible due 

to access restrictions in certain areas. Random allocation of sampling points across the 

housed residential study site was therefore implemented (Figure 2.11 ). A simple random 

sample of points was overlaid on a satellite image of the field site. In each case, the nearest 

household to the random sample point was chosen for sampling. If one household did not 

wish to take part or a sample point was inaccessible, then the next sample point was chosen. 

+ 
+ 

++ 
+ ++ 

+ -+ 
+ + ++ 

+ + ++ 
++ + + +++ 

+ ++ ++ 
+ + + 

+ + + + 
++ + + + + 

+ + + + + +++ 
+ + + + + 

++ + + + ++ + + +-+ + + + + 
+ + 

++ + + + + + + + ++ + + + + 
+ + + 

+ + 
+ + ++ 

+ + 
+ 

Figure 2.9: McGouns Creek bush sampling grid (n = 101) with wax blocks spaced at 25m along lines and 50m 
between lines. The scale bar equals 100 m. 
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Figure 2.10: Wallace block sampling grid (n = 91) with wax blocks spaced at 25m along lines and 25m between 
lines. The scale bar equals 1 00 m. 

Figure 2.11: Housed residential sampling grid (n = 56) with wax blocks spaced at varying intervals due to 
random allocation of sampling points. The scale bar equals 100 m. 
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Within the housed residential area wax blocks were placed after 5prn, when occupants were 

most likely to be horne. Each household where a randomly allocated sample point was 

positioned was visited and asked whether they would mind a wax block being placed in their 

garden. Each participating household was given an information sheet briefly outlining the 

study and reassuring household occupants of the non-invasive and non-toxic nature of wax 

blocks. 

Wax blocks were placed in the town belt from the 6th August 2008 - 1oth August 2008, in 

McGouns Creek from the 21st July 2008 -25th July 2008; and in the housed residential study 

site over three nights 1 ih - 19th March 2008 (collected 21st - 23 rd March 2008). Peanut butter 

was smeared on wax blocks as a lure. Peanut butter is widely used in studies to increase the 

rate of ship rat detection or capture (e.g. Brown et al. 1996; Blackwell et al. 2002; McKay & 

Russell 2005). Unpublished data on the foraging patterns of ship rats suggests that ship rats 

forage most frequently under or close to dense vegetation, compared with more open habitat 

types (D. Wilson, unpubl. data). Wax blocks were therefore fixed as close to dense cover as 

possible and just above ground level (to exclude non-target interference from hedgehog and 

Norway rats). 

2.2.2 Phase 2: Using non-invasive hair-snag tubes to estimate rat density 

Tissue samples in the form of hair follicles were collected using hair-snag tubes. An array of 

hair tubes was placed in each study site and checked daily for the presence of hair, over seven 

days. Hair tubes consisted of 220 rnrn lengths of 65 rnrn PVC down pipe. Two slits were cut 

half way through the tube, 40 rnrn in from either end. A 16 rnrn wide rubber band with 229 

rnrn diameter was stretched between the two slits so that the rubber band partly occluded the 

opening at both ends (Figure 2.12). The rubber bands were coated with diluted TRAPPER® 

glue, sourced from Pest Management Services, Paraparaurnu. To dilute, the glue was heated 

gently in a 100 degrees oven for approximately 20 minutes (or until fluid). In a fume 

cupboard toluene was added until the glue formed a thick honey consistency. 

Hair tubes were baited with about 5 g of peanut butter in the middle of the tube. To prevent 

movement tubes were pegged to the ground using a loop of number eight wire. During 
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monitoring, if hairs were found, the hair tube containing the hair was replaced. Each sample 

was removed with forceps and bagged individually and labelled according to sample location 

and sampling occasion. If hair tubes were disturbed by non-target species then the 

disturbance was noted and the tube reset. The population of ship rats at each study site was 

assumed to be closed i.e. no births, deaths or migrations during each sampling session. 

Figure 2.12: (a) Hair tube with rubber band occluding the opening of the tube at either end (b) hair sample 
retained on an adhesive coated rubber band, viewed inside a hair tube. The stretched width of the rubber band 
equals 1 0 mm. 

2.3 Verification of hair tubes in the Orongorongo Valley 

To verify the efficacy of the hair tube methodology a field trial was carried out in the 

Orongorongo Valley, Wellington. This field trial ran for one week from the lOth June 2008-

1 ih June 2008. 100 hair tubes were placed in a 10 x 10 array on Woottons grid (a pre

existing sampling grid). Tubes were spaced at 25 m intervals; the polygon obtained by 

joining the outermost sampling points had an area of just over 5 ha (Figure 2.13). Tubes were 

set and checked daily following the same protocol as in the urban study sites. Rain on the 

final monitoring occasion meant a large number of samples were damp when collected. 

These samples remained damp until they were processed in the lab several days later. 

2.4 Using hair tubes to estimate rat density in urban Dunedin 

Hair tubes were placed on the existing wax block grids of the Wallace block and McGouns 

Creek, but not the housed residential site (after failing to detect a single rat using wax blocks). 
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After initial hair-tubing resulted in low rat numbers being detected, two additional sites were 

surveyed: W oodhaugh Gardens and Quarantine Island. 
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Figure 2.13: Woottons sampling grid (n = 100) (Orongorongo Valley) with detectors spaced at 25m along lines 
and 25m between lines. The scale bar equals 100 m. 

Hair tube grids were established at Woodhaugh Gardens (Figure 2.14) and Quarantine Island 

(Figure 2.15) following the same procedure as in earlier field sites. Quarantine Island has 

areas of steep and densely vegetated terrain that were inaccessible to sample. This made 

establishing a regular grid on the island difficult and the spacing of sampling points was 

variable (Figure 2.15). The time period between sampling of different study sites was kept to 

a minimum to prevent complications associated with seasonal fluctuations in rat abundance 

and ensure comparability between sites. Within the Wallace block hair tubes were laid on the 

18th July 2008 and collected on the 25th July 2008. Within McGouns Creek hair tubes were 

placed on the ih July 2008 and collected on the 14th July 2008. In Woodhaugh Gardens hair 

tubes were placed on the 14th September 2008 and collected on the 21st September 2008. 

Lastly on Quarantine Island hair tubes were placed on the 13th September 2008 and collected 

on the 23rd October 2008. After failing to detect a single rat after a week of sampling on 

Quarantine Island, tubes were left in the field for an additional five weeks before collection; 

hair tubes were not monitored daily over this period. 



,, 

27 

Figure 2.14: Woodhaugh Gardens sampling grid (n = 65) with detectors spaced at 25m along lines and 25m 
between lines. The scale bar equals 100 m. 
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Figure 2.15: Quarantine Island sampling grid (n = 56) with detectors spaced at approximately 25m along lines 
and 25m between lines. The scale bar equals 100 m. 
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Samples collected from W oodhaugh Gardens were dried and stored for a month before being 

sent for microsatellite analysis. Unfortunately these samples got lost in the post, but 

eventually arrived in Auckland five weeks later. The time between collection and processing 

of Woodhaugh Gardens samples was therefore over eight weeks. This was much longer than 

the period between collection and analysis of other samples. 

2.5 Analysis 

2.5.1 Phase 1: Examination of wax blocks 

Reference tags (provided by M. Thomas, Pest Control Research Ltd, Christchurch) were used 

to assess whether sign was due to rats, or other non-target species. Size and shape were the 

main characters used to differentiate the bite marks of different species. Rats left, upper- and 

lower-incisor bite marks (Figure 2.16 (a) & (b)) were much smaller (0.4-1.4 mm), than those 

from possums for example. Typically, possum interference was distinguished by wide (2-4 

mm) incisor marks (Figure 2.16 (c)) and often also by deep canine and pre-molar grooves. 

Mouse bite marks were similar to those of rats but considerably narrower and shorter (Figure 

2.16 (e)). Cat bite marks were distinguished by a series of overlapping grooves formed by the 

canine teeth (Figure 2.16 (f)). Likewise dog (Canis familiaris) bite marks were easily 

distinguished by the large carnassial grooves (Figure 2.16 (d)). 
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Figure 2.16: Reference wax blocks (a) & (b) ship rats incisors ; (c) possum incisors; (d) dog camassials; (e) 
mouse incisors; (f) cat camassials. The match sticks provide scale. 
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2.5.2 Phase 2: Identification of hair samples 

Each section of rubber band with adhering strands of hair was carefully removed and placed 

in a small zip-lock bag with a piece of filter paper to absorb any excess moisture. Hair 

samples were distinguished as rat or non-target species by careful visual examination. In 

cases where samples were not easily distinguished as rat by macroscopic examination, the 

cuticle scale pattern and medulla structure of hair strands were observed using a compound 

microscope, following Day (1966) . 

Polyvinyl acetate (PVA) was used as a medium to produce cuticle scale casts . On each glass 

slide a thin and even film of dilute (50% solution of PVA and distilled water) PVA was 

applied. Using forceps, hair strands were placed on the PVA, gently pressed into the medium 

to ensure adequate surface contact, and left to set. Once the glue had set (about 20 minutes at 

room temperature), hair was carefully removed, leaving behind an impression of the surface 

structure of each hair strand. For viewing casts, a second slide was placed on top of the first 

and the sandwich was inverted. This arrangement ensured scale patterns were viewed as they 

actually appeared on each strand of hair. A photographic reference collection of scale casts 

from known ship rat and house mouse hair samples was initially made to compare hair tube 

samples against (Figures 2.17 & 2.18). 

