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Where is it, this present? It has melted in our grasp, fled ere we could touch it, gone in the 

instant of becoming. 

- William James, Principles of Psychology (1890) 

 

 

 

My formula for greatness in a human being is amor fati: that one wants nothing to be 

different, not forward, not backward, not in all eternity. Not merely bear what is necessary, 

still less conceal it—all idealism is mendacity in the face of what is necessary—but love it. 

- Frederick Nietzsche, Ecce Homo (1908) 

 

 

 

When I let go of what I am, I become what I might be.  

- Lao Tzu, Tao Te Ching (~400 BCE) 
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Abstract 

 This thesis focused on the role of the anterior cingulate cortex’s (ACC) interactions 

with the dopaminergic neurons in the ventral tegmental area (VTA) during adaptive 

behaviour. The overall question guiding this work was: how does information gained during 

goal pursuit modify and motivate subsequent behaviour? This larger question was 

operationalized as two projects: (i) to determine whether cortical influence over the 

dopaminergic midbrain is a mechanism by which ACC signals are implemented as VTA 

motivation signals; and (ii) to determine the interplay between the ACC and VTA during the 

initiation and maintenance of behavioural change. In the first project, we monitored and 

modelled ACC and VTA local field potentials of rats running laps of varying physical 

difficulty for fixed rewards. The effortful condition required rats to climb over a 30-cm 

barrier, whereas no barrier was present under the non-effortful condition. The key finding was 

that ACCVTA 4-12 Hz signalling increased in trials when the lap was easier than expected. 

Importantly, this increase was significantly correlated with, but not confounded by, changes in 

motivation, as measured by running speed. The findings of this first project indicated that the 

ACC-VTA circuit is a plausible mechanism by which behaviour is modified. This led us to 

ask whether changes in the ACC-VTA circuit are related to the initiation and persistence of 

behavioural change. 

 To assess the interplay between the ACC and VTA during the initiation and 

persistence of behavioural change, we monitored ACC single units and LFPs as well as LFPs 

in VTA of rats performing a cost-benefit foraging task with changing contingencies. Through 

a combination of behavioural, electrophysiological, and modelling analyses, we found that the 

initiation of exploratory behaviour and the persistence of behavioural change were associated 

with ACC  VTA signalling. Additionally, we characterized the content of ACC neuronal 

task models, and showed that ensembles of ACC neurons encode simple actions and values. 

This was important because, despite the longstanding assumption that the ACC encodes 

neuronal models of the task at hand, the content of those internal representations remained 

unclear. Furthermore, we demonstrated that value-coding elements of ACC neuronal task 

models are particularly influenced by the VTA. This is important because it suggests that 

mesocortical dopaminergic signalling is a means by which ACC models of the task at hand 

could be both initiated and modified.  

 The thesis concludes by presenting a novel incentive-salience, task-model onset theory 

of ACC function. 
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Chapter 1 General Introduction 

1.1 Overview of anterior cingulate cortex 

The anterior cingulate cortex (ACC) is a prefrontal cortical structure which is heavily 

interconnected with motor and subcortical areas. Recent theories of ACC function (e.g. 

Kolling, Behrens, Wittmann, & Rushworth, 2016) suggest that the ACC monitors internal 

models of environments and motivates goal-directed behaviour by modulating cognitive, 

affective, and motor processes related to drive, based on those internal models (Holroyd & 

Yeung, 2012). The ACC is also implicated in monitoring and updating those internal models 

when behaviours do not lead to the predicted outcome, which can then adapt future behaviour 

(Bryden, Johnson, Tobias, Kashtelyan, & Roesch, 2011; Kennerley, Walton, Behrens, 

Buckley, & Rushworth, 2006). This chapter aims to provide an overview of the anatomy and 

physiology which undergirds these core functions.  

1.1.1 ACC anatomy 

1.1.1.1 Definition of the ACC 

The rat cingulate cortex is a large structure comprised of three subdivisions, the 

anterior cingulate cortex, the mid-cingulate cortex, and the retrosplenial cortex (see Figure 

2A). The anterior cingulate cortex (ACC) is a major subdivision of the prefrontal cortex and is 

considered conserved across rodents, humans, and non-human primates (Vogt & Paxinos, 

2014; Zilles & Wree, 1995; see Figure 1). Definitions of the structure vary widely; for 

instance, Zilles and Wree (1995) divide this region into Cg1 (cingulate gyrus 1), Cg2, and 

Cg3 whereas Paxinos & Watson (1997) divide the ACC into Cg1 and Cg2 and treat Cg3 as 

part of the infralimbic (IL) cortex. However, recent work by Vogt & Paxinos (2014) indicates 

that Cg1, Cg2, and Cg3/IL are all continuous portions of the ACC. This thesis will treat the 

ACC according to Vogt & Paxinos (2014)’s most recent definition (see Figure 1A). Areas 24b 

and 32 in Figure 2A and C correspond to the specific subregions of the ACC examined in this 

thesis. 
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Figure 1. Homology of cingulate cortex areas from humans to rats to mice. From figure 6 in Paxinos and Vogt 

(2014). 

 

Figure 2. Location and cytoarchitecture of the rat ACC. A. Localisation of major cingulate cortex divisions in 

the rat. The salmon coloured areas 24b and 32 are the portions of the ACC studied in this thesis. B. Macrograph 

of Nissl-stained sections of areas 24a, 24b, and area 33. C. Micrograph of laminae in area 24b. D. 

Cytoarchitecture and lamellae of area 32. Images are from Paxinos and Vogt (2014) figures 1 and 2. 
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1.1.1.2 Primary cell types of ACC areas 24b and 32. 

Areas 24b and 32 contain a multitude of cell types, many of which, are unique to these 

divisions of the ACC. Here I will address inverted pyramidal neurons, several classes of 

multipolar neurons, bipolar, and bi-tufted neurons. This section will aim to highlight the 

intracortical and extracortical nature of these cell types with a view to the next section, which 

will review the major inputs and outputs of ACC areas 24b and 32.  

Areas 24b and 32, uniquely, contain large numbers of inverted pyramidal neurons 

(Vogt & Peters, 1981; see Figure 3a and 3b). These cells share many of the characteristics of 

typical pyramidal cells (e.g. the somas occur in layers II-VI, especially layers IV and V, 

branch at least three times, and have apical tufts in white matter), except that their orientating 

apical dendrite is towards the medial white matter, the cingulum bundle, rather than the pia 

mater, which is more typical of pyramidal neurons in other cingulate areas. The axons of 

inverted pyramidal neurons typically project into the cingulum bundle; thus, these neurons are 

the primary extra-ACC input-output neurons of ACC areas 24b and 32. 

 

Figure 3. Inverted pyramidal cells of area 24b, immediately rostral from the corpus callosum. A. Six inverted 

pyramidal cells. B. Magnified inverted pyramidal cell. From figure 6 in Vogt & Peters (1981). 

 Multipolar neurons are characterized by a dendritic arbour which enshrouds the soma 

and an axon which terminates within the cortex (see Figure 4). Thus, multipolar neurons, 

generally, are the integrators and maintainers of local information in the ACC. Multipolar 
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neurons vary greatly in soma size, dendritic arborisation, and axonal distribution and are thus 

sub-classified as being either small, medium, or large.  

 

Figure 4. Large (A) and medium (B) multipolar neurons with axonal and dendritic arbours rendered separately. 

Figure 12 in Vogt & Peters (1981). 

 Bi-tufted and bipolar neurons are the final major cell types comprising areas 24b and 

32 in the ACC. These cell types are characterised by their cylindrical, fusiform somata. 

However, they are distinguished by the shape of their dendritic arbours and axon projections: 

bi-tufted neuron arbours have an hourglass shape and contain many vertical and horizontal 

axon collaterals whereas bipolar arbours and axon collaterals tend to be more vertically 

oriented (see Figure 5). Neither of these cell types tend to collateralise in the cingulum 
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bundle, and both tend to span multiple layers of the cortex, suggesting that these cells traffic 

information between cortical layers.  

 

Figure 5. Bi-tufted and bipolar neurons from ACC areas 24b and 32. A. Bi-tufted neuron from layer III of area 

32. B. Bi-tufted neuron from layer III of area 32. C. Bipolar neuron from layer III of area 24b. D. Bipolar neuron 

from layer III of area 24b. E. Bipolar neuron from layer V in area 24b. Figure 15 in Vogt & Peters (1981). 

  

 To summarize, inverted pyramidal, varieties of multipolar, bi-tufted, and bipolar 

neurons comprise the majority of cell types in areas 24b and 32 in the ACC. Inverted 

pyramidal neurons are the primary cells which handle extra-cortical inputs and outputs 

whereas multipolar neurons are more likely to process, and perhaps maintain, information 

within the cortical layer in which the neuron occurs. Bi-tufted and bipolar neurons span 

several cortical layers but do not project into the medial or lateral white matter, suggesting 
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that these neurons traffic information between layers within the ACC. Taken together, the 

constellation of cell types comprising areas 24b and 32 in the ACC suggest a cortical volume 

which is specialized at loading in extracortical information via inverted pyramidal dendritic 

arbours adjacent to the cingulum bundle which is then intracortically processed by multipolar, 

bi-tufted, and bipolar neurons before the output of such computations is sent out by inverted 

pyramidal axons projecting into the cingulum bundle.  

1.1.1.3 Primary inputs and outputs of the ACC 

Areas 24b and 32 of the ACC (henceforth referred to as ACC) have an extensive array 

of connections, which are summarized in Table 1. It is notable that the ACC is reciprocally 

connected to many neuromodulatory centres (e.g. the ventral tegmental area, locus coeruleus, 

and Raphe nuclei) and the hippocampus, suggesting that the ACC might play a role in 

monitoring and influencing both neuromodulatory and hippocampal states, respectively.  

Table 1.  

Inputs and outputs of the rat ACC 

Inputs Outputs 

Structure Reference Structure Reference 

Basal nucleus of Meynert Zilles & Wree (1995) 
Caudal interstitial nucleus of 
the medial longitudinal 

fasciculus 

Zilles & Wree (1995) 

Basolateral amygdala Zilles & Wree (1995) Intralaminar thalamic nuclei Zilles & Wree (1995) 

Caudal interstitial nucleus of 
the interstitial fasciculus 

Zilles & Wree (1995) Laternal habenular nucleus Zilles & Wree (1995) 

Dorsal raphe nucleus Zilles & Wree (1995) Pontine nuclei Zilles & Wree (1995) 

Median raphe nucleus Zilles & Wree (1995) Anterior pretectal nucleus Zilles & Wree (1995) 

Locus coeruleus Zilles & Wree (1995) 
Mediodorsal thalamalic 

nucleus 
Zilles & Wree (1995) 

Lateral hypothalamic area Zilles & Wree (1995) 
Periventricular hypothalamic 
nucleus 

Zilles & Wree (1995) 

Mediodorsal thalamic nucleus Zilles & Wree (1995) Median raphe nucleus Zilles & Wree (1995) 

Zona incerta Zilles & Wree (1995) Superior colliculus Zilles & Wree (1995) 

Parabrachial pigmented 

nucleus 
Zilles & Wree (1995) Agranular insular cortex Zilles & Wree (1995) 

Ventromedial thalamic 
nucleus 

Zilles & Wree (1995) Entorhinal cortex Zilles & Wree (1995) 

Ventral tegmental area Zilles & Wree (1995) Ventral tegmental area Carr & Sesack (2000) 

Centrolateral thalamic nucleus Zilles & Wree (1995) Presubiculum Zilles & Wree (1995) 

Laterodorsal thalamic nucleus Zilles & Wree (1995) Nucleus accumbens core 
Brog, Salyapongse, Deutch, 

& Zahm (1993) 

Perivertricular hypothalamic 

nucleus 
Zilles & Wree (1995) Nucleus accumbens shell Brog et al., (1993) 

Intrinsic (within ACC) Zilles & Wree (1995) Contralateral ACC Zilles & Wree (1995) 

Contralateral ACC Zilles & Wree (1995) dCA1 hippocampus Rajasethupathy et al. (2015) 

Agranular insula cortex Zilles & Wree (1995) Basolateral amygdala Zilles & Wree (1995) 

dCA1 hippocampus Rajasethupathy et al. (2015) Orbitofrontal cortex Zilles & Wree (1995) 

Superior colliculus Comoli et al. (2012)   

 

 



7 
 

1.1.2 ACC function 

 The ACC is strongly implicated in many key functions, such as pain (Ballantine, 

Cassidy, Flanagan, & Marino, 1967; Bliss, Collingridge, Kaang, & Zhuo, 2016; Foltz & 

White, 1962), affect (George et al., 1993; Meyer, McElhaney, Martin, & McGraw, 1973; 

Vogt, 2005), the subjective effects of the psychedelic drug d-lysergic acid diethylmide (LSD; 

Gresch, Barret, Sanders-Bush, & Smith, 2006), detections of errors of when outcomes do not 

match predictions (Bryden et al., 2011; Kawai, Yamada, Sato, Takada, & Matsumoto, 2015; 

Kennerly, Behrens, & Wallis, 2011), and the subsequent adaptation of behaviour following an 

error (Bryden et al., 2011; Cavanagh, Frank, Klein, & Allen, 2010; B. Y. Hayden, 

Heilbronner, Pearson, & Platt, 2011). Grand theories attempting to account for all of the 

activities of the ACC are, understandably, general. This section will review two prominent 

theories of ACC function, the theories of cognitive control and internal model monitoring and 

updating. 

1.1.2.1 The cognitive control theory of ACC function 

 Until recently, the prevailing notion regarding ACC function was cognitive control 

(culminated in Shenhav, Botvinick, & Cohen, 2013), which suggests that the ACC is 

continuously monitoring task performance and performing a moment-by-moment cost-benefit 

analysis calculation, the outcome (and magnitude) of which corresponds to the magnitude of 

control the ACC exerts via its efferent outputs to direct behaviour. The most convincing 

experiments supporting this notion centre around the Stroop task, which is thought to examine 

cognitive control. Participants performing a classic Stroop task are timed while they name the 

printed colour of stimuli of three different types of stimuli (a) colour patches, (b) non-colour 

words, and (c) words that name a colour but are printed in a conflicting colour (Stroop, 1935; 

see Figure 6). Stroop (1935) found that participants were considerably slower at naming the 

ink colour of a word when the stimuli were colour words incongruent with the ink colour (e.g. 

C in Figure 6), which led Stroop (1935) to conclude that participants cannot help but to read 

the word and that this automatic reading process conflicts with the controlled process of 

naming the ink colour. Thus, reaction times and neural responses in the Stroop task are 

thought to represent the degree of cognitive control the participant must employ in order to 

resolve the conflict engendered in the task.  

A 

 

B 

TRUCK 

C 

BLUE 

Figure 6. Examples of Stroop task stimuli which require escalating degrees of cognitive control to correctly 

name. A. A patch of colour. B. A non-colour word printed in blue. C. A word which names a colour but is 

printed in a conflicted colour.  
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 Numerous reports implicate the ACC in facilitating Stroop-task performance (Barch et 

al., 2001; Sheth et al., 2012; Swick & Jovanovic, 2002). The most convincing of these 

recorded ACC single-units of human patients undergoing stereotactic cingulatomy for 

treatment-resistant obsessive-compulsive disorder as they performed a Stroop-like task (Sheth 

et al., 2012). Sheth et al. (2012) found positive correlations between the difficulty (e.g. the 

amount of cognitive control required) on a given trial and participant reaction time (Figure 

7A). Strikingly, the firing rate of individual ACC neurons also corresponded to the degree of 

cognitive control required to complete a given trial (Figure 7B). Subsequent functional 

magnetic resonance imaging (fMRI) revealed that the ACC is the primary brain area active 

during the task (Figure 7C). Taken together, these experiments provide compelling evidence 

of the role of the ACC in cognitive control. 

A B C 

 

Figure 7. Data implicating the ACC in cognitive control. A. In a Stroop-like task, participant reaction times 

increase as task difficulty increases. 0 = naming a coloured block, 1 = naming a coloured, non-colou word, and 2 

= naming a colour word printed in an incongruent ink colour.  B. Firing rates of human ACC neurons responsive 

to the Stroop-task increase as task difficulty increases. C. Blood-oxygen-level-dependent (BOLD) signalling 

from fMRI experiments indicating that the ACC is the brain area primarily activated by the Stroop task. Adapted 

from Sheth et al. (2012).  

 Findings from rodent and non-human primate electrophysiology experiments can also 

be interpreted as additional evidence for ACC’s role in cognitive control. Ma, Hyman, 

Phillips, & Seamans (2014) recorded ACC neurons of rats trained to press levers in a 

sequence and found that ACC neurons increased their firing rates in a step-wise manner as 

rats completed each element of a given sequence (Figure 8A). That ACC neurons increased 

their firing rates as rats progressed towards a goal suggests that ACC neurons might either 

track progress towards a goal or, alternatively, provide a signal indicating persistence or 

commitment to a goal. Blanchard, Strait, & Hayden (2015)’s recordings of non-human 

primate ACC neurons while subjects persisted in a commitment to a decision offer some 

clarity. Blanchard et al. (2015) required non-human primates to make a choice by depressing 

a lever and continue holding that lever for a specific amount of time until a reward was 

delivered. They found that ACC unit ensembles ramped up during the course of commitment 
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to a decision (Figure 8B and C). The ramping shape indicates that ACC unit ensemble states 

gradually came to resemble the goal state while persisting in a decision. Together, the 

findings of both Ma et al. (2014) and Blanchard et al. (2015) suggest that ACC neurons in 

these tasks, respectively, correspond to an organism’s cognitive commitment and behavioural 

persistence towards a goal. Thus, these findings can be construed as instances of cognitive 

control if one considers that committed pursuit of one goal excludes the pursuit of other goals 

and that the active exclusion of alternative-goal-related-information is an example of the ACC 

controlling the strength and effect of internal representations.  

 Additional support for ACC having a role in cognitive control comes from Hillman & 

Bilkey (2010)’s recordings of rodent ACC neurons as the rodents completed a cost-benefit 

decision making T-maze task. The task required rats to turn left or right, taking into 

consideration the amount of reward they would receive and the physical effort required to 

attain that reward. For example, in the baseline configuration of their experiment, “2:6B,” rats 

could turn left to pursue a reward of two chocolate cereal pellets with no additional physical 

effort (low cost, low reward; LCLR) or turn right to overcome a 30cm barrier to attain a 

reward of 6 chocolate cereal pellets (high cost, high reward; HCHR).  

 

Figure 8. ACC unit activity corresponds to progress towards and, perhaps, commitment to a choice. A. Rat ACC 

unit activity increases in a stepwise manner as a rat completes each step in a sequence of lever presses. B. Non-

human primate ACC unit activity is modulated by the initiation of a choice trial and begins to ramp up as the 

temporal proximity to reward increases. C. Correlations of non-human primate ACC unit principal component 



10 
 

vector states at various temporal windows with the vector state during the time of reward delivery. A is from Ma 

et al. (2014); B is from Blanchard et al. (2015). 

 Hillman & Bilkey (2010) found that the majority of their animals (7/10) preferred the 

HCHR option whereas three animals did not exhibit a significant preference for one choice 

over the other. Despite the differences in choice behaviour, ACC neurons in all 10 animals 

fired significantly more in HCHR-associated regions of the maze as compared to matched 

LCLR regions (Figure 9). 

 

Figure 9. Example rat ACC neurons responding to HCHR trajectories more than LCLR trajectories. For each 

cell, firing rate data are pseudo-colour mapped onto position in the maze. Firing rate scale values are beneath 

each plot. A. Rat ACC neuron which maximally responds to the maze region immediately after the decision. B. 

Rat ACC neuron which maximally responds to the pre-reward region of the maze. Adapted from Hillman & 

Bilkey (2010). 

Since difference were not detected between either the ACC neuron firing profiles or number 

of cells biased towards HCHR trajectories contained within HCHR-preferring rats and no-

preference rats, Hillman & Bilkey (2012) suggested that these neurons encode the anticipation 

of some future feature of the rats’ current path, such as physical effort. Alternatively, it may 

be that ACC neuron activity prospectively encodes the integrated value of anticipated benefit 

discounted by anticipated cost. Importantly, Hillman & Bilkey (2010) demonstrated that ACC 

neurons rapidly adapted to changes in the maze configuration which altered the spatial 

arrangement of the barriers and reward magnitudes (Figure 10 A,B). Taken together, these 

data suggest that the ACC dynamically integrates cost and benefit information and may bias 

an organism towards the most economically advantageous actions and is thus another instance 

of ACC’s role in cognitive control.  
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Figure 10. ACC neurons dynamically and relatively encode value. 10 ACC neurons from four rats were recorded 

across three maze configurations over three days. A. Schematic of different maze configurations across days. On 

day one, the standard 2:6B configuration, described earlier. On day two, the same reward, two cereal pellets, was 

available as a consequence of turning either left or right; however, a physical barrier was added to right turns. On 

day three, the standard 2:6B configuration was reinstated except that the path of the rats was reversed. B. Firing 

rate maps for an example neuron which was stably recorded across the three configurations. For all 10 cells, 

firing rates were significantly higher for the more economical trajectory and, in the case of the reversed 

trajectory, remapped to a spatially-proportional position in the maze as the non-reversed configuration. Adapted 

from Hillman & Bilkey (2010).   

1.1.2.2 The internal state monitoring and updating theory of ACC function 

An alternative recent theory of ACC function suggests that the ACC constructs and 

tunes internal models of the environment that are relevant for future behaviour and biases 

behaviour based on those models (Kolling et al., 2016; O’Reilly et al., 2013). Such a notion is 

supported by reports of large, transient bursts of ACC neuron activity, in both rodents and 

non-human primates, when an outcome is different than expected (Bryden et al., 2011; 

Gemba, Sasaki, & Brooks, 1986; Kawai et al., 2015; Kennerly et al., 2011). Although such 

prediction errors are now regularly reported in dopaminergic and other brain areas (e.g. Eshel 

et al., 2015), they were first detected in the ACC (Gemba et al., 1986; Figure 11) Strikingly, 

the magnitude of the activity increase correlates with the magnitude of the prediction error. 

The most important finding across these studies is that ACC activity on error trials strongly 

predicted a change in behavioural strategy on the next trial, a finding which has been 

replicated in human electroencephalographic (EEG) and single unit investigations of the 

adaptive role of ACC signalling (Cavanagh et al., 2010; Debener et al., 2005; Sheth et al., 

2012). Collectively, these data suggest that the ACC plays a fundamental role in adaptive 

behaviour, perhaps by motivating extended behaviours based on dynamic internal models of 

environments and task requirements (Holroyd & Yeung, 2012; Kolling et al., 2016).  

 A human functional magnetic resonance imaging (fMRI) study by O’Reilly et al. 

(2013) provides compelling evidence that the ACC does indeed dynamically encode internal 

models of task requirements and most strongly responds when that model requires updating. 
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In the study, human participants were initially instructed to fixate on a point at the centre of a 

circle. A coloured target dot then appeared somewhere on the perimeter of the circle and 

participants were directed to shift their gaze such that they came to fixate on the target dot. 

 

Figure 11. Examples of prediction error in the ACC of the rat and non-human primate. A. The first reported 

example of prediction error. When non-human primates committed an error, which did not yield reinforcement 

when it was expected, the local field potential, the aggregate electrical signal of the neurons which comprise a 

brain area, strongly deflected. This deflection pattern is associated with more neurons firing in a synchronized 

manner (Buzsaki, 2006). B. ACC neurons contained in rats increase their firing rate after the animal committed 

an error and reward was omitted when it had been expected. C. ACC neurons of non-human primates respond 

most when reward is omitted after a reward-associated action. A is adapted from Gemba et al. (1986); B is 

adapted from Bryden et al. (2011); C is adapted from Kawai et al. (2015). 

 

Dots of a specific colour, red, for instance, indicated a characteristic location the dots would 

appear in the subsequent 10-20 trials (Figure 12A,B). After a block of trials of a given colour 
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and spatial distribution, a new dot colour would appear in a new location on the circle, 

updating the location of the next distribution of dots. Occasionally, a grey dot in a surprising 

location that was inconsistent with the prior spatial distribution of the coloured dots (Figure 

12B). These types of trials were one-off in nature and were not predictive of future dot-

location occurrences and, thus, should not induce updates in the participants’ internal task 

models.  

 

Figure 12. Task schematic and behavioural performance in a study demonstrating ACC responds to internal 

task-model updating. A. Plot of target dot locations as portrayed as angles (α) from vertical as a function of trial 

number. B. Example of dot-position distributions for red dots, which were associated with fixation changes to 

the upper-right quadrant of the circle. One-off dot targets are shown in grey. C. Reaction times for gaze to arrive 

at the target dot one-off and update trials, respectively. Zero indicates the instance of a one-off or update trial. 

The dotted line indicates the mean reaction time across all trials. D. Saccadic reaction times from onset of cue, 

how long it took for gaze to arrive at the dot target, and the duration of fixation upon the target dot as a function 

of trial type. Adapted from O’Reilly et al. (2013). 

  Participants made speeded saccades (rapid eye movements) to the expected location 

of a dot significantly faster than one-off, ‘surprise’ trials. On ‘update’ trials, however, 

participants spent more time gazing at the target dot than other trial types (Figure 12C,D). 

This suggests that participants formed internal models of the task-requirement by estimating 

the underlying spatial distribution of target dots within a given trial-block. Interestingly, 

blood-oxygen-level-dependent (BOLD) signalling measured in the fMRI detected the greatest 

ACC response to the ‘update’ trials as compared to both the ‘expected’ and ‘surprise’ trial 

types (Figure 13A,B). The lack of ACC response to one-off trials is unexpected given 

literature implicating ACC in prediction error. Since the ACC responded almost exclusively 
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to ‘update’ trials, perhaps prior studies of prediction errors detected in the ACC ought to be 

reinterpreted as the output of a process of updating more fundamental network processing 

states in the ACC. However, as the signals observed by O’Reilly et al. appeared to occur in 

the “middle” portion of the ACC and not its most anterior subregions, questions remain as to 

whether different sub-regions of the ACC do different things.  

 The internal-state monitoring and updating theory of ACC function accounts for the 

phenomenon implicating cognitive control as a core function of ACC and reconciles the 

literature implicating the ACC in error-minimizing adaptive behaviour. This model reconciles 

the previous ‘cognitive control’ theory because it is more fundamental, suggesting that 

cognitive control is the output of the internal model shifts. Thus, the evidence suggests that 

ACC likely encodes a dynamic model of the task at hand and allocates cognitive control based 

on that model. This theory is prescriptive in that it suggests guidelines and heuristics for both 

the design and interpretation of future experiments. For example, the internal-state monitoring 

and updating theory suggests that ACC ought to respond most when task-requirements are 

different than expected, which requires subsequent adaptive behaviour. It also suggests that 

ACC computations integrate the expected benefit of adapting behaviour as well as the relative 

costs of such behavioural change and is not likely to respond as much when competing action 

plans with different value-valences do not need to be compared, a notion explicitly validated 

by Shenhav, Straccia, Cohen, & Botvinick (2014). 
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Figure 13. ACC responses to update and one-off trials. A. Whole-brain fMRI results showing colour-mapped 

responses on update trials. The yellow shape indicates the region defined as ACC in the analyses. B. Raw ACC 

activity detected across trials, where zero indicates the occurrence of either an update trial or a one-off trial. The 

dashed line indicates the mean across all trials.  

1.1.3 Summary of the ACC 

In summary, the ACC is a medial prefrontal cortical area which integrates intra-and-

extra cortical information. Assessments of ACC activity in rodents, non-human primates, and 

humans suggest that the ACC is a critical for adaptive behaviour. The most convincing 

unifying theory of ACC function suggests that the ACC constructs and tunes internal models 

of the environment that are relevant for future behaviour and adapts behaviour based on those 

models. Nevertheless, it is mechanistically unclear how changes in ACC activity translate into 

behavioural change. The ACC might enact such adaptive changes in behaviour by modulating 

its extensive connections with motor areas and could influence motivation via its contacts 

with subcortical areas such as the ventral tegmental area (VTA), a dopamine-producing brain 

area widely implicated in adaptive behaviour and motivation (Hamid et al., 2016;  Schultz, 

2016; Schultz, Dayan, & Montague, 1997). The experiments contained within this thesis aim 

to explore such a possibility.  
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1.2 Overview of ventral tegmental area 

 The ventral tegmental area (VTA) is a midbrain structure characterized by the 

presence of prefrontal-and-limbic-projecting dopamine-synthesizing neurons (Oades & 

Halliday, 1987). The VTA is often studied for its implication in a wide variety of functions 

such as reinforcement learning, motivation, aversion, natural or drug-related reward, mood, 

decision making, and related pathologies (Berridge, 2004; Morales & Margolis, 2017). This 

section aims to provide an overview of the anatomy and physiology which undergirds these 

core functions with a specific emphasis on motivation and decision-making.  

1.2.1 VTA anatomy 

First described by Tsai (1925), the VTA consists of glutamatergic, and gamma-amino-

butric-acid (GABA)-containing, and dopaminergic (DA) neurons located in the midbrain, 

adjacent to the substantia nigra and the red nucleus (Oades & Halliday, 1987). The VTA 

consists of several nuclei and is typically defined by neurons expressing the DA-producing 

enzyme tyrosine hydroxlase (TH) and is conserved across mammals, including rats and 

humans (Fu et al., 2012; Hrabovszky et al., 2013; Figure 14A-D). The defining 

cytoarchitectural feature of VTA DA neurons is that their axons can originate from dendrites, 

rather than the soma, as is typical in most other neuron formations (Lapish, Kroener, 

Durstewitz, Lavin, & Seamans, 2007; Figure 14E). VTA DA neurons are also known to co-

produce-and-release glutamate and GABA (Morales & Margolis, 2017; Seal & Edwards, 

2006; Trudeau, 2004), suggesting broad heterogeneity of VTA structure and function. 

 The VTA exhibits a functional anterior-posterior (AP) gradient which was initially 

detected because local infusion of muscimol, a GABAA agonist, into the posterior VTA 

(pVTA) increased rodent locomotion activity whereas muscimol infusion into the anterior 

VTA (aVTA) did not (Arnt & Scheel-Kruger, 1979). Similar distinctions in behavioural 

outcomes have been reported for many other compounds infused into and manipulations of 

the aVTA and pVTA, respectively (see Table 1 in Sanchez-Catalan, Kaufling, Georges, 

Veinante, & Barrot, 2014). Consistent with the essential DAergic characterization of the 

VTA, DA-synthesising cell locations display a similar gradient, with an anteriorly skewed 

distribution within the VTA (Fu et al., 2012; see Figure 15). One prominent account of the 

VTA’s AP gradient is that the posterior portion of the VTA is an inhibitory DA control 

centre; while this theory is robustly supported, many reports conflict regarding the functional 

specialisation and projection patterns of other areas within the VTA (see Ikemoto, 2007 for an 

excellent and thorough review). Thus, although the AP gradient in the VTA is functionally 
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and cytoarchitectonically characterised, it is unclear how the distinct microcircuitries within 

the VTA are functionally inter-related.  

 

Figure 14. Tyrosine hydroxylase (TH) staining reveals dopamine neurons which define the VTA in the human 

and rat. A. Human brain section stained for TH with inset boxes showing the location of the VTA and substantia 

nigra. B. Magnified image of the box in A showing a relatively diffuse concentration of TH-positive neurons in 

the human VTA. C. Rat brain section stained for TH with inset showing the location of the VTA. D. Magnified 

image of the box in C showing that TH-positive neurons are densely arranged in the rat VTA. E. A mouse VTA 

neuron with green fluorescent protein under control of the TH promoter. This cell was injected with a red dye, 

resulting in a yellow colour. The insert is a magnified view of the boxed area in the main image. The arrow 

indicates the branching of an axon from a distally-located dendrite. A-D adapted from Hrabovszky et al. (2013); 

E adapted from Lapish, Kroener, Durstewitz, Lavin, & Seamans (2007). 
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Figure 15. Anterior-posterior distribution gradient of dopamine synthesizing neurons in the mouse VTA. A-H. 

Sections of mouse brain stained for cell bodies (Nissl method; blue signal) and TH (brown signal) spanning most 

of the VTA; sections showing -4.00 to -4.60mm are omitted because almost no TH+ neurons in the VTA were 

detected. Coordinates are relative to bregma. Note maximal TH+ neurons from -2.92 to -3.42mm, panels B 

through E, which is slightly anterior compared to the whole length of the VTA. Adapted from Fu et al. (2012). 
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1.2.2 VTA inputs and outputs 

 The inputs and outputs of the VTA are, perhaps, some of the best characterised in the 

brain because their dysfunctions are implicated in numerous pathologies such as addiction, 

schizophrenia, obsessive-compulsive disorder, and depression (Dichter, Damiano, & Allen, 

2012; Morales & Margolis, 2017; Narita et al., 2010; Navailles, Guillem, Vouillac-Mendoza, 

& Ahmed, 2015; Seeman & Seeman, 2014; Winton-Brown, Fusar-Poli, Ungless, & Howes, 

2014; Yamaguchi, Wang, Li, Ng, & Morales, 2011). Morales & Margolis (2017) provide an 

excellent review of the inputs and outputs of the VTA (Figure 16).  

