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Abstract

This thesis moves towards reconciliation of two of the major paradigms of

artificial intelligence: by exploring the representation of symbolic logic in an

artificial neural network. Previous attempts at the machine representation

of classical logic are reviewed. We however, consider the requirements of

inference in the broader realm of supra-classical, non-monotonic logic. This

logic is concerned with the tolerance of exceptions, thought to be associ-

ated with common-sense reasoning. Biological plausibility extends these

requirements in the context of human cognition.

The thesis identifies the requirements of supra-classical, non-monotonic

logic in relation to the properties of candidate neural networks. Previous

research has theoretically identified the Boltzmann machine as a potential

candidate. We provide experimental evidence supporting a version of the

Boltzmann machine as a practical representation of this logic.

The theme is pursued by looking at the benefits of utilising the relationship

between the logic and the Boltzmann machine in two areas. We report

adaptations to the machine architecture which select for different infor-

mation distributions. These distributions correspond to state preference

in traditional logic versus the concept of atomic typicality in contempo-

rary approaches to logic. We also show that the learning algorithm of the

Boltzmann machine can be adapted to implement pseudo-rehearsal during

retraining. The results of machine retraining are then utilised to consider

the plausibility of some current theories of belief revision in logic. Further-

more, we propose an alternative approach to belief revision based on the

experimental results of retraining the Boltzmann machine.
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Chapter 1

Introduction

1.1 Intention

This thesis explores the connectionist1 representation of supra-classical, non-monotonic

(SCNM) logic and thereby seeks to contribute to some reconciliation between the con-

nectionist and symbolic paradigms of artificial intelligence. Its aim is to demonstrate

that the Boltzmann machine is a faithful model of inference in supra-classical logic,

utilising the rational consequence relation. Further, that the association between the

network representation and the logic can be utilised for the benefit of both paradigms.

Fodor and Pylyshyn (1988) viewed the two paradigms of artificial intelligence as be-

ing in conflict. However many authors, including Gärdenfors (1994), have argued that

they are complementary: that neural networks can represent the systematic structure

of logic because systematicity is intrinsically part of any world that is symbolised by

language (Chang, 2002; Frank, Haselager, and van Rooij, 2009).

Logic offers a framework, at an abstract symbolic level, for the understanding of

human reasoning (Russell and Norvig, 2003, Chp 8-10). At a lower machine level, neu-

roscience offers an increasingly sophisticated understanding of the functioning of the

brain. Somewhere between the two; connectionist, artificial neural network systems

provide a computational framework that is inspired by the brain. A fuller understand-

ing of human cognition should elucidate the relationship between these different levels

of description, as captured by Hinton’s comments, made originally in 1984, which seem

just as relevant today:

“Ultimately it will be necessary to bridge the gap between hardware-

oriented connectionist descriptions and the more abstract symbol manipu-

1Terms emphasised at first occurrence, are defined in the glossary.
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lation models that have proved to be an extremely powerful and pervasive

way of describing human information processing” (Hinton, Sejnowski, and

Ackley, 1984).

Supra-Classical 
Non-Monotonic 

Logic

Neurobiology

Theoretical
Proof

Experimental 
Evidence

Artificial 
Neural 

Network

Spiking Neural 
Networks

Requirements of 
the logic

Biological 
Plausibility

Figure 1.1: An extension of Hinton’s bridge reconciling symbolic logic

and neurobiology, via an artificial neural network.

We aim towards supporting half of Hinton’s bridge: reconciling theoretical formal-

isations of inference with experimental observations from an artificial neural network

(Figure 1.1). We have chosen to use an artificial neural network as a surrogate for the

neurobiology. Our goal is to demonstrate that a common neural network, specifically

a Boltzmann machine, can be used as a faithful representation of inference in SCNM

logic, utilising the rational consequence relation. It is not intended that the thesis ex-

amine the details, context or the application of that logic to artificial intelligence: such

a goal would be beyond the scope of a single text. Although the choice of this particu-

lar logic may be controversial, it is of significance because common-sense reasoning, as

exemplified by SCNM inference, is felt by many authors (Labuschagne, Heidema, and

Britz, 2013; Russell and Norvig, 2003; Lehmann and Magidor, 1992; Kraus, Lehmann,

and Magidor, 1990) to be one of the hallmarks of human cognition. Moreover, the

connectionist representation of the logic is not intended as an end point, but as an

advantage to be utilised in examining common issues in cognition.
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1.2 Contribution

The challenge of embodiment, connecting symbolic logic and neural networks, was

regarded by many authors in the 1990s (Pinkas, 1995; Gärdenfors, 1994; Jagota, 1994;

Hinton et al., 1984) as one of the ultimate challenges of artificial intelligence. It may

seem that the importance of the moment has gone by, that it is out of time; but only

a partial resolution was previously found in the domain of classical logic.

The rational consequence relation in SCNM logic is now a conventional approach

to logical inference, utilised in the landmark papers of Kraus, Lehmann and Magidor

(Kraus et al., 1990, KLM) and Alchourron, Gärdenfors and Makinson (Alchourron,

Gärdenfors, and Makinson, 1985, AGM). It is thought to be strongly associated with

common-sense reasoning. A critical analysis of the requirements of the rational con-

sequence relation, from the neural network perspective, is an original contribution of

this thesis. Whilst it may seem obvious to propose a Boltzmann machine, which learns

a generative model of its environment, as a representation for SCNM logic: we believe,

no one has previously suggested it. This thesis also confirms by experimentation that

the Boltzmann machine is capable of retrieving the one-to-many mappings required as

a discriminative model.

As yet, direct application of this Boltzmann machine representation in real world

situations, for example robotics, would seem unlikely. It was previously considered

impractical because of its stochastic nature and complexity (Hinton, Osindero, and Teh,

2000). However, three potential benefits from finding a neural network representation

for the logical formalisation of inference are explored in this thesis:

Benefit in the domain of Human Cognition: Most importantly, bridging the gap

between the two levels of explanation, symbolic and connectionist, may help in

understanding human cognition, particularly common-sense reasoning. Com-

prehension of human cognition should benefit from the practical application of

abstract logical concepts in biologically plausible neural networks.

One of the main aims of this thesis is to demonstrate such a connectionist rep-

resentation of supra-classical inference, as a new approach to reconciling the two

paradigms of artificial intelligence. We discuss its correlation to human cognition

in Section 4.4.

Benefit in the domain of Neural Networks: Theoretical results in the logic may,

via the discovery of a suitable network representation, be applied to or otherwise

stimulate neural network research.

3



A new relationship between the architecture of the Boltzmann machine and the

environmental information it learns is described. The discovery, of the comple-

mentary selection of different information distributions, was fortuitously made in

the process of trying to improve the network’s representation of the logic. This

architectural selection of information is linked to concepts of state preference

in traditional logic versus atomic typicality in object classification within mod-

ern description logics. We utilise the nature of the Boltzmann representation of

atomic frequency distribution to design a novel definition of typicality in SCNM

logic.

Benefit in the domain of Logic: Embodiment may help to clarify productive di-

rections for practical advancement of the logic.

A slightly modified version of the Boltzmann learning algorithm is utilised to

implement pseudo-rehearsal and compare the results of re-training in the Boltz-

mann representation to belief revision in the logic. There are currently more than

27 different logical operators for iterative belief change. The machine plausibility

of two disparate approaches is considered. We believe, this is the first time belief

revision results have been available from an experimental setting.

1.3 Structure

The thesis is organised as follows:

Chapter 2 Literature: Gives an outline of the research related to inference in SCNM

logic, together with a discussion of its relationship to common-sense reasoning.

In the connectionist domain, it gives a brief account of artificial neural networks

particularly the Boltzmann machine and optimisation by simulated annealing. It

then provides a detailed review of the previous research relating symbolic logic

to connectionist models of cognition.

Chapter 3 Background: Describes the SCNM logic utilised in the thesis and anal-

yses its machine requirements. The design of meta-environments (micro-worlds)

for testing candidate network representations, against these requirements, are

discussed. An exemplar 4-atom micro-world is presented and used throughout

the thesis to provide coherence. The complementary requirements of biological

plausibility are considered.

4



Chapter 4 Representation: Looks at the theoretical reasons for selecting the Boltz-

mann machine as a candidate representation. It provides details of the software

implementation of the machine including; minor modifications to the architec-

ture, learning algorithm and annealing schedules. Experimental evidence from

testing in micro-world environments is presented, confirming that the Boltzmann

machine is a suitable neural network representation of inference in SCNM logic;

concentrating on the main requirements of the logic identified in Chapter 3. A

detailed summary of results for single and ensemble machines is presented for

the exemplar 4-atom micro-world illustrated in Chapter 3. These results are pro-

vided for an HLR machine architecture. Further, experimental results for two

interesting logic properties are examined to give a flavour of the utilisation of the

machine in logical inference. A discussion of the place of the Boltzmann machine

in the wider context of human cognition concludes the chapter.

Chapter 5 Incongruence: Considers the two sets of incongruent distributional in-

formation present within individual training sets: presenting modifications to the

architecture of the Boltzmann machine, which select for one information distri-

bution over the other. In the manner of Chapter 4, detailed error results are

presented for a restricted ILP architecture for single and ensemble machines, in

the context of the exemplar 4-atom micro-world illustrated in Chapter 3. A prob-

abilistic model is used to analyse the internal representation of semantics by the

machine. A discussion of the relationship between this information selection and

concepts of typicality in modern logic follows. We utilise a counter-example to

refute the representation of typicality by preferential semantics. Further, the ex-

perimental results from the Boltzmann representation are utilised to characterise

an atomic basis for typicality.

Chapter 6 Belief Revision: Provides a brief summary of the literature related to

belief revision in logic. It presents a modified learning algorithm for the Boltz-

mann machine, which implements pseudo-rehearsal as a means of retaining past

learning. The relationship between theories of iterative belief revision in the logic

and adaptation to new information in a Boltzmann network are explored. The

Boltzmann representation is utilised as a benchmark of machine plausibility to

evaluate two very different approaches to logical belief revision. A new algorithm

for logical belief revision is proposed, utilising the experimental results from the

Boltzmann machine.

5



Chapter 7 Conclusions: Discusses unresolved issues regarding the connectionist

representation of logic and indicates areas of further research. It summarises

the significant results from the thesis, in confirming a neural network represen-

tation of the logic, identifying a machine equivalent of typicality and in offering

a new experimental perspective on belief revision.

Appendix A Vocabulary: Abbreviations and a glossary.

Appendix B Implementation on CD: C++ code for the Boltzmann network im-

plementation with some explanatory notes.

6



Chapter 2

Literature

This chapter is an attempt to broadly cover research in two domains of artificial intel-

ligence. It presents an outline of the literature in supra-classical, non-monotonic logic

and its relevance to common-sense reasoning. The chapter then outlines, the properties

of artificial neural networks in particular the Boltzmann machine and optimisation by

simulated annealing. The end of the chapter focuses in detail on research specifically

concerning the connectionist representation of SCNM logic in artificial neural networks.

2.1 Supra-classical, Non-monotonic Logic

Non-monotonic logic, as formalised in the KLM preferential semantics (Kraus et al.,

1990), is now a core philosophy of applied logic. It emerged out of the realisation that

classical logic was too inflexible to represent common-sense reasoning. Its complex

history has been recorded in multi-volume texts (Gabbay, Hogger, and Robinson, 1994;

Makinson, 2005). As indicated below, this evolution in logic has been described as “a

journey from the absolute to the relative.” (Heidema and Labuschagne, 2001).

Classical logic regards truth as absolute, permanent: preserved in the face of change.

Non-monotonic logic attempts to capture the concept of defeasible inference. For ex-

ample, knowing that Tweety is bird and that birds fly, we might reasonably conclude

that Tweety flies: a conclusion we might choose to retract, on finding Tweety was

a penguin. The common-sense notion is that, agents may tentatively draw conclu-

sions given incomplete (uncertain) information and have the ability to retract them

in the light of new evidence (Strasser and Antonelli, 2016; Koons, 2014). Knowledge

held in the context of defeasible entailment is alternatively called conditional assertion

(Strasser and Antonelli, 2016). In this context, adding premisses available for inference
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can lead to loss (as well as gain) of conclusions (Makinson, 2003).

Within the prevailing framework of preferential semantics, non-monotonic logic is

implicitly supra-classical. It permits us to infer more from a set of premisses than

classical propositional logic would, by generating a preference ranking on model states;

including less preferred conclusions. This ability to tolerate counter-examples is a prime

characteristic of supra-classicality (Labuschagne et al., 2013) and part of an even wider

context of para-consistent logics which specifically support inconsistency (Girard and

Tanaka, 2016; Priest, Tanaka, and Weber, 2016). Supra-classicality is emphasised in

the thesis because a ranking on preferred states, including the most inconsistent, is

the specific property of the logic that we are hoping to emulate in a connectionist

representation.

2.1.1 Early Defeasible Reasoning

Huge advances in logic were made at the beginning of the 20th century. There is not

the space to discuss the logic that was inherited from Gottlob Frege (Zalta, 2016)

& Bertrand Russell (Irvine, 2015) and passed on to Kurt Gödel (Kennedy, 2016) &

Alfred Tarski (Tarski, 1956; Gomez-Torrente, 2015) to be irrevocably changed. Nor

is there space to mention the philosophy of Rudolf Carnap (Carnap, 1950; Creath,

2014; Uebel, 2016) and Karl Popper (Popper, 1959; Thornton, 2016; Uebel, 2016). It

has been necessary to draw an historical line in the sand. Only the briefest outline of

SCNM logic is provided here.

However, a mention of Charles Peirce’s philosophy of reasoning cannot be avoided,

although his writings are difficult to access (Hartshorne and Weiss, 1958; Peirce-

Edition-Project, 2010; Burch, 2014). Peirce argued there were three types of reasoning:

deduction, abduction and induction. Deduction is an unconditional inference, in the

nature of classical logic. Abduction is about the explanation of observations, gen-

eralisation from examples or hypothesising. Induction can be seen as defeasible, an

uncertain predictive inference based on prior beliefs. This is often termed ‘categorical

induction’ in the domain of cognitive psychology (Harnad, 1987). SCNM logic is the

formalism of ‘inductive reasoning’.

In the early years before SCNM logic came of age, McCarthy and Hayes (1969) were

among the first authors to define the concept of an intelligent agent, with an internal

representation of the world, able to infer a strategy with which to achieve its assigned

goal. One problem for such an agent is, how to efficiently determine what things in the

world do not change: the ‘frame problem’ (Minsky, 1974). McCarthy (1959) was one

8



of the founders of artificial intelligence, who sought a formalisation of common-sense

reasoning. However, Minsky (1974) was perhaps the first to realise that monotonicity

was a specific problem, that it was too “permissive” in allowing conclusions to be

drawn. He also anticipated the tension that was to come, between incorporation of the

intuitions of common-sense and the adequacy of their formalisation (Bochman, 2011).

Nineteen eighty was a productive year in the history of SCNM logic with the pub-

lication of the special issue Volume 13 of the Journal of Artificial Intelligence. Three

important formalisms for defeasible reasoning were proposed:

• McDermott and Doyle (1980) formalised a variety of predicate calculus, con-

tributing to the ideas of auto-epistemic reasoning, which reinforce McCarthy’s

concept of the agent’s representation of the world: the agent’s ability to make

inferences from reflection on internal beliefs.

• Reiter (1980) proposed his ‘default logic’. It has been highly influential and has

been incorporated into other formalisms. It deals with the problem of qualifi-

cations. Defeasible entailments intrinsically make an infinite number of assump-

tions: for example “cars normally go at green lights” assuming: their engine does

not stall, they haven’t run out of fuel, no one is crossing the road, there isn’t

sugar in the petrol, an earthquake is not occurring, .... etc. Reiter formalises

default negation: that “in the absence of information to the contrary” infer the

conclusion.

• McCarthy’s (1980) idea of circumscription, while initially referencing the prob-

lems of qualification and monotonicity, foreshadows the concept of preference.

Given the uncertain nature of inference imposed by the qualification problem, an

agent may make a number of conclusions, the most ‘circumspect’ of these is cor-

rect given the current information. However, on the receipt of new information

a different conclusion may become more ‘circumspect’. His proposal implies an

ordering on the plausibility of inference.

A number of other approaches followed in more complex (modal) logics, which

included the auto-epistemic semantics supported by Sholam (1987). In 1990 the land-

mark paper of Kraus, Lehmann and Magidor (KLM) was published in the Journal of

Artificial Intelligence.
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2.1.2 KLM: Preferential Semantics

Let us look at properties related to defeasibility: the intuition we would like to encap-

sulate in some system of logic, before considering the paper itself.

In the definitions that follow: ↔ denotes logical equivalence (alternatively in other

sources, ≡), |= denotes classical consequence or entailment and ∧ denotes logical ‘and’.

The symbol |∼ denotes defeasible entailment or entailment by rational consequence.

Well-formed formulae in the language are denoted by the Greek letters. For the purpose

of this first set of properties related to defeasible entailment, it is intended that α, β

represent existing information and that γ represents new information, although this is

not determined within the language. In the subsequent two groups of properties (KLM

and Classical), α, β and γ could be any well-formed formulae.

Properties Related to Defeasible Entailment, |∼

If |= α↔ α′ and β ↔ β′ and α |∼ β, then α′ |∼ β′ (Well Behaved Equivalence)

If α |= β, then α ∧ γ |= β (Monotonicity - Classical)

If α |∼ β, then for some γ, α ∧ γ |�∼ β (Non-monotonicity)

If α |= β, then α |∼ β (Supra-classicality)

First, defeasible entailment should be a well behaved semantic equivalence, independent

of syntactic change. The second property, monotonicity, is stated in the formalism of

classical logic: ‘|=’. As previously discussed, this property is inappropriately strong

for the context of common-sense reasoning. Surprisingly, the third property, non-

monotonicity, is too weak. It results in systems which are irrational. Every time

new information is received, the agent must revise all the pre-existing assertions. By

default, artificial neural networks are strictly non-monotonic, they irrationally forget

past learned assertions: catastrophic forgetting1 (Robins, 1995). In fact common-sense

reasoning, as represented by defeasibility, is somewhere between monotonic and non-

monotonic. The fourth property states that any information captured by classical

entailment is at least defeasible and so defeasibility is part of a broader framework of

supra-classical logics.

In their paper, Kraus et al. (1990) present a sequence of systems; from weakest

(least rational) non-monotonic to strongly monotonic, in order: C Cumulative, CL

Cumulative with Loop, P Preferential, CM Cumulative Monotonic, and M Mono-

tonic. For each system they examine the proof theoretic properties, the semantics and

1Terms emphasised at first occurrence, are defined in the glossary.
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separately the resulting consequence relations. The weakest system, C Cumulative,

contains the basic properties of all the systems.

KLM Cumulative Properties

1. α |∼ α (Reflexivity)

2. If |= α↔ β and α |∼ γ, then β |∼ γ (Left Equivalence)

3. If α |∼ β and β |= γ, then α |∼ γ (Right Weakening)

4. If α ∧ γ |∼ β and α |∼ γ, then α |∼ β (Cut)

5. If α |∼ β and α |∼ γ, then α |∼ β ∧ γ (And, derived)

6. If α |∼ β and α |∼ γ, then α ∧ γ |∼ β (Cautious Monotonicity)

Reflexivity is a universal requirement. Logical Equivalence can be derived from Left

Equivalence and expresses the concept of syntactic independence. Right Weakening

states that plausible consequences should include those which are strictly classical.

Cut expresses the idea that information which is separately entailed can be removed

without loss of assertions. It formalises the concept of foundational information in the

knowledge base, as opposed to conjunctions obligated by closure, which do not add to

an agent’s knowledge. Cautious monotonicity goes some way towards re-establishing

the strength of classical entailment within the system.

Classical Properties

1. If α |= β and β |= γ, then α |= γ (Transitivity)

2. If α |= β, then α ∧ γ |= β (Monotonicity)

3. If α |= β, then ¬β |= ¬α (Contraposition)

The CL Cumulative Loop system adds a loop property to the base set of cumulative

properties. This transitive property is important in preference ranking. However,

defeasible entailment itself is not transitive. Both the CM & M systems are classical

in nature, adding respectively monotonicity and finally contraposition, the strongest

of the classical attributes. Both of these systems were felt by Kraus, Lehmann and

Magidor to be too inflexible to be candidates for defeasible non-monotonic reasoning.

The P Preferential system “occupies the central position in the hierarchy of non-

monotonic” reasoning. Its semantics were described by Sholam (1987) and it was

considered by Adams (1965) & Pearl and Geffner (1988) in the context of conditional

assertion and probabilistic logic as the “conservative core of a non-monotonic reasoning

system”.
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Preferential: additional property

1. If α |∼ γ & β |∼ γ, then α ∨ β |∼ γ (Or)

Supplementary property

2. If α |∼ β, then Either α ∧ γ |∼ β, Or α |∼ ¬ γ (Rational Monotonicity)

As above, for these properties it is intended that α, β represent existing information

and that γ represents new information. P adds the ‘Or’ property to the base set

of cumulative properties and includes the ‘And’ property, which can be derived via

‘Cautious Monotonicity’ and ‘Cut’.

The original paper (Kraus et al., 1990), discusses three further properties: ‘Negation

Rationality’, ‘Disjunctive Rationality’ and ‘Rational Monotonicity’ which potentially

might be added to strengthen the P system (make it more classical). In a subsequent

paper, Lehmann and Magidor (1992) concentrate on ‘Rational Monotonicity’, which

can be envisaged as the upper boundary of defeasibility; above which the logic becomes

too strongly, classically monotonic. The formulation of ‘Rational Monotonicity’ pro-

vided above is now traditional, although not the original given by Kraus et al. (1990).

Alternatively, it could be concisely re-stated (combining both clauses) in the context

of common-sense reasoning: when un-surprising new information (γ) is received, the

agent need not revise previous assertions.

Rather than a theoretical discussion of the preferential semantics and consequence

relations, which would involve considerable space and technical detail, we present a

simple example in the hope it may be more informative. Let us consider a traffic

intersection with a light and a car. In sentences of the language the fixed order of the

propositions, the light and the car, will be maintained. Truth valuations on atoms will

be denoted as follows: L the light is green, ¬L the light is red, C the car goes through

the intersection and ¬C the car stops.

The most plausible, preferred model states in this example world are states with

valuations “1 1” where the light is green and the car goes through and “-1 -1” where

the light is red and the car stops. The model state with valuations “1 -1” where the

light is green but the car stalls happens occasionally, but is less preferred and “-1 1”

where the car runs a red light is least preferred. The reflexive and transitive total

pre-order on the state models is denoted by: ≺, where > represents truth (tautology)

and ⊥ falsity (contradiction) and ⊥ ≺ [−1 1] ≺ [1 − 1] ≺ [−1 − 1] and [1 1] ≺ >
is the preference relation, as illustrated in Figure 2.1. The preference ranks are often
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indexed with an ordinal. Traditionally the most preferred (plausible or normal) models

have been called the minimal models. However, throughout this thesis we choose the

natural alternative of calling them the maximal models.

1  1        -1 -1

1 -1              

-1  1              

Most Preferred Models

Least Preferred Models

0
1
2

Model of an Intersection: [Light, Car]

  1  1 = car goes on green light
-1 -1 = car stops at red light

  1 -1 = car stalls at green light
-1 1 = car runs a red light

Figure 2.1: An example preference relation, shown with an ordinal

index of ranks & most preferred models as maximal; at the top.

If in this example scenario the agent received information that the light was green,

it would be plausible to conclude, based on rational consequence, that the car went

through the intersection; although it may have stalled. This defeasible conclusion is

reached by selecting the most preferred (maximal) models of the premiss from the pref-

erence ranking, as discussed above and illustrated in Figure 2.1. In general, defeasible

entailment is synonymous with the maximal preference.

α |∼ β ←→ Maximal Models[α] ⊆ Models[β]

However, remembering Peirce’s classification of the different types of reasoning,

other forms of supra-classical entailment are possible. Considering the set diagram,

Figure 2.2, the maximally preferred models (Models[α ∧ β]) are those selected by

defeasible inference (rational consequence). The least preferred models are the highly

abnormal counter-examples (Models[α ∧ ¬β]).

If we consider them, as the least preferred models of ¬β, this establishes another

entailment relation:

α |∼∗ β ←→ Models[α] ⊆ S −Maximal Models[¬β]
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where |∼∗ can be thought of as a “partial explanation” or hypothesis: an abductive

inference in Peirce’s classification of reasoning. In fact, a variety of more esoteric

entailments are possible in SCNM logic (Labuschagne and Heidema, 2010). It is unclear

which of them may play some part in human reasoning.

Models[(∧*]

Models[*]

Models[¬*]

Models[(∧¬*]

Models[(]

S - universe of discourse

Figure 2.2: A set diagram showing supra-classical relationships

(Labuschagne and Heidema, 2010).

2.2 Common-Sense Reasoning

There is no accepted, practical definition of common-sense reasoning. It often applies

to the menial and yet extraordinarily complex activities that are common place, such as

tying your shoe lace (Davis and Morgenstern, 2004). In contrast, expert opinion in spe-

cific domains, such as medical diagnosis, can be effectively represented autonomously

by neural networks. Many authors believe that SCNM logic is a credible formalism of

common-sense reasoning (Labuschagne et al., 2013; Russell and Norvig, 2003; Lehmann

and Magidor, 1992; Kraus et al., 1990). The two domains share many common issues,

for example the management of qualifications / exceptions: both fields making the

compromise of default negation (Reiter, 1980). However, there are some issues specific

to common-sense reasoning related to practical implementation and evidence.
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The first issue is the division between common-sense knowledge and common-sense

reasoning. The tasks to be accomplished in every-day life often require knowledge

from multiple domains. Common-knowledge is beyond the scope of rational agents

programmed for specific tasks. Attempts have been made to acquire such knowledge

online as web based ontologies: however, two major projects have largely failed. The

Cyc Project was developed by Lenat, but is now commercialised (Lenat, 2016). It

relies on hard-wired heuristic rules, which are regarded as out of date. The other

Open Mind Project, developed by Minsky and Singh (Singh, 2002), collapsed after

Singh’s death in 2008. In contrast, web based ontologies have been successful in specific

isolated domains, for example human genetics: the Gene Ontology (Lewis, Blake,

Cherry, Sternberg, and Thomas, 2016).

The second issue is the nature of the implementation of defeasibility. There is

still considerable tension regarding the utilisation of numbers in probabilistic logics.

Many logicians including Fodor and Rott (Rott, 2009; Rives, 2010) have an underlying

mistrust of representation by probability:

“All the methods considered are purely qualitative, in the sense that

there are no meaningful numbers involved. .... In view of the abundance of

qualitative methods at our disposal, we are not likely to subscribe to the

view of proponents of numerical methods, according to which purely qual-

itative methods will always remain too poor to model ..... The problem is

rather the reverse: We are facing an embarrassment of (qualitative) riches.”

(Rott, 2009)

Of the opposing view are Bacchus, Pearl and Darwiche (Bacchus, 1988; Pearl, 1997;

Chan and Darwiche, 2002), who feel that numerical exactness is required to avoid

inconsistency (see Section 5.3: Typicality):

“People are notoriously bad number estimators ... (but numbers) no

matter how erroneous, prevent us from reaching inconsistent conclusions

... they are the summaries of knowledge left behind when information is

abstracted to a higher level.” “Probability is not really about numbers; it

is about the structure of reasoning” (Pearl, 1997)

They would argue for representation of common-sense reasoning in a probabilis-

tic logic, encapsulating all the qualitative properties of defeasibility in SCNM logic.

Support for this view is provided by Chan and Darwiche (2002) demonstrating, using
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sensitivity analysis, that small variations in parameter settings for Markov networks

(the underlying models for stochastic neural networks) can have a marked effect on

predictive outcomes.

The Dempster-Shafer theory in probability (Zadeh, 1986) assigns three separate

metrics to: mass, belief and plausibility. This method considers the probability of ob-

ject combinations from the appropriate power set. Belief and plausibility are denoted

as lower and upper bounds, one accumulated by set union the other accumulated by

intersection. It seems implausible that common-sense reasoning would invoke such a

convoluted scheme for decision making. The research of Pinkas in symmetrical neural

networks (discussed in Section 2.4.1) and Spohn in belief revision (discussed in Sec-

tion 6.1.2) offer an alternative, a half-way house, utilising single natural number indices

that might plausibly be part of common-sense reasoning.

The third issue is related to what constitutes valid evidence. Logicians and psy-

chologists have tended to shun each other’s domains. Further, logicians have been

criticised as relying too much on their own intuitions. Pelletier and Elio (1997) argue

strongly for empirical evidence as a grounding for all formal logic. They view con-

jectures about rational agents (Russell and Norvig, 2003) uncharitably, as a means of

avoiding the real world of biological human cognition, where experimental evidence is

required for scientific enquiry. We strongly agree with the view of Pelletier and Elio,

that human reasoning is the only model available for common-sense.

2.2.1 Empirical Evidence from Psychology

For the reasons above, the results of a number of relevant psychological experiments are

now reported in some detail. Surprisingly, given the separation between the disciplines,

the empirical psychological evidence is very supportive of SCNM logic as a surrogate

for human reasoning. One of the earliest and most influential results was reported by

Wason (1966, 1969). A short description of the logical basis of the test is necessary,

because it is utilised for many of the psychological experiments that follow.

In its original form, Wason’s selection test involved human subjects given four cards,

their facing and concealed sides potentially supporting some relationship; an inference

made in the rules of classical logic (see Figure 2.3). The subjects were able to select

independently all the inferences that they felt were correct. There are four potential

options to choose from in each situation. The results, in terms of validation for a

particular logical property, are able to be read directly from the subject selections. In

subsequent research the test was modified, to be used in a verbal setting, where the
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options were mutually exclusive and individual logical inferences could not be directly

distinguished.

Modus Ponens
If ! and ! -> " then "

Modus Tollens
If ¬" and ! -> " then ¬!

Fallacy in the 
Consequent

If " and ! -> " then !

Fallacy in the 
Antecedent

If ¬! and ! -> " then ¬"

Antecedent Consequent

Positive

Negative

Figure 2.3: A 2 x 2 contingency table for inference in classical logic.

Ninety percent of Wason’s original subjects consistently chose the positive inference

correctly, in the style of modus ponens: if α and α → β, then β. A further 35% of

subjects also mistakenly affirmed the consequent, a positive fallacy: an indication of the

degree of possible error. But, only 4% of subjects also chose the negative contradiction

correctly. Thus rebutting one of the classical styles of reasoning, modus tollens: if ¬β
and α → β, then ¬α. There has been prolonged discussion about the result. It has

been suggested, given that the counter inference is more difficult, that the results simply

demonstrate human error. When repeated in a different context, Cheng and Holyoak

(1985) showed that placing the test in a familiar setting or prompting the subjects with

a concrete rationalisation improved the selection of the negative inference to almost

90%. However, the result can be interpreted in another way: the negative inference

is more difficult to make because modus tollens is implicitly based on the classical

property of contraposition. Contraposition was specifically removed from SCNM logic

because it was felt to be too strongly classical. Wason’s test subjects may have validated

a significant formalism of defeasible reasoning.

Byrne’s suppression test is an extension of Wason’s research (Byrne, 1989). Al-

ternative antecedents and consequents were supplied to subjects in a verbal selec-

tion test. Prior to adding antecedents, 96% of subjects correctly selected inference
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based on modus ponens. After the addition of new antecedents, only 38% of sub-

jects persisted with modus ponens. The study clearly demonstrates the importance of

non-monotonicity in common-sense reasoning. Further, the specific nature of the an-

tecedent information demonstrated that the content and context of a language convey

implicit information, which is also used for inference. Currently application of such

common-knowledge is beyond the scope of formal logic.

1. If α |= β, then α ∧ γ |= β (Monotonicity - removed)

2. If α |= β, then ¬β |= ¬α (Contraposition - removed)

Neves, Bonnefon, and Raufaste (2002) have examined the human corroboration of

KLM System P (with rational monotonicity) in 88 subjects. The results are difficult

to interpret clearly. In the setting of this verbal selection test a contrived statistical

scheme was utilised, measuring the proportions of correct inferences compared to the

two fallacies, to decide the degree of corroboration of a particular property. If we accept

the analysis of the authors, then with respect to the eight properties examined:

• Reflexivity and Logical Equivalence could not be tested. However, the previous

research had emphasised the importance of context, which may argue against

syntactic independence.

• Cut was not corroborated.

• Right Weakening, And, Or and Cautious Monotonicity were corroborated.

• Rational Monotonicity was partially corroborated.

Further, when considering the overall support for the KLM System P (with Rational

Monotonicity): 47% of subjects made no violation at all of any property and 84% of

subjects only violated one property, where the violation was randomly distributed

among properties. Considering that it is doubtful that human reasoning could ever be

perfectly efficient: this is a very encouraging result. Their second paper (Benferhat,

Bonnefon, and Neves, 2005) is more concerned with results in possibility theory, outside

of the realm of traditional SCNM logic.

Pfeifer and Kleiter (2005) have also examined the corroboration of KLM System

P properties by human subjects. The methodology of the research was strongly prob-

abilistic, requiring estimates of probability intervals by the subjects and reporting

lower and upper bound violations. The authors admit that human subjects are no-

toriously bad at numeric estimations, especially at combining probability estimates.
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However, their conclusions supported the foundational properties of KLM, including

logical equivalence (syntactic independence).

