
3D Face Tracking Using Stereo

Cameras with Whole Body View

Maria Mikhisor

a thesis submitted for the degree of

Doctor of Philosophy

at the University of Otago, Dunedin,

New Zealand.

7 July 2017

Abstract

All visual tracking tasks associated with people tracking are in a great

demand for modern applications dedicated to make human life easier and

safer. In this thesis, a special case of people tracking - 3D face tracking in

whole body view video is explored. Whole body view video means that the

tracked face typically occupies not more than 5 − 10% of the frame area.

Currently there is no reliable tracker that can track a face in long-term

whole body view videos with luminance cameras in the 3D space.

I followed a non-classical approach to designing a 3D tracker: first a 2D face

tracking algorithm was developed in one view and then extended into stereo

tracking. I recorded and annotated my own extensive dataset specifically

for 2D face tracking in whole body view video and evaluated 17 state of

the art 2D tracking algorithms. Based on the TLD tracker, I developed a

face adapted median flow tracker that shows superior results compared to

state of the art generic trackers. I explored different ways of extending 2D

tracking into 3D and developed a method of using the epipolar constraint

to check consistency of 3D tracking results. This method allows to detect

tracking failures early and improves overall 3D tracking accuracy. I demon-

strated how a Kinect based method can be compared to visual tracking

methods and compared four different visual tracking methods running on

low resolution fisheye stereo video and the Kinect face tracking application.

My main contributions are:

• I developed a face adaptation of generic trackers that improves track-

ing performance in long-term whole body view videos.

• I designed a method of using the epipolar constraint to check consis-

tency of 3D tracking results.

ii

Acknowledgements

I would like to thank my supervisors Geoff Wyvill, Brendan McCane and

Steven Mills. This thesis would not have been possible without their guid-

ance and help.

I must thank Holger Regenbrecht and Tobias Langlotz from the Information

Science department for their much valued contributions to parts of this

research.

I would like to thank all the wonderful people at the Computer Science

department for making my studies at the University of Otago such a re-

warding experience: Hamza Bennani, Jordan Campbell, Leila Eskandari,

Aleksei Fedorov, Claudia Ott, Allan Hayes, Paul Crane and many many

others.

Most importantly, I want to express my gratitude to my family for endless

support throughout my whole studies. My final and very special thanks

goes to my baby Leo for his patience and for making me a more organized

student and to my husband Maxim, for his support, comprehension and

encouragement.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Requirements analysis . 4
1.3 Contributions . 7
1.4 Thesis layout . 8

2 Literature Survey 10
2.1 3D tracking . 10

2.1.1 Cameras number and position 11
2.1.2 Using stereo information . 14
2.1.3 Foreground segmentation . 17
2.1.4 Tracking Space . 18
2.1.5 3D tracking without building a depth map 25
2.1.6 Tracking methods . 26
2.1.7 3D tracking review summary . 29

2.2 2D face tracking . 32
2.3 Conclusion . 35

3 Tracking evaluation framework 36
3.1 Collecting evaluation datasets . 36
3.2 Stereo setup and calibration . 39
3.3 Ground truth annotation . 43
3.4 Tracking evaluation . 45

3.4.1 Evaluation metric for 2D tracking 45
3.4.2 Evaluation metric for 3D tracking 48
3.4.3 Frame rate estimation . 51

3.5 Conclusion . 53

4 2D Face Tracking 55
4.1 Choosing the best public tracker . 55
4.2 Speeding up TLD . 57

4.2.1 Background subtraction . 58
4.2.2 Subwindow detection . 59

4.3 Adapting for face tracking . 61
4.3.1 FaceTLD . 62
4.3.2 Using structural constraints for creating the face model 64

iv

4.3.3 Face adaptation implementation 66
4.3.4 Adapting generic trackers for tracking faces 73
4.3.5 Different modifications of TLD 78

4.4 Experimenting with parameters of face adapted median flow 80
4.4.1 Frequency of running the face detector 80
4.4.2 Subwindow based detection . 82
4.4.3 Different sliding window methods 84
4.4.4 The “following” subwindow size 86
4.4.5 Sliding window size . 88
4.4.6 Average face size and Haar cascade limits 89
4.4.7 Final comparison: TLD modifications and context tracker . . . 91

4.5 Conclusion . 92

5 3D Face Tracking 94
5.1 Converting 2D tracking into 3D tracking by triangulation 94
5.2 Using stereo information . 96

5.2.1 Checking size and 3D position 97
5.2.2 Sharing information between the views 100

5.3 3D median flow tracker . 102
5.3.1 3D Lucas-Kanade tracking . 102
5.3.2 Two head models and two ways of computing displacement . . . 105
5.3.3 Forward-backward tracking . 108
5.3.4 Comparing 2D and 3D median flow trackers 111

5.4 Compliance with requirements . 112
5.5 Conclusion . 113

6 3D Face tracking in fisheye video 114
6.1 Comparing Kinect to visual tracking methods 116
6.2 Using a particle filter for 3D tracking 118
6.3 Comparing 3D trackers on fisheye video and Kinect face tracking 123
6.4 Conclusion . 126

7 Conclusion 127
7.1 Future work . 128

References 130

v

List of Tables

3.1 The table describes common challenging factors and their occurrence in
my evaluation datasets. 38

4.1 Average overlap of the face adapted TLD tracking results and the ground
truth boxes for different values of threshold 1. In bold is the default
value that was used in all other experiments. 71

4.2 Average overlap (AO) of the face adapted TLD tracking results and the
ground truth data for different values of thresholds used in Alg. 3. The
values used as default are shown in bold for each threshold. 74

6.1 Kinect field of view. 123

vi

List of Figures

1.1 The concept of the off-axis projection. The image is taken from Oygard
(2012) with permission from the author. 3

1.2 Left: Standard display; distortion from oblique viewing and no view-
point adoption. Right: The proposed display system; no distortion and
passive viewpoint selection through user gaze tracking conveys the illu-
sion of 3D content. The image and caption are taken from Malleson and
Collomosse (2013) with permission from Springer. 3

1.3 Challenges in 3D face tracking: scale change. 5
1.4 Challenges in 3D face tracking: cluttered background. 6
1.5 Challenges in 3D face tracking: change in illumination. 6

2.1 An example of a wide baseline system with four cameras. Four views
from different perspectives allow to separate 9 people, even though they
occlude each other in each view. The image and caption are taken from
Khan and Shah (2006) with permission of Springer. 12

2.2 A filtered image of the tracked person’s head and shoulders extracted
from the depth map is compared to the head and shoulders template.
This image is taken from Choi et al. (2011) c©IEEE. 13

2.3 The top corner position is taken from Bahadori et al. (2007) with permis-
sion of Springer. The top down position is taken from Englebienne et al.
(2009) c©IEEE. The front facing position is taken from Muñoz-Salinas
et al. (2007) with permission from Elsevier. 14