 

Figure 16. Confirmed inputs and outputs of the VTA. A. Glutamatergic inputs to VTA DA neurons include the 

medial prefrontal cortex (mPFC), including the ACC, pedunculopontine tegmentum (PPTg), laterodorsal 

tegmentum nucleus (LDTg), lateral habenula (LHb), periaqueductal grey (PAG), bed nucleus of the stria 

terminalis (BNST), and dorsal Raphe nucleus (DRN). GABAergic inputs to VTA DA neurons include the 

rostromedial mesopontine tegmental nucleus (RMTg; also known as the pVTA), PAG, DRN, lateral 

hypothalamus (LHT), and ventral pallidum (VP). Local intra-VTA glutamate and GABAergic circuits also exist. 

B. GABAergic VTA neurons receive glutamatergic input from LHT, PAG, LHb, mPFC, BNST, and DRN. The 

nucleus accumbens (nAcc) is the only documented structure with a purely GABAergic input to the VTA 

GABAergic neurons; LHT, PAG, BNST, and DRN projections arise from both GABAergic and glutamatergic 

neurons. C-D. Both VTA GABAergic and glutamatergic outputs project to nAcc and LHb, albeit with different 

targets. E. VTA DA neurons project to nAcc and mPFC, including the ACC. Image from (Morales & Margolis, 

2017). 
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1.2.3 VTA functions 

VTA neurons integrate complex inputs to encode multiple signals which influence 

motivation, cognition, reinforcement, and associated pathologies (Berridge, 2004; Morales & 

Margolis, 2017; Schultz, 2016; Schultz, 2007). This section will review key data implicating 

the VTA in motivation, prediction error, and task-state monitoring and will build to a position 

that the VTA dynamically encodes the value of engaging in or switching from a task with 

respect to past reinforcement history.  

1.2.3.1 Motivation in the VTA 

VTA neurons are strongly implicated in the motivation to obtain a reward in that they 

respond to reward cues and elevate their activity prior to the initiating a goal-directed 

behaviour (Fiorillo, Tobler, & Schultz, 2003; Ljungberg, Apicella, & Schultz, 1992; Schultz, 

1998). Interestingly, VTA DA neurons transfer their response to the earliest reward-predicting 

stimulus over the course of learning (Figure 17). Inhibition of VTA DA neurons by 

optogenetic activation of pVTA GABAergic neurons during reward consumption disrupts 

reward consumption (van Zessen, Phillips, Budygin, & Stuber, 2012) and optogenetic 

activation of VTA DA neurons during reward consumption enhances generalization learning 

(Steinberg et al., 2013). Together, these findings suggest that neurons in the VTA are 

critically involved in the establishment and maintenance of goal-directed behaviour.  

In a classic and seminal study, Olds & Milner, (1954) trained rats to press a lever to 

stimulate electrodes implanted in various locations in their brains (intracranial self-

stimulation; ICSS). They found that rats would press at very high rates for a large proportion 

of the time animals were monitored when the electrodes were placed in the septal area, the 

medial geniculate nucleus, and the VTA (Figure 18A). Subsequent rodent studies (reviewed 

in Olds, 1958) found that VTA ICSS was so reinforcing for the animals that their lever press 

rates would exceed 7,000 presses per minute and that animals would elect to engage in VTA 

ICSS rather than eat, drink, or mate with a female rat in heat. VTA ICSS was so reinforcing 

that the animals frequently needed be removed from the testing apparatus to prevent their 

death by exhaustion. These data clearly indicate that the VTA in a critical component in the 

initiation and maintenance of goal-directed behaviour. 
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Figure 17. VTA DA neurons respond to the earliest stimulus predictive of reward. Data shown are peri-event 

histograms of normalized DA single-units contained within the VTA of Rhesus Macaque monkeys. A. VTA DA 

neurons respond do not respond to the illumination of a lamp when the lamp is not predictive of reward but do 

transiently respond to the delivery of reward. B. VTA DA neurons respond to a reward-triggering stimulus in a 

2-choice spatial reaching task. These same cells do not respond to the reward itself. C. VTA DA neurons 

respond to an instruction cue preceding the onset of a reward-predicting trigger stimulus, as in B; VTA DA 

neurons respond to neither the trigger stimulus nor the reward itself. Adapted from Schultz (1998). 

 

Studies of substance abuse and addiction also suggest that motivation is a core 

function of the VTA, specifically, its afferents to the nAcc and the mPFC, including the ACC 

(Narita et al., 2010; Nestler, 2005; Wanat, Willuhn, Clark, & Phillips, 2009; Wise, 2008). For 

example, DA concentrations measured in the nAcc, the output of VTA DA neurons, mediate 

the reinforcing effects and pursuit of psychostimulants, such as cocaine, and opiates, like 

heroin. Cocaine administration to VTA-ICSS trained rats dramatically increases the press rate 

and elevates simultaneously-recorded nAcc DA concentrations while the drug is in effect 

(Figure 18B,C; Phillips, Blaha, & Fibiger, 1989). Interestingly, intra-nAcc infusion of a 

dopaminergic antagonist causes mice trained to optogenetically self-stimulate their VTA to 

cease self-stimulation (Figure 19A, B). Taken together, these findings strongly suggest that 

the VTA and its received dopaminergic output are critically involved in reinforcement and 

motivation.  
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Figure 18. Intracranial self-stimulation of the VTA. A. Rats spent varying proportions of experimental sessions 

self-stimulating depending on where an implanted electrode was placed. SA, septal area; CC, corpus callosum; 

Caud, caudate nucleus; CG, cingulate gyrus; HPC, hippocampus; ML, medial lemniscus; MT, mammilothalamic 

tract; MG, medial geniculate nucleus; VTA, ventral tegmental area. B. Lever presses rate for VTA ICSS and C. 

simultaneously voltammetically recorded dopamine concentrations in the nucleus accumbens are elevated 

following cocaine administration. Arrows indicate time point of systemic cocaine administration via 

intraperitoneal (IP) injection. A. adapted from Olds & Milner (1954); B and C adapted from Phillips et al. 

(1989). 

 

 

Figure 19. Mouse optogenetic self-stimulation of anterior-cortical input to the VTA is dose-dependently reduced 

by DA blockade in the nucleus accumbens. A. Mice expressing channel rhodopsin (ChR2) choose to self-

stimulate excitatory inputs to the VTA at the largest available stimulation magnitude (20 Hz). B. Intra-

accumbens infusion of flupenthixol, a general dopaminergic antagonist, dose-dependently reduces optogenetic 

self-stimulation of excitatory projections to the VTA.  
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1.2.4 Prediction error in the VTA 

 Dopamine neurons in the VTA are thought to signal predictions of future outcomes 

and discrepancies between such predictions and actual outcomes (Figure 20; Eshel, Tian, 

Bukwich, & Uchida, 2016; Schultz et al., 1997). Eshel et al. (2016) conducted a series of 

experiments which elegantly demonstrated the response properties of VTA DA neurons in the 

context of prediction error. The experimenters trained mice with electrodes implanted in their 

VTAs to associate different odors with different probabilities of receiving a reward (Figure 

20A). After classifying which recorded cells were DA neurons, Eshel et al. (2016) found that 

VTA DA neurons respond most strongly to odor cues indicating a high probability of reward 

and that these same cells responded minimally to odor cues indicating a low probability of 

reward (Figure 20B). However, when an unexpected outcome occurred, such as a low-

probability trial resulting in a reward, VTA DA neurons exhibited a transient burst of activity 

(Figure 20B). This pattern of firing activity - when the animal’s prediction that it would not 

be rewarded on a trial was violated – is what is termed a prediction error. Interestingly, VTA 

DA neurons appear to scale the magnitude of the prediction error response with the magnitude 

of the reward which might be attained. VTA DA neurons also exhibit prediction error 

responses to trial outcomes which are not reward related. For example, Eshel et al. (2016) 

trained another set of mice to associate a given set of odors with the chances of receiving 

rewards; however, on some high-probability trials, instead of delivering a reward, an aversive 

puff of air was delivered. VTA DA neurons exhibited a similar prediction error-like response 

to these aversive outcomes (Figure 20D). Considering VTA DA’s role in motivation, 

prediction errors are often interpreted as enabling an organism to learn what is rewarding and 

what is aversive and to pursue those rewards and avoid those aversive outcomes (Pan, 

Schmidt, Wickens, & Hyland, 2008; Bromberg-Martin, Matsumoto, & Hikosaka, 2010; 

Schultz, 2016; Wise, 2004).  
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Figure 20. Examples and properties of prediction error in VTA DA neurons. A. Schematic of task indicating the 

different reward probabilities associated with each odor. This panel also indicates that trial outcomes (e.g. 

reward) occurred one second after the end of the one second odor presentation. B. VTA DA firing patterns with 

respect to the odor-reward probabilities and trial outcomes. C. Summarization of VTA DA response properties 

with respect to the magnitude of reward, and likelihood of receiving that reward. D. VTA DA neurons strongly 

respond to the onset of an aversive trial outcome. Adapted from Eshel et al. (2016). 

1.2.5  Ramping dopaminergic output from the VTA to the nAcc 

 Several recent studies report ‘ramping’ patterns of DAergic output from the VTA to 

the nAcc as an animal approaches a goal (Howe, Tierney, Sandberg, Phillips, & Graybiel, 

2013) and that this ramping is modulated by whether or not a given trial will or will not be 

rewarded (Hamid et al., 2016). In the first of these studies, Howe et al. (2013) recorded nAcc 

dopamine concentrations ([DA]; Figure 21A), the output of the VTA, via fast-scan cyclic 

voltammetry (FSCV) in rats trained to complete a cue-guided T-maze. When the rats reached 

the vertex of the maze, an auditory cue indicated whether to turn left or right. Howe et al. 

(2013) anticipated to detect a transient increase in [DA] concomitant with the onset of the cue; 

although they did detect this, more interestingly, they found that [DA] ‘ramped up’ as animals 

approached the goal and that the transient response to the cue was superimposed onto that 

‘ramp’ (Figure 21B). The authors suggested that the ramping [DA] might indicate either 

spatial proximity to a goal or, perhaps, the time-elapsed since beginning the trial. Several 

findings suggest that this signal indicates the spatial proximity rather than time-elapsed. 

Firstly, the authors exploited the trial-to-trial variability in the time rats took to complete the 

task and compared fast, short trials to slow, long trials. They found that the peak [DA] in the 

goal location was generally the same, regardless of the time the animal took to complete the 

trial, suggesting that this signal is more indicative of spatial proximity than time-elapsed 
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(Figure 21B). Additional compelling evidence that these ramps are spatially modulated comes 

from trials where the rat stopped and groomed itself (Figure 21C). When the animal halted 

progress towards the goal, [DA] concentrations also plateaued; when the animal resumed its 

course towards the goal, [DA] similarly resumed increasing (Figure 21D). Taken together, 

these findings suggest that the VTA DA, as measured via its output to the nAcc, might enable 

an organism to track progress towards a goal. However, it was unclear from these findings 

whether VTA truly is the source of the [DA] ramps and whether these ramps were responsive 

to variable reward probabilities and outcomes, which might link this new finding to the VTA 

literature concerning prediction error.  

 

 

Figure 21. Ramping DA signals in the nucleus accumbens track an animal’s progress towards a goal. A. 

Schematic indicating FSCV recording position in the nAcc. B. Dopamine concentrations in the nAcc peaked at 

similar levels upon goal-reaching regardless of the time rats took to reach the reward. C. Example of a trial 

where a rat stopped mid-trial; D. [DA] time-locked to C illustrating that when the rat paused in goal pursuit, 

[DA] plateaued and resumed increasing when the animal resumed goal-pursuit. Adapted from Howe et al. 

(2013). 

 Hamid et al. (2016) addressed this possibility by recording nAcc [DA] in rats trained 

in a two-armed bandit task. Briefly, rats were cued at the initiation of a trial by the 

illumination of a light; rats would then nose-poke into a central port and wait for an auditory 

cue which indicated the rat ought to nose-poke into the adjacent left or right port. Importantly, 

the cue only indicated ‘go’ and did not signal which port was rewarded (Figure 22A). After 
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making a choice, the rat had to maintain his nosepoke for 2 seconds; if the choice was 

rewarded, a food reward was dispensed on the other side of the chamber with an 

accompanying auditory click. The absence of a click indicated an unrewarded outcome to the 

rat. The probability of a given port being rewarded changed throughout an experimental 

session; thus, the animals were constantly sampling and updating their expectations about 

which choice was ideal.  

 Hamid et al. (2016) found that unexpected delivery of reward following several 

unrewarded trials elicited large fluxes of nAcc [DA], that the presentation of reward after 

increasingly fewer unrewarded trials reduced this effect in a graded manner, and that [DA] 

abruptly decreased when the reinforcer-associated click was omitted (Figure 22B). Such 

probability-modulated responses are consistent with the concept of prediction error. However, 

that [DA]s dropped when the reward was unexpectedly unavailable suggests that the theory of 

prediction error cannot fully account for these findings. The authors trained a machine-

learning model on the data and concluded that this signal indicates an instantaneous value 

state – the value of working – which is modulated by prior outcomes.  

 To determine whether the changes in nAcc [DA] are changes in VTA DA neuron 

output, the authors optogenetically stimulated the VTA and simultaneously recorded nAcc 

[DA]. They found that nAcc [DA] increased as the magnitude of VTA stimulation increased 

(Figure 22C). This indicates that the changes in nAcc [DA] measured via FSCV are indeed a 

readout of VTA DA output. To verify the causal impact of VTA activity on choice preference 

and motivation, the authors paired either excitatory or inhibitory VTA DA neuron 

photostimulation with side-in, choice nosepokes. They found that excitatory photostimulation 
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Figure 22. Nucleus accumbens DA concentrations are outputs of the VTA and modulated by trial outcomes. A. 

Schematic of task. B. Probability-modulated responses of nAcc recorded via FSCV. C. Changes in nAcc [DA] 

increased as number of 30 Hz optogenetic pulses of the VTA increased, indicating that the VTA is the source of 

DA measured in the nAcc. Adapted from Hamid et al. (2016). 

of VTA DA neurons when the animal made a decision-nosepoke increased the probability that 

rats would repeat that same choice (Figure 23A; conversely, photoinhibition of VTA DA 

neurons during decision-nosepokes decreased the probability that rats would repeat that same 

decision (Figure 23B). Interestingly, VTA DA neuron photostimulation decreased the latency 

to trial initiation (Figure 23C), increasing the likelihood that rats would start a new trial 

sooner than trials when VTA DA neurons were not stimulated (Figure 23D), indicating that 

VTA DA photostimulation effects the motivation to pursue a reward. Taken together, these 

findings provide causal evidence that the VTA is critically involved motivation and decision-

making and suggest that the representation and updating of a state thought to indicate the 

value of work is an essential function of the VTA. Thus, this paper agrees with prior claims 

that prediction errors are a mechanism by which an internal value state is updated (Bromberg-

Martin, Matsumoto, & Hikosaka, 2010; Schultz, 2016; Wise, 2004) and are important because 
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they provide the first evidence that this putative value state is both represented and updated at 

the level of the midbrain. 

 

Figure 23. Effects of photostimulation and photoinhibition of VTA DA neurons on decision making and 

motivation. A. Photostimulation of VTA DA neurons increases the likelihood rats will repeat their prior 

decision, regardless of whether the trial was rewarded or not. B. Photoinhibition of VTA DA neurons decreases 

the probability that rats will repeat their prior choice, regardless of the trial outcome. C. Photostimulation of 

VTA DA neurons decreases the latency to begin a new trial. D. Photostimulation of VTA DA neurons increases 

the likelihood that rats will begin a new trial, sooner (same data as C). Adapted from Hamid et al. (2016). 

1.2.6 Summary of VTA 

In summary, the VTA appears to facilitate reinforcement and the motivation to pursue a 

reward. The VTA also appears to track the correspondence between predicted and actual 

outcomes of situations, perhaps enabling organisms to update its neuronal representations. 

Recent voltammetry studies in the rat nAcc suggest an integrative theory of VTA function: 

the VTA responds to behaviourally relevant cues and trial outcomes which have the potential 

to remodel internal representations and modulate motivation. Despite the evidence implicating 

the VTA in these functions, the inputs driving them and the intra-VTA microcircuitry 

enabling them are unclear. One question of particular interest for this thesis concerns the role 

of the ACC in modulating the VTA in the contexts of motivation and decision making. The 

next section will address this directly.   
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1.3 The ACC-VTA projection as a candidate signalling pathway for 

translating cortical signals into motivational signals 

 Given the functional similarities of the ACC and VTA, the question remains of their 

structural and physiological relationships. This section will aim to provide an overview of the 

anatomical and physiological relationships between the ACC and to make the case that the 

ACC and VTA likely interact in various behavioural contexts, especially in motivation.  

1.3.1 Anatomical and physiological evidence of connectivity between the 

ACC and the VTA 

 Anatomical and electrophysiological evidence indicate that the ACC and VTA are 

reciprocally connected. Scanning electron micrographs of the VTA in rats in which the 

anterograde tracer biotinylated dextran amine (BDA) was injected into the mPFC, including 

the ACC, reveal monosynaptic projections to both DAergic (Figure 24A) and GABAergic 

(Figure 24B) neurons (David B. Carr & Sesack, 2000). Electrical stimulation of the ACC 

elicits burst firing in VTA DA neurons (Gariano & Groves, 1988; Figure 24C) and, 

furthermore, the temporal activation patterns of VTA DA neurons are closely related to the 

phase of the mPFC LFP (Gao  Liu, Chang-Liang, Jin, Guo-Zhang, Bunney, Benjamin, S., Shi, 

Wei-Xing, 2007; Figure 24D). Together, these data strongly suggest that the ACC and the 

VTA are functionally connected.  
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Figure 24. Anatomical and physiological evidence of ACC-VTA connectivity. A. Scanning electron micrograph 

of a VTA TH+ (i.e. dopaminergic) neuron which receives a monosynaptic input (red boxed area) from the 

mPFC. B. Scanning electron micrograph of a GABAergic neuron which receives monosynaptic input (red boxed 

area) from the mPFC. C. Recorded trace from a VTA DA neuron showing that ACC stimulation, indicated by 

the arrows, induces burst firing. D. Traces from a VTA DA neuron and the local field potential (LFP) of the 

mPFC of an anaesthetized rat. DA neuron firing and bursting are strongly phase-locked to the mPFC LFP. A and 

B are from Carr & Sesack (2000); C is from Gariano & Groves (1988); D is from Gao et al. (2007). 
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1.3.2 Evidence for ACC-VTA communication during behaviour 

 Despite the well-documented roles of the ACC and VTA in prediction error and task-

switching (Bryden et al., 2011; Eshel et al., 2016; Nils Kolling et al., 2016; Roesch & Bryden, 

2011), no study to date has jointly assessed the relationship between the ACC and VTA in 

freely moving organisms. However, prior experiments examining the prefrontal cortex, more 

broadly, suggest that the ACC and VTA do communicate in behaviourally relevant contexts. 

For instance, Fujisawa & Buzsaki (2011) simultaneously recorded mPFC, including ACC, 

and VTA LFPs and single units in rats performing a match-to-sample working memory task 

and found that the mPFC and VTA were highly synchronized at 4Hz during the working-

memory component of the task (Figure 25A). In another interesting experiment, Ballard et al. 

(2011) used fMRI to monitor cortical and VTA activity of human participants as they 

performed a task which selectively manipulated their motivation to pursue a course of action. 

In Ballard et al. (2011)’s experiment, participants were signalled the opportunity to earn 

various amounts of money, either $0 or $4, as compensation for a fast reaction time to an 

upcoming target. Following a variable delay (4-4.5s), participants were presented with a target 

and were then to press a button as quickly as possible. Ballard et al. (2011) found that 

participants reacted faster, indicating greater motivation, when they worked for their own 

benefit. Strikingly, through the use of dynamic causal modelling, Ballard et al. (2011) 

detected enhanced cortical control of the VTA during high-motivation trials, concluding that 

cortical  VTA signalling may initiate motivated behaviour (Figure 25B).  
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Figure 25. Examples of cortical-VTA communication during behaviour. A. The rat mPFC and VTA are 

synchronized at 4Hz during engagement of working memory in a match to sample task. B. The dorsolateral 

prefrontal cortex drives VTA activity during high motivation tasks. A adapted from Fujisawa & Buzsaki (2011); 

B is from Ballard et al. (2011). 

1.3.1  Summary of the ACC and VTA and thesis aim 

 Robust anatomical and electrophysiological evidence indicate that the ACC and VTA 

are functionally linked and that top-down, ACC  VTA signalling may be involved in 

initiation of motivated behaviour. Despite these indications, no prior studies had jointly 

examined the activity of the ACC and VTA in freely moving animals. Thus, the aim of this 

thesis was to investigate the electrophysiological relationships between the ACC and VTA in 

a variety of contexts, all of which would require context-dependent changes in motivation. 

Specifically, the purpose of these experiments was to determine (i) whether the ACC 

modulates the VTA in freely moving animals, (ii) whether changes in ACC modulation of the 

VTA are related to changes in motivation, (iii) to directly observe ACC task models at the 

level of individual neurons, and (iv) to assess possible mechanisms by which ACC neuronal 

task models are modified. The guiding notion of this thesis was that if the ACC does encode 

task models and if ACC modulation of the VTA is a mechanism by which changes in those 

task models are behaviourally implemented, ACC modulation of the VTA should be detected 

in circumstances where organisms modify their behaviour.   
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Chapter 2  ACC modulation of the VTA in an effort task* 

2.1 Summary 

 Information gained during goal pursuit motivates adaptive behaviour. The anterior 

cingulate cortex (ACC) supports adaptive behaviour, but how ACC signals are translated into 

motivational signals remains unclear. Rats implanted with recording electrodes in the ACC 

and ventral tegmental area (VTA), a dopaminergic brain area implicated in motivation, were 

trained to run laps around a rectangular track for a fixed reward, where each lap varied in 

physical effort (a 30cm climbable barrier). Partial directed coherence analysis of local field 

potentials revealed that ACC theta (4-12 Hz) activity increased as rats entered the barrier-

containing region of the maze on trials when the barrier was absent, and predicted similar 

changes in VTA theta. This did not occur on effortful, barrier-present trials. These data 

suggest that ACC provides a top-down modulating signal to the VTA which can influence the 

motivation with which to pursue a reward.  *This chapter was published as: 

Elston, TW., & Bilkey, DK. (2017). Anterior cingulate cortex modulation of the ventral 

tegmental area in an effort task. Cell Reports, 19(11), 2220–2230. 

2.2 Introduction 

Adaptation to changing circumstances is a common, critical consideration in nature 

(Darwin, 1865); however, the neural mechanisms enabling adaptive goal-directed behaviour 

have yet to be fully elucidated. The anterior cingulate cortex (ACC), a subregion of the 

anterior medial prefrontal cortex (AC; Vogt & Paxinos, 2014), has previously been shown to 

have a role in commitment to a course of action (Blanchard et al., 2015; Ma, Hyman, Phillips, 

et al., 2014) and encoding value associated with physical effort (Cowen, Davis, & Nitz, 2012; 

Friedman et al., 2015; Hillman & Bilkey, 2010; Parvizi, Rangarajan, Shirer, Desai, & 

Greicius, 2013; Rudebeck, Walton, Smyth, Bannerman, & Rushworth, 2009; Walton, Devlin, 

& Rushworth, 2003). Furthermore, ACC signals received reward, predictions of future 

reward, and errors in such predictions (Bryden et al., 2011; Gemba et al., 1986; Kennerly et 

al., 2011). These signals are thought to facilitate the integration of new information into 

existing internal representations which can motivate and modify future behaviour (Bryden et 

al., 2011; Cavanagh et al., 2010; Kolling, Behrens, Wittmann, & Rushworth, 2016b). 

However, it remains unclear how ACC activity is translated into an adaptive, motivational 

signal. 

The ACC and the anterior portions of the medial prefrontal cortex are potentially able 

to exert direct top-down control over the ventral tegmental area (VTA) via monosynaptic 
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glutamatergic afferents (Beier et al., 2015; David B. Carr & Sesack, 2000; Faget et al., 2016; 

Ferenczi et al., 2016; Gariano & Groves, 1988; Jo, Lee, & Mizumori, 2013; Taber, Das, & 

Fibiger, 1995). Moreover, in anaesthetised rats, ACC stimulation elicits burst firing in VTA 

dopamine neurons (Gariano & Groves, 1988). The VTA is a major source of dopamine to the 

basal ganglia and is hypothesized to convey a motivational signal indicating progress towards 

and value of a future goal (Hamid et al., 2016; Howe et al., 2013; Morales & Margolis, 2017; 

Salamone & Correa, 2012). Large, transient bursts of single unit activity have also been 

reported in rodent in both ACC and VTA when an outcome is different than predicted 

(Bryden et al., 2011; Eshel et al., 2016). Strikingly, the magnitude of the activity increase 

correlates with the prediction-outcome error difference in both regions (Bryden et al., 2011; 

Eshel et al., 2015; Kennerly et al., 2011) suggesting that both these regions are involved in 

reward prediction error processes (Schultz et al., 1997). Thus, ACC top-down control over 

dopaminergic subcortical regions, such as the VTA, is a plausible mechanism by which ACC 

signals are translated into motivational signals. 

Although no prior study has jointly examined the relationship between the ACC and 

VTA in the freely moving rat, prior investigations of anterior cortical (AC) and VTA 

communication suggest that these structures communicate via oscillations in the theta band 

(4-12 Hz). For example, firing in VTA dopamine neurons is modulated by the phase of AC 

theta oscillations and AC-VTA synchronization in the theta band is strongly correlated with 

working memory performance. However, to date, the precise relationship between the ACC 

and VTA and how these signals might shape future behaviour remains unknown.  

To address this question directly, we monitored ACC and VTA local field potentials 

(LFPs) of rats trained to run laps around a rectangular track for a fixed reward, where each lap 

varied in physical effort (Figure 26). The effortful condition required rats to climb over a 

30cm barrier while no barrier was present in the non-effortful condition. We examined task-

dependent changes in theta (4-12 Hz) power and coherence and also assessed the 

directionality of communication between ACC and VTA via partial directed coherence 

(PDC), a multivariate autoregressive modelling approach which provides a frequency-

resolved estimate of Granger causality (Baccalá & Sameshima, 2001; Boykin, Khargonekar, 

Carney, Ogle, & Talathi, 2012).   
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2.3 Experimental procedures 

2.3.1 Subjects and animal use statement 

All experimental procedures have been reviewed and approved by the University of 

Otago Animal Welfare Office. Seven male Sprague Dawley rats (Hercus-Taieri Resource 

Unit) between 6 and 8 months of age, weighing 450-550 g were used in the study. Rats were 

single housed in translucent plastic cages containing pine chips and maintained on a 12 h 

light/dark cycle. All training and experimentation occurred during the light phase. After 2 

weeks of daily handling and weighing, animals were food deprived of standard rat chow 

(Specialty Feeds) to no less than 85% of their free-feeding weight to promote interest in food 

reward during test phases. Water was available ad libitum in the home cage. 

2.3.2 Preoperative training 

 During the initial week of training, rats were individually habituated for 15 min/d to 

the experimental apparatus, a rectangular runway with a reward area which contained 

touchscreens, photobeams, and a retractable 30cm barrier mounted on a servo motor (Figure 

26A). The apparatus was controlled by a network of four Arduino (Arduino LLC, Somerville, 

MA, USA) microcontrollers. Cereal pellets (Coco Pop cereal; Kellogg's) were scattered 

throughout the maze to encourage exploration. In the second week of training, cereal pellets 

were only available at the reward site and rats were trained to run the maze in a unidirectional 

manner, starting at the bottom of the midstem (i.e. the startbox) and received a fixed reward (3 

cocopops) in a distinct reward zone. Rats were prevented from reversing course in the maze 

by photobeam-controlled doors. The rats were not paused between trials and set their own 

pace, running in a continuous, uninterrupted manner. 

 Once the rats were running unidirectionally around the apparatus, they were trained to 

press a wall-mounted touchscreen to release an adjacent starting gate and thereby initiate a 

new trial. This typically took two 15 minute training sessions or less. A two-second delay was 

then introduced between the initial press and the lowering of the start gate. Screen-press 

training was considered complete when rats ran >30 trials/session (2/min) across 3 

consecutive training sessions. This typically took one week of training.  

 The final stage of training involved the introduction of a 30cm barrier (a triangular 

piece of Styrofoam with an affixed strip of garden trestle) into the apparatus which rats had to 

overcome on their route to the reward zone. The barrier was inserted into the maze by a servo 

motor. Rats were cued as to whether the upcoming trial was an effortful, barrier trial or a non-

effortful, flat trial by images delivered on the touch screen. The screen displayed three 
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flashing green horizontal bars on a black background across the screen to indicate a barrier 

trial and a single non-flashing white bar on a magenta background to indicate a flat trial. To 

provide auditory camouflage for barrier insertion, the barrier was placed into the maze at the 

same instant the start gate was opened. Once rats were running >30 trials/session, sessions 

were extended such that each session required rats to run 120 laps composed of 60 trials 

without the barrier present (flat trials) and 60 barrier trials presented in pseudo-random order. 

Rats were considered fully trained when they were running 120 trials within 60 minutes (2 

trials/min).  

2.3.3 Surgery 

 Once animals were considered trained, five rats were anaesthetized under isoflurane 

and stereotaxically implanted in the ACC (AP: 2.7mm, ML: 0.4mm, DV: -1.8mm from dura) 

with seven 25 μm Formvar-coated nichrome wires (California Fine Wire) mounted on a 3D-

printed adjustable microdrive assembly and the VTA (AP:  -5.3mm, ML: 1.0mm, DV: -

8.2mm from dura) with a one non-moveable 127-μm-diameter, nickel-chromium coated wire. 

Two rats were also implanted at the same ACC coordinate with the microdrive assembly but 

with a second electrode (a fixed 127-μm-diameter, nickel-chromium coated wire) located in 

the dorsal CA1 subregion of the hippocampus (AP: -3.6mm, ML: 2.0mm, DV: -2.8mm from 

dura). The electrodes were grounded by soldering a wire to a jewellers screw implanted in the 

cerebellum. The assembly was fasted to the skull with jeweller’s screws and acrylic dental 

cement. Following the surgery, animals were allowed 10 days to recover during which they 

had ad libitum food and water. After 10 days, rats’ food was reduced to maintain the animal at 

~85% of their free-feeding weight to optimize behaviour during the experiment.  

2.3.4 Postoperative training and protocol 

 After 10 days of recovery, rats were reintroduced to the maze with the head plugs 

connected to a tethered head stage that housed three light emitting diodes (LEDs) for tracking. 

Training resumed from the final preoperative stage; all 7 rats quickly recalled the task with no 

signs of postoperative motor impairment. Once each rat demonstrated three consecutive 

sessions of 120 trials in less than one hour, data acquisition began.  

 The data acquisition protocol consisted of a three stage, ‘ABA’ design where rats 

completed 100 trials per day (Figure 26B). During the first seven days (phase B1), the barrier 

was present in 50% of trials. In B1, a touchscreen press triggered a cue-presentation on the 

touchscreen, signalling which trial type was to commence. Phase B1 was followed by Phase 2 

which lasted three days and during which the barrier was either not present (0%; n=5 animals) 

or always present (100%; n=2 animals, rats D and E) present for individual rats. Screen 
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presses in phase 2 triggered cue presentation as in B1, however, these cues were irrelevant to 

the upcoming trial type (i.e. cues indicating flat trials and barrier trials were presented even 

though the barrier was either always or never present). Phase 2 was followed by three days of 

phase B2, in which the barrier was present in 50% of trials (identical to phase B1). All seven 

rats experienced B1 and B2 identically. It should be noted that the rats probably did not attend 

to the touchscreen cues as we found no behavioural or electrophysiological evidence that the 

cues themselves elicited any specific response. Thus, in the interest of clarity, we labelled 

trials in B1 and B2 as either ‘flat trials’ or ‘barrier trials,’ in accordance with what occurred 

on a trial. Trials in phase 2 (0% or 100% barrier) are labelled as ‘flat cued’ or ‘barrier cued’ to 

indicate that the screen press initiating a trial did trigger a cue presentation but that cue was 

not predictive of the upcoming trial type. 

2.3.5 Electrophysiological recordings and data acquisition  

Local field potentials were recorded using the dacqUSB multichannel recording 

system (Axona Ltd.). Local field potentials were low-pass filtered at 500 Hz, and sampled at 

4800 Hz. The animals’ position was monitored by a ceiling-mounted video camera connected 

to a tracking system that monitored the LEDs mounted on the head stage. Tracking data was 

sampled at 50 Hz and made available to the dacqUSB system. Key events (e.g. trial initiation, 

the type of trial initiated, when rats got to the barrier region, and when rats reached the 

reward) were timestamped by inputs from a custom-built neural network of Arduino 

microcontrollers connected to a digital input-output port on the dacqUSB system.  