Ford and Billington (2000) are an exception to this corroborating trend. They

report experiments looking at complex patterns of inference related to potential con-

flicting inheritance structures (box, triangular and diamond), rather than the core

preferential semantics of KLM. The objects of these inheritance schemes are purely

fictional: “Hittas, Wiflons, Kiglers, Waffs, Jukks, ....”. Unsurprisingly, no consistent

logical pattern of reasoning was found in any of the 49 test subjects. Moreover, the

authors appear to be antagonistic to the ideas of SCNM logic, even in the introduction

to their paper: offering multiple quotations regarding the complexity of non-monotonic

logic. Schurz (2005) produced research in a very similar area, specificity in inheritance,

with 150 test subjects. However, he used common place objects and backgrounds:

birds, schools, ethnicity, etc. He states that his results are “just the opposite” of Ford

and Billington in supporting non-monotonic inference.

Stenning and Van Lambalgen (2008, Chapter 8: From Logic via Exploration to

Controlled Experiment) are generally supportive of a framework of defeasible inference,

without specific reference to KLM System P. They provide experimental results from

365 subjects, repeating Wason’s selection task in a context of improved explanation,

making the point that context and familiarity are just as important to human cognition

as logical inference. Unfortunately, their motivation seems to be their assumption

of Wason’s failure to corroborate non-monotonic logic, when in fact Wason’s results

challenge classical monotonic inference.

2.3 Artificial Neural Networks

We now change to the connectionist domain of artificial neural networks; it is less

than a century old. Artificial neural networks are loosely based on the structure and

functionality of biological brains. They are a connectionist approach to artificial intel-

ligence characterised by parallel, distributed processing (Rumelhart, Smolensky, Mc-

Celland, and Hinton, 1986a,b), involving multiple simple interconnected processing

units (nodes). Their ability to learn and represent knowledge lies in the adaptation

of their connection weights. Procedural computing originally developed in the context

of symbolic language processing in finite automata. However, most practical language

processing is now performed in neural networks.
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In general the nodes only have two functions:

∆Eneti =
∑
j

wijsj − θi

• Input Summation: Here the change in energy at node i is related to the sum

of the input from connected nodes j, where wij is the related weight and sj the

nodal state at j. θ is the bias or threshold of node i.

Pi|T =
1

1 + e
(−∆Eneti

T
)

• Activation: We have chosen to illustrate a sigmoid activation function as this is of

relevance to the Boltzmann machine. Here unusually, the activation is stochastic,

the probability of activation of node i given threshold T (Pi|T ), rather than the

actual output, is specified by the activation function. The firing is ‘all or nothing’

(0 or 1). ∆Eneti is the input summation for node i as above. Rather than the

traditional analogy of kBT , the product of Boltzmann constant and temperature,

T should be regarded as the optimisation threshold (see below Section 2.3.2).

There are a huge variety of neural networks, which can be categorised in multiple

ways:

• Learning Type: supervised, unsupervised, reinforcement.

• Learning Algorithm: back-propagation, contrastive divergence, Hebbian, ...

• Connections: feed-forward, recurrent

• Nodal Activation: deterministic, stochastic

• Architectures: simple or multi-layer perceptrons, convolutional networks, deep

belief networks, stacked networks, self organising maps, Hopfield networks, Boltz-

mann machines, restricted Boltzmann machines, ...

The most classical variety of feed-forward neural network implements back-propagation

as part of supervised learning in a deterministic model; the multi-layer perceptron.

Historically, the first characterisation of a neural model based on threshold units

comes from McCulloch and Pitts (1943). The concept of learning and knowledge rep-

resentation based on the strength of nodal interconnection was first proposed by Hebb

20



(1949). Early research stalled, following the demonstration by Minsky and Papert

(1969) that the simple, deterministic, feed-forward perceptron of Rosenblatt (1958)

was unable to represent non-linear classification problems, such as exclusive-OR. Un-

fortunately, the solution to this problem of credit assignment in multi-layer networks,

the back-propagation algorithm first published in the master’s thesis of Linnainmaa

(1970), lay unrecognised. The algorithm is usually attributed to its later re-invention

by Werbos (1975).

2.3.1 The Boltzmann Machine

Whilst this issue delayed the development of multi-layer feed-forward networks for

almost a decade, the development of alternative unsupervised recurrent networks con-

tinued in the background. It reached its fulfilment in the design of the symmetric

(recurrent) neural networks (SNNs) derived from the domain of statistical mechanics,

the Hopfield network (Hopfield, 1982) and the related Boltzmann machine (Hinton,

Sejnowski, and Ackley, 1985; Hinton et al., 1984). By all the criteria mentioned above

(Section 2.3) the Boltzmann machine is unusual. It is a variety of SNN without reflex-

ive connections but including stochastic activation functions and requiring simulated

annealing for sampling of local cross-firing.

The Boltzmann machine utilises a variety of unsupervised learning and has its own

unique learning algorithm (Haykin, 2008). The algorithm has two phases (see below,

Figure 2.4 & Figure 2.5 pseudo-code): a clamped phase where external input is applied

to the visible nodes and a resting phase where there is no input (the network is run

free). The basis of its learning (weight adjustment) is the comparison of cross-firing

statistics in the clamped and resting phases. Cross-firing ρij is determined by the

product of the nodal states, s̃i and s̃j, averaged over a large number of samples.

ρij = s̃i × s̃j

∆wij = η (ρ+ij − ρ−ij)

The change in weight wij between two nodes i and j is related to the difference in cross-

firing between the clamped phase ρ+ij and in the resting phase ρ−ij, multiplied by some

learning rate η. In effect, this comparison is a variety of error correction (supervision)

utilised to model the network states in the clamped phase. This localised Hebbian

learning is biologically plausible. However, the algorithm requires simulated annealing

to retrieve the cross-firing statistics (see discussion below Section 2.3.2), particularly

in the resting phase.
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Figure 2.4: The Hebbian nature of the Boltzmann learning algorithm:

clamped and free phases. Some minor adjustments were made to

the learning algorithm and annealing schedules specific to this thesis

(Section 4.2 Implementation). Sampling indicates testing the output

of the machine against a clamped input.

There are two major characteristics that equip the Boltzmann machine to be “a

device for modelling an underlying probability distribution (... of its training set)”

(Haykin, 2008).

• The Boltzmann machine is a symmetrically recurrent network, a characteristic

which is both the basis of constraint satisfaction and the ability to characterise

the total energy within the network.

Ek|T ≡
∑
i

∑
j

wijsisj where i 6= j

The total energy of the network in state k (at equilibrium, for threshold T ) is

directly related to the sum of all products of the paired nodal states si and sj

across each weight wij.

• The Boltzmann machine is one of very few networks that implement stochastic

nodal activation.
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For Epochs      //until plateau
              {    
                         Shuffle patterns;

                         For each pattern
                                    {          
                                                //active - clamped phase
                                                Clamp inputs;
                                                Run network;
                                                Sample local !+ values;

                                                //resting - free phase
                                                Randomise node activations;
                                                Anneal network by layer;
                                                Sample local !- values;
                                      }

                          Update weights;
                                     "Weight(new) = # (!+ - !-) + )*"Weight(previous)
               }

Figure 2.5: Pseudo-code for a modified Boltzmann learning algorithm

(see Section 4.2 Implementation). Where η is the learning rate, µ

is the momentum; ρ+ and ρ- are the cross-firing statistics across a

specific weight in the clamped and free phases respectively.

In conjunction, these characteristics enable the network to represent high proba-

bility states with low energy. These resonant states as discussed by Balkenius and

Gärdenfors (1991) or energy minima as discussed by Pinkas (1994) are the basis of the

probabilistic representation of logic (see following Section 2.4).

Pk|T ≡ e
(−Enetk

T
)∑

l e
(−Enetl

T
)

These properties are encapsulated in the Boltzmann distribution equation, which re-

lates the probability of output states at equilibrium, to the relative entropy (learned

preference) of these states. On the left side of the equivalence: Pk|T is the equilibrium

probability at ‘threshold’ T of a particular state k and on the right side: Enetk is the

energy of the network in that specific state k, compared to the energy in all states.

This sum of energy in all the states is referred to as the partition function.
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2.3.2 Simulated Annealing

Simulated annealing might be regarded as the hallmark of Boltzmann learning: both a

blessing and a curse. It is an algorithm theoretically able to achieve optimal solutions,

given a sufficiently long time. The name is derived from the physical process of anneal-

ing solids at equilibrium in a thermal bath, by very slowly lowering their temperature.

It is the opposite of quenching, which rapidly lowers the temperature of metals.

The method was first published by Metropolis and Rosenbluth (1953) in the context

of the evolution of solid states in a thermal bath using Monte Carlo techniques. It was

first introduced in optimisation by Kirkpatrick, Gelatt, and Vecchi (1983) but the later

reference to stochastic relaxation, Geman and Geman (1984) is more often cited. The

best discussion of the optimisation method is in Aarts and Korst (1990, 1997). The

algorithm is a generalisation of local search:

Pj|T =

{
1 if Ej < Ei,

exp((Ei − Ej)/kBT if Ej ≥ Ei.

As for other methods of local search, if the new state j has less energy (is more optimal)

than the old state i, the new state is always accepted. However initially, if the new

state j is locally less optimal than the old, it may still be accepted with a probability

(Pj|T ) related to the energy difference Ei − Ej, at equilibrium threshold T (where kB

is the Boltzmann constant).

Aarts and Korst regard this algorithm as the parent of all threshold optimisations.

Other techniques of descent in local search are a subset of this algorithm, where the

threshold (temperature) is set close to zero and the method becomes deterministic. The

great benefit of simulated annealing is its up-hill search at initial high thresholds; the

method has the ability to overcome local minima. However, the schedule for lowering

the threshold (temperature) is critical and has to be performed slowly. This theoretical

formulae for the threshold schedule comes form the paper of Geman and Geman (1984).

Tk =
c

log(k + 1)

Here the threshold (temperature) for the kth iteration of the schedule is derived from

the inverse log of k. The schedule used in the original papers by Hinton et al. (1984,

1985) was a stepped approximation. We developed our own 20 point schedule based on

the formula above, see Figure 2.6. Our modifications to the generic network, learning

algorithm and annealing schedules of a Boltzmann machine are covered in Section 4.2

Implementation.
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Figure 2.6: Annealing schedules: our approximation and the schedule

from Hinton et al. (1985) are shown in comparison to the theoretical

ideal of inverse log. The theoretical schedule is shown for a wider

temperature range (20 → 5), to avoid overlap with the actual sched-

ules (20 → 10) and clearly separate the curves. Multiple sampling

occurs at each temperature point.

2.4 Representation in an Artificial Neural Network

A number of authors have implicitly approached the topic of systematicity in neural

networks related to natural language (Hendler, 1989; Wermter, 1997; Boden and Niklas-

son, 2000; Hadley and Cardei, 1999; Hadley, Rotaru-Varga, Arnold, and Cardei, 2001;

Frank et al., 2009). However, we limit this discussion to literature, which has explicitly

explored the implementation of logical inference. McCulloch and Pitts (1943) began

this theme by hypothesising a relationship between propositional logic and activity in

neural networks.
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2.4.1 Early Symmetric Networks

The seminal papers on symmetric neural networks were published in the early 1980s:

Hopfield nets (Hopfield, 1982) and Boltzmann machines (Hinton et al., 1984, 1985).

Balkenius and Gärdenfors (1991) were the first to recognise the unique characteristics

of the newly formulated networks, in relation to the representation of propositional

logic. They specifically emphasise the property of constraint satisfaction with regard

to the ability of these networks to find single solutions in classical logic. They use

the term ‘resonance states’ to refer to energy minima in the network, corresponding

to solutions in the logic. They demonstrated theoretically, that simple SNNs could

replicate the conclusions of logical schemata. Their detailed description of logical

schemata link them to concepts used by Rumelhart et al. (1986a, Vol 1, Chp 14:

Schemata) and Minsky and Papert (1971); Minsky (1974). Unfortunately there is a

confusing collection of related concepts in the literature: Gärdenfors logical schemata,

an epistemic state in modern logic, a generative model or frame in computer science

and a joint probability distribution in statistics. In this paper we have chosen: ‘logical

micro-world’, a terminology used by Frank et al. (2009), see Section 3.2.

Jagota (1994) examined the stable storage of database tuple information in Hopfield

style networks serving as associative memory. He related this to Boolean formulae and

regular expressions, although not directly to inference. He theorized about the storage

capacity of these networks, which are now known to be limited arithmetically by the

number of nodes. Many of the authors in this domain reference the work of Rumelhart

et al. (1986a) and Rumelhart et al. (1986b), looking at ideas of micro-structure in

parallel distributed processing.

Pinkas (1994, 1995) strengthened the work of Balkenius and Gärdenfors by provid-

ing a mathematical foundation, demonstrating an equivalence between two fundamen-

tal ideas: a solution in logic and energy minima in a SNN. Pinkas derives the energy

formulae (and ultimately the architecture) of SNNs from the logic, with the addition

of weights expressing strength of belief or reliability of knowledge: in the negative

sense a penalty. His penalty-logic constitutes a means of translation between a specific

syntactically correct logical sentence and a unique energy formula for some SNN. He

utilises the idea of local and global minima, consistent with Balkenius and Gärdenfors

‘resonant states’.

In the first theoretical part of his paper Pinkas indicates that SNNs are capable of

learning an ordering on states (a preference ranking) consistent with the concepts of

non-monotonic logic (Kraus et al., 1990; Lehmann and Magidor, 1992). Although the
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paper deals with many SNNs, Pinkas specifically acknowledges that only the Boltzmann

machine is capable of searching multiple energy minima simultaneously. That, as a

consequence of its probabilistic learning, only the Boltzmann machine is capable of

learning a ‘strongly equivalent’ or ‘magnitude preserving’ ranking on model states.

Within the broad theoretical discourse of Pinkas’s paper, his experimental results

have a very specific focus. Pinkas randomly generates large ‘3-SAT’ problems: sen-

tences with as many as 100 variables in conjunctive normal form, with 3 variable

clauses. He constructs SNNs based on these sentences using his penalty-logic and runs

the derived networks to find a solution. The SAT-solving abilities of his networks are

an impressive demonstration of the translational function of his penalty-logic. Further

work by Pinkas (1995) emphasises his focus on the global minimum of the networks,

at the expense of local minima. However, there are two major issues with these exper-

iments in the context of SCNM logic and common-sense reasoning:

1. These are single problems. Pinkas has engineered each network from a single

sentence: each solution found is appropriate only to that specific sentence. To

be a useful representation of supra-classical logic, a network should be capable

of learning solutions to all the sentences entailed by its logical environment:

solutions for all syntactically correct sentences within a micro-world. A specific

network constructed from a single sentence ‘α’ could not be expected to retrieve

solutions for a sentence ‘β’ from which it was not designed. Whereas a generic

network, which trains from its environment, should be capable of such learning

and adaptation.

2. These are single solutions. They are in the domain of classical logic. There is

no evidence, in Pinkas’s experimental results, of a preference ranking on states.

This would require not just the set of global minima, but also an ordering on all

the sets of local minima. Pinkas mistakenly asserts that, “symbolic logic is too

rigid to be able to deal with exceptions”. Whereas in fact, these multiple and

less optimal solutions are the counter-examples, which are a prime characteristic

of SCNM logic (see Section 3.1: Logical Preliminaries).

2.4.2 From the Logic

The development of probabilistic logic dates back at least to the introduction of the

SNNs. One of the first papers by Nilsson (1986) presents the fundamental mapping

of truth in classical logic to probabilities [0 or 1], using binary semantic trees for

27



sentence analysis. The intuitive extension of this approach to preference relations in

non-monotonic logic simply utilises the range of probability values for different prefer-

ence levels. The work of Bacchus (1988, 1990, 1991, 1996), although not in the main

stream of non-monotonic logic, develops probabilistic logics from a consideration of

statistical knowledge bases. Bacchus has made the correlation between these logics

and Bayesian networks typically used for probabilistic reasoning. However, Bayesian

networks are, strictly speaking, propositional acyclic graphs. They are not neural net-

works in the sense of having some connection with biology and being able to adapt.

Myllymaki (1999) has shown that these acyclic graphs can be mapped onto the weights

of a Boltzmann machine to avoid the slow, unreliable process of network training. We

take a step further, in the context of moving along Hinton’s bridge, by relating the

symbolic nature of the logic itself directly to the probabilistic learning of a generic

Boltzmann machine.

In the first parts of his book, Leitgeb (2004) sets out the properties of logic and

inference on the ‘low level’, considering why embodiment is possible. In discussion he

theorises in detail about the structure and behaviour of agents that would have prop-

erties compatible with the requirements of the logic. He concludes that ‘dynamical

agents’, such as ‘simple inhibition nets’, are viable candidates for the representation of

logic. He proceeds to theoretically prove the properties of these inhibitory networks.

Leitgeb has many valuable ideas (Leitgeb, 2001, 2007), particularly his emphasis on

discrete binary states and inhibitory constraints (considered in Section 3.3.2: Neurobi-

ological). However, Leitgeb’s ‘simple inhibition nets’ lack a true distributed represen-

tation, there are no connection weights and no discussion of how the networks would

learn or adapt. It is unclear whether the networks discussed were ever built, or used

experimentally, and there is no experimental evidence provided to support the author’s

theoretical conclusions.

2.4.3 Neural-Symbolic Integration

The SHRUTI system, as proposed in the field of neural-symbolic integration (NSI),

has been offered as a model of human cognition and by implication a representation of

symbolic logic (Shastri and Ajanagadde, 1993; Shastri and Wendelken, 2000; Shastri,

2007). It primarily attempts to solve the issue of dynamic variable binding in predi-

cate calculus. This system, although said to be motivated by neurobiology, is highly

engineered around each specific problem. It postulates positive and negative ‘collec-

tor nodes’, ‘enabler nodes’ and pairs of ‘utility nodes’ for each variable or component
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of a problem. Further, the network connections are constructed to implement tem-

poral synchronicity to enable learning of object relationships. The authors provide a

co-relation in neurobiology for this hypothesis. The system was modified in the later

papers to include a degree of probabilistic and Hebbian learning.

However, the system is based on feed-forward networks, which reach a deterministic

conclusion with an explicit probability. Without alteration of its nodal activations to

some stochastic function, it is difficult to see how the system could retrieve multiple

ranked counter-examples to a preferred conclusion. The addition of Hebbian learning

moves the SHRUTI system closer to a SNN, but there is limited discussion of how the

network obtains and stores the necessary cross-firing statistics to manage such learning

(cf. Boltzmann machine).

Authors: d’Avila Garcez, Lamb, and Gabbay (2007, 2009) are prominent in the

field of neural-symbolic integration. They have extended the work of Pinkas to non-

symmetric neural systems, utilising large ensembles of feed-forward networks: the CLIP

system. CLIP can be seen as a hybrid system where the network is first constructed

around a specific logical problem using a translation algorithm, analogous to Pinkas for

SNNs. d’Avila Garcez et al. support the theory that single hidden layer feed-forward

networks are universal approximators of any polynomial function. They demonstrate

the practical capacity of these networks in a variety of settings including first order

logics, temporal and modal logic. Further, they consider the challenge of relational

associations and dynamic variable binding using predicates, in the context of a specific

problem: Michalski’s east-west trains (d’Avila Garcez et al., 2009, Chp 10).

Stenning and Van Lambalgen have published a book on ‘Human Reasoning and

Cognitive Science’ (2008). They consider the implementation of logic in neural networks

(Chp 8, p 217-239), where network inputs and outputs represent the atomic nature of

the example systems. Their conclusions are relevant to this thesis:

• For implementation a three valued logic is required to represent truth, falsity and

uncertainty independently.

• Recurrent neural networks have an advantage in their potential inhibitory inter-

connections.

Based on the view, that the representation of exceptions makes non-monotonic

reasoning difficult to implement, these authors chose to artificially design the wiring of

their networks directly from the conditional assertions of the logic and examine only

classical inference.
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“Non-monotonicity is highly difficult to manage by artificial intelligence

systems because of the necessity of looking for possible exceptions”. (Sten-

ning and Van Lambalgen, 2008)

This thesis examines SCNM logic specifically, because knowledge of exceptions is

thought to be characteristic of common-sense reasoning. We contend that Shastri’s

SHRUTI system, Garcez’s CLIP system and Stenning’s implementation suffer from

the same two problems, in regard to the scope of SCNM logic, which also applied to

Pinkas’s work. Although outlined previously, we now consider these two issues from a

slightly different standpoint:

1. Single Problems: These integrated neural-symbolic systems are initially algorith-

mically engineered from the logic; this makes them very efficient in solving the

specific problems for which they were designed. However, this is not sufficient

in the broader context of understanding human cognition, where a generic sys-

tem capable of dealing with multiple premises related within a micro-world must

evolve by training alone.

2. Single Solutions: These networks act as function approximators, they are re-

trieving many-to-one or one-to-one mappings, finding only single optima in the

domain of classical logic (albeit in some extended form, e.g. temporal). They are

not learning one-to-many relationships, which are the domain of supra-classical

logic and common-sense reasoning. This can be seen most clearly in Garcez’s

example of Michalski’s trains. This task requires a highly complex, constructed

network to map a set of variables, potentially involving intermediate results as

predicates, onto a single outcome which designates a train as either east or west

bound. This task is a many-to-one classification: the network is not retrieving

one-to-many solutions.

2.4.4 Statistical Relational Learning

Many authors (Khosravi and Bina, 2010; Getoor and Taskar, 2007; Kersting, De Raedt,

and Raiko, 2006; Koller and Pfeffer, 1998; Pearl, 1997) have published in the field of

statistical relational learning (SRL). This domain can be seen as an extension of Bac-

chus’s work on probabilistic logic. Statistical relationships within the data, represented

in the joint probability distribution, are viewed from the perspective of database the-

ory (as entity-relationships) and are modelled graphically using Bayesian and Markov
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networks. The concept of using both directed and undirected graphs to represent

probabilistic data is not new. Markov networks are a more expressive super-set of the

Bayesian models (Pearl, 1997). SRL specifically addresses the difficulty of represent-

ing one-to-many associations within the data, which are not mathematical functions.

These associations between facts in the data form the default rule, which is the basis of

the rational consequence relation in SCNM logic. These one-to-many factual relation-

ships are very important for common-sense reasoning and are difficult to capture in

any variety of classical logic: as distinct from object relationships. Object relationships

form the basis of predicate calculus, in transparent propositional logics or first-order

logics with the additional complexity of variables and quantification.

In the context of SRL, these Bayesian and Markov networks are built by a process of

‘inductive logic programming’, using either algorithmic or manual construction. Weight

calculation or parameter learning is then performed directly by calculation from the

log likelihood of the data. This calculation is known to be an NP-hard problem, so

only an approximation of the data distribution is possible. Finally inference in these

networks is achieved by implementing Gibbs sampling where the network nodes are

set to the observed inputs or randomised to the un-observed inputs. This process is

analogous to ‘clamping’ in the initial phase of a Boltzmann learning algorithm, where

Gibbs sampling is required to retrieve the output of the network at equilibrium.

We believe, that because there are important differences between graphical models

and neural networks, a neural network representation is a further step in the reconcilia-

tion of SCNM logic and neurobiology. As clarification, we re-visit our earlier concerns,

hopefully without repetition:

1. Single Problems: Graphs can be algorithmically altered to represent different

logical schemata; there is some biological plausibility, in terms of formation of pre-

synaptic connections, related to the concept of growing and pruning the graphical

structure. However, weight calculation, even as an optimisation, is not the same

as learning in an on going process of adaptation.

2. Single Solutions: The nodes of a probabilistic graph are not neural. They have no

activation function; specifically no stochastic activation function. The undirected

graph is capable of implicitly representing a joint probability table. However,

when clamped with an input (a partially unspecified premiss), it cannot explicitly

time-slice through the many outputs, which constitute the relationships in a

multi-modal distribution, entailed by this premiss.
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2.4.5 Recent and Future Additions

More recent research in computer vision has examined the multi-layer perceptron for

generative modelling, utilising modified nodal activation functions, which are stochas-

tic (Tang and Salakhutdinov, 2013; Rosales and Sclaroff, 2006). This fundamental

probabilistic alteration in the network’s properties moves it towards the behaviour

and capacity of the Boltzmann machine. These authors have focused on the learning

of non-mathematical functions (one-to-many mappings) required to produce a multi-

modal distribution in the output space. They discuss the use of probabilistic knowledge

to aid in the process of inference, where observation of the environment is limited or

uncertain.

There is a large body of literature on the important topic of dynamic variable bind-

ing in predicate calculus (Franca, Zaverucha, and d’Avila Garcez, 2014; Pinkas, Lima,

and Cohen, 2012; Hummel, 2011; Bowers, 2009, 2011; Reimers, 2011; van der Velde and

de Kamps, 2006), which is directly related to human cognition. We hope to consider

this issue in the future. We currently however, limit ourselves to a propositional syntax

without predicates because we are attempting to examine a much broader domain of

supra-classical logic for the first time. We contend that previous attempts in the con-

nectionist representation of logic have largely been in the domain of extended classical

logic. They have looked at single optimal solutions to specific, individual benchmark

problems. They have not considered the much boarder issue of the generic learning

and the tolerance of counter-examples. Incorporating the requirements of this broader

context considerably narrows the field of candidate neural network representations.

Further, we have not approached the coal face of neurobiology: dynamic, spiking

neural networks (Adeli and Ghosh-Dastidar, 2009; Mass, 1997). The task of represent-

ing logic in such temporally based networks is almost as daunting as directly relating

it to the neurobiology itself. In the not too distant future, a virtual human brain will

be modelled using detailed structure at a molecular level (Markram, 2014). However,

the vast complexity of such an undertaking may not easily advance the understanding

of human cognition. We have taken the view that small steps, utilising abstraction,

are also valuable.
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Chapter 3

Background

This chapter begins with an informal definition of the supra-classical, non-monotonic

logic and its connection to inference, as utilised in this thesis. An experimental en-

vironment for testing candidate neural-network representations against this logic is

described, with a brief description of the mapping from micro-world states to patterns

of activation in a neural network. Requirements sufficient for the representation of

the logic are identified and an outline of biological plausibility is given in the broader

context of human cognition.

3.1 Logical Preliminaries

We give a brief definition of the SCNM logic utilised in this thesis, as first introduced

in Section 2.1: Literature Review. A propositional SCNM logic is generated by a

finite set of atomic propositions with conventional propositional and set connectives

(¬,∨,∧,→,↔;∩,∪,⊆,⊇). Let > stand for truth, the set of tautologies and ⊥ stand

for falsity, the set of contradictions. The syntax of the language is not transparent, ie.

the atoms cannot be decomposed and do not involve predicates: object relationships.

However, the data has factual associations or dependencies deliberately included, as

discussed previously Section 2.4.4: SRL and below in Section 3.2. The semantics of

the logic are based on a finite set of states in a micro-world. For simplicity we identify

states with the assignment of truth-values (true 1, false -1) to atomic propositions.

A state in which a proposition α is true is a model of α. A proposition α classically

entails a proposition β, if and only if every model of α is also a model of β.

α |= β ←→ Models[α] ⊆Models[β]
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Classical logic is explicitly monotonic (see discussion Section 2.1) and presumes the

absolute nature of truth. Classical entailment is very restrictive and fails to capture

much of everyday common-sense reasoning. In the example of the traffic light (Sec-

tion 2.1.2), classical inference from the observation that the traffic light for oncoming

traffic is red, to the conclusion that the oncoming car will stop, would result in pedestri-

ans stepping into the path of the oncoming car that has exceptionally ‘run a red light’.

This is in contrast to most common-sense reasoners understanding that truth is rela-

tive. Accordingly, we utilise a logic equipped with a more generous entailment relation

known as a rational consequence relation: rational consequence formalises single pre-

dictive inferences. In these inferences the limited information supplied by the premiss

is amplified by information provided by a default rule. Past experience, observation of

the frequency of states in the environment, commonly forms the basis for the default

rule. In the example, the default rule is that: ‘Cars normally stop for red lights’. These

default rules are not universal generalisations; the consequent entailment is defeasible

and so supra-classical logic incorporates exceptions to the single conclusions of classical

monotonic logic. In the example, cars may exceptionally ‘run a red light’.

It is convenient to represent the default rule by means of an ordering on the (valu-

ations on) states of the relevant micro-world. Such an ordering stratifies or ranks the

states into layers, as described by Kraus et al. (1990); Lehmann and Magidor (1992).

These layers may be assigned an ordinal value. It is conventional to refer to the order-

ing as a preference relation. Traditionally the most preferred model states are denoted

as the minimal models. In this thesis, these most preferred models are given the in-

tuitive denotation of the ‘maximal’ models. Given a default rule represented as such

a preference relation, the corresponding rational consequence relation sanctions the

defeasible entailment of β by α, if and only if every maximally preferred model of α is

also a model of β (Heidema and Labuschagne, 2001).

α |∼ β ←→ Maximal Models[α] ⊆Models[β]

“Arguably, the most important characteristic of non-monotonic logic is not its non-

monotonicity, but it supra-classicality” (Labuschagne et al., 2013). Supra-classical

logics allow for non-preferred conclusions and can employ a range of consequence re-

lations which tolerate counter-examples to the restrictive view of classical logic. The

particular variety of supra-classical logic considered in this thesis is that based on the

rational consequence relation. A conclusion in supra-classical logic involves an ordered

set of model states entailed by a premiss. In the domain of statistics, these states
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are counter-factuals (Pearl, 1997). In the connectionist paradigm, states correspond

to stable minima. We suggest that a supra-classical conclusion (a ‘problem solution’)

would be a set of ranked minima, not just the single global minimum.

We have chosen this broader context of the rational consequence relation in supra-

classical logic, because many authors regard this ability, to be able to learn exceptions,

as a key feature of common-sense reasoning (Kraus et al., 1990; Lehmann and Magidor,

1992; Heidema and Labuschagne, 2001; Labuschagne et al., 2013). Indeed, Pearl (1997,

2015) proposes that these counter-factuals form the basis of reasoning about causality,

as opposed to simple statistical association.

3.2 Micro-World Schemata

Logical micro-worlds are the experimental sand-boxes of this thesis. They are simpli-

fied, defined environments about which we may logically reason at the symbolic level.

In these environments, our candidate neural network representations are trained and

tested against the expectations of SCNM logic. For our purposes, considering the ra-

tional consequence relation as a proxy for common-sense reasoning, the single solution

benchmarking of previous authors: Pinkas (1995), d’Avila Garcez et al. (2009) and

Shastri and Ajanagadde (1993); was not relevant or appropriate. Fortunately, we have

been able to fall back on the ideas of Rumelhart et al. (1986a) and Minsky and Papert

(1971), who originally coined the term. Micro-worlds are equivalent to the schemata

of Balkenius and Gärdenfors (1991) and were elegantly utilised by Frank et al. (2009),

in examining the connectionist learning of language.

The micro-worlds used to train and test candidate machines were modest incre-

mental extensions of the simple logical ‘Light-Fan System’ in traditional usage. The

logic appropriate for the basic Light-Fan System has just two atomic propositions, L

standing for ‘the light is on’ and F, standing for ‘the fan is on’. The states of this

micro-world are then the four possible functions assigning true or false to each atom.

It is convenient to depict such a function as a sequence of its outputs, which is possible

if we take the order of the atomic propositions to be fixed. Thus, the state in which

the light is on but the fan is off can be depicted by the binary sequence “1 -1”, showing

that L is true (value 1) and F is false (value -1). Note that for convenience states are

often labelled in an abbreviated decimal form, for example “1 -1” is labelled 2 and

“1 1” is 3. Candidate networks were trained using this binary logic 1. However, the

1Terms emphasised at first occurrence, are defined in the glossary.
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machines were tested using a ternary logic, where inputs of zero stand for not observed

or unknown. For example an input premiss of “1 0” stands for ‘Light on, Fan not

observed’; such an input has no binary equivalent.

We considered micro-worlds having 3, 4, 5, and 6 atomic propositions or compo-

nents. The additional atomic propositions were: H the heater (is on), W the window

(is open), A the air-conditioning (is on), and O the open fire (is lit). The motivating

analogy for these micro-worlds was that of a temperature-controlled room. Factual as-

sociations or dependencies between the data elements arise from this semantic analogy

(see Section 2.4.4: Statistical Relational Learning). Active cooling is produced by the

fan and air-conditioner, active heating by the heater and the open fire, passive depen-

dent cooling by the window and independent illumination by a light. The analogy and

its factual dependencies generate the default rule that is represented by the preference

ranking on the states.

Figure 3.1 illustrates a 4-atom micro-world, the atomic propositions are: Light, Fan,

Heater and Window. We revisit this example world many times in the experiments

reported in Chapter 4 and Chapter 6. The example default rule represented by the

preference relation incorporates these ranked observations:

• Components with a high energy cost, the fan and heater, would typically be off.

• We have specified that the environment is warm and therefore the fan is more

likely to be on than the heater.

• When active cooling is being used, the window is more likely to be open whereas

during active heating, the window will typically be closed. The window is a

dependent component.

• The light may be on or off, independent of the other components.

From the first observation it follows that the most preferred Level 0 consists of all

states where atoms F and H are false, “-1”. From the second and third observations

it follows that Level 1 consists of states where F is true, “1” and H is false, “-1”. The

dependent component W is true, “1” when the fan is on. From the third observation

it follows that Level 2 consists of states where F is false, “-1” and H is true, “1”.

The dependent component W is false, “-1” when the heater is on. From the fourth

observation it follows that Levels 0 - 2 contain all relevant variants of L is true, “1” or

L is false, “-1”.
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4-Atom MicroWorld: Temperature Controlled Room
Light, Fan, Heater, Window
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Figure 3.1: An example micro-world consisting of four atoms (Light,

Fan, Heater, Window), based on the default rule described in the text.

