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Abstract 

Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized by 

slowness of movement, rigidity, and tremor. However, most patients additionally develop 

cognitive impairment and eventual dementia (PDD), which becomes the most burdensome 

aspect of the disease. Pathological processes associated with Parkinson’s extend beyond the 

classic neurodegenerative changes of neuronal damage in the substantia nigra and the 

aggregation of misfolded alpha-synuclein protein, leading to the relatively recent 

understanding of Parkinson’s as a multi-system disorder.  

Cognitive impairment in PD can vary in the timing of presentation, but dementia eventuates in 

about 80% of patients. A more mild manifestation of cognitive impairment, also known as the 

“Mild Cognitive Impairment” or “PD-MCI”, is found in over a third of newly diagnosed 

Parkinson’s disease patients. Identifying individuals with PD-MCI early in the disease process 

may eventually facilitate the implementation of novel therapeutic options prior to 

development of the debilitating stage, dementia.  

Currently, there are no objective or clinically useful markers for cognitive impairment in PD. 

However, recent neuroimaging techniques have shown promise in this regard. Magnetic 

resonance imaging (MRI) is a non-invasive medical imaging technique that may potentially 

be used to objectively characterize the structural and functional changes in the brain in 

relation to cognitive impairment in PD. 

In this thesis, 138 participants meeting the UK Parkinson’s Disease Society’s criteria for 

idiopathic PD and 50 matched healthy controls completed extensive neuropsychological 

testing. On the basis of this testing, participants were classified as having normal cognition 

(PDN=79), mild cognitive impairment (PD-MCI=36), or dementia (PDD=23). Participants 

also completed an MRI scanning session. These participants were then followed up with the 

same neuropsychological battery and MRI scanning approximately every two years, with 

some completed assessments up to six years after baseline.  

Using a three tesla MRI scanner, three types of MRI data were acquired for each participant: 

(1) structural T1-weighted images to assess cortical thickness and surface area, (2) MR 

spectroscopy (MRS) to explore the metabolic changes of the posterior cingulate cortex, and 

(3) resting-state functional MRI to evaluate functional connectivity of the default mode 

network.  

In order to properly model the longitudinal nature of the study, I used Bayesian generalized 

linear multilevel models to analyse the three MRI data types. The analysis was aimed at 

evaluating the within- and between-subject association of the MRI-derived metrics and 

participants’ cognitive impairment.  
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Analysis of structural MRI scans (cortical thickness “CTh” and surface area “SA”) showed 

strong association with cognition and cognitive decline over time.  Baseline cognitive ability 

was associated significantly with cortical thinning and surface area reduction. However, most 

importantly, longitudinal assessment showed that cognitive deterioration of PD patients was 

associated with reduced cortical thickness and surface area in several brain regions. These 

structural findings, particularly the longitudinal ones, indicate the potential role of both CTh 

and SA as predictive markers for cognitive impairment in PD.  

After accounting for age, sex, and motor impairments, none of the MRS-derived metabolites 

extracted from the posterior cingulate cortex (PCC) showed significant group differences at 

baseline. Similarly, metabolite changes overtime did not significantly associate with declining 

cognitive ability of the study participants. These findings indicate that MRS of the PCC is not 

a clinically useful marker of cognitive impairment in PD.  

Resting state functional connectivity (RS-fMRI) of the default mode network (DMN) revealed 

no significant relationship between baseline nor decline in cognitive ability over time and 

DMN functional connectivity. While DMN dysfunction is strongly related to cognitive 

impairment and decline in Alzheimer’s disease, the current findings suggest that DMN 

functional connectivity does not hold the same promise in PD. Hence, it also appears that 

DMN connectivity does not provide clinically useful information about cognitive status or 

decline over time in PD.  

In this thesis, posterior cingulate MRS and DMN connectivity did not provide clinically 

reliable information about cognitive impairment in PD. However, both cortical thickness and 

surface area showed reliable and robust association with cognitive ability in PD, at cross 

section and over time. These results suggest that longitudinal structural MRI measurements 

may hold promise as outcome measures, along with complimentary clinical and cognitive 

assessments, in future PD-modifying therapeutic trials.  
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Chapter:1 Introduction 

Parkinson’s disease (PD) is a neurodegenerative movement disorder, and is diagnosed 

clinically by the presence of cardinal motor symptoms. However, neurodegenerative changes 

occur beyond just the motor system, resulting in many non-motor features as well, including 

cognitive, psychiatric, and behavioural changes. A combination of these symptoms is usually 

seen in PD patients (Marsden, 1994; Lees et al., 2009; Postuma et al., 2015). 

The primary neurodegenerative changes in PD occur with neuronal dysfunction in the 

substantia nigra, as well as the aggregation of misfolded alpha-synuclein protein in the form 

of Lewy bodies and neurites (Braak et al., 2003). The clinical symptoms in PD patients are 

preceded by extensive neuronal degeneration. By the time of diagnosis, up to 80% of the 

neurons within the substantia nigra have died (Cheng et al., 2010). 

In addition to motor impairment, PD is the second most common cause of neurodegenerative 

dementia, after Alzheimer’s disease (Lees et al., 2009).  Around 30 million people are living 

with PD worldwide. PD affects approximately one in every 100 persons (i.e. 1%) of those 

over the age of 65, highlighting age as one of the biggest risk factors for this disease (Sharma 

et al., 2013). In 2013, age-standardised prevalence of PD in New Zealand was estimated to be 

191 per 100 000 population, and the incidence was 29 per 100 000 person-years. This means 

that in New Zealand, approximately 10 000 individuals are affected by PD; this number is 

predicted to double in the next 25 years (Myall et al., 2017).  

While known and diagnosed based on the motor symptoms, cognitive impairment can be even 

more debilitating than the motor impairments in PD. The detrimental effect of cognitive 

impairment not only impacts the patients themselves, but also their families, caregivers, and 

the healthcare system (Leroi et al., 2012; Lawson et al., 2016). 

What is more, cognitive impairment in PD can vary in the timing of presentation, the 

cognitive domains affected, or the progression towards the terminal stage of the disease—

dementia (PDD). Dementia generally manifests in the late stage of the disease, and ultimately 

affects about 80% of patients with PD (Aarsland et al., 2008; Hely et al., 2008). In contrast, 

even the mild manifestation of cognitive impairment, known as “Mild Cognitive Impairment” 

or “PD-MCI”, is found to be present in over a third of newly diagnosed Parkinson’s disease 

patients (Lewis et al., 2003). PD-MCI can be considered an intermediate status that falls 

between PD with normal cognitive function and patients with dementia (PDD). While PD-

MCI patients exhibit some cognitive deficits, their daily functions remain unimpaired (as 

opposed to PDD, where there exists significant impairment of daily activities) (Palavra et al., 

2013).  

There is considerable variation (range 2 to 20 years) between onset of PD and the emergence 

of dementia (Aarsland et al., 2007; Hely et al., 2008),  which provides a window for potential 
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therapeutic intervention. Therapeutic outcomes are generally assessed using clinical tools, 

such as the Unified Parkinson’s Disease Rating Scale (UPDRS) (Goetz et al., 2008; Tilley et 

al., 2014). The challenge, however, is that a therapy may provide symptomatic relief, with a 

consequent effect on the clinical outcome measure, but may not be truly neuroprotective. 

Researchers are currently unable to distinguish symptomatic from truly neuroprotective 

therapies using clinical metrics (Brooks et al., 2003). Therefore, in order to accurately 

characterize PD patients, assess treatment response, as well as monitor disease progression, 

objective markers are desperately needed. Unfortunately, there is currently no objective or 

clinical marker for cognitive impairment in PD (Palavra et al., 2013). This could, at least 

partly, further delay the emergence of effective neuroprotective therapies.  

Recently, neuroimaging modalities have been used to probe structural and functional brain 

changes in relation to cognitive impairment in PD (Duncan et al., 2013). Imaging therefore 

shows promise as a potential method to identify markers sensitive to PD-related cognitive 

decline. For example, positron emission tomography (PET) work using the 18F-

fluorodeoxyglucose (18F-FDG) radiotracer has shown that abnormal cerebral glucose 

metabolism is associated with cognitive decline in PD (Eidelberg, 2009). Longitudinal FDG 

work extends these interesting metabolic findings to highlight some brain regions (such as the 

parietal lobe) that were associated with the risk of future cognitive decline (Firbank et al., 

2017). Although PET imaging offers promise as a marker for cognitive impairment in PD, its 

invasive nature (involving ionization radiation) has limited its application in research and 

particularly in studies that are intended to run in a longitudinal fashion, specifically mindful of 

the risk of radiation.  

Conversely, another imaging modality, magnetic resonance imaging (MRI), uses no ionizing 

radiation. Furthermore, MRI is a technique that is regarded as a “one-stop-shop” imaging 

modality. That is, in one imaging session, one can acquire images that provide structural, 

metabolic, and functional connectivity information (Viswanathan et al., 2010; Marino et al., 

2011). High field MRI has become more available than ever before. These high magnetic 

fields allow better image quality and shorter scan times (Balchandani and Naidich, 2015). 

Multiple varieties of MRI techniques have been used to assess the structural and functional 

changes associated with other neurodegenerative diseases, such as Alzheimer’s disease 

(Thomann et al., 2005; Frisoni et al., 2010; Bai et al., 2011; Petrella et al., 2011) and 

Huntington’s disease (Kassubek et al., 2004; Georgiou-Karistianis et al., 2012; Wolf et al., 

2012; Georgiou-Karistianis et al., 2016). Parkinson’s has also been the subject of multiple 

MRI studies, highlighting structural (Melzer et al., 2012; Pagonabarraga et al., 2013; 

Rektorova et al., 2014; Segura et al., 2014)  metabolic (Camicioli et al., 2004; Griffith et al., 

2008; Lewis et al., 2012) and functional (Krajcovicova et al., 2012; Prodoehl et al., 2014; 

Gorges et al., 2015) changes secondary to cognitive impairment in PD. In general, these 

studies have been cross sectional in nature, with only a few longitudinal studies. While cross 
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sectional results have been very promising, a true longitudinal study of multiple MRI 

techniques and their association to cognitive decline in PD is warranted. 

Given the need for a reliable and clinically useful marker for cognitive impairment in PD, the 

main objective of this thesis was to assess the structural, metabolic, and functional 

connectivity correlates of cognitive decline in Parkinson’s disease. Hence, and in an attempt 

to find reliable markers, I have used MRI to longitudinally acquire structural (cortical 

thickness and surface area), metabolic (the four commonly examined brain metabolites in 

clinical settings), and functional connectivity information from a large cohort representing a 

wide cognitive range associated with PD. 
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Chapter:2 Parkinson’s disease 

 

Parkinson’s disease (PD) is a neurodegenerative movement disorder, and is diagnosed 

clinically by the presence of cardinal motor symptoms. However, neurodegenerative changes 

occur beyond just the motor system, resulting in many non-motor features as well, including 

cognitive, psychiatric, and behavioural changes. A combination of these symptoms is usually 

seen in PD patients (Bjornestad et al., 2016; Sauerbier et al., 2016). 

The primary neurodegenerative changes occur with neuronal death in the substantia nigra, as 

well as the aggregation of misfolded alpha-synuclein protein in the form of Lewy bodies and 

neurites (Braak et al., 2003). The clinical symptoms in PD patients are preceded by extensive 

neuronal degeneration. By the time of diagnosis, up to 80% of the neurons within the 

substantia nigra have died (Cheng et al., 2010). 

In addition to motor impairment, PD is the second most common cause of neurodegenerative 

dementia (Lees et al., 2009).  Around 30 million people are living with PD worldwide. PD 

affects approximately one in every 100 persons (i.e. 1%) of those over the age of 65, 

highlighting age as one of the biggest risk factors for this disease (Sharma et al., 2013). In 

2013, while the prevalence of PD in New Zealand was 191 per 100 000 population, the 

incidence was 29 per 100 000 person-years. However, the prevalence is predicted to double in 

the next 25 years. While both incidence and prevalence are expected to continue increasing 

over time (peaking at the age of 85), the rate of increase will slow down due to the drop-off in 

the oldest old (above 85) (Myall et al., 2017).  
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2.1 Parkinson’s disease 

2.1.1 Parkinson’s disease risk factors 

While the majority of PD cases are classified as idiopathic (of unknown cause), the risk of 

developing PD is associated with a number of epidemiological factors. (1) Age: the risk of 

developing PD increases as we become older. PD affects around 1% of individuals over the 

age of 65 and up to 4% in the oldest age groups (Huajun Jin, 2014; Pringsheim et al., 2014; 

Myall et al., 2017). (2) Gender: PD affects more males than females, with the male-to-female 

ratio of about 2 to 1 (Miller and Cronin‐Golomb, 2010; Massano and Bhatia, 2012). (3) 

Race/Ethnicity: Based on epidemiological studies performed in the USA, Hispanics had the 

highest risk of developing PD, followed by non-Hispanics Whites, Asians, and lastly Blacks, 

who appeared to be at the lowest risk of developing PD (Van Den Eeden et al., 2003; 

Pringsheim et al., 2014). In New Zealand, age-standardized 2013 prevalence for Maori was 89 

per 100,000 population. This was much lower than other ethnic groups, European: 201; 

Asian: 157; and Pasifika: 155. [Under review, personal communication with Dr. Toni  Pitcher, 

the New Zealand Brain research Institute, Christchurch, New Zealand]  (4) Environmental 

factors: Growing evidence suggests that PD pathogenesis is a complex interplay of genetic 

susceptibility triggered and maintained through pathogens that access the central nervous 

system via the gut and/or the olfactory bulb. Exposure to toxic environmental factors or 

certain living conditions are proposed to increase the risk of developing PD (Klingelhoefer 

and Reichmann, 2015). Environmental factors can range from rural living, farming, drinking 

well water or exposure to pesticides and heavy metals. In contrast, some lifestyle factors such 

as cigarette smoking, alcohol and caffeine consumption play a protective role in PD; for 

example, individuals who have never smoked are twice as likely to develop Parkinson’s 

disease (Lees et al., 2009; Klingelhoefer and Reichmann, 2015). However, once the disease is 

established, reports show that PD patients with a history of smoking are at a higher risk of 

developing dementia (Xu et al., 2016). This highlights the complicated nature of 

pathophysiology of PD.  

2.1.2 Motor symptoms in Parkinson’s disease 

PD is characterized by three cardinal motor symptoms - rigidity, bradykinesia (slow 

movement), and rest tremor. Other motor impairments include gait problems, akinesia 

(inability to initiate movements), hypokinesia (decreased amplitude of movements), and 

postural instability (Massano and Bhatia, 2012). These can cause immobility and a reduction 

in quality of life (Jiang et al., 2013), in addition to increasing the difficulty of day-to-day 

activities, such as hand writing, tooth brushing, or using utensils while eating (Marsden, 

1994). In most cases, these symptoms begin subtly and gradually worsen over time (Lees et 

al., 2009; Ziliotto et al., 2015).  
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2.1.3 Cognitive symptoms in Parkinson’s disease 

In addition to the motor symptoms, PD patients frequently experience a number of non-motor 

symptoms. Symptoms such as apathy, anxiety, panic attack, mood disorders such as 

depression, hallucinations, illusions, delusions, cognitive impairment ranging from mild to 

dementia, constipation, urinary dysfunction, sexual dysfunction, excessive sweating, 

insomnia, rapid eye movement behaviour disorder, restless leg syndrome, excessive daytime 

sleepiness, loss of sense of smell, decreased visual colour discrimination, pain or fatigue all 

classified as non-motor complication in PD (Massano and Bhatia, 2012; Sauerbier et al., 

2016). 

Even at diagnosis, many patients exhibit cognitive impairments and psychiatric disturbances 

(Goldman and Litvan, 2011; Meireles and Massano, 2012). And can precede motor symptoms 

(Breen and Lang, 2017; Darweesh et al., 2017). However, at this early stage, symptoms are 

generally still subtle and do not detrimentally impact the daily activities of patients. As the 

disease progresses, more intrusive symptoms begin to appear. 

Cognitive impairment in PD can vary in the timing of presentation, the cognitive domains 

affected, and rate of progression. Dementia (PDD) frequently manifests in later stages of the 

disease and ultimately affects about 80% of patients with PD. In contrast, even the mild 

manifestation of cognitive impairment, also known as the “Mild Cognitive Impairment” or 

“PD-MCI”, is found to be present in over a third of newly diagnosed Parkinson’s disease 

patients (Lewis et al., 2003; Breen and Lang, 2017; Darweesh et al., 2017). PD-MCI can be 

considered an intermediate status between PD with normal cognitive function (PDN) and 

patients with dementia (PDD). While PD-MCI patients experience some cognitive deficits, 

daily function remains unimpaired, in contradistinction to PDD where there is significant 

impairment of daily activities (Palavra et al., 2013).  

According to the 2011 Movement Disorders Society (MDS) Task Force review, PD-MCI has 

a mean prevalence of 27% (ranging from 19% to 38%). The MDS Task Force also established 

criteria to aid in the formal diagnosis of PD patients with MCI. The MDS Task Force level II 

criteria (the more stringent of two proposed criteria) include: (1) neuropsychological testing 

that comprises at least two tests within each of the five cognitive domains (attention and 

working memory, executive function, language, learning & memory, and 

visuospatial/visuoperceptual function), (2) impairment on at least two neuropsychological 

tests in one cognitive domain, or one impaired test in two different cognitive domains, and (3) 

impairment below appropriate norms or significant decline on serial cognitive testing or 

significant decline from estimated premorbid levels (Litvan et al., 2012). 

Cognitive impairment in PD may affect any of the five of domains, and may encompass both 

single and multi-domain impairment. Multiple-domain impairments are reported to be more 

common in PD-MCI (Wood et al., 2016). Patients with cognitive impairment may show 

deficits in one or more of the five cognitive domains: (1) Attention and processing memory 
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deficits: difficulty in concentrating during a task or slowing in mental processing (e.g. Delay 

in responding to verbal or behavioural stimuli; (2) executive function difficulties: here 

patients may show difficulty in planning and completing activities or even 

generating/maintaining different ideas and concepts; (3) memory deficit: patients may have 

trouble with tasks such as remembering how to making a cup of coffee; (4) language 

problems: patients may show difficulty in naming items or  problems with comprehending 

complex sentences; and (5) visuospatial difficulties: problems ranging from having difficulty 

with perceiving distances in the world around them, or in some cases patients may have visual 

misperceptions or illusions (Davis, 2002; Massano and Bhatia, 2012; Meireles and Massano, 

2012). 

As cognitive impairment progresses, patients begin to lose the ability to perform normal daily 

activities, and behavioural symptoms can emerge (such as apathy and/or depression), 

culminating in a diagnosis of dementia (Dubois et al., 2007; De Marchi et al., 2014). 

Dementia is a major disability for PD patients. According to the MDS Task Force clinical 

diagnostic criteria, the core features of PDD are: (1) a diagnosis of PD according to the Queen 

Square Brain Bank criteria, (2) impairment in one or more cognitive domains, (3) worsening 

symptoms representing a decline from the pre-disease status, and (4) deficits that are severe 

enough to impair daily life (e.g. Social, occupational, and personal care) (Dubois et al., 2007; 

Emre et al., 2007).  

In a recent longitudinal PD study, quality of life scores (QoL) in cognitively unimpaired 

patients were not significantly influenced by cognition over 36 months. However, the study 

revealed that PD-MCI patients recorded significantly worse QoL scores relative to cognitively 

normal patients and the smaller proportion who developed dementia had considerably worse 

QoL scores (Lawson et al., 2016). A further study that investigated the impact of cognitive 

impairment in PD on patients’ quality of life, disability and caregivers’ burden, found that 

global disability of patients was associated with cognitive status. Patients with PDN had a 

higher QoL than those with PD-MCI, who in turn had higher QoL than those with PDD. 

Importantly, the study also revealed that both patients’ quality of life scores and the 

caregivers’ burden were higher in patients with PDD than in those without dementia (Leroi et 

al., 2012). These observations emphasise the detrimental effect of cognitive impairment not 

only on patients, but also on their caregivers and the healthcare system.  

There are a number of risk factors for cognitive impairment in PD. Worse cognitive status is 

associated with older age, male gender, lower educational levels and greater motor severity, 

visual hallucinations, rapid eye movement sleep behaviour disorder (RBD), smoking and 

hypertension (Palavra et al., 2013; Xu et al., 2016).  
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2.1.4 Other symptoms in Parkinson’s disease 

In addition to the motor and cognitive symptoms, Parkinson’s disease patients may also 

experience other features: (1) Neuropsychiatric problems: apathy, anxiety, depression, 

hallucinations, illusions or delusions. (2) Dysautonomia symptoms: constipation, orthostatic 

hypotension (a person's blood pressure falls when standing up from a lying or sitting 

position), urinary urgency/retention, excessive sweating, drooling and swallowing difficulties. 

(3) Sleep disorders: insomnia, REM behaviour disorder, restless legs syndrome, and excessive 

daytime sleepiness. (4) Sensory dysfunction: hyposmia (loss of sense of smell), visual 

contrast and colour discrimination impairment, reduced visual motion perception, and the 

development of abnormal cutaneous sensations like tingling. Further difficulties such as 

speech impairments, pain and fatigue are also common in PD patients (Barnes and David, 

2001; Stebbins et al., 2004; Aarsland et al., 2007; Kulisevsky et al., 2008; Lees et al., 2009; 

Massano and Bhatia, 2012). 

These symptoms, along with the cardinal motor and cognitive impairment, serve to aggravate 

the already challenging situation of living with Parkinson’s. 

2.1.5 Parkinson’s disease pathology 

Although the initiating pathological process of Parkinson’s disease is not well understood, the 

pathological hallmarks include degeneration of dopaminergic neurons in the substantia nigra 

pars compacta (SNpc) and the aggregation of Lewy bodies and neurites in brain tissue. Lewy 

bodies are composed primarily of misfolded alpha-synuclein (α-Syn) protein along with a 

number of other proteins (Svenningsson et al., 2012).  While the loss of neurons in the SNpc 

is linked to the motor symptoms of PD, a single pathological process cannot completely 

explain the multi-system problems, including cognitive impairment, observed in PD.  

Knowledge of the exact effects of misfolded alpha-synuclein (α-Syn) on the brain is 

somewhat limited, but it appears that α-Syn interacts with several proteins and other tissue 

components and thereby play a role in synaptic plasticity, cell survival and dopaminergic 

neurotransmission and impacting on cell health (Lücking and Brice, 2000). There is increased 

misfolded alpha-synuclein deposition in widespread brain regions (De Marchi et al., 2014). 

Associated with correspondingly reduced levels in the cerebrospinal fluid (CSF) (Tokuda et 

al., 2006; Mollenhauer et al., 2008). This reduced CSF α-Syn is believed to be secondary to 

the deposition of this misfolded protein in brain tissue (Shi et al., 2010). In addition, neuronal 

density has been negatively correlated with the substantia nigra α-Syn burden in PD patients 

(Irwin et al., 2013; Dijkstra et al., 2014). 

The spread of α-Syn pathology in the brain of patients with PD was described by Braak and 

colleagues (Braak et al., 2003; Braak et al., 2004). Braak’s staging system can be briefly 

summarised as follows: Stage 1 and 2, where the pathology is present in the olfactory bulb, 

medulla oblongata and pontine tegmentum. At these stages, patients are usually 
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asymptomatic; Stage 3 and 4, when the pathology progresses rostrally (superiorly) to the mid 

brain, and motor symptoms such as rest tremor, bradykinesia and rigidity start to appear. 

Although the cortex of the temporal lobes may be affected at this stage, the neocortex is not 

yet affected; Stage 5 and 6, in which the α-Syn starts to spread into the neocortex. Here, frank 

cognitive dysfunction may manifest, ranging from subtle impairment to debilitating dementia 

(Lang and Lozano, 1998).   

While Braak’s staging system set the foundation for the notion that α-Syn pathology exists 

outside the substantia nigra (SN) and progresses in a predictable pattern, it has been 

challenged by recent research. For example, one of the arguments against it is that it does not 

explain the lack of clinical symptoms in asymptomatic healthy elderlies with extensive spread 

of the α-Syn pathology, identified on brain autopsy samples (Halliday et al., 2012; Recasens 

and Dehay, 2014). 

While the loss of dopaminergic neurons in the substantia nigra is blamed to cause the motor 

symptoms in PD, a clear explanation on why cognitive impairment is happening is still 

absent. However, studies reported that PD patients with disrupted non-dopaminergic 

neurotransmitters systems (such as cholinergic and noradrenergic) had cognitive impairment 

(Stern and Langston, 1985; Stern et al., 1990; COOPER et al., 1991). Others suggested that 

the disruption in the connectivity between the basal ganglia and the cortex may be a key 

player in the cognitive impairment in PD (Barone et al., 2011). 

Therefore, it is never a clear picture of what is causing the cognitive impairment in PD. 

Participants who have been exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP); a substance aimed to causing “pure” dopaminergic lesion, showed impairment in 

their executive functions, visuospatial performance, and verbal fluency (Stern and Langston, 

1985; Stern et al., 1990). This shows how hard it can be to pinpoint the real cause of cognitive 

impairment in Parkinson’s disease.  

The pathological basis of cognitive impairment and especially dementia in PD is debated. 

Braak proposed that the Lewy body pathology (and by inference the α-Syn pathology) 

progresses sequentially from the olfactory bulb/medulla oblongata rostrally up the brainstem 

to the midbrain and subsequently neocortex, with clinical symptoms manifesting in parallel to 

these stages, and the dementia being directly associated with cortical Lewy bodies. In keeping 

with this proposal, a prospective study by Aarsland et al. (Aarsland et al., 2005). Found that 

α-Syn pathological changes were the strongest correlate of the rate of cognitive decline. 

Others however have reported that concurrent Alzheimer’s-type pathological changes, if not 

more important, are of equal importance in triggering dementia in PD (Irwin et al., 2013; 

Irwin et al., 2017). Thus, a combination of Alzheimer-like pathological changes (both 

amyloid and tau-related) have been highly correlated with dementia in PD (Ballard et al., 

2006; Halliday and McCann, 2010; Compta et al., 2011). Early mild cognitive dysfunction, 

mainly executive function may relate to an initial dopaminergic deficit (Svenningsson et al., 

2012). On the other hand, PD patients with more widespread α-Syn pathology and 
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pronounced cholinergic depletion, associated with memory and visuospatial cognitive deficits, 

may exhibit much faster cognitive decline and dementia rates (Svenningsson et al., 2012).  

Taken together, these findings suggest that cognitive impairment in PD is not simply the 

result of a single pathology or neurotransmitter deficit. Deposition of misfolded proteins (α-

Syn, amyloid and tau), along with neurotransmitter changes, neuroinflammation, synaptic 

changes, vascular damage, and ultimately neuronal death all contribute to cognitive 

impairment in Parkinson’s disease (Gaspar et al., 1991; Bohnen and Albin, 2011; Massano 

and Bhatia, 2012; Recasens and Dehay, 2014).  

Given the complicated picture of the PD pathology and the difficulty in pinpoint the 

underlying cause of cognitive dysfunction in PD patients, reliable and clinically useful 

markers are needed to differentiate among these disease processes. 

2.1.6 Parkinson’s disease management 

Currently there is no cure for Parkinson’s disease, and healthcare providers strive to manage 

the symptoms of the disease. Symptomatic treatments lessen motor symptoms, and 

cholinesterase inhibitors may provide symptomatic improvement in cognition in some 

patients with PDD but there is currently no effective treatment to prevent the development of 

dementia in PD (Emre et al., 2004; Massano and Bhatia, 2012). 

2.1.6.1 Managing the motor symptom 

The Movement Disorder Society (MDS) evidence-based medicine review (updated in 2011), 

highlighted three options for management of motor symptoms, with sufficient evidence to be 

considered efficient and clinically useful: (1) pharmacological, (2) deep brain stimulation, and 

(3) physiotherapy (Fox et al., 2011). Pharmacological dopamine replacement therapy 

compensates for the lack of dopamine in PD, and is the standard treatment for different motor 

symptoms of PD, though there is a range of other non-dopaminergic therapies available. 

Bilateral deep brain stimulation (DBS; subthalamic nucleus or, less often now, globus 

pallidus interna) can be clinically useful to help control motor symptoms, though detrimental 

effects on cognitive performance, especially verbal fluency, have been reported (Parsons et 

al., 2006; Svenningsson et al., 2012). Physical therapy is “likely efficacious” and clinically 

useful in helping motor symptoms in PD patients (Fox et al., 2011).  

2.1.6.2 Non-motor symptoms management 

There are currently no effective treatments to slow or stop cognitive decline or dementia in 

PD in contradistinction to the motor aspects of the disease. Medications such as rivastigmine 

or donepezil are modestly and variably effective in improving cognitive function in PD, but 

can be  associated with substantial side effects. Several pharmaceutical trials have assessed 

the efficacy of candidate drugs, but with contradictory outcomes (Poewe et al., 2006; 

Cummings and Winblad, 2007; Reingold et al., 2007; Siddiqui and Wagstaff, 2007; Figiel and 

Sadowsky, 2008; Almaraz et al., 2009). Alternative non-pharmacological therapies such as 
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direct current transcranial stimulation have been reported to help in improving some cognitive 

aspects such as executive function (Seppi et al., 2011; Doruk et al., 2014). 

An important step in the development of new treatments to combat cognitive decline in PD is 

the development of objective, reliable markers (Delenclos et al., 2016; Aarsland et al., 2017). 

Cognitive impairment markers are important to track cognitive impairment over time, so that 

they can be used to evaluate outcomes from novel therapies and also help identify at-risk 

groups of patients. This would allow the creation of ‘enriched samples’ that could be targeted 

with new therapies to enhance the chances of finding an effective treatment. This is the 

motivation of the current thesis. Here, I have used non-invasive magnetic resonance imaging 

to track brain changes over time that associate with cognitive decline, in an attempt to identify 

a reliable marker of cognitive impairment and dementia. 

2.2 Neuroimaging in Parkinson’s disease 

The diagnosis of idiopathic Parkinson’s disease (PD) can at times be relatively 

straightforward when patients show typical motor impairments (bradykinesia plus at least one 

of the two other cardinal features – rest tremor and/or rigidity) and demonstrate response to 

dopaminergic therapy (Postuma et al., 2015). However, especially in the early stages of the 

disease, PD symptoms may overlap with other atypical parkinsonian disorders (APS) such as 

multiple system atrophy (MSA), corticobasal syndrome (CBS), or progressive supranuclear 

palsy (PSP). For example, a histological study found that around 24% of clinically diagnosed 

PD cases were classified as APS on autopsy (Hughes et al., 1992; Fahn, 1999). Therefore 

objective imaging methods may provide useful tools for identifying structural and/or 

functional brain changes which can be used to differentiate between these diseases. Candidate 

MRI markers have been identified (e.g. The ‘king penguin’ sign for PSP, the ‘hot-cross-buns’ 

sign for MSA, and more recently, the ‘swallow-tail’ sign for PD) (Schwarz et al., 2014). But 

they do not exhibit sufficiently high sensitivity and specificity to supersede the clinical 

diagnosis of PD (Seppi et al., 2003). What is more pertinent to this thesis, however, is how 

imaging techniques might also be used to characterize cognitive impairments once PD is 

established and to track cognitive progression over time. Here, I have used magnetic 

resonance imaging or “MRI”, a non-invasive and safe imaging technique, in a longitudinal 

fashion, to track disease progression over time.  

In this section I will briefly examine the use of the common and clinically available structural, 

functional, and molecular imaging techniques in Parkinson’s disease and discuss several of 

them in greater detail in the following chapters.  

2.2.1 Structural imaging in PD 

2.2.1.1 Morphometric MRI: 

Our research group (Melzer, 2012) assessed grey matter (GM) volume in PD, identifying 

significant GM loss in patients with mild cognitive impairment (PD-MCI) and further 
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extensive loss in patients with dementia (PDD) relative to controls. The study also identified 

that GM loss was correlated with patients’ cognitive performance scores (Melzer et al., 2012). 

Others have also reported that patients with PDD had reduced grey matter (GM) volumes in 

the fronto–parietal, medial temporal and limbic areas relative to controls (Rektorova et al., 

2014). Additionally, GM reduction in non-demented patients when compared to controls has 

been observed (Summerfield et al., 2005). These volumetric studies suggest widespread loss 

of tissue with cognitive impairments in PD. Further, regional atrophy in hippocampus and 

amygdala in non-demented PD patients relative to healthy controls was reported by Bouchard 

and colleagues (Bouchard et al., 2008). Structural MRI has also been used to assess thickness 

of the cortex. Several recent cross-sectional studies have reported cortical thinning in PD 

relative to controls. One that compared cognitively unimpaired patients with mild PD to 

controls found that patients exhibited bilateral cortical thinning in the parietal lobes 

(Madhyastha et al., 2015). Another larger study with more participants and a wider spectrum 

of cognitive status, examining 43 PD-MCI, 47 cognitively unimpaired PD patients, and 32 

healthy controls, found that PD-MCI patients had bilaterally reduced cortical thickness in the 

parieto-temporal region when compared to the other two groups (Segura et al., 2014). In 

2013, Pagonabarraga and colleagues studied cognitive status and structural MRI in a well-

stratified sample of PD patients - 26 PDN, 26 PD-MCI, and 20 PDD - and 18 controls. They 

showed bilateral cortical thinning in the medial temporal lobes and the posterior medial 

cortical regions even in early disease (i.e. PDN versus controls), with a more extensive pattern 

in more advanced patients (i.e. PDD versus controls). Further, when the PD-MCI patients 

compared to the PDN, they also showed reduced cortical thinning across the two brain 

hemispheres (Pagonabarraga et al., 2013). The above findings highlight the potential utility of 

probing the cortical thickness profile in the characterisation of cognitive impairment and 

status in PD.  

A limited number of studies have used cortical thickness to assess change in both cognition 

and cortical thickness over time.  A two time point study that followed PD patients for 20 

months after an initial MRI scan, found that patients with mild cognitive impairment had 

thinner cortical areas relative to both healthy controls and those with normal cognitive status 

(PDN) (Hanganu et al., 2014). Subsequent investigations reported similar observations 

(Segura et al., 2014; Danti et al., 2015; Mak et al., 2015) and are discussed in more detail in 

Chapter 5. It therefore appears that these MRI-based structural methods may be useful in 

detecting brain changes in relation to (cognitive) disease progression in PD. However, what is 

more promising is that these studies identified structural changes not only in the patients with 

dementia, but also in the non-demented patients when compared to controls. Thus, these 

structural metrics can potentially be used to capture brain changes at early stages of the 

disease and thereby provide objective biomarkers that could be applied to future trials of 

novel interventions in early disease. 
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Chapter 5, “Brain structural changes in PD” discusses and examines the utility of MRI-

derived cortical thickness measures as markers for cognitive impairment and progression in 

PD.  

2.2.1.2 Diffusion tensor imaging in PD 

In contrast to assessing grey matter, MRI-based diffusion tensor imaging (DTI) provides 

information about the brain’s white matter (WM) integrity. In PD, brain tissue damage is not 

limited to the grey matter; DTI studies have revealed that WM structures are disrupted in PD 

patients relative to controls. In a study that compared PDN, PD-MCI, PDD and patients with 

dementia with Lewy bodies (DLB) to controls, the authors found that the superior 

longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, 

uncinate fasciculus, and cingulum in patients with PD-MCI, PDD, and DLB had reduced 

fractional anisotropy (FA, indicative for white matter fibre density; with lower FA values 

indicating more white matter damage) relative to controls. Those with normal cognition on 

the other hand were not significantly different from controls (Hattori et al., 2012; Madden et 

al., 2012).  