2.3.6 Power, coherence, and running speed analyses 

 All analyses were done within-subject; no data was pooled across subjects.  All 

analyses were conducted using MATLAB R2016b (The Mathworks, Boston, MA, USA). 

Power spectral density (PSD) and time resolved LFP power and coherence were calculated 

via multi-taper spectrograms and coherograms (Mitra & Bokil, 2008) which used 3 tapers, a 

reading window of one second, and 85% overlap amongst windows. Data was linearized by 

dividing the maze path into 9 bins of 3-5cm in length and the position timestamps of rats 

entering and exiting a given region on a given lap on a given trial type were used to collect 

relevant pieces of the averaged 4-12 Hz segments of spectrograms and coheragrams, which 

were then averaged for each maze region on each lap, separately. A similar approach was 

used to collect instantaneous speed data from each maze region for each lap on a given trial 

type. 
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2.3.7 Partial directed coherence for detecting signal directionality 

Task-related causal relationships between ACC-VTA and ACC-dCA1, linearly 

detrended LFPs were assessed with a partial directed coherence (PDC) algorithm, a 

frequency-resolved measure of Granger causality which uses multivariate autoregressive 

modelling to exploit the predictability of information  in one brain area by past activity in 

another (Baccalá & Sameshima, 2001; Boykin et al., 2012). 

2.3.8 Method for detecting phase-reset events 

To detect a putative phase-reset event (PRE), we first bandpass filtered the ACC and 

VTA LFPs between 4 and 12 Hz using the filtfilt function in MATLAB. We then determined 

the instantaneous phase and amplitude of the ACC and VTA LFPs for an entire session using 

the Hilbert transform. Next, we unwrapped the instantaneous phases of the ACC and VTA. 

Since the rate of change of the unwrapped phases will change markedly at a potential PRE 

(Freeman & Vitiello, 2006),  we differentiated the unwrapped phase of the ACC across a one 

second window and marked as a trigger point a rate of change that exceeded  4 standard 

deviations from the mean. Since we cannot know exactly when the animal saw the barrier (vis 

a vis a peri-event histogram), we marked all the PREs which occurred in the barrier-region of 

the maze (regions 5-6) for each trial type, respectively.  

2.3.9 Amplitude cross-correlations for detecting signal directionality 

We adapted Adhikari et al. (2010)’s amplitude cross-correlation method in order to 

assess signal directionality within PRE epochs. We conducted cross-correlations across two 

separate windows in the waveforms: a 500ms window centered on the PRE marker and a 

500ms window immediately after that. 

2.3.10 Histology and electrode site verification 

 Upon completion of the study, rats were deeply anaesthetized with isoflurane and 

recording sites were marked with direct current (2mA for 2 s) before transcardial perfusion. 

Electrode tracks and microlesions marking the electrode position were identified in 32µm 

thick sections of formalin-fixed tissue stained for Nissl substance (see Figure 27B). Although 

we did not stain the VTA-containing sections with tyrosine hydroxylase (TH), a marker of 

dopaminergic neurons sometimes used to define the boundaries of the VTA, when comparing 

the tips of our electrode tracks with a photomicrograph of a TH-stained section showing the 

VTA (e.g. Amantea & Bowery 2004), our electrode tip location corresponds to the TH+ area, 

suggesting that had we stained for TH, we would have been within the TH+ area in the VTA.   
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2.4 Results 

 

Figure 26. Schematic of maze and protocol. A. Rats initiated laps by pressing a wall-mounted touchscreen – the 

green rectangle just before the door at the beginning of section 1. After a 2-second delay, the startbox door 

opened and rats ran through regions 1-9. Arrows indicate direction of travel in the maze. The red and yellow 

circles indicate the position of the photobeams which controlled the doors, ensuring unidirectional travel on each 

trial. The mound of cereal pellets in region 9 indicates the reward zone. B. The experiment consisted of 3 phases: 

B1 (50% barrier), phase 2 (either 0% barrier or 100% barrier), and B2 (50% barrier, identical to B1). 

2.4.1 Task-modulated theta oscillations in the ACC and VTA 

 Histology verified that electrodes were located in the regions of interest (Figure 27). 

LFP patterns in ACC, VTA, and dCA1 were characteristically different with PSD functions 

from the ACC having a primary peak at low theta frequencies (3-5 Hz), while both VTA and 

dCA1 exhibited prominent peaks in both the high theta band (7-9 Hz) and low theta band (3-5 

Hz; Figure 28). Mapping theta power and coherence onto the maze by trial type revealed that 

ACC and VTA power, ACC-VTA coherence, and ACC-dCA1 coherence increased as the 

animal approached the barrier region of the maze on trials when the barrier was absent (Figure 

29). 
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Figure 27. Electrophysiological recording sites. A. Plates from Paxinos & Watson (1997) indicating typical 

electrode placement in ACC (AP: 2.7mm, ML: 0.4mm, DV: -1.8mm from dura), VTA (AP:  -5.3mm, ML: 

1.0mm, DV: -8.2mm from dura), and dCA1 (AP: -3.6mm, ML: 2.0mm, DV: -2.8mm from dura). B. Histology 

indicating example electrode placement in ACC, VTA, and dCA1.  
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Figure 28. Power spectrum densities (PSDs) for rats A (ACC and VTA) and F (dCA1) across all sessions in B1 

by maze region, brain area, and trial type. The solid line indicates the mean and the shaded areas indicate the 

SEM. ***p<.005, Kruskal-Wallis test. 

 When the LFP data were linearized and examined region-by-region, it was apparent 

that during phase B1 (n = 350 trials/animal), when the barrier was present 50% of the time, 

there was a marked difference in theta power, in both the VTA and ACC, and in the 

coherence between them, when the barrier-absent and barrier-present trials were compared 

(Figure 30). In barrier-absent trials there was a significant increase in low theta power and 

coherence that began once the animal approached the region of the maze immediately prior to 

where the barrier was usually present (region 5). Power increased through the barrier region 

and then was sustained above the level measured in the starting stem until the animal reached 

the reward zone (region 9). In barrier-present trials, however, theta power and coherence did 

not increase prior to or through the barrier region (p < .005 for regions 5-8, respectively, t-

tests). Rather, levels remained suppressed from the initial turn through until the reward 

region, at which point ACC and VTA theta power and coherence increased suddenly to 

become equivalent to that observed in barrier absent trials. This was a large effect (Hedge’s g 

> 1 for regions 5-8, respectively) and was observed across all animals, independently 
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producing significant within-subject effects for every animal (regions 5-8, p < .0005, t-tests; 

see Figure 31 for all animals). No significant difference in ACC and VTA theta power or 

coherence was detected in the reward zone for any animal (region 9, all p > .05, t-tests).  

 

 

Figure 29. Theta power and coherence heat mapped onto maze positions for the ACC, VTA, dCA1 on flat and 

barrier trials, respectively, for one recording session during B1. The barrier was located on the right-hand side of 

the maze; due to the wide-field lens on our tracking camera, the animals’ trajectory over the barrier on barrier 

trials appears as a lateral motion. ACC, VTA, and ACC-VTA coherence data are from rat A. dCA1 power and 

ACC-dCA1 coherence are from rat F.  
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Figure 30. Enhanced theta (4-12Hz) power and coherence corresponds with the absence of the barrier. ACC and 

VTA time-resolved theta power, theta coherence, and running speed as a function of position for rat A (B1, 0%, 

and B2; mean ± SEM; n = 350 trials for B1, n = 150 trials for 0% barrier, and n = 150 trials for B2) and rat D 

(100% barrier; mean ± SEM; 150 trials for 100% barrier). In some cases, the SEM was smaller than the height of 

the symbol in the plot. In those instances, the error bars were not drawn. The average power and coherence 

between 4 and 12 Hz for each region on each lap was used. *p < .05, **p < .005, ***p < .0005, t-tests.  

 

 



44 
 

 

 

Figure 31. Enhanced theta (4-12Hz) power and coherence corresponds with the absence of the barrier in all rats. 

Data from all rats in phase B1. Rat name is listed on the left and brain region is listed along the top. *Data with 

grey background for rats F and G in the VTA column are dCA1. Data presented as mean ± SEM. In some cases, 

the SEM was smaller than the height of the symbol in the plot. In those instances, the error bars were not drawn. 

The average power and coherence between 4 and 12 Hz for each region on each lap was used. *p < .05, **p < 

.005, ***p < .0005, t-tests. 
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To assess the animals’ motivation to begin a new trial following either a flat trial or a 

barrier trial, we calculated the inter-trial interval (ITI), defined as the time from when the rats 

tripped the photo-beam as they entered the reward zone until the next screen press, indicating 

the start of a new trial. We found that the latency to begin a trial was greater if the prior trial 

was a barrier trial, rather than a flat trial in phases B1 and B2 (n = 350 trials/animal for B1; n 

= 150 trials/animal for B2; all animals’ p < .05, t-tests; Figures 32 and 33). No differences in 

latency were detected in the 0% or 100% conditions (n = 150 trials/animal). Despite this 

difference in behaviour, no significant difference in theta power or coherence was detected 

during this same period (p > .05 for all animals, t-tests). 

 

Figure 32. Behaviour and electrophysiology in the inter-trial interval. The latency to begin a new trial given a 

prior trial type was lower when the prior trial was a flat trial. No significant effects of prior trial type were 

detected in any electrophysiological measure during the inter-trial interval. Individual animal means are 

presented as dots and the overall mean is presented as the bar-graph bar. The standard error of measure of the 

overall mean across all animals is represented by the error bars. T-tests were performed within each animal (n = 

350 trials per animal). 
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Figure 33. Behaviour and electrophysiology in the ITI across all task phases. The latency to begin a new trial 

given a prior trial type was lower when the prior trial was a flat trial. The latency to begin a trial was 

significantly greater in the 100% barrier condition than in phase B1. No significant effects of prior trial type 

were detected in any electrophysiological measure during the ITI. Data are presented as mean ±SEM across all 

animals. *p < .05 within each animal with paired t-test, **p<.005 within each animal with paired t-test, # p<.05 

within each animal with unpaired t-test. 

 In phase 2, the barrier was either not present for all trials (n = 4 animals) or was 

present for all trials (n=3 animals) irrespective of the cue on the touchscreen, which continued 

to randomly signal the two types of trials on a 50% basis. For animals where the barrier was 

absent, an abrupt increase in ACC and VTA theta power, similar to that which occurred in no-

barrier trials in phase B1, was detected from regions 5 through 8 in all animals regardless of 

the trial type cued by the touch screen (n = 150 trials/animal; Figures 30 and 31). For animals 

where the barrier was present on all trials, theta power remained low across these regions, 

replicating the effect of barrier-present trials in B1 (Figure 30). An analysis to determine 

whether the, now irrelevant and probably ignored cue signal altered responses during phase 2 

revealed no significant differences in ACC and VTA responses in regions 5 to 8 following the 

two cue types  (all p > .05, t-tests).  

 In the third phase, B2, the barrier was again present on 50% of trials (n = 150 

trials/animal). In a result that replicated condition B1, an abrupt increase in running speed, 
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ACC and VTA theta power, and coherence was detected in regions 5-8 in all animals when 

the barrier was absent (Figure 30 and 34; all p < .005, t-tests). On barrier trials, power and 

coherence remained suppressed until the reward region. Again, ACC and VTA theta power 

and coherence in the reward zone (region 9) did not depend on the trial type (p > .05, t-tests). 

Analysis of responses across the multiple trials of each condition (n = 50 trials/animal) 

revealed that the significant modulation of ACC and VTA theta power and coherence by the 

presence or absence of the 30cm barrier in the barrier-containing region of the maze (region 

6) was consistent across days and trial conditions (Figure 34). 

 

Figure 34. ACC and VTA theta and coherence responses to the presence or absence of the 30cm barrier in the 

barrier-containing region (region 6) of the maze were consistent across days and conditions. Data shown from rat 

A. VTA and ACC theta power and coherence were greater on trials when the barrier was present than when the 

barrier was absent across all days of B1 and B2 (p < .0005, t-tests). Data are presented as mean ± SEM. In some 

cases, the SEM was smaller than the height of the symbol in the plot. In those instances, the error bars were not 

drawn. n = 50 for each session. *p < .05, **p < .005, ***p < .0005, t-tests. 
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2.4.2 Task-modulated theta oscillations in the ACC and dCA1 

 To assist in determining whether we were detecting a brain-wide phenomenon or 

activity that might be confined to specific regions, including VTA and ACC, we implanted 

two rats in both dCA1 and ACC and ran these animals through the procedure. As we had 

shown previously, in phase B1, we detected abrupt and sustained increases in ACC theta 

power from region 5 to 8 on no-barrier trials compared to barrier trials (p < .005, t-tests) in 

both animals (see Figure 35). In the second phase, when the barrier was absent on all trials, a 

similar abrupt increase in ACC theta power was detected regardless of the, likely ignored, cue 

(p > .05, t-tests). In phase B2, a significant difference in ACC theta power was detected in 

regions 5 to 8 when barrier and no-barrier trials were compared (all p < .005, t-tests) as we 

had observed previously. By comparison, recordings from dCA1 showed that there was a 

much smaller increase in theta power in regions 5-8 in B1 no-barrier trials. The difference 

between barrier and no-barrier trials was statistically significant (p < .05, t-test; Figure 31) in 

one animal but not the other (p > .05, t-test) in phase B1. In phase B2, however, no significant 

barrier-related changes were detected in dCA1 theta power in either animal (p > .05, t-tests, 

Figure 31). Despite the minimal effects seen in dCA1 theta power, ACC-dCA1 theta 

coherence was significantly modulated by the presence or absence of the 30cm barrier. In 

phases B1 and B2 dCA1-ACC theta coherence abruptly increased in region 5 and remained 

elevated through region 8 in no barrier trials compared to barrier trials (p < .005, t-tests). In 

phase 2, when the barrier was never present, a similar abrupt and sustained elevation in theta 

coherence, beginning in region 5, was detected regardless of the cued condition (p > .05, t-

tests).  
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Figure 35. ACC but not dCA1 theta power was significantly modulated by the presence or absence of a 30cm 

barrier. Data are from Rat F. Data are presented as mean ± SEM. In some cases, the SEM was smaller than the 

height of the symbol in the plot. In those instances, the error bars were not drawn. n = 350 trials for B1, n = 150 

trials for 0% barrier, and n = 150 trials for B2) *p < .05, **p < .005, ***p < .0005, t-tests.  

2.4.3 Relationship to running speed 

 We were concerned that our results may have simply been an artefact of changes in 

running speed; indeed, at first glance, the patterns of power and coherence seemed to parallel 

changes in speed (Figure 30). However, upon closer inspection, it’s clear that running speed 

and LFP power and coherence are not always changing together. For instance, an increase in 

running speed occurred in region 4 before the increase in power and coherence was observed 

(region 5). Furthermore, while running speed is near zero in the reward region, LFP power 

and coherence were elevated. To formally assess the relationship between running speed and 

LFP dynamics, we initially conducted correlations (Pearson’s R) between the instantaneous 

running speed and instantaneous theta power (4-12Hz) in ACC, VTA, and dCA1, 

respectively, across all sessions and all regions of the maze separately for each rat, 

considering only instances when rats were moving (e.g. speed > 1). All correlation 

coefficients were near zero and none were significant (all r < 10-2, all p > .05; see Table 2), 

suggesting that speed and LFP power were modulated independently. To further examine the 
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relationship between running speed and LFP power under different effort conditions, we 

conducted analyses of covariance (ANCOVA) with instantaneous ACC, VTA, or dCA1 theta 

power in the barrier region as the dependent variable, with the corresponding instantaneous 

running speed as a covariate, and the presence or absence of the barrier as the independent 

variable for all sessions of phase B1 for each animal, separately. Resultant ANCOVAs 

revealed a significant relationship between VTA, ACC, and dCA1 theta power in the barrier 

region and running speed in the barrier region (see Table 3); however, after statistically 

controlling for running speed as a covariate, the presence or absence of the barrier remained a 

highly significant factor in the ACC and VTA, but not dCA1, LFP power in all rats (all p < 

.0005; see Table 4). These results indicate that instantaneous running speed and instantaneous 

VTA and ACC theta power are independently modulated by the effort condition, whereas 

dCA1 theta power was dependent on running speed. 
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2.4.4 ACC influence over dCA1 and VTA is modulated by barrier presence 

 We then used a partial directed coherence (Baccalá & Sameshima, 2001) procedure 

following Boykin, Khargonekar, Carney, Ogle, & Talathi (2012)’s method to determine if 

there was evidence of signal directionality in linearly detrended LFPs recorded 

simultaneously from ACC and VTA and ACC and dCA1 as the animal passed through the 

barrier-containing region (region 6) of the maze. The mean partial directed coherence (PDC) 

was calculated in a trial-by-trial manner for each condition for data in the theta range (4-12 

Hz). An ANOVA examining the resultant PDC between ACC and VTA in B1 revealed 

significant main effects of directionality (F1,1194 = 719.45, p = 2.01 x 10-124) and barrier 

condition (F1,1194 = 121.57, p = 5.46 x 10-27) as well as a significant directionality x barrier 

interaction effect on ACC-VTA theta PDC responses (F1,1194 = 151.02, p = 9.03 x 10-33; see 

Figure 36A; see Table 5 for data from all rats). An ANOVA considering B2 returned nearly 

identical results (see Table 6). This interaction is a result of ACC  VTA PDC being higher 

when the barrier was absent and decreasing in barrier trials while VTAACC PDC remained 

low and unchanging across conditions. Similarly, an ANOVA examining PDC between ACC 

and dCA1 across all trials and conditions revealed significant main effects of directionality 

(F1,1797 = 207.32, p = 5.3 x 10-44) and barrier presence (F1,1797 = 233.09, p = 1.43 x 10-49) as 

well as a significant directionality x barrier interaction effect on ACC-dCA1 theta PDC 

responses (F1,1797 = 35.69, p = 2.78 x 10-9; see Figure 36B; Tables 4 and 5). This interaction 

was a result of dCA1ACC PDC decreasing to a greater degree when the barrier was present 

compared to ACCdCA1 PDC. To verify the integrity of our PDC modelling, we scrambled 

the recorded signals from both ACC and VTA and conducted the trial-by-trial PDC analysis 

again. In every case the mean of the permutated PDC distribution was significantly weaker 

than the non-permuted data (all permuted PDC < 3x10-5, all p < 3.76x10-36 , t-tests), losing 

evidence for directionality.  
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Figure 36. ACC-VTA and ACC-dCA1 PDC in the barrier region. Data indicate mean ± SEM. Some error bars 

were too small for display. A.  ACC  VTA and VTA  ACC theta PDC in the barrier region across the three 

phases. B. ACC dCA1 and dCA1  ACC theta PDC in the barrier region across the three phases. C. 

ACCVTA and VTA-->ACC PDC in the initial region (region 2) across the three phases. A and C are data 

from rat B; B are from rat G. n = 350 trials for B1, n = 150 trials for 0% and 100% barrier, and n = 150 trials for 

B2. Data are represented as mean ± SEM. In some cases, the SEM was smaller than the height of the symbol in 

the plot. In those instances, the error bars were not drawn.  

 To determine if this PDC effect was specific to the barrier region, we also assessed the 

relationship between the ACC and VTA and ACC and dCA1 as animals passed through the 

initial region of the apparatus (region 2). An ANOVA examining the resultant PDC between 

ACC and VTA in this region revealed a significant main effect of directionality (F1,1194 = 

286.65, p < x 10-200) but there was no significant effect of barrier condition (F1,1194 = 3.46, p > 

.05) and no  directionality x barrier interaction (F1,1194 = 0.76, p > .05; see Figure 36C; see 

Table 7 for data from all rats). Similar results were obtained for the ACC-dCA1 PDC 

ANOVAs (see Table 7), These data indicate that in the initial portion of the apparatus, where 

no variation in task-demands ever occurred, ACC leads VTA and dCA1 activity, respectively, 

but without the large increase that occurs when the animal discovers the barrier is absent from 

the barrier-containing region of the apparatus.  

 To confirm these PDC findings, we conducted cross-correlations (Adhikari, 

Sigurdsson, Topiwala, & Gordon, 2010) across two separate windows in the waveforms: a 
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500ms window centered on the PRE marker and a 500ms window immediately after that. 

During the PRE-centred window on flat trials, we found that the cross-correlation of ACC and 

VTA LFPs peaks at 35.42 ± 2.26ms (p < .05, Kruskal-Wallis test), indicating that the ACC 

significantly leads the VTA. We also found evidence of the ACC leading the VTA by a 

similar amount (32.29 ± 3.19ms; p < .0005, Kruskal-Wallis test) in the 500ms window 

beginning at the end of the PRE-window. We did not detect significant lead or lag using the 

same procedures during barrier trials. No significant evidence of VTA leading the ACC was 

detected when this procedure was repeated using the VTA as the trigger for PREs. We also 

conducted amplitude cross-correlations triggered from entry into the barrier region (regions 5-

6). The results were similar. Cross correlations conducted on the waveform itself within the 

same windows also showed that the ACC significantly led the VTA. Given the agreement of 

our PDC results with these cross-correlation findings, we conclude that our PDC 

implementation is likely able to adequately resolve changes in directionality occurring within 

very small timescales.  Furthermore, the consistency between the PDC results and the 

amplitude cross correlation results are supportive of a lead of the ACC over the VTA rather 

than the converse. 

2.5 Discussion 

 We investigated the influence of physical effort on VTA, ACC, and dCA1 

theta (4-12 Hz) power, coherence, partial directed coherence (PDC), and running speed as rats 

ran a rectangular track requiring varying levels of effort to reach a fixed reward. PDC analysis 

of task-related casual relationships between brain areas revealed significant ACC  VTA and 

ACC  dCA1 directionality, the magnitude of which was modulated by the presence or 

absence of the barrier. These PDC results show that ACC activity is predictive of VTA and 

dCA1 responses and are consistent with prior reports showing cortical influence over VTA 

and dCA1. For example, Beier et al. (2015) found that the VTA dopaminergic neurons 

projecting to NAcc are directly regulated by anterior-cortical-VTA glutamatergic afferents 

and that rodents will self-stimulate those projections. Additionally, ACC control over the 

VTA is strongly implicated in inhibition of cocaine seeking (Navailles et al., 2015). 

Moreover, Rajasethupathy et al. (2015) found that ACC projections to dCA1 mediate memory 

retrieval and Ito et al. (2015) implicated ACC influence over dCA1 in directing goal-oriented 

place-cell activity. One interpretation of these findings is that ACC top-down projections to 

the VTA and dCA1 (Ferenczi et al., 2016; Fujisawa & Buzsaki, 2011; Taber et al., 1995) 

underlie a circuit via which cortical representations can update spatial and motivational brain 

states to guide future behaviour.  
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Additionally, we found that ACC and VTA, but not dCA1, theta power, ACC-VTA 

coherence, and, surprisingly, ACC-dCA1 coherence increased as the rat entered the barrier-

containing region of the maze on trials when the barrier was absent. In contrast, theta signals 

did not increase to the same degree across the same region of space when the barrier was 

present. Once the animal reached the reward region, however, ACC and VTA theta power and 

coherence as well as ACC-dCA1 theta coherence were independent of the effort condition. 

We also found that the latency to begin a new trial, measured as the length of the inter-trial 

interval (ITI), was longer if the prior trial had been a barrier trial than a flat trial. The ITI start 

was determined by the rat tripping the photo-beam immediately prior to reward acquisition 

and ended with the next trial start. This longer ITI could, therefore, reflect either increased 

reward consumption time or increased latency to start post-consumption, raising the 

possibility of decreased motivation following an effortful trial.  Although our assessment of 

theta power and coherence during this same time period found no significant differences 

given a prior trial type, Bryden et al. (2011) correlated elevated ACC single unit firing rates 

with decreased latencies to begin a trial. Thus, the fact that our principle findings were 

confined to the low theta band (near 4 Hz) suggests that we may have observed a long-range, 

integrative mechanism rather than measuring local computations (Buzsaki, 2006; Buzsaki & 

Watson, 2012), consistent with prior reports that cortical modulation of subcortical structures, 

such as the VTA and the basolateral amygdala, do occur via the low-theta frequency (Gao, 

Yang, Jin, Bunney, Shi, 2007; Karalis et al., 2016; Wu et al., 2013).  

Rats’ running speeds also increased significantly in the barrier region when the barrier 

was absent. This may have been due to the reduced physical demands of the task or, 

alternatively, may have been driven by increased motivation signals, perhaps provided in a 

top-down manner from the ACC. In either case, one consequence of this relationship is that 

changes in running speed are potentially confounded with some of the electrophysiological 

effects that we observed. Our analyses indicate, however, that the changes in 

electrophysiology we observed are over and above that which would be predicted from the 

changes in running speed per se. First, correlations between instantaneous power and 

instantaneous running speed when compared across all regions, were minimal and non-

significant, suggesting that speed and power were independently driven by the effort 

condition. Second, and most importantly, after statistically controlling for speed as a covariate 

in an ANCOVA, the effort condition remained a highly significant factor in ACC and VTA 

(but not dCA1). Third, if the theta power changes were movement artefacts, it is difficult to 

explain why activity in the barrier region during the barrier condition, where rats would 
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vigorously leap atop the barrier, was generally equal to that recorded in the initial stem of the 

apparatus where there was never a barrier. Therefore, rather than being a secondary 

consequence of behavioural change, our data appear to represent fundamental differences in 

underlying neural activity that are responsive to the effort condition.  

 Our data may reflect the operation of several different mechanisms, with the 

possibility that more than one of these operates simultaneously. Two of these include 

prediction error (Pearce & Hall, 1980) and negative reinforcement (Skinner, 1938). Prediction 

error (PE) theory posits that, based on prior experience and outcomes, the brain predicts what 

will happen in a similar situation and elicits a strong signal when an outcome violates that 

prediction. Although prediction errors are typically studied in the context of reward (Schultz, 

1998), in our study, theta power in the ACC and VTA increased markedly when the barrier 

was absent, suggesting an effort, rather than reward, prediction error. Framed as an effort 

prediction error effect, this would suggest that the baseline prediction might have been the 

presence of the barrier, such that the absence of the barrier was ‘unexpected’. This 

corresponds to the notion of a positively signed prediction error (Eshel et al., 2015; Kennerly 

et al., 2011), but is inconsistent with other reports of unsigned, ‘surprise’, prediction errors 

(Bryden et al., 2011; Hayden, Heilbronner, Pearson, & Platt, 2011). Were these signals true 

prediction error signals, the presence or absence of the barrier in the B1 condition, when the 

barrier was present on 50% of trials, should be equally surprising with each trial type eliciting 

a transient response.  

Negative reinforcement (NR) models suggest that the removal of an aversive stimulus, 

such as a barrier, is itself a reinforcer (Skinner, 1938). Typical NR studies require subjects to 

emit an instrumental response to remove or avoid an aversive stimulus (Qi et al., 2016) and 

adapt future behaviour (Oleson, Gentry, Chioma, & Cheer, 2012). Although our study was 

slightly different from a typical NR design in that the omission of the barrier did not require 

an instrumental response, the increase in theta power and coherence along with running speed 

is consistent with the core notion of NR: the absence of a barrier, when it could have been 

present, is reinforcing. Both of these interpretations would predict that, in the phase 2, barrier-

absent condition, the magnitude of the power and coherence signal would decrease in the 

barrier region over repeated trials as the animals’ predictions were modified to accept the new 

barrier probability (0%). The data presented in Figure 30 suggest that this was not the case, at 

least within the time window tested. Thus, future experiments are required to resolve whether 

the time course over which these neural mechanisms respond to environmental change 

corresponds to that observed in behavioural change, such as extinction. 
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Because we only tested two conditions (effort and no effort), it is possible that the 

rapid synchronization of the ACC and VTA was not driven by effort. Another possibility, 

suggested by classic studies of dopaminergic activity (Fiorillo, Philippe, Schultz, 2003; 

Ljungberg, Apicella, & Schultz, 1992; Schultz, 1998), is that the absence of the barrier may 

cause the animal to anticipate the reward well in advance of the reward zone (region 9). 

Although this has not been documented in the ACC, VTA neurons tend to respond to the 

earliest stimulus predictive of reward over the course of learning (Schultz, 1998). Through 

this lens, it is possible that the absence of the barrier functioned as a cue which indicated the 

reward was ‘closer,’ thus eliciting a change in theta power. Given the ACC  VTA 

directionality observed in our experiment, future studies are needed to determine whether 

ACC neurons also transfer their responses to the earliest reward-predicting stimulus over the 

course of learning.     

A related interpretation is suggested by human fMRI experiments. These dissociated 

the ACC’s response to surprising, presumably PE-inducing events, from its  response to 

information indicating that the organism’s underlying predictive model must be updated  (N 

Kolling et al., 2016b; O’Reilly et al., 2013). According to this model, the responses of the 

ACC and the structures it influences, such as the VTA, and, ultimately, behavioural changes, 

are greatest when task-requirements are different than expected, such as a barrier being absent 

when it has previously been present. This is different from PE in that PEs are thought to 

signal one-off, ‘surprising’ events whereas Kolling et al. (2016) and O’Reilly et al. (2013) 

suggest these ACC signals are updating the more fundamental processing framework 

underlying PEs. This interpretation reconciles the key aspects of prediction error and negative 

reinforcement in that VTA and ACC theta power as well as running speed abruptly increased 

when the rat finds that the barrier is absent, when it has been present in the past. Future 

experiments are required to verify an assumption of this explanation which, similar to a PE 

account, assumes the animals’ default task model includes the presence of the barrier.  

It is also possible that our findings can also be explained as a neural correlate of 

‘relief’, in that the avoidance of an aversive outcome, such as climbing a barrier, is relieving. 

Such a description of relief is consistent with human psychological conceptions of relief 

(Carver, 2009; Deutsch, Smith, Kordts-Freudinger, & Reichardt, 2015; Sweeny & Vohs, 

2012). Since relief is thought to occur only when circumstances or outcomes are better than 

they might have been, the concept of relief synthesises the key aspects of negative 

reinforcement, positive prediction error, and internal task-state monitoring-and-updating 

without many of the caveats of other interpretations. Thus, characterisation of our findings as 
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a neural correlate of relief is perhaps a more parsimonious description of a process by which 

internal task representations are altered, specifically when an aversive task-requirement, such 

as climbing a barrier, is avoided.  

 Our data integrates and extends the evidence indicating a close link between cortical 

states and activity in dopaminergic brain areas (Beier et al., 2015; S Fujisawa & Buzsaki, 

2011; Taber et al., 1995; Wu et al., 2013) and complements demonstrations of cortical control 

of other affective states, such as fear (Karalis et al., 2016; Likhtik, Stujenske, Topiwala, 

Harris, & Gordon, 2014), apathy (Moretti & Signori, 2016; Onoda & Yamaguchi, 2015), and 

pain (Navratilova & Porreca, 2014; Vogt, 2005). The idea of a continuously sampling ACC 

which tracks changes in task requirements complements reports of a similarly adaptive 

mesolimbic dopamine signal (Hamid et al., 2016; Howe et al., 2013) and provides an 

indication of at least some of the pathways via which this latter response could be modulated. 

Together, these data suggest that cortical and dopaminergic states modulate the motivation to 

pursue a reward in response to changing task requirements, enabling organisms to behave 

flexibly in order to optimize available opportunities in uncertain, changing environments 

(Hayden, Pearson, & Platt, 2011). Integrating the theories of prediction error, negative 

reinforcement, and task-requirement monitoring, we conclude that our findings may reflect a 

neural correlate of relief: the avoidance of a barrier, when it has been present in the past, is 

relieving. Future work will expand the mechanistic insight of this phenomenon by examining 

how changes in the ACC to VTA projection map onto changes in behavioral outcomes. 
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Chapter 3  Anticipation and persistence signals in the ACC and 

VTA 

3.1 Summary 

The anterior cingulate cortex (ACC) has previously been implicated in several high-level 

processes, including value-based decision-making and anticipation. It is, however, unclear 

how ACC activity in these circumstances might be transformed into motivational signals. One 

possibility is through the region’s connections to the ventral tegmental area (VTA), a 

dopaminergic region implicated in motivation. We tested this hypothesis by monitoring ACC 

single-units and local-field-potentials (LFPs) as well as LFPs in the VTA of rats performing a 

spatial decision, reversal task which elicited both economic, value-based and decisions which 

appeared to be anticipatory. A combination of behavioural, electrophysiological, and 

modelling analyses revealed that transient increases in 4Hz ACC modulation of the VTA 

corresponded with the pre-reversal selection of a less-favoured low-cost, low reward option. 

The temporal pattern of this behaviour suggested that it may reflect anticipation and/or 

decision implementation. This interpretation was consistent with our observation that the 

ACC-to-VTA signal was initially high but decreased exponentially during habituation to a 

novel open field. Increased ACC-to-VTA signalling was also observed after the reversal as 

animals as the rats sustained their responses to the new optimal side. In sum, our results 

suggest that ACC-to-VTA signalling is important for the initiation and persistence of non-

default behaviour. 