Figure 2.17: Cuticle scale casts of hair samples from a house mouse: (a) convex side of a primary guard hair 
with regular wave-like scales; (b) primary guard hair with broad petal-like cuticle scales; and (c) concave side of 
a primary guard hair, with regular wave-like scales. The scale bar equals 50 microns. 
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Figure 2.18: Cuticle scale casts of hair samples from a ship rat: (a) concave side of a primary guard hair with 
broad petal scale pattern; (b) irregular wave scale pattern, typically found near the tips of ship rat primary guard 
hairs; and (c) concave side of a primary guard hair with broad petal scale pattern and uneven scale edges. The 
scale bar equals 100 microns. 

To view the structure of the medulla, strands of hair were mounted whole in paraffin oil. This 

allowed the appearance and pigmentation of the medulla to be easily viewed under a 

compound microscope. Reference photos (Figure 2.19) were taken of mounted hair strands of 

known origin. These were then compared to unidentified hair samples. If there was still 

uncertainty as to whether a hair sample was from a rat then the sample was sent for 

microsatellite analysis along with definite rat samples. Non-rat samples were readily 

distinguished from their microsatellite DNA and rejected from further analysis. 
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(b) 

Figure 2.19: Whole mount of primary guard hairs showing the wide aeriform lattice medulla structure of (a) 
house mouse (scale bar equals 50 microns); and (b) ship rat (scale bar equals 100 microns). 

2.5.2.1 Microsatellite analysis 

Samples were sent to the Ecological Genetics Laboratory, Landcare Research, Auckland for 

microsatellite profiling and gender analysis. Nine polymorphic microsatellite loci were 

amplified (D2Rat234, D5Rat83, D7Rat13, D11Mgh5, D19Mit2, D10Rat20, D15Rat77, 

D16Rat81 , D18Rat96); and one sex-specific marker. Individuals within a population are 

distinguished by their genotypes i.e. the base-pair lengths of the two alleles at each locus. 

Samples of hair from ship rats and Norway rats were not morphologically distinguishable, but 

both may have been present. The primers used in microsatellite analysis are suitable for the 

analysis of both species. Norway rats exhibit short base-pair lengths at the D11Mgh5 and 

D 19Mit2 loci (R. Howitt, pers comm. ). Multilocus genotypes could therefore be easily 

screened for the presence of samples collected from Norway rats. 

Genotyping errors, due to allelic dropout or false alleles (see Taberlet et al. 1996), were 

identified by comparison of similar genotypes. An individual's spatial detection history and 
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gender was also used to further confirm the presence of genotyping errors. Genotyping errors 

rates were reported as the average number of errors per locus (or per locus error rate). 

2.5.2.2 Estimating the probability of individual identification among genotypes 

When using microsatellite loci to construct multilocus genotypes there is a possibility that two 

or more individuals may have identical genetic profiles. Mills et al. (2000) proposed that in 

genetic profiling enough polymorphic microsatellite loci should be used to distinguish 

individuals with 99% confidence. Probability of identity (PI) is the probability of observing 

identical multilocus genotypes in two individuals drawn at random from the same population 

(Ayres & Overall 2004). PI should be small to avoid misidentification. In this study PI was 

estimated as an indication of whether the number of microsatellite loci was sufficient to 

consistently distinguish individuals. PI was computed using formula (1) below, which 

assumes Hardy-Weinberg equilibrium (Mills et al. 2000). PI at each locus (with multiple 

alleles) is calculated as the sum of squares of the expected frequencies of all possible 

genotypes (Paetkau et al. 1998; Mills et al. 2000). It is usual to calculate PI for one locus at a 

time, and to multiply these values together, assuming independence among loci. The 

following formula was used: 

(1) 

where Pi and PJ are the frequencies of the ith and jth alleles (Mills eta!. 2000). 

In populations where close relatives are likely to be sampled Taberlet et al. (1999) 

recommend using the following formula to estimate the probability of identity between 

siblings (Pisibs): 

(2) 

where Pi is the frequency of the ith allele (Waits et al. 2001). Pisibs is a conservative upper 

limit of the probability of observing two individuals with identical multilocus genotypes 

(Waits et al. 2001; Ayres & Overall2004). 
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PI and Pisibs values were calculated for each locus. The product of values for all loci was used 

to obtain an overall probability for both PI and Pisibs: 

PI overall I1 (PI single locus ) (3) 

2.5.3 Phase 3: Spatially explicit capture-recapture 

Once individual genetic profiles had been obtained, spatially explicit capture-recapture 

(SECR) models (e.g. Borchers & Efford 2008; Efford et a!. 2009) were applied using 

DENSITY 4.1 (Efford 2008). For each data set the specific location of each hair tube (x, y 

coordinates) and the capture history of each individual was imported into DENSITY. Hair 

tubes were considered a proximity detector in DENSITY because they do not detain 

individuals at any stage during the sampling process. 

In SECR the spatial location of each animal within the trapping grid is summarised as a single 

point, termed the 'home range centre'. The home range centres of all individuals are assumed 

to follow a 2-D Poisson distribution with density D. The probability that an individual will be 

detected at a particular hair tube is assumed to be a function of the distance from the 

individuals' home range centre to the given hair tube. 

Three parameters were estimated concurrently from the trapping data: density (D), g0 and 0. 

D is the key parameter of ecological interest, g0 is the probability of detection when the 

distance r from a given detector equals 0, and 0 represents the spatial scale of an individual's 

movements. The parameters 0 and g0 combine to make the 2-parameter spatial detection 

function g(r). Maximum likelihood was applied numerically to estimateD and the parameters 

of the detection function g0 and 0. At each study site populations were assumed 'closed' 

(population closure (demographic and geographic); equal probability of capture; and mark 

retention) over the seven day sampling period. 

In DENSITY a set of a priori models was developed to incorporate more or less model 

complexity. By allowing for variation in capture probability due to time or behaviour for 

example, a better fitting model may result. Models can also become over complicated in an 
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effort to reduce bias, and therefore lose model precision. The best fitting model can be 

selected by comparing a set of candidate models that vary in structure and complexity. In this 

study, selection between candidate models was guided by lowest AICc (Akaike's Information 

Criterion corrected for small sample size), a measure of both fit to data and parsimony of 

model. AICc trades off model bias with model precision to select the so-called model of 'best 

fit'. 

AICc values were calculated for each of the candidate models. Burnham et al. (2002) 

recommend three rules-of-thumb for model selection: (1) models are approximately equal if 

the difference in AIC value is less than 2; (2) if AIC values vary between 2 and 7 then there is 

some support for a real difference between alternate models; and (3) if the difference in AIC 

is greater than 7 then there is strong evidence to support an actual difference in the fit of 

alternate models. In this study normalised Akaike weights (wi) were calculated in instances 

where AICc values differed by less than 7 (Burnham & Anderson 2002). Akaike weights are 

the probability that a given model is the 'best model' in the set. Weighted values give an 

indication of the degree to which one model is more or less supported than other alternative 

models. 
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3 RESULTS 

3.1 Wax blocks 

Interference was recorded on 91% of all wax blocks after four nights. The presence of rats was 

confinned in McGouns Creek bush and the Wallace block, but not in the housed residential study 

site (Figure 3.0, 3.1 and 3.2). The 11 detections of rat in the Wallace block were localised to the 

north-eastern extent of the sampling grid. Only three wax blocks recorded rat interference in 

McGouns Creek, two of which were adjacent to one another. 

The rate of interference on wax blocks by non-target species was high in all three study sites: 

77% at the housed residential site; 79% in the Wallace block and 96% at McGouns Creek bush 

(Figure 3.3). Of the 232 wax blocks from which interference was recorded, approximately 5% 

were classified as unidentified. A single wax block was also removed by a person that lived in 

the residential site being sampled. On rare occasions (~3%) interference from two different 

species was observed on a single wax block. 

The composition of species present, detennined by comparing bite marks, varied substantially 

between study sites (Figure 3.3). Within the housed residential area, 63% of wax blocks were 

chewed by cats. In the Wallace block and McGouns Creek 50% and 52% of wax blocks 

respectively were chewed by possums. Interference by mice was cmmnon in both the McGouns 

Creek (42%) and the Wallace block (20%) and was also frequently detected in the housed 

residential area (9%). 
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Figure 3.0: Composition of mammalian species detected in McGouns Creek, by observation of genus-specific bite marks on wax blocks. The marker composed 
of two colours represents a wax blocks in which interference was recorded by two different species. The scale bar equals I 00 m. 
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Figure 3.1: Composition of mammalian species detected in the Wallace block, by observation of genus-specific bite marks on wax blocks. Markers composed of 
two colours represent wax blocks where interference was recorded by two different species. The scale bar equals 100m. 
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Figure 3.2: Composition of mammalian species detected in the housed residential site, by observation of genus-specific bite marks on wax blocks. Scale bar 
equals 250m. The marker composed of two colours represents a wax block in which interference by two different species was recorded. *Wax block taken. 
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Figure 3.3: Presence of species in the three study sites, determined by genus-specific bite marks on wax blocks 
(McGouns Creek n = 102; Wallace block n = 97; and housed residential n =57). *Wax block was removed by a 
member of the public. 
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3.2 Hair tubes: Orongorongo Valley 

3.2.1 Data collection 

One hundred and three samples were collected over seven days. Using microscopical techniques 

69 of these samples (collected from 33 different hair tubes) were confinned as ship rat hair. Non

target disturbance by possums and mice was recorded in approximately 4% of all hair tubes on 

the sample grid. The quantity of hair adhering to each section of rubber band ranged from two 

single strands to hundreds of strands (mean= 29.3 ± 3.0 SE, n = 69). Eighty-eight percent of hair 

samples collected were blonde or lemony-white in colour. These samples were all confinned as 

rat hair using a combination of macroscopic and microscopic examination. Hair strands from 

nine further rubber bands were grey-brown in colour and could not be confidently identified 

using macroscopic and microscopic techniques. Ambiguous samples such as these were sent for 

microsatellite analysis to determine their origin. A single rat dropping was also found inside a 

hair tube; this was also sent for microsatellite analysis. 

