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Abstract

Inference and characterization of planar trajectories have long been the

focus of scientific and commercial research. Efficient algorithms for both

precise and efficient trajectory reconstruction remain in high demand in a

wide variety of applications.

Given time series GPS data of a moving object, trajectory reconstruction

is the process of inferring the path between successive observation points.

However, widely separated points and measurement errors can give rise

to trajectories with sharp angles, which are not typical of a moving object.

Smoothing spline methods can efficiently build up a more smooth trajectory.

In conventional smoothing splines, the objective function is augmented with

a penalty term, which has a single parameter that controls the smoothness

of reconstruction. Adaptive smoothing splines extend the single parameter

to a function that can vary, hence the degree of smoothness can be different

regions. A new method named the V-spline is proposed, which incorporates

both location and velocity information but penalizes excessive accelerations.

In the application of interest, the penalty term is also dependent on a

known operational state of the object. The V-spline includes a parameter

that controls the degree to which the velocity information is used in the

reconstruction. In addition, the smoothing penalty adapts the observations

are irregular in time. An extended cross-validation technique is used to find

all spline parameters.

It is known that a smoothing spline can be thought of as the posterior

mean of a Gaussian process regression in a certain limit. By constructing

a reproducing kernel Hilbert space with an appropriate inner product, the

Bayesian form of the V-spline is derived when the penalty term is a fixed
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constant instead of a function. An extension to the usual generalized cross-

validation formula is utilized to find the optimal V-spline parameters.

In on-line trajectory reconstruction, smoothing methods give way to fil-

tering methods. In most algorithms for combined state and parameter

estimation in state-space models either estimate the states and parameters

by incorporating the parameters in the state-space, or marginalize out the

parameters through sufficient statistics. Instead of these approaches, an

adaptive Markov chain Monte Carlo algorithm is proposed. In the case of a

linear state-space model and starting with a joint distribution over states,

observations, and parameters, an MCMC sampler is implemented with two

phases. In the learning phase, a self-tuning sampler is used to learn the

parameter mean and covariance structure. In the estimation phase, the

parameter mean and covariance structure informs the proposed mechanism

and is also used in a delayed-acceptance algorithm, which greatly improves

sampling efficiency. Information on the resulting state of the system is

indicated by a Gaussian mixture. In the on-line mode, the algorithm is

adaptive and uses a sliding window approach by cutting off historical data

to accelerate sampling speed and to maintain applicable acceptance rates.

This algorithm is applied to the joint state and parameters estimation in

the case of irregularly sampled GPS time series data.
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Chapter 1

Introduction

1.1 Background

The Global Positioning System (abbreviated as GPS) is a space-based navigation

system consisting of a network of 24 satellites placed in space in six different 12-

hour orbital paths (Agrawal and Zeng, 2015), so that at least five of them are in

view from every point on the globe (Kaplan and Hegarty, 2005; Bajaj et al., 2002).

A GPS device receives signals from these satellites and triangulates its location in

terms of longitude, latitude, and elevation. GPS is the most widely known location-

sensing system providing an excellent framework for determining geographic positions

(Hightower and Borriello, 2001). Offered free of charge and accessible worldwide, GPS

has a vast number of applications, including aircraft tracking, vehicle navigation, robot

localization, surveying, astronomy, and so on.

GPS units in vehicles typically record position, speed, and direction of travel. With

this information, a target tracking system becomes available and useful. Such a tracking

system can be used to reduce costs by knowing in real-time the current location of a

vehicle, such as a truck or a bus (Chadil et al., 2008), with applications to Intelligent

Transportation Systems (ITS) (McDonald, 2006). It can also be used to measure real-

time traffic data and to identify congestion areas. In farming applications, a tracking

system allows the location and operational status of farm vehicles to be monitored

remotely.

Given time series data from a vehicle-mounted GPS unit, an important question is

how to infer the trajectory of the vehicle. This is known as trajectory reconstruction

and is the motivating question of this thesis.
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1.2 The Problem

Two keys issues for reconstruction are (i) how to handle observations that are

inherently noisy measurements of the truth, and (ii) how to interpolate appropriately

between observation times.

GPS units in vehicles provide yt, noisy measurements of the actual position xt,

and vt, noisy measurements of the actual velocity ut, for a sequence of times t ∈ T .

These data may also be augmented with information on operating characteristics of

the vehicle, bt. The trajectory reconstruction problem is the problem of estimating xs,

for an arbitrary time s, given a subset of the observations {yt, vt, bt | t ∈ T}. Note

that in this definition of trajectory reconstruction, we are not explicitly interested in

estimating us.

The TracMap company, located in New Zealand and USA, produces GPS display

units to aid precision farming in agriculture, horticulture and viticulture. Operational

data is collected and sent by these units to a remote server for further analysis. An

example of position data, which has been subsampled at irregular time points, is given

in Figure 1.1.
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Figure 1.1: Examples of GPS data. Observed positions yt are shown. In trajectory

reconstruction, the yt are combined with velocity information vt and operating charac-

teristics bt to infer actual positions xs, for times of interest s.

1.3 Smoothing Spline Based Reconstruction

Smoothing spline approaches are natural solutions to trajectory reconstruction, see

e.g. Eubank (2004) and Durbin and Koopman (2012) for details.
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Some form of interpolation is an obvious approach to trajectory reconstruction.

The simplest method, piecewise linear interpolation, connects successive locations by

straight lines. Clearly, this interpolation implies abrupt changes in velocity at the

join points. Smooth trajectories are more common in real life applications. A single

polynomial function that is defined on the entire interval, such as Bézier curve, is not

as flexible as a piecewise combination of polynomials, each of which is defined on a

subinterval. The polynomials are joined at the endpoints of their subintervals – these

endpoints are termed knots. This kind of piecewise polynomial interpolation is called

a spline.

A number of splines are commonly in use, see Chapter 5 of Hastie et al. (2009)

for discussions. The B-spline, short for basis spline, gives a closed-form expression

for the trajectory with continuous second derivatives and goes through the points

smoothly while ignoring outliers (Komoriya and Tanie, 1989; Ben-Arieh et al., 2004).

It is flexible and has minimal support with respect to a given degree, smoothness,

and domain partition. Once the knots are given, it is easy to compute the B-spline

recursively for any desired degree of the polynomial (De Boor et al., 1978; Cox, 1982).

An attractive feature of the B-spline is its flexibility for univariate regression and its

appealing simplicity of the method is explained in (Dierckx, 1995; Eilers and Marx,

1996). Gasparetto and Zanotto (2007) use a fifth-order B-spline to compose the overall

trajectory. Almost every spline can be represented as a B-spline.

Another widely used spline is the piecewise cubic spline, which is continuous on an

interval [a, b] and has continuous first and second derivatives (Wolberg, 1988). Let f(t)

denote a trajectory reconstruction, i.e. the location of the vehicle at time t. For the

piecewise cubic spline,

f(t) = dj(t− tj)3 + cj(t− tj)2 + bj(t− tj) + aj, (1.1)

on the subinterval [tj, tj+1) with given coefficients dj, cj, bj and aj, j = 1, 2, . . . , K.

The coefficients are chose in such a way that f and its first and second derivatives

are continuous at each knot tj. If the second derivative of f is zero at a and b, f is

said to be a natural cubic spline and these conditions are called the natural boundary

conditions (Green and Silverman, 1993).

Given observations (ti, yi), i = 1, . . . , n (n ≥ K), one can use regression methods to

estimate f(t). Specifically, let yi = f(ti) + εi with random errors {εi}ni=1 ∼ N (0, σ2).

In the case of the natural cubic spline, where f ∈ C (2)[a, b], this leads to a standard

linear parametric model (Kim and Gu, 2004).
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However, a parametric approach only captures features contained in the precon-

ceived class of functions and increases model bias (Yao et al., 2005). To improve the

performances, nonparametric methods have been developed. Rather than giving spec-

ified parameters, it is desired to reconstruct f from the data y(ti) ≡ yi itself (Craven

and Wahba, 1978). The estimates of polynomial smoothing splines appear as a so-

lution to the following minimization problem: find f̂ ∈ C (m)[a, b] that minimizes the

penalized residual sum of squares:

RSS =
n∑
i=1

(yi − f(ti))
2 + λ

∫ b

a

(
f (m)

)2
dt, (1.2)

for a pre-specified value λ(> 0) (Aydin and Tuzemen, 2012). In the above equation,

the first term is the residual sum squares controlling the lack of fit. The second term

is the roughness penalty weighted by a smoothing parameter λ, which varies from 0

to +∞ and establishes a trade-off between interpolation and a straight line fit in the

following way:λ = 0 f can be any function that interpolates the data

λ = +∞ the simple least squares line fit since no second derivative can be tolerated

(Hastie et al., 2009).

Hence, the cost of the equation (1.2) is determined not only by its goodness-of-

fit to the data quantified by the residual sum of squares but also by its roughness

(Schwarz, 2012). The motivation of the roughness penalty term is from a formalization

of a mechanical device: if a thin piece of flexible wood, called a spline, is bent to the

shape of the curve g, then the leading term in the strain energy is proportional to
∫
f ′′2

(Green and Silverman, 1993).

1.4 Parameter Selection

As discussed in the previous section, the determination of an optimal smoothing

parameter λ in the interval (0,+∞) was found to be an underlying complication and

the fundamental idea of nonparametric smoothing is to let the data choose the amount

of smoothness, which consequently decides the model complexity (Gu, 1998). Various

studies for selecting an appropriate smoothing parameter are developed and compared

in literatures. Most of these methods are focusing on data driven criteria, such as

cross-validation (CV), generalized cross-validation (GCV) (Craven and Wahba, 1978)
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and generalized maximum likelihood (GML) (Wahba, 1985) and recently developed

methods, such as improved Akaike information criterion (AIC) (Hurvich et al., 1998),

exact risk approaches (Wand and Gutierrez, 1997) and so on. See e.g. Craven and

Wahba (1978); Härdle et al. (1988); Härdle (1990); Wahba (1990); Green and Silverman

(1993); Cantoni and Ronchetti (2001); Aydın et al. (2013) for details.

A classical parameter selection method is cross-validation (CV). The idea behind

this method can be traced back to 1930s (Larson, 1931). Because in most applications,

only a limited amount of data is available. Thus, an idea is to split this data set into

two subgroups, one of which is used for training the model and the other one is used

to evaluate its statistical performance. The sample used in evaluation is considered as

“new data” as long as data is i.i.d. .

A single data split yields a validation estimate of the risk and averaging over several

splits yields a cross-validation estimate (Arlot and Celisse, 2010). Because of the as-

sumption that data are identically distributed, and training and validation samples are

independent, CV methods are widely used in parameter selection and model evaluation.

For example, a k-fold CV splits the data into k roughly equal-sized parts. For

the kth part, we fit the model to the other k − 1 parts of the data, and calculate

the prediction error of the fitted model when predicting the kth part of the data. A

detailed procedure is given by Wahba and Wold (1975): suppose we have n paired

data (t1, y1), . . . , (tn, yn). Run a k-fold CV according to the following Algorithm 1.1.

Mathematically, we denote the CV score as

CV(f̂ , λ) =
1

n

n∑
i

(
yi − f̂−k(i)(ti, λ)

)2

, (1.3)

where f̂ (−k)(t) denotes the fitted function computed with the k-th part of the data

removed. Typical choices for k are 5 and 10 (Hastie et al., 2009). The function

CV(f̂ , λ) provides an estimate of the test error curve, and the tuning parameter λ that

minimizes it will be the optimal solution.

A special case of k-fold CV is setting k = n, which is known as leave-one-out cross-

validation. In this scenario, the CV function takes each of the data out and calculate

the errors of f̂ (−i) from the remaining n − 1 points. In fact, with the property that

taking one point out does not affect the estimation, the fitting of a smoothing spline

allows us to implement CV methods without hesitation.

As an improvement of CV, the GCV algorithm was proposed to calculate the trace

of the estimation matrix A(λ) instead of calculating individual elements for linear

fitting under squared error loss, in which way it provides further computational savings.
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Algorithm 1.1: k-fold Cross-Validation

1 Initialization: Remove the first data t1 and last date tn from the data set.

2 Split the rest data t2, . . . , tn−1 into k groups by: for i = 1, . . . , k, the ith Group

Gi = {ti+1, ti+1+k, ti+1+2k, · · · }.
3 Guess a value λ∗.

4 while CV score is not optimized do

5 for i = 1, . . . , k do

6 Delete the ith group of data. Fit a smoothing spline to the first data

(t1, y1), the rest k − 1 groups of data set and the last data (tn, yn) with

λ∗.

7 Compute the sum of squared deviations si of this smoothing spline from

the deleted ith group data points.

8 end

9 Add the sums of squared deviations from steps 5 to 8 and divide it by k to

achieve a cross-validation score of λ∗, that is s = 1
k

∑k
i=1 si.

10 Vary λ systematically and repeat steps 5 to 9 until CV shows a minimum.

11 end

Suppose we have a solution f̂ = A(λ)y with a given λ, for many linear fittings, the CV

score is

CV =
1

n

n∑
i=1

(
yi − f̂ (−i)(ti)

)2

=
1

n

n∑
i=1

(
yi − f̂(ti)

1− Aii

)2

, (1.4)

where Aii is the ith diagonal element of A(λ). Then, the GCV approximation score is

GCV =
1

n

n∑
i=1

(
yi − f̂(ti)

1− tr(A)/n

)2

. (1.5)

In smoothing problems, GCV can also alleviate the tendency of cross-validation to

under-smooth (Hastie et al., 2009).

Rather than λ being constant, a new challenge is posed that the smoothing param-

eter becomes a function λ(t) and is varying in domains. The structure of this penalty

function controls the complexity of each domain and the whole final model. Donoho

et al. (1995) introduce adaptive splines and a method to calculate piecewise parameters

and Liu and Guo (2010) give an improved formula for this method. They proposed an

approximation to the penalty function with an indicator and extended the generalized

likelihood to the adaptive smoothing spline. This will be another interesting research

topic.

6



Overall, almost every technique found in the scientific literatures on the reconstruc-

tion and trajectory planning problem is based on the optimization of objective func-

tions or parameter selections, such as the objective function (1.2) and cross-validation

approaches (Gasparetto and Zanotto, 2007).

1.5 Bayesian Filtering

Smoothing spline algorithms have several advantages in inferring and characterizing

planar trajectories, particularly in reconstruction. However, subject to the property

that smoothing splines require the solution of a global problem that involves the entire

set of points to be interpolated, it might not be suitable for on-line estimation or instant

updating (Biagiotti and Melchiorri, 2013). It is the time to use Bayesian filtering to

implement on-line/instant estimation and prediction.

The word filtering refers to the methods for estimating the state of a time-varying

system, which is indirectly observed through noisy measurements. A Bayes filter is

a general probabilistic approach to infer an unknown probability density function re-

cursively over time using incoming measurements and a mathematical process model.

The concept optimal estimation refers to some criteria that measure the optimality in

specific sense (Anderson and Moore, 1979). For example, the mean of the posterior

distribution x̂t = E[xt | y1:t] that minimizes the loss function Jt = E[xt − x̂t]2, or least

mean squared errors, maximum likelihood approximation and so on. See e.g. Chen

(2003); Särkkä (2013) for discussions. Hence, an optimal Bayesian filtering uses the

Bayesian way of formulating optimal filtering by meeting some statistical criteria.

It is no doubt that in a conventional target tracking system, the most common

method is the standard Kalman filter, which is a recursive solution to the discrete data

linear filtering problem.

Kalman Filter

In a discrete-time linear system, the optimal Bayesian solution coincides with the

least squares solution. The successful optimal one was given by Kalman (1960), the

famous Kalman filter. It is a set of mathematical equations that provides an efficient

computational means to estimate the state of a process in a recursive way by minimizing

the mean of the squared errors (Bishop and Welch, 2001).

The Kalman filter recursively updates the estimated state by computing from the

previous estimation and a new observation. Without the need for storing the entire past
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observed data, the Kalman filter computes more efficient than computing the estimate

directly from the entire past observed data at each step of the filtering process (Haykin,

2001).

A detailed Kalman filter and its variants can be found in (Chen, 2003; Rhodes,

1971; Kailath, 1981; Sorenson, 1985). Tusell (2011) gives a review of some R packages,

which are used to fit data with Kalman filter methods. Besides, it is also shown

that the Kalman filter can be derived within a Bayesian framework and reduces to a

maximum posterior probability (MAP) solution, and can be easily extended to ML

solution (Haykin, 2001; Guzzi, 2016).

Consider the following model

· · · → xt−1 → xt → xt+1 → · · · truth

· · · ↓ ↓ ↓ · · ·
· · · yt−1 yt yt+1 · · · observation

(1.6)

in which xt = F (xt−1) + εx is the true hidden state propagating through the transition

matrix F and yt = G(xt) + εy is the observation measured by the measurement matrix

G of the system, where εx and εy can be viewed as white noise random sequences with

unknown statistics in the discrete-time domain.

To estimate the filtering state xt from y1:t = {y1, . . . , yt}, Bayesian wants to max-

imize the posterior p(xt | y1:t) by marginalizing out all the previous measurements.

Given the joint distribution of p(xt, xt−1, y1:t), Kalman filter supposes the expectation

x̂t−1 and its variance St−1 are known and passing through the system by x̂t = Fx̂t−1

and St = FSt−1F
> +Qt, here Qt is the covariance of εx. Because of the log-likelihood

function is written in such way: ln p(xt | y1:t) ∝ −1
2
(yt −Gxt)>R−1

t (yt −Gxt)− 1
2
(xt −

x̂t−1)>S−1
t−1(xt − x̂t−1), and Rt is the covariance of εy. As a result, the solution is

x̂t =
(
G>R−1

t G+ S−1
t−1

)−1 (
G>R−1

t yt + S−1
t−1x̂t−1

)
. (1.7)

Additionally, by setting S−1
t = G>R−1

t G+ S−1
t−1, the recursive estimation of covariance

matrix is St = St−1−KtGSt−1, and Kt = St−1G
>(Rt +GSt−1G

>)−1 is named Kalman

gain matrix. Consequently, the recursive estimation is

x̂t = x̂t−1 +Kt(yt −Gx̂t−1). (1.8)

Further, compared with the filtering distribution p(xt | y1:t), the prediction distri-

bution is trying to find an n-steps later distribution p(xt+n | y1:t) from the current

state, and the smoothing distribution is to find the distribution p(xk | y1:t) of a specific

state xk in the past for any k, where 1 < k < t.
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However, Kalman filter has a limitation that it does not apply to general non-linear

model and non-Gaussian distributions. For a non-linear system, one can use the ex-

tended Kalman filter (EKF), which is widely used for solving nonlinear state estimation

applications (Gelb, 1974; Bar-Shalom and Li, 1996). The EKF uses Taylor expansion

to construct linear approximations of nonlinear functions, therefore the state transition

f and observation g do not have to be linear but to be differentiable. However, in the

EKF process, these approximations can incur large errors in the true posterior mean

and covariance of the transformed random variable (Wan and Van Der Merwe, 2000).

Alternatively, the unscented Kalman filter (UKF) is a derivative-free method (Wan

and Van Der Merwe, 2000; György et al., 2014). It uses the Kalman filter to create

a normal distribution that approximates the result of a non-linear transformation nu-

merically by seeing what happens to a few deliberately chosen points. The unscented

transform is used to recursively estimate the equation (1.8), where the state random

variable is re-defined as the concatenation of the original state and noise variables. By

contrast, Kalman filter does not require numerical approximations.

The performances of EKF and UKF are compared in a few references regarding to

different kinds of aspects, such as (Chandrasekar et al., 2007; LaViola, 2003; St-Pierre

and Gingras, 2004). There is not an overall conclusion that which one performs better.

Limited to its property, Kalman filter is tied up for a dynamic system, where the

parameters and noise variances are unknown. In some dynamic systems, the variances

are obtained based on the system identification algorithm, correlation method, and

least squares fusion criterion. To solve this issue, a self-tuning weighted measurement

fusion Kalman filter is proposed by Ran and Deng (2010). Likewise, a new adaptive

Kalman filter will be another choice (Oussalah and De Schutter, 2001).

However, when the target maneuver occurs, Kalman filtering accuracy will be re-

duced or even diverged due to the model mismatch and noise characteristics that cannot

be known exactly (Liu et al., 2014). Additionally, Kalman filter based methods require

the state vector contains pre-specified coefficients during the whole approximation pro-

cedure and are within the bounded definition range determined at the beginning (Jauch

et al., 2017).

A more generic algorithm is investigated in the following section.

Monte Carlo Filter

Monte Carlo filter is a class of Monte Carlo approaches (Chen, 2003). The power

of these approaches is that they can numerically and efficiently handle integration and
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optimization problems.

The important advantage of Monte Carlo is that a large number of posterior mo-

ments can be estimated at a reasonable computational effort and that estimates of the

numerical accuracy of these results are obtained in a simple way (Kloek and Van Dijk,

1978). Sequential Monte Carlo method uses Monte Carlo approaches to estimate and to

compute recursively. One of the attractive merits is in the fact that they allow on-line

estimation by combining the powerful Monte Carlo sampling methods with Bayesian

inference at an expense of reasonable computational cost (Chen, 2003).

For example, consider the model (1.6) with parameter θ. The likelihood approxi-

mation is p(yt | y1:t−1, θ) and can be written by

p(yt | y1:t−1, θ) =

∫
p(yt | xt, θ)p(xt | y1:t−1, θ)dxt = E[yt | xt, θ]. (1.9)

The standard Monte Carlo algorithm is trying to compute the integration by drawing

N independent samples x
(i)
t from p(xt | y1:t−1, θ) first and then, by adding them up, to

approximate the integration for large N in the following way

E [yt | xt, θ] ≈
1

N

∑
i

p(yt | x(i)
t , θ), (1.10)

(Kalos and Whitlock, 2008).

In terms of getting good samples of x
(i)
t , which can be used for representing p(yt |

x
(i)
t , θ), an importance sampling method was devised. The idea of this method is by

assigning weights w
(i)
t to samples, the most important ones are evaluated for computing

the integral. Further, sequential importance sampling (SIS) allows a sequential update

of the importance weights by

w
(i)
t ∝ w

(i)
t−1

p
(
yt | x(i)

t

)
p
(
x

(i)
t | x

(i)
t−1

)
q
(
x

(i)
t | x

(i)
t−1, yt

) (1.11)

with an appropriate chosen proposal distribution q(xt | xt−1, yt). It is also called im-

portance density or important function (Chen, 2003).

Nevertheless, the SIS makes samples skewed that only a few samples have proper

weights as time increases and most of them have small but positive weights. This

phenomenon is often called weight degeneracy or sample impoverishment (Green, 1995;

Berzuini et al., 1997).

Besides the SIS processes, a resampling step, also known as a selection step, is

trying to eliminate the samples with small weights and duplicate the samples with

10



large weights in a principled way (Rubin, 2004; Tanner and Wong, 1987). This method

is named sampling and importance resampling (SIR). Suppose samples with associated

weights are
{
x

(i)
t , w

(i)
t

}
, a resampling step is executed by generating new samples x̃

(i)
t

according to normalized weights w̃
(i)
t . It is pointed out that the resampling step does

not prevent weights degeneracy but improve further calculation.

The common feature of SIS and SIR is that both of these methods are based on

importance sampling and updating samples weights recursively. The difference is that

in SIR, the resampling step is always performed. Whereas, in SIS, the resampling is

only taken when needed.

Particle filter (PF) is the most successful application of importance sampling with

resampling algorithm. It randomly generates a cloud of points and push these points

through the computation process. It is a recursive implementation of the Monte Carlo

approaches (Doucet and Johansen, 2009).

A generic PF generates N uniformly weighted random measurements
{
x

(i)
t−1,

1
N

}
first at time t− 1. Once a new observation yt comes into the system, the weights will

be updated recursively by involving the likelihood function p(yt | x(i)
t ) and propagation

function p(x
(i)
t | x

(i)
t−1). In fact, it is the SIS step. To monitor how bad is the weight

degeneracy, a suggested measurement effective sample size is introduced in (Kong et al.,

1994). It is the reciprocal of the sum of squared weights in the form of

Ness =
1∑N

i=1

(
w

(i)
t

)2 . (1.12)

If the Ness is less than a predefined threshold, the resampling procedure is executed

and the set of particles remains the same size N .

However, the PF sampling and resampling methods may cause practical problems.

Such as high weighted particles have been selected many times and lead to the loss of

diversity. This problem is known as sample impoverishment, in which way the particles

are not representative. The improvements of particle filter’s performance have been

devoted by (Carpenter et al., 1999; Godsill et al., 2001; Stavropoulos and Titterington,

2001; Doucet et al., 2011).

Apparently, Bayesian filtering has become a broad topic involving many scientific

areas that a comprehensive survey and detailed treatment seems crucial to cater the

ever growing demands of understanding this important field for many novices, though

it is noticed by the author that in the literature there exist a number of excellent

tutorial papers on particle filters and Monte Carlo filters (Chen, 2003; Doucet et al.,

2000; Chen et al., 2012; Doucet et al., 2000).
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1.6 Markov Chain Monte Carlo Methods

Schemes exist to counteract sample impoverishment, which incurs in particle filter

(Ristic et al., 2004). One approach is to consider the states for the particles to be

predetermined by the forward filter and then to obtain the smoothed estimates by

recalculating the particles’ weights via a recursion from the final to the first time

step (Godsill et al., 2000). Another approach is to use a Markov chain Monte Carlo

(MCMC) move step (Carlin et al., 1992). MCMC refers to constructing Markov chains

that move in the unobserved quantity space and produce a sequence samples from

the posterior distribution. After the chain has been run long enough, the sequence is

considered as an approximation to the posterior distribution (Kokkala, 2016).

MCMC methods are a set of powerful stochastic algorithms that allow us to solve

most of these Bayesian computational problems when the data are available in batches

(Andrieu et al., 1999; Green, 1995; Andrieu et al., 2001). They are based on sampling

from probability distributions based on a Markov chain. If samples are unable to be

drawn directly from a distribution π(x), we can construct a Markov chain of samples

from another distribution π̂(x) that is equilibrium to π(x). If the chain is long enough,

these samples of the chain can be used as a basis for summarizing features of π(x) of

interest (Smith and Roberts, 1993). This is a crucial property. See e.g. Cappé et al.

(2009); Liu (2008) for details.

Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is an important class of MCMC algo-

rithms (Smith and Roberts, 1993; Tierney, 1994; Gilks et al., 1995). Given essentially

a probability distribution π(·) (the target distribution), MH algorithm provides a way

to generate a Markov chain x1, x2, . . . , xt, who has the target distribution as a sta-

tionary distribution, for the uncertain parameters x requiring only that this density

can be calculated at x. Suppose that we can evaluate π(x) for any x. The transition

probabilities should satisfy the detailed balance condition

π
(
x(t)
)
q
(
x′, x(t)

)
= π (x′) q

(
x(t), x′

)
, (1.13)

which means that the transition from the current state π
(
x(t)
)

to the new state π (x′)

has the same probability as that from π (x′) to π
(
x(t)
)
. In sampling method, drawing

xi first and then drawing xj should have the same probability as drawing xj and then

drawing xi. However, in most situations, the details balance condition is not satisfied.
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Therefore, a function α (x, y) is introduced for satisfying

π (x′) q
(
x′, x(t)

)
α
(
x′, x(t)

)
= π

(
x(t)
)
q
(
x(t), x′

)
α
(
x(t), x′

)
. (1.14)

In this way, a tentative new state x′ is generated from the proposal density q
(
x′;x(t)

)
and it is then accepted or rejected according to acceptance probability

α =
π (x′)

π (x(t))

q
(
x(t), x′

)
q (x′, x(t))

. (1.15)

If α ≥ 1, then the new state is accepted. Otherwise, the new state is accepted with

probability α.

A simple mechanic proposing algorithm is random walk Metropolis-Hastings (RM

MH). It is easy to implement and symmetric under the exchange of the initial and

proposed points.

Besides, modified Metropolis-Hastings algorithms, such as the delayed-rejection

MH, multiple-try MH and reversible-jump MH algorithms have been studied by Tierney

and Mira (1999); Liu et al. (2000); Green (1995).

Adaptive MCMC Algorithm

Metropolis-Hastings algorithm is widely used in statistical inference, to sample from

complicated high-dimensional distributions. Typically, this algorithm has parameters

that must be tuned in each new situation to obtain reasonable mixing times, such as the

step size in a random walk Metropolis (Mahendran et al., 2012). Tuning of associated

parameters such as proposal variances is crucial to achieving efficient mixing, but can

also be difficult.

Adaptive MCMC methods have been developed to automatically adjust these pa-

rameters, such as (Andrieu and Thoms, 2008; Girolami and Calderhead, 2011; Atchade

et al., 2009; Roberts and Rosenthal, 2009). One of the most successful adaptive MCMC

algorithms is introduced by Haario et al. (2001), where, based on the random walk

Metropolis algorithm, the covariance of the proposal distribution is calculated using

all of the previous states. For instance, with an adaptive MCMC chain x0, x1, . . . , xt,

the proposal x′ is from N(· | xt, Rt), where Rt is the covariance matrix determined by

the spatial distribution of the state x0, x1, . . . , xt.

Even though the adaptive Metropolis algorithm is non-Markovian, the establish-

ment was verified that the adaptive MCMC algorithm indeed has the correct ergodic

properties.
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A Bayesian optimization for adaptive MCMC was proposed by Mahendran et al.

(2012). The author proposed adaptive strategy consists of two phases: adaptation and

sampling. In the first phase, Bayesian optimization is used to construct a randomized

policy. After that, in the second phase, a mixture of MCMC kernels selected according

to the learned randomized policy is used to explore the target distribution.

Further investigation in the use of adaptive MCMC algorithms to automatically

tune the Markov chain parameters can be found at (Roberts and Rosenthal, 2009).

Other Monte Carlo Algorithms

The Hamiltonian Monte Carlo (HMC), devised by Duane et al. (1987) as hybrid

Monte Carlo, uses Hamiltonian dynamics to produce distant proposals for the Metropo-

lis algorithm in order to avoid slow exploration of the state-space that results from the

diffusive behavior of simple random walk proposals (Neal, 2011). In practice, the HMC

sampler is more efficient for sampling in high-dimensional distributions than MH.

The key feature of HMC is the Hamiltonian system equation as follows:

H(x, v) = U(x) +K(v), (1.16)

which is consisting of potential energy U(x) with a d-dimensional momentum vector

(position) x and kinetic energy function K(v) = v>M−1v
2

with a d-dimensional momen-

tum vector (velocity) v. To propose {x′, v′}, HMC uses the leapfrog method, which

is based on Euler’s method and modified Euler’s method, to increase the proposing

accuracy (Betancourt, 2017). It is accepted with the probability

α = min {exp[H(x, v)−H(x′, v′)], 1} . (1.17)

Compared with MH sampler, the HMC has a higher efficiency in most of the high-

dimensional cases. It is incorporating not only with energy U(x) but also with a

gradient. In this way, HMC explores a larger area and converges to balance faster.

The Zig-Zag Monte Carlo uses a continuous-time piecewise zig-zag process to in-

crease the sampling efficiency (Bierkens and Roberts, 2016). It is an application of

the Curie-Weiss model in high dimension and provides a practically efficient sampling

scheme for sampling in the big data regime with some remarkable properties (Turitsyn

et al., 2011; Bierkens and Duncan, 2017).

Given a target density π(·), the Zig-Zag process f(x, θ) is defined in a d⊗ 2 space

E . x is in the d-dimensional topological subspace and θ is in a binary discrete {−1, 1}d
subspace denoting the flipping statues. The switching rate λ(x, θ) agrees with the target
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distribution π(·) in a certain way and is defined as λ(x, θ) = max {0, θU ′(x)} + γ(x),

where U ′(x) = λ(x, θ)− λ(x,−θ). Then, the Zig-Zag operator L is

Lf(x, θ) = θ∂fx + λ(x, θ)[f(x,−θ)− f(x, θ)], (1.18)

for all (x, θ) ∈ E .

Thereafter, the obtained sequence of the Zig-Zag process is used to approximate

expectations with respect to π(·) according to the law of large numbers. The application

of Zig-Zag process in big data scheme and some properties are given in (Bierkens and

Duncan, 2017).

The t-walk given by Christen and Fox (2010) is a self-adjusting MCMC algorithm

that requires no tuning and has been shown to provide good results in many cases of

up to 400 dimensions. Because of the t-walk is not adaptive, it does not require new

restricting conditions but only the log of the posterior and two initial points (Blaauw

and Christen, 2011).

Given a posterior distribution π(·), the new objective function f(x, x′) is the product

of π(x)π(x′) from X ⊗X. The new proposal (y, y′) is given by

(y, y′) =

(x, h(x′, x)) with probability 0.5

(h(x′, x), x′) with probability 0.5
(1.19)

where h(x, x′) is a preselected proposing strategy. In each iteration, only one of the

two chains x and x′ moves according to a random walk. For example, suppose in the

first step the x stays the same but y′ is proposed from q(· | x, x′), then the acceptance

ratio is
π (y′)

π (x′)

q (x′ | y′, x)

q (y′ | x′, x)
. (1.20)

After a few iterations, there are two dual and coupled chains obtained. Hence, the

t-walk is a kind of multiple chain approach.

Four recommendations for the choices of h (x, x′) including a scaled random walk,

referred to the walk move, traverse move, hop moves and blow moves are given in

(Christen and Fox, 2010). The t-walk is now available in a complete set of computer

packages, including R, Python. It is convenient for researchers to go a deeper imple-

mentation.

1.7 Original Contributions and Thesis Outline

The original contributions presented in this thesis are:
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(i) An adaptive spline-based approach to trajectory reconstruction called the V-

spline. The V-spline incorporates velocity information and a piecewise constant

penalty term, and has been developed to handle irregularly sampled data.

(ii) The reconstructed trajectory can be understood as an element of a reproducing

kernel Hilbert space. The approach of (Gu, 2013) is extended to allow for a

piecewise constant penalty term and the V-spline is shown to be the posterior

mean of a particular Gaussian process.

(iii) A fast on-line algorithm for trajectory reconstruction, based on Markov chain

Monte Carlo, is developed for simultaneous parameter and state estimation in

the context of a linear state space model. This approach is simpler to implement

than particle methods that rely on sufficient statistics.

In Chapter 2, an adaptive smoothing V-spline method, which is based on Hermite

spline basis functions, is proposed to obtain a reconstruction of f and f ′ from noisy

data y1:n and v1:n. Instead of minimizing the residuals of f(ti)− yi only, the residuals

of f ′(ti) − vi with a new parameter γ are consisted in the new objective function. A

modified leave-one-out cross-validation algorithm is used for find the optimal param-

eters. Numerical simulation and real data implementation are given after theoretical

methodology.

In Chapter 3, the Bayesian estimation form of the V-spline is given. It is proved

that the Bayes estimate is corresponding to a V-spline in the reproducing kernel Hilbert

space C(2)
p.w.[0, 1], where the second-derivative is piecewise-continuous. An extended

GCV is used to find the optimal parameters for the Bayes estimate.

In Chapter 4, a comprehensive overview of existing methods for sequential state

and parameter inference is given. Basic concepts and popular algorithms of sequential

state estimation are discussed in the second section. Furthermore, the algorithms

for combined state and parameter estimation are brought into a separate section. A

numerical comparison of different methods is given at the end of this chapter.

In Chapter 5, a random walk Metropolis-Hastings algorithm in the learning phase

is utilized to learn the mean and the covariance of the parameters space. After that,

the information is implemented in the estimation phase, where an adaptive Delayed-

Acceptance Metropolis-Hastings algorithm is proposed for estimating the posterior

distribution of combined state and parameter. To remain a high running efficiency, a

sliding window approach, in which way historical data is cut off when new observations
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come into the data stream, is used to improve the sampling speed. This algorithm is

applied to irregularly sampled time series data and implemented in real GPS data set.

The proof of theorems, details of equation calculations, and results of simulation

studies are all presented in appendices. For details, the Appendix A includes V-spline

related theorems, lemmas, calculations and figures. In Appendix B, the proposed adap-

tive sequential MCMC related works and outcomes are illustrated, including details of

the recursive form calculation, tables and figures of parameters comparison and so on.

A spin-off outcome is presented in Appendix C. It is a data simplification method

used for reducing the size of a data set and saving storage costs without losing important

information.
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Chapter 2

Adaptive Smoothing V-Spline for

Trajectory Reconstruction

2.1 Introduction

GPS devices are widely used for tracking individuals and vehicles. The position

and velocity of moving objects are determined by GPS units and can be used in batch

and on-line estimation of trajectories.

The use of GPS receivers for obtaining trajectory information is carried out for a

wide variety of reasons. The TracMap company, located in New Zealand and USA,

produces GPS display units to aid precision farming in agriculture, horticulture and

viticulture. With these units, operational data is collected and sent to a remote server

for further analysis. GPS units also guide drivers of farm vehicles to locations on the

farm that require specific attention and can indicate the location of potential hazards.

Given a sequence of position vectors in a tracking system, the simplest way of

constructing the complete trajectory of a moving object is by connecting positions

with a sequence of lines, known as line-based trajectory representation (Agarwal et al.,

2003). Vehicles with an omnidirectional drive or a differential drive can actually follow

such a path in a drive-and-turn fashion, though it is highly inefficient (Gloderer and

Hertle, 2010) and this kind of non-smooth motion can cause slippage and over-actuation

(Magid et al., 2006). By contrast, most vehicles typically follow smooth trajectories

without sharp turns.

Several methods have been investigated to solve this issue. One of them uses the

minimal length path that is continuously differentiable and consists of line segments or

arcs of circles, with no more than three segments or arcs between successive positions
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(Dubins, 1957). This method is called Dubins curve and has been extended to other

more complex vehicle models but is still limited to line segments and arcs of circles

(Yang and Sukkarieh, 2010). However, there are still curvature discontinuities at the

junctions between lines and arcs, leading to yaw angle errors (Wang et al., 2017).