3.2 Introduction 

 The anterior cingulate cortex (ACC) is a medial prefrontal region that has previously 

been implicated in a number of high-level processes, including decision making (Hillman & 

Bilkey, 2010; Nils Kolling et al., 2016), anticipation (Blanchard et al., 2015; Haroush & 

Williams, 2015; Tervo et al., 2014), and adaptation (Economides, Guitart-Masip, Kurth-

Nelson, & Dolan, 2014; Sheth et al., 2012; Walton, Croxson, Behrens, Kennerley, & 

Rushworth, 2007). One theory which unifies such diverse functions is that the ACC 

dynamically encodes models of the task at hand (Nils Kolling et al., 2016; O’Reilly et al., 

2013). Accordingly, this view suggests that changes in that task model underpin subsequent 

behavioural change. While the results of several studies illustrate how such models might 

neuronally manifest in the ACC (Cowen, Davis, & Nitz, 2012; Haroush & Williams, 2015; 

Hillman & Bilkey, 2010; Karlsson, Tervo, & Karpova, 2012; Womelsdorf, Johnston, Vinck, 
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& Everling, 2010), whether and how these signals influence the motivation to pursue one 

option or another during decision making remains unclear.  

 Anatomical, electrophysiological, and computational evidence suggest that the ACC 

can influence behaviour via the monosynaptic glutamatergic afferents that connect the ACC 

to the ventral tegmental area (VTA), a midbrain dopaminergic structure implicated in 

motivation (Ballard et al., 2011; Carr & Sesack, 2000; Elston & Bilkey, 2017; Gao et al., 

2007; Gariano & Groves, 1988; Holroyd & McClure, 2015; Holroyd & Yeung, 2012; Olds, 

1958). For example, in a recent study of ACC-to-VTA signalling from our lab (Elston & 

Bilkey, 2017), we monitored and modelled ACC and VTA local field potentials (LFPs) of rats 

running in a task with varying physical difficulty and found that ACC-to-VTA signalling, 

modulated at around 4Hz, increased during trials when the lap was easier than expected. This 

increase was significantly correlated with, but not confounded by, increases in motivation, as 

measured by running speed. Thus, ACC-to-VTA 4Hz signalling is a plausible mechanism by 

which ACC neural activity could influence VTA-generated motivational signals. What 

remains unclear, however, is whether and how the ACC and VTA interact during decision 

making.  

 To examine this circuit during decision making, we monitored ACC single units and 

simultaneously recorded ACC and VTA LFPs (Figure 38A-C) in rats trained to perform a 

spatial decision, reversal task. The task (Figure 38DE) required that rats decide whether to 

overcome a 30cm barrier in pursuit of a large reward (high cost, high reward; HCHR) or 

choose to pursue a small reward without having to overcome a barrier (low cost, low reward; 

LCLR). In addition to the value-guided, economic (HCHR) decisions this task highlights, we 

(Hillman & Bilkey, 2010) and others (Holec, Pirot, & Euston, 2014; Schweimer & Hauber, 

2006; Walton, Devlin, & Rushworth, 2003) had previously found that the animals would 

occasionally choose the low-value (LCLR) option. Often, these experiments included a 

reversal component, which led us to wonder whether these LCLR choices occurred either 

because of some error in memory recall at the choice point or because the animals anticipated 

the reversal. Given that the ACC appears central for choices which involve value and effort 

(Kennerly, Behrens, & Wallis, 2011; Walton, Devlin, & Rushworth, 2003), its neurons firing 

in an anticipatory manner (Blanchard et al., 2015; Haroush & Williams, 2015), and that both 

decision types entail a motivational component, we were interested in whether and how the 

ACC’s modulation of the VTA would differ between these decision types.  
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3.3 Experimental Procedures 

3.3.1 Subjects and animal use statement 

All experimental procedures have been reviewed and approved by the University of 

Otago Animal Welfare Office. Six male Sprague Dawley rats (Hercus-Taieri Resource Unit) 

between six and eight months of age, weighing 400-550 grams were used in this study. Rats 

were single housed in translucent plastic cags containing pine chips and maintained on a 12 

hour light/dark cycle. All training and experimentation occurred during the light phase. After 

two weeks of daily handling and weighing during which rats had ad libitum access to food, 

rats were food deprived of standard rat chow (Speciality Feeds) to no less than 85% of their 

free-feeding weight to promote interest in reward during the experiment. Water was available 

ad libitum at all times in the home cage.  

3.3.2 Preoperative training 

During the initial week of training, rats were individually habituated for 15 minutes 

per day to the experimental apparatus, a figure-of-eight shaped runway which contained 

touchscreens, photobeams, two retractable 30cm barriers mounted on servo motors, and 

reward areas in which condensed milk (Highlander; Nestle) was dispensed into plastic wells 

by peristaltic pumps (Adafruit, New York, NY, USA; Figure 38A). The apparatus was 

controlled by a network of five Arduino (Arduino LLC, Somerville, MA, USA) 

microcontrollers. Condensed milk was freely available in plastic wells located in the reward 

zones in the maze. In the second week of training, rats were trained to run the maze in a 

unidirectional manner, starting at the bottom of the midstem, being forced to turn left or right 

at the vertex, and received a fixed reward (.5 ml of condensed milk) in the reward zones. Rats 

were prevented from reversing direction in the maze by photobeam-controlled doors. The rats 

were not paused between trials and completed laps in a continuous, uninterrupted manner. 

Once the rats were running unidirectionally and not attempting to reverse course, they 

were trained to press a wall-mounted touchscreen which released an adjacent starting gate, 

thereby initiating a trial. The touchscreen indicated a successful press by turning from black to 

bright red. There was no delay between screen pressing and the lowering of the start gate. 

This typically took between one and four 15 minute training sessions. Screen-press training 

was considered complete when rats completed at least 30 trials per session for three 

consecutive training sessions. This typically took 6 training sessions.  

The next stage of training involved the introduction of the two servo-mounted 30cm 

barriers into the apparatus (one in each maze arm) which rats had to overcome on their paths 
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to the reward zones. The servo motors both inserted and removed the barriers according to a 

programmed task protocol carried out by the Arduinos. These barrier-training sessions were to 

habituate the rats to the presence of the barrier and for them to learn how to climb over them. 

A fixed reward (.2 ml of condensed milk) was administered at the completion of each trial. 

Barrier training sessions were conducted until rats completed at least 30 trials per session for 

three consecutive sessions. This typically took four training sessions.  

The next stage of training involved manipulations of the presence of the barrier and 

the magnitude of reward dispensed for different routes along the maze such that one maze arm 

contained a barrier and always yielded a large reward (.3 ml of condensed milk; high cost, 

high reward; HCHR) whereas the other maze arm would not contain a barrier and always 

yielded a low reward (.1 ml of condensed milk; low cost, low reward; LCLR). The HCHR 

arm alternated each day of this training phase. When rats completed at least 30 trials per 

session and were selecting the HCHR arm on at least 70% of trials, sessions were extended 

such that each session required rats to run 64 laps per session.  

The final stage of training involved within-session manipulations of the HCHR arm. 

Although the initial maze configuration was counterbalanced across rats, we will, in the 

interest of clarity, describe the procedure where the initial HCHR maze arm was the right arm. 

For the rats where the initial configuration was that HCHR was the right maze arm, the first 

32 trials the right maze arm was the HCHR arm and shifted such that the 33rd through 64th 

trials had the left maze arm as the HCHR arm. Regardless of the initial configuration (i.e. the 

HCHR arm being left or right), the maze configuration and outcome contingencies reversed 

during the inter-trial interval between trials 32 and 33 by the initial-HCHR-arm servo-

mounted-barrier being removed from the maze and the opposite maze arm’s servo-mounted 

barrier being inserted. The reward magnitudes delivered by the peristaltic pumps also 

automatically reversed. Within each session half, rats were sometimes forced towards the 

LCLR or HCHR trajectory to ensure they regularly sampled each trajectory. There were eight 

forced trials in each session half, four to the right, four to the left, which occurred 

pseudorandomly, but on average, every fourth trial. Rats were considered fully trained and 

ready for surgery when they completed all 64 trials in less than one hour and chose the HCHR 

arm in both configurations at least 70% of the time for three consecutive sessions. 

3.3.3 Surgery 

Once animals were considered trained, the nine rats were anaesthetized under isoflurane 

and stereotaxically implanted in the ACC (AP: 2.7 mm, ML: 0.4 mm, DV: -1.8 mm from 

dura) with seven 25 μm Formvar-coated nichrome wires (one tetrode and one tritrode; 
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California Fine Wire) mounted on a 3D-printed adjustable microdrive assembly and the VTA 

(AP: -5.3mm, ML: 1.0mm, DV: -8.2mm from dura) with a one non-moveable 127-μm-

diameter, nickel chromium-coated wire. The electrodes were grounded by soldering a wire to 

a jewellers screw implanted in the cerebellum. The assembly was fasted to the skull with 

jeweller’s screws and acrylic dental cement. Following the surgery, animals were allowed 10 

days to recover, during which time they had ad libitum food and water. After 10 days, rats’ 

food was reduced to maintain the animal at ~85% of their free-feeding weight to optimize 

behaviour during the experiment.  

3.3.4 Postoperative protocol 

 After 10 days of recovery, rats were reintroduced to the maze with head plugs 

connected to a tethered head stage that housed three light emitting diodes (LEDs) for tracking. 

Training resumed from the final preoperative stage; all 9 rats quickly recalled the task with no 

signs of postoperative motor impairment. Once each rat demonstrated three consecutive 

sessions of completing all 64 trials in less than one hour and choosing the HCHR arm at least 

70% of the time for each maze configuration, data acquisition began. Data acquisition 

occurred over the course of 10 consecutive days and was nearly identical to the postoperative 

training protocol except that the positions of the forced trials varied for each session, 

occurring, on average, every fourth trial. During the main experiment, the maze configuration 

discreetly changed during the inter-trial interval between the 32nd and 33rd trial such that there 

was no waiting period or any indication to the animal that the configuration had changed.  

 Following the completion of the main experiment, we recorded five of the animals as 

they habituated to a novel open field (a 35cm wide x 45cm long x 50cm tall cardboard box 

with a rubber floor) for 10 minutes per day over the course of two days. Although we only 

recorded the habituation of 5 of the rats, all 9 underwent this procedure and, following 

habituation, we recorded all 9 rats for 10 minutes per day over the course 10 days so that we 

could compare the electrophysiological measures obtained from the task, when the ACC and 

VTA were likely to be “engaged,” against activities which were relatively “at rest.” 

3.3.5 Electrophysiology and tracking 

 Neuronal and local field potential activities were monitored and processed using the 

DacqUSB acquisition system (Axona, Ltd., St. Albans, UK). Neuronal signals were bandpass 

filtered from 360 – 7000 Hz and sampled at 48 kHz. Local field potentials (LFPs) were low-

pass filtered at 500 Hz and sampled at 4800 Hz. The rats’ position within the maze was 

monitored by a video camera mounted on the ceiling above the apparatus connected to a 

system which tracked the LEDs mounted on the head stage. Tracking data was sampled at 50 
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Hz and made available to the DacqUSB system. Key events (e.g. trial initiation, the type of 

trial initiated, changes in maze configuration, and breaking photo beams) were timestamped 

by inputs from the network of Arduino microcontrollers which controlled the maze to a digital 

input-output port on the DacqUSB system. Files were then read into Offline Sorter (Plexon 

Inc., Dallas, TX, USA) for spike sorting, based on visually dissociable clusters (principle 

components and peak-valley amplitudes; see Figure 37 for examples of isolated clusters). 

Subsequent analyses were conducted using MATLAB R2017b (The Mathworks, Boston, MA, 

USA) or Oriana (Kovach Computing Services, Anglesey, Wales).  

 

Figure 37. Example well-isolated single-unit clusters. These clusters represent three of the five neurons 

simultaneously recorded from rat 3 in one data collection session. 

 

3.4 Data analysis 

3.4.1 Regression to control for between-subject variance 

 We used a regression-based method, first used by Ma, Hyman, Lindsay, Phillips, & 

Seamans’ (2014), to control for between-subject variance. This allowed us to pool/analyse via 

multifactorial ANOVAs the 5362 individual free choice trials across all 9 rats. No forced 

trials were included in our analyses. Of those 5362 free choice trials, 1540 were pre-reversal 

HCHR, 1142 were pre-reversal LCLR, 1654 were post-reversal HCHR, and 1026 were post-

reversal LCLR.  
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 The general approach we used was to normalize the data via the feature scaling 

formula (Ioffe & Szegedy, 2015), which rescaled the data between 0 and 1, and to then fit a 

regression model where a dependent measure of interest was regressed against a subject factor 

(i.e. a factor indicating which animal a particular data point was obtained from). The resulting 

model captured the variance in the dependent measure of interest that was explained by 

differences between the rats. The residuals, however, contained data that reflected to 

underlying variance in the parameter, independent of the effect of subject. It was these 

residuals which we analysed with the multifactorial ANOVAs. The benefit of this approach 

was that it showed much more clearly the same results as within-subject analyses and also 

revealed new trends. The other advantage of this approach was that it made both the 

interpretation and the reporting of the results more clear and concise 

3.4.2 Instantaneous neuronal firing rate estimation  

 Ma, Hyman, Lindsay, Phillips, & Seamans' (2014) method was implemented to obtain 

a continuous, instantaneous estimate of the firing rate (iFR) of each isolated neuron. Briefly, 

the binary timestamps of each neuron were allocated into 200 ms bins. Exploiting the inverse 

relationship between frequency and period, for each bin, the iFR was calculated as the 

reciprocal of the inter-spike intervals, which were then convolved with a 20ms Gaussian 

kernel and then averaged over the bin. The iFR was computed for each neuron across the 

duration of the experimental session each neuron was recorded in. 

3.4.3 Selectivity analysis of individual neurons 

 Cohen’s d, the effect size statistic, was used to assess whether individual neurons were 

responsive to certain areas of the maze for the various task conditions and maze 

configurations. Cohen’s d was computed as the mean difference in iFR between HCHR and 

LCLR trials divided by the pooled standard deviation of both HCHR and LCLR trials for each 

maze region and each maze configuration for each neuron, separately. A neuron was 

classified as selective in a particular maze region when Cohen’s d  ≥ |.5| and that the 

parameters with which Cohen’s d was calculated were significantly different according to the 

sign rank test. Cohen’s d was always calculated such that a positively signed result indicated 

HCHR selectivity and a negatively signed result indicated LCLR selectivity (i.e. HCHR – 

LCLR). The selectivity of each neuron for each maze region in each maze configuration was 

tested independently, which allowed a neuron to be considered selective for more than one 

maze region but not more than one classification (e.g. a neuron might show significant 

selectivity in several maze regions on HCHR trials but that neuron could not be classified as 

both HCHR and LCLR selective within the same session half). 
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3.4.4 Phase modulation of single units to the local field potential 

 Phase modulation of ACC single units was assessed by examining the distribution of 

unit spiking with respect to the phase angle of the simultaneously recorded ACC and VTA 

LFPs. Instantaneous LFP phase angles were determined by bandpass filtering the LFPs to the 

frequencies of interest by using a two-pole Butterworth filter with the filtfilt MATLAB 

function and then applying the standard Hilbert transform. Phase zero was defined as the 

positive peak of the waveform. The mean angular dispersion of spikes, henceforth referred to 

as the vector length, was calculated by the Pythagorean Theorem as the square root of the 

squared mean cosine plus the squared mean sine for all spikes for each neuron, separately. 

The vector length provides a measure of the concentration of firing about the unit circle. 

Normalized vector lengths were obtained by comparing the obtained vector lengths to vector 

lengths of spikes equally distributed about the unit circle for each neuron, separately. Thus, 

the normalized vector length indicates the extent to which spikes clustered at a specific phase 

angle as compared to the same number of spikes being uniformly distributed across all phase 

angles. The significance of angular dispersions, indicating whether the phase of firing 

distribution was evenly distributed or possessed a significant mean direction, was assessed 

using Rayleigh’s test for circular uniformity (Zar, 1999). 

3.4.5 Local field potential power and coherence 

 Time-resolved LFP power and coherence were calculated via multi-taper spectrograms 

and coherograms (Mitra & Bokil, 2008) which used three tapers, a one-second reading 

window, and 85% overlap amongst windows. Statistical analyses of LFP power and 

coherence were done across well-defined frequency bands (Buzsaki, 2006). 

3.4.6 Partial directed coherence for detecting signal directionality 

 Task-related, causal relationships between the ACC and VTA LFPs were assessed 

with a partial directed coherence (PDC) algorithm, a frequency-resolved estimate of Granger 

causality, which uses multivariate autoregressive modelling to exploit the predictability of 

information in one brain area by past activity in another (Baccalá & Sameshima, 2001). Our 

implementation of PDC followed Boykin, Khargonekar, Carney, Ogle, & Talathi's (2012) 

method. One advantage of PDC over other measures of directionality, such as amplitude 

cross-correlations (e.g. Adhikari, Sigurdsson, Topiwala, & Gordon, 2010), is that PDC allows 

for testing the possibility of simultaneous bi-directional communication, which is particularly 

likely to occur between two reciprocally connected areas, such as the ACC and VTA (David 

B. Carr & Sesack, 2000; Narita et al., 2010).  
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3.4.7 Histology and electrode placement verification 

 Upon completion of the study, rats were deeply anaesthetized with isoflurane and 

recording sites were electrolytically lesioned with direct current (2mA for 2 seconds) before 

transcardial perfusion. Electrode tracks and microlesions marking the electrode position were 

identified in 50μm thick sections of formalin-fixed tissue stained for Nissl substance (Figure 

38A and B). To verify our VTA electrodes, we used immunohistochemistry to label sections 

for tyrosine hydroxylase (TH; anti-TH primary antibody was AB152 from Millipore).  

3.5 Results 

3.5.1 Task, apparatus, and neurophysiological recordings 

 Nine rats with implants in the ACC and VTA performed a spatial decision task (see 

Figure 38D and E) where the optimal (most economic) choice reversed once per recording 

session. In this task, the rats initiated a trial by pressing a wall-mounted touchscreen and were 

then required to decide whether to pursue a large reward at the cost of climbing a 30cm 

barrier (high cost high reward; HCHR) or whether to pursue a small reward which did not 

require climbing a 30cm barrier (low cost, low reward; LCLR). On the basis of our prior 

experiments (Hillman & Bilkey, 2010) as well as those of others (Holec et al., 2014; 

Schweimer & Hauber, 2006; Walton et al., 2003), we expected that the rats would come to 

prefer the economic, HCHR option. However, in all of these prior studies, the rats never 

selected the HCHR arm 100% of the time, as would be optimal in terms of maximizing the 

amount of earned reward. We were interested in whether these choices could be construed as 

either exploratory or anticipatory.  

 In an effort to distinguish between these two possibilities (exploration vs anticipation), 

we included a reversal component. Two findings influenced our choice of a single-reversal in 

this experiment. First, Farashahi et al. (2017) reported an inverse relationship between the 

volatility of the environment and the value of exploring alternatives such that as volatility 

(e.g. the number of reversals) increased, the likelihood of subjects selecting a non-default 

choice decreased. Second, some of our recent work (which used 5 of the 9 rats included in this 

present experiment) in a “high volatility” decision context (6 reversals over the course of ~80 

trials per session; data not shown) indicated that the animals rarely deviated from the optimal 

choice and there was no clear relationship between the non-optimal choices and reversals or 

any other key experimental event. This prior finding in a high-volatility environment 

suggested that those non-default decisions were likely errors. Thus, considering our prior 

findings in conjunction with Farashahi et al.’s which suggest that choices which are perhaps 
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anticipatory or exploratory in nature are most likely to occur in a low-volatility environment, 

we opted for a single-reversal (i.e. very low volatility). 

 The ACC and VTA have long been implicated in both anticipation and value-guided 

choice (Blanchard et al., 2015; Hamid et al., 2016; Howe et al., 2013; Kennerly et al., 2011; 

Wolfram Schultz et al., 1997); however, whether and how these structures interact during 

anticipatory and economic choices has remained unknown. Because our task aimed to elicit 

both of these choices types, we simultaneously recorded local field potentials (LFPs) in the 

ACC and VTA as well as single-units in the ACC. We histologically confirmed our electrode 

placements by staining for tyrosine hydroxylase, a marker of dopaminergic neurons (Amantea 

& Bowery, 2004; Carr & Sesack, 2000), in the VTA and staining for Nissl substance in the 

ACC. 
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Figure 38. Histology and task diagram. (A) Nissl-stained section which shows and electrolytic lesion in the 

ACC, indicating electrode placement in the ACC. (B) Tyrosine-hydroxylase (TH) immunolabelled section with 

an electrolytric lesion in the TH+ area of the VTA, indicating electrode placement in the VTA. TH is a marker of 

dopaminergic neurons (Carr & Sesack, 2000; Hamid et al., 2016). (C) Enlarged portion of the boxed area in B. 

(D and E) task diagram and example trial trajectories.  

3.5.2 Decision patterns, running speeds, and latencies 

The first behaviour we assessed during this experiment was whether the probability of 

the rats making non-default, LCLR choices changed over the course of an experimental 

session (Fig. 39AB). We predicted that the rats would make more LCLR choices before as 

compared to after the reversal, which they did. We were next interested in whether these pre-

reversal LCLR choices coincided with the reversal – if the number LCLR choices increased 

as the pre-reversal trials progressed then that would suggest that the animals had learned to 

anticipate the reversal and that these choices were anticipatory in nature. However, if the 

LCLR choices were evenly distributed across the pre-reversal trials, then that might suggest 

that the pre-reversal LCLR trials were exploratory. We formally assessed this by finding the 
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average number of LCLR choices in each session octile (i.e. the count of LCLR choices in 8 

trial bins) for each session for each rat, separately. Animal grand means were then assessed 

via ANOVA (anovan, MATLAB). We found a significant main effect of octile (F7,71 = 24.72, 

p < 1.0x10-6) and noticed that the number of LCLR choices was maximal during trials 

immediately preceding the reversal, suggesting that the animals anticipated the reversal. To be 

sure that it was anticipation of the reversal that explained the animals’ decision behaviour, we 

trained 3 of the rats in a delayed reversal condition where the reversal occurred after trial 42 

(rather than after trial 32). We found a significant effect of octile (F7,47 = 7.45, p = 5.1x10-6), a 

significant octile x reversal interaction (F7,47 = 7.22, p = 7.2x10-6), and that the number of 

LCLR choices again increased immediately prior to the reversal trial. Together, these results 

suggest that the pre-reversal LCLR decisions were anticipatory in nature.  

Because we identified pre-reveral LCLR choices as being anticipatory, we wondered 

whether the overt behaviours of the animals differed throughout the maze (Fig 39C). To 

formally assess this, we obtained the mean running speed (see Methods) of the animals for 

each maze region for each lap for each animal, separately. Animal grand means were then 

assessed via ANOVA. Although our ANOVA did reveal significant main effects of choice 

(F1,143  = 6.69, p = 0.011), maze region (F3,143 = 68.15 , p < 1.0x10-6) and reversal (F1,143 = 

7.52 , p = .0069), it did not detect either a maze region x choice interaction (F3,143 = 1.89, p = 

0.13), a choice x reversal interaction (F1,143 = 0.13 , p = 0.72), or a maze region x choice x 

reversal interaction (F3,143 = 1.74, p = 0.16). These results reflect that the animals generally 

ran slower in the midstem and barrier region and were generally faster in the vertex (i.e. the 

choice point) and the reward regions and that the rats tended to run faster during HCHR trials. 

The lack of a either a choice x region interaction or a choice x region x reversal interaction 

indicates that the overt decision behaviour at the vertex associated with pre-reversal LCLR 

choices, as indicated by running speed, was not significantly different.  

As an additional probe into the overt behaviour of the animals during decision making, 

we asked whether the movement trajectories of the animals different by choice type. We 

assessed this by plotting and overlaying the tracked positions of the animals by choice type 

for each session of each animal, separately, and then assessed the overlap of the trajectories 

with special attention to the vertex region. We found no differences here (i.e. nearly perfect 

overlap of the trajectories; data not shown). These findings, in conjunction with the lack of a 

difference in the movement speeds of the animals, indicate that although the overall pattern of 

decisions by the animals varied such that the likelihood of the animals to deviate from their 
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default HCHR choices increased as the pre-reversal trials progressed, the overt behaviours 

associated with the different choice types was not different.  

Given how anticipation can influence motivation (Ward, Winiger, Higa, et al., 2015; 

Ward, Winiger, Kandel, Balsam, & Simpson, 2015), we wondered whether the outcome of 

one choice would influence how quickly the animals would begin a new trial. Again using 

animal grand means, we compared the latency to begin a new trial from the time the animals 

reached the reward well after having completed a trial of a given type (Fig 2D). Our ANOVA 

did not reveal a main effect of choice type (F1,35 = 2.37, p = 0.13) but it did reveal a 

significant main effect of reversal (F1,35 = 6.29, p = 0.017). No choice type x reversal effect 

was detected (F1,35 = 0.3, p = 0.59). Because our latency measure also includes the time the 

animals took to consume their reward, these results indicate that the animals took about the 

same amount of time to consume a HCHR and LCLR reward. These results also indicate that 

the animals took slightly longer in initiating a new trial following the reversal but that this 

increased latency was not associated with a given choice. Together, to the extent that a latency 

measure can describe the influence of a trial outcome on subsequent motivation to work 

again, these results suggest that our animals were not differentially motivated to begin a new 

trial following either a high reward or low reward outcome. 
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Figure 39. Rat behaviour. (A) Rats are more likely to choose the LCLR arm as the pre-reversal trials progress 

and are much less likely to choose the LCLR after the reversal. Data are presented as the number of LCLR trials 

across a two-trial bin. Each line indicates the individual grand mean for a given bin for a given rat. (B) Rats’ pre-

reversal LCLR choices appear linked to the reversal point, regardless of whether the reversal occurred after trial 

32 or 42, suggesting that the animals anticipated the reversal. Data are presented as mean±SEM across each two-

trial bin. (C) Rats’ running speeds varied through the maze and, generally, were faster in the vertex during 

HCHR choices than LCLR choices and were slower in the reward region during post-reversal LCLR choices. 

Data are presented as mean±SEM. (D) Upon completion of a trial, rats were slightly longer in initiating a new 

trial after the reversal. Data are presented as mean±SEM. All data were assessed with ANOVAs. *p<.05, 

**p<.005,***p<.0005.  
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3.5.3 Task-related changes in ACC and VTA LFPs 

 The ACC and VTA power spectrum density (PSD) functions from 1 to 30Hz obtained 

from this data set were consistent with the prior reports (Elston & Bilkey, 2017; Fujisawa & 

Buzsaki, 2011; Parker, Chen, Kingyon, Cavanagh, & Narayanan, 2014) of the VTA and ACC 

exhibiting local peaks centered at about 4Hz (see Figure 40). As a comparison, we also 

computed the PSDs and coherences of the 9 rats roaming in a familiar open field. Specifically, 

for each rat, we compared the 10 task session PSDs and coherences against 10 open field 

recordings and found that it was only in the low frequencies, in the 2-5Hz band, that the PSDs 

and coherences collected from task sessions were significantly greater than the open field 

(p<.005 for each rat, t-tests). Activity within and between these structures at such frequencies 

has been reported several times (Elston & Bilkey, 2017; Fujisawa & Buzsaki, 2011; Gao et 

al., 2007; Parker et al., 2014; Parker, Chen, Kingyon, Cavanagh, & Narayanan, 2015) and has 

been previously described as a 4Hz oscillation. Therefore, we focused our subsequent 

analyses on this frequency band and, in an effort to maintain a consistent terminology, we will 

refer to the 2-5Hz activity we observed as 4Hz throughout the rest of this chapter. 

 It is unlikely that the effects we observed result from volume conduction from nearby 

structures because we also recorded from the ACC single units and found cells were phase-

modulated at 4Hz to both local ACC and VTA LFPs, sometimes independently. Had our 

effects been the result of volume conduction, such 4Hz phase-modulation of ACC unit firing 

would not have been evident.  

 

Figure 40. Our task significantly engaged the ACC and VTA at about 4Hz as compared to when the animals 

roamed in a familiar open field. While the comparisons of the open field and task recordings were done within 

each animal, separately (n = 10 paired open field and task recordings per animal), the data here are presented as 

the grand mean±SEM across all 5 rats used for this analysis. ***p<.005 via t-tests within all rats. 

 

3.5.4 Normalizing the spectral data and testing for normality 

Next, we asked whether and how 4Hz ACC and VTA power and coherence 

systematically varied as a function of choice type (HCHR or LCLR), maze region (midstem, 
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vertex, barrier, and reward), and the reversal. To do this, we computed multi-taper 

spectrograms and coherograms (Mitra & Bokil, 2008) for each session for each rat and then 

normalized the data via the feature-scaling formula (Ioffe & Szegedy, 2015). We then 

determined the mean VTA and ACC power and coherence in the 2-5Hz (hence 4Hz) band for 

each maze region for each trial within each session. In order to pool trials across animals, we 

used a regression approach, first introduced by Ma, Hyman, Phillips, & Seamans (2014), to 

control for between subject variance (see section 3.4.1 for method) and conducted subsequent 

spectral analyses on the residuals unless specifically noted. Only free choices were included 

in the subsequent analyses; in total 5362 single trials were analysed where 1540 were pre-

reversal HCHR, 1142 were pre-reversal LCLR, 1654 were post-reversal HCHR, and 1026 

were post-reversal LCLR.  

Next, because we wished to analyse our data with multifactorial ANOVAs, we tested 

the task distributions of normalized residual VTA and ACC 4Hz power and coherence for 

normality. According to Lilliefors’ test (lillietest in MATLAB), our normalized residuals 

were not normally distributed. However, we proceeded to use ANOVAs for two reasons: (i) 

because studying the interactions of factors, which is essential for our analyses, is not possible 

in Friedman’s test, the non-parametric analogue of the ANOVA and (ii) several recent 

statistical studies have indicated that the ANOVA is very robust against violation of the 

assumption of normality such that the type 1 error rate is unaffected by violations of 

normality (Blanca, Alarcón, Arnau, Bono, & Bendayan, 2017; Schmider, Ziegler, Danay, 

Beyer, & Bühner, 2010).  For these reasons, we felt confident to conduct the subsequent 

analyses with multifactorial ANOVAs to assess how our spectral measures changed when the 

ACC and VTA were engaged by our task. 

3.5.5 4Hz anticipation and persistence signals in the ACC and VTA 

The key findings from the spectral analyses were that VTA 4Hz power and ACC-VTA 

4Hz coherence were significantly elevated in the vertex region as the rats made putatively 

anticipatory pre-reversal LCLR choices (see Figures 41 and 42; for readability, I have 

included the statistics in the appropriate panels of Figure 42; note that the error bars in Figure 

42 denote 95% confidence intervals). After the reversal (when the HCHR and LCLR 

configuration reversed), however, 4Hz ACC and VTA power and coherence was significantly 

elevated in the vertex as rats made HCHR choices. These effects cannot be attributed to a 

confound of maze side because the initial maze configuration was counterbalanced across 

animals and, after the conclusion of this main experiment, we conducted a control experiment 

where the value and effort aspects of each maze arm were held equal and no significant 
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differences between leftward and rightward trajectories were detected (see Results subheading 

3.5.7 Our spectral and PDC findings are driven by task demands). 

 

 

 

Figure 41. Representative single trial raw LFP traces and spectrograms generated from those traces for each trial 

type. Note increased low frequency VTA power and ACC-VTA coherence in the vertex region associated with 

LCLR responses in the before the reversal and elevated low frequency VTA, ACC and ACC-VTA coherence 

HCHR responses in the after the reversal. Example data are from one session of rat 4. 

 Because LFPs are thought to indicate the aggregate of inputs, rather than outputs 

(Buzsaki, 2006), the increases in VTA 4Hz power and the onset of higher ACC-VTA 

coherence that occurred during implementation of pre-reversal LCLR choices suggests that 

ACC signals were propagated to the VTA during this period. In contrast, after the maze 

configuration shifted, increases in ACC and VTA 4Hz power and coherence increased for 

HCHR choices, now made to the new sides. Some interpretations of these effects are (i) that 

one aspect of the implementation of anticipatory choices involves top-down ACCVTA 

signalling and (ii) that the persistence of the behavioural shift during the second-half session 

required bi-directional communication between the ACC and VTA. 
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Figure 42. Changes in 4Hz ACC and VTA power and coherence by maze region and trial type. VTA 4Hz power 

and ACC-VTA 4Hz coherence were elevated in the vertex during pre-reversal LCLR choices. Post-reversal 

HCHR choices were associated with elevated 4Hz ACC and VTA power and elevated 4Hz coherence. ACC 4Hz 

power generally increased as the trial progressed whereas the largest changes in VTA power and ACC-VTA 

coherence occurred as rats made their decisions in the vertex. Significances were assessed with ANOVAs and 

data are presented as mean±95% confidence intervals. 