The number of hair samples collected daily increased from five after the first sampling occasion 

to 24 on the seventh sampling occasion (Figure 3.4). Hair tubes were revisited regularly, with rat 

hair being collected from one particular hair tube on all seven sampling occasions. 

3.2.2 Genetic analysis: Amplification and individual identification 

Of all the tissue samples collected, 56 (72%) were successfully amplified at all nine loci and 

confinned as ship rat. Of the ambiguous hair samples collected, seven out of nine failed to 

successfully amplify. The genotyping success was 100% of samples identified as rat using 

macroscopic and microscopic identification, until the final day when it dropped to 27% (Figure 

3.5). A genotype was obtained for the rat dropping. 
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Figure 3.4: Samples collected for microsatellite analysis. Samples were distinguished as either rat or ambiguous 
using standard macroscopic and microscopic techniques. Samples that were deemed to be non-rat in origin were not 
genotyped. 
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Figure 3.5: Mean genotyping success for rat and ambiguous samples at each monitoring occasion. Points 
encompassed by 95% binomial confidence limits. 
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From the 56 hair samples successfully amplified nine distinct genotypes were identified (6 males 

and 3 females) (Table 3.0). Each multilocus genotype was detected from 1 to 27 times, with a 

mean number of detections of 6.22 ± 2.75 (mean± SE, n =56). The greatest distance between 

recaptures ofthe same individual was 85 m (Rat 1; Figure 3.6). 

Recaptures were recorded on all seven monitoring occasions (Figure 3.7). Individuals were 

regularly detected multiple times, at different hair tubes over a single occasion. A high rate of 

amplification failure on the final day caused the number of successfully genotyped captures to 

drop on the final sampling period. There was also a general increase in the number of samples 

collected over the sampling period (Figure 3. 7). 

3.2.3 Detection of genotyping errors 

False alleles were observed at the locus D11Mgh5, where a single allele amplified to 286 instead 

of 264 (Rat 1 ). All other alleles amplified from different loci matched that of Rat ( 1 ). The 

sample in question was also collected in a location where Rat (1) was regularly detected over the 

sampling period. Overall the per-locus enor rate recorded from microsatellite analysis was 0.4% 

(2/504). 

A single instance of allelic dropout was also infened. This enor made a heterozygote (156, 176) 

at the D7Rat13 locus, appear to be homozygous (156, 156). The interpretation was suppmied by 

both samples being collected at the same hair tube, and both samples being female. 
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Table 3.0: Multilocus genotypes obtained of Orongotongo Valley ship rats at nine microsatellite loci. Nine distinct individuals were identified. 'Captures' refers 
to the total number of times a single multilocus genotype was detected over all seven monitoring occasions. M =male, F= female. 

Microsatellite loci 
D2Rat234 D5Rat83 D7Rat13 D11Mgh5 D19Mit2 D10Rat20 D15Rat77 D16Rat81 D18Rat96 Captures Sex 

Rat1 100 118 174 176 152 156 264 264 223 233 98 98 233 233 158 160 235 235 25 M 
Rat 2 100 118 176 176 156 156 278 286 223 223 98 127 247 251 158 158 244 244 7 F 
Rat 3 89 122 168 176 156 156 276 278 221 233 98 98 233 237 158 160 235 242 14 M 
Rat 4 118 122 172 176 156 156 284 286 221 223 98 98 233 233 158 158 235 235 4 M 
Rat 5 89 118 176 176 156 166 278 286 223 227 98 118 233 241 158 158 232 240 1 M 
Rat 6 100 122 174 176 156 156 264 264 223 227 98 98 233 235 158 158 235 235 1 M 
Rat 7 100 100 172 174 156 176 276 278 223 223 98 98 233 241 158 160 235 235 2 F 
Rat 8 100 118 172 176 156 176 248 278 223 233 98 98 233 233 158 160 240 240 1 F 
Rat 9 100 100 170 172 152 156 264 278 225 225 98 98 233 239 158 160 231 240 1 M 



!'" '......._ -----
--..... ~, .. 
y ""' 

,.. ' ,_. 

45 

v ..... ( 
v 

\o' 
..,~.._.,. .. v 'r' - -1 

Rat 1 

Rat 2 

Rat 3 -

~ Rat4 

0 Rat5 

Rat 6 

® Rat7 

® Rat8 

Rat9 

Rat? 

Figure 3.6: Composite aerial photography of the Orongorongo Valley field site with the hair tube grid and rat captures overlaid, Circles with crosses represent 
instances in which rat hair samples could not be successfully genotyped, Male rats = (1); (3); (4); (6); (8); and (9), Female rats= (2); (5); and (7), The scale bar 
equals 50 m, 
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Figure 3.7: Distribution of first-time captures (filled bars) and recaptures (open bars), over the seven monitoring 
occasions. The crosses represent the total number of rat hair samples collected (ambiguous samples excluded) on 
each monitoring occasion. The gap between the bar and the cross ( +) on occasion seven represents the number of 
genotyping failures recorded. 

All nine loci were polymorphic, with a mean of 4.7 ± 0.53 (mean± SE, n = 42) alleles per locus. 

After correcting for genotyping errors, all genotypes in the dataset differed at a minimum of four 

loci. Individuals could therefore be distinguished with a high degree of confidence. 

3.2.4 Genetic matches: probability of rat identity 

The combined probability of identity of the nine microsatellite loci was low (PI = 2.1 x 1 o-9
; 

Pisibs = 0.0023). Subsets of loci also yielded low PI. For example, not allowing for close 

relationship, the two most informative loci yielded a PI near zero. Even allowing for the 

possibility of close relationship, the probability of identity Pisib was less than 1% when the six 

most infonnative loci were used (Figure 3.8). 



47 

0.45 

0.40 -11-Pisib ...,._PI single locus 

0.35 

0.30 

>--:;:::; c 
Q) 0.25 
32 -0 
>-

:!:::: 

.c 
0.20 ra .c e 

c.. 

0.15 

0.10 

0.05 

0.00 

2 3 4 5 6 7 8 9 

Number of loci 

Figure 3.8: Decrease in probability of identity (PI) (grey line) for ship rat genotypes as additional microsatellite 
markers are added, in order of decreasing heterozygosity. The dotted line represents an arbitrary 1% threshold below 
which enough loci are typed to distinguish between individuals with 99% certainty. Plsibs (black line) gives the upper 
bound. 
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3.2. 5 Analysis of microsatellite capture-recapture data 

Six models were compared using DENSITY 4.1 (Table 3.1). Models were fitted with additional 

parameters such as a behavioural (D behaviour) response to capture (allowing for trap happy or trap 

shy behaviour) and change in capture probability over time. The assumption of equal detection 

probability over time may not be tme, given the high rate of genotyping enors of samples 

collected on the last day. To incorporate this potential variation a model was constmcted with a 

different detection probability (g0) for the samples collected on the final monitoring occasion (D 

time*behaviour). Density estimates ranged in the set of candidate models from 0.98-1.41 rats/ha 

(Table 3.1 ). AICc values suggest the best model was one that fitted a halfnonnal detection 

function and incorporated a behavioural response to capture, with the probability of detection 

increasing after first-time capture. Akaike weights were calculated, as four of the best models (as 

determined by lowest AICc values), varied by less than 7. The weighted values show 81% 

suppoti for the D behaviour halfnonnal model relative to the candidate set. This model conesponds 

to a maximum likelihood density estimate of 1.17 ± 0.42 (SE) ship rats/ha. 

Table 3.1: Maximum likelihood (ML) density estimates (rats/ha) from six closed capture-recapture (CR) models 
incorporating different constraints on detection probability. Halfnormal or hazard refers to the shape of the detection 
curve. Models were compared using Akaikes Information Criterion for small sample sizes (AICc) and AIC weights 
indicate the relative support for each model. SE, LCL and UCL represent the standard error, lower confidence limit 
and upper confidence limit respectively. Model notation is given in the text. Estimates were generated using 
DENSITY 4.1. 

Model AICc Akaike weight ML Density SE LCL UCL 
D behaviour Halfnormal 360.9 0.812 1.17 0.42 0.59 2.33 
D null - Hazard 365.5 0.082 0.80 0.29 0.41 1.58 
D time*behaviour - Halfnormal 366.2 0.056 1.38 0.58 0.63 3.03 
D null - Halfnormal 367.4 0.032 0.98 0.34 0.51 1.90 
D behaviour- Hazard 368.6 0.017 1.17 0.43 0.59 2.34 
D time*behaviour- Hazard 384.7 0.000 1.41 0.58 0.65 3.08 
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3.3 Hair tubes: Urban Dunedin 

3.3.1 Data collection 

One hundred and forty-six hair samples were collected from the four Dunedin study sites and 

32% of these were confinned as rat hair using standard microscopy techniques. Fifty-five 

percent were identified as hair samples belonging to non-target species, such as mice. The 

species of 19 further samples could not be detennined. Ambiguous samples were genotyped 

along with definite rat samples. Three samples were collected from Quarantine Island after hair 

tubes were left set for one month. Rat droppings and burrows typical of Norway rats, were also 

observed on Quarantine Island. Sixteen of the nineteen ambiguous samples were collected in 

McGouns Creek. McGouns Creek also had a high incidence of non-target disturbance by mice 

( 44/7 5). Over all four sampling sites the number of rat hair samples collected appears to increase 

across each session (Table 3.2). 