Spline methods have been developed to overcome these issues and to construct

smooth trajectories. Magid et al. (2006) propose a path-planning algorithm based on

splines. The main objective of the method is the smoothness of the path, not a short-

est or minimum-time path. A curve-based method uses a parametric cubic function

P (t) = a0 + a1t+ a2t
2 + a3t

3 to obtain a spline that passes through any given sequence

of joint position-velocity paired points (y1, v1), (y2, v2), . . . , (yn, vn) (Yu et al., 2004).

More generally, a B-spline gives a closed-form expression for the trajectory with con-

tinuous second derivatives and goes through the points smoothly while ignoring outliers

(Komoriya and Tanie, 1989; Ben-Arieh et al., 2004). It is flexible and has minimal sup-

port with respect to a given degree, smoothness, and domain partition. Gasparetto

and Zanotto (2007) use fifth-order B-splines to compose the overall trajectory, allowing

one to set kinematic constraints on the motion, expressed as the velocity, acceleration,

and jerk. In computer (or computerized) numerical control (CNC), Erkorkmaz and

Altintas (2001) presented a quintic spline trajectory generation algorithm connecting

a series of reference knots that produces continuous position, velocity, and acceleration

profiles. Yang and Sukkarieh (2010) proposed an efficient and analytical continuous

curvature path-smoothing algorithm based on parametric cubic Bézier curves. Their

method can fit ordered sequential points smoothly.

However, a parametric approach only captures features contained in the precon-

ceived class of functions (Yao et al., 2005) and increases model bias. To avoid this,

nonparametric methods have been developed. Rather than giving specified parameters,

it is desired to reconstruct the trajectory f(t) from the data y(ti) ≡ yi, i = 1, . . . , n,

(Craven and Wahba, 1978). Smoothing spline estimates of f(t) appear as a solution

to the following minimization problem: find f̂ ∈ C(2)[a, b] that minimizes the penalized

residual sum of squares:

RSS =
n∑
i=1

(yi − f(ti))
2 + λ

∫ b

a

(f ′′(t))
2
dt (2.1)

for a pre-specified value λ > 0 (Aydin and Tuzemen, 2012). In equation (2.1), the

first term is a residual sum of squares and penalizes lack of fit. The second term is

a roughness penalty term weighted by a smoothing parameter λ, which varies from

0 to +∞ and establishes a trade-off between interpolation and a straight line. The
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roughness penalty term is a formalization of a mechanical device: if a thin piece of

flexible wood, called a spline, is bent to the shape of the curve f , then the leading

term in the strain energy is proportional to
∫
f ′′2dt (Green and Silverman, 1993).

The reconstruction cost, equation (2.1), is determined not only by its goodness-of-

fit to the data quantified by the residual sum of squares but also by its roughness

(Schwarz, 2012). For a given λ, minimizing equation (2.1) will give the best compromise

between smoothness and goodness-of-fit. Notice that the first term in equation (2.1)

depends only on the values of f at ti, i = 1, . . . , n. Green and Silverman (1993) show

that the function that minimizes the objective function for fixed values of f(ti) is

a cubic spline: an interpolation of points via a continuous piecewise cubic function,

with continuous first and second derivatives. The continuity requirements uniquely

determine the interpolating spline, except at the boundaries (Sealfon et al., 2005).

Zhang et al. (2013) propose Hermite interpolation on each interval to fit position,

velocity and acceleration with kinematic constraints. Their trajectory formulation is

a combination of several cubic splines on every interval or, alternatively, is a single

function found by minimizing

λ
n∑
i=1

|yi − f(ti)|2 + (1− λ)

∫
|f ′′(t)|2dt, (2.2)

where p is a smoothing parameter (Castro et al., 2006).

A conventional smoothing spline is controlled by one single parameter, which con-

trols the smoothness of the spline on the whole domain. A natural extension is to allow

the smoothing parameter to vary as a function of the independent variable, adapting

to the change of roughness in different domains (Silverman, 1985; Donoho et al., 1995).

The objective function is now of the form

n∑
i=1

(yi − f(ti))
2 +

∫
λ(t) (f ′′(t))

2
dt. (2.3)

Similar to the conventional smoothing spline problem, one has to choose the penalty

function λ(t). The fundamental idea of nonparametric smoothing is to let the data

choose the amount of smoothness, which consequently decides the model complexity

(Gu, 1998). When λ is constant, most methods focus on data-driven criteria, such as

cross-validation (CV), generalized cross-validation (GCV) (Craven and Wahba, 1978)

and generalized maximum likelihood (GML) (Wahba, 1985). Allowing the smoothing

parameter to be a function poses additional challenges, though Liu and Guo (2010)

were able to extend GML to adaptive smoothing splines.
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In this chapter, an adaptive smoothing spline named the V-spline is proposed that

uses modified Hermite spline basis functions to obtain a reconstruction of f and f ′

from noisy paired position data y = {y1, . . . , yn} and velocity data v = {v1, . . . , vn}.
Rather than just using residuals of f(ti) − yi, the extra residuals of f ′(ti) − vi and a

new parameter γ are included in the objective function. The parameter γ controls the

degree to which the velocity information is used in the reconstruction. In this way, the

V-spline keeps a balance between position and velocity. An advanced cross-validation

formula is given for the V-spline parameters. It is shown that the new spline performs

well on simulated signal data Blocks, Bumps, HeaviSine and Doppler (Donoho and

Johnstone, 1994). Finally, an application of the V-spline to a set of 2-dimensional real

data is given.

2.2 V-Spline

In the nonparametric regression, consider n paired time series points {t1, y1, v1},
. . ., {tn, yn, vn}, such that a = t0 < t1 < t2 < · · · < tn < tn+1 = b, y is the position

information and v indicates its velocity. As in (Silverman, 1985) and (Donoho et al.,

1995), we use a positive penalty function λ(t) in the following objective function.

For a function f : [a, b] 7→ R and γ > 0, define the objective function

J [f ] =
1

n

n∑
i=1

(f(ti)− yi)2 +
γ

n

n∑
i=1

(f ′(ti)− vi)2
+

n∑
i=0

∫ ti+1

ti

λ(t)f ′′(t)2dt, (2.4)

where γ is the parameter that weights the residuals between f ′ and v. We make the

simplifying assumption that λ(t) is a piecewise constant and adopts a constant value

λi on interval (ti, ti+1) for i = 1, . . . , n− 1.

Theorem 1. For n ≥ 2, the objective function J [f ] is uniquely minimized by a cubic

spline, piecewise on the intervals [ti, ti+1), i = 1, . . . , n − 1, and linear on [a, t1] and

[tn, b].

A further minimizer of (2.4) is called a V-spline, coming from the incorporation

with velocity information and applications on vehicle and vessel tracking. The proof

of Theorem 1 is in Appendix A.2.

2.2.1 Constructing Basis Functions

To construct basis functions cooperating with position and velocity, it is recom-

mended to use the cubic Hermite spline (Hermite, 1863), by which the combination of
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heading and speeding at both registration points are treated at two points (Hintzen

et al., 2010). The following equation describes the cubic Hermite spline on interval

[0, 1]

f(s) =
(
2s3 − 3s2 + 1

)
y0 +

(
s3 − 2s2 + s

)
v0 +

(
−2s3 + 3s2

)
y1 +

(
s3 − s2

)
v1. (2.5)

For an arbitrary interval [ti, ti+1), one can replace s with (t − ti)/(ti+1 − ti) and the

cubic spline basis functions are

h
(i)
00 (t) =

2
(

t−ti
ti+1−ti

)3

− 3
(

t−ti
ti+1−ti

)2

+ 1 ti ≤ t < ti+1

0 otherwise
, (2.6)

h
(i)
10 (t) =


(t−ti)3

(ti+1−ti)2 − 2 (t−ti)2

ti+1−ti + (t− ti) ti ≤ t < ti+1

0 otherwise
, (2.7)

h
(i)
01 (t) =

−2
(

t−ti
ti+1−ti

)3

+ 3
(

t−ti
ti+1−ti

)2

ti ≤ t < ti+1

0 otherwise
, (2.8)

h
(i)
11 (t) =


(t−ti)3

(ti+1−ti)2 − (t−ti)2

ti+1−ti ti ≤ t < ti+1

0 otherwise
. (2.9)

Consequently, the cubic Hermite spline f (i)(t) on an arbitrary interval [ti, ti+1) with

two successive points Pi = {ti, yi, vi} and Pi+1 = {ti+1, yi+1, vi+1} is expressed as

f (i)(t) = h
(i)
00 (t)yi + h

(i)
10 (t) (ti+1 − ti) vi + h

(i)
01 (t)yi+1 + h

(i)
11 (t) (ti+1 − ti) vi+1. (2.10)

To construct basis function for a V-spline on the entire interval [a, b], the new

basis functions are defined in such way, that N1 = h
(1)
00 , N2 = h

(1)
10 , and for all i =

1, 2, . . . , n− 2,

N2i+1(t) = h
(i)
01 (t) + h

(i+1)
00 (t), (2.11)

N2i+2(t) = h
(i)
11 (t) + h

(i+1)
10 (t), (2.12)

and

N2n−1(t) =

h
(n−1)
01 (t) if t < tn

1 if t = tn
, (2.13)

N2n(t) = h
(n−1)
11 (t). (2.14)
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Any f in the function space can be represented in the form of

f =
2n∑
k=1

Nk(t)θk, (2.15)

where {θk}2n
k=1 are parameters.

2.2.2 Computing V-Spline

Basis functions have been defined in the previous subsection, therefore the V-spline

f(t) on [a, b], where a ≤ t1 < t2 < · · · < tn−1 < tn ≤ b, can be found by minimizing

the objective function (2.4), which is corresponding to

nJ [f ](θ, λ, γ) = (y −Bθ)> (y −Bθ) + γ (v − Cθ)> (v − Cθ) + nθ>Ωλθ, (2.16)

where {B}ij = Nj(ti) , {C}ij = N ′j(ti) and
{

Ω
(i)
2n

}
jk

=
∫ b
a
λ(t)N ′′j (t)N ′′k (t)dt. Af-

ter substituting the series observation t1, . . . , tn into the basis function, one can get

N1(t1) = 1, N1(t2) = 0, . . . , N2i−1(ti) = 1, N2i(ti) = 0, . . . , N2n−1(tn) = 1, N2n(tn) = 0;

and into its first derivative, one will get N ′1(t1) = 0, N ′1(t2) = 1, . . . , N ′2i−1(ti) =

0, N ′2i(ti) = 1, . . . , N ′2n−1(tn) = 0, N ′2n(tn) = 1. That means the matrices B and C

in the equation (2.16) are n× 2n dimensional and the elements are

B = {B}ij =

1, j = 2i− 1

0, otherwise
(2.17)

C = {C}ij =

1, j = 2i

0, otherwise
(2.18)

where i = 1, . . . , n, j = 1, . . . , 2n and k = 1, . . . , 2n. The i-th Ω(i) on the interval

[ti, ti+1] is a 2n× 2n matrix and Ω(n) does not exist. The detailed structure of Ω is in

Appendix A.1. As a result, the penalty term is a bandwidth four matrix written in

such a way:

Ωλ =
n−1∑
i=1

λiΩ
(i). (2.19)

By taking derivatives of equation (2.16) with respect to θ, one can achieve(
B>B + γC>C + nΩλ

)
θ̂ =

(
B>y + γC>v

)
. (2.20)

Therefore, the solution is

θ̂ =
(
B>B + γC>C + nΩλ

)−1 (
B>y + γC>v

)
(2.21)
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a generalized ridge regression. Consequently, the fitted smoothing spline is given by

f̂(t) =
∑2n

k=1Nk(t)θ̂k.

A smoothing spline with parameters λ(t) and γ is an example of a linear smoother

(Hastie et al., 2009). This is because the estimated parameters in equation (2.21) are a

linear combination of yi and vi. Denote by f̂ and f̂ ′ the 2n vector of fitted values f̂(ti)

and f̂ ′(ti) at the training points ti. Then

f̂ =B
(
B>B + γC>C + nΩλ

)−1 (
B>y + γC>v

)
=Sλ,γy + γTλ,γv

(2.22)

f̂ ′ =C
(
B>B + γC>C + nΩλ

)−1 (
B>y + γC>v

)
=Uλ,γy + γVλ,γv

(2.23)

The fitted f̂ and f̂ ′ are linear in y and v, and the finite linear operators Sλ,γ,Tλ,γ,Uλ,γ

and Vλ,γ are known as the smoother matrices. One consequence of this linearity is that

the recipe for producing f̂ and f̂ ′ from y and v, do not depend on y and v themselves;

Sλ,γ,Tλ,γ,Uλ,γ and Vλ,γ depend only on ti, λ(t) and γ.

Suppose in a traditional least squares fitting, Bξ is N × M matrix of M cubic-

spline basis functions evaluated at the N training points xi, with knot sequence ξ and

M � N . Thus the vector of fitted spline values is given by

f̂ = Bξ

(
B>ξ Bξ

)−1
Bξy = Hξy (2.24)

Here the linear operator Hξ is a symmetric, positive semidefinite matrices, and HξHξ =

Hξ (idempotent) (Hastie et al., 2009). In our case, it is easily seen that Sλ,γ,Tλ,γ,Uλ,γ

and Vλ,γ are symmetric, positive semidefinite matrices as well. Additionally, by

Cholesky decomposition (
B>B + γC>C + nΩλ

)−1
= RR>, (2.25)

it is easy to prove that Tλ,γ = BRR>C> and Uλ,γ = CRR>B>, then we will have

Tλ,γ = U>λ,γ. When λ = γ = 0, the matrix Sλ0,γ0 = B
(
B>B

)−1
B> is idempotent.

Corollary 1. If f(t) is the V-spline on the entire interval [t1, tn], for sufficient cases

of a piecewise constant λ(t) and parameter γ, f(t) has the following property:

(i) if γ 6= 0, then f and f ′ are continuous, f ′′ is piecewise linear but not continuous

at knots;

(ii) if γ = 0, the same as above;
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(iii) if λ(t) is not only piecewise constant but constant on the entire interval and γ 6= 0,

the same as above;

(iv) if λ(t) is not only piecewise constant but constant and γ = 0, then f , f ′ are

continuous, f ′′ is piecewise linear and continuous at knots.

The proof of the Corollary 1 is in Appendix A.3.

2.2.3 Adjusted Penalty Term and Parameter Function

The polynomial in cubic Hermite spline form consists of two points with two

positions and two velocities. Suppose there are two points P1 = {t1, y1, v1} and

P2 = {t2, y2, v2} on the an arbitrary interval [t1, t2]. For sake of simplicity, by as-

suming t1 = 0 and y1 = 0, one can achieve a simple cubic Hermite spline from equation

(2.10)

f(t) =

{(
s3 − 2s2 + s

)
v1 +

(
−2s3 + 3s2

) ∆d1

∆T1

+
(
s3 − s2

)
v2

}
∆T1, (2.26)

where s = t
∆T1

. Thus, the second derivative of f is

f ′′(t) =
1

∆T1

{6 (ε1 + ε2) s− 2 (2ε1 + ε2)} , (2.27)

where ε1 = v1 − v̄, ε2 = v2 − v̄ and v̄ is the average velocity ∆d1/∆T1. Hence, the

penalty term λ
∫ t2
t1

(f ′′(t))2 dt = λ
∫ 1

0
(f ′′(s))2 ∆T1ds. Being more explicit, the penalty

term becomes

λ

∫ 1

0

(
f ′′(s)

∆T1

)2

∆T1ds = λ
(2ε1 + ε2)2 + 3ε2

2

∆T1

. (2.28)

Given a constant λ = (∆T1)3

(∆d1)2 η, the penalty term (2.28) becomes

η
(∆T1)2

(∆d1)2

(
(2ε1 + ε2)2 + 3ε2

2

)
= η

(2ε1 + ε2)2 + 3ε2
2

v̄2

∼
(

discrepancy in velocity

average velocity

)2

,

(2.29)

which will be enormous with large measured errors in velocity v1 or v2 comparing to

average velocity v̄.

With noise-free observations, the cubic Hermite spline effectively reconstructs the

trajectory between two successive points. However, in real life application, the mea-

surements are coming with errors. Imagine the situation that a vehicle stays unchanged

in its positions between a long time gap ∆T . Due to the noise, the velocities v1 and v2
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are non-zeros and heading to different directions. Cooperating with velocity, the Her-

mite spline basis function reconstructs the trajectory that starts from the first point

along the direction of v1 and ends at the second point at direction of v2. It returns

a wiggle between the two points, however, there should be a straight line. Or after a

long break, where ∆T is extremely large, the velocity becomes worthless. The vehicle

can be anywhere during such a long time. In this scenario, we are expecting that the

vehicle is following a straight line path. See Figure 2.1.

y1 y2

v1

v2

t

y

(a) cubic Hermite spline reconstruction

y1 y2

v1

v2

t

y

(b) straight line reconstruction

Figure 2.1: Comparing reconstructions of cubic Hermite spline and straight line. On

the left side, a genuine cubic Hermite spline is cooperating with noisy velocities. Even

though the vehicle is not moving, the reconstruction is following the directions of P1

and P2 and gives a wiggle between the two points. On the right side, it is an expected

reconstruction between two not-moving points after a long time gap.

We address this issue by introducing an adjusted penalty term (∆Ti)
3

(∆di)
2 found in

equation (2.29) to the penalty function λ(t), in which the V-spline is penalized by

its real differences of ∆di and ∆Ti for each interval [ti, ti+1]. With this term, either

the measurement in velocity becomes unreliable comparing to average speed or after

a long time gap, the adjusted penalty term will works on the penalty function and

forces it to return a straight line rather than a curve on this particular domain. From

the physical point of view, the term is the reciprocal of the product of velocity and

acceleration. Either velocity or acceleration goes to zero, the vehicle should either stop,

which returns a straight line through time on y axis, or keep moving with the same

speed, which returns a linear interpolation instead of a curved path.

Therefore, the final form of the penalty function λ(t, η) is piecewise constant having
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the following form on each interval

λi =
(∆Ti)

3

(∆di)
2 η, (2.30)

where η is an unknown parameter and ti ≤ t < ti+1, i = 1, . . . , n−1. Eventually, in the

objective function, there are two unknown parameters: η controlling the curvature of

V-spline on different domains and γ controlling the residuals of velocity. The piecewise

constant function λ(t, η) is using a data driven method to model the penalty function

in the adaptive V-splines.

2.3 Parameter Selection and Cross-Validation

The problem of choosing the smoothing parameter is ubiquitous in curve estimation,

and there are two different philosophical approaches to this question. The first one is

to regard the free choice of smoothing parameter as an advantageous feature of the

procedure. The other one is to find the parameter automatically by the data (Green

and Silverman, 1993). We prefer the latter one and use data to train our model and

find the best parameters. The most well-known method for this is cross-validation.

Assuming that mean of the random errors is zero, the true regression curve f(t)

has the property that, if an observation y is taken away at a point t, the value f(t) is

the best predictor of y in terms of returning a least value of (y − f(t))2.

Now, focus on an observation yi at point ti as being a new observation by omitting it

from the set of data, which are used to estimate f̂ . Denote by f̂ (−i)(t, λ) the estimated

function from the remaining data, where λ is the smoothing parameter. Then f̂ (−i) (t, λ)

is the minimizer of
1

n

∑
j 6=i

(yj − f(tj))
2 + λ

∫
(f ′′(t))2dt, (2.31)

and can be quantified by the cross-validation score function

CV(λ) =
1

n

n∑
i=1

(
yi − f̂ (−i)(ti, λ)

)2

. (2.32)

The basis idea of the cross-validation is to choose the value of λ that minimizes CV(λ)

(Green and Silverman, 1993).

Through the equation (2.24), it is known that the value of the smoothing spline f̂

depends linearly on the data y1, . . . , yn. Define the matrix A(λ), which is a map vector

of observed values yi to predicted values f̂(ti). Then we have

f̂ = A(λ)y (2.33)
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and the following lemma.

Lemma 1. (Green and Silverman, 1993) The cross-validation score satisfies

CV(λ) =
1

n

n∑
i=1

(
yi − f̂(ti)

1− Aii(λ)

)2

(2.34)

where f̂ is the spline smoother calculated from the full data set {(ti, yi)} with smoothing

parameter λ.

For a V-spline and its objective function, there are two parameters η, as is shown

in (2.30), and γ to be estimated for. Therefore, f̂ (−i)(t, η, γ) is the minimizer of

1

n

∑
j 6=i

(yj − f(tj))
2 +

γ

n

∑
j 6=i

(vj − f ′(tj))2
+

∫
λ(t, η) (f ′′)

2
dt, (2.35)

and the cross-validation score function is

CV (λ(t, η), γ) =
1

n

n∑
i=1

(
yi − f̂ (−i) (ti, η, γ)

)2

. (2.36)

Additionally, it is known that the parameter θ̂ in equation (2.21) is the solution, f̂ and

f̂ ′ have linear forms depending on y and v, shown in equations (2.22) and (2.23), from

Lemma 1, we can prove the following theorem:

Theorem 2. The cross-validation score of a V-spline satisfies

CV (η, γ) =
1

n

n∑
i=1

(
f̂(ti)− yi + γ Tii

1−γVii (f̂
′(ti)− vi)

1− Sii − γ Tii
1−γViiUii

)2

(2.37)

where f̂ is the V-spline smoother calculated from the full data set {(ti, yi, vi)} with

smoothing parameter η and γ.

The proof of Theorem 2 follows immediately from a lemma, and gives an expression

for the deleted residuals yi−f̂ (−i)(ti) and vi−f̂ ′(−i)(ti) in terms of yi−f̂(ti) and vi−f̂ ′(ti)
respectively.

Lemma 2. Given fixed η to λ(t, η), γ and i, denote f (−i) by the vector with components

f
(−i)
j = f̂ (−i) (tj, η, γ), f ′(−i) by the vector with components f

′(−i)
j = f̂ ′(−i) (tj, η, γ), and

define vectors y∗ and v∗ by y∗j = yj j 6= i

y∗i = f̂ (−i)(ti) otherwise
(2.38)

v∗j = vj j 6= i

v∗i = f̂ ′(−i)(ti) otherwise
(2.39)
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Then

f̂ (−i) = Sy∗ + γTv∗ (2.40)

f̂ ′(−i) = Uy∗ + γV v∗ (2.41)

2.4 Simulation Study

In this section, we give extensive comparison of methods for regularly sampled time

series data followed by simulation of irregularly sampled data. The examination is

based on the ability of reconstructing four functions derived from Blocks, Bumps, Heavi-

Sine and Doppler, which were used in (Donoho and Johnstone, 1994, 1995; Abramovich

et al., 1998) because of their caricature features in imaging, spectroscopy and other

scientific signal processing. Notice that the Blocks and Bumps functions have infinite

first derivatives, and cannot be inferred by V-splines. Hence, we use these functions,

denoted by g(t), as models of velocity rather than position.

If the original function g(t) is treated as the velocity function of some function f(t),

then f ′(t) = g(t). By setting initial position f(t0) = y0 = 0 and acceleration a0 = 0,

one can calculate the position data with the following formula:

f(ti+1) = f(ti) + (g(ti) + g(ti+1))
ti+1 − ti

2
. (2.42)

Further, we add some i.i.d. zero-mean ε noise to them

yi = f(ti) + εf ,

vi = g(ti) + εg,
(2.43)

where εf ∼ N(0, σf/SNR), εg ∼ N(0, σg/SNR) and i = 0, . . . , n. A random seed was

fixed to ensure repeatability. The noise is i.i.d. zero-mean Gaussian distributed with

standard deviation regarding to signal-to-noise ratio (SNR), which specifies the ratio

of the standard deviation of the function to the standard deviation of the simulated

errors. Explicitly, if the standard deviation of the true signal f is σf , the simulated

data will be f + ε, where the simulated error ε ∼ N(0, σf/SNR). The value of SNR

can be chosen 7 or 3.

2.4.1 Regularly Sampled Time Series Data

A set of regularly sampled time series data has equal time difference between each

pair of successive points. For example, denoted by ∆Ti = ti+1− ti for i = 1, . . . , n− 1,

then ∆T1 = · · · = ∆Tn−1.
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Following Nason (2010), we fix n = 1024 in the simulation. To compare the perfor-

mance of the proposed method, a few competitors are attending this competition. For

wavelet transform reconstructions, we use the threshold policy of sure and BayesThresh

with levels l = 4, . . . , 9 (Donoho and Johnstone, 1995; Abramovich et al., 1998). A

semi-parametric regression model with spatially adaptive penalized splines (P-spline)

is added in comparison (Krivobokova et al., 2008; Ruppert et al., 2003).

In the V-spline, there are two parameters η and γ to optimize. To evaluate the

performance of the velocity term in objective function (2.4) and the adjusted penalty

term in (2.30), the parameter γ is set as 0 in one reconstruction of V-spline, whose

objective function and solution become

J [f ]γ=0 =
1

n

n∑
i=1

(f(ti)− yi)2 +
n∑
i=0

∫ ti+1

ti

λ(t)f ′′(t)2dt, (2.44)

and

θ̂γ=0 =
(
B>B + nΩλ

)−1
B>y. (2.45)

In another reconstruction, the adjusted penalty term in (2.30) is removed and the

model is denoted by “V-spline without APT”.

Numerical Examples

Figure 2.2 to 2.5 display the original (velocity), generated position, wavelet with

two different threshold methods, P-spline and three kinds of V-spline fitted functions.

The parameters λ and γ of a V-spline are automatically selected with the formula

(2.37) by optim function in R (Nelder and Mead, 1965).

By comparing the results, we can see that all these methods can rebuild up the

skeleton of generated trajectory. Wavelet(sure) method has more wiggles in interior

interval than Wavelet(BayesThresh) does, and the latter one becomes fluctuation near

boundary knots. P-spline gives a smoother fit than wavelets, but the drawback is lack

of specific details. V-spline without velocity loses some information, as can be seen from

Blocks and Bumps where there should be a straight line. V-spline without adjusted

penalty term gets over-fitting when the direction changes more frequently than normal,

although it catches specific feature in HeaviSine. The proposed V-spline performs much

better than other methods and returns the near-true trajectory reconstructions.

Figure 2.6 shows the estimated penalty values λ(t, η) = (∆T )3

(∆d)2 η at SNR=7. The

figures in the left column illustrate the values of the penalty term at different intervals,

the figures in the right column are the observations and reconstructed trajectory. The
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Figure 2.2: Numerical example: Blocks. Comparison of different reconstruction meth-

ods with simulated data.
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Figure 2.3: Numerical example: Bumps. Comparison of different reconstruction meth-

ods with simulated data.
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Figure 2.4: Numerical example: HeaviSine. Comparison of different reconstruction

methods with simulated data.
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Figure 2.5: Numerical example: Doppler. Comparison of different reconstruction meth-

ods with simulated data

35



0

5

10

15

20

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

(a) Distribution of the penalty values in reconstructed Blocks

0

2000

4000

6000

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00

(b) Distribution of the penalty values in reconstructed Bumps

0

250

500

750

1000

0.00 0.25 0.50 0.75 1.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

(c) Distribution of the penalty values in reconstructed HeaviSine

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00

−0.1

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

(d) Distribution of the penalty values in reconstructed Doppler

Figure 2.6: Distribution of the penalty values λ(t, η) in V-spline. Figures on the left side

indicate the values varying in intervals. On the right side, these values are projected

into reconstructions. The bigger the blacks dots present, the larger the penalty values

are. 36
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Figure 2.7: Estimated velocity functions by V-spline. The velocity is generated from

the original simulation functions by equation (2.42)

bigger black dots present larger penalty values. It can be seen that λ(t, η) adapts to

the smoothness pattern of position and will be large where a long time gap may occur.

The details of how this penalty function works will be explained in next subsection.

Figure A.1 illustrates the reconstructions of V-spline at SNR=3.

Figure 2.7 demonstrates the estimated velocity functions. By taking the first deriva-

tive of fitted V-spline, it is simple to get the original four velocity functions. The

fittings of velocity are not as smooth as that of position, because we only care about

the smoothness of position rather than velocity in our cross-validation formula (2.37).

However, velocity information does help us in reconstructing the trajectory.

Evaluation

To examine the performance of the V-spline, we conduct a evaluation by comparing

the mean squared errors and true mean squared errors, which are respectively calculated
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Table 2.1: MSE. Mean squared errors of different methods. The numbers in bold

indicate the least error among these methods under the same level. The difference is

not significant.

MSE (10−4) SNR V-spline VSγ=0 VSAPT=0 P-spline W(sure) W(Bayes)

Blocks
7 16.53 15.99 16.69 16.14 15.39 16.68

3 89.79 87.64 89.94 88.27 98.35 90.24

Bumps
7 4.40 4.19 4.55 4.33 4.18 4.59

3 23.93 23.19 24.10 23.55 26.23 23.74

HeaviSine
7 4.16 4.01 4.16 4.02 3.79 4.19

3 22.63 22.19 22.65 22.02 23.53 22.07

Doppler
7 1.15 1.07 1.10 1.15 1.07 1.13

3 6.27 5.94 6.28 6.05 6.85 6.29

with the following formulas:

MSE =
1

n

n∑
i=1

(
yi − f̂η,γ(ti)

)2

, (2.46)

TMSE =
1

n

n∑
i=1

(
f(ti)− f̂η,γ(ti)

)2

. (2.47)

The results are shown in Tables 2.1 and 2.2. All of these methods have good

performances in fitting noisy data. The differences of mean squared error between

these methods are not significant, as can be seen from Table 2.1. The proposed method

is not the best among these simulations according to MSE. However, from Table 2.2,

V-spline returns the smallest true mean squared errors. The difference is significant,

that means the reconstruction from V-spline is closer to the true trajectory.

Residual Analysis

The simulated data is generated by equations (2.43) and the SNRs are set at 7 and

3 separately to compare the performances of different algorithms. All of the algorithms

can reconstruct the true trajectory from noisy data and return acceptable MSE values,

though V-spline returns the least TMSE in most of the circumstances.

Table 2.3 is comparing the capability of V-spline in retrieving the true SNR. The

measurements are generated from f and g with predefined SNR. The V-spline recon-

structs the true trajectory and retrieves the SNR value, both of which are close to the

truth.
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Table 2.2: TMSE. True mean squared errors of different methods. The numbers in

bold indicate the least error among these methods under the same level. The proposed

V-spline returns the smallest TMSE among all the methods under the same level except

for Doppler with SNR=7. The differences are significant.

TMSE (10−6) SNR V-spline VSγ=0 VSAPT=0 P-spline W(sure) W(Bayes)

Blocks
7 1.75 54.25 28.68 54.76 201.02 182.12

3 16.44 152.5 30.76 171.59 1138.08 712.36

Bumps
7 1.64 23.44 21.10 24.21 71.71 69.26

3 8.51 77.78 37.12 77.52 330.77 238.79

HeaviSine
7 1.53 7.80 1.56 9.54 55.37 44.88

3 8.21 33.56 8.49 34.26 240.72 110.49

Doppler
7 1.51 6.67 1.08 8.26 14.87 12.01

3 8.10 22.14 8.25 19.95 81.48 50.33

Table 2.3: Retrieved SNR. V-spline effectively retrieves the SNR, which is calculated

by σf̂/σ(f̂−y).

SNR predefined value generated f V-spline f̂

Blocks
7 6.9442 6.9485

3 2.9761 2.9817

Bumps
7 6.9442 6.9548

3 2.9761 2.9953

HeaviSine
7 6.9442 6.9207

3 2.9761 2.9706

Doppler
7 6.9442 6.8757

3 2.9761 2.9625
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Further analysis in Figures A.2 and A.3 shows that the residuals from V-splines are

independent.

2.4.2 Irregularly Sampled Time Series Data

A set of irregularly sampled time series data has different time differences between

each pair of successive points. The distribution of ∆Ti is not uniform.

In this section, it is shown that the proposed V-spline has the ability to reconstruct

the true trajectory even though the data is irregularly sampled. With the same func-

tions that are used in the previous section, we firstly generate the simulation data of

length n = 1024. Then we draw a length of 512 subsequence with indices 1, 3, . . . , 1023

from the mother data set for regularly sampled points and another 512 random indices

for irregularly sampled points. See Figure 2.8.
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Figure 2.8: Histogram of ∆T for irregularly sampled data

The reconstructions of regularly and irregularly sampled data are very competitive.
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Table 2.4: Retrieved SNR of reconstructions from regularly and irregularly sampled

data

SNR Regularly Irregularly

Blocks 7.0479 6.8692

Bumps 7.0241 7.1937

HeaviSine 7.2367 6.8793

Doppler 6.8692 7.3645

Table 2.5: MSE and TMSE of reconstructions from regularly and irregularly sampled

data

MSE ×10−4 TMSE ×10−6

Regularly Irregularly Regularly Irregularly

Blocks 8.0260 8.3358 3.5197 10.8596

Bumps 2.1374 2.0203 1.6662 6.2586

HeaviSine 2.0232 2.1272 1.1275 1.1077

Doppler 0.5251 0.5219 1.0101 1.7832
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Figure 2.9: Comparison of regularly and irregularly sampled data
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2.5 Inference of Tractor Trajectories

In the real life application, the movement of vehicles or tractors has complicated

features. The velocity of a moving object looks like a combination of the original

bumps and blocks functions: it is a turbulent waves fluctuating around zero. In this

section, we apply the proposed V-spline to real data set, which is recorded by a GPS

unit mounted on a tractor. The original data set contains the information about time

marks, longitude, latitude, velocity, bearing (in degrees, heading to North) and boom

status. The data is not regularly recorded and the time difference has a high variance.

In a two or higher d-dimensional curve nonparametric regression, consider the gen-

eral form of a length n time series data points {t1, p1, s1} , . . . , {tn, pn, sn}, such that

a ≤ t1 < t2 < · · · < tn ≤ b, pi and si are d-dimensional vectors contain position and

velocity information at time i respectively. The positive piecewise constant function

λ(t) = λi on each interval ti ≤ t < ti+1, t0 = a, tn+1 = b. Then function f : [a, b] 7→ Rd

with γ > 0 is a V-spline in the d-dimensional space if it is the solution to the generic

form of the objective function:

J [f ] =
1

n

n∑
i=1

‖f(ti)− pi‖2
d +

γ

n

n∑
i=1

‖f ′(ti)− si‖2
d +

n∑
i=0

λi

∫ ti+1

ti

‖f ′′(t)‖2
ddt. (2.48)

Particularly, GPS data is recorded in two directions, easting and northing. In

this situation d = 2. Hence, in the following application, we split the 2-dimensional

function f(x, y) into two sub-functions fx(t) on x-axis (easting direction) and fy(t) on

y-axis (northing direction) with respect to time t. Compared with other parameters,

choosing time t to be the parameter has some advantages: (i) the expressions of all

the constraints are simpler (Zhang et al., 2013); (ii) it can be simply applied from

2-dimension to 3-dimension by adding an extra z-axis, such as altitude. Without loss

of generality, a data set in a higher dimensional space can be projected into several

sub-spaces, such as p = {x, y, z, . . .} and s = {u, v, w, . . .}.
Thereafter, we convert the longitude and latitude information from a 3D sphere to

2D surface first by Universal Transverse Mercator coordinate system (UTM) and then

project the speed s into u and v on x-axis and y-axis respectively by

u = s · sin
(
ω
π

180

)
, (2.49)

v = s · cos
(
ω
π

180

)
, (2.50)

where ω is bearing in degrees. Boom status is tagged as 0 if it is not operating and 1

if it is. Time marks are transformed by subtracting the first mark, in which way the
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time starts from 0. Time duplicated data, caused by errors, have been removed from

the data set1. For the convenience of comparing with wavelet algorithm, we choose

the first 512 out of 928 rows of data. The original measurements are plotted in Figure

2.10.

In order to fit the real data, we bring the parameter ηd to our model. Then, we

are now having three parameters ηd and ηu regarding boom status and γ controlling

velocity residuals. The criteria of a good fitting are that it can catch more information,

recognize time gaps between two points where tractor stops and return a smaller MSE.

2.5.1 1-Dimensional Trajectory Reconstruction

We treat x and y position separately and compare how the velocity information

and the adjusted penalty term of equation (2.30) work in our model. All parameters

in fitted V-spline are automatically selected by cross-validation by equation (2.37).

Figure 2.11 and Figure 2.12 compare the results of fitted methods on x and y axes.

P-spline gives over-fitting on x axis reconstruction and not applicable on y axis due to

errors. Wavelet(sure) misses some key points at corners when a tractor tries to turn

around. V-spline without adjusted penalty term presents less fitting at time gap knots,

where time marks keep increasing while position stays the same and velocity is 0. If

we take the last knot pk before and the first knot pk+1 after the time gap, Hermite

spline basis will use yk, vk, yk+1 and vk+1 to build up a cubic spline, even though the

velocity information is not useful. That is why we got a curve rather than a straight

line. Wavelet(BayesThresh), V-spline without velocity and proposed V-spline give

acceptable results.

Table 2.6 illustrates the MSE of all methods on both x and y axes. The proposed

V-spline returns the least errors among all methods.

The penalty function of the proposed V-spline is

λ(t) = b
(∆T )3

(∆d)2 ηd + (1− b)(∆T )3

(∆d)2 ηu, where

b = 1 if boom is operating

b = 0 if boom is not operating
(2.51)

To explain the differences more clearly, we take λ(t) in our demonstration. Figure 2.13

indicates that at turning points and long time gap knots, the adjusted penalty term

will lead λ(t) to large values, which forces the spline to be a straight line between two

1In some cases, further data simplification to remove spurious or non-informative observations may

be warranted. In Appendix C, we introduce a new data simplification method for vehicle trajectories

which compares favorably with Douglas-Peucker algorithm.
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(d) Original positions on northing direc-

tion (y-axis)

Figure 2.10: Original data points. Figure 2.10a is the original positions recorded by

GPS units. Circle points means the boom is not operating; cross points means it is

operating. Figure 2.10b is the line-based trajectory by simply connecting all points

sequentially with straight lines. Figure 2.10c is the original x position. Figure 2.10d is

the original y positions.

Table 2.6: Mean squared error. V-spline returns smallest errors among all these meth-

ods. P-spline was unable to reconstruct the y trajectory as the original data set contains

0 ∆y.