3.5.6 Directionality of ACC-VTA communication 

 Our spectral results suggested 4Hz ACC-VTA communication increased in the vertex 

as rats made pre-reversal LCLR and post-reversal HCHR choices, respectively. While 

suggestive, the directionality of these communication increases were unclear. Therefore, as 

we have done in the past (Elston & Bilkey, 2017) we formally assessed changes in 

directionality via partial directed coherence (PDC) modelling (Baccalá & Sameshima, 2001; 

Boykin et al., 2012), which exploits the predictability of one brain area at one point in time by 

another brain area at a different time point in the frequency domain. The advantage of PDC 

modelling over other methods we have used to assess directionality, such as amplitude cross-

correlations (Adhikari et al., 2010; Elston & Bilkey, 2017), is that it allows for testing the 

possibility of simultaneous, bi-directional communication, which is likely to occur between 

two reciprocally connected structures like the ACC and VTA. We fitted PDC models in the 2-

5Hz (hence 4Hz) frequency band for each maze region of each trial for each animal, 
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separately. We then regressed off between-subject using the procedure described earlier. 

Because PDC is itself a normalized measure, we did not normalize the resulting PDC model 

magnitudes before the regression.  

 Our key findings here generally agreed with our spectral results: that increased 4Hz 

ACCVTA signalling in the vertex was associated with anticipatory, pre-reversal LCLR 

choices and this signal was even larger following the reversal as animals persisted in shifting 

their decisions to the post-reversal HCHR side (see Figure 43; for readability, the ANOVA 

results are included in the relevant panels of Figure 43; note that the error bars in Figure 43 

denote 95% confidence intervals). In contrast, signalling in the opposite direction 

(VTAACC) was elevated in the vertex as rats made pre-reversal HCHR choices. We also 

found elevated VTAACC signalling in the reward region (i.e. at the outcome) of post-

reversal LCLR choices. Considering that the majority of post-reversal LCLR choices occurred 

during the trials immediately after the reversal and that the rats rapidly adapted their 

subsequent choice behaviour (see Figure 39AB), this finding suggests that elevated 4Hz 

VTAACC signalling may be associated with error detection and subsequent behavioural 

adaptation. 

 Next, in order to verify the integrity of our PDC models, we scrambled the recorded 

signals from both the ACC and VTA and conducted the trial-by-trial, region-by-region PDC 

analysis again. Here the comparisons were the medians of the PDC model magnitudes from 

the permuted and non-permuted distributions for each region by session half (e.g. permuted 

ACCVTA pre-reversal vertex LCLR versus non-permuted ACCVTA vertex pre-reversal 

LCLR). In every case and for both directionalities, the medians of the permuted distributions 

were significantly weaker than the non-permuted data (both p vals < .0005, sign rank tests). 

These data indicate that our PDC results were significantly different from chance.  
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Figure 43. Changes in 4Hz ACCVTA and VTAACC signal directionality by maze region and trial type. 

ACCVTA 4Hz signalling was elevated in the vertex as rats made pre-reversal LCLR and post-reversal HCHR 

choices. VTAACC 4Hz signalling was elevated in the vertex as rats made pre-reversal HCHR choices and in 

the reward region at the outcome of post-reversal LCLR choices. Significances were assessed with ANOVAs 

and data are presented as mean±95% confidence intervals. 

3.5.7 Our spectral and PDC findings are driven by task demands 

 Next, we wanted to ensure that our spectral and PDC results were driven by the 

choice-related task demands of the main experiment. We did this by conducting a control 

experiment (after the completion of the main experiment) where we ran 5 rats for 32 trials/day 

for 4 days. In this control experiment, each maze arm was equally rewarded and no barrier 

was ever present. Then, for each animal, we computed the session averages for each maze 

region of ACC and VTA 4Hz power and coherence as well as 4Hz ACCVTA PDC and 

4Hz VTAACC PDC. Because our main findings concerned changes as rats made their 

decisions in the vertex, we compared the power, coherence, and PDC models for the vertex as 

rats made leftward and rightward choices. This comparison was done within-subject where 

the four session averages for leftward and rightward trajectories were compared. We found no 

significant differences in the vertex between leftward and rightward trajectories in any 
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measure (all p > .05, sign rank tests, n=4 sessions per animal for each of the 5 animals). These 

results indicate that the changes in ACC and VTA 4Hz power and coherence and the PDC 

models in both directions were not systematically attributable to the rats entering any 

particular maze arm and, rather, indicate that they were driven by the choice-related demands 

of the main experiment.  

3.5.8 Our spectral and PDC measures do not exhibit ramping profile during pre-

reversal trials 

 Because we detected a ramping in pre-reversal LCLR choices in anticipation of the 

reversal (see Figure 39AB), we wondered whether our spectral and PDC measures would also 

exhibit such a ramping profile. We addressed this question by comparing the animal grand 

means for each measure for each session octile using the same approach used to measure the 

behavioural ramping effect in Figure 39AB. In every case, ANOVAs returned insignificant 

(all F7,71  < 1.5, all p > .01). These results indicate that 4Hz ACC and VTA power and 

coherence and the PDC models for both directionalities did not exhibit a ramping activation 

profile. Rather, these results indicate that when the responses did occur, they tended to occur 

at a similar magnitude at each occurrence (see Figure 44 for representative examples). 

3.5.9 Abrupt and temporary changes in power, coherence, and PDC model 

distributions following reversal 

 To examine the dynamics of how ACC and VTA signals and communication changed 

following the contingency reversal, we assessed trial-by-trial changes in 4Hz VTA and ACC 

power and ACC-VTA coherence in the vertex region (see Figure 44). This analysis revealed 

that, immediately after the action-outcome contingencies reversed, LCLR-HCHR related 

distributions of power, coherence, and ACCVTA PDC diverged markedly. This shift in 

distribution was stable for about 16 trials before becoming much more variable. We formally 

assessed this pattern by comparing the variance of these measures on HCHR trials in the 

vertex region across post-reversal trials. A comparison of the variance of trials 33-48 with 

trials 49-64 revealed that the variance in all these measures in immediate post-reversal  trials 

was significantly less than variance in the later trials  (sign rank tests, p < .0005 in all animals, 

n = 10 sessions per animal). This brief post-reversal bi-modal separation of the data may 

indicate a temporary state-change in the ACC-VTA circuit associated with shifting from 

rightward-HCHR choices to leftward-HCHR choices. 
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Figure 44. Trial-by-trial changes in 2-5 Hz VTA and ACC power, ACC-VTA coherence, and PDC models in the 

vertex region. Data are from the same session and rat as the trajectory-mapped power and coherence in Figure 

42. The top panel summarizes the animals’ decision behaviour and shows how, in the first half, HCHR choices 

were associated with the right maze arm whereas in the second half of sessions they were associated with the left 

maze arm. Note the bimodal distribution of ACC and VTA power and coherence in the trials immediately after 

the contingency reversal, indicated by the vertical dotted line.   

3.5.10 ACC-to-VTA 4Hz PDC exponentially decays during habituation 

 Next, we asked whether 4Hz ACCVTA signalling would correlate with anticipatory 

behaviour in a different experimental task. To assess this, we conducted a habituation 
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experiment where we recorded from 5 of the 9 rats used in the main experiment as they 

explored and habituated to a new environment (a 35x45x50cm open field) over the course of 

two consecutive days for 10 minutes each day. We selected this task because exploration of a 

novel environment appears to be driven by the anticipation that the information gained during 

exploration will be useful (Butz, Sigaud, & Gérard, 2003; Friston et al., 2015; Knox, Otto, 

Stone, & Love, 2011). Thus, the animals’ exploration and habituation to a novel open field 

offers an alternative approach to studying whether ACCVTA signalling is associated with 

anticipatory behaviours. 

  Prior behavioural studies indicate that exploration of a novel environment is greatest 

upon introduction to the new environment and then decays exponentially (Dubovický, 

Skultétyová, & Jezová, 1999; Terry, 1979). On this basis, we hypothesised that 4Hz 

ACCVTA PDC would also be elevated as the rats explored the new environment and 

would then exponentially decay with habituation. To test this hypothesis, we calculated the 

4Hz ACCVTA PDC for each minute of each habituation session for each rat, separately, 

and then fitted them with an exponential curve. To assess the animals’ behavioural 

habituation, we conducted an analogous analysis for the rats’ minute-by-minute instantaneous 

movement speed. We found that 4Hz ACCVTA PDC was maximal when the rats were first 

placed in the novel environment and was well-fit (day 1 R2=.84; day 2 R2=.33) by an 

exponential function across the 10 minutes of habituation (see Figure 45A). We also found 

that ACCVTA 4Hz PDC just after the animals were placed in the open field was greater on 

the first day as compared to second day (F2,96=33.42, p<.0005). Similarly, we found that the 

animals’ movement speed was greatest when first exposed to the environment and then 

decreased across the minutes of the habituation sessions (day 1 R2=.46; day 2 R2=.16; see 

Figure 45B). Again, our analyses indicated that the exponential functions fitted to the first and 

second day behaviour were significantly different (F2,96=5.33, p=.006).  Interestingly the 

decay rates for the PDC data fit (day 1 λ = -.236; day 2 λ = -.137) were markedly greater than 

for the behavioural data (day 1 λ =-0.065; day 2 λ =0.033). Together, these data indicate that 

4Hz ACCVTA PDC and movement speed were greatest during the initial exposure and 

subsequent exploration of the novel environment and then exponentially decayed, although at 

different rates, as habituation ensued. 
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Figure 45. ACC-to-VTA 4Hz PDC (A) and movement speed (B) exponentially decay during habituation to an 

open field. Each data point represents the mean of one animal for that minute. The solid lines are the fitted 

functions and the dotted lines are the 95% confidence intervals for each function, respectively. *p<.05, 

***p<.0005.  

 Next, we assessed the relationship between the minute-by-minute 4Hz ACCVTA 

PDC and movement speed and found that they were significantly correlated during the first 

day of habituation (r=.50, p=2.03x10-4) but not during the second day (r =.21, p=.15). These 

data indicate that 4Hz ACCVTA PDC and movement speed were strongly related while the 

animals explored the novel environment during the initial exposure to the open field but were 

not significantly related after the animals’ initial exploration of the open field. Together, these 

data indicate that elevated 4Hz ACCVTA is present during multiple types of anticipatory 

behaviour and that eliciting this signal does not appear to depend on our specific cost-benefit 

reversal task. 

3.5.11 ACC single-unit analyses 

 Several prominent theories of ACC function suggest that the ACC encodes models of 

the task at hand (Holroyd & Yeung, 2012; Nils Kolling et al., 2016; A Shenhav et al., 2013). 

On the basis of prior work from our lab (Elston & Bilkey, 2017; Hillman & Bilkey, 2010, 

2012) and others (Cowen et al., 2012; Wallis, Anderson, & Miller, 2001), we surmised that 

such models must incorporate populations of ACC neurons that encode various aspects of the 

task. To test this possibility, we determined the selectivity (see next section) of 167 neurons 

recorded from 6 rats across the 60 data collection sessions of those 6 rats. 1-6 neurons were 
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recorded from each rat each day with each rat contributing a somewhat similar number of 

cells to the analysis. All analyses were done within-cell and no data was pooled across cells 

unless explicitly stated. Across all cells, the mean ± SEM instantaneous firing rate (iFR; see 

methods) over the whole sessions was 1.13 ± 0.49 Hz, consistent with prior recordings of 

ACC pyramidal neurons (Fujisawa & Buzsaki, 2011; Fujisawa, Amarasingham, Harrison, & 

Buzsáki, 2008; Hillman & Bilkey, 2010, 2012). 

3.5.12 Orthogonal classification of ACC unit activity 

 We calculated the selectivity of individual ACC neurons for the factors of value 

(HCHR vs LCLR), action (left vs right trajectories), and maze region. We did this by 

comparing the iFRs of each neuron across each maze region for each trial type, and each maze 

configuration within an experimental session, using Cohen’s d, the effect size statistic, and the 

sign rank test. A positive Cohen’s d indicated increased firing in the HCHR side of the maze 

and a negative value indicated the opposite. Neurons were deemed selective if Cohen’s d > 

|.5| and the parameters assessed when calculating Cohen’s d were significantly different 

(p<.05) via the sign rank test. To visualise whether selective neurons were consistently 

representing action or value across the whole recording session, we plotted the Cohen’s d of 

the neurons deemed selective in the first session half against the Cohen’s d of those same 

neurons in the second session half (Figure 45). An analogous procedure was conducted with 

neurons which were categorised as selective in the second half of the experimental sessions. 

Neurons with positively signed Cohen’s ds in both the first and second halves of the 

experimental sessions mapped into quadrant 1 (Figure 46) and, if Cohen’s d > .5 in both 

session halves, the cell was classified as HCHR selective (mean ±SEM iFR = 1.35±.10 Hz). 

Conversely, cells with negatively signed Cohen’s d in both halves of the experiment mapped 

into quadrant 3 and were classified as LCLR selective (mean ±SEM iFR = 1.28±.10 Hz). 

Neurons with a positively signed Cohen’s d in the first half and a negatively signed Cohen’s d 

in the second half mapped into quadrant 4, and these neurons were classified as right-

trajectory-selective because the cells were consistently firing according to side rather than 

value (mean ±SEM iFR = 1.33±.12 Hz). Conversely, left trajectory-selective cells mapped 

into quadrant 2 (mean ±SEM iFR = 1.29±.11 Hz). The mean iFRs of each cell of each 

classification were not significantly different (ANOVA; F3,129=.075, p >.9). Within these 

groups, we classified 38 unique neurons as HCHR-selective, 36 unique neurons as LCLR-

selective, 29 unique neurons as left-trajectory-selective, and 27 unique neurons as right-

trajectory-selective (see Figure 47 for example neurons). It is noteworthy that more selective 

cells were active at any one time in the barrier region of the maze as compared to the midstem 
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region, suggesting that the selectivity of the task-ensembles gradually ramped up over the 

course of each maze run. 

 

Figure 46. Characterization of trajectory and value selective ACC neurons for each maze region. HCHR-

selective neurons mapped into quadrant 1 and were plotted with filled, red markers; LCLR-selective neurons 

mapped into quadrant 3 and were plotted with filled green markers; right-trajectory-selective neurons mapped 

into quadrant 4, and were plotted with empty black markers; left-trajectory-selective neurons mapped into 

quadrant 2 and were plotted with empty blue markers. The dashed lines indicate the positive and negative 

thresholds for a cell to be considered selective (Cohen’s d = |.5|). (A-D) These conventions applied to cells 

classified as selective in the midstem – reward zones.  
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Figure 47. Example heat maps of individual action and value-selective neurons by session half. These plots were 

made by allocating data into 1.5cm spatial bins which were overlapped by .25cm and then averaging the iFRs for 

all occurrences of that spatial bin. The resulting matrices were then scatter plotted. 

3.5.13 No evidence of integrate-to-threshold firing profiles in LCLR-selective cells 

 Several groups have reported that neural activity in the ACC exhibits an integrate-to-

threshold firing profile in the trials preceding a shift from a default to a non-default decision 

strategy (B. Hayden et al., 2011; Nils Kolling, Behrens, Mars, & Rushworth, 2012; Amitai 

Shenhav et al., 2014). Although these studies focused on foraging, it’s possible to interpret 

such patch-leaving decisions as being driven by the anticipation of a more fruitful future in 

another patch. Because our experiment elicited a ramping behavioural profile as rats made 

pre-reversal LCLR choices in anticipation of the reversal, we wondered whether the cells 
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which were maximally active during those epochs (e.g. LCLR-selective cells) would also 

show ramping activation.  

 We tested this possibility by calculating the trial-mean normalized iFR (ziFRs) of 

LCLR-selective cells for the three trials preceding every incidence of an LCLR choice in the 

first half of sessions. We then regressed those ziFRs onto a trial position factor which 

indicated the trial number before the LCLR choice and found a small (beta < .2) and non-

significant (p > .5) effect. Thus, there was no indication that LCLR neurons ramped up their 

firing over the course of several trials to be predictive of a future LCLR choice.  

 To assess the effect of prior decision-type on the ziFRs of LCLR cells on trials 

preceding LCLR choices, we collected ziFRs as well as markers of the decision made on 

those trials in a manner similar to above. We then regressed the normalized iFRs onto the 

factor decision-type for each of the three trials preceding LCLR choices. All of the resulting 

beta weights for each of the three preceding trials were very small and non-significant. To 

rule out cell-to-cell variance as a confound, we regressed the ziFRs of each cell onto a subject 

factor and then conducted the above analyses again with the residuals (identical to how we 

handled most of the other electrophysiological measures in this paper) with similar small and 

non-significant effects. These data indicate that in our task, the population of cells most likely 

to exhibit a ramping, integrate-to-threshold firing profile did not.  

3.5.14 Entrainment of ACC unit firing to 4Hz and 8Hz oscillations 

 While our single-unit analyses provide empirical support for prior theories suggesting 

that ensembles of ACC neurons encode models of the task at hand (Nils Kolling et al., 2016; 

O’Reilly et al., 2013), we did not find a single-neuron correlate which could predict the 

animals engaging in anticipatory decision making (LCLR-selective cells, for example, fired 

before and after the reversal and did not appear to significantly ramp up their firing prior to 

making a pre-reversal LCLR choice). This is likely because such decisions are multi-factorial 

and are likely carried out by the conjunction activation of several ensembles. One important 

question is then how the contents of such conjunctively active ensembles might be bound 

together.  

 We addressed this question by characterizing the phase-locking properties of ACC 

single neurons to the phase of the local ACC LFP and the distal VTA LFP oscillations. 

Because our spectral and PDC results detected effects around 4Hz, we initially examined we 

initially examined phase locking of ACC units to the ACC and VTA LFPs bandpass filtered 

to 2-5 Hz (henceforth referred to as 4Hz). Neurons were considered significantly phase locked 
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when the p value of Rayleigh’s test of circular uniformity was less than 0.05. The firing of 

seventeen (10% of) ACC units were significantly modulated to the ACC 4Hz LFP and eight 

ACC units (5%) were significantly modulated to the VTA 4Hz LFP. Neither of these 

subpopulations fired at a consistent phase angle (p > .1, Rayleigh’s test). We also wondered 

whether ACC units might be phase modulated at a higher frequency, particularly given the 

broad PSD peak observed from 7-11 Hz in the VTA. To test this possibility, we bandpass 

filtered the ACC and VTA LFPs to 7-11 Hz (henceforth referred to as 8Hz) and found 48 

(29%) ACC units which were significantly modulated by the ACC 8Hz rhythm (mean angle = 

35°, p < .05 Rayleigh’s test) and 39 (23%) ACC units that were significantly modulated by 

the VTA 8Hz rhythm (mean angle = 118°, p < .05, Rayleigh’s test). These results indicate that 

the local organization of ACC units was frequency specific, consistent with prior reports that 

ACC neurons have a tendency to synchronize to the 8Hz, rather than 4Hz, ACC (Womelsdorf 

et al., 2010) and VTA rhythms.    

3.5.15 Phase-amplitude modulation of the ACC LFP by the VTA 

 Because choice-associated changes in LFP power and PDC occurred near 4 Hz and 

ACC unit phase modulation occurred to a greater degree at around 8Hz, we were interested in 

determining whether there was cross-modulation between these frequency bands. To address 

the relationship between the VTA and ACC LFPs, we examined the correlation between the 

phase angles of the VTA 4Hz oscillation and the amplitude envelopes of the ACC 8Hz LFP 

using linear-circular correlations. Data for each measure were obtained by bandpass filtering 

LFPs at the relevant frequencies as detailed above and using the Hilbert transform to generate 

phase profiles and amplitude envelopes. The magnitude of the ACC 8Hz amplitude envelope 

was significantly positively correlated with the phase of the VTA 4Hz oscillation (p < .0005 

in all animals in all sessions, n = 10 sessions per animal, circular correlations), indicating that 

ACC 8 Hz LFP amplitude increased during the rising phase of the VTA 4Hz LFP. These data 

agree with prior examples of cross-modulation coupling exists between the 4Hz and 8Hz 

rhythms in these brain areas (Fujisawa & Buzsaki, 2011). 

3.5.16 Oscillatory entrainment of action and value selective ACC units 

 Next, we were curious as to whether the cells which appear to comprise the task 

models thought to be encoded in the ACC were phase-modulated. We addressed this question 

by assessing the relationship between local and distal LFPs and the firing activity of the ACC 

neurons that appeared to be value (HCHR and LCLR) or action (left and right-trajectory) 

selective. Because of the relatively low numbers of cells that were significantly phase 

modulated to the 4Hz oscillations, we focused on the 8Hz oscillations only. We found cells of 
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each classification which were significantly entrained (p < .05 via Rayleigh’s test for each 

cell) to the ACC and VTA 8Hz LFPs (see Table 8). When we characterised the cells as either 

responding to action or value, we found that more action cells synchronized to the VTA than 

value cells (Chi Square = 7.147, p = .007). These results indicate that the various task 

parameters encoded by ACC neuron subpopulations likely reflect the integration of local and 

distal information and that action encoding neurons were, generally, more likely to be 

synchronised to the VTA LFP than were value encoding neurons.   

 

3.5.17 Magnitudes of selective ACC unit phase modulation  

 Having established the biophysical plausibility of the phase-modulation of ACC 

single-units which appear to comprise the neuronal task-model by the 8Hz oscillations, we 

wondered whether and how the magnitude of that entrainment would vary as a function of the 

parameter a neuron was classified as encoding and the reversal. We addressed this question by 

calculating the normalized vector length as continuous measure of synchrony magnitude. The 

normalized vector length indicates the clustering of unit spikes around a specific phase angle 

of the oscillation (Dickerson, Wolff, & Bilkey, 2010; Zar, 1999). We were especially 

interested in assessing the normalized vectors of neurons classified as HCHR, LCLR, left 

turn, and right turn selective which were significantly entrained to the ACC and VTA rhythms 

(i.e. cells identified as significantly entrained via Rayleigh’s test; see Figure 48). An ANOVA 

revealed a significant main effect of session half (F1,27 = 4.22, p = .0184) but no brain area 

main effect (F1,27 = 2.78, p = .099) and no session-half x brain area interaction (F1,27 =.161, p 

= .689). These results indicate that the firing of LCLR-selective neurons was significantly 

more phase-modulated during the first-half of the recording session, before the maze 

configuration changed, as compared to after it changed. An ANOVA considering HCHR-

selective cells revealed a significant main effect of brain area (F1,39 = 9.71, p = .00343) but no 

effect of session-half and no session-half x brain area interaction. These results indicate that 

HCHR-coding elements of ACC neuronal task models are particularly synchronised to the 

VTA 8Hz LFP. ANOVAs evaluating left and right-selective cells, respectively, revealed no 
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significant main or interaction effects (F < 3.9 and p > .05 in all cases; see Figure 48). These 

results indicate that the phase-modulation of action-selective neurons was not influenced by 

changes in maze configuration and that the ACC and VTA’s magnitude of influence on 

action-encoding cells could not be differentiated for these cells. These results also suggest that 

the discrete components of the task models might be bound together via synchronization, thus 

providing a partial answer to the initial question which prompted this series of phase-locking 

analyses.  

 

Figure 48. Magnitude of ACC and VTA 8Hz phase modulation of selective ACC units plotted against 

experimental session half. Data presented as mean ± SEM of unit populations with ANOVA results for each unit 

population below the figure. *p < .05, **p < .005. 
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3.6 Discussion 

 The present study aimed to assess activities in and communication between the ACC 

and VTA in a spatial-decision, reversal task. In particular, we were interested in whether and 

how responses differed during economic (HCHR) and putatively-anticipatory (pre-reversal 

LCLR) decisions. Analyses of the rats’ decision behaviour indicated that the animals’ 

likelihood of selecting the non-default, LCLR option increased as the pre-reversal trial 

progressed and then substantially decreased following the reversal. This decision pattern is 

reminiscent of the scalloped, anticipatory response pattern characteristic of animals 

responding on a fixed-interval schedule (Olton, 1989; Olton, Wenk, Church, & Meck, 1988), 

suggesting that the animals anticipated the reversal. To check whether this ramping of pre-

reversal LCLR choices was linked to the reversal of the effort/value contingencies, we 

retrained several rats in a delayed reversal condition where the reversal occurred following 

trial 42 rather than trial 32. We found that the ramping of pre-reversal LCLR choices attended 

the delayed reversal position. Thus, because the ramping of pre-reversal LCLR choices 

attended the reversal, regardless of when the reversal occurred, it is plausible that the pre-

reversal LCLR choices were anticipatory in nature.  

 In contrast, LCLR choices after the reversal tended to occur immediately after the 

reversal and then were much less likely to occur. This suggests that post-reversal LCLR 

choices reflect errors. Thus, our task appears to have elicited three distinct types of choices: 

value-guided HCHR choices (both before and after the reversal), anticipatory pre-reversal 

LCLR choices, and erroneous post-reversal LCLR choices.  

 Complementary analyses of task-related changes in ACC and VTA PSDs, coherence, 

and PDC models revealed that ACCVTA 4Hz communication increased in the vertex of the 

maze when animals made pre-reversal, putatively-anticipatory decisions to the LCLR arm. 

ACCVTA signalling was also significantly greater than chance during pre-reversal 

economic (HCHR) decisions, however, it was significantly less than that which occurred 

during anticipatory decisions. After the contingencies reversed, such that the previous spatial 

route was no longer optimal, ACCVTA 4Hz communication during HCHR decisions 

increased as animals persisted in shifting their decisions to the new optimal side. These results 

cannot be attributed to spatial confounds given that we counterbalanced the initial maze 

configuration across the rats and the results of our control experiment which found no effects 

of maze arm when the outcomes and task demands associated with each maze arm were 

equal. Thus, together, these results suggest that ACCVTA 4Hz communication may be 

important for carrying out anticipatory and persistent behaviour. 
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 Because the results from our main experiment indicated a role for ACCVTA 

signalling during anticipatory choice, we wondered whether this signal was present in other 

forms of anticipatory behaviour. To test this, we assessed how 4Hz ACCVTA 

communication changed as rats explored a novel open field. Our motivation for choosing this 

particular behaviour is that exploration is likely driven by the anticipation that the information 

gained during exploration will be useful (Butz et al., 2003; Daw, O’Doherty, Dayan, 

Seymour, & Dolan, 2006; Friston et al., 2015; Mirza, Adams, Mathys, & Friston, 2016). 

Thus, the extent to which the animals explored the novel environment provided an index of 

the extent to which they may have anticipated gaining information. Consistent with this idea, 

we found that 4Hz ACCVTA signalling was high during initial periods of exploration and 

reduced with habituation to the environment. Because we found that increased ACCVTA 

4Hz signalling was associated with behaviours which appear anticipatory in multiple 

behavioural circumstances, one possibility is that ACCVTA 4Hz signalling reflects the 

operation of a general anticipation mechanism. However, this is unlikely because this 

interpretation cannot account for the persistence effect we detected following the reversal.  

 An alternative possibility, suggested by our finding that the choice-related changes in 

ACCVTA signalling occurred in the vertex and not the midstem, is that our data reflect part 

of a process by which cortical computations are motivationally implemented (Holroyd & 

Yeung, 2012). For instance, had we observed changes in the midstem that were predictive of 

the animals’ upcoming decision, it would have suggested that ACCVTA signalling is 

involved in the computation underlying the decision itself (i.e. “deliberation”). This was not 

the case. However, because the changes in ACCVTA signalling we observed occurred in 

the vertex, it may be that ACCVTA signalling is one component of how decisions 

computed in the cortex are motivationally implemented.  

 This “implementation” interpretation suggests that ACCVTA signalling was 

elevated during pre-reversal LCLR decisions because the animals needed to overcome their 

default, HCHR response in order to engage in a non-default, LCLR decision, where the 

decision itself was driven by anticipation of the reversal. Similarly, once the reversal occurred 

and the response towards the pre-reversal HCHR side was no longer optimal, the animals 

needed to shift and motivationally sustain their responses to the other side (as it had become 

the optimal side). This view also suggests that ACCVTA signalling was significantly 

greater than zero during pre-reversal HCHR choices because the implementation of an 

effortful decision requires motivation and that, generally, every choice is predicated on an 

anticipated outcome (Skinner, 1938).  
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 Interestingly, a recent human study has shown that ACC stimulation evokes feelings 

of ‘persevering’ and/or a drive to ‘overcome adversity’ (Parvizi et al., 2013). Our results 

suggest that this may be mediated through ACC connections to the VTA. Such an 

interpretation is also consistent with our prior study of the ACCVTA signal (Elston & 

Bilkey, 2017) and provides empirical support for a recent computational model of ACC’s role 

in regulating effortful behaviour (Holroyd & McClure, 2015). As a final point, numerous 

reports suggest that the dysfunctional cortical control over the dopaminergic midbrain (both 

above and below baseline) is a hallmark feature of several diseases characterised by a 

abnormalities of motivation, such as addiction, schizophrenia, apathy, and depression 

(Caravaggio et al., 2017; M. Gao et al., 2007; Le Heron, Apps., & Husain, 2017; Milner, 

1963; Onoda & Yamaguchi, 2015; Wu et al., 2013). Thus, future studies are necessary to 

determine whether and how the ACC-VTA circuit may be a therapeutic target. 

 In contrast, communication in the opposite direction (VTAACC) increased as 

animals made pre-reversal economic (HCHR) choices. Additionally, VTAACC 4Hz 

signalling was elevated both as rats made post-reversal LCLR decisions in the vertex and at 

the outcome of those trials. One interpretation of the elevated pre-reversal HCHR signal is 

that VTAACC signalling is part of a system which biases ACC task-representations 

towards the most economic decisions. However, this seems unlikely because, were this the 

case, VTAACC signalling should have been elevated during both pre/post reversal HCHR 

choices. Another possibility is that 4Hz VTAACC signalling might be part of the system 

that biases ACC task-representations towards the well-rehearsed, default action (Ellwood et 

al., 2017). This, too, seems unlikely when considering the other cases of VTAACC 

signalling observed in this this data set. Another interpretation, is that the VTAACC signal 

is involved in the “selection” and modification of which components will comprise the ACC 

task model by altering the underlying signal-to-noise ratios in the neuronal task ensembles 

(Kroener, Phillips, & Seamans, 2009; Ott & Nieder, 2017). Consistent with this idea, we 

found that the high-value encoding (i.e. HCHR-selective) ACC cells were particularly 

modulated to the phase of the VTA LFP which suggests that VTAACC signalling might be 

involved in modifying, engaging, or otherwise “tuning” various aspects of the task model.  

 Additional support for a signal-to-noise based interpretation of the VTAACC 

signalling we observed comes from our finding that 4Hz VTAACC signalling was elevated 

in the vertex and in the reward regions during post-reversal LCLR trials. Because these 

decisions likely reflect errors and the rats rapidly adapted their subsequent decision patterns, it 

is possible that the attending mesocortical signals we observed reflects decision conflict and 



93 
 

feedback integration. Still, it is worth noting that rather than VTAACC signalling carrying 

out distinct functions in different circumstances, the changes we observed here that are 

associated with default decisions, conflict, and feedback processing can all be explained as 

instances of influencing the composition of neuronal task models. When considering the 

results of this study in conjunction with our prior study and a significant body of work by 

others (e.g. Ellwood et al., 2017; Holroyd & Coles, 2008; Kroener et al., 2009; Ma, Hyman, 

Lindsay, Phillips, & Seamans, 2014; Narayanan, Cavanagh, Frank, & Laubach, 2013; Ott & 

Nieder, 2017; Parker et al., 2014), it is clear that future studies which causally manipulate the 

VTA dopaminergic projection to the ACC while simultaneously recording whole ensembles 

of ACC neurons will be necessary to test the hypothesis that the general function of the 

mesocortical projection is to alter the composition of cortical neuronal task models. 

 Nearly all of the interpretations we propose for our findings assume that the ACC 

encodes models of the task at hand. Given the action and value encoding cells we and others 

(Cowen et al., 2012) have observed in the ACC, perhaps internal task models physically 

instantiate as sets of neurons which represent goal values and actions to attain those goals. 

Although our ACC single-unit recordings provided insight with regard to the contents in 

cortical task models, we were unable to monitor the process by which decisions were made. 

However, we were able to characterize the phase-locking properties of the neurons which 

appear to comprise the task models. This was important because synchronisation is a 

candidate mechanism by which the neuronal components of the task model are bound together 

(Buzsaki & Watson, 2012; Fries, 2015; Fujisawa et al., 2008; Womelsdorf et al., 2007; 

Womelsdorf et al., 2010).  

 Specifically, we found that ACC neurons encoding the most valuable option (HCHR) 

were significantly more phase-modulated at 8Hz to the VTA LFP than neurons encoding 

simple actions (e.g. left-trajectory) and low-value options. Although the strength of 

modulation of action-encoding neurons, as measured by vector length, was relatively stable 

across maze conditions, it was clear that these neurons were more likely to be synchronized to 

VTA at 8Hz compared to other subpopulations. The synchronization to the 8Hz oscillation, in 

particular, complements a prior report that rule-encoding ACC neurons are modulated at 8Hz 

(Womelsdorf et al., 2010). These findings integrate and extend the PDC findings from this 

present experiment and a robust literature which, together, suggests that mesocortical 

dopaminergic input is one mechanism by which ACC neuronal task models could be modified 

(i.e. alter which set of cells are currently active) and thereby influence subsequent behaviour 

(Ellwood et al., 2017; Jenni, Larkin, & Floresco, 2017; Kennerley, Walton, Behrens, Buckley, 
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& Rushworth, 2006; Ott, Jacob, & Nieder, 2014; Ott & Nieder, 2017; Schweimer & Hauber, 

2006; Womelsdorf et al., 2010).  