In similar studies, non-demented PD patients (not specifically characterized as cognitively 

unimpaired or mild cognitive impairment) exhibited increased mean diffusivity (MD, 

indicative of the mean of water diffusion. Given the dense white matter structure, water 

should only diffuse in limited directions. Hence, increased MD values indicates lose white 

matter environment, likely reflecting white matter damage) in frontal and parietal white 

matter tracts relative to controls (Madden et al., 2012; Duncan et al., 2016). When cognitive 

subgroups were specified, limited – albeit significant - white matter FA and MD differences 

were identified in PDN, with more extensive DTI changes present in those with PD-MCI and 

PDD. The same study also revealed that the extent of impairment in some functional cognitive 

domains (such as executive, attention and learning) was associated with extent of white matter 

changes in the PD patients (Melzer et al., 2013). A 2017 longitudinal study by Galantucci et 

al. (Galantucci et al., 2017). Found that PD patients who progressed to a more impaired 

cognitive status (either from normal cognition to PD-MCI or from PD-MCI to dementia) had 

reduced FA (i.e. More fibre damage) in the corpus callosum, right inferior longitudinal 

fasciculus, bilateral middle cerebellar and superior cerebellar peduncles bilaterally, and right 

uncinate fasciculus, relative to those PD patients that remained cognitively stable. The authors 

also reported that those who progressed to a worse cognitive status exhibited higher MD (i.e. 

More damage) in the genu of the corpus callosum and bilateral cingulum, inferior longitudinal 

fasciculus, corticospinal tract, and superior cerebellar peduncles, as well as left superior 

longitudinal fasciculus and right uncinate fasciculus relative to the cognitively stable 

participants. These studies suggest that white matter measures (derived from DTI) may reflect 

structural brain changes associated with cognitive decline in PD, and show the possibility that 

such methodology might assist in identifying a high-risk that could be selectively targeted for 

novel neuroprotective therapies.  
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2.2.1.3 Iron deposition imaging 

Pathological studies show increased levels of iron deposition in substantia nigra (SN) of PD 

patients (Griffiths and Crossman, 1993). MRI-derived susceptibility weighted imaging (SWI) 

allows non-invasive identification and quantification of iron in the brain (Lehéricy et al., 

2012; Han et al., 2013). Recent studies have utilized SWI to differentiate PD from other 

parkinsonian disorders such as PSP and MSA (Wang et al., 2012; Han et al., 2013; Lee et al., 

2013). However, SWI has yet to be deployed in the investigation of cognitive decline and 

dementia in PD.  

Parallel to SWI, the widely available and less costly transcranial sonography (TCS) procedure 

has also been used to assess iron deposition in SN (Bouwmans et al., 2013; Li et al., 2016). In 

PD  around 90% of the clinically diagnosed cases have demonstrated elevated echogenicity 

bilaterally in the SN region using TCS (Bor-Seng-Shu et al., 2012). Similar to SWI, TCS has 

also shown some utility in differentiating between diseases with overlapping symptoms. For 

example, two studies used TCS to differentiate between PD and essential tremor (ET) and 

found that these two disorders have different echogenicity profiles (Kim et al., 2012; Chitsaz 

et al., 2013). Nevertheless, despite the apparently helpful role of TCS in confirming the 

diagnosis of PD in some doubtful cases, it has been found that the hyperechogenicity of the 

SN remains stable during the disease course (Berg et al., 2005; Bor-Seng-Shu et al., 2012).  

This suggests that whilst TCS might have some utility as a diagnostic tool in PD, it is not a 

promising disease progression marker.  

2.2.2 Functional MRI techniques in PD 

2.2.2.1 Magnetic resonance spectroscopy 

In addition to structural information, MRI also has the capability to collect functional and 

physiological data.  Magnetic resonance spectroscopy (MRS) provides an estimate of the 

chemical composition of specific tissues. Common brain metabolites such as N-

acetylaspartate (NAA, a neuronal marker), choline (Cho, a cell membrane turnover marker), 

creatine (Cr, an energy metabolism marker), and myo-Inositol (mI, a glial cell marker) can be 

non-invasively quantified and used to assess the effect of pathological processes (Valenzuela 

and Sachdev, 2001; Gujar et al., 2005). In PD, MRS has been used to investigate changes in 

brain metabolites (Camicioli et al., 2007; Lewis et al., 2012; Nie et al., 2013). For example, 

Griffith and colleagues, examined the posterior cingulate cortex using MRS. They reported 

that NAA/Cr was reduced in PDD relative to controls (Griffith et al., 2008). Further, another 

study that assessed the same brain region revealed that non-demented PD patients had lower 

NAA/Cr ratios in comparison to controls (Camicioli et al., 2004). The ability of MRS to 

assess chemical changes within the brain (as opposed to the structural ones), makes it an 

attractive technique that may be capable of capturing PD-related functional changes before 

later structural damage manifests.   
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In this thesis, chapter 6, “Brain metabolic changes in PD” investigates the utility of the 

common MRS estimates as a marker for cognitive impairment in PD.  

2.2.2.2 Functional MRI (BOLD) imaging 

Functional MRI (fMRI) allows non-invasive, indirect investigation of functional activity 

within the brain, through the measurement of changes in oxygenation of the blood. The 

magnetic signal from oxygenated and deoxygenated blood differs. In response to neuronal 

activity, the ratio of oxygenated to deoxygenated blood changes, and this is detectable with 

fMRI, using  the blood oxygenation level dependent (BOLD) contrast (Matthews et al., 2006; 

Prodoehl et al., 2014). When a brain region is activated, both metabolism and regional blood 

flow increase. This results in a relative reduction in the deoxygenated haemoglobin and 

increase in the BOLD signal (Niethammer et al., 2012). Recently, the fMRI technique has 

become commonly used ‘at rest’. During rest, there is no specific external task. In contrast, 

resting state fMRI (RS-fMRI) focusses on the intrinsic activity within the brain, in the 

absence of any additional sensory or cognitive stimulus. Instead of searching for areas that are 

active in response to a task, RS-fMRI investigates regional interactions across the brain. It 

facilitates the identification of spatially distinct brain regions which are functionally linked 

(i.e. Those in which BOLD signal covaries); the integrity of these resting state brain networks 

can then be assessed (Li et al., 2016; Zhou et al., 2016). This approach has been applied very 

successfully in Alzheimer’s disease, and more recently in PD, to assess the potential impact 

(disruption) of the disease on functional networks (Greicius and Kimmel, 2012; Prodoehl et 

al., 2014; Hu et al., 2015).  For example, a study that compared PD patients to controls 

revealed that patients had reduced functional connectivity in the executive-attention and 

visual networks during a task-free fMRI scan (Tessitore et al., 2012). Another group 

evaluated 14 PDD, 18 PD-non-demented, and 18 controls and observed that PDD patients 

exhibited lower default mode network (DMN) connectivity between the posterior cingulate 

cortex and the right inferior frontal gyrus (Krajcovicova et al., 2012). 

Chapter 7 in this thesis examines whether functional connectivity of the default mode network 

(derived from resting state functional MRI)  can be used as a marker for cognitive impairment 

in PD.  

2.3 Summary 

Each neuroimaging modality has its own peculiar advantages and weaknesses, varying in 

availability, cost, scanning time, and parameters measured. However, the non-invasive nature 

of MRI (no ionizing radiation) and in particular its versatility in producing many different 

types of images within one imaging session makes it an attractive choice for researchers in the 

PD imaging field. Furthermore, while one cannot ignore the higher cost of MRI in 

comparison to sonography technology (which likewise does not involve ionizing radiation), 

MRI can be regarded the “one-stop-shop” modality for researchers with the ability to collect 

structural and functional data on the same patient. This thesis examines the utility of three 
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different MRI techniques in reflecting cognitive status and progression in a large cohort of PD 

patients. These techniques include: (1) structural MRI, used to assess cortical thickness and 

surface area; (2) MR spectroscopy, used to explore the metabolic changes of the posterior 

cingulate cortex of the brain; and (3) resting-state functional MRI, used to evaluate the resting 

state functional connectivity of the default mode network. Analyses and results associated 

with each imaging modality will be discussed in chapter 5 (structural MRI), chapter 6 (MR 

spectroscopy), and chapter 7 (resting state functional connectivity). 



18 

 

  



19 

 

Chapter:3 MRI Basic Principles  

Before the use of Magnetic Resonance Imaging (MRI), plain x-ray radiography films and 

computerised tomography (CT) were used to evaluate internal body organs. In many cases, 

when these imaging modalities were not successful, exploratory surgical procedures were 

used to assess the anatomy or pathology of the human body. Exposure to ionising radiation 

(x-rays) or inserting a catheter into the body are invasive techniques, with potential for harm. 

Ideally, these would be avoided, if possible. 

MRI has attracted clinicians and researchers not only because it uses non-ionising radiation, 

but also because it offers many excellent tissue contrasts, many without exogenous contrast 

agents. With recent hardware and software developments, operating an MRI scanner has 

become more efficient and routine (Roth, 2001). These factors have led clinicians and 

researchers to select MRI as the modality of choice for many situations. 

Many of the basic principles of MRI were identified by Felix Bloch in 1946. During the 1960s 

and 1970s, nuclear magnetic resonance spectroscopy was utilised to assess materials’ 

molecular configurations. The seeds of today’s MRI scanners were planted by Raymond 

Damadian, Paul Lauterbur, and Peter Mansfield in the 1970s. The efforts of these scientists 

resulted in the first human MR image, which took around 5 hours to acquire (Blink, 2004). 

Thanks to technological and engineering advancements, today one can image the entire brain 

in a few seconds (Feinberg et al., 2010).  

In this chapter, I will examine the basic MRI principles, including signal generation, image 

formation, and factors affecting image quality. In addition, I will explore the relevant image 

artefacts and their remedies. I will begin this chapter by discussing the main MRI scanner 

hardware components.  
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3.1 MRI system 

An MRI system is composed of several hardware components. The three main parts of the 

MRI system are the magnet, the time-varying gradients, and the radiofrequency system 

(Figure 3.1). 

 

Figure 3.1 The main MR system components. (adapted from (Koechli et al., 2006) ) RF = Radiofrequency 

3.1.1  Superconducting Magnet 

The magnet, the heaviest part of the MR system, is designed to provide a very homogeneous 

static magnetic field (B0). The generated magnetic field is measured in Gauss (G) or Tesla 

(T), where 1T = 10 000 G (Westbrook et al., 2011). The main purpose of using the magnet in 

the MR system is to create a net magnetization within the body, parallel to B0 (Koechli et al., 

2006).  

Permanent, resistive and superconducting magnets are the three types of magnets that have 

been used in MRI history. But today, superconducting magnets dominate due to their ability 

to (1) produce higher magnetic fields; this allows for acquiring images with higher signals 

hence better image quality or faster imaging time, (2) create a more stable and homogeneous 

magnetic field; this is crucial for image quality as a more homogeneous magnet produces less 

distorted images (Faulkner and Seeram, 2002; Westbrook et al., 2011). And (3) despite an 

initial high set-up cost of superconducting magnets, the magnet does not require power after 

its first ramp up (Faulkner and Seeram, 2002; Westbrook et al., 2011). At supercooled 

temperatures electrical resistance is zero (Koechli et al., 2006; McRobbie, 2007; Westbrook et 

al., 2011). Therefore, when the initial current is passed into the wires, the power will be 

maintained as long as the cold environment (4 Kelvin) is preserved. This feature of the 

superconducting magnets allows this aspect of an MRI scanner to be run at a relatively low 

operational cost.  

  

Main magnet  

Body RF coil 

Head RF coil 

Gradient coils 
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However, maintaining a homogeneous magnetic field across the imaging field of view is 

challenging. To maintain the magnet homogeneity, a process called “shimming” has to be 

conducted upon the installation of the magnet (“passive shimming”). Passive shimming 

involves adding several metallic blocks to help ensure the magnetic field is homogeneous 

within the magnet bore. The other shimming type is “active shimming”. This is carried out by 

passing low currents into shimming coils surrounding the main magnet coil. These currents 

are computer-controlled and add or subtract fractional amounts of magnetic field to the main 

magnetic field as needed to adjust for any detected inhomogeneities (Koechli et al., 2006; 

McRobbie, 2007; Westbrook et al., 2011). Active shimming is generally performed before 

each single imaging session in each patient.   

Another concern associated with modern MRI scanners is their fringe field. Fringe field refers 

to the extent of the magnetic field outside the magnet bore, figure 3.2 (Westbrook et al., 

2011). And can pose a risk if objects or devices are allowed to freely interact. For example, 

passing through the unconfined fringe field near an MRI room may cause a cardiac 

pacemaker to malfunction, endangering the life of the individual (McRobbie, 2007). 

Confining the magnetic field within certain limits is called magnetic field shielding. Shielding 

is usually achieved through passive and active methods. In passive shielding, plates of iron 

are placed within the magnet design, also called self-shielding. Active shielding on the other 

hand uses smaller superconductive coils to produce opposite magnetic field (relative to the 

main magnet) in order to cancel out the field outside the magnet bore (McRobbie, 2007; 

Westbrook et al., 2011).  

 

Figure 3.2 The fringe field. The white rings around the magnet represent the fringe field extent of the 

magnetic field outside the magnet bore. (adapted from (Reimer et al., 2006) ) 
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3.1.2  Time-varying Gradients 

Each MR system is equipped with three orthogonal pairs of gradients: X, Y and Z. They are 

called time-varying gradients as they rapidly change over time. Gradients performance is 

measured in millitesla per meter (mT/m) (Faulkner and Seeram, 2002). The main function of 

the gradient coils is to provide linear variation to the main magnetic field, a key to spatial 

localization (Koechli et al., 2006). This is achieved by quickly passing electrical currents 

through the gradient coils. A consequence of these quickly changing electric fields is very 

loud acoustic noise, which necessitates hearing protection. If safety guidelines were not 

followed, this could lead to serious hearing injury (Faulkner and Seeram, 2002; Westbrook et 

al., 2011). Gradients safety aspects will be addressed in the MRI safety section (Time-varying 

gradients related risks). Details on the role of gradients in spatial localisation and their effect 

of spins will be also discussed in the spatial localisation section below. 

3.1.3  Radiofrequency system 

In MR imaging, radiofrequency (RF) pulses are used to excite protons (Westbrook et al., 

2011). Most MR pulse sequences use an initial RF pulse to flip the longitudinal magnetisation 

from its original longitudinal orientation to the transverse plane; this forms the basis of the 

MR signal. RF pulses are employed differently in each pulse sequence (will be discussed in 

the Basic MR Pulse Sequences section below).  

RF coils are one important part of the RF system. RF coils can be transmit, receive or 

transmit/receive coils. Their main function is to send and receive the RF energy to and from 

the areas under examination (Blink, 2004). RF coils operate at a similar frequency range to 

FM radio transmissions (Westbrook et al., 2011). Given this, the MR room walls and door 

need to be shielded from any external RF waves. A Faraday’s cage, commonly made of 

copper, is usually used for such shielding (Faulkner and Seeram, 2002; Koechli et al., 2006). 

External radio waves that enter the imaging room induce an artefact called the “zipper 

artefact” (McRobbie, 2007; Westbrook et al., 2011). Such artefacts may lead to mild, or in 

some cases severe image degradation, and will be discussed in the artefact section (Zipper 

Artefacts). 

In the MR scanner, built-in RF body coils provide wide anatomical coverage (figure 3.1 

above), but with reduced signal to noise ratio (SNR) (Faulkner and Seeram, 2002). Therefore, 

scanners come with multiple local coils. They were introduced mostly to provide higher SNR. 

Local RF coils are designed to fit different body parts and different examination purposes 

(Blink, 2004; Westbrook et al., 2011). For example, I specifically used the eight channel head 

coil for data acquisition in my study (Figure 3.3 below).  
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Figure 3.3: The eight channel head RF coil. 

As with other parts of the MRI system, RF energy may pose some potential risk to patients. 

The chief concern with RF system is tissue heating (Westbrook et al., 2011). There are 

documented reports of RF-induced burns after undergoing MRI examination (Koechli et al., 

2006; McRobbie, 2007). Details on this particular matter will be provided in the MRI safety 

section (Radiofrequency deposition related risks).  

3.2 Spin and Nuclear MR Phenomena 

3.2.1 MR Active Nuclei 

When a metal screwdriver is brought in close proximity to an MRI scanner, it will be pulled 

towards the scanner; here an interaction has occurred, represented by the observed force of 

attraction between the screwdriver and the magnet. However, not all objects respond when 

exposed to an external magnetic field (B0). In contrast, when a piece of plastic is placed inside 

an MRI scanner, nothing happens (i.e., there is no interaction). 

The occurrence of an interaction between a given object and the magnetic field is governed by 

the inherent chemical composition of the object. All atoms have an intrinsic quantity called 

angular momentum or spin. In simple terms, spin can be considered the rotating of the nucleus 

around its own axis (Figure 3.4), and this generates a magnetic moment. Nuclei with non-zero 

angular momentums (odd mass numbers) are classified as MR active nuclei, will generate a 

magnetic moments, and interact with an external magnetic field (Reimer et al., 2006). 

Hydrogen protons are an example of MR active nuclei. Hydrogen protons are widely used in 

MRI because hydrogen is abundant in the human body and hydrogen has a large magnetic 

moment. When placed in an external magnetic field, the magnetic moments generated by MR 

active nuclei will tend to align their axes of spin to the external magnetic field (Westbrook et 

al., 2011). 
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Figure 3.4: Proton spin can be envisioned as the inherent spinning of a proton around its own axis 

(adapted from (Blink, 2004) ), causing a magnetic moment (black arrow).  
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3.2.2 Alignment and precessional frequency  

The magnetic moment is generated by protons spinning around their own axis. When exposed 

to an external magnetic field (B0), MR active nuclei align (on average) their axis of rotation to 

B0 (Figure 3.5). Alignment with B0 results in splitting the protons into two populations based 

on alignment with B0: (a) the low energy state (spins that are aligned in parallel with B0), and 

(b) the high energy state (spins that are aligned anti-parallel relative to B0) (Reimer et al., 

2006; Westbrook et al., 2011). In MRI, the excess number of spins that are aligned in parallel 

to B0 sum together to produce a net magnetisation vector (NMV), which is used to produce an 

MR signal. In addition to spinning around their own axes and under the influence of the main 

magnetic field (B0), spins will start spinning (wobbling) in a circular path around the B0 axis. 

This leads to precession (Figure 3.6). The rate of spinning is called the precessional (or 

Larmor) frequency (Koechli et al., 2006; Westbrook et al., 2011), and is governed by the 

Larmor equation: 

Ω = γ × Β   (equation 1)(Blink, 2004). 

Where:  

Ω = Precessional or Larmor frequency (MHz)  

Γ = Gyromagnetic Ratio (MHz/Tesla)  

Β = Magnetic field strength (Tesla). 

The gyromagnetic ratio is nuclei specific. For example, the gyromagnetic ratio of hydrogen is 

42.57 MHz/Tesla. Other MR active nuclei have different gyromagnetic ratios; accordingly, 

when exposed to the same magnetic field strength (B0), they exhibit a different precessional 

frequency (Westbrook et al., 2011).  
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Figure 3.5: MR active nuclei alignment. Random alignment before exposing hydrogen protons to an 

external magnetic field, B0 (left) and spins aligned with the B0 after being exposed to B0 (right). 

(adapted from (Westbrook et al., 2011) ) 

 

 

Figure 3.6 Spin precession (wobbling). After being exposed to the external magnetic field, B0, spins start to 

precess (adapted from (Westbrook et al., 2011) ). 

3.2.3  Resonance  

The excess number of spins (NMV) resulting from the spontaneous alignment of spins to B0 

is relatively small. During image formation, an external energy (known as the radiofrequency 

pulse, RF) is used to perturb the NMV. This step is called spin excitation; it is aimed to tip the 

NMV from the longitudinal axis to the transverse axis (Koechli et al., 2006). Once the NMV 
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is tipped into the transverse axis, additional steps are needed to form an image. For example, 

in conventional spin echo imaging (addressed in the conventional spin echo pulse sequences 

section), we start with an initial RF pulse, a “resonant pulse”, to tip the longitudinal NMV to 

the transverse plane; later a subsequent refocusing RF pulse is delivered to bring those 

dephasing spins together to form a coherent NMV. A coherent NMV induces stronger signals 

into the signal receiver coil. In order for any external energy (RF pulse) to affect the spins 

under the influence of B0, the RF pulse must match their frequency. Resonance is the term 

describing the state where the frequency of the applied RF pulse matches the precessional 

frequency of the spins (protons). This on-resonance pulse facilitates an efficient energy 

exchange between the RF pulse and the protons (Blink, 2004; Koechli et al., 2006; Westbrook 

et al., 2011).  

3.2.4 MR Signal 

Based on Faraday’s electromagnetic induction law, changing magnetic fields will induce a 

voltage when brought close to a receiver coil (Haacke et al., 1999). As the NMV is tipped into 

the transverse plane, it too precesses. As the NMV in the transverse plane passes near to the 

receiver coil, a current is induced (McRobbie, 2007) (Figure 3.7 below). This current has 

similar frequency to the spins’, but its amplitude depends on the density of the spins. The 

induced voltage in the RF coil is the source of the MR signal (Westbrook et al., 2011). The 

detected MR signal has to go through several steps (such as analogue to digital conversion, 

spatial localisation, and Fourier transformation) in order to be made a readable MR image. 

These steps will be discussed in MR Image Formation section below). 

 

Figure 3.7 Signal induction in a receiver coil resulted from passing of the coherent spins across. (adapted 

from (Reimer et al., 2006) ) 

Receiver coil 

Induced signal 

Coherent spins (NMV) precessing at 90
o
 away from the B0 

and perpendicular to the 

receiver coil 

B0 
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3.3 MR Image weighting and contrast 

3.3.1  Relaxation 

During MR data acquisition, the externally applied RF pulse does not stay switched on at all 

times. Instead, it is switched on only at certain time points of the imaging journey, as will be 

outlined in the pulse sequences section (Basic MRI Pulse sequences). Shortly after switching 

off the RF pulse, the NMV will start recovering back to its original position, i.e. will move 

back from the X-Y plane to the Z plane. This is called “relaxation” (Koechli et al., 2006). 

Relaxation refers to the process spins/protons undergo as they emit the energy gained by the 

external RF pulse and return to their equilibrium position (parallel to B0). Figure 3.8 

illustrates the recovery of NMV to its original state.  
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Figure 3.8 Spin relaxation. (A) After a resonant RF pulse, all magnetisation exists in the transverse plane 

(Mxy). (B) a decrease in the transverse magnetisation begins and the longitudinal magnetisation starts 

(Mz) to return to equilibrium. (C) further growth of the Mz and decay of Mzy. (D) Lastly, the full 

longitudinal magnetization (Mz) recovery with zero transverse component (adapted from (Koechli et al., 

2006) ). 

3.3.2 T2 relaxation process (spin-spin relaxation or transverse relaxation) 

After ceasing the external RF pulse, spins gradually return to their original state (aligning with 

B0). This happens through two independent but simultaneous processes, T2 and T1 relaxation. 

The first is T2 relaxation (otherwise called spin-spin relaxation or transverse 

relaxation)(McRobbie, 2007; Westbrook et al., 2011). To simplify the concept, while the term 

“spins” will be used to refer to two individual spins in this thesis, in reality it refers to large 

group of protons that happen to have similar frequency and phase, hence and only to simplify 

the concept, I will be referring to these groups as two individual spins. In order to understand 

the T2 relaxation process, it is important to introduce the concept of spin phase. Phase refers 

to the location of the spins on their circular precessional path. To clarify the phase concept, let 

us take the following example. On the precessional path, imagine two spins (A and B) 

precessing at the same speed (frequency) in the X-Y plane (also called the transverse plane, 

90
0
 perpendicular to B0). If B is ahead of A on their precessional path by 10

0
, then it can be 

said that B has a phase of +10 relative to A. In contrast, a spin C that is 30
0
 behind A will 

have a phase of -30
0
. Figure 3.9 demonstrates the phase concept (Koechli et al., 2006).  

A B C D 
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Figure 3.9 The phase concept. Relative to A, vector B has a phase of +10
0
 whereas C has a phase of -30

0
. 

All vectors are rotating around the Z axis; however, their phases vary according to their respective angle. 

(adapted from (Koechli et al., 2006) ) 

The tipping of the NMV into the transverse plane can be conceptualized as rotating the 

longitudinal phase coherence from the longitudinal plane to the transverse plane. Therefore, 

just after applying the resonant RF pulse, there exists phase coherence in the X-Y plane. 

However, once the RF pulse is turned off and the NMV has been rotated into the transverse 

plane, this phase coherence is lost (dephasing) as spins begin to precess slightly faster or 

slightly slower based on their local magnetic environment.  This means that the transverse 

magnetisation (Mxy) is gradually decaying due to spin dephasing, eventually returning to its 

equilibrium value of zero (Westbrook et al., 2011). As Mxy decays, the induced MR signal in 

the receiver coil becomes weaker (Koechli et al., 2006). Figure 3.10 shows the spin dephasing 

process at the X-Y plane over time. 

z-axis 
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Figure 3.10 T2 relaxation. (A) the transverse magnetisation at its coherent state, immediately after being 

rotated into the transverse plane. (B) spin dephasing begins, as illustrated by the fanning out of individual 

population of spins (indicated as red arrows). (C-D) further spin dephasing is taking place over time. (E) 

full spin dephasing in the transverse plane, and a resultant loss of Mxy (adapted from (Blink, 2004) ). 

Spins will not maintain their coherence for a number of reasons. The first is the imperfect 

magnetic field (B0) homogeneity (Koechli et al., 2006). These local field inhomogeneities 

cause the spins to be exposed to different B0 values. Given the Larmor equation (ω = γ × Β), 

when B0 is changed, the precessional frequency (ω) will change accordingly (McRobbie, 

2007). If two adjacent chemically-identical spins experienced variable B0 values, their 

frequencies and phases will be different. Eventually, at a given time, they will start cancelling 

each other out due to their phase incoherence (phase shift). The decaying signal due to this 

type of spin incoherence is referred to as the T2* signal (Koechli et al., 2006; Westbrook et 

al., 2011). The second reason that triggers phase incoherence is the interaction between spins 

themselves (that is why T2 relaxation is also called spin-spin interaction). This interaction is 

not magnetic field dependent (Koechli et al., 2006). Let us assume that all spins are exposed 

to the same magnetic field strength, they will be experiencing the same precessional 

frequency. However, when two spins come close to each other, their own magnetic moments 

will either add or subtract from the main magnetic field. This variation in their frequencies 

will cause their phases to permanently vary, which will trigger phase incoherence and 

eventually the transverse magnetization (Mxy) to decay (Koechli et al., 2006). The T2 

relaxation time is defined as the time needed for 63% of the transverse magnetisation to decay 

(i.e. Only 37% of the Mxy left) (Westbrook et al., 2011). Figure 3.11 illustrates the decay of 

the transverse magnetisation as a result of phase incoherence over time. As the transverse 

magnetisation decays, the induced signal in the receiver coil becomes weaker. 
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Figure 3.11 Transverse magnetisation decay over time. The Y axis represents the transverse magnetisation 

amplitude, and the X axis represents time. At time = 0, immediately after tipping the spins from the 

longitudinal plane to the transverse, the transverse magnetisation is at its full amplitude (100%). After one 

T2 time, the transverse magnetisation lost 63% of its original component (i.e. Only 37% left). (adapted 

from (Blink, 2004) ) 

3.3.3 T1 relaxation process (T1 recovery, longitudinal relaxation or spin-

lattice relaxation) 

As mentioned in the above section (1.2), both relaxation processes (T2 and T1) take place 

simultaneously, with T1 recovery happening slower that the T2 relaxation (McRobbie, 2007). 

T1 recovery refers to the recovery of the longitudinal magnetization. This occurs at the same 

time as T2 relaxation, but at a different rate, as a consequence of the main magnetic field (B0), 

and due to the interaction of the spins with their surrounding environment (or lattice) (Koechli 

et al., 2006). The rate of recovery (or T1 relaxation time) of the longitudinal magnetisation is 

exponential. T1 relaxation time is defined as the time needed for 63% of the longitudinal 

magnetisation to regain its original amplitude (Westbrook et al., 2011). Figure 3.12 

demonstrates the T1 recovery process. After a full longitudinal recovery, there should be zero 

transverse magnetisation on the X-Y plane. This means that the induced signal in the receiver 

coil will diminish.  

  

T2 
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Figure 3.12 T1 recovery process. Immediately following excitation and flipping of Mz into Mxy, at time = 

0 the longitudinal magnetisation (Mz) is zero. However, after one T1 time of the tissue, M has recovered 

63% of its original amplitude. (adapted from (Blink, 2004) ) 

3.3.4 T2 contrast (or T2-weighted images) 

While the main controller of producing a T1-WI is the time of repetition, the time of echo 

(TE, measured in milliseconds) plays a larger role in obtaining a T2-WI. TE is defined as the 

time between the application of the first RF pulse to the time of echo formation. It controls the 

extent to which the transverse magnetisation can dephase. The longer the TE, the more spin 

dephasing occurs, which consequently leads to heavier T2-weighting (Westbrook et al., 

2011). Let us use fat and CSF to explain how we can obtain an MR image that is classified as 

T2-WI.  Fat has a short T2 relaxation time and CSF has a long T2 relaxation time (see Figure 

3.13 - left panel). Fat spins will dephase faster than CSF spins, and therefore fat loses phase 

coherence faster. Fat will induce a smaller signal into the receiver coil and appear darker on 

T2-WI than will CSF. In contrast, it takes longer for the CSF spins to lose their coherence, 

which will leave their transverse magnetisation to survive longer and continue inducing signal 

into the receiver coil. Therefore, CSF appears brighter on T2-WI, relative to fat. Knowing the 

chemical features of body tissues, along with the effect of TE, we can use long TE to produce 

T2-WI (Koechli et al., 2006). Long TE allows tissues with short T2 relaxation times (like fat) 

to vanish quicker, leaving tissues with long T2 relaxation times (like CSF) to dominate signal 

contribution. In other words, we create a contrast between tissues based on their inherent T2 

features; this is referred to as T2 contrast (or T2-weighted images). Figure 3.13 - right panel, 

presents the appearance of fat and CSF on T2-weighted images. 
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Figure 3.13: T2 contrast.  Left panel: Tissues with short T2 relaxation time (fat) decays faster than those 

with longer one (CSF) (adapted from (Koechli et al., 2006) ). Right panel: T2-weighted spin echo image 

through the brain. It shows the bright CSF (A) and darker fat (B (adapted from (Westbrook et al., 2011) ) 

3.3.5 T1 contrast (or T1-weighted images) 

Different image contrasts originate from the different chemical compositions of tissues. 

Therefore, different tissues behave differently when exposed to a magnetic field (Koechli et 

al., 2006). Let us again take fat and CSF as examples of body tissues. Fat has a more compact 

molecular structure; therefore, fat molecules interact with each other more frequently 

resulting in loss of phase coherence. This eventually makes the fat T1 relaxation time to be 

much shorter than of those with sparser structure such as CSF.  

Given its short relaxation time, fat recovers faster than CSF (it regains its longitudinal 

magnetisation in a shorter time relative to CSF) (Westbrook et al., 2011). Because fat has a 

faster recovery rate, its longitudinal magnetisation will build up faster when compared to CSF 

(see Figure 3.14, left panel). When the externally applied RF pulse is re-applied to re-excite 

spins, both fat and CSF will be tipped to the transverse plane. However, because the fat’s 

longitudinal magnetisation is larger than CSF, it will induce larger signal in the receiver coil. 

This will result in fat having a brighter signal compared to CSF.  

In order to obtain the required image weight, it is up to the user to choose when to acquire the 

data. “Time of Repetition” or TR is defined as the time between two successive RF pulses in 

an MRI pulse sequence. TR determines how much longitudinal magnetisation can recover. 

That is, the longer the TR, the more longitudinal recovery can take place (Blink, 2004). Let us 

reuse the above example (fat and CSF). A longer TR will allow both fat and CSF to fully 

recover (i.e. Both will have large longitudinal magnetisation), so later when they are re-

excited (by another RF pulse), they will contribute a similar amount of signal to the receiver 

coil. In other words, both fat and CSF will appear bright. In imaging, this is regarded as a 

poor contrast image, and may not be useful for diagnosis (McRobbie, 2007; Westbrook et al., 
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2011). In order to produce a T1-weigthed images (T1-WI), we need to use a short TR. A short 

TR allows only fat (shorter T1 relaxation time) to recover, while CSF (longer relaxation time) 

has not had time to recover fully. On a T1-WI in this situation, fat contributes higher signal to 

the image and appears bright, whereas CSF will contribute a smaller signal and appears dark. 

Figure 3.14, right panel shows the appearance of fat and CSF on T1-WI.  

 

Figure 3.14: T1 contrast. Left panel: Tissues with short T1 relaxation time (fat) recovers faster than those 

with longer one (CSF) (adapted from (Koechli et al., 2006) ). Right panel: T1-weighted spin echo image 

through the brain. It shows the dark CSF (A) and bright fat (B) (adapted from (Westbrook et al., 2011) ). 

In imaging, each image weight provides certain information. For example, T1-wis are known 

for their value in providing anatomical details, whereas T2-wis are known for their ability to 

show pathological changes in tissues (Reimer et al., 2006). Therefore, MRI is regarded as a 

flexible imaging modality where more than one image type can be acquired within the same 

imaging session enhance the overall MRI clinical or research value.  

3.4 MR Image Formation 

3.4.1 Spatial localisation  

It is important to know the exact spatial origin of detected signals. For example, when 

imaging the brain, it is vital to determine whether the signals are coming from the pituitary 

gland or inner ear. This process is called spatial localisation or spatial encoding.  

Spatial localisation refers to the ability to determine the source of the signal in three 

dimensions (slice, phase, and frequency). The gradient coils make spatial localisation 

possible. Each MRI machine is equipped with three pairs of gradient coils (X, Y, and Z). 

Gradients provide slight and predictable alterations (in millitesla) to the main magnetic field 

(Koechli et al., 2006; Westbrook et al., 2011). 

Governed by Larmor equation (ω = γ × Β), precessional frequency (ω) is proportional to B. 

If all protons are exposed to a magnetic strength field of 1.5 Tesla, all protons will precess at 

A 
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the same frequency, namely 64 MHz, and spatial location will be impossible to discern 

(Westbrook et al., 2011). As an example, consider tuning three individual radios to the same 

station. It is difficult to separate the three radios, as all three devices are producing the same 

audio outputs. In contrast, if the three radios are tuned to three different radio stations, it will 

easier to identify what each device is producing.  

In MRI, when the gradients are switched on, they linearly alter the B0 values across a given 

plane of the bore; it will be possible to differentiate between the spins at different spatial 

locations based on their different frequencies. Therefore, these magnetic field gradients are 

used to perturb the bore magnet by making one end of the magnet slightly larger than B0, and 

the other end slightly smaller than B0, keeping the centre of the magnet unchanged (Figure 

3.15)  (Blink, 2004). This causes precession frequencies to vary along the bore in a known 

and measurable pattern. 