2.4 Schematic representation of stereo cameras setup. 15
2.5 The foreground segmentation from a disparity map. (a) One of the two

luminance images, (b) raw disparity map after morphological smoothing,
(c) regions of slowly varying disparity, and (d) silhouettes recovered after
connected components grouping. The image and caption are taken from
Darrell et al. (2000) with permission of Springer. 17

2.6 Segmenting the height map background model. The upper row shows
frames in different time instances. The middle row depicts height maps
in the same time instances. In the lower row the median of the height
maps for each time instance is shown. In this row it is visible, how the
foreground is gradually filtered out. The image is taken from Muñoz-
Salinas (2007) with permission from Elsevier. 19

2.7 Tracking body parts in the depth map space (Nanda and Fujimura, 2004)
c©IEEE. Tracking (a) hand, (b) body torso and (c) head. 20

vii

2.8 (a) Luminance channel, (b) corresponding disparity map, (c) 2D red
channel-disparity histogram, (d) 2D green channel-disparity histogram,
(e) 2D blue channel-disparity histogram. Image and its caption are taken
from Zoidi et al. (2014) with permission from Elsevier. 21

2.9 Generating a plan-view height map and occupancy map. Image is taken
from Harville and Dalong Li (2004) c©IEEE. 22

2.10 (a)Camera image. (b) 3D reconstruction of the scene. (c) Occupancy
map. (d) Height map. (e) Coloured height map. The image is taken
from Muñoz-Salinas (2008) with permission from Elsevier. 23

2.11 Observations consist of two maps. (a) A simpl binary plan-view image
of foreground points. (b) A map of audio power in the microphone array
coordinate system. Image is taken from Checka et al. (2003) c©IEEE. . 23

2.12 (a) Feature points extracted from the original grey scale image and (b)
their projections to the world coordinate system. The green polygon is
the region of interest used to remove background points. The image is
taken from Cai et al. (2010) with permission from Elsevier. 26

2.13 The concept of region based stereo matching. The point of intersec-
tion of the quadrilateral formed by back-projecting the end-points of
the matched segments yields a 3D point lying inside an object. The
matching segments are 1 and 1’, and 2 and 2’ respectively. This image
and its caption are taken from Mittal and Davis (2003) with permission
of Springer. 27

2.14 Using three models with different life spans for face tracking. Image is
taken from Li et al. (2008) c©IEEE. 34

2.15 Visual constraints for face tracking used in the work of Kim et al. (2008).
(a) A generative PCA model where each row represents a certain pose
subspace. To predict a pose It, the shortest distance between the current
tracked face It and all the subspaces is found. (b) SVM classifier that
discriminates face-centred images (+, in blue) against badly cropped
face images (−, in red). This image was taken from Kim et al. (2008)
c©IEEE. 34

3.1 Examples from the 2D dataset with public videos. 40
3.2 Examples from my high resolution gray scale stereo dataset. 40
3.3 Examples from my fisheye color stereo dataset. 40
3.4 The shared viewing volume of the stereo system. 42
3.5 Different ground truth labelling formats: axis aligned bounding box,

oriented bounding box, head contour. 43
3.6 If the tracker outputs the target bounding box, when the target is not

really visible, or the tracker cannot find the target, when the target is
present in the image, then the penalty overlap and penalty location error
are added to the final result. 47

3.7 The relative 3D error is a ratio of the absolute location error e and
the distance between the true target position and the midpoint of the
cameras d. 49

viii

3.8 Three different location error plots (the 2D location error plot and the
3D location error plot in the top row, the relative error plot in the bottom
row) show the results of the experiment that compares 3D face adapted
TLD and 3D face adapted median flow. This experiment is described in
Section 5.1. 51

3.9 In the face adapted median flow tracker, the frame rate is slower for
the frames when the target is lost and the whole frame detection is
performed to restart the tracker. 52

3.10 The successful tracking frame rate and the average frame rate for face
adapted TLD for 37 high resolution videos. The two frame rates are
very similar in this experiment. 53

4.1 The performance of the generic tracking algorithms on our dataset. . . 56
4.2 The performance of the generic tracking algorithms on the public face

tracking dataset. 56
4.3 Background subtraction. The white rectangles show the segmented fore-

ground. The yellow rectangle shows the tracked target. 58
4.4 The performance of TLD with background subtraction and without it. 58
4.5 The subwindow detection. Red boxes show the detection area. Yellow

solid line boxes show the tracked target. The dashed yellow boxes show
the false positive examples. 60

4.6 The performance of TLD and FastTLD on high resolution sequences and
on low resolution sequences. 61

4.7 The frame rates of TLD and FastTLD in low resolution images and in
high resolution images. 62

4.8 The Viola Jones face detector finds many false positive examples. . . . 63
4.9 Illustration of a scanning grid applied to three consecutive frames (a)

and corresponding spatio-temporal volume of labels with unacceptable
(b) and acceptable (c) labelling. Red dots correspond to positive labels.
The image is taken from Kalal (2011). 65

4.10 Illustration of a trajectory in video volume and corresponding trajectory
in the appearance space. 66

4.11 The block diagram of the face tracking adaptation method. 67
4.12 When tracking and detection is successful, the structural constraints are

applied to the results. 70
4.13 If the tracker and the detector results overlap is lower than a threshold,

the tracker is reinitialized. 71
4.14 If the tracker and the detector results do not overlap, the tracker needs

to be reinitialized. To reinitialize the tracker, the detection result with
the highest similarity to the face model needs to hold for at least two
frames. 73

4.15 Performance evaluation on public image sequences. The overlap success
plots for the three trackers are shown in the top row and the location
precision plots are shown in the bottom row. Each line in a plot shows
the mean performance over the image sequences and the shading shows
one standard deviation. 75

ix

4.16 Performance evaluation on my image sequences. The overlap success
plots for the three trackers are shown in the top row and the location
precision plots are shown in the bottom row. Each line in a plot shows
the mean performance over the image sequences and the shading shows
one standard deviation. 76

4.17 Examples of tracking results highlighting how face tracking adaptation
helps to recover tracking after occlusions or rapid movements. The red
boxes show the original trackers’ performance and the green boxes show
the face tracking adaptation performance. 77

4.18 The comparison of TLD, Struck and MIL, adapted for tracking faces. . 77
4.19 The performance of TLD, face adapted TLD, face adapted median flow. 79
4.20 The frame rate summary for the trackers. 79
4.21 TLD retains the shape of the initial bounding box (green rectangle). If

it is reinitialized by the face detector, the shape of the bounding box is
changed to a square (yellow rectangle). 80

4.22 The performance of the median flow tracker adapted for tracking faces
with different frequencies of running the face detector. 81