Table 3.2: Samples collected over seven sampling occasions from four Dunedin study sites. Samples from 
Quarantine Island are not included in this table as they were collected after the seven day sampling session. Samples 
of non-rat origin were not genotyped. R = Rat; A = Ambiguous. 

Monitoring Occasion 
1 2 3 4 5 6 7 

R A R A R A R A R A R A R A 
Wallace 0 0 1 0 2 0 2 1 2 0 3 2 3 0 
McGouns 0 0 0 1 0 4 2 4 4 3 6 3 3 1 
Woodhaugh 3 0 1 0 2 0 3 0 2 0 2 0 3 0 
Quarantine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pooled total 3 0 2 4 4 7 5 8 3 11 5 9 

The amount of hair retained on each section of rubber band varied from four individual strands to 

hundreds of strands. Ninety percent of hair samples that were determined as rat were blonde or 

lemony-white in colour. All ambiguous samples analysed were grey-brown in colour. 

3.3.2 Genetic analysis: Amplification and individual identification 

Of the 66 tissue samples collected, 42 (64%) were confirmed as rat and successfully amplified at 

all nine loci. Of the ambiguous samples collected, 19 out of 19 failed to successfully amplify. 
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When the 19 ambiguous samples were excluded, the genotyping success of confinned rat hair 

was 89%. Genotyping failure occuned in 2/15 samples from McGouns Creek and 3/10 samples 

from the Wallace block. All samples collected from Woodhaugh Gardens and Quarantine Island 

contained DNA and were successfully genotyped. 

Of the 42 samples from all four sites, 10 distinct multilocus genotypes were identified (4 female, 

6 male) (Figures 3.9, 3.10, 3.11, 3.12 & Table 3.3). Each multilocus genotype was detected 1-7 

times, with a mean number of detections of 4.2 ± 0.57 (mean ± SE, n = 42). Polymorphism was 

observed at all nine loci with a range of eight to eleven alleles per locus (9.33 ± 0.37, mean± SE, 

n = 84). The greatest distance between detections of the same individual was 134m by Rat (4) in 

McGouns Creek bush (Figure 3.1 0). 

Rats (6) and (10) (Table 3.3) have substantially lower base-pair lengths at the D11Mgh5 and 

Dl9Mit2 loci - in the range of Norway rats (R. Howitt, pers. comm.). This is illustrated in 

Figure 3.13, which shows the base-pair lengths at each locus, of all the rats genotyped in this 

study (including samples from the Orongorongo Valley). Rat (10) was detected on Quarantine 

Island while Rat ( 6) was detected on the banks of the Leith Stream. 

Combined results from Woodhaugh Gardens, the Wallace block and McGouns Creek bush show 

that the number of daily recaptures increased across the sampling session while the number of 

new captures declined (Figure 3.14). 
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Table 3.3: Consensus multilocus genotypes obtained from nine microsatellite loci, Ten distinct individuals were identified from all four study sites. 'Captures' 
refers to the total number of times a single multilocus genotype was detected over all seven monitoring occasions. M =male, F= female. 

Microsatellite loci 
D2Rat234 D5Rat83 D7Rat13 D11Mgh5 D19Mit2 D10Rat20 D15Rat77 D16Rat81 D18Rat96 Ca~tures Sex 

Wallace Rat 1 100 122 166 186 181 183 280 282 225 231 129 131 233 233 166 166 231 246 5 F 
Rat 2 108 118 166 191 156 166 282 284 223 233 125 129 241 243 168 168 242 242 5 M 

McGouns Rat 3 100 102 172 186 158 181 266 280 225 225 129 131 233 249 160 160 239 239 5 F 
Rat 4 118 122 170 174 166 185 282 284 225 225 98 98 247 249 160 172 231 240 6 M 
Rat 5 100 100 174 186 158 183 282 284 225 225 98 100 233 241 166 168 240 240 2 F 

Woodhaugh Rat 6 108 108 168 174 160 160 248 248 195 195 109 109 229 259 163 163 245 247 4 M 
Rat 7 130 130 192 198 164 164 290 292 233 237 105 142 241 241 167 179 236 247 7 M 
Rat 8 106 108 184 198 180 180 286 292 233 241 137 139 241 257 173 173 245 247 1 M 
Rat 9 108 118 192 192 180 190 286 290 229 245 105 105 245 249 173 173 245 247 4 F 

Quarantine Rat 10 120 120 168 174 160 160 243 243 195 197 109 109 253 255 167 167 236 242 3 M 
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Figure 3.9: Composite aerial photography of the Wallace block (inner-urban bush fragment) with the hair tube grid and rat captures overlaid. Circles with 
crosses represent instances in which rat hair samples could not be successfully genotyped. Male rat= (1). Female rat= (2). The scale bar equals 75 m. 
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Figure 3.10: Composite aerial photography of McGouns Creek bush (peri-urban bush fragment) with the hair tube grid and rat captures overlaid. Circles with 
crosses represent instances in which rat hair samples collected could not be successfully genotyped. Male rat= (4). Female rats = (3); and (5). The scale bar 
equals 50 m. 
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Figure 3.11: Composite aerial photography ofWoodhaugh Gardens (inner-urban bush fragment) with the hair tube grid and rat captures overlaid. Male rats= (6); 
(7); and (8). Female rat= (9). The scale bar equals 50 m. 
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Figure 3.12: Composite aerial photography of Quarantine Island (urban island) with the hair tube grid and rat captures overlaid. Male rat = (1 0). The scale bar 
equals 50 m. 
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Figure 3.13: Allele base pair lengths for nine microsatellite loci examined in rats sampled in this study (n = 19). 
Filled black circles represent probable ship rats (n = 17). Open triangles represent individuals (6) and (10) which 
are probably Norway rats (n = 2). Norway rats were identified from lower base pair lengths at both the 
Dl1Mgh5 and Dl9Mit2 loci (R. Howitt, pers. comm.). The numbers on the x-axis refer to microsatellite loci: 
(1) D2Rat234; (2) D5Rat83; (3) D7Ratl3; (4) Dl1Mgh5; (5) Dl9Mit2; (6) Dl0Rat20; (7) D15Rat77; (8) 
Dl6Rat81; and (9) Dl8Rat96. 



Figure 3.14: Distribution of first time captures (filled bars) to recaptures (open bars), for study sites in which 
rats were detected combined from each monitoring session (McGouns Creek, Wallace block and Woodhaugh 
Gardens). Crosses represent the total number of rat hair samples collected (ambiguous samples excluded) on 
each monitoring occasion. The gap between the bars and the crosses, at occasions three and seven, represent the 
number of genotyping failures 

3.3.3 Detection of genotyping errors 

The per-locus error rate from samples collected in urban Dunedin was 0.26% (1/378). Of the 

42 successfully amplified samples, a single instance of allelic dropout was recognised. Allelic 

dropout occurred at the D 19Mit2 locus where the animal in question appeared to be 

homozygous (225, 225). Three additional captures, at the same hair tube, of an animal that is 

heterozygous (225, 231) at the D19Mit2 locus (with an otherwise identical multilocus 

genotype), indicates the likely occurrence of allelic dropout. Allelic dropout was supported 

further when both the suspect sample and the confirmed sample were found to be female. The 

probability of errors at two or more loci in the same genotype is negligible given how rarely 

genotyping errors occurred at a single locus. It is therefore highly probable that each of the 

10 multilocus genotypes in this data set corresponds to a unique individual. Too few 

individuals were detected at each Dunedin study site to allow a probability of identity statistic 

to be calculated from locally determined allele frequencies. 
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3.3.4 Analysis of urban Dunedin capture-recapture data 

Very low rat numbers were detected within all urban sites sampled. With such a low number 

of recaptures, DENSITY could not calculate individual density estimates for each site. CR 

data was therefore pooled between all three urban study sites and a combined density estimate 

was calculated. Quarantine Island data was excluding from pooling after failing to detect the 

presence of ship rats following the first seven monitoring occasions. 

Four models were compared using DENSITY 4.1 (Table 3.4). Density estimates ranged in 

the set of candidate models from 0.25-0.53 rats/ha (Table 3.4). AICc values suggest the best 

model was the null model with a hazard detection curve. A behavioural (D behaviour) response 

to capture (allowing for trap happy or trap shy behaviour) was incorporated in two density 

models but these models had higher AICc values than the comparative null models. Akaike 

weights were calculated, as the AICc values for each model differed by less than 7. AICc 

weights suggest that the D null hazard model had 92% support for being the best model in the 

candidate set. This model corresponds to a pooled maximum likelihood density estimate of 

0.26 ± 0.10 (SE) ship rats/ha. 

Table 3.4: Maximum likelihood (ML) density estimates (rats/ha) from four closed capture-recapture (CR) 
models incorporating different constraints on detection probability. Halfnormal or hazard refers to the shape of 
the detection curve. Models were compared using Akaikes Information Criterion for small sample sizes (AICc) 
and AIC weights indicate the relative support for each model. SE, LCL and UCL represent the standard enor, 
lower confidence limit and upper confidence limit respectively. Model notation is given in the text. Estimates 
were generated using DENSITY 4.1. 