When a given location (cross section or slice) in the body has a unique frequency, one can 

selectively send an RF pulse (at the precessional frequency) to only excite that particular body 

location (McRobbie, 2007). This process is called slice selection, the first dimension of spatial 

localisation. Note, in basic MR pulse sequences (will be explained later in the Basic MR pulse 

sequences section), it is important to switch on the slice-select gradient before sending any RF 

pulse. Figure 3.16 demonstrates how the slice-select gradient helps to determine the RF 

bandwidth to selectively excite certain location in the body.  

 

Figure 3.15: The gradient coils allow the static magnetic field to vary linearly across the magnet. The 

gradients cause one end of the bore to be reduced in strength (position A), unchanged (B), and increased 

(C). Adapted from (Westbrook et al., 2011) ) 
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Figure  3.16: Slice selection. The role of the slice-select gradient in determining the RF to selectively excite 

a specific slice in the body. Here a transverse section is needed through the patient’s chest; accordingly, 

the slice-select gradient along the Z direction is switched on to provide linear alteration of the magnetic 

filed. Then, an RF pulse matching the precessional frequency of the protons at the desired imaging slice is 

used to excite protons only in the desired slice. (adapted from (McRobbie, 2007) ) 

Knowing the slice location is not enough to precisely determine the origin of a detected MR 

signal.  Therefore, we still need to locate the signal in two more dimensions. The first is the 

frequency encoding direction.  This requires a second magnetic field gradient, which is 

perpendicular to the slice-select gradient plane. When this second gradient pair is switched on, 

the frequency of spins in that plane will vary according to their location. For example, 

precession frequency will vary from left to right. Figure 3.17 presents the effect of the 

frequency encoding gradient on the frequency of spins located in-plane, after slice selection.  
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Figure 3.17: Frequency encoding. The frequency encoding gradient changes the frequency of spins within 

the selected slice. Note: frequency values of spins in the middle remained unchanged, while spins to the left 

precess slower, and spins to the right precess faster. (adapted from (Westbrook et al., 2011) )  

Additionally, when the third pair of gradients is switched on, in a perpendicular direction to 

the frequency encoding gradient, spins will experience both frequency and phase change. A 

slight increase of the magnetic field strength caused by the gradients will alter the frequency 

of the spins (in the superior-inferior direction, for example), but as frequency is altered, their 

phase at the precessional path will change as well (Figure 3.18). This is called phase 

encoding, and allows sorting spins according to their phase. Once slice location is determined, 

frequency and phase of spins within the slice are used to encode location. An important 

concept in this process is k-space. 
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Figure 3.18: Phase encoding. The change in the spin frequency induced by the phase encoding gradient 

also causes a phase shift. The lower precessing spin (left) has a different phase than the faster precessing 

spin (right). (adapted from (Westbrook et al., 2011) ) 

 

3.4.2 K space 

The use of the three pairs of gradients (x,y, and z) allows slice selection and frequency and 

phase encoding within the slice. Using these parameters, the MR system can identify the exact 

location of each generated signal.   

The MR system records raw data obtained from the induced signals in K-space. K-space is an 

array representing spatial frequencies in the MR image. K-space has two axes, the vertical 

axis represents the phase information and the horizontal axis, frequency, Figure 3.19. In 

conventional imaging methods, each horizontal line in K-space corresponds to one 

measurement (or time of repetition, TR) and the phase encoding gradient amplitude is 

changed at each line to give a new phase shift (Koechli et al., 2006).  
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Figure 3.19: K-Space. Kx is the frequency axis, ky the phase axis. Data from each measurement fills 

different horizontal line. Each line has unique phase information. (adapted from (Koechli et al., 2006) ) 

A mathematical algorithm known as the fourier transform allows data transformation from the 

spatial frequency domain (how the data are acquired) to spatial location (how the data are 

displayed) (Koechli et al., 2006; Westbrook et al., 2011).  

It is important to note that lines in k-space do not correspond one-to-one with the lines in the 

final MR image. Instead, the central lines of the k-space encompass low spatial 

frequencies/high amplitude signals. The outer lines accommodate high spatial 

frequencies/lower amplitude signals (Westbrook et al., 2011).  

In order to generate an MR image, k-space has to be filled with multiple lines. In conventional 

imaging, one TR (normally between 400 and 9000 milliseconds) is needed to fill one line of 

k-space. As the number of lines per k-space increases, one can obtain more details about the 

organ under examination. In other words, when a higher spatial resolution image is required, 

more k-space lines are to be filled (Westbrook et al., 2011). 

3.5 Basic MR Pulse Sequences 

In MRI, a pulse sequence refers to the set of commands that are sent by the MR computer 

system to the MR machine hardware in order to create different types of images.  MR pulse 

sequences dictate the order and duration of the RF pulses and gradients used to achieve 

different image contrast and quality (McRobbie, 2007). Different pulse sequences are used to 

maximize tissue contrast (between normal tissue and pathology), provide spatial and 

anatomical information, measure flow, or perhaps assess some other parameter, such as with 

dynamic contrast-enhanced examinations. A pulse sequence must also be of short duration to 

be useful clinically. There are several types of MR pulse sequences, but in this section I will 
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only examine the basic ones; namely, the conventional spin echo and the gradient recalled 

echo.  

3.5.1 Conventional Spin Echo Pulse Sequences (CSE) 

A quick recap on spin relaxation: after the initial spin excitation (by a 90
0
 RF pulse), and due 

to the local magnetic field inhomogeneities, spins will lose their coherence in the transverse 

plane and start to dephase. Simultaneously, they will also recover towards the longitudinal 

plane (Z direction). As spins dephase, the strength of the induced signal in the receiver coil 

will decrease (Koechli et al., 2006). Therefore, work must be done to strengthen the signal.  

In a conventional spin echo pulse sequence (CSE), before applying the first RF pulse, the 

slice-select gradient has to be turned on to determine where the RF pulse will be sent to. After 

the application of the first 90
0
 RF pulse, the NMV will be tipped from the longitudinal plane 

to the transverse plane; this will induce a signal in the receiver coil, called the Free Induction 

Decay (FID). FID is not readily usable in imaging for two reasons: (a) it is weak and (b) it has 

no spatial information (McRobbie, 2007). Therefore, CSE eliminates these two problems by 

strengthening and spatially localising the signal. The resultant signal is known as an “echo” 

(Blink, 2004). 

Immediately subsequent to slice-selection, a second 180
0 

RF pulse is applied at TE/2 time (or 

tau). The second RF pulse flips over spins in the transverse plane. As illustrated in Figure 

3.20, immediately after being tipped into the transverse plane by the 90
0
 RF pulse, (a) spins 

are in their most coherent state. When the 90
0
 RF pulse is switched off, however, they will 

start to dephase or fan out (b). As time goes by, further dephasing takes place (c and d). Upon 

applying the 180
0 

RF pulse, spins will be flipped 180
0 

from their original position (e). After 

being inverted by the 180
0
 pulse, spins begin to rephase (f and g), and after TE/2, they will 

reach their full coherent state, but facing the opposite direction of their initial location at the 

transverse plane (i) (Koechli et al., 2006; Westbrook et al., 2011). 

 



42 

 

 

Figure 3.20: Spin rephasing process in a conventional spin echo pulse sequence. After being tipped into 

the transverse plane by the 90
0
 RF pulse, spins will exhibit phase coherence (a). After terminating the RF 

pulse, they will start to dephase (b through d). After TE/2, a refocusing 180
0
 RF pulse is sent to invert the 

dephased spins (e); the rephasing process continues (f and g) for another TE/2 time until spins regain their 

full coherence state again (i). (adapted from(Westbrook et al., 2011) ) 

Let us use figure 3.21 below to follow the effect of the systematic application of both 

gradients and RF pulses in the CSE pulse sequence. The process begins with switching on the 

slice-select gradient (1, Gss) and the application of the 90
0
 initial exciting RF pulse (2). Both 

steps (1) and (2) take place simultaneously. The effect of the 90
0
 RF pulse is to tip the NMV 

into the transverse plane (b). After turning off the 90
0 

RF pulse, and at a TE/2 time, the phase 

encoding step will be conducted (3). This involves switching on the phase encoding gradient 

(Gpe), which will introduce irreversible but predictable phase shifts to spins precessing in the 

transverse plane. The amplitude of the phase encoding gradient is changed in each repetition 

time (TR); this results in unique spin phases at each TR. This step facilitates sorting echoes in 

their proper location within k-space, relative to their induced phase. After the phase encoding 

step, both the slice-select gradient and the 180
0
 refocusing RF pulse are simultaneously turned 

on (4 and 5). The 180
0
 RF pulse is applied perpendicular to the transverse plane. This will flip 

the dephasing spins. Accordingly, after TE/2 time, spins will meet again forming a stronger 

echo (7). During the readout of this echo, the third pair of gradients, the frequency encoding 

(6), will be switched on. As the echoes are being sampled, the frequency encoding gradient 

will introduce frequency variation among them. This facilitates spatial location along the 

frequency axis of the k-space (Blink, 2004; McRobbie, 2007; Westbrook et al., 2011). 

Ultimately, in CSE pulse sequences, each TR will produce one echo. This echo fills one line 

in k-space, and is repeated to fill k-space, and fourier transformed to create an image.  CSE 

pulse sequences are inherently slow. This makes them prone to motion artefacts. However, 

they are still used clinically to obtain T1-weighted and proton density imaging due to their 

ability to offer a true image contrast (Koechli et al., 2006; Westbrook et al., 2011).  

a b c d 
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Figure 3.21: Conventional Spin Echo (CSE) pulse sequence. 1 through 7 are the steps conducted in order 

to produce one echo in a CSE pulse sequence. (adapted from (Blink, 2004) ) 

3.5.2 Gradient echo pulse sequences (GRE)  

GRE pulse sequences use the same principles as spin echo sequences, involving spin 

excitation, phase encoding, spin refocusing, and frequency encoding. The key points of 

difference in a GRE sequence are: (1) using a flip angle that is less than 90
0
 for its initial 

excitation step, and (2) using a gradient to refocus the dephasing protons as oppose to a 180
0
 

RF pulse (Blink, 2004; Koechli et al., 2006; Westbrook et al., 2011).  

The flip angle (FA) is defined as the angle by which the net magnetisation vector (NMV) is 

tilted when spins are excited by the RF pulse from the longitudinal towards the transverse 

plane. It is measured in degrees and it is usually 90
0
 in CSE pulse sequences. In contrast, GRE 

uses less than 90
0
 FA. The time needed to apply a 90

0
 FA is longer than that needed to apply a 

FA of 20
0
; this allows the use of a shorter TR, which in turn reduces total scan time. The other 

benefit of using partial (<90
0
) FA in GRE is that, the smaller FA allows faster spin recovery 

to their longitudinal orientation. This reduces the dead time waiting for spins to recover in 

order to apply the subsequent RF exciting pulse (Koechli et al., 2006; Westbrook et al., 2011). 

Reduced dead time also contributes to shortening the TR and overall scan time.  

The second difference between spin echo pulse sequences and GRE is that GRE uses the 

gradient to refocus the dephasing spins (Faulkner and Seeram, 2002). The application of 180
0
 

RF pulse takes longer than using the gradient to perform the same task of spin refocusing. 

Therefore, as the use of gradients to rephase spins in GRE is faster, it also allows for shorter 

TR and ultimately shorter scan times (Westbrook et al., 2011).  

Figure 3.22 below illustrates the GRE pulse sequence diagram. Similar to the CSE, it begins 

with both the slice-select gradient (Gss) and the initial exciting RF pulse (with a flip angle 

usually less than 90 degrees, but here for simplicity, the flip angle is made 90
0
), which are 

applied simultaneously (1 and 2). These two steps tip the longitudinal magnetisation (A) 

towards the transverse plane (B) with an angle defined by the flip angle. Later, as spins start 
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dephasing in the transverse plane (C), the phase encoding gradient is switched on to introduce 

phase shift (3). After a TE/2 time, the frequency encoding gradient (Gro) with initial negative 

polarity (4, lower part) is switched on to deliberately dephase spins in the transverse plane 

(C). Immediately, the polarity of the frequency encoding gradient is switched to positive (4, 

upper part) to start rephrasing spins (D). After a TE/2 time, spins in the transvers plane will 

meet (E) forming a coherent transverse magnetisation that induces an echo (5) in the receiver 

coil (Blink, 2004; Koechli et al., 2006). The generated echo is recorded in k-space to form the 

raw data of an MR image.  

 

 

Figure 3.22: Gradient Recalled Echo (GRE) pulse sequence. 1 through 5 are the steps conducted in order 

to produce one echo in a GRE pulse sequence (top); and the effect of RF pulse and gradients application 

on spins (bottom) [adapted from  (Blink, 2004)  Top and (Koechli et al., 2006)  Bottom] 

It is true that GRE pulse sequences are fast imaging sequences, but they are associated with 

some challenges. GRE sequences are very sensitivity to magnetic susceptibility artefacts 

(namely the Magnetic Susceptibility Artefact, see the artefact section below) (McRobbie, 

2007; Westbrook et al., 2011). Therefore, it is not advisable to use GRE sequences when a 

metallic implant is present in the area of interest, as the susceptibility-derived artefact may 

mask/distort the area under examination (Reimer et al., 2006; McRobbie, 2007). However, 
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this sensitivity to ferromagnetic substances can be advantageous in some situations, for 

example in detecting iron-containing components (such as hemosiderin as a product of 

bleeding) in human tissue (Reimer et al., 2006).  

A key point to notice is that both CSE and GRE have the same concept—creating a “Free 

Induction Decay” or “FID” signal and refocusing it to generate an echo.  In GRE however, 

due to the very short TR (shorter than the T2 and T1 of tissues), the FID signal is highly likely 

to exist as a “left over” after multiple applications of RF pulses, figure 3.23. The final GRE 

image weight is controlled by whether allowing the “left over” FID signal to contribute to the 

k-space data or not. When both FID signal and the echo are allowed to contribute to the k-

space data, they will produce an image weight called T2* (pronounced T2 star), also called a 

coherent gradient echo. However, if only the FID signal is harvested, the resultant image will 

be called T1 spoiled or incoherent gradient echo.  

 

Figure 3.23: The left over FID signal formation after multiple TRs. The first FID created by the first RF 

pulse (red) has been sent to the negative longitudinal axis again by the second RF pulse (orange). Lastly, it 

has been rephrased (blue) by the rephrasing gradient and now it is ready to be used along with the spin 

echo(red) (adapted from (Westbrook et al., 2011) ) 

3.6 MR Image artefacts 

As with other medical imaging modalities, MR images are prone to certain types of artefacts. 

Image artefact refers to the presence of a feature that does not accurately represent the area 

under examination. This could be an additional bright spot on the image, image distortion, or 

signal loss in a particular part of the image. Artefacts can be hardware, operator, or patient 

related, and can be either reversible or irreversible (McRobbie, 2007; Westbrook et al., 2011).  

In this section I will examine certain types of artefacts that are relevant to the MR techniques 

used in the work published in this thesis. Artefact characteristics, causes, and their remedies 

will be addressed.   
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3.6.1 Ghosting Artefact 

Here “Ghost” refers to a faint copy of the anatomy which mimics the real anatomy in one or 

more directions of the image. A major cause of the ghosting artefact in an MR image is 

motion (Koechli et al., 2006). In the brain, motion is generally due to physical motion 

(repositioning) of the head or ghosts originating from pulsatile blood vessels (McRobbie, 

2007; Westbrook et al., 2011).  

Figure 3.24 shows physical head movement (repositioning) during the scan (A). When 

compared to an image without motion (B), it is evident how the ghost artefact has degraded 

the diagnostic or and research value of the image.  

A 

 

B 

 

Figure 3.24: Physical head motion. Here head motion causing ghosting artefact (yellow arrows) in a 

transverse brain image (A) and motion free images (B). (adapted from (McRobbie, 2007) ) 

One of the most effective ways to address physical motion in MRI is by giving clear and easy 

to follow instructions to the patient before the start of the examination. Also, making sure that 

the patient is in a comfortable position inside the magnet is vital. In addition, providing some 

cushions and supportive materials (such as sponges) to immobilise the head makes it easier 

for patients to keep still throughout the examination period. For children and some restless 

patients, appropriate anaesthetic options might be considered (Roth, 2001; Möller and Reif, 

2010). 

3.6.2 Aliasing (wrap around or fold over) Artefact 

Aliasing (also called wrap around or folder over) artefact is mainly seen when the field of 

view (FOV) is smaller than the anatomical area under examination, i.e. The brain. This results 

in those areas beyond the FOV being folded over the anatomy within the FOV (Figure 3.25). 

This is of course an undesirable outcome, as the aliased/wrapped anatomy may obscure the 

brain. Although the fold over artefact is commonly seen in the phase encoding direction of the 

Phase encoding direction 
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image, it also occurs in the slice select direction. This is obvious in three-definitional (3D) 

acquisitions, where the beginning and the end of the 3D volume is usually seen folded on each 

other (McRobbie, 2007).  

The root cause of the aliasing artefact is that the data outside the FOV are being 

undersampled. This means that those protons outside the FOV have been excited by the RF 

pulses and sampled by the frequency encoding gradient, but have not been given a unique 

phase encoding (as the location is outside the FOV). Accordingly, protons outside the FOV, 

will have similar phase shifts to some protons inside the FOV, which will result in spatially 

assigning them to the same spatial location. This eventually will cause two signals (the first 

has an origin from within the FOV and the second has an origin from outside the FOV) to 

share the same location on the MR image (Westbrook et al., 2011). 

A 

 

B 

 

Figure 3.25: Aliasing artefact concept. Areas outside the defined FOV are assigned the same phase shift as 

areas within the FOV and are therefore superimposed (A). A sagittal brain MR image shows the front 

parts of the head (the nose and mouth) are folded over the posterior part of the head. Similarly, the 

posterior part of the head (the occipital part) is folded over the front part (B). (adapted from (Koechli et 

al., 2006) (A) and (Westbrook et al., 2011) (B) ).  

There are several options to address the aliasing artefact. The first is to add spatial signal 

nulling bands (known as spatial saturation bands) on the areas outside the FOV to suppress 

the signals of the protons existing outside the FOV. This technique is not commonly used as 

100% suppression is difficult to achieve (McRobbie, 2007). The second option is to enlarge 

the actual FOV to include the entire anatomy. This option leaves no protons within the RF 

coils signal coverage that are not excited, phase encoded, and frequency encoded. This 

ensures no protons are undersampled and eliminates the potential for aliasing/wrap around 

(Westbrook et al., 2011). However, enlarging the FOV might not be the best choice as it 

reduces the overall image spatial resolution. Enlarging FOV, without changing the acquisition 

matrix, will cause the pixel (voxel) size to increase and image resolution to drop (Faulkner 

and Seeram, 2002; Koechli et al., 2006). The third option to deal with the aliasing artefact is 

using the “no phase wrap (NPW)” or “phase oversampling” option. NPW involves increasing 

the number of phase encoding steps beyond the FOV. This ensures that the protons existing 

outside the FOV will be given unique phase shift that are distinct from those within the FOV. 

However, NPW can only add certain phase encoding steps outside the FOV. Therefore this 
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technique may fail if extremely wide anatomical areas outside the actual FOV exist 

(McRobbie, 2007; Westbrook et al., 2011). Figure 3.26 demonstrates the concept of the NPW 

option.  

 

Figure 3.26: The No phase wrap option. Due to the tight FOV, aliasing artefact occurred (a). After 

applying the no phase wrap option, which involves adding extra phase encoding steps, the artefact has 

been resolved. (adapted from (McRobbie, 2007) ) 

3.6.3 Magnetic Susceptibility Artefact 

Magnetic susceptibility refers to the extent by which a substance will be magnetised when 

exposed to the magnetic field. Different substances will exhibit different magnetic 

susceptibility (they will behave differently) when exposed to the static magnetic field. This 

different behaviour will lead to the different substances/tissues experiencing different phase 

dephasing (Koechli et al., 2006). If substances become highly magnetised (like iron) when 

placed in a magnetic field, they cause field deflection. Magnetic field deflection induces spins 

depahsing as protons lose their phase coherence (Blink, 2004).  

In practice, the most obvious example is when a metallic object (like a hair clip) enters the 

area under examination. Metallic objects have higher magnetic susceptibility than biological 

tissues. This induces severe spin dephasing (incoherence) around the metallic object and 

eventually cause signal loss, which may or may not be associated with degree of distortion 

(McRobbie, 2007). Figure 3.27 shows the effect of the presence of metallic objects on the 

image. To a lesser extent, susceptibility artefact takes place at most tissue interfaces in our 

bodies. However, it becomes prominent when the adjacent tissues are highly chemically 

distinct. The best example is the interface between the paranasal sinuses (air cavity) and the 

base of the skull (dense structure). Other substances like calcium deposits and iron-containing 

(hemosiderin, as product of bleeding) products will exaggerate the susceptibility phenomenon 

(Faulkner and Seeram, 2002; Westbrook et al., 2011).  



49 

 

 

Figure 3.27: Susceptibility artefact. These images show the effect of the presence of metallic objects within 

the area under examination. Both signal loss and geometric distortion are apparent. (adapted from (Blink, 

2004) ) 

In terms of imaging, all pulse sequences will show a degree of susceptibility artefact, but 

images obtained through gradient recalled echo (GRE) pulse sequences exhibit the highest 

degree of this artefact (Koechli et al., 2006; Westbrook et al., 2011). As mentioned in the 

pulse sequences section (Gradient echo pulse sequences (GRE)), due to the lack of the 180
0
 

RF refocusing pulses in the GRE pulse sequence, GRE is not able to compensate for the spin 

dephasing due to magnetic field inhomogeneities (Faulkner and Seeram, 2002; Blink, 2004). 

However, imaging practitioners make use of this point by employing GRE pulse sequences to 

detect haemorrhage.  

There are several options to deal with susceptibility artefact. The first and the most effective 

method is to remove any metallic object, if removable. This could be done by asking patients 

to remove their dentures or hair clips (Roth, 2001; Koechli et al., 2006). However, if the 

metallic object cannot be removed, such as a screw that is placed after a surgical procedure, 

the following approaches may help to reduce the intensity of the susceptibility artefact: (1) 

use spin echo pulse sequences instead of gradient echoes (the use of one or more 180
0 

RF 

pulses helps to refocus dephasing, even that caused by susceptibility, and (2) use short echo 
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times (TE). As TE is the time allowed for the spins to dephase at the transverse plane, the 

shorter the TE, the less spin dephasing is expected to take place. Reducing spin dephasing will 

reduce the degree of susceptibility artefact (Koechli et al., 2006; McRobbie, 2007; Westbrook 

et al., 2011). 

 

3.6.4 Eddy Currents  

When gradient coils (used for phase and frequency encoding) switch on and off rapidly, 

currents are induced in the surrounding conductive parts of the MR system, such as RF coils 

and cryostat. These excessive current are called “eddy currents”. If not controlled, or at least 

reduced, eddy currents can cause geometric distortion in the MR image. The resultant 

distortion can be in a form of contraction, dilatation, overall shift or shear (Figure 3.28) (Le 

Bihan et al., 2006). This kind of artefact becomes more prominent in pulse sequences where 

high gradient amplitudes are used, such as echo planer imaging (EPI) sequences (Healthcare, 

2012). In diffusion weighted imaging (DWI-EPI), high performance gradients are used in 

addition to the conventional spatial localisation gradients. These additional gradients are 

switched on and off rapidly; therefore, they induce currents into the nearby conductive parts 

of the MR scanner system. These eddy currents cause the spins to experience additional 

(unexpected) magnetic fields that are different than those programed by the scanner (Le Bihan 

et al., 2006). As spins receive unanticipated phase shifts, signals will be allocated 

unanticipated locations (Sánchez-González, 2012), and this misallocation of data within k-

space leads to geometric distortion in the resultant image.  

There are several remedies to minimise the effect of eddy currents on the MR image. The first 

is the use of “self-shielded” gradients. These gradients are becoming the standard in most 

commercially available gradients and use additional wiring to reduce the gradient effect 

outside the gradient coils. The second approach to reduce the eddy currents induction is to 

reduce the amount of conductive surfaces in the MR scanner, like the RF coils. This is 

achieved by modifying the design of these conductive surfaces. The third option is to alter the 

shape of the supplied current to the gradients. This helps in creating opposing currents to the 

eddy currents. Another option is post-processing to attempt to minimize the eddy current 

artefact (Le Bihan et al., 2006).  
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Figure 3.28: Geometric distortion secondary to eddy currents. Undistorted image (top left,) contraction 

(top right), shift (bottom left) and shear (bottom right). (adapted from (Le Bihan et al., 2006) ) 

3.6.5 Zipper Artefacts 

Zipper artefact (also called frequency artefact) appears as lines of light and dark across in the 

frequency encoding direction of the image (Figure 3.29). The width of the artefact line is 

variable. The main cause of the zipper artefact is the leak of an external RF waves through the 

RF shield (Faraday’s cage) (Faulkner and Seeram, 2002; Westbrook et al., 2011).  

This can happen due to a fault of the RF shield in the room walls, door, or the operator 

window. Another common cause is the use of non-MR compatible equipment inside the MRI 

room. Non-MR compatible physiological monitoring equipment, for example, may generate 

RF waves that can interfere with the MR image. Another possible scenario is the use of non-

MR compatible cables to remotely connect some devices. For example, a pulse oximeter (a 

device used to measure oxygen saturation) that is kept outside the MR room, but connected to 

the patient, could carry RF energy to the MR room through the waveguide (Faulkner and 

Seeram, 2002; McRobbie, 2007). 

The best remedy for zipper artefact is to deal with the RF source causing the artefact. 

Engineers may need to be called to identify the source and the proper action can be taken 

accordingly (Blink, 2004; McRobbie, 2007; Westbrook et al., 2011). This type of artefact can 

generally be completely eliminated.  
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Figure 3.29: Zipper artefact. Sagittal T2 MRI image of the lower spine shows two lines (arrowed) 

vertically crossing the image, exhitibing the effect of external RF waves that leaked into the scanning 

room. (adapted from  (Blink, 2004) ) 

3.6.6 Parallel Imaging Technology Related Artefacts 

In MRI, parallel imaging (PI) refers to the idea of simultaneous data acquisition. This is made 

possible by the advancement in RF coil design (Westbrook et al., 2011).  

PI allows for shorter scan times, less radiofrequency (RF) deposition to the body, and the use 

of lower gradient application (Koechli et al., 2006). Each of these benefits has its own impact 

on the image quality, as well as patient safety. First, shorter scan time helps in performing 

breath-hold imaging sessions, allows for contrast media bolus chasing, or can be traded for 

either higher spatial resolution or larger anatomical coverage (Westbrook et al., 2011). 

Second, a core concept of PI is focused on incomplete filling of k-space per acquisition. This 

means that fewer RF pulses are needed. Reducing the number of RF pulses dramatically 

reduces the RF deposition to the organ under examination (McRobbie, 2007; Westbrook et 

al., 2011). Third, PI depends on partial k-space filling, which permits shorter echo times (TE). 

Shorter TEs also reduces eddy currents induction, as well as peripheral nerve stimulation 

(McRobbie, 2007). Gradients associated risks will be discussed in the MRI safety section 

(Time-varying gradients related risks). 

Nevertheless, PI is associated with its own set of artefacts. One of the key features when using 

PI is the reduction factor (or acceleration factor). Reduction factor is defined as the factor by 

which the number of the lines in a k-space is reduced (Koechli et al., 2006). The most 

common artefact associated with PI is signal reduction. This drop in signal is due to the fact 

that k-space is only partially filled with real data lines (missing lines are mathematically 

filled). Signal reduction is proportional to the reduction factor (Koechli et al., 2006; 

McRobbie, 2007; Westbrook et al., 2011). Figure  3.30 clearly demonstrates the effect of 

higher reduction factor on signal.  
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Figure 3.30: Signal reduction associated with parallel imaging technique. The image to the left was 

acquired without using parallel imaging, so it has optimal signal level. The middle image was acquired 

with a reduction factor of 3 and the last image (right) with a reduction factor of 6. It is clear that signal 

loss is proportional to the reduction factor. (adapted from (Elster, 2015) ) 

The remedy for such artefact is to specifically decide when or when not to use PI. That is, as it 

is anticipated that the use of PI will cause signal loss, operators should not use it in an image 

that is inherently low in signal, such as imaging very small organs using small FOV and very 

thin slices.  

The second artefact that can be seen if the parallel imaging (PI) technique is not optimally 

used is the aliasing artefact (Koechli et al., 2006; McRobbie, 2007). In fact, PI only 

exaggerates the well-known aliasing artefact (discussed above in the “Aliasing artefact” 

section). PI uses a reduced number of phase encoding steps per acquired portion of the image 

(undersampling in the phase encoding direction). This data undersampling causes two signals 

(the first has an origin from within the FOV and the second has an origin from outside the 

FOV) to share the same location on the MR image (Koechli et al., 2006; Westbrook et al., 

2011). The fix is to use a larger FOV (Healthcare, 2012). Furthermore, one can use lower 

reduction factors to reduce the severity of aliasing. These two remedies can be used together 

to make the most of PI benefits and keep its anticipated drawbacks to a minimum.  
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3.7 MR Safety and Bioeffects  

To date, approved MRI systems for clinical usage (≤ 4 Tesla) have revealed no long term 

biological effects on humans. However, it is well reported that each part of the MR system, if 

not carefully used, may pose some serious risks (Roth, 2001; Westbrook et al., 2011). There 

are reports of reversible effects (such as vertigo, nausea and taste sensation) experienced by 

patients undergoing MRI examinations, but given these effects are only transient (McRobbie, 

2007). They are only mentioned in passing. Instead, potential risks that may cause irreversible 

injuries associated with (1) the main magnetic field (B0), (2) radiofrequency (RF) energy, and 

(3) the time-varying gradients will be examined. Also I will discuss some recommendations to 

avoid or limit the occurrence of these risks.   

3.7.1 Main magnetic field related risks 

Although an MRI examination does not involve ionising radiation (Blink, 2004). The main 

magnetic field (B0) is associated with an invisible risk—the missile effect. The missile effect 

refers to the attractive force created between the magnet and any ferromagnetic object that 

exists within close proximity to the magnet (Roth, 2001; Reimer et al., 2006). For example, if 

a ferromagnetic screw driver is brought close to a magnet, the magnetic field will exert a 

strong attractive force on the screw driver, which will accelerate toward the magnetic if not 

restrained. Flying ferromagnetic objects attracted by B0 do not only mimic missiles in their 

flying fashion, but also in the damage that they may cause to humans or any other object in 

their path. Under the influence of the powerful magnetic field, an oxygen tank attracted by the 

magnet has been reported to kill a child who was inside the scanner (Westbrook et al., 2011).  

It is important to know that the magnetic field is invisible, tasteless, and colourless. In 

addition, in most MRI units, the magnetic field (B0) is always on. This requires strict safety 

guidelines to be followed in any MRI site.  

The American College of Radiology (ACR) recommends several guidelines to ensure the 

safety of patients and workers in the MRI field (Kanal et al., 2013). The ACR 

recommendations can be summarised in two main points: (a) every MRI unit must implement 

a stringent metal screening program for patients, staff or any person who intends to enter the 

MRI environment. Such screening programs should obtain previous surgical history to detect 

any implanted devices, any exposure to metal shrapnel, any treatment patches, and also 

removal of all metallic objects (such as keys). The availability of “MR-safe” devices has 

made it possible to scan patients with medical devices that were previously contraindicated. 

Nevertheless, in these cases, strictly following the manufacturers’ instructions is vital (Roth, 

2001; Westbrook et al., 2011). And (b) it is also recommended that centres establish 

educational programs to raise the awareness of patients, health care practitioners, maintenance 

personnel, and safety officers (Roth, 2001; Westbrook et al., 2011).  
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3.7.2 Time-varying gradients related risks 

The time-varying gradients may pose two potential risks. The first is peripheral nerve 

stimulation (PNS). The rapid switching of the gradients may induce current in conductive 

tissues, like nerves, muscles, and blood vessels (Roth, 2001) (Roth, 2001; Reimer et al., 

2006). This mild PNS may degrade image quality due to the unexpected body movement and 

may cause some discomfort for the patient, but is not dangerous, per se. 

Animal research has shown that respiratory stimulation requires three times the level of 

stimulation required for PNS, while cardiac stimulation requires 80 times the PNS threshold 

(McRobbie, 2007). This means that the levels of gradient amplitudes approved to be used for 

human imaging are less likely to interfere with vital physiological processes.  

In research settings, some pulse sequences (such as echo planer imaging techniques) may use 

higher gradient levels than those used in ordinary imaging techniques (Koechli et al., 2006). 

Therefore, a small proportion of participants may experience slight muscle tingling while 

being scanned (Roth, 2001; Westbrook et al., 2011).  

The second anticipated risk associated with gradients is the acoustic noise. As electrical 

currents are pulsed through gradient coils, they experience a Lorentz force and move slightly. 

The gradient coils move against their mountings and produce very loud knocking noises 

(Roth, 2001; Westbrook et al., 2011). For some pulse sequences, the noise can reach 100 

decibels (dB) (McRobbie, 2007). Hence, hearing protection is necessary for patients 

undergoing MRI examination. The reasonably priced, disposable and widely available ear 

plugs are an excellent option for this purpose. However, more expensive noise-cancelling 

devices are used not only to reduce the noise, but to better communicate with patients during 

the imaging procedure (Roth, 2001).  

The food and drug administration (FDA) initially limited the exposure to the time-varying 

gradients to 6 tesla per second. After providing evidence that this limit resulted in no or little 

long term adverse effects, the FDA has updated their recommendations to set the exposure of 

the gradients to be at the level of patient discomfort (Westbrook et al., 2011; Kanal et al., 

2013).  

With regard to the noise level, the FDA has set the 102 dB as the maximum limit a patient can 

be exposed to in an hour (Roth, 2001). It is important to note that the risk of noise on a patient 

is related to the duration of exposure; that is, the longer the exposure, the higher the chance of 

injury.  

3.7.3 Radiofrequency deposition related risks 

As outlined in the pulse sequences section (Basic MR Pulse Sequences), MR pulse sequences 

deliver radiofrequency (RF) energy to the body. The chief concern with this is tissue heating 

(Reimer et al., 2006). RF energy will be delivered but not dissipated efficiently, so heat will 

accumulate over time. In the worst case, increased RF absorption can lead to burns.  
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When following best practice, RF energy from MRI is not harmful. However, care should be 

taken with people who have a compromised thermal system (Westbrook et al., 2011). As they 

will be at greater risk of temperature increase during MRI examination.  

Non-biological objects implanted inside the human body are of greater concern. They are not 

managed by the body’s thermal system, and therefore pose a major risk of absorbing RF and 

heating, leading to local burn around the implant (Westbrook et al., 2011; Kanal et al., 2013). 

In practice, local burn incidents have been reported secondary to failure to remove some 

ferromagnetic materials. For example, certain tattoo types have been reported to contain 

ferromagnetic particles, which caused local burns when patients underwent MRI examination. 

Other incidents were due to the direct contact of the RF coils cables with the patients’ skin 

(Westbrook et al., 2011).  

To reduce the possibility of burns in MRI, the following recommendations must be followed: 

(1) Any removable metallic object must be removed before entering the MRI room. This 

should be part of the screening procedure mentioned in 3.7.1, Main magnetic field related 

risks. (2) Avoid any direct contact between the RF coil cables and skin. This can be assured 

by adding nonconductive materials like sponges between the cables and patient. (3) Follow 

the manufactures’ recommendations for devices that are permitted to be used inside the MRI 

environment. (4) Lastly, use only approved devices, for example use only MR compatible 

electrocardiogram (ECG) leads (Kanal et al., 2013).  