MSE V-spline VSγ=0 VSAPT=0 P-spline W(sure) W(Bayes)

x 0.2046 0.2830 0.3298 2860.5480 256.0494 6.2959

y 0.0020 0.3062 0.3115 NA 1960.2220 19.3330
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(f) Reconstruction by proposed V-spline

Figure 2.11: Fitted data points on x axis. Figure 2.11a Fitted by P-spline, which

gives over-fitting on these points and misses some information. Figure 2.11b Fitted by

wavelet (sure) algorithm. At some turning points, it gives over-fitting. Figure 2.11c

Fitted by wavelet (BayesThresh) algorithm. It fits better than (sure) and the result

is close to the proposed method. Figure 2.11d Fitted by V-spline without velocity

information. The reconstruction is good to get the original trajectory. Figure 2.11e

Fitted by V-spline without adjusted penalty term. It gives less fitting at boom-not-

operating points because of a large time gap. Figure 2.11f Fitted by proposed method.

It fits all data points in a good way.
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Figure 2.12: Fitted data points on y axis. Figure 2.12a Fitted P-spline is not appli-

cable on y axis as the matrix is not invertible. Figure 2.12b Fitted by wavelet (sure)

algorithm. At some turning points, it gives over-fitting. Figure 2.12c Fitted by wavelet

(BayesThresh) algorithm is much better than wavelet (sure). Figure 2.12d Fitted by

V-spline without velocity information. The reconstruction is good to get the original

trajectory. Figure 2.12e Fitted by V-spline without adjusted penalty term. It gives

less fitting at boom-not-operating. Figure 2.12f Fitted by proposed method. It fits all

data points in a good way.
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(b) Reconstruction on easting (x) and northing (y) directions separately.

Figure 2.13: The penalty value λ(t) of the V-spline on x and y axes. Red dots are the

measurements y. The bigger red dots in Figure 2.13b indicate larger penalty values at

the points. It can be seen that most of large penalty values occur at turnings, where

the tractor likely slows down and takes breaks.

knots. It can be seen in Figure 2.13b clearly. Histogram plots of λ(t) show that most

of the penalty values are small, which allows the V-spline to go as closer as possible to

the observed points. Only a few of penalty values are large, so that V-spline gives a

straight line at tricky points.

The 1-dimensional reconstruction gets the best fittings f̂x and f̂y on x and y axes

separately by using different penalty values, denoted as ηd,x, ηu,x, ηd,y, ηu,y, γx and γy.

The final reconstruction is the combination of f̂x and f̂y. It is shown in Figure 2.14.

2.5.2 2-Dimensional Trajectory Reconstruction

In a 2-dimensional trajectory reconstruction, different from combined 1-dimensional

reconstruction, we use the same parameters λd, λu and γ for both x and y axes. The
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Figure 2.14: Combined reconstruction on easting (x) and northing (y) directions. Red

dots are the measurements. The bigger size indicates larger penalty value at that point.

overall best parameters return the least cross-validation score on all axes. Explicitly,

it is calculated by the following formula

CV = CVx + CVy. (2.52)

In the adjusted penalty term, ∆d is the Euclidean distance ∆d(p1, p2) =
√

(∆x)2 + (∆y)2

between two positions on the 2D surface. Similar to 1-dimensional reconstruction, the

velocity information keeps trajectory in the right direction and the penalty term makes

sure that the crazy curve will disappear between long-time-gap points. Figure 2.15

demonstrates the complete 2D reconstruction of the whole data set.

The penalty function λ(t) of a 2-dimensional reconstruction is shared by x and y

axes and presented in Figure 2.16. The complete penalty term is

nθ>x Ωηd,ηuθx + nθ>y Ωηd,ηuθy. (2.53)

Similarly, most of the large penalty values appear at long-time-gap knots and turning

points. A histogram plot of penalty function shows that most of the values are small

and only a couple of them are large.
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(a) 2-dimensional reconstruction on easting (x) and northing (y) directions separately.
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(b) Combined 2-dimensional reconstruction.

Figure 2.15: 2-dimensional reconstruction. Larger dots indicate bigger values of penalty

function λ(t).

The following Figure 2.17 is a complete reconstruction from the whole observed data

set {x, u, y, v}. The overall reconstruction gives a smoothing path that goes through

each measurement and avoids curvatures at turning points.
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Figure 2.16: Penalty value of λ(t) in 2-dimensional reconstruction.
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Figure 2.17: A complete 2-dimensional reconstruction on both easting and northing

directions. Red dots are the measurements.

2.6 Conclusion and Discussion

In this chapter, a V-spline model is proposed to solve the objective function, which

is consisting of both position and velocity information. The adjusted penalty function

adapts to complicated curvatures. In a d-dimensional space, V-spline can be projected

into sub-spaces with respect to t and combined each solution together as a final. This

method performs better when we know the position and velocity information than
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other methods.

Additionally, the reconstruction of a V-spline contains 4 × (n − 1) parameters if

we have n knots. By adding 2 × (n − 2) constraints, the original function, and its

first derivative are continuous at each interior knots, the degrees of freedom will be

4× (n− 1)− 2× (n− 2) = 2n. Because there are n position and n velocity points, we

do not need to specify more parameters or add more constraints to the model.

In our experimental studies, the MSE of the V-spline were neither significantly

better or worse than other methods. However, its true MSE was significantly less.

In parameter selection, the cross-validation only focuses on the errors of f ignoring

that in f ′. So the reconstruction of f ′ is not as smooth as that of f , which does

not affect trajectory reconstruction. A drawback of V-spline is that the computing

time in finding local minimal CV score is more than B-spline. If there is an efficient

way to compute matrix inverse, the calculation speed will be much faster. So in the

simulation and application studies, we try to optimize our coding to make it run as

faster as possible.

Another potential application of V-spline is to vessel monitoring system. The sys-

tem is a fisheries surveillance that allows environmental and fisheries regulatory orga-

nization to track and monitor the activities of fishing vessels. The system calculates

the position of the moving object and sends a data report to shore-side users. This

information includes time, latitude and longitude positions. However, due to weak

signals, the tracking system may lose useful information. The V-spline can help to

reconstruct the whole trajectory for a fishery vessel and to analyze its behavior. For

example, a larger penalty value indicates stops on the sea inferring that the vessel is

casting nets; a smaller penalty value indicates the vessel is moving normally.

After all, there is a wide range of applications for V-spline in real life. A future

work is to implement V-spline on-line for instant estimation and to make it run faster.
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Chapter 3

V-Spline as Bayes Estimate

3.1 Introduction

A Hilbert space is a real or complex inner product space with respect to the distance

function induced by the inner product (Dieudonné, 2013). In particular, the Hilbert

space L2[0, 1] is the set of square integrable functions f(t) : [0, 1] 7→ R, where all

functions satisfy

L2[0, 1] =

{
f :

∫ 1

0

f 2dt <∞
}

(3.1)

with an inner product 〈f, g〉 =
∫ 1

0
fgdt.

Consider a regression problem with observations modeled as yi = f(ti) + εi, i =

1, . . . , n, where εi ∼ N(0, σ2) are i.i.d. Gaussian noise and f ∈ C(m)[0, 1] = {f : f (m) ∈
L2[0, 1]}. The classic nonparametric or semi-parametric regression is a function that

minimizes the following penalized sum of squares functional

1

n

n∑
i=1

(yi − f(ti))
2 + λ

∫ 1

0

(
f (m)

)2
dt, (3.2)

where the first term is the lack of fit of f to the data. The parameter λ in the second

term is a fixed smoothing parameter controlling the trade-off between over-fitting and

bias (Hastie et al., 2009). The minimizer fλ of the above equation resides in an n-

dimensional space and the computation in multivariate settings is generally of the order

O (n3) (Kim and Gu, 2004). Schoenberg (1964) shows that a piecewise polynomial

smoothing spline of degree 2m − 1 provides an aesthetically satisfying method for

estimating f if y cannot be interpolated exactly by some polynomial of degree less

than m. For instance, when m = 2, a piecewise cubic smoothing spline provides a
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powerful tool to estimate the above nonparametric function, in which the penalty term

is
∫
f ′′2dt (Hastie and Tibshirani, 1990).

Further, Wahba (1978) shows that a Bayesian version of this problem is to take a

Gaussian process prior f(ti) = a0+a1ti+· · ·+am−1t
m−1
i +xi on f with xi = X(ti) being

a zero-mean Gaussian process whose mth derivative is scaled white noise, i = 1, . . . , n

(Speckman and Sun, 2003). The extended Bayes estimates fλ with a “partially diffuse”

prior is exactly the same as the spline solution. Heckman and Woodroofe (1991) show

that if prior distribution of the vector f = (f(t1), . . . , f(tn))> is unknown but lies in

a known class Ω, the estimator f̂ is found by minimizing the max E[f̂ − f ]2. Branson

et al. (2017) propose a Gaussian process regression method that acts as a Bayesian

analog to local linear regression for sharp regression discontinuity designs. It is no

doubt that one of the attractive features of the Bayesian approach is that, in principle,

one can solve virtually any statistical decision or inference problem. Particularly, one

can provide an accuracy assessment for f̂ = E(f | y) using posterior probability regions

(Cox, 1993).

Based on the correspondence between nonparametric regression and Bayesian esti-

mation, Craven and Wahba (1978) propose an generalized cross-validation estimate for

the minimizer fλ. The estimate λ̂ is the minimizer of the function where the trace of

matrix A(λ) in (2.33) is incorporated. It is also possible to establish an optimal con-

vergence property for the estimator when the number of observations in a fixed interval

tends to infinity (Wecker and Ansley, 1983). A highly efficient algorithm to optimize

generalized cross-validation and generalized maximum likelihood scores with multiple

smoothing parameters via the Newton method was proposed by Gu and Wahba (1991).

This algorithm can also be applied to maximum likelihood estimation and restricted

maximum likelihood estimation. The behavior of the optimal regularization parameter

in different regularization methods was investigated by Wahba and Wang (1990).

In this chapter, it is proved that the V-spline can be estimated by a Bayesian

approach in a certain reproducing kernel Hilbert space. An extended GCV is used to

find the optimal parameters for the V-spline.

3.2 Polynomial Smoothing Splines on [0, 1] as Bayes

Estimates

A polynomial smoothing spline of degree 2m − 1 is a piecewise polynomial of the

same degree on each interval [ti, ti+1), i = 1, . . . , n− 1, and the first 2m− 2 derivatives

54



are continuous at the knots. For instance, when m = 2, a piecewise cubic smooth-

ing spline is a special case of the polynomial smoothing spline providing a powerful

tool to estimate the above nonparametric function (3.2) in the space C(2)[0, 1], where

the penalty term is
∫
f ′′2dt (Hastie and Tibshirani, 1990; Wang, 1998). If a general

space C(m)[0, 1] is equipped with an appropriate inner product, it can be made into a

reproducing kernel Hilbert space.

3.2.1 Polynomial Smoothing Spline

A spline is a numeric function that is piecewise-defined by polynomial functions,

which possesses a high degree of smoothness at the places where the polynomial pieces

connect (known as knots) (Judd, 1998; Chen, 2017). Suppose we are given observed

data (t1, y1), (t2, y2), . . . , (tn, yn) in the interval [0, 1], satisfying 0 < t1 < t2 < · · · <
tn < 1, a piecewise polynomial function f(t) can be obtained by dividing the interval

into contiguous intervals (t1, t2), . . . , (tn−1, tn) and represented by a separate polynomial

on each interval. For any continuous f ∈ C(m)[0, 1], it can be represented in a linear

combination of basis functions hm(t) as f(t) =
∑M

m=1 βmhm(t), where βm are coefficients

(Ellis et al., 2009). It is just like every vector in a vector space can be represented as

a linear combination of basis vectors.

A smoothing polynomial spline is uniquely the smoothest function that achieves

a given degree of fidelity to a particular data set (Whittaker, 1922). In deed, the

minimizer of function (3.2) is the curve estimate f̂(t) over all spline functions f(t)

with m− 1 continuous derivatives fitting observed data in the space C(m)[0, 1]. In fact,

Kimeldorf and Wahba (1971, 1970) prove that the minimizer fλ of function (3.2) has

the following form

f(t) =
m∑
ν=1

dνφν(t) +
n∑
i=1

ciR1(t, ti). (3.3)

where {φν(t)} is a set of basis functions of space H0 and R(·, ·) is the reproducing

kernel in H1.

Additionally, the coefficients ci and dν might be changed when different φν and R1

are used, but the function estimate remains the same regardless of the choices of φν

and R1 (Gu, 2013).
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3.2.2 Reproducing Kernel Hilbert Space on [0, 1]

For any f ∈ C(m)[0, 1], its standard Taylor expansion is

f(t) =
m−1∑
ν=0

tν

ν!
f (ν)(0) +

∫ 1

0

(t− u)m−1
+

(m− 1)!
f (m)(t)dt, (3.4)

where (·)+ = max{0, ·}. With an inner product

〈f, g〉 =
m−1∑
ν=0

f (ν)(0)g(ν)(0) +

∫ 1

0

f (m)(t)g(m)(t)dt, (3.5)

the representer is

Rs(t) =
m−1∑
ν=0

sν

ν!

tν

ν!
+

∫ 1

0

(s− u)m−1
+

(m− 1)!

(t− u)m−1
+

(m− 1)!
du , R0(s, t) +R1(s, t). (3.6)

It is easy to prove that R(s, t) is non-negative and is reproducing kernel, by which

〈R(s, t), f(t)〉 = 〈Rs(t), f(t)〉 = f(s). Additionally, R
(ν)
s (0) = sν/ν! for ν = 0, . . . ,m−

1.

Before moving on to further steps, we are now introducing the following two theo-

rems.

Theorem 3. (Aronszajn, 1950) Suppose R is a symmetric, positive definite kernel on

a set X. Then, there is a unique Hilbert space of functions on X for which R is a

reproducing kernel.

Theorem 4. (Gu, 2013) If the reproducing kernel R of a space H on domain X can

be decomposed into R = R0 + R1, where R0 and R1 are both non-negative definite,

R0(x, ·), R1(x, ·) ∈ H, for ∀x ∈ X, and 〈R0(x, ·), R1(y, ·)〉 = 0, for ∀x, y ∈ X, then

the spaces H0 and H1 corresponding respectively to R0 and R1 form a tensor sum

decomposition of H. Conversely, if R0 and R1 are both nonnegative definite and H0 ∩
H1 = {0}, then H = H0 ⊕H1 has a reproducing kernel R = R0 +R1.

According to Theorem 3, the Hilbert space associated with R(·) can be constructed

as containing all finite linear combinations of the form
∑
aiR(ti, ·), and their limits un-

der the norm induced by the inner product 〈R(s, ·), R(t, ·)〉 = R(s, t). As for Theorem 4,

it is easy to verify that R0 corresponds to the space of polynomialsH0 =
{
f : f (m) = 0

}
with an inner product 〈f, g〉0 =

∑m−1
ν=0 f

(ν)(0)g(ν)(0) and R1 corresponds to the orthogo-

nal complement ofH0, that isH1 =
{
f : f (ν)(0) = 0, ν = 0, . . . ,m− 1,

∫ 1

0
(f (m))2dt <∞

}
with an inner product 〈f, g〉1 =

∫ 1

0
f (m)g(m)dt.
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3.2.3 Polynomial Smoothing Splines as Bayes Estimates

Because it is possible to interpret the smoothing spline regression estimator as a

Bayes estimate when the mean function r(·) is given an improper prior distribution

(Wahba, 1990; Berlinet and Thomas-Agnan, 2011). Therefore, one can find that the

posterior mean of f on [0, 1] with a vague improper prior is the polynomial smoothing

spline of the objective function (3.2).

Consider f = f0 + f1 on [0, 1], with f0 and f1 having independent Gaussian priors

with zero means and covariances satisfying

E[f0(s)f0(t)] = τ 2R0(s, t) = τ 2

m−1∑
ν=0

sν

ν!

tν

ν!
, (3.7)

E[f1(s)f1(t)] = bR1(s, t) = b

∫ 1

0

(s− u)m−1
+

(m− 1)!

(t− u)m−1
+

(m− 1)!
, (3.8)

where R0 and R1 are from (3.6). Because of the observations are normally distributed

as yi ∼ N(f(ti), σ
2), then the joint distribution for y = {y1, . . . , yn} and f(t) is normal

with zero mean and the following covariance matrix

Cov(f,y) =

[
bQ+ τSS> + σ2I bξ + τ 2Sφ

bξ> + τ 2φ>S> bR1(t, t) + τ 2φ>φ

]
, (3.9)

where {Qi,j}n×n = R1(ti, tj), {Si,ν}n×m = tν−1
i /(ν − 1)!, {ξi,1}n×1 = R1(ti, t) and

{φν,1}m×1 = tν−1/(ν − 1)!. Consequently, the posterior is

E[f(t) | y] =
(
bξ> + τφ>s>

) (
bQ+ τ 2SS> + σ2I

)−1
y

= ξ>
(
Q+ ρSS> + nλI

)−1
y + φ>ρS>

(
Q+ ρSS> + nλI

)−1
y,

(3.10)

where ρ = τ 2/b and nλ = σ2/b. Furthermore, by denoting M = Q + nλI, Gu (2013)

gives that, when ρ→∞, the posterior mean is in the form E[f(t) | y1:n] = ξ>c + φ>d

with coefficients

c =
(
M−1 −M−1S

(
S>M−1S

)−1
S>M−1

)
y, (3.11)

d =
(
S>M−1S

)−1
S>M−1y. (3.12)

Theorem 5. (Gu, 2013) The polynomial smoothing spline of (3.2) is the posterior

mean of f = f0 + f1, where f0 diffuses in span {tν−1, ν = 1, . . . ,m} and f1 has a

Gaussian process prior with mean zero and a covariance function

bR1(s, t) = b

∫ 1

0

(s− u)m−1
+

(m− 1)!

(t− u)m−1
+

(m− 1)!
, (3.13)

for b = σ2/nλ.
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Remark : Equation (3.7) can be obtained from equation (3.3) if we assume dν ∼
N (0, τ 2Im×m). Therefore the limit of ρ = τ2

b
→ ∞ indicates a diffuse prior for the

coefficients d.

3.2.4 Gaussian Process Regression

Gaussian processes are the extension of multivariate Gaussian to infinite-sized col-

lections of real value variables, any finite number of which have a joint Gaussian distri-

bution (Rasmussen and Williams, 2006). Gaussian process regression is a probability

distribution over functions. It is fully defined by its mean m(t) and covariance K(s, t)

function as

m(t) = E[f(t)] (3.14)

K(s, t) = E[(f(s)−m(s)) (f(t)−m(t))], (3.15)

where s and t are two variables. A function f distributed as such is denoted in form of

f ∼ GP (m(t), K(s, t)) . (3.16)

Usually the mean function is assumed to be zero everywhere.

Given a set of input variables t = {t1, . . . , tn} for function f(t) and the output

y = f(t)+ε with i.i.d. Gaussian noise ε of variance σ2
n, we can use the above definition

to predict the value of the function f∗ = f(t∗) at a particular input t∗. As the noisy

observations becoming

Cov(yp, yq) = K(tp, tq) + σ2
nδpq (3.17)

where δpq is a Kronecker delta which is one if and only if p = q and zero otherwise, the

joint distribution of the observed outputs y and the estimated output f∗ according to

prior is [
y

f∗

]
∼ N

(
0,

[
K(t, t) + σ2

nI K(t, t∗)

K(t∗, t) K(t∗, t∗)

])
. (3.18)

The posterior distribution over the predicted value is obtained by conditioning on the

observed data

f∗ | y, t, t∗ ∼ N
(
f̄∗,Cov(f∗)

)
(3.19)

where

f̄∗ = E (f∗ | y, t, t∗) = K(t∗, t)
(
K(t, t) + σ2

n

)−1
y, (3.20)

Cov(f∗) = K(t∗, t∗)−K(t∗, t)
(
K(t, t) + σ2

nI
)−1

K(t, t∗). (3.21)
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Therefore it can seen that the Bayesian estimation of a smoothing spline is a special

format of Gaussian process regression with diffuse prior and the covariance matrix

R(s, t).

3.3 V-Spline as Bayes Estimate

Recall the definition of V-spline that is introduced in Section 2.2. It is the solution to

the objective function (2.4), where an extra term for f ′(t)− v and an extra parameter

γ are incorporated. The penalty parameter λ(t) is a function varying on different

domains. If λ(t) = λ is constant and γ = 0, the V-spline degenerate to a conventional

cubic smoothing spline consisting of a set of given basis functions.

However, the Bayes estimate for a polynomial smoothing spline requires fixed in-

terval on [0, 1] and the penalty parameter is constant. For the first constraint, without

loss of generality, an arbitrary interval [a, b] can be transformed to [0, 1]. For the second

constraint, it is assumed that λ(t) stays the same constant in each subinterval of [0, 1]

and name the solution “trivial V-spline”. In this section, we still use “V-spline” for

sake of simplicity.

In the following, we are going to prove that this kind of trivial V-spline is corre-

sponding to Bayes estimate in a particular reproducing kernel Hilbert space.

3.3.1 Reproducing Kernel Hilbert Space C(2)
p.w.[0, 1]

The space C(m)[0, 1] =
{
f : f (m) ∈ L2[0, 1]

}
is a set of functions f whose mth deriva-

tives are square integrable on the domain [0, 1]. For a V-spline, it only requires m = 2.

In fact, its second derivative is piecewise linear but is not necessarily continuous at

the knots. Besides, if and only if λ(t) is constant and γ = 0, the second derivative is

piecewise linear and continuous at the knots. Here we are introducing the space

C(2)
p.w.[0, 1] = {f : f ′′ ∈ L2[0, 1], f, f ′ are continuous and f ′′ is piecewise linear} ,

in which the second derivative of any function f is not necessarily continuous.

Given a sequence of paired data {(t1, y1, v1), . . . , (tn, yn, vn)}, the the minimizer of

J [f ] =
1

n

n∑
i=1

(yi − f(ti))
2 +

γ

n

n∑
i=1

(vi − f ′(ti))2 + λ

∫ 1

0

f ′′2dt (3.22)

in the space C(2)
p.w.[0, 1] is a V-spline. Equipped with an appropriate inner product

〈f, g〉 = f(0)g(0) + f ′(0)g′(0) +

∫ 1

0

f ′′(t)g′′(t)dt, (3.23)
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the space C(2)
p.w.[0, 1] is made a reproducing kernel Hilbert space. In fact, the representer

Rs(·) is

Rs(t) = 1 + st+

∫ 1

0

(s− u)+(t− u)+du. (3.24)

It can be seen that Rs(0) = 1, R′s(0) = s, and R′′s(t) = (s− t)+. The two terms of the

reproducing kernel R(s, t) = Rs(t) , R0(s, t) +R1(s, t), where

R0(s, t) = 1 + st (3.25)

R1(s, t) =

∫ 1

0

(s− u)+(t− u)+du (3.26)

are both non-negative definite themselves.

According to Theorem 4, R0 can correspond the space of polynomialsH0 = {f : f ′′ = 0}
with an inner product 〈f, g〉0 = f(0)g(0) + f ′(0)g′(0), and R1 corresponds the orthog-

onal complement of H0

H1 =

{
f : f(0) = 0, f ′(0) = 0,

∫ 1

0

f ′′(t)2dt <∞
}

(3.27)

with inner product 〈f, g〉1 =
∫ 1

0
f ′′g′′dt. Thus, H0 and H1 are two subspaces of the

C(2)
p.w.[0, 1], and the reproducing kernel is Rs(·) = R0(s, ·) +R1(s, ·).

Define a new notation Ṙ(s, t) = ∂R
∂s

(s, t) = ∂R0

∂s
(s, t) + ∂R1

∂s
(s, t) = t+

∫ s
0

(t− u)+du.

Obviously Ṙs(t) ∈ C(2)
p.w.[0, 1]. Additionally, we have Ṙs(0) = 0, Ṙ′s(0) = ∂Ṙs

∂t
(0) = 1,

and Ṙ′′s(t) =

0 s ≤ t

1 s > t
. Then, for any f ∈ C(2)

p.w.[0, 1], we have

〈Ṙs, f〉 = Ṙs(0)f(0)+Ṙ′s(0)f ′(0)+

∫ 1

0

Ṙ′′sf
′′(u)du = f ′(0)+

∫ t

0

f ′′(u)du = f ′(t). (3.28)

It can be seen that the first term Ṙ0 = t ∈ H0, and the space spanned by the second

term Ṙ1 =
∫ s

0
(t− u)+du, denoted as Ḣ, is a subspace of H1, and Ḣ 	 H1 6= ∅. Given

the sample points tj, j = 1, . . . , n, in equation (3.22) and noting that the space

A =

{
f : f =

n∑
j=1

αjR1(tj, ·) +
n∑
j=1

βjṘ1(tj, ·)

}
(3.29)

is a closed linear subspace of H1. Then, we have a new space H∗ = Ḣ ∪ A. Thus, the

two new sub spaces in C(2)
p.w.[0, 1] are H0 and H∗.

For any f ∈ C(2)
p.w.[0, 1], it can be written as

f(t) = d1 + d2t+
n∑
j=1

cjR1(tj, t) +
n∑
j=1

bjṘ1(tj, ·) + ρ(t) (3.30)
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where d = {d1, d2}, c = {cj} and b = {bj}, j = 1, . . . , n, are coefficients, and ρ(t) ∈
H1 	H∗. Thus, by substituting to the equation (3.22), it can be written as

nJ [f ] =
n∑
i=1

(
yi − d1 − d2t−

n∑
j=1

cjR1(tj, ti)−
n∑
j=1

bjṘ1(tj, ti)− ρ(ti)

)2

+γ
n∑
i=1

(
vi − d2 −

n∑
j=1

cjR
′
1(tj, ti)−

n∑
j=1

bjṘ
′
1(tj, ti)− ρ′(ti)

)2

+nλ

∫ 1

0

(
n∑
j=1

cjR
′′
1(tj, t) +

n∑
j=1

bjṘ
′′
1(tj, t) + ρ′′(t)

)2

dt

(3.31)

Because of orthogonality, ρ(ti) = 〈R1(ti, ·), ρ〉 = 0, ρ′(ti) = 〈Ṙ1(ti, ·), ρ′〉 = 0, i =

1, . . . , n. By denoting that

S = {Sij}n×2 =
[
1 ti

]
, Q = {Qij}n×n = R1(tj, ti), P = {Pij}n×n = Ṙ1(tj, ti),

S ′ =
{
S ′ij
}
n×2

=
[
0 1

]
, Q′ =

{
Q′ij
}
n×n = R′1(tj, ti), P ′ =

{
P ′ij
}
n×n = Ṙ′1(tj, ti).

and noting that
∫ 1

0
R′′1(ti, t)R

′′
1(tj, t)dt = R1(ti, tj),

∫ 1

0
R′′1(ti, t)Ṙ

′′
1(tj, t)dt =

∫ v
0

(ti −
t)dt = Ṙ1(tj, ti), and

∫ 1

0
Ṙ′′1(ti, t)Ṙ

′′
1(tj, t)dt =

∫ v
0

1dt = Ṙ′1(ti, tj), where v = min{ti, tj},
the above equation (3.31) can be written as

nJ [f ] = (y − Sd−Qc− Pb)> (y − Sd−Qc− Pb)

+γ (v − S ′d−Q′c− P ′b)
>

(v − S ′d−Q′c− P ′b)

+nλ
(
c>Qc + 2c>Pb + b>P ′b

)
+ nλ (ρ, ρ) .

(3.32)

Note that ρ only appears in the third term and is minimized at ρ = 0. Hence, a V-

spline resides in the space H0 ⊕H∗ of finite dimension. Thus, the solution to (3.22) is

computed via the minimization of the first three terms in (3.32) with respect to d, c

and b.

3.3.2 Posterior of Bayes Estimates

In a general process, we know that p(y,v | f) = N(f,Γ), where Γ is a covariance

matrix. However, we are more interested in f given measurements, which is

p(f | y,v) ∝ p(y,v | f)p(f), (3.33)

where f ∼ GP (0,Σ) is a Gaussian process prior. In fact, the covariance matrix Σ is

associated to the inner product R(s, t).
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Observing yi ∼ N (f(ti), σ
2) and vi ∼ N

(
f(ti),

σ2

γ

)
, i = 1, . . . , n, the joint distri-

bution of y,v and f(t) is normal with mean zero and a covariance matrix can be found

by the following

E[f(s)f(t)] = τ2R0(s, t) + βR1(s, t) E[f(s)f ′(t)] = τ2R′0(s, t) + βR′1(s, t)

E[f ′(s)f(t)] = τ2Ṙ0(s, t) + βṘ1(s, t) E[f ′(s)f ′(t)] = τ2Ṙ′0(s, t) + βṘ′1(s, t)

E[yi, yj ] = τ2R0(si, sj) + βR1(si, sj) + σ2δij E[vi, vj ] = τ2Ṙ′0(si, sj) + βṘ′1(si, sj) +
σ2

γ
δij

E[vi, yj ] = τ2Ṙ0(si, sj) + βṘ1(si, sj) E[yi, vj ] = τ2R′0(si, sj) + βR′1(si, sj)

E[yi, f(s)] = τ2R0(si, s) + βR1(si, s) E[yi, f
′(s)] = τ2R′0(si, s) + βR′1(si, s)

E[vi, f(s)] = τ2Ṙ0(si, s) + βṘ1(si, s) E[vi, f
′(s)] = τ2Ṙ′0(si, s) + βṘ′1(si, s)

(3.34)

where R0(s, t) and R1(s, t) are taken from (3.25) and (3.26).

Therefore, by using a standard result on multivariate normal distribution (such as

Result 4.6 in (Johnson and Wichern, 1992)), the posterior mean of f(t) is seen to be

E[f | y,v] =
[
Cov(y, f) Cov(f,v)

] [ Var(y) Cov(y,v)

Cov(v,y) Var(v)

]−1 [
y

v

]

=
[
τ2φ>S> + βξ> τ2φ>S′> + βψ>

] [τ2SS> + βQ+ σ2I τ2SS′> + βP

τ2S′S> + βQ′ τ2S′S′> + βP ′ + σ2

γ I

]−1 [
y

v

]

=
[
ρφ>S> + ξ> ρφ>S′> + ψ>

] [ρSS> +Q+ nλI ρSS′> + P

ρS′S> +Q′ ρS′S′> + P ′ + nλ
γ I

]−1 [
y

v

]

=

φ>ρ[S
S′

]>
+
[
ξ> ψ>

]ρ[S
S′

]> [
S

S′

]
+

[
Q+ nλI P

Q′ P ′ + nλ
γ I

]−1 [y
v

]

, φ>ρT>
(
ρT>T +M

)−1 [y
v

]
+
[
ξ> ψ>

] (
ρT>T +M

)−1 [y
v

]
(3.35)

where φ is 2 × 1 matrix with entry 1 and t, ξ is n × 1 matrix with ith entry R(ti, t),

T> =
[
S> S ′>

]
and ψ is n×1 matrix with ith entry Ṙ(ti, t), ρ = τ 2/β and nλ = σ2/β.

Lemma 3. Suppose M is symmetric and nonsingular and T is of full column rank.

lim
ρ→∞

(
ρTT> +M

)−1
= M−1 −M−1T

(
T>M−1T

)−1
T>M−1, (3.36)

lim
ρ→∞

ρT>
(
ρTT> +M

)−1
=
(
T>M−1T

)−1
T>M−1. (3.37)

Setting ρ → ∞ in equation (3.35) and applying Lemma 3, the posterior mean
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E(f(t) | y,v) is f̂ = φ>d + ξ>c + ψ>b, with the coefficients given by

d =
(
T>M−1T

)−1
T>M−1

[
y

v

]
, (3.38)[

c

b

]
=
(
M−1 −M−1T

(
T>M−1T

)−1
T>M−1

)[y
v

]
, (3.39)

where T =

[
S

S ′

]
and M =

[
Q+ nλI P

Q′ P ′ + nλ
γ
I

]
.

It is easy to verify that d, c,b are the solutions to
S> (Sd +Qc + Pb− y) + γS ′>

(
S ′d + P>c + P ′b− v

)
= 0,

Q (Sd + (Q+ nλI) c + Pb− y) + P
(
γS ′d + γP>c + (γP ′ + nλI) b− γv

)
= 0,

P> (Sd + (Q+ nλI) c + Pb− y) + P ′
(
γS ′d + P>c + (γP ′ + nλI) b− γv

)
= 0.

(3.40)

Finally we obtain the following theorem:

Theorem 6. The smoothing V-spline of (3.22) is the posterior mean of f = f0+f1+ḟ1,

where f0 diffuses in span {1, t} and f1, ḟ1 have Gaussian process priors with mean zero

and covariance functions

Cov (f1, f1) = βR1 (s, t) = β

∫ 1

0

(s− u)+ (t− u)+ du, (3.41)

Cov
(
ḟ1, f1

)
= βṘ1 (s, t) = β

∫ s

0

(t− u)+ du, (3.42)

Cov
(
ḟ1, ḟ1

)
= βṘ′1 (s, t) = βmin{s, t}, (3.43)

for β = σ2/nλ.

3.4 Bayes Estimate for Non-trivial V-Spline

For a sequence 0 = t0 < t1 < · · · < tn < tn+1 = 1 on the interval [0, 1] in the

reproducing kernel Hilbert space C(2)
p.w.[0, 1], define an inner product

〈f, g〉 = f(0)g(0) + f ′(0)g′(0) +
n∑
i=0

wi

∫ ti+1

ti

f ′′(t)g′′(t)dt, (3.44)

where wi > 0, i = 0, . . . , n. The representer is

Rs(t) = 1 + st+
n∑
i=0

w−1
i

∫ ti+1

ti

(s− u)+(t− u)+du, (3.45)
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having the following properties

R′s(t) = s+
n∑
i=0

w−1
i

∫ ti+1

ti

(s− u)+Θ(t− u)du, (3.46)

Ṙs(t) = t+
n∑
i=0

w−1
i

∫ ti+1

ti

Θ(s− u)(t− u)+du, (3.47)

R′′s(t) =
n∑
i=0

w−1
i

∫ ti+1

ti

(s− u)+δ(t− u)du, (3.48)

and Rs(0) = 1, R′s(0) = s. The function Θ(t−u) is the Heaviside function and δ(t−u)

is the Dirac delta function.

Further, R(·) and Ṙ(·) on [0, 1] have the following properties

〈Rs, f〉 = Rs(0)f(0) +R′s(0)f ′(0) +
n∑
i=0

wi

∫ ti+1

ti

R′′s(u)f ′′(u)du

= f(0) + sf ′(0) +
n∑
i=0

wi

∫ ti+1

ti

n∑
j=0

w−1
j

∫ tj+1

tj

(s− u)+δ(v − u)duf ′′(v)dv

= f(0) + sf ′(0) +
n∑
i=0

∫ ti+1

ti

(s− u)+f
′′(u)du

= f(s)

(3.49)

〈Ṙs, f〉 = Ṙs(0)f(0) + Ṙ′s(0)f ′(0) +
n∑
i=0

wi

∫ ti+1

ti

Ṙ′′s(u)f ′′(u)du

= f ′(0) +
n∑
i=0

wi

∫ ti+1

ti

n∑
j=0

w−1
j

∫ tj+1

tj

Θ(s− u)δ(v − u)duf ′′(v)dv

= f ′(0) +
n∑
i=0

∫ ti+1

ti

Θ(s− u)f ′′(u)du

= f ′(s)

(3.50)

Define the two terms of the reproducing kernel R(s, t) = Rs(t) = R0(s, t)+R1(s, t),

where

R0(s, t) = 1 + st (3.51)

R1(s, t) =
n∑
i=0

w−1
i

∫ ti+1

ti

(s− u)+(t− u)+du (3.52)

are both non-negative definite themselves. For R0 there corresponds the space of

polynomials H0 = {f : f ′′ = 0} with an inner product 〈f, g〉 = f(0)g(0) + f ′(0)g′(0),
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and for R1 there corresponds a sequence of orthogonal spaces H(i)

H(i) = {f : f(0) = 0, f ′(0) = 0,

∫ ti+1

ti

f ′′(t)2dt <∞}

and H1 = ⊕n−1
i=1H(i). The inner product through the entire space H1 is 〈f, g〉 =∑n−1

i=1 wi
∫ ti+1

ti
f ′′(t)g′′(t)dt.

Given a sequence of paired sampling points {si, yi, vi}, i = 1, . . . , n on the interval

[s1, sn], it can be transformed to {ti, yi, vi} on the interval [0, 1], where 0 = t0 < t1 <

· · · < tn < tn+1 = 1. The objective function of a V-spline on [0, 1] is

J [f ] =
1

n

n∑
i=1

(yi − f(ti))
2 +

γ

n

n∑
i=1

(vi − f ′(ti))2
+

n∑
i=0

λi

∫ ti+1

ti

f ′′(t)2dt. (3.53)

Any f ∈ C(2)
p.w.[0, 1] can be written as

f(t) = d1 + d2t+
n∑
j=1

cjR1(tj, t) +
n∑
j=1

bjṘ1(tj, t) + ρ(t) (3.54)

Thus, by substituting to the equation (3.53), it can be written as

nJ [f ] =

(
yi − d1 − d2ti −

n∑
j=1

cjR1(tj, ti)−
n∑
j=1

bjṘ1(tj, ti)− ρ(ti)

)2

+γ
n∑
i=1

(
vi − d2 −

n∑
j=1

cjR
′
1(tj, ti)−

n∑
j=1

bjṘ
′
1(tj, ti)− ρ′(ti)

)2

+n
n∑
i=0

λi

∫ ti+1

ti

(
n∑
j=1

cjR
′′
1(tj, t) +

n∑
j=1

bjṘ
′′
1(tj, t) + ρ′′(t)

)2

dt.

(3.55)

Because of orthogonality, ρ(ti) = 〈R1(ti, ·), ρ〉 = 0, ρ′(ti) = 〈Ṙ1(ti, ·), ρ′〉 = 0, i =

1, . . . , n. For further use, we need to notice the property of the inner product and R1

satisfy

〈R1(s, ·), Ṙ1(t, ·)〉 = R′1(s, t) (3.56)

〈Ṙ1(s, ·), Ṙ1(t, ·)〉 = Ṙ′1(s, t) (3.57)

By denoting the matrices {S}ij = (ti)
j−1, j = 1, 2, {Q}ij = R1(tj, ti), {P}ij =

Ṙ1(tj, ti) and {P ′}ij = Ṙ′1(tj, ti), the above equation (3.55) becomes the matrix form

nJ [f ] = (y − Sd−Qc− Pb)> (y − Sd−Qc− Pb)

+γ (v − S ′d−Q′c− P ′b)
>

(v − S ′d−Q′c− P ′b)

+nΛ
(
c>Qc + 2c>Pb + b>P ′b

)
+ nΛ(ρ, ρ),

(3.58)
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where λi = Λwi.