Model AICc Akaike weight ML Density SE LCL UCL 
D null - Hazard 337.0 0.921 0.26 0.10 0.13 0.53 
D behaviour- Hazard 342.0 0.076 0.53 0.15 0.16 0.80 

D null - Halfnormal 349.0 0.002 0.25 0.09 0.13 0.49 
D behaviour Halfnormal 351.0 0.001 0.29 0.11 0.14 0.59 

3.3.5 Overall success of hair tubes and microsatellite analysis 

The hair tube methodology, almost always, was successful at obtaining sufficient rat hair for 

microsatellite analysis. Of the 249 samples collected from in Dunedin and the Orongorongo 

Valley 41% were verified as rat, 11% as ambiguous and 48% as belonging to non-target 

species- nearly always mice. 
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A total of 19 distinct individuals were recognised, including 7 females and 12 males. Females 

were captured on average 3.7 ± 0.8 times (± SE, n = 26), while male rats were captured on 

average 6 ± 2 times(± SE, n = 72). The mean number of captures for male rats was inflated 

by Rat 1 in the Orongorongo Valley, which was recaptured 25 times. When Rat (1) was 

excluded from analysis, the mean number of captures for male ship rats was 4.3 ± 1.7 (± SE, n 

= 71). Genotyping success was high when ambiguous samples were excluded from analysis, 

82% (n = 119). The per-locus genotyping error rate was low in all samples, 0.34% (3/882). 

This included a single instance of false alleles and two instances of allelic dropout. 
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4 DISCUSSION 

4.1 Value of wax blocks to assess distribution and abundance 

Wax blocks were extremely quick to set up and analyse once collected. Field equipment in cities 

has a tendency to get stolen or manipulated by members of the public. Therefore, one of the 

biggest advantages of using wax blocks in this study was that they were cheap to purchase. 

Residents weren't concerned about having a wax block in their garden, particularly because they 

are non-invasive and non-toxic. The single household that did not wish to take part in the wax 

block survey had a young boy who was allergic to peanuts. Understandably these residents did 

not want to risk having a peanut-coated wax block in their garden. 

Thomas et al. (1999) suggest that the use of wax blocks may be a feasible method to observe 

changes in rat abundance over time. The findings of this study suggest that in urban Dunedin it 

would be very difficult to detennine changes in rat abundance using wax blocks. Wax blocks 

cannot be used to distinguish between different individuals of the same species (or between 

Norway and ship rats). Of the wax blocks chewed in the Wallace block all were close together, 

and could easily have been chewed by a single rat. Wax blocks therefore present many of the 

traditional pitfalls of index-methods. For example, variation in home range size may influence 

the number of wax blocks chewed on any given sampling occasion. Rats that exist in low 

densities may become more active and obtain larger home ranges than rats that exist at higher 

densities (Blackwell et al. 2002). Dowding and Murphy (1994) found that the home ranges of 

two male ship rats increased in spring. Wax block indices collected from different seasons would 

therefore not be comparable. 

When total interference by non-target species is high the effective level of sampling effm1 drops 

to near zero and the sampling method becomes completely unreliable. Interference from non

target species potentially obscures the detection of rat presence. High rates of non-target 

interference in the residential study site may have meant rats did not get the opportunity to chew 

wax blocks. Alternatively since the interference was largely caused by cats, rats may have 
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actively avoided wax blocks. Mice were, however, detected regularly in the residential area. If 

rats were actively avoiding wax blocks due to the presence of cats then it seems likely that mice 

may also display this behaviour. 

Peanut butter appeared to be an effective lure for rats, mice, possums and surprisingly cats. In 

McGouns Creek and the Wallace block a large propmiion of wax blocks were chewed by 

possums. It is likely that one possum could have chewed a substantial number of wax blocks 

over a single night. Interference from other species may have severely diminished the chance 

rats had to chew the wax blocks, or obscured rat bite marks completely. The use of tracking 

tunnels would have decreased the level of non-target interference observed in this study and 

perhaps increased the rate of rat detection. The use of tracking tunnels is initially more time 

consuming than using wax blocks. However, a decrease in non-target interference would mean 

the effective sampling effoti would increase, and allow for more rigorous conclusions to be 

drawn. 

4.2 Efficacy of density estimation using hair tubes 

Hair tubes proved extremely effective at plucking sufficient hair for microsatellite analysis. Hair 

tubes were often re-visited by the same rat, which suggests rats did not perceive the sampling 

process as unpleasant. The ship rats did not appear to exhibit neophobia (sometimes called new 

'object reaction') (Cowan 1977), with some individuals being detected from the very first 

sampling occasion. 

Microsatellite analysis showed that samples whose species identification was uncertain from 

microscopical examination almost never belonged to rats. Non-target interference by mice was 

common and detennining the difference between rat and mouse hair was often difficult, 

particularly if very few guard hairs were retained. Ambiguous samples in which genotypes were 

not successfully obtained most probably belonged to mice. Distinguishing the difference 

between rat and mouse hair was complicated by a flaw in the hair tube design. The arrangement 

of the rubber bands in the hair tubes meant that it was common for animals to go over the top of 

the adhesive coated rubber band, rather than beneath the rubber band. Belly hair was therefore 
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often retained more frequently than the diagnostically useful guard hairs, which are found on the 

back of most species (Triggs & Brunner 2002). Under-hairs of small mammal species are 

generally of little diagnostic value (Triggs & Brunner 2002). A conservative approach was 

therefore taken with marginal samples that could have belonged to rats but probably belonged to 

m1ce. In hindsight, microscopic techniques were very accurate. Subjectively removing 

ambiguous samples before genotyping would save considerable cost and only marginally reduce 

the number of rats captured. 

Once ambiguous samples were omitted from analysis, the overall amplification success at all nine 

loci was 77%. This is approximately average in comparison to recent studies that also utilised 

non-invasive genetic sampling (Table 4.0). The failure rate of 75% of samples on the final 

monitoring occasion in the Orongorongo Valley was unacceptably high. Samples collected on 

the final monitoring occasion were wet, and remained damp until they were processed over one 

week later and so the genotyping failure was probably due to DNA degradation between the time 

of collection and microsatellite analysis. The method in which samples are stored between 

collection and DNA extraction can substantially influence the rate of genotype failure (Banks et 

al. 2002). Studies that have recorded the highest rates of genotyping success have generally 

collected fresh samples and cmTied out DNA extractions only hours after collection (Banks et al. 

2002). Clearly this is not always possible and a greater emphasis on correct sample storage is 

desirable. 

The estimated 'probability of identity' (PI) statistics suggest that the nine loci used in this study 

would be sufficient to distinguish between individual rats, including siblings, with 99% certainty. 

Targeting a sufficient nmnber of polymorphic microsatellite loci increases the chance of 

distinguishing between individuals within the same population. This is particularly important 

when the population in question has lower than average genetic variability, such as one from an 

isolated island. The analysis of nine microsatellite loci is approximately average relative to 

previous studies, which also utilised non-invasive genetic sampling (Table 4.0). 
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Table 4.0: Amplification success of microsatellite DNA in studies that utilised non-invasive genetic sampling. 

Tissue type Species Loci Genotyping success 

Hair follicles R. rattus + R. norvegicus 9 77% 

Faecal and hair follicles Ursus arctos 24 -16%2 

Faecal Canis latrans 3 48%3 

Faecal Puma concolor 12 >75%4 

Faecal Ovis aries + Rangifer tarandus 6 93%5 

Faecal Ursus arctos 6-7 -70%6 

Faecal Vombatus ursinus 6 83o// 

Hair follicles Ursus arctos 6 77%8 

Faecal Ursus arctos 6 73%9 

Hair follicles Martes americana 6 80%10 

Hair follicles Ursus americanus +Ursus arctos 6 -88%11 

Hair follicles Ursus americanus 8 -62%12 

Faecal Meles meles 7 74%13 

Urine and faecal Gulo gulo 10 40%-65%14 

Hair follicles Mustela erminea 6 73%15 

Hair follicles Pan troglodytes 11 50%16 

Hair follicles Lasiorhinus krefftii 10 96%17 

Hair follicles Lasiorhinus krefftii 10 93%18 

Faecal Loxodonta eye/otis 6 72%19 

Faecal Lutra /utra 9 20%20 

Faecal Canis lupus 5 53%21 

Sources: 1This study; 2(Taberlet et a/. 1997); 3(Kohn et a/. 1999); 4(Ernest et a/. 2000); 5(Fiagstad et a/. 
1999); 6(Bellemain eta/. 2005); 7(Banks eta/. 2002); 8(Mowat & Strebeck 2000); 9(Solberg eta/. 2006); 
10(Mowat & Paetkau 2002); 11 (Woods et a/. 1999); 12(Triant et a/. 2004); 3(Wilson et al. 2003b); 
14(Hedmark eta/. 2004 ); 15(Efford eta/. 2009); 16(Gagneux eta/. 1997); 17(Banks eta/. 2003b ); 18(Banks et 
a/. 2003a); 19(Eggert eta/. 2003); 20(Dallas eta/. 2003); 21 (Lucchini eta/. 2002). 



64 

4.3 Validation of the hair tube technique in the Orongorongo Valley 

To test the efficacy of the hair tube methodology a well studied population of ship rats in the 

Orongorongo Valley was initially sampled. Identification failures on the final sampling occasion 

greatly reduced the number of captures that could be used for CR modelling in the Orongorongo 

Valley dataset. However, the density estimate of 1.17 rats/ha was in accordance with recent 

estimates obtained from the same sampling grid using cage-trapping (Figure 4.0). Cage-trapping 

estimates from Figure 4.0 were also calculated using SECR. In the May 2008 session of Figure 

4.0 nine rats were removed from the Orongorongo Valley sampling grid (two months prior to the 

June 2008 hair tube estimate), the model used for the May 2008 estimate allowed for these 

removals (D. Wilson, pers. comm.). To be consistent between all other sampling sessions, the 

null model was selected for each of the cage-trapping estimates in Figure 4.0 (D. Wilson, pers. 

comm.). The June hair tube density estimate is low in comparison with previous published 

estimates of ship rat density in forests (Table 4.1 ). The removal of rats helps explain the lower 

cage-trapping density estimates for May and June, followed by re-colonisation and a higher 

estimate for October, 2008. There appeared to be a slight decline in rat density from May to 

June. However the large confidence limits make it difficult to draw significant conclusions. 