 It is important to note several caveats when interpreting our data. First, it is unlikely 

that our VTAACC PDC models reflect solely DAergic signalling. While we 

immunohistochemically verified that our VTA electrode placements were in an area rich in 

DA neurons, our VTAACC PDC models likely reflect the aggregate of information transfer 

between these structures, such as co-localized glutamatergic and GABAergic 

neurotransmission (Carr & Sesack, 2000; David B. Carr & Sesack, 2000). This limitation 

could be overcome in future experiments by combining fibre-photometric measures of the 

DAergic mesocortical projection and high-density recording methods in the ACC. Another 

caveat is that, while our results suggest that ACCVTA signalling is important for switching 

from a default to a non-default choice, our results reflect correlation and not causation. Future 

studies employing photo-stimulation/inhibition of ACC terminals in the VTA will be 

necessary to establish a causal role for ACCVTA signalling in anticipatory, non-default 

choice. Also, given how general our effects appear to be, studying the ACC-VTA circuit in 

other tasks, such as responding on a fixed interval schedule, a rodent analogue of Daw et al.'s 

(2006) probabilistic reversal task, and/or variants of electronic competitor tasks like Tervo et 

al.'s (2014) will be instructional. 

 As a whole, our integrate and extend the evidence suggesting that the ACC and VTA 

are two components of a distributed and reciprocal circuit whereby cortical computations are 

motivationally implemented via the VTA and that feedback information broadcast from the 

VTA to the ACC is one way the task models underlying such computations can be updated 

(Ellwood et al., 2017; Elston & Bilkey, 2017; Holroyd & McClure, 2015; Holroyd & Yeung, 

2012; Narayanan et al., 2013; O’Reilly et al., 2013; Parker et al., 2015). Thus, rather than 

reflecting a specific “anticipation signal,” ACC modulation of the VTA may reflect a more 

general means by ACC computations are motivationally implemented. This signal is 

particularly evident when animals switch from default, economically-oriented behaviours, 

when they must persist in non-default behaviour after circumstances change, and when 

animals initially explore a novel environment. Furthermore, because the ACC and VTA are 

reciprocally connected (Carr & Sesack, 2000), it is possible that ACC modulation of the VTA 

could in turn lead to changes in VTA’s dopaminergic output to the ACC whereby ACC task 

models can be modified in order to optimize future decisions (Bryden et al., 2011; Fujisawa & 

Buzsaki, 2011; Narita et al., 2010; O’Reilly et al., 2013; Roesch & Bryden, 2011). Future 

studies utilizing combined optical and recording methods are required to test this possibility.  
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Chapter 4 General Discussion 

4.1 Experienced-derived environmental representations 

 The ability to exhibit adaptive behaviour depends on experience-derived internal 

representations of the environment and the task at hand (Karlsson et al., 2012; O’Keefe & 

Dostrovsky, 1971; O’Reilly et al., 2013; Tolman, 1948) such that changes in internal 

representations both initiate and sustain behavioural change. Considerable evidence suggests 

that updates to these internal task models occur on multiple timescales in response to 

environmental change, prompting prior representations to be discarded, with some changes 

occurring gradually and others in abrupt reset events (Behrens, Woolrich, Walton, & 

Rushworth, 2007; Elston & Bilkey, 2017; Fusi, Asaad, Miller, & Wang, 2007; Nassar, 

Wilson, Heasly, & Gold, 2010; O’Reilly et al., 2013; Pearce & Hall, 1980; Yu & Dayan, 

2005). In each case, following an environmental change, internal representations are thought 

to update by resampling the environment (Hillman & Bilkey, 2010; Nassar et al., 2010; 

Pearce & Hall, 1980). The aim of this chapter is to review what environmental changes are 

thought to influence internal task models and to place the findings of this thesis into the larger 

context of the task-model updating literature. On the basis of data collected for this thesis, this 

chapter offers an incentive-salience, task-model onset (ISTMO) theory regarding the 

mechanisms of the onset and modification of neuronal task models. This chapter also offers a 

set of suggested experiments which are intended to both clarify the mechanisms underpinning 

the ISTMO theory and to consider the intersection of cognition, motivation, and learning in 

systems neuroscience. 

4.2 Feedback modifies task models 

 From the earliest days of behavioural experimentation (Thorndike, 1898, 1928), the 

law of effect - of consequences and feedback - has been appreciated as the engine of 

behavioural change (Nassar et al., 2010). Feedback can be classified under two headings: 

outcome-experienced, reactive feedback and outcome-simulated, prospective feedback. In 

outcome-experienced models, feedback can be either explicit (rewarded or not) or relative 

(did it happen? To what extent? e.g. prediction error). In outcome-simulated, prospective 

models, feedback can be simulated as the likelihood of a particular outcome, given prior 

outcomes in similar circumstances, as in the case of midbrain dopamine neurons firing in 

response to the earliest reward-predicting stimulus (Schultz, Dayan, & Montague, 1997). In 

both cases, experienced-outcomes influence which dimension of a decision-prompting 

stimulus ought to be preferentially represented in subsequent neuronal task models and, 

ultimately, acted upon (Danielmeier, Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011; 
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Danielmeier & Ullsperger, 2011; Karlsson et al., 2012). Such outcome-dependent changes in 

stimulus-dimension saliency have been used to explain basic discrimination learning in a 

variety of species (Berridge, 2012; Bromberg-Martin et al., 2010). Feedback related changes 

in saliency have also been used to interpret conflict adaptation, for example, the finding that 

participants completing a Stroop task tend to improve over the course of the experiment 

(Gratton, Coles, & Donchin, 1992), akin to a Bayesian learning process. These findings 

suggest that a key function of task model modification is the optimization of attention in 

service of a goal-oriented action. 

 Changes in neuronal task models and behaviour incur some metabolic cost and it 

seems unreasonable that every outcome of every decision ought to equally influence one’s 

neuronal worldview. For instance, surprising exceptions to a rule shouldn’t cause a decision 

agent to entirely disregard that rule (O’Reilly et al., 2013). Furthermore, some circumstances 

involve great costs when outcomes are unsuccessful indicating that there are aspects of cost 

and risk inherent in adaptation which likely discount the value of exploring novel solutions. 

One prominent theory of prospective feedback suggests that the brain continuously compares 

the prospective costs and benefits associated with a course of action, calculating an expected 

value of exerting control over behaviour towards a goal (Shenhav, Botvinick, & Cohen, 

2013). Although this thesis will, ultimately, diverge from the expected value of control theory 

(EVC), the EVC is an excellent point of departure for conceptualizing prospective instances 

of feedback. 

 One method by which decision agents might mitigate the risk of behavioural change 

and estimate the value of investing metabolic resources towards adaptive behaviour could be a 

pattern separation mechanism which provides an estimate of the ‘fit’ of the current task model 

with respect to the present context and circumstances (Bar, 2007; McCoy & Platt, 2005; 

McKenzie et al., 2014; Parkhurst, Law, & Niebur, 2002; Rolls, 2013; Yassa & Stark, 2011). 

Inputs patterns with ‘good fit,’ when the current task model is sufficient to solve the task 

would not require modification whereas input patterns with ‘poor fit,’ when the task model is 

not sufficient to solve the task at hand would require modification. In ‘good fit’ cases, default, 

well-modelled behaviours should then be rapidly executed whereas in ‘poor fit’ cases, 

response times ought to be longer and, more generally, depress the rate of behavioural output 

(O’Reilly et al., 2013; Perret, 1974; Stroop, 1935). Such an estimation-comparator mechanism 

could be achieved by activating the present task-model while integrating current contextual 

information, analogous to pattern-separation in the hippocampus (Yassa & Stark, 2011), and 

would allow creatures to devise innovative solutions to complex problems before acting, 
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which could then reduce the frequency of making decisions with undesirable outcomes (Bar, 

2007). Although the ability to simulate multiple strategies before acting is a fortunate 

adaptation, experienced outcomes are more likely to influence subsequent behaviour than 

simulated ones (Hayden et al., 2011; Holroyd & Coles, 2008; Kool et al., 2017).  

4.3 The anterior cingulate cortex dynamically encodes task models 

 Considerable evidence implicates the anterior cingulate cortex (ACC) in the 

development and modification of neuronal task models. For instance, a functional magnetic 

resonance imaging (fMRI) study of freestyle rappers found elevated ACC activity during the 

initiation and maintenance of improvised rapping (Liu et al., 2012) but not when the rappers 

engaged in rehearsed performance. Interestingly, this same study found that although ACC 

activation was high during the initiation of freestyle rapping, ACC activation dampened by 

the end of a 12 measure improvisation. One interpretation of these findings is that ACC 

activity was enhanced during the early, but not late, phases of freestyle rapping because the 

ACC was developing a task-model which, once established, guided future verbal sequences 

and no longer required the ACC.  

 The notion that the ACC encodes and updates task models is further supported by 

numerous reports of ACC single neurons in rodents, primates, and humans emitting large, 

transient bursts of activity when outcomes violate task model predictions (Bryden et al., 2011; 

Debener et al., 2005; Kennerly et al., 2011; Sheth et al., 2012). The most important finding 

across these studies is that increased ACC activity on these prediction-error trials strongly 

predicted a change in behavioural strategy on subsequent trials. One interpretation of these 

data is that prediction-error signals in the ACC represent an ‘update’ signal which facilitates 

the incorporation of new information into existing neuronal representations, thereby adapting 

the task model. This ‘updating’ view of ACC prediction-error signals suggests that adaptive 

behaviour depends on experience-derived ACC neuronal representations of the task at hand 

such that changes in those internal representations both initiate and sustain behavioural 

change.   

 Electrophysiological recordings of rodent ACC neurons conducted for this thesis 

demonstrated that single units within the ACC can represent both simple actions and value. 

This is important because, despite longstanding assumptions that the ACC encodes neuronal 

task models, the content of those internal representations remained unclear. Therefore, the 

finding that ACC neurons can encode simple actions, value, or complex action and value, 

provides a clear basis for the notion that the ACC actively maintains neuronal representations 

of the task at hand. Stemming from the evidence that the ACC responds to environmental 
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change and that those responses appear linked to behavioural change (Bryden et al., 2011; 

Gemba et al., 1986; Hayden et al., 2011; Karlsson et al., 2012; Kawai et al., 2015; Kolling et 

al., 2016; Tervo et al., 2014), a central question of this thesis has been how changes in 

neuronal task models are behaviourally implemented.  

 In conjunction with prior evidence (Ballard et al., 2011; Beier et al., 2015; Carr & 

Sesack, 2000; Ferenczi et al., 2016; Fujisawa & Buzsaki, 2011; Gariano & Groves, 1988; Wu 

et al., 2013), the findings of this thesis suggest that top-down information transfer from the 

ACC to the ventral tegmental area (VTA), modulated at around 4 Hz, is one mechanism by 

which changes in neuronal tasks models are behaviourally implemented. In Project 1, where 

rats implanted in the VTA, ACC, and dCA1 hippocampal sub-region ran laps of varying 

physical difficulty for fixed rewards, we found that ACC  VTA 4 Hz signalling increased in 

trials when the lap was easier than expected and that this increase was significantly correlated 

with, but not confounded by, changes in motivation, as measured by running speed. The 

findings of this first project indicated that the ACC-VTA circuit is a plausible mechanism by 

which behaviour is modified. This led us to ask whether changes in the ACC-VTA circuit are 

related to the initiation and maintenance of behavioural change.  

 To address that question, we monitored ACC single units as well as the local field 

potentials (LFPs) of the ACC and VTA in rats trained to perform effort-based cost-benefit 

analysis task where the cost-benefit contingencies reversed midway through experimental 

sessions. In the first half of experimental sessions, behaviour indicated that rats anticipated the 

contingency reversal but were unsure of when the reversal would occur and so would 

occasionally explore their non-default decision in order to determine whether the 

contingencies had yet reversed. After the contingencies reversed and behaviour stabilized, rats 

made significantly fewer exploratory choices. In regard to the accompanying brain activity, 

we found that ACC  VTA 4 Hz information transfer increased as animals made these 

exploratory decisions and that ACC  VTA signalling was supressed during typical, default 

behaviours. This suggests that ACC  VTA signalling is an important component in 

initiating behavioural modification. After the contingencies reversed, and the first-half non-

default behaviour was implemented more often, we found that ACC  VTA 4 Hz 

information transfer increased throughout trials where animals sustained their newly modified 

behaviour. These results indicate that ACC  VTA 4 Hz information transfer is also 

important for maintaining behavioural change.  

 When we examined bottom up, VTA  ACC information transfer across the session 

halves, we found significant information transfer at 4 Hz during typical, default decisions in 
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the first half of sessions but no difference between decision types in the second halves. We 

also found that ACC neurons encoding the most valuable decision were significantly more 

phase-modulated to the VTA LFP than neurons encoding simple actions. These results 

suggest that VTA  ACC signalling may be involved in initiating ACC neuronal task models 

and that, when task models are of ‘good fit,’ subsequent modification is not necessary. These 

results also imply that in cases of ‘poor model fit,’ when task models and behaviour require 

modification, the ACC applies a correction signal to the VTA which then alters its signalling 

back to the ACC and to other areas, consistent with prior examples of cortical modification of 

subcortical states (Ballard et al., 2011; Likhtik et al., 2014) and vice versa (Safaai, Neves, 

Eschenko, Logothetis, & Panzeri, 2015; Tervo et al., 2014).  

 Collectively, these findings suggest that sustained behavioural change could be 

facilitated by ACC-driven alterations in VTA  ACC dopaminergic (DA) signalling. By 

altering the probability that a given neuron would be recruited to a task ensemble (Jacob, 

Stalter, & Nieder, 2016; Navailles et al., 2015; Puig, Rose, Schmidt, & Freund, 2014), VTA 

DAergic signalling could enhance the contribution of specific neuronal representations and 

dampen the contribution of neuronal representations which were not fruitful. Such a 

mechanism is consistent with the notion that the ACC accumulates evidence over time before 

both making a decision and stabilizing a default response (Hayden et al., 2011; Kennerley et 

al., 2006; Pisauro, Fouragnan, Retzler, & Philiastides, 2017; Sheth et al., 2012). Thus, post-

outcome VTA  ACC signalling might act as a training signal which could remodel the 

ensemble of neurons representing the task at hand with the net effect of altering the 

probability that an individual cell recruited for the prior task-ensemble would be recruited to 

the next, subsequent task-ensemble in similar situations. These ideas are theoretically 

formalized from two different approaches in the following sections. In the first, beginning 

from section 4.4 titled Content of ACC neuronal task models, I will consider task models with 

respect to the cortex itself and changes in cortical neuromodulatory states. In the second, 

beginning from section 4.8 titled An incentive-salience, task-model onset (ISTMO) theory of 

goal-oriented and adaptive behaviour, I will address a broader view of the onset and 

modification of task models which aims to link task models to sensory information.  

4.4 Content of ACC neuronal task models 

 The ability to flexibly shift between different sets of decision strategies during goal 

pursuit the core of executive function. The term ‘set’ (vis a vis cognitive set-shifting) is 

widely used to denote internal representations of a goal and the means of achieving it, 

analogous to the notion of an internal task model; ‘set-shifting,’ therefore, refers to switching 
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from one internal task model to another (Kolling et al., 2016; O’Reilly et al., 2013). Despite 

widespread use of the terms ‘set’ and ‘set-shifting’, their physical substrates have remained 

elusive. One possibility discussed in this thesis is that ‘sets’ manifest as sets of ACC neurons 

which represent goal values, rules which guide action selection, and actions to attain those 

goals. In this model, neuronal sets and their subcomponents ought to respond to contextual 

change, including environmental changes and goal-pursuit outcomes, such that shifts in which 

set of neurons are active ought to influence behavioural adaption. 

 Recordings of rodent and primate ACC neurons suggest that neuronal sets are 

comprised of distinct goal value, rule, and action components. In project 2, for instance, we 

recorded ACC neurons of rats performing an effort-based, cost-benefit analysis task. In this 

task, rats had to decide whether to climb a 30cm barrier for a large reward (high cost, high 

reward; HCHR) or to pursue a path with no additional effort which yielded a small reward 

(low cost, low reward; LCLR). We found that distinct populations of ACC neurons 

preferentially represented both goal values (HCHR or LCLR selective) and simple actions 

(turn left or right) in all portion of the maze. Similar representations of goal value and simple 

actions have been observed in the firing profiles of primate ACC neurons (Hayden & Platt, 

2010; Kennerly, Behrens, & Wallis, 2011; Monosov, 2017) as well as human ACC activation 

via direct neuronal recordings and functional magnetic imaging (fMRI) studies (Nils Kolling 

et al., 2016; Sheth et al., 2012). Such overlapping action and value representations support the 

proposal that the ACC is critical for developing rule-based models which map stimuli-

response policies (Thilo Womelsdorf et al., 2010). Indeed, studies of the effects of ACC 

damage in humans (Camille, Tsuchida, & Fellows, 2011), rodents (Walton et al., 2002), and 

primates (Kennerley et al., 2006) reported that ACC damage impairs subjects’ ability to 

integrate recent outcome information to adjust and optimize rule-based approaches to goal 

pursuit. 

 Although neuronal representations of rules have not been directly studied in the ACC, 

numerous studies of the primate PFC, in general, indicate that single neuron representations 

of rules exist. In the earliest of these experiments, Wallis, Anderson, & Miller (2001) 

recorded PFC neurons of monkeys performing a match/non-match to sample task. In this task, 

monkeys were trained to grab a bar and were then presented with a sample image. Then, 

following a 1 second delay, monkeys were presented with a test image which was either the 

same or different to the sample image. Depending on the current rule (match/non-match), the 

monkeys released the bar if the test image was the same or different from the sample image in 

order to receive reinforcement. Wallis et al. observed that a significant portion of neurons 
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were modulated by rule – maximally responding during trials of a certain rule (e.g. ‘match’), 

regardless of the sample and test images. More recent studies using a similar task design have 

shown that primate PFC neurons also encode numerical and spatial rules (Eiselt & Nieder, 

2013; Ott et al., 2014) and rule representations have also been reported in the rat PFC 

(Bissonette & Roesch, 2015). Importantly, across all of these studies, PFC neuronal rule 

representations were nearly devoid of activity attributable to purely sensory or memory-

related information, indicating that the PFC encodes abstract rules for how to interact with 

categories of goal-related stimuli. Future studies are needed to determine the precise 

contribution of PFC sub-regions, such as the ACC, to such abstract rule representations.  

 Together, these data suggest that ACC internal task models manifest as sets of neurons 

representing goal value, action, and rules in service of goal pursuit. Stemming from the 

evidence that ACC neurons respond to environmental change and that those responses appear 

linked to behavioural change (Bryden, Johnson, Tobias, Kashtelyan, & Roesch, 2011; Gemba, 

Sasaki, & Brooks, 1986; Hayden et al., 2011; Karlsson, Tervo, & Karpova, 2012; Kawai et 

al., 2015; Kolling et al., 2016; Tervo et al., 2014), key questions are then: what circumstances 

and mechanisms alter neuronal task models and how are changes in neuronal task models 

behaviourally implemented? 

4.5 Why and how do ‘sets’ change? 

 Our proposal that neural task models manifest as sets of neurons encoding values, 

actions, and rules predicts that environmental change ought to influence the probability that a 

given neuron classified as encoding an action, goal value, or rule participates in a subsequent 

neuronal task set. Feedback-driven changes in the probability that a neuron participates in 

subsequent task models would indicate that feedback influences the composition of the task 

model which then influences future behaviour (Figure 49).  



102 
 

 

Figure 49. Diagram expressing a model of the content of neuronal sets and some of the mechanisms which may 

influence them. 

 This hypothesis could be tested in in a rule-switching task requiring subjects to turn 

either left or right. In such a task, it is likely that single neurons would represent those rules 

(turn left and right) and the goal values associated with those actions. Utilizing high-density 

unit recording, an experimenter could monitor whole ensembles of cells and simultaneously 

record neurons encoding the various aspects of the task model. If, say, right turns had been 

yielding reinforcement, our model predicts that the probability that a cell encoding the rule 

‘turn right’ participated in the ensemble would be high and the probability a ‘turn left’ cell 

participated in the ensemble would be low. Should the contingencies reverse such that the 

optimal rule becomes ‘turn left,’ our model predicts that the probability of ‘turn right’ cells 

participating in the task model should decrease over several trials while the probability of 

‘turn left’ cells participating in the task model should increase over several trials. The changes 

in those probabilities could then be correlated with subsequent behaviour with the prediction 

that the modification of the neuronal task set would correspond to behaviour modification. 

Thus, such probabilistic changes would be indicative of the neuronal task model updating. 

While this hypothesis addresses what task-model modification might look like, the precise 

mechanisms by which neurons comprising the task model integrate recent feedback 

information remain unclear.  

 Mesocortical dopaminergic (DA) innervation of the PFC (including the ACC) from 

the ventral tegmental area (VTA) is one mechanism by which feedback information could be 

integrated into existing neuronal representations and thereby influence future behaviour. For 

instance, blockade of DA D2 receptors reduced the ability of rodents to flexibly switch 

between rule-based response-strategies (Floresco & Magyar, 2006) and blockade of DA D1 

receptors (D1Rs) impaired primates’ ability to maintain a sample stimulus in working 

memory (Arnsten, 2011). In an elegant study, Ott et al. (2014) used a combination of 
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iontophoresis and single-unit recording to determine the roles of different DA receptor on the 

coding properties of rule-encoding PFC neurons of primates performing a numerical decision 

task. The task required monkeys to decide whether a test numerosity was greater or less than a 

sample numerosity, depending on the current rule (‘>’ or ‘<’). In addition to finding distinct 

populations of PFC neurons encoding each rule, Ott et al. found that D2R stimulation 

enhanced the specificity of rule-coding neurons by increasing their signal-to-noise (S/N) 

ratios whereas D2R blockade had the opposite effect. D1R stimulation/blockade 

increased/decreased the baseline firing rates of PFC rule-encoding neurons but did not change 

the coding strength of PFC neuronal rule representations. Together, these findings suggest 

that mesocortical DA might facilitate the integration of recent reinforcement feedback into 

existing neuronal representations by changing the probability that a given neuron would 

participate in a task model. Such changes in which set neurons comprise the task model likely 

have downstream effects on future behaviour (vis a vis the results of Project 1 in this thesis). 

Future experiments could directly explore the impact of DA and other neuromodulators (see 

Tervo et al., 2014) on the modification of specific components of neuronal task models and 

specific sub-regions of the PFC, such as the ACC. Although these data suggest that internal 

models of the world are influenced by feedback and that DA may play a central role in 

modifying neuronal task models, the question of how changes in those task models are 

behaviourally implemented remains. 

4.6 From flexible internal models to flexible behaviour 

 In project 2, we aimed to characterize the ACC-VTA circuit during the initiation and 

persistence of behavioural change. To address that question, we monitored ACC single units 

as well as the local field potentials (LFPs) of the ACC and VTA in rats trained to perform 

effort-based cost-benefit analysis task where the cost-benefit contingencies reversed midway 

through experimental sessions. In the first half of experimental sessions, behaviour indicated 

that rats anticipated the contingency reversal but were unsure of when the reversal would 

occur and so would occasionally make a non-default decision in order to determine whether 

the contingencies had yet reversed. After the contingencies reversed and behaviour stabilized, 

rats made significantly fewer exploratory choices. We found that ACC  VTA 4 Hz 

information transfer increased as animals made anticipatory decisions and that ACC  VTA 

signalling was supressed during typical, default behaviours. This suggests that ACC  VTA 

signalling is an important component in initiating anticipatory behaviour. After the 

contingencies reversed and the first-half, non-default behaviour was implemented more often, 

we found that ACC  VTA 4 Hz information transfer increased throughout trials where 
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animals sustained their newly modified behaviour. These results indicated that ACC  VTA 

4 Hz information transfer is also important for maintaining behavioural change.   

 The results of project 2 also provides additional evidence for the importance of the 

ACC-VTA circuit in modifying neuronal sets because we found that ACC neurons encoding 

the high-value goals were significantly more phase-modulated to the VTA LFP than neurons 

encoding simple actions. These results suggest that VTA  ACC signalling may be involved 

in initiating ACC neuronal task models and that, when task models are of ‘good fit,’ 

subsequent modification is not necessary. These results also imply that in cases of ‘poor fit,’ 

when task models require modification, the ACC applies a correction signal to the VTA 

which then alters its signalling back to the ACC and to other areas, consistent with prior 

examples of cortical modification of subcortical states (Ballard et al., 2011; Likhtik et al., 

2014) and vice versa (Safaai et al., 2015; Tervo et al., 2014). 

 Collectively, these findings suggest that sustained behavioural change could be 

facilitated by ACC-driven alterations in VTA  ACC dopaminergic (DA) signalling. Such 

DAergic mesocortical signalling could influence the task ensemble by enhancing the 

contribution of specific neuronal representations associated with fruitful outcomes and 

dampen the contribution of neuronal representations which were not fruitful (Jacob et al., 

2016; Navailles et al., 2015; Puig et al., 2014). Such a mechanism is consistent with the 

notion that the ACC accumulates evidence over time before both making a decision and 

stabilizing a default response (Hayden et al., 2011; Kennerley et al., 2006; Pisauro et al., 

2017; Sheth et al., 2012). Thus, post-outcome VTA  ACC signalling might act as a training 

signal which could remodel the ensemble of neurons representing the task at hand with the net 

effect of altering the probability that an individual cell recruited for the prior task-ensemble 

would be recruited to the next, subsequent task-ensemble in similar situations (Figure 50). 
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Figure 50. Potentials mechanisms by which neuronal sets are modified and implemented. Environmental 

feedback and mesocortical DAergic signalling alter the S/N ratios of distinct sets of neurons encoding goal 

values, rules, and actions such that changes in which set of neurons are most active leads to changes in 

behaviour. Neuronal set-shifts which occur in the cortex then motivate behavioural change via monosynaptic 

glutamatergic projects from the ACC/PFC to the VTA. Such cortico-basal signalling can then initiate 

mesolimbic signalling to the nucleus accumbens (NAcc) which can then invigorate the new behaviour. ACC-

driven input to the VTA could also influence the reciprocal mesocortical pathway which could then alter the S/N 

ratios of the newly implemented set. Such changes could also influence default behaviour as well as response 

conflict vis a vis the rationale of Figure 49.  

4.7 More specific predictions and future experiments 

 Our model makes specific predictions about how certain types of set-shifts would 

influence future behaviour. If we consider the number of neurons which comprise a set an 

indication of the ‘magnitude’ of the set, then our model predicts that in cases where decision 

makers change their behaviour, the prior-set magnitude would decrease and the new-set 

magnitude would increase (Figure 51a). In cases where a decision maker does not change 

their behaviour, our model predicts that both the prior-set and new-set magnitudes would not 

change (Figure 51b). It is also possible that, in this case, the differential magnitude between 

the sets could increase (e.g. the larger gets larger and the smaller gets smaller). In cases where 

decision makers experience conflict, or uncertainty, about what to do, our model predicts that 

this happens because the competing sets are now of equal magnitude (Figure 51c). In these 

cases, the longer response times associated with task-conflict could be interpreted as the extra 
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time (and cortical activation) required to resolve the difference between the competing sets 

(Amitai Shenhav et al., 2014).   

 

Figure 51. Various forms of neuronal set-shifts and their behavioural consequences. (a) Due to neuromodulatory 

and environmental influences, the S/N ratio of set A increases whereas the S/N ratio of set B decreases. The 

consequence of such shifts in neuronal set S/N ratios is behavioural change from behaviours associated with set 

B to behaviours associated with set A. (b) Neuromodulatory and environmental feedback maintain the large S/N 

ratio of set B, which leads to the decision-maker to continue behaving according to the information encoded in 

set B. (c) Initially, set B had a greater S/N ratio that set A, which means that the decision maker had been 

behaving according to the information encoded in set B. However, following neuromodulatory and 

environmental feedback, the S/N ratios of both sets, A and B, become very similar. Because the S/N ratios of the 

sets are similar, the brain must resolve which set to act upon. In these cases, response times ought to be greater, 

which could indicate conflict in determining which neuronal set to implement.  

 Our model also makes specific predictions regarding how the initial encoding of sets 

could influence the ease with which a decision maker flexibly switches between them. 

Starting from the core idea of our model that sets are fundamentally comprised of goal value, 

rule, and action representations, a question becomes: what happens if the same actions could 

be used according to different rules? Would the sets overlap? Would such overlap be 

constructive or destructive? Here is a simple reaction-time experiment which illustrates the 

question: consider a computer-based experiment which requires human participants to 
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flexibly switch between two rules: a digit task and a letter task. The digit task would require 

participants to press the ‘Z’ computer keyboard key if the digit is odd and to press the ‘M’ key 

if the digit is even; the letter task would require participants to press the ‘Z’ key if the 

presented letter was a vowel and to press the ‘M’ key is the presented letter was a consonant 

(Figure 52a). In this experiment, the same actions of pressing the ‘Z’ and ‘M’ keys are guided 

by two different rules of when to use those actions.  

 In such an experiment, our model predicts that the way participants train on the task 

should influence how task sets form and, ultimately, the reaction times of participants. If 

participants were split into two training-type groups, a ‘repetition’ group which learned the 

tasks in a repetitive, serial manner, and a ‘switch’ group which learned the tasks in an 

interleaved manner (Figure 52b), our model predicts differences in how those tasks are 

represented (Figure 52c) and subsequent behaviour (Figure 52d). Specifically, our model 

predicts that the ‘repetition’ group would form two distinct, non-overlapping task models 

whereas the ‘switch’ group would form two models which overlap in the action domain 

(Figure 52c) because, during training, the prior set would likely remain in working memory as 

the tasks switched which could lead to the same action-encoding neurons being used for both 

task sets. The question then becomes: would such overlap would be constructive or 

destructive? If task-set overlap in the action domain is constructive, then switch-trained 

participant reaction times (RTs) on the rule-switch trial ought to be less than the repetition-

trained group (Figure 52d) because less energy would be required in order to reconfigure the 

dominant task set (i.e. only the prior-set rule and value, but not action components would 

require inhibition). If action-domain task-set overlap is destructive then switch-trained 

participant switch-trial RTs ought to be greater than the repetition-trained group, which would 

indicate that optimal task-switching requires mental representations to be distinct with 

minimal overlap.  
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Figure 52. Experiment examining the effect of task-training type on response latencies. (a) Task protocol in 

which similar actions are used according to different rules. In this task, participants are flashed either letters or 

numbers on a computer screen; both tasks require participants to respond with either their left or right index 

fingers by pressing the ‘Z’ or ‘M’ keys on a computer keyboard, according to the rules of each task. The rules of 

the letter task are that left, ‘Z’ presses are for vowels whereas right, ‘M’ presses are for consonants. The rules of 

the digit task are that left, ‘Z’ presses are for odd numbers and right, ‘M’ presses are for even numbers. (b) 

Participants could be allocated into two training groups. One group would learn the tasks in a serial, repetitive 

manner (e.g. 20 digit task trials followed by 20 letter task trials) and the other would learn the tasks in an 

interleaved manner where the task switched every trials (e.g. one letft-hand letter task trial followed by one left-

hand digit task trial, etc). (c) Theoretical account of the effect of training type on neuronal set-configuration. The 

repetition group would be expected to form two minimally overlapping sets such that the neurons which, for 

instance, encode left, ‘Z’ responses would be different for each task set. The switch group, by comparison, 

would be expected to form task sets which overlap in the action domain (e.g. a neuron which encodes a left, ‘Z’ 

response would be used in both task sets). (d) Hypothetical results of the task outlined in (a). Regarding the 

switch-trained group, it is possible that the task-set overlap would produce constructive interference, reducing 

the reaction time of participants to rule-switch trials. If this result was obtained, this could mean that overlapping 

task-representations are an efficient way to learn and that, more generally, because less of the prior task set 

requires inhibition, response times are faster. The switch-trained group might instead have greater reaction times, 

which would indicate that the overlap amongst distinct task sets produce destructive interference. Were this 

result obtained, it could mean that the entirety of a prior task set must be inhibited before the new task set can 

take behavioural effect.  

