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M. López7, E. Lorenz2,12, P. Majumdar11, G. Maneva22, N. Mankuzhiyil17, K. Mannheim15, L. Maraschi3,
M. Mariotti7, M. Martı́nez1, D. Mazin1, M. Meucci13, J. M. Miranda4, R. Mirzoyan12, H. Miyamoto12, J. Moldón14,
M. Moles19, A. Moralejo1, D. Nieto4, K. Nilsson10, J. Ninkovic12, R. Orito12, I. Oya4, R. Paoletti13, J. M. Paredes14,
M. Pasanen10, D. Pascoli7, F. Pauss2, R. G. Pegna13, M. A. Perez-Torres19, M. Persic17,23, L. Peruzzo7, F. Prada19,
E. Prandini7, N. Puchades1, I. Puljak20, I. Reichardt1, W. Rhode5, M. Ribó14, J. Rico24,1, M. Rissi2, S. Rügamer15,
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ABSTRACT

The blazar PG 1553+113 is a well known TeVγ-ray emitter. In this paper we determine its spectral energydistribution through simultaneous
multi-frequency data to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray,
high-energy (HE)γ-ray, and very-high-energy (VHE)γ-ray data were obtained with the KVA, Abastumani, REM,RossiXTE/ASM, AGILE and
MAGIC telescopes, respectively. We combine the data to derive the source’s spectral energy distribution and interpretits double-peaked shape
within the framework of a synchrotron self-Compton model.
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1. Introduction

The transformation of gravitational energy in an accretiondisk
around a supermassive black hole into radiation is the widely
believed underlying cause of emission in active galactic nuclei
(AGN). Furthermore, the emission is beamed from the jet per-
pendicular to the disk by a mechanism that although not fully
understood yet, most likely relates to the focusing properties
of the rotating, fully ionized accretion disk (e.g. Blandford &
Znajek 1977). The viewing angle of the observer determines the

Send offprint requests to: N. Mankuzhiyil, e-mail:
nijil.mankuzhiyil@uniud.it

observed phenomenology of AGN (Urry & Padovani 1995). The
AGN whose relativistic plasma jets point towards the observer
are called blazars. The blazar class includes flat spectrum radio
quasars (FSRQs) and BL Lac objects, the main difference be-
tween the two classes is in their emission lines, which are strong
and quasar-like for FSRQs and weak or absent in BL Lacs.

The overall (radio-to-γ-ray) spectral energy distribution
(SED) of blazars shows two broad non-thermal continuum
peaks. For high-peaked BL Lac objects (HBLs), the first peak
of the SED is in the UV/X-ray bands [as opposed to IR/optical
for low peaked BL Lac objects, LBLs], whereas the second
peak is in the multi-GeV band (multi MeV for LBLs). The low-
energy peak is thought to arise from electron synchrotron emis-
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2 J. Aleksić et al.: Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

sion. The leptonic model sugests that the second peak forms
due to inverse Compton emission. This can be due to scatter-
ing of the synchrotron photons by the non-thermal population of
electrons responsible for the synchrotron radiation (synchrotron
self-Compton, SSC; eg: Maraschi 1992) or of photons that origi-
nate outside the relativistic plasma blob (external Compton, EC;
an external source of these ‘seed’photons could be the accre-
tion disk (eg: Dermer 1993) and/or the broadline region (eg:
Sikora et al. 1994)). Blazars often show violent flux variability,
which may or may not be correlated between the different energy
bands. Strictly simultaneous observations are crucial to investi-
gate these correlations and understand the underlying physics of
blazars.

The HBL source PG 1553+113 was firmly detected at very
high-energyγ-rays (VHE; photon energy E>100 GeV) by the
MAGIC telescope at a significance level of 8.8σ above 200 GeV,
based on data from April - May 2005 and January - April 2006
(Albert et al. 2007). Observations with the H.E.S.S. telescope
array in 2005 yielded a tentative detection in the VHE band, at
the level of 4σ (5.3σ using a low energy threshold analysis;
Aharonian et al. 2006), which was confirmed later with the com-
bination of the 2005 and 2006 datasets (Aharonian et al. 2008).
After the first detection of PG 1553+113 with MAGIC, a multi-
frequency campaign on this source was conducted in July 2006
(Albert et al. 2009). The main difference between our present
and the previous campaign is the use of X-ray and the high-
energy (HE; photon energy E>100 MeV) flux.