All commercially available MR systems are designed to monitor the RF exposure level. As it 

is hard to measure how much RF energy has been absorbed by the body, specific absorption 

rate (SAR) is used to measure the total transmitted power in watts (W) per kilogram (kg) of 

tissue (McRobbie, 2007; Westbrook et al., 2011). The MRI system programs the duration and 

intensity of the RF energy based on the patient’s weight (Westbrook et al., 2011). This makes 

it important for the MR scanner operator to precisely enter the patient’s weight to avoid 

delivering unnecessary RF doses to the patient.   

Reducing SAR limits, and accordingly the risk of tissue hearting, is possible through careful 

selection of the imaging options. For example, one can avoid using the body coil. Use of the 

local coils will reduce RF exposure. Obtaining fewer slices will reduce the need to deliver 

more RF pulses. Also, reducing the echo train length (ETL) in the fast spin echo pulse 

sequences will also reduce the number of RF pulses per TR, and ultimately, the entire 

sequence (McRobbie, 2007).  

Recommendations specify a maximum SAR up to 4.0 W/kg (for the entire body averaged 

over 15 minutes), 3.2 W/kg (for the head averaged over 10 minutes), 8 W/kg (for the head or 

torso, per gram of tissue over 5 minutes), and 12 W/kg (for extremities, per gram of tissue 

over 15 minutes) (Westbrook et al., 2011; Kanal et al., 2013).  
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3.7.4 Other relevant risks in the MRI environment 

3.7.4.1 Exposure to cryogens 

The superconductive magnet dominates the MRI unit. As mentioned in the MR system 

section (3.1.1, Superconducting Magnet), superconductive magnets use cryogens (such as 

liquid nitrogen and helium) to maintain their superconductivity status. This requires 

compressing 748 litres of helium gas to make one litre of liquid. For a scanner of a cryostat 

capacity of 1500 litres, if for any reason the compressed gas is released in the MRI room, it 

will fill the room with over 1 000 000 litres of gas. Helium gas poses two main risks in such a 

scenario: (1) helium will replace the oxygen inside the MRI room, which may lead to 

suffocation, and (2) as the helium gas is very cold, release in a confined room (i.e., the 

scanning room) may cause cold burn (Roth, 2001; Westbrook et al., 2011). To reduce injuries 

in case of a spontaneous release (also called a “quench”) or man-made cryogen release, the 

MRI scanning room has to be equipped with a helium ventilation system to ensure removal of 

any helium, and an oxygen monitor to detect any drop in the oxygen level inside the room 

(Roth, 2001).  

 

3.7.4.2 Claustrophobia 

Claustrophobia is defined as the fear of having no escape or being in closed or small spaces, 

like within the bore of the MRI scanner (Murphy and Brunberg, 1997). Often people come to 

their MRI examination without knowing that they are claustrophobic. Once in the magnet, 

participants may panic. This anxiety may cause them to try to escape from the scanner bore, 

which may cause them to injure themselves or even fall from the table. Explaining the 

procedure to them before the scan starts and continuous communication with them throughout 

the procedure should reduce their anxiety level (Koechli et al., 2006; McRobbie, 2007). Other 

options including sedation or anaesthesia may be considered whenever indicated. However, 

some participants will still be unable to tolerate an MRI scan due to claustrophobia. 
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Chapter:4 Methods 

In this chapter, I will describe the sample investigated in this thesis, as well as the clinical, 

neuropsychological, and imaging sessions performed at each assessment. The specific MRI 

data processing and analysis methods for individual MRI modalities will be presented and 

discussed in each relevant chapter. In Chapter 5, I will describe the structural analysis work, 

in Chapter 6, the specific data processing and analysis used to investigate the MR 

spectroscopy data, and in Chapter 7, focus on resting state functional connectivity.  

4.1 Participants 

A convenience sample of 140 participants meeting the UK Parkinson’s Disease Society’s 

criteria for idiopathic PD (Gibb & Lees, 1988; Hughes et al., 1992) was recruited from the 

Movement Disorders Clinic at the New Zealand Brain Research Institute (NZBRI), 

Christchurch, New Zealand. At baseline, PD participants with a broad spectrum of cognitive 

status in PD were invited to participate, which included those with normal cognition through 

to dementia. The control group (participants without PD) comprised 50 healthy volunteers 

matched to the PD sample for mean age, years of education, and sex ratio. Healthy controls 

were spouses of PD patients, friends of PD patients, or recruited via the NZBRI volunteer 

database. Data collection began in May 2007, and finished for the purposes of this thesis in 

October 2016 (i.e. this is part of an ongoing longitudinal study). Exclusion criteria included 

atypical parkinsonian disorder or other central nervous system disorder; prior learning 

disability; previous history of other neurological conditions including moderate-severe head 

injury, stroke, learning disability, vascular dementia; (Román et al., 1993) and major 

psychiatric or medical illness in the previous six months. Neuroradiological screening as part 

of the MRI scanning session (see Chapters 5-7) excluded five PD and two control participants 

due to moderate-severe white matter disease (one control, four PD), marked cerebral atrophy 

(one PD), and cerebellar infarcts (one control). This resulted in 133 PD and 48 control 

subjects with MRI scans available for analysis at baseline. Over the duration of this 

longitudinal study, we acquired a total of 482 MRI scan sessions, including those baseline 

scans. I acquired a total of 150 MRI scans for the healthy control participants over the 

duration of the study, 190 scans of patients classified as having normal cognitive status at the 

time of scanning, 107 scans of patients classified as mild cognitive impairment at the time of 

scanning, and 35 scans in patients with dementia. That is, some participants changed category 

from one session to the next.  During image processing, I excluded some datasets based on 

degradation of image quality, including head motion, other imaging artefacts and missing 

data; details are available in each relevant data analysis chapter (see Chapters 5-7). Table 4.1 

below summarises the number of subjects at baseline and the final number of scans included 

in each individual analysis chapter.  
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Neuropsychological assessment and MRI data acquisition were also collected in the same 

longitudinal (serial) fashion. Therefore, the majority of participants had multiple 

neuropsychological assessments and scan sessions, approximately every two years. Figure 1 

graphically depicts the number of subjects, the number of assessments within each participant, 

and the participant’s cognitive status at each assessment. It can be seen that some participants 

were seen only once (at baseline) but the majority had at least one follow up session. For the 

majority of the study, dementia was an end point and no follow-up sessions were scheduled. 

Because of the requirement of a sub-study, later, some participants with dementia have 

continued to be followed up (two in the sample reported here, figure 4.1 below) 

The study was approved by the Upper South Ethics Committee of the New Zealand Ministry 

of Health (URB/09/08/037). All participants gave written informed consent, with additional 

consent from a significant other when appropriate. 

Table 4.1 Study participants’ numbers at baseline along with the number of scans included in each 

individual analysis chapter. 

Number of study participants at baseline 

Controls 50 

PDN 79 

PD-MCI 38 

PDD 23 

Total 190 

Number of scans included in each individual analysis chapter 

 Structural (T1-weighted) MR Spectroscopy RS-fMRI 

Controls 130 90 73 

PDN 172 131 62 

PD-MCI 88 63 76 

PDD 33 24 10 

Total 423 308 221 

RS-fMRI = Resting State functional MRI, PDD = Parkinson’s disease with dementia, PD-

MCI = Parkinson’s disease with mild cognitive impairment, PDN = Parkinson’s disease with 

normal cognition. 
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Figure 4.1 Graphical representation of the longitudinal MRI scans within this study. Each dot in this figure represents an MRI scan session for an individual 

participant. Multiple sessions within a single participant are connected with lines.  Different colours have been used to indicate the individual’s cognitive status at 

each assessment: blue indicates Control, green indicates PDN, orange indicates PD-MCI, and red, PDD. The y axis indicates the number of years from first 

assessment (baseline). The red arrowed subject for example has 5 points. Those 5 neuropsychological assessments and MRI sessions were performed over an 8 year 

period. That is, this participant completed assessments at baseline, and approximately 2, 4, 6, and 8 years after the first assessment.  This participant was 

categorised as PD-MCI, hence given an orange colour, at baseline, 2, 4, and 6 years. However, the participant deteriorated, eventually meeting dementia criteria at 

6 and 8 years, therefore both dots are changed to red. Control-MCI = participants who were recruited as healthy controls but upon subsequent assessment they met 

criteria for mild cognitive impairment. PDD = Parkinson’s disease with dementia, PD-MCI = Parkinson’s disease with mild cognitive impairment, PDN = 

Parkinson’s disease with normal cognition. 
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4.2 Clinical and neuropsychological assessment 

Participants’ motor severity was assessed with Hoehn and Yahr staging and part III of the 

Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III) 

(Goetz et al., 2004; Goetz et al., 2008). The Montreal cognitive assessment (MoCa) was used 

as a global cognitive screening tool (Nasreddine et al., 2005). Consistent with the Movement 

Disorders Society level II criteria for Mild Cognitive Impairment (Litvan et al., 2012). All 

participants completed a comprehensive neuropsychological assessment. This battery assessed 

five cognitive domains: (1) executive function; (2) attention, working memory and processing 

speed; (3) learning and memory; (4) visuospatial and visuoperceptual function; and (5) 

language. 

Executive function was assessed using Stroop interference, letter fluency, category fluency 

and category switching (from the Delis-Kaplan executive function system), action fluency and 

trails B. Attention, working memory and processing speed were evaluated using digits 

forwards/backwards, digit ordering, map search task (from the test of everyday attention), 

Stroop colour reading, Stroop word reading and trails A. Learning and memory was 

measured with the California verbal language test-II short form (acquisition, short and long 

delays), and the Rey complex figure test (short and long delays); impairment in either or both 

delay components of each memory test counted as one impairment. Visuospatial and 

visuoperceptual performance was determined using judgment of line orientation, 

fragmented letters test, the picture completion test and the Rey complex figure test-copy. 

Language was assessed using the Boston naming test, dementia rating scale-2 similarities 

sub-test, and the language component of the Alzheimer’s dementia assessment cognitive scale 

(object and finger naming, commands, comprehension, spoken language and word-finding 

difficulties) (Wood et al., 2016). 

Standardized scores (relative to norms, accounting for age and sex) from the constituent 

neuropsychological tests were averaged to provide individual average cognitive domain 

scores. Global cognitive ability for each participant was then expressed as an aggregate z 

score obtained by averaging the cognitive domain scores (henceforth referred to as ‘cognitive 

z score’). 

Based on the neuropsychological assessment, PD participants were classified as either 

cognitively normal (PDN), with mild cognitive impairment (PD-MCI), or with dementia 

(PDD). Consistent with the MDS task force level II diagnostic criteria, PD-MCI patients did 

not have significantly impaired functional activities of daily living, verified by interview with 

a significant other, but scored at least 1.5 standard deviations (or equivalent) below normative 

data on at least two measures within at least one of the five cognitive domains. MDS criteria 

were also used to diagnose dementia (scored more than 2 standard deviations, i.e. Functional 

impairment) (Emre et al., 2007; Dalrymple-Alford et al., 2011). 
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4.3 MRI data acquisition 

All participants were in the supine position, head-first and provided with ear plugs and/or 

headphone (to reduce the scanner noise). Clear instructions were given to participants to stay 

still during the data acquisition sessions. Sponge padding around the head was applied to 

reduce head motion during the scan. Where applicable, a quantitative assessment of head 

motion was performed and used to remove participants with excessive head motion. Details 

are provided in relevant chapters. 

In addition, radiographers maintained communication with participants throughout the entire 

exam (to help reduce the anxiety of participants while inside the scanner bore and maximise 

the likelihood of exam completion). 

Data collection in this thesis was performed on a 3.0 Tesla General Electric Signa HDXt MRI 

scanner (GE Healthcare, Waukesha, USA). This scanner is equipped with gradient coils with 

a slew rate of 120 mT/m/s and amplitude of 33 mT/m. Also, the 8-channel head 

radiofrequency coil was used to image the brains of all participants.  

Over the course of the study, while the MRI scanner (hardware) remained unchanged, the 

software was upgraded several times. We identified that the software version had an effect on 

some of the imaging data types (for example, the MRI spectroscopy); therefore, this was 

taken into account whenever applicable. Details on the effect of the scanner software upgrade 

on imaging data are explained in each relevant chapter.  

In this thesis, I examine three MR imaging modalities: high resolution structural imaging (T1-

weighted images), single-voxel proton MR spectroscopy, and resting state functional 

connectivity. Table 4.2 summarises the imaging parameters of these three types of scans. 

Here, (1) structural MRI was used to assess cortical thickness, (2) MR spectroscopy was used 

to explore metabolic changes in the posterior cingulate cortex, and (3) resting-state functional 

MRI was used to evaluate functional connectivity of the default mode network. In subsequent 

chapters, I will examine these three techniques as imaging methods as well as the motivation 

behind using them as potential markers for cognitive impairment in Parkinson’s disease. 

Similarly, the modality-specific preprocessing and analyses are presented in each relevant 

chapter (chapters 5-7). 

4.4 Data processing and analysis software 

Different data processing and analysis software were used for different type of data, therefore 

details will be provided in each relevant chapter.  

 

 

  



64 

 

Table 4.2 Imaging parameters of the three types of scans used in this thesis. 

 T1-weighted images MR Spectroscopy RS-fMRI 

Pulse name SPGR PROBE-P (PRESS) GRE-EPI BOLD 

Imaging mode 3D Single voxel 2D 

Imaging plane Axial NA Axial angling 20⁰ 

above the AP-PC line 

Repetition Time 6.7 ms 1500 ms 3000 ms 

Echo time 2.8 ms 35 ms 35 ms 

Inversion time 400 ms NA NA 

Flip angle 15
0
 NA 90

0
 

Field of view 250 mm NA 220 mm 

Slice thickness 1 mm 30 mm 3 mm 

Gap (between slices) 0 NA 0 

Matrix 256×256 NA 64×64 

Voxel size  0.98× 0.98×1 mm
3
 20×20×30 mm

3
 3.44×3.44×3 mm

3
 

Number of slices 170 NA 44 

Number of volumes 1 NA 160 

Number of 

excitations 

1 8 1 

Coverage Whole brain Midline PCC Whole brain 

Parallel imaging ASSET No No 

Acceleration factor 1.5 NA NA 

Gradient mode Zoom Whole Zoom 

Scan time (minutes) 5:07 3:48 8:12 

AC-PC line = anterior commissure (AC) - posterior commissure (PC) line, PRESS = Point 

Resolved Spectroscopy, BOLD = Blood Oxygenation Level Dependent, EPI = Echo Planar 

Imaging, GRE = Gradient Recalled Echo, NA = Not Applicable, PCC = Posterior Cingulate 
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Cortex, PROBE-P = proton Brain Examination (the PRESS version), RS-fMRI = Resting 

State functional MRI, and SPGR = Spoiled Gradient Echo. 
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Chapter:5 Brain structural change in PD 

In this chapter, I will examine two structural MRI-derived metrics, cortical thickness and 

surface area, to investigate whether they are useful markers for cognitive impairment in 

Parkinson’s disease. 
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5.1 Introduction 

 

An important non-motor symptom associated with Parkinson’s disease (PD) is cognitive 

impairment. While impairments may be subtle at early stages of the disease (Mamikonyan et 

al., 2009). They are common and can affect up to 25% of newly diagnosed PD patients 

(Muslimović et al., 2005; Barone et al., 2011). As the disease progresses, up to 80% of 

patients will eventually develop dementia (Hely et al., 2008). With dementia becoming the 

most burdensome aspect of the disease (Aarsland et al., 2011). While most patients will 

develop dementia, the time to dementia is highly variable, ranging from 2-20 years after 

diagnosis (Aarsland et al., 2007; Hely et al., 2008). Neuropsychological testing can be used to 

identify a group of patients meeting criteria for mild cognitive impairment (PD-MCI), and 

these patients are at increased risk for developing dementia (Broeders et al., 2013; Goldman et 

al., 2014). However, only 50% of patients classified as PD-MCI will go on to develop 

dementia within four years (Wood et al., 2016). Thus additional objective markers of 

cognitive decline are desperately needed in order to identify those individuals at imminent 

risk of dementia.  

In particular, structural MRI techniques have shown promise in characterizing cognitive 

impairment in PD. High resolution volumetric T1-weighted images, for example Spoiled 

Gradient Recalled Echo (SPGR) images in this thesis, are generally used for the investigation 

of brain structure. One of the key features of the SPGR images is that they offer excellent 

contrast between the different brain tissues (grey matter, white matter, and cerebrospinal fluid, 

Figure 5.1). The combination of high spatial resolution and tissue contrast provides robust 

measurements of tissue volume, cortical thickness, and surface area.   
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Figure 5.1 Transverse T1-weighted spoiled gradient recalled echo (SPGR) MRI demonstrating the 

excellent contrast between different brain tissues:  (A) grey matter, (B) white matter, and (C) the 

cerebrospinal fluid.   

In Alzheimer disease (AD) for instance, it is well-established that cognitive ability is 

associated with structural changes in the brain (Emre, 2003; Thomann et al., 2005; Frisoni et 

al., 2010). AD is consistently associated with a pattern of brain atrophy that begins in the 

entorhinal cortex and the hippocampus, then spreads to association areas in medial parietal, 

lateral temporal and frontal regions, eventually affecting all regions of cortex (Fjell et al., 

2014). Similarly, the progression toward dementia of the Alzheimer’s type is preceded by 

detectable atrophy. The annual rate of atrophy in amnestic mild cognitive impairment is 

several fold higher than the normally aging participants, with further accelerated atrophy rates 

as individuals progress and develop Alzheimer’s disease (Bernal-Rusiel et al., 2013). 

Likewise, in PD, structural T1-weighted imaging has consistently shown reduced volumes 

and thinner cortices in PD, as well as an association with cross sectional cognition (Jubault et 

al., 2011; Zarei et al., 2013; Hong et al., 2014; Mak et al., 2014; Pereira et al., 2014; Segura et 

al., 2014; Mak et al., 2015; Gerrits et al., 2016; Hanganu and Monchi, 2016; Uribe et al., 

2016). Early work by our group, which investigated grey matter (GM) volume in a 

cognitively well-categorized PD cohort, revealed that GM loss was significantly established 

in patients with mild cognitive impairment (PD-MCI) and further extensive GM loss existed 

in patients with dementia relative to controls. The study also identified that GM atrophy was 

correlated with patients’ cognitive ability, cognitive z score (Melzer et al., 2012). 

Others have also identified that patients with dementia (PDD) exhibited reduced grey matter 

volumes in fronto–parietal, medial temporal and limbic areas relative to controls (Rektorova 

et al., 2014). Studies have even identified GM reduction in non-demented patients when 

A 

B 
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compared to controls (Summerfield et al., 2005). Similarly, Bouchard and colleagues reported 

reduced hippocampal (in PDD) and amygdala (in non-demented PD) volumes relative to 

healthy controls (Bouchard et al., 2008). Structural MRI can also be used to assess thickness 

of the cortex. A number of recent cross-sectional studies have reported cortical thinning in PD 

relative to controls. A study that compared cognitively intact patients with mild PD against 

controls, found that patients exhibited cortical thinning in the parietal lobe (Madhyastha et al., 

2015). Another study with a wider spectrum participants encompassing 43 PD-MCI, 47 non-

PDMCI, and 32 healthy controls, reported that PD-MCI patients had reduced cortical 

thickness in the parieto-temporal region when compared to both non-PDMCI and controls 

(Segura et al., 2014). Furthermore, Pagonabarraga and colleagues, with clearly defined 

cognitive groups (18 controls, 26 PDN, 26 PD-MCI, and 20 PDD), showed cortical thinning 

in the medial temporal lobes and the posterior medial cortical regions early in the disease 

(PDN versus controls), and a more extensive pattern of thinning in PDD (Pagonabarraga et 

al., 2013). The above findings suggest a robust relationship between cortical thickness profiles 

and cognitive impairment in PD. 

Less evidence exists for a relationship between cortical thinning over time and cognitive 

outcomes in PD. A two-time point study that followed controls, non PD-MCI, and PD-MCI 

participants for 20 months after their initial MRI scan showed that participants with PD-MCI 

had thinner cortical areas relative to both healthy controls and patients with PDN. Of greater 

importance, however, is that the rate of cortical change was significantly associated with a 

measure of global cognitive ability (the Montreal cognitive assessment) in the temporal and 

occipital lobes (Hanganu et al., 2014). In other words, patients who have worse cognitive 

performance scores after 20 months, also exhibited thinner cortical thickness. 

Specific areas of thinning vary widely across studies. A relatively consistent pattern of 

thinning has emerged, characterized by thinner cortices in parietal, occipital, temporal, 

posterior cingulate, precentral, precuneus, rostral anterior cingulate, rostral middle frontal, and 

the insula in PD relative to healthy controls. Furthermore, thinner cortices in the occipital, 

temporal, frontal, posterior cingulate, precuneus, parietal, and isthmus cingulate have also 

been specifically linked with cognitive scores. These findings suggest an underlying 

characteristic pattern of cortical thinning associated with PD and cognitive impairments in 

PD. 

However, the precise evolution of changes in cortical thickness and surface area over time, 

and how these measures of brain structure relate to longitudinal measures of cognitive 

impairment and the development of dementia in PD, remains relatively unexplored. 

Therefore, here I followed a large group of well-characterized PD patients  — MDS level II 

mild cognitive impairment criteria (Litvan et al., 2012) —  up to six years after baseline, with 

multiple time points, in order to examine the relationship between the evolution of cortical 

thickness, surface area, and cognitive impairment in PD. 
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5.2 Methods 

5.2.1 Participants 

At baseline, a convenience sample of 140 individuals with PD was recruited from the 

Movement Disorders Clinic at the New Zealand Brain Research Institute, Christchurch, New 

Zealand. Participants met the UK Parkinson’s Disease Society Brain Bank criteria for 

idiopathic PD (Hughes et al., 1992). Participants were selected to be representative of the 

broad spectrum of cognitive status present in PD. Fifty healthy controls were also recruited to 

match patients for mean age, years of education and sex ratio. At baseline, exclusion criteria 

included atypical parkinsonian disorder; prior learning disability; history of other neurologic 

conditions including moderate–severe head injury, stroke, vascular dementia; and major 

psychiatric or medical illness in the previous six months. Participants were followed up at 

approximately two years and four years after baseline assessment, with 41 participants 

completing scans and assessments at six years after initial assessment. A total of 424 MRI 

scans were acquired over the duration of the study (total number of scans across all time 

points: HC=125; PD with normal cognition, PDN=173; PD-MCI=93; and PDD=33). One 

participant (PD-MCI) experienced a large cortical stroke and was excluded from subsequent 

follow up assessments, leaving a total of 423 MRI scans to be included in the analyses. Figure 

5.2 below graphically depicts the number of subjects, the number of assessments within each 

participant, and the participant’s cognitive status at each assessment. Participants, or 

significant others whenever appropriate, gave written informed consent. The study was 

approved by the Upper South Ethics Committee of the New Zealand Ministry of Health.  

5.2.2 Neuropsychological and clinical assessment 

Details on participants’ clinical and neuropsychological assessment are provided in the 

methods chapter (chapter 4, section “Clinical and neuropsychological assessment”). Table 5.1 

below summarizes the clinical and neuropsychological assessment results. 
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Figure 5.2 Graphical representation of the longitudinal MRI scans within this study. Each dot in this figure represents an MRI scan for an individual participant. 

Multiple scans within a single participant are connected with lines.  Different colours have been used to indicate the individual’s cognitive status at each 

assessment: blue indicates Control, green indicates PDN, orange indicates PD-MCI, and red, PDD. The y axis indicates the number of years from first assessment 

(baseline). PDD = Parkinson’s disease with dementia, PD-MCI = Parkinson’s disease with mild cognitive impairment, PDN = Parkinson’s disease with normal 

cognition.
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5.2.3 MRI acquisition 

Three-dimensional T1-weighted (spoiled gradient recalled echo acquisition, TE/TR/TI = 

2.8/6.6/400 ms, flip angle=15
0
, FOV = 250 mm, acquisition matrix = 256×256×170, slice 

thickness = 1mm, voxel size = 0.98×0.98×1.0 mm
3
) images were acquired on a 3T General 

Electric HDXt scanner using an 8-channel head coil at each time point. Detailed MRI 

acquisition parameters are provided in the Chapter 4.  

5.2.4 Image processing   

The longitudinal pipeline of the Freesurfer software (version 5.3.0, 

https://surfer.nmr.mgh.harvard.edu) was used to process the MR images and produce 

measures of cortical thickness and surface area (Reuter et al., 2012). An unbiased within-

subject template space image (Reuter and Fischl, 2011). Was created using robust, inverse 

consistent registration (Reuter et al., 2010). Subsequent processing steps included removal of 

the non-brain tissue and transformation to Talairach space. Atlas registration, spherical 

surface maps and parcellations were initialized with common information from the within-

subject template, significantly increasing reliability and statistical power (Reuter et al., 2012). 

I visually inspected all the processed images, with no required manual correction. Mean 

cortical thickness (mm, unsmoothed) and surface area (mm
2
) were extracted from 10 ROIs for 

each hemisphere using the Killiany-Desikan parcellation atlas. These areas were selected 

based on previous literature identifying the following regions as not only consistently 

showing cortical thinning in PD versus healthy controls(Jubault et al., 2011; Ibarretxe-Bilbao 

et al., 2012; Pereira et al., 2012)., but also showing an association with cognitive 

decline:(Hanganu et al., 2013; Pagonabarraga et al., 2013; Hanganu et al., 2014; Segura et al., 

2014; Hanganu and Monchi, 2016).: inferior parietal, isthmus cingulate, lateral occipital, 

middle temporal, posterior cingulate, precentral, precuneus, rostral anterior cingulate, rostral 

middle frontal and the insula. Figure 5.3 displays the 10 cortical areas examined. 
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5.2.5 Statistical analysis 

Regional cortical thickness and surface area were assessed longitudinally using Bayesian 

multi-level regression models with brms (https://github.com/paul-buerkner/brms) in R 

(www.R-project.org, v3.3.2). All models estimated effects for each of the examined 10 brain 

regions (ROIs). 

Model 1: This model cross-sectionally incorporated all time points to evaluate the effect of 

the age, sex, and PD on the cortical thickness and surface area. An intercept varying by 

participant was also incorporated into the model.  

Model 2: Model 1 was extended with a global cognitive score to assess the additional effect 

of global cognitive score on cortical thickness and surface area at cross section.  

 

Model 3: A longitudinal model to investigate the effect of time on cortical thickness and 

surface area in both PD and controls. Age at baseline, sex, group (PD or controls), and time 

from baseline were included as covariates in the model. The intercept as well as the effect of 

time from baseline were nested within participants. This allowed the investigation of group-

by-time interaction. 

 

Model 4: The fourth model assessed the associated between subjects’ cognitive ability and 

cortical thickness and surface area, as well as the relationship between each individual’s 

Figure 5.3. Regions of interest investigated. (left) a lateral view of the inflated surface generated by 

Freesurfer showing the left rostral anterior cingulate [light green], precentral [yellow], insula [light 

blue], inferior parietal [dark blue], middle temporal [light red], and lateral occipital [dark red] cortical 

regions. (right) a medial view that shows the left precuneus [green], isthmus cingulate [pink], posterior 

cingulate [orange], and rostral anterior cingulate [white] cortices. These ROIs have been derived from 

the Freesurfer “lh.aparc.annot” file which is based on the Killiany/Desikan parcellation atlas. 
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cognitive change over time and change in cortical thickness and surface area over time. First, 

a Bayesian multi-level regression model (with the intercept, as well as the time from baseline, 

nested within participants) was used to fit a model of longitudinal cognition within each 

individual, based on the cognitive assessment at each time point. This resulted in estimates of 

baseline cognition and change in cognition over time for each individual.  Model 3 was then 

extended to include baseline cognition and cognitive change-by-time interaction 

 

Model 5: This model was restricted within participants with PD only, testing whether their 

motor symptoms and levodopa equivalent dose (LED) were correlated with cortical thickness 

and surface area measures. Age and sex were included in the model as covariates.  

5.3 Results 

5.3.1 Demographics, neuropsychological and clinical assessments 

Participants’ demographic profile is presented in Table 5.1. At baseline, while control and PD 

groups as a whole were matched for age, there were differences across the PD cognitive 

subgroups, with PDD being oldest, and PDN youngest. Participants differed in their cognitive 

abilities, as quantified by cognitive z score and MoCa. Controls showed the highest cognitive 

scores with stepwise reduction through PDN and PD-MCI, to reach the lowest cognitive 

scores in the PDD group. When compared to PDN, demented patients exhibited worse disease 

severity (H&Y) and motor impairment (UPDRS III). As expected, on average the PDN group 

had the shortest disease duration and lower levels of anti-parkinsonian medication usage, 

followed by PD-MCI (intermediate) and PDD, the longest disease duration and highest 

medication levels.  
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Table 5.1. Subjects demographics and neuropsychological assessment results at baseline 

 HC PDN PD-MCI PDD 

N 50 79 38 23 

Sex [F/M] 16/34 28/51 13/25 3/20 

Age [years] 69(8) 64(9) 68(7) 73(7) 

Education [years] 13(3) 13(3) 13(3) 12(2) 

Global Cognitive 

performance [z score] 

0.62(0.4) 0.23(0.4) -0.70(0.4) -1.68(0.6) 

MoCa 27(2) 26(2) 23(2) 17(4) 

H&Y NA 2 [1.5-2.5] 2 [2-2.6]
 
 3 [3-4]

 
 

UPDRS III NA 32(16) 38(16) 60 (20) 

Disease duration [years] NA 3.1(4) 5.6(6) 10.2(8) 

LED [mg/day] NA 289(382) 384(442) 687(359) 

Global cognitive performance (Z score) is an aggregated z score obtained by averaging the cognitive domains 

scores. Values are the mean and the standard deviation except for the H&Y, where the median and the 25%-75% 

quartiles are displayed. Abbreviations: HC = Healthy controls, PDN = Parkinson’s disease with normal cognitive 

ability, PD-MCI = Parkinson’s disease with mild cognitive impairment, PDD = Parkinson’s disease with 

dementia, LED = Levodopa equivalent dose, MoCa = Montreal cognitive assessment, H&Y = Hoehn and Yahr 

scale, UPDRS III = Unified Parkinson’s disease rating scale-part three and NA = not applicable.   
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Results for all models are presented as plots in a similar manner. Each plot displays the effect 

of an individual predictor in the model. Each row on the y axis represents one of the 10 ROIs 

investigated, right hemisphere first, followed by left hemisphere. For each region, bars 

represent the 95% lower and upper uncertainty intervals; the dot in the middle of the bar 

indicates the mean value in that particular ROI.  

5.3.2 Model 1-A: The effect of age on cortical thickness and surface area. 

Age was found to have a large effect on cortical thickness (CTh) in the majority of the 

examined brain regions (a total of 20, ten in each hemisphere). To a lesser extent, it also had a 

moderate effect in half of the ROIs for surface area (SA), with consistent effects on the left 

and right regions. Both CTh and SA were affected in the same direction. That is, the older the 

subject, the thinner the CTh and smaller SA regions (Figure 5.4). 

 

Figure 5.4 Model 1-A (the effect of age): Exploring the age effect on cortical thickness (CTh) and surface 

area (SA). Bars represent the 95% lower and upper uncertainty intervals; the dot in the middle of the bar 

indicates the mean value. Results considered significant if the 95% uncertainty interval does not cross 

zero. Almost all regions showed an association between age and cortical thickness. Fewer ROIs showed an 

association between SA and age; however those that did exhibited this effect bilaterally. Abbreviations:  

lh= left hemisphere, rh= right hemisphere, Ip= inferior parietal, Is= isthmus cingulate, Lo= lateral 

occipital, Mt= middle temporal, pcc= posterior cingulate, pc= precentral, pr= precuneus, rac= rostral 

anterior cingulate, rmf= rostral middle frontal, and ins= insula. 
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5.3.3 Model 1-B: The effect of sex on cortical thickness and surface area. 

In terms of cortical thickness, gender did not generally have a large effect (Figure 5.5). On the 

other hand, males showed greater SA than females in most of the cortical regions with 

consistent left and right effects. 

 

Figure 5.5 Model 1-B (the effect of sex): Exploring the sex effect on cortical thickness (CTh) and surface 

area (SA). Bars represent the 95% uncertainty intervals; and the point in the middle of the bar indicates 

the mean value. Abbreviations:  lh= left hemisphere, rh= right hemisphere, Ip= inferior parietal, Is= 

isthmus cingulate, Lo= lateral occipital, Mt= middle temporal, pcc= posterior cingulate, pc= precentral, 

pr= precuneus, rac= rostral anterior cingulate, rmf= rostral middle frontal, and ins= insula. 
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5.3.4 Model 1-C: The effect of Parkinson’s disease on cortical thickness and 

surface area. 

Parkinson’s disease generally showed thinner cortices across all regions examined, with most 

of the probability mass for a negative effect of Parkinson’s on CTh. Surface area generally 

was similar to control participants, with weak evidence it may be generally slightly larger in 

PD (Figure 5.6). 

 

Figure 5.6 Model 1-C (the effect of Parkinson’s disease): Exploring the Parkinson’s disease effect on 

cortical thickness (CTh) and surface area (SA). Bars represent the 95% uncertainty intervals; the dot in 

the middle of the bar indicates the mean value. Abbreviations:  lh= left hemisphere, rh= right hemisphere, 

Ip= inferior parietal, Is= isthmus cingulate, Lo= lateral occipital, Mt= middle temporal, pcc= posterior 

cingulate, pc= precentral, pr= precuneus, rac= rostral anterior cingulate, rmf= rostral middle frontal, and 

ins= insula. 
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5.3.5 Model 2: The effect of global cognition on cortical thickness and 

surface area. 

This model is similar to Model 1, however a ROI by global cognitive score interaction was 

added to assess the additional effect of global cognitive score. After adding global cognition 

to the model, while the effect of age and sex on both CTh and SA remained relatively 

unchanged, Parkinson’s disease effect showed slight reduction. In addition, with worse global 

cognition CTh was generally thinner, except for the left inferior parietal and insula. In 

contrast, when looking at SA, cognition had a restricted yet large effect on only two regions; 

the isthmus cingulate and insula, with the effect present bilaterally (Figure 5.7). 

 

Figure 5.7 Model 2 (the effect of cognition): Exploring the cognition effect on cortical thickness (CTh) and 

surface area (SA). Bars represent the 95% uncertainty intervals; the dot in the middle of the bar indicates 

the mean value. Abbreviations:  lh= left hemisphere, rh= right hemisphere, Ip= inferior parietal, Is= 

isthmus cingulate, Lo= lateral occipital, Mt= middle temporal, pcc= posterior cingulate, pc= precentral, 

pr= precuneus, rac= rostral anterior cingulate, rmf= rostral middle frontal, and ins= insula. 
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5.3.6 Model 3: The effect of time on cortical thickness and surface area. 

This model explored CTh and SA over time. The analysis showed weak evidence of general 

cortical thinning over time except for two regions (right rostral middle frontal and left 

precuneus). In PD, only the left precuneus region exhibited CTh decreases, likely reflecting a 

compensation of the general increase in CTh in that region observed for the control subjects. 