Thus, the solution to (3.53) is computed via the minimization of the first three

terms in (3.58) with respect to d, c and b.

Therefore, the calculation goes through the same process in Section 3.3.2 and the

following theorem is obtained.

Theorem 7. The smoothing V-spline of (3.53) is the posterior mean of f = f0+f1+ḟ1,

where f0 diffuses in span {1, t} and f1, ḟ1 have Gaussian process priors with mean zero

and covariance functions

Cov (f1, f1) = βR1 (s, t) = β

n∑
i=0

w−1
i

∫ ti+1

ti

(s− u)+ (t− u)+ du, (3.59)

Cov
(
ḟ1, f1

)
= βṘ1 (s, t) = β

n∑
i=0

w−1
i

∫ ti+1

ti

Θ (s− u) (t− u)+ du, (3.60)

Cov
(
ḟ1, ḟ1

)
= βṘ′1 (s, t) = β

n∑
i=0

w−1
i

∫ ti+1

ti

Θ (s− u) Θ (t− u) du, (3.61)

for β = σ2/nΛ.

3.5 V-Spline with Correlated Random Errors

In most of the studies on polynomial smoothing splines, the random errors are

assumed being independent. By contrast, observations are often correlated in appli-

cations, such as time series data and spatial data. It is known that the correlation

greatly affects the selection of smoothing parameters, which are critical to the per-

formance of smoothing spline estimates (Wang, 1998). The presence of correlation

between the errors, if ignored, causes the commonly used automatic tuning parameter

selection methods, such as cross-validation and generalized cross-validation (GCV), to

break down or underestimate the parameters (Opsomer et al., 2001).

Diggle and Hutchinson (1989) extend GCV for choosing the degree of smoothing

spline to accommodate an autocorrelated error sequence, by which the smoothing pa-

rameter and autocorrelation parameters are estimated simultaneously. Kohn et al.

(1992) propose an algorithm to evaluate the cross-validation functions, whose autocor-

related errors are modeled by an autoregressive moving average. Wang (1998) extend

GML and unbiased risk (UBR), other than GCV, to estimate the smoothing parameters

and correlation parameters simultaneously. In this section, we explore the extended

GCV for V-spline with correlated errors.
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First of all, consider observations y = f(t) + ε1 and v = f ′(t) + ε2, where ε1 ∼
N (0, σ2W−1), ε2 ∼ N

(
0, σ

2

γ
U−1

)
with variance parameter σ2. The V-spline f̂ with

correlated errors in space C(2)
p.w[0, 1] is the minimizer of

J [f ] =
1

n
(y − f)>W (y − f) +

γ

n
(v − f ′)

>
U (v − f ′) + λ

∫ 1

0

(f ′′)
2
dt. (3.62)

Because f =
∑2n

i=1 θiNi (t) is a linear combination of basis functions, extended to the

solution with covariance matrices, the parameter is found as

θ̂ =
(
B>WB + γC>UC + nΩλ

)−1 (
B>Wy + γC>Uv

)
. (3.63)

Furthermore, in Gaussian process regression, the covariance matrix with correlated

variances becomes M =

[
Q+ nλW P

Q′ P ′ + nλ
γ
U

]
and the rest stays the same.

Recall the leave-one-out cross-validation score of a V-spline,

LOOCV(λ, γ) =
1

n

n∑
i=1

(
f̂(ti)− yi + γTii

1−γVii (f̂
′(ti)− vi)

1− Sii − γTii
1−γViiUii

)2

. (3.64)

Followed by the approximation Sii ≈ 1
n
tr(S), Tii ≈ 1

n
tr(T ), Uii ≈ 1

n
tr(U) and Vii ≈

1
n
tr(V ) (Syed, 2011), the GCV for the V-spline will be

GCV(λ, γ) =
1

n

n∑
i=1

(
f̂(ti)− yi + γtr(T )/n

1−γtr(V )/n
(f̂ ′(ti)− vi)

1− tr(S)/n− γtr(T )/n
1−γtr(V )/n

tr(U)/n

)2

, (3.65)

which may provide further computational savings since it requires finding the trace

rather than the individual diagonal entries of the hat matrix. Hence, it can be written

in the form of

GCV(λ, γ) =

(
f̂ − y

)> (
f̂ − y

)
+ 2tr(γT )

tr(I−γV )

(
f̂ − y

)> (
f̂ ′ − v

)
+
(

tr(γT )
tr(I−γV )

)2 (
f̂ ′ − v

)> (
f̂ ′ − v

)
(

tr(I − S − tr(γT )
tr(I−γV )U)

)2 .

(3.66)
A natural extension to the above GCV for V-spline with correlated errors is

GCV (λ, γ) =

(
f̂ − y

)>
W
(
f̂ − y

)
+

2tr(γT )
tr(I−γV )

(
f̂ − y

)>
W 1/2U>1/2

(
f̂ ′ − v

)
+
(

tr(γT )
tr(I−γV )

)2 (
f̂ ′ − v

)>
U
(
f̂ ′ − v

)
(

tr
(
I − S − tr(γT )

tr(I−γV )
U
))2

.

(3.67)

The GCV is used for finding the unknown constant parameter λ, instead of a

piecewise constant λ(t) at different intervals, and the parameter γ. The structures

of covariance matrices W and U are assumed known. If the errors are independent,

in which way W and U become identity matrices, the solution f̂ degenerates to a

conventional V-spline with constant λ through over the entire interval [0, 1].

67



3.6 Conclusion

In this chapter, we take a review of the work that has been done for the correspon-

dence between polynomial smoothing spline and the Bayes estimates. With improper

priors, the two methods correspond to each other. In fact, the smoothing spline is

a particular case of Gaussian process regression. By following the work done by Gu

(2013), we find the Bayes estimate of a V-spline if the penalty parameter λ(t) is piece-

wise constant. Additionally, we give the formula of GCV for V-splines with correlated

errors on y and v.

Compared with the V-spline, which is proposed in Chapter 2, the advantage of its

Bayes estimate is that there are numerous sampling algorithms for parameter selection.

The Bayes estimate does not require to pick a bunch of basis functions and, in some

way, is more robust than V-splines.
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Chapter 4

An Overview of On-line State and

Parameter Estimation

4.1 Introduction

With data acquisition becoming easier, cheaper and faster, the challenges of “big

data” are becoming ubiquitous. Classical methods for estimation and prediction, such

as MCMC, are more suitable in batch mode. However, for data streams, more robust

and efficient on-line methods are required. Approaches, such as Kalman filter and

Sequential Monte Carlo, for on-line updating and estimation have been well studied in

scientific literature and have been applied in real world applications.

The state-space model, which is a popular class of time series models, has found

numerous of applications in fields as diverse as statistics, ecology, econometrics, en-

gineering and environmental sciences (Cappé et al., 2009; Doucet et al., 2011; Elliott

et al., 1995; Cargnoni et al., 1997). The state-space model allows us to establish com-

plex linear and nonlinear Bayesian representations of time series patterns (Vieira and

Wilkinson, 2016).

In this chapter, we review state-space models and a number of filtering methods for

combined state and parameter estimation that have been proposed in the literature.

They are then compared to the method described and developed in Chapter 5.

State-Space Model

State-space models are models that rely on the concept of state variables. If we

describe a system as an operator mapping from the space of inputs to the space of
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outputs, then we may need the entire input-output history of the system together with

the planned input in order to compute the future output values (Hangos et al., 2006).

Alternatively, a sequential method builds on past data and the initial conditions by

incorporating new information when it arrives. A generic state-space model consists

of two sets of equations: state equation and output equation. The state equation

describes the evolution of the true input and state variables sequentially as a function

and passes the variable one after one, generally, with some noise. The output equation

catches the input values and interprets it out by an algebraic equation. A general

state-space model has the following form

State equation xt = Gt(xt−1) + wt, (4.1)

Output equation yt = Ft(xt) + εt (4.2)

with an initial state x0, where wt and εt are noise terms. xt are true status variables

and yt are output values. Many researchers have been interested in this model and

its application because of its good property. It can be used to model univariate or

multivariate time series and can be applied to a system that exhibits non-stationarity,

structural changes, and irregular patterns (Petris et al., 2009).

The most simple and important system is given by Gaussian linear state-space

models, also known by dynamic linear models (DLM), which defines a very general

class of non-stationary time series models. First of all, the model is linear, that means

Gt and Ft are linear processes and satisfy linearity property. Secondly, it is specified

by a normal prior distribution for the p-dimensional state vector at initial state t = 0,

x0 ∼ Np(m0, C0)

and two independent zero-mean normal distributed noise εt ∼ Np(0, Vt) and wt ∼
Np(0,Wt) (Petris et al., 2009). The celebrated Kalman filter is a particular algorithm

that is used to solve state-space models in the linear case. This was first derived by

Kalman (1960).

The assumption Markovian keeps the current state xt only depending on the previ-

ous one step xt−1 and the observed yt depending on xt. A state-space is shown in the

diagram (1.6) in Chapter 1.

In applications, the process functions Gt and Ft contain one or more unknown

parameters that need to be estimated (De Jong, 1988) and the goal is to estimate

the true states on sequential observations y1, . . . , yt. Then it becomes to estimate the

joint density of p(x1:t, θ | y1:t), where x1:t = {x1, x2, . . . , xt} are the hidden states and

y1:t = {y1, y2, . . . , yt} are the observed outcomes and θ is a set of unknown parameters.
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Contents

In this chapter, an overview of existing methods for sequential state and parameter

inference is given with discussions and a numerical study. In Section 4.2, the concepts

and popular algorithms of sequential state estimation are introduced. These algorithms

are the fundamental of advanced methods. In Section 4.3, we will have a look at on-line

algorithms that can estimate both unknown state and parameter in different ways. In

Section 4.4, a numerical study is to analyze and compare the performances of these

methods, including the proposed Algorithm 5.2 in Section 5.5.

4.2 State Estimation Filters

Vehicle tracking system uses the GPS data to enable users to locate their vehicles

with ease and in a convenient manner (Pham et al., 2013). One the most important

problems in this tracking system is state estimation (Toloei and Niazi, 2014). A general

approach uses the system functional form to perform the state estimation with the

assumption that all parameters are known. Indeed, two aspects of the functional form

that mainly affect the analysis of such systems: (i) is the system model linear or non-

linear in the state, and (ii) is the noise modeled as a random variable or a non-random

bounded variable.

The following sections, we explore state filters that are not restricted by assumptions

of linearity and may be applied to non-Gaussian noise models.

4.2.1 Sequential Monte Carlo Method

The use of Monte Carlo methods for filtering can be traced back to the pioneering

contributions of (Handschin and Mayne, 1969; Handschin, 1970). These researchers

tried to use an importance sampling paradigm to approximate the target distributions

and. Later on, an importance sampling algorithms were implemented sequentially in

the filtering context. This algorithm is named sequential importance sampling, often

abbreviated SIS, and has been known since the early 1970s. Limited by the power of

computers and suffering from sample impoverishment or weight degeneracy, the SIS did

not develop well until 1993. Gordon et al. (1993) use this a technique based on sampling

and importance sampling methods to find the best state estimation. A particle filter

algorithm was proposed to allow rejuvenation of the set of samples by duplicating the

samples with high importance weights and, on the contrary, removing samples with
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low weights (Cappé et al., 2009). Since then, sequential Monte Carlo (SMC) methods

have been applied in many different fields including but not limited to computer vision,

signal processing, control, econometrics, finance, robotics, and statistics (Doucet et al.,

2011; Ristic et al., 2004).

In the state-space model, a generic particle filter estimates the posterior distribution

of the hidden states using the observation measurement process. The filtering problem

is to estimate sequentially the values of the hidden states xt given the values of the

observation process y1:t at any time t. In another word, it is to find the value of

p(xt | y1:t). The process is divided into two steps: prediction and updating. In the

prediction step, the assumption of Markov chain is the current status xt only depends

on the previous one xt−1. Then we can calculate the probability of xt by

p(xt | y1:t−1) =

∫
p(xt, xt−1 | y1:t−1)dxt−1

=

∫
p(xt | xt−1, y1:t−1)p(xt−1 | y1:t−1)dxt−1

=

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1.

(4.3)

Continuously, in the updating phase, p(xt | y1:t) is easily found, as long as p(xt | y1:t−1)

is known, by

p(xt | y1:t) =
p(yt | xt, y1:t−1)p(xt | y1:t−1)

p(yt | y1:t−1)

=
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

(4.4)

where p(yt | y1:t−1) =
∫
p(yt | xt)p(xt | y1:t−1)dxt is the normalization (Arulampalam

et al., 2002).

Imagine that the state-space is partitioned as many parts, in which the particles

are filled according to some probability measure. The higher probability, the denser

the particles are concentrated. Suppose the particles x
(1)
k , . . . , x

(N)
k at time k are drawn

from the target probability density function p(· | y1:t), then for any function of interest

f(x) these particles are used to estimate its expectation,

E[f(x)] =

∫ b

a

f(x)p(x | y1:t)dx. (4.5)

The posterior distribution or density is empirically represented by a weighted sum of

samples x
(1)
k , . . . , x

(N)
k

p(xk | y1:t) ≈ p̂(xk | y1:t) =
1

N

N∑
i=1

δ
(
xk − x(i)

k

)
. (4.6)
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Hence, a continuous variable is approximated by a discrete one with a random support.

When N is sufficiently large, p̂(xk | y1:t) is treated by particle filter as the true posterior

p(xk | y1:t). By this approximation, the expectation of f(x) at time k is

E[f(xk)] ≈
∫
f(xk)p̂(xk | y1:t)dxk

=
1

N

N∑
i=1

∫
f(xk)δ(xk − x(i)

k )dxk

=
1

N

N∑
i=1

f
(
x

(i)
k

)
.

(4.7)

The expectation is the mean of the status of all particles x
(1)
k , . . . , x

(N)
k .

However, the posterior distribution is unknown and impossible to sample from the

true posterior. To solve this issue, some sampling methods are investigated in the

following sections.

4.2.2 Importance sampling

It is common to sample from an easy-to-implement distribution, the so-called pro-

posal distribution q(x | y), hence

E[f(x)] =

∫
f(xt)

p(xt | y1:t)

q(xt | y1:t)
q(xt | y1:t)dxt

=

∫
f(xt)

p(xt)p(y1:t | xt)
p(y1:t)q(xt | y1:t)

q(xt | y1:t)dxt

=

∫
f(xt)

wt(xt)

p(y1:t)
q(xt | y1:t)dxt,

(4.8)

where wt(xt) = p(xt)p(y1:t|xt)
q(xt|y1:t)

∝ p(xt|y1:t)
q(xt|y1:t)

. Because of p(y1:t) =
∫
p(y1:t | xt)p(xt)dxt, the

above equation can be rewritten as

E[f(x)] =
1

p(y1:t)

∫
f(xt)Wt(xt)q(xt | y1:t)dxt

=

∫
f(xt)wt(xt)q(xt | y1:t)dxt∫

p(y1:t | xt)p(xt)dxt

=

∫
f(xt)wt(xt)q(xt | y1:t)dxt∫
wt(xt)q(xt | y1:t)dxt

=
Eq(xt|y1:t)[wt(xt)f(xt)]

Eq(xt|y1:t)[wt(xt)]
.

(4.9)
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To solve the above equation, we can use Monte Carlo method by drawing samples{
x

(i)
t

}
from q(xt | y1:t) and get its expectation, which is approximated by

E[f(xt)] ≈
1
N

∑N
i=1wt

(
x

(i)
t

)
f
(
x

(i)
t

)
1
N

∑N
i=1 wt

(
x

(i)
t

)
=

N∑
i=1

w̃t

(
x

(i)
t

)
f
(
x

(i)
t

)
,

(4.10)

where w̃t

(
x

(i)
t

)
=

wt
(
x

(i)
t

)
∑N
i=1 wt

(
x

(i)
t

) is factorized weight. Each particle has its own weighted

value, so the overall expectation is a weighted mean. However, the drawback of this

method is that the computation is expensive. A smarter way is to update w
(i)
t recur-

sively. Suppose the proposal distribution

q(x0:t | y1:t) = q(x0:t−1 | y1:t−1)q(xt | x0:t−1, y1:t), (4.11)

then the recursive form of the posterior distribution is

p(x0:t | y1:t) =
p(yt | x0:t, y1:t−1)p(x0:t | y1:t−1)

p(yt | y1:t−1)

=
p(yt | x0:t, y1:t−1)p(xt | x0:t−1, y1:t−1)p(x0:t−1 | y1:t−1)

p(yt | y1:t−1)

=
p(yt | xt)p(xt | xt−1)p(x0:t−1 | y1:t−1)

p(yt | y1:t−1)

∝ p(yt | xt)p(xt | xt−1)p(x0:t−1 | y1:t−1),

(4.12)

the recursive form of the weights are

w
(i)
t ∝

p
(
x

(i)
0:t | y1:t

)
q
(
x

(i)
0:t | y1:t

)
=
p
(
yt | x(i)

t

)
p
(
x

(i)
t | x

(i)
t−1

)
p
(
x

(i)
0:t−1 | y1:t−1

)
q
(
x

(i)
t | x

(i)
0:t−1, yt

)
q
(
x

(i)
0:t−1 | y1:t−1

)
= w

(i)
t−1

p
(
yt | x(i)

t

)
p
(
x

(i)
t | x

(i)
t−1

)
q
(
x

(i)
t | x

(i)
0:t−1, yt

) .

(4.13)

4.2.3 Sequential Importance Sampling and Resampling

In practice, we are more interested in the current estimation p(xt | y1:t) instead of

p(x0:t | y1:t). If

q(xt | x0:t−1, y1:t) = q(xt | xt−1, yt), (4.14)
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the importance weights w
(i)
t can be updated recursively via

w
(i)
t ∝ w

(i)
t−1

p
(
yt | x(i)

t

)
p
(
x

(i)
t | x

(i)
t−1

)
q
(
x

(i)
t | x

(i)
t−1, yt

) . (4.15)

The problem of SIS filter is that the distribution of importance weights becomes

more and more skewed as time increases. Hence, after several iterations, only few par-

ticles have non-zero importance weights. This phenomenon is called weight degeneracy

or sample impoverishment (Doucet et al., 2011).

The effective sample size Ness is suggested to monitor how bad the degeneration is,

which is defined as

Ness =
N

1 + Var
(
w
∗(i)
t

) , (4.16)

where w
∗(i)
t =

p
(
x

(i)
t |y1:t

)
q
(
x

(i)
t |x

(i)
t−1,y1:t

) . The more difference of the biggest and smallest weights,

the worse the degeneration is. In practice, the effective sample size is approximated by

N̂ess ≈
1∑N

i=1

(
w

(i)
t

)2 . (4.17)

If the value of Ness is less than some threshold, some procedure should be used to

avoid a worse degeneration. There are two ways one can do: choose an appropriate

probability density function for importance sampling, or use resampling after SIS.

The idea of resampling is keeping the same size of particles, replacing the low

weights particles with new ones. As discussed before,

p(xt | y1:t) =
N∑
i=1

w
(i)
t δ
(
xt − x(i)

t

)
. (4.18)

After resampling, it becomes

p̃(xt | y1:t) =
N∑
j=1

1

N
δ
(
xt − x(j)

t

)
=

N∑
i=1

ni
N
δ
(
xt − x(i)

t

)
, (4.19)

where ni represents how many times the new particles x
(j)
t were duplicated fromx

(i)
t .

Then the process of SIS particle filter with resampling is summarized in following

Algorithm 4.1.

In SIR, if we choose

q
(
x

(i)
t | x

(i)
t−1, yt

)
= p

(
x

(i)
t | x

(i)
t−1

)
, (4.20)
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Algorithm 4.1: Sampling and Importance Sampling

1 Initialization: Initialize particles at t = 0. For i = 1, . . . , N , draw samples {x(i)
0 }

from p(x0).

2 for t = 1, 2, . . . , n do

3 Importance sampling: draw sample
{
x̃

(i)
t

}N
i=1

from q(xt | y1:t), calculate their

weights w
(i)
t and normalize them.

4 Resampling: Resample
{
x̃

(i)
t , w̃

(i)
t

}
and get a new set

{
x

(i)
t ,

1
N

}
.

5 Output the status at time t: x̂t =
∑N

i=1 x̃
(i)
t w̃

(i)
t .

6 end

the weights become

w
(i)
t ∝ w

(i)
t−1

p
(
yt | x(i)

t

)
p
(
x

(i)
t | x

(i)
t−1

)
q
(
x

(i)
t | x

(i)
t−1, yt

)
∝ w

(i)
t−1p

(
yt | x(i)

t

)
.

(4.21)

Because w
(i)
t−1 = 1

N
, thus we have w

(i)
t ∝ p

(
yt | x(i)

t

)
and

w =
1√
2πΣ

exp

(
−1

2
(ytrue − y)Σ−1(ytrue − y)

)
. (4.22)

However, SMC methods are suffering some drawbacks. At any time point k(k < t),

if t−k is too large, the approximation to marginal p(xk | y1:t) is likely to be rather poor

as the successive resampling steps deplete the number of distinct particle co-ordinates

xk (Andrieu et al., 2010), which is also the difficulty of approximating p(θ, x1:t | y1:t)

with SMC algorithms (Andrieu et al., 1999; Fearnhead, 2002; Storvik, 2002).

4.2.4 Auxiliary Particle Filter

The auxiliary particle filter (APF) is first introduced by Pitt and Shephard (1999)

as an extension of SIR to perform inference in state-space model. The author uses the

idea of stratification into particle filter to solve particle degeneracy by pre-selecting

particles before propagation.

At each step, the algorithm draws a sample of the particle index i, which will be

propagated from t− 1 into the t, on the mixture in (4.10). These indexes are auxiliary

variables only used as an intermediary step, hence the name of the algorithm (Pitt and
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Shephard, 1999). Thus, the task becomes to sample from the joint density p(xt, i | y1:t).

Define

p(xt, i | y1:t) ∝ p(yt | xt)p
(
xt | x(i)

t−1

)
w

(i)
t−1, (4.23)

and define µ
(i)
t as some characterization of xt | xt−1, which suggested by the author

could be mean, mode, a sample and so on, then the joint density can be approximated

by

π (xt, i | y1:t) ∝ p
(
yt | µ(i)

t

)
p
(
xt | x(i)

t−1

)
w

(i)
t−1, (4.24)

with weights

w
(i)
t ∝

p
(
yt | x(i)

t

)
p
(
yt | µk(i)

t

) . (4.25)

This auxiliary variable based SIR requires only the ability to propagate and evaluate

the likelihood, just as the original SIR suggested by Gordon et al. (1993).

The main idea behind the APF is modifying the original sequence of target distri-

butions to guide particles in promising regions, can be extended outside the filtering

framework (Johansen and Doucet, 2008). It is also recommended in the literature (Liu,

2008) that the particles can be resampled not according to the normalized weights

wSISR
t (x1:t) = p(x1:t)

p(x1:t−1)q(xt|x1:t−1)
but according to a generic score function wt(x1:t) > 0 at

time t

wt(x1:t) = g (wSISR

t (x1:t)) , (4.26)

where g : R+ 7→ R+ is a monotonously increasing function, such as g(x) = xα, where

0 < α ≤ 1.

4.2.5 Sequential Particle Filter

SMC method is effective for exploring the sequence of posteriors distribution π(xt |
θ) = p(xt | y1:t, θ), where the static parameters are treated as known. An inference

about πt−1 is used to draw an inference on πt by SIS and resampling. Its interest is

focusing on xt instead of the whole path x0:t, that is the filtering problem. However, this

algorithm evolves weighting and resampling a population of N particles, x
(1)
t , . . . , x

(N)
t ,

so that at each time t they are properly weighted samples from π(xt | θ). Additionally,

it is not practicable on huge size data sets, due to numerous iterations in the sampling

process.

As a complementary solution, sequential particle filter method was proposed by

Chopin (2002) in the first part of his doctorate thesis. Instead, sequential particle filter
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uses preliminary explorations of partial distribution π(θ | y1:k) (k < t). The concept

is: an inference of π(θ) is drawn from the first k observations, named as learning

phase, and it is updated through importance sampling to incorporate the following l

observations, named as updating phase, (Chopin, 2002). This method is the iterated

batch importance sampling (IBIS) algorithm, which is used for the recursive exploration

of the sequence of the parameter posterior distributions π(θ). It updates a population

of N particles for θ, θ(1), . . . , θ(N), so that at each time t they are a properly weighted

sample from π(θ). The algorithm includes occasional MCMC steps for rejuvenating the

current population of particles of θ to prevent the number of distinct from decreasing

over time.

In a batch mode, we are assuming that the parameter θ is static. When the first

k observations become available, we can find the posterior distribution π(θ | y1:k).

After that, with length of l(<∞) observations coming into data stream, the posterior

becomes π(θ | y1:k+l) and it is likely to be similar with π(θ | y1:k). Hence, a set of

proper re-weighted particles by the incremental weight is

wk,l(θ) ∝
π(θ | y1:k+l)

π(θ | y1:k)

∝ p(y1:k+l | θ)
p(y1:k | θ)

= p(yk+1:k+l | y1:k, θ).

(4.27)

Sequentially, the iterated batch importance sampling algorithm is in the following

Algorithm 4.2.

Algorithm 4.2: Sequential Particle Filter

1 Initialization: General particles of θi and wi, i = 1, . . . , N .

2 while k < t do

3 Re-weighting. Update the weights by w∗i = wi × wk,l, where

wk,l(θi) ∝ p(yk+1:k+l | y1:k, θi), i = 1, . . . , N .

4 Resampling. Normalize θi and w∗i to θ∗i and 1
N

according to

p(θ∗i = θi) =
w∗i∑
w∗i

, i = 1, . . . , N .

5 Propagating. Draw θmi from Kk+l(θ
∗
i ), where Kk+l is a predefined transition

kernel function with stationary distribution πk+l.

6 Set (θmi ,
1
N

) to (θi, wi), k + l to k.

7 end
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The algorithm stops at k = t, where the particle system targets the distribution of

interest π(θ | y1:t).

4.2.6 MCMC-Based Particle Algorithm

It is discussed that the sequential Monte Carlo approaches are powerful method-

ologies to cope with large data set recursively, but unfortunately, they are inefficient

when apply to high dimensional problems (Septier et al., 2009). An alternative set of

powerful stochastic algorithms that allow us to solve most of Bayesian computational

problems is MCMC method. However, as data set becomes larger and larger, it requires

numerous computing in the process.

A natural extension is whether there exists a sequential MCMC method to diver-

sify the degenerate particle population thus improving the empirical approximation

for multi-target tracking or high dimensional space. Luckily, sequential approaches

using MCMC method is proposed by Berzuini et al. (1997), who combines MCMC

with importance resampling to sequentially update the posterior distribution. Other

discussions, such as (Khan et al., 2005; Golightly and Wilkinson, 2006; Pang et al.,

2008), use either resampling nor importance sampling.

As we discussed before, a filtering problem is to find the posterior distribution

recursively, such as

p(xt | y1:t) ∝
∫
p(yt | xt)p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (4.28)

In particle filter, the posterior is approximated by particles x
(1)
t , . . . , x

(N)
t in equation

(4.6). A MCMC procedure is designed using (4.6) as the target distribution with a

proposal distribution of q
(
xt | x(i)

t

)
. Therefore, like MCMC, the desired approximation

p̂(xt | y1:t) is obtained by storing every accepted samples after the initial burn-in

iterations (Septier et al., 2009). The drawback is excessive computation occurs as the

number of particles increases at each iteration.

To avoid this issue, an MCMC-based particle algorithm in (Pang et al., 2008)

considers the joint posterior distribution of xt and xt−1:

p(xt, xt−1 | y1:t) ∝ p(yt | xt)p(xt | xt−1)p(xt−1 | y1:t−1), (4.29)

which becomes the new target distribution. At the ith sampling iteration, the joint xk

and xk−1 was proposed in a Metropolis-Hastings sampling step. After that, a refinement

Metropolis-within-Gibbs step update xk and xk−1 individually. Hence, the algorithm

is summarized in Algorithm 4.3:
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Algorithm 4.3: MCMC-Based Particle Algorithm

1 Initialization: Initialize particles x
(j)
0 , j = 1, . . . , N .

2 for k = 1, . . . , t do

3 for i = 1, . . . ,M do

4 Propose
{
x∗k, x

∗
k−1

}
∼ q1

(
xk, xk−1 | x(i−1)

k , x
(i−1)
k−1

)
.

5 Accept
{
x∗k, x

∗
k−1

}
with probability

α1 = min

{
1,

p(x∗k,x∗k−1|y1:t)
p
(
x

(i−1)
k ,x

(i−1)
k−1 |y1:t

) q1
(
x

(i−1)
k ,x

(i−1)
k−1 |x

∗
k,x
∗
k−1

)
q1
(
x∗k,x

∗
k−1|x

(i−1)
k ,x

(i−1)
k−1

)
}

, where p(· | y1:t) is

from equation (4.29)

6 Propose x∗k−1 ∼ q2

(
xk−1 | x(i)

k , x
(i)
k−1

)
7 Accept x

(i)
k−1 = x∗k−1 with probability

α2 = min

{
1,

p
(
x∗k−1|x

(i)
k ,y1:t

)
p
(
x

(i)
k−1|x

(i)
k ,y1:t

) q2
(
x

(i)
k−1|x

∗
k−1,x

(i)
k

)
q2
(
x∗k−1|x

(i)
k ,x

(i)
k−1

)
}

.

8 Propose x∗k ∼ q3

(
xk | x(i)

k , x
(i)
k−1

)
.

9 Accept x
(i)
k = x∗k with probability

α3 = min

{
1,

p
(
x∗k|x

(i)
k−1,y1:t

)
p
(
x

(i)
k |x

(i)
k−1,y1:t

) q3
(
x

(i)
k |x

∗
k,x

(i)
k−1

)
q3
(
x∗k|x

(i)
k ,x

(i)
k−1

)
}

.

10 After burn-in points, keep x
(j)
k = x

(i)
k as new particles for approximating

p (xk | y1:k).

11 end

12 end

Septier et al. (2009) discuss some attractive features of genetic algorithms and

simulated annealing into the framework of MCMC based particle scheme. One may

refer to the reference for details.

4.3 On-line State and Parameter Estimation

The state transition density and the conditional likelihood function depend not

only upon the dynamic state xt, but also on a static parameter vector θ, which will be

stressed by use of the notations f(xt | xt−1, θ) and g(yt | xt, θ). Putting the algorithms

on-line means to update the parameters and states instantly as new observations com-

ing into the data stream. For Bayesian dynamic models, however, the most natural

option consists in treating the unknown parameter θ, using the state-space represen-

tation, as a component of the state which lacks dynamic evolution, also referred to
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as a static parameter (Cappé et al., 2007). The standard SMC is deficient for on-line

parameter estimation. As a result of the successive resampling steps, after a certain

time t, the approximation p̂(θ | y1:t) will only contain a single unique value for θ. In

other words, SMC approximation of the marginalized parameter posterior distribution

is represented by a single Dirac delta function. It also causes error accumulation in

successive Monte Carlo steps growing exponentially or polynomially in time (Kantas

et al., 2009).

In this section, we discuss some methods that estimate combined state and pa-

rameter by either jointly estimating the state and parameter or by marginalizing the

parameter through sufficient statistics.

4.3.1 Artificial Dynamic Noise

Some methods are trying to solve the posterior distribution p(θ | y1:t) by

p(θ | y1:t) ∝ p(y1:t | θ)p(θ) (4.30)

through maximize the likelihood function without introducing any bias or controlling

the bias in states propagation. A pragmatic approach to reduce parameter sample

degeneracy and error accumulation in successive MC approximations is to adding an

artificial dynamic equation on θ, (Higuchi, 2001; Kitagawa, 1998), which gives

θn+1 = θn + εn+1. (4.31)

The artificial noise εt+1 ∼ N(0,Wt+1) is specified by a covariance matrix Wt+1. With

this noise, SMC can now be applied to approximate p(x1:t, θ | y1:t). A related kernel

density estimation method proposes a kernel density estimate of the target (Liu and

West, 2001)

p̂(θ | y1:t) =
1

N

∑
M
(
θ − θ(i)

n

)
. (4.32)

At time t+ 1, the samples obtain a new set of particles.

4.3.2 Practical Filtering

A fixed-lag approach to filtering and sequential parameter learning was proposed in

(Polson et al., 2008). Its key idea is to express the filtering distribution as a mixture

of lag-smoothing distributions and to implement it sequentially.

With a fixed-lag l, the state filtering and parameter learning require the sequence

of the joint distribution p(xt, θ | y1:t), which implies the desired filtering distribution
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p(xt | y1:t) being marginalized as

p(xt | y1:t) =

∫
p(xt−l+1:t | y1:t)dxt−l+1:t−1, (4.33)

and the posterior distribution of the parameter p(θ | y1:t). Arguing that the approx-

imation that draws from p(x0:t−l | y1:t−1) are approximate draws from p(x0:t−l | y1:t),

the state filtering with static parameter θ is

p(xt−l+1:t, θ | y1:t) =

∫
p(xt−l+1,t, θ | x0:t−l, y1:t)dp(x0:t−l | y1:t)

≈
∫
p(xt−l+1,t, θ | x0:t−l, y1:t)dp(x0:t−l | y1:t−1).

(4.34)

Therefore we can draw some samples x
(i)
0:t−l first from p(x0:t−l | y1:t−1), which is ap-

proximately the same as p(x0:t−l | y1:t) and i = 1, . . . ,M . Then, use these samples to

estimate states and parameter by

xt−l+1 ∼ p
(
xt−l+1 | x(i)

0:t−l, θ, yt−l+1:t

)
, (4.35)

θ ∼ p
(
θ | x(i)

0:t−l, xt−l+1, yt−l+1:t

)
, (4.36)

with two-step Gibbs sampler. The algorithm is summarized in the following.

The speed and accuracy of this algorithm depend on the choice of sample size M

and the lag l, which is difficult, and there is a non-vanishing bias that is difficult to

quantify (Polson et al., 2008; Kantas et al., 2009).

4.3.3 Liu and West’s Filter

Particles degeneracy is inevitable in SMC. A method in Section 4.3.1 reduces the

degeneracy by adding artificial noise to the parameters, however, that will also lead to

the variance of estimates. Liu and West (2001) use a kernel smoothing approximation

combined with a neat shrinkage idea to kill over-dispersion.

At time t, suppose we have particles
{
x

(i)
t

}
and associated weights

{
w

(i)
t

}
, i =

1, . . . , N , Bayes’ theorem tells us that approximation to the posterior distribution

p(xt+1 | y1:t+1) at time t+ 1 of the state is

p(xt+1 | y1:t+1) ∝
N∑
i=1

w
(i)
t p
(
xt+1 | x(i)

t

)
p (yt+1 | xt+1) . (4.37)

However, variance increases through over t by the Gaussian mixture. West (1993) uses

a smooth kernel density

p(θ | y1:t) ≈
N∑
i=1

w
(i)
t N

(
θ | m(i)

t , h
2Vt

)
(4.38)
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Algorithm 4.4: Practical Filtering Algorithm

1 Initialization: Set θ(i) = θ0 as initial values, i = 1, . . . , N .

2 Burn-In: for k = 1, . . . , l do

3 for i = 1, . . . , N do

4 Initialize θ = θ(i).

5 Generate x0:k ∼ p(x0:k | θ, y1:k) and θ ∼ p(θ | x0:k, y1:k).

6 After a few iterations, achieve a set of
{
x̃

(i)
0:k, θ

(i)
}

.

7 end

8 end

9 Sequential Updating: for k = l + 1, . . . , t do

10 for i = 1, . . . , N do

11 initialize θ = θ(i).

12 Generate xk−l+1:k ∼ p
(
xk−l+1:k | x̃(i)

k−l, θ, yk−l+1,k

)
and

θ ∼ p
(
θ | x̃(i)

0:k−l, xk−l+1:k, y1:k

)
.

13 Achieve a set of
{
x̃

(i)
k−l+1, θ

(i)
}

and leave x̃
(i)
0:k−l unchanged.

14 end

15 end

to against the sample dispersion. Here, Vt is the Monte Carlo variance matrix of

p(θ | y1:t). Because N(· | m,C) is a multivariate normal density with mean m and

covariance matrix C, so the above density (4.38) is a mixture of N
(
θ | m(i)

t , h
2Vt

)
distributions weighted by the sample weights w

(i)
t . Without this shrinkage approach,

the standard kernel locations would be m
(i)
t = θ

(i)
t , by which there is an over dispersed

kernel density, because of (1 = h2)Vt is always large than Vt. θt indicates that the

samples are from the posterior at a specific time t instead of time-varying.

To correct it, the idea of shrinkage kernel is taking

m
(i)
t = αθ

(i)
t + (1− α)θ̄t, (4.39)

where α =
√

1− h2 and h > 0 is the smoothing parameter. Consequently, the resulting

normal mixture retains the mean θ̄t and now has the correct covariance Vt, hence the

over dispersion is trivially corrected (Liu and West, 2001).

A general algorithm is summarized bellow:
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Algorithm 4.5: Liu and West’s Filter

1 for k = 1, . . . , t do

2 for i = 1, . . . , N do

3 Identify the prior estimation of (xk, θ) by (µ
(i)
k+1,m

(i)
k ), where

µ
(i)
k+1 = E(xk+1 | x(i)

k , θ
(i)
k ), and m

(i)
k = αθ

(i)
k + (1− α)θ̄k.

4 Sample an auxiliary integer index I from {1, . . . , N} with probability

proportional to g
(i)
k+1 ∝ w̃

(i)
k p(yk+1 | µ(i)

k+1,m
(i)
k ).

5 Sample a new parameter vector θ
(I)
k+1 from N(θk+1 | m(I)

k , h2Vk).