4.23 The frame rate summary for the median flow with different detection
frequencies. 81

4.24 The face detection is performed in two subwindows. Subwindow 1 is
a subwindow centred at the previous target position. Subwindow 2 is
positioned in the background. It this example two faces are found. They
are classified as either positive or negative examples in the next step. . 83

4.25 The performance of face adapted median flow with detection performed
on a full frame once every 10 frames and face adapted median flow with
subwindow based detection. 83

4.26 The frame rates of face adapted median flow with detection performed
on a full frame once every 10 frames and face adapted median flow with
subwindow based detection. 84

4.27 The illustration of the different sliding window methods. 85
4.28 The performance of face adapted median flow with different sliding win-

dow methods . 86
4.29 The frame rate of face adapted median flow with different sliding window

methods. 87
4.30 The performance of face adapted median flow with different sizes of the

“following” subwindow. 87
4.31 The frame rate of face adapted median flow with different sizes of the

“following” subwindow. 88
4.32 The accuracy of face adapted median flow with different sizes of the

sliding window: 0.1, 0.2, 0.3, 0.4, and 0.5 of the frame height. 88
4.33 The frame rate of face adapted median flow with different sizes of the

sliding window. 89
4.34 The face height distribution in the high resolution videos in our dataset. 90
4.35 The performance of different detection limits in the high resolution videos. 90
4.36 The frame rate for different detection limits. 91

x

4.37 The final comparison of face adapted median flow, TLD, face adapted
TLD and CXT. 91

4.38 The frame rate comparison for face adapted median flow, TLD, face
adapted TLD and CXT. 92

5.1 The block scheme of a simple 3D tracker composed out of two inde-
pendent instances of a 2D tracker. This way any 2D tracker can be
converted into 3D. 95

5.2 The location error plot for 3D face adapted median flow and 3D TLD.
The success ratio at the threshold of 20 cm is given in brackets after the
trackers names. 95

5.3 The frame rate plot for the 2D and 3D face adapted median flow and
2D and 3D TLD. 96

5.4 The illustration of the epipolar constraint. The face is denoted by the
bounding box in the left image. In the right image the epipolar line
corresponding to the center of the bounding box is shown. 97

5.5 Checking the consistency of the 3D result. 98
5.6 The location error plot for 3D face adapted median flow with the size

and 3D position check and without it. 99
5.7 The location error plot for different overlap thresholds. 100
5.8 The collections of positive and negative examples are shared between

the views. 101
5.9 The location error plot for 3D face adapted median flow with shared

face examples collections and with separate collections. 101
5.10 The 3D point p in the C system is projected to the 3D point p′ in the

C ′ coordinate system. 103
5.11 The set of points in the cylinder head model. 106
5.12 Angle θ between the surface normal and the direction from the head

center to the camera center, which is used to determine the pixel density
weight. The image is taken from Xiao et al. (2002) c©IEEE 107

5.13 The set of points on the flat rectangle face model. 108
5.14 A separate displacement is computed for each sample point. 108
5.15 The location error plot for the 3D Lucas-Kanade tracker with flat model

and the cylinder model. 109
5.16 The FB error penalizes inconsistent trajectories. Point 1 is visible in

both images, tracker works consistently forward and backward. Point 2
is occluded in the second image, forward and backward trajectories are
inconsistent. The image is taken from Kalal et al. (2010b) c©IEEE. . . 109

5.17 The Lucas-Kanade tracker accepts a bounding box and a pair of images.
A number of points within the bounding box are tracked, their error is
estimated and the outliers are filtered out. The remaining estimate the
bounding box motion. The image is taken from Kalal et al. (2010b)
c©IEEE. 110

5.18 The location error plot for the 3D Lucas-Kanade tracker with FB track-
ing and without it. 110

5.19 The location error plot for the 3D median flow and the 2D median flow. 112

xi

5.20 The frame rate plot for 3D median flow and 2D median flow. 112

6.1 Top row: the joint viewing zone and an image example for the cameras
with perspective lenses. Bottom row: the joint viewing zone and an
image example for the cameras with fisheye lenses. 115

6.2 Selecting corresponding points in the depth sensor image and the fisheye
camera image. The three corresponding points (the head and hands of
the wooden figure) are marked by red circles in both views. 117

6.3 A synchronization sequence was recorded in the start and end of each
evaluation video to help synchronizing the Kinect data and the fisheye
video. 117

6.4 Three stages of the particle filter framework. The image is taken from
Li et al. (2016). 120

6.5 For each 3D particle, a 3D position is projected to the image plane and
then an ellipsoid of the size that corresponds to 0.2 meters in 3D world,
is created. 122

6.6 A visualization of 100 particles, projected to one of the cameras view.
Ellipses with lighter colour have higher likelihood. Black ellipses have
very small likelihood. 122

6.7 The location error plot for the five 3D trackers evaluated on the fisheye
stereo dataset in the unconstrained viewing zone. 124

6.8 The location error plot for the five 3D trackers evaluated on the fisheye
stereo dataset in the Kinect viewing zone. 124

6.9 The frame rate plot for the five 3D trackers evaluated on the fisheye
stereo dataset. 125

xii

Chapter 1

Introduction

Visual tracking is a diverse research area that has always attracted a lot of attention

and has multiple applications. All tracking tasks associated with people tracking are in

great demand for modern applications dedicated to make human life easier and safer.

Human silhouette tracking is often used in surveillance (Cai et al., 2010), hands are

tracked for gesture recognition (Rautaray and Agrawal, 2015), gaze tracking is used

in hands free displays (Sippl et al. 2010, Zhang et al. 2013), face tracking is used in

personality (Abate et al., 2007) and emotion recognition (Pantic and Bartlett 2007,

Wang et al. 2006), etc. In this thesis, I explore a special case of people tracking - 3D

face tracking in whole body view video.

1.1 Motivation

In this research I explore long-term face tracking in whole body view videos. Whole

body view tracking means that the camera can see a wide area, and a person can move

freely in front of the camera. The tracked face in this scenario typically occupies less

than 5− 10% of the frame area, but can come up to 50− 60%. This type of tracking

scenarios is less constrained compared to the popular head-and-shoulders videos when

a person sits in front of a desktop camera and the face and upper body occupies most

of a frame. Whole body view videos often feature a large scale change, fast motion,

occlusion, lighting change and other challenging factors. In this type of scenarios

cameras are usually mounted on a wall in a room, auditorium, street or some other

public space. Long-term unconstrained tracking implies that a person can leave the

field of view and then come back, and the tracking algorithm needs to be able to

reacquire the tracked target.