The lack of detection of spectral lines (neither in emis-
sion nor in absorption) in the optical spectrum of PG 1553+113
makes it impossible to directly measure its redshift (Falomo &
Treves 1990). However, an ESO-VLT spectroscopic survey of
unknown-redshift BL Lac objects suggestsz > 0.09 (Sbarufatti
et al. 2006), while the absence of host galaxy detection in HST
images raises this lower limit toz > 0.25 (Treves et al. 2007).
On the other hand, the absence of a break in the VHE spectrum
can be interpreted as suggestingz < 0.42 (Mazin & Goebel
2007). The absence of a Ly-α forest (Falomo & Treves) in the
the spectrum also constrains a lower redshift. The data obtained
in the far-UV by the Cosmic Origins Spectrograph installed in
the Hubble Space Telescope is of sufficient quality to select∼ 40
Ly-α absorbers at low redshift including a strong line at z=0.395,
which constrains the resdshift of the source to bez > 0.395
(Danforth, private comm.).

2. Optical and near infrared (NIR) data

2.1. Kungliga Vetenskapsakademien observations

The Kungliga Vetenskapsakademien (KVA, Royal Swedish
Academy of Sciences) telescope is located at the Roque de los
Muchachos, in the North-Atlantic canary islands of La Palma
and is operated by the Tuorla Observatory. The telescope is com-
posed of a 0.6m f/15 Cassegrain devoted to polarimetry, and a
0.35m f/11 SCT auxiliary telescope for multicolor photometry.
This telescope has been successfully operated remotely since the
fall 2003. The KVA is used for optical (R-band) support obser-
vations during MAGIC observations. Typically, one measure-
ment per night and per source is conducted. Photometric mea-
surements are made in differential mode, i.e. by obtaining CCD
images of the target and calibrated comparison stars in the same
field of view (Fiorucci & Tosti 1996; Fiorucci et al. 1998; Villata
et al. 1998).

2.2. Abastumani observations

Observations at the Abastumani Observatory (Georgia, FSU)
were performed with the 70 cm meniscus telescope (f/3). This
is equipped with an Apogee Ap6E CCD camera, with 390× 390
pixels, and a field of view of 15× 15 arcmin. Its quantum ef-
ficiency is 40% at 4000 Å and 65% at 6750 Å. The frames
were acquired in the Cousins’R band and were reduced with
the DAOPHOT II package1.

The source magnitude was derived from differential photom-
etry with respect to a reference star in the same field, which
lies ∼ 46 arcsec east and∼ 5 arcsec south of PG 1553+113.
According to the USNO 2.0 Catalogue (Monet et al. 1998), its
magnitude isR = 13.2.

2.3. Rapid Eye Mount observations

The Rapid Eye Mount (REM, a fast-slewing robotized in-
frared telescope: Covino et al. 2001) acquired photometry of
PG 1553+113 on 2008 April 18, 25 and May 2 with all available
filters (VRIJHK). The data reduction followed standard proce-
dures (see e.g. Dolcini et al. 2005). The mean flux of the ob-
servation is reported in Table 3. The NIR magnitudes were cali-
brated against the 2MASS catalog. For the SED reconstruction,
all magnitudes were dereddened with the dust IR maps (Schlegel
et al. 1998).

3. X-rays: Rossi X-ray Timing Explorer / All Sky
Monitor observations

The All Sky Monitor (ASM) on board theRossi X-ray Timing
Explorer (RXTE) satellite consists of three wide angle scanning
shadow cameras. The cameras, mounted on a rotating drive as-
sembly, can cover almost 70% of the sky every 1.5 hours (Levine
et al. 1996). The measurements were done between 2008 March
1 and May 31. The mean measured flux of PG 1553+113 is
shown in Table 3.