These results suggest consistent yet weak evidence of cortical thinning over time.  Most 

regions showed no evidence of SA changes over time, except for bilateral isthmus cingulate 

and the left insula, which exhibited increased SA over time. PD exhibited no evidence of 

changes in SA over time relative to controls, although more of the probability mass was for 

negative rates over time (Figure 5.8). 
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Figure 5.8 Model 3 (the effect of time and group-by-time interaction): Exploring the time effect and 

group-by-time interaction on cortical thickness (CTh) and surface area (SA). Bars represent the 95% 

uncertainty intervals; the dot in the middle of the bar indicates the mean value. Parkinson’s time effect is 

in addition to the time effect. That is, the actual effect of PD over time is the effect of time plus the 

Parkinson’s time effect. Abbreviations:  lh= left hemisphere, rh= right hemisphere, Ip= inferior parietal, 
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Is= isthmus cingulate, Lo= lateral occipital, Mt= middle temporal, pcc= posterior cingulate, pc= 

precentral, pr= precuneus, rac= rostral anterior cingulate, rmf= rostral middle frontal, and ins= insula. 
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5.3.7 Model 4: The effect of change in global cognition over time on cortical 

thickness and surface area. 

This model is an extended version of Model 3, with cognitive performance at baseline and 

cognition performance change. The ultimate goal of this model was to examine whether 

participants’ baseline global cognition ability and the change in global cognitive performance 

was associated with any change in the CTh or SA. As with Model 2, global baseline cognition 

was generally correlated with thinner cortices, most strongly in bilateral posterior cingulate 

and lateral occipital cortices. Declining cognitive performance over time was also moderately 

associated with cortical thinning in several cortical regions including bilateral posterior 

cingulate and lateral occipital cortices. SA, on the other hand, as with Model 2, generally 

showed minimal relationship with cognition, except in the bilateral insula and isthmus 

cingulate. Declining cognitive performance over time generally had minimal association with 

changes in surface area over time, except for right isthmus cingulate and right insula (both 

exhibited SA reduction) (Figure 5.9). 
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Figure 5.9 Model 4 (the effect of cognition performance): Exploring global cognition performance effect 

on cortical thickness (CTh) and surface area (SA). Bars represent the 95% uncertainty intervals; the dot 

in the middle of the bar indicates the mean value. Change over time has been referenced to a period of 10 

years. Abbreviations:  lh= left hemisphere, rh= right hemisphere, Ip= inferior parietal, Is= isthmus 
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cingulate, Lo= lateral occipital, Mt= middle temporal, pcc= posterior cingulate, pc= precentral, pr= 

precuneus, rac= rostral anterior cingulate, rmf= rostral middle frontal, and ins= insula. 

5.3.8 Model 5: The effect of motor symptoms on cortical thickness and 

surface area.  

This model was restricted to include only participants with PD, and examined the association 

of motor symptoms with CTh and SA. CTh showed an increase with greater motor 

impairment (UPDRS part 3) in several regions. SA also exhibited an increase with greater 

motor impairment in both the precuneus and insula cortices (Figure 5.10). In an extended 

version of this model, I added cognition; both the cognition and motor symptoms effects 

remained the same on CTh and SA (similar to what Model 2 identified). 

 

Figure 5.10 Model 5 (the effect of motor symptoms): Exploring motor symptoms effect on cortical 

thickness (CTh) and surface area (SA). Bars represent the 95% uncertainty intervals; the dot in the 

middle of the bar indicates the mean value. Abbreviations:  lh= left hemisphere, rh= right hemisphere, Ip= 

inferior parietal, Is= isthmus cingulate, Lo= lateral occipital, Mt= middle temporal, pcc= posterior 

cingulate, pc= precentral, pr= precuneus, rac= rostral anterior cingulate, rmf= rostral middle frontal, and 

ins= insula. 
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5.4 Discussion 

With a large sample of well-characterized PD participants followed over 4-6 years (423 MRI 

scans), while this study found moderate evidence of cortical thinning in PD, there was no 

evidence of differences in surface area between controls and PD. Further, cortical thickness 

and surface area showed to correlate with both participants’ baseline cognitive ability and the 

declining cognitive ability over time. These findings suggest that changes in cortical thickness 

and surface area measures are slightly influenced by PD per se, but changes are mainly driven 

by the cognitive impairments and decline, both at cross section and over time.  

5.4.1 Cortical thickness 

Results presented in this thesis suggest that cortical thickness in Parkinson’s disease should be 

considered in the context of cognitive impairments. I observed an association between 

cognitive ability and cortical thickness in several cortical regions. 

While older individuals had thinner cortices, there was also moderate to strong probability 

that the Parkinson’s disease as a group had thinner cortices in most regions. This provides a 

framework for the interpretation of recent cross-sectional studies. A number of these studies 

have identified cortical thinning in the parietal and frontal lobes of non-dementia PD groups 

relative to controls (Zhang et al.; Pereira et al., 2012; Pagonabarraga et al., 2013; Segura et al., 

2014; Madhyastha et al., 2015). However, other studies with well-characterized cognitive 

groups (specifically grouping PDN and PD-MCI participants) did not identify significant 

thinning (Zarei et al., 2013; Mak et al., 2014). It is therefore not necessarily surprising that I 

found regions with only moderate effects. Therefore, based on previous research investigating 

well-characterized cognitive groups in conjunction with my results showing stronger 

association with cognition, I suggest that PD may be associated with subtle and restricted 

cortical thinning early in the disease. However, more extensive and severe cortical thinning 

occurs in the presence of cognitive impairments and decline.  

This interpretation is also supported by a longitudinal study by Mak and colleagues (Mak et 

al., 2015). While PDN were indistinguishable from PD-MCI and controls, the PD-MCI 

showed temporal, parietal, and frontal thinning relative to controls at baseline. Eighteen 

months later, relative to controls, the PDN group experienced accelerated thinning in the left 

middle frontal cortex. The PD-MCI group exhibited more widespread acceleration of cortical 

thinning in frontal and temporal cortices relative to PDN, and in frontal and parietal cortices 

relative to controls. The study concluded that accelerated cortical thinning in PD-MCI  can be 

used as a biomarker for cognitive impairment in PD (Mak et al., 2015). In another 

longitudinal study, Hanganu et al., showed restricted accelerated thinning in PD-MCI in the 

temporal, occipital, parietal and supplementary motor area relative to controls (Hanganu et al., 
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2014). The findings in the current study (cortical thinning manifests widely in the brain with 

worsening cognitive impairments) are in agreement with both these two previous longitudinal 

studies, but extend interpretation beyond 18 months, to include imaging up to six years after 

baseline, and specifically investigate the relationship between change in cognition and change 

in cortical thinning.  

When I tested for the effect of time (without incorporating the global cognition ability) both 

the healthy controls and PD participants showed moderate probability of reduced cortical 

thickness over time in most regions. Furthermore, PD showed no evidence of having a 

different trajectory over time. There were also several regions where cognitive decline over 

time was associated with thinning over time. In this dataset, I contend that cortical thinning 

becomes a prominent feature as cognitive impairments worsen and dementia emerges. In the 

current study, while the effect of time was underwhelming, global cognitive ability showed a 

moderate effect on cortical thickness. This is emerging as a consistent finding in the literature, 

with several studies identifying cross-sectional frontal, temporal, parietal, occipital, and 

cingulate thinning in PD-MCI and PDD, with additional insular cortex thinning in PDD 

(Hanganu et al., 2013; Hwang et al., 2013; Zarei et al., 2013; Hong et al., 2014; Pereira et al., 

2014; Segura et al., 2014; Mak et al., 2015). Results presented here provide strong evidence 

that widespread thinning is observable at cross-section and becomes a prominent feature of 

PD-related cognitive decline, by highlighting the relationship between cognitive decline and 

cortical thinning over time. Previous investigations of heterogeneous non-demented PD 

groups, that may or may not have included individuals with cognitive impairment, may help 

explain the inconsistent findings of the variation in thinning in PD without considering 

cognitive effects, with more extensive thinning when cognitive ability was considered.  

By including global cognitive ability in Model 2, I attempted to consider the effect of PD per 

se in addition to cognitive impairments. In 2011, Jubault et al. (Jubault et al., 2011). 

Suggested that thinning in the supplementary and pre-supplementary motor areas may be due 

to the disease itself, and are not a consequence of cognitive deterioration. This may be the 

case, but in order to reduce the number of comparisons and specifically focus on areas 

identified in the literature as areas of cortical thinning (in relation to cognitive impairment), I 

did not specifically investigate these motor areas. It is possible that other areas of the brain 

may show sensitivity to more motor-related change early in the disease progression. However, 

in the areas of the brain investigated here, I found that cognitive impairment was more closely 

associated with thinning than PD or motor impairment. When UPDRS III was added to Model 

5, cognitive results remained unchanged. In addition, I found weak evidence of correlation 

between cortical thickness and motor impairment, as in previous studies (Melzer et al., 2012; 
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Zarei et al., 2013). This suggests that cortical thinning in the regions investigated in this study 

is more closely associated with cognitive ability than motor impairment.  

Similarly, I did not investigate subcortical volumes. Typical parkinsonian pathology affects 

the striatum, so it too may show early volumetric reductions (Gerrits et al., 2016). In relation 

to cognition, Mak et al., showed that atrophy in the left caudate was accelerated in PD-MCI 

over 18 months (Mak et al., 2015). It is therefore probable that at least some subcortical 

structures are associated with cognitive impairments in PD, however in order to limit the 

number of comparisons in this thesis, I focused on a restricted set of cortical regions 

suggested to be involved in PD-related cognitive decline.  

The current findings also appear consistent with functional imaging results in PD. Studies 

utilizing SPECT and PET have identified decreased metabolism and perfusion in (Hosokai et 

al., 2009; Liepelt et al., 2009), PD-MCI (Wallin et al., 2007; Huang et al., 2008) and PDD 

(Antonini et al., 2001; Firbank et al., 2003; Kasama et al., 2005). Many areas showing 

functional deficits correspond to the areas I have identified as exhibiting thinning with 

cognitive impairment (such as frontal, temporal, parietal, occipital) (Tachibana et al., 1995; 

Abe et al., 2003; Silbert and Kaye, 2010)., suggesting a link between function and structure. 

Reduced cortical metabolism and perfusion have been reported in early stages of the disease 

(PD non-demented patients) (Abe et al., 2003; Kasama et al., 2005), while widespread cortical 

thinning does not manifest until later in the disease process (PD-MCI & PDD), perhaps 

suggesting that functional deficits may occur prior to the robust structural changes that 

accompany cognitive deterioration. Longitudinal multimodal imaging would help to answer 

these structure-function questions in the context of the emergence of cognitive impairments in 

PD.  

Our group has previously reported volumetric differences at cross-section in a subgroup of the 

sample investigated here (Melzer et al., 2012). The previous work showed grey matter 

atrophy in PD-MCI and PDD relative to controls (and in PDD relative to PDN) in temporal, 

parietal, and frontal regions. In the current study, I chose to measure cortical thickness via 

Freesurfer as a number of recent studies showed cortical thickness to be more sensitive than 

voxel-based morphometry measures (Winkler et al., 2010; Ibarretxe-Bilbao et al., 2012; 

Pereira et al., 2012; Meyer et al., 2013) and it has been validated against histological data 

(Cardinale et al., 2014; Popescu et al., 2016). It also allowed investigation of surface area. 

5.4.2 Surface Area 

With regard to the cortical surface area (SA) analysis, I identified that age showed a strong 

association with SA only for rostral anterior cingulate, posterior cingulate, and middle 

temporal, insula, all bilaterally. Aging has been reported to impact the white matter integrity 



90 

 

 

 

(Xiong and Mok, 2011; Hernández et al., 2013). The identified relationship between age and 

SA may reflect the age-related white matter changes (the link between the white matter 

integrity and SA is discussed below). In contrast the cortical thickness findings, males had 

larger SA for most of the examined regions, with the varying effect sizes likely, in part, 

reflecting the sizes of the regions similar to the age effect, females reported to have smaller 

white matter structures than males (Kanaan et al., 2012; Ruigrok et al., 2014). Given the 

connection between SA and white matter, the observed sex effect here is expected 

There was greater probability of larger SA values in PD, although the effect was variable and 

small. This suggests that SA and CTh are affected differently in PD, as previously 

documented (Gerrits et al., 2016). In contrast to CTh, which showed a consistent association 

with cognitive ability across all regions, the association with SA had a large but regionally 

restricted impact within rostral anterior cingulate, isthmus cingulate, and insula. The effect 

was bilateral and the worse the cognition ability, the smaller the SA. However, in some areas, 

both CTh and SA were jointly affected. For example, in the isthmus cingulate and insula, both 

reduced CTh and reduced SA were associated with cognitive decline. Similar to the CTh 

behaviour, healthy controls showed very minimal SA increase over time, restricted to the 

bilateral isthmus cingulate and left insula. PD showed no evidence of a difference over time 

compared to controls. These findings suggest that PD had a small effect on SA, and that PD 

did not exhibit any evidence of accelerated change in SA over time. However, I identified a 

few limited regions that exhibited an association between accelerated reduction in SA and 

change in cognition (right isthmus cingulate, posterior cingulate, and insula). Any changes in 

SA are therefore likely to be more associated with cognitive status and decline, rather than 

with PD in isolation.  

There are only few studies that have examined cortical SA in PD, and all have been cross 

sectional in nature. Jubault et al. (Jubault et al., 2011) found that PD had increased SA in the 

parietal, frontal, cingulate and insular cortices when compared to controls. Gerrits et al. 

(Gerrits et al., 2016) on the other hand, compared 93 PD (PDN = 75, PD-MCI = 8, PDD = 4, 

and unknown status = 6) patients to 45 healthy controls. The study authors found that PD had 

larger SA than controls in the right frontal cortex; and also identified a significant association 

between the visuospatial memory performance scores and the SA in the left frontal region. 

(Gerrits et al., 2016). While I also identified SA changes in the frontal cortex, the 

heterogeneity of the PD group population makes it hard to compare the current study findings 

to this study finding. Similarly, my findings are consistent with Gerrits et al. in observing a 

negative association between cognition (measures via the Rey Osterrieth Complex Figure Test 

in Gerrits et al., and global cognitive z score in this thesis) and SA. Hanganu and colleagues 

(Hanganu et al., 2013) investigated 2 PD subgroups (PD-MCI and PD non-MCI) in addition 
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to the controls, and showed that the PD-MCI group had both areas of increased and decreased 

SA in multiple regions in comparison to both the PD non-MCI and controls. Relative to 

controls, they identified significant SA changes in their non-MCI group in the occipital and 

frontal regions, but SA changes extended to the frontal cortex in the PD-MCI group. I 

identified similar pattern in the cohort presented in this thesis—regions including the right 

insula and isthmus cingulate correlated with cognitive ability at cross section and over time.  

As demonstrated by the above studies and my current results, there is substantial variability 

and little consensus surrounding the relationship between SA, PD, and cognitive impairment. 

Therefore, the current results provide a much-needed description of this relationship at cross 

section and over time within PD.  

A number of normal and pathological processes can give rise to cortical thinning. For 

example, an in-vivo study that evaluated healthy volunteers with MRI and PET scans showed 

a linear association between neuronal density and cortical thickness (la Fougère et al., 2011). 

However, in healthy elderly individuals neuronal numbers and density remained unchanged, 

despite pronounced cortical thinning in the frontal and temporal regions (Freeman et al., 

2008). This suggests that reduced neuronal density does not necessarily equate to neuronal 

loss. Rather, a change in the neuronal and dendritic architecture is one potential cause behind 

cortical thickness changes. Another potential mechanism on why cortical thinning manifests 

in PD is the disrupted white matter fibres. White matter disruption is well documented in PD 

(Hattori et al., 2012; Melzer et al., 2013; Koshimori et al., 2015; Duncan et al., 2016). But 

what is more important is that the compromised white matter health also reported to cause 

cortical thinning (Duering et al., 2015). 

While cortical thinning is believed to be due to neuronal and dendritic architecture; and white 

matter changes (Duering et al., 2015; Hanganu and Monchi, 2016). Disrupted white matter is 

also linked to changes in cortical surface area. As hypothesized by Essen in 1997, a 

compromised axon may cause tension or shrinkage in the white matter fibres, which in turn 

leads to deeper sulci or expanded SA (Van Essen, 1997). So, cortical surface area may not 

only provide information about the state of the cortex, but it may indirectly reflect the 

underlying white matter integrity.  

The link between change in the cortical surface area and the changes in the underlying white 

matter is not unique to PD. For example, a study that evaluated both Alzheimer’s disease 

(AD) and multiple sclerosis (MS) patients against controls reported that the white matter 

volume (WMV) was significantly reduced in both AD (13%) and MS (16%) relative to 

controls. Also, they identified significant cortical thinning in both patient groups (10% in AD 

and 4% in MS) in comparison to controls. Supporting the link between SA and white matter 

damage, the AD group showed highly significant SA reduction (13%, P<0.0001). However, 



92 

 

 

 

the MS patients had no significant SA difference relative to controls (Deppe et al., 2014). This 

suggests that SA is affected differently than cortical thickness, and differently across disease 

pathologies. Direct assessment of WMV in relation to SA in PD using both structural and 

diffusion MRI would provide a means to assess this hypothesis in PD. 

Characterizing cognitive decline in PD remains an area of continuing research despite recent 

diagnostic criteria for PD with mild cognitive impairment (PD-MCI) and PD with dementia 

(PDD) (Emre et al., 2007; Litvan et al., 2012). Accordingly, the characterization of cognitive 

status, or lack thereof, may have a large effect on the previously reported relationships 

between CTh, SA, Parkinson’s disease, and cognitive status (Zhang et al.; Jubault et al., 2011; 

Ibarretxe-Bilbao et al., 2012; Pereira et al., 2012; Gerrits et al., 2016). Similarly, absent 

control groups or relatively small sample sizes make interpretation more difficult (Zhang et 

al.; Jubault et al., 2011; Ibarretxe-Bilbao et al., 2012; Pereira et al., 2012; Hanganu et al., 

2013; Mak et al., 2014; Worker et al., 2014; Danti et al., 2015).. 

The current work has a number of limitations. MRI and neuropsychological assessments were 

performed with no interruption to participants’ anti-parkinsonian drug regime. This may have 

influenced their cognition or MRI outcomes. However, previous work found no relationship 

between Levodopa equivalent dose (LED) and brain volumes (Melzer et al., 2012). Visual 

hallucinations have been associated with cortical atrophy in PD (Ibarretxe-Bilbao et al., 

2010). I did not have a dedicated measure of visual hallucinations, but using a sub-score of 

the neuropsychiatric Inventory, I did investigate whether generic hallucinations were 

associated with cortical thickness in our sample. The presence of hallucinations was 

associated with cortical thinning in the occipital, temporal, and parietal lobes. However, with 

only a general, non-specific measure of hallucinations, it is difficult to comment on the 

potential influence visual hallucinations may have on cortical thickness in the current cohort. 

Similarly, depression has also been associated with grey matter atrophy (Kostić et al., 2010). 

Likewise, measures of depression were generalized as present or absent, and did not allow 

detailed investigation. While subjects’ hydration levels have been reported to affect brain 

morphometry outcomes (Streitbürger et al., 2012; Biller et al., 2015). I did not measure 

hydration and therefore did not account for this in my analysis. It is important to note that is it 

hard to control for the level of hydration. For example, it is almost impossible to guarantee 

that the same individual will be able to maintain the same level of hydration for each single 

imaging session, let alone the variability between subjects. My results can be compared to 

other studies in the literature, where hydration has not been controlled for. One potential 

limitation is that I fit a linear Bayesian regression model to all longitudinal cognitive data to 

derive an estimate of cognitive change in each individual. This was a linear model, so 

essentially cognitive change is the slope of a line indicative of change in cognition over time. 
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While for many individuals, a linear model would estimate their cognitive trajectory 

adequately; other individuals may exhibit more non-linear trajectories. For example, a PD 

individual may experience relatively stable cognition from baseline through two and four 

years. However, between years four and six, there may be a sharp acceleration and decline. 

This may not be adequately modelled by a linear estimate. However, the linear model fit is a 

good first approximation and I have used this ‘cognitive change’ value as a proxy for 

cognitive change over time. 

Given the longitudinal nature of the study, the MRI scanner software has been upgraded 

multiple times. Cortical metrics (CTh and SA) derived from the structural MRI reported to be 

influenced by the scanner software upgrade (Barnes et al., 2010). Hence, I tested for the 

scanner version effect and found no evidence of an effect on the data, hence I did not include 

scanner version in my analysis as a covariate. 

Additionally, while participants were seen approximately every two years, follow up times 

were only approximate. However, this was accounted for by using the Bayesian multi-level 

model approach, and time was included as a continuous variable, not just a categorical 

(baseline vs follow up). 

5.5 Conclusion 

With a large sample size and comprehensive neuropsychological assessment, this longitudinal 

study showed that cognitive deterioration of PD individuals is associated with a reduction in 

cortical thickness and surface area in several cortical regions. However, most importantly, the 

analyses revealed that cognitive impairment is closely associated with cortical thinning and 

surface area reduction, perhaps more so than PD per se or motor impairment. Therefore, these 

results highlight the potential role of cortical thickness and surface area as objective markers 

for cognitive impairment in PD.  
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Chapter:6 Brain metabolic changes in 

Parkinson’s disease 

The impact of Parkinson’s disease (PD) is not limited to the brain structure; 

neurodegenerative diseases such as PD affect brain chemical integrity as well. Hence, in this 

chapter, I will examine the utility of the non-invasive MRI technique magnetic resonance 

spectroscopy, or MRS, to explore the relationship between cognitive impairment and MRS 

metabolites in Parkinson’s disease.  

Work presented in this chapter has been published in the journal of Parkinsonism & Related 

Disorders. (Mustafa Almuqbel, Tracy R. Melzer, Daniel J. Myall, Michael R. MacAskill, 

Toni L. Pitcher, Leslie Livingston, Kyla-Louise Wood, Ross J. Keenan, John C. Dalrymple-

Alford, Tim J. Anderson (2016). Metabolite ratios in the posterior cingulate cortex do not 

track cognitive decline in Parkinson's disease in a clinical setting. Parkinsonism & Related 

Disorders, 22, 54-61). 

As the first author of this published work, I inspected the raw MR spectroscopy (MRS) data 

for artefacts, extracted the MRS metabolite estimates from the data, prepared the extracted 

information for analysis, ran the statistical analysis, and wrote the manuscript.  
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6.1  Introduction 

In the previous chapter I investigated cognitive decline with cortical thinning and surface 

area; here I will now investigate the relationship with proton Magnetic Resonance 

Spectroscopy (MRS). 

MRS is a non-invasive MR technique that provides an in vivo measurement of key brain 

metabolites concentration. It can measure the low molecular weight metabolites, with a 

detection capability threshold of around 1 millimole per litre (mm/L) from the area of interest. 

The primary metabolites investigated include N-acetylaspartate (NAA, a neuron marker), 

choline (Cho, a cell membrane turnover marker), creatine (Cr, an energy metabolism marker), 

and myo-Inositol (mI, a glial cell marker) have a typical concentration between 1 and 10 

mm/L (Valenzuela and Sachdev, 2001; Gujar et al., 2005; Robert, 2012).  

As opposed to most of the commonly used structural MRI techniques (such as the T1-, or 

diffusion-weighted imaging) or invasive procedures such as the lumbar puncture, MRS 

provides information about the chemical composition of the underlying brain tissue within the 

area of interest (Zhang et al., 2014). Disease-related metabolic (chemical) changes therefore 

can be non-invasively evaluated via MRS. The scope of this thesis is not to establish the 

diagnosis of Parkinson’s disease (PD), rather exploring whether MRS can provide 

information about how the PD-related cognitive impairment can impact the measured brain 

metabolites; with an ultimate aim of using MRS as a marker for cognitive impairment in PD.  

In MRS, the MR-derived spectrum demonstrates the tissue’s chemical composition as a 

collection of multiple peaks. More specifically, the interaction of the metabolites with the 

magnetic field (B) is represented in a form of spectroscopy peaks. These peaks demonstrate 

two main features of the underlying metabolites: (1) the metabolites’ concentrations, which 

are shown as the height of each peak, and (2) the metabolites’ chemical composition, which is 

represented by location along the spectral scale (measured in hertz or part per million)(Blüml, 

2013)., Figure 6.1. 
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Figure 6.1 MR spectrum showing the most commonly measured peaks in the brain. From left to right: 

Myo-Inositol (mI), Choline (Cho), Creatine (Cr), and N-Acetylaspartate (NAA). These peaks are located 

at 3.6, 3.2, 3.0 and 2.0 PPM respectively. The height of the peak represents the underlying metabolite 

concentrations. (Adapted from (Blüml, 2013) ) 

In MRS, the higher the concentration of the metabolite, the larger (higher) the generated 

spectral peak. The locations of metabolites at the horizontal axis of the spectrum depend on 

peak precessional frequencies. This is known as chemical shift (McRobbie, 2007; Blüml, 

2013). (as discussed in alignment and processional frequency  section, chapter 3, MR basics).  

As the magnetic field strength (B) increases, the precessional frequency of the protons will 

increase linearly. Metabolites have different chemical compositions and this dictates the way 

they interact with B. For example, at the atomic level, protons within metabolites that are 

surrounded by more electrons are well-shielded. This means that electrons reduce the strength 

of the magnetic field that the nucleus ‘sees’.  Therefore, in this case, the protons will precess 

at a lower frequency. In contrast, protons that exist in metabolites that are less shielded by 

electrons will experience a stronger magnetic field and accordingly will precess at higher 

frequency(Drost et al., 2002; Blüml, 2013). (Figure 6.2). This difference in precessional 

frequency is what is measured and displayed on the horizontal axis of the MRS spectrum, i.e. 

The difference in the precessional frequency of metabolites causes them to be located at 

different positions on the spectral scale.  
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Figure 6.2 Electron density effect on the precessional frequency of nuclei. In A, the proton (P+) is less 

shielded by electrons, therefore it precess at higher frequency, 60MHz. In B, contrary to A, the proton of 

the atom is heavily shielded by electrons, which mI minimise the exposure of the proton the external 

magnetic field (B
0
) and accordingly, the protons precess at lower frequency, 20MHz. 

As the precessional frequency (measured in MHz) of the protons is magnetic field strength 

dependent, this is usually standardised and presented in parts per million, PPM. PPM is B0 

independent, which makes it the commonly used method of expressing metabolite location in 

spectroscopy (McRobbie, 2007). This helps to reduce confusion, by eliminating field strength 

as a variable. The position of the metabolites on the x axis represents their chemical shift 

relative to a reference, tetramethylsilane (TMS), which sits at 0 PPM by definition (Blüml, 

2013).  

 

The MR spectrum shown on Figure 6.1 above has two dimensions: 

(1) Vertically it shows the strength of the signal and therefore the concentrations of four 

commonly measured metabolites in the brain. The detected metabolites from left to right are: 

Myo-Inositol (mI), which is a glial cell marker; Choline (Cho), regarded as a cell membrane 

breakdown marker; Creatine (Cr), which is a marker for cell energy; and N-Acetylaspartate 

(NAA), which reflects neuronal health (Valenzuela and Sachdev, 2001; Gujar et al., 2005; 

Blüml, 2013).   

(2) Horizontally the figure shows precessional frequency of each metabolite in PPM. From 

left to right, mI, Cho, Cr and NAA are respectively located at 3.6 PPM, 3.2 PPM, 3.0 PPM 

and 2.0 PPM (Drost et al., 2002; Gujar et al., 2005; Blüml, 2013).  

Single voxel spectroscopy (SVS) refers to the idea of acquiring signals only from a specified 

anatomical area (a volume of interest, VOI), avoiding collection of data from surrounding 
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tissues (Figure 6.3). There are three common methods of single voxel spectroscopy (SVS): (a) 

point resolved spectroscopy, PRESS; (b) stimulated echo acquisition mode, STEAM; and (c) 

image selected in vivo spectroscopy, ISIS (McRobbie, 2007).  

 

Figure 6.3 The location of the voxel of interest (VOI) in MR spectroscopy. The red rectangle represents 

the VOI. In perfect situations, this means that data will only be acquired from the anatomy within the 

VOI. 

It is beyond the scope of this thesis to describe in detail how each of these techniques work, 

but I will summarise their broad features and specifically highlight the PRESS technique, as 

this is the technique used for work published in this thesis. 

The main drawback of ISIS is that it is the most susceptible technique to motion artefact, 

relative to both PRESS and STEAM (Blüml, 2013). Although ISIS is not commonly used in 

proton spectroscopy procedures, it is used to assess other nuclear spectroscopy examinations 

(such as phosphorus spectroscopy, P
31

) benefiting from its ability to detect metabolites with 

very short T2 relaxation times (Weiduschat et al., 2013). 

STEAM uses three slice-selective 90
0 

RF pulses along each of the spatial axes. The overlap of 

the three pulses will form the volume of interest (VOI). PRESS however, utilises one 90
0
 and 

two 180
0
 slice-selective RF pulses along each of the spatial directions to achieve the required 

VOI (Blüml, 2013).  

The application of three 90
0
 RF pulses (STEAM case) can be done in a shorter time than one 

90
0
 and two 180

0
 pulses (PRESS case). STEAM therefore offers data acquisition at shorter 
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echo times, and is preferred when shorter echo times are required (for example, ≤30 ms) 

(Drost et al., 2002; Blüml, 2013). Nevertheless, PRESS has a higher signal to noise ratio 

(SNR) than STEAM (McRobbie, 2007). PRESS therefore is the technique of choice when 

smaller VOIs are desired. Modern MRI scanners are equipped with MRS PRESS pulse 

sequences that can achieve TE values below 30ms, thanks to the advancement in coils 

designing and RF technology (McRobbie, 2007). This makes PRESS more favourable 

because it provides both higher SNR and short TEs. 

The foundation of PRESS as a pulse sequence is based on the conventional spin echo 

technique. As illustrated by Figure 6.4, PRESS uses one 90
0
 followed by two 180

0
 RF pulses. 

Gradients are simultaneously switched on during the application of each of these pulses to 

selectively target the VOI. Only protons within the VOI receive each of the three RF pulses 

(McRobbie, 2007; Blüml, 2013).  

 

Figure 6.4 Point Resolved Spectroscopy (PRESS) pulse sequence diagram. PRESS starts with one slice-

selective 90
0
 and is followed by two 180

0
 RF pulses to spatially determine the spectoscopy voxel of interest. 

Note: gradients are switched on simultaneously with each RF pulse to ensue that the RF pulses will only 

target the desired tissue. RF refers to the radiofrequency pulses, Gx refers to gradient at X axis, Gy refers 

to gradient at Y axis, and Gz refers to the gradient in the Z axis of the three orthogonal planes. (adapted 

from (McRobbie, 2007) ) 

In addition to high SNR, another important quality feature of the MR spectrum is the spectral 

width, which reflects the VOI homogeneity (Drost et al., 2002). One of the very important 

steps that takes place before the actual data acquisition in MRS imaging is “shimming” 

(McRobbie, 2007). Shimming refers to adjusting the VOI magnetic field homogeneity. 
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Operators are required to pay attention to this particular factor. This is achieved by inspecting 

the spectral line width (LW) value before starting data acquisition. All new scanners are 

equipped with an automatic shimming feature that runs during the pre-scan stage. Upon the 

completion of the automated shimming procedure, the scanner will display the achieved LW 

value. For SVS, an LW of 7 Hz or less is acceptable (Healthcare, 2012).  

When a line width value greater than 7 Hz is encountered, the operator can repeat the 

automatic shimming once or twice until the desired LW value is achieved. If the LW value 

remains higher than 7 Hz, it is recommended to reposition the VOI. High LW values 

(resulting in spectral line broadening) usually occurred due to the close proximity of the VOI 

to a bone or an air cavity, such as sinuses (Juchem et al., 2004; McRobbie, 2007; Healthcare, 

2012). 

In some cases however, it is hard to position the MRS VOI away from fatty or air-containing 

tissues. In this scenario, one can surround the VOI with saturation bands, which are designed 

to supress signal (Figure 6.5) (Ober et al., 2013).  This reduces contribution of unwanted 

tissues to the VOI. 

 

Figure 6.5 The use of saturation bands around the MRS voxel to improve line width and therefore peak 

quality. This is a sagittal reconstructed 3 dimensional T1-wiegthed MRI image showing an MRS VOI (red 

rectangle) being surrounded by four saturation bands (white d dotted bands, two blue vertical and two 

yellow horizontal). As tissues underneath the saturation bands will be suppressed, it is expected that the 

resultant MRS peaks are only representing the tissue within the VOI. MRS = Magnetic Resonance 

Spectroscopy, MRI = Magnetic Resonance Imaging, and VOI = Voxel of Interest. 

The motivation to collect MR spectroscopy data from our Parkinson’s disease patients was 

that metabolic changes detected by MRS have been linked to neuronal integrity in some 

degenerative disorders (such as Alzheimer disease and front-temporal dementia) (Kizu et al., 

2004; Olson et al., 2008; Tumati et al., 2013). Similarly, a number of reports suggest that 

MRS in the posterior cingulate may also be associated with Parkinson’s disease (Camicioli et 
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al., 2004; Griffith et al., 2008; Griffith et al., 2008). MRS is promising in that it may be 

possible to detect any potential metabolic (chemical) alterations prior to later structural 

changes, thereby providing an early ‘functional’ marker in Parkinson’s disease. 

In the field of Alzheimer’s disease (AD), MRS found to be useful in predicting cognitive 

impairment. For example, in a longitudinal study, the baseline NAA/Cr ratios found to be 

positively correlated with the mini mental state exam (MMSE) scores, and negatively 

correlated with the MMSE score change 12 months after the initial assessment (Doraiswamy 

et al., 1998). Similarly, in PD, MRS shown to be potentially able to identify metabolic 

changes in the “at-risk” group. Wherein, MRS revealed that non-demented patients had 

reduced NAA/Cr metabolite ratios in the temporoparietal region relative to controls. But, 

what is more important is that the reduced NAA/Cr in patients found also to be correlated 

with patients’ reduced global cognitive performance, independently from their motor 

symptoms (Hu et al., 1999). These findings inspired the work in this thesis. Particularly, here 

I investigated the impact of cognitive impairment in PD on the commonly measured MRS 

metabolites in the posterior cingulate cortex. 

Abnormal metabolic ratios (NAA/Cr, Cho/Cr and mI/Cr) in the posterior cingulate cortex 

(PCC) have been identified in Alzheimer’s disease (AD), as well as other neurodegenerative 

diseases such as fronto-temporal dementia (Kizu et al., 2004). A recent meta-analysis of 

single voxel MR spectroscopy in the PCC of patients with dementia and mild cognitive 

impairment (MCI) of the Alzheimer’s type reported accelerated metabolic changes over time 

in the PCC of MCI patients relative to controls (Tumati et al., 2013). Metabolic changes 

measured by MRS in such degenerative disorders have been linked to neuronal loss, axonal 

injury and compromised neuronal energy metabolism (Olson et al., 2008). But the value of 

MRS as a similar biomarker in PD remains uncertain. While reduction in the NAA/Cr ratio 

(interpreted as a neuronal integrity marker) was identified in the posterior cingulate cortex in 

a group of 12 PD patients with dementia relative to healthy subjects; (Griffith et al., 2008; 

Griffith et al., 2008), the results are less clear in PD patients without dementia, with reports of 

both reduced (Camicioli et al., 2004) and unchanged (Camicioli et al., 2007) NAA/Cr relative 

to healthy individuals. A larger study demonstrated no difference in NAA/Cr between 

controls and 136 PD patients, but Cho/Cr was increased in a PD-MCI subgroup relative to 

controls (Nie et al., 2013). While initial work suggests that metabolic ratios within the PCC 

may be related to cognitive ability in PD, there are no reports of the utility of serial MRS and 

whether they faithfully track disease progression, a necessary requirement for a biomarker to 

be useful. In order to answer this question, the present study investigated MRS in the PCC 

longitudinally in an established PD patient cohort. 
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I focused on the PCC for a number of reasons. The PCC exhibits high resting state 

metabolism, is a key hub in the default mode network, and is highly involved in multiple 

cognitive processes (Andrews-Hanna et al., 2010; Leech et al., 2012; Leech and Sharp, 2014). 