Improving precision of the data would enable more robust conclusions to be drawn as the 

confidence intervals would be reduced and the likelihood of observing any trends present would 

thus increase. 
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Figure 4.0: Estimates of absolute ship rat density on the 'Woottons grid', Orongorongo Valley (January 2007- October 2008). The open circle represents the 
June 2008 hair tube estimate. Black squares represent cage-trapping estimates (D.J. Wilson, A.E. Byrom, R. Pech, M. Perry, D.P. Anderson, Landcare Research, 
unpubl. data). DENSITY has two methods of fitting SECR models: conditional likelihood produces symmetrical confidence limits (cage-trapping estimates); full 
likelihood produces asymmetrical confidence limits (hair tube estimate). 
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Table 4.1: Estimates of absolute ship rat densities from mainland New Zeaiand and associated offshore islands'. 
Adapted from Latham (2006) . 
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The results from the Orongorongo Valley suggest that hair tubes and SECR was an effective 

technique to estimate ship rat density accurately and with greater precision for given effort. 

Density estimation in this study relies on three main assmnptions: (1) population closure 

(demographic and geographic); (2) equal probability of capture; and (3) mark retention. It is 

unlikely that bi1ihs, deaths or migration affected the outcome of this study as each session was 

over a very short time period (7-days). Because hair tubes do not hann the individuals sampled, 

the likelihood of animals showing a negative behavioural response to capture is decreased. This 

can result in an increased number of recaptures. Ship rats in the Orongorongo Valley appeared to 

display a 'trap-happy' response following initial capture. To allow for this variation in capture 

probability, a behavioural function was incorporated into the Orongorongo Valley DENSITY 

models (D behaviour). Model selection is an important pari of CR studies. Unless there is an a 

priori biological reason to choose one model over another, then model selection should be 

consistent in estimates being compared between different saiTipling sessions. The null model is 

frequently selected in CR studies when the power of a dataset is low (Mowat & Strobeck 2000). 

The null model is a naive estimator which assumes equal detectability of individuals, within and 

between sampling sessions. Equal detectability is unlikely to ever be true in wild populations 

(Pollock 1991). Mark retention can severely compromise conventional CR studies. In this study 

the 'mark' is the genetic profile of each individual sampled. Genetic profiles remain unchanged 

throughout the life ofthe individual although genotyping errors can occur (pg 69-72). 

4.3.1 Spatial distribution of male and female ship rats 

Of the nine rats detected at the Orongorongo Valley study site there was no evidence that hair 

tubes sampled one sex more effectively than the other. Further hair tube sampling is, however, 

necessary to verify this. Females sampled were spatially separate from the males. Whether this 

is an actual ecological pattern or just a coincidence is unclear from the data available. In radio

tracking studies by Hooker and Innes (1995) and Dowding and Murphy (1994) male and female 

ship rats did not appear to have spatially separate distributions. Factors such as season, rat 

density and the presence of other predators may influence how male and female rats are 

distributed. Further sampling at this site may clarify how male and female rats are spatially 

distributed within an area of habitat. 
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4.4 Using spatially explicit capture-recapture to estimate rat density 

This cunent study indicates, as in Efford et al. (2009), that SECR can be applied to relatively 

small datasets. Efford et al. (2009) suggests as a rule-of-thumb that a minimum of 20 recaptures 

is necessary to obtain acceptable levels of precision (using DENSITY); with precision generally 

increasing with the number of recaptures obtained (see Efford et al. (2004)). A substantial 

advantage of using hair tubes over an invasive sampling method such as cage-trapping is the 

potential to gain a greater number of recaptures over the same number of sampling occasions. 

Hair tubes allow for multiple captures at more than one tube, over a single sampling occasion. In 

this study a comparatively low number of distinct individuals were sampled, however a high 

number of recaptures were recorded (Table 4.2). In some instances rats became extremely trap

happy, for example Rat (1) from the Orongorongo Valley, was recaptured on average 3.6 times 

per sampling occasion. The high recapture rate of Rat (1) and not other rats implies a difference 

in detectability between individuals, otherwise called 'individual heterogeneity'. However, 

sample size was probably too low overall to incorporate individual heterogeneity in DENSITY 

models (M. Efford, pers. comm.). In a larger dataset, individual heterogeneity may be worth 

incorporating as a model variable in DENSITY. 

The precision of CR estimates can be improved by increasing the number of recaptures obtained. 

Low recapture rates of ship rats using cage-trapping have been recorded in several studies. For 

example, Innes (1977); Daniel (1972); and Latham (2006) failed to recapture (using cage

trapping) 59%, 53% and 39% of individual ship rats respectively following initial capture. Of all 

the ship rats sampled in this study only 26% were not recaptured over each sampling session. 

Wilson et al. (2007) recorded very high initial capture rates, followed by very low recapture 

rates, of ship rats in the Orongorongo Valley using cage-traps (Table 4.2). To increase the 

number of recaptures, for the purpose of density estimation, Wilson et al. (2007) pooled samples 

between sites. Pooling meant the total number of first-time captures was over ten times greater 

than that of first time captures recorded in the Orongorongo Valley in this study. However, the 

number of recaptures in the pooled data of Wilson et al. (2007) remained under half the number 

of recaptures recorded in this study. Furthennore, Wilson et al. (2007) recorded a number of 

capture-related mortalities (Table 4.2). It seems likely that the ship rats studied in Wilson et al. 
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(2007) exhibited some degree of trap shyness following initial capture. It is difficult to establish 

whether the ship rats in Wilson et al. (2007) exhibited trap shyness, or whether it was just that 

ship rats in this study became trap happy, or both. 

Table 4.2: Numbers of first-time captures and recaptures using cage trapping in three sites (April 2004) and hair 
tubes in one site (June 2008), in the Orongorongo Valley. Capture-related mortalities are also recorded. 

Dataset Sites First Captures Recaptures Mortalities 

Wilson et al. (2007) (Cage-trapping) 21 7 0 

2 55 15 

3 32 5 2 
-----------------------------------------

Pooled total 3 sites 108 27 3 
-----------------------------------

This study (Hair tubes) 1 site 9 56 0* 

*No known mortalities recorded during the sampling session using hair tubes. 

4.5 Evaluation of genetic sampling 

An initial proliferation of studies advocating non-invasive genetic sampling in CR studies has 

been tempered by the realisation that these techniques have some serious pitfalls (Taberlet & 

Luikart 1999). Genetic etTors associated with non-invasive CR could potentially nullify the 

apparent advantages of such studies. Identification and removal of genotyping eiTors is a crucial 

step in producing reliable estimates of population parameters from non-invasive CR data 

(McKelvey & Schwartz 2004). EITor proofing allows managers to use DNA-based CR data 

much more widely and with a higher degree of confidence. Extraction and amplification success 

of microsatellite loci depends on the quality and quantity of starting 'template' DNA. Non

invasive sampling often means dealing with minute quantities of low quality DNA (Frantzen et 

al. 1998), and this can lead to a high rate of genotyping eiTors (Taberlet & Luikart 1999). Two 

main fmms of eiTor were recorded in this study: 'false alleles' and 'allelic dropout' (Taberlet et 

al. 1996; Taberlet & Luikart 1999). If genotyping eiTors remain unidentified then the false 

genotypes are misinterpreted as new individuals. 
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Allelic dropout occurs when only a single allele of the two alleles present in a heterozygous 

paired individual is amplified (Taberlet et al. 1996). This produces a 'false homozygote'. 'False 

alleles' may result when contaminated DNA is amplified instead of the targeted template DNA 

(Morin et al. 2001). DNA degradation through exposure to moisture, heat, and ultraviolet 

radiation can mcrease the rate at which genetic errors of either kind occur (McKelvey & 

Schwartz 2004). 

Underestimation of population size may occur if multiple individuals appear to have the same 

genotype. This has been termed the 'shadow effect' (Mills et al. 2000) and this occurs most often 

when too few microsatellite markers are used or alternatively, when the markers lack 

heterozygosity (McKelvey & Schwmiz 2004). Samples from populations with a high degree of 

genetic relatedness may be harder to differentiate; such populations tend to lack genetic variation. 

Therefore, use of an increased number of polymorphic loci is advised when studying island 

populations that may display very low levels of genetic variation (Paetkau et al. 1998). By using 

a larger number of polymorphic microsatellite loci, the shadow effect should rarely be an issue. 

The low Plsibs value obtained from the Orongorongo Valley data confirmed that the microsatellite 

markers used in this study were sufficiently polymorphic to distinguish between siblings with 

similar genotypes. 

Lastly, laboratory errors can occur. These can result from human mistakes such as incorrect 

labelling, switching or mixing of samples and errors in running the polymerase chain reaction 

(PCR) (Fernando et al. 2003). Laboratory error is rarely tested and almost never reported in non

invasive genetic studies (Gagneux et al. 1997). In most professional laboratories it seems likely 

that laboratory error rates are low. 