6 Sample current state vector x
(I)
k+1 from p(xk+1 | x(I)

k , θ
(I)
k+1).

7 Evaluate weights w
(i)
k+1 ∝

p(yk+1|x
(I)
k+1,θ

(I)
k+1)

p(yk+1|µ
(I)
k+1,m

(I)
k )

8 end

9 Normalize weights: w̃
(i)
k+1 =

w
(i)
k+1∑
w

(i)
k+1

.

10 end

4.3.4 Storvik Filter

Storvik filter, proposed by Storvik (2002), is assuming that the posterior p(θ |
x0:t, y1:t) depends on a low dimensional set of sufficient statistics st with an associ-

ated recursive update via st = S(st−1, xt, yt). This approach is based on marginalizing

the static parameters out of the posterior distribution, in which only the state vector

needs to be considered, and aiming at reducing the particle impoverishment. It can be

thought of as an extension of particle filters with additional steps of updating sufficient

statistics and sampling parameters sequentially (Lopes and Tsay, 2011). In particular,

models for which the underlying process is Gaussian and linear in the parameters can

be handled by this approach (Storvik, 2002). Moreover, some observational distribu-

tions with unknown parameters can also be handled by this approach but subject to

unavailable sufficient statistics.

The Storvik filter is summarized bellow:

4.3.5 Particle Learning

Carvalho et al. (2010) propose the Particle Learning that uses the similar sufficient

statistics as Storvik filter does, in which the set of sufficient statistics is used for pa-

rameters estimation only. As an extension to the mixture Kalman filter (Chen and

Liu, 2000), Particle Learning allows parameters learning throughout the process and
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Algorithm 4.6: Storvik Filter

1 for k = 1, . . . , t do

2 for i = 1, . . . , N do

3 Sample x
(i)
k from p

(
xk | x(i)

k−1, y1:k, θ
(i)
)

.

4 Calculate weights wk ∝ p
(
yk | x(i)

k , θ
(i)
)

and normalize it by w̃
(i)
k =

w
(i)
k∑
w

(i)
k

.

5 Resample
{
θ

(i)
k , x

(i)
k , s

(i)
k

}
according to w̃k.

6 Update sufficient statistics s
(i)
k = S

(
s

(i)
k−1, xk, yk

)
.

7 Sample θ(i) from p
(
θ | s(i)

k

)
.

8 end

9 end

utilize a resampling propagate framework together with a set of particles that includes

a set of sufficient statistics (if it is available) for the states.

By denoting st and sxt the sufficient statistics for the parameter and state respec-

tively, the updating rules are satisfied: st = S(st−1, xt, yt) and sxt = K
(
sxt−1, θ, yt

)
,

where K(·) is the Kalman filter recursions. In Particle Learning, the prior to sampling

from the proposal distribution uses a predictive likelihood and takes yt+1 into account

(Vieira and Wilkinson, 2016). This algorithm is summarized in the following:

Algorithm 4.7: Particle Learning Algorithm

1 for k = 1, . . . , t do

2 for i = 1, . . . , N do

3 Resample z̃
(i)
k =

(
s̃
x(i)
k , s̃

(i)
k , θ̃

(i)
)

from z
(i)
k = (sxk, sk, θ)

(i) with weight

wk ∝ p
(
yk+1 | z(i)

t

)
.

4 Draw x
(i)
k+1 from p

(
xk+1 | z̃(i)

t , y1:k+1

)
.

5 Update parameter-sufficient statistics s
(i)
k+1 = S

(
s̃

(i)
k , x

(i)
k+1, yk+1

)
.

6 Sample θ(i) from p
(
θ | s(i)

k+1

)
.

7 Update state-sufficient statistics s
x(i)
k+1 = K

(
s
x(i)
k , θ(i), yk+1

)
.

8 end

9 end
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4.3.6 Adaptive Ensemble Kalman Filter

Storvik filter and Particle learning algorithms are efficient in some ways, however,

the drawbacks are obvious. One of them is that the sufficient statistics are not always

available, or hard to find, for complex models. They are trying to reduce the prob-

lem of particle impoverishment, although in practice they did not solve the problem

completely (Chopin et al., 2010). A Bayesian adaptive ensemble Kalman filter method

was proposed for sequential state and parameter estimation by Stroud et al. (2018).

This method is fully Bayesian and propagates the joint posterior density of states and

parameters through over the process.

The ensemble Kalman filter, which is an extension to the standard Kalman filter,

is an approximate filtering method introduced in the geophysics literature by Evensen

(1994). Instead of working with the entire distribution, the ensemble Kalman filter

stores propagates and updates an ensemble of vectors that approximates the state

distribution (Katzfuss et al., 2016).

Recall that an on-line combined parameters and state estimation relies on the de-

composition of the joint posterior distribution

p(xt+1, θ | y1:t+1) ∝ p(xt+1 | y1:t+1, θ)p(θ | y1:t+1). (4.40)

To implement on-line sequential estimation, the first term on the right side of the above

formula should be written in the following recursive form as

p(xt+1 | θ, y1:t+1) ∝ p(yt+1 | xt+1, θ)

∫
p(xt+1 | xt, θ)p(xt | θ, y1:t)dxt, (4.41)

and the second term in the recursive form is

p(θ | y1:t+1) ∝ p(y1:t+1 | θ)p(θ)

= p(yt+1 | θ, y1:t)p(θ | y1:t).
(4.42)

The ensemble Kalman filter is used to find (4.41), which is the state inference. The

estimated Kalman gain is

K̂t+1(θ) = Ft+1(θ)P̂ f
t+1(θ)F>t+1(θ)Σ̂−1

t+1(θ), (4.43)

where Ft+1 is the observation map. The posterior ensemble at time t + 1 based on

parameter θ is

x
(i)
t+1 = x

f(i)
t+1 + K̂t+1(θ)

(
yt+1 + v

(i)
t+1 + Ft+1(θ)x

f(i)
t+1

)
, (4.44)
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where
{
x

(i)
t

}N
1

is an ensemble of states representing the filtering distribution at time

t. x
f(i)
t+1 is the forecast ensemble from the forward map by x

f(i)
t+1 = x

p(i)
t+1 + w

(i)
t+1 =

G
(
x

(i)
t

)
+ w

(i)
t+1. For the second term of (4.42), Stroud et al. (2018) propose a fea-

sible likelihood approximation by a multivariate Gaussian distribution (Mitchell and

Houtekamer, 2000) for high-dimensional states:

p(yt+1 | θ, y1:t) ∝
∣∣∣Σ̂t(θ)

∣∣∣− 1
2

exp

(
−1

2
êt+1(θ)>Σ̂t(θ)

−1êt+1(θ)

)
, (4.45)

where êt+1(θ) = yt+1 − Ft+1(θ)ât+1, and ât+1 = 1
N
x
p(i)
t+1

To find p(θ | y1:t), a generic way is using a normal approximation, where the

posterior density is given by

p(θ | y1:t) ∝ exp

(
−1

2
(θ −mt)

>C−1
t (θ −mt)

)
. (4.46)

A grid-based representation is writing the posterior in the way that p(θ | y1:t) ∝
p(yt | θ, y1:t−1)p(θ | y1:t−1). The recursion weights can be updated by πt,k ∝ p(yt |
θ, y1:t−1)πt,k−1.

To summarize it up, the complete algorithm is in the following

Algorithm 4.8: Adaptive Ensemble Kalman Filter

1 Initialize samples θ(i) ∼ p(θ) and x
(i)
1 ∼ N(x0, P0), i = 1, . . . , N .

2 for k = 1, . . . , t do

3 for i = 1, . . . , N do

4 Propagate. x
p(i)
k = G

(
x

(i)
k−1

)
.

5 Approximate likelihood function by (4.45).

6 Update the analytical parameter distribution using either use normal

approximation or grid-based approximation to find (4.42).

7 Draw θ(i) ∼ p̂(θ | y1:k).

8 Generate forecast ensemble by x
f(i)
k = x

p(i)
k + wk.

9 Draw posterior ensemble using equation (4.44).

10 end

11 end

This algorithm works well when θ is small and the parameter in the forward map

G(·) is known. If the forward map parameter is not known and has a high correlation

with the state, the author suggests that it can be combined with the state augmentation

(Anderson, 2001) and this algorithm is still working.
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4.3.7 On-line Pseudo-Likelihood Estimation

Bayesian estimation requires the posterior distribution of p(θ | y1:t), where the θ is

treated as a random variable. By contrast, maximum likelihood estimation is looking

for a value θ̂, which maximum the likelihood p(y1:t | θ).
The classical expectation maximization (EM) algorithm (Dempster et al., 1977) for

maximizing l(θ) is a two step procedure:

• E-step: Compute Q(θk, θ) =
∫

ln pθ(x0:t, y1:t)pθk(x0:t | y1:t)dx0:t.

• M-step: Update the parameter θk by θk+1 = arg maxQ(θk, θ).

Then {l(θk)k} generated by the EM is a non-decreasing sequence.

A straightforward on-line EM algorithm uses SMC method to maximize l(θ). How-

ever, it requires estimating sufficient statistics base on joint probability distributions

whose dimension is increasing over time and has a computational load of O(N2) per

time step (Kantas et al., 2009). To circumvent this problem, Andrieu et al. (2005)

propose a pseudo-likelihood function for finite state-space models.

Assuming that the process is stationary, give a time lag L ≥ 1 and any k ≥ 1,

x1:t and y1:t are sliced to Xk = xkL+1:(k+1)L and Yk = ykL+1:(k+1)L. For example:

X1 = xL+1:2L consisting of L data. Further, the joint distribution of p(Xk, Yk) is

p(Xk, Yk) = π(xkL+1)F (ykL+1 | xxL+1)Π
(k+1)L
n=kL+2G(xn | xn−1)F (yn | xn). (4.47)

The likelihood of a block Yk of observations is given by

p(Yk) =

∫
p (Xk, Yk) dXk, (4.48)

and the log pseudo-likelihood for m slices is
∑m−1

k=0 ln p(Yk) (Andrieu et al., 2005).

The advantage of this algorithm is that it only requires an approximation of the fixed

dimensional distribution p(Xk | Yk) and don’t suffer degeneracy for small L (Kantas

et al., 2009). The disadvantage is that it only applies to stationary distribution, and

can be observed empirically that the algorithm might converge to incorrect values and

even sometimes drift away from the correct values as t increases (Andrieu et al., 2010).

4.4 Simulation Study

In this section, we compare the performance of Liu and West’s filter (LW), Storvik

filter (St), Particle Learning (PL) and the proposed sequential MCMC Algorithm 5.2
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in Section 5.5 by a simple dynamic linear model, see examples in (Liu and West, 2001).

Explicitly, the model is

yt = Fxt + εt,

xt = φxt−1 + wt,

x0 ∼ N(m0, C0),

(4.49)

where εt ∼ N (0, σ2) and wt ∼ N (0, τ 2), xt are hidden status and yt are observations.

Assuming that F = 1, σ2 = 1 and τ 2 = 1. The initial value x0 = 0. θ = φ a single

static parameter without unobserved state variable.

A length of 897 simulated data set was generated from this AR (1) model at φ = 0.8.

First of all, we should find the sufficient statistics for Storvik filter and Particle Learn-

ing. For Particle Learning, the sufficient statistics sxt for state x and st for parameter

φ are satisfying the updating rules sxt = K
(
sxt−1, φ, yt

)
and st = S (st−1, xt, yt) respec-

tively. Because of the assumption, the Kalman observation map is Hk = 1 and the

variances are normal distributed. Thus, the Kalman gain is K = 1. For details, the

Particle Learning algorithm runs as :

• Step 1. Resample
{
z̃

(i)
t

}N
i=1

=
(
s̃
x(i)
t , s̃

(i)
t , φ̃

(i)
)

from p (zt | sxt , st, φ) with weight

w ∝ p (yt+1 | sxt , φ). It is found that

p (yt+1 | sxt , φ) ∝ exp

(
−1

2
(yt+1 − φxt)2

)
.

• Step 2. Draw x
(i)
t+1 from p

(
xt+1 | s̃xt , φ̃, y1:t+1

)
.

p
(
xt+1 | z̃(i)

t , y1:t+1

)
= p (xt+1 | sxt , φ, y1:t+1) ∝ p (xt+1, y1:t+1 | sxt , φ)

∝ p (xt+1 | sxt , φ) p (yt+1 | xt+1, s
x
t , φ)

= N (xt+1 | φxt, 1)N (yt+1 | xt+1, 1)

= N

(
xt+1 |

1

2
(yt+1 + φxt) ,

1√
2

)

• Step 3. Update sufficient statistics st+1 = S (s̃t, xt+1, yt+1).

st+1,1 = xt+1

st+1,2 = xtxt+1 + st,2 = xtst,1 + st,2

st+1,3 = x2
t + st,3 = s2

t,1 + st,3.
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• Step 4. Sampling φ from p (φ | st+1).

p (φ | x1:t+1, y1:t+1) ∝ p (x1:t+1, y1:t+1 | φ) p (φ) ∝ p (x1:t+1 | φ) p (φ)

= N

(
φ | st+1,2

st+1,3

,
1

st+1,3

)
.

• Step 5. Update from sxt to sxt+1 via sxt+1 = K (sxt , φ, yt+1).

Notice that the proposed sliding window MCMC algorithm requires using a few

data to learn the parameter’s mean and variance in the learning phase. Besides, LW,

St and PL do not converge at the first few data. Then, to be fair, we take the first

300 data out and use them in the learning phase of the proposed algorithm. In the

estimation phase, we use three different strategies: a fixed length of 100, a fixed length

of 300 and an expanding length including all the historical data along with time t. In

the former three algorithms, we use 5 000 particles to infer state and parameter. In

the latter MCMC algorithm, we take 5 000 samples at each time t for x
(i)
t and φ(i),

where i = 1, . . . , 5 000 and t = 300, . . . , 897. Furthermore, we run the comparison for

50 times to check their stabilities.

From Figure 4.1, it can be seen that the former three algorithms converge to the

true parameter φ at similar speeds along with the time t. LW filter has a larger distance

to the true parameter comparing with St and PL filters. The proposed MCMC with

100 length data in estimation phase has the largest variance. By setting a longer length

L, the proposed adaptive MCMC becomes stable.

From Figure 4.2, we can see that, by repeatedly running 50 simulations, the pro-

posed MCMC algorithm is more precise in estimating parameter φ as it has the low-

est standard error (SE) among all the algorithms. However, for the sliding window

approaches, the estimate for φ shows more variability as more data is incorporated.

Nevertheless, this does not affect state inference: the MSE of all the algorithms on

estimating x is at a similar level.

The estimates for xt from t = 300 to 897 are very close and the differences are hard

to tell visually. See Figure 4.3.
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Figure 4.1: Plots of the inferred value of φ over time; median value shown for filtering

methods and mean value shown for MCMC methods. Repeatedly running 50 times

with cutting off the first 300 data. It is apparent that all these algorithms converge to

the true parameter (black horizontal line) along with time. St, PL and MCMC-vary

have a narrower range. MCMC-100 has a higher variability and MCMC-vary has the

least. The more data incorporated in the estimation phase the better approximation

to be obtained.
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0.78
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Methods

LW
St
PL
MCMC100
MCMC300
MCMCVary

LW St PL MCMC-100 MCMC-300 MCMC-vary

Mean of φ̂ 0.7947 0.7908 0.7918 0.7914 0.8038 0.7922

SE of φ̂ (×10−4) 13.1000 4.8793 6.2877 1.1388 0.3275 0.27506
1
n

∑
t(x̂t − xt)2 0.5745 0.5739 0.5737 0.5875 0.5741 0.5740

Figure 4.2: Box-plots comparison of all the algorithms. The proposed MCMC algo-

rithm is more stable than other filters.
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Figure 4.3: Plot of state estimation over time; x̂t is median value for filtering methods

and mean value for MCMC methods. The filtering for x300:897 is competitive. The

algorithms return very similar estimates. The plots for MCMC-100 and MCMC-300

are hard to distinguish from MCMC-vary.
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4.5 Conclusion

In this chapter, we take an overview of existing sequential state estimation methods

and combined state and parameter estimation methods. The particle filter is an efficient

algorithm for state estimation, although the particles impoverishment is inevitable.

Extended to this method, researchers are working on killing particles degeneracy and

several accomplishments have been achieved. A new challenge is estimating the un-

known parameters. In no doubt, for complex stochastic processes and dynamics, both

Bayesian and Frequentist methods are working well. One refer to (Wakefield, 2013) for

further discussions between Bayesian and Frequentist methods and implementation.

As a summary, most of the research issues for filtering and parameter estimation

focus on

(i) Choices of resampling scheme to kill particles degeneracy, such as Liu and West’s

filter.

(ii) Exploration of an efficient sampling algorithm, such as Metropolis-Hastings sam-

pler and related sampling algorithms.

(iii) Exploration of accurate estimation with low variances in higher dimensional

space.

Subject to pages and time, some algorithms are not included in this chapter. For

more information and interests, readers can refer to unscented Kalman filter (Wan and

Van Der Merwe, 2000) and its related algorithms for non-linear estimation, particle

MCMC (Andrieu et al., 2010) for off-line Bayesian estimation and on-line gradient

approach (Poyiadjis et al., 2005) for parameter estimation.
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Chapter 5

Adaptive Sequential MCMC for

On-line State and Parameter

Estimation

5.1 Introduction

Data assimilation is a sequential process, by which the observations are incorporated

into a numerical model describing the evolution of this system throughout the whole

process. The quality of the numerical model determines the accuracy of this system,

which requires sequential combined state and parameter inferences. An enormous

literature exists on pure state estimation, however, less research has been carried out

on combined state and parameter estimation.

Sequential Monte Carlo (SMC) has been well studied in scientific literature and

have been applied in real world applications. It allows us to specify complex, non-

linear time series patterns and enables us to perform real-time Bayesian estimations

when it is coupled with Dynamic Generalized Linear Models (Vieira and Wilkinson,

2016). However, model parameters are unknown in real-world applications and this

restricts the usefulness of standard SMC. Extensions to standard SMC have been con-

sidered by a number of researchers. Kitagawa (1998) propose a self-organizing filter

and augmenting the state vector with unknown parameters. The state and parameter

are estimated simultaneously by either a non-Gaussian filter or a particle filter. Liu

and West (2001) propose an improved particle filter to kill degeneracy, which is a com-

mon issue in static parameter estimation. They use a kernel smoothing approximation,

with a correction factor to account for over-dispersion. Alternatively, Storvik (2002)
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propose a new filter algorithm by assuming the posterior depends on a set of sufficient

statistics, which can be updated recursively. However, this approach only applies to

parameters with conjugate priors (Stroud et al., 2018). Unlike Storvik filter, the Par-

ticle learning approach, introduced by Carvalho et al. (2010), uses sufficient statistics

solely to estimate parameters and promises to reduce particle impoverishment. These

particle-like methods use more or less sampling and resampling algorithms to update

particles recursively.

Stroud et al. (2018) propose an SMC algorithm by using ensemble Kalman filter

framework for high dimensional space models with observations. Their approach com-

bines information about the parameters from data at different time points in a formal

way of Bayesian updating. Polson et al. (2008) rely on a fixed-lag length of data

approximation to filtering and sequential parameter learning in a general dynamic

state-space model. This approach allows for sequential parameter learning where im-

portance sampling has difficulties and avoids degeneracies in particle filtering. A new

adaptive MCMC method yields a quick and flexible way for estimating posterior dis-

tribution in parameter estimation (Haario et al., 1999). This new adaptive proposal

method depends on historical data, is introduced to avoid the difficulties of tunning

the proposal distribution in Metropolis-Hastings methods.

A further question is how to find an efficient way to draw samples for θ. There

are a few sampling algorithms that have been discussed in literatures, such as impor-

tance sampling (Hammersley and Handscomb, 1964; Geweke, 1989), rejection sampling

(Casella et al., 2004; Martino and Mı́guez, 2010), Gibbs sampling (Geman and Geman,

1984), Metropolis-Hastings method (Metropolis et al., 1953; Hastings, 1970) and so on.

Finally, delayed acceptance MCMC has been used to speed up computations (Payne

and Mallick, 2018; Quiroz et al., 2018). The main idea in delayed acceptance is to

avoid computations if there is an indication that the proposed draw will ultimately be

rejected.

In this chapter, an adaptive Delayed-Acceptance Metropolis-Hastings algorithm

is proposed to estimate the posterior distribution for combined state and parameter

with two phases. In the learning phase, a self-tuning random walk Metropolis-Hastings

sampler is used to learn the parameter mean and covariance structure. In the estimation

phase, the parameter mean and covariance structure informs the proposed mechanism

and is also used in a delayed-acceptance algorithm, which greatly improves sampling

efficiency. Information on the resulting state of the system is given by a Gaussian

mixture. To keep the algorithm a higher computing efficiency for on-line estimation,
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it is suggested to cut off historical data and to use a fixed length of data up to the

current state, like a window sliding along with time. At the end of this chapter, an

application of this algorithm on irregularly sampled GPS time series data is presented.

5.2 Bayesian Inference on Combined State and Pa-

rameter

In a general state-space model, a forward map F controls the stochastic evolution

of the state xt and an observation model G connects the observation yt to the state

xt. The goal of inference is to estimate the state of the system and the parameters of

the forward map and the observation model. Given a probability for the initial state,

p(x1 | θ), where θ are the parameters to be estimated, and a prior distribution over

the parameters, p(θ), the general Bayesian filtering problem requires computing the

posterior distribution of the current state, p(xt | y1:t). If we assume that, given xt−1,

xt is conditionally independent of states at all other times and all observations, then

p(xt | y1:t, θ) =

∫
p(xt | xt−1, θ)p(xt−1 | y1:t, θ)dxt−1, (5.1)

where y1:t = {y1, . . . , yt} is the observation information up to time t. Then given the

posterior distribution for the parameters at time t, p(θ | y1:t), we have

p(xt | y1:t) =

∫
p(xt | y1:t, θ)p(θ | y1:t)dθ. (5.2)

The approach in equation (5.2) relies on the two terms: (i) a conditional posterior

distribution for the states with given parameters and observations; (ii) a marginal

posterior distribution for parameter θ. Several methods can be used in finding the

second term, such as cross validation, Expectation Maximization algorithm, Gibbs

sampling, Metropolis-Hastings algorithm and so on. A Monte Carlo method is popular

in research area solving this problem. Monte Carlo method is an algorithm that relies

on repeated random sampling to obtain numerical results. To compute an integration

of
∫
f(x)dx, one has to sample as many independent xi, (i = 1, . . . , N), as possible

and numerically to find 1
N

∑
i f(xi) to approximate the target function. In the target

function (5.2), we draw samples of θ and use a numerical way to calculate its posterior

distribution p(θ | y1:t).

Additionally, the marginal posterior distribution for the parameter can be written
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in two different ways:

p(θ | y1:t) ∝ p(y1:t | θ)p(θ), (5.3)

p(θ | y1:t) ∝ p(yt | y1:t−1, θ)p(θ | y1:t−1). (5.4)

The above formula (5.3) is a standard Bayesian inference requiring a prior distribution

p(θ). It can be used in off-line methods, in which θ̂ is inferred by iterating over a

fixed observation record y1:t. By contrast, formula (5.4) is defined in a recursive way

over time depending on the previous posterior at time t− 1, which is known as on-line

method. θ̂ is estimated sequentially as a new observation yt+1 becomes available.

In this chapter, we propose the use of a linear state-space model to infer the tra-

jectory of a moving vehicle. Specifically, we suppose that the forward map and the

observation model are linear and homogeneous, and the noise is Gaussian. The so-

called linear Gaussian state-space model which has been extensively studied in the

literature (Durbin and Koopman, 2012). Even in the linear state-space model, param-

eter and state estimation is difficult. Our goal is to develop a fast and efficient MCMC

algorithm for online estimation.

5.2.1 The Posterior Distribution

For sampling θ, we should find its distribution function first from the covariance

matrix of the joint x1:t and y1:t. Under the assumption that the forward map and the

observation model are linear and homogeneous, the joint distribution of the states and

observations is [
x1:t

y1:t

∣∣∣∣θ
]
∼ N (0,Σt) , (5.5)

where x1:t represents the hidden states {x1, . . . , xt}, y1:t represents observed {y1, . . . , yt}
and θ is a set of all known and unknown parameters. The inverse of the covariance

matrix Σ−1
t is the precision matrix. In our application, as we will see, it is a block

matrix in the form

Σ−1
t =

[
At −Bt

−B>t Bt

]
, (5.6)

where At is a t× t matrix coming from the forward map, Bt is a t× t diagonal matrix

coming from the observation model. The structure of the matrices, such as bandwidth,

sparse density, depends on the details of the model. Then, we may find the covariance
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matrix by calculating the inverse of the precision matrix

Σt =

[ (
At −B>t B−1

t Bt

)−1 −
(
At −B>t B−1

t Bt

)−1
B>t B

−1
t

−B−1
t Bt

(
At −B>t B−1

t Bt

)−1 (
Bt −B>t A−1

t Bt

)−1

]

=

[
(At −Bt)

−1 (At −Bt)
−1

(At −Bt)
−1 (

It − A−1
t Bt

)−1
B−1
t

]

,

[
ΣXX ΣXY

ΣY X ΣY Y

]
.

(5.7)

Because of the covariance ΣY Y =
(
It − A−1

t Bt

)−1
B−1
t , therefore the inverse is

Σ−1
Y Y = Bt

(
It − A−1

t Bt

)
= BtA

−1
t Σ−1

XX . (5.8)

Given the Choleski decomposition LtL
>
t = At, we have

Σ−1
Y Y = BtL

−>
t L−1

t Σ−1
XX

=
(
L−1
t Bt

)> (
L−1
t Σ−1

XX

) (5.9)

More usefully, by given another Choleski decomposition RtR
>
t = At −Bt = Σ−1

XX ,

y>1:tΣ
−1
Y Y y1:t =

(
L−1
t Bty1:t

)> (
L−1
t Σ−1

XXy1:t

)
, W>

t

(
L−1
t Σ−1

XXy1:t

) (5.10)

det Σ−1
Y Y = detBt detL−>t detL−1

t detRt detR>t

= detBt

(
detL−1

t

)2
(detRt)

2 .
(5.11)

From the objective function (5.3), the posterior distribution of θ is

p (θ | y1:t) ∝ p (y1:t | θ) p (θ) ∝ exp

(
−1

2
y1:tΣ

−1
Y Y y1:t

)√
det Σ−1

Y Y p (θ) . (5.12)

Then, by taking natural logarithm on the posterior of θ and by using the useful solutions

in equations (5.10) and (5.11), we will have

lnL (θ) = −1

2
y>1:tΣ

−1
Y Y y1:t +

1

2

∑
ln tr (Bt)−

∑
ln tr (Lt) +

∑
ln tr (Rt) + ln p (θ) .

(5.13)

5.2.2 The Forecast Distribution

From equation (5.4), a sequential way for estimating the forecast distribution is

needed. Suppose it is

yt | y1:t−1, θ ∼ N (µ̄t, σ̄t) . (5.14)

99



Look back to the covariance matrices of observations that we found in the previous

section

p(y1:t−1, θ) = N
(

0,Σ
(t−1)
Y Y

)
,

p(yt, y1:t−1, θ) = N
(

0,Σ
(t)
Y Y

)
,

(5.15)

where the covariance matrix of the joint distribution is Σ
(t)
Y Y = (It − A−1

t Bt)
−1B−1

t , It

is a t× t identity matrix. Then, by taking its inverse, we will get

Σ
(t)(−1)
Y Y = Bt(It − A−1

t Bt)

= Bt(B
−1
t − A−1

t )Bt

,

[
Bt 0

0 B1

][
Zt bt

b>t Kt

][
Bt 0

0 B1

] (5.16)

where Zt is a t× t matrix, bt is a t×1 matrix and Kt is a 1×1 matrix. Thus, by taking

its inverse again, we will get

Σ
(t)
Y Y =

[
B−1
t

(
Zt − btK−1

t b>t
)−1

B−1
t −B−1

t Z−1
t bt

(
Kt − b>t Z−1

t bt
)−1

B−1
1

−B−1
1 K−1

t b>t
(
Zt − btK−1

t b>t
)−1

B−1
t B−1

1

(
Kt − b>t Z−1

t bt
)−1

B−1
1

]
.

(5.17)

So, from the above covariance matrix, we can find the mean and variance of p (yt | y1:t−1, θ)

are

µ̄t = B−1
1 K−1

t b>t B
−1
t−1y1:t−1, (5.18)

σ̄2
t = B−1

1 KtB
−1
1 . (5.19)

5.2.3 The Estimation Distribution

From the joint distribution (5.5), one can find the best estimation with a given θ

by

x1:t | y1:t, θ ∼ N
(
A−1
t Bty1:t, A

−1
t

)
∼ N(L−>t L−1

t Bty1:t−1, L
−>L−1

t )

∼ N(L−>t Wt, L
−>L−1

t ).

(5.20)

For sole xt, its joint distribution with y1:t is

xt, y1:t | θ ∼ N

(
0,

[
C>t (At −Bt)

−1Ct C>t (At −Bt)
−1

(At −Bt)
−1Ct (It − A−1

t Bt)
−1B−1

t

])
, (5.21)
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where C>t =
[
0 · · · 0 1

]
is t× 1 vector. Thus, the filtering distribution of the state

is

xt | y1:t, θ ∼ N
(
µ

(x)
t ,Var(xt)

)
, (5.22)

where, after simplifying, the mean and variance are

µ
(x)
t = C>t A

−1
t Bty1:t, (5.23)

Var(xt) = C>t A
−1
t Ct. (5.24)

Generally, researchers would like to find the combined estimation for xt and θ at

time t by

p(xt, θ | y1:t) = p(xt | y1:t, θ)p(θ | y1:t). (5.25)

Differently, from the target equation (5.2), the state inference containing N samples is

a mixture Gaussian distribution in the following form

p(xt | y1:t) =

∫
p(xt | y1:t, θ)p(θ | y1:t)dθ=̇

1

N

N∑
i=1

p
(
xt | θ(i), y1:t

)
. (5.26)

Suppose xt | y1:t, θi ∼ N
(
µ

(x)
ti ,Var(xti)

)
is found from equation (5.23) and (5.24) for

each θi, then its mean is

µ
(x)
t =

1

N

∑
i

µ
(x)
ti (5.27)

and the unconditional variance of xt, by law of total variance, is

Var(xt) = E[Var(xt | y1:t, θ)] + Var[E(xt | y1:t, θ)]

=
1

N

∑
i

(
µ

(x)
ti µ

(x)>
ti + Var(xti)

)
− 1

N2

(∑
i

µ
(x)
ti

)(∑
i

µ
(x)
ti

)>
.

(5.28)

5.3 Random Walk Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm is an important class of MCMC algorithms (Smith

and Roberts, 1993; Tierney, 1994; Gilks et al., 1995). This algorithm has been used

extensively in physics but was little known to others until Müller (1991); Tierney

(1994) expound the value of this algorithm to statisticians. The algorithm is extremely

powerful and versatile and has been included in a list of “The Top 10 Algorithms” with

the greatest influence on the development and practice of science and engineering in

the 20th century (Dongarra and Sullivan, 2000; Medova, 2008).

Given essentially a probability distribution π(·) (the target distribution), MH al-

gorithm provides a way to generate a Markov chain x1, x2, . . . , xt, who has the target
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distribution as a stationary distribution, for the uncertain parameters x requiring only

that this density can be calculated at x. Suppose that we can evaluate π(x) for any x.

The transition probabilities should satisfy the detailed balance condition

π
(
x(t)
)
q
(
x′, x(t)

)
= π (x′) q

(
x(t), x′

)
, (5.29)

which means that the transition from the current state π(x(t)) to the new state π(x′)

has the same probability as that from π(x′) to π(x(t)). In sampling method, drawing

xi first and then drawing xj should have the same probability as drawing xj and then

drawing xi. However, in most situations, the details balance condition is not satisfied.

Therefore we introduce a function α(x, y) satisfying

π (x′) q
(
x′, x(t)

)
α
(
x′, x(t)

)
= π

(
x(t)
)
q
(
x(t), x′

)
α
(
x(t), x′

)
. (5.30)

In this way, a tentative new state x′ is generated from the proposal density q
(
x′;x(t)

)
and it is accepted or rejected according to acceptance probability

α =
π (x′)

π (x(t))

q
(
x(t), x′

)
q (x′, x(t))

. (5.31)

If α ≥ 1, the new state is accepted. Otherwise, the new state is accepted with proba-

bility α.

Here comes an issues of how to choose q
(
· | x(t)

)
. The most widely used subclass

of MCMC algorithms is based on the random walk Metropolis (RWM). The RWM

updating scheme was first applied by Metropolis et al. (1953) and proceeds as follows.

Given a current value of the d-dimensional Markov chain x(t), a new value x′ is obtained

by proposing a jump ε = |x′ − x(t)| from the pre-specified Lebesgue density

γ̃ (ε?;λ) =
1

λd
γ

(
ε?

λ

)
, (5.32)

with γ(ε) = γ(−ε) for all ε. Here, the positive λ governs the overall distance of the pro-

posed jump and plays a crucial role in determining the efficiency of any algorithm. In a

random walk, the proposal density function q(·) can be chosen for some suitable normal

distribution, and hence q
(
x′ | x(t)

)
= N

(
x′ | x(t), ε2

)
and q

(
x(t) | x′

)
= N

(
x(t) | x′, ε2

)
cancel in the above equation (5.31) (Sherlock et al., 2017). To decide whether to accept

the new state, we compute the the probability of accepting the new state by

α = min

{
1,
π (x′) q

(
x(t) | x′

)
π (x(t)) q (x′ | x(t))

}
= min

{
1,

π (x′)

π (x(t))

}
. (5.33)

If the proposed value is accepted it becomes the next current value x(t+1) = x′; otherwise

the current value is left unchanged x(t+1) = x(t) (Sherlock et al., 2010).
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5.3.1 The Self-tuning Metropolis-Hastings Algorithm

The self-tuning MH algorithm automatically tunes the step sizes for different pa-

rameters by one-variable-at-a-time random walk. Aiming at the target acceptance rates

for each parameter, the algorithm efficiently and accurately explore the structure of

the d-dimensional parameter space.

By assuming the parameters are independent, the idea of this algorithm is that in

each iteration, only one parameter is proposed and the others remain to be changed.

After the step, take n samples out of the total amount of iterations N as new sequences.

In Figure 5.1, examples of different proposing methods are compared.
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Figure 5.1: Examples of 2-Dimensional random walk Metropolis-Hastings algorithm.

Figure 5.1a is the trace of one-variable-at-a-time random walk. At each time, only one

variable is changed and the other one stay constant. Figure 5.1b and 5.1c present the

traces by multi-variable-at-a-time random walk. In Figure 5.1b, the proposal for each

step is independent, but in Figure 5.1c the proposal are proposed correlated.

To gain the target acceptance rates αi, (i = 1, . . . , d), the step size si for each

parameter is tuned automatically. The concept of the algorithm is if the proposal is

accepted, we are more confident on the direction and step size that were made. In this

scenario, the next moving step should be further. In another word, the step size st+1

in the next step is bigger than st. Otherwise, a conservative proposal is made with a

shorter distance, which is st+1 ≤ st.

Let a and b be non-negative numbers indicating the distances of a forward move-

ment, the new step size st+1 from current st is

ln st+1 =

ln st + a with probability α

ln st − b with probability 1− α
, (5.34)
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where the logarithm guarantees the step size is positive. By taking its expectation

E[ln st+1 | ln st] = α(ln st + a) + (1− α)(ln st − b), (5.35)

and simplifying to

µ = α(µ+ a) + (1− α)(µ− b), (5.36)

one can find that

a =
1− α
α

b. (5.37)

Thus, if the proposal is accepted, the step size st is tuned to st+1 = ste
a, otherwise

st+1 = st/e
b.

The complete one-variable-at-a-time MH is summarized in the following:

Algorithm 5.1: Self-tuning Random Walk Metropolis-Hastings Algorithm

1 Initialization: Given an arbitrary positive step size s
(1)
i for each parameter. Set

up a value for b and find a by using the formula (5.37). Set up a target

acceptance rate αi for each parameter, where i = 1, . . . , d.

2 Run sampling algorithm: for k from 1 to N do

3 Randomly select a parameter θ
(k)
i , propose a new one by θ′i ∼ N

(
θ

(k)
i , εs

(k)
i

)
and leave the rest unchanged.

4 Accept θ′i with probability α = min

{
1,

π(θ′)q(θ(k),θ′)
π(θ(k))q(θ′,θ(k))

}
.

5 If it is accepted, tune step size to s
(k+1)
i = s

(k)
i ea, otherwise s

(k+1)
i = s

(k)
i /eb.

6 Set k = k + 1 and move to step 3 until N .

7 Take n samples out from N with equal spaced index for each parameter being a

new sequence.

The advantage of the Algorithm 5.1 is that it returns a more accurate estimation

for θ and is more reliable to learn the structure of the parameter space. However, if

π(·) has an singular structure, the algorithm becomes time-consuming and low efficient.

To solve the issue, the Delayed-Acceptance Metropolis-Hastings (DA MH) algorithm is

utilized to speed up the computation.

5.3.2 Adaptive Delayed-Acceptance Metropolis-Hastings Al-

gorithm

The DA MH algorithm proposed in (Christen and Fox, 2005) is a two-stage Metropolis-

Hastings algorithm in which, typically, proposed parameter values are accepted or
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rejected at the first stage based on a computationally cheap surrogate π̂(x) for the

likelihood π(x). In stage one, the quantity α1 is found by a standard MH acceptance

formula

α1 = min

{
1,
π̂(x′)q

(
x(t), x′

)
π̂(x(t))q (x′, x(t))

}
, (5.38)

where π̂(·) is a cheap estimation for x and a simple form is π̂(·) = N (· | x̂, ε). Once α1

is accepted, the process goes into stage two and the acceptance probability α2 is

α2 = min

{
1,
π(x′)π̂

(
x(t)
)

π (x(t)) π̂(x′)

}
, (5.39)

where the overall acceptance probability α1α2 ensures that detailed balance is satisfied

with respect to π(·); however if a rejection occurs at stage one, the expensive evaluation

of π(x) at stage two is unnecessary.