1

This type of face tracking algorithms can be effectively used in interactive displays

such as public displays and personal 3D interactive displays. The falling cost of display

hardware has led to a proliferation of screens of varying sizes, shapes, and forms in

public spaces. Displays are used for advertising or as digital signage providing electronic

equivalents of paper advertising and information boards (Davies, Nigel, Langheinrich,

Marc, Krüger 2016, Davies et al. 2012). However, the vast majority of today’s public

displays effectively disappear: people have become so accustomed to their low utility

that they are highly skilled at ignoring them (Muller et al., 2009). As existing digital

signage systems evolve towards more sophisticated pervasive display networks, the

introduction of personalized, interactive content on public displays could engage viewers

and promote social interaction like never before. Introducing 3D face tracking into

public displays allows us to track people looking at the display and interact with them

by changing the displayed content dynamically according to a viewer’s position. This

can help to grab attention of people passing by the display and make their attention

span longer.

Despite the advantages of viewer tracking, very few research works feature public

displays that use any kind of user tracking. Close range gaze tracking (0.5-3 meters

in front of a display) that allows hands free control of the content is the most popular

approach (Zhang et al. 2015, Zhang et al. 2013, Nakanishi et al. 2002, Sippl et al.

2010 and other works). Ren et al. (2013) perform gesture recognition to control public

displays also in the near range. In all these works, 3D head position is not estimated.

Personal 3D interactive displays also known as fish tank virtual reality displays are

another application of 3D face tracking. Such displays can be used for gaming or for

practical applications such as art design or engineering. De Boer and Verbeek (2009)

propose to use this type of displays as windows in windowless environments. Fish

tank VR displays use motion parallax as the main depth perception cue. To represent

the motion parallax depth cue, head tracking is performed and the off-axis projection

matrix is dynamically updated according to the viewer’s head position1. The off-axis

projection allows to counteract the distortion that arises when the user is looking at

the screen from an angle. The off-axis projection concept is illustrated in Figure 1.1.

In Figure 1.2 shows two screens, one with a classic on-axis projection and one with an

off-axis projection.

Many fish tank VR displays described in the literature work in the range of 0.5 - 1.5

1A video example of a fish tank virtual reality display that I assembled using Kinect, can be found

here https://youtu.be/0KMqxDySFA4

2

https://youtu.be/0KMqxDySFA4

Figure 1.1: The concept of the off-axis projection. The image is taken

from Oygard (2012) with permission from the author.

Figure 1.2: Left: Standard display; distortion from oblique viewing

and no viewpoint adoption. Right: The proposed display system; no

distortion and passive viewpoint selection through user gaze tracking

conveys the illusion of 3D content. The image and caption are taken

from Malleson and Collomosse (2013) with permission from Springer.

meters (for example Rekimoto and Building 1995, Lee et al. 2013, Surman et al. 2015).

When using these displays the user is supposed to sit or stand close to the display and

3

face tracking is performed by a web camera. Brar et al. (2010) track the user’s face in

a larger zone (1-3 meters) for their head coupled display. In their work, face tracking

is performed by 6 cameras using a face detector and block matching. Several authors

use Kinect for 3D interactive displays (Dundas and Wagner 2014, Johnsen et al. 2013,

Lee et al. 2013). Kinect allows a viewing zone of 1.3 - 3.5 meters and the viewing angle

is limited by 70◦ horizontally and 60◦ vertically. Another downside of using Kinect is

that its performance can be disturbed by sunlight. Another popular method is using

active IR illumination and the bright pupil effect for pupil detection. Xue and Wang

(2014) use IR pupils detection combined with a cascaded classifier for detecting faces

and a support vector machine for detecting eyes. After eyes are detected, a Kalman

filter is used to predict the eyes position in the next moment in the range of 60 - 75

cm from the display. Lee (2008) uses the Wii remote to track the user wearing glasses

with two IR emitters. All these displays have a limited viewing zone that restricts their

usage.

The challenges of 3D face tracking for interactive displays include a large scale

change as the tracked person can be very far and then come close to the display.

Interactive displays are often used in public spaces and this introduces such tracking

difficulties as a cluttered background and other people faces that can interfere with the

target face tracking. Tracking has to be done in real time to allow smooth interaction

with a display and engaging experience for the user. Another important factor is that

a person can leave the field of view and then come back, and the tracking algorithm

needs to be able to reacquire the tracked face.

3D face tracking is not limited to interactive displays. For example, face tracking

can be used to track a speaker or a lecturer to provide an automatic close view of their

face when recording a public speech (Nickel and Gehrig, 2005). Even though there are

multiple possible applications, the goal of this thesis is rather theoretical. The task of

whole body view face tracking is not well studied and described in the literature (see

Chapter 2). I would like to address this gap.

1.2 Requirements analysis

The goal of thesis is to develop a 3D face tracking algorithm to track a person moving

freely (walking, running, jumping, etc.) in front of stereo cameras. Tracking is active

when the user looks towards the cameras. I set the following requirements for the final

3D face tracking algorithm:

4

• Using luminance cameras only. It is possible to solve this research goal

partially using such devices as Kinect. However, I chose to use luminance cameras

only and no other additional sensors such as depth or audio sensors.

• Viewing range 0.5 - 5 meters. This range is chosen as an average size of a

public indoor environment such as an exhibition room or a classroom. The user

of the system should be able to move freely in front of the cameras, come close

and go as far as 4-5 meters away. This results in significant scale change. See

Figure 1.3 for an illustration of this issue.

Figure 1.3: Challenges in 3D face tracking: scale change.

• Frame rate close to 30 frames per second. The final algorithm should be

able to work in real time. 30 frames per second is considered to be fast enough

for real time processing. The exact frame rate needed for tracking in a real

time application depends on the specifics of this application, such as how much

post-processing is needed after finding the face and how much time lag can go

unnoticed by the user.

• Long term tracking. The tracked person can leave the viewing zone and return

after some time. The tracker must resume tracking when the person returns.

• Indoor environment. I chose to develop the 3D face tracking algorithm for

indoor environments. It does not mean that it will not work outside. However,

all evaluation datasets are recorded indoor.

5

• Cluttered background and occlusions. Other people can be present in the

scene. The tracker should be able to distinguish the tracked person from other

people and from background objects. It should be able to recover quickly from

occlusions. See Figure 1.4 for an illustration of confusing background.

Figure 1.4: Challenges in 3D face tracking: cluttered background.

• Change in illumination. Drastic lighting variations can affect the tracked

person’s appearance. The tracking algorithm should be able to cope with these

effects. See Figure 1.5 for an illustration of lighting variations.

Figure 1.5: Challenges in 3D face tracking: change in illumination.

6

1.3 Contributions

I followed a non-classical approach of developing a 3D tracking algorithm: instead of

using stereo matching techniques, I developed a 2D face tracking algorithm in one

view and then extended it into stereo tracking. First, I compared state of the art 2D

trackers to find the one that shows the best performance for long term face tracking with

a large scale change. After that I improved the chosen tracker accuracy by adapting

it for tracking exclusively faces. Lastly, I explored different ways of extending this 2D

face tracker into 3D tracking. The following contributions were made in this research:

• I collected and labelled a dataset of more than 100 stereo and monocular view

videos of different resolution and complexity specifically for evaluating long term

whole body view face tracking. All videos are 600-3000 frames long.