The observed rate of allelic dropout was low in this study. Allelic dropout is one of the biggest 

shmicomings of non-invasive genetic CR studies (McKelvey & Schwartz 2004). The effect of 

failing to identify a false homozygote is two-fold; the presence of a 'new' individual elevates the 

first time capture rate and also decreases the recapture rate. This kind of error can have a severe 

affect on population estimation. Creel et al. (2003) found that genotyping errors caused up to a 

5.5 fold increase in the estimated population size of wolves (Canis lupus) in Yellowstone 
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National Park. The problem of allelic dropout affects more than just population estimates. The 

rate of spurious 'new' individuals increases if more microsatellite loci are analysed and if the 

number of samples collected increases. This is because genotyping enors occur at the level of 

the individual locus (McKelvey & Schwartz 2004). Even if the single locus enor rate is low, the 

probability of an enor occUlTing in a multilocus genotype can be high. This also means that in a 

CR study every recapture could potentially equate to a 'new' capture. Thus a genetically 

sampled CR study that has a high number of recaptures may suffer high rates of genotyping 

enors and ironically produce a less reliable estimate of animal abundance than a concunent 

invasive study that acquires less recaptures. 

Nearly all organic tissue contains enzymes that degrade DNA and compromise genetic analysis 

(Foran et al. 1997). Enzymes can be inhibited by storing samples in an appropriate manner, such 

as freezing. Often the most practical field method is moisture removal, i.e. using silica beads or 

filter paper in a sealed container. 

The hair tubes used in this study almost always plucked sufficient quantities of hair for 

microsatellite analysis. Initially several different hair tube and rubber band setups were trialled to 

establish which was the most consistent at obtaining sufficient hair samples. Genetic enors occur 

most frequently when low quantities of template DNA are amplified (e.g. Morin et al. 2001; 

McKelvey & Schwartz 2004). Taberlet et al. (1996) found that ~56 picograms of template DNA 

was a critical threshold below which genetic enors increased substantially. Likewise Goossens et 

a!. (1998) found that rates of genetic enor dropped (14% to 4.9% to 0.3%) by increasing the 

number of alpine marmot (Marmota marmota) hairs analysed (1 to 3 to 10). Non-invasive 

sampling methodology should be designed to ensure sufficient quantities of template DNA are 

obtained. In general, fresh samples will provide more ready sources of template DNA than older 

samples (Banks et al. 2002). In this study successful genotypes were obtained from all 

Quarantine Island and Woodhaugh Gardens samples, even though they were analysed at least six 

weeks after collection. These samples were dried thoroughly and the results suggest that drying 

is the key to achieving high rates of genotyping success. 
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To further prevent genotyping errors Taberlet et al. (1996) proposed a 'multiple tubes' approach 

for obtaining reliable genotypes from non-invasively collected DNA. This involves repeating 

analyses several times for each locus and for each extract, which greatly increases the time and 

expense of laboratory analysis (Fernando et al. 2003). Sloane et al. (2000) concluded that the use 

of the multiple tubes approach is unnecessary because genotyping errors occur only rarely and 

they will nearly always be detected if a careful and conservative approach is taken to sampling 

and laboratory analysis. Genotyping errors should be reduced to negligible levels by using 

strongly polymorphic microsatellite markers. Potential genotyping errors can be dealt with by 

reanalysing genotype pairs that are very similar e.g. differ at only one locus (Woods et al. 1999). 

Likewise sexing or comparing the geographic location of similar 'suspect' genotypes may help 

detennine whether an error exists. Care must be taken to ensure extreme movements are not 

removed from the dataset 'cleaned up'. If the screening process used to identify genotyping 

errors was insufficient in this study then the identification of false individuals may have resulted. 

However, Sloane eta!. (2000) points out that genotyping errors mostly occur at a single allele. In 

this study all multi locus genotypes in the dataset varied at a minimum of four loci. It is therefore 

unlikely that genotyping errors occurred and were not identified. 

More recent studies have emphasised that the rates of genetic error can be reduced to 

inconsequential levels in comparison with enors and bias associated with traditional CR methods 

(reviewed in Mills et a!. 2000; Sloane et a!. 2000; Creel et al. 2003; Paetkau 2003). 

Misidentifications occur in all tagging systems (Woods et al. 1999). Physical tags may be lost or 

misread, transmitters can malfunction and tattoos can fade or become distmied over time (Woods 

et al. 1999). 

4.6 Distribution of rats in urban Dunedin 

In New Zealand published estimates of urban ship rat population density and distribution are 

cunently not available. Worldwide, studies which investigate the ecology of rats in towns are 

uncommon (e.g. Langton et al. 2001; Traweger eta!. 2006; Morgan eta!. 2009). Traweger eta!. 

(2006) detected very low densities of Norway rats in the city of Salzburg and found that 

populations were distributed in a mosaic of 'hot spots' throughout the city. Likewise, Dickman 
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and Doncaster (1987) found that small mammals in Oxford, U.K., had widespread and patchy 

distributions, with some habitat patches supporting very dense populations and others none. 

In this study rats were either present in residential gardens at very low densities (i.e. too low to be 

detected using wax blocks) or there detection obscured by other non target species such as cats. 

In Salzburg, using a combination of hair tubes (for the detection of rat presence) and cage traps, 

Traweger et a!. (2006) recorded low detection rates of Norway rats in well maintained urban 

habitats such as household gardens. In Dunedin city, forested habitat appears to be commonly 

associated with the presence of ship rats. Similar results to these were recorded in Hamilton city 

where Morgan et a!. (2009) failed to detect the presence of rats using wax blocks in a housed 

residential site, but confinned the presence of rats in urban gullies, which contained fewer 

buildings and more vegetation. In Auckland, Gillies and Clout (2003) found that ship rats were a 

common prey item of household cats in homes located in urban/forest fringe habitat. In a fully 

urban site, isolated from forest, ship rats did not figure in Gillies and Clout (2003) that recorded 

prey of household cats. In Great Britain the utilisation of gardens by small mammals 

significantly decreases with increased urbanisation (Baker & Harris 2007). A number of factors 

may account for this, such as a reduction in the amount of traffic and the number of roads, 

reduced hmnan disturbances, larger areas of residential gardens, and larger areas of natural and 

semi-natural habitat (Baker & Ranis 2007). 

4.6.1 Factors that may limit the abundance of rats 

Previous studies have found small mammals reluctant to cross roadways, which leads to 

fragmented populations (e.g. Dickman & Doncaster 1987; Gerlach & Musolf 2000). The high 

density of roads surrounding urban forest fragments may act as a significant dispersal barrier for 

ship rats. Roads may restrict and fragment urban ship rat populations. This factor should be 

taken into careful consideration when planning a pest control operation (Traweger & Slotta

Bachmayr 2005; Traweger eta!. 2006). The Dunedin City council owns and manages most of 

the major bush fragments in Dunedin City. These areas are weeded regularly and are also 

subjected to intennittent pest control (S. McLean, pers. comm.). Pest control consists of cage 

trapping for possums, and laying of poisonous bait for rats and mice. In the sites sampled in this 

study no pest control had taken place since January 2007. More precise and effective control 
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operations may be implemented if effort is targeted at habitat fragments with increased risk of rat 

infestation (Traweger & Slotta-Bachmayr 2005). Habitat suitability modelling using GIS has 

successfully been used to predict Norway rat infestation in Salzburg (Traweger & Slotta

Bachmayr 2005). Investigating the level of genetic relatedness of ship rat populations from 

different urban forest fragments may elucidate the degree to which ship rats disperse between 

discontinuous urban habitats. (Abdelkrim et al. 2009) found very little genetic stmcture in a ship 

rat population in Puketi Forest Conservation Reserve. However, ship rat populations m 

fragmented urban landscapes may contain high levels of genetic stmcture. Recognition of 

migration corridors, by the observation of genetic stmcture, would provide valuable infonnation 

for the management of urban ship rat populations. 

4.6.2 Habitat preference 

Ship rats in urban areas may have a preference for living in buildings as opposed to in residential 

gardens. Of the properties infested with Norway rats in an English House Condition Survey, 

Langton et al. (2001) found a greater prevalence of Norway rats living in the outdoors (87.6%) 

compared with living indoors (12.4%) (n = 202). However, food, shelter and protection from 

predators may be more readily obtained for rats that live indoors. In both Morgan et al. 's (2009) 

and this study wax blocks were placed in residential gardens and not in or under houses. 

Additional research is necessary to detennine whether rats are commonly found in housed 

residential areas and whether they prefer to live indoors or in residential gardens (Morgan et al. 

2009). Although no rats were detected in the residential site sampled in this study, a number of 

residents mentioned that their cats often brought home rats. GPS-tracking of household cats may 

help detennine exactly where rats are being caught i.e. indoors, in residential gardens or within 

urban forest fragments. 

4.6.3 High detection rates of non-target species 

Extremely high levels of non-target species interference on the wax blocks in the residential site 

may have masked the presence of rats. House mice and possum were detected regularly in all 

three study sites. High detection rates of mice may be predictive of low ship rat densities and 

vice versa. Innes et al. (1995) and Miller and Miller (1995) found that in non-urban areas 
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measured mouse abundance increased rapidly following large-scale poison operations targeted at 

ship rats. Likewise, Brown et a!. (1996) recorded a significant increase in tracking tunnel use by 

mice after reducing rat abundance using snap traps. Brown et a!. (1996) suggests that mice were 

detened from entering tracking tunnels while rats existed in high densities, and a reduction in rat 

density meant the rate of mice detection increased. In urban Dunedin, high detection rates of 

mice may therefore be the result of low rat densities. Alternatively the neophilic nature of mice 

(Wolff & Shennan 2007), may have meant rats had less of an opportunity to chew wax blocks 

when mice were present. Rats were, however, detected in both McGouns Creek and the Wallace 

block where similar levels of non-target interference were recorded by possum. 