For a symmetric proposal density kernel q
(
x′, x(t)

)
such as is used in the random

walk MH algorithm, the acceptance probability in stage one is simplified to

α1 = min

{
1,

π(x′)

π (x(t))

}
. (5.40)

If the true posterior is available, the delayed-acceptance Metropolis-Hastings algorithm

is obtained by substituting this for the unbiased stochastic approximation in (5.39)

(Sherlock et al., 2015).

To accelerate the MH algorithm, DA MH requires a cheap approximate estimation

π̂(·) in formula (5.40). Intuitively, the approximation should be efficient with respect

to time and accuracy to the true posterior π(·). A sensible option is assuming the

parameter distribution at each time t is following a normal distribution with mean mt

and covariance Ct. So the posterior density is given by

π̂(θ | y1:t) ∝ exp

(
−1

2
(θ −mt)

>C−1
t (θ −mt)

)
. (5.41)

A lazy Ct is chosen as an identity matrix, in which way all the parameters are inde-

pendent. In terms of mt, in most of circumstances, 0 is not an idea choice. To find an

optimal or suboptimal mt and Ct, several algorithms have been discussed. Stroud et al.

(2018) use a second-order expansion of l(θ) at the mode and the mean and covariance

become mt = arg max l(θ) and Ct = −
[
∂l(θ)
∂θi∂θj

]−1

θ=mt
respectively. The drawback of this

estimation is a global optimum is not guaranteed. Mathew et al. (2012) propose a fast

adaptive MCMC sampling algorithm, which is a consist of two phases. In the learning

phase, they use hybrid Gibbs sampler to learn the covariance structure of the variance
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components. In phase two, the covariance structure is used to formulate an effective

proposal distribution for a MH algorithm.

Likewise, we are suggesting that use a batch of data with length L < t to learn the

parameter space by using self-tuning random walk MH algorithm in the learning phase

first. This algorithm tunes each parameter at its own optimal step size and explores

the surface in different directions. When the process is done, we have a sense of the

surface for θ ≈ θ̂ and its mean µ̂ ≈ mL and covariance Σ̂ ≈ CL can be estimated.

Then, we can move to the second phase: DA MH algorithm. The new θ′ is proposed

from N
(
θ(t) | mL, CL

)
, which is in the following form

θ′ = θ(t) +Rεz, (5.42)

where R>R = CL is the Cholesky decomposition, ε is the tuned step size and z ∼
N(0, 1) is Gaussian white noise. This proposing method reduces the impact of drawing

θ′ from a correlation space.

5.3.3 Efficiency of Metropolis-Hastings Algorithm

In equation (5.32), the jump size ε determines the efficiency of RWM algorithm.

For a general RWM, it is intuitively clear that we can make the algorithm arbitrarily

poor by making ε either very large or very small (Sherlock et al., 2010). Assuming ε is

extremely large, the proposal x′ ∼ N
(
x(t), ε

)
, for example, is taken a further distance

from current value x(t). Therefore the algorithm will reject most of its proposed moves

and stay where it was for a few iterations. On the other hand, if ε is extremely small,

the algorithm will keep accepting the proposed x′ since α is always approximately be

1 because of the continuity of π(x) and q(·) (Roberts and Rosenthal, 2001). Thus,

RWM takes a long time to explore the posterior space and converge to its stationary

distribution. So, the balance between these two extreme situations must exist. This

appropriate step size ε̂ is optimal, sometimes is suboptimal, the solution to gain a

Markov chain.

Figure 5.2 illustrates the performances of RWM with different ε. From these figures,

one can see that either too large or too small ε causes high correlation chains, indicating

bad samples in sampling algorithm. An appropriate ε decorrelates samples and returns

a stationary chain. That is considered highly efficient.

Plenty of work has been done in determining the efficiency of Metropolis-Hastings

algorithm in recent years. Gelman et al. (1996) work with algorithms consisting of

a single Metropolis move (not multi-variable-at-a-time), and obtain many interesting
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(c) With a proper step size

Figure 5.2: Metropolis-Hastings sampler for a single parameter with: 5.2a a large step

size, 5.2b a small step size, 5.2c an appropriate step size. The upper plots show the

sample chains and lower plots indicate the autocorrelation values for each case.

results for the d-dimensional spherical multivariate normal problem with symmetric

proposal distributions, including that the optimal scale is approximately 2.4/
√
d times

the scale of target distribution, which implies optimal acceptance rates of 0.44 for d = 1

and 0.23 for d→∞ (Gilks et al., 1995). Roberts and Rosenthal (2001) evaluate scalings

that are optimal (in the sense of integrated autocorrelation times) asymptotically in

the number of components. They find that an acceptance rate of 0.234 is optimal

in many random walk Metropolis situations, but their studies are also restricted to

algorithms that consist of only a single step in each iteration, and in any case, they

conclude that acceptance rates between 0.15 and 0.5 do not cost much efficiency. Other

researchers, such as (Gelman et al., 1997; Bédard, 2007; Beskos et al., 2009; Sherlock

and Roberts, 2009; Sherlock, 2013), have been tackled for various shapes of target on

choosing the optimal scale of the RWM proposal and led to the similar rule: choose

the scale so that the acceptance rate is approximately 0.234. Although nearly all of

the theoretical results are based upon limiting arguments in high dimension, the rule

of thumb appears to be applicable even in relatively low dimensions (Sherlock et al.,

2010).

In terms of the step size ε, it is pointed out that for a stochastic approximation

procedure, its step size sequence {εi} should satisfy
∑∞

i=1 εi = ∞ and
∑∞

i=1 ε
1+λ
i < ∞

for some λ > 0. The former condition somehow ensures that any point of X can
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eventually be reached, while the second condition ensures that the noise is contained

and does not prevent convergence (Andrieu and Thoms, 2008). Sherlock et al. (2010)

tune various algorithms to attain target acceptance rates, and one of the algorithms

tunes step sizes of univariate updates to attain the optimal efficiency of Markov chain

at the acceptance rates between 0.4 and 0.45. Additionally, Graves (2011) mentions

that it is certain that one may use the actual arctangent relationship to try to choose

a good ε: in the univariate example, if α is the desired acceptance rate, then ε =

2σ/ tan (π/2α), where σ is the posterior standard deviation, will be obtained. In fact,

some explorations infer a linear relationship between acceptance rate and step size,

which is logit(α) ≈ 0.76−1.12 ln ε/σ, and the slope of the relationship is nearly equal

to the constant -1.12 independently.

However, in multi-variable-at-a-time RWM, one expects that the proper interpreta-

tion of σ is not the posterior standard deviation but the average conditional standard

deviation, which is presumably more difficult to estimate from a Metropolis algorithm.

In a higher d-dimensional space, or propose multi-variable-at-a-time, suppose Σ is

known or can be estimated, then X ′ can be proposed from q ∼ N (X, ε2Σ). Thus,the

optimal step size ε is required. A concessive way of RWM in high dimension is proposing

one-variable-at-a-time and treating them as separate one dimensional space individu-

ally. In any case, however, the behavior of RWM on a multivariate normal distribution

is governed by its covariance matrix Σ, and it performs better than a fixed N (X, ε2Id)

distribution (Roberts and Rosenthal, 2001).

To explore the efficiency of a MCMC process, we introduce some notions first.

For an arbitrary square integrable function g, Roberts and Rosenthal (2001) define its

integrated autocorrelation time by

τg = 1 + 2
∞∑
i=1

Corr (g(X0), g(Xi)) , (5.43)

where X0 is assumed to be distributed according to π. Because central limit theorem,

the variance of the estimator ḡ =
∑n

i=1 g(Xi)/n for estimating E[g(X)] is approximately

Varπ[g(X)]× τg/n. The variance tells us the accuracy of the estimator ḡ. The smaller

it is, the faster the chain converges. Therefore, they suggest that the efficiency of

Markov chains (Eff) can be found by comparing the reciprocal of their integrated

autocorrelation time, which is

eg(σ) ∝ (τgVarπ[g(X)])−1 . (5.44)

However, the disadvantage of their method is that the measurement of efficiency is

highly dependent on the function g. Instead, an alternative approach uses effective
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sample size (ESS) (Kass et al., 1998; Robert, 2004), which is defined in (Gong and

Flegal, 2016) in the following form of

ESS =
n

1 + 2
∑∞

k=1 ρk(X)
≈ n

1 + 2
∑kcut

k=1 ρk(X)
=
n

τ
, (5.45)

where n is the amount of samples, kcut is lag of the first ρk < 0.01 or 0.05 , and τ

is the integrated autocorrelation time. Given a Markov chain having n iterations, the

ESS measures the size of i.i.d. samples with the same standard error. Moreover, a wide

support among both statisticians (Geyer, 1992) and physicists (Sokal, 1997) use the

following cost of independent samples to evaluate the performance of MCMC, that is

n

ESS
× cost per step = τ × cost per step. (5.46)

Being inspired by their research, we now define the Efficiency in Unit Time (EffUT)

and ESS in Unit Time (ESSUT) as follows:

EffUT =
eg
T
, (5.47)

ESSUT =
ESS

T
, (5.48)

where T represents the computation time, which is also known as running time. The

computation time is the length of time, in minutes or hours, etc, required to perform a

computational process. The best Markov chain with an appropriate step size ε should

not only have a lower correlation, as illustrated in Figure 5.2, but also have less time-

consuming. The standard efficiency eg and ESS do not depend on the computation

time, but EffUT and ESSUT do. The best-tuned step size gains the balance between

the size of effective proposed samples and cost of time.

5.4 Simulation Studies

In this section, we consider the model in regular and irregular spaced time difference

separately. For an one dimensional state-space model, we consider the hidden state

process {xt, t ≥ 1} is a stationary and ergodic Markov process and transited by F (x′ |
x). In this paper, we assume that the state of a system has an interpretation as the

summary of the past one-step behavior of the system. The states are not observed

directly but by another process {yt, t ≥ 1}, which is assumed depending on {xt} by the

process G(y | x) only and independent with each other. When observed on discrete
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time T1, . . . , Tk, the model is summarized on the directed acyclic following graph

State x0 → x1 → · · · xk → · · · xt → · · ·
↓ ↓ ↓

Observation y1 yk yt

Time T1 Tk Tt

(5.49)

We define ∆k = Tk − Tk−1. If ∆t is constant, we retrieve a standard AR(1) model

process with regular spaced time steps; if ∆t is not constant, then the model becomes

more complicated with irregular spaced time steps. (Note that we do not consider

x0 below: given an appropriate prior, x0 can always be integrated out of the model

probability.)

5.4.1 Simulation on Regularly Sampled Time Series Data

If the time steps are evenly spaced, the model can be written as a simple linear

homogeneous state-space model:

yt | xt ∼ N
(
xt, σ

2
)

xt | xt−1 ∼ N
(
φxt−1, τ

2
)
,

(5.50)

where σ and τ are i.i.d. errors occurring in processes and φ is a static process parameter

in the forward map. An initial value x1 ∼ N(0, L2).

The joint distribution is p(x1:t, y1:t) = p(yt | xt)p(xt | xt−1) · · · p(y1 | x1)p(x1). Given

the form of the Gaussian density, the joint distribution becomes

[
x

y

∣∣∣∣θ
]
∼ N (0,Σ) , (5.51)
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where θ = {φ, σ, τ}, and the precision matrix Σ−1 is

1
L2 + φ2

τ2 + 1
σ2 − φ

τ2 · · · 0 0 − 1
σ2 0 · · · 0 0

− φ
τ2

1+φ2

τ2 + 1
σ2 · · · 0 0 0 − 1

σ2 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1+φ2

τ2 + 1
σ2 − φ

τ2 0 0 · · · − 1
σ2 0

0 0 · · · − φ
τ2

1
τ2 + 1

σ2 0 0 · · · 0 − 1
σ2

− 1
σ2 0 · · · 0 0 1

σ2 0 · · · 0 0

0 − 1
σ2 · · · 0 0 0 1

σ2 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · − 1
σ2 0 0 0 · · · 1

σ2 0

0 0 · · · 0 − 1
σ2 0 0 · · · 0 1

σ2



,

(5.52)

and denoted as Σ−1 ,

[
At −Bt

−Bt Bt

]
, where Bt is a diagonal matrix 1

σ2 I proportional

to an identity matrix.

Parameter Estimation

In the formula (5.3), the parameter posterior is estimated with observation y1:t. By

using the Algorithm 5.1, although it may take a longer time, we will achieve a precise

estimation. Similarly with Section 5.2.1, from the objective function, the posterior

distribution of θ is the same as equation (5.12). Then, by taking natural logarithm on

the posterior of θ and by using the useful solutions in equations (5.10) and (5.11), we

will have the same log-likelihood function (5.13).

In a simple linear case, we are choosing the parameter θ = {φ = 0.9, τ 2 = 0.5, σ2 = 1}
as the author did in (Lopes and Tsay, 2011) and using n = 500 data set, setting initial

L = 0. Instead of inferring τ and σ, we are estimating ν1 = ln τ 2 and ν2 = lnσ2 in

the RW-MH to avoid singular proposals. After the process, the parameters can be

transformed back to original scale. Therefore the new parameter θ∗ = {φ, ν1, ν2} =

{φ, ln τ 2, lnσ2}.
By using Algorithm 5.1 and aiming the optimal acceptance rate at 0.44, after 10 000

iterations we get the acceptance rates for each parameters are αφ = 0.4409, αν1 = 0.4289

and αν2 = 0.4505, and the estimations are φ = 0.8794, ν1 = −0.6471 and ν2 = −0.0639

respectively. Thus, we have the cheap surrogate π̂(·). Keep going to the DA MH with

another 10 000 iterations, the algorithm returns the best estimation with α1 = 0.1896

and α2 = 0.8782. In Figure 5.3, the trace plots illustrates that the Markov chain of θ̂
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is stably fluctuating around the true θ.
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Figure 5.3: Linear simulation with true parameter θ = {φ = 0.9, τ 2 = 0.5, σ2 = 1}.
By transforming back to the original scale, the estimation of θ̂ is {φ = 0.8810, τ 2 =

0.5247, σ2 = 0.9416}.

Recursive Forecast Distribution

The calculation of log-posterior of the parameters requires finding out the forecast

distribution of p(y1:t | y1:t−1, θ). A general way is to use the joint distribution of yt and

y1:t−1, which is p(y1:t | θ) ∼ N(0,ΣY Y ), and following the procedure in Section 5.2.2 to

work out the inverse matrix of a multivariate normal distribution. For example, one

may find the inverse of the covariance matrix

Σ−1
Y Y = Bt(It − A−1

t Bt) =
1

σ4
(σ2It − A−1

t ) ,
1

σ4

[
Zt bt

b>t Kt

]
, (5.53)

and the original form of this covariance is

ΣY Y = σ4

[ (
Zt − btK−1

t b>t
)−1 −Z−1

t bt
(
Kt − b>t Z−1

t bt
)−1

−K−1
t b>t

(
Zt − btK−1

t b>t
)−1 (

Kt − b>t Z−1
t bt

)−1

]
. (5.54)

By denoting C>t =
[
0 · · · 0 1

]
and post-multiplying Σ−1

Y Y , we will have

Σ−1
Y YCt =

1

σ4

(
σ2It − A−1

t

)
Ct =

1

σ4

[
bt

Kt

]
. (5.55)

A recursive way of calculating bt and Kt is to use the Sherman-Morrison-Woodbury

formula. In the late 1940s and the 1950s, Sherman and Morrison (1950); Woodbury

(1950); Bartlett (1951); Bodewig (1959) discovered the following Theorem 8. The

original Sherman-Morrison-Woodbury (for short SMW) formula has been used to con-

sider the inverse of matrices (Deng, 2011). In this paper, we will consider the more

generalized case.
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Theorem 8. (Sherman-Morrison-Woodbury formula). Let A ∈ B(H) and G ∈ B(K)

both be invertible, and Y, Z ∈ B(K,H). Then, A + Y GZ∗ is invertible if and only if

G−1 + ZA−1Y is invertible. In which case,

(A+ Y GZ∗)−1 = A−1 − A−1Y
(
G−1 + ZA−1Y

)−1
ZA−1. (5.56)

A simple form of SMW formula is Sherman-Morrison formula represented in the fol-

lowing statement (Bartlett, 1951): Suppose A ∈ Rn×n is an invertible square matrix

and u, v ∈ Rn are column vectors. Then, A+ uv> is invertible ⇐⇒ 1 + u>A−1v 6= 0.

If A+ uv> is invertible, then its inverse is given by(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (5.57)

By using the formula (5.57), one can update Kt and bt in such a recursive way

Kt =
σ4

τ 2 + σ2 + φ2(σ2 −Kt−1)
, (5.58)

bt =

[
bt−1φKt

σ2

Kt(σ2+τ2)−σ4

φσ2

]
. (5.59)

With the above formula, the recursive way of updating the mean and covariance is in

the following formula:

µ̄t =
φ

σ2
Kt−1µ̄t−1 + φ

(
1− Kt−1

σ2

)
yt−1, (5.60)

Σ̄t = σ4K−1
t , (5.61)

where K1 = σ4

σ2+L2 . For calculation details, we refer readers to Appendix B.1.

The Estimation Distribution

As discussed in Section 5.2.3, from the joint distribution of x1:t and y1:t, one can

find the estimation distribution (5.20), a further joint distribution for xt, y1:t (5.21),

and the mixture Gaussian distribution (5.26) with mean (5.27) and variance (5.28).

Because of

C>t A
−1
t =

[
−b>t σ2 −Kt

]
, (5.62)

thus, for any given θ, we have xt | y1:t, θ ∼ N
(
µ

(x)
t ,Var(xt)

)
, where

µ
(x)
t =

Ktµ̄t
σ2

+

(
1− Kt

σ2

)
yt (5.63)

Var(xt) = σ2 −Kt. (5.64)
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By substituting them into the equation (5.27) and (5.28), the estimated xt is obtained.

For calculation details, we refer readers to Appendix B.1.
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Figure 5.4: Linear simulation for x1:t and single xt. In Figure 5.4a, the black dots are

the true x1:t and the solid line represents the means of the estimation µ
(x)
1:t . In Figure

5.4b, the mean µ
(x)
t of the chain µ

(x)
ti is very close to the true x. In fact, the true x falls

in the interval [µ
(x)
t − se

(x)
t , µ

(x)
t + se

(x)
t ], where se

(x)
t is the square rooted Var(xt).

5.4.2 Simulation on Irregularly Sampled Time Series Data

Irregularly sampled time series data is painful for scientists and researchers. In

spatial data analysis, several satellites and buoy networks provide continuous observa-

tions of wind speed, sea surface temperature, ocean currents, etc. However, data was

recorded with irregular time-step, with generally several data each day but also some-

times gaps of several days without any data. Tandeo et al. (2011) adapt a continuous-

time state-space model to analyze this kind of irregular time-step data, in which the

state is supposed to be an Ornstein-Uhlenbeck process.

The OU process is an adaptation of Brownian Motion, which models the movement

of a free particle through a liquid and was first developed by Einstein (1956). By

considering the velocity ut of a Brownian motion at time t, over a small time interval,

two factors affect the change in velocity: the frictional resistance of the surrounding

medium whose effect is proportional to ut and the random impact of neighboring par-

ticles whose effect can be represented by a standard Wiener process. Thus, because

mass times velocity equals force, the process in a differential equation form is

mdut = −ωutdt+ dWt, (5.65)
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where ω > 0 is called the friction coefficient and m > 0 is the mass. If we define

γ = ω/m and λ = 1/m, we obtain the OU process (Schöbel and Zhu, 1999), which was

introduced with the following differential equation:

dut = −γutdt+ λdWt. (5.66)

The OU process is used to describe the velocity of a particle in a fluid and is encoun-

tered in statistical mechanics. It is the model of choice for random movement toward

a concentration point. It is sometimes called a continuous-time Gauss Markov process,

where a Gauss Markov process is a stochastic process that satisfies the requirements

for both a Gaussian process and a Markov process. Because a Wiener process is both

a Gaussian process and a Markov process, in addition to being a stationary indepen-

dent increment process, it can be considered a Gauss-Markov process with independent

increments (Kijima, 1997).

To apply OU process on irregularly sampled data, we assume that the latent process

{x1:t} is a simple OU process, that is a stationary solution of the following stochastic

differential equation :

dxt = −γxtdt+ λdWt, (5.67)

where Wt is a standard Brownian motion, γ > 0 represents the slowly evolving transfer

between two neighbor data and λ is the forward transition variability. It is not hard

to find the solution of equation (5.67) is

xt = xt−1e
−γt +

∫ t

0

λe−γ(t−s)dWs. (5.68)

For any arbitrary time step t, the general form of the process satisfies

xt = xt−1e
−γ∆t + τ, (5.69)

where ∆t = Tt − Tt−1 is the time difference between two consecutive data points, τ is

a Gaussian white noise with mean zero and variances λ2

2γ

(
1− e−2γ∆t

)
.

The observed y1:t is measured by

yt = Hxt + ε, (5.70)

where ε ∼ N(0, σ) is a Gaussian white noise.

To run the simulations, we generate an irregular time-lag sequence {∆t} first from

an Inverse Gamma distribution with parameters α = 2, β = 0.1. Then, the following

parameters were chosen for the numerical simulation: γ = 0.5, λ2 = 0.1, σ2 = 1.

Similarly, we can get the joint distribution for x1:t and y1:t having a similar precision

matrix shown in equation (5.4.1), where φt = e−γ∆t , τ 2
t = λ2

2γ

(
1− e−2γ∆t

)
, θ represents

for the unknown parameters.
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Figure 5.5: Simulated data. The solid dots indicate the true state x and cross dots

indicate observation y. Irregular time lag ∆t are generated from Inverse Gamma(2,0.1)

distribution.

Parameter Estimation

By implementing he Algorithm 5.1, similarly with Section 5.2.1, from the objective

function, the posterior distribution of θ is the same as equation (5.12). By taking

natural logarithm on the posterior of θ and by using the useful solutions in equations

(5.10) and (5.11), we have the same log-likelihood function (5.13).

Because of all parameters are positive, we are estimating ν1 = lnλ, ν2 = ln γ2 and

ν3 = lnσ2 instead. When the estimation process is done, we can transform them back

to the original scale by taking exponential.

After running the whole process, it gives us the best estimation of θ̂ is {γ =

0.4841, λ2 = 0.1032, σ2 = 0.9276}. In Figure 5.6, we can see that the θ chains are

skew to the true value with tails.
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Figure 5.6: Irregular time step OU process simulation. The estimation of θ̂ is {γ =

0.4841, λ2 = 0.1032, σ2 = 0.9276}. In the plots, the horizontal dark lines are the true

θ.
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Recursive Calculation and State Estimation

Follow the procedure in Section 5.2.2 and do similar calculation with Section 5.4.1,

one can find the following recursive way to update Kt and bt:

Kt =
σ4

τ 2
t + σ2 + φ2

t (σ
2 −Kt−1)

, (5.71)

bt =

[
bt−1φtKt

σ2

Kt(σ2+τ2
t )−σ4

φtσ2

]
. (5.72)

With the above formula, the recursive way of updating the mean and covariance are

µ̄t =
φt
σ2
Kt−1µ̄t−1 + φt

(
1− Kt−1

σ2

)
yt−1, (5.73)

Σ̄t = σ4K−1
t , (5.74)

where K1 = σ4

σ2+L2 .

With a given θ, the estimation is xt | y1:t, θ ∼ N
(
µ

(x)
t ,Var(xt)

)
, where

µ
(x)
t =

Ktµ̄t
σ2

+

(
1− Kt

σ2

)
yt (5.75)

Var(xt) = σ2 −Kt. (5.76)

By substituting them into the equation (5.27) and (5.28), the estimated xt is obtained.

Notice that the difference between equations (5.58)(5.59) and equations (5.71)

(5.72) is that in the latter ones the parameters are dependent on the time lag ∆t.

5.5 High Dimensional Ornstein-Uhlenbeck Process

Application

Tractors moving on an orchard are mounted with GPS units, which are recording

data and transfer to the remote server. This data infers longitude, latitude, bearing,

etc, with unevenly spaced time mark. However, one dimensional OU process containing

either only position or velocity is not enough to infer a complex movement.

In this section, we are introducing an Ornstein-Uhlenbeck process (OU-process)

model combing both position and velocity with the following equationsdut = −γutdt+ λdWt,

dxt = utdt+ ξdW ′
t .

(5.77)
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Figure 5.7: Irregular time step OU process simulation of x1:t and sole xt. In Figure

5.7a, the dots is the true x1:t and the solid line represents the means of the estimation

µ
(x)
1:t . In Figure 5.7b, the chain in solid line is the estimation µ

(x)
ti and its mean µ

(x)
t ;

dotted line is the true value of xt; dot-dash line on top is the observed value yt; dashed

lines represent the range of uncertainties [µ
(x)
t − se

(x)
t , µ

(x)
t + se

(x)
t ], where se

(x)
t is the

square rooted Var(xt).

The solution can be found by integrating dt out, that gives usut = ut−1e
−γt +

∫ t
0
λe−γ(t−s)dWs,

xt = xt−1 + ut−1

γ
(1− e−γt) +

∫ t
0
λ
γ
eγs (1− e−γt) dWs +

∫ t
0
ξdW ′

s.
(5.78)

As a result, the joint distribution is[
xt

ut

]
∼ N

([
µ

(x)
t

µ
(u)
t

]
,

[
σ

(x)2
t ρtσ

(x)
t σ

(u)
t

ρtσ
(x)
t σ

(u)
t σ

(u)2
t

])
, (5.79)

where µ
(x)
t and µ

(u)
t are from the forward map process[

µ
(x)
t

µ
(u)
t

]
=

[
1 1−e−γ∆t

γ

0 e−γ∆t

][
x

(x)
t−1

ut−1

]
, Φ

[
x

(x)
t−1

ut−1

]
, (5.80)

and 
σ

(x)2
t =

λ2(e2γ∆t−1)(1−e−γ∆t)
2

2γ3 + ξ2∆t

σ
(u)2
t =

λ2(1−e−2γ∆t)
2γ

ρtσ
(x)
t σ

(u)
t =

λ2(eγ∆t−1)(1−e−2γ∆t)
2γ2

(5.81)

In the above equations ∆t = Tt−Tt−1 and initial values are ∆1 = 0, x1 ∼ N (0, L2
x) , u1 ∼

N(0, L2
u), ρ

2
t = 1− ξ2∆t

σ
(x)2

t

. To be useful, we use 1
1−ρ2

t
=

σ
(x)2
t

ξ2∆t
in the calculation.
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Figure 5.8: Demonstration of line-based trajectory of a moving tractor. The time lags

(right side figure) obtained from GPS units are irregular.

Furthermore, the independent observation process isyt = xt + εt,

vt = ut + ε′t,
(5.82)

where εt ∼ N(0, σ), ε′t ∼ N(0, τ) are normally distributed independent errors. Thus,

the joint distribution of observations is[
yt

vt

]
∼ N

([
xt

ut

]
,

[
σ2 0

0 τ 2

])
. (5.83)

Consequently, the parameter θ of an entire Ornstein-Uhlenbeck process is a set of five

parameters from both hidden status and observation process, which is represented as

θ = {γ, ξ2, λ2, σ2, τ 2}.
Starting from the joint distribution of x0:t, u0:t and y1:t, v1:t by given θ, it can be

found that [
X̃

Ỹ

∣∣∣∣θ
]
∼ N

(
0, Σ̃

)
, (5.84)

where X̃ represents for the hidden statues {x, u}, Ỹ represents for observed {y, v}, θ
is the set of five parameters. The inverse of the covariance matrix Σ̃−1 is the precision

matrix in the form of

Σ̃−1 =


Qxx Qxu − 1

σ2 I 0

Qux Quu 0 − 1
τ2 I

− 1
σ2 I 0 1

σ2 I 0

0 − 1
τ2 I 0 1

τ2 I

 . (5.85)
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To make the covariance matrix a more beautiful form and convenient computing, X̃, Ỹ

and Σ̃ can be rearranged in a time series order, that makesX1:t = {x1, u1, x2, u2, . . . , xt, ut},
Y1:t = {y1, v1, y2, v2, . . . , yt, vt} and the new precision matrix Σ−1 looks like

Σ−1 =



σ
(x)2
11 + 1

σ2 σ
(xu)2
11 · · · σ

(x)2
1t σ

(xu)2
1t − 1

σ2 0 · · · 0 0

σ
(ux)2
11 σ

(u)2
11 + 1

τ2 · · · σ
(ux)2
1t σ

(x)2
1t 0 − 1

τ2 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

σ
(x)2
t1 σ

(xu)2
t1 · · · σ

(x)2
tt + 1

σ2 σ
(xu)2
tt 0 0 · · · − 1

σ2 0

σ
(ux)2
t1 σ

(u)2
t1 · · · σ

(ux)2
tt σ

(u)2
tt + 1

τ2 0 0 · · · 0 − 1
τ2

− 1
σ2 0 · · · 0 0 1

σ2 0 · · · 0 0

0 − 1
τ2 · · · 0 0 0 1

τ2 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · − 1
σ2 0 0 0 · · · 1

σ2 0

0 0 · · · 0 − 1
τ2 0 0 · · · 0 1

τ2


(5.86)

,

[
At −Bt

−B>t Bt

]
, (5.87)

where Bt is a 2t × 2t diagonal matrix of observation errors at time t in the form of

1
σ2 · · · ·
· 1

τ2 · · ·
...

...
. . .

...
...

· · · 1
σ2 ·

· · · · 1
τ2


. In fact, the matrix At is a 2t× 2t bandwidth six sparse matrix

at time t in the process. Then, we may find the covariance matrix by calculating the

inverse of the precision matrix as

Σ ,

[
ΣXX ΣXY

ΣY X ΣY Y

]
. (5.88)

A detailed structure of the covariance matrix ΣXX is presented in Appendix B.3.

5.5.1 The Posterior Distribution

To find the log-posterior distribution of X1:t and Y1:t, we start from the joint dis-

tribution. Similarly, the inverse of the covariance matrix is the same as equation (5.8).

Additionally, the posterior distribution and log-likelihood function are the same form

as equations (5.12) and (5.13).

120



5.5.2 The Forecast Distribution

It is known that

p(Y1:t−1, θ) = N
(

0,Σ
(t−1)
Y Y

)
(5.89)

p(Yt, Y1:t−1, θ) = N
(

0,Σ
(t)
Y Y

)
(5.90)

p(Yt | Y1:t, θ) = N
(
µ̄t, Σ̄t

)
(5.91)

where the covariance matrix of the joint distribution is Σ
(t)
Y Y =

(
It − A−1

t Bt

)−1
B−1
t .

Then, by taking its inverse, one can obtain

Σ
(t)(−1)
Y Y = Bt(It − A−1

t Bt). (5.92)

To be clear, the matrix Bt is short for the matrix Bt(σ
2, τ 2), which is 2t× 2t diagonal

matrix with elements 1
σ2 ,

1
τ2 repeating for t times on its diagonal. For instance, the

very simple B1(σ2, τ 2) =

[
1
σ2 0

0 1
τ2

]
2×2

is a 2× 2 matrix.

Because of At is symmetric and invertible, Bt is the diagonal matrix defined as

above, therefore they have the following property

AtBt = A>t B
>
t = (BtAt)

> , (5.93)

A−1
t Bt = A−>t B>t =

(
BtA

−1
t

)>
. (5.94)

Followed up the form of Σ
(t)(−1)
Y Y , we can define that

Σ
(t)(−1)
Y Y ,

[
Bt−1 0

0 B1

][
Zt bt

b>t Kt

][
Bt−1 0

0 B1

]
(5.95)

where Zt is a 2t × 2t matrix, bt is a 2t × 2 matrix and Kt is a 2 × 2 matrix. Thus,by

taking its inverse again, we will get

Σ
(t)
Y Y =

[
B−1
t−1

(
Zt − btK−1

t b>t
)−1

B−1
t−1 −B−1

t−1Z
−1
t bt

(
Kt − b>t Z−1

t bt
)−1

B−1
1

−B−1
1 K−1

t b>t
(
Zt − btK−1

t b>t
)−1

B−1
t−1 B−1

1

(
Kt − b>t Z−1

t bt
)−1

B−1
1

]
.

(5.96)

It is easy to find the relationship of At−1 and At satisfies

At =


At−1 · ·
· 1

σ2 ·
· · 1

τ2

+ UtU
>
t ,Mt + UtU

>
t , (5.97)
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where, in fact, Mt =


At−1 · ·
· 1

σ2 ·
· · 1

τ2

 =

[
At−1 0

0 B1

]
and its inverse isM−1

t =

[
A−1
t−1 0

0 B−1
1

]
.

By using the Sherman-Morrison-Woodbury formula, one can find the inverse of At in

such a recursive way that

A−1
t =

(
Mt + UtU

>
t

)−1
= M−1

t −M−1
t Ut

(
It + U>t M

−1
t Ut

)−1
U>t M

−1
t . (5.98)

Consequently, after being simplified, it gives us

Kt = B−1
1 Dt

(
It + S>t

(
B−1

1 −Kt−1

)
St +D>t B

−1
1 Dt

)−1
D>t B

−1
1 , (5.99)

and

bt =

[
−bt−1

B−1
1 −Kt−1

]
St
(
It + S>t

(
B−1

1 −Kt−1

)
St +D>t B

−1
1 Dt

)−1
D>t B

−1
1 , (5.100)

by which, Kt and bt are updated in a recursive way. As a result, one can obtain the

following recursive updating formula for the mean and covariance matrix

µ̄t = ΦtKt−1B1µ̄t−1 + Φt (It −Kt−1B1)Yt−1

Σ̄t = (B1KtB1)−1
(5.101)

The matrix Kt is updated via equation (5.99), or updating its inverse in the following

form makes the computation faster, that is

K−1
t = B1D

−>
t D−1

t B1 +B1Φt

(
B−1

1 −Kt−1

)
Φ>t B1 +B1, (5.102)

Σ̄t = D−>t D−1
t + Φt

(
B−1

1 −Kt−1

)
Φ>t +B−1

1 (5.103)

and K1 = B−1
1 − A−1

1 =

[
σ4

σ2+L2
x

0

0 τ4

τ2+L2
u

]
. For calculation details, readers can refer to

Appendix B.2.

5.5.3 The Estimation Distribution

Because of the joint distribution (5.84), one can find the estimation with a given θ

is in the same form as equation (5.20). Being explicitly, for Xt, the joint distribution

with Y1:t updated to time t is

Xt, Y1:t | θ ∼ N

(
0,

[
C>t (At −Bt)

−1Ct C>t (At −Bt)
−1

(At −Bt)
−1Ct

(
It − A−1

t Bt

)−1
B−1
t

])
, (5.104)
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where C>t =

[
0 · · · 0 1 0

0 · · · 0 0 1

]
is a 2× 2t matrix. Thus,

Xt | Y1:t, θ ∼ N
(
µ

(X)
t ,Σ

(X)
t

)
, (5.105)

where

µ
(X)
t = C>t A

−1
t BtYt = C>t L

−>
t Wt, (5.106)

Σ
(X)
t = C>t A

−1
t Ct = U>t Ut, (5.107)

and Ut = L−1
t Ct. The recursive updating formula is

µ
(X)
t = KtB1µ̄t + (It −B1Kt)Yt (5.108)

Σ
(X)
t = B−1

1 −Kt. (5.109)

5.5.4 Prior Distribution for Parameters

The well known Hierarchical Linear Model, where the parameters vary at more than

one level, is first introduced by Lindley and Smith (1972); Smith (1973). Hierarchical

Model can be used on data with many levels, although 2-level models are the most

common ones. The state-space model in equations (4.1) and (4.2) is one of Hierarchical

Linear Model if Gt and Ft are linear, and non-linear model if Gt and Ft are non-linear

processes. Researchers have made a few discussions and work on these both linear and

non-linear models. In this section, we only discuss on the prior for parameters in these

models.

Various informative and non-informative prior distributions have been suggested

for scale parameters in hierarchical models. Gelman (2006) give a discussion on prior

distributions for variance parameters in hierarchical models. General considerations

include using invariance (Jeffries, 1961), maximum entropy (Jaynes, 1983) and agree-

ment with classical estimators (Box and Tiao, 2011). Regarding informative priors,

the author suggests to distinguish them into three categories: (i) is traditional infor-

mative prior. A prior distribution giving numerical information is crucial to statistical

modeling and it can be found from a literature review, an earlier data analysis or the

property of the model itself. (ii) is weakly informative prior. This genre prior is not

supplying any controversial information but are strong enough to pull the data away

from inappropriate inferences that are consistent with the likelihood. Some examples

and brief discussions of weakly informative priors for logistic regression models are
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given in (Gelman et al., 2008). (iii) is uniform prior, which allows the information

from the likelihood to be interpreted probabilistically.

Stroud and Bengtsson (2007) discuss a model with different structures in the errors.

The two errors ωt and εt are assumed normally distributed as

ωt ∼ N(0, αQ), (5.110)

εt ∼ N(0, αR), (5.111)

where the two matrices R and Q are known and α is an unknown scale factor to be

estimated. (Note that the forward map will be deterministic if Q = 0.) The density of

the Gaussian state-space model therefore becomes

p(yt | xt, α) = N(F (xt), αR), (5.112)

p(xt | xt−1, α) = N(G(xt−1), αQ). (5.113)

The parameter α is assumed Inverse Gamma distribution.

For the priors of all the parameters in an OU-process, shown in equation (5.77)

and (5.82), first of all, we should understand what meanings of these parameters are

standing for. The reciprocal of γ is typical velocity falling in the reasonable range of

0.1 to 100 m/s. ξ is the error occurs in transition process, σ and τ are errors in the

forward map for position and velocity respectively. Generally, the error is a positive

finite number. Considering prior distributions for these parameters, before looking at

the data, we have an idea of ranges where these parameters are falling in. Conversely,

we do not have any assumptions about the true value of λ, which means it can be

anywhere. According to this assumption, the prior distributions are

γ ∼ IG(10, 0.5), (5.114)

ξ2 ∼ IG(5, 2.5), (5.115)

σ2 ∼ IG(5, 2.5), (5.116)

where IG(α, β) represents the Inverse Gamma distribution with two parameters α and

β.