• I evaluated 17 state of the art 2D trackers and found that TLD (Kalal et al.,

2011) and the context tracker (Dinh et al., 2011) show the best performance for

long term whole body view face tracking.

• I designed and implemented an adaptation of generic trackers for tracking ex-

clusively faces. This adaptation method employs the Viola Jones face detector

and structural constraints to collect a set of positive and negative examples of

the tracked face and help to restart the tracker when it fails. Trackers adapted

for face tracking show considerable accuracy improvement over generic trackers.

This contribution was published in Mikhisor et al. (2015).

• I developed a close to real time face adaptation of the median flow tracker (Kalal

et al., 2010b). Originally, the median flow tracker is a part of TLD. However,

my experiments showed that face adapted median flow outperforms face adapted

TLD and the context tracker for the face tracking task. Also, I designed a sliding

window detection method that allows to run face adapted median flow close to

real time on low resolution videos.

• I explored different ways of extending 2D face adapted median flow into 3D

and developed a way to check 3D tracking results consistency using the epipolar

constraint. For each pair of 2D face bounding boxes, the resulting 3D head

is reconstructed and reprojected back into the images. If the tracking result is

reliable, then the reprojected face boxes overlap with the 2D tracking boxes. This

way the epipolar constraint helps to detect tracking failures early and improves

overall 3D tracking accuracy.

7

• I demonstrated how a Kinect based tracking method can be compared to visual

tracking methods running on luminance stereo video. To compare visual tracking

methods to Kinect, the Kinect face tracking results have to be recorded at the

same time as recording the dataset using luminance cameras. To be able to com-

pare the tracking results, Kinect and the stereo cameras have to be synchronized

and stereo calibrated.

• I compared the 3D Kinect face tracking application and four visual trackers run-

ning on low resolution fisheye stereo video: the 3D particle filter, two 2D particle

filters with triangulation, 3D face adapted median flow, 3D face adapted TLD.

The 3D particle filter shows the best performance. It outperforms Kinect because

the Kinect’s viewing zone is limited. It also outperforms 3D face adapted median

flow and 3D face adapted TLD because these two trackers cannot track faces

smaller than 10×10 pixels in low resolution fisheye videos. The 3D particle filter

was published in Mikhisor et al. (2014).

1.4 Thesis layout

The rest of this thesis is structured as follows. Chapter 2 reviews state of the art

algorithms for whole body view people tracking in 3D space. Works on face tracking

are also reviewed in this chapter.

Chapter 3 describes the preparation steps required to design a tracking algorithm:

stereo calibrating cameras, recording and annotating evaluation datasets, choosing met-

rics that will be used to compare different algorithms.

In Chapter 4 I explore the existing state of the art trackers to find out which one

works best for tracking faces in whole body view videos. TLD and the context tracker

show the best performance. Then I develop a novel approach of adapting generic

trackers for tracking faces. Finally, face adapted median flow is developed which shows

superior accuracy over face adapted TLD and runs close to real time on low resolution

videos.

Chapter 5 focuses on converting a 2D tracking algorithm into 3D tracking. A

novel method of checking the consistency of the target size and 3D position using the

epipolar constraint is developed. This method helps to detect failures early and restart

the tracker, but does not help to speed up the final 3D tracker. It can be used when

converting any 2D tracker into 3D. In the previous chapter it is shown that the face

adapted median flow tracker has an optimal combination of speed and accuracy for

8

real time tracking. The Lucas-Kanade tracker is one of the key parts of this tracker.

In this chapter I also study different ways of converting the 2D Lucas-Kanade tracker

into 3D to optimize its performance and speed up the final 3D tracker.

In Chapter 6 I investigate 3D face tracking in fisheye stereo video. Using fisheye

cameras allows much wider field of view which can be very useful in many applications.

For this dataset only, the Kinect 3D tracking data was recorded at the same time when

recording this dataset. This allows me to compare Kinect 3D face tracking to 3D face

adapted median flow and 3D face adapted TLD developed in the previous chapter.

Also I evaluate two more trackers on the color fisheye dataset: a 3D particle filter and

two 2D color particle filters with triangulation. These two methods were not evaluated

in the previous chapter because they do not work on my main greyscale stereo dataset.

The 3D particle filter shows good performance on the low resolution distorted fisheye

video.

Chapter 7 summarizes the contributions of the thesis and discusses possible avenues

for future research.

9

Chapter 2

Literature Survey

This chapter presents a comprehensive literature overview of state of the art algorithms

for tracking people in 3D space. Also a review of 2D trackers specialized on tracking

faces is given in the end of the chapter, in Section 2.2.

2.1 3D tracking

The main target of this research is whole body view 3D face tracking when a face

typically occupies less than 5 − 10% of a frame area. In this section, I discuss the

most popular methods used for 3D tracking in sequences containing the whole body

view of one or more people. I do not review here multiple works on 3D face tracking

with a head and shoulders view. Such tracking methods are not directly relevant to

my research because the face occupies most of the image and its 3D position is less

important than its orientation and positions of facial features.

According to Wang et al. (2003) and Turaga et al. (2008), whole body view 3D

people tracking include such application areas as surveillance, human-machine inter-

action (advanced user interfaces, gaming, virtual reality, etc), actions recognition and

tracking for motion-based diagnosis, identification, or sports analysis and others. I do

not review articulate motion tracking such as joints and limbs tracking as I am not

interested in hands or legs positions. I am interested in 3D head or face tracking,

but also consider whole body tracking as it can be an initial step to locate the face.

Therefore in this review I concentrate on surveillance and human-machine interaction

(HMI) applications.

Often the application for which the 3D tracking is performed defines the choice of

sensors, their position and methods used for 3D tracking. Surveillance tasks include

10

people tracking in public areas and analysing specific behaviours in the sensed area

(e.g. airports for malicious behaviour, hospitals for elderly or disabled people having

issues) among others. The traditional approach for surveillance applications is to use

a network of single cameras with no overlapping views. Such systems do not perform

3D tracking and are not reviewed here. In recent years, more authors suggested to use

a network of stereo cameras instead of single cameras (e.g. Darrell et al. 2001, Harville

2004, Tao Zhao et al. 2005). Most often in such surveillance systems, the direct 3D

position of people is not important, but the stereo information is used to supplement

luminance information for easier foreground segmentation and tracking.

In contrast human-machine interaction applications often employ the 3D position

of the tracked person directly to instruct the interactive computer or robotic system for

the following actions (e.g. in head coupled displays described in the works of Brar et al.

2010, Dundas and Wagner 2014, Johnsen et al. 2013, Lee et al. 2013). HMI systems

include augmented and virtual reality, robotics, intelligent living environments and

other applications.