The most preferred states are shown at the top of the ranking, which

is based on the default rule. States (patterns) are shown in binary

eg. “1 -1 -1 -1” and for convenience labelled with the equivalent

decimal value, eg. 8. The number (#) and frequency (%) of each

state in the training set is given for each level, for example pattern

“1 -1 -1 -1” (8) is seen 16 times - 16.7% of the total. There are

(4 × 16) + (2 × 8) + (2 × 4) + (8 × 1) = 96 total patterns in this

example training set. This example world is revisited many times in

the experiments reported in Chapter 4.
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By default, Level 3 consists of all the remaining states, which are inconsistent with

the observations that constitute the default rule, particularly those irrational states

where the heater and fan are both on: Fan true “1”, Heater true “1”.

Figure 3.1 illustrates a single example epistemic state with preference relation in

a 4-atom micro-world. This example micro-world has been deliberately designed to

demonstrate a range of associations between the atomic propositions: independence

of the Light, dependence of the Window on the Heater & Fan and opposition of the

Heater and Fan. The most preferred states are observed more frequently, such as

the state “1 -1 -1 -1” in this example, where only the light is on. Regardless of any

semantic analogy used to conceptualise the micro-world, it is only a single example of

the trillions of permutations possible on factual associations between 4-atoms.

Testing every micro-world variant would be difficult given that there are more than:

8! 3-atom micro-worlds, 16! 4-atom micro-worlds, 32! 5-atom micro-worlds and 64!

6-atom micro-worlds. Our largest size world with 6-atoms might seem trivial, however,

this world has 64 states and the machine is required to learn the preference ranking

from the logic. All the relationships the machine ‘observes’ are one-to-many mappings.

An equivalent scenario in real life would be a medical diagnostic sieve with 64 diagnoses.

d’Avila Garcez et al. (2009) considers Mickalski’s trains to be a significant task requiring

learning of one-to-many relationships. This problem has only 4 characteristics (atoms)

spread over 10 input states with 2 output classifications.

3.2.1 Mapping States to Network Activations

This section is intended to provide some preliminary context describing the way in

which the micro-worlds outlined above will be used by the neural networks. As noted

above, the semantics of the logic are based on a finite set of states. We identify

states with the assignment of truth-values to atomic propositions. A state in which a

proposition α is true is a model of α, in the example 4-atom micro-world just discussed

one such state is “1 -1 -1 -1”, which is a model of L (the Light is on, Fan off, Heater

off, Window closed). In our machine networks logical states are represented directly

as the patterns of activation on the input or output units of the network, one unit per

atom. In other words, the logical state “1 -1 -1 -1” is represented as the pattern of

activation “1 -1 -1 -1”. While emphasising different aspects of context, the terms state

and pattern are effectively interchangeable in our networks.

In order for a machine / network to learn a default rule (a preference order on

states), training sets are designed which, in effect, allow the machine to observe a
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distribution of states from the environment of the micro-world. This statistical dis-

tribution arising from the factual dependencies corresponds to the preference relation

in the logic. Although the logic does not require the numerical exactness of probabil-

ity, it still maintains some notion of magnitude, the distance between preference levels

(Pinkas, 1995). This concept of magnitude is particularly important when considering

belief revision (Spohn, 1988).

For reasons of space and clarity, we predominantly present samples from 4-atom

micro-worlds. Furthermore, all worlds share certain design assumptions: the least pre-

ferred states are usually included once in the training set (they thus have a frequency

of roughly 1% of the total distribution) and there is usually an exponential change in

pattern frequencies between preference levels (a doubling in frequency between levels).

Given the very large number of possible permutations on worlds and preference re-

lations, we had concerns that the arbitrary nature of the designed micro-worlds may

have resulted in unintended structure impacting on our experimental results. To that

end we have also examined many micro-worlds of varying sizes, including random ver-

sions of a 5-atom micro-world based on alterations in both the default rule and in the

ordering of the atoms. We have also examined worlds where the least preferred states

are not included in training and with arithmetic progressions in pattern frequency.

These results were generally reassuring, see Chapter 4: Representation and Chapter 5:

Incongruence. The full results of examples of all variants are presented in our technical

report (Blanchette, McCane, Labuschagne, and Robins, 2015).

3.3 Requirements

The choice of candidate network representation was directed by the requirements of

both the logic and the biology, see Figure 1.1. In Section 3.3.1, the relationship between

the logic and the network representation will be discussed in detail. In Section 3.3.2,

we give a brief outline of the requirements for biological plausibility: the second half

of Hinton’s bridge.

3.3.1 Logical

Haykin (2008, p38-45) categorises the learning tasks performed by neural networks:

pattern recognition, classification, function approximation and control. They all in-

volve mapping multiple or single inputs to single outputs: many-to-one or one-to-one

relationships. One-to-many relationships, which map single inputs to multiple outputs,
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are not mathematical functions and have been disparagingly called ‘ill-posed problems’

(Swingler, 1996; Rosales and Sclaroff, 2006). The implication is that these problems

need to be re-formulated: re-engineered at some meta-level. This is usually achieved

by changing the nature of the data or the nature of the problem: often by re-coding

each instance or output permutation of the relationship into a single node, thereby

producing a combinatorial explosion in the network size. However, these alterations in

the representation of the problem are not a genuine solution for an individual machine

training directly from its environment, as they involve a pre-existing knowledge of the

structure of the problem, which is not available to the machine during training.

One-to-many relationships are common in the real world, typical examples are:

kinematic solutions to the positioning of robot limbs and diagnostic classifications

(Freeman, 1994; UCI, 2013), where single symptoms can be associated with many pos-

sible diagnoses. In our case, the example is SCNM logic, which also requires a ranking

of the outputs within the one-to-many relationship. We want the machine represen-

tation to accept a single input (a premiss) and to provide as output the models of

the premiss distributed identically to the preference ordering in the logic. It is not

sufficient for the machine to learn a generative model of the joint probability distribu-

tion; we also require it to retrieve a multi-modal output given uncertain information:

a discriminative case.

We considered that the necessary logical requirements of a network representation

(the elementary components of the rational consequence relation) were the ability to:

1. Learn a preference ordering on the set of states.

2. Select the appropriate models of a sentence based on limited information (a pre-

miss).

3. To compare the selected model states of two sentences (usually a premiss and a

conclusion) involved in inference

4. Revise (re-train) its preference relations in keeping with the theories of iterative

belief change in the logic.

These requirements provide a structure for the whole thesis. The first three require-

ments encompass the process of inference in SCNM logic with rational consequence

and are the subject of Chapter 4: Representation. Chapter 4 specifically concentrates

on only the first two components of the rational consequence relation. We believe

the learning of the preference relation and the selection of appropriate model states
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are distinct neural network tasks, which we demonstrate can be satisfied by a single

machine. A separate, feed-forward network could compare the outputs of maximally

preferred model states: the third requirement.

The fourth requirement, of any network representation of SCNM logic, is not di-

rectly associated with inference. The network should be able to revise its learned

preference relation in keeping with the theories of iterative belief change in the logic.

This ability to adapt to new information is the subject of Chapter 6: Belief Revision.

We examine some of the approaches to iterated belief revision in non-monotonic logic

(Alchourron and Makinson, 1982; Alchourron et al., 1985; Spohn, 1988; Chopra, Ghose,

and Meyer, 2003; Booth and Meyer, 2011) and compare these to adaptation in our ar-

tificial neural network representation. The inherent response of any neural network

to new information is extreme: catastrophic forgetting (Robins, 1995), whereas the

logic emphasises minimal change. This conflict will be examined in Chapter 6: Belief

Revision.

Supra-Classical
Non-Monotonic Logic

Machine 
Representation

Default 
Rules

Preference 
Relation

Defeasible 
Entailment

Probabilistic 
Training

PremissANN

Micro-World

Figure 3.2: The structure of a micro-world: the shared preference

relation, provides a connection between the design level logic and the

neural network machine. ANN = Artificial Neural Network.
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Returning to the concept of a micro-world, it can be seen as divided into two

separate levels: one a design meta-level, the other a lower machine level (Figure 3.2).

The logic exists throughout the micro-world, but its semantics and properties can

only be proven mathematically at the design meta-level. The machine does not ‘see’

this abstracted level. It is not intended that our machine representations be ‘theorem

provers’, or that they in any way reflect the structure of the logic. Nor do we intend

that the contents of their ‘black-box’ be open to symbolic interpretation (Hinton, 1990).

This was the method of previous research in reconciling the two paradigms. We are

only interested in the machine outputs: that the experimental evidence they provide

fits with the expected conclusions of the logic, within the context of a micro-world.

It is not necessary to show that a suitable candidate network will follow every

possible property in the logic. It is sufficient to show that it fulfils the requirements we

have identified. The preference relation of each micro-world is the connection between

the logic and the machine representation (Figure 3.2). The properties of the logic

are a consequence of the preference relation. If the machine representation is able to

faithfully learn the preference ordering and select maximally preferred models given a

premiss, then we assert it will always find solutions that fit the properties provable in

the logic: as a consequence of the shared preference relation.

3.3.2 Neurobiological

Biological plausibility is not a principal aim of this research: we intend our network

representation largely as an abstraction. However, any network which intends to em-

body SCNM logic and indirectly account for some aspect of human cognition must

have a degree of biological plausibility.

We provide only a brief outline to contrast the Boltzmann machine presented here (a

symmetric neural network) and the multi-layer perceptron (MLP, a simple feed-forward

network) presented in our technical report (Blanchette et al., 2015). A number of

authors have published on this topic (Mazzoni, Anderson, and Jordan, 1991; Izhikevich,

2004) and O’Reilly (1998) has identified six principal requirements:

Distributed Representation: which allows for feature detection, robustness and re-

dundancy. Artificial neural networks are distributed by nature. However, the

MLP representation required separate coding of model states in the output layer

to provide some of the functionality of the Boltzmann machine. As a result,

the MLP suffered from the problem of combinatorial explosion as the number of
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atoms in each micro-world was incremented.

Inhibitory Competition: by inter-neurones is an important anatomical component in

neurobiology, contributing 20% of the cortex, allowing selection of dominant

representations. Authors including the logician Leitgeb (2004) have emphasised

inhibitory interneurons. Simple feed-forward networks such as the MLP have no

intra-layer connectivity. By contrast, the Boltzmann machine has a mathematical

complexity related to its intra-layer connections, that was the principal reason for

it being abandoned by artificial neural network research (Section 4.1: Network

Selection).

Bi-directional Activation: refers to the flow of information through the network. The

Boltzmann machine is explicitly bi-directional, a property that is the basis of

constraint satisfaction. Simple feed-forward networks (MLP) would need to be

given recurrency.

Error Driven Task Learning: relates to supervised learning used in directing weight

update. A localised version of the back-propagation algorithm would make it

more biologically plausible. This requires a signal difference (cross-firing statistic)

to be stored at each synapse, very similar to the Boltzmann machine.

Hebbian Model: the Boltzmann machine uses Hebbian learning. It is worth consid-

ering for a moment the remarkable nature of the algorithm. It can be seen as

unsupervised associative learning requiring only local information.

Biological Realism: this is a rather vague characteristic, but for the Boltzmann ma-

chine we offer three properties:

• The bi-phasic nature of the learning algorithm and its possible co-relation to

REM sleep (Sections 4.4: Discussion of Human Cognition & 6.2.1: Machine

Re-training),

• Simulated annealing, which is the most biologically plausible variety of

threshold optimisation (Sections 4.4 & 4.1: Network Selection),

• And the stochastic nature of the machine itself, which reflects the random

nature of biology, compared to the determinism of feed-forward networks

(Section 4.1).
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In summary: there is a contrast between these two classical networks as candidates

for representation of the logic. The MLP requires major modification to fulfil some of

the biological requirements whereas, it is possible that the Boltzmann machine satisfies

all of them.
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Chapter 4

Representation

We considered several varieties of neural network for the representation of supra-

classical, non-monotonic logic. In Section 4.1: Network Selection, we summarise the

properties of the Boltzmann machine which we believe uniquely qualify it for this role.

In Section 4.2, we outline the architecture and training of the Boltzmann machine,

including some modifications that benefit performance.

The experimental results that follow in Section 4.3 evaluate the first two logical

requirements we identified in Section 3.3.1. The results support the Boltzmann machine

as a neural network representation of inference in logic, under the rational consequence

relation. Further, detailed statistics are provided for single and ensemble machines, in

the context of the exemplar 4-atom micro-world illustrated in Figure 3.1. Experimental

results for two important logical properties are also presented, as a practical illustration

of inference by the Boltzmann machine.

We conclude the chapter with a brief discussion of the place of the Boltzmann

machine in the wider context of human cognition (Section 4.4).

4.1 Network Selection

Experimental testing with a multi-layer perceptron in 4-atom and 5-atom micro-worlds,

as demonstrated in our technical report (Blanchette et al., 2015), was unsatisfactory.

The multi-layer perceptron is a simple non-recurrent network with at least one hidden

layer, trained via back-propagation. Regardless of the issues with biological plausibil-

ity (Section 3.3.2), the MLP could not faithfully learn an input distribution; it could

not rank the appropriate one-to-many relationships as expected from the logic. Using

Pinkas’s (1995) classification of equivalence relations, the MLP was at best “weakly
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- minima preserving”: meaning that the appropriate models were retrieved but their

ordering was random. Even this unsatisfactory result required that each output per-

mutation be coded to an individual node, resulting in a combinatorial explosion as the

atomic size of the micro-worlds was incremented (Section 3.3.1: Logical Requirements).

We considered Hopfield style networks. Hopfield networks are symmetric recur-

rent neural networks, with binary threshold nodes, where the energy of the network is

guaranteed to converge to a local minimum. Much of the original research on logical

representation was done using them: Balkenius and Gärdenfors (1991); Jagota (1994);

Pinkas (1995). Pinkas’s penalty logic translates between a single syntactically correct

sentence in classical logic and a specific SNN. He demonstrates the equivalence of an

energy minimum in an individual SNN and a solution satisfying the related logical

sentence. Asymmetric Hopfield networks are known to produce multiple outputs, po-

tentially one-to-many mappings, by way of chaotic or cyclical attractors. However, we

were not aware of any underlying mathematical principles in an asymmetric network

governing the retrieval of these minima (preferred states). Preliminary testing with a

symmetrical variety of Hopfield network disappointingly only returned single outputs.

This was in contrast to the view of Pinkas (1995), who suggests that Hopfield style

networks should be at least “preference preserving”: maintaining an ordering on states

but not the magnitude of the ordering.

The Boltzmann machine is a variety of SNN, where the nodes have stochastic

activation functions. The network is trained in alternating phases, sampling cross-

firing statistics, which effectuate Hebbian learning. The Boltzmann distribution, from

statistical mechanics, characterises the relationship between information and energy in

the network at equilibrium, achieved by simulated annealing (Section 2.3.1: Boltzmann

Machine).

The machine inherits all the favourable characteristics of the SNNs, with their

logical equivalence demonstrated via Pinkas’s penalty-logic. It learns and can simul-

taneously search multiple local or global minima. The minima can be interpreted as

corresponding to solutions or conclusions in the logic. This is not only in the classical

realm of SAT-problems but also in the wider context of supra-classical logic, which re-

quires evaluation of counter-examples related to common-sense reasoning. The machine

is also the neural network equivalent of the graphical models (Bayesian and Markov)

used in statistical relational learning (Section 2.4.4). These models are theoretically

designed from statistical associations between factual observations that form the basis

of default rules in SCNM logic.
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The Boltzmann machine was largely abandoned in the early years of neural net-

work research and its complexity was reduced in the design of the restricted Boltzmann

machine, which is utilised in the current research on Deep Belief Networks. The slow

learning that resulted from simulated annealing was seen as a disadvantage in the en-

gineering domain. As a consequence of its stochastic nodal activation, the Boltzmann

machine is able to cycle through multiple states at equilibrium, searching multiple

energy minima simultaneously (Pinkas, 1995): these constitute the one-to-many re-

lationships entailed by a premiss. Further, because of its probabilistic learning, it is

theoretically able to represent a complete joint probability table: a generative model.

This generative model can be explicitly retrieved from the machine by time-slicing

through its learned input distribution, given a completely neutral premiss: clamping

with a null input (Hinton et al., 1984). As a consequence, it is the only SNN Pinkas

regards as capable of representing a “strong equivalence” relation: not only order pre-

serving but also magnitude preserving.
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As previously illustrated, these favourable properties are encapsulated in the Boltz-

mann distribution equation, which relates the probability of output states at equilib-

rium, to the relative entropy (learned preference) of these states.

Many authors have utilised different varieties of Boltzmann machine for the solu-

tion of practical problems in the realm of categorisation or function approximation

(Chen and Murray, 2003; Egger, 1988; Eslami, Heess, and Win, 2012; Hinton, 2010;

Ortega and Parrilla, 1999; Pfleger, 1998; Sathasivam, 2011; Sejnowski, 1986; Tichnor

and Barret, 1987). We however, examine the use of the Boltzmann machine in a dif-

ferent context and confirm that the machine can explicitly retrieve the distribution of

its training set when presented with a neutral (non-specified, null) input and select

appropriately ranked model states given incomplete or partial information (a premiss).

This multi-modal output, retrieval of one-to-many relationships, constitutes a ranking

of counter-examples, the essence of SCNM logic.

47



4.2 Implementation and Training

4.2.1 Background

Initially our Boltzmann machine implementation was based on the technical descrip-

tions of the 424-Encoder from Hinton’s papers (1984; 1985; 1989) and the work of Aarts

& Korst (1990; 1997). We replicated Hinton’s results and examined the performance

of specific machines / networks on a number of data sets, including a car mechanic

analysis (Swingler, 1996) and a medical diagnostic data set (UCI, 2013). The networks

performed tolerably well on even the most difficult medical diagnostic task which con-

tained 8 diagnoses spread over 13 symptoms, with a large proportion of one-to-many

relationships. The training set consisted of 120 patterns; 40 withheld for testing. When

tested on unseen patterns, the networks had a credible accuracy of ∼75%.

When we were confident that our implementation was correct, we began exploring

its application to the micro-worlds described above. During the process of optimising

performance for these tasks some modifications to the Hinton architecture and learning

algorithm were made, as described below. These modifications can be regarded as

minor and within the natural range of variation when implementing specific versions

of a generic Boltzmann machine.

4.2.2 Architecture

The number of input and output units in our networks are dictated by the micro-

world being implemented, each atom is represented by one input and one output. The

initial choices for number of hidden nodes and interconnection were based largely on a

heuristic of biological plausibility. We deliberately intended that the hidden layer have

a larger number of nodes which would all be interconnected. The direct connection of

input and output layers was not biologically plausible.

A range of numbers of hidden units was explored and was not found to be critical

to performance. The final numbers of hidden nodes used were: 4 in the 3-atom worlds,

6 in the 4-atom worlds, 8 in the 5-atom worlds and 10 in the 6-atom worlds. An

exception to this was found in the 3-atom world, where learning of the least preferred

states or patterns was improved by adding more hidden nodes (see result in Table 4.1

and the discussion following).

Compared to the Hinton networks the intra-layer connections were removed from

the input and output layers after experimentation indicated they were not significantly
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Input
Hidden

Output

bias bias bias

Figure 4.1: HLR Architecture for a modified Boltzmann machine net-

work in a 4-atom micro-world. The network is layered and a standard

bias unit is present for each layer. Intra-layer connectivity is main-

tained only in the hidden layer.

helping performance. However, the hidden layer intra-connections were maintained for

biological plausibility, in keeping with the work of Hinton 1985, Balkenius & Gärdenfors

1991 and Leitgeb 2004 who placed importance on inhibitory constraints.

The discrete layers of our networks are similar to an MLP. It was more convenient to

divide the visible nodes into input and output. During training, in the clamped phase

of each cycle, the atoms of a premiss / state (for example “1 1 -1 1”) are clamped on the

input and output units (an auto-associative task). During testing the specified atoms

of the premiss are clamped on specific input units (+1 true and -1 false). Unspecified

units are clamped with zero (an indeterminate value) and we examine the distribution

of states created on the output units.

The typical architecture of a network in a 4-atom micro-world is illustrated in Figure

4.1. This Boltzmann machine architecture we have termed ‘hidden layer rich’ (HLR).

4.2.3 Learning Algorithm

Learning was carried out in accordance with the standard Boltzmann machine learning

algorithm (Hinton et al., 1985, see Section 2.3.1), with the use of a momentum term

(Haykin, 2008) and some modifications relating to the use of the annealing schedules.
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On our tasks these modifications were found to either improve performance or reduce

complexity without damaging performance:

• Annealing was removed from the clamped phase. During this phase the hidden

nodal states are largely determined by the clamped nature of the visible nodes.

• Layered annealing rather than pooled was used in the free phase. Nodal states in

the hidden layer are randomised and the network is run. This largely determines

the states of the nodes in the visible layers. However, because the states of the

hidden nodes are determined by chance the whole process has to be annealed to

ensure that lowest energy states of the whole network are found.

• Our annealing schedules were designed; based on the inverse log function from

thermodynamics (Metropolis and Rosenbluth, 1953; Geman and Geman, 1984).

• Annealing during training and testing were configured at slightly different ‘tem-

perature’ ranges, using the same inverse log function.

Weight decay (Krogh and Hertz, 1995) and sparcity (Hinton, 2010) were experi-

mentally tested trying to mitigate the Hebbian characteristic of weight saturation, but

ultimately only a standard implementation of momentum was retained in our final

version of the learning algorithm. A summary of our slightly modified version of the

Boltzmann machine learning algorithm was presented earlier in Figure 2.5. Our an-

nealing schedule is an approximation based on the inverse log function, was previously

shown in Figure 2.6.

Tuning of the learning process was time consuming: details of the annealing sched-

ules can critically influence results. A wide variety of schemes were examined: from

high temperature ranges (40 → 10) to low temperature ranges (5 → 1), for varying

temperature points and cycles at each temperature point (5 - 30). There was no single

correct schedule. The other tuning parameters were on average: training time 2,000

epochs, learning rate 0.3, momentum 0.7, and 20 samples per pattern (for estimating

ρ+ and ρ-, Figure 2.4).

4.2.4 Implementation

A brief overview of the object-oriented design of the Boltzmann machine implementa-

tion is illustrated in Figure 4.2. The coding was performed in C++ and is provided on

CD (see Appendix B). Machines are run via an application that accumulates statistical

results from parallel threads.
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Figure 4.2: Object-oriented implementation of a Boltzmann machine:

the machine class has public methods for initialising, training and

testing of a Boltzmann machine using private methods for annealing

and sampling which utilise layer primitives via a ‘calculate’ method.

Machines are run via an application that collates statistical results

from parallel threads.
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4.2.5 Data Collection

Our networks were trained using fully specified states (all atoms / input units set to

1 or -1), and were tested with either fully specified or partially specified states. In the

partially specified case some atoms / inputs were set to 0 (standing for not observed

or unknown), for example an input premiss of “1 0” stands for ‘Light on, Fan not

observed’.

The performance of individual Boltzmann machines / networks trained in the same

way on the same data can vary widely. Given the nature of the optimisation problem

and the stochastic nature of the machine, it is likely that several different weight

configurations serve as alternative potential solutions. For this reason, our results

report the accumulated output sampled from multiple machines.

Characteristically and crucially, the output of a Boltzmann machine is not static or

deterministic, it is continually cycling between various states. Thus the representative

sample output from a machine is a time-slice at equilibrium of all the output states:

the larger the equilibrium sample, the closer to the actual learned distribution of the

machine.

When looking at a single premiss, in Sections 4.3.1: Training and Recall and 4.3.3:

Model Selection below, we have taken 60,000 output samples over 60 separate machines.

When looking at retrieving the whole preference relation, Section 4.3.2: Preference

Relation, we have taken 300,000 output samples over 300 separate machines. These

raw sample distributions are then converted to a percentage distribution, dividing by

the total number of samples.

4.3 Experimental Results

In a technical report (Blanchette et al., 2015), we present an extensive collection of

results from testing the Boltzmann machine, together with a comparison with a simple

feed-forward network (MLP). Here, we present an overview and samples of our results

drawn mostly from a 4-atom micro-world. Section 4.3.1: Training and Recall, presents

a basic test of successful training, the ability to recall individual states. Sections 4.3.2:

Preference Relation and 4.3.3: Model Selection, describe the representation of core

properties of the logic, respectively the representation of the preference relation and

the drawing of a conclusion from a premiss. Section 4.3.4: Logical Properties, briefly

explores further interesting logical properties.
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4.3.1 Training and Recall

Data sets for Boltzmann machine training were derived from the preference relation

in the logic, analogous to the machine being able to observe the frequency of states

(patterns) within the environment. During training the input and output units are set

to the same patterns (an auto-associative task). For each micro-world four training

sets were constructed: two with an exponential increase in pattern frequencies between

preference levels and two with an arithmetic increase. For each of these pairs: one

training set had the least preferred patterns absent and the other had the least preferred

patterns present for a single instance. An example of a training set with an exponential

pattern distribution and least preferred patterns present, is illustrated in Figure 3.1. As

previously stated, the micro-world problems that are the subject of this investigation

are not a classification or function approximation task. The distribution of patterns

constitutes all of the environmental / training information and, for testing (given a

specific input), the behaviour of interest is the distribution of output patterns.

The adequacy of training in each of the micro-worlds can be demonstrated by

looking at the results from testing machines against fully specified premises (complete

model states). When a complete state is clamped on the input units of a well-trained

machine exactly that same state should dominate the output distribution. Remember,

these are stochastic machines and are only presented with low preference states for a

very small proportion of their training.

Testing Against Fully Specified Premises

Micro-World Most Preferred State Output Least Preferred State Output

3-Atom “-1 -1 1” (1) 95% “1 1 -1” (6) 54%

4-Atom “-1 -1 -1 -1” (0) 92% “-1 1 1 -1” (6) 85%

5-Atom “1 -1 -1 -1 -1” (16) 97% “1 1 -1 1 1” (27) 89%

6-Atom “1 -1 -1 -1 -1 -1” (32) 96% “-1 1 1 1 1 1” (31) 93%

Table 4.1: A basic test of training and recall. Results for testing

various Boltzmann machines against fully specified premises (input

states), showing the frequency of the correct state in the output dis-

tribution (expressed as a percentage). Examples are given of one most

preferred and one least preferred state in each micro-world variant.

These results are for ‘exponential’ training sets with least preferred

patterns present.
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A brief summary of the adequacy of training across a range of micro-worlds is

presented in Table 4.1, by considering one most and one least preferred state in each

atomic variety of micro-world. As described in Section 3.2: Micro-World Schemata,

the 3-atom micro-world consists of Light (L), Fan (F) & Heater (H) and the additional

atoms in the larger worlds are Window (W), Air-conditioning (A) and Open fire (O).

Hence the 3-atom premiss “-1 -1 1” with decimal label 1 represents the state where

the Light is off, the Fan is off and the Heater is on. In the example shown in Table 4.1

the correct output constituted 95% of the output distribution of states. For the most

preferred states the machines trained uniformly well. There was difficulty training on

the least preferred states in the smallest 3-atom world (demonstrated in Table 4.1).

This was overcome by increasing the number of hidden nodes to 8.

Figure 4.3: Results for testing 60 Boltzmann machines against two

fully specified premises in the example 4-atom micro-world. The pref-

erence relation has most preferred models at the top. Model states

are listed as decimal labels with their expected frequency.
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Figure 4.3 shows a specific example in more detail: the accumulated results for

a run of 60 machines trained on the example 4-atom micro-world, illustrated in Sec-

tion 3.2: Micro-World Schemata (Figure 3.1). These machines are tested against two

fully specified premises: one at high preference “-1-1-1-1” (0), and one at low prefer-

ence “-1 1 1-1” (6). Note, that given full input information the conclusion (ordered

set of model states entailed by the premiss) rules out all other states. Thus in each

case in the figure, the single state shown in the preference relation is the same as the

input premiss. The machine output in both cases is almost entirely the expected model

state. Recall that in the case of the less preferred model state (6) machines only see it

in ∼1% of training pattern instances.

4.3.2 Preference Relation: a Generative Model

Generation of a complete joint probability distribution corresponds to the first com-

ponent we have identified as a requirement of predictive inference, under the rational

consequence relation Section 3.3.1: Logical Requirements. This preference relation can

be retrieved from the machine by testing it against a neutral or null premiss: an input

that contains no observed information about the state of the micro-world: “0 0. . . 0”.

When clamped with this input and sampled at equilibrium, the machine cycles through

all the micro-world states, retrieving the learned distribution of its training set.

When testing machines against the neutral premiss, the output frequencies obtained

for each state can be directly compared to the expected training frequencies. Overall

accuracy of a machine is simply indicated by the absolute percentage error at each state

compared across the whole distribution. We have presented this error estimate averaged

per state ± one standard deviation. The results for testing the Boltzmann machine

against the neutral premiss across a range of atomically variant micro-worlds confirm

that the machine can learn a preference relation; a generative model of the whole joint

probability distribution, p(x,h). Table 4.2 summarises the Boltzmann machine’s good

performance, using the metric of average error per state. As a generalisation this error

per state is less than 2% ± 0.05% and is a consequence of the stochastic design of the

machine.

Initially these results were obtained by running five sets of machines, with 60 ma-

chines in each set. A total of 300 separately trained machines. The output samples

within each run were accumulated. In effect, each run of machines acted as an en-

semble with joint input and output layers; the hidden layer consisting of 60 parallel

machines. This architecture implementing physical accumulation of output samples,
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Testing Against the Null Premiss

Micro-World Least preferred

patterns:

Average error per state:

% ± STDev

3-Atom
Absent 0.9 0.11

Present 1.8 0.11

4-Atom
Absent 0.6 0.07

Present 1.6 0.04

5-Atom
Absent 1.6 0.04

Present 1.8 0.02

6-Atom
Absent 0.5 0.03

Present 1.1 0.03

Table 4.2: Results for retrieval of the preference relation, after test-

ing the Boltzmann machine against the neutral premiss (“0 0 0 0”)

across a range of atomically variant micro-worlds. For exponential

training sets, with least preferred patterns either absent or present.

The low average error indicates that the preference relation (output

distribution) is correctly retrieved.

results in a neutralisation of absolute errors on opposite sides of the mean. Whilst

some of this effect occurs by chance, it is greatly facilitated by parallel cohorts of

hidden layer machines with mirror image weight matrices which arise during training

(see Section 5.2.4: Network Analysis). Weights are initially seeded with small random

values, there is an equal chance that for any weight the initial sign of the seed will be

negative or positive. During successful training those individual weights train toward

the same goal weight (amplitude), but their signs are opposite. These cohorts of ma-

chines have weight matrices which are symmetrical, balancing errors on either side of

the mean.

Realising this, we present a more detailed account of the errors for both single and

accumulated output, ensemble machines. We have chosen for consistency to focus on

the 4-atom micro-world illustrated in Figure 3.1. The difference between the training

and the output distributions (percentage error across the whole distribution) is illus-

trated in the detailed statistics presented for 6,000 singles machines and 100 ensemble

machines with 60 parallel hidden layers (Table 4.3, Figures 4.4 & 4.5).

There are some important issues identified in these results. We point out that the
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total sample size for the single machines is the same as ensemble machines of 60. Given

this, the central limit theorem in statistics (Annis, 2014) cannot be an explanation of

the improvement in the mean error.

• There are almost ideal single machines, with very low error (4.4%) across the

whole distribution. However, they are rare and there is no efficient procedure for

generating them.

• There is a huge variation in the error on single machines (total range: 70%). The

mean error is moderately acceptable (25.4%) but there is a positive skew.

• The best results for the ensemble machines are not as good as the best single

machines. However, the mean results for even a small ensemble are considerably

better (10.4%) than for a much larger group of single machines.

• The sampling for ensemble machines approximates a more normal distribution

of error, with a very narrow variance (total range: less than 5%).

• The processing time for any ensemble is the same as for a single machine; all the

hidden layers can be run in parallel.

In summary, although almost ideal single machines exist, they are rare. Any small

ensemble will produce fast, robust results: low mean error and little variance.

Statistics for % Error: across whole distribution

Statistic Single Ensemble 60

Sample Size 6,000 100 x 60

Range 70.0 : Min 4.4, Max 74.4 4.9 : Min 8.4, Max 13.3

Quartiles 1st 19.8, 3rd 30.4 1st 9.7, 3rd 11.0

Centre Mean 25.4, Median 24.8 Mean 10.4, Median 10.4

Variation SE 0.10, StDev 7.8 SE 0.09, StDev 0.95

Shape Skew 0.46, Kurt 0.34 Skew 0.36, Kurt -0.06

Table 4.3: Statistics for the error between input and output distri-

butions, comparing Single and Ensemble HLR machines in a 4-atom

micro-world. Statistics via CRAN (2014).
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Further experimentation demonstrates that little benefit is obtained by increasing

the ensemble size above 60 parallel hidden layers, Figure 4.6.
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Figure 4.6: Boxplot of % Error across the whole distribution, versus

increasing size of HLR ensemble (increasing number of parallel hidden

layers).
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Figure 4.7: Example results for retrieving the preference relations,

on two training sets, against the neutral premiss (“0 0 0 0”) in the

example 4-atom micro-world. The actual output distribution is a

good match for the full preference relation / expected distribution.
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Looking at the averaged error, between input and output distributions, only gives

an overview of the performance of the machine against the logic. Figure 4.7 presents

a complete output for the specific example 4-atom micro-world utilising two different

training sets from this micro-world: ‘88-0’ with least preferred states absent and ‘96-1’

with least preferred states present. Five runs of ensemble machines with 60 parallel

hidden layers each, are tested against the neutral premiss (“0 0 0 0”). The actual output

can be compared with the expected values present in the training set in the left column.