5.5.5 Efficiency of Delayed-Acceptance Metropolis-Hastings

Algorithm

We have discussed the efficiency of Metropolis-Hastings (MH) algorithm and how it

is affected by the step size. To explain it explicitly, here we give an example comparing
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Figure 5.9: Probability density function and cumulative distribution function of Inverse

Gamma with two parameters α and β.

Eff (efficiency), EffUT (efficiency in unit time), ESS (effective sample size) and ESSUT

(effective sample size in unit time), which are calculated by using the data set, which

is demonstrated in Figure 5.8, and running 10 000 iterations of DA MH. We are taking

a sequence from 0.1 to 4 with equal-space of 0.3, so that s = {0.1, . . . , 4}, and to solve

criterion formula with each of the value. Table 5.1 and Figure 5.10 show the compares

the results of the calculation.

The best step size found by Eff is 1, which is as the same as that found by ESS.

Let s = 1 and run 1 000 iterations, the DA MH takes 36.35 seconds to get the Markov

chain for θ and the acceptance rates α1 for approximating π̂(·) and α2 for estimating

the posterior distribution π(·) are 0.3097 and 0.8324 respectively. By using EffUT and

ESSUT, the best step size is 2.5, which is bigger. One of the advantages of using this

step size is the significant decreasing of the computation time to 5.10 seconds. It is

because the surrogate π̂(·) takes bad proposals out and only good ones are accepted to

pass to the next level. It can be seen from the lower rates α1 in Table 5.1.

Table 5.1: An example of Eff, EffUT, ESS and ESSUT found by running 10 000 itera-

tions with same data. The computation time is measured in seconds s.

Values Time Step Size α1 α2

Eff 0.0515 36.35 1.0 0.3097 0.8324

EffUT 0.0031 5.10 2.5 0.0360 0.7861

ESS 501.4248 36.35 1.0 0.3097 0.8324

ESSUT 29.8912 5.10 2.5 0.0360 0.7861

On the surface, a bigger step size causes lower acceptance rates α1 and it might not
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Figure 5.10: Influences of different step sizes on sampling efficiency (Eff), efficiency in

unit time (EffUT), effective sample size (ESS) and effective sample size in unit time

(ESSUT) found with the same data

be a smart choice. However, on the other hand, one should notice the less time cost.

To make it sensible, we are running the DA MH with different step sizes, as presented

in Table 5.1, for the same (or similar) amount of time. Because of the bigger step size

takes less time than smaller one, so we achieve a longer chain. To be more clear, we

take 1 000 samples out from a longer chain, such as 8 500, and calculate Eff, EffUT,

ESS and ESSUT separately by the embedded function IAT, (Christen and Fox, 2010),

and ESS of the package LaplacesDemon in R and the above formulas . As we can see

from the outcomes, by running the similar amount of time, the Markov chain with a

bigger step size has a higher efficiency and effective sample size in unit time. More

intuitively, the advantage of using larger step size is the sampling algorithm generates

more representative samples per second. Figure B.1 is comparing different θ chains

found by using different step sizes but running the same amount of time. As we can

see that θ with the optimal step size has a lower correlated relationship.
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Table 5.2: Comparison of Eff, EffUT, ESS and ESSUT values with different step size.

The 1000? means taking 1 000 samples from a longer chain, like 1 000 out of 5 000

sample chain. The computation time is measured in seconds s.

Step Size Length Time Eff EffUT ESS ESSUT

1.0 1 000 3.48 0.0619 0.0178 69.4549 19.9583

1.3
1 400 3.40 0.0547 0.0161 75.3706 22.1678

1 000? 3.40 0.0813 0.0239 72.5370 21.3344

2.2
5 000 3.31 0.0201 0.0061 96.6623 29.2031

1 000? 3.31 0.0941 0.0284 94.2254 28.4669

2.5
7 000 3.62 0.0161 0.0044 112.3134 31.0258

1 000? 3.62 0.1095 0.0302 113.4063 31.3277

5.5.6 A Sliding Window State and Parameter Estimation Ap-

proach

The length of data used in the algorithm really affects the computation time. The

forecast distribution p(Yt | Y1:t−1, θ) and estimation distribution p(Xt | Y1:t, θ) require

finding the inverse of the covariance Σ
(t+1)
Y Y , however, which is time consuming if the

sample size is big to generate a large sparse matrix. For a moving vehicle, one is more

willing to get the estimation and moving status instantly rather than being delayed.

Therefore a compromise solution is the fixed-length sliding window sequential filter. A

fixed-lag sequential parameter learning method was proposed by Polson et al. (2008)

and named as Practical Filtering. The authors rely on the approximation of

p(x0:n−L, θ | y0:n−1) ≈ p(x0:n−L, θ | y0:n) (5.117)

for large L. The new observations coming after the nth data has little influence on

x0:n−L.

Being inspired, we do not use the first 0 to n− 1 date and ignore the latest nth, on

the contrary, use all the latest date with truncating the first few history ones. Suppose

we are given a fixed-length L, up to time t (t > L), we estimate the xt by using all the

retrospective observations to the point at t − L + 1. In another word, the estimation

distribution for the current state is

p(Xt | Yt−L+1:t, θ), (5.118)

where t > L. We name this method the Sliding Window Sequential Parameter Learning

Filter.
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The next question is how to choose an appropriate L. The length of data used

in MH and DA MH algorithms has an influence on the efficiency and accuracy of

parameter learning and state estimation. Being tested on real data set, there is no

doubt that the more data be in use, the more accurate the estimation is, and lower

efficient is in computation. In Table B.4, one can see the pattern of parameters γ, ξ, τ

follow the same trend with the choice of L and σ increases when L decreases. Since

estimation bias is inevitable, we are indeed to keep the bias as small as possible, and

in the meantime, the higher efficiency and larger effective sample size are bonus items.

In Figure 5.11, we can see that the efficiency and effective sample size is not varying

along with the sample size used in sampling algorithm, but in unit time, they are

decreasing rapidly as data size increases. In addition, from a practical point of view,
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Figure 5.11: Comparison of efficiency (Eff), efficiency in unit time (EffUT), effective

sample size (ESS) and effective sample size in unit time (ESSUT) against the different

length of data. Increasing data length does not significantly improve the efficiency and

ESSUT.

the observation error σ should be kept at a reasonable level, let’s say 50cm, and the

computation time should be as less as possible. To reach that level, L = 100 is an
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appropriate choice. For a one-dimensional linear model, L can be chosen larger and

that does not change too much. If the data up to time t is less than or equal to the

chosen L, the whole data set is used in learning θ and estimating Xt.

For the true posterior, the algorithm requires a cheap estimation π̂(·), which is found

by one-variable-at-a-time Metropolis-Hastings algorithm. The advantage is getting a

precise estimation of the parameter structure, and disadvantage is, obviously, lower

efficiency. Luckily, we find that it is not necessary to run this MH every time when

estimate a new state from xt−1 to xt. In fact, in the DA MH process, the cheap π̂ does

not vary too much in the filtering process with new data coming into the data set. We

may use this property in the algorithm. First of all, we use all available data from 1 to

t with length up to L to learn the structure of θ and find out the cheap approximation

π̂. Then, use DA MH to estimate the true posterior π for θ and xt. After that, extend

data set to 1 : t+ 1 if t ≤ L or shift the data window to 2 : t+ 1 if t > L and run DA

MH again to estimate θ and xt+1. From Figures B.3 and B.4, we can see that the main

features and parameters in the estimating process between batch method and sliding

window method have not significant differences.

To avoid estimation bias, which is caused by sampling degeneracy, we are introduc-

ing a threshold criterion and a cutting-off value. In a certain circumstance, the cheap

π̂(·) is not accurate and is replaced by a new one π̂new(·). The cutting-off procedure

stops the algorithm when a large ∆t occurs in the progress. A large time gap indicates

a break of the vehicle at a time point and it causes irregularity and bias. A smart way

is to stop the process and to wait for new data coming in. By running testings on real

data, the threshold is chosen α2 < 0.7 and the cutting-off value is set at ∆t ≥ 300.

For each time, if the acceptance rate α2 is less than 0.7, we update the mean of π̂ and

remain the covariance unchanged.

In fact, the mean of the estimation may vary upon the data but the covariance

matrix does not change too much, as is shown in Figure B.4. Actually, these two

values are on researchers’ choices. Figures 5.12 and 5.13 compare the performances of

using and not using the threshold criterion to update the mean of the parameters. We

can see that by using the threshold criterion, we effectively avoid estimation bias and

obtain more effective samples.

Consequently, a complete form of this algorithm is summarized in the following

Algorithm 5.2:
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Figure 5.12: Comparing lnDA and lnL surfaces between not-updating-mean and

updating-mean methods. It is obviously that the updating-mean method has higher

dense log-surfaces, which contain more effective samples.
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Algorithm 5.2: Sliding Window Adaptive MCMC

1 Initialization: Set up L, threshold and cutting-off criteria.

2 Learning phase: Estimate θ with p
(
θ | Y1:min{t,L}

)
∝ p

(
Y1:min{t,L} | θ

)
p (θ) by

one-variable-at-a-time Random Walk Metropolis-Hastings algorithm gaining

the target acceptance rates and find out the structure of θ ∼ N (µ,Σ) and the

approximation π̂ (·).
3 Estimation phase: draw samples for θ and Xmax{1,t−L+1}:min{t,L} given

Ymax{1,t−L+1}:min{t,L}: for i from 1 to N do

4 Propose θ∗i from N (θi | µ,Σ), accept it with probability

α1 = min

{
1,

π̂(θ∗i )q(θi,θ∗i )
π̂(θi)q(θ∗i ,θi)

}
and go to next step; otherwise go to step 4.

5 Accept θ∗i with probability α2 = min

{
1,

π(θ∗i )π̂(θi)

π(θi)π̂(θ∗i )

}
and go to next step;

otherwise go to step 4.

6 Calculate µ
(t)
i ,Σ

(t)
i for Xt and µ

(t+s)
i ,Σ

(t+s)
i for Xt+s.

7 end

8 Calculate µ
(t)
X = 1

N

∑
i µ

(t)
i ,

Var[X(t)] = 1
N

∑
i

(
µ

(t)
i µ

(t)>
i + Σi

)
− 1

N2

(∑
i µ

(t)
i

)(∑
i µ

(t)
i

)>
and µ

(t+s)
X ,

Var[X(t+s)] with the same formula.

9 Check threshold and cutting-off criteria. if threshold is TRUE then

10 Update θ ∼ N (µ,Σ)

11 else if cutting-off is TRUE then

12 Stop process.

13 else

14 Go to next step.

15 end

16 Shift the window by setting t = t+ 1 and go back to step 3.
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5.5.7 Application to 2-Dimensional GPS Data

An application of the Algorithm 5.2 is to track the position of a moving tractor

on a farm. The original GPS data set is plotted in Figure 1.1. In a 2-dimensional

trajectory filtering problem, we use the same parameter θ = {γ, ξ2, λ2, σ2, τ 2} for both

easting and northing directions. The observations on these two directions are denoted

as YE and YN respectively. The hidden states on easting and northing directions are

XE and XN .

To speed up the estimation, we should get an idea of what the parameter space

looks like by running step 2 of the algorithm with a subset of observations. By setting

L = 100 and running 5 000 iterations, we find 5 000 samples for θ in 59 seconds. For

each parameter of θ, we take 1 000 sub-samples out as a new sequence. The new θ∗

is representative for the parameter space. Then the traces and correlation are derived

from θ∗. Meanwhile, the acceptance rates for each parameter are αγ = 0.453, αξ2 =

0.433, αλ2 = 0.435, ασ2 = 0.414, ατ2 = 0.4490 respectively. Hence, the structure of

θ̂ ∼ N (mt, Ct), which is depicted in Figure 5.14, is obtained.
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Figure 5.14: Visualization of the parameters correlation matrix, which is found in the

learning phase. Diagonal labels represent for γ, ξ2, λ2, σ2 and τ 2.
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Figure 5.15: Trace plots of θ after taking 1 000 burn-in samples out from 5 000 from

the learning phase.
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Since a cheap surrogate π̂(·) for the true π(·) is found in step 2 (the learning

phase), it is time to move on to the estimation phase. Algorithm 5.2 takes fixed L

length data from {YE, YN}1:L to {YE, YN}t−L+1:t until an irregular large time lag meets

the cutting-off criterion. In the implementation, the first cutting-off occurs after the

648-th point. The first 100 estimates {XE, XN}1:100 were found in the learning phase

and {XE, XN}101:648 were found sequentially in the estimation phase with approximate

9 seconds per 10 000 iterations for each {XE, XN}s, s ∈ [101, 648]. The outcome is

depicted in Figure 5.16.
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Figure 5.16: Estimations of Z found by combined batch and sequential methods. The

red line is the estimation by batch method and the green line is the sequential MCMC

filtering estimation. Black dots are the measurements.

The means of uncertainties in the estimation for each direction are about 0.5 meters.

Figure 5.17 depicts uncertainties of the estimation before the first cutting-off proce-

dure activated. The shaded blue filling indicates that there are larger uncertainties

at turning points. In the estimation phase, Algorithm 5.2 is able to estimate Xt and

to predict Xt+s. However, when s goes along time t, the uncertainty becomes larger.

When a new observation Xt+1 comes into the data stream, the uncertainty shrinks.

After a cutting-off procedure is activated, the adaptive MCMC algorithm goes
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Figure 5.17: Uncertainties on easting and northing directions before the first cutting-off

procedure. The means of uncertainties on each direction are about 0.5 meters.

off-line and accumulates measurements until there are enough, for example 100, for

continued estimation 1. In the application, we can see that the first 100 observations

are used for parameter estimation in the learning phase. Once this step is done, the

sequential estimation phase goes on-line for filtering calculation. Because there is a

large time lag between the 648-th and 649-th points, the algorithm goes off-line again

to accumulate data in the learning phase, and then goes back to on-line for filtering

estimation.

Figure 5.18 gives the whole estimated trajectory by the proposed sliding window

MCMC algorithm. There are two main learning phase occur on the entire data set.

The first learning phase uses the first 100 data and the second learning phase uses the

data from 649 to 748. With the information obtained from the learning phase, two

sequential estimation phases estimate the data from 101 to 648 and from 749 to 1121

respectively. However, when the third large time lag occurs after the 1121-th point,

the algorithm has insufficient observations to run a third learning phase. In this figure,

the on-line/off-line switching points are colored in yellow.

5.6 Discussion and Future Work

In this chapter, an adaptive MCMC algorithm is proposed for estimating combined

state and parameter in a homogeneous linear state-space model. The whole process is

split into two phases: learning phase and estimation phase. In the learning phase, a

1Alternatively, a “hot start” is possible in which the priors are the posteriors of the previous

estimation phase and no learning phase is required.
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Figure 5.18: Two learning phases are colored by red and two sequential estimation

phases are colored by green. The algorithm is not able to estimate the data from 1121

till the end because of the lack of observations. Point 1 is the first point of the data

stream. Points 2 and 3 are the switching points. Point 4 is the last point of the data

stream.

self-tuning one-variable-at-a-time random walk Metropolis-Hastings algorithm is used

to learn the structure of the parameter space. After getting a cheap surrogate for the

expensive posterior distribution, it is then used in a delayed-acceptance algorithm in

the estimation phase.

Note that in the learning phase, we determine an approximation for the posterior

distribution to be used in the delayed-acceptance MH algorithm. This is quite different

to population MCMC (Laskey and Myers, 2003), in which multiple chains are used to

determine a better proposal distribution. This does, however, suggest that multiple

chains can be used to improve the learning phase.

In on-line mode, the algorithm is adaptive to maintain sampling efficiency and uses

a sliding window approach to maintain sampling speed. At the end of this chapter, the

algorithm is applied to on-line estimation on a 2-dimensional GPS data set.

The advantage of this algorithm is that it is easy to understand and to implement
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in practice. In contrast, Particle Learning algorithm is highly efficient, however, the

sufficient statistics are not available at all times.

The sliding window adaptive MCMC algorithm should be contrasted with the V-

spline algorithm proposed in Chapter 2. The sliding window adaptive MCMC algo-

rithm is a filtering algorithm that is designed for fast estimation. The V-spline is a

smoothing algorithm that uses all the data for entire trajectory estimation and parame-

ter optimization can be time consuming. On the other hand, the V-spline has piecewise

continuous second derivatives, whereas the forward map (5.77) built into our sliding

window adaptive MCMC algorithm implies sample paths are not twice differentiable.

The gradient boosting V-spline, discussed in Chapter 6, is potentially a much faster

algorithm that also will be employed in on-line mode. Like the V-spline, the forward

map in the adaptive MCMC algorithm can also incorporate vehicle operating char-

acteristics. However, it would be important to maintain the efficiency of the MCMC

sampler in higher dimensions.
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Chapter 6

Future Work

In this thesis, two main practical algorithms are proposed: the adaptive V-spline

and the adaptive sequential MCMC algorithm. The first algorithm is appropriate for

batch estimation and the second for on-line estimation, and we have seen that both

algorithms have good performance in practice. Nevertheless, there are a number of

areas in which further improvements can be made.

Gradient Boosting V-Spline

V-spline is an advanced smoothing spline algorithm returning least true mean

squared errors. However, to implement this algorithm on-line needs feasible solutions.

One of them probably is combining spline method and gradient boosting algorithm.

In machine learning application, it is best to build a non-parametric regression or

classification model from the data itself. A connection between the statistical frame-

work and machine learning is the gradient-descent based formulation of boosting meth-

ods, which was derived by Freund and Schapire (1995); Friedman (2001). The gradient

boosting algorithm is a powerful machine-learning technique that has shown consider-

able success in a wide range of practical applications, particularly in machine learning

competitions on Kaggle.

The motivation of gradient boosting algorithms is combining weak learners together

as a strong leaner, which keeps minimizing the target loss function. It has highly

customizable application to meet particular needs, like being learned with respect to

different loss functions. For example, for a continuous response y ∈ R, the loss function

can be chosen as a Gaussian L2 loss function. Hence, the squared error L2 loss function

is

L2(y, f(t)) =
1

2
(y − f(t))2 , (6.1)
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and the best trained f ∗ is

f ∗ = argf minEt,y[L2 (y, f)]. (6.2)

To find f ∗, it is reducing the loss ỹi = yi − Fm−1(ti) recursively. Consequently, the

fm(t) = fm−1(t) + ρmh(t, αm), (6.3)

is the sum of some basic learners hm(t, α). m = 1, . . . ,M determines the complexity

of the solution.

On-line boosting algorithms are given by Babenko et al. (2009); Beygelzimer et al.

(2015). It is assumed that the loss over the entire training data can be expressed as

a sum of the loss for each point ti, that is L(f(t, y)) =
∑

i L(f(ti, yi)). Instead of

computing the gradient of the entire loss, the gradient is computed with respect to just

one data point. Furthermore, by adding additional regularization term will help to

smooth the final learned weights to avoid over-fitting in a penalized regression problem

(Chen and Guestrin, 2016).

Accordingly, the V-spline f ∗(t) is a sum of several weak learners fm(t), each of

which has 2N parameters θm =
{
θ

(1)
m , . . . , θ

(2N)
m

}
. The optimal θ∗ is found by

θ∗ =
M∑
m=0

θm, (6.4)

where θm is computed via θm = −ρm∂L(θ)
∂θ

.

As a result, after M iterations, θ∗ is convergence and f ∗(t, y, θ∗) is obtained.

Directional Dependent OU-Process

In the usual formulation of an OU-process, we have

dvt = −γvt + λdWt, (6.5)

where vt =
[
vxt
vyt

]
, Wt =

[
Wx
t

W y
t

]
are vectors in R2. In particular, W x

t and W y
t are in-

dependent Wiener processes. However, we can imagine that the stochastic term has

independent components in the directions parallel and perpendicular to the velocity.

Let {nt,mt} be an orthonormal frame in R2, where nt = vt
|vt| is the direction of the

velocity. The proposal is that λdWt can be replaced with λ‖ntdW
‖
t +λ⊥mtdW

⊥
t , where

W
‖
t and W⊥

t are independent Wiener processes.
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Grid-based MCMC

In several references, Grid-based methods have been proved that it provides an opti-

mal recursion of the filtered density p(xt | y1:t) if the state-space is discrete and consists

of a finite number of states (Ristic et al., 2004; Stroud et al., 2018; Arulampalam et al.,

2002; Hartmann et al., 2016).

In the application of real time series data set, the model is supposed as an OU-

process containing five unknown parameters. With the idea of grid-based algorithm, the

5-dimension parameter space R5 can be initialized by spanning θ
(i)
0 with equal weights

w0 =
{

1
N
, 1
N
, 1
N
, 1
N
, 1
N

}
at time t = 0, where i = 1, . . . , N . When a new observation

Yt = {yt, vt} comes into the system, the weights for each parameter in each subspace

are updated via wt ∝ p(Yt | θ, Y1:t−1)wt−1.

However, the grid-based MCMC may not be practical for a higher n-dimensional

space, which requires O (Nn) computation cost per MCMC step.

Parallel MCMC

Parallel computing is a type of computation in which many calculations or the ex-

ecution of processes are carried out simultaneously on multi-core processors (Asanovic

et al., 2006). A master process controls the strategy on how to split large, expensive

computation into smaller slave processes and solved concurrently on each separate pro-

cessor (Almasi and Gottlieb, 1994). After computing, slave processes pass results back

to the master process, in which the final result is generated.

The parallel MCMC uses this technology to deploy the computation and run sam-

plers on multi-core CPU. Approaches for parallel MCMC are either by implementing

parallelization within a single chain or by running multiple chains (Wu et al., 2012). It

is useful for computing complex Bayesian models, which do not only lead to a dramatic

speedup in computing but can also be used to optimize model parameters in complex

Bayesian models.

A simple parallel Monte Carlo estimation of E[p(θ)] proceeds in the following way

(Kontoghiorghes, 2005). Suppose there amount to k CPU cores to generate N samples.

Thus, on each CPU there are m = N/k samples on average. A master process passes

m to each slave process i, i = 1, . . . , k. At each slave process, it generates m samples

for θ
(m)
i and passes middle-result Si back to the master process. At last, the master

process computes the final result by

E[p(θ)] =

∑
i Si
N

. (6.6)

141



The parallel MCMC uses MCMC sampler scheme to draw samples on multi-cores

simultaneously. A naive yet natural approach to parallel MCMC is simply to gener-

ate several independent Markov chains on different processors and then combine the

results appropriately (Bradford and Thomas, 1996; Gelman and Rubin, 1992). Or, al-

ternatively, develop parallelism within a single chain. Suppose there are k CPU cores.

Give initial values θ
(0)
i for each core. Concurrently update θ chains by a predetermined

MCMC sampler with p(θ | y1:t) on each slave process. Computes summary statistics for

the updated θ
(0:N)
i and passes back to the master process. Finally, achieve a sequence

of θ of length kN (Wu et al., 2012).

A further weighted parallel MCMC and parallelization approach to the Gibbs sam-

pler is proposed by VanDerwerken and Schmidler (2013).

Consequently, the parallel MCMC is a potential alternative approach of sliding

window MCMC in Chapter 5 to improve the computation speed in high dimensional

space.
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Chapter 7

Summary

Inference and characterization of planar trajectories have long been the focus of

scientific and commercial research. Efficient algorithms for both precise and efficient

trajectory reconstruction remain in high demand in a wide variety of applications. In

this thesis, an off-line method named V-spline is proposed to reconstruct the whole

trajectory and an on-line adaptive MCMC algorithm is used to update and track

unknown state and parameter instantly.

In Chapter 2, the proposed V-spline is built up by new basis functions consisting

of Hermite splines. For n paired time series data {ti, yi, vi}ni=1, the amount of basis

functions is 2n. In the new objective function (2.4), V-spline incorporates both location

and velocity information but penalizes excessive accelerations. It is not only minimizing

the squared residuals of |yi − f(ti)|2 but also reducing the squared residuals of |vi −
f ′(ti)|2, for i = 1, . . . , n, with a new parameter γ.

In the objective function of a conventional smoothing spline, the penalty parameter

λ is a constant number that controls the trade-off between interpolations (λ → 0)

and a straight line (λ → ∞). Instead, the penalty parameter λ(t) of a V-spline is a

piecewise constant function, which is varying on each interval [ti, ti+1), i = 1, . . . , n−1.

Hence, in the objective function of V-splines, there are overall n parameters, including

n− 1 λs and γ, to be estimated. Additionally, to handle unexpected curvatures in the

reconstruction, an adjusted penalty term (∆ti)
3

(∆di)2 adapts to more complicated curvature

status. The idea behind this term is that either velocity and acceleration goes to zero,

the penalty value λ should be large enough to enforce a straight line.

It is proved that, with improper priors, smoothing splines are corresponding to

Bayes estimates. In particular, smoothing splines can be interpreted by Gaussian

process regression in a certain reproducing kernel Hilbert space. This property extends
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smoothing splines to more flexible and general applications. Similarly, if a V-spline

is equipped with an appropriate inner product (3.23) if λ(t) is constant, or an inner

product (3.44) if λ(t) is piecewise constant, it is corresponding to the posterior mean

of the Bayes estimates in the reproducing kernel Hilbert space C(2)
p.w.[0, 1]. This result

is discussed in Chapter 3. Recall the property of V-splines that if and only if λ(t) is

constant and γ = 0 would the second derivatives be continuous on the entire interval.

Otherwise, the second derivatives may not be continuous at the knots but are linear in

each interval.

To find the best parameters, an extended leave-one-out cross-validation technique

is proposed in Chapter 2 to find the smoothing parameters of interest. This method

uses observations to tune the parameters to the optimal level. Accordingly, V-spline

is a data-driven nonparametric regression solution to handle paired time series data

consisting of position and velocity information. However, for data with correlated

errors, the generalized cross-validation algorithm is more effective. Being modified a

generic GCV, in Chapter 3, an extended GCV is used for finding the optimal parameters

for V-spline and its Bayes estimate containing correlated errors. Suppose the solution

of a V-spline and its first derivative are in the form of f = S(λ, γ)y + γT (λ, γ)v and

f ′ = U(λ, γ)y + γV (λ, γ)v, the GCV calculates the trace of matrices S, T , U and

V . It is much faster than calculating the sum of the single element in each matrix in

LOOCV.

Simulation studies are given to compare the performances of V-spline and other

methods, such as Wavelet algorithms and penalized B-spline, in Chapter 2. It is obvious

that these algorithms are competitive on reconstructing trajectories. By contrast, only

the proposed V-spline returns the least true mean squared errors. At the end of this

chapter, a numeric simulation is presented to demonstrate the effectiveness of V-spline.

Being applied to a real GPS data set, the parameter λ is classified by λu and λd

representing for two operating status of a mechanic boom. λu is a set of {λi} in the

intervals where the boom is not operating and, by contrast, λd is a set of {λi} in the

intervals where the boom is operating. The reconstruction from V-spline can be treated

as the real trajectory of a moving vehicle with confidence.

Without loss of generality, λ(t) can be classified into more groups to adapt to

complex maneuver system and V-spline is flexible to be applied on higher dimensional

cases.

However, subject to the property that smoothing splines require the solution of

a global problem that involves the entire set of points to be interpolated, it might
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not be suitable for on-line estimation. Hence, Chapter 4 give an overview of existing

filtering and estimation algorithms. Some popular algorithms, such as Particle filter,

are concentrating on inferring the unknown state but assuming the parameters known.

Moreover, the sample impoverishment has never been solved properly. Liu and West’s

filter tries to kill particle degeneracy by incorporating with a shrinkage kernel and

estimates the unknown parameters simultaneously. Storvik filter and Particle learning

algorithms marginalize out the parameters through sufficient statistics to obtain a

better outcome. In some way, they are advanced algorithms but not practicable at

any time. In most circumstances, sufficient statistics are not available or hard to find.

More flexible and easy-implement methods are in demand.

An adaptive sequential MCMC algorithm is proposed in Chapter 5. The adaptive

sequential MCMC is dealing with paired time series data set including both position

and velocity information.

In the case of a linear state-space model and starting with a joint distribution

over state x, observation y and parameter θ, an MCMC sampler is implemented in

two phases. In the learning phase, a self-tuning sampler utilizes one-variable-at-a-time

random walk Metropolis-Hastings algorithm to learn the mean and covariance structure

of the parameter space with aiming at a target acceptance rate for each parameter.

After exploring the parameter space, the information is used in the subsequent phase

— the estimation phase — to inform the proposed mechanism and is also used in a

delayed-acceptance algorithm.

Suppose the mean and covariance matrix of θ are m and C = L>L respectively,

where L is the Cholesky decomposition. The proposal θ∗ = θ+εLZ, where Z ∼ N(0, I)

and ε is the step size. The effect of L is to reduce the correlation of proposals and move

to the next step on purpose. The step size ε makes the proposal process more efficient.

Rather than focusing on the criteria of efficiency (Eff) and effective sample size (ESS),

the Eff in unit time (EffUT) and ESS in unit time (ESSUT) are the new criteria to

determine the optimal step size. By running the same amount of time, the optimal

step size found by EffUT and ESSUT helps sampler in generating more effective and

representative samples.

Further, the delayed-acceptance algorithm uses a cheap surrogate p(θ | m,C) to the

true posterior p(θ | y) in the first line of defense to keep not-good samples outside. Only

good proposals would pass the first line and move forward to the additional expensive

calculation. This strategy greatly improves sampling efficiency.

Information on the resulting state of the system is indicated by a Gaussian mixture.
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For each sample of θ(i), it matches an x(i) ∼ N
(
µ(i), σ(i)

)
. Consequently, the final

estimation of x is given by a set of Gaussian mixture.

In the on-line mode, the algorithm is adaptive and uses a sliding window approach

by cutting off historical data to accelerate sampling speed and to maintain appropriate

acceptance rates. In a simple one parameter simulation in Chapter 4, the proposed

adaptive MCMC shows a stable feature comparing with other filters. In Chapter 5,

this algorithm shows an advantage in estimating irregularly sampled time series data.

At the end of Chapter 5, the proposed algorithm is applied to combined state

and parameter estimation in the case of irregularly sampled time series GPS data.

Suppose that the model is a four-dimensional linear Ornstein-Uhlenbeck (OU) process

containing observed positions and velocities on both easting and northing directions,

denoted as YE = {yE, vE} and YN = {yN , vN}. The hidden states on the two directions

are XE = {xE, uE} and XN = {xN , uN}. The same parameter θ = {γ, ξ2, λ2, σ2, τ 2} is

shared by the two directions. The proposed algorithm efficiently infers the state XE

and XN along with time t returning approximate 50 centimeter uncertainties.

As a conclusion, the proposed algorithms in this thesis contribute to related areas,

nevertheless, are not perfect. V-spline may not be appropriate for on-line estimation

and the sliding window adaptive MCMC algorithm dose not use the entire data set

that might lose some information. Future work and deeper research are required to

improve their performances.
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Appendix A

Proofs and Figures of V-Spline

Theorems

A.1 Penalty Matrix in (2.16)

The i-th Ω(i) is a 2n×2n bandwidth four symmetric matrix and its non-zero elements

on the upper triangular are

Ω
(i)
2i−1,2i−1 =

∫ ti+1

ti

d2h
(i)
00 (t)

dt2
d2h

(i)
00 (t)

dt2
dt =

12

∆3
i

(A.1.1)

Ω
(i)
2i−1,2i =

∫ ti+1

ti

d2h
(i)
00 (t)

dt2
d2h

(i)
10 (t)

dt2
dt =

6

∆2
i

(A.1.2)

Ω
(i)
2i−1,2i+1 =

∫ ti+1

ti

d2h
(i)
00 (t)

dt2
d2h

(i)
01 (t)

dt2
dt =

−12

∆3
i

(A.1.3)

Ω
(i)
2i−1,2i+2 =

∫ ti+1

ti

d2h
(i)
00 (t)

dt2
d2h

(i)
11 (t)

dt2
dt =

6

∆2
i

(A.1.4)

Ω
(i)
2i,2i =

∫ ti+1

ti

d2h
(i)
10 (t)

dt2
d2h

(i)
10 (t)

dt2
dt =

4

∆i

(A.1.5)

Ω
(i)
2i,2i+1 =

∫ ti+1

ti

d2h
(i)
10 (t)

dt2
d2h

(i)
01 (t)

dt2
dt =

−6

∆2
i

(A.1.6)

Ω
(i)
2i,2i+2 =

∫ ti+1

ti

d2h
(i)
10 (t)

dt2
d2h

(i)
11 (t)

dt2
dt =

2

∆i

(A.1.7)

Ω
(i)
2i+1,2i+1 =

∫ ti+1

ti

d2h
(i)
01 (t)

dt2
d2h

(i)
01 (t)

dt2
dt =

12

∆3
i

(A.1.8)

Ω
(i)
2i+1,2i+2 =

∫ ti+1

ti

d2h
(i)
01 (t)

dt2
d2h

(i)
11 (t)

dt2
dt =

−6

∆2
i

(A.1.9)

Ω
(i)
2i+2,2i+2 =

∫ ti+1

ti

d2h
(i)
11 (t)

dt2
d2h

(i)
11 (t)

dt2
dt =

4

∆i

(A.1.10)
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where ∆i = ti+1 − ti and i = 1, 2, . . . , n− 1. Then

Ω =
n−1∑
i=1

λiΩ
(i)

A.2 Proof of Theorem 1

Proof. If g : [a, b] 7→ R is a proposed minimizer, construct a cubic spline f(t) that

agrees with g(t) and its first derivatives at t1, . . . , tn, and is component-wise linear on

[a, t1] and [tn, b]. Let h(t) = g(t)− f(t). Then, for i = 1, . . . , n− 1,∫ ti+1

ti

f ′′(t)h′′(t)dt = f ′′(t)h′(t)

∣∣∣∣ti+1

ti

−
∫ ti+1

ti

f ′′′(t)h′(t)dt

= 0− f ′′′
(
t+i
) ∫ ti+1

ti

h′(t)dt

= −f ′′′
(
t+i
)

(h(ti+1)− h(ti))

= 0.

Additionally,
∫ t1
a
f ′′(t)h′′(t)dt =

∫ b
tn
f ′′(t)h′′(t)dt = 0, since f(t) is assumed linear out-

side the knots. Thus, for i = 0, . . . , n,∫ ti+1

ti

|g′′(t)|2dt =

∫ ti+1

ti

|f ′′(t) + h′′(t)|2dt

=

∫ ti+1

ti

|f ′′(t)|2dt+ 2

∫ ti+1

ti

f ′′(t)h′′(t)dt+

∫ ti+1

ti

|h′′(t)|2dt

=

∫ ti+1

ti

|f ′′(t)|2dt+

∫ ti+1

ti

|h′′(t)|2dt

≥
∫ ti+1

ti

|f ′′(t)|2dt.

The result J [f ] ≤ J [g] follows since λi > 0.

Furthermore, equality of the curvature penalty term only holds if g(t) = f(t). On

[t1, tn], we require h′′(t) = 0 but since h(ti) = h′(ti) = 0 for i = 1, . . . , n, this means

h(t) = 0. Meanwhile on [a, t1] and [tn, b], f
′′(t) = 0 so that equality requires g′′(t) = 0.

Since f(t) agrees with g(t) and its first derivatives at t1 and tn, equality is forced on

both intervals.

A.3 Proof of Corollary 1

Proof. By setting γ → 0, the velocity information v is taken away. The degrees of

freedom of parameters decreases from 2n to n. Hence, there exists an n × 2n matrix
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Qλ restricting n degrees of freedom of θ̂ and satisfying Qλθ̂ = 0.

The matrices B and C have the following property:

BB> = CC> = In,

C>CB> = B>BC> = 0.

Denoting G = B>B + γC>C + nΩλ and giving θ̂ = (B>B + γC>C + nΩλ)
−1(B>y +

γC>v), we will have Gθ̂ = B>y + γC>v and

BGθ̂ = y + γBC>v

CGθ̂ = CB>y + γv.

Further, C>CGθ̂ = C>(CB>y + γv) = γC>v. If by setting γ = 0, one will get

Qλ = C>CG, which consists of the even rows of Ωλ.

By integrating by parts and using properties of the basis functions at the knots,

one can get the even rows of Ω(i), which are

Ω
(i)
2i,2i−1 = N ′′2i−1

(
t−i
)
−N ′′2i−1

(
t+i
)

Ω
(i)
2i,2i = N ′′2i

(
t−i
)
−N ′′2i

(
t+i
)

Ω
(i)
2i,2i+1 = N ′′2i+1

(
t−i
)
−N ′′2i+1

(
t+i
)

Ω
(i)
2i,2i+2 = N ′′2i+2

(
t−i
)
−N ′′2i+2

(
t+i
)

Ω
(i)
2i+2,2i−1 = N ′′2i−1

(
t−i+1

)
−N ′′2i−1

(
t+i+1

)
Ω

(i)
2i+2,2i = N ′′2i

(
t−i+1

)
−N ′′2i

(
t+i+1

)
Ω

(i)
2i+2,2i+1 = N ′′2i+1

(
t−i+1

)
−N ′′2i+1

(
t+i+1

)
Ω

(i)
2i+2,2i+2 = N ′′2i+2

(
t−i+1

)
−N ′′2i+2

(
t+i
)

Thus

Qλ = nC>CΩλ = nC>C
∑
i

λiΩ
(i).

Consequently, if and only if λ is constant, Qλθ̂ = −λ
(
f ′′
(
t+i
)
− f ′′

(
t−i
))

= 0, for

i = 1, . . . , n, otherwise Qλθ = 0 is true but does not represent f ′′
(
t+i
)
− f ′′

(
t−i
)
.