4.7 Density of rats in urban Dunedin 

Extremely low rat densities were recorded in urban Dunedin bush fragments. The pooled 

estimate of ship rat density, 0.26 rats/ha, is lower than any published estimate from New Zealand 

mainland forests, except those areas that have been actively controlled (Table 4.1). One of the 

initial aims of this study was to determine whether ship rat density varied between different areas 

within the urban environment. However, with such low all round detection rates, no conclusions 

could be drawn with regard to whether ship rat densities were higher or lower in inner-urban bush 

fragments versus peri-urban bush fragments. The density estimates reported in this study were 

recorded during different seasons. Using snap-trap indices Efford et al. (2006) found that 

seasonal variation in ship rat density less than two-fold on average, perhaps because rats unlike 

mice often live for more than one year. It is therefore unlikely that substantially different results 

would have been obtained by sampling in other seasons. 

In most non-urban environments food availability is likely to be the limiting factor that 

detennines ship rat canying capacity (Harper 2005; Latham 2006). However, in urban areas this 

assertion may not be true. In residential areas household cats can reach extremely high densities, 

for example in urban Britain Sims et al. (2008) recorded between 132 and 1580 cats per square 

kilometre. Human provisioning of food means cat population densities are independent of prey 

availability. Household cats have huge potential to influence the density and distribution of rats 

in Dunedin city. In Dunedin an estimated 35% of all households own a cat (Y. van Heezik, 
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unpubl. data). Individual cats vary widely in the number of prey they catch, with most taking 

very few prey, or none at all (Churcher & Lawton 1987). However, collectively household cats 

are likely to be responsible for killing huge numbers of prey each year in urban areas (Baker eta!. 

2005). In Dunedin it is estimated that household cats may kill approximately 28,366 rats per 

annum (Y. van Heezik, unpubl. data). Even if the rate of secondary predation on rats was low, 

such high cat densities may result in an overall reduction in rat numbers. In Bristol, Baker et a!. 

(2003) suggests that decreased mouse abundance in areas of increasing urbanisation are probably 

due to higher household cat densities. If rats exist in housed residential areas, it seems likely they 

do so in locations where cat density is low, or where there is sufficient refuge or cover from cats. 

The extremely low rat densities within urban bush fragments indicated by both hair tubes and 

wax blocks may be due to a combination of high cat density, intennittent pest control or food and 

habitat limitations. Non-target interference by mice on wax blocks and hair tubes was frequently 

recorded. In the sites sampled mice appear to be present in higher densities than rats. Teeth 

marks of mice were found on imitation eggs placed in artificial nests in Dunedin gardens and 

bush fragments (van Heezik et a!. 2008b ). Further research could aim to quantify mouse 

densities in urban areas and the rate of mice predation on urban tree-nesting bird species. 

4. 7.1 The detection of Norway rats 

The results from this study suggest that Quarantine Island is free of ship rats but appears to 

harbour Norway rats. The presence of Norway rats was initially suspected after finding active 

burrows, typical of Norway rats (Innes 1990b ). Microsatellite results also show that the rat 

sampled on Quarantine Island was unlikely to be a ship rat because there were lower allele base

pair lengths at the D11Mgh5 and Dl9Mit2 loci (R. Howitt, pers. comm.). The microsatellite 

results also show that a single rat from Woodhaugh Gardens was potentially a Norway rat. 

Figure 4.1 illustrates this by plotting the D 19Mit2 base-pair lengths of all the samples collected in 

this study, against Dl9Mit2 base-pair lengths from known Norway and ship rats (S. Miller, 

unpubl. data). The two rats recorded in this study (Rat 10, Quarantine Island; and Rat 6, 

Woodhaugh Gardens) had base-pair lengths which lay within the range for Norway rats. All 

other rats sampled in this study had distinct base-pair lengths from the known Norway rats, at the 

D 19Mit2 locus. It is therefore inferred that all other rats sampled in this study were ship rats. 
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In this study Quarantine Island was sampled because it was a peri-urban site in which cats were 

absent. It was hypothesised that household cats suppressed the density of ship rats in urban 

Dunedin. Therefore if household cats were absent it was infened that ship rat densities may have 

been high. However, after a month of sampling no ship rats were detected on Quarantine Island. 

A single Norway rat was detected; Norway rats are therefore either present in very low densities, 

or exhibited extreme neophobia. Norway rats exhibit neophobia most often when an unfamiliar 

object is placed in a stable, familiar environment (Innes 2001). Taylor and Thomas (1989) 

detected no evidence of neophobia in an isolated island population of non-commensal Norway 

rats. However, after hair tubes were left on Quarantine Island for one month, only three samples 

from a single rat were collected. Bunows 60-90 mm in diameter were commonly observed 

under rocks and the base of tree roots and no other bunowing animal is present on the island. 

The number of bunows indicates Norway rat density may be a lot higher than hair tube results 

suggest, unless the burrows are old and vacant. Norway rats may not have visited hair tubes for 

other reasons, such as a lack of attraction to peanut butter, or reluctance to mn through the 65 mm 

diameter hair tubes. 

Norway rats are a threat to ground-based fauna such as lizards, invertebrates and seabirds; they 

also may affect the regeneration of trees and shmbs (e.g. Allen et al. 1994; Wilson et al. 2003a; 

Clayton eta!. 2008). The presence of Norway rats should be taken into careful consideration in 

future management of Quarantine Island. Predation pressure on tree-nesting bird species may be 

substantially reduced on Quarantine Island in comparison with nearby mainland urban areas, 

where ship rats and household cats are present. Further work could aim to quantify the breeding 

success of tree-nesting birds on Quarantine Island versus the breeding success of birds in urban 

areas in which ship rats and household cats are present. Wild populations of Norway rat in New 

Zealand are almost always found in close association with water (Innes 1990a). In the city of 

Salzburg, Traweger et al. (2006) found that the occunence of Norway rats was positively 

associated with habitats that were within close proximity to water. It is therefore no surprise that 

the Norway rat from Woodhaugh Gardens (Rat 6) was detected on the banks of the Leith Stream, 

which, consisted of natural soils and rocks, sunounded by vegetation. These characteristics 

provide ideal habitat for Norway rats (Traweger et al. 2006). 
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Figure 4.1: Comparison of allele base pair lengths (at the Dl9Mit2 locus) between rats sampled in this study (open triangles) (n = 19) versus samples from 
confirmed Norway rats (crosses) (n = 378) and ship rats (open circles) (n = 575) (S. Miller, unpubl. data). Two individuals in this study have base pair lengths, at 
the D19Mit2locus, which fall within the range ofNorway rats: Rat (6) Woodhaugh Gardens (195, 195); and Rat (10) Quarantine Island (195, 197). 
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4.8 Conclusions 

This study has described a reliable non-invasive protocol for estimating ship rat density 

without the use of cage trapping. The validity of the hair tube methodology was confirmed in 

the Orongorongo Valley. The density estimate obtained from the Orongorongo Valley was 

low but comparable to recent cage-trapping estimates from the same sampling grid. 

Wax block results suggest that ship rats are either absent from, or at very low densities within 

the housed residential sites sampled in this study. In urban bush fragments ship rats were 

detected infrequently using either wax blocks or hair tubes, and density was also inferred to 

be low. Ship rats were not detected on Quarantine Island, but after hair tubes were left on the 

island for a month a single Norway rat was detected. The efficacy of the hair tube approach 

to estimate Norway rat density was not tested. Neophobia in Norway rats, or inherent 

reluctance to enter the hair tubes, could compromise the efficacy of hair tubes. 

The density of ship rats in Dunedin bush fragments appears to be much lower than the density 

of ship rats in non-urban forests. Low ship rat densities may be due to the combined effects 

of household cat predation and intermittent council pest control. Predation pressure by ship 

rats on native birds is likely to be minimal in Dunedin city in comparison to non-urban areas. 

This study has demonstrated the feasibility and utility of applying polymorphic microsatellite 

loci for genetic profiling of ship rats. Given the difficulties associated with sampling elusive 

animals, genetic data from DNA extracted from hair follicles allows previously difficult-to

sample species, like ship rats, to be studied more easily. The collection of hair samples is less 

laborious and intrusive than trapping, anaesthetising, ear-tagging, releasing and recapturing 

ship rats. While immediate field identification of individuals is not possible using non

invasive genetic sampling, genetic sampling does enable researchers to carry out an array of 

population genetic analyses. 

Non-invasive genetic sampling can be reliable and worthwhile in studies investigating 

population structure, providing strict guidelines are followed to reduce potential sources of 

error. Non-invasive genetic techniques will not be suitable for all situations given the 

relatively expensive laboratory work required. However, as the cost of genotyping continues 
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to drop, non-invasive genetic sampling will become more readily available and will 

undoubtedly become increasingly applied in conservation management. The techniques 

described in this study should be beneficial to managers who wish to deal with robust 

estimates of absolute density, rather than rely on index-based estimates of relative density. 

The hair tube approach to sampling may also be useful to managers who wish to validate 

index -based measures of relative density. 

Further work is necessary to determine how hair tubes perform in sampling dense populations 

of ship rats. Trap saturation and mixed samples have the potential to compromise the results 

of genetic studies. Likewise, further research is necessary over a greater time scale to 

determine the degree to which ship rat density fluctuates in Dunedin bush fragments. If rats 

exist in high densities within urban Dunedin, it seems likely they do so within small pockets 

of favourable habitat. Additional sampling in Dunedin may confirm the presence of high 

density populations, or alternatively add support for the assertion of overall low ship rat 

density. Sampling within different New Zealand cities may also help confirm whether low 

ship rat density is a phenomenon common to all urban areas. 
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