4. γ-ray data

4.1. HE band: AGILE observations

The Gamma-ray Imaging Detector (GRID, 30 MeV - 30
GeV) on board the high-energy astrophysics satellite AGILE
(Astro-rivelatore Gamma a Immagini LEggero; Tavani et al.
2009) observed PG 1553+113 in three different time intervals:
2008 March 16-21, March 25-30 and April 10-30. The GRID
data were analyzed using the AGILE standard pipeline (see
Vercellone et al. 2008 for a detailed description of the AGILE
data reduction), with a bin size of 0.25◦ × 0.25◦ for E > 100
MeV. Only events flagged as confirmedγ-rays and not recorded
while the satellite crossed the South Atlantic Anomaly wereac-
cepted. We also rejected all events with a reconstructed direc-
tion within 10◦ from the Earth’s limb, thus reducing contamina-
tion from Earth’sγ-ray albedo. The source, observed at about 50
degrees off-axis with respect to the boresight, was not detected
by the GRID at a significance level> 3 σ, and therefore the
95% confidence level upper limit was calculated. Considering
that AGILE has a higher particle background at very high off-
axis angles, we calculated also the upper limit selecting only
photons with energies greater than 200 MeV to minimize the
possible contamination at low energies. The log of the AGILE

1 http://www.star.bris.ac.uk/∼mbt/daophot/
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observations and the results of the analysis are reported inTable
2. During 2008 March-April the source was outside the field of
view of SuperAGILE, the hard X-ray (20-60 keV) imager on-
board AGILE (Feroci et al. 2007).

4.2. Very High Energy band: MAGIC observations

The MAGIC Telescope (Baixeras et al. 2004, Cortina et al. 2005)
is the most recent generation Imaging Atmospheric Cherenkov
Telescope (IACT) at La Palma, Canary Islands, Spain (28.3◦N,
17.8◦W, 2240 m a.s.l.). Because of its low trigger threshold
of 50 GeV (25 GeV with a special trigger set up; Albert et al.
2008a), MAGIC is well-suited for multi-frequency observations
together with the instruments operating in the GeV range. The
parabolic mirror dish with a total mirror area of 236 m2 al-
lows MAGIC to collect Cherenkov light from particle show-
ers initiated byγ-rays or other particles in the atmosphere. This
Cherenkov light is focused onto a multi-pixel camera composed
of 577 ultra-sensitive photomultipliers. The total field ofview
of the camera is 3.5◦. The incident light pulses are converted
into optical signals and transmitted via optical fiber to a two-
level trigger system. The selected events are digitized by 2GHz
Flash ADCs (Goebel et al. 2007). With a statistical analysisof
the recorded light distribution and the orientation of the shower
image in the camera, the energy of the primary particle and its
incoming direction are reconstructed.

The MAGIC observations for this campaign were carried out
on 2008 March 16-18 and April 13, 28-30. The zenith angle of
the data set ranges from 18 degrees to 36 degrees. Observations
were performed in wobble mode (Fomin et al. 1994), where the
object was observed at 0.4 degree offset from the camera cen-
ter in opposite directions every 20 minutes. After data rejection
based on the standard quality cuts and the trigger rate, 7.18hours
of total effective observation time data were selected.

An automatic analysis pipeline (Dorner at al., 2005, Bretz &
Dorner, 2008) was used to process the data, which include the
muon calibration (Goebel et al. 2005) and an absolute mispoint-
ing correction (Riegel et al. 2005). The charge distribution and
arrival time information of the pulses of neighboring pixels was
used to suppress the contribution from the night sky background
in the shower images (Aliu et al. 2009). Three OFF regions were
used to determine the background, providing a scaling factor of
1/3 for the background calculation. The shape and orientationof
the shower images were used to discriminateγ-like events from
the overwhelming background. To select theγ-like events a dy-
namical cut in Area (Area=π·WIDTH·LENGTH) versus SIZE
(total charge contained in an image) and a cut inϑ (angular
distance between real source position and reconstructed source
position) were applied. More details on the cuts can be found
in Riegel & Bretz (2005), and the above mentioned image pa-
rameters are described by Hillas (1985). The reconstructedγ-
ray spectrum is shown in Fig.1. For the spectral reconstruction,
looser cuts were applied to ensure that more than 90% of the
simulated gamma photons survived. Varying cut efficiencies be-
tween 50% and 95% over the entire energy range were applied
to the data to check systematic effects of the cut efficiency on
the spectral shape (shown as gray area in Fig.1). Data which
were affected by calima (sand dust from the Sahara in an air
layer between 1.5 km and 5.5 km a.s.l. causing absorption of the
Cherenkov light) were corrected following the method described
in Dorner et al. (2009).