2.1.1 Cameras number and position

For 3D tracking one, two or multiple cameras can be used. Using two cameras is the

most common approach and most of the works described further use two cameras. It is

the minimal stereo system required to make direct estimation of the target 3D position

by triangulation. Usually in the two cameras stereo system, the baseline and the angle

between the optical axes are small. This way the two cameras overlook the scene from

two similar perspectives and it makes it easier to find accurate correspondences and

estimate disparities (Llewellyn et al., 2010).

In some works, several overlapping cameras with wide baselines are employed to

obtain a better view of the scene. Khan and Shah (2006) use 4 cameras, while Mittal

and Davis (2002) use 6 cameras overlooking the same scene from different perspectives.

The baselines and the angles between the optical axes of each camera are large enough

to view the same scene from completely different perspectives (see Figure 2.1 for an

example). Such setup allows to deal with occlusions more efficiently, especially in

crowded scenes. The downside of the wide baseline system is that it is very hard

to match corresponding points in different views because they look so different. The

disparity map that is often used for foreground segmentation cannot be computed in

wide baseline systems.

It is possible to estimate a 3D position using just one camera. If the camera

11

Figure 2.1: An example of a wide baseline system with four cameras.

Four views from different perspectives allow to separate 9 people, even

though they occlude each other in each view. The image and caption

are taken from Khan and Shah (2006) with permission of Springer.

calibration is known, the target 3D position can be found by comparing its known real

world size (e.g. the size of the human head or human height) to its projection size.

Rougier and Meunier (2010a) use 3D particle filter to track the 3D head position by

one camera. In this work the 3D head ellipsoid is projected into the 2D camera view.

The tracked person’s height is used to estimate the initial 3D position of their head.

Another possibility is to use structured light or time-of-flight (ToF) depth sensors.

A ToF depth sensor emits modulated light to target objects and measures the phase

delay of reflected light waves at each sensor pixel to calculate the distance travelled

(Gokturk et al., 2004). Structured light depth sensors project a pattern onto target

objects, which provides a unique illumination code for each surface point observed by

a calibrated imaging sensor (Maimone and Fuchs, 2012). Once the correspondence

between the projector and the sensor is identified by stereo matching methods, the 3D

position of each surface point can be calculated by triangulation. Kinect is the most

popular and accessible depth sensor (Han et al., 2013). Kinect V1 uses a structured

light sensor. Kinect V2 uses a time-of-flight sensor. An overview of tracking algorithms

using Kinect can be found in Han et al. (2013). Rougier et al. (2011), Mastorakis

12

and Makris (2014), and Stone and Skubic (2014) explore the Kinect sensor for the

application of detecting falls of the elderly. The authors use a depth map obtained

from Kinect to segment a human figure from the background and estimate the motion

of its centroid. Luber et al. (2011) use three Kinects to get a wider field of view for

tracking people. In their system, a local depth-change detector employing histogram

of oriented depths (HOD) is formed, which is conceptually similar to histogram of

oriented gradients (HOG) in RGB data (Dalal and Triggs, 2005). On top of that, a

probabilistic model combining HOD and HOG detects the people from the RDB-D

data. Choi et al. (2011) adopt five different observations to track humans in the image:

motion, upper body appearance, face appearance, head and shoulders shape, skin color.

The depth map is used to compare the candidate to the depth based shape template

(see Figure 2.2). All these features are combined in a Bayesian framework. Tulyakov

et al. (2015) use Kinect together with a luminance camera to accurately infer head pose,

perform face frontalization and estimate facial expressions in real-time. Their system is

designed to cope with a wide range of head pose variations, but Kinect and the camera

need to have a close head-and-shoulder view of the tracked face. In general Kinect and

other depth sensors give a fast way to get a depth map synchronised with a luminance

image. In all other aspects, after producing the depth map, the tracking algorithms

with Kinect are similar to the algorithms using stereo cameras. The downside of Kinect

is a limited viewing zone (0.5 to 3.5 meters in depth) and viewing angle (57◦ × 70◦).

Figure 2.2: A filtered image of the tracked person’s head and shoulders

extracted from the depth map is compared to the head and shoulders

template. This image is taken from Choi et al. (2011) c©IEEE.

Often surveillance applications differ from HMI applications in the positioning of

cameras. Three possible positions are shown in Figure 2.3. Most surveillance applica-

13

tions use the top corner camera position (e.g Cai et al. 2010, Xiaoyu Huang et al. 2004,

Bahadori et al. 2007). This way it is easier to place cameras in crowded public spaces

and it helps to reduce occlusion. One of the drawbacks of this setup is that the face and

the human body silhouette are not always clearly visible. Englebienne et al. (2009)

use ceiling-mounted, straight-down cameras to count people in a supermarket. The

advantage of this camera placement is complete elimination of occlusion in the central

part of the view, but the field of view is very limited. Most HMI applications that

perform tracking with luminance and/or depth cameras, use forward facing cameras

when the camera is placed at near head height (e.g. Muñoz-Salinas et al. 2007, Darrell

et al. 2000, Nanda and Fujimura 2004). This way the face is clearly visible when the

user is facing the cameras. Also the hands are visible too and that allows to analyse

gestures if needed.

Figure 2.3: The top corner position is taken from Bahadori et al.

(2007) with permission of Springer. The top down position is taken

from Englebienne et al. (2009) c©IEEE. The front facing position is

taken from Muñoz-Salinas et al. (2007) with permission from Elsevier.

2.1.2 Using stereo information

HMI systems and surveillance systems with stereo cameras use stereo information to

extract the three dimensional structure of a scene. Extracting the 3D structure of the

scene from stereo views is usually referred to as computational stereo in the literature.

The fundamental basis for computational stereo is the fact that a single three dimen-

sional physical location projects to a unique pair of image locations in two observing

cameras. If it is possible to find the image locations that correspond to the same

physical point in space, then it is possible to determine its three dimensional location.

The stereo computation field is usually divided into three problems:

14

1. Calibration

2. Correspondence

3. Reconstruction

Calibration: It is the process of determining camera system internal geometry

(focal lengths, optical centers, and lens distortions) and external geometry (the relative

positions and orientations of each camera). Accurate estimation of this geometry is

necessary for relating image information (expressed in pixels) to an external world

coordinate system. There are high quality tools available for estimating calibration,

e.g. Camera Calibration Toolbox for Matlab1, calibration tools in the OpenCV library2,

the OCamCalib tool3 for wide angle cameras (Scaramuzza et al., 2006).

4

P

Z

O
ll Or

f b
X

Y pp'

Camera planes

Figure 2.4: Schematic representation of stereo cameras setup.

Correspondence: The minimal possible stereo system is composed of a pair of

cameras with optical centres Ol and Or separated by a distance of b (see Figure 2.4).