 It is also possible that the type of task-set overlap could be important. For instance, 

one could test rule-domain overlap in a task where the same rule could be differentially acted 

upon depending on the task-condition. We would predict that rule-domain task-set overlap 

would produce response conflict than action-domain task-set overlap. In humans, it would 

also be interesting to combine such tasks with functional magnetic resonance imaging or 

electroencephalographic analyses. Developing rodent and primate analogues of these tasks 

will also be important in order to further understand the neuronal basis of task-sets and how 

components within a set might interact.  
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4.8 An incentive-salience, task-model onset (ISTMO) theory of goal-oriented 

and adaptive behaviour 

 Given the action and value cells we and others (Cowen et al., 2012) have observed in 

the ACC and that the constellations of action and value cells can be conceptualized as 

neuronal representations of the task at hand, perhaps ACC neuronal task-ensembles are 

initiated by midbrain dopaminergic incentive-salience signalling, such that midbrain 

dopamine projections to ACC value-selective neurons (O’Donnell, 2003) are driven by 

sensory information, such as visual information relayed via the superior colliculus; such 

mesocortical signalling to ACC value-encoding neurons could then recruit a local network of 

action-encoding neurons, analogous to ACC-mediated memory retrieval in the hippocampus 

(David B. Carr & Sesack, 2000; Comoli et al., 2003; Dembrow & Johnston, 2014; 

Hansen  Manahan-Vaughan, Denise, 2014; Lewis & O’Donnell, 2000; Narita et al., 2010; 

Puig et al., 2014; Rajasethupathy et al., 2015; Westerink, Enrico, Feimann, & De Vries, 

1998). In such an incentive-salience, task-model onset (ISTMO) model (Figure 53), midbrain-

dopaminergic incentive-salience signalling acts as a simple feed-forward filter (Bromberg-

Martin & Hikosaka, 2009; Bromberg-Martin et al., 2010) such that a stimulus that does not 

excite midbrain dopamine neurons beyond some threshold (Figure 54; Ljungberg, Apicella, & 

Schultz, 1992; Schultz, 2016) does not activate ACC value-selective neurons. I would like to 

note here that the superior colliculus is likely to be but one partner of the ACC in this regard 

and that the inputs facilitating the initiation and modification of task models could well be 

polysynaptic. However, for brevity and clarity of presenting a biophysically plausible system 

here, I have focused discussion to visual information relayed to the midbrain via the superior 

colliculus.  
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Figure 53. Schematic of circuity underpinning the ISTMO theory. Visual input via the superior colliculus (SC) 

modulates dopamine neurons in the ventral midbrain (ventral tegmental area (VTA) and substantia nigra (SN)). 

If midbrain dopamine neurons are excited beyond a certain threshold, mesolimbic and mesocortical 

dopaminergic output greatly increases. Elevated mesocortical dopaminergic signalling, in conjunction with 

sensory and other inputs, activates ACC neuronal representations of the task at hand. In cases where ACC task 

models are insufficient or inaccurate, the ACC exerts control over the VTA, invigorating an alternative course of 

action. ACC  VTA signalling could also increase VTA  ACC signalling, thereby enabling the ACC to drive 

modification of its task models. NAcc = nucleus accumbens. 

 The ISTMO view also theorizes that action-encoding cells are brought online by 

value-encoding cells such that a lack of incentive salience signalling in the midbrain to value-

encoding cells in the ACC then precludes activation of local networks of action-encoding 

neurons. The behavioural summation of such a process might manifest an organism appearing 

uninterested towards a familiar stimulus. More concisely, the ISTMO theory suggests that 

when sensory-driven input via the superior colliculus (Bolton et al., 2015; Comoli et al., 

2003) to midbrain does not excite dopamine neurons beyond some threshold, the mesocortical 

projection is not activated, precluding activation of cortical neuronal task models and, 

therefore, dampening subsequent behaviour towards the stimulus (David B. Carr & Sesack, 

2000; Dembrow & Johnston, 2014; Lewis & O’Donnell, 2000; Puig et al., 2014; Westerink et 

al., 1998). The converse of this syllogism might explain the onset of cortical task models and 

the engagement of an organism in goal-directed behaviour. 
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Figure 54. Stimulus-response curves showing that the sensitivity of the ventral midbrain to vision-driven input 

from the superior colliculus is modulated by reinforcement history. Stimuli which are novel or otherwise well 

differentiated from the background might require the least input to the ventral midbrain in order to evoke the 

mesolimbic and mesocortical pathways. Stimuli which are familiar and are predictive of reinforcement might 

require slightly more sustained, elevated input to the ventral midbrain in order to evoke the mesolimbic and 

mesocortical pathways. Familiar stimuli which are not predictive of reinforcement or punishment must strongly, 

persistently modulate midbrain dopamine neurons in order to evoke the mesocortical and mesolimbic 

projections.  

 Prior theories (e.g. Kool, Shenhav, & Botvinick, 2017; Shenhav, Botvinick, & Cohen, 

2013) have proposed that the ACC dynamically computes the expected value of exerting 

control (EVC) over the rest of the brain, and thus behaviour, via ongoing cost-benefit analysis 

computations. In the EVC model, cost is operationalized as the expected metabolic 

expenditure associated with controlling the brain (and behaviour) and benefit is 

operationalized as the anticipated value gained by exerting control in a particular task. The 

results of these cost-benefit computations, the expected value of control, are suggested to 

dictate the response parameters to a stimulus. The rationale behind the EVC model stems 

from the wealth of evidence that incentivized performance is typically better than non-

incentivized performance (Kool et al., 2017). In the EVC model, incentive is interpreted as 

the basis of the ‘benefit’ variable in the theorized ACC cost-benefit analyses which is 

weighed against the projected metabolic cost of responding such that tasks with little 

incentive are worth little control and that tasks with great incentive are worth great control.   

 Although the EVC model has been very useful (e.g. Shenhav, Straccia, Cohen, & 

Botvinick, 2014), its theoretical underpinnings are complex, requiring additional systems and 

brain areas which independently compute the cost and benefit variables which are then 

relayed to the ACC. In the EVC model, not only must the ACC integrate prospective cost and 

benefit information, it must also compute the magnitude of control to exert over the rest of the 
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brain. Such a multi-component cost-computing-and-relaying system has yet to be identified. 

Furthermore, the output of such a multi-layered, feedback-oriented system could be 

accomplished by a much simpler feed-forward sensory-driven incentive-salience gated 

mesocortical projection which either does or does not activate a cortical task model. Thus, a 

key distinction between these views is whether the ACC needs to be activated in order to 

disregard a stimulus. Specifically, the EVC model suggests that an organism appears 

disinterested towards a stimulus because the ACC has appraised the stimulus as not worthy of 

a response whereas the incentive-salience, task-model onset (ISTMO) view is that organisms 

appear disinterested towards a stimulus because the stimulus did not sufficiently activate the 

midbrain which then precludes expenditure of cortical resources appraising further reaction. It 

is also possible that other neuromodulatory centers, such as the locus coeruleus (Safaai et al., 

2015; Tervo et al., 2014), also act to gate the onset of cortical task ensembles. The next 

section outlines a series of experiments intended to further clarify the mechanisms proposed 

to underpin the ISTMO theory.  

4.9 Integrating and expanding: the work ahead 

 Many further experiments are necessary to confirm or refute this incentive-salience, 

task-model onset (ISTMO) theory of goal-oriented and adaptive behaviour. First, it is 

necessary to verify that in certain conditions sensory-driven input to the midbrain via the 

superior colliculus (Comoli et al., 2003) does indeed activate the mesocortical projection. 

Experimental work is also needed to determine whether changes in reinforcement history 

influence the probability of certain stimuli evoking the mesocortical projection. According to 

the ISTMO model (Figure 53), superior colliculus  midbrain DA signalling should play a 

critical role in the evocation of the mesocortical projection and the sensitivity of this circuit 

should be sensitive to reinforcement history. Specifically, the sensitivity of midbrain DA 

centres to superior collicular input is operationalized in the ISTMO theory as the threshold 

which gates the evocation of the mesocortical projection (Figure 54).  

 One approach to assessing whether this is the case could involve a combination of 

electrophysiological, iontophoretic, and electrochemical methods in anaesthetized rodents. In 

the first of a series of experiments, anaesthetized rats could be implanted with recording 

electrodes in the superior colliculus, ventral midbrain, and ACC and have a light flashed in 

their eyes. In circumstances where light-flash visual input would supercede the SC  

midbrain DA threshold, one might expect that the firing rates of neurons all three areas would, 

sequentially, increase such that increases in the SC firing rates preceded midbrain DA firing 

rate increases which would precede ACC firing rate increases. The next experiment might 



113 
 

then consist of rodents implanted with a recording electrode in the SC, an iontophoretic probe 

to apply muscimol, a GABAA agonist, in the ventral midbrain, and a fast-scan cyclic 

voltammetry (FSCV) probe in the ACC. The hypothesis would be that in cases where the light 

was flashed in the rodent’s eyes with no iontophoretic muscimol application, SC neurons 

would increase their firing rates and increases in dopamine concentrations would be detected 

via FSCV in the ACC. Conversely, in cases where muscimol was iontophoretically applied in 

the midbrain, one might expect to detect increases in SC neuron firing rates but not to detect 

stimulus-locked increases in ACC dopamine concentrations. This series of experiments could 

also iontophoretically apply other drugs to the midbrain, such as tetrodotoxin or baclofen, to 

determine ventral midbrain circuitry gating the sensory-driven evocation of the mesolimbic 

and mesocortical projections.   

 Next, large-scale neuronal recordings or fiber photometric imaging of ACC while an 

organism makes a rule-based decisions (e.g. Ott et al., 2014) could be used to observe the 

onset and reorganization dynamics of ACC neuronal task-model ensembles. In these 

experiments, the aim would be to test the generality of the ensemble onset mechanism 

identified in the hippocampus by Rajasethupathy et al. (2015). If the onset patterns of 

hippocampal neuronal ensembles are any indication of the onset patterns of cortical 

ensembles, these experiments might find that the activation of a subset of ‘master’ cortical 

neurons, perhaps value-selective cells, are necessary for activating a network of action-

selective cells. Were this the case, the latency between activation of a specific value-selective 

ACC neuron and the activation of a specific set of action cells should be much shorter than 

the latency between activation of a value cell and activation of a different set of action cells. It 

would also be interesting to examine the activation parameters of ACC task-model ensembles 

with respect to cues indicating which action is appropriate for an upcoming trial.  

 After developing analytical tools for assessing ACC task-model ensemble dynamics, a 

series of experiments utilizing large scale neuronal recordings of both the ACC and VTA, as 

well as optogenetics, could examine the influence of mesocortical, VTA  ACC 

dopaminergic projections on ACC task-ensembles. If the VTA  ACC mesocortical 

projection is involved in the onset of ACC task-ensembles then ‘master’ ACC neurons ought 

to be significantly more phase-modulated by the VTA LFP than ACC action-encoding 

neurons, a prediction supported by data collected for this thesis. Furthermore, the activation of 

the entire task ensemble should be significantly related to the phase-modulation of the 

putative ‘master’ cells. One might also predict that selective inhibition of only the ‘master’ 

cells (vis a vis Rajasethupathy et al., 2015) ought to prevent the rest of the task-ensemble from 
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coming online which should behaviourally manifest as the organism never making the 

decision represented by the particular ensemble under examination.  

 The series of experiments proposed so far would only assess whether the onset of 

ACC task models is associated with incentive-salience signalling in the midbrain and do not, 

directly, assess how ACC task models and, presumably, behaviour are modified. On the basis 

of a series of experiments demonstrating that decreases in the reliability of ACC task models 

leads to instability of ACC ensemble activity (Karlsson et al., 2012), one framework for 

investigating ACC task model modification could be to examine how behavioural 

consequences influence the probability that a given neuron is recruited to a task ensemble. For 

instance, imagine an experiment where the behavioural component requires an organism to 

make simple choices towards the right or the left. On the basis of our findings and those of 

others (Cowen et al., 2012), one would expect that some single ACC units would represent 

simple actions, such as right or left turns, and that some units would represent value. The 

ISTMO theory predicts that a network of both value and action cells activate and that the 

relative number of right-turn selective cells versus left-turn selective cells should dictate 

which choice the organism makes. In cases where the organism makes an unsuccessful 

decision, turning right when the rewarded outcome was to turn left because more right-

selective cells were active in the task-ensemble than left-selective cells, the ISTMO theory 

predicts that the probability of neurons encoding the unsuccessful action being recruited to the 

task-ensemble in subsequent trials would decrease and that the probability of cells 

representing an alternative action being recruited to the ensemble would increase. Conversely, 

the ISTMO theory predicts that in the case of successful outcomes, the probability of neurons 

encoding the successful action being recruited to the task ensemble would increase and that 

the probability of neurons encoding an alternative action being recruited to the task ensemble 

would decrease. One mechanism by which this theorized probability modification could occur 

is via neuromodulators, such as dopamine, serotonin, and norepinephrine. Indeed, an elegant 

series of experiments by Tervo et al. (2014) demonstrated that in circumstances where ACC 

task models are not useful, ACC activity is dampened by noradrenergic afferents from the 

locus coeruleus, which in turn leads to the onset of stochastic, rather than schematic, 

behaviours. Because such complex and temporally precise neuromodulation is unlikely to be 

carried out by a single neurochemical system and the contributions of each neuromodulatory 

system could be accounted for via local pharmacological infusions in the ACC or 

neuromodulatory centres or via optogenetic manipulation of neuromodulatory terminals in the 

ACC. 
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 Although the proposed series of experiments provides a theoretical roadmap regarding 

the mechanisms that facilitate the onset and modification of ACC task models, they do not 

explicitly describe how modified ACC task models are behaviourally implemented. One 

possibility, suggested by our findings, is that, when a task model, and thus behavioural output, 

is modified, the ACC signals to the VTA which could influence the amount of dopamine 

projected from the VTA to the nucleus accumbens (NAcc), which could influence the vigour 

with which the modified task model is implemented (Hamid et al., 2016; Oleson et al., 2012; 

Shahidani, Reisi, Naghdi, Alaei, & Ramshini, 2012). To verify this assumption, rats 

implanted with a fast scan cyclic voltammetry probe in the nucleus accumbens and a fiber 

optic cable in the VTA could be trained to press levers on a variable-ratio 10 schedule and, at 

any one time, only one of the two levers yields reinforcement. One lever would remain 

reinforced until on average, 20 reinforcers had been acquired and then the task contingencies 

would discreetly reverse such that other lever is reinforced and presses to the prior lever are 

no longer reinforced. Behaviourally, one might expect the rats come to know that the 

contingencies will shift at some point and, from time to time, would sample the other lever to 

see if the contingency had shifted. Those sampling events could be framed as exploratory, 

non-default events. During those exploratory behaviours, the ISTMO theory would predict 

detection of elevated NAcc dopamine concentrations when rats modified their task model and 

explored the non-default action. Similarly, the ISTMO theory predicts that photo stimulation 

of ACC terminals in the VTA would directly increase NAcc dopamine concentrations, 

thereby causing the animal to explore the non-default option. The findings from this 

experiment would verify whether one step in the implementation of modified ACC task 

models involves changes in motivational states via VTA’s dopaminergic output to the NAcc.  
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Chapter 5 Concluding remarks and summary 

 This thesis focused on the role of the ACC’s interactions with the dopaminergic 

neurons in the VTA during adaptive behaviour. The overall question guiding this work was: 

how does information gained during goal pursuit modify and motivate subsequent behaviour? 

This larger question was operationalized as two projects: (i) to determine whether cortical 

influence over the dopaminergic midbrain is a mechanism by which ACC signals are 

implemented as VTA motivation signals; and (ii) to determine the interplay between the ACC 

and VTA during the initiation and maintenance of behavioural change. Central to my PhD 

work was the development of a unique, fully-automated ‘figure of 8’ maze (see Appendix) 

which allowed me to manipulate both the cost and benefit components of task contingencies 

while simultaneously recording single neurons and LFPs in the ACC and LFPs in the VTA. 

Also central was developing a partial directed coherence algorithm which enabled me to 

model task-dependent changes in ACC-VTA signal directionality. 

 In the first project, published in Cell Reports, we monitored and modelled ACC and 

VTA LFPs of rats running laps of varying physical difficulty for fixed rewards. The effortful 

condition required rats to climb over a 30-cm barrier, whereas no barrier was present under 

the non-effortful condition. The key finding was that ACC  VTA 4-12 Hz signalling 

increased in trials when the lap was easier than expected. Importantly, this increase was 

significantly correlated with, but not confounded by, changes in motivation, as measured by 

running speed. Thus, we showed for the first time that the ACC-VTA circuit is a plausible 

mechanism by which ACC signals are implemented as VTA motivational signals, thereby 

shifting behaviour from one response pattern to another. 

 The second projected examined the interplay between the ACC and VTA during the 

initiation and persistence of behavioural change. Stemming from the results of project 1, we 

hypothesized that the ACC  VTA circuit is a plausible mechanism by which task model 

signals are motivationally implemented. To test that hypothesis, we monitored ACC single 

units and LFPs as well as LFPs in VTA of rats performing a cost-benefit foraging task with 

changing contingencies. Through a combination of behavioural, electrophysiological, and 

modelling analyses, we found that the initiation of anticipatory behaviour and the persistence 

of behavioural change were associated with ACC  VTA signalling. Additionally, we 

characterized the content of ACC neuronal task models, and showed that ensembles of ACC 

neurons encode simple actions and values. This was important because, despite longstanding 

assumptions that the ACC encodes neuronal task models, the content of those internal 

representations remained unclear. Therefore, the finding that ACC neurons can encode simple 
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actions and values provides a clear basis for the notion that the ACC actively maintains 

neuronal representations of the task at hand. Furthermore, we demonstrated that value-coding 

elements of ACC neuronal task models are particularly influenced by the VTA. This is 

important because it suggests that mesocortical dopaminergic signalling is a means by which 

ACC models of the task at hand could be both initiated and modified. This work has been 

submitted for publication.  

 This thesis also evolved a novel incentive-salience, task-model onset (ISTMO) theory 

regarding ACC function. The key assertion of the ISTMO theory is midbrain-dopaminergic 

incentive-salience signalling acts as a simple feed-forward filter such that sensory inputs that 

does not excite midbrain dopamine neurons beyond some threshold does not activate the 

mesocortical projection. The ISTMO theory predicts that ACC task models are brought online 

by incentive-salience triggered mesocortical signalling to high-value-encoding ACC neurons 

which then bring a local network of action-encoding cells. This view is supported by our 

observation that high-value-encoding ACC neurons were particularly modulated by the VTA. 

This ISTMO perspective is worth pursuing because it offers new experimental predictions, 

new modelling opportunities, and new hope for the treatment of neurological and psychiatric 

disorders. 
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Chapter 7  Appendix: novel methods 

7.1 Overview 

In addition to the established electrophysiological and behavioural methods of the Bilkey lab, 

several novel methods were developed for this thesis. The new methods developed for this 

thesis were a fully automated continuous T-maze and a custom-designed, 3D-printed 

microdrive. This appendix details the development of each of these novel methods. 

7.2 Fully automated continuous T-maze 

7.2.1 The T-maze and the opportunities of automation 

 The T-maze is a simple maze used to study animal cognition. Shaped like the letter T 

(Figure A1a), most T-maze protocols involve placing a subject, often a rat, at the base of the 

maze and placing a reward at one or both arms of the maze. The T-maze side (goal) arms can 

contain discriminative stimuli (cues) that the rat must respond to in order to obtain a reward. 

Because the T-maze provides experimenters with a straight-forward way to assess choice 

behaviour (e.g. the rat turned left or right), the T-maze is a widely used apparatus in 

behavioural neuroscience.  

 There are several drawbacks to using a traditional T-maze. For instance, because most 

protocols require the rats to be placed at the base of the maze on each trial, the rat is regularly 

interrupted and physically handled during the experiment. This is particularly problematic in 

electrophysiology experiments because the rat can become tangled in the cable connecting its 

brain to the data acquisition computer. One solution to this problem is to use a ‘continuous’ 

T-maze (Figure A1b). Shaped like a ‘figure of eight’ turned on its side, the continuous T-

maze paradigm calls for rats to start from the base of the maze midstem, turn left or right, and 

then re-enter the midstem to initiate a new trial. Thus, the continuous T-maze offers 

experimenters the benefits of the traditional T-maze while also allowing rats to complete trials 

in a continuous, uninterrupted manner.  

 Despite the advantages of the continuous T-maze, its practical operation can be 

cumbersome for the experimenter. For example, with a continuous T-maze, it is important 

that the rat completes circuits around the maze in a unidirectional manner. Prior studies from 

the Bilkey lab using the continuous T-maze (Hillman & Bilkey, 2010, 2012) had prevented 

rats from reversing course by manually inserting a barrier behind the animal. When one 

considers that the experimenter must both dispense reward and police the rats’ trajectories, it 

becomes apparent that the continuous T-maze is a labour intensive apparatus.  
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Figure A1. Examples of traditional and continuous T-mazes. (a) traditional T-maze; (b) continuous T-maze. 

 This additional labour can increase the rate of human error and distract the animal 

from the task at hand. For example, the commotion of the experimenter placing/removing the 

barrier insert can distract the rat, causing the rat to get off-task. Furthermore, such rapid task-

switching by the experimenter can lead to reward delivery errors (e.g. giving the rat five 

cereal pellets when it was meant to receive only two). If trajectory policing and reward 

delivery could be automated, then fewer mistakes would be made and training the animals 

would be faster and more consistent. Therefore, I decided to automate every aspect of the 

continuous T-maze with the use of Arduino microcontrollers and various peripheral sensors 

and actuators.  

7.2.2 Implementing the automated continuous T-maze 

 In total, the newly developed maze contains three touchscreens which allowed rats to 

initiate trials, seven photobeams which timestamped rats’ locations and triggered other maze 

events, ten pneumatic rams which opened and closed the doors to the maze arms, two servo 

motors which allowed for climbable barriers to be introduced or removed from a maze arm, 

two custom-built peristaltic pumps which dispensed a condensed milk reward, and a network 

of five Arduino microcontrollers (Arduino LLC, Somersville, MA, USA) which controlled 

the entire apparatus and reported timestamps of key maze events to the main data acquisition 

computer (Figure A2). Because Arduinos have a limited number of input and output pins, it 

was important to distribute the computational load across several Arduinos such that 

computations in one microcontroller could influence computations in another (vis a vis a 



140 
 

network). As a result, the key design principle became that each region of the maze ought to 

sense and respond to activity and report its doings to other maze regions. When implemented, 

this meant that one Arduino controlled all sensors in the right maze arm whereas another 

controlled the left maze arm and so on. The most important microcontroller controlled the 

start box / reward region of the maze because that microcontroller both initiated and 

concluded trials. I also dedicated one Arduino entirely to controlling the pneumatic rams 

which opened and closed the maze doors. I used pneumatics to open/close the doors because I 

was concerned that electric motors would generate noise which would interfere with 

electrophysiological recordings. To avoid any pneumatics-related injury to the rats, I had the 

doors move vertically, opening by lowering and closing by raising. I used peristaltic pumps, 

rather than a linear motor and syringe-pump, to deliver the condensed milk reward because 

they do not have to be refilled between recording sessions.  

 

Figure A2. Schematic of the automated continuous T-maze. The blue bars indicate the locations of wall-mounted 

touchscreens; the dashed red lines indicate the positions of photobeams; the green circles indicate the locations 

of reward wells; the black circles indicate the positions of peristaltic pumps which delivered the condensed milk.  
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 The parallel and distributed nature of the maze components, the multiple 

microcontrollers, and the code on each microcontroller can be best described through an 

example. Take, for instance, a choice-trial during the first maze configuration in Project 2: in 

these trials, a rat would press the touchscreen located on the wall of the start box which would 

then cause the start box Arduino to signal to the Arduinos controlling the left and right maze 

arms as well as the Arduino which controlled the pneumatic rams. The signals to the left/right 

Arduinos would activate the photobeams and the signal to the motor Arduino initiated the 

opening of the door to the midstem maze region. Once the rat made a decision, perhaps he 

turned right (the typical, choice in that portion of the experimental sessions), the rat would trip 

the photobeam just around the corner. Tripping this photobeam would cause right maze arm 

Arduino to send signals to the start box and motor Arduinos. The start box-bound signal 

would cause the startbox Arduino to signal to the Arduino which controlled the peristaltic 

pumps to dispense a certain amount of condensed milk as well. The startbox Arduino would 

also signal to the data acquisition computer to timestamp the breaking of the photobeam. The 

photobeam-triggered signal from the right Arduino to the motor Arduino would cause the 

upper-right door to close behind the rat, thus preventing the rat from reversing direction, as 

well as opening the lower-right door, enabling the rat to access the reward zone after climbing 

over the barrier. Once the rat entered the reward zone, he would trip another photobeam 

which caused the start box Arduino to signal to the motor Arduino to close the door behind 

the rat so that only by pressing the touchscreen could the rat exit the start box, thereby 

initiating a new trial. In this way, each Arduino sensed and responded to maze events in each 

maze region and regularly updated every other Arduino. See Figures A3-A4 for photos of the 

maze and the implemented neural network of Arduinos. See the following sections for the 

code for each Arduino used in project 2. 
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Figure A3. Wide –angle view of the maze and electronics.  

 

Figure A4. Custom-built network of Arduinos used to control the maze.  
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7.2.3 Code to control the maze 

7.2.3.1 Left Arduino  

// touchscreen-related stuff 

#include "SPI.h" 

#include "Adafruit_GFX.h" 

#include "Adafruit_ILI9341.h" 

#define TFT_DC 9 

#define TFT_CS 10 

// Color definitions 

#define BLACK           0x0000 

#define BLUE            0x001F 

#define RED             0xF800 

#define GREEN           0x07E0 

#define CYAN            0x07FF 

#define MAGENTA         0xF81F 

#define YELLOW          0xFFE0 

#define WHITE           0xFFFF 

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC); 

// needs to open / close vertex door and detect / report beam breaks 

const int infraredSensorPin = 7; 

const int tellDacqBeamBreak = 0; 

const int openVertexSignalled = 2; 

const int openVertexDoor = 5; // A2 at motor ctx 

const int closeVertexDoor = A1; // A4 at motor ctx 

const int tellStartBoxBeamBreak = 1; // goes to pin 19 at startbox 

boolean sensorActive = false; 

void openFromMidstem(){ 

  if(digitalRead(openVertexSignalled)){ 

    sensorActive = true; 

    digitalWrite(openVertexDoor, HIGH); 

    delay(10); 

    digitalWrite(openVertexDoor, LOW); 

  } 

} 

void reportBeamBreak(){ 

  if(digitalRead(infraredSensorPin) == LOW && sensorActive == true){ 
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    sensorActive = false; 

    digitalWrite(closeVertexDoor, HIGH); 

    digitalWrite(tellDacqBeamBreak, HIGH); 

    digitalWrite(tellStartBoxBeamBreak, HIGH); 

    delay(10); 

    digitalWrite(tellDacqBeamBreak, LOW); 

    digitalWrite(closeVertexDoor, LOW); 

    digitalWrite(tellStartBoxBeamBreak, LOW); // goes to pin 19 at startbox 

    tft.fillScreen(BLACK); 

  } 

} 

void setup(){ 

  pinMode(infraredSensorPin, INPUT); 

  pinMode(tellDacqBeamBreak, OUTPUT); 

  pinMode(openVertexSignalled, INPUT); 

  pinMode(openVertexDoor, OUTPUT); 

  pinMode(closeVertexDoor, OUTPUT); 

  pinMode(tellStartBoxBeamBreak, OUTPUT); 

  tft.begin(); 

  tft.fillScreen(BLACK); 

} 

void loop(){ 

  openFromMidstem(); 

  reportBeamBreak(); 

} 

7.2.3.2 Right Arduino 

// touchscreen stuff 

#include "SPI.h" 

#include "Adafruit_GFX.h" 

#include "Adafruit_ILI9341.h" 

#define TFT_DC 9 

#define TFT_CS 10 

// Color definitions 

#define BLACK           0x0000 

#define BLUE            0x001F 

#define RED             0xF800 
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#define GREEN           0x07E0 

#define CYAN            0x07FF 

#define MAGENTA         0xF81F 

#define YELLOW          0xFFE0 

#define WHITE           0xFFFF 

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC); 

// needs to open / close vertex door and detect / report beam breaks 

const int infraredSensorPin = 7; 

const int tellDacqBeamBreak = 0; 

const int openVertexSignalled = 2; 

const int openVertexDoor = 5; 

const int closeVertexDoor = A1; 

const int tellStartBoxBeamBreak = 1; // goes to pin 17 at startbox 

boolean sensorActive = false; 

 

void openFromMidstem(){ 

  if(digitalRead(openVertexSignalled)){ 

    sensorActive = true; 

    digitalWrite(openVertexDoor, HIGH); 

    delay(10); 

    digitalWrite(openVertexDoor, LOW); 

      // tft.fillScreen(RED); 

       // tft.fillRect(20, 175, 200, 50, WHITE); 

  } 

} 

void reportBeamBreak(){ 

  if(digitalRead(infraredSensorPin) == LOW && sensorActive == true){ 

    sensorActive = false; 

    digitalWrite(closeVertexDoor, HIGH); 

    digitalWrite(tellDacqBeamBreak, HIGH); 

    digitalWrite(tellStartBoxBeamBreak, HIGH); 

    delay(50); 

    digitalWrite(tellDacqBeamBreak, LOW); 

    digitalWrite(closeVertexDoor, LOW); 

    digitalWrite(tellStartBoxBeamBreak, LOW); // goes to pin 17 at startbox 

    tft.fillScreen(BLACK); 
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  } 

} 

void setup(){ 

  pinMode(infraredSensorPin, INPUT); 

  pinMode(tellDacqBeamBreak, OUTPUT); 

  pinMode(openVertexSignalled, INPUT); 

  pinMode(openVertexDoor, OUTPUT); 

  pinMode(closeVertexDoor, OUTPUT); 

  pinMode(tellStartBoxBeamBreak, OUTPUT); 

  tft.begin(); 

  tft.fillScreen(BLACK); 

} 

void loop(){ 

  openFromMidstem(); 

  reportBeamBreak(); 

} 

 

7.2.3.3 Motor control Arduino  

int delayTime = 50; 

// INPUTS 

const int closeMidstemSignal = A0; 

const int openMidstemSignal = A1; 

const int openLeftVertexSignal = A2; 

const int openRightVertexSignal = A6; 

const int closeAllDoorsSignal = A11; 

const int closeLeftVertexAndLowerLeftBarrierSignal = A3; //***** 

const int closeLeftVertexSignal = A4; // ***** 

const int lowerLowerLeftDoorSignal = A5; 

const int closeRightDoor = A7; 

const int closeRightVertexSignal = A8; 

const int openLowerLeftButtonSignal = 52; 

const int closeLowerLeftButtonSignal = 50; 

const int openLowerRightButtonSignal = 48; 

const int closeLowerRightButtonSignal = 46; 

const int LEDpin = 53; 

// OUTPUTS 
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const int closeMidstem = 4; 

const int openMidstem = 11; 

const int openLeftVertex = 3; 

const int closeLeftVertex = 12; 

const int openRightVertex = 9; 

const int closeRightVertex = 10; 

const int raiseLowerRightBarrier = 6; 

const int lowerLowerRightBarrier = 8; 

const int raiseLowerLeftBarrier = 7; 

const int lowerLowerLeftBarrier = 5; 

// open midstem and vertex 

void openMidstemAndVertex(){ 

  if(digitalRead(openMidstemSignal)){ 

    delay(delayTime); 

    for(int z = 0; z <20; z++){ 

      digitalWrite(openRightVertex, HIGH); 

       digitalWrite(openLeftVertex, HIGH); 

      digitalWrite(openMidstem, HIGH); 

      delay(20); 

      digitalWrite(openRightVertex, LOW); 

      digitalWrite(openLeftVertex, LOW); 

      digitalWrite(openMidstem, LOW); 

      delay(20); 

    } 

  } 

} 

void openRightVertexDoor(){ 

  if(digitalRead(openRightVertexSignal)){ 

    delay(delayTime); 

    for(int z = 0; z <20; z++){ 

      digitalWrite(openRightVertex, HIGH); 

      digitalWrite(openMidstem, HIGH); 

      delay(20); 

      digitalWrite(openRightVertex, LOW); 

      digitalWrite(openMidstem, LOW); 

      delay(20); 
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    } 

  } 

} 

// right vertex closes and lower right barrier lowers 

// AND MIDSTEM CLOSES 

void closeRightVertexDoor(){ 

  if(digitalRead(closeRightVertexSignal)){ 

    for(int f = 0; f < 35; f++){ 

      digitalWrite(closeRightVertex, HIGH); 

      digitalWrite(closeLeftVertex, HIGH); 

      digitalWrite(raiseLowerRightBarrier, HIGH); 

      digitalWrite(closeMidstem, HIGH); 

      delay(20); 

      digitalWrite(closeRightVertex, LOW); 

      digitalWrite(closeLeftVertex, LOW); 

      digitalWrite(raiseLowerRightBarrier, LOW); 

      digitalWrite(closeMidstem, LOW); 

      delay(20); 

    } 

  } 

} 

void openLeftVertexDoor(){ 

  if(digitalRead(openLeftVertexSignal)){ 

    delay(delayTime); 

    for(int z = 0; z <20; z++){ 

      digitalWrite(openLeftVertex, HIGH); 

      digitalWrite(openMidstem, HIGH); 

      delay(20); 

      digitalWrite(openLeftVertex, LOW); 

      digitalWrite(openMidstem, LOW); 

      delay(20); 