Comparing the expected and actual output frequencies state by state illustrates that the

network representation is able to separate states correctly according to their preference,

across the spectrum of preference levels. These results demonstrate that the Boltzmann

machine faithfully represents the shape of the learned input distribution.

However, because of its stochastic error, the machine is only able to usefully separate

4 or 5 levels of preference when there are more than a dozen model states. In the

most complex 6-atom micro-world, the machine was just able to maintain a separation

between preference levels because the differences in input frequencies were close to its

stochastic error. The large number of non-preferred states with frequencies of zero

tend to dilute out the error on the few most preferred states. This favourable result

would be reduced if the information theoretic divergence (Kullback and Leibler, 1951)

had been used for measuring the difference between the distributions.

On the training sets where the least preferred patterns are present for just a single

instance the machine has a larger error per state: on average 1.6% when present versus

0.9% where they are absent. Looking at training set ‘96-1’ in Figure 4.7 for example,

the reader can appreciate that the machine overestimates the probability of the least

preferred input patterns and underestimates the frequency of the most preferred pat-

terns, by 3 - 5%. This is typical of all the situations where the machine trains on the

least preferred patterns. This movement of the sample toward a central mean is not an

ideal characteristic for representation of the logic, but it may be biologically plausible.

4.3.3 Model Selection: a Discriminative Model

Recall that in Section 3.1: Logical Preliminaries, we suggest that a conclusion in supra-

classical logic involves an ordered set of model states entailed by a premiss. Whilst

retrieval of the complete probability distribution is statistically important to confirm

learning, specific selection of model states based on a premiss is at the heart of the logic.

This corresponds to the second component that we have identified as a requirement

of predictive inference, under the rational consequence relation, Section 3.3.1: Logical
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Requirements. This specific selection of model states provides evidence related to

conditional probability p(h|x); a discriminative model. We have proposed that this

model selection corresponds to a set of ranked states or energy minima that are output

by a Boltzmann machine.

It is difficult to provide a metric of the machine’s performance in this context,

for individual specific premises numerical analysis can be misleading. Although the

expected training distributions are supplied, it is qualitatively more appropriate to

compare the output distribution directly to the preference relation expected from the

logic. Example results are provided in Figures 4.8 - 4.11: four examples in the 4-atom

micro-world instance and two examples in 3, 5 and 6-atom micro-worlds. A much

larger collection of examples of model selection based on individual premises in a range

of micro-worlds is presented in our technical report (Blanchette et al., 2015). In all

the examples presented, the ‘exponential’ training sets utilised had the least preferred

patterns present.

In summary, the results demonstrate that based on a partially specified premiss the

Boltzmann machine is able to:

1. Select the appropriate model states entailed by the input premiss

2. Place these states in the correct preference ranking

3. Separate these states with a distance proportional to their preference level.

This type of ranking equivalence is termed “strong or magnitude persevering”

(Pinkas, 1995), meaning that the equivalence maintains: the appropriate states them-

selves, the correct ordering on the states and the correct magnitude of separation

between levels of preference. We provide some focused examples from Figures 4.8 -

4.11.

• Figure 4.8, a 3-atom micro-world, premiss “0 0 1”; the machine returns states 1,

5, 3 & 7: nicely separating states over the whole preference ranking.

• Figure 4.9, the 4-atom micro-world instance (the micro-world illustrated in Fig-

ure 3.1), premiss “0 -1 1 0”; the machine returns states 2 & 10 versus 3 & 11:

correctly separating states at different levels in the low orders of preference.

• Figure 4.10, a 5-atom micro-world, premiss “0 -1 0 0 1”; the machine returns

states 17, 1, 5 & 21: correctly separating states at different levels in the high

orders of preference.
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• Figure 4.11, a 6-atom micro-world, premiss “0 -1 0 -1 0 1”; the machine returns

states 9 & 41: correctly placing these states of like ranking at the same level.

Figure 4.8: Results for selection of model states from two partially

specified premises in a 3-atom micro-world. In each case the input

premiss entails a different ranked subset of states in the full preference

relation, this expected distribution is compared to the actual output

distribution.
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Figure 4.9: Results for selection of model states from four partially

specified premises in the example 4-atom micro-world.
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Figure 4.10: Results for selection of model states from two partially

specified premises in a 5-atom micro-world.
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Figure 4.11: Results for selection of model states from two partially

specified premises in a 6-atom micro-world. The outputs on contigu-

ous groups of least preferred states are accumulated: for example the

samples on states 5 - 8, 10 - 16, 18 - 31 etc. are accumulated.

It is important to remember that the logic does not require an exact probability

metric (Pinkas, 1995). With this in mind, we have provided the expected state distribu-

tions for these results as a means of qualitatively considering their logical correctness.

The details of the whole preference ranking in these larger micro-worlds are available

in our technical report (Blanchette et al., 2015), but are not necessary considering the
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expected distributions provided. The machine often succeeds in model selection when

‘asked’ to rank limited model states, where its performance against the neutral premiss

with the entire ordering may have been marginal.

We have not presented the average error metrics with these results. There were

results where the average error was large but the machine faithfully reproduced the

preferences of the logic. On the other hand, there were a few results where the numerical

error was small but the machine seemed to defy the logic. These last, unexpected results

occurred in situations where selection of states at the same high level of preference, also

required a secondary selection based on a dependent variable. An example of this can

be seen in the next Section 4.3.4: Logical Properties (Figure 4.14, premiss “0 0 -1 0”),

where states 0 & 8 have different output frequencies from 1 & 9. We believe, in these

circumstances, the machine is performing a tie-break based on the atomic distribution

of the dependent variable. This issue will be examined in a Chapter 5: Incongruence.

4.3.4 Logical Properties

We present two examples of properties provable by SCNM logic within the context of

these micro-worlds. These specific properties were chosen because of their importance

to the logical formalisation of defeasibility. We present them as evidence of our assertion

that the Boltzmann machine will always provide support for the logical properties that

hold in a micro-world: given the two required characteristics that we have identified

and demonstrated (Sections 4.3.2: Preference Relation & 4.3.3: Model Selection). Part

of the motivation for presenting them is to demonstrate that the third component

of inference (Section 3.3.1: Logical Requirements), the comparison of selected model

states, could be easily achieved.

Non-Monotonicity

Non-monotonicity is a refutation of the absolute truth of classical logic and can be seen

as a foundational property of SCNM logic (Section 2.1). Yet in isolation the property

might be regarded as to too weak (irrational). Recalling the definition for defeasible

entailment:

α |∼ β ←→ Maximal Models[α] ⊆Models[β]

The principle of non-monotonicity states that:

Given α |∼ β, then for some γ, (α ∧ γ) |�∼ β
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where semantically γ represents new information, a condition that is difficult to denote

within the language. An example of this property in our 4-atom micro-world is:

F |∼ W but (F ∧H) |�∼ W.

The Boltzmann machine is able to provide supporting evidence for this property, see

Figure 4.12.

Figure 4.12: Non-Monotonicity. Output model states for three

premises in the example 4-atom world (Light, Fan, Heater, Window).

Where ‘>>>’ supports entailment by the most preferred models and

‘!!!’ does not support entailment of W by the most preferred models

of F & H.

Consider the two premises F (“0 1 0 0”) and W (“0 0 0 1”). The machine returns

the maximally preferred models of F as states 5 & 13; these models are clearly a subset

of the models of W (as returned by the machine in the middle panel). Whereas if we

look at the premiss F ∧ H (“0 1 1 0”), the maximally preferred models returned by

the machine include 6 & 14; these model states are not a subset of the models of W

(as returned by the machine in the middle panel).
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Rational Monotonicity

Rational monotonicity is a more complex retraction and goes some way toward re-

establishing classical entailment: providing a rational boundary to the disorder that

would ensue from unchecked non-monotonicity. It allows unrestricted update in sit-

uations of independence between atoms: doxastic independence (Section 5.3.3: Dis-

cussion). Rational monotonicity is required by defeasible reasoning in addition to the

six other preferential properties of KLM: Reflexivity, Left Logical Equivalence, Right

Weakening, Cut, Cautious Monotonicity & Or (Lehmann and Magidor, 1992). The

principal of rational monotonicity has two components:

Given α |∼ β, then:

Either (α ∧ γ) |∼ β

Or if α |∼ ¬γ, then (α ∧ γ) |�∼ β

Examples of the two components of this property in our 4-atom micro-world are:

F |∼ W and (F ∧ L) |∼ W

F |∼ W but (F ∧H) |�∼ W , as F |∼ ¬H

For the first component, see Figure 4.13. From the machine output for the premises

F (“0 1 0 0”) and W (“0 0 0 1”) we can see, as previously, the machine supports the

defeasible entailment F |∼ W. Considering the premiss F ∧ L (“1 1 0 0”), we can see

that the machine returns 13 as the maximally preferred model state which is a subset

of the models of W (as returned by the machine, in the middle panel). The light (L)

is a doxasticaly independent atom / proposition.

For the second component, we only need add evidence of F |∼ ¬H to the outputs

already given in Figure 4.12, which already illustrate (F ∧ H) |�∼W. The outputs from

the machine for the premiss ¬H (“0 0 -1 0”) are shown in Figure 4.14, they include the

maximally preferred models of premiss F (“0 1 0 0”), which are model states 5 & 13.

It is not intended that the exposition of these logical properties provide any addi-

tional evidence of veracity for the machine as a representation of the logic. However,

they illustrate:

• The practical utility of the machine as a representation of the logic.

• That two important logical properties can be emulated by the machine, based on

our assertion as a consequence of the shared preference relation.
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Figure 4.13: Rational Monotonicity, Part 1.

Figure 4.14: Rational Monotonicity, Part 2. Output model states for

premises in the example 4-atom world (Light, Fan, Heater, Window).

Where ‘>>>’ supports entailment by the most preferred models.
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• The ease with which output model states from two separate sentences could be

compared by an ‘observer machine’, to complete the requirements of inference.

4.3.5 Summary

We have identified three requirements necessary for a network to represent inference

under the rational consequence relation in SCNM logic (Section 3.3.1). The experimen-

tal results do not constitute a mathematical proof but, in the context of the scientific

method, they provide compelling evidence that the first two of the identified logical

requirements are fulfilled by the Boltzmann machine. These requirements constitute

the greatest challenge to such a machine representation. Seen from the standpoint of

the machine they are:

1. The ability to learn an input probability distribution constituting a preference

relation.

2. The ability to retrieve one-to-many mappings constituting appropriate model

selection based on a partially specified premiss.

In the experimental context of these moderate sized logical micro-worlds, the Boltz-

mann machine is a faithful representation. It is able to learn a preference relation with

numerical accuracy: average error per state ≤ 2%, and select appropriate model states

based on the limited information available in a premiss. It maintains a “strongly mag-

nitude preserving equivalence”. This hypothesis is supported theoretically by the work:

of Pinkas (1995) in specific SNNs and indirectly by SRL utilising Markov models. We

assert that these two requirements are sufficient for the machine to always follow the

principles of this logic. In a broader context of common-sense reasoning, there are ad-

ditional biological pre-requites for any network hoping to offer some insight into human

cognition.

It should not be surprising that the Boltzmann machine is able to retrieve the

results of its probabilistic learning since, at equilibrium, the Boltzmann distribution

around which the machine is based, represents the likelihood of the learned states. Yet

we suggest that these properties; the ability to retrieve a ranked set of output states

characterising a generative model and the retrieval one-to-many relationships in the

context of a discriminative model, are rare among neural networks. Further, these

properties are fundamental requirements of any network aspiring to embody inference

in SCNM logic.
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4.4 Discussion on Human Cognition

A comprehensive discussion of human cognition is beyond the scope and space of

this thesis. Particularly, there have been advances in neurobiology that are produc-

ing results in modelling human cortical anatomy and starting to explore the physical

correlates of memory. An example is the Blue Brain Project, which has currently

modelled a section of cortical tissue, implementing different cell types and connection

topologies and aims towards a whole brain (Markram, 2014). On a different front,

new psychological evidence is mounting of social co-evolutionary processes that have

shaped human cognition over the 2 million years since the first emergence of Homo

sapien ancestors (Heyes, 2012). There is a complete spectrum of research from the

highest abstract theoretical level to the most finely grained molecular biology. The

discussion that follows concerns a ‘general theory’ of cognition and the place of the

Boltzmann machine. We attempt to avoid philosophical discussion and concentrate on

the physical implementation of cognition.

Firstly, we strongly support the perspective of psychology that: “the entire enter-

prise (of artificial intelligence) has human cognition as its foundation” (Pelletier and

Elio, 1997). Is there currently an artificial agent that might be categorised as cogni-

tive? Various arguments can be made regarding the threshold of cognition (Turing,

1950; Saygin, Cicekli, and Akman, 2000). There are machines able to complete specific

rational tasks more efficiently than a human, particularly in the competitive context

of games (Hsu, 2002). However, the scope of these tasks is limited and the machines

do not arise de-novo: they are procedurally programmed by human intelligence. Bet-

ter candidates for artificial cognitive agents, might be the robotic creatures evolved

by artificial processes resembling biology: possessing small artificial neural networks

as brains, trained to explore their environment (Zufferey, Floreano, van Leeuwen, and

Merenda, 2002). However, these agents lack ‘common-knowledge’ and could they be

said to possess auto-epistemic reasoning?

Secondly, what evidence is available for the basis of human cognition? Microscopi-

cally the brains of all living creatures consist of neural networks: massively connected

collections of individual nodal cells (Striedter, 2016, Chapter 1: Nervous System Or-

ganisation, p2-30). While the exact mechanics of these networks are still in doubt and

are likely to be varied, they provide a distributed representation of the information

which they learn (Striedter, 2016, Chapter 2: Computing with Neurons, p31-70): lo-

calised coding is highly unlikely (Bowers, 2009, 2011) and there is certainly no central
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processing unit. Procedural programming in the form of a finite automaton or universal

Turing machine does not exist in nature.

Where does that lead us in terms of a theoretical description of cognition? Whilst

abstractions can be of value in providing potential representational models, conjec-

tures about cognition should have a possible basis in neural network implementation.

Harnad’s tripartite level theory of cognition (Harnad, 1987, 1990) is a widely cited

example (Gärdenfors, 2004; Labuschagne and Heidema, 2010). It postulates three lev-

els of processing: an iconic level of representation at the sensory boundary with the

environment, a categorical level of invariance detection and a higher symbolic level

where actual reasoning takes place. Harnad is reluctant to credit any role for a neural

network implementation at the symbolic level.

“a cognitive theory must stand on its own merits ... to constrain a cogni-

tive theory to account for behaviour in a brain-like way is hence premature

... connectionist networks, because they are not symbol systems, do not

have the systematic semantic properties that many cognitive phenomena

appear to have.” Harnad (1990)

We propose that a cognitive theory needs support from the domains of both psy-

chology and neurobiology, because the primary context of cognition is human biol-

ogy. Harnad’s views of neural networks as purely syntactic structures, unable to learn

meaning, are contradicted by the seminal experiments of Frank et al. (2009). Frank

demonstrated that artificial neural networks can represent the physical semantics of

an environment including predicate relationships, even when trained on a syntactically

incomplete language. Proponents of Harnad’s supposition have suggested that “any

neural network implementing symbolic manipulation would be irrelevant”. Such state-

ments are difficult to comprehend; they amount to a denial that reasoning can take

place in a neural network. Certainly neural networks which implicitly implement sym-

bolic manipulation are not irrelevant; they are the only structures currently known to

instantiate cognition.

Radermacher describes a scheme for human cognition on four different levels. The

first three levels seem very similar to Harnad’s: sensory, feature detection and knowl-

edge representation (symbolic), with addition of a forth higher level of theoretic repre-

sentation. However, Radermacher’s research is in the practical context of experimental

robotics and he acknowledges that these levels are abstractions: “In humans, the logi-

cal and symbolic functions of the brain are realised within a biological neural network.”

(Radermacher, 1996)
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Further, recent research questions even the separation of sensory/motor and sym-

bolic levels, proposing the sensory/motor representation is intimately connected to lan-

guage and symbolic representation (Knott, 2012). The process of abstraction should

not be confused with the actual implementation of cognition. Currently neural net-

works are the only practical models available for the implementation of cognition. That

is not to say that abstracted views of knowledge representation are not important in

helping us understand cognition. The entire purpose of this thesis is to provide a link

between one abstract representation of cognition, SCNM logic and another slightly less

abstract model, a Boltzmann neural network: to demonstrate that these models are

complementary.

There are other possible representational models for cognition, which this thesis

has not examined. One example is Gärdenfors’s conceptual spaces (Gärdenfors, 2004).

They constitute more than just the topological connections of the visual and motor

cortex. Theoretical concepts can also be represented geometrically: colours, taste etc.

Latent semantic analysis in linguistics also relies on a geometric similarity of meaning,

as indicated by psychological experiments involving word substitution. Potentially in

terms of SCNM logic, conceptual dimensions may represent features within the default

rule; the basis of the preference ordering on model states. Such a representation of a

linear conceptual space is demonstrated by the hidden node in the Boltzmann machine,

Sections 5.2.4: Network Analysis for incongruence and 6.3.5: Discussion of Results for

belief revision.

4.4.1 Place of the Boltzmann Machine

The place of the Boltzmann machine representation in this broader context of human

cognition is uncertain. We do not propose that a Boltzmann like network is the sole

cognitive mechanic of common-sense reasoning. Even within the limited scope of this

thesis, the Boltzmann network needs to be extended to capture the third requirement of

inference: the comparison of output model states (Section 3.3.1: Logical Requirements).

However, the machine’s stochastic activation functions and probabilistic learning are

likely requirements for distributional representation of the environment, which is the

statistical basis for logical preference (Hinton et al., 2000). We have demonstrated,

in the earlier sections of this chapter, that these characteristics, learning a generative

model and selection of model states (‘strong equivalence’), are the prerequisites for

representing SCNM logical inference. It is not a biological disadvantage that these

specific characteristics make learning slightly slower. So the Boltzmann machine or
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equivalent functionality could be seen as a necessary component of a larger network

structure, implementing rational consequence.

Looking at the individual characteristics of the Boltzmann machine for biological

plausibility (Section 3.3.2) there are other favourable properties, particularly in relation

to Hebbian learning. The Boltzmann machine is one of the few networks that relies on

cross-firing statistics: it is a truely remarkable algorithm that directs the adaptation of

the entire network based solely on local information. It is likely that this adaptation, via

cross-firing, has a simple correlate in potentiation across a synapse (Hebb, 1949) and is

related to long term memory (Sejnowski and Destexhe, 2000; Stenning and Van Lam-

balgen, 2008, Chapter 8: Implementing Reasoning in Neural Networks). It may be

physically correlated with growth and ‘pruning’ of the dendritic tree. The division of

the Boltzmann learning algorithm into two phases, one requiring no external input into

the network, is also extremely biologically plausible. Most complex organisms sleep.

Sleep may be the physical correlate of a dual phase learning algorithm required for

weight update in the consolidation memory (Sejnowski and Destexhe, 2000).

Simulated annealing would seem to be the most biologically implausible of the ma-

chine’s properties. However, from an optimisation point of view, simulated annealing is

the most comprehensive and adaptable of the threshold optimisation algorithms (Aarts

and Korst, 1990). It has the ability to overcome irregularities in the solution space,

which are typical of real biological tasks. In fact, it is implausible that a determinis-

tic variant of threshold optimisation, strictly limited to gradient descent, would have

evolved as the primary means of representing a biological world. We can only specu-

late about the neurobiological basis of annealing at a molecular level, because of our

incomplete understanding of complex biological mechanisms. However, simulated an-

nealing like cross-firing, has the advantage that it only requires local implementation.

Recurrent firing would only need to produce local changes in neuro-modulator chemi-

cals that alter excitability across a synapse. Such rapid (time scale of seconds) synaptic

chemical changes have been proposed by other authors (Stenning and Van Lambalgen,

2008; von der Malsburg and Willshaw, 1981) as a basis of fast functional linkage and

short term memory.

Closer to the neurobiology, a spiking version of the Boltzmann machine was first

proposed by Hinton and Brown (1999). Although, as discussed in Section 4.1: Net-

work Selection, the restricted machine was chosen as a less complex model. The re-

stricted machine has no connectivity within the hidden layer and converges to minima

in one-step reconstructions without the need for simulated annealing: contrastive di-
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vergence. While still Hebbian in nature, its lack of intra-layer inhibition makes the

restricted machine less biologically plausible but more computationally efficient. The

good performance of this spiking Boltzmann model has been demonstrated in visual

recognition tasks (Courville, Bergstra, and Bengio, 2011; Neftci, Das, Pedroni, Kreutz-

Delgado, and Cauwenberghs, 2014). Further, the paper by Neftci et al. (2014) unveiled

an online, asynchronous, event-driven version of the learning algorithm, able to be im-

plemented in neuromorphic systems: very large scale integrated systems (with up to

2 million synapses) with circuits of integrate and fire neurons which utilise spike-time

dependent plasticity. These authors make some important statements about knowledge

representation:

“... brains deal with uncertainty in their environments by encoding and

combining probabilities optimally: such computations are at the core of cog-

nitive function. ... neural sampling theory postulates that spiking activity

of the neurons encodes samples of an underlying probability distribution, ...

consistent with the behaviour of biological neurons in implementing Markov

Chain Monte Carlo (MCMC) sampling” “ ... because restricted Boltzmann

machines are generative models, they can act as classifiers ... and carry

out probabilistic inference, ... performing MCMC sampling of a Boltzmann

distribution.” (Neftci et al., 2014).

The authors’ opinions support the proposal that: knowledge is represented in stochas-

tic neural networks by the partition function that characterises the network energy at

equilibrium.
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Chapter 5

Incongruence

Information contained in a training set of vectors, learned by a Boltzmann machine,

can be interpreted in two different ways, either as the frequency of whole states or the

frequency of the activations of individual atomic units. This contrasting distributional

information is illustrated in Section 5.1: Dual Distributions, by reference to simple 2-

atom micro-worlds. The two interpretations of the training set may make very different

predictions about the output behaviour of a given Boltzmann machine. For some

sampled populations the dual distributions will be similar: congruent. However for

most sampled populations the interpretations of the dual distributional information

will be conflicting: incongruent.

Modifications in the architecture of the Boltzmann machine can select for one type

of distributional information over the other; favouring either state or atomic distribu-

tions1. In Section 5.2: Architectural Selection, we define two varieties of Boltzmann

machine and provide evidence that: a ‘hidden layer rich’ (HLR) machine favours the

atomic distribution whilst an ‘input layer poor’ (ILP) machine favours the state distri-

bution. An attempt is made to reconcile these two behaviours by analysing the nature

of the Boltzmann machine internal representation utilising a probabilistic model.

The traditional view of inference in supra-classical, non-monotonic logic only consid-

ers the state distribution. However, there are logics which attempt to utilise typicality.

The relationship between typicality and the atomic frequency distribution in a train-

ing set of vectors is discussed in Section 5.3. We argue, by counter-example, that the

common assumption of typicality as represented by ‘most preferred model semantics’

is incorrect. Further, we discuss problems for the logical implementation of typicality

and offer an alternative definition based on atomic typicality.

1Terms emphasised at first occurrence, are defined in the glossary.
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5.1 Dual Distributions

The most obvious distributional information available in a training set of vectors is

the whole state frequency. This state ranking can be seen as analogous to the prefer-

ence ranking in SCNM logic. The second, less obvious distribution, is the activation

frequency of individual atomic components. The individual frequency of atomic activa-

tions across the whole population can be used to derive an atomic distribution, based

on the product of these individual frequencies within a state.

Si =
∏
k

aik

Here the atomic frequency of state i, in a world with k atomic components, is equal to

the product of its k individual atomic activations ai.

The example we will use to illustrate this contrast between the state and atomic

distributions is framed in the paradigm of symbolic logic, to reinforce the relationship

between the logic and the training environment of the machine. Figure 5.1 shows three

training sets (from a larger collection presented in Figure 5.3) related to different

preference relations in possible 2-atom micro-worlds:

• Training Set B18: The expected state frequency of state 0 is 44% (8 patterns of

the total 18). The high order bit is false (state 0) in 16 patterns out of the total

18, an atomic probability of 0.89. The low order bit is false (state 0) in 9 patterns

out of the total 18, an atomic probability of 0.50. Therefore, the expected atomic

frequency of state 0 is: 0.89 × 0.50, also = 44%.

• Training Set C18: The expected state frequency of state 0 is again 44%. The high

order bit is false in 9 patterns out of the total 18, an atomic probability of 0.50.

The low order bit is false in 9 patterns out of the total 18, an atomic probability

of 0.50. Therefore, in this training set, the expected atomic frequency of state 0

is only: 0.50 × 0.50 = 25%, not 44%.

• Training Set J41: The expected state frequency of state 0 is 39% (16 patterns

out of the total 41). The high order bit is false in 32 patterns out of the total

41, an atomic probability of 0.78. The low order bit is false in 24 patterns out

of the total 41, an atomic probability of 0.59. Therefore, in this training set, the

expected atomic frequency of state 0 is: 0.78 × 0.59 = 46%, not 39%.
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Figure 5.1: An example of incongruent dual distributions. Three

different preference relations in 2-atom micro-worlds. The atomic

distribution of each state (pattern) is calculated from the product of

the appropriate atomic probabilities.

Similar calculations can be made for each state in the three training sets to produce

the atomic distributions given in Figure 5.1. It can be seen that, although two of

the preference relations in sets B18 and C18 appear to be similar, one preference

relation, training set B18, is congruent in its state and atomic distributions; whereas

the other, C18 is not. Likewise for training set J41, the order of the most preferred

states is very different between the state and atomic distributions. We believe that

this specific concept of incongruence: the calculation of an expected state distribution

based on global atomic frequencies and its potential inconsistency with observed state

frequencies, has not been explicitly reported before.
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A survey of 2-atom micro-worlds shows that congruent environments with consistent

distributional information are rare. Only 15 out of the total possible 65 2-atom micro-

worlds are congruent. There are more than 50,000 permutations on 3-atom micro-

worlds and trillions of possible permutations on 4-atom micro-worlds. We speculate

that, because of increasing complexity, congruency should become progressively less

likely in the larger systems.

5.2 Architectural Selection

The experimental results presented in this section provide evidence that the Boltzmann

machine is capable of representing both types of distributional information: that by

variation in architecture, the machine can favour one type of distribution over another.

The results have been collected from two separate lines of experimentation:

• Architectural modification of the Boltzmann machine to favour the state distri-

bution was completed in two incongruent 4-atom micro-worlds. These two worlds

are illustrated in Figure 5.2.

• Two different extremes of Boltzmann machine architecture, hidden layer rich

(HLR) and input layer poor (ILP) were defined and subsequently tested against

a selection of 26 possible 2-atom micro-worlds, with different preference relations.

These are illustrated in Figure 5.3.

5.2.1 HLR: a Mixed-Atomic Distribution

The modified Boltzmann machine utilised for the representation of SCNM logic in

Chapter 4 was fully inter-layer (between layers) connected, although direct connections

between input and output were removed. It had intra-layer (within layer) connections

only in the hidden layer, with an ample number of hidden nodes. Figure 4.1 illustrates

this architecture in a 4-atom micro-world, which we have called an HLR Boltzmann

machine: Hidden Layer connected and hidden layer Rich.

Such a machine performed well in most of the example worlds we tested (Blanchette

et al., 2015). However, in hindsight, the reservation which was expressed concerning

the large number of possible worlds was pertinent. By chance, or unconscious selection,

many of the worlds we previously chose to examine were congruent, in terms of their

distributional information.
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Figure 5.2: Examples of two different preference relations in incon-

gruent 4-atom micro-worlds. The atomic distribution of each pattern

is calculated from the product of the appropriate atomic probabilities.
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Figure 5.3: A survey of 26 preference relations in 2-atom micro-

worlds. The results of architectural selection in the most incongruent

of these worlds are examined in the discussion that follows, Figures 5.5

& 5.8.
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There were some indications, even within these congruent worlds, that the HLR

machine favoured a mixed distribution. Where the selection of model states based on

a partially specified premiss involved a dependent variable (atom), the machine would

select the most preferred states based on the conditional probability of the dependent

atom.

For example in Figure 5.4 given the premiss “0 0 -1 0”, the probability of the low

order bit (dependent variable) being on is 0.61. This makes states 1 & 9 conditionally

more probable than 0 & 8, even though the observed frequencies of these whole state

patterns were equal. The machine selects these states more frequently. It can be ap-

preciated from this example that information contained in a partially specified premiss

may produce a discrepancy between the state and atomic distributions of the selected

model states, despite the two distributions in the full training set being congruent.

Figure 5.4: The observed distribution of the output of an HLR Boltz-

mann machine in a 4-atom micro-world given a partially specified

premiss, demonstrating conditional probability.

83



Figure 5.5: The output from an HLR Boltzmann machine in a se-

lection of incongruent 2-atom micro-worlds. Errors are calculated

relative to the state distribution only.
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When tested on our survey of 2-atom micro-worlds the HLR modified Boltzmann

machine favoured a mixed or atomic distribution. This is illustrated in Figure 5.5,

which shows a subset of 2-atom systems with preference relations that result in in-

congruent distributional information. For example in Figure 5.5, training set F25 has

three states: (decimal) 0, 1 & 2 at equal state frequency but both the high and low

order bits are more likely to be off, so from the atomic probabilities state 0 is more

likely than state 1 or 2. By contrast, training set G25 has states: 1, 2 & 3 at equal

state frequency but both the high and low order bits are more likely to be on, so from

the atomic probabilities state 3 is preferred over states 1 & 2. In both these cases the

HLR machine utilises the additional information learned from the atomic distribution

to adjust preference levels, particularly for the most preferred states.

These machine results are not in keeping with the traditional view of inductive

inference. SCNM logic traditionally only considers whole state frequencies and places

no value on the individual atomic probabilities. In this respect, the HLR machine is a

faithful representation of the logic only in congruent worlds. This failure of our initial

Boltzmann machine to fully represent the logic in incongruent worlds prompted us to

look for other modifications, which might better suit the machine to representing the

traditional view of logical inference.

5.2.2 ILP: the State Distribution

Hinton’s original Boltzmann machine (Hinton et al., 1984, 1985) was fully connected;

intra-layer and inter-layer. We had previously preserved the inter-layer connections

(except for direct input to output), but retained only the hidden intra-layer connections

for the sake of biological similarity. The effect of changing the intra-layer connectivity

was investigated in relation to the two incongruent 4-atom micro-worlds introduced in

Figure 5.2.

Table 5.1 shows the accumulated errors across 4 different training sets in the two

incongruent 4-atom micro-worlds. The results indicate a subtle improvement in learn-

ing of the state distribution when only the input layer is intra-connected. Intra-layer

connection of any other combination of layers (particularly the hidden layer) moved

the representation away from the state distribution toward the atomic distribution.

This input modification of a Boltzmann machine was then re-tuned across all of its

other parameters: number of hidden nodes, training epochs, learning rate, momentum,

annealing temperature range, cycles per temperature point, sampling cycles, changes

in activation function and methods of weight initialisation. Only changing the number
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Intra-Layer Connections in a Boltzmann Machine

Single Layer Error Multiple Layer Error

Restricted BM 38% Input + Hidden 37%

Input Only 30% Input + Output 40%

Hidden Only 47% Hidden + Output 48%

Output Only 42% Fully 40%

Table 5.1: The result of changing the intra-layer connectivity of a

Boltzmann machine with respect to the error relative to the state

distribution: in 4-atom micro-worlds with incongruence.

of hidden layer nodes produced significant improvement. As illustrated in Figure 5.6

the accumulated error in the representation of the state distribution was improved by

reducing the hidden layer to a single node. What the figure does not show is the cor-

responding deterioration in the representation of the atomic distribution. Figure 5.7

illustrates the final architecture in a 4-atom micro-world, for an ILP Boltzmann ma-

chine: Input Layer connected and hidden layer Poor.

Figure 5.6: Partial tuning of an input layer intra-connected Boltz-

mann machine in 4-atom micro-worlds with incongruence. The results

are accumulated errors across 4 training sets relative to the state dis-

tribution only.
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‘Input Layer Poor’

Input OutputHidden

b

b

b

Figure 5.7: An example architecture of an ILP modified Boltzmann

machine; in a 4-atom micro-world.

The 2-atom version of this machine was then tested against our survey of 2-atom

micro-worlds. The results for the subset with incongruence are shown in Figure 5.8.

The performance of the ILP machine was dramatically better than the HLR machine,

with respect to representation of the state distribution. However, it was correspond-

ingly worse with respect to the atomic distribution. The ILP machine did not seem to

retrieve the complex mixture of state and atomic distributions that were favoured by

the HLR modified Boltzmann machine.

The selection of either state or atomic distribution by these different machines

(HLR & ILP) can be seen by comparing the output from the corresponding preference

relations in the incongruent 2-atom micro-worlds. This contrast in representations is

illustrated in the examples below, Figures 5.9 – 5.11. The HLR machines represent

a mixed distribution close to the atomic and the ILP machines represent the state

distribution.
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Figure 5.8: The output from an ILP Boltzmann machine in a selection

of incongruent 2-atom micro-worlds. Errors are calculated relative to

the state distribution only.
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• Figure 5.9 shows training sets C18 & D18. The HLR machine outputs a mixed

distribution, state levels 32% versus 18%, based partially on the atomic probabil-

ities, whereas the ILP machine closely matches the whole state distribution 44%

versus 6%.