Observation period F0 [ph TeV−1s−1m−2] Γ

March-April 2008 2.0± 0.3× 10−6 −3.4± 0.1
March 2008 1.9± 0.4× 10−6 −3.5± 0.2
April 2008 2.1± 0.4× 10−6 −3.3± 0.2
April-May 2005 +

January-April 2006
1.8± 0.3× 10−6 −4.2± 0.3

Table 1. F0 andΓ during the MAGIC current observations and
the previous observation. The errors are statistical only.The sys-
tematic uncertainty is estimated to be 35% in the flux level and
0.2 in the photon index (Albert et al. 2008a).

5. Results and Discussion

Analyzing the MAGIC data, an excess of 415γ-like events,
over 1835 normalized background events was found, yielding
a significance of 8.0σ. The resulting differential VHE spectrum
of PG 1553+113 averaged over all observing intervals is plot-
ted in Fig.1 (filled circles). It can be described by a power law
dN
dE = F0

(

E
200GeV

)Γ

m−2 s−1 TeV−1, whereF0 is the normalization

flux at 200 GeV andΓ is the photon index during our obser-
vation, which are both given in Table 1. The test on a possible
spectral cut-off was also performed. However, fewer points of
the spectrum do not favour a cut-off power law over a simple
power law. The lowest point of the spectrum is at 82 GeV, mainly
because of the losses of low-energy events from the cleaningand
γ-selection cuts. The values obtained during our previous obser-
vations (Albert et al. 2007) are also given in Table 1.

The interaction of VHEγ-rays with the extragalactic back-
ground light (EBL; a recent review can be found in Mazin
& Raue 2007) leads to an attenuation of the VHEγ-ray flux
via e+/e− pair production. We computed the de-absorbed (i.e.,
intrinsic) fluxes with a specific ‘low star formation model’of
the EBL (Kneiske et al. 2004), assuming a source redshift of
z = 0.3. The resulting de-absorbed points are represented as
empty squares in Fig.1.
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Fig. 1. MAGIC measured spectrum of PG 1553+113 (filled cir-
cles). The statistical significance of the points from left to right
are 2.7, 4.2, 3.4, 4.3, and 3.0σ respectively. The EBL-corrected
points are shown as empty squares. The spectrum obtained dur-
ing our first observation is shown as a dashed line.

The HE data reduction results from AGILE are summarized
in Table 2. The 2σ upper limits obtained by AGILE are con-



4 J. Aleksić et al.: Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

sistent with the average flux point observed by theFermi-LAT
for this source during 2008 August-Octorber (Abdo et al. 2009).
The upper limit obtained in the third time interval was used for
the modeling of the SED. The fluxes and corresponding effec-
tive photon frequencies of the other telescopes which contribute
to this multi-frequency campaign are reported in Table 3.

Time interval Energy U.L.Flux [ph m−2s−1]

March 16-21 > 100 MeV 5.6× 10−3

> 200 MeV 3.6× 10−3

March 25-30 > 100 MeV 5.5× 10−3

> 200 MeV 2.8× 10−3

April 10-30 > 100 MeV 3.4× 10−3

> 200 MeV 2.1× 10−3

Table 2. 2σUpper limit calculated from the AGILE data in three
different time intervals.

The SED of PG 1553+113 is shown in Fig.2. The VHE and
HE γ-ray flux points are from MAGIC and AGILE respectively.
The X-ray point, provided byRXTE/ASM, represents the av-
erage flux between March 1 and May 31, 2008. The optical
R-band point, provided by the KVA telescope, is the average
flux obtained on 2008 March 18 and 19. The flux provided by
Abastumani is the average flux of the 2008 April 1 - May 17
observations. In addition to these data we also used the NIR
flux from REM. To assess the soundness of this addition, we
checked the optical variability of the source during this period
using Abastumani data, and found that the source was essentially
stable (minimum and maximum values oflog(νFν) are−10.14
and−10.02 respectively). For a comparison of the HE flux, we
included the flux points from theFermi γ-ray Space Telescope
(Flux, F(E > 100MeV) = 8 ± 1 × 10−4ph m−2 s−1 and pho-
ton index,Γ = 1.7 ± 0.6; Abdo et al. 2009). The average flux
(15-30keV) obtained from the X-ray satelliteS wi f t/BAT dur-
ing 39 months (2004 December - 2008 February) of observation
(Cusumano et al. 2010) is also included.