Additionally, it is one of the first areas to be compromised in early Alzheimer’s disease 

(Olson et al., 2008). Initial reports also suggest that it is affected in PD, showing 

compromised metabolism (via positron emission tomography), reduced perfusion (via arterial 

spin labelling MRI), and cortical thinning (via structural MRI) (Hosokai et al., 2009; 

Kamagata et al., 2011; Melzer et al., 2012). Furthermore, cross sectional MRS in the PCC has 

identified reduced NAA/Cr in both PDD and non-demented PD (Camicioli et al., 2004; 

Griffith et al., 2008; Griffith et al., 2008), therefore suggesting it as a potential biomarker to 

track Parkinson’s progression. However, abnormal MRS in PD cross-sectional studies is not a 

universal finding and provides no information on whether such a measure reflects progression 

(Camicioli et al., 2007). Hence, in this study, I used single-voxel proton MRS to investigate 

the PCC metabolic prolife in relation to cognitive impairment in PD. The hypothesis was that 

longitudinal changes in brain metabolites from PCC would associate with cognitive decline. 

More specifically, PD patients with greater cognitive decline would show greater disruption 

of chemical concentrations than PD patients with less or no impairment and healthy 

individuals, and this would be trackable over time. 

6.2 Methods 

6.2.1 Participants 

A convenience sample of 130 PD patients at baseline, comprising those with normal cognitive 

status (PDN, n=77); mild cognitive impairment (PDMCI, n=33); or dementia (PDD, n=20), 

was recruited from the Movement Disorders Clinic at the New Zealand Brain Research 

Institute, Christchurch, New Zealand, between May 2007 and August 2013. All satisfied the 

UK Parkinson’s Society criteria for idiopathic PD (Hughes et al., 1992). Forty-nine healthy 

adults were recruited to match the PD patients for mean age, years of education and sex ratio. 

Patients diagnosed with dementia (PDD, n=20) at baseline were not followed further as 

dementia was considered an endpoint, but data from this group were included for baseline 

comparisons. 

Of the 110 non-dementia PD cases, 64 were re-imaged on at least one other occasion over the 

subsequent four years for a total of 106 follow-up scans. Of the 49 healthy controls at 

baseline, 40 individuals were similarly re-imaged, with a total of 59 follow-up scans. These 

follow-up assessments occurred at approximately two and four years after baseline. 

Demographic details are presented in Table 6.1.  

 



104 

 

 

 

Table 6.1 Subject demographics and baseline neuropsychological assessment results at baseline. 

 HC PDN PD-MCI PDD 

Number of subjects 49 77 33 20 

Sex [M/F] 33/16 51/26 21/12 17/3 

Age [years] 68(8) 65(8) 69(7) 73(7) 

Education [years] 13(3) 13(3) 13(3) 12(2) 

Global Cognitive 

performance 

0.65(0.4) 0.25(0.4) -0.70(0.4) -1.69(0.6) 

MoCa 27(2) 26(2) 23(2) 17(4) 

H&Y NA 2 [1.5-

2.5] 

2 [2-2.5] 3 [2.5-4] 

UPDRS III NA 32(15) 36(15) 58 (21) 

Disease duration [years] NA 3.0(4) 5.3(6) 10.0(9) 

LED [mg/day] NA 291(386) 384(442) 687(359) 

Disease duration was calculated as time from diagnosis. Global cognitive performance (Z score) is an 
aggregated z score obtained by averaging the cognitive domains scores. Values are the mean and the 
standard deviation except for the H&Y, where the median and the 25%-75% quartiles are displayed. 
Abbreviations: HC = Healthy controls, PDN = Parkinson’s disease with normal cognitive ability, PDMCI = 
Parkinson’s disease with mild cognitive impairment, PDD = Parkinson’s disease with dementia, LED = 
Levodopa equivalent dose, MoCa = Montreal cognitive assessment, H&Y = Hoehn and Yahr scale, UPDRS III = 
Unified Parkinson’s disease rating scale-part three and NA = not applicable.  

6.2.2 Clinical and Cognitive assessment 

Details on participants clinical and neuropsychological assessment are provided in the 

methods chapter (chapter 4, section “Clinical and neuropsychological assessment”). Table 6.1 

above summarizes the clinical and neuropsychological assessment results.  
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6.2.3 MRS acquisition 

The data acquisition details are provided in the methods chapter (chapter 4, section “MRI data 

acquisition”). The MRI technologist positioned the spectroscopy voxel of interest (VOI) in the 

midline posterior cingulate cortex (PCC) of the brain. Using the sagittal plane to place it as 

close as (but not touching) to the splenium of the corpus callousm; and both the axial and 

coronal planes to place it over the interhemispheric fissure, encompassing both right and left 

hemispheres, figure 6.6 below.  

 

Figure 6.6 Axial, Coronal and Sagittal (left to right) T1-weighted structural MRI images of the brain 

showing the location (orange rectangle) of the spectroscopy voxel on the midline posterior cingulate area 

of the brain. 

Before the start of the data acquisition, two key quality parameters were checked for all 

subjects. 1- Water suppression: a mandatory step aimed at suppressing the relatively high 

concentration of water protons to allow the visibility of the lower concentration metabolites 

such as NAA, Cho, and mI to become visible, and 2- Line width: referring to the width of a 

metabolic peak, which represents the ability to distinguish two adjacent peaks (spectral 

resolution) (Juchem et al., 2004; Blüml, 2013; Ober et al., 2013). In this thesis, water 

suppression was performed before data acquisition with average water suppression of 96% 

and average line width of 6.8Hz. Table 6.2 summarizes the MRS quality parameters.  

Table 6.2 MRS quality parameters 

 HC PDN PDMCI PDD P value 

Line width (Hz) 6.72(0.84) 7.05(1.13) 6.8(1.35) 6.2(1.20) 0.09 

Water Suppression (%) 95.45(2) 96.60(1.73) 95.40(0.83) 92.96(1.08) 0.52 
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P derived from simple analysis of variance across groups.  Abbreviations: HC = Healthy controls; PDN = 
Parkinson disease with normal cognition; PDMCI = Parkinson disease with mild cognitive impairment; PDD = 
Parkinson disease with dementia, and Hz = Hertz. 

6.2.4 Estimated MRS metabolites 

Metabolite ratios, with creatine (Cr) as the reference metabolite, were produced using scanner 

software (PROBE-Q, GE Medical Systems); this included NAA/Cr, Cho/Cr, and mI/Cr. The 

fully automated PROBE-Q package involves (1) Setting a global frequency fit parameter; (2) 

performing line-width and line-shape enhancement by appropriate apodisation of the time-

domain signal; (3) Fourier transformation of the signal to the appropriate frequency resolution 

and number of points; (4) calculation of a baseline correction from the frequency-domain 

signal; (5) and curve fitting the desired regions of the frequency-domain signal. There were 

two software upgrades over the duration of the study (starting from scanner software v14, 

through v15 and lastly v16), but acquisition parameters were unchanged.  

6.2.5 Statistical analysis 

I used R (R Core Team, 2013) and Rstan (rstan: Stan Development Team, Version 2.5.0, 

2014) to fit separate Bayesian hierarchical models for global cognitive ability (cognitive z 

score) and the MRS ratios (NAA/Cr, Cho/Cr, mI/Cr). Varying intercepts and slopes were 

included per subject, modelling their baseline value and change over time. Subject-level 

predictors included were baseline cognitive status (control, PDN, PDMCI or PDD), age at 

baseline, sex, and years of education and, in the case of the MRS ratios, measurement-level 

predictors of scanner version, line width, and UPDRS III were added. Variances differed by 

cognitive groups (and also the model allowed for heteroscedasticity). Cauchy priors (mean 0, 

scale 0.5) were used for subject-level and measurement-level predictors and half-Cauchy 

priors (mean 0, scale 1) were used for variance parameters (Gelman, 2006; Polson and Scott, 

2010). The intercept value of the model corresponds to the cognitive or MRS ratio of a 

healthy female control subject, of mean age and education. Mean parameter estimates (which 

can be interpreted as absolute effect sizes) are given along with a 95% probability interval 

(given the model and the data, the parameter will be within the interval with 95% uncertainty 

interval). Results are considered significant in a classical sense if the probability interval does 

not contain 0. The intercept estimates for each subject from the hierarchical model were used 

to assess the correlations between MRS values and global cognitive ability. Similarly, the 

slope estimates were used to assess the correlation between change in MRS values and change 

in global cognitive ability. Separate linear models were used to assess only baseline scans of 

individuals with follow-up to determine the influence of conversion to dementia on MRS 

values. 
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6.3 Results 

6.3.1 Demographics, neuropsychological and clinical assessments 

Age, H&Y and MDS-UPDRS III increased significantly across the PD cognitive sub-groups. 

Unsurprisingly, the PDN group had the shortest disease duration, PDMCI was intermediate, 

and PDD the longest. Likewise, levodopa equivalent dose (LED) was highest in PDD, 

intermediate in PDMCI, and lowest in PDN. Groups did not differ significantly in years of 

education (Table 6.1 above).  

At baseline, 60% of the PD patients were receiving levodopa replacement and 11% were on 

anticholinergic therapy. While antiparkinsonian medications may influence the MRS 

measures (Lucetti et al., 2007). I did not identify any significant effect of medication on MRS 

ratios (largest T<1.88). Of the 351 individual assessments that included the full suite of MRS 

spectra, clinical, and neuropsychological testing, 43 (11 controls, 21 PDN, nine PDMCI, and 

two PDD) were excluded due to partial or complete failure to quantify MR spectroscopy 

ratios. This generally occurred due to widening of the spectral peaks and poor water 

suppression, which was most likely due to head motion. The remaining 308 individual 

assessments were included in further analyses. Figure 6.7 below graphically depicts the 

number of subjects, the number of assessments within each participant, and the participant’s 

cognitive status at each assessment. 
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Figure 6.7 Graphical representation of the longitudinal MRI scans within this study. Each dot in this figure represents an MRI scan for an individual participant. 

Multiple scans within a single participant are connected with lines.  Different colours have been used to indicate the individual’s cognitive status at each 

assessment: blue indicates Control,  green indicates PDN, orange indicates PD-MCI, and red, PDD. The y axis indicates the number of years from first assessment 

(baseline). PDD = Parkinson’s disease with dementia, PD-MCI Parkinson’s disease with mild cognitive impairment, PDN = Parkinson’s disease with normal 

cognition.
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No significant differences were identified when I investigated whether the excluded subjects 

differed from the remaining study. Figure 6.8 below shows examples of acceptable and 

degraded quality spectra.  

 

 

Figure 6.8 Two magnetic resonance spectra, (A) acceptable quality and (B) degraded quality, with 

prominently widened peaks (arrows) and suboptimal water suppression (arrow head). 

  



110 

 

6.3.2 Neuropsychological assessment and MR spectroscopy markers 

At baseline, as expected global cognitive z score decreased across cognitive groups, in a 

stepwise fashion from healthy controls to PDN, PDMCI and PDD. In contrast, there were no 

significant differences in any of the MRS ratios across groups (Table 6.3).  

Table 6.3 Group differences at baseline (with age, sex, UPDRS III, scanner version and spectrum line 

width as covariates) 

 HC 

(95% UI) 

PDN – HC 

(95% UI ) 

PDMCI – HC 

(95% UI ) 

PDD – HC 

(95% UI ) 

Global 

cognitive 

ability 

0.53 

(0.37 — 0.70) 

-0.32 

(-0.48 — -0.16) 

-1.23 

(-1.42 — -1.03) 

-1.53 

(-2.33 — -0.60) 

NAA 369 

(337 — 402) 

0.34 

(-2.25— 5.05) 

-3.87 

(-22.42 — 1.75) 

0.84 

(-11.01 — 20.22) 

Cho 110 

(99 — 122) 

0.07 

(-2.08 — 2.45) 

-1.85 

(-8.36 — 0.88) 

1.07 

(-3.33 — 13.17) 

mI 76 

(65 — 87) 

-0.19 

( -2.66 — 1.62) 

-0.50 

(-4.12 — 1.33) 

6.43 

(-1.24 — 44.61) 

NAA/Cr 1.64 

(1.52 — 1.76) 

0.013 

(-0.06 — 0.08) 

0.002 

(-0.07 — 0.07) 

-0.248 

(-0.53 — 0.01) 

Cho/Cr 0.50 

(0.45 — 0.56) 

0.01 

(-0.02 — 0.04) 

0.01 

(-0.02 — 0.05) 

0.08 

(-0.056 — 0.21) 

mI/Cr 0.3478 

(0.27 — 0.42) 

0.0003 

(-0.04 — 0.04) 

0.0272 

(-0.02 — 0.08) 

0.1615 

(-0.01— 0.32) 

Mean difference estimates for PDN, PDMCI, and PDD are relative to controls. Abbreviations: HC = Healthy 
Controls, PDN = Parkinson’s Disease with Normal cognitive ability, PDMCI = Parkinson’s Disease with Mild 
cognitive Impairment, PDD = Parkinson’s Disease with Dementia, NAA = N-acetylaspartate, Cho = Choline, mI 
= Myo-inositol , Cr = Creatine, and 95% UI = 95% uncertainty interval. 
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When covariates (age, sex and UPDRS III) were not considered, NAA/Cr and Cho/Cr were 

significantly different in PDD relative to controls (Table 6.4). Scanner software version did 

not affect the MRS ratios. 

 

Table 6.4 Group differences at baseline (with only the scanner software version and spectrum line width 

as covariates) 

 HC 

(95% UI) 

PDN 

(95%  UI ) 

PDMCI 

(95%  UI ) 

PDD 

(95%  UI ) 

Global cognitive 

ability 

0.55 

(0.37 — 0.69) 

-0.30 

(-0.48 — -0.14) 

-1.24 

(-1.44 — -1.06) 

-2.22 

(-2.22 — -1.98) 

NAA 357 

(326 — 391) 

0.61 

(-1.93— 6.65) 

-3.03 

(-16.17 — 1.48) 

-8.73 

(-39.62 — 1.33) 

Cho 110 

(99 — 121) 

0.41 

(-1.05 — 3.38) 

-0.72 

(-4.61 — 1.09) 

0.14 

(-2.00 — 3.01) 

mI 75 

(65 — 85) 

-0.14 

( -2.24 — 1.36) 

-0.52 

(-3.92 — 1.23) 

0.43 

(-1.90 — 5.29) 

NAA/Cr 1.64 

(1.52 — 1.76) 

-0.01 

(-0.06 — 0.04) 

-0.02 

(-0.07— 0.04) 

-0.08* 

(-0.15— -0.01) 

Cho/Cr 0.51 

(0.46 — 0.56) 

0.01 

(-0.02 — 0.03) 

0.01 

(-0.02 — 0.04) 

0.05* 

(0.01 — 0.08) 

mI/Cr 0.35 

(0.29 — 0.42) 

-0.01 

(-0.04— 0.02) 

0.01 

(-0.02 — 0.05) 

0.03 

(-0.01 — 0.08) 

The values are the mean difference estimates for PDN, PDMCI, and PDD are relative to controls. The negative 
signs represent the decrease in either the subjects’ global cognitive score or MRS measures.  Abbreviations: 
HC = Healthy Controls, PDN = Parkinson’s Disease with Normal cognitive ability, PDMCI = Parkinson’s Disease 
with Mild cognitive Impairment, PDD = Parkinson’s Disease with Dementia, NAA = N-acetylaspartate, Cho = 
Choline, mI = Myo-inositol , Cr = Creatine, and 95% UI = 95% uncertainty interval. 
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At follow-up, relative to the controls’ rate of global cognitive z score change, cognitive ability 

in PDN and PDMCI groups declined at a faster rate (I did not calculate a rate of change for 

PDD participants at baseline as PDD was an endpoint; once individuals developed dementia 

they were no longer followed). I found no significant change in any of the MRS ratios over 

time in any of the groups (Table 6.5 and Figure 6.9). 

Table 6.5 Annual rate of change of global cognitive ability and MRS measures (with age, sex, UPDRS III, 

scanner version and spectrum line width as covariates) 

 HC unit/year 

(95% UI) 

PDN unit/year – HC 

(95% UI) 

PDMCI unit/year – 

HC 

(95% UI) 

Global 

cognition 

0.007 

( -0.0368 — 0.0510) 

-0.068 

( -0.1278 — -0.0058) 

-0.141 

( -0.2296 — -0.0410) 

NAA 3.625 

(-0.1612 — 8.4370) 

0.112 

(-1.9765 — 2.6536) 

-0.391 

(-5.1579 — 1.6808) 

Cho 2.036 

(0.3164 — 3.6604) 

0.297 

(-0.8298— 1.7050) 

-0.206 

(-1.8846 — 0.9263) 

mI 2.002 

(0.1816 — 3.7114) 

0.473 

(-0.5728 — 2.0672) 

-0.335 

(-2.0346 — 0.8710) 

NAA/Cr -0.013 

(-0.0333 — 0.0064) 

-0.008 

(-0.0265 — 0.0108) 

-0.003 

(-0.0292 — 0.0216) 

Cho/Cr 0.002 

(-0.0059 — 0.0101) 

0.004 

(-0.0045 — 0.0122) 

-0.004 

(-0.0157— 0.0072) 

mI/Cr 0.007 

(-0.0065 — 0.0203) 

0.005 

(-0.0086 — 0.0179) 

-0.001 

(-0.0281 — 0.0096) 

Values with negative signs represent the decrease in either the subjects’ global cognitive score or MRS 
measures over time. Abbreviations: HC = Healthy Controls, PDN = Parkinson’s Disease with Normal cognitive 
ability, PDMCI = Parkinson’s Disease with Mild cognitive Impairment, PDD = Parkinson’s Disease with 
Dementia,  NAA = N-acetylaspartate, Cho = Choline, mI = Myo-inositol , Cr = Creatine, and 95% UI = 95% 
uncertainty interval. 
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Figure 6.9 Trajectories of 

Cho (A), Cho/Cr (B), mI (C), 

mI/Cr (D), and NAA (E) 

change over time, by group. 

Each point represents an 

assessment and multiple 

assessments within a single 

individual are connected 

with lines. Colours indicate 

cognitive status at each 

assessment: Red indicates 

control, green PDN, blue 

PDMCI, and purple PDD. 

Time from first scan = time 

between initial scan and each 

follow-up scan, where initial 

scan occurred at zero years. 

HC = Healthy Control, 

PDN=Parkinson’s disease 

with normal cognitive ability, 

PDMCI = Parkinson’s 

disease with mild cognitive 

impairment, PDD = 

Parkinson’s disease with 

dementia. 
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6.3.3 Convertors effect on MRS measures 

Moreover, patients who converted (n=6) from PDN or PDMCI to PDD were not significantly 

different from those that remained cognitively stable in terms of baseline MRS values or rate 

of MRS change. Hence, converters were included in the analysis (Table 6.6 below). The 

relationships between MRS measures and global cognitive ability were very weak (R2 = 0.02 

for NAA/Cr, R2 = 0.0003 for Cho/Cr, R2 = 0.0002 for mI/Cr). This was also the case for the 

relationships between change in MRS measures and change in global cognitive ability (R2 = 

0.01 for NAA/Cr, R2 = 0.004 for Cho/Cr, R2 = 0.003 for mI/Cr). 

Table 6.6 The effect of converters on the MRS measures 

 HC Converted Time (year) Converted : Time 

(year) 

NAA 3.6 

 

-9.6 

[-0.8] 

2.5 

[2.0] 

-3.1 

[-0.7] 

Cho 2.0 

 

-3.4 

[-0.8] 

1.4 

[3.2] 

-1.3 

[-0.9] 

mI 2.0 

 

-1.5 

[-0.4] 

1.5 

[3.4] 

-0.9 

[-0.6] 

NAA/Cr -0.013 

 

0.035 

[0.9] 

-0.007 

[-1.8] 

-0.011 

[-0.8] 

Cho/Cr 0.002 -0.005 

[-0.3] 

0.001 

[0.9] 

-0.002 

[-0.4] 

mI/Cr 0.007 

 

0.004 

[0.2] 

0.004 

[1.7] 

-0.003 

[-0.4] 

Values are the mean difference estimates relative to controls, with T value in brackets. Converted: Time = 
refers to the converted group by time interaction. T value generated from separate linear mixed effect 
model used to assess only baseline scans of individuals with follow-up to determine the influence of 
conversion to dementia on MRS values. Abbreviations: HC = Healthy Controls, NAA = N-acetylaspartate, Cho 
= Choline, mI = Myo-inositol , Cr = Creatine.  

6.4 Discussion 

This is the first study to examine the association between changes in brain metabolites in 

posterior cingulate cortex (via single voxel proton MRS) and changes in cognitive ability in 
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PD over time. At baseline, when PDN, PDMCI and PDD were compared to controls, no 

significant group differences in MRS ratios were found, once age and motor impairment was 

accounted for. More importantly, longitudinal assessment for up to four years found no 

significant change in MRS metabolite ratios and no significant relationship between 

participants’ cognitive performance tests and MRS measures. 

6.4.1  MRS metabolites at baseline 

Several smaller cross-sectional studies have examined the posterior cingulate cortex (PCC) in 

Parkinson’s disease using MR spectroscopy, and with inconsistent findings. Griffith and 

colleagues reported that NAA/Cr was reduced in PDD (n=12) relative to controls in one study 

(Griffith et al., 2008) and relative to both controls and non-demented patients in another 

(Griffith et al., 2008). Similarly, Camicioli et al. Reported reduced NAA/Cr in non-demented 

PD (n=12) relative to controls (Camicioli et al., 2004). However, three other studies (n=44, 12 

and 20, respectively), consistent with our findings here, reported no significant difference in 

NAA/Cr between controls and cognitively unimpaired PD patients (Camicioli et al., 2007; 

Griffith et al., 2008; Lewis et al., 2012). A more recent study revealed that relative to both 

controls and non-demented patients, a significant increase in Cho/Cr in PDMCI was found, 

but not in PDD, perhaps due to the small number of PDD patients (n=6) (Nie et al., 2013).  

NAA is generally regarded as a marker reflecting neuronal integrity (Valenzuela and Sachdev, 

2001; Gujar et al., 2005). Dautry and colleagues reported that reduction in NAA reversed after 

ceasing neurotoxic administration to rats and primates, suggesting that neuronal dysfunction 

precedes cell degeneration (Dautry et al., 2000). Similarly, NAA can exhibit reversible 

changes. In humans for example, MR spectroscopy observations of initially reduced NAA 

followed by later recovery have been reported in multiple sclerosis, global brain ischemia, and 

acute brain injury (Bates et al., 1996; Demougeot et al., 2001; Sager et al., 2001). These 

observations suggest that the decrease in NAA may not be specific to neuronal loss, but may 

reflect interruption of neuronal metabolism that, in some cases, is reversible (Firbank et al., 

2002).  

In agreement with three earlier studies, we found no significant change in Cho/Cr or mI/Cr 

(Griffith et al., 2008; Griffith et al., 2008; Nie et al., 2013). Choline containing compounds 

are considered to be cell membrane markers. Gliosis involves high membrane turnover 

(Bruhn et al., 1989; Chaudhuri et al., 2003; Inglese et al., 2003). And choline concentration is 

at least three times higher in glial cells than neurons (Urenjak et al., 1993). On the other hand, 

mI is regarded as a glial cell marker (Gujar et al., 2005; Siger et al., 2009) and so many have 

linked the increased mI peak in MRS to gliosis. A recent pathological study revealed that glial 

cells have a deleterious role in the initiation and progression of PD (Halliday and Stevens, 

2011). Our results suggest that any measurable change of Cho/Cr and mI/Cr in PDD is 

relatively small, at least in the PCC. However, when covariates were removed from the 

model, NAA/Cr and Cho/Cr were both significantly different in PDD at baseline. As the PDD 



116 

 

group was older, had more males, and with greater motor severity, this finding emphasizes 

that covariates must be considered to obtain an accurate estimate of the independent effect of 

cognitive impairment. 

6.4.2 Longitudinal observations 

The present study included a large number of PD patients followed for up to four years after 

initial assessment (a total of 351 MRI scans), with comprehensive clinical and 

neuropsychological evaluation, allowing cognitive classification based on the MDS level II 

criteria (Emre et al., 2007; Dalrymple-Alford et al., 2011). The control group exhibited stable 

cognitive status over time, measured by global cognitive z score. The Parkinson’s disease 

with normal cognitive status (PDN) group demonstrated decreasing cognitive performance 

over time relative to controls, while patients with mild cognitive impairment (PDMCI) had 

the highest rate of decline over time (dementia was an endpoint and therefore patients with 

demented patients were not followed up). That I did not find useful patterns of MRS change 

over time indicates that MRS may not be a feasible longitudinal biomarker of cognitive ability 

in PD. Figure 6.10 below demonstrates the inability of NAA/Cr (as an example for the MRS 

markers) to track cognitive progression; (A) shows a relatively random trajectory of MRS 

change across the four cognitive groups, while (B) displays cognitive z score over time for 

comparison. 

This failure of spectroscopic measures to track cognitive decline in PD is perhaps surprising 

given the positive results in Alzheimer’s disease (AD). A recent meta-analysis reported that 

seven MR spectroscopy studies in AD have identified abnormal metabolic changes over time 

in posterior cingulate cortex (PCC) of MCI patients relative to controls (Tumati et al., 2013). 

The findings here suggest that the PCC in PD is not as useful a metabolic indicator as it is for 

AD. Future studies directly comparing AD and PD will be better placed to further investigate 

this issue. 
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Figure 6.10 (A) Indicates NAA/Cr (as an example for the MRS markers) over time (in years) in each 

cognitive group. Each point represents an assessment and multiple assessments within a single individual 

are connected with lines. Colours indicate cognitive status at each assessment: Red indicates cognitive 

status at each assessment: Red indicates control, green PDN, blue PDMCI, and purple PDD. (B) 

Trajectory of global cognitive z score over time by cognitive group. HC = Healthy Control, 

PDN=Parkinson’s disease with normal cognitive ability, PDMCI = Parkinson’s disease with mild cognitive 

impairment, PDD = Parkinson’s disease with dementia. 

In this study, I assessed only the PCC. However, many other brain regions are involved in PD 

(Melzer et al., 2012; Segura et al., 2014). It is therefore possible that brain regions other than 

the PCC may show abnormal MRS ratios. There is evidence to suggest that abnormal MRS 

ratios exist in pre-supplementary motor areas, anterior cingulate cortex, and occipital lobe 

(Camicioli et al., 2007; Lewis et al., 2012; Nie et al., 2013). It is possible that these other 

brain areas may hold more promise of capturing disease-related MRS change. Hence, future 

longitudinal investigation of these potential brain regions is warranted. 

This study was of a clinical nature. For that reason, I used the MRS ratios as quantified by the 

scanner software (PROBE-Q). This automated approach would have made any positive 

findings immediately available clinically (Li et al., 2003; Schott et al., 2010). However, more 

sophisticated curve-fitting and processing (e.g. LCModel (Provencher, 2001) ) might have 

yielded more accurate concentration estimates. More advanced processing techniques may be 

superior in handling residual water and macromolecule removal, allowing more accurate 

quantification of metabolites and providing adequate power to measure additional metabolites 

(Fayed et al., 2009). However, previous work suggests that the PROBE-Q software provides 
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acceptable inter- and intra-site variability (Webb et al., 1994) and does not necessarily provide 

significantly different results to more advanced methods, such as LCModel (Fayed et al., 

2009). Furthermore, the scanner-derived clinical methods have successfully shown 

association with cognitive abilities over time in Alzheimer’s disease (Kantarci et al., 2007; 

Kantarci et al., 2009; Modrego et al., 2011). However, I emphasize that the results presented 

were obtained from automated clinical software; it is therefore possible that offline processing 

may provide more accurate estimates of metabolite concentrations. But given the clinical 

nature of the study, I believe that the use of the fully automated, verified, and clinically 

applicable (i.e. Time efficient) PROBE-Q did not negatively affect my results. 

Here, I report MRS ratios, with Cr as the reference metabolite. Ratios help correct for signal 

variations, regional susceptibility changes and partial volume effects, at a cost of reduced 

sensitivity and specificity (Jansen et al., 2006). It is generally assumed that Cr (the 

denominator of each ratio) remains stable, but this may not always be the case (Valenzuela 

and Sachdev, 2001; Firbank et al., 2002). Some studies have shown that Cr is unstable in 

healthy individuals(Li et al., 2003). And others report change with normal aging (Ferguson et 

al., 2002). In this sample, I observed no significant change in Cr concentrations over time. 

Therefore, as in clinical practice, I used Cr as an accepted internal reference so that our 

findings could be compared with other reports in the literature (Maheshwari et al., 2000; 

Burtscher and Holtås, 2001). 

Metabolite concentrations and relaxation times may vary with brain compartment, age or 

disease severity (Jansen et al., 2006). While tissue segmentation is ideal to account for such 

differences, I did not perform the step due to its impracticality in a clinical setting.  

In this study, I used an echo time (TE) of 35ms. One of the benefits of using long TE is 

producing less complicated spectra, where spectra will have flatter baselines and better water 

suppression due to the reduction of macromolecules effect. However, this may reduce the 

overall spectra amplitudes. Similarly, the use of very short TE (<20ms) may also lead to 

metabolite signal loss (Öz et al., 2014). Seven studies that investigated the PCC in healthy 

controls and PD patients with varying TE (3 x TE ≈ 30ms, 2 x TE ≈ 140ms, and 2 x TE = 

80ms) reported different findings. Two used TE ≈ 30ms and reported deceased NAA/Cr 

(Griffith et al., 2008; Griffith et al., 2008). While Lewis et al. (Lewis et al., 2012). (TE=35ms) 

found no change in the metabolites between PD and controls. The two studies that used 

TE=80ms, reported inconsistent findings (Camicioli et al., 2007; Griffith et al., 2008).. 

Finally, studies implementing longer TE values (TE ≈ 140ms) found disease-related changes 

in MRS metabolites (Camicioli et al., 2004; Nie et al., 2013). While one group [Griffith et al.] 

Has reported reduced NAA/Cr with TE ≈ 30ms, the current results and those of Lewis et al., 

who also used a TE=35ms, question the clinical utility of single voxel MRS at TE ≈ 35ms of 

PCC in reflecting progression in PD. 

I attempted to minimize the potential effects of a number of confounding factors. Anti-

parkinsonian medication can influence MRS measures (Lucetti et al., 2007; Emir et al., 2012). 
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I therefore examined the effect of medication (LED and anticholinergics) and found no 

significant effect of medication on MRS ratios. Due to the long-term serial nature of the 

study, two software upgrades occurred during data collection, but acquisition parameters 

remained unchanged. I found no significant difference in MRS ratios across scanner software 

version. 

6.5 Conclusion 

With a large sample size and comprehensive neuropsychological assessment, I was unable to 

identify any significant change in MRS parameters relating to cognitive status at baseline or 

over time, once motor symptom severity and age were accounted for. These findings suggest 

that MRS, of the PCC at least, is not a clinically useful biomarker of longitudinal change of 

cognitive impairment in Parkinson’s disease. Nevertheless, as a research group focusing on 

developing predictive biomarkers aimed at tracking PD progression, this work has given us 

the opportunity to assess the utility of MRS in PCC. Given the observed null results, the 

group decided (a) to remove MRS of PCC from the PD research protocol, and (b) to publish 

this work to communicate these findings so as to facilitate researchers to either focus their 

resources on other more potentially useful techniques or use this work as a base to optimize 

future MRS methodologies. 
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Chapter:7 Functional connectivity of the 

default mode network in Parkinson’s 

disease  

In this chapter, I will discuss default mode network (DMN) connectivity, derived from the 

resting state functional MRI (RS-fMRI) data, as a marker for cognitive impairment in 

Parkinson’s disease (PD).  
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7.1 Introduction 

The human brain is organized into multiple functional systems or networks. A network is 

comprised of spatially distributed arrangement of brain regions (“nodes”) that are functionally 

connected. Even when not performing a goal-directed task (i.e., when a person is apparently 

resting but awake), the brain is always active. While this activity is spontaneous and 

seemingly random, blood oxygenation level dependent (BOLD) activity within regions of 

connected brain systems are strongly and selectively correlated. This phenomenon of 

functional connectivity is defined as the statistical association among anatomically distinct 

time series (Aertsen et al., 1989; Friston et al., 1993). It is now generally accepted that these 

distributed neural networks underpin higher cognitive processes. Resting state functional 

connectivity measured via BOLD (RS-fMRI) provides an attractive method to investigate the 

brain’s functional architecture. Clearly, understanding the functional organization of the brain 

is relevant to changes associated with development and disease. Being able to tap into these 

qualities without an explicit task is clinically useful because it avoids some of the usual 

confounds when examining brain activity in impaired populations. BOLD is now commonly 

used to investigate functional integrity of the brain at rest.   

BOLD imaging uses an endogenous tissue contrast (without the need to introduce an external 

contrast agent) to form a series of images over time (Westbrook et al., 2011). The BOLD 

contrast is derived from the different magnetic susceptibilities exhibited by oxygenated and 

deoxygenated blood. That is, oxygenated and deoxygenated blood interact differently in the 

external magnetic field of the MRI scanner. When oxygenated blood is exposed to the 

magnetic field, it exhibits diamagnetic behaviour, wherein it appears brighter on T2* 

(pronounced T2 star) images. In contrast, when deoxygenated blood is exposed to the 

magnetic field, it shows paramagnetic behaviour, which results in darker areas on the T2* 

images (Koechli et al., 2006; Reimer et al., 2006). 

At any one time, both oxygenated and deoxygenated blood are present in the brain and their 

ratio varies continuously, both at rest and while performing tasks. Differences in BOLD signal 

reflect hemodynamic changes as a consequence of neuronal activity. For example, when a 

participant performs a certain task, such as finger tapping, a corresponding area (motor) in the 

brain will be activated. In response to this finger tapping, initial neuronal activity consumes 

oxygen in the surrounding area and results in relatively more deoxygenated (paramagnetic) 

blood locally. This is seen as an initial, but brief signal drop on the T2* MR images. 

Following this, the tissue will require more oxygenated blood (diamagnetic) in order to 

maintain tapping, which results in a large increase in blood flow, rich in oxygenated blood. 

This relative increase in oxygenated blood is associated with local signal increases compared 

to the rest of the brain parenchyma. It is this signal change that is the basis of the BOLD 

contrast (Koechli et al., 2006; Reimer et al., 2006; McRobbie, 2007; Westbrook et al., 2011). 