Figure 5.9: Output distributions for the HLR vs ILP machines from

training sets C18 & D18. Errors are calculated relative to the state

distribution only.
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• Figure 5.10 shows training sets F25 & G25. The HLR machine outputs a single

state at highest frequency ∼39%, based on the atomic probabilities, whereas the

ILP machine ranks the three most likely states equally at 32%, appropriate to

the whole state distribution.

Figure 5.10: Output distributions for the HLR vs ILP machines from

training sets F25 & G25. Errors are calculated relative to the state

distribution only.

90



• Figure 5.11 shows training sets W57 & Y57. The HLR machine ranks outputs

across four levels of preference appropriate to the atomic distribution, its ac-

cumulated error relative to the whole state distribution is high >45%, whereas

the ILP machine ranks almost exactly to the whole state distribution with an

accumulated error for that distribution of less than 4%.

Figure 5.11: Output distributions for the HLR vs ILP machines from

training sets W57 & Y57. Errors are calculated relative to the state

distribution only.
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5.2.3 ILP: Statistics

In the same way that the detailed results for single and ensemble machines were pre-

sented for the HLR architecture in Section 4.3.2: Preference Relation, we now present

detailed results for the ILP architecture; 6,000 single machines and 100 ensemble ma-

chines with 60 parallel hidden layers (Table 5.2, Figures 5.12 & 5.13).

The ILP architecture is a closer approximation of the state exemplar philosophy

of the logic than the HLR architecture, therefore the ILP error results relative to the

whole state distribution, are in general better than those for the HLR architecture.

However, the same conclusions apply in terms of the benefits of accumulating output

samples in an ensemble network. We re-iterate that:

• The sample sizes of the 6,000 single machines and 100 ensembles of 60 parallel

hidden layers are the same.

• Although almost ideal single machines exist, they are rare. There is no efficient

procedure for generating them during training.

• Any small ensemble will produce fast, robust results with low mean error and

little variance.

Statistics for % Error: across whole distribution

Statistic Single Ensemble 60

Sample Size 6,000 100 x 60

Range 52.4 : Min 4.0, Max 56.4 7.5 : Min 5.3, Max 12.8

Quartiles 1st 10.8, 3rd 26.0 1st 7.9, 3rd 9.9

Centre Mean 19.2, Median 16.6 Mean 9.0, Median 8.9

Variation SE 0.13, StDev 10.8 SE 0.10, StDev 0.96

Shape Skew 0.74, Kurt -0.41 Skew 0.08, Kurt -1.10

Table 5.2: Statistics for the error between input and output distri-

butions, comparing Single and Ensemble ILP machines in a 4-atom

micro-world. Statistics via CRAN (2014).
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Figure 5.12: Histogram of % Error for Single ILP Machines (across

whole distribution in a 4-atom micro-world.)
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Figure 5.13: Histogram of % Error for Ensemble ILP Machines, with

60 parallel hidden layers.
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As for Section 4.3.2, experimentation demonstrates there is little benefit increasing

the ensemble size for the ILP architecture above 60 parallel hidden layers, Figure 5.14.
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Figure 5.14: Boxplot of % Error across the whole distribution, versus

increasing size of ILP Ensemble (increasing number of parallel hidden

layers).
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5.2.4 Network Analysis

Before completing this section, it would be interesting to consider the behaviour of

the Boltzmann machine with respect to its selection of information distributions: to

understand the underlying dynamics of the network by looking inside the ‘black box’.

How is the machine able to represent both the whole state distribution and the atomic

distribution? The following analysis of the limited ILP modified Boltzmann machine

is provided, in our example 4-atom micro-world (Figure 3.1), utilising a framework

similar to a Markov model.

The HLR machine has no constraints on the permutation of the input and a gen-

erous number of hidden nodes. The ILP machine has constraints placed on input

permutations and has a single hidden node. Why should these modifications be effec-

tive in moving the machine to a representation of the state distribution? Originally, we

mistakenly surmised that the single hidden node could only act as a label for the whole

state and that there should be less freedom available in this ‘restricted’ architecture

for the representation of individual atoms. The analysis, however, shows that the ILP

machine also learns a representation of the individual atomic activation frequencies.

The method utilised by the analysis was to examine the weight matrices of well

trained ILP machines in this particular micro-world. This method enabled the con-

struction of a probabilistic model of the network. When an ensemble of 60 machines

was examined, it was found that there were three different patterns of weight matri-

ces. Two of these patterns (pA.1 & pA.2, ∼25 machines each) were closely related.

The biases and intra-layer weights were the same, the inter-layer weights had the same

magnitude but their signs were reversed: the networks were like reflections of each

other. The third category (pB, 10 machines) had a very different pattern of weights.

The accuracy of each pattern of machine, relative to the state distribution, was sepa-

rately checked: pA.1 accumulated error ∼10%, pA.2 accumulated error ∼4%, and pB

accumulated error ∼24%.

An idealised weight matrix for the most accurate pA.2 machines is presented in

Figure 5.15. First, we draw the reader’s attention to the bias weights in the output

layer, Table 5.3. As demonstrated in the table, for these almost ideal machines (pA.1

as well as pA.2), the output biases are the machine’s representation of the atomic

distribution. The availability of these individual atomic biases ensures that the machine

will always be able to model the atomic distribution.
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Figure 5.15: The weight matrix and network diagram for an ILP

Boltzmann machine trained in a 4-atom micro-world. The most ac-

curate A.2 pattern.

Atomic Distribution and Output Bias Weights

Node Atomic Probability Output Bias Wt

Light 50 : 50 Neutral 0

Fan 18 : 82 Highly negative -35

Heater 9 : 91 Highly negative -45

Window 55 : 45 Slightly positive +4

Table 5.3: Comparison of the probability of output node activation to

the bias weights in the output layer, as a representation of the atomic

distribution, in the example 4-Atom micro-world.
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Figure 5.16: Network Analysis: see text for explanation.
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Second, Figure 5.16 presents an analysis of the dynamics of the network when

clamped with the neutral premiss, “0 0 0 0”. The input half of the network is not

shown, as in this circumstance it makes no contribution to the output. In the top half

of Figure 5.16, the activation of the hidden node is +1: in the bottom half it is -1.

There is a slight negative bias on the hidden node, so the relative firing proportions

are 47 : 53.

• When positively firing, the hidden node (and output bias) activations combine to

select out those states which represent ‘heating’: passive states with the window

closed (states 0 & 8), as well as active heating states with the heater on (states

2 & 10).

• When negatively firing, the hidden node (and output bias) activations combine to

select out those states which represent ‘cooling’: passive states with the window

open (states 1 & 9), as well as active cooling states with the fan on (states 5 &

13).

The light is independent of this feature selection. In the circumstances depicted,

where the whole distribution is being retrieved on testing with the neutral premiss,

the cases of ‘heating’ and ‘cooling’ are combined to produce the total final output:

representing the complete state distribution.

The hidden node, which can be seen as a feature detector, constitutes a seman-

tic model of the micro-world. It is consistent with an intermediate level of geometric

abstraction in the representation of knowledge, described by Gärdenfors (2004), as a

conceptual space. The hidden node represents a linear conceptual space. The pro-

portion of ‘heating’ and ‘cooling’ in the model can be adjusted by altering the bias

on the hidden node. This adaptation allows the network to revise its learning when

new information is presented (regarding the degree of environmental heating), which

is partially consistent with prior features in the micro-world. This result is considered

in Section 6.3.5 in relation to belief revision.

5.3 Typicality

The conventional view of rational consequence, in the preferential semantics of non-

monotonic logic, only takes account of the whole state distribution: that is the pref-

erence relation, a consequence of the default rule, ranks whole states only. The in-
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formation available in the distribution of individual component atoms, or prototypical

features, is not normally considered (Lehmann and Magidor, 1992).

This conflict, between the exemplar and atomic views, relates back to the represen-

tation of a concept in logic (Frixione and Lieto, 2011). The traditional logical approach

is to consider only the external opaque nature of the unitary exemplar. This approach

is strongly supported by logicians such as Fodor (Rives, 2010; Fodor and Pylyshyn,

1988) who argues, from the perspective of a linguist, that lexical concepts (words) are

whole states; they have no components. Although shared by most logicians, this view

seems counter-intuitive; for example, to argue that a ‘dog’ is just a unitary symbol,

requires that the symbol itself be divorced from its common meaning: a furry mammal,

that runs on all fours, barks and wags its tail. Can a lexical symbol without semantic

attachment be a concept?

The contrary view comes from psychology, where it is believed that humans have the

ability to re-formulate and recognise new concepts because of their component nature

(Barsalou, 1985, 1999): that our world is implicitly structured by classification based on

prototypical component characteristics. There is evidence from neurobiological imaging

that a generic object recognition system may be present in new-born babies and innate

across species; adapted by evolution rather than learning (Spekle and Kinzer, 2007).

This discovery adds weight to a view of the environment as a hierarchical structure

constructed from inheritance and compositionality.

The divergent views, in philosophy and psychology, probably relate to the het-

erogenous requirements in these different domains. To clarify discussion, the following

definitions are used within this thesis and the use of the ambiguous term ‘concept’ will

be avoided as much as possible.

Whole State Preference: a total pre-order based on the preference of whole state

models: each state model is considered as a unitary exemplar. It is the basis

of preferential semantics in SCNM logic, equivalent to the distribution of whole

states: determined by simple proportion in a training set of vectors.

Atomic Typicality: an ordering of state models, based on their individual compo-

nent, atomic, prototypical characteristics. It is equivalent to the atomic distribu-

tion identified in Section 5.1: determined by the product of the atomic activation

frequencies in a training set of vectors.

There remains ambiguity around the term ‘prototypical’, it is often used to refer

to the most typical whole state exemplar of a class. However, in this thesis, proto-
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typically will be used in the context of the specificity (to a class) of individual atomic

components.

The modified HLR Boltzmann machine, used in Chapter 4: Representation, seemed

to fulfil the two criteria identified as the basis of inductive inference in the logic: the

ability to learn a distribution representing the preference relation in logic and the ability

to retrieve one-to-many mappings constituting appropriate model selection based on a

premiss. In hindsight, this conclusion was only true in congruent worlds. In fact, the

HLR machine learns a complex mixture of distributional information much closer to

the atomic probabilities (typicality), than to the whole state frequencies (preference).

This does not mean that its representation of inference in general is wrong, it is just

different from the view held in traditional symbolic logic.

Logic attempts to formalise the process of inference, whether in an abstract setting

or in the broader context of human cognition. Is logic’s customary approach of only

considering whole state information too restrictive and inappropriate for biological cog-

nition? The ILP modification of the Boltzmann machine is faithful to the conventional

representation of inference in SCNM logic and will be used for experimentation in

Chapter 6: Belief Revision. However, the ILP modification of the Boltzmann machine

seems highly biologically implausible. Its very effectiveness as a representation in this

context, casts doubt on the principle of using whole state preference in logical inference

and on the opaque exemplar view of a concept (object).

5.3.1 Literature

Alternative approaches to representation, utilising typicality in semantic ontologies,

have been proposed by Giugino and Lukasiewciz (2002) and are based on the early

work of Lukasiewciz (1999). Considering these richer relationships and roles between

concepts leads naturally to the formulation of the description logics (Baader, 2003).

Description logics (DLs) are based around an object-oriented paradigm, which involves

a set of concepts (classes) and a set of instances (objects). However, traditional DLs

still fail to capture the essential feature of the object-oriented paradigm: inheritance

via the implementation of prototypical component characteristics (Frixione and Lieto,

2011).

Possibly the earliest consideration of typicality in first-order logic, including the

idea of conditionality, was published by Delgrande (1987). Contemporary approaches

in logic, both in DL (Giordano, Gliozzi, Olivetti, and Pozzato, 2007, 2013) and propo-

sitional logic (Booth, Meyer, and Varzinczak, 2012, 2013) specifically incorporate a
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typicality operator. The important concept of typicality, looks at the contributions

individual atoms (component characteristics) make to the preference relations of whole

states. It allows for the elaboration of the default rule by the application of condi-

tional probability and independence (‘irrelevance’). Giordano’s conclusions regarding

typicality were:

“(the logics), which are the basis of our semantics, are related to probabilistic

reasoning . . . the notion of conditional constraint allows typicality assertions to be

expressed”.

We believe that conditional constraint is a preliminary requirement for instituting

entailment based on typicality but, in itself, it is not sufficient. The frequency of these

typical characteristics must be globally assessed (Giordano et al., 2013), in a manner

similar to the derivation of our atomic distributions from global atomic activations and

a separate ordering based on typicality is required, analogous to the ordering within

the atomic distribution of our training sets (Section 5.1: Dual Distribution).

The implementation of typicality in Giordano et al. (2013) appears to be based on

‘most preferred model semantics’; subsuming typicality within the whole state prefer-

ence ranking. As explained below this is a mistaken assumption that: the preferred

models are able to represent the most typical models or specific concepts. In this

context, the word ‘concept’ is used to mean a prototypical characteristic:

“(most preferred models) these are the models that minimise the number of atypical

concepts. . . . Indeed, there is no (most preferred) model of a knowledge base that

contains a non-typical instance of some concept.” (Giordano et al., 2013)

Booth & Meyer (2012) utilise a novel definition of modular ranking based on a

Cartesian product, contrasting it with the standard ranking of Lehmann and Magidor

(1992). It is unclear whether this definition is intended to incorporate prototypical

characteristics, there is no discussion of such characteristics, their influence on typi-

cality and the requirement for their global evaluation elsewhere in their paper. They

explicitly declare typicality to be equivalent to the selection of the most preferred

models in the initial definition of their typicality logic:

Definition 4. Let α ∈ L̄ and let R = (V,≺), then [[ᾱ]] := min≺[[α]]

In this definition α is a state in the typicality language L̄. R = (V, ≺) is a ranked model

based on an ordering ≺, we must assume, a modular preference on whole states. Typ-

icality is defined as: [[ᾱ]], the set of typical models (concepts) equivalent to min≺[[α]].

These are the most preferred whole state models of α.
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We believe that this assumption: the representation of typicality by ‘most preferred

model semantics’ is incorrect. The assumption can be refuted by counter-example:

showing that the most typical models cannot always be found amongst the most pre-

ferred models and that the most preferred models can contain non-typical instances of

prototypical characteristics. At the heart of this counter-example is a demonstration

of incongruence: the divergence of preference and typicality.

5.3.2 Counter-Example

Partial Classification of Birds
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Figure 5.17: A partial classification system for birds, demonstrating

incongruence between preference and typicality. Total patterns =

(3 × 20) + (1 × 15) + (1 × 10) = 85. Calculation of character

frequencies for the derivation of typicality are explained in the text.

Let us consider a partial classification of birds, Figure 5.17, based on the selection of

a few prototypical (atomic) characteristics: size, feathers, ability to fly and nocturnal
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disposition. Suppose, for the sake of providing a scenario, that we were to travel 200

years into the future, to a world ravaged by climate change, to find that only a small

number of birds survive in aviaries.

We observe, in the aviaries, the numbers of each type of bird, 85 in total: 20 eagles,

20 emus, 20 owls, 15 penguins, 10 sparrows and no kiwis. This information constitutes

the training set, at the top right of the Figure 5.17. The percentages are calculated by

simple proportion (3 × 23.5% + 1 × 17.6% + 1 × 11.8% = 100%). Unusual birds are

obviously more popular and have been preferred over their less exciting fellows: the

sparrows. Other uncommon birds may be discovered later, so a blank preference level

3 is included. There are many birds that have become extinct, these are illustrated by

a single example species, the kiwi. From our observations we are able to form a default

rule and a preference ranking, top right of Figure 5.17.

We are also able to calculate the frequencies related to each prototypical (atomic)

characteristic. Consider large size for example: there are two birds the eagle and emu

with this atomic characteristic, they occur in 40 patterns out of total 85, which gives a

character frequency of 0.471. The other character frequencies are similarly calculated,

they are presented in the table at the bottom left of Figure 5.17. The reader should

be able to appreciate, without reference to the numbers, that the most typical charac-

teristics are: small size, feathers, flight and non-nocturnal disposition. The typicality

of each model (bird) is calculated from the product of individual characteristic fre-

quencies. Consider for example the penguin: it has small size (0.529), feathers (1.000),

doesn’t fly (0.412) and is non-nocturnal (0.765): its typicality is 0.529 × 1.000 × 0.412

× 0.765 = 0.167 (16.7%). The other model typicalities are similarly calculated.

Again, without considering the numbers, it is easy to see that the sparrow is the

most typical bird: the only bird with all four typical characteristics. However, con-

trary to the assumption of ‘most preferred model semantics’, it is not among the most

preferred models. Moreover, there are most preferred models (eagle, emu, owl) which

contain atypical instances of prototypical characteristics (large size, flightless, noctur-

nal disposition).

It could be argued that the arbitrary nature of the setting compromises the gener-

ality of this counter-example, in particular the partial nature of the classification could

be regarded as a problem. Given a complete classification system for birds, a large

number of additional atomic characteristics could result in the most preferred models

(eagle, emu and owl) also being the most typical. Such a complete classification sys-

tem might contain an infinite number of atomic characteristics and as a consequence no
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definitive counter-example would ever occur. A refutation of this argument is available

when considering the micro-world schemata presented in Chapter 4 Representation. As

the complexity of the micro-worlds are increased (by increasing the number of atoms)

the proportion of permutations where the dual information distributions are incongru-

ent increases. More atomic prototypical characteristics result in a greater chance of

discrepancy between the pre-orders based on whole state frequency (preference) and

atomic character frequency (typicality).

5.3.3 Atomic Description of Typicality

Such counter-examples to the assumption of ‘most preferred model semantics’ are com-

mon; other examples can be seen in Figure 5.8, training sets C18, D18 and N41. It

is not possible to manage typicality by subsuming it into the standard preference or-

dering. Typicality constitutes a semantically different ranking, from the traditional

preference ordering, on the same set of model states. Observations from Figure 5.17

provide other important insights into the general properties of typicality.

1. Varying Typicality. Not all typicality characteristics are equally typical. In the

Figure 5.17 for example, feathers and non-nocturnal disposition are more strongly

typical than small size and flight. This results in the emu being more typical than

the owl on a probabilistic basis, even though the owl has three typical character-

istics and the emu has only two. This is a problem for the logical representation

of typicality because, without the combinative power of numbers, even separate

assessment of each characteristic with individual typicality operators would be

insufficient. This notion of the usefulness of numbers was proposed by Pearl:

“probability as a faithful guardian of common-sense” (1997).

2. Abstract Classes. Extinct birds, such as the kiwi (in the example), play no part in

the training set or in the formation of the default rule or preference relation. Yet,

they are able to be ranked in terms of typicality. It is possible that an abstract

class could represent the most typical model. Such an abstract class, without an

instance, would be least preferred in the traditional pre-order on whole states. In

fact, the implementation of an abstract class is a common scheme for inheritance

in object-oriented programming. Even the potential existence an abstract class

implies that the most preferred state models are an inadequate representation of

typicality.
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The following description is offered as an attempt to represent typicality in a propo-

sitional logic, given that prototypical compositionality is unconventional. Falsity is

denoted as -1, not 0, in keeping with the use of a ternary logic within the micro-world

schemata (Section 3.2).

Definition: Let A be the set of atomic propositions: A = {ai : i = 1, 2, ...., k}

– symbolising the atomic composition of states in a world with atomic cardinality k.

Then:
−→
ta = aL1 ≺ aL2 ≺ .... ≺ aLk−1 ≺ aLk ≺ aMk ≺ aMk−1 .... ≺ aM2 ≺ aM1

– is a total pre-order on the typicality of atomic valuations

– where aLi and aMi represent complementary truth valuations of an atom

– aMi , a
L
i ∈ [false, true]

– where if i < j, then aLi is less typical than aLj and aMi is more typical than aMj .

To clarify this definition of atomic typicality lets us consider the previous example of a

classification of birds, Figure 5.17. There are four atoms, which instead of numbering,

we will label asize, afeathers, aflight and anocturnal. We know that having feathers is

the most typical characteristic valuation and not having feathers is the most atypical

characteristic valuation therefore: aMfeathers has a truth valuation of 1 (true) and aLfeathers

has a truth valuation of -1 (false). Nocturnal disposition is the next most specific

typicality characteristic, in this case the valuations are reversed, aMnocturnal has a truth

valuation of -1. Flight is the next most specific typicality characteristic, aMflight has a

truth valuation of 1. Large size is the least specific, aMsize has a truth valuation of -1.

The corresponding values for aLx are complementary. Then a total pre-order for the

atomic typicality in this example is given by:

−→
ta = a−1feathers ≺ a+1

nocturnal ≺ a−1flight ≺ a+1
size ≺ a−1size ≺ a+1

flight ≺ a−1nocturnal ≺ a+1
feathers

Then continuing with the description, from the general definition of atomic typicality,

a total pre-order on state typicality
−→
TS, can be characterised as:

−→
TS = aLk ∧ aLk−1.... ∧ aL2 ∧ aL1 ≺ aMk ∧ aLk−1.... ∧ aL2 ∧ aL1 ≺

aMk ∧ aMk−1.... ∧ aL2 ∧ aL1 ...... ≺ aMk ∧ aMk−1.... ∧ aM2 ∧ aL1
≺ aMk ∧ aMk−1.... ∧ aM2 ∧ aM1

Persisting with the example of the bird classification for the sake of illustration. The

least typical bird would be characterised by: a+1
size ∧ a−1flight ∧ a

+1
nocturnal ∧ a

−1
feathers, such

a bird is large, does not fly, is nocturnal and has no feathers. No such bird exists in
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the classification. The most typical bird would be characterised by: a−1size ∧ a+1
flight ∧

a−1nocturnal ∧ a
+1
feathers, such a bird is small, flies, is not nocturnal and has feathers. In the

example classification this most typical bird is the sparrow.

Whilst this proposal, for describing typicality in a propositional logic, is not devel-

oped to the level of proof required of a theorem, it fits the experimental results from

the Boltzmann representation and captures many properties expected in the comple-

mentary paradigm of probability. Looking ahead to the next chapter (Section 6.1.2:

Iterative Revision) such a description resolves one of the challenges posed by probabil-

ity. The robust declaration of individual atomic compositionality allows a satisfactory

explanation of conditional constraint: as illustrated in Figure 5.4 and more generally in

the design of the example 4-atom micro-world (Figure 3.1). The experimental results

from the Boltzmann machine in Section 4.3.4: Rational Monotonicity demonstrate

both the dependence and independence of atoms in a propositional SCNM logic.

This characterisation of atomic typicality still remains problematic, because the

logical implication of a∗i ∧ a∗j does not convey all of the numeric properties of a∗i × a∗j
available in the context of probability (see item 1 above).

5.3.4 Typicality versus Preference

How is the conflicting information of typicality versus preference managed by human

cognition? Currently an answer is uncertain, however in general, there are two obvious

possible approaches.

• The information about atomic and state frequencies could be combined, as we

see in the artificial Boltzmann machine learning. This allows the machine to

operate in a common-sense way in most circumstances, even allowing it to adjust

for conditional probabilities. However, it is not ideal, because some information

from both (typicality & preference) orderings is inevitably lost.

• The alternative approach is to have two parallel systems of information process-

ing: a “dual process approach”. The older system (typicality) may be evolved by

physically engineered change and be generic within the animal kingdom. Whilst

the phylogenically younger system (preference) capable of adaptation by con-

scious learning, may have only recently emerged.

“. . . systems of the first type are phylogenically older, unconscious,

automatic, fast, reasoning about prototypically and exceptions, (typi-
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cality) . . . the other phylogenically younger second system: conscious,

slow, sequential, reasoning using explicit rules (preference).” (Frixione

and Lieto, 2011, 2014)

Considering the experimental results in Section 5.2: Architectural Selection, the

Boltzmann machine provides a practical, generic neural network for the imple-

mentation of this theory. It would be possible to have two parallel Boltzmann

networks with dual architectures: one selecting for typicality based on atomic

characteristics and the other selecting for preference based on whole state in-

formation. Following the proposal of Frixione and Lieto (2014) the outputs of

the dual systems could then be compared in a manner analogous to a ‘system of

experts’. In congruent worlds there would be no conflict. However further ques-

tions arise, in incongruent worlds with outputs conflicting between the systems:

Which system takes precedence? And in what context? Can a conscious choice

be made between representations?
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Chapter 6

Belief Revision

Adaptation to new information was identified as a requirement of any network repre-

sentation of supra-classical, non-monotonic logic, Section 3.3.1. This chapter considers

belief revision as it relates to adaptation to new learning in a Boltzmann machine.

Section 6.1 reviews the literature of belief revision in SCNM logic, starting with its

foundations in the AGM postulates for single revision and moving onto the differences

in theory for iterated revision. It attempts to highlight some of the on-going issues

and open questions related to the theory of revision. Currently there are a plethora of

twenty-seven different belief change operators. The section ends with an attempt to

summarise the major distinctions between the operators.

Section 6.2 gives an overview of belief revision from the machine perspective: where

the proliferation of different approaches in the logic are condensed to a single spectrum.

An implementation of pseudo-rehearsal in the Boltzmann machine learning algorithm

is designed to allow re-training. We propose a plan for investigating the mechanics

of belief revision utilising the machine representation as a measure of plausibility. We

give an overview for this investigation in Figure 6.6.

Section 6.3 compares the experimental results from re-training the Boltzmann ma-

chine with two contrasting approaches to revision in logic: Booth & Meyer and Spohn.

Three levels of revision are considered: simple, inconsistent and differential: experi-

mental results are provided for each of these levels. Finally an overview of the results

describes the patterns of revision demonstrated by the Boltzmann machine.

Section 6.4 discusses a potential alternative approach to logical revision, based on

the patterns in the machine results. This novel approach utilises the information on

atomic typicality, already contained within the initial training set and also implicit

within the new information.
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6.1 Review of the Logic

The principles underlying belief revision in logic attempt to model rationality, often

using faithfulness to human cognition as a guide. The reader is asked to revisit the

preliminary descriptions and definitions of the logic from Sections 2.1: Supra-classical,

Non-monotonic Logic & 3.1: Logical Preliminaries.

6.1.1 The AGM Postulates

The well known work of Alchourron, Gärdenfors & Makinson (AGM) is still relatively

young (1985). It describes the properties of belief change operators in the limited

context of single revisions. There are some important assumptions contained in its

initial formulation:

• Minimal change, a universal key assumption.

• The unquestioned reliability of any new information. Modified by authors in

non-prioritised revision.

• A uniform degree of commitment to any existing belief. Modified later by the

authors themselves.

• A God-like level of knowledge, instituted by closure in the belief set and conse-

quence relation. Modified by work on Knowledge Bases.

These limitations, as well as supporting evidence from a number of external sources,

are considered in the discussion that follows. AGM is regarded by many authors as a

core philosophy of belief revision in logic (Peppas, 2008; Hansson, 2011).

The theory, formulated under classical consequence (Cn), applies to a closed belief

set (S) which contains all of the sentences that represent the agent’s classical knowledge.

This closed belief set is equivalent in the broader perspective to the maximally preferred

models of a SCNM preference relation. However, as a result of closure, the belief set

also contains all of the sentences that are a consequence of these explicit beliefs. Most

of these additional sentences involve trivial conjunctions that do not contribute to the

agent’s knowledge.

Belief change results from the acquisition of new information (denoted as α, β).

A variety of individual belief change operators have been described and some detail

of these is given in the text that follows up until the end of Section 6.1.3: Survey of
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Current Approaches. However, most authors consider there are three basic types of

operation: contraction (–̇), expansion (+) and revision (*). Pure expansion can be

seen as a limited form of revision, not requiring contraction. This trivial expansion

is accomplished directly and not generally defined by a set of properties. The other

overarching operations of contraction and revision are inter-related. Revision can be

seen as requiring both contraction and expansion: via the Levi identity, (Levi, 1977)

and (Tamminga, 2003):

S ∗ α = (S –̇ ¬α) + α (Levi Identity)

and contraction by α can be constructed from the intersection with the revision by ¬α:

via the Harper identity (Meyer, Labuschagne, and Heidema, 2000):

S –̇ α = S ∩ (S ∗ ¬α) (Harper Identity)

The purpose of these two identities is to demonstrate the inter-relationship between

these complex operations and define the process involved in the individual operators.

Only the revision postulates are described in detail below. However, before presenting

these postulates, two of the contraction properties will be considered.

(S–̇2) if α /∈ Cn(∅), then α /∈ (S –̇ α) (Success)

(S–̇6) S ⊆ (S –̇ α) + α (Recovery Axiom)

The success postulate for contraction (S–̇2) states that: if the new information is not

a tautology it should be removed from the contracted belief set. This classical view

however, is not supported in SCNM logic; an agent may choose not to relinquish some

strongly held beliefs. The recovery axiom (S–̇6) states that: the original belief set

should be recoverable after expansion with the removed information: it has also been

problematic. Whilst it captures the intuition of rational, human cognition, two well

known counter-examples have been described: “Cleopatra’s children” and “George the

criminal” (Hansson, 1991, 1993). The following is a brief description of the “Cleopatra’s

children” counter-example:

“I believe that ‘Cleopatra had a son’ (φ) and that ‘Cleopatra had a

daughter’ (ψ), and thus also that ‘Cleopatra had a child’ (φ ∨ ψ). Then I

receive information that ‘Cleopatra had no children’, which makes me give

up my belief in φ∨ψ. But then I am told that ‘Cleopatra did have children’,

and so I add φ∨ ψ. But I should not regain my belief in either φ or ψ as a

result.”
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The validity of the recovery axiom remains an open question.

AGM Revision Postulates

Basic:

(S ∗ 1) S ∗ α = Cn(S ∗ α) (Closure)

(S ∗ 2) α ∈ S ∗ α (Success)

(S ∗ 3) S ∗ α ⊆ S + α (Inclusion)

(S ∗ 4) if ¬α /∈ S, then S ∗ α = S + α (Vacuity)

(S ∗ 5) if α is consistent, then S ∗ α is consistent (Consistency)

(S ∗ 6) if |= α↔ β, then S ∗ α = S ∗ β (Extensionality)

Supplementary:

(S ∗ 7) S ∗ (α ∧ β) ⊆ (S ∗ α) + β (Super-expansion)

(S ∗ 8) if ¬β /∈ S ∗ α, then (S ∗ α) + β ⊆ S ∗ (α ∧ β) (Sub-expansion)

Postulate 1 declares closure under conditions of ideal, omniscient reasoning. Postulate

2 states that the new information should always be included in the revised belief set.

Other authors have pointed out, however, that reliability of the new information is not

guaranteed (Spohn, 1988). Postulates 3 & 4, taken together, indicate it is not necessary

to remove any information if the new information is consistent with the original belief

set. Postulate 5 states that consistency is maintained during revision. Postulate 6

states the revision is independent of syntactical changes. The supplementary postulates

7 & 8, taken together, state that successive revisions with α and β are equivalent to

revision with α ∧ β.

The postulates identify the properties of rational contraction or revision functions

but they do not specify a model for those functions. If for simplicity, we consider a

contraction function: it should remove from the belief set only that minimal information

entailed by α. To put this another way, the α-remainder of contraction should include

the maximal subset of S that does not entail α. Unfortunately, there is more than one

such maximal remainder subset. Partial meet functions are the models for contraction

or revision which select for the intersection of these maximal subsets.

The postulates rationally follow human cognition; they are consistent with the

universally accepted assumption of minimal change. However, they are not complete:

they are insufficient to uniquely specify / encode the new belief set following revision.

This insufficiency arises from the assumption of uniform commitment to the existing

beliefs. Knowledge is held with varying degrees of belief and is revised according to
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the agents degree of commitment to the new information. This concept of the ‘level of

belief’ is encapsulated by the preference relation in SCNM logic.

Extensions of AGM

A number of alterations have been made to the original theory of AGM, which broaden

its application and support its conclusions. The first of these was epistemic entrench-

ment developed by the original authors (Gärdenfors and Makinson, 1988). Epistemic

entrenchment is a way of placing a logical value on the commitment that an agent has

to a particular belief (Meyer et al., 2000). It requires a well behaved ordering on the

agent’s beliefs, �:

• Reflexive: a � a

• Transitive: if a � b and b � c, then a � c

• With Minimal Bounds: ∃ a : ∀ b 6= a, a ≺ b

• And Maximal Bounds: ∃ c : ∀ b 6= c, b ≺ c

As stated previously, such a total pre-order is equivalent to a non-monotonic prefer-

ence relation. An extension of this approach was modelled by Grove (1988) utilising

concentric spheres ($) to represent an ordering on possible worlds (a total pre-order

on models), as illustrated in Figure 6.1. This system of spheres successively concate-

nates (accumulates) sentences across levels of belief ranking: progressively limiting

the satisfying models. It reverses the numbering of the belief set: whereas Hn is the

most reliable belief held by the agent, $1 is the sphere containing the most plausible

models of those beliefs. The system is therefore, not as intuitive as it might seem. As

more complex concepts such as comparison and bounds are added, the scheme becomes

almost unusable.

Let Hi be the set of sentences of rank i in a prioritised belief set, such that the

agent’s knowledge could be represented as the total pre-order on beliefs:

−→
H = ⊥(contradictions) ≺ H1 ≺ H2 ≺ .... ≺ Hn ≺ >(tautologies)

– where for i < j, beliefs in Hj are more reliable than beliefs in Hi,

If H≥i = Hi ∪Hi+1.... ∪Hn then a set of spheres is defined by:

$i = {Models[H≥i] : i = 1, ...., n}

– where for i < j, worlds in $i are more plausible than worlds in $j.
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! Worlds

Possible Worlds
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Figure 6.1: Revision modelled as a system of belief spheres (Grove,

1988).