Let us assume that both cameras coordinate systems are axis-aligned and the baseline

is parallel to the X coordinate axis. A point P in space projects to two locations on

the same scan line in the left and right camera images. The resulting displacement of a

projected point in one image with respect to the other is called disparity. The set of

all disparities between two images is called a disparity map. Disparities can only be

computed for the points that are captured in both images, but even this is not always

possible because of occlusions and/or lack of texture.

1https://au.mathworks.com/help/vision/camera-calibration.html
2https://docs.opencv.org/2.4/modules/calib3d/doc/calib3d.html
3https://sites.google.com/site/scarabotix/ocamcalib-toolbox

15

https://au.mathworks.com/help/vision/camera-calibration.html
https://docs.opencv.org/2.4/modules/calib3d/doc/calib3d.html
https://sites.google.com/site/scarabotix/ocamcalib-toolbox

The correspondence problem comprises of determining the locations in each cam-

era image that are the projections of the same physical point in space. There is no

general solution to the correspondence problem because of ambiguous matches (e.g.

due to occlusion, specularities, or lack of texture). Thus, a variety of constraints (e.g.

the epipolar constraint) and assumptions (e.g. image brightness constancy and surface

smoothness) are commonly used to make the problem tractable. Correspondence meth-

ods include block matching, gradient based optimisation, feature matching, dynamic

programming and other computer vision algorithms. The most recent and compre-

hensive review of all different methods of disparity map computation can be found in

Tippetts et al. (2016).

Reconstruction: The reconstruction problem consists of determining three di-

mensional structure from a disparity map, based on the known camera geometry. The

depth of a point in space P imaged by two cameras with optical centers Ol and Or

is defined by intersecting the rays from the optical centers through their respective

images p and p′ (Figure 2.3). Given the baseline distance b and the focal length f of

the cameras, depth at a given point may be computed by similar triangles as

Z = f
b

d
, (2.1)

where d is the disparity of that point converted to metric units. This process is called

triangulation. To compute the depth map, a depth is calculated for each value in the

disparity map.

The number of pixels that each image contains increases the number of calculations

required to match it with any number of possible matches, making the correspondence

problem a computationally complex one that severely limits the speed at which one

can obtain results. However, stereo algorithms are easily parallelizable and therefore

are well suited for implementation on graphics processing units (GPU), digital sig-

nal processors (DSP) or field programmable gate arrays (FPGA). Samarawickrama

(2010) offers a detailed discussion about the advantages and disadvantages of these

technologies with respect to real-time implementations of vision algorithms. Published

performance results of stereo vision algorithms on GPU, FPGA and DSP-based plat-

forms are provided in Tippetts et al. (2016) in an effort to understand the performance

increases that are available when algorithms are optimized for parallel implementations

on such hardware.

16

2.1.3 Foreground segmentation

The most common approach of employing disparity information is for extracting fore-

ground from the disparity map. Eveland et al. (1998) and Darrell et al. (2000) segment

foreground directly from a disparity map by thresholding and grouping. The process

is illustrated in Figure 2.5. However, the accuracy of the foreground segmentation is

affected by missing information such as that caused by occlusions, slanted surfaces,

and other issues relating to extracting information about three dimensions from two

dimensional images. Using the disparity map together with the luminance image for

foreground segmentation helps to deal with this problem. One of the possibilities is

to create a background model in luminance space and use it for the foreground seg-

mentation in those parts of the image where disparity information cannot be retrieved.

Different ways of combining disparity and luminance information for extracting fore-

ground are used in Bahadori et al. (2007), Butt and Morris (2011), Harville (2004),

Kalarot et al. (2012). Instead of using luminance and disparity information together,

Tang et al. (2008) segment the foreground using just the luminance information and

then back-project it to the depth map to get a point cloud of foreground objects in 3D

space.

Figure 2.5: The foreground segmentation from a disparity map. (a)

One of the two luminance images, (b) raw disparity map after mor-

phological smoothing, (c) regions of slowly varying disparity, and (d)

silhouettes recovered after connected components grouping. The im-

age and caption are taken from Darrell et al. (2000) with permission

of Springer.

Compared to simple depth map thresholding, the more accurate way of foreground

segmentation is to use several depth maps computed at different moments to create

a background model. When building the background model from several frames, a

17

mixture of Gaussians in the space of depth and luminance can be used to model each

pixel. Then to filter out background, each pixel whose color and depth data match

that pixel’s background model, is labelled as background. The background model can

be made offline, when there is no foreground present (Butt and Morris 2011, Kalarot

et al. 2012). The downside of this approach is that the background can change, but

the model is not updated. Another approach is to update the background model in

real time. In the works of Darrell et al. (2001), Muñoz-Salinas (2007), Bahadori et al.

(2007), Harville (2004), Tao Zhao et al. (2005) the background model is acquired online

without a training sequence of foreground-free observations. Gathering background

observations over long-term sequences has the advantage that lighting variation can

be included in the background training set. Extreme lighting variation is useful, since

it can cause previously uniform regions to have apparent contrast. Either the overall

(ambient) or relative (shadow projected texture) illumination level can cause contrast

to appear where previously the image region was uniform (and invisible in the depth

map).

Rather then using depth map and/or luminance image background models, Muñoz-

Salinas (2007) uses the height map background model created and updated in real time.

A cloud of 3D points is calculated from the disparity map and projected into the floor

plane. The floor plane of the observed scene is divided into bins and then the height of

points that are projected to each bin are calculated. The process of creating the height

map background model is illustrated in Figure 2.6.

2.1.4 Tracking Space

After the foreground is segmented, tracking is performed. Stereo-based object tracking

is usually done in one of the three different spaces: camera-view space, plan-view space

(also referred to as ground view or bird-eye view) or 3D space.

Tracking in camera-view space: Tracking in camera-view space means that the

tracked object position is expressed in the pixel coordinates of one of the cameras’

images. This camera is usually called the reference camera. Tracking in the camera-

view space is often performed in HMI applications because in these applications the

tracked person is usually close to the cameras, is in the foreground, occupies larger

part of the frame and often there are no occlusions (e.g. Darrell et al. 2000, Nanda

and Fujimura 2004, Argyros and Lourakis 2004).

The work of Darrell et al. (2000) is one of the early 3D HMI applications that track

18

Figure 2.6: Segmenting the height map background model. The upper

row shows frames in different time instances. The middle row depicts

height maps in the same time instances. In the lower row the median

of the height maps for each time instance is shown. In this row it

is visible, how the foreground is gradually filtered out. The image is

taken from Muñoz-Salinas (2007) with permission from Elsevier.

users’ faces in the reference camera-view space. The depth map is used to segment

silhouettes in the foreground. And then the skin color and face detector are used

to localize faces in the reference frame. Another typical example of tracking in the

camera-view space can be found in the work of Nanda and Fujimura (2004). They use

the time-of-flight depth sensor and head and hands tracking is performed in the space

of the sensor depth image. The edge map based on the depth map is employed to

create an attractor basin, in which they try to fit body parts as shown in Figure 2.7.