As early as 1997, using MRI-derived blood flow and BOLD imaging techniques, researchers 

began to record functional connectivity among different brain regions in humans. They 
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expressed this connectivity as the degree of covariance of the spontaneous functional MRI 

time series, acquired at rest (Biswal et al., 1997; Lowe et al., 2000; Greicius et al., 2003). 

During resting state functional connectivity MRI (RS-fMRI) scans, participants were asked to 

remain still and not to think about any particular topic or task. Slow (frequency: 0.01-0.1 Hz) 

oscillations of the resting BOLD time series are of interest for RS-fMRI. These fluctuations 

are generally interpreted to be neuronal in origin. However there is ongoing debate suggesting 

that low frequency BOLD signals are contaminated with oscillations from other non-neuronal 

physiological processes, such as respiration or cardiac output, which may in turn induce an 

artificial neuronal correlation between brain regions. Other evidence suggests that non-

neuronal oscillations (such as respiration and cardiac pulsation) occur in a higher frequency 

band (> 0.3 Hz), and therefore do not interfere with low frequency, neuronally-derived signal 

(Alichniewicz et al., 2013). Nonetheless, minimization of physiological cofounds has become 

a standard RS-fMRI data preprocessing procedure to filter out the non-neuronal frequencies.  

A number of distinct resting state networks have been consistently identified using resting 

state fMRI. As shown by the example in Figure 7.1, these networks include, but are not 

limited to: 1- the primary motor network; 2- the primary visual network; 3- extra-striate visual 

network; 4- insular-temporal/anterior commissure network; 5- left and right parietal-frontal 

network; 6- default mode network; and 7-the executive function/frontal network. Figure 7.1 

shows the regional nodes of these networks. To reemphasize, while these networks are 

comprised of anatomically separated areas of the brain, they are functionally connected at rest 

(Biswal et al., 1995; Beckmann et al., 2005; Salvador et al., 2005; Damoiseaux et al., 2006; 

De Luca et al., 2006; Van Den Heuvel et al., 2010; Van Den Heuvel and Pol, 2010; Tessitore 

et al., 2012).  
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Figure 7.1 Commonly reported resting state functional networks. Although these networks are 

represented by one or more anatomical brain regions (nodes), they are functionally connected during rest. 

(adapted from (Van Den Heuvel and Pol, 2010) ) 

There are two common methods used to extract resting state networks. (1) The first is a 

model-dependent (or the seed) method: In this method, one selects a region of interest (ROI) 

and calculates the covariance of this ROI (or seed) with the time series from the rest of the 

brain. This allows the production of correlation maps indicating functional connectivity 

between the seed region and all other regions. Seed selection is an important step that can be 

performed in a number of different ways. A seed can be a predefined anatomical region or it 

can be selected based on the results of a task-based localization experiment (Lee et al., 2013; 

YorkWilliams and Poston, 2014). For example, one may be interested in examining the 

functional connectivity of the right motor cortex of the brain; during a task-related localizer 

experiment, the participant performs a motor task of the left hand (finger tapping). This 

results in task-related activation in the right motor cortex of the brain. The activation in the 

right motor cortex can then be used as a seed to investigate functional connectivity of the right 

motor cortex against the resting time series of the rest of the brain. This is done by covarying 

the resting state signal from the right motor cortex with every other voxel within the brain, 

resulting in a functional connectivity map (van den Heuvel and Hulshoff Pol, 2010). The 

seed-based method is ideal to target a specific network, defined by a single region, but the 

method does not provide information on multiple networks without the derivation of multiple 

seed regions.  

(2) The second is a model-free method: As opposed to the seed-based approach, a model free 

approach facilitates the identification of unique patterns of functional connectivity over the 

entire brain. Independent component analysis (ICA) forms the basis of the model-free 

approach. ICA decomposes the resting state BOLD time series into individual sources. This is 

based on the idea that sources of the resting state signals are statistically independent; each 

individual component is suggested to represent a unique network or noise component 

(Esposito et al., 2008). ICA allows identification and assessment of many functional brain 

networks simultaneously and therefore provides a powerful method to investigate the state of 

multiple resting state networks in the brain. 

While both approaches have their advantages and drawbacks, the two methods exhibit a high 

degree of overlap in their outcomes. For example, the default mode network (DMN) has been 

robustly identified and investigated by many studies employing both ICA and seed-based 

approaches (Erhardt et al., 2011). Moreover, findings across methodology provide strong and 

consistent evidence that resting state networks exist and are affected by disease (Van Den 

Heuvel and Pol, 2010). 

The DMN is one of the most commonly-studied resting state networks. The DMN is a 

collection of regions including the medial posterior cortex (particularly the posterior cingulate 

cortex and the precuneus), the medial frontal cortex, the bilateral inferior parietal cortices, and 

the bilateral inferior posterior temporal cortices (Raichle and Snyder, 2007; Buckner, 2012). 



125 

 

Regions of the DMN exhibit high activity while at rest. However, when a person is asked to 

focus on external, goal-directed tasks, such as those requiring executive functioning and 

attention, DMN brain regions showed decreased BOLD activity, that is, they show 

deactivation (Raichle et al., 2001; Greicius and Menon, 2004). In contrast, reflecting on 

oneself, including remembering the past and imagining the future, have been shown to 

increase levels of activity in the areas of the DMN (Mohan et al., 2016). Brain function 

requires both activation and deactivation, which appears to be especially obvious in the DMN 

(Tessitore et al., 2012; Prodoehl et al., 2014). A common method to probe the health of the 

DMN without the need to perform task-based fMRI is to assess its functional connectivity 

during rest (Binnewijzend et al., 2012; Krajcovicova et al., 2012; Tessitore et al., 2012; 

Mohan et al., 2016). This is the approach adopted in this thesis. 

The DMN has been of particular interest to the field of Alzheimer’s disease (AD). In AD, 

studies consistently show dysfunction within the DMN. Compared with both controls and 

amnestic mild cognitive impairment patients (aMCI), patients with advanced Alzheimer’s 

disease exhibited significantly decreased connectivity among the default mode network nodes, 

namely between the posterior cingulate and medial frontal cortices (Zhou et al., 2010; Agosta 

et al., 2012). The DMN also exhibited reduced connectivity in the early stages of Alzheimer’s 

(Greicius et al., 2004)., including reports of dysfunctional DMN in amnestic mild cognitive 

impairment (Gili et al., 2010). Studies have also shown a stepwise impairment across 

cognitive impairment in AD. Relative to controls, patients with MCI and mild AD exhibited 

less deactivation in the frontal, precuneus, and posterior cingulate cortex regions of the DMN, 

which was even more extreme in AD patients (Rombouts et al., 2005). The AD literature 

provides robust evidence of DMN dysfunction as the disease progresses.  

In addition to cross sectional DMN connectivity differences between AD, MCI, and controls, 

longitudinal studies suggest the potential prognostic utility of DMN connectivity in AD. In 

2007, a study that compared 16 controls with 24 aMCI participants (a subset of patients that 

are considered at a high risk of developing dementia) found that patients experienced bilateral 

medial temporal lobe grey matter (GM) atrophy. Interestingly, when authors evaluated the 

connectivity of the DMN nodes, they found that the same areas that suffered GM atrophy 

(medial temporal lobes) had lost their connectivity with the posterior cingulate cortex in 

patients, but not in the heathy controls. The authors concluded that DMN connectivity 

disruption helped identify the at-risk subset of patients and that the observed findings were 

likely due to the ongoing neurodegenerative processes manifesting in the early stage of the 

disease (Sorg et al., 2007). A longitudinal study that followed AD patients up to 4 years after 

their initial scan reported that AD patients had lower DMN connectivity at baseline, and 

DMN connectivity continued to deteriorate as the disease progressed (Damoiseaux et al., 

2012). Another study, with a relatively large size, followed a group of amnestic MCI patients 

for 20 months; the DMN showed deceased connectivity at follow up (Bai et al., 2011).  

Similarly Petrella et al., implementing analysis methodology very similar to that used in this 
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thesis, showed that DMN connectivity was significantly worse in MCI patients who went on 

to develop dementia than those who remained stable over a 2- to 3-year follow up period 

(Petrella et al., 2011).  

DMN connectivity also provides a window into Huntington’s disease (HD), another 

neurodegenerative disease. Wolf and colleagues demonstrated that preclinical HD patients 

showed lower connectivity between DMN nodes (the left inferior parietal and posterior 

cingulate cortex) relative to controls during an attention-related task fMRI (Wolf et al., 2012). 

A longitudinal study that followed preclinical HD patients for 18 months reported that the 

preclinical HD patients had significantly reduced DMN connectivity over time relative to 

controls during a working memory task (Georgiou-Karistianis et al., 2012).  

Findings from these neurodegenerative diseases (AD and HD) are promising and provide 

motivation to explore DMN connectivity as a marker for cognitive impairment in PD.  At 

least in AD and HD, DMN connectivity is affected across neurodegenerative disease states, 

deficits are present in preclinical disease stages, and DMN connectivity can also be used to 

track disease progression over time. Determining whether such relationships exist in PD is of 

a high importance, as DMN connectivity may track current and future cognitive status, 

providing a surrogate marker to assess novel therapies.  

However, studies evaluating the DMN in PD have produced inconsistent results. There are 

numerous cross sectional studies. By contrast to date there is only one longitudinal study that 

evaluated DMN connectivity in PD, and which used only two time points.  

Dubbelink and colleagues (2014), the only longitudinal (two-time point) study, examined 93 

different brain regions—DMN nodes included. At baseline, authors reported that when the 

two study groups (55 PD and 15 healthy controls) were compared, PD had reduced 

connectivity mainly in posterior regions of the brain relative to controls. Three years later, 

with 36 PD and 12 controls, PD patients continued to exhibit further connectivity disruption 

(mainly in the posterior brain regions), but also authors identified significant association 

between brain regions with disrupted functional connectivity and cognitive performance 

scores. The study concluded that resting state functional connectivity may be a potential 

marker for cognitive impairment in PD (Dubbelink et al., 2014). Tessitore and colleagues 

used ICA to extract the DMN network from 16 PD patients and 16 controls. In this study, PD 

patients had lower functional connectivity among DMN nodes, namely the right medial 

temporal lobe and bilateral inferior parietal cortex (Tessitore et al., 2012). In the same year, 

another study implemented a seed-based approach to examine the DMN in 19 controls, 19 

cognitively unimpaired PD (PDN), and 18 patients with dementia (PDD). Seed regions 

included the isthmus cingulate (to represent the DMN) and an additional seed in the caudate. 

Surprisingly, both PDD and PDN patients were not significantly different from controls in the 

network seeded from the cingulate (i.e., the DMN). However, PDD patients did exhibit 

significantly reduced brain-wide connectivity seeded from the caudate (Seibert et al., 2012). 

Similarly, Krajcovicova and colleagues assessed 18 non-demented PD patients (PD-ND) and 
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18 healthy controls, finding no significant differences in ICA-derived DMN connectivity 

profiles between the study groups. In this study, all patients were on anti-parkinsonian 

medication during the fMRI scan. The authors concluded that the lack of significant alteration 

in the patients’ DMN connectivity might be due to the use of antiparkinsonian medication, 

which may play a role in restoring functional connectivity of the DMN (Krajcovicova et al., 

2012). Medication use then is a key factor to consider for the analysis of the data in this 

thesis. To further demonstrate the inconsistent results across studies in the PD literature, 

Rektorova et al., evaluated 14 PDD, 18 PD-ND, and 18 controls reported that PDD patients 

exhibited lower DMN connectivity between the posterior cingulate cortex (as a seed) and the 

right inferior frontal gyrus (Krajcovicova et al., 2012).  

In 2014, with 20 controls and 14 non-demented PD patients (PD-ND), a study examined both 

the default mode and the executive control networks. Relative to controls, the DMN showed 

reduced connectivity between the posterior cingulate, medial prefrontal, and inferior parietal 

nodes in the PD-ND group, but no significant changes in the executive control network 

(Disbrow et al., 2014). Although this study tested non-demented PD patients, it is possible 

that patients with mild cognitive impairment could have been included in the non-demented 

group. Given previous results of reduced connectivity in PDD, it is possible that some of the 

differences in DMN connectivity were related to cognitive deficits. More recently, authors 

(Gorges et al., 2015). Who compared 14 PDN and 17 cognitively impaired (PDCI) to 22 

heathy controls reported that the PDCI group, but not the PDN group, showed reduced 

functional connectivity between the posterior cingulate cortex (representing the DMN) and 

the rest of the brain compared to the healthy controls (Gorges et al., 2015). Furthermore, 

Lucas-Jimenez and colleagues investigated 37 PD patients and 16 healthy controls. Using a 

seed-based protocol, they observed reduced functional connectivity between the posterior 

cingulate cortex (PCC) and the medial temporal nodes of the DMN in PD, but also correlation 

with verbal and visual memory performance scores. Furthermore, DMN connectivity also 

correlated with reduced grey matter volume in the PCC/precuneus and reduced white matter 

fractional anisotropy of the longitudinal and posterior cingulate fasciculi (Lucas-Jiménez et 

al., 2016). These latter findings support the idea that combining imaging metrics provides a 

more complete description of brain changes associated with cognitive impairment in PD.  

PD studies investigating DMN functional connectivity report findings ranging from no 

differences to large disruptions in PDD. Methodological differences, including method of 

DMN derivation, sample size, and the inclusion of different cognitive subgroups, as well as 

the definition of those groups, may help to explain the lack of consistent DMN connectivity 

results in PD. Unlike in AD, there has been only one longitudinal point study that examined 

the relationship between DMN connectivity and disease progression. However, results from 

the AD literature and a number of PD studies suggest a trend that DMN connectivity may be 

associated with cognitive impairment in PD and that further investigation is warranted. 
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Identification of imaging markers sensitive to cognitive impairment is of a high importance. 

This would be helpful in planning any potential intervention, prior to the development of 

dementia. Specifically, markers may be used to help identify which individuals are likely to 

convert to dementia in the near future. These individuals could then be selected as candidates 

to test potential disease-modifying therapies. If DMN connectivity proves useful, it could in 

theory be used to assess treatment effectiveness. However, this scenario requires a robust 

association with both cognitive decline and disease progression to exist. Therefore in this 

chapter, I will examine baseline and longitudinal DMN connectivity to track disease and 

investigate its relationship with cognitive impairment in PD. 

7.2 Methods 

7.2.1 Participants 

The resting state fMRI protocol was added after the longitudinal study was underway. Hence 

fewer participants received RS-fMRI scans than structural scans. At baseline, a convenience 

sample of 125 PD patients from the original cohort and representative of the spectrum of 

cognitive status was included. Forty-five healthy controls also received RS-fMRI scans; their 

mean age, years of education and sex ratio was not significantly different from the PD sample. 

As in previous chapters, all participants were recruited from the Movement Disorders Clinic 

at the New Zealand Brain Research Institute, Christchurch, New Zealand. Patients met the 

UK Parkinson’s Society criteria for idiopathic PD (Hughes et al., 1992). Participants were 

followed up approximately every 2 years with 41 participants completing scans and 

assessments at ~two years  after initial assessment and twelve after ~three years (Figure 2). A 

total of 266 RS-fMRI scans were acquired over the duration of the study (total number of 

scans including all time points: HC=79; HC-MCI=5; PDN=81; PD-MCI=88; and PDD=13).  

Exclusions were 4 controls who met criteria for MCI, and 41 scans with excessive head 

motion during the RS-fMRI acquisition. I defined excessive motion as greater than 2 mm 

translation in x, y, or z directions, or rotation of more than 2 degrees around either x, y, or z 

axes; these motion parameters were generated during the data preprocessing stage (described 

below). These excluded scans comprised three controls, 20 PDN, 17 PD-MCI, and one PDD 

individual. Therefore, 158 scans [HC=45; PDN=43; PD-MCI=61; and PDD=9] were included 

in this resting state analysis at baseline. Of the original baseline cohort, 28 controls and 35 PD 

participants received at least one follow up scan, leaving the total scan number to be 221. 

7.2.2 Clinical and Cognitive assessment 

Table 7.1 summarizes the clinical and neuropsychological assessment results in the subsample 

that received RS-fMRI scans relevant to this chapter. Figure 2 below graphically depicts the 

number of subjects, the number of assessments within each participant, and the participant’s 

cognitive status at each assessment. 
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Figure 7.2 Graphical representation of the longitudinal MRI scans within this study. Each dot in this figure represents an MRI scan for an individual participant. 

Multiple scans within a single participant are connected with lines.  Different colours have been used to indicate the individual’s cognitive status at each 

assessment: blue indicates Control, green indicates PDN, orange indicates PD-MCI, and red, PDD. The y axis indicates the number of years from first assessment 

(baseline). PDD = Parkinson’s disease with dementia, PD-MCI = Parkinson’s disease with mild cognitive impairment, PDN = Parkinson’s disease with normal 

cognition.  
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7.2.3 MRI acquisition 

Images were acquired on a 3T General Electric HDXt scanner using an 8-channel head coil. 

Blood oxygenation level dependent (BOLD) imaging was acquired using gradient-based echo 

planar imaging (EPI-GRE), with the following parameters: TE/TR = 35/3000 ms, flip 

angle=90 degrees, FOV = 220 mm, acquisition matrix = 64×64×44, slice thickness = 3mm, 

interslice gap = 0mm, number of volumes (time points) = 160, voxel size = 3.4×3.4×3.0 mm
3
. 

Slices were prescribed in the axial plane 20 degrees above the AC-PC line to reduce the 

susceptibility artefact produced by the air-filled sinuses. During the scan, music was turned 

off and all participants were instructed to rest quietly, keep their eyes closed, and stay awake.   

7.2.4 Image preprocessing 

The resting state functional MRI (RS-fMRI) data were preprocessed in the Data Processing 

Assistant for Resting-State functional MRI (DPARSFA, version V4.1_160415) which is 

based on the toolbox for Data Processing & Analysis of Brain Imaging (DPABI)(Alger et al., 

2010; Debette et al., 2010)., Statistical Parametric Mapping (SPM12: 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12), and Resting-State fMRI Data Analysis 

Toolkit (REST-V1.8_130615: http://www.restfMRI.net), running within the MATLAB 

environment (Matlab version 8.3 and Statistics toolbox version 9.0, r2014a).  

A preprocessing pipeline was established in order to prepare the raw BOLD images for 

statistical analysis. This included slice timing correction, realignment, normalization, and 

smoothing (see more details below). The DPASRFA toolbox offers a pipeline that 

encompasses all these steps in one environment. The toolbox can also be used to generate a 

report of some of the key scanning parameters, which facilitates straight-forward quality 

control measures. Furthermore, DPARSFA generates a detailed head motion report per data 

set.  

7.2.5  The DPARSFA procedure I implemented involved:  

 

1. Most MRI scanners generate images in the “Digital Imaging and Communications in 

Medicine” (DICOM) format. Most of the image processing requires the images to be 

in the “Neuroimaging Informatics Technology Initiative” (nifti) (Cox et al., 2004). 

Format. Therefore, the first step was to convert the DICOM images into nifti. 

2. Slice timing: during data collection, slices are acquired one at a time, in an interleaved 

pattern. This results in acquiring the hemodynamic responses of the individual slices 

at different points in time. In cases where a long TR is used (> 2 seconds, I used 

TR=3 seconds), this may result in degrading the sensitivity to true signal (Sladky et 

al., 2011).. Hence, DPARSFA corrects for slice timing errors by interpolating the data 

from each volume to a single time point. Using a B-spline resampling method (Yuan 

et al., 2016). DPARSFA temporally realigned each individual slice to a reference slice 

(I selected the default setup in DPARSFA, the last slice). 

3. Head motion correction: excessive head motion injects large artefact in RS-fMRI, 

which reduces the reliability of the images (Anglin et al., 2013; Satterthwaite et al., 

http://www.restfmri.net/


131 

 

2013). Therefore, the aim of correction for motion is to ensure that BOLD signals 

originate from the same location of the brain in every volume. I used the Friston 24-

parameter model to regress out the head motion from the realigned data. The Friston 

technique implements 6 head motion parameters, 6 head motion parameters one time 

point before, and 12 corresponding squared parameters (Friston et al., 1996). The 

realignment step also produces a subject-specific summary of head motion parameters 

(with transitional and rotational information), derived from the maximum head 

motion. Later, I used these motion parameters to exclude subjects with excessive 

motion. Subjects with excessive head motion were defined to have head movement 

exceeded 2 mm of the maximum translation in any of the x, y, and z directions or 2
o
 

of the maximum rotation about the three axes. In addition, DPARSFA also provides 

voxel-specific head motion estimates at the individual dataset level to account for 

head motion at group-level analysis. Therefore, I extracted the mean voxel-specific 

mean framewise displacement (FD), via the method proposed by Power et al. (Power 

et al., 2012).  That is, I estimated the voxel-wise displacement for each individual 

volume in the resting state time series. Later, motion parameters (FD) were included 

at the group level analysis as a covariate (Van Dijk et al., 2012; Satterthwaite et al., 

2013). 

4. Normalization: Brain shape, size, orientation, and anatomy are variable. In order to 

compare between subjects in a whole brain manner, the individual brain images were 

warped (or spatially normalized) into a standardized space. I spatially normalized the 

images by using the “Diffeomorphic Anatomical Registration Through Exponentiated 

Lie algebra” or DARTEL (Ashburner, 2007) method which was then warped to 

Montreal Neurological Institute (MNI) space. The normalized images were resliced to 

an isotropic resolution of 3 mm
3
 (Lebedev et al., 2014; Li et al., 2015). 

5. Smoothing: After normalization, all images were smoothed in order to improve signal 

to noise and minimize residual misalignment. I smoothed the data with an isotropic 

Gaussian smoothing kernel with full-width-half-maximum of [4 4 4] (Yan and Zang, 

2010) (Yan et al., 2016). 

6. Low frequency fluctuations: Low frequency fluctuations (LFE) of RS-fMRI fall in a 

range of 0.01-0.08 Hz, which are interpreted to reflect spontaneous grey matter 

neuronal activity (Lu et al., 2007). In contrast, higher frequency fluctuations have 

been isolated within the white matter (Cordes et al., 2001). Also, respiratory and 

cardiac signals fall within a higher frequency band (0.073 - 0.25 Hz). Accordingly, I 

chose to use a bandpass filter of (0.01-0.08 Hz) to minimize the effect of the very low 

and high frequency fluctuations (Disbrow et al., 2014; Gorges et al., 2015; Xia et al., 

2015). 

 

In MRI, before reaching a steady state, the first few volumes of the RS-fMRI data usually 

will suffer signal variability (Parrish et al., 2000; Hsu et al., 2016). Hence, four dummy 

volumes (i.e. 12 seconds) were acquired at the start of the resting state run; these four 

volumes were not included.  
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7.2.6 Extracting the default mode network 

Data from all individuals and all timepoints (the smoothed, normalized, bandpass filtered, 

motion and slice-timing-corrected data) were fed into the Group Independent Component 

Analysis toolbox, GIFT (http://mialab.mrn.org/software/gift/index.html) to perform 

independent component analysis (ICA) (Calhoun et al., 2008). The GIFT toolbox steps 

involved:  

1. Reducing the data at the individual level by running a principal component analysis 

(PCA). 

2. Concatenating the data into a group dataset.  

3. Further data reduction using PCA (Wu et al., 2011).  

4. Applying the Infomax algorithm to decompose data into group-independent 

components. An ICA was performed to estimate the inverse mixing matrix W, where 

S = WX, S being the source matrix of group components and X being the temporally 

concatenated subject data. 

5. Finally, a back-reconstruction algorithm was used to create the individual components 

per subject. 

While extracting too many components results in “over-splitting” of the network regions, 

estimating too few also causes regions to “over-clump” (Calhoun et al., 2001). I started with 

the default number of components (20) and found that it resulted in robust, recognizable 

resting state networks, similar to those published by relevant key studies (Smith et al., 2009; 

Laird et al., 2011; Forstmeier et al., 2012). In support for using 20 independent components, 

Smith and colleagues (Smith et al., 2009) extracted the default mode network from a large 

scale database which involved more than 30 000 human subjects. To further consistency with 

Smith’s work, which used 20 ICs, I used their freely-available DMN template as an example 

of a healthy DMN network (see the next paragraph for details). In addition, a methodological 

study that evaluated the correlation of the results obtained via implementing seed-based or 

ICA (with 10, 15, 20, 30, 35, and 40 components) reported that using 20 components resulted 

in the highest consistency between the two analysis methods (Rosazza et al., 2012). 

In order to identify the component that most closely matched the DMN, I implemented the 

automated template matching procedure in GIFT (‘Spatial Correlation’) by supplying a DMN 

template (Fox and Lancaster, 2002; Laird et al., 2005; Smith et al., 2009). The DMN in each 

PD participant was defined as the ICA component with the highest spatial correlation with 

the healthy DMN template (Smith et al., 2009; available at: 

https://www.fMRIb.ox.ac.uk/datasets/brainmap+rsns/). The DMN component in each subject 

was z-scored. The group average DMN is displayed in figure 7.3. This procedure reproduced 

most of the classic DMN nodes, which included the medial parietal (precuneus and posterior 

cingulate), bilateral inferior lateral parietal cortices, and medial frontal cortex; inferior 

posterior temporal cortical nodes were not, however, identified as being functionally 

connected.   

Lastly, I calculated a subject-specific, Goodness-of-fit (GOF-DMN). This GOF-DMN score 

quantifies the similarity between the DMN of each participant and a healthy, DMN template 

http://mialab.mrn.org/software/gift/index.html
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(the DMN template from Smith et al.).  Each participant’s GOF-DMN was calculated as the 

difference between the mean of the voxels (from that participant’s DMN image) “within the 

brain and within the healthy DMN template” and the voxels falling “within the brain but 

outside the DMN template” (Greicius and Menon, 2004; Mingoia et al., 2012; Baliki et al., 

2014). This resulted in a single GOF-DMN score per subject per time-point; DMN 

connectivity was investigated using the GOF-DMN score.   
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Figure 7.3 Study participants’ average ICA component that best matched the healthy DMN template. The 

image displayed is a z statistic map of the default mode network (DMN) registered on a template T1-

weighted anatomical image. The upper panel shows selected axial images, the middle and the bottom 

panels demonstrate images in coronal and sagittal planes, respectively.  The DMN overlay is thresholded 

at z>2.3.  R = Right and P = Posterior.  
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7.2.7 Statistical analysis 

This longitudinal study analysed the relationship between cognition and the goodness-of-fit 

(GOF-DMN) scores both within and between subjects, with up to three years of follow up 

data.  

Baseline demographic and neuropsychological group differences were analysed using one 

way ANOVA, implemented in R (www.R-project.org, v3.3.2). Scans from all time points (all 

221 scans) were entered into Bayesian multi-level regression models to assess the 

relationship between GOF-DMN score and cognitive status (Carpenter et al., 2016). 

This analysis was used to derive the following models using the brms package in 

R:(Buerkner, 2016). 

Cross sectional analysis of cognitive group effect: The first model investigated GOF-

DMN differences across the four cognitive groups [HC, PDN, PD-MCI, and PDD], with age 

(at time of scan), sex, scanner version (there was one scanner software version upgrade over 

the duration of the study), and head motion (mean framewise displacement) as covariates, 

with an intercept varying by subject.  

Longitudinal analysis of PD and PD-by-time interaction: The second model explored the 

effect of group (PD, irrespective of cognitive status or control), time, and group-by-time 

interaction on the GOF-DMN scores. The model included group (PD or control), time, group-

by-time interaction, age (at baseline), sex, scanner version, and head motion as covariates. 

The intercept, as well as the time, were nested within participants.  

Longitudinal analysis of global cognitive ability: The third model assessed the association 

between subjects’ cognitive ability (defined as a global z score) and GOF-DMN scores, as 

well as the relationship between each individual’s cognitive change over time and change in 

GOF-DMN over time. First, a Bayesian multi-level regression model (with the intercept, as 

well as the time from baseline, nested within participants) was used to fit a model of 

longitudinal cognition within each individual, based on the cognitive assessment at each time 

point. This resulted in estimates of baseline cognition and change in cognition over time for 

each individual. The second model was then extended to include baseline cognition and 

cognitive change-by-time interaction.  

Effect of motor impairment and medication use, restricted to PD: In the fourth model, I 

reran model one but only for people with PD (controls were excluded) and added unified 

Parkinson's disease rating scale- part 3 (UPDRS-3) and the levodopa equivalent dose (LED) 

as covariates to explore the effect of motor symptoms and medication effects on GOF-DMN.  

Sample size (standard error) investigation 

As discussed in the introduction, DMN findings in PD are inconsistent, i.e. there are reports 

of both reduced connectivity and no significantly different DMN connectivity in PD. One 

potential explanation for the inconsistency may be that studies with small sample sizes were 

more likely to identify and report false positives (Button et al., 2013). Many previous DMN 

investigations of PD had small sample sizes, ranging from n= 8 per group to more reasonable 

n=62 (Liu et al., 2013; Disbrow et al., 2014; Lucas-Jiménez et al., 2016; Manza et al., 2016). 
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I therefore examined whether my study’s large sample size (and corresponding small 

standard error) is a more accurate reflection of DMN connectivity in PD. Similarly, could I 

identify any bias toward positive findings (i.e., reduced DMN connectivity in PD relative to 

controls) in studies with small sample sizes (and potentially relatively large standard errors)? 

I explored this possibility by creating 1000 new subsamples from current study data. For each 

subsample, a random number of control and PD participants were selected (without 

replacement) for inclusion in a new subsample of n controls and m PD participants. The 

minimum number of subjects for each group was set to 8 (corresponding to the smallest 

number of subjects in the published literature(Gao and Wu, 2016).; the maximum allowable 

sample size was set to the total number of control scans (n= 84, total number of control scans 

to choose from) or PD participants (n=182, total number of PDs to choose from). The number 

of participants selected for each group was weighted toward smaller sample sizes in order to 

reflect the sample sizes represented in the literature. Once the control and PD subsamples 

were created, I used linear models running in R (‘lm’, www.R-project.org, v3.3.2) to fit a 

linear model to GOF-DMN, as a function of group (control/PD), age, sex, and motion during 

the resting state acquisition. For each permutation (subsample), and therefore linear model, I 

recorded the effect size estimate for the difference between PD and control, as well as the 

standard error. This data (estimate of the difference in GOF between the two groups and 

standard error) was used to create a funnel plot, with standard error on the y and effect size 

estimate on the x axis. 

7.3 Results 

7.3.1 Demographics, clinical, and neuropsychological assessment 

At study entry, while control and PD groups as a whole were matched for age, the PDN 

group was younger than controls. Participants differed in their cognitive abilities. When 

compared to PDN, PDD patients exhibited worse disease severity (H&Y) and motor 

impairment (UPDRS III). Participants’ baseline demographic, clinical and cognitive profile is 

presented in Table 7.1.  

Table 7.1. Subject demographics and neuropsychological assessment results at baseline 

 HC PDN PD-MCI PDD 

Number of subjects 45 43 61 9 

Sex [F/M] 16/29 12/31 18/43 2/7 

Age [years] 69(7) 62(9) 69(7) 72(9) 

Education [years] 13(3) 13(3) 13(3)
 
 12(1) 

Global Cognitive 

performance [z score] 

0.74(0.5) 0.37(0.6) -0.90(0.6) -1.88(0.6) 
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MoCa 27(2) 27(2) 22(3) 17(4) 

H&Y NA 2 [2-2.5] 2.5 [2-3]
 
 3 [3-3]

 
 

UPDRS III NA 27(14) 36(12) 47 (11) 

Disease duration 

[years] 

NA 6(7) 6(5) 6(3) 

LED [mg/day] NA 542(448) 751(373) 659(359) 

Disease duration was calculated as time from diagnosis. Global cognitive performance (Z score) is an 
aggregated z score obtained by averaging the cognitive domains scores. Values are the mean and the 
standard deviation except for the H&Y, where the median and the 25%-75% quartiles are displayed. 
Abbreviations: HC = Healthy controls, PDN = Parkinson’s disease with normal cognitive ability, PD-MCI = 
Parkinson’s disease with mild cognitive impairment, PDD = Parkinson’s disease with dementia, LED = 
Levodopa equivalent dose, MoCa = Montreal cognitive assessment, H&Y = Hoehn and Yahr scale, UPDRS III = 
Unified Parkinson’s disease rating scale-part three and NA = not applicable.   
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7.3.2 Cross sectional analysis of cognitive group effect:  

The Cross-sectional analysis of the study groups (PD and controls) revealed a substantial 

overlap between the GOF-DMN scores of the two groups (Figure 7.4). In model one, I 

investigated distinct cognitive categories within PD. Results from this model can be 

interpreted as differences in GOF-DMN across cognitive subgroups. The three PD groups did 

not exhibit any robust difference relative to controls, or between cognitive groups. There was 

no strong evidence of an effect of sex or scanner version. However, as expected, both age and 

head motion showed reasonable associations with GOF scores. (Figure 7.5) 

    

Figure 7.4 Violin plot of the GOF-DMN scores of the two study groups. Controls are displayed in pink, 

PD in blue. Points indicate individual GOF-DMN values. The density of points is displayed vertically in 

the shaded area. The plot shows the large overlap between the mean GOF-DMN scores of the PD group 

and the controls. 
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Figure 7.5 Cognitive categories (Model one) results: Investigating GOF-DMN differences across the four 

cognitive groups [HC, PDN, PD-MCI, and PDD], with age, sex, scanner version, and head motion 

parameters as covariates. Bars represent the 95% uncertainty intervals; the point in the middle of the bar 

indicates the estimate of the effect size. All these estimates are relative to the mean Goodness-of-fit of a 

healthy female control (mean = 1.23), mean age, no motion, and the initial scanner version. GOF-DMN = 

Goodness-of-fit scores of the default mode network, HC = Healthy controls, PDN = Parkinson’s disease 

with normal cognition, PD-MCI = Parkinson’s disease with mild cognitive impairment, and PDD = 

Parkinson’s disease with dementia. Age has been scaled—for every decade older, GOF-DMN is reduced 

by ~0.12. 
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7.3.3 Longitudinal analysis of PD and PD-by-time interaction:  

The second model I ran was designed to investigate the group effect (that is, PD as a whole 

vs controls), in addition to a group-by-time interaction. The group by time interaction 

allowed us to investigate the difference in rate of change in GOF-DMN over time between 

PD and controls groups. When accounting for age, sex, scanner version and head motion, I 

found no evidence of a difference between groups (PD or control), no evidence of a change in 

GOF-DMN scores over time, and no evidence of a difference in change in GOF-DMN scores 

over time between PD and controls. This indicates that the GOF-DMN scores were similar at 

baseline and over time for both control and PD groups. There was also no evidence of an 

effect of scanner version on GOF-DMN. Older age, however, was associated with lower 

GOF-DMN scores and higher head motion showed an association with lower GOF (Figure 

7.6). 

    

 

Figure 7.6. PD group effect (model 2) results: Exploring the group (PD or control) effect on the default 

mode network GOF-DMN scores, with age, sex, scanner version and head motion parameters as 

covariates. Bars represent the 95% uncertainty intervals; the point in the middle of the bar indicates the 

estimate of the effect size. All these estimates are relative to the mean Goodness-of-fit of a healthy female 

control (mean = 1.23), mean age, no motion, and the initial scanner version. 
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7.3.4 Longitudinal analysis of global cognitive ability:  

This model extended model 2 (the group and group-by-time interaction model). In this 

model, I added baseline cognition and a cognitive change-by-time interaction.  This model 

allowed me to investigate the effect of a continuous measure of cognition on GOF-DMN, 

both cross-sectionally and over time. No evidence was found that baseline cognition or 

cognitive change over time were associated with GOF-DMN. The addition of these two 

predictors resulted in the loss of the association of age at baseline with GOF-DMN that were 

observed in models 1 and 2 (Figure 7.7).  