A further refinement of the original theory was made (Rott, 1993; Nayak, 1994)

to remove the limiting requirement of closure under classical consequence. It relin-

quishes all the trivial conjunctions from the belief set and no longer requires omniscient

(God-like) reasoning. This finite representation of the agent’s explicit, foundational,

independent beliefs has subsequently been called a ‘prioritised knowledge base’ (K).

6.1.2 Iterative Revision

Iterated revisions can be defined as separate sequential revisions. There are a number

of problems in applying the initial work of AGM to this iterated process. A major

issue is in uniquely specifying / encoding the ordering on the agent’s final beliefs after

a single revision, as this is required for subsequent revisions. From the standpoint of

probability, Darwiche and Pearl (DP, 1997) realised that “the AGM postulates were

too weak to ensure the rational preservation of conditional beliefs”. The information

contained within the knowledge base (equivalent to the maximal models) was broad-

ened to include the epistemic state. An epistemic state (Φ) encompasses an agent’s

entire knowledge: the foundational beliefs in the knowledge base and also the total
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pre-order on all the less committed beliefs constituting the preference relation.

Darwiche & Pearl modified the original AGM postulates to include this additional

knowledge from the epistemic state. The properties are re-formulated with respect

to the knowledge base which results from the revision of the epistemic state by α:

K(Φ ∗ α).

DP Revision Postulates

(Φ ∗ 1) K(Φ ∗ α) = Cn(K(Φ ∗ α)) (Closure)

(Φ ∗ 2) α ∈ K(Φ ∗ α) (Success)

(Φ ∗ 3) K(Φ ∗ α) ⊆ K(Φ) + α (Inclusion)

(Φ ∗ 4) if ¬α /∈ K(Φ), then K(Φ ∗ α) = K(Φ) + α (Vacuity)

(Φ ∗ 5) ⊥ ∈ K(Φ ∗ α)↔ |= ¬α (Consistency)

(Φ ∗ 6) if |= α↔ β, then Φ ∗ α = Φ ∗ β (Extensionality)

(Φ ∗ 7) K(Φ ∗ (α ∧ β)) ⊆ K(Φ ∗ α) + β (Super-expansion)

(Φ ∗ 8) if ¬β /∈ K(Φ ∗ α), then K(Φ ∗ α) + β ⊆ K(Φ ∗ (α ∧ β)) (Sub-expansion)

The postulates have the same intuitions as those for AGM. The closure postulate (Φ∗1):

the knowledge base formed by revision is closed under rational consequence. The suc-

cess postulate (Φ ∗ 2): the new information is part of the revised knowledge base. The

inclusion postulate (Φ ∗ 3): the revised knowledge base is part of the knowledge base

expanded by α. The vacuity postulate (Φ ∗ 4): if the original knowledge base does not

contain any ‘non-model’ of α, then revision and expansion of the knowledge base by α

are the same. The consistency postulate (Φ ∗ 5) is stated slightly differently: that in-

consistent knowledge only arises from revision with contradictions. The extensionality

postulate (Φ ∗ 6): states the changes in the epistemic state are syntactically indepen-

dent. Similarly, super & sub-expansion (Φ ∗ 7 & Φ ∗ 8) are concerned with successive

revisions. In addition, Darwiche & Pearl proposed four further postulates that consider

the order of the applied new information and strengthen subsequent revisions:

Additional Postulates

(C ∗ 1) if β |= α, then K(Φ ∗ α ∗ β) = K(Φ ∗ β) (Succession)

(C ∗ 2) if β |= ¬α, then K(Φ ∗ α ∗ β) = K(Φ ∗ β) (Contradiction)

(C ∗ 3) if K(Φ ∗ β) |= α, then K(Φ ∗ α ∗ β) |= α (Retention)

(C ∗ 4) if K(Φ ∗ β) 2 ¬α, then K(Φ ∗ α ∗ β) |= α (Self-Contradiction)
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These postulates are conventionally indexed as illustrated (‘C1 – 4’). Postulate 1 is a

stronger version of AGM (S*7 & S*8) and states: that when new information is applied

to the epistemic state, the most recent, more specific information takes precedence.

Postulate 2 has been particularly problematic and states: that when contradictory

information arrives, the most recent evidence prevails. There is a basic equivalence to

the recovery axiom; in effect contract by α and then expand by α. Many authors have

argued that the C2 postulate is too strong (Booth and Meyer, 2011; Nayak, Pagnucco,

and Peppas, 2003). Postulate 3 states: that previous non-contradictory information

should be retained. Postulate 4 states: information should not act as its own defeater.

Whilst not in the mainstream of traditional belief revision theory, Wolfgang Spohn’s

(1988; 1999; 2009) pioneering philosophy establishes a connection between ranking

functions in logic and probability. He makes the following important arguments in

relation to belief revision in general:

1. All belief revision is iterated. No theory of single revision is sufficient.

2. No logical theory of belief revision has a satisfactory explanation for doxastic

independence: α is independent of β relative to epistemic state Φ if and only if

revision of Φ by α or ¬α does not affect the belief in β.

More precisely, it is not conditional independence but rather the reciprocal cir-

cumstance of conditional dependence which is the problem. As well as potentially

affecting the results of belief revision, conditional dependence also complicates in-

ference, as illustrated in Figure 5.4. The incorporation of atomic typicality into

a propositional logic makes available an explanation of conditional constraint

(Section 5.3.3: Atomic Description of Typicality).

3. Current theories of iterative revision, utilising a qualitative single belief ranking,

are insufficient to implement the recovery axiom: the operators cannot uniquely

specify the final, revised epistemic state.

4. Under the current theories iterated revision is not commutative: K((Φ∗α)∗β) 6=
K((Φ ∗ β) ∗ α). Intuitively belief revision should be commutative; an agent’s

knowledge should accumulate.

5. Strict prioritisation of the new information is an unreasonable assumption. After

revision of Φ by α it is possible that the most preferred models of ¬α might

prevail over the least preferred models of α.
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Spohn provides an efficient solution to the problems in 3 – 5 by implementing a sim-

ple numerical index of belief; a half-way house between traditional logic and probability.

He proposes that the levels of the epistemic ranking function (the preference relation

of SCNM logic) be indexed from zero: the strongest belief (most preferred models).

These ranking functions he calls ‘Ordinal Conditional Functions’. He proposes that

even empty ‘levels of belief’ should be retained following revision, in contrast to the

prevailing theory which removes them: purification (Rott, 2009). Spohn’s approach is

in accord with the Pinkas classification of strong equivalence (Pinkas, 1995). Further,

Spohn proposes that an agent should have some measurable commitment to any new

information that is received: [α, β – index of belief]. This index of commitment is

utilised to appropriately relinquish belief in the non-satisfying models (Models [¬α]).

Nayak et al. (2003) criticise the work of Darwiche & Pearl for excessively strengthen-

ing the specification of AGM. However, they indicate no acceptance of AGM’s founda-

tional limitations. They propose dynamic revision operators, which implement changes

in the epistemic entrenchment or provide a lexicographic ordering. They offer a new

model of belief change without any reference to the preceding work of Spohn, demon-

strating the inadequacy of such a qualitative pre-order in uniquely specifying the out-

come of iterative change.

In the mainstream of belief revision theory, are a number of papers by Booth,

Chopra, Ghose & Meyer (Chopra, Ghose, and Meyer, 2002; Booth, Chopra, Meyer,

and Ghose, 2004; Booth, Meyer, and Wong, 2006; Booth and Meyer, 2011). They

acknowledge the limitations of the traditional AGM approach whilst attempting to in-

corporate previous work. Their revision has been described by Rott as a dual operator.

They strengthen the specification of restrained revision by partitioning each rank in

the pre-order of the agents beliefs: a refinement. The additional meta-information for

partitioning is based on the satisfying models of the new information, as described in

their paper:

“Our idea is to associate with each world, two abstract objects x+ and

x− with the intuition that x+ represents x ‘on a good day, in positive circum-

stances; while x− represents x ‘on a bad day, in negative circumstances’.”

(Booth and Meyer, 2011)

The ranking structure in Figure 6.2(a) relies on a monotonically increasing index,

both horizontally and vertically. The source of the meta-information is not so much

of an issue since it is partially provided by the new information itself. However, the
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Figure 6.2: Refinement, utilising a two-dimensional ranking: after the

scheme of Booth & Meyer (a), with variations on the commitment to

belief of the non-satisfying models (b) & (c).

scheme suffers from the problem expressed by Spohn, in item 5 above. Whilst the

scheme modifies the agent’s existing epistemic ranking, it does not provide sufficient

information about the level of commitment to the new information. Therefore, alterna-

tive outcomes for a revision are possible, Figure 6.2(b) & (c). Such alternatives disrupt

linkage in the process of iteration.

6.1.3 Survey of Current Approaches

Rott (2009) has published a concise summary of 27 current iterative belief change op-

erators using equivalent categorisations as: prioritised knowledge bases and systems of

spheres diagrams. A representative sample of operators is reproduced here to illustrate

some of their key characteristics. The concept of a prioritised base is utilised for the

discussion in the text that follows. As the system of spheres diagrams are inclined to

become disordered, a survey of these is presented in (Figure 6.3), at the end of the

section.

However, before proceeding, two areas of potential confusion will be addressed.

There is a subtle difference between a prioritised knowledge base and an epistemic

state. The prioritised knowledge base contains a ranking of beliefs held by an agent.

An epistemic state contains a ranking on all possible beliefs, including the truely in-

consistent counter-examples at least preference. As an aside, machine learning can be

understood as a knowledge base. The probability of the least preferred models is close

to zero since a machine may never be exposed to them during training. The second
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issue is the confusing use of the term ‘prioritised’. In this context prioritisation relates

to the ranking of the knowledge base, rather than commitment of the agent to the new

information.

Recalling the definitions from Section 6.1.1: Extensions of AGM, the sentences

contained within each rank i of a prioritised knowledge base are denoted Hi, derived

from a total pre-order on the agent’s beliefs:

−→
H = ⊥(contradictions) ≺ H1 ≺ H2 ≺ .... ≺ Hn ≺ >(tautologies)

H≥i = Hi ∪Hi+1.... ∪Hn and spheres: $i = {Models[H≥i] : i = 1, ...., n}

If we define hi as a concatenation of the sentences within each rank: hi = ∧Hi. Then

we can extend the interpretation of a pre-order on the agent’s beliefs in various ways,

for example:

h≥i = hi ∧ hi+1.... ∧ hn h≤i = h1 ∧ h2.... ∧ hi
−−−→
h ∨ α = hi ∨ α.... ≺ hn ∨ α

−−−−→
h ∨+ α = h1 ≺ h1 ∨ α.... ≺ hn ≺ hn ∨ α

−→
h ≺ . α = h1.... ≺ hn ≺ α

−→
h ≺ . −→g = h1.... ≺ hn ≺ g1.... ≺ gn

Where ‘≺ .’ represents a concatenation of ordered sequences and −→g is a further distinct

pre-ordering.

Variants of Expansion

Isolated expansion of an epistemic state is technically impossible, except following

update with a new proposition: as all the existing non-satisfying models that are

already part of the epistemic state would also need to be revised.

Conservative expansion:
−→
h 7−→ α ≺ .

−→
h Fig. 6.3(a)

Plain expansion:
−→
h 7−→ h1 ∧ α ≺ .

−→
h>1

Moderate expansion:
−→
h 7−→

−→
h ≺ . α ≺ .

−−−→
h ∨ α Fig. 6.3(b)

Radical expansion:
−→
h 7−→

−−→
h<n ≺ . hn ∧ α

Very Radical expansion:
−→
h 7−→

−→
h ≺ . α Fig. 6.3(c)

However, we present these variations on expansion to illustrate the potential assumed

levels of commitment to any new information (α). Conservative expansion can be seen

as the complement of very radical expansion, adding the new models to a separate

level beyond the pre-existing ordering. Plain expansion is the complement of radical
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expansion adding the new models to the lowest or highest level of belief respectively.

Moderate expansion adds the new models at intermediate levels. Both radical and

very radical expansion are forms of prioritised change whereas: conservative, plain and

moderate expansion are variations on non-prioritised change.

Variants of Revision

The previously considered approaches to expansion have matching revision processes.

Conservative revision was examined by Boutlier (1996) and is traditionally called ‘nat-

ural revision’. Restrained revision was examined by Booth et al. (2006); Booth and

Meyer (2011). Moderate revision was examined by Nayak (1994) and is called ‘lexico-

graphic revision’, and radical revisions are traditionally called ‘irrevocable’.

Conservative revision:
−→
h 7−→ α ≺ .

−−→
h≤¬α ≺ .

−−→
h>¬α Fig. 6.3(d)

Restrained revision:
−→
h 7−→ α ≺ .

−−−−−−→
h≤¬α ∧ α ≺ .

−−−−−−−→
h>¬α ∨+ α

Moderate revision:
−→
h 7−→

−→
h ≺ . α ≺ .

−−−→
h ∨ α Fig. 6.3(e)

Radical revision:
−→
h 7−→

−−→
h<n ≺ . hn ∧ α

Very Radical revision:
−→
h 7−→

−→
h ≺ . α

None of these revisions are sufficient, as described, to uniquely encode the resultant

epistemic state following revision. None of them can be considered, in themselves,

a sufficient theory of iterative revision. The reader will notice the descriptions omit

to give any indication of what happens to the non-satisfying models (Models [¬α]).

Further the degree of withdrawal of these non-models is often assumed within the

framework of the individual approaches.

Variants of Contraction

Severe withdrawal:
−→
h 7−→

−−→
h>α

Conservative withdrawal:
−→
h 7−→ α ≺ .

−−→
h>¬α

Refinement:
−→
h 7−→

−−→
h<¬α ≺ .

−−−−−−−→
h≥¬α ∨+ α

Variants of contraction can also be informative: severe withdrawal, complete removal

of models from an epistemic state, is not possible. However, conservative withdrawal of

models to the lowest level of belief could be possible. The last variant, refinement par-

titions each belief rank implicitly separating the satisfying and non-satisfying models.

This operator is part of the approach of Booth et al. (2006).
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Two-Dimensional Operators

The two-dimensional operators can be considered the only realistic candidates for the-

ories of iterative revision. The favoured traditional approach of Booth et al. (2006);

Booth and Meyer (2011) should be included among them.

Simple:
−→
h 7−→

−−→
h<β ≺ . h=β ∧ α ≺ .

−−→
h>β Fig. 6.3(f)

Strict:
−→
h 7−→

−−−−−→
h≤(α→β) ≺ . h=(α→β)+1 ∧ α ≺ .

−−−−−−→
h>(α→β)+1

Bounded:
−→
h 7−→

−→
h ≺ . α ≺ .

−−−−−−−−→
h<(α→β) ∨ α ≺ .

−−−−−→
h≥(α→β) Fig. 6.3(g)

Booth & Meyer:
−→
h 7−→ α ≺ .

−−−−−−→
h≤¬α ∧ α ≺ .

−−−−−−−→
h>¬α ∨+ α

7−→
−−→
h<¬α ≺ .

−−−−−−−→
h≥¬α ∨+ α Fig. 6.3(h)

Spohnian:
−→
h 7−→

−−−−−−→
h≤β ∨ ¬α ≺ .

−−−−−→
h(>β,<n) ≺ . h≥n ∨ α Fig. 6.3(i)

These two dimensional operators demonstrate an increased complexity as they involve

a dual pre-order. The second component provides additional information for promotion

of satisfying models. The 2nd dimension for the simple comparison operator is provided

by a specified reference equality ‘β ≤ α’. This ‘simple revision by comparison’ can

result in either raising or lowering of the satisfying Models[α] and was investigated

by Cantwell (1997). The second strict comparison operator is related to the simple

revision and involves a reference inequality ‘β < α’. The third bounded operator relies

on the relationship ‘α→ β’ as investigated by Rott (2007); it is a compromise between

conservative and moderate revision.

The Booth & Meyer approach can be visualised as a two step process of restrained

revision and then refinement, as discussed above, Section 6.1.2: Iterative Revision. We

have derived the prioritised knowledge base description of the Spohnian revision from

the original paper (Spohn, 1988). The 2nd dimension for the revision is provided by

the index of commitment to the new information proposed by Spohn, [α, β – index

of belief]. This revision was not included in the summary published by Rott (2009)

because of Spohn’s alternative approach to numerically indexing belief: both in the

epistemic pre-order held by the agent and in the commitment to the new information.

Spohn’s approach explicitly deals with the fate of the non-satisfying models. His ap-

proach should not be seen as abandoning the qualitative flavour of logic, but rather as

a clarification of its assumptions.

In summary, the reader should appreciate from this discussion of the literature:

that the domain of belief revision is relatively young, it has many open questions and

represents a branch of philosophical logic in evolution.
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Figure 6.3: A survey of some belief change operators, illustrated

by sphere diagrams (Rott, 2009). The three expansions illustrate

varieties of prioritisation. The three revisions cover common non-

prioritised schemes. Two 2nd dimensional operators are illustrated.

The approaches of Booth & Meyer and Spohn are individually dis-

cussed in the text. The diagrams are inclined to become counter-

intuitive and cluttered.
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6.2 The Machine Perspective

When trying to analyse the results obtained from re-training of the Boltzmann machine;

the proliferation of individual revision approaches, found in the logic, can be simplified

to a spectrum. In general, for any type of logical revision, the models satisfying the

new information (premiss) are moved up the preference ranking, usually to maximal

preference. The non-models, those not satisfying the new information, are moved down

the preference ranking towards least preference. The degree of separation of the models

and non-models varies between the individual approaches to revision. A generalised

scheme for revision from the machine perspective is illustrated in Figure 6.4.
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6
Models(!)Models(¬!)

Maximal Preference
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1
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4
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Models(!)Models(¬!)
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Figure 6.4: A generalisation of revision R[ϕ], from the machine per-

spective, where the models and non-models are separated from one

another along a spectrum by some degree of belief.

The traditional prioritised approach to revision assumes that the new information

is reliable and should be believed regardless of any inconsistency with the previously

learned default rule. In consequence, all of the satisfying models of the premiss are

promoted to the highest level of preference. However this assumption, of strong prioriti-

sation, has been subsequently modified, even to the extent of rejecting any inconsistent

new information.

In the context of re-training a neural network, the idea of inserting a revised model

at a specific level in the preference ranking is impractical, as the amount (number of
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epochs) of re-training cannot be directly equated to the level of preference. Further, re-

arranging the order within the satisfying or non-satisfying models would be impossible

without separately re-training individual models. So, in general, for a neural network

there is a simple continuum of re-training. At one extreme is no re-training; any new

information is rejected, the models remain at their original preference levels. At the

other extreme is catastrophic forgetting (Robins, 1995; McCloskey and Cohen, 1989;

Ratcliff, 1990); the satisfying models are given maximal preference and the non-models

are driven down the preference ranking towards zero.

Figure 6.5: Re-training with catastrophic forgetting.

Consider the example in Figure 6.5, based on our previously specified 4-atom micro-

world (Figure 3.1). On the left-hand side of the figure, a collection of 60 ILP-modified

Boltzmann machines have been trained with data set ‘A88-0’ for 1,000 epochs. The

representation of the original whole state preference relation is accurate, accumulated

error ∼5%. The machines are then presented with new information, premiss “0 1 -1

1”. This premiss has satisfying models “-1 1 -1 1” (decimal 5) and “1 1 -1 1” (decimal

13), the remainder of the models in the micro-world are non-satisfying models. On

the right-hand side of Figure 6.5 the reader can observe the results of re-training for

124



only 100 epochs. The machines are almost entirely re-trained to the new information;

satisfying models 5 & 13 both at more than 40% of the output and the non-satisfying

models moved down towards zero. The accumulated error on the expected revised state

distribution is high: ∼80%. This demonstrates that memory of the original distribution

is destroyed after only a short period of re-training: catastrophic forgetting (Robins,

1995).

However, there is a point of balance, along this re-training continuum where a ma-

chine might be considered appropriately re-trained. Whilst difficult to achieve practi-

cally, it is identified in the logical approaches to revision. It is the moment when the

models (M [α]) and non-models (M [¬α]) are just separated. The satisfying models are

at maximal preference and the non-satisfying models are pushed down to at least the

lowest level of the satisfying models; maintaining their previous preference ordering.

It can be appreciated, given the previous example of catastrophic forgetting after only

100 epochs of re-training, that this point of balance is critically narrow.

Reassuringly, two logical approaches to revision that recognise this balance point

are quite disparate. These approaches were selected for investigation. One is the con-

ventional, conservative, qualitative, non-prioritised revision of Booth and Meyer (2011)

and the other is the contrasting non-traditional, radical, quantified, prioritised revision

of Spohn (1988). With regard to the Spohnian revision we only intend considering a

quantifier of one. That is, the non-models are pushed down by one ‘level of belief’,

allowing the preference of satisfying model states to be maximised.

6.2.1 Machine Re-Training

For the experimental results which follow (Section 6.3: Experimental Results), the

Boltzmann representation was trained on a preference relation from Figure 3.1, which

for future reference will be abbreviated to O[0, 1, 8, 9]. New information was then

introduced. The preference relation in logic was revised according to some of the

current belief revision operators. The machine was re-trained using pseudo-rehearsal.

The separately achieved preference relations: one from the logic and the other from the

machine were then compared as a means of considering the machine plausibility of the

different logical revision algorithms. This methodology is summarised in Figure 6.6.

Neural networks have difficulty maintaining old information when faced with new

learning, whereas logic is conservative and favours minimal change. Initially, we at-

tempted to avoid catastrophic forgetting during machine re-training by simply reducing
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Figure 6.6: The comparison of logical belief revision vs re-training in

a Boltzmann machine, within the context of a micro-world.

the number of training epochs with the new data set. This was partially effective but

the training times were very short (10-30 epochs) and the results were not robust; they

varied significantly between experiments.

The Boltzmann machine has many characteristics that are biologically attractive.

The bi-phasic nature of the Boltzmann learning algorithm makes it inherently suitable

for pseudo-rehearsal (Robins, 1995). In this context, pseudo-rehearsal can be achieved

by double cycling of the machine’s unclamped-free phase. Normally, the Boltzmann

machine learning algorithm alternates between cycles of clamping, where external in-

puts are applied and ‘positive’ cross-firing statistics are collected and free phases, where

there is no input, the machine is annealed and ‘negative’ cross-firing statistics are col-

lected. By placing two free phases back-to-back the machine can be made to retrieve its

previously learned patterns. When this re-cycling (free & free phase) is combined, in

a suitable proportion, with normal cycling (active & free phase), the machine in-effect

integrates the new patterns into the old training set. In the experimental results, which

follow, the proportion of re-cycling is estimated empirically.
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Figure 6.7: Initial training followed by re-cycling. These results, from

60 retrained ILP Boltzmann machines, indicate that there is very

little ‘drift’ in the initial learned distribution when re-cycling over

200 epochs.
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This implementation permitted us to lengthen the training train times and achieve

more stable results. Figure 6.7 shows the effect of re-cycling over 200 epochs in previ-

ously trained machines. After the initial training, on the left hand-side of the figure, the

machine accurately retrieves the O[0, 1, 8, 9] preference relation. Following re-cycling

for 200 epochs, on the right hand-side of the figure, there is a small drift from the orig-

inal learned distribution; as a consequence of the stochastic nature of the annealing

process.

6.3 Experimental Results

6.3.1 Method

Practically, there are only three ways of selecting satisfying models to take part in

any revision, i.e. only three varieties of new information are available for revision.

This arises because the satisfying models to be maximised can only be selected from a

lower intermediate level of preference or the lowest level of preference or a combination

of both. This categorisation relates back to the principle of rational monotonicity

(Section 4.3.4: Rational Monotonicity):

Given α defeasibly entails β : α |∼ β, and new information γ is added to α, the

following can occur:

Simple Revisions: promote models whose information was already entailed within

the knowledge base where entailment of β holds: (α ∧ γ) |∼ β. The promoted

models are less preferred models, partially consistent with the default rule.

Inconsistent Revisions: promote least preferred models whose surprising informa-

tion was not entailed within the knowledge base, where entailment of β does not

hold: (α∧γ) |�∼ β, as α defeasibly entails not γ : α |∼ ¬ γ. The promoted models

are inconsistent with the default rule.

Differential Revision: promotes satisfying models from disparate levels of prefer-

ence, both intermediate & lowest levels. Some promoted models will be partially

consistent with the knowledge base and others will be entirely inconsistent.

The rationalisations above allowed us to restrict machine re-training to a small

representative selection of logical revisions. For these comparisons we have considered

the two contrasting approaches of Booth & Meyer versus Spohn. Spohnian revision

preserves empty ordinal levels of preference.
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Figure 6.8: An overview for our experimental investigation, utilising

three different categories of revision: where R[x, y] identifies a revision

by the set of satisfying models.

A framework for the experimental results is provided in Figure 6.8. Each individual

revision is identified by an abbreviation specifying the satisfying models, rather than

the premiss containing the new information. All the revisions examined begin from

the congruent world abbreviated to O[0, 1, 8, 9]. Assumptions had to be made regard-

ing the relative expected numerical preferences to be assigned to the satisfying models

following revision. In the original world O[0, 1, 8, 9], the relative numerical preferences

in the training set were assigned on an exponential scale (Figure 3.1). For the experi-

mental results that follow, an expected exponential scale was assumed in the revision

preferences, based on the exponential scale in the original training set.
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During the retraining process: the length (epochs) of initial training, the proportion

of re-cycling (pseudo-rehearsal) and the length (epochs) of re-training were varied. Re-

cycling was implemented by randomly interleaving, with a probability equal to the

required proportion. So, for example, if the desired re-cycling proportion was 80%,

then before each machine cycle a random number was generated between 0.00 and

1.00; if the number was ≤ 0.80 the machine was re-cycled. In Table 6.1 and Table 6.2

below, the correct proportion of re-cycling had to be judged empirically, based on the

fit to the whole state distribution (accumulated error ‘s’) or the atomic distribution

(accumulated error ‘a’).

It was thought that shorter initial training times in the original O[0, 1, 8, 9] world,

might allow the machine to generalise better. Experiments varying the initial training

lengths from 500 through to 2000 epochs confirmed that halting the initial training

early at ∼500 epochs, prior to plateauing of the weights, achieved the best results. As

a consequence, a two dimensional search space had to be partially explored, to find the

machine result closest to the expected outcome of each logical revision. Table 6.1 &

Table 6.2 illustrate these search spaces. In the case of the simple revision R[5, 13], the

machine achieves a close approximation of the state distribution (accumulated error

‘s’). However, in the case of the inconsistent revision R[3, 11] the machine does not

approximate the state distribution, but achieves a close approximation of the atomic

distribution (accumulated error ‘a’).

In Sections 6.3.2 – 6.3.4 that follow, we present examples of the best results for

each revision rather than overload the reader with un-helpful data. For each example

result, we first demonstrate that the machine representation is capable of learning the

expected revised distribution on initial training, based on the complete final preference

relation. Finally, the patterns related to each level of revision are summarised and

analysed in Section 6.3.5.
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Simple Revision R[5, 13]

Re-Cycling (s) 100 Epochs (a) (s) 150 Epochs (a) (s) 200 Epochs (a)

60% 49% 70%

65% 40% 62%

70% 33% 54% 52% 74%

75% 24% 47% 42% 63% 55% 76%

80% 18% 44% 34% 55% 44% 65%

85% 22% 47% 16%* 43% 29% 53%

90% 28% 31% 23% 37% 22% 38%

Table 6.1: The search space for a simple revision: R[5, 13]. Accumu-

lated errors are shown relative to the state distribution (s) and the

atomic distribution (a). The best example (16%*) is illustrated in

Section 6.3.2: example Simple Revisions.

Inconsistent Revision R[3, 11]

Re-Cycling (s) 100 Epochs (a) (s) 150 Epochs (a) (s) 200 Epochs (a)

55% 39% 32%

60% 34% 19%

65% 40% 13% 41% 46%

70% 48% 16% 34% 30% 47% 55%

75% 52% 21% 38% 17% 37% 36%

80% 72% 59% 48% 13%* 32% 24%

85% 51% 36% 50% 20%

90% 65% 54% 56% 41%

Table 6.2: The search space for inconsistent revision: R[3, 11]. Ac-

cumulated errors are shown relative to the state distribution (s) and

the atomic distribution (a). The best example (13%*) is illustrated

in Section 6.3.3: example Inconsistent Revisions.
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6.3.2 Simple Revisions

We report two example simple revisions from intermediate levels of preference, R[5, 13]

and R[2, 10]. Both the Booth & Meyer and Sphonian approaches produce similar results

for these logical revisions. The expected Spohnian preference relations, illustrated in

Figures 6.9 & 6.10, have empty ordinal levels at 2 and 3 respectively. These simple

revisions introduce new information, which is partially consistent with the conditional

constraints previously learned by the machine.

Considering revision R[5, 13], Figure 6.9. Firstly, when given the whole data set

‘E144-0a’, the machine can accurately learn the preference relation: accumulated error

∼5%. When re-trained (revised) from the original preference relation of O[0, 1, 8, 9],

the satisfying models (decimal) 5 & 13 are correctly moved to maximal preference

at ∼23% of the output distribution. The non-satisfying models at least preference

stay at almost 0% and models (decimal) 2 & 10 are both at the same low level, at

∼2% of the output distribution. However, models (decimal) 0, 1, 8 & 9 have output

proportions: 0 & 8 at ∼9% and 1 & 9 at ∼12%, divergent from the expected state

preferences. Similarly, model states (decimal) 4 & 12 have outputs ∼2%, divergent

from the state distribution. In this revision, the third highest and lowest order bits are

likely to be set (Fan on, Window open), making states 1 & 9 and 4 & 12 atomically

more probable. The output of these isolated, conditionally constrained states is closer

to their atomic distribution. Therefore, the overall fit of the revised representation to

the state distribution is worse than expected from basic training on the whole data set:

accumulated error of ∼16%.

Similarly, considering revision R[2, 10], Figure 6.10. Firstly, when given the whole

data set ‘E144-0b’, the machine can accurately learn the preference relation: accumu-

lated error ∼9%. When re-trained (revised) the satisfying models 2 & 10 are correctly

moved to maximal preference at ∼20% of the output distribution. The non-satisfying

models stay at least preference, ∼0% and models 5 & 13 are both at the same low level,

at ∼5%. However, models 0, 1, 8 & 9 have output proportions: 0 & 8 at ∼14% and

1 & 9 at ∼8%, divergent from the expected state preferences. Similarly, model states

3 & 11 have outputs slightly above their expected state distribution. In this revision,

the second highest order bit is likely to be set and the lowest order bit is likely to be

cleared (Heater on, Window closed). Here too, the output of isolated, conditionally

constrained states is closer to their atomic distribution. Therefore, the overall fit of

the revised representation to the state distribution is worse than expected from basic

training on the whole data set: accumulated error of ∼21%.
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Figure 6.9: Revision [5, 13]. These results show accurate represen-

tation of the preference relation after basic training with the whole

data set. Compared to an altered conditional representation after

retraining.
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Figure 6.10: Revision [2, 10]. These results show accurate represen-

tation of the preference relation after basic training with the whole

data set. Compared to an altered conditional representation after

retraining.
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6.3.3 Inconsistent Revisions

We report two example inconsistent revisions from lowest levels of preference R[3, 11]

and R[4, 12]. Both the Booth & Meyer and Sphonian approaches produce similar

results for these revisions; in this case there are no empty ordinal levels for the Spohnian

revision, Figures 6.11 & 6.12. These difficult revisions promote satisfying models, which

are inconsistent with the conditional constraints previously learned by the machine,

from the original congruent O[0, 1, 8, 9] world.

Considering revision R[3, 11], Figure 6.11. Firstly, when given the whole data set

‘E152-0a’, the machine is able to learn the preference relation with only moderate

accuracy: accumulated error ∼24%, average error per state ∼1.5%. The maximally

preferred models 3 & 11 are correctly placed with an output proportion at ∼18%. All

the models at lower levels of preference: 5 & 13 and 2 & 10 are suitably represented

including those at least preference. However, the second level of maximal models 0, 1,

8 & 9 have output proportions that are (already) close to their atomic probabilities: 1

& 9 at ∼14% and 0 & 8 at ∼9%. The low order bit is likely to be set (Window open).

The atomic, conditional constraints vary within these models.

When re-trained (revised) from the original preference relation of O[0, 1, 8, 9], both

satisfying and non-satisfying models are further adjusted to match their atomic prob-

abilities. Maximal models 3 & 11 are adjusted down to sit just below models 1 & 9,

which are preferred, based on the atomic distribution. Similarly even models in the

lower orders of preference, for example 2 & 10 vs 5 & 13, are adjusted to match their

atomic probabilities. Overall the accumulated error relative to the state distribution

is very high: ∼44%, but the machine results are very close to the atomic distribution:

with an accumulated error, relative to this distribution, of ∼12% and average error per

state of only ∼0.8%.

Similarly, considering revision R[4, 12], Figure 6.12, when initially trained on the

whole data set the machine has only a moderate accumulated error ∼14%. However,

the second level of maximal models 0, 1, 8 & 9 have output proportions close to their

atomic probabilities: 0 & 8 at ∼12% and 1 & 9 at ∼9%. The low order bit is likely

to be cleared (Window closed). Again, the atomic, conditional constraints vary within

these models.