We fitted the resulting simultaneous SED with a homoge-
neous one-zone SSC model (Tavecchio et al. 2001). The model
assumes that the source is a spherical plasmon of a radius R,
moving with a Doppler factorδ towards the observer at an an-
gleθ with respect to the line of sight threaded with a uniforming
distributed tangled magnetic field of the strengthB. The injected
relativistic particle population is described as a broken power-
law spectrum with the normalizationK, extending fromγmin
to γmax with the indicesn1 andn2 below and above the break
Lorentz factorγbr. By fitting the observed flux with the model,
we obtained the following parameters:γmin = 1, γbr = 3× 104,
γmax = 2×105, K = 0.5×104 cm−3,n1 = 2,n2 = 4.7, B = 0.7 G,
R = 1.3× 1016 cm, andδ = 23. The optical and X-ray flux con-
strain on the slope of the electron energy distribution (EED),
while the X-ray and VHE spectrum fix the Lorentz factors.

The difference between the current SED and the previous
one published in Albert et al. (2007) is due to flux variation in
the X-ray and a small variation of the slope of VHE spectrum.
We fitted the previous result with the Tavecchio et al. (2001)
SSC model to compare the physical parameters of the SED. The
difference arises from the EED, but the slopes andγmax remain
constant. Theγmin andγbr of the previous observation are found
to be 3× 103 and 2.7× 104 respectively.

During this campaign, no significant variability of the VHE
flux is found. The integral flux (E>200GeV) during these obser-
vations is 1.3±0.3×10−7cm−2s−1 while during the first observa-

Fig. 2. Average SED of PG 1553+113 measured in 2008 March-
April. The empty triangles denote the REM data, the open square
represents the KVA data, the open circle denotes the Abastumani
data, and the open square denotesRXTE/ASM data. The ar-
row at HE denotes the AGILE upper limit. The empty squares
in the VHE range are the de-absorbed MAGIC data. We also
show the non-simultaneous flux points fromFermi (bowtie) and
S wi f t/BAT (small filled circle).

Instrument log(ν [Hz]) log(νF(ν)) [erg cm−2 s−1]
KVA 14.63 -10.17

Abastumani 14.63 -10.08

REM
14.38 -10.33
14.27 -10.34
14.13 -10.38

XTE 18.03 -10.3

Table 3. Effective frequencies and corresponding fluxes from
PG 1553+113 from KVA, Abastumani, REM and RXTE instru-
ments obtained during this campaign.

tions it was 1.0± 0.4× 10−7cm−2s−1. The X-ray flux2 increases
by about a factor of two, while the averaged X-ray flux during
39 months ofS wi f t/BAT observations agrees with our SED. The
optical flux during our first observation and the current observa-
tion does not show any significant variability. TheFermi bowtie
and lowest-energy MAGIC data points together with the model
fit indicate a variability at HE or VHEγ-rays.

Our results suggest that the variability of PG 1553+113 at
different frequencies is time-dependent: hence only a simulta-
neous multi-frequency monitoring campaign over a large time
span will give more information on the source. Relative to this
it is worth mentioning that the AGILE and MAGIC data pre-
sented here constitute the first simultaneous broad-bandγ-ray
observation (and ensuing SED) of any blazar, though the firstsi-
multaneous detection accomplished during the multi-frequency

2 Note that the X-ray data used in Albert et al. (2007) was not taken
simultaneously with VHE and optical data.
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campaign of Mkn 421 (Donnarumma et al. 2009), and the first
broad-bandγ-ray spectrum was obtained from PKS 2155-304
(Aharonian et al. 2009) by H.E.S.S. andFermi.
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17 Università di Udine, and INFN Trieste, I-33100 Udine, Italy
18 Institut de Ciències de l’Espai (IEEC-CSIC), E-08193 Bellaterra,
Spain
19 Inst. de Astrofı́sica de Andalucı́a (CSIC), E-18080 Granada, Spain
20 Croatian MAGIC Consortium, Institute R. Boskovic, University of
Rijeka and University of Split, HR-10000 Zagreb, Croatia
21 University of California, Davis, CA-95616-8677, USA
22 Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria
23 INAF/Osservatorio Astronomico and INFN, I-34143 Trieste, Italy
24 ICREA, E-08010 Barcelona, Spain
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