 

Figure 7.7  Model three results: Global cognitive ability (Model three) results: Association between 

participants’ global cognitive ability, change in cognition over time, and the default mode network 

Goodness-of-fit scores. Bars represent the 95% uncertainty intervals; the dot in the middle of the bar 

indicates the estimate of the effect, relative to the Goodness-of-fit of a healthy female control (mean = 

1.96), mean age, no motion, and the initial scanner version. 

  



142 

 

7.3.5 The effect of motor symptoms and medication use on GOF-DMN: 

Within PD participants only, I tested whether severity of motor impairment and levodopa 

equivalent dose (LED) had an effect on the GOF-DMN scores. The model revealed no 

evidence of an association between these variables and GOF-DMN scores. In comparison to 

Model 1, the association with age at baseline is weaker (Figure 7.8) 

 

Figure 7.8 Model four results: Association between both patients’ motor symptoms and medication use; 

and the default mode network Goodness-of-fit scores. Bars represent the 95% uncertainty intervals; the 

point in the middle of the bar indicates the estimate of the effect, relative to the Goodness-of-fit of a 

healthy female control (mean = 1.07), mean age, no motion, and the initial scanner version. 

7.3.6 The effect of head motion on the default mode network Goodness-of-

fit scores: 

Head motion consistently exhibited the largest effect on the GOF-DMN scores in all the 

tested models, even though only images with <2mm motion and <2 degrees of rotation were 

included. Therefore, I explored if there was any association between the participants’ 

cognitive ability (measured by the cognitive z score) and head motion. The test revealed that 

they were correlated (R-squared = 0.02, p = 0.01), indicating a trend where individuals who 

had worse cognition moved more during the scanning time. (Table 7.2) 

Table 7.2 The effect of head motion on the default mode network Goodness-of-fit scores 

 Estimate Standard 

Error 

T value P value 

Intercept (mean 

Cognitive Z score) 

0.27 0.12 2.11 0.02 

Head motion* -0.12 0.048 -2.55 0.01 
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*Significantly correlated at p<0.05. P value was derived from a simple linear regression model. Head motion 
represents the mean voxel-specific mean framewise displacement (FD), calculated in DPARSFA package. 

7.3.7 Sample size and statistical significance:  

The literature, summarized in table 7.3 below, has examined the default mode network using 

resting state fMRI in PD. Many of these have reported significant DMN changes between the 

control and PD groups. I did not replicate this difference in the current study. Given the 

discrepancy between current study findings and those resulting from studies with smaller 

sample sizes in the literature, I also investigated whether different permutations of the current 

study’s large data set could reproduce the significant differences in DMN integrity between 

PD and controls reported in the literature.  

Figure 7.9 is a funnel plot, generated by running 1000 permutations (subsamples) as 

described in the methods. Each circle represents the standard error and estimate of the GOF-

DMN difference between PD and controls for each of 1000 permutations. The size of the 

circle corresponds to the sample size used for each permutation—the larger the circle, the 

larger the sample size. The first set of angled lines (dividing the white and light grey areas) 

corresponds to p<0.05. The next line, separating the light grey from dark grey, corresponds to 

p<0.01, and the third line of the funnel corresponds to p<0.001. That is, any point that falls 

within the white triangle-shaped area is considered non-significant, with p>0.05. Any point 

that falls within the light grey area can be considered significant at p<0.05, i.e. significantly 

different GOF scores between PD and controls. If the point falls in the dark grey area, it is 

significant at p<0.01, and outside the dark grey area (either positive or negative) is significant 

at p<0.001. The estimate derived from a simple two sample t-test for the current study (with 

84 total control scans and 182 total PD scans) was -0.05, with a standard error of 0.04, and is 

displayed as a red filled circle; this result was not significant (p=0.21) and therefore falls 

within the white, non-significant area.  In contrast, when I permuted current study data to 

create 1000 samples with varying (smaller) sample sizes, a reasonable portion of studies with 

smaller sample sizes reached the statistical significance cut-off (either p<0.05, p<0.01, and 

even p<0.001), but with lower certainty (that is, many of the permutations that reached 

statistical significance had relatively large standard errors). In the largest study including 

longitudinal follow up to date, the lack of statistical difference in GOF-DMN (in terms of 

both PD, PD over time, association global cognitive score, and change in cognition over 

time), and the clear demonstration that significant difference can be achieved with smaller 

sample sizes, I suggest that many of the positive DMN results reported in the literature are 

associated with small sample sizes and may in fact correspond to sampling variability leading 

to larger estimates of the true size of the difference in GOF-DMN (Button et al., 2013). 
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Figure 7.9 A funnel plot demonstrating the relationship between the study sample size (displayed as 

standard error), estimate in GOF difference between PD and controls, and statistical significance. The X 

axis of the plot shows the estimate for the difference in mean GOF-DMN between PD and control groups. 

Each circle corresponds to 1 of 1000 permuted samples (with different, random sample sizes). The Y axis 

represents the standard error. The smaller circles represent smaller sample sizes, while larger circles 

represent larger sample sizes. Studies within the white triangle have not reached the 95% confidence 

interval cut-off. Studies within the light grey triangle fall between the 95% and 99% confidence interval. 

Studies within the dark grey triangle fall between the 99% and 99.9% confidence interval. The red filled 

circle represents the current study data estimates (-0.05) with a standard error of (0.039), which 

corresponded to p=0.21.  

7.4 Discussion 

The aim of this study was to explore whether default mode network (DMN) connectivity, 

extracted via resting state functional MRI (RS-fMRI), is useful as a marker for cognitive 

impairment in Parkinson’s disease (PD). I used large-sample, longitudinal study of default 

mode network integrity in well-characterized PD participants. I found no evidence of a 

difference in DMN connectivity between PD and controls at cross section or over time. 

Similarly, I found no evidence of a difference between DMN connectivity and cognitive 

impairment or with change in cognitive impairment over time.  

While the focus of the current study was on the effect of cognitive status on DMN integrity in 

PD, I also analysed PD as a single, large group vs controls. This was done to determine 

whether PD per se was associated with GOF-DMN, which also allowed comparison with the 

literature; often that did not specify cognitive status in the PD samples. The analysis showed 

that the GOF-DMN of PD in general was similar to that of healthy controls. At least in this 

cohort, PD does not appear to impact DMN integrity. These null results are slightly surprising 

given (1) the DMN comprises regions known to be important in higher cognition, (2) there 

are robust, large effects in AD, and (3) there are reports of structural changes in DMN areas 

in PD. However, the funnel plot analysis provides a potential explanation of the 

inconsistencies in the literature.  
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I did, however, identify a negative association between GOF-DMN and age. That is, as age 

increases, DMN connectivity is weaker. Studies with large sample sizes (n = 339, 250, and 

116 individuals), reported that reduction in DMN functional connectivity is associated with 

older age in healthy individuals (Salami et al., 2014; Vidal-Piñeiro et al., 2014; Manza et al., 

2015). These studies concluded that aging is associated with disrupted DMN connectivity and 

that this is likely linked to other ongoing age-associated structural brain changes such as 

white and grey matter atrophy. The replication of this robust age-DMN association in the 

current study provides confidence that the data processing and analysis methods were valid 

and comparable to other large studies.   

My conclusion is that the relationship between DMN connectivity and cognitive processing is 

less consistent in in Parkinson’s disease than in AD. While some report strong dysfunction in 

PD, similar to the levels seen in AD, others have failed to identify any dysfunction. Nagano-

Saito and colleagues used PET imaging to investigate whether the DMN showed a different 

pattern of activation during the Tower of London task (a test of problem solving and 

planning, which should trigger DMN deactivation). The authors reported that both study 

groups (PD and controls) had similar activation and deactivation of DMN (Nagano-Saito et 

al., 2009). Indeed, another study using task-related functional MRI, reported that PD patients 

had significantly more deactivation of the posterior cingulate cortex of the DMN when 

compared to controls during a card sorting task (Thilo van Eimeren et al., 2009). By contrast, 

a study that assessed PD patients against controls, at rest, reported that patients exhibited 

lower DMN connectivity (measured via RS-fMRI) than controls (Lucas-Jiménez et al., 2016). 

In terms of cognition in PD, Gorges et al. (Gorges et al., 2015), found that cognitively 

impaired PD patients showed significantly lower connectivity patterns among DMN nodes 

when compared to both the unimpaired patients and controls (Gorges et al., 2015). 

Widely varying methods have been used to investigate the DMN in PD. It is possible that 

variable methodologies contribute to the discrepancy in previous findings of whether DMN 

connectivity is decreased in PD or is linked to cognitive impairment in PD. For example, 

seed-based and model-free based approaches have been shown to agree in general terms, 

specifically producing similar results in healthy adults (Rosazza et al., 2012). However, there 

are examples of discrepancies between methodologies. While some found reduced 

connectivity among the DMN nodes in PD patients relative to controls (Tessitore et al., 

2012). Others did not replicate these findings in what appeared to be similar study 

populations (while both studies implemented the ICA approach to extract the DMN, the first 

study had PD = 16 and controls = 16, mean age 65, patients mean UPDRS-3 score =11.5, 

patients mean Mini-Mental State Examination score (MMSE) = 27.5; second study had PD =  

18 and controls = 18, mean age 60.8, patients mean UPDRS-3 score =13.5, patients mean 

MMSE score = 29) (Krajcovicova et al., 2012).  

Likewise, studies that incorporated a seed-based approach reported similar conflicting 

findings. For example, a study that used the posterior cingulate cortex (PCC) as a seed 

showed that PD patients had decreased connectivity with medial prefrontal cortex (Gorges et 

al., 2013). In contrast, Seibert et al. (2012) also used the PCC as a seed but did not find 

significant changes in the connectivity profiles between the cognitively unimpaired PD 
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patients and controls (Seibert et al., 2012). While both methodologies (ICA or seed-based) 

are valid and have been applied in the field of PD, I chose the ICA approach because it is 

data-driven and does not require the selection of a seed region.  

As a consequence of ICA processing, other networks were produced and in the future, could 

be investigated in this sample of PD participants. Other key networks that should be 

investigated in the future include: the dorsal attention, executive function, and sensorimotor 

networks; ICA allows the identification of these networks from a single analysis, while seed-

based regions would require placement of seed regions specific to each network. 

Investigating further networks is an area of future work. 

Another issue in the interpretation of previous DMN results is the heterogeneity present in 

different PD samples. Medication use, motor disease severity, disease duration, and cognitive 

status can all potentially affect outcomes of RS-fMRI studies.  In this study, I have used an 

extensive neuropsychological battery to characterize participants’ cognitive ability, and have 

investigated this relative to DMN connectivity. I did not find a significant association 

between DMN connectivity and cognitive ability at cross section or over time. This therefore 

suggests that cognitive heterogeneity within different PD samples did not underlie variable 

findings in the literature. In fact, this may be a case where evidence from the current study 

suggests that DMN connectivity is most likely not associated with cognitive decline in PD, or 

the effect is so small as to be clinically irrelevant.   

7.4.1 The influence of anti-parkinsonian medication 

Krajcovicova et al., (2012) did not find any significant difference in DMN integrity between 

PD and control participants (Krajcovicova et al., 2012). The authors attributed the lack of 

significant difference between their study groups to the fact that the DMN performance in the 

PD group was normalized in response to Levodopa use. Of note, Krajcovicova et al., 

implemented similar methods to those implemented in the current study, i.e. Resting state 

acquisition with ICA. Further, two earlier studies investigated the effect of an acute 

dopaminergic challenge to DMN integrity in PD participants and found that the DMN profile 

of the “on-medication” condition was similar to the controls, suggesting that parkinsonian 

medication may normalize DMN connectivity in PD patients (Thilo van Eimeren et al., 2009; 

Delaveau et al., 2010). In contrast, a 2016 study found significant reduction among functional 

connectivity the DMN nodes in PD relative to controls. However, authors reported that when 

they removed the medication use (LED) from the statistical model (as a covariate), the 

significant group difference disappeared; suggesting the opposite of Krajcovicova et al. 

(Lucas-Jiménez et al., 2016). These contradictory results suggest that anti-parkinsonian 

medication should be investigated in relation to DMN connectivity. Several studies have 

reported that anti-parkinsonian medications may play a role in restoring function and 

functional connectivity in some brain networks (such as DMN) (Disbrow et al., 2014; Lucas-

Jiménez et al., 2016). Conversely, others have reported DMN dysfunction in PD participants, 

both with and without cognitive impairments, despite the use of anti-parkinsonian 

medications (Tessitore et al., 2012; Gorges et al., 2015).. This suggests that the use of 

medication does not necessarily mask compromised DMN connectivity, particularly in 
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cognitively impaired patients. Given these controversial findings and the fact that I assessed 

and imaged the participants while “on-medication”, I tested for the effect of LED use and 

found no correlation between GOF-DMN and LED in current study data, however the 

question remains open and I suggest that LED be considered in future investigations of DMN 

connectivity.  

7.4.2 The effect of head motion 

I identified an effect of head motion on DMN connectivity. Head motion is known to be a 

confounding factor in resting state functional MRI data. That is, motion can induce 

artefactual signals in resting state spatial maps. In general, children are expected to move 

more than adults, sick adults are more prone to move than the healthy ones, and elderly 

individuals tend to exhibit a higher degree of motion than younger individuals. Parkinson’s 

disease (PD) provides a challenging combination; PD patients tend to be older and have 

uncontrolled movements, including tremor or dyskinesia.  Therefore their chance of 

movement during the scan is higher.  However, even before excluding participants due to 

excessive head motion, PD patients did not significantly differ from controls in terms of head 

motion (motion parameter quantified by framewise displacement, t= 1.6, p=0.1). 

It is important to note that even a small amount of movement can induce large and structured 

patterns of artificial BOLD signals that could potentially mimic some relevant resting state 

networks across the brain (Power et al., 2014). In a large study (n=1000 individuals) that 

assessed the effect of head motion on the commonly identified resting state networks, 

including DMN, authors found that head motion was significantly correlated with reduced 

DMN connectivity (Van Dijk et al., 2012). Hence it is important to take into account head 

motion. What makes this more challenging in RS-fMRI, is that the motion-induced artefact 

not only can arise from the physical head motion, such as that due to tremor (Jenkinson et al., 

2002; Anglin et al., 2012). But physiological processes (such as respiratory and cardiac) can 

also induce such artefacts (Glover et al., 2000; Birn et al., 2008). Given the importance of the 

impact of motion on the data, I implemented several recommended strategies during the data 

acquisition and analysis to minimize the effect of motion on the data. (A) During data 

acquisition, subjects’ heads were supported with sponge padding to keep the head as still as 

possible; (B) during data processing and analysis, I removed scans with excessive head 

motion (excessive motion was defined as greater than 2 mm translation in x, y, or z 

directions, or rotation of more than 2 degrees around either x, y, or z axes) (Van Dijk et al., 

2012). Of note, the removed individuals did not show any significant difference in disease 

duration or the motor symptoms when compared to the rest of the scans that were included in 

the analysis. Similarly, excluded data sets with high motion did not show any significant 

difference from those who were included in terms of cognitive ability (t=1.2, p=0.23). 

Excluded scans due to motion comprised three controls, 20 PDN, 17 PD-MCI, and one PDD. 

A larger percentage of PD patients were excluded due to excessive motion, but participants 

that remained in the analysis did not differ in terms of motion during acquisition. I also 

calculated motion-related quality controls measures, such as framewise displacement (FD) as 

described by Power et al., which estimates the voxel-specific head motion (transitional and 

rotational movements) for each individual volume (timepoint) indexing how much the head 
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moves from volume to volume (Power et al., 2014). The estimated FD values were included 

in all statistical models in an effort to account for the effect of head movement on GOF-DMN 

(Satterthwaite et al., 2013). While other comparable studies (Krajcovicova et al., 2012; 

Rektorova et al., 2012; Manza et al., 2015) implemented the standard 6 parameter head 

correction technique for realignment within subject, I applied the more rigorous 24-parameter 

Friston technique which incorporates 6 rigid head motion parameters, 6 head motion 

parameters one time point before, and 12 corresponding squared items. This technique has 

been shown to substantially mitigate the motion-induced signals in some large scale RS-fMRI 

studies (Satterthwaite et al., 2013; Yan et al., 2013) (with 384 and 543 participants, 

respectively). Other studies (Fair et al., 2012; Babiloni et al., 2014). Emphasized that when 

correcting for head motion at the individual subject level, the high order techniques (like the 

24-parameter Friston) performed better than the lower-order models. More importantly these 

studies reported that despite the efforts to reduce the impact of head motion on the data at the 

individual subject level, it is highly recommended to also account for motion at the group-

level (covarying for motion in the analysis) (Yan et al., 2013). In the current study, I have 

implemented these recommendations.  

7.4.3 Sample size and statistical power 

The current study is the largest study to date to investigate DMN integrity in PD. However, 

the results are not in agreement with many previous reports that cite a reduction in DMN 

functional connectivity in PD. One potential explanation for the presence of positive DMN 

findings in PD in the literature may be related to sample sizes and may in fact correspond to 

sampling variability leading to larger estimates of the true size of the difference in GOF-

DMN. Table 7.3 summarizes sample sizes and whether a study reported significantly reduced 

connectivity within the DMN in PD. After confirming (1) that LED had no effect on GOF in 

the current study cohort, and (2) that I identified the expected relationship with age and head 

motion, I explored whether a randomly selected subsample of participants could produce a 

statistically significant difference in GOF-DMN between PD and controls, given a true null 

effect (that is, assuming that the actual difference between PD and control was 0). I therefore 

implemented a permutation test where I assessed the effect of the group (PD or control) on 

the GOF-DMN scores, while covarying for age, sex, and head motion. The resulting funnel 

plot demonstrates that many of the randomly selected PD versus control groups produced a 

significantly smaller GOF-DMN value in the PD group. However, the funnel plot shows that 

as standard error decreases (i.e., sample size increases), the difference in GOF-DMN 

approaches zero. It is only the permutations with small sample sizes (and large standard 

errors) that would be considered significant. If I interpret the estimate from the current study 

as the closest approximation to the ‘real’ difference between GOF-DMN in PD and controls 

(estimate = -0.05), the funnel plot suggests that reports of significantly reduced DMN 

connectivity in PD with small sample sizes could equally be interpreted as inflated estimates 

of the true effect sizes. I therefore suggest that this may be the case in the literature. It may be 

the case that there is a true and weak trend toward reduced DMN connectivity in PD. It may 

also be the case that previous studies could correspond to the small circles that fall outside the 

p<0.05 line on the funnel plot; these small circles, in the current study, could be interpreted as 
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sampling variability leading to larger estimates of the true size of the difference in GOF-

DMN. 

Another potential explanation for the lack of significant effects in this sample, but reduced 

functional connectivity in others, is again related to sample size. It is possible that this larger 

sample size allowed us to estimate the effects of age and head motion with more confidence 

than in previous studies. PDD participants are generally older and tend to move more during 

scanning. It may also be the case that in smaller, previous studies, it was more difficult to 

estimate the independent contributions of age, motion, PD, and cognition on DMN 

connectivity. Thus, it is possible that previous DMN dysfunction did robustly occur in PD or 

decrease with cognitive decline; however, age and motion may have made a large 

contribution to this difference. Once age and motion are considered in a sample large enough 

to investigate the independent contributions of age, motion, PD, and cognition, at least in this 

study, PD and cognition did not contribute addition information to that provided by age and 

head motion.  

 



150 

 

Table 7.3 A summary of comparable cross-sectional studies that examined the default mode network relative to cognitive impairment in PD. 

Study Sample size Findings ICA or Seed-

based 

Motion correction Accounted for 

medication use 

Current study PDD = 8 

PD-MCI = 51 

PDN = 34 

Controls = 39 

No significant 

group differences. 

ICA Yes [24-parameter 

Friston technique] 

All patients were 

“On medication”. 

The Medication 

effect was accounted 

for in the analysis. 

Rektorova et al. ,  

2011 

(Krajcovicova et 

al., 2012). 

PDD = 14 

PD non-demented = 18 

Controls = 18 

PDD had Lower 

DMN functional 

connectivity than PD 

and controls. 

PD-ND had 

increased 

connectivity than 

controls. 

Seed 

[PCC/precuneus] 

Yes [6 movement 

parameters] 

All patients were “On 

medication”, but 

medication was not 

one of the covariates 

in the analysis. 

Tessitore et al. ,  

2012 (Tessitore 

et al., 2012). 

PD = 16 

Controls = 16 

PD had reduced 

DMN functional 

connectivity than 

controls. 

 

ICA Yes [6 movement 

parameters] 

All patients were “On 

medication”. 

The Medication effect 

was accounted for in 

the analysis. 
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Study Sample size Findings ICA or Seed-

based 

Motion correction Accounted for 

medication use 

Disbrow et al. ,  

2014 (Disbrow et 

al., 2014). 

PDN = 14 

Controls = 20 

Decreased default 

mode network 

Connectivity in PD 

relative to controls 

Seed-based [all 

DMN nodes] 

Yes [6 movement 

parameters] 

All patients were “On-

medication”. 

The Medication effect 

was accounted for in 

the analysis. 

Dubbelink at al., 

2014 (Dubbelink 

et al., 2014). 

At Baseline: 

PD = 55 

HC = 15 

3-year-Follow-up: 

PD = 36 

HC = 12 

At baseline: 

PD had reduced 

DMN functional 

connectivity than 

controls. 

3-year-Follow-up: 

PD patients have 

further reduced 

connectivity in the 

posterior regions of 

the brain with an 

association with 

cognitive 

impairment 

overtime. 

Seed-based [93 

ROIs covering all 

the grey matter] 

Yes [6 movement 

parameters] 

All patients were “On-

medication”. 

The Medication effect 

was accounted for in 

the analysis. 
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Study Sample size Findings ICA or Seed-

based 

Motion correction Accounted for 

medication use 

Gorges et al. , 

2015 (Gorges et 

al., 2015). 

PDN = 14 

PD Cognitively impaired = 

17 

Controls = 22 

DMN functional 

connectivity was 

increased in the 

cognitively 

unimpaired patients 

and deceased in the 

impaired ones 

relative to controls.  

Seed-based [PCC] Yes [6 movement 

parameters] 

All patients were “On-

medication”, but 

medication was not 

one of the covariates 

in the analysis. 

Lucas-Jiménez et 

al.,  

2016 (Lucas-

Jiménez et al., 

2016). 

PD = 37 

Controls = 16 

Decreased default 

mode network 

connectivity in PD 

relative to controls. 

Seed-based [all 

DMN nodes] 

Yes [6 movement 

parameters] 

All patients were “On-

medication”. 

The Medication effect 

was accounted for in 

the analysis. 

Krajcovicova et 

al. , 2012 

(Krajcovicova et 

al., 2012). 

PD non-demented = 18 

Controls = 18 

-Before accounting 

for the medication 

use, the three 

methods showed no 

significant 

difference between 

the two study 

groups. 

-After covarying for 

medication, the seed 

(PCC) analysis 

showed positive 

effect of the 

Seed 

[PCC/precuneus], 

ICA, and task-

related 

Yes [6 movement 

parameters] 

All patients were “On-

medication”. 

The Medication effect 

was accounted for in 

the analysis.  
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Study Sample size Findings ICA or Seed-

based 

Motion correction Accounted for 

medication use 

medication on the 

DMN functional 

connectivity in PD. 

-In the task-related 

analysis, the 

medication had a 

negative effect on 

the deactivation 

profile of the DMN 

in PD. 

 

Table 7.4 abbreviations: PCC = Posterior cingulate cortex, PD = Parkinson’s disease, ICA = Independent component analysis, and DMN = Default mode network.
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7.4.4 Cognitive impairment 

The DMN is thought to play a vital role in cognitive processing. This network occupies an 

important role in a number of neurodegenerative diseases (Agosta et al., 2012) (Tedeschi et 

al., 2012) (Sambataro et al., 2010). After demonstrating that in this sample of PD participants 

I was unable to identify any significant relationship between PD cognitive status and DMN 

connectivity, I tested whether baseline cognition or change in cognition over time (cognitive 

change score) was associated with DMN integrity. There was, however, no evidence of an 

effect of cognitive performance change over time on the GOF-DMN score. That is, despite 

the large sample size, the longitudinal nature of the study, and appropriate modelling of 

within- and between-subject data, I did not find an effect of the subjects’ cognitive 

performance on their DMN integrity. This is, perhaps, a surprising finding. One potential 

limitation is that I fit a linear Bayesian regression model to all longitudinal cognitive data to 

derive an estimate of cognitive change in each individual. This was a linear model, so 

essentially cognitive change is the slope of a line indicative of change in cognition over time. 

While for many individuals, a linear model would estimate their cognitive trajectory 

adequately, other individuals may exhibit more non-linear trajectories. For example, a PD 

individual may experience relatively stable cognition from baseline through two and four 

years. However, between years four and six, there may be an accelerated decline. This may 

not be adequately modelled by a linear estimate. However, the linear model fit is a good first 

approximation and I have used this ‘cognitive change’ value as a proxy for cognitive change 

over time. Another limitation is that not everyone has longitudinal measurements but the 

model still estimates cognitive change scores for them based upon group-level change. As 

only point-estimates are used for the cognitive change score and the uncertainty is not 

propagated (which is large for individuals without longitudinal data) this method may reduce 

the ability to detect effects. The loss of the association with age at baseline with GOF-GMN 

in this model is also indicating a potential issue with multicollinearity when the baseline 

cognition and change in cognition over time predictors are added to the model. This, however, 

is unlikely to fully explain the lack of association between baseline cognition and GOF-DMN.  

It is possible that other networks are more closely associated with cognition in PD than the 

DMN.  In 2016, Manza and colleagues, in a resting state functional connectivity MRI study, 

reported that the dorsal caudate showed significant association with the participants’ MoCa 

scores (a screening tool for cognitive performance) (Manza et al., 2016). Further, another 

recent work (2016) that implemented graph theory analysis method, reported that the PD-MCI 

patients had significantly compromised regional functional networks (such as lower mean 

network degree, connections density, and global efficiency as well as higher path length) 

when compared to controls and PDN (Agosta et al., 2016). Taken together, these reports 

suggest that cognitive impairment in PD may have an impact on other, non-DMN resting state 

networks. Therefore, future investigations in this sample should focus on other resting state 

networks. Given the positive findings of Baggio et al. (Baggio et al., 2015) and Agosta et al. 
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(Agosta et al., 2016). A graph theoretical analysis may provide more information about 

functional connectivity and its relationship to cognition and cognitive decline in PD.  

An additional limitation of the current study is that I did not use field map images during the 

data processing. Field map images are used to correct for the geometric distortion of the 

BOLD images, originating from local field inhomogeneity (Jezzard and Clare, 1999; Hutton 

et al., 2002). Although the implemented preprocessing software (DPARSFA) does not require 

field map images, this unwarping process can reduce distortion and increase image quality 

(Castellazzi et al., 2014). However, the current study results can be compared to studies that 

used similar processing packages (Long et al., 2012; Lebedev et al., 2014; Sang et al., 2015; 

Karunanayaka et al., 2016), where field maps were not used. Similarly, I demonstrated robust 

age and motion effects, as in previous literature. However, the lack of distortion correction 

may have masked potential PD-related findings.  

7.5 Conclusion 

While some previous and generally small-sample studies have suggested a dysfunctional 

DMN connectivity in PD, the current longitudinal study with well-characterized patients 

followed over the medium term found no evidence of a difference in DMN connectivity 

between PD and controls. Similarly, there was no evidence of an association between DMN 

connectivity and cognitive performance at baseline or with change in cognition over time.  

Hence, at least in this sample, DMN connectivity is not a clinically useful marker for 

cognitive impairment in PD.  
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Chapter:8 Summary and conclusions 

8.1 Summary of the imaging findings 

In this thesis, I employed three different MRI techniques: (1) structural T1-weighted images, 

to investigate cortical thickness and surface area; (2) single voxel MR spectroscopy, to 

estimate four common brain metabolites; and (3) blood-oxygenation-level dependent (BOLD) 

imaging, to study functional connectivity of the default mode network. The main objectives of 

this thesis were to determine whether structural, single voxel MR spectroscopy, and resting 

state functional connectivity MRI reflect cognitive impairment in PD at cross section and over 

time, and therefore, whether these techniques hold promise as potential markers for cognitive 

impairment and dementia in PD.  

8.1.1 Structural analysis findings 

In Chapter 5, I evaluated structural brain changes via cortical thickness (CTh) and surface 

area (SA) analyses. At cross section, I found cortical thinning and surface area reduction in 

multiple brain regions. Over time, the analysis showed that cognitive deterioration of PD 

individuals is associated with a reduction in cortical thickness and surface area in several 

cortical regions. But most importantly, this thesis revealed that cognitive impairment is 

closely associated with cortical thinning and surface area reduction, perhaps more so than PD 

per se or motor impairment. In addition, while cognitive ability had a large impact on cortical 

thickness, surface area was also affected, but in a regionally-restricted fashion. That is, the 

worse the cognition ability of the individual, the thinner the cortex and, to a lesser extent, the 

smaller the SA. This suggests that SA is affected differently than cortical thickness in PD. 

Therefore, these results highlight the potential role of cortical thickness and surface area as 

objective markers for cognitive impairment in PD.  

8.1.2 Metabolic analysis findings 

In Chapter 6, I analysed single voxel MR spectroscopy (MRS) metabolites from the posterior 

cingulate cortex (PCC). Across all four metabolites investigated, I showed no significant 

difference among cognitive groups (PDN, PD-MCI, and PDD) or compared to controls. What 

is more, the longitudinal analysis found no significant change in MRS metabolite ratios and 

no significant relationship between participants’ cognitive ability and MRS measures. This 

suggests that the MRS-derived metabolic estimates from the PCC, at least, are not clinically 

useful biomarkers of cognitive status or of longitudinal change of cognitive impairment in 

Parkinson’s disease. 
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8.1.3 Functional connectivity analysis findings 

In Chapter 7, I investigated functional connectivity of the default mode network (DMN). I 

found that the Goodness-of-fit (GOF-DMN) score, representing the average connectivity 

across the DMN, showed no significant difference between Parkinson’s and controls. 

Similarly, there was no significant correlation between DMN connectivity and participants’ 

cognitive ability at baseline or with change over time. Lastly, I demonstrated the possibility of 

identifying positive results (a group difference between PD and controls GOF-DMN) when 

sample sizes are small. Therefore, and similar to the MR spectroscopy findings, the functional 

connectivity of the DMN derived from the resting state functional MRI data, at least in this 

thesis cohort, cannot be considered a clinically useful marker for cognitive impairment in PD.  

8.2 Implications for Parkinson’s disease 

In this cohort, structural brain changes (namely, cortical thinning and reduced surface area) 

most closely reflect cognitive ability in Parkinson’s disease. While I did not show cognition-

related functional and metabolic disturbances, regions that exhibited structural changes have 

been previously reported to experience functional and metabolic disturbance in the 

cognitively impaired participants (PD-MCI and PDD), assessed by PET and SPECT 

modalities (Antonini et al., 2001; Firbank et al., 2003; Kasama et al., 2005; Wallin et al., 

2007; Huang et al., 2008). While it is unclear if structural changes trigger the functional ones 

or vice versa, the work here suggests that MRI-derived structural metrics are more sensitive to 

brain changes associated with cognitive decline in PD than MRI-measured function and 

metabolism. Thus, cortical measures appear to accompany cognitive impairments. 

It is difficult to pinpoint a direct link between cortical thinning and surface area change and 

pathophysiology of PD, but degeneration of multiple systems most probably plays a role. The 

underlying pathology may include changes in the neuronal and dendritic architecture 

(Freeman et al., 2008), cell death, neurotransmitter dysfunction, white matter damage (Melzer 

et al., 2013) or hypoperfusion (Irwin et al., 2013). While the underlying cause of cortical 

thinning in PD remains unknown, I have identified a useful marker of cognitive status and 

decline in PD. Cortical thickness from a number of areas in the brain represents a promising 

surrogate marker for tracking of disease progression. While results are still at the group level 

and do not yet provide prediction on the individual level, they do offer a robust description of 

what happens in the brain during PD progression and provide a benchmark for future 

research.   

8.3 Future work 

Using MR spectroscopy (MRS), there is evidence to suggest that abnormal metabolic profiles 

exist in pre-supplementary motor areas, anterior cingulate cortex, and occipital lobe 

(Camicioli et al., 2007; Lewis et al., 2012; Nie et al., 2013). Therefore it is possible that these 

other brain areas may hold more promise of capturing disease-related MRS changes.  
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In chapter 5, I nominated several a priori brain regions to undergo analysis that facilitated the 

use of sophisticated models. Future work should explore the entire brain implementing a 

vertex-wise analysis approach (Hanganu et al., 2014). Such an approach should allow direct 

correlation between brain regions with particular functions and relevant individual 

neuropsychological test scores (for example, directly correlating frontal lobe with 

participants’ attention or problem solving scores). While in this thesis I only examined the 

brain cortex, the volume loss of subcortical regions reported in cognitively impaired PD 

patients (Aarsland et al., 2017). The most recent release of  Freesufer software (used in this 

thesis to estimate the cortical metrics) provides more accurate subcortical volume 

measurement of 40 different brain region, including hippocampal subfields, reported to have 

reduced volume in relation to cognitive decline in PD (Potvin et al., 2016).  Hence, future 

work should investigate the relationship between cognitive impairment and brain subcortical 

regions volumes. 

In chapter 7, I used ICA as an analysis approach to focus on the DMN. However, there are 

other resting state networks that can be identified and analysed from the output of the ICA. 

These additional networks have not been examined due to time limitations. These untested 

networks may have a potential role in tracking functional changes in relation to cognitive 

impairment in PD (Baggio et al., 2015). Other analysis approaches such as “Graph theory” 

approaches have also reported compromised regional functional networks in cognitively 

impaired PD patients (Agosta et al., 2016). Therefore, future investigations in this sample 

should focus on other resting state networks and a graph theoretical analysis that may provide 

more information about functional connectivity and its relationship to cognition and cognitive 

decline in PD. Benefiting from the advancement in MRI technology, the use of multi-band 

resting state functional MRI technique (a technique that allows simultaneous multiple slice 

acquisition) showed not only to help in reducing the scan time (Moeller et al., 2010); but also 

reduces artefacts that are usually seen in such a fast imaging technique. Faster imaging and 

fewer artefacts shall improve the sensitivity of detecting resting state networks (Griffanti et 

al., 2014; Preibisch et al., 2015). Therefore, improved techniques such as the multi-band 

should be considered in future work. 

In this thesis, I have showed that structural MRI metrics can be used to track cognitive 

impairments in PD. Future work should not only focus on examining the entire brain, but also 

on incorporating additional MRI modalities into the assessment, including pseudo continuous 

arterial spin labelling perfusion imaging, task-based fMRI paradigms, vascular-focused scans, 

quantitative susceptibility mapping, and high resolution diffusion imaging. Furthermore, 

analysis should aim to become more multimodal. That is, incorporating multiple MRI 

modalities simultaneously into an analysis, as opposed to investigating each modality as an 

independent entity. Such steps may make these and future MRI measures more clinically 

applicable. 
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