When re-trained (revised), both satisfying and non-satisfying models are further

adjusted to match their atomic probabilities. Overall, the accumulated error relative

to the state distribution is very high: ∼44%, but relative to the atomic distribution is

very small: accumulated error ∼9%: average error per state of only ∼0.6%.
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Figure 6.11: Revision [3, 11]. These results show a difficulty repre-

senting the preference relation after basic training with the whole data

set. After retraining, the machine accurately represents the atomic

distribution.
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Figure 6.12: Revision [4, 12]. These results show a difficulty repre-

senting the preference relation after basic training with the whole data

set. After retraining, the machine accurately represents the atomic

distribution.
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6.3.4 Differential Revision

The premiss for a differential revision entails models which are both partially consistent

and those which are entirely inconsistent with the pre-existing knowledge. The proce-

dure for managing these different types of models can promote both to the same level

of preference or promote them while maintaining their relative order (and separation)

of preference.

The traditional strictly prioritised approach is to move all the models satisfying

the premiss to the maximal preference. An example preference relation utilising a

Spohnian revision is presented in Figure 6.13. On the left-hand side of the figure, the

results demonstrate adequate learning on the whole data set. The output frequencies

of models 4 & 5 are similar (19 – 21%) and the output frequencies of models 0, 1, 8 &

9 are similar (11 – 13%). However, when the machine reaches this final distribution by

re-training, on the right-hand side of the figure, it is unable to represent the expected

distribution. The output frequencies of the maximally preferred models 4 & 5 are now

15% & 31% respectively.

The non-prioritised approach is to preserve the relative order (and separation) of

the different models: partially consistent and entirely inconsistent. An example of this

approach utilising a revision of Booth & Meyer is presented in Figure 6.14. On the

left-hand side of the figure, the results demonstrate adequate learning on the whole

data set. The output frequencies of models 4 & 5 are 17% & 37% respectively, close to

their expected frequencies. The output frequencies of models 0, 1, 8 & 9 are similar (8

– 11%), as expected. When the machine reaches this final distribution by re-training,

on the right-hand side of the figure, it still provides a reasonable representation of the

expected distribution. The output frequencies of the maximally preferred models 4

& 5 are still acceptable, 18% & 34% respectively. However, the output frequencies of

model states at second preference, 0 & 1 (9 – 14%) vs 8 & 9 (3 – 5%) are adjusted to

reflect the expected atomic distribution. The conditional constraints vary within these

models, where it is likely that the high order bit (Light) is cleared.

To represent prioritised revision in this context, where models at different levels

of preference are being promoted, a learning machine would have to be differentially

trained on individual models. This would defeat the concept of entailment by a single

premiss. During re-training, the Boltzmann machine is only able to maintain the

relative ordering and separation of the satisfying models and similarly for the non-

satisfying models.
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Figure 6.13: Revision [4, 5] strictly prioritised. These results show

a failure to adequately represent the prioritised revision; as demon-

strated in the most preferred states by the discrepancy between the

output frequencies of states 4 and 5 (15% & 31%) and their shared

expected frequency (22%).
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Figure 6.14: Revision [4, 5] relatively non-prioritised. These results

show a moderately adequate representation of the non-prioritised re-

vision; as demonstrated in the most preferred states by the similarity

between the output frequencies of states 4 and 5 (18% & 34%) and

their expected frequencies (18% & 36%).
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6.3.5 Discussion of Results

For simple revisions, the Boltzmann machine is able to accurately learn the whole

data set on basic training. On revision, the new information is partially consistent with

the previous default rule. Small changes contained in the new conditional constraints

result in variations in the atomic distribution between models occupying the same level

of state preference. Only these isolated models are adjusted to their atomic distribu-

tions. Therefore, only minor differences from the expected whole state distribution

occur: whole state preference prevails.

An inside the box analysis, looking at the distribution of atomic probabilities in the

training set compared to the network weights, was performed for the simple revision

R[2, 10]. By a method identical to the analysis done for the original O[0, 1, 8, 9] world

in Section 5.2.4. There were four different patterns of machines. The majority of

these machines had two patterns which were mirror images of each other; 48 of the

total 60 machines tested. The analysis of these machine patterns indicated that the

bias weights on the output layer remained representative of the new individual atomic

frequencies. Remember, that these bias weights are revised from their original learned

values: so changes in individual atomic probabilities are compared to changes in the

bias weights, see Table 6.3. The bias weight on the hidden node likewise moved from

the original -2 (Section 5.2.4) to +7, in keeping with the revised proportion of heating

in the micro-world. These simple revisions include adjustments in constraints, which

the machine was able to incorporate into its previously learnt model / representation.

The single hidden node continued to act as a feature detector, or linear conceptual

space, following revision.

Atomic Distribution vs Output Bias following Revision

Node Atomic Probability Change Output Bias Change

Light 0% None 0

Fan -7% Slightly negative -3

Heater +35% Highly positive +20

Window -22% Moderate negative -11

Table 6.3: Comparison of the change in probability of output node

activation to the change in bias weights in the output layer, as a rep-

resentation of the atomic distribution, following the revision R[2, 10].
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For inconsistent revisions, minor differences from the expected whole state dis-

tribution are already present on initial training with the complete data set. On revision,

major inconsistencies between the previous default rule and the new conditional con-

straints result in the machine being unable to represent the whole state preference

relation. In the examples, there is inconsistency between the state preference ordering

and atomic typicality on every level, even involving the maximally preferred models.

Under these conditions of inconsistent revision, the network accurately represents the

atomic distribution: atomic typicality prevails.

Atomic Distribution vs Output Bias following Revision

Node Atomic Probability Change Output Bias Change

Light 0% None 0

Fan +35% Highly positive +32

Heater -4% Slightly negative +7

Window -23% Moderate negative -14

Table 6.4: Comparison of the change in probability of output node

activation to the change in bias weights in the output layer, as a rep-

resentation of the atomic distribution, following the revision R[4, 12].

A probabilistic analysis was also performed for an inconsistent revision R[4, 12]. The

changes in bias weights on the output layer remained relatively representative of the

revision to the new individual atomic frequencies, see Table 6.4. However, no patterns

were able to be identified in the inter-layer connection weights and, particularly, the

hidden layer bias weight varied considerably from machine to machine, taking a bimodal

distribution, see Figure 6.15. These inconsistent revisions include information which is

entirely at odds with the previously learnt model of the world. It is not clear if or how

the machine can incorporate this surprising information. However, it is clear that the

single hidden node representation of a linear conceptual space, is lost following these

revisions.

For differential revisions, it is evident that no learning machine could adequately

represent strict prioritisation. To do so would require individual training of each model

state. The Boltzmann machine can only maintain the relative ordering and separation

of the differential, satisfying models that existed on initial training. In non-prioritised

revisions (Booth & Meyer, Figure 6.14), the Boltzmann machine is able to represent

the whole state preference of the maximal models. However, these revisions still include
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Figure 6.15: A histogram of the hidden node bias weights (W15),

following the revision R[4, 12].

the promotion of inconsistent models from the lowest level of preference.

In general, as increasingly inconsistent information is acquired (simple → incon-

sistent revision) greater variation in typicality between models at the same level of

preference occurs: increasing incongruence. Under these chaotic circumstances, the

output of the machine moves from whole state preference towards atomic typicality.

6.4 Boltzmann Revision

What does the Boltzmann machine representation support as an approach to belief

revision? In the subgroup of simple revisions, with partially consistent new information,

the machine results fit reasonably well with both of the logical approaches examined

(Booth & Meyer or Spohn). However, it cannot support strict prioritisation.

Further, any major inconsistency in the conditional constraints contained within the

data expose what we believe is the underlying default of the Boltzmann machine: to

learn the atomic distribution (typicality). Such incongruence is manifest by variations

in the typicality of states occupying the same level of state preference. It can be

present within single data sets before any revision but is most obvious after inconsistent

revisions, Section 6.3.3.

The reader is reminded that these experimental results are from a Boltzmann ma-

chine utilising a single ILP architecture. The machine is forced to combine or select the
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information it learns: state preference and/or atomic typicality. It cannot accurately

represent both, unless the involved world is congruent!

None of the current approaches to belief change operators in logic utilise informa-

tion related to typicality (atomic distribution) to inform the results of revision. Our

experiments with the Boltzmann machine indicate that for disordered, inconsistent re-

visions typicality provides a 2nd dimension or bound, modifying the revision of whole

state preference. Further, typicality information is encapsulated in every training set;

in contrast to the approach of current two-dimensional revision schemes, which utilise

additional meta-information extraneous to the epistemic state (Rott, 2009).

For the reasons given above, we present yet another divergent approach to revision,

utilising the scheme which was previously proposed to characterise typicality (Sec-

tion 5.3.3). A system of spheres diagram is not offered, as the proposed Boltzmann

revision is beyond the explanatory capacity of the diagram, which would require dual

overlapping spheres for preference and typicality. Recalling our previous description of

a state typicality ordering:

1. Let A be a set of atomic propositions: A = {ai : i = 1, 2, ...., k}

– symbolising the atomic composition of states in a world with cardinality k.

Then:
−→
ta = aL1 ≺ aL2 ≺ .... ≺ aLk−1 ≺ aLk ≺ aMk ≺ aMk−1 .... ≺ aM2 ≺ aM1

– is a total pre-order on the typicality of atomic valuations:

– where aLi is less typical than aLj and aMi is more typical than aMj ,

– given complementary truth valuations : aMi , a
L
i ∈ [false− 1, true+ 1].

Then a total pre-order on state typicality,
−→
TS given by:

−→
TS = aLk ∧ aLk−1.... ∧ aL2 ∧ aL1 ≺ aMk ∧ aLk−1.... ∧ aL2 ∧ aL1 ≺

aMk ∧ aMk−1.... ∧ aL2 ∧ aL1 ...... ≺ aMk ∧ aMk−1.... ∧ aM2 ∧ aL1
≺ aMk ∧ aMk−1.... ∧ aM2 ∧ aM1

An extension of this scheme,
−→
T[α]: denotes a typicality ordering on the models of α.

Further, a new typicality operator also needs to be defined:

2. Let
−−−−−−−→
h≥β 7→ T[α] be a re-ordering of the preferred models of α by typicality:

where models at (preference) ranking ≥ β are moved (raised or lowered)

to a new rank based on their atomic typicality.
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Then
−−−−−−−→
h≥β 7→ T[α] =


−→
T[α] , if within rank typicality varies

or otherwise
−−→
h≥β , if within rank typicality is uniform

Denoting the typicality operator as an ordering may seem awkward, but it em-

phasises the unconventional nature of what is actually a replacement of preference by

typicality. An advantage of the proposed declaration is that it correctly adjusts for

typicality only when required. This becomes necessary when traditional state prefer-

ences are insufficient to describe the typicality relationship between models within a

ranking, i.e. when models at the same preference level have discrepant typicalities.

In order to define a revision operator based on the results from the Boltzmann Ma-

chine, the two classes of revision previously considered need to be encoded separately:

Simple Revision: the new information is partially consistent with the pre-existing

knowledge base:

−→
h 7−→

−−−−−−→
h<β ∨ ¬α ≺ .

−−−−−−−→
h=β 7→ T[α] ≺ . −→α

The non-satisfying models are incorporated at lowest preference.

Isolated incongruent models are re-ordered by typicality.

The maximal models are relatively prioritised.

Inconsistent Revision: the new information is extremely inconsistent with the pre-

existing knowledge base:

−→
h 7−→

−−−−−−→
h<β ∨ ¬α ≺ .

−−−−−−−→
h≥β 7→ T[α]

The non-satisfying models are incorporated at lowest preference.

All the incongruent models are re-ordered by typicality,

Including the maximal models.

Assumption: β is a degree of belief, sufficient to allow the models of α to be relatively

prioritised. This is equivalent to Spohn’s methodology, specifying an index of

one for the agent’s commitment to the new information.

When abstracted in this way, the connection between the two cases of revision

becomes clearer. In situations where extremely inconsistent new information (α) is

received, even the most preferred satisfying models (Maximal Models[α]) are revised
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by their typicality: they may be too inconsistent with the prior beliefs. We have

defined the threshold for this revision by typicality based on the divergence in typicality

of models at the same level of preference. Although we have not specified the exact

metric, it can be appreciated that this definition is a ‘proxy for disorder’ within the

epistemic state. Given sufficient variation in such intra-level typicality, it is likely that

overlap occurs with models in higher or lower preference rankings.

Of course, there is a partial solution to the conflict in ordering by preference and

typicality, which might mitigate some of the disorder resulting from incrementally

inconsistent revisions. That is to represent the two different types of information sep-

arately, in architecturally distinct parallel neural systems. This is the ‘dual process

approach’ theorised by Frixione and Lieto (2011, 2014), previously mentioned in Sec-

tion 5.3.4: Typicality versus Preference. However, even utilising a ‘dual approach’ still

requires some choice be made between the two orderings. Considering the results of be-

lief revision from the experiments with the Boltzmann machine, some of the questions

at the end of Section 5.3.4 can now be answered. In situations where belief revision

results in chaotic inconsistency: typicality takes precedence over preference.

Chaotic, random
Representation by atomic typicality

Probabilistic

POSSIBLE WORLDS:

Ordered, constrained
Representation by state preference

Logical

Figure 6.16: A philosophical relationship between chaotic probabilis-

tic typicality and ordered preferential logic.
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If the reader can forgive a momentary digression into philosophy (Figure 6.16), on

a larger scale too there may be a spectrum of possible worlds with regards learning and

adaptation. On the one-hand, there are worlds where revision results in congruence;

where gradually accumulated new information (learning), which fits with our view of

the world, is merged with our beliefs by small adjustments in preference into a new and

rational whole. These ordered systems can be elegantly described by logic. Such con-

scious, rational learning is a new evolutionary phenomena. On the other-hand, there

are worlds where revision results in incongruence; where surprisingly inconsistent, new

information which disrupts the order of the prior beliefs, can only be dealt with in the

short term by resorting to typicality: the underlying disordered numerical relationships

between compositional atoms. The explanation of such chaotic systems has tradition-

ally and phylogenically been probabilistic. Could an extended form of typicality logic

be utilised to describe them?
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Chapter 7

Conclusions

This chapter presents some open questions and a brief record of intended investigations.

It then summarises each thread of the thesis: representation, incongruence and belief

revision and attempts to extract the main concepts which consolidate the research.

7.1 Future Directions

It is hoped that this section is a list of aspirations, rather than an acknowledgement of

things overlooked.

Unexplained Results: There were a group of permutations in 2-atom micro-worlds

(with a single preferred model state and the remaining three states in the least

preferred rank) where the ILP Boltzmann machine had difficultly learning a gen-

erative model of the input training set. Specifically, the machine over-estimated

the preference of the least atomically typical state. We have assumed this prob-

lem relates to the very limited architecture of this machine. It didn’t occur in any

of the larger 3, 4, 5 or 6-atom worlds. There may be a physical limitation on the

representation capacity of such a small machine. However, the unexplained re-

sults deserve further consideration. It should be possible to examine the internal

behaviour of these machines, as in Section 5.2.4 Network Analysis.

Network Behaviour: An internal network analysis of the HLR machine based on a

Markov model was avoided because of the complexity of the hidden layer inter-

connections. However, it would be interesting to see how the representation, in

terms of internal node feature detection, differed from the ILP machine.
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We would like to investigate the energy minima in the network related to typical-

ity versus preference; to obtain a clearer mathematical insight into when and why

the network changes its’ representation. We have yet to devise a methodology

for carrying out this investigation.

Belief Revision: It would be interesting to test the HLR Boltzmann machine in the

context of belief revision. We expect its behaviour would be different from the

limited ILP machine. It is possible the additional complexity of the network might

enable it to maintain a modified version of preferential ranking in situations where

the ILP machine defaulted to an ordering based on atomic typicality.

Further, accepting the common-sense view that the recovery axiom is intuitively

correct, we would like to determine if it is possible to achieve an appropriate

outcome with the Boltzmann network. Recovery would require two consecutive

revisions with the attendant practical difficulty in retaining the original training

information.

Variable Binding: As stated earlier, we have not examined the mine-field of predicate

calculus and its relationship to the representation of dynamic variable binding.

There is a large body of research on this topic (Section 2.4.5: Recent Literature),

including some highly complex neural network implementations in the field of

Neural-Symbolic Integration (NSI). The problem of dynamic variable binding

comes down to an issue of space. Even within the vast size of the dendritic con-

nection tree in an average brain (∼ 1014 synapses), there is not enough capacity to

represent the almost infinite number of relationships that are present within the

physical world. Whilst not constituting an hypothesis, the Boltzmann machine

does offer a potential solution for the representation of multiple relationships

from a single object. Most networks can only retrieve mathematically functional

mappings: many-to-one or one-to-one. These mappings can only consume repre-

sentational capacity. In the case of the SHRUTI system in NSI (Section 2.4.3),

the network requires a large number of ancillary nodes (pairs of ‘collector, en-

abler and utility nodes’) and additional connections to represent predicates. The

Boltzmann machine can retrieve one-to-many relationships, thus conserving the

space within the neural network. As demonstrated in Section 4.3.2: Preference

Relation, the machine can cycle through multiple relationships within a single

set of neuronal connections: no additional architectural capacity is required.
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7.2 Summary

Representation

The thesis makes a contribution to the domain of cognition by advancing a connection-

ist model for the representation of supra-classical, non-monotonic logic: specifically a

Boltzmann neural network.

SCNM logic can be seen as a formalism of common-sense reasoning. It specifically

requires a ranking of preferred conclusions in the context of inference under the rational

consequence relation. This ranking of model states incorporates the less preferred

counter-examples, which are the basis of exception processing and possibly reasoning

about causality. In probabilistic terms this ranking is the theoretical equivalent of the

energy minima within a symmetric neural network.

Information and Energy:1 In the context of a SNN these concepts are alternative

characterisations. From the previous literature, particularly the research of Pinkas,

we know that logical formulae can be mathematically translated to a specific neural

network structure, so that conclusions in the logic are represented by energy states in

the network. The Boltzmann machine can learn multiple optima which are represented

by the partition energy function at equilibrium: the Boltzmann distribution. The

Boltzmann machine may be unique in its ability to retrieve a distribution ‘strongly

equivalent’ to its training set.

Probability and Stochastic Activation: Ranking with ‘strong equivalence’ can only

be retrieved by a neural network with stochastic activation functions, sampling from

an energy distribution: any such network is analogous to the Boltzmann machine.

The default rule and consequent preference relation of SCNM logic are a qualitative

counterpart of a generative model in probability. Stochastic activation functions are

the underlying basis of the probabilistic representation in neural networks, be they

symmetrically recurrent or feed-forward. The stochastic activation allows the network

to sample a distribution in the manner of a Markov model.

There were no traditional bench-marks for SCNM logic with which to test the

hypothesised Boltzmann model. The thesis utilised logical micro-world environments

so that outputs of the network model could be compared to inferential conclusions in

the logic: other authors have used similar schemata. The experimental results from a

variety of generic micro-worlds, with incremental numbers of atoms, supported the view

that the Boltzmann machine is a faithful model of SCNM logic. It was able to learn a

1Important themes of the thesis are emphasised
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preference relation and able to retrieve appropriately ranked model states entailed by a

premiss, in the context of inference under rational consequence. Ideal single machines

with very small errors per state are possible, but difficult to efficiently generate during

training. The thesis offers a solution of ensemble machines, accumulating a single

output from multiple parallel hidden layers. This construction reduces the state errors

and enables fast, robust learning.

Further, we have shown that this machine emulates two important example prop-

erties of the logic (Section 4.3.4), as a demonstration of the practical utility of the

representation. In terms of human cognition, there is evidence from the domain of

neuroscience that spiking neural networks, utilising the restricted Boltzmann machine,

can be trained using an event-driven variant of Hebbian learning in large neuromorphic

systems.

Plausibility versus Efficiency: The biological and engineering domains often have

competing requirements. Hinton’s original version of the Boltzmann machine had a rich

hidden layer consistent with the role of inhibitory constraint within the biological cor-

tex. It implements simulated annealing to achieve optimisation. Simulated annealing

can be viewed as the parent algorithm of threshold optimisation, inherently suitable for

a disordered biological environment. Both these implementations make the standard

machine less computationally efficient than the restricted machine. However, in the

context of a massively parallel, biological system they may not be such a disadvantage.

Incongurence

Closer examination of our initial results with a HLR Boltzmann machine revealed that

every training set of vectors contains dual information about: whole state frequencies

and atomic activation frequencies. The whole state frequency distribution is equivalent

to whole state preference in logic. However, a separate state distribution can be recon-

structed from the product of atomic frequencies. These dual information distributions

are often incongruent. Experimentation with the architecture of the Boltzmann ma-

chine produced a restricted ILP machine which more closely selected the whole state

preference ranking of traditional logic. As previously this machine architecture was

utilised in the context of an ensemble: parallel hidden layers with an accumulated

single output.

Further, exploration of the internal ‘mechanics’ of the ILP machine architecture

was completed in an individual specific environment with a superimposed semantic

analogy. This analysis as a Markov model, involved examination of the learned weights
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and activation states in the network, when presented with a neutral (null) premiss.

It demonstrated that the machine’s hidden node acted as a linear conceptual space,

representing the micro-world semantics.

Preference versus Typicality: The thesis proposes that the distribution of states

reconstructed from atomic frequency is the probabilistic equivalent of typicality in logic.

Although the term typicality is widely used in the literature, the traditional view of

preferential semantics in non-monotonic logic does not utilise it. We believe, there is

no adequate definition in logic based on compositional, atomic characteristics. We have

argued, by counter-example, that traditional representation of typicality by ‘minimal

model semantics’ is incorrect and that atomic typicality requires a separate ranking

from whole state preference. The thesis attempts to provide an atomic definition of

typicality. The selection of typicality versus preference by architectural alteration of a

Boltzmann network provides a practical way of implementing a theorised ‘dual process

approach’ to reasoning.

One theme of the thesis is the inherent conflict between whole state preference and

atomic typicality in these incongruent information distributions. Chapter 4 Repre-

sentation models the traditional view of logic based solely on whole state preference.

Chapter 5 Incongruence presents the conflicting information based on atomic typical-

ity, which this traditional logic largely ignores. The final Chapter 6 Belief Revision

demonstrates, from the machine perspective, that a process of dual adaptation in both

preference and typicality is required to model a range of belief revisions: in the extreme

involving prioritisation of information completely inconsistent with the pre-existing de-

fault rule.

Belief Revision

Any cognitive agent must be able, not only to draw inferences from the environment

but also, to adapt to changes in the environment. Belief revision in logic formalises the

structure of adaptation. It is a relatively young domain; the landmark paper of AGM

was published in 1985 and there are still a surfeit of competing theories.

In general, neural networks have difficulty retaining previous learning when exposed

to new data. They are by default irrationally non-monotonic. The thesis utilised a

variation of the Boltzmann machine learning algorithm to implement pseudo-rehearsal,

which allowed the network to maintain past learning during re-training. It enabled

experimental examination of the machine plausibility of two current theories of belief

revision, Booth & Meyer and Spohn.
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We considered experimental results from three representative categories of revision:

• In situations where new information was partially consistent with the previously

held beliefs, the machine was able to be re-trained to reflect the view held in

logic. The preference ranking of the satisfying and non-satisfying models was able

to be appropriately adjusted, incorporating the new information. The internal,

linear conceptual space representation by the hidden node was preserved from

the exemplar 4-atom micro-world, O[0, 1, 8, 9].

• In situations where new information was entirely inconsistent with the previously

held beliefs, the results of machine re-training did not reflect the logic: the entire

preference ranking was replaced by an ordering on atomic typicality. The internal

representation of a linear conceptual space by the hidden node was lost.

• In situations where there was a mixture of partially consistent and entirely incon-

sistent new information, the Boltzmann machine was not able to strictly priori-

tise individual model states. These machine results indicate that logical theories

holding strict prioritisation are not plausible.

Order versus Chaos: The results from re-training the Boltzmann machine suggest

that the current rational approaches to belief revision in logic only apply in ordered,

congruent worlds. In chaotic, incongruent worlds typicality provides a ranking of states

based on their individual atomic probabilities. In these disordered worlds inconsisten-

cies in whole state preference, between pre-existing rules and the revised models, cannot

be rationally accommodated with reference to a unitary state exemplar.

It is hypothesised that exception processing using typicality is the evolutionary

basis of biological adaptation and that rational reasoning is phylogenetically recent. A

definition of atomic typicality (as attempted in the thesis) could extend the formality

of logic to adaptation in chaotic environments, where inconsistent information can only

be assimilated with reference to individual compositional atoms.

In conclusion; the thesis offers the Boltzmann machine as a practical represen-

tation of SCNM logic. It validates the place of a Boltzmann-like mechanic in human

cognition and re-enforces current research in neuroscience into spiking neural networks

with stochastic Hebbian learning. Further, the model enables the experimental inves-

tigation of domains, such as typicality and belief revision, which are current areas of

mathematical conjecture in logic.

154



References

Aarts, E. and Korst, J. (1990). Simulated Annealing and Boltzmann Machines. Inter-

science Series in Mathematics and Optimization. John Wiley and Sons.

Aarts, E. and Korst, J. (1997). Local Search in Combinatorial Optimization, Chapter

Simulated Annealing, 91–120. John Wiley and Sons.

Adams, E. (1965). The Logic of Conditionals. Inquiry , 8, 166–197.

Adeli, H. and Ghosh-Dastidar, S. (2009). Spiking Neural Networks. International

Journal of Neural Systems , 19 (4), 295–308.

Alchourron, C., Gärdenfors, P., and Makinson, D. (1985). On the Logic of Theory

Change: Partial Meet Contraction and Revision Functions. Journal of Symbolic

Logic, 50, 510 – 530.

Alchourron, C. and Makinson, D. (1982). On the Logic of Theory Change: Contraction

Functions and their Associated Revision Functions. Theoria, 48, 14 – 37.

Annis, C. (2014). Central Limit Theorem (Summary). Statistical Engineering -

http://www.statisticalengineering.com/central limit theorem (summary).htm.

Baader, F. (2003). The Description Logic Handbook: Theory, Implementations and

Applications. (3rd ed.). Cambridge University Press.

Bacchus, F. (1988). Representing and Reasoning with Probabilistic Knowledge. Ph. D.

thesis, University of Alberta.

Bacchus, F. (1990). A Logic for Representing Reasoning with Statistical Knowledge.

Computational Intelligence, 6, 209–231.

Bacchus, F. (1991). Default Reasoning from Statistics. In Proceedings AAAI, 392–398.

155



Bacchus, F. (1996). From Statistical Knowledge Bases to Degrees of Belief. Artificial

Intelligence, 87, 75–143.

Balkenius, C. and Gärdenfors, P. (1991). Non-Monotonic Inferences in Neural Net-

works. In Principles of Knowledge Representation and Reasoning, 32–39.

Barsalou, L. (1985). Continuity of the Conceptual System across Species. Trends in

Cognitive Sciences , 9 (7), 305–307.

Barsalou, L. (1999). Perceptual Symbol Systems. Behavioural and Brain Sciences , 22,

577–660.

Benferhat, S., Bonnefon, J., and Neves, S. (2005). An Overview of Possibilistic Han-

dling of Default Reasoning, with Experimental Studies. Synthese, 146, 53–70.

Blanchette, G., McCane, B., Labuschagne, W., and Robins, A. (2015). Towards a Rep-

resentation of Non-Monotonic Inference in an Artificial Neural Network. Technical

report, Otago University Press, Computer Science.

Bochman, A. (2011). Essays in Non-Monotonic Reasoning, 30th Anniversary, 25–61.

College Publications.

Boden, M. and Niklasson, L. (2000). Semantic Systematicity and Context in Connec-

tionist Networks. Connection Science, 12 (2), 111–142.

Booth, R., Chopra, S., Meyer, T., and Ghose, A. (2004). A Unifying Semantics for

Belief Change. In R. Lopez de Mantaras and L. Saitta (Eds.), European Conference

of Artificial Intelligence, Volume 16, 793–797.

Booth, R. and Meyer, T. (2011). How to Revise a Total Preorder. Journal of Philo-

sophical Logic, 40, 193–238.

Booth, R., Meyer, T., and Varzinczak, I. (2012). PTL: A Propositional Typicality

Logic. 13th European Conference on Logics in Artificial Intelligence (LNAI), 7519,

107–119.

Booth, R., Meyer, T., and Varzinczak, I. (2013). PTL: A Propositional Typicality

Logic (extended version). Self publication.

Booth, R., Meyer, T., and Wong, K. (2006). A Bad Day Surfing is Better than a Good

Day Working: How to Revise a Total Preorder. In International Conference on the

Principles of Knowledge Representation and Reasoning, Volume 10, 230–238.

156



Boutlier, C. (1996). Iterated Revision and Minimal Change of Conditional Beliefs.

Journal of Philosophical Logic, 25, 263–305.

Bowers, J. (2009). On the Biological Plausibility of Grandmother Cells: Implications

for Neural Network Theories in Psychology and Neuroscience. Psychological Re-

view , 116 (1), 220–251.

Bowers, J. (2011). What is a Grandmother Cell? And how would you know if you

found one? Connection Science, 23 (2), 91–95.

Burch, R. (2014). Charles Sanders Peirce. Stanford Encyclopedia of Philosophy -

http://plato.stanford.edu/archives/win2014/entries/peirce/ .

Byrne, R. (1989). Suppressing Valid Inferences with Conditionals. Cognition, 31,

61–83.

Cantwell, J. (1997). On the Logic of Small Changes in Hypertheories. Theoria, 63 (1),

54–89.

Carnap, R. (1950). Logical Foundations of Probability. University of Chicago.

Chan, H. and Darwiche, A. (2002). When do Numbers Really Matter? Journal of

Artificial Intelligence Research, 17, 265–287.

Chang, F. (2002). Symbolically Speaking: A Connectionist Model of Sentence Produc-

tion. Cognitive Science, 93, 1–43.

Chen, H. and Murray, A. (2003). Continuous Restricted Boltzmann Machine with an

Implementable Training Algorithm. IEEE Proc. Visual Image Processing , 150 (3),

153–158.

Cheng, P. and Holyoak, K. (1985). Pragmatic Reasoning Schemas. Cognitive Psychol-

ogy , 17, 391–416.

Chopra, S., Ghose, A., and Meyer, T. (2002). Iterated revision and the Axiom of

Recovery: a Unified Treatment via Epistemic States. In F. van Harmelen (Ed.),

European Conference of Artificial Intelligence, Volume 15, 541–545.

Chopra, S., Ghose, A., and Meyer, T. (2003). Non-Prioritized Belief Change. Journal

of Philosophical Logic, 32, 417–443.

157



Courville, A., Bergstra, J., and Bengio, Y. (2011). A Spike and Slab Restricted Boltz-

mann Machine. Artificial Intelligence and Statistics , 1, 233–241.

CRAN (2014). A Language and Environment for Statistical Computing. www.r-

project.org/ .

Creath, R. (2014). Logical Empiricism. Stanford Encyclopedia of Philosophy -

https://plato.stanford.edu/archives/spr2014/entries/logical-empiricism/ .

Darwiche, A. and Pearl, J. (1997). On the Logic of Iterated Belief Revision. Artificial

Intelligence, 89, 1–29.

d’Avila Garcez, A., Lamb, L., and Gabbay, D. (2007). Connectionist Modal Logic:

Representing Modalities in Neural Networks. Theoretical Computer Science, 371,

34–53.

d’Avila Garcez, A., Lamb, L., and Gabbay, D. (2009). Neural-Symbolic Cognitive

Reasoning. Cognitive Technologies. Springer.

Davis, E. and Morgenstern, L. (2004). Introduction: Progress in Formal Common-

Sense Reasoning. Artificial Intelligence, 153, 1–12.

Delgrande, J. (1987). A First-Order Logic for Prototypical Properties. Artificial Intel-

ligence, 33, 105–130.

Egger, M. (1988). The Boltzmann Machine: a Survey and Generalization. Technical

Report TR 805, Massachusetts Institute of Technology.

Eslami, S., Heess, N., and Win, J. (2012). The Shape Boltzmann Machine: A Strong

Model of Object Shape. In IEEEComputer Vision and Pattern Recognition, 406–413.

Fodor, J. and Pylyshyn, Z. (1988). Connectionism and Cognitive Architecture: A

Critical Analysis. Cognition, 28, 3–71.

Ford, M. and Billington, D. (2000). Strategies in Human Non-Monotonic Reasoning.

Computational Intelligence, 16, 446–469.

Franca, M., Zaverucha, G., and d’Avila Garcez, A. (2014). Fast Relational Learning

Using Bottom Clause Propositionalization with Artificial Neural Networks. Machine

Learning , 94, 81–104.

158



Frank, S., Haselager, W., and van Rooij, I. (2009). Connectionist Semantic Systemicity.

Cognition, 110, 358–379.

Freeman, H. (1994). Neural Networks, Algorithms, Applications and Programming

Techniques. Addison-Wesley.

Frixione, M. and Lieto, A. (2011). Representing Concepts in Artificial Systems: A

Clash of Requirements. CEUR Proceedings 4th HCP Workshop Human Processes , 4,

75–82.

Frixione, M. and Lieto, A. (2014). Towards an Extended Model of Conceptual Repre-

sentations in Formal Ontologies: A Typicality-Based Proposal. Journal of Universal

Computer Science, 20 (3), 257–276.

Gabbay, D., Hogger, C., and Robinson, J. (1994). Handbook of Logic in Artificial

Intelligence and Logic Programming, Volume Volume 3: Nonmonotonic Reasoning

and Uncertain Reasoning. Oxford UP, Oxford.

Gärdenfors, P. (1994). Logic and Information Flow, Chapter How Logic Emerges from

the Dynamics of Information, 49–77. Cambridge MIT Press.