    } 

  } 

} 

void closeLeftVertexDoor(){ 

  if(digitalRead(closeLeftVertexSignal)){ 
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    for(int f = 0; f < 35; f++){ 

      digitalWrite(closeLeftVertex, HIGH); 

      digitalWrite(closeRightVertex, HIGH); 

      digitalWrite(lowerLowerLeftBarrier, HIGH); 

      digitalWrite(closeMidstem, HIGH); 

      delay(20); 

      digitalWrite(closeLeftVertex, LOW); 

      digitalWrite(closeRightVertex, LOW); 

      digitalWrite(lowerLowerLeftBarrier, LOW); 

      digitalWrite(closeMidstem, LOW); 

      delay(20); 

    } 

  } 

} 

// Button signals 

// open lower left door (drop barrier) with button press 

void dropLeftBarrierButton(){ 

  if(digitalRead(openLowerLeftButtonSignal)){ 

    for(int p = 0; p < 25; p++){ 

      digitalWrite(lowerLowerLeftBarrier, HIGH); 

      delay(20); 

      digitalWrite(lowerLowerLeftBarrier, LOW); 

      delay(20); 

    } 

  } 

} 

// close lower left door (raise barrier) with button press 

void raiseLeftBarrierButton(){ 

  if(digitalRead(closeLowerLeftButtonSignal)){ 

    for(int k = 0; k < 25; k++){ 

      digitalWrite(raiseLowerLeftBarrier, HIGH); 

      delay(20); 

      digitalWrite(raiseLowerLeftBarrier, LOW); 

      delay(20); 

    } 

  } 
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} 

// open lower right door (drop barrier) with button press 

void dropRightBarrierButton(){ 

  if(digitalRead(openLowerRightButtonSignal)){ 

    for(int e = 0; e < 25; e++){ 

      digitalWrite(lowerLowerRightBarrier, HIGH); 

      delay(20); 

      digitalWrite(lowerLowerRightBarrier, LOW); 

      delay(20); 

    } 

  } 

} 

// closer lower right door (raise barrier) with button press 

void raiseRightBarrierButton(){ 

  if(digitalRead(closeLowerRightButtonSignal)){ 

    for(int g = 0; g < 25; g++){ 

      digitalWrite(raiseLowerRightBarrier, HIGH); 

      delay(20); 

      digitalWrite(raiseLowerRightBarrier, LOW); 

      delay(20); 

    } 

  } 

} 

// close all doors for 10 seconds, then open them 

// this is for the surprise trials in the model-updating experimetn 

void surpriseCloseDoors(){ 

  if(digitalRead(closeAllDoorsSignal)){ 

        for(int f = 0; f < 35; f++){ 

      digitalWrite(closeLeftVertex, HIGH); 

      digitalWrite(closeRightVertex, HIGH); 

      digitalWrite(lowerLowerLeftBarrier, HIGH); 

      digitalWrite(closeMidstem, HIGH); 

      delay(20); 

      digitalWrite(closeLeftVertex, LOW); 

      digitalWrite(closeRightVertex, LOW); 

      digitalWrite(lowerLowerLeftBarrier, LOW); 
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      digitalWrite(closeMidstem, LOW); 

      delay(20); 

    } 

    delay(10000); // delay 10 seconds 

     for(int z = 0; z <20; z++){ 

      digitalWrite(openRightVertex, HIGH); 

       digitalWrite(openLeftVertex, HIGH); 

      digitalWrite(openMidstem, HIGH); 

      delay(20); 

      digitalWrite(openRightVertex, LOW); 

      digitalWrite(openLeftVertex, LOW); 

      digitalWrite(openMidstem, LOW); 

      delay(20); 

    } 

  } 

} // end of surprise close and then open doors 

void closeTheMidstem(){ 

  if(digitalRead(closeMidstemSignal)){ 

    for(int b = 0; b < 30; b++){ 

      digitalWrite(raiseLowerLeftBarrier, HIGH); 

      digitalWrite(lowerLowerRightBarrier, HIGH); 

      digitalWrite(closeMidstem, HIGH); 

      delay(20); 

      digitalWrite(lowerLowerRightBarrier, LOW); 

      digitalWrite(raiseLowerLeftBarrier, LOW); 

      digitalWrite(closeMidstem, LOW); 

      delay(5); 

    } 

  } 

} 

void setup(){ 

 pinMode(closeMidstemSignal,INPUT); 

 pinMode(openMidstemSignal,INPUT); 

 pinMode(openLeftVertexSignal,INPUT); 

 pinMode(closeLeftVertexAndLowerLeftBarrierSignal,INPUT);  

 pinMode(lowerLowerLeftDoorSignal,INPUT); 
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 pinMode(openRightVertexSignal,INPUT); 

 pinMode(closeRightDoor,INPUT); 

 pinMode(closeRightVertexSignal,INPUT); 

 pinMode(openLowerLeftButtonSignal,INPUT); 

 pinMode(closeLowerLeftButtonSignal,INPUT); 

 pinMode(openLowerRightButtonSignal,INPUT); 

 pinMode(closeLowerRightButtonSignal,INPUT); 

 pinMode(closeLeftVertexSignal, INPUT); 

 pinMode(closeAllDoorsSignal,INPUT);  

 pinMode(closeMidstem, OUTPUT); 

 pinMode(openMidstem, OUTPUT); 

 pinMode(openLeftVertex, OUTPUT); 

 pinMode(closeLeftVertex, OUTPUT); 

 pinMode(openRightVertex, OUTPUT); 

 pinMode(closeRightVertex, OUTPUT); 

 pinMode(raiseLowerRightBarrier, OUTPUT); 

 pinMode(lowerLowerRightBarrier, OUTPUT); 

 pinMode(raiseLowerLeftBarrier, OUTPUT); 

 pinMode(lowerLowerLeftBarrier, OUTPUT); 

 pinMode(LEDpin, OUTPUT); 

} 

 

void loop() { 

  surpriseCloseDoors(); 

  openMidstemAndVertex(); 

  openRightVertexDoor(); 

  openLeftVertexDoor(); 

 closeRightVertexDoor(); 

 closeLeftVertexDoor(); 

 closeTheMidstem(); 

 dropLeftBarrierButton(); 

 raiseLeftBarrierButton(); 

 dropRightBarrierButton(); 

 raiseRightBarrierButton(); 

} 
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7.2.3.4 Reward delivery Arduino 

// motor A 

const int enMotorA = 13; 

const int motorAForward = 12; 

const int motorABackward = 11; 

// motor B 

const int enMotorB = 8; 

const int motorBForward = 9; 

const int motorBBackward = 10; 

const int rightLarge = A1; // motorB dispenses large reward, pin 48 from startbox 

const int leftLarge = A5;  // motorA dispenses large reward, pin 39 from SB 

const int rightMed = A0;   // motorB dispenses medium reward, pin 49 from SB 

const int leftMed = A3;    // motorA dispenses medium reward, pin 46 from SB 

const int rotorGatePin= A4; // rotor gate which delivers varying voltages to the arduino 

const int largeReward = 1000; 

const int medReward = 250; 

 

const int motorSpeed=200; 

// values which will change 

int rotorGateState = 0; // current state of rotor gate 

int lastrotorGateState = 0; // previous state of rotor gate 

int upperBound = 0; 

int lowerBound = 0; 

int counter= 0; 

boolean newState = false; 

////////////////////////////////////////// 

// code for manual reward delivery 

///////////////////////////////////////// 

void checkRotorGate(){ 

  rotorGateState = analogRead(rotorGatePin); 

  // compare the rotorGateState to its previous state 

  if (rotorGateState != lastrotorGateState) { 

  delay(100); 

   rotorGateState = analogRead(rotorGatePin); 

    // check if the state is within a range of the last state 

    if (rotorGateState >= lowerBound && rotorGateState <= upperBound){ 

      newState = false;   
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    }else{ 

      newState = true; 

    } 

    if(newState == true){ 

    digitalWrite(motorAForward, HIGH); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorBForward, HIGH); 

      digitalWrite(motorABackward, LOW); 

      digitalWrite(motorBBackward, LOW); 

      analogWrite(enMotorA, motorSpeed); 

      analogWrite(enMotorB, motorSpeed); 

      Serial.println(rotorGateState); 

        delay(rotorGateState); 

      digitalWrite(motorAForward, LOW); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorBForward, LOW); 

      analogWrite(enMotorA, 0);   

      analogWrite(enMotorB, 0);  

        lastrotorGateState = rotorGateState; 

            lowerBound = lastrotorGateState-100; 

            upperBound = lastrotorGateState+100; 

            Serial.println(lowerBound); 

            Serial.println(upperBound);    

        delay(50); 

  } 

} 

} 

///////////////////////////////////// 

void largeLeftReward(){  

  if(digitalRead(leftLarge)){ 

    digitalWrite(motorBForward, HIGH); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorBBackward, LOW);       

      analogWrite(enMotorB, motorSpeed); 

        delay(largeReward); 

      digitalWrite(motorBForward, LOW); // the direction of the motor is determined by which 

one is high or low 

      analogWrite(enMotorB, 0);   
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  } 

} 

void mediumLeftReward(){ 

  if(digitalRead(leftMed)){ 

    digitalWrite(motorBForward, HIGH); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorBBackward, LOW);       

      analogWrite(enMotorB, motorSpeed); 

        delay(medReward); 

      digitalWrite(motorBForward, LOW); // the direction of the motor is determined by which 

one is high or low 

      analogWrite(enMotorB, 0);   

  } 

} 

void largeRightReward(){  

  if(digitalRead(rightLarge)){ 

    digitalWrite(motorAForward, HIGH); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorABackward, LOW);       

      analogWrite(enMotorA, motorSpeed); 

        delay(largeReward); 

      digitalWrite(motorBForward, LOW); // the direction of the motor is determined by which 

one is high or low 

      analogWrite(enMotorA, 0);   

  } 

} 

void mediumRightReward(){  

  if(digitalRead(rightMed)){ 

    digitalWrite(motorAForward, HIGH); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorABackward, LOW);       

      analogWrite(enMotorA, motorSpeed); 

        delay(medReward); 

      digitalWrite(motorAForward, LOW); // the direction of the motor is determined by which 

one is high or low 

      analogWrite(enMotorA, 0);   

  } 

} 
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void setup() { 

pinMode(enMotorA, OUTPUT); 

pinMode(enMotorB, OUTPUT); 

pinMode(motorAForward, OUTPUT); 

pinMode(motorABackward, OUTPUT); 

pinMode(motorBForward, OUTPUT); 

pinMode(motorBBackward, OUTPUT); 

pinMode(rotorGatePin, INPUT); 

pinMode(rightLarge, INPUT); 

pinMode(leftLarge, INPUT); 

pinMode(rightMed, INPUT); 

pinMode(leftMed, INPUT); 

      digitalWrite(motorAForward, LOW);  

      digitalWrite(motorABackward, LOW); 

      digitalWrite(motorBForward, LOW);  

      digitalWrite(motorBBackward, LOW); 

      digitalWrite(enMotorA, LOW); 

      digitalWrite(enMotorB, LOW); 

      delay(1000); 

      rotorGateState = analogRead(rotorGatePin); 

         lastrotorGateState = rotorGateState; 

            lowerBound = lastrotorGateState-100; 

            upperBound = lastrotorGateState+100; 

                digitalWrite(motorAForward, HIGH); // the direction of the motor is determined by 

which //one is high or low 

      digitalWrite(motorBForward, HIGH); 

      digitalWrite(motorABackward, LOW); 

      digitalWrite(motorBBackward, LOW); 

      analogWrite(enMotorA, motorSpeed); 

      analogWrite(enMotorB, motorSpeed); 

      Serial.println(rotorGateState); 

        delay(3000); 

      digitalWrite(motorAForward, LOW); // the direction of the motor is determined by which 

one is high or low 

      digitalWrite(motorBForward, LOW); 

      analogWrite(enMotorA, 0);   

      analogWrite(enMotorB, 0);   
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} 

void loop() { 

//checkRotorGate(); 

 largeLeftReward(); //debugged and works 

 largeRightReward(); // debugged and works 

 mediumLeftReward(); // debugged and works 

 mediumRightReward(); // debugged and works 

}  

7.2.3.5 Start box Arduino 

boolean leftSensorActive = true; 

boolean rightSensorActive = true; 

boolean sensorTripped = false; 

boolean screenActive=false; 

boolean speakerOn = true; 

boolean vertexActive = false; 

boolean afterBarrierActive = false; 

boolean rightBarrierTrial_indicator = false; 

boolean leftBarrierTrial_indicator = false; 

int textSize =8; 

int cursorX = 50; 

int cursorY = 100; 

int signalChoice; 

int signalForced; 

 

 

// ---------------------> TRIAL TYPES <------------------------ 

int FR = 1; // forced choice to right 

int FL = 2; // forced choice to left 

int C  = 3; // free choice 

int endOfTrials = -70; 

// ----------------> ARRAY CONTAINING TRIALS <----------------- 

// make array of 64 trials - I used 70 just to make sure there is room 

int trialType[70] = { 0, 

// config 1 

C,C,C,FR,  

C,FL,C,C, 

C,C,C,FR, 
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FL,C,C,C, 

C,C,C,FR, 

C,C,FL,C, 

C,FR,C,C, 

C,C,C,FL, 

 

// config 2 

C,C,FR,C, 

FL,C,C,C, 

C,FR,C,C, 

C,C,FL,C, 

FR,C,C,C, 

C,C,C,FL, 

FR,C,C,C, 

FL,C,C,C, 

endOfTrials, 

}; 

 

int trialNumber; 

int trialNumber1; 

int trialCounter; 

int rightCounter; 

float percentRight; 

int trialNumber2=0; 

int trialCounter2=0; 

int rightCounter2=0; 

float percentRight2 = 0; 

// TFT-related stuff 

#include "SPI.h" 

#include "Adafruit_GFX.h" 

#include "Adafruit_ILI9341.h" 

// servo stuff 

#include <Servo.h> 

Servo right_barrier; // big barrier 

const int right_barrierOut = 128; 

const int right_barrierIn = 28; 
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Servo left_barrier; // little barrier 

// this is a continuos servo, so you send it running in a certain direction  

// for a certain time; it will not work sending it to a certain position 

// 0 = very fast counterclockwise 

// 90 = dead stopped 

// 180 = very fast clockwise 

const int left_barrierOut = 95; 

const int left_barrierIn = 90; 

 

 

#define TFT_DC 9 

#define TFT_CS 10 

// Color definitions 

#define BLACK           0x0000 

#define BLUE            0x001F 

#define RED             0xF800 

#define GREEN           0x07E0 

#define CYAN            0x07FF 

#define MAGENTA         0xF81F 

#define YELLOW          0xFFE0 

#define WHITE           0xFFFF 

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC); 

// pin declarations 

int LEDpin = 13; 

const int closeMidstem = 2; 

const int screenPress = 4; 

const int screenPower = 7; // power pin for capacitive sensor 

const int vertexSensor = 40; 

const int rightSensor = 41; 

const int leftSensor = 38; 

const int lowPower = 0; 

const int highPower = 255; 

const int callOpenVertexToRight = 16; // pin 2 on others 

const int callOpenVertexToLeft = 15; // pin 2 on others 

const int callOneLaptoRight = 34; // pin 6 on others  

const int callOneLaptoLeft = 36; // pin 6 on others 
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const int openMidstemAndVertices = 14; // goes to A1 at motor cortex 

const int actLeftScreen = 15; // <---------- might not need this 

const int actRightScreen=16; // <------------might not need this 

const int openLeftVertexDoor = 19; 

const int speaker = 21; 

const int OneLapSignalled = 22; 

const int rightRewardSensor = 24; 

const int leftRewardSensor = 26; 

const int closeMidstemButtonPressed = 28; 

const int activateMidstem = 30; 

const int RIGHTactivateBeamSensor = 17; 

const int LEFTactivateBeamSensor = 19; 

const int deactivateLeftScreen = 36; 

const int tellDacqFreeConfig1Trial = 45; 

const int tellDacqFreeConfig2Trial = 44; 

const int tellDacqForcedConfig2Trial = A15; 

const int tellDacqForcedConfig1Trial = A13; 

const int tellDacqReward = A12; 

const int tellDacqVertex = 23; 

const int tellDacqAfterBarrier = 25; 

// REWARD DISPENSING 

const int dispenseRightMediumReward = 48; 

const int dispenseLeftMediumReward = 49; 

const int dispenseLeftLargeReward = 46; 

const int dispenseRightLargeReward = 37; 

boolean config1 = false; 

boolean config2 = false; 

boolean configNowSwitched = false; 

boolean config1Set = false; 

boolean rightBarrierPresent = false; 

boolean leftBarrierPresent = false; 

// reward variables which change based on configurations 

int rightRewardSize; 

int leftRewardSize; 

// stuff for the melody at the end of the session 

#include "pitches.h" 
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// notes in the melody: 

int melody[] = { 

  NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4 

}; 

// note durations: 4 = quarter note, 8 = eighth note, etc.: 

int noteDurations[] = { 

  4, 8, 8, 4, 4, 4, 4, 4 

}; 

////////////////////////////////////////////////// 

int configSwitch =32; 

////////////////////////////////////////////////// 

//////// CONFIG DETAILS FOR TODAY 

////////////////////////////////////////////////// 

/////////////////// 

//// PHASE 1 

////////////////// 

int rightRewardSize1 = dispenseRightLargeReward; 

//int rightRewardSize1 = dispenseRightMediumReward; 

int leftRewardSize1  = dispenseLeftMediumReward; 

//int leftRewardSize1  = dispenseLeftLargeReward; 

boolean rightBarrier1 = true; 

boolean leftBarrier1 = false; 

/////////////////////// 

// PHASE 2 DETAILS 

////////////////////// 

int rightRewardSize2 = dispenseRightMediumReward; 

//int rightRewardSize2 = dispenseRightLargeReward; 

int leftRewardSize2  = dispenseLeftLargeReward; 

//int leftRewardSize2  = dispenseLeftMediumReward; 

boolean rightBarrier2 = false; 

boolean leftBarrier2 = true; 

/////////////////////////////////////////////////// 

/////////////////////////////////////////////////// 

void setConfig1(){ 

  if(config1Set == false){ 

    config1Set = true; 



162 
 

    config1=true; 

    config2=false; 

    // set the reward sizes 

    rightRewardSize = rightRewardSize1; 

    leftRewardSize  = leftRewardSize1; 

    signalChoice = tellDacqFreeConfig1Trial; 

    signalForced = tellDacqForcedConfig1Trial; 

    // set the barriers 

    if(rightBarrier1 == true){ 

       right_barrier.attach(12); 

       right_barrier.write(right_barrierIn); 

       delay(200); 

       right_barrier.detach(); 

       rightBarrierPresent = true;   

    } 

    if(leftBarrier1 == true){ 

       left_barrier.attach(13); 

       left_barrier.write(left_barrierIn); 

       delay(50); 

       left_barrier.detach(); 

       leftBarrierPresent = true; 

    }  

    if(rightBarrier1 == false){ 

       right_barrier.attach(12); 

       right_barrier.write(right_barrierOut); 

       delay(200); 

       right_barrier.detach(); 

       rightBarrierPresent = true;   

    } 

    if(leftBarrier1 == false){ 

       left_barrier.attach(13); 

       left_barrier.write(left_barrierOut); 

       delay(750); 

       left_barrier.detach(); 

       leftBarrierPresent = true; 

    }    
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  }  

} // end of setConfig1 

void changeConfig(){ 

  if(trialNumber > configSwitch){ // once we've had 32 trials of a given configuration, change 

the maze to a new config.  

    if(configNowSwitched == false){ 

      configNowSwitched = true; 

    config1 = false; 

    config2 = true; 

      tft.fillScreen(RED);  

    tft.fillRect(30, 10, 40, 300, WHITE); 

    tft.fillRect(100, 10, 40, 300, WHITE); 

    tft.fillRect(170, 10, 40, 300, WHITE); 

      tft.fillScreen(BLACK); 

      tft.setTextColor(YELLOW);  

      tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.println(trialNumber); 

// set the reward sizes 

    rightRewardSize = rightRewardSize2; 

    leftRewardSize  = leftRewardSize2; 

        signalChoice = tellDacqFreeConfig2Trial; 

        signalForced = tellDacqForcedConfig2Trial; 

    // check out the barriers 

     // set the barriers 

    if(rightBarrier2 == true){ 

       right_barrier.attach(12); 

       right_barrier.write(right_barrierIn); 

       delay(200); 

       right_barrier.detach(); 

       rightBarrierPresent = true;   

    } 

    if(leftBarrier2 == true){ 

       left_barrier.attach(13); 

       left_barrier.write(left_barrierIn); 

       delay(50); 

       left_barrier.detach(); 
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       leftBarrierPresent = true; 

    } 

    if(rightBarrier2 == false){ 

       right_barrier.attach(12); 

       right_barrier.write(right_barrierOut); 

       delay(200); 

       right_barrier.detach(); 

       rightBarrierPresent = true;   

    } 

    if(leftBarrier2 == false){ 

       left_barrier.attach(13); 

       left_barrier.write(left_barrierOut); 

       delay(750); 

       left_barrier.detach(); 

       leftBarrierPresent = true; 

    } 

}  

  } 

  } // end of changeConfig 

void reportVertex(){ 

if(digitalRead(vertexSensor) == LOW && vertexActive == true){ 

  vertexActive = false; 

  digitalWrite(tellDacqVertex,HIGH); 

  delay(50); 

  digitalWrite(tellDacqVertex,LOW); 

    tft.fillScreen(GREEN); 

}   

} 

void reportAfterBarrier(){ 

if(digitalRead(rightSensor) == LOW && afterBarrierActive == true){ 

  afterBarrierActive = false; 

  digitalWrite(tellDacqAfterBarrier,HIGH); 

  delay(50); 

  digitalWrite(tellDacqAfterBarrier,LOW); 

    tft.fillScreen(RED); 

} 
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if(digitalRead(leftSensor) == LOW && afterBarrierActive == true){ 

  afterBarrierActive = false; 

  digitalWrite(tellDacqAfterBarrier,HIGH); 

  delay(50); 

  digitalWrite(tellDacqAfterBarrier,LOW); 

    tft.fillScreen(RED); 

}   

} 

void endTrials(){ 

  if(trialNumber > 64){ 

    if(speakerOn == true){ 

      for(int songLoop = 0; songLoop < 2; songLoop++){ 

        for (int thisNote = 0; thisNote < 8; thisNote++) { 

    // to calculate the note duration, take one second 

    // divided by the note type. 

    //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc. 

    int noteDuration = 1000 / noteDurations[thisNote]; 

    tone(speaker, melody[thisNote], noteDuration); 

    // to distinguish the notes, set a minimum time between them. 

    // the note's duration + 30% seems to work well: 

    int pauseBetweenNotes = noteDuration * 1.30; 

    delay(pauseBetweenNotes); 

    // stop the tone playing: 

    noTone(speaker); 

  }    

    } speakerOn =false; 

    } 

  } 

} 

// choice trial set by array index  

void choice_trialInitiated(){ 

   if(digitalRead(screenPress) && trialType[trialNumber] == C){ 

     if(screenActive == true){ 

       analogWrite(screenPower, lowPower); 

       vertexActive = true; 

       screenActive = false; 
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      tft.fillScreen(RED); 

      tft.setTextColor(WHITE);  

      tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.println(trialNumber); 

      delay(10); 

           if(config1==true){ 

    trialNumber1++; 

    } 

    if(config2 ==true){ 

      trialNumber2++; 

    } 

       digitalWrite(signalChoice, HIGH); // signals the start of a trial of config1 

       digitalWrite(openMidstemAndVertices,HIGH); // opens vertices 

       digitalWrite(callOpenVertexToRight, HIGH); // activates the infrared sensor 

       digitalWrite(callOpenVertexToLeft, HIGH); 

       delay(50); 

       digitalWrite(openMidstemAndVertices,LOW); 

       digitalWrite(callOpenVertexToRight, LOW);  

       digitalWrite(callOpenVertexToLeft, LOW); 

       digitalWrite(signalChoice, LOW);   

       trialCounter++;     

       delay(100); 

       leftBarrierTrial_indicator=false; 

       rightBarrierTrial_indicator=false; 

     } 

   } 

} 

// forced choice set by trial index 

void forcedRight_trialInitiated(){ 

   if(digitalRead(screenPress) && trialType[trialNumber] == FR){ 

     if(screenActive == true){ 

       analogWrite(screenPower, lowPower); 

       vertexActive = true; 

       screenActive = false; 

      tft.fillScreen(RED); 
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      tft.setTextColor(WHITE);  

      tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.println(trialNumber); 

      delay(10); 

           if(config1==true){ 

    trialNumber1++; 

    } 

    if(config2 ==true){ 

      trialNumber2++; 

    } 

       digitalWrite(signalForced, HIGH); // tells dacqusb that a forced choice has started 

       digitalWrite(callOpenVertexToRight, HIGH); // activates the infrared sensor 

       delay(50); 

       digitalWrite(callOpenVertexToRight, LOW);  

       digitalWrite(signalForced, LOW);  

       trialCounter++; 

     } 

   } 

} 

// forced left choice set by trial index 

void forcedLeft_trialInitiated(){ 

   if(digitalRead(screenPress) && trialType[trialNumber] == FL){ 

     if(screenActive == true){ 

       analogWrite(screenPower, lowPower); 

              vertexActive = true; 

       screenActive = false; 

      tft.fillScreen(RED); 

      tft.setTextColor(WHITE);  

      tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.println(trialNumber); 

           digitalWrite(signalForced, HIGH); // tells dacqusb that a forced choice has started 

      delay(10); 

           if(config1==true){ 

    trialNumber1++; 
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    } 

    if(config2 ==true){ 

      trialNumber2++; 

    } 

       digitalWrite(callOpenVertexToLeft, HIGH); // activates the infrared sensor 

       delay(50); 

       digitalWrite(callOpenVertexToLeft, LOW);  

 digitalWrite(signalForced,LOW);   

       trialCounter++;  

           if(config1==true){ 

    rightCounter++; 

    } 

    if(config2 ==true){ 

      rightCounter2++; 

    }    

       delay(100); 

       leftBarrierTrial_indicator=false; 

       rightBarrierTrial_indicator=false; 

     } 

   } 

} 

void activateMidstemSensor_right(){ 

  if(digitalRead(RIGHTactivateBeamSensor)){ 

    leftSensorActive = true; 

    rightSensorActive = false; 

         afterBarrierActive= true; 

    digitalWrite(rightRewardSize,HIGH); 

    delay(50); 

    digitalWrite(rightRewardSize,LOW); 

    if(config1==true){ 

    rightCounter++; 

    } 

    if(config2 ==true){ 

      rightCounter2++; 

    } 

    tft.fillScreen(BLACK); 
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      tft.setTextColor(YELLOW);  

      tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.println(trialNumber); 

  } 

} 

void activateMidstemSensor_left(){ 

  if(digitalRead(LEFTactivateBeamSensor)){ 

    leftSensorActive = false; 

    rightSensorActive = true; 

         afterBarrierActive= true; 

    digitalWrite(leftRewardSize,HIGH); 

    delay(50); 

    digitalWrite(leftRewardSize,LOW); 

    tft.fillScreen(BLACK); 

      tft.setTextColor(YELLOW);  

      tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.println(trialNumber);        

  } 

} 

void closeMidstemWithSensor(){ 

  if(digitalRead(leftRewardSensor) == LOW && leftSensorActive == true){ 

    leftSensorActive = false; 

    rightSensorActive = false; 

    sensorTripped = true; 

     }  

     if (digitalRead(rightRewardSensor) == LOW && rightSensorActive == true){ 

    rightSensorActive = false; 

    leftSensorActive = false; 

    sensorTripped = true; 

     } 

     if(sensorTripped ==true){ 

      sensorTripped = false; 

    digitalWrite(tellDacqReward, HIGH); 

      delay(50); 
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    digitalWrite(tellDacqReward, LOW); 

    delay(200); 

    digitalWrite(closeMidstem, HIGH); 

    delay(50); 

    digitalWrite(closeMidstem, LOW); 

    screenActive = true; 

    analogWrite(screenPower, highPower); 

    analogWrite(screenPower, highPower); 

           tft.fillScreen(BLACK); 

          tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY); 

      tft.setTextColor(BLUE);  

      percentRight = 100*((float)rightCounter/(float)trialNumber1); 

      tft.println(percentRight,0); 

            tft.setTextSize(textSize); 

      tft.setCursor(cursorX, cursorY+100); 

      tft.setTextColor(RED);  

      percentRight2 = 100*((float)rightCounter2/(float)trialNumber2); 

      tft.println(percentRight2,0);  

      trialNumber++;     

   } 

  } 

void setup(){ 

  pinMode(closeMidstem, OUTPUT); 

  pinMode(screenPress, INPUT); 

  pinMode(openMidstemAndVertices, OUTPUT); 

  pinMode(actLeftScreen, OUTPUT); 

  pinMode(actRightScreen, OUTPUT); 

  pinMode(openLeftVertexDoor, OUTPUT); 

  pinMode(speaker, OUTPUT); 

  pinMode(OneLapSignalled, INPUT); 

  pinMode(rightRewardSensor, INPUT); 

  pinMode(leftRewardSensor, INPUT); 

  pinMode(closeMidstemButtonPressed, INPUT); 

  pinMode(activateMidstem, INPUT); 

  pinMode(RIGHTactivateBeamSensor, INPUT); 
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  pinMode(LEFTactivateBeamSensor, INPUT); 

  pinMode(deactivateLeftScreen, OUTPUT); 

  pinMode(tellDacqForcedConfig1Trial, OUTPUT); 

  pinMode(tellDacqFreeConfig1Trial, OUTPUT); 

  pinMode(tellDacqFreeConfig2Trial, OUTPUT);  

  pinMode(LEDpin, OUTPUT);  

  pinMode(callOpenVertexToRight, OUTPUT); 

  pinMode(vertexSensor,INPUT); 

  pinMode(rightSensor,INPUT); 

  pinMode(leftSensor,INPUT); 

  pinMode(tellDacqForcedConfig2Trial, OUTPUT); 

  pinMode(tellDacqReward, OUTPUT); 

  pinMode(tellDacqVertex,OUTPUT); 

  pinMode(tellDacqAfterBarrier,OUTPUT); 

  digitalWrite(tellDacqFreeConfig1Trial, LOW); 

  digitalWrite(tellDacqForcedConfig2Trial, LOW); 

  digitalWrite(tellDacqForcedConfig1Trial, LOW); 

  digitalWrite(tellDacqFreeConfig2Trial, LOW); 

  digitalWrite(tellDacqReward, LOW); 

  digitalWrite(tellDacqVertex,LOW); 

  digitalWrite(tellDacqAfterBarrier,LOW); 

  analogWrite(screenPower, lowPower); 

  pinMode(dispenseRightMediumReward, OUTPUT); 

  pinMode(dispenseLeftMediumReward, OUTPUT); 

  pinMode(dispenseRightLargeReward, OUTPUT); 

  pinMode(dispenseLeftLargeReward, OUTPUT); 

  digitalWrite(dispenseRightMediumReward, LOW); 

  digitalWrite(dispenseLeftMediumReward, LOW); 

  digitalWrite(dispenseRightLargeReward, LOW); 

  digitalWrite(dispenseLeftLargeReward, LOW);  

  analogWrite(screenPower, lowPower); 

  tft.begin(); 

  tft.fillScreen(BLUE); 

        tft.setTextColor(YELLOW);  

      tft.setTextSize(10); 

      tft.setCursor(cursorX-10, cursorY+20); 
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      tft.println("GO!"); 

      tft.fillScreen(RED); 

      tft.fillScreen(WHITE); 

        tft.fillScreen(BLUE); 

        tft.setTextColor(YELLOW);  

      tft.setTextSize(10); 

      tft.setCursor(cursorX-10, cursorY+20); 

      tft.println("GO!"); 

} 

void loop(){ 

  reportAfterBarrier(); 

  reportVertex(); 

  choice_trialInitiated(); 

  forcedRight_trialInitiated(); 

  forcedLeft_trialInitiated(); 

  changeConfig(); 

  setConfig1(); 

  closeMidstemWithSensor(); 

  activateMidstemSensor_right(); 

  activateMidstemSensor_left(); 

  endTrials(); } 

7.3 Custom microdrive 

 Microdrives are an essential component for in-vivo, single-unit electrophysiology 

because they allow for implanted electrodes to be moved each day, thereby increasing the 

number of unique neurons recorded in an experiment. Prior to my PhD, the Bilkey lab had 

hand-made a microdrive (Bilkey & Muir, 1999). I found this approach very time-consuming, 

labour-intensive, and prone to significant variance from microdrive to microdrive. Therefore, 

I decided to design and 3D-print a microdrive. The finished product is presented in Figure A5.  

 

Figure A5. Custom-designed, 3D-printed brain implant. The implant is approximately 1.5cm tall, .5cm wide, and 

.5cm long and weighs approximately 5 grams.  
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 I opted for a stereolithography approach to 3D printing because that process produces 

pieces which are biologically inert and to be made at very fine scales (~.5mm tolerances). 

Developing this implant saved quite a bit of time and money. For instance, using the prior 

method, each implant cost approximately 5 NZD to produce whereas these new implants cost 

3 NZD each. Furthermore, the prior implants required about three days to manufacture 

whereas these new implants take one day. In addition to saving time and money, this new 

implant was standardized and more precise, which greatly reduced the variability from 

implant to implant.  
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