As a result, f ′′(t) is continuous at the knots ti if λ(t) is constant and γ = 0.
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A.4 Proof of Lemma 2

Proof. For any smooth curve f with y∗, we have

1

n

n∑
j=1

(
y∗j − f(tj)

)2
+
γ

n

n∑
j=1

(
v∗j − f ′(tj)

)2
+

n∑
j=1

λj

∫ tj+1

tj

f ′′2dt

≥ 1

n

∑
j 6=i

(
y∗j − f(tj)

)2
+
γ

n

∑
j 6=i

(
v∗j − f ′(tj)

)2
+

n∑
j=1

λj

∫ tj+1

tj

f ′′2dt

≥ 1

n

∑
j 6=i

(
y∗j − f̂ (−i)(tj)

)2

+
γ

n

∑
j 6=i

(
v∗j − f̂ ′(−i)(tj)

)2

+
n∑
j=1

λj

∫ tj+1

tj

(
f̂
′′(−i)

)2

dt

=
1

n

n∑
j=1

(
y∗j − f̂ (−i)(tj)

)2

+
γ

n

n∑
j=1

(
v∗j − f̂ ′(−i)(tj)

)2

+
n∑
j=1

λj

∫ tj+1

tj

(
f̂
′′(−i)

)2

dt

by the definition of f̂ (−i), f̂ ′(−i) and the fact that y∗i = f̂ (−i)(ti), v
∗
i = f̂ ′(−i)(ti). It follows

that f̂ (−i) is the minimizer of the objective function (2.4), so that

f̂ (−i) = Sy∗ + γTv∗

f̂ ′(−i) = Uy∗ + γV v∗

as required.

A.5 Proof of Theorem 2

Proof.

f̂ (−i)(ti)− yi =
n∑
j=1

Sijy
∗
j + γ

n∑
j=1

Tijv
∗
j − y∗i

=
n∑
j 6=i

Sijyj + γ
n∑
j 6=i

Tijvj + Siif̂
(−i)(ti) + γTiif̂

′(−i)(ti)− yi

=
n∑
j=1

Sijyj + γ

n∑
j=1

Tijvj + Sii

(
f̂ (−i)(ti)− yi

)
+ γTii

(
f̂ ′(−i)(ti)− vi

)
− yi

=
(
f̂(ti)− yi

)
+ Sii

(
f̂ (−i)(ti)− yi

)
+ γTii

(
f̂ ′(−i)(ti)− vi

)
.

(A.5.1)
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Additionally,

f̂ ′(−i)(ti)− vi =
n∑
j=1

Uijy
∗
j + γ

n∑
j=1

Vijv
∗
j − v∗i

=
n∑
j 6=i

Uijyj + γ
n∑
j 6=i

Vijvj + Uiif̂
(−i)(ti) + γViif̂

′(−i)(ti)− vi

=
n∑
j=1

Uijyj + γ

n∑
j=1

Vijvj + Uii

(
f̂ (−i)(ti)− yi

)
+ γVii

(
f̂ ′(−i)(ti)− vi

)
− vi

=
(
f̂ ′(ti)− vi

)
+ Uii

(
f̂ (−i)(ti)− yi

)
+ γVii

(
f̂ ′(−i)(ti)− vi

)
.

(A.5.2)

Thus

f̂ ′(−i)(ti)− vi =
f̂ ′(ti)− vi
1− γVii

+
Uii

(
f̂ (−i)(ti)− yi

)
1− γVii

. (A.5.3)

By substituting equation (A.5.3) to (A.5.1), we get

f̂ (−i)(ti)− yi =
f̂(ti)− yi + γ Tii

1−γVii

(
f̂ ′(ti)− vi

)
1− Sii − γ Tii

1−γViiUii
.

Consequently,

CV (λ, γ) =
1

n

n∑
i=1

 f̂(ti)− yi + γ Tii
1−γVii

(
f̂ ′(ti)− vi

)
1− Sii − γ Tii

1−γViiUii

2

.
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A.6 Reconstructions at SNR=3
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Figure A.1: Reconstructions of generated Blocks, Bumps, HeaviSine and Doppler func-

tions by V-spline at SNR=3. The penalty values λ(t) in V-spline are projected into

reconstructions. The blacks dots are the measurements. The bigger blacks dots indicate

the larger penalty values.
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A.7 Residual Analysis of Simulations
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(d) ACF of residuals from Doppler

Figure A.2: ACF of residuals at SNR level of 7.
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Figure A.3: ACF of residuals at SNR level of 3.
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Figure A.4: Residuals of 2-dimensional real data reconstruction
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Appendix B

Calculations and Figures of

Adaptive Sequential MCMC

B.1 Linear Simulation Calculations

The Forecast Distribution

Calculating the log-posterior of parameters requires finding out the forecast dis-

tribution of p (y1:t | y1:t−1, θ). A general way is to use the joint distribution of yt and

y1:t−1, which is p (y1:t | θ) = N (0,ΣY Y ) and following the procedure in Section 5.2.2 to

work out the inverse matrix of a multivariate normal distribution. For example, one

may find the inverse of the covariance matrix

Σ−1
Y Y = B

(
It − A−1

t Bt

)
=

1

σ4

(
σ2It − A−1

t

)
,

1

σ4

[
Zt bt

b>t Kt

]
.

Therefore the original form of this covariance is

ΣY Y = σ4

[ (
Zt − btK−1

t b>t
)−1 −Z−1

t bt
(
Kt − b>t Z−1

t bt
)−1

−K−1
t b>t

(
Zt − btK−1

t b>t
)−1 (

Kt − b>t Z−1
t bt

)−1

]
.

For sake of simplicity, Zt is a t× t matrix, bt is a t×1 vector and Kt is a 1×1 constant

number. By denoting C>t =
[
0 · · · 0 1

]
, a 1× t vector, and post-multiplying Σ−1

Y Y ,

it gives us

Σ−1
Y YCt =

1

σ4

(
σ2It − A−1

t

)
Ct =

1

σ4

[
bt

Kt

]
. (B.1.1)

By using the formula, one can find a recursive way to update Kt and bt−1, which
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are

Kt =
σ4

τ 2 + σ2 + φ2 (σ2 −Kt−1)
, (B.1.2)

bt =

 bt−1φKt
σ2

Kt(σ2+τ2)−σ4

φσ2

 . (B.1.3)

With the above formula, the recursive way of updating the mean and covariance are

µ̄t =
φ

σ2
Kt−1µ̄t−1 + φ

(
1− Kt−1

σ2

)
yt−1, (B.1.4)

Σ̄t = σ4K−1
t , (B.1.5)

where K1 = σ4

σ2+L2 .

By using the formula again, one term of equation (5.55) becomes

A−1
t Ct =

(
I − M−1

t utu
>
t

1 + u>t M
−1
t ut

)
M−1

t Ct, (B.1.6)

in which

M−1
t Ct =

[
A−1
t−1 0

0 σ2

]
Ct = σ2Ct,

u>t Ct =
[

0 · · · 0 −φ
τ

1
τ

]


0
...

0

1

 =
1

τ
.

Then the above equation becomes

A−1
t Ct = σ2Ct −

M−1
t ut

σ2

τ

1 + u>M−1
t u

. (B.1.7)

Moreover,

M−1
t ut =

[
A−1
t−1 0

0 σ2

]


0
...

0

−φ
τ

1
τ


=

[
A−1
t−1 0

0 σ2

][
−φ
τ
Ct−1

1
τ

]
=

[
−φ
τ
A−1
t−1Ct−1

σ2

τ

]
,

u>M−1
t u =

[
0 · · · 0 −φ

τ
1
τ

] [ −φ
τ
A−1
t−1Ct−1

σ2

τ

]
=
[
−φ
τ
C>t−1

1
τ

] [ −φ
τ
A−1
t−1Ct−1

σ2

τ

]

=
φ2

τ 2
C>t−1A

−1
t−1Ct−1 +

σ2

τ 2
.
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Thus

A−1
t Ct =

[
−bt

σ2 −Kt

]
= σ2Ct −

1

1 + φ2

τ2C>t−1A
−1
t−1Ct−1 + σ2

τ2

[
−φσ2

τ2 A
−1
t−1Ct−1

σ4

τ2

]

= σ2Ct −
1

τ 2 + φ2C>t−1A
−1
t−1Ct−1 + σ2

[
−φσ2A−1

t−1Ct−1

σ4

]
(B.1.8)

and

σ2 −Kt = σ2 − σ4

τ 2 + φ2C>t−1A
−1
t−1Ct−1 + σ2

= σ2 − σ4

τ 2 + σ2 + φ2 (σ2 −Kt−1)
.

Hence,

Kt =
σ4

τ 2 + σ2 + φ2 (σ2 −Kt−1)
, (B.1.9)

and

bt =

 bt−1φKt
σ2

Kt(σ2+τ2)−σ4

φσ2

 ,

µ̄t = 0− σ4K−1
t b>t

(
Zt − btK−1

t b>t
)−1

σ−4
(
Zt − btK−1

t b>t
)
y1:t−1

= −K−1
t b>t y1:t−1

=
φ

σ2
Kt−1µ̄t−1 + φ

(
1− Kt−1

σ2

)
yt−1,

Σ̄t = σ4
(
Kt − b>t Z−1

t bt
)−1

− σ4K−1
t b>t

(
Zt − btK−1

t b>t
)−1 (

Zt − btK−1
t b>t

)
Z−1
t bt

(
Kt − b>t Z−1

t bt
)−1

= σ4
(
It −K−1

t b>t Z
−1
t bt

) (
Kt − b>t Z−1

t bt
)−1

= σ4K−1
t ,

where K1 = σ4

σ2+L2 .
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The Estimation Distribution

As discussed before, p (xt | y1:t) is a mixture Gaussian distribution with given θ and

its mean and variance can be found by

µ(t)
x =

1

N

∑
i

µi (B.1.10)

Var[x(t)] = E[Var (x | y, θ)] + Var[E (x | y, θ)]

=
1

N

∑
i

(
µiµ

>
i + Σi

)
− 1

N2

(∑
i

µi

)(∑
i

µi

)>
.

(B.1.11)

To find µi and Σi, we will use the joint distribution of xt and y1:t, which is

p (xt, y1:t | θ) = N (0,Γ) and

Γ =

[
C>t (At −Bt)

−1Ct C>t (At −Bt)
−1

(At −Bt)
−1Ct

(
It − A−1

t Bt

)−1
B−1
t

]
.

Because of

C>t A
−1
t =

[
−b>t σ2 −Kt

]
,

thus, for any given θi, xt | y1:t, θi ∼ N
(
µ

(x)
t , σ

(x)2
t

)
, where

µi = φxt−1 + C>t (At −Bt)
−1Bt

(
It − A−1

t Bt

)
y1:t

= φxt−1 + C>t A
−1
t Bty1:t

= φxt−1 +
1

σ2
C>t A

−1
t y1:t

= 0 +
1

σ2

[
−b>t σ2 −Kt

] [y1:t−1

yt

]

= − 1

σ2
b>t−1y1:t−1 +

(
1− Kt

σ2

)
yt

=
Ktµ̄t
σ2

+

(
1− Kt

σ2

)
yt

Σi = C>t (At −Bt)
−1Ct − C>t (At −Bt)

−1Bt

(
It − A−1

t Bt

)
(At −Bt)

−1Ct

= C>t (At −Bt)
−1Ct − C>t A−1

t Bt (At −Bt)
−1Ct

= C>t A
−1
t Ct

= σ2 −Kt.

By substituting them into the equation (5.27) and (5.28), the estimated xt is obtained.

161



B.2 OU-Process Calculation

The Forecast Distribution

We are now using the capital letter Y to represent the joint {y, v} and Y1:t =

{y1, v1, y2, v2, · · · , yt, vt}, Yt+1 = {yt+1, vt+1}. It is known that

p (Y1:t, θ) = N
(

0,Σ
(t)
Y Y

)
p (Yt+1, Y1:t, θ) = N

(
0,Σ

(t+1)
Y Y

)
p (Yt+1 | Y1:t, θ) = N

(
µ̄t+1, Σ̄t+1

)
where the covariance matrix of the joint distribution is Σ

(t+1)
Y Y =

(
It+1 − A−1

t+1Bt+1

)−1
B−1
t+1.

Then, by taking its inverse, we will get

Σ
(t+1)(−1)
Y Y = Bt+1

(
It+1 − A−1

t+1Bt+1

)
.

To be clear, the matrix Bt is short for the matrix Bt (σ2, τ 2), which is 2t× 2t diagonal

matrix with elements 1
σ2 ,

1
τ2 repeating for t times on its diagonal. For instance, the

very simple B1 (σ2, τ 2) =

[
1
σ2 0

0 1
τ2

]
2×2

is a 2× 2 matrix.

Because of A is symmetric and invertible, B is the diagonal matrix defined as above,

then they have the following property

AB = A>B> = (BA)> ,

A−1B = A−>B> =
(
BA−1

)>
.

Followed up the form of Σ
(t+1)(−1)
Y Y , we can find out that

Σ
(t+1)(−1)
Y Y = Bt+1

(
It+1 − A−1

t+1Bt+1

)
= Bt+1

(
B−1
t+1 − A−1

t+1

)
Bt+1

,

[
Bt 0

0 B1

][
Zt+1 bt+1

b>t+1 Kt+1

][
Bt 0

0 B1

]

where Zt+1 is a 2t× 2t matrix, bt+1 is a 2t× 2 matrix and Kt+1 is a 2× 2 matrix. Thus

by taking its inverse again, we will get

Σ
(t+1)
Y Y =

[
B−1t

(
Zt+1 − bt+1K

−1
t+1b

>
t+1

)−1
B−1t −B−1t Z−1t+1bt+1

(
Kt+1 − b>t+1Z

−1
t+1bt+1

)−1
B−11

−B−11 K−1t+1b
>
t+1

(
Zt+1 − bt+1K

−1
t+1b

>
t+1

)−1
B−1t B−11

(
Kt+1 − b>t+1Z

−1
t+1bt+1

)−1
B−11

]
.
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It is easy to find the relationship between At+1 and At in the Sherman-Morrison-

Woodbury form, which is

At+1 =


At · ·
· 1

σ2 ·
· · 1

τ2

+ Ut+1U
>
t+1 ,Mt+1 + Ut+1U

>
t+1,

where Mt+1 =


At · ·
· 1

σ2 ·
· · 1

τ2

 =

[
At 0

0 B1

]
and its inverse is M−1

t+1 =

[
A−1
t 0

0 B−1
1

]
.

Additionallly, U is a 2t+ 2× 2 matrix in the following form

Ut+1 =
1√

1− ρ2
t+1



02t−2 02t−2

1

σ
(x)
t+1

0

1−e−γ∆t+1

γσ
(x)
t+1

− ρt+1e
−γ∆t+1

σ
(u)
t+1

√
1−ρ2

t+1e
−γ∆t+1

σ
(u)
t+1

− 1

σ
(x)
t+1

0

ρt+1

σ
(u)
t+1

−
√

1−ρ2
t+1

σ
(u)
t+1


,

[
CtSt+1

Dt+1

]
,

where St+1 = 1√
1−ρ2

t+1

 1

σ
(x)
t+1

0

1−e−γ∆t+1

γσ
(x)
t+1

− ρt+1e
−γ∆t+1

σ
(u)
t+1

√
1−ρ2

t+1e
−γ∆t+1

σ
(u)
t+1

,

Dt+1 = 1√
1−ρ2

t+1

− 1

σ
(x)
t+1

0

ρt+1

σ
(u)
t+1

−
√

1−ρ2
t+1

σ
(u)
t+1

 and Ct+1 =



0 0
...

...

0 0

1 0

0 1


=

[
0t

I2

]
.

By post-multiplying Σ
(t+1)(−1)
Y Y with Ct+1, it gives us

Σ
(t+1)(−1)
Y Y Ct+1 = Bt+1

(
It+1 − A−1

t+1Bt+1

)
Ct+1

=

[
Bt 0

0 B1

]([
B−1
t 0

0 B−1
1

]
− A−1

t+1

)[
Bt 0

0 B1

]
Ct+1

=

[
Bt 0

0 B1

][
Zt+1 bt+1

b>t+1 Kt+1

][
Bt 0

0 B1

]
Ct+1

=

[
Bt 0

0 B1

][
bt+1B1

Kt+1B1

]
.
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and the property of A−1
t+1 is

A−1
t+1Ct+1 =

[
−bt+1

B−1
1 −Kt+1

]
.

Moreover, by pre-multiplying C>t+1 on the left side of the above equation, we will have

C>t+1A
−1
t+1Ct+1 = B−1

1 −Kt+1, (B.2.1)

Kt+1 = B−1
1 − C>t+1A

−1
t+1Ct+1. (B.2.2)

We may use Sherman-Morrison-Woodbury formula to find the inverse of At+1 in a

recursive way, which is

A−1
t+1 =

(
Mt+1 + Ut+1U

>
t+1

)−1
= M−1

t+1 −M−1
t+1Ut+1

(
I + U>t+1M

−1
t+1Ut+1

)−1
U>t+1M

−1
t+1.

(B.2.3)

Consequently, it is easy to find that M−1
t+1Ct+1 =

[
0

B−1
1

]
and

A−1
t+1Ct+1 =

[
0

B−1
1

]
−

[
A−1
t 0

0 B−1
1

][
CtSt+1

Dt+1

] (
I + U>t+1M

−1
t+1Ut+1

)−1
[
S>t+1C

>
t D>t+1

] [ 0

B−1
1

]

=

[
0

B−1
1

]
−

[
A−1
t CtSt+1

B−1
1 Dt+1

] (
I + U>t+1M

−1
t+1Ut+1

)−1
D>t+1B

−1
1

=

[
0

B−1
1

]
−

[
A−1
t CtSt+1

B−1
1 Dt+1

] (
I + S>t+1C

>
t A
−1
t CtSt+1 +D>t+1B

−1
1 Dt+1

)−1
D>t+1B

−1
1

=

[
0

B−1
1

]
−

[
A−1
t CtSt+1

B−1
1 Dt+1

] (
I + S>t+1

(
B−1

1 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−1
D>t+1B

−1
1 .

Thus, by using the equation (B.2.2), we will get

Kt+1 = B−1
1 Dt+1

(
I + S>t+1

(
B−1

1 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−1
D>t+1B

−1
1 , (B.2.4)

and

bt+1 = A−1
t CtSt+1

(
I + S>t+1

(
B−1

1 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−1
D>t+1B

−1
1

=

[
−bt

B−1
1 −Kt

]
St+1

(
I + S>t+1

(
B−1

1 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−1
D>t+1B

−1
1 .

To achieve the recursive updating formula, we need to find the form of b>t+1BtY1:t first.
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In fact, it is

b>t+1BtY1:t = B−>1 Dt+1

(
I + S>t+1

(
B−11 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−>
S>t+1

[
−b>t B−11 −Kt

]
Bt

[
Y1:t−1

Yt

]
= B−>1 Dt+1

(
I + S>t+1

(
B−11 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−>
S>t+1(

−b>t Bt−1Y1:t−1 +
(
B−11 −Kt

)
B1Yt

)
= B−>1 Dt+1

(
I + S>t+1

(
B−11 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−>
S>t+1 (KtB1µ̄t + (I −KtB1)Yt) .

By using equation (B.2.4) and simplifying the above equation, one can achieve a re-

cursive updating form of the mean, which is

µ̄t+1 = −B1K
−1
t+1b

>
t+1BtY1:t

= −D−>t+1S
>
t+1 (KtB1µ̄t + (I −KtB1)Yt)

= −D−>t+1S
>
t+1 (Yt +KtB1 (µ̄t − Yt)) ,

where by simplifying D−>t+1S
>
t+1, one may find

D−>t+1S
>
t+1 =

[
−1 −1−e−γ∆t+1

γ

0 −e−γ∆t+1

]
= −Φt+1,

which is the negative of forward process. Then the final form of recursive updating

formula are µ̄t+1 = Φt+1KtB1µ̄t + Φt+1 (I −KtB1)Yt

Σ̄t+1 = (B1Kt+1B1)−1
. (B.2.5)

The matrix Kt+1 is updated via

Kt+1 = B−1
1 Dt+1

(
I + S>t+1

(
B−1

1 −Kt

)
St+1 +D>t+1B

−1
1 Dt+1

)−1
D>t+1B

−1
1 , (B.2.6)

or updating its inverse in the following form makes the computation faster, that isK
−1
t+1 = B1D

−>
t+1D

−1
t+1B1 +B1Φt+1

(
B−1

1 −Kt

)
Φ>t+1B1 +B1,

Σ̄t+1 = D−>t+1D
−1
t+1 + Φt+1

(
B−1

1 −Kt

)
Φ>t+1 +B−1

1

and K1 = B−1
1 − A−1

1 =

[
σ4

σ2+L2
x

0

0 τ4

τ2+L2
u

]
.
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The Estimation Distribution

Because of the joint distribution (5.84), one can find the best estimation with a

given θ by

Xt | Y1:t, θ ∼ N
(
A−1
t BtY1:t, A

−1
t

)
∼ N

(
L−>t L−1

t BtY1:t, L
−>
t L−1

t

)
∼ N

(
L−>t Wt, L

−>
t L−1

t

)
.

For Xt+1, the joint distribution with Y1:t+1 updated to stage t+ 1 is

Xt+1, Y1:t+1 | θ ∼ N

(
0,

[
C>t+1 (At+1 −Bt+1)−1Ct+1 C>t+1 (At+1 −Bt+1)−1

(At+1 −Bt+1)−1Ct+1

(
I − A−1

t+1Bt+1

)−1
B−1
t+1

])
,

where C>t+1 =

[
0 · · · 0 1 0

0 · · · 0 0 1

]
is a 2× 2 (t+ 1) matrix. Thus

Xt+1 | Y1:t+1, θ ∼ N
(
µ̄

(X)
t+1, Σ̄

(X)
t+1

)
,

where

µ̄
(X)
t+1 = C>t+1A

−1
t+1Bt+1Y1:t+1 = C>t+1L

−>
t+1Wt+1,

Σ̄
(X)
t+1 = C>t+1A

−1
t+1Ct+1 = U>t+1Ut+1,

and Ut+1 = L−1
t+1Ct+1.

The filtering distribution of the state with given parameters is p (Xt+1 | Y1:t+1, θ).

To find its form, one can use the joint distribution of Xt+1 and Y1:t+1, which is

p (Xt+1, Y1:t+1 | θ) = N (0,Γ), where

Γ =

[
C>t+1 (At+1 −Bt+1)−1Ct+1 C>t+1 (At+1 −Bt+1)−1

(At+1 −Bt+1)−1Ct+1

(
I − A−1

t+1Bt+1

)−1
B−1
t+1

]
.

Because of

C>t+1A
−1
t+1 =

[
−b>t+1 B−1

1 −Kt+1

]
,
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then Xt+1 | Y1:t+1, θ ∼ N
(
µ̄

(X)
t+1, σ̄

(X)2
t+1

)
, where

µ̄
(X)
t+1 = Φx̂t + C>t+1 (At+1 −Bt+1)−1Bt+1

(
I − A−1

t+1Bt+1

)
Y1:t+1

= Φx̂t + C>t+1A
−1
t+1Bt+1Y1:t+1

= 0 +
[
−b>t+1 B−1

1 −Kt+1

] [Bt+1 0

0 B1

][
Y1:t

Yy+1

]
= −b>Bt+1Y1:t + (I −B1Kt+1)Yt+1

= Kt+1B1µ̄t+1 + (I −B1Kt+1)Yt+1

σ̄
(X)2
t+1 = C>t+1 (At+1 −Bt+1)−1Ct+1 − C>t+1A

−1
t+1Bt+1 (At+1 −Bt+1)−1Ct+1

= C>t+1A
−1
t+1Ct+1

= B−1
1 −Kt+1.

B.3 Covariance Matrix in Details

Σt =

[
σ

(x)2
t ρtσ

(x)
t σ

(u)
t

ρtσ
(x)
t σ

(u)
t σ

(u)2
t

]

Σ−1
t =

1

1− ρ2
t

 1

σ
(x)2
t

− ρt

σ
(x)
t σ

(u)
t

− ρt

σ
(x)
t σ

(u)
t

1

σ
(u)2
t


M>

t =

[
1 0

1−e−γ∆t

γ
e−γ∆t

]

zt =

[
xt

ut

]

M>
t Σ−1

t =
1

1− ρ2
t

 1

σ
(x)2
t

− ρt

σ
(x)
t σ

(u)
t

1−e−γ∆t

γσ
(x)2
t

− ρte−γ∆t

σ
(x)
t σ

(u)
t

−ρt(1−e−γ∆t)
γσ

(x)
t σ

(u)
t

+ e−γ∆t

σ
(u)2
t


M>

t Σ−1
t Mt =

1

1− ρ2
t

 1

σ
(x)2
t

1−e−γ∆t

γσ
(x)2
t

− ρte−γ∆t

σ
(x)
t σ

(u)
t

1−e−γ∆t

γσ
(x)2
t

− ρte−γ∆t

σ
(x)
t σ

(u)
t

(1−e−γ∆t)
2

γ2σ
(x)2
t

− 2ρte−γ∆t(1−e−γ∆t)
γσ

(x)
t σ

(u)
t

+ e−2γ∆t

σ
(u)2
t
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B.4 Real Data Implementation

Efficiency Plots
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the step size ε = 2.5 returns the highest ESSUT value and generates more effective

samples in a lower correlated relationship.
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Comparing Estimation with Different Length of Data
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Figure B.2: Impacts of data length on optimal parameter. There is an obvious trend

on the estimation against length of data in the estimation process.
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B.5 Comparison Between Batch and Sliding Win-

dow Methods

0.05

0.06

0.07

0 10 20 30 40 50

(a) α1

0.5

0.6

0.7

0.8

0 10 20 30 40 50

(b) α2

0.0010

0.0015

0.0020

0.0025

0.0030

0 10 20 30 40 50

(c) EffUT

10

15

20

25

30

0 10 20 30 40 50

(d) ESSUT

Figure B.3: Comparison of α1, α2, EffUT and ESSUT between batch MCMC (orange)

and sliding window MCMC (green).
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Figure B.4: Comparison of parameters estimation between batch MCMC (orange) and

sliding window MCMC (green).
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B.6 Parameter Evolution Visualization
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Figure B.4: Parameter Evolution Visualization. The correlation among parameters

does not change two much. The parameters are considered static.
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Appendix C

A Spin-off Outcome: Data

Simplification Method

C.1 Introduction

GPS devices are widely used in orchard planting and maintenance. This location-

based system allows orchardist to check trajectory of tractors. The trajectory is a

connection by a time series successive positions recorded by GPS devices. A classi-

cal GPS device records skeleton information, including time mark, latitude, longitude,

number of available satellites, etc. Recently, researchers try to enrich trajectory (called

Semantic Trajectory) by adding background geographic information to discover mean-

ingful pattern (Ying et al., 2011).

Normally GPS units record more data than necessary and cause more errors due

to weak signals or shelter from branches. To obtain a more accurate observation data

set and to save local storage space, several data simplification methods were proposed

and are focusing on simplifying data set by making either a local or global decision.

A local simplification algorithm focuses on a couple of particular consecutive points.

By analyzing the relationship between these points, a decision is made that which point

can be deleted or retained. Distance threshold algorithm is one of these algorithms.

All points, whose distance to the preceding track point is less than a predetermined

threshold, are deleted. Direction changing algorithm is another one. The point is

retained if the change in direction is greater than a predetermined threshold (Ivanov,

2012).

Alternatively, global simplification algorithms have an overview of all tracked points.

After analyzing the relationships among these points, a decision will be made about
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which one or more points to delete or to retain. The Douglas-Peucker algorithm is

the most popular one (Douglas and Peucker, 1973). A proposed simplification method,

represented by Chen et al. (2009), consider both the skeleton information and semantic

meanings of a trajectory when performing simplification.

Intuitively, the global simplification algorithms can be applied on off-line data anal-

yses and local simplification algorithms will perform better on on-line or real-time track

simplification. However, a pertinent algorithm is required in our case.

In our case, a GPS log is a sequence time series points pi ∈ P , P = {p1, p2, . . . , pn}.
Each GPS point pi contains information of time mark, latitude, longitude and semantic

information of velocity, heading direction and boom status, which can be written in

form of

T = {pt = [xt, yt, vt, θt, bt] | t ∈ R} . (C.1.1)

Sequentially connect these points will give us a trajectory of a moving vehicle. Particu-

larly, a tractor working on an orchard generates two kinds of boom status information:

operating and not-operating. This information is recorded by GPS units and is indi-

cated by b = 1 for operating and b = 0 for not-operating.

To move further, here are two concepts that will be useful to understand the sim-

plification scheme.

• Segment A segment is a part of the consecutive trajectory. Regarding the status

of the boom, the trajectory can be simply divided into two kinds of the segment

in our data set, one is boom-operating, the other is boom-not-operating.

• Direction. Direction θ denotes the heading direction of a tractor at a specific

point location. This parameter uses north direction as a basis, in which way

0◦ ≤ θ < 360◦.

C.2 Simplification Algorithm

The first two steps are designed to reduce some errors caused by misoperation and

GPS units bugs.

• Merging Phase. If the length of a segment composed of consecutive boom op-

erating or not-operating points is less than a threshold, merge this one into its

backward segment.

• Removing Phase. If two or more data points have duplicated time mark, remove

the latter ones.
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Now only two types of segment points are left in GPS log, boom operating, and not-

operating and the length of each segment are greater than the predetermined threshold.

The following algorithm is based on the relationship between a candidate point pi

and its neighboring points pi−1 and pi+1, and the importance of the pi in the segment

where it belongs to, i = 2, . . . , n− 1.

• Rule 1. The candidate point pi is retained if it is not linear predictable or cannot

be used for linear predicting. With the velocity information vi−1, vi at point

pi−1, pi and time differences ∆ti−1 = |ti − ti−1|,∆ti = |ti+1 − ti|, an estimated

position can be calculated by p̂i = ∆ti−1pi−1, p̂i+1 = ∆tipi. If the distance

|p̂i − pi| or |p̂i+1 − pi+1| is less than a threshold, then the point pi is not linear

predictable or cannot be used for linear predicting.

• Rule 2. Select a candidate point pi. Retain this point if the distance between pi

and pi−1 is greater than the threshold d, where d is the mean distances of these

points pi−1, pi, . . . , pi+k with same boom status bi−1 = bi = · · · = bi+k.

• Rule 3. Neighbor Heading Changing. The candidate point pi belongs to the track

if |θi − θi−1| + |θi − θi+1| > θ, where |θi − θi−1| and |θi − θi+1| are the direction

changes between points pi and pi−1 and between points pi and pi+1, θ is predefined

threshold.

• Rule 4. The candidate point pi belongs to the track if the boom status bi 6= bi−1.

Finally, the point pi belongs to the track if Rule 1 = TRUE or Rule 2 = TRUE or

Rule 3 = TRUE or Rule 4 = TRUE.

C.3 Evaluation

Errors are measured by Synchronized Euclidean Distance (Lawson et al., 2011).

SED measures the distances between the original and compressed trace at the same

time. As shown in Figure C.1, the green points Pt1, . . . , Pt5 are original positions. After

simplification, the points Pt2, Pt3 and Pt4 are removed. The black curve is the original

trajectory and the gray dash-dot line is the simplified trajectory. The blue points

P ′t2,P ′t3 and P ′t4 on simplified trajectory have the same time difference as the point Pt2,

Pt3 and Pt4 on original trajectory did. For instance, the time difference between Pt2

and Pt3 is the same as that between P ′t2 and P ′t3. Further, the distances between Pt2

and P ′t2, Pt3 and P ′t3 and Pt4, P ′t4 can be calculated.
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Figure C.1: Synchronized Euclidean Distance
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(b) time-synchronous distance chords

Figure C.2: C.2a indicates that the errors are measured at fixed sampling rate as sum

of perpendicular distance chords. C.2b indicates that the errors are measured at fixed

sampling rates as sum of time-synchronous distance chords.

Another way to calculate the difference between a GPS trace and its compressed

version is to measure the perpendicular distance. This algorithm ignores the temporal

component and uses simple perpendicular distance (Meratnia and Rolf, 2004). The

Figure C.2 expresses these differences clearly.

C.4 Numerical Study

In the numerical simulation study, we use Kalman filter (KF) to fit the trajectory

after data simplification. The KF equations describe the prediction step in such a
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Table C.1: Comparison between raw data and simplified data

Original Data DP Algorithm Proposed Algorithm

Remaining Points 1021 847 847

Tracked Distances(m) 74041.31 74038.33 74012.56

SED (m) NA 1316.715 607.9587

following way:

x̂−k = Ax̂k−1 +Buk

P−k = APk−1A
> +Q

where x̂−k is a priori state estimate, x̂k is a posteriori state estimate, A is status transi-

tion matrix, P−k is a priori estimate for error covariance, uk is an input parameter and

Q is process noise covariance. When a new observation comes into the data stream,

KF update and corrects its estimation by:

Kk = P−k H
> (HP−k H> +R

)−1

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
Pk = (I −KkH)P−k

where Kk is the Kalman gain matrix, zk is the observed data.

The original data set contains 1 021 rows, including latitude, longitude, velocity,

bearing (heading direction) and boom status. Douglas-Peucker Algorithm, with dis-

tance threshold 0.205m, retained 847 points. The proposed algorithm, given a pre-

dictable distance 5m and heading direction changing threshold 30◦, returns the same

amount of simplified points. Under the same circumstance, we calculated SED and

other information.

Table C.1 describes the results after being simplified by DP algorithm and the

proposed algorithm. Figure C.3 demonstrates the simplified raw data and Figure C.4

is the fitted trajectories by KF.

183



200

300

400

500

600

−1200 −1150 −1100 −1050

x

y

(a) Raw trajectory

200

300

400

500

600

−1200 −1150 −1100 −1050

x

y

(b) Simplified trajectory by DP

200

300

400

500

600

−1200 −1150 −1100 −1050

x

y
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rithm

Figure C.3: A segment start from time t = 2 000 to 3 000, recorded by GPS units.

N indicates that the boom is not operating. • indicates that the boom is operating.

Figure C.3a, the trajectory connected by raw data with 27 points. Figure C.3b, the

trajectory connected by simplified data with Douglas-Peucker algorithm with 24 points.

Figure C.3c, the trajectory connected by simplified data with proposed simplification

algorithm with 23 points.
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Figure C.4: Trajectory fitted by Kalman filter. The mean squared errors of raw data,

DP and proposed algorithm are 26.8922, 23.9788 and 23.9710 respectively.

C.5 Conclusion

The data simplification algorithm is originally proposed to solve the over-fitting and

wiggle-construction problems. Duplicated and short-distance points cause reconstruc-

tion issues in spline fitting. The advantage of data simplification algorithm is that less

data points potentially increase computation efficiency and save storage space without

of losing information for reconstructing.
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Härdle, W., Hall, P., and Marron, J. S. (1988). How far are automatically chosen

regression smoothing parameters from their optimum? Journal of the American

Statistical Association, 83 (401), 86–95.

Hartmann, M., Nowak, T., Pfandenhauer, O., Thielecke, J., and Heuberger, A. (2016).

A grid-based filter for tracking bats applying field strength measurements. In 2016

12th Annual Conference on Wireless On-demand Network Systems and Services

(WONS), 1–8. IEEE.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:

data mining, inference, and prediction. (Second ed.). Springer-Verlag.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models, Volume 43.

CRC Press.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57 (1), 97–109.

Haykin, S. S. (2001). Kalman filtering and neural networks. John Wiley & Sons.

Heckman, N. E. and Woodroofe, M. (1991). Minimax Bayes estimation in nonpara-

metric regression. The Annals of Statistics , 19, 2003–2014.
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liväitöskirja, Aalto University.

Komoriya, K. and Tanie, K. (1989). Trajectory design and control of a wheel-type

mobile robot using B-spline curve. In IEEE/RSJ International Workshop on Intel-

ligent Robots and Systems ’. (IROS ’89) ’The Autonomous Mobile Robots and Its

Applications, 398–405. IEEE.

Kong, A., Liu, J. S., and Wong, W. H. (1994). Sequential imputations and Bayesian

missing data problems. Journal of the American Statistical Association, 89 (425),

278–288.

Kontoghiorghes, E. J. (2005). Handbook of parallel computing and statistics. CRC

Press.

Krivobokova, T., Crainiceanu, C. M., and Kauermann, G. (2008). Fast adaptive pe-

nalized splines. Journal of Computational and Graphical Statistics , 17 (1), 1–20.

Larson, S. C. (1931). The shrinkage of the coefficient of multiple correlation. Journal

of Educational Psychology , 22 (1), 45.

Laskey, K. B. and Myers, J. W. (2003). Population Markov chain Monte Carlo. Machine

Learning , 50 (1-2), 175–196.

LaViola, J. J. (2003). A comparison of unscented and extended Kalman filtering for

estimating quaternion motion. In American Control Conference, 2003. Proceedings

of the 2003, Volume 3, 2435–2440. IEEE.

Lawson, C. T., Ravi, S. S., and Hwang, J.-H. (2011). Compression and mining of GPS

trace data: new techniques and applications. Technical report, Technical Report.

Region II University Transportation Research Center.

Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model.

Journal of the Royal Statistical Society. Series B (Methodological), 34, 1–41.

Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-

based filtering. In Sequential Monte Carlo methods in practice, 197–223. Springer.

199



Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science &

Business Media.

Liu, J. S., Liang, F., and Wong, W. H. (2000). The multiple-try method and local

optimization in Metropolis sampling. Journal of the American Statistical Associa-

tion, 95 (449), 121–134.

Liu, Y., Suo, J., Karimi, H. R., and Liu, X. (2014). A filtering algorithm for maneu-

vering target tracking based on smoothing spline fitting. In Abstract and Applied

Analysis, Volume 2014. Hindawi Publishing Corporation.

Liu, Z. and Guo, W. (2010). Data driven adaptive spline smoothing. Statistica

Sinica, 20, 1143–1163.

Lopes, H. F. and Tsay, R. S. (2011). Particle filters and Bayesian inference in financial

econometrics. Journal of Forecasting , 30 (1), 168–209.

Magid, E., Keren, D., Rivlin, E., and Yavneh, I. (2006). Spline-based robot naviga-

tion. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,

2296–2301. IEEE.

Mahendran, N., Wang, Z., Hamze, F., and De Freitas, N. (2012). Adaptive MCMC

with Bayesian optimization. In Artificial Intelligence and Statistics, 751–760.

Martino, L. and Mı́guez, J. (2010). Generalized rejection sampling schemes and appli-

cations in signal processing. Signal Processing , 90 (11), 2981–2995.

Mathew, B., Bauer, A. M., Koistinen, P., Reetz, T. C., Léon, J., and Sillanpää, M. J.
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