Gärdenfors, P. (2004). Conceptual Spaces. MIT Press, Cambridge.

Gärdenfors, P. and Makinson, D. (1988). Revisions of Knowledge Systems using Epis-

temic Entrenchment. In Theoretical Aspects of Reasoning about Knowledge, 83–95.

Morgan Kaufmann.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions and

the Bayesian Restoration of Images. In IEEE Transactions on Pattern Analysis and

machine Intelligence, Volume 6, 721–741.

Getoor, L. and Taskar, B. (2007). Introduction to Statistical Relational Learning. MIT

Press Cambridge.

Giordano, L., Gliozzi, V., Olivetti, N., and Pozzato, G. (2007). Preferential Description

Logics. Artificial Intelligence and Reasoning. LNAI , 4790, 257–272.

Giordano, L., Gliozzi, V., Olivetti, N., and Pozzato, G. (2013). A Non-Monotonic

Description Logic for Reasoning about Typicality. Artificial Intelligence, 195, 165–

202.

159



Girard, P. and Tanaka, K. (2016). Paraconsistent Logics. Synthese, 193, 1–14.

Giugino, R. and Lukasiewciz, T. (2002). P-SHOQ(D): A Probabilistic Extension of-

SHOQ(D) for Probabilistic Ontologies in the Semantic Web. 8th European Confer-

ence on Logics in Artificial Intelligence (LNAI), 2424, 86–97.

Gomez-Torrente, M. (2015). Alfred Tarski. Stanford Encyclopedia of Philosophy -

http://plato.stanford.edu/archives/win2015/entries/tarski/ .

Grove, A. (1988). Two Modelings for Theory Change. Journal of Philosophical

Logic, 17, 157–170.

Hadley, R. and Cardei, V. (1999). Language Acquisition from Sparse Input without

Error Feedback. Neural Networks , 12, 217–235.

Hadley, R., Rotaru-Varga, A., Arnold, D., and Cardei, V. (2001). Syntactic Systemicity

Arising from Semantic Predictions in Hebbian-Competitive Networks. Connection

Science, 13 (1), 73–94.

Hansson, S. (1991). Belief Contraction without Recovery. Studia Logica, 50, 251–260.

Hansson, S. (1993). Changes of Disjunctively Closed Bases. Journal of Logic, Language

and Information, 2 (4), 255–284.

Hansson, S. (2011). Logic of Belief Revision. Stanford Encyclopedia of Philosophy -

https://plato.stanford.edu/entries/logic-belief-revision/ .

Harnad, S. (1987). Categorical Perception: The Groundwork of Cognition. Cambridge

University press.

Harnad, S. (1990). The Symbol Grounding Problem. Physica, 42, 335–346.

Hartshorne, C. and Weiss, P. (1958). Collected Papers of Charles Sanders Peirce:

Volumes I - VIII, 1931-1935, Volume I -VIII. Harvard University Press.

Haykin, S. (2008). Neural Networks and Learning Machines (3rd Edition ed.). Learning

Tasks p38-45, Stochastic Methods p580-621, Hopfield Model p690-703: Pearson.

Hebb, D. (1949). The Organisation of Behaviour. John Wiley and Sons.

Heidema, J. and Labuschagne, W. (2001). Culture in Retrospect, Chapter Knowledge

and Belief: The Agent-Oriented View, 194–214. UNISA Press.

160



Hendler, J. (1989). Marker Passing over Microfeatures: Towards a Hybrid Symbolic

Connectionist Model. Cognitive Science, 13, 79–106.

Heyes, C. (2012). New Thinking: the Evolution of Human Cognition. Philosophical

Transactions of the Royal Biological Society , 367, 2091–2096.

Hinton, G. (1989). Deterministic Boltzmann Learning Performs Steepest Descent in

Weight Space. Neural Computation, 1, 143–150.

Hinton, G. (1990). Preface to the Special Issue on Connectionist Symbol Processing.

Artificial Intelligence, 46, 1–4.

Hinton, G. (2010). A Practical Guide to Training Restricted Boltzmann Machines.

Technical Report TR 2010-003, University of Toronto, Machine Learning.

Hinton, G. and Brown, A. (1999). Spiking Boltzmann Machines. NIPS , 122–128.

Hinton, G., Osindero, S., and Teh, Y. (2000). What Kind of Graphical Model is the

Brain? www.cs.toronto.edu/ hinton/talks/ijcai3.ppt .

Hinton, G., Sejnowski, T., and Ackley, D. (1984). Boltzmann Machines: Constraint

satisfaction Networks that Learn. Technical Report TR 84-119, Carnegie-Mellon

University, Computer Science.

Hinton, G., Sejnowski, T., and Ackley, D. (1985). A Learning Algorithm for Boltzmann

Machines. Cognitive Science, 9, 147–169.

Hopfield, J. (1982). Neural Networks and Physical Systems with Emergent Collective

Computational Abilities. Proceedings Natural Academy of Science, 79, 2554–2558.

Hsu, F. (2002). Behind Deep Blue: Building the Computer that Defeated the World

Chess Champion, Volume ISBN 0-691-09065-3. Princeton University Press.

Hummel, J. (2011). Getting Symbols Out of a Neural Architecture. Connection Sci-

ence, 23 (2), 109–118.

Irvine, A. (2015). Bertrand Russell. Stanford Encyclopedia of Philosophy -

http://plato.stanford.edu/archives/win2015/entries/russell/ .

Izhikevich, E. (2004). Which Model to Use for Cortical Spiking Neurons? In IEEE

Transactions on Neural Networks, Volume 15, 1063–1070.

161



Jagota, A. (1994). Representing Discrete Structures in a Hopfield-Style Network,

Volume Neural Networks for Knowledge Representation and Inference, 123–142.

Lawrence Erlbaum.

Kennedy, J. (2016). Kurt Gödel. Stanford Encyclopedia of Philosophy -

http://plato.stanford.edu/archives/win2016/entries/goedel/ .

Kersting, K., De Raedt, L., and Raiko, T. (2006). Logical Hidden Markov Models.

Journal of Artificial Intelligence Research, 25, 425–456.

Khosravi, H. and Bina, B. (2010). A Survey on Statistical Relational Learning. Cana-

dian Artificial Intelligence LNAI , 6085, 256–268.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimisation by Simulated Anneal-

ing. Science, 220, 671–680.

Knott, A. (2012). Sensorimotor Cognition and Natural Language Syntax. MIT Press.

Koller, D. and Pfeffer, A. (1998). Probabilistic Frame Based Systems. In Proceedings

AAAI, Volume 15th, 580–587.

Koons, R. (2014). Defeasible Reasoning. Stanford Encyclopedia of Philosophy -

https://plato.stanford.edu/archives/spr2014/entries/reasoning-defeasible/ .

Kraus, S., Lehmann, D., and Magidor, M. (1990). Non-Monotonic Reasoning, Prefer-

ential Models and Cumulative Logics. Artificial Intelligence, 44, 167–207.

Krogh, A. and Hertz, J. (1995). Advances in Neural Information Processing Systems,

Volume 4, Chapter Simple Weight Decay can improve Generalization, 950–957. Mor-

gan Kaufmann.

Kullback, S. and Leibler, R. (1951). On Information and Sufficiency. Annals of Math-

ematical Statistics , 22, 79–86.

Labuschagne, W. and Heidema, J. (2010). Towards Agent-Oriented Logic: (I - II)

Variations on the Theme of Logical Consequence. Technical report, Otago University.

Labuschagne, W., Heidema, J., and Britz, K. (2013). Supra-classical Consequence

Relations: Tolerating Rare Counter-examples. Advances in AI in Springer LNAI ,

326–337.

162



Lehmann, D. and Magidor, M. (1992). What Does a Conditional Knowledge Base

Entail? Artificial Intelligence, 55, 1–60.

Leitgeb, H. (2001). Nonmonotonic Reasoning by Inhibition Nets. Artificial Intelli-

gence, 128, 161–201.

Leitgeb, H. (2004). Inference on a Low Level. An Investigation into Deduction, Non-

Monotonic Reasoning and the Philosophy of Cognition, Volume 30 of Applied Logic

Series. Kluwer Academic.

Leitgeb, H. (2007). Neural Network Models of Conditionals: an Introduction. In X. Ar-

razola and J. Larrazabal (Eds.), International Workshop on Logic and Philosophy of

Knowledge, 191–223.

Lenat, D. (2016). The Cyc Project. www.Cyc.com.

Levi, I. (1977). Subjunctives, Dispositions and Chances. Synthese, 34, 423–455.

Lewis, S., Blake, J., Cherry, J., Sternberg, P., and Thomas, P. (2016). The Gene

Onotology. http://www.geneontology.org .

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algo-

rithm as a Taylor expansion of the local rounding errors. Master’s thesis, University

of Helsinki.

Lukasiewciz, T. (1999). Probabilistic Deduction with Conditional Constraints over

Basic Events. Journal of Artificial Intelligence Research, 10, 199–241.

Makinson, D. (2003). Bridges between Classical and Nonmonotonic Logic. Journal of

the IGPL, 11 (1), 69–96.

Makinson, D. (2005). Bridges from Classical to Nonmonotonic Logic. King’s College

Publications.

Markram, H. (2014). Human Brain Project. www.humanbrainproject.eu.

Mass, W. (1997). Networks of Spiking Neurons: The Third Generation of Neural

Network Models. Neural Networks , 10, 1659–1671.

Mazzoni, P., Anderson, R., and Jordan, M. (1991). A More Biologically Plausible

Learning Rule for Neural Networks. Proceedings Natural Academy of Science, 88,

4433–4437.

163



McCarthy, J. (1959). Programs with Common Sense. In Proceedings of the Teddington

Conference on the Mechanization of Thought Processes, 75–91.

McCarthy, J. (1980). Circumscription - A Form of Non-Monotonic Reasoning. Artificial

Intelligence, 13, 27–39.

McCarthy, J. and Hayes, P. (1969). Machine Intelligence, Chapter Some Philosophical

Problems from the Standpoint of Artificial Intelligence, 463–502. Edinburg Univer-

sity Press.

McCloskey, M. and Cohen, N. (1989). The Psychology of Learning and Motivation,

Volume 23, Chapter Catastrophic Interference in Connectionist Networks: The Se-

quential Learning Problem., 109–164. New York: Academic Press.

McCulloch, W. and Pitts, W. (1943). A Logical Calculus of the Ideas Imminent in

Nervous Activity. Bulletin of Mathematical Biophysics , 5, 115–133.

McDermott, D. and Doyle, J. (1980). Non-Monotonic Logic I. Artificial Intelligence, 13,

41–72.

Metropolis, N. and Rosenbluth, A. (1953). Equation of State Calculations by Fast

Computing Machines. Journal of Chemical Physics , 21 (6), 1087–1092.

Meyer, T., Labuschagne, W., and Heidema, J. (2000). Refined Epistemic Entrench-

ment. Journal of Logic, Language and Information, 9, 237–259.

Minsky, M. (1974). A Framework for Representing Knowledge. Tech. report 306, MIT

AI Laboratory.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cambrige MA.

Minsky, M. and Papert, S. (1971). Progress Report on Artificial Intelligence.

web.media.mit.edu/ minsky/papers/PR1971.html .

Myllymaki, P. (1999). Massively Parallel Probabilistic Reasoning with Boltzmann

Machines. Applied Intelligence, 11, 31–44.

Nayak, A. (1994). Foundational Belief Change. Journal of Philosophical Logic, 23,

495–533.

Nayak, A., Pagnucco, M., and Peppas, P. (2003). Dynamic Belief Revision Operators.

Artificial Intelligence, 146, 193–228.

164



Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).

Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems. Frontiers

in Neuroscience, 7, 74–87.

Neves, S., Bonnefon, J., and Raufaste, E. (2002). An Empirical Test of Patterns for

Non-Monotonic Inference. Annals of Mathematics and Artificial Intelligence, 34,

107–130.

Nilsson, N. (1986). Probabilistic Logic. Artificial Intelligence, 28, 71–87.

O’Reilly, R. (1998). Six Principles for Biologically Based Computational Models of

Cortical Cognition. Trends in Cognitive Sciences , 11 (2), 455–462.

Ortega, J. and Parrilla, J. (1999). Adaptive Cooperation between Processors in a

Parallel Boltzmann Machine Implementation. In Lecture Notes in Computer Science,

Volume 1607, 208–218. Springer.

Pearl, J. (1997). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Representation and Reasoning. Morgan Kaufmann.

Pearl, J. (2015). An Introduction to Causal Inference. ISBN: 1507894295.

Pearl, J. and Geffner, H. (1988). Probabilistic Semantics for a Subset of Default

Reasoning. Technical Report CSD-8700XX, R-93-III, Computer Science, UCLA.

Peirce-Edition-Project (2010). Writings of Charles S. Peirce: a Chronological Edition:

Volumes I - VIII, 1857 - 1892, Volume I - VIII. Indiana University Press.

Pelletier, F. and Elio, R. (1997). What Should Default Reasoning Be, by default?

Computational Intelligence, 13, 165–187.

Peppas, P. (2008). Handbook of Knowledge Representation, Chapter 8 Belief Revision,

317–359. Elsevier.

Pfeifer, N. and Kleiter, G. (2005). Coherence and Non-Monotonicity in Human Rea-

soning. Synthese, 146, 93–109.

Pfleger, K. (1998). Categorical Boltzmann Machines. Technical Report TR 98-05,

Stanford University, Knowledge Systems Laboratory.

165



Pinkas, G. (1994). Neural Networks for Knowledge Representation and Inference, Chap-

ter Propositional Logic, Non-Monotonic Reasoning and Symmetric Networks - on

Bridging the Gap between Symbolic and Connectionist Knowledge Representation,

175–203. Lawrence Erlbaum.

Pinkas, G. (1995). Reasoning, Non-Monotonicity and Learning in Connectionist Net-

works that Capture Propositional Knowledge. Artificial Intelligence, 77, 203–247.

Pinkas, G. and Dechter, R. (1995). Improving Connectionist Energy Minimization.

Journal of Artificial Intelligence Research, 3, 223–248.

Pinkas, G., Lima, P., and Cohen, S. (2012). A Dynamic Binding Mechanism for Retriev-

ing and Unifying Complex Predicate-Logic Knowledge. ICANN 2012, LNCS , 7552,

482–490.

Popper, K. (1959). The Logic of Scientific Discovery. Hutchinson.

Priest, G., Tanaka, K., and Weber, Z. (2016). Paraconsistent Logic. Stanford Ency-

clopedia of Philosophy - https://plato.stanford.edu/archives/win2016/entries/logic-

paraconsistent/ .

Radermacher, F. (1996). Cognition in Systems. Cybernetics and Systems , 27 (1), 1–41.

Ratcliff, R. (1990). Connectionist Models of Recognition Memory: Constraints Imposed

by Learning and Forgetting Functions. Psychological Review , 97 (2), 285–308.

Reimers, M. (2011). Local or Distributed Activation? The View from Biology. Con-

nection Science, 23 (2), 155–160.

Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence, 13, 81–132.

Rives, B. (2010). Internet Encyclopedia of Philosophy: Jerry Fodor.

http://www.iep.utm.edu/fodor/ .

Robins, A. (1995). Catastrophic Forgetting, Rehearsal and Pseudo-Rehearsal. Con-

nection Science: Journal of Neural Computing, Artificial Intelligence and Cognitive

Research, 7, 123–146.

Rosales, R. and Sclaroff, S. (2006). Combining Generative and Discriminative Models

in a Framework for Articulated Pose Estimation. International Journal of Computer

Vision, 67, 251–276.

166



Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model For Information Storage

And Organization In The Brain. Psychological Review , 65 (6), 386–408.

Rott, H. (1993). Belief Contraction in the Context of a General Theory of Rational

Choice. Journal of Symbolic Logic, 58.

Rott, H. (2007). Bounded Revision: Tow-Dimensional Belief Change between Conser-

vatism and Moderation. http://www.fil.lu.se/hommageawlodek/site/abstra.htm.

Rott, H. (2009). Shifting Priorities: Simple Representations for Twenty-Seven Iterated

Theory Change Operators. In D. Makinson, J. Malinowski, and H. Wansing (Eds.),

Towards Mathematical Philosophy: Trends in Logic, Volume 28, 269–296. Springer,

Business Media.

Rumelhart, D., Smolensky, P., McCelland, J., and Hinton, G. (1986a). Parallel Dis-

tributed Processing: An Exploration in the Microstructure of Cognition, Volume 1:

Foundations. MIT Press.

Rumelhart, D., Smolensky, P., McCelland, J., and Hinton, G. (1986b). Parallel Dis-

tributed Processing: An Exploration in the Microstructure of Cognition, Volume 2:

Psychological and Biological Models. MIT Press.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice

Hall.

Sathasivam, S. (2011). Boltzmann Machine and New Activation. Applied Mathematical

Sciences , 78 (5), 3853–3860.

Saygin, A., Cicekli, I., and Akman, V. (2000). Turing Test: 50 Years later. Minds and

Machines , 10, 463–518.

Schurz, G. (2005). Non-Monotonic Reasoning from an Evolution-Theoretic Perspective:

Ontic, Logical and Cognitive Foundations. Synthese, 146, 37–51.

Sejnowski, T. (1986). High Order Boltzmann Machines. In Neural Networks for Com-

puting, Volume 151 of American Institute of Physics Conference Proceedings 151,

398–395.

Sejnowski, T. and Destexhe, A. (2000). Why Do We Sleep? Brain Research, 886 (1),

208–223.

167



Shastri, L. (2007). SHRUTI: A Neurally Motivated Architecture for Rapid, Scalable

Inference, Volume 77 of Perspectives in Neural Symbolic Integration, Chapter 8,

183–204. Springer.

Shastri, L. and Ajanagadde, V. (1993). From Simple Associations to Systematic Rea-

soning: A Connectionist Representation of Rules, Variables and Dynamic Bindings

using Temporal Synchrony. Behavioural and Brain Sciences , 16, 417–494.

Shastri, L. and Wendelken, C. (2000). Probabilistic Inference and Learning in a Connec-

tionist Causal Network. Technical report, International Computer Science Institute.

Sholam, Y. (1987). Readings in Non-Monotonic Reasoning, Chapter A Semantical

Approach to Non-Monotonic Logics, 227–249. Morgan Kaufmann.

Singh, P. (2002). The Open Mind Common-Sense Project.

http://www.kurzweilai.net/the-open-mind-common-sense-project .

Spekle, E. and Kinzer, K. (2007). Core Knowledge. Developmental Science, 10 (1),

89–96.

Spohn, W. (1988). Ordinal Conditional Functions: A Dynamic Theory of Epistemic

States. In H. . Skyrms (Ed.), Causation in Decision, Belief Change and Statistics,

Volume 11, 105–134. Kluwer Academic.

Spohn, W. (1999). Ranking Functions, AGM Style. 50th Birthday for Peter Gärdenfors,

http://www.lucs.lu.se/spinning/ .

Spohn, W. (2009). Degrees of Belief, Volume 342 of Synthese Library, Chapter A

Survey of Ranking Functions, 185–228. Springer.

Stenning, K. and Van Lambalgen, M. (2008). Human Reasoning and Cognitive Science.

Cambridge MIT Press.

Strasser, C. and Antonelli, G. (2016). Non-Monotonic Logic. Stanford Ency-

clopedia of Philosophy - https://plato.stanford.edu/archives/win2016/entries/logic-

nonmonotonic/ .

Striedter, G. (2016). Neurobiology. Oxford University press.

Swingler, K. (1996). Applying Neural Networks: A Practical Guide. Academic Press

Inc.

168



Tamminga, A. (2003). A Critical Exposition of Isaac Levi’s Epistemology. Logique and

Analyse, 183, 447–478.

Tang, Y. and Salakhutdinov, R. (2013). Learning in Stochastic Feedforward Neural

Networks. Advances in Neural Information Processing Systems , 2013, 530–538.

Tarski, A. (1956). Logic, Semantics, Meta-Mathematics: Papers from 1923 to 1938.

Clarendon Press.

Thornton, S. (2016). Karl Popper. Stanford Encyclopedia of Philosophy -

http://plato.stanford.edu/archives/win2016/entries/popper/ .

Tichnor, A. and Barret, H. (1987). Optical Implementations in Boltzmann Machines.

Optical Engineering , 26 (1), 16–21.

Turing, A. (1950). Computing Machinery and Intelligence. Mind , 59, 433–460.

UCI (2013). Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html .

Uebel, T. (2016). Vienna Circle. Stanford Encyclopedia of Philosophy -

https://plato.stanford.edu/archives/spr2016/entries/vienna-circle/ .

van der Velde, F. and de Kamps, M. (2006). Neural Blackboard Architectures of

Combinatorial Structures in Cognition. Behavioural and Brain Sciences , 29, 37–

108.

von der Malsburg, C. and Willshaw, D. (1981). Co-operativity and the Brain. Trends

in Neurosciences , 4 (4), 80–83.

Wason, P. (1966). New Horizons in Psychology I, Chapter Reasoning, 135–151. Har-

mondsworth: Penguin.

Wason, P. (1969). Regression in Reasoning? British Journal of Psychology , 60, 471–

480.

Werbos, P. (1975). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. Harvard University Press.

Wermter, S. (1997). Hybrid Approaches to Neural Network-Based Language Process-

ing. Technical Report TR 97-030, ICSI Berkley.

169



Zadeh, L. (1986). A Simple View of the Dempster-Shafer Theory of Evidence and its

Implication for the Rule of Combination. Artificial Intelligence Magazine, 7, 85–90.

Zalta, E. (2016). Gottlob Frege. Stanford Encyclopedia of Philosophy -

http://plato.stanford.edu/archives/win2016/entries/frege/ .

Zufferey, C., Floreano, D., van Leeuwen, M., and Merenda, T. (2002). Evolving Vision-

Based Flying Robots. In International Workshop on Biologically Motivated Com-

puter Vision. Springer Berlin Heidelberg.

170



Appendix A

Vocabulary

A.1 Abbreviations

Table A.1: Abbreviations/Acronyms used in the Text

Abbreviation Full Name

AGM Alchourron, Gärdenfors & Makinson (postulates of belief revision)
ANN Artificial Neural Network
DL Description Logic
HLR ‘Hidden Layer Rich’ (modified Boltzmann machine)
ILP ‘Input Layer Poor’ (modified Boltzmann machine)
KLM Kraus, Lehmann & Magidor (non-monotonic preferential semantics)
MLP Multi Layer Perceptron (neural network)
NSI Neural-Symbolic Integration
SCNM Supra-Classical, Non-Monotonic (logic)
SNN Symmetric (recurrent) Neural Network
SRL Statistical Relational Learning
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A.2 Glossary

Table A.2: Terms used in the Text

Term Description

Artificial Intelligence Rational cognitive function exhibited by machines.
Involving: perception, learning and adaptation,
knowledge representation, language processing,
reasoning, planning, motion and object control.
Section 2.2 Common-Sense Reasoning.
Section 4.4 Discussion on Human Cognition.

Atomic Typicality A total pre-order on state models representative of their
specificity within a class. Based on the individual
contributions of compositional characteristics,
rather than a proto-typical exemplar.
Section 5.3 Typicality.

Belief Revision Formalisation of adapting an existing knowledge base,
to new information, based on the AGM postulates.
Including operations: contraction, expansion and revision.
Chapter 6 Belief Revision.

Binary Logic Two valued Boolean logic.
[ -1 false; +1 true ]
Section 3.2 Micro-World Schemata.

Biological Plausibility Credible explanation related to biological causality.
In the context of neuroscience, a neural network with
particular biologically favourable attributes.
Section 3.3.2 Neurobiology.

Boltzmann Machine A symmetrically recurrent neural network with stochastic
activation functions: Implementing Hebbian learning
with alternating phases of clamped and free sampling,
from a Boltzmann equilibrium distribution, achieved by
simulated annealing.
Section 2.3.1 Boltzmann Machine.
Sections 4.1 & 4.2 Representation.
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Term Description

Catastrophic Forgetting The loss or disruption of previously learned information
when a neural network is exposed to new information.
Section 2.1.2 Preferential Semantics.
Section 6.2 Belief Revision: Machine Perspective.

Classical Symbolic A formal, recursively defined language for knowledge
Logic representation, together with a deductive system for

codifying valid inference and model-theoretic semantics
codifying truth conditions. An approach to artificial
intelligence based on mathematics and philosophy,
involving: propositional, first-order and modal systems.
Chapter 1 Introduction.
Chapter 2 Literature.

Conjunctive Normal A Boolean formula with conjuncted clauses which are
Form disjunctions of literals.

Section 2.4.1 Early Symmetric Networks.

Connectionism An approach to artificial intelligence based on biology,
that models cognition as an emergent process in neural
networks.
Chapter 1 Introduction.
Chapter 3 Background.

Contrastive Divergence Gradient descent learning based on log-likelihood.
Utilised in Markov models with limited connectivity.
Computationally more efficient than simulated annealing.
Section 4.1 Network Selection.
Section 4.4.1 Place of the Boltzmann Machine.

Discriminative Model A model of conditional probability, P (h|x)
The probability of variable h given observations x.
Section 4.3.3 Model Selection.

Energy Minima A low energy state which represents a learned pattern.
A local or global solution in terms of optimisation.
A resonant state, Balkenius and Gärdenfors (1991).
Section 2.3.1 The Boltzmann Machine.
Section 2.4.1 Early Symmetric Networks.
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Term Description

Generative Model Model of the joint probability distribution, P (x, h)
A complete description of the relationship between
observations x and variable h.
Section 4.3.2 Preference Relation.

Inductive or Predictive Argument based on a premiss to a probable conclusion.
Inference Applied in this thesis to inference, relying on a learned

default rule and preference relation.
Chapter 2 Literature.

Neural Network Inter-connected network of simple processing units,
whose activation functions take a sum of inputs.
Learning algorithms achieve knowledge representation
via weight adaptation.
Section 2.3 Artificial Neural Networks.
Chapter 3 Background.

Non-Monotonic Formalisation of defeasible inference enabling tentative
Logic conclusions which my be retracted. Based on KLM

preferential semantics.
Section 2.1 Supra-Classical, Non-Monotonic Logic
Chapter 3 Background.

Pseudo-Rehearsal The virtual re-training of previously learned information,
by the re-creation of old training patterns.
Chapter 1 Introduction.
Section 6.2 Belief Revision: Machine Perspective.

Rational Consequence An approach to inference in supra-classical logic,
which selects those conclusions at maximal preference.
Section 2.1 Supra-Classical, Non-Monotonic Logic

Restricted Boltzmann A symmetrically recurrent neural network with stochastic
Machine activation functions but with limited connectivity.

Learning without simulated annealing, by contrastive
divergence.
Section 4.1 Network Selection.
Section 4.4.1 Place of the Boltzmann Machine.
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Term Description

State Preference A total pre-order on whole state models representative
of their frequency within a training set, as an exemplar.
The basis of preferential semantics in KLM.
Section 2.1.2 Preferential Semantics.
Section 3.1 Logical Preliminaries.

Supra-Classical A collection of logics which tolerate counter-examples and
Logic exceptions to a classically inferred conclusion.

Encompasses non-monotonic logic.
Section 2.1 Supra-Classical, Non-Monotonic Logic

Ternary Logic Three valued logic.
[ -1 false, 0 unknown / not observed, +1 true ]
Section 3.2 Micro-World Schemata.
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Appendix B

CD: Implementation

A CD containing the code implementation of the Boltzmann networks is attached with

the thesis. The files included are:

• C++ code for the Boltzmann machine as an object-oriented project, with some

ancillary files of data sets and machine weight matrices.

• The support files necessary for running the machine implementation under XCode

in a MacOS X environment.

B.1 C++ Code for Boltzmann Machine

The C++ code for the Boltzmann networks can be found in the folder ‘BoltzMachine’.

The current version is v7.5. The code is object-oriented and needs to run in an

environment like XCode or be complied as a stand alone project using an instruction

such as:

g++ -W -Wall -ansi -pedantic -pthread MLibrary.cpp

Node.cpp Weight.cpp Layer.cpp WghtLayer.cpp NodeLayer.cpp

BoltzMach.cpp BMTestApp.cpp -o mach

Ancillary files are contained in the folder ‘User’: some data sets and machine weight

matrices as text files.

B.1.1 XCode Support Files

To use the project in XCode, double click the ‘BoltzMachine.xcodeproj’ file to start the

project (XCode greater than version v8.2). The ‘Build/’, ‘Index/’ and ‘DerivedData/’

folders are created by the XCode development. The ‘Build/’ folder provided contains a
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‘Products/Debug/’ folder with the actual complied machine code, a folder for the input

data sets used during runs and a results file for recording text output. It is important

to give XCode preferences for the correct location; use the advanced tab to specify the

location relative to the workspace in the ‘Build/’ folder.

B.2 Running the Implementation

For reference, we have repeated the diagram of the object-oriented implementation of

the Boltzmann machine given in Chapter 4 (Figure B.1).

The project is organised as a hierarchy of objects each with a header file. The

highest level ‘BoltzMach’ object contains the methods for creating, training and testing

a machine. Its header file has some information about the versioning history. Below this

level a machine is constructed from ‘Weight Layers’ and ‘Node Layers’ which inherit

from a parent ‘Layer’ class. They in turn run methods which utilise more primitive

objects, ‘Nodes’ and ‘Weights’. There is an overarching application ‘BMTestApp’ which

reads the input data files, sets up individual machines within threads and collates the

output from them into a text file.

Input & Output

Perhaps the most likely problem with running the implementation will be with reading

and writing data. The project expects the location of input and output data to be set

relative to the path:

/BoltzmannMachine/Build/Products/Debug/

Input data sets should be placed in ‘in-ptrns/’ and machine weight matrices should

be placed in ‘machines/’. Output text data is written to ‘results.txt’

Parameter Setting

Optional parameters for the project are set within the header files, ‘Param.h’ and

‘PMSpf.h’. They control a huge variety of variables, from the most abstract (example:

the purpose of a particular use of the project) to the most concrete (example: the

scaling for weight decay). There is a generic parameter header ‘Param.h’ which con-

tains information related to the primitive elements of any Boltzmann machine. That

information doesn’t usually have to be altered. It links to a specific micro-world and
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Figure B.1: Object-oriented implementation of a Boltzmann machine.
This overview of of the project structure should aid understanding of
the location of specific code.
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machine header, ‘PMSpf.h’, which adjusts the details of use for individual machines.

This header is attached to the generic header by an ‘#include’ instruction.

The ‘Param.h’ header contains the following generic information:

• Details of the ensemble size: number of threads and sequences within a thread.

• Learning constants: Number of training epochs, learning rate and momentum.

• Details of annealing schedules, training and testing can specified separately:

threshold (temperature) range, cycles per temperature point and final sampling

numbers.

• Printing of intermediate results can be specified.

• Constants specifying primitive weight parameters. These should not normally

require adjustment. Initialisation, update, decay, ..

• Constants specifying primitive node parameters. These should not normally re-

quire adjustment. Biases, transition information, sparsity, ..

The micro-world and machine specific header, ‘PMSpf.h’, contains the following

information which will need to be adjusted for each individual circumstance:

• Output constants, the file paths for text results and export of machine weight

matrices.

• Input constants related to training and testing:

– Multiple training runs can be specified from a single data set in which case

multiple cohorts of machines will be trained OR from separately listed files

in which case each machine will train from a separate source.

– Multiple testing runs can be specified from a single data set in which case

each trained machine will be tested against the same data multiple times

OR tested on separately listed files in which case each machine will be tested

against these separate sources.

• The architecture can be specified for a particular micro-world and machine, both

nodes and connections. A comment at the top of the file indicates the current

machine configuration.
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– Nodes: the number of layers and the number of nodes in each layer. Two

hidden layers are possible. The number of state combinations needs to be

set as a constant, related to the atomic size of each micro-world.

– Connections within and between each layer of nodes need to be specified.

– For example:

∗ For the 4-atom micro-world: NUMLY=3, NVINP=4, NVOUT=4 and

NHID1=6 (HLR architecture).

∗ For the HLR architecture: Only connections CHID1=true.

∗ For the ILP architecture: NHID1=1 and only connections CVINP=true.

• At a more abstract level, the current utilisation of the project can be changed.

Different modes of training and testing can be specified, for example:

– In the most simple circumstance, machines are trained and then tested from

scratch, parameters should be set as follows: TRAIN=true, EXPRT=false,

IMPRT=false, RHRSL=0, SPLIT=true, XFLDS=false. SNPSH and PRINT

will usually be set to false. The PCAPCT should be set to more than the

number of patterns in the largest data set.

– Weight matrices of trained machines (tested to a set tolerance) can be ex-

ported by setting EXPRT=true and specifying the appropriate path for the

text files.

– Weight matrices of previously trained and exported machines can be im-

ported by setting IMPRT=true and specifying the appropriate path for the

text files. If TRAIN=false these weight matrices are then used to create

new machines for testing without retraining.

– However, if TRAIN=true these newly imported machines will be retrained,

potentially with any new data and with a mixture of re-cycling / pseudo-

rehearsal versus retraining, specified by RHRSL=x(%).

– A single input data set can be used for both training and testing using a

cross-fold by specifying, SPLIT=false and XFLDS=x, the number patterns

to be cross-folded. This must be an even integer division into the total

number of patterns or the result will be meaningless.

181



I hope that the reader will not be too critical of my programming style and realise

that this project evolved over years, in directions that could not have been foreseen at

the beginning. Forgive me, when I have deliberately forsaken the principle of object

encapsulation by utilising global variables; instead of re-writing every object interface

multiple times as each new task was discovered.
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