In the work of Zoidi et al. (2014), the tracking is also performed in the camera-view

space with the help of the Kalman filter framework. In this work, the color and disparity

correlation is fully exploited by their combination in a 2-dimensional colour-disparity

histogram. Each candidate object ROI is split into its three RGB color channels and

for each channel the 2D colour-disparity histogram is computed. The histograms are

19

Figure 2.7: Tracking body parts in the depth map space (Nanda and

Fujimura, 2004) c©IEEE. Tracking (a) hand, (b) body torso and (c)

head.

constructed by selecting nc bins for the color and nd bins for the disparity informa-

tion. See Figure 2.8 for an example of the three histograms. Then the colour-disparity

histograms for each candidate ROI are compared to the histograms of the object de-

tected in the previous frame. The ones with the lowest 2D colour-disparity histogram

similarity are discarded.

Tracking in plan-view space: Tracking in plan-view space means that all de-

tected features are projected onto the horizontal plane. Usually this plane coincides

with the ground or floor. The tracked target position is expressed in a 2D coordinate

system in the horizontal plane. Tracking in plan-view space is popular in surveillance

applications (e.g. Harville and Dalong Li 2004, Bahadori et al. 2007, Khan and Shah

2006), but is also used in some HMI applications (e.g. Muñoz-Salinas 2008). The main

advantage of this method is the total elimination of occlusion when tracking a crowd

of people because two people cannot stand at the same spot on the ground at the same

time.

Because the 3D point cloud is projected into 2D space, some information reduction

happens. There are several ways to retain some of the 3D information when projecting

it into the 2D plane. A common approach is to use plan-view statistics: height map

and/or occupancy map. A conceptual flow diagram of plan-view statistics is shown

in Figure 2.9. To compute plan-view maps, all reliable depth image values are back-

projected, using camera calibration data and perspective projection, into a 3D point

20

Figure 2.8: (a) Luminance channel, (b) corresponding disparity

map, (c) 2D red channel-disparity histogram, (d) 2D green channel-

disparity histogram, (e) 2D blue channel-disparity histogram. Image

and its caption are taken from Zoidi et al. (2014) with permission

from Elsevier.

cloud. This back-projection may optionally be restricted to the scene foreground. Then

the space is discretized into a regular grid of vertically oriented bins and then statistics

of the 3D point cloud is computed within each bin. Each pixel in a plan-view statistic

image corresponds to one vertical bin, with the value at the pixel being some statistic

of the 3D points within the corresponding bin. The occupancy map reflects the number

of points in each bin, and the height map reflects the height of the highest point within

each bin. When the plan-view projection is restricted to the foreground in the scene,

the plan-view occupancy map provides an estimate of the amount of foreground at each

floor location, while the plan-view height map indicates the shape of the foreground

objects as viewed from above.

Tang et al. (2008), Harville and Dalong Li (2004), Muscoloni and Mattoccia (2014)

segment the foreground first and then compute both the height map and the occupancy

map. These two plan-view statistics can be computed through one pass of the depth

map. Then different filters are applied to the occupancy map to find blobs that are

similar in shape and size to a human figure viewed from above. The height map is

21

Figure 2.9: Generating a plan-view height map and occupancy map.

Image is taken from Harville and Dalong Li (2004) c©IEEE.

used to filter out the blobs whose heights are not in the range of an average human

height. Then an estimator such as a Kalman filter can be used to predict these blobs’

positions either in the height map or in the occupancy map or in their combination in

the next frame.

Besides the occupancy map and the height map, Muñoz-Salinas (2008) employed

another plan-view statistic which is the colour map (see Figure 2.10). It contains the

color histogram statistic of the 3D point cloud at each plan-view cell. The occupancy

map and height map are used to detect objects, and colour map is used to create color

models for the detected objects. A particle filtering-based tracking framework is used

to track objects in plan-view space with the location, speed, and color information.

Boschini et al. (2016) employ a Convolutional Neural Network (CNN) to segment

people using plan-view statistics. A colour image is submitted to the CNN trained to

find heads. The CNN yields the positions of the heads’ centres. The corresponding

points on the disparity map are then projected in the plan-view perspective and a circle

of radius δ is drawn around each of them thus obtaining a binary mask that will be

used to filter out every point that is too distant from the detected head for it to belong

to a person.

Bahadori et al. (2007) use just the height map for the plan-view statistics of the

foreground. For each foreground blob in the height map, they compute two measures:

22

Figure 2.10: (a)Camera image. (b) 3D reconstruction of the scene.

(c) Occupancy map. (d) Height map. (e) Coloured height map. The

image is taken from Muñoz-Salinas (2008) with permission from El-

sevier.

the size that is defined as the area of the blob in the X,Y plane and the weight that

is the sum of the heights in the blob. The blobs are then filtered by removing those

that have size or weight below given thresholds. This way the blobs corresponding to

people are detected.

Figure 2.11: Observations consist of two maps. (a) A simpl binary

plan-view image of foreground points. (b) A map of audio power in

the microphone array coordinate system. Image is taken from Checka

et al. (2003) c©IEEE.

23

Checka et al. (2003) compute a simple binary plan-view image of the foreground

points. This binary map is used together with the 2D map of audio power obtained

from an array of microphones (see Figure 2.11). A particle filter is used to combine

observations from these two maps for tracking people.

Tracking in 3D space: When tracking in 3D space, the tracked target state is

expressed as its 3D position. In the case of head tracking, this allows not to worry

about the tracked target size. The real head size does not change, and the 2D size of

the head projection into the camera image depends on how far is the head from the

camera. Tracking in 3D space is often performed in HMI applications because the 3D

position of the head is used directly for manipulating the machine and no extra steps,

such as triangulation or 3D reconstruction, have to be performed. Another advantage

of tracking in 3D space is that a tracking algorithm needs to evaluate only those pairs

of image points in stereo views that make up a valid 3D location.

Nickel and Gehrig (2005) use a 3D particle filter to track the lecturer’s head position.

Each particle represents a 3D head position in the space of a classroom. Each particle

is scored using features from both audio and video. On the video side, the features are

based on foreground segmentation, multi-view face detection and upper body detection.

On the audio side, the time delays of arrival between pairs of microphones are estimated

with a generalized cross correlation function.

Butt and Morris (2011) use a Kalman filter for 3D tracking of pedestrians, where

the object state is represented as the 3D position of a human body centroid and its

3D velocity. Further, by translating the human figure outline at predicted position

in the real-world, a predicted disparity map by perspective projection of translated

object outline is generated. The object in the current depth map is matched against

the predicted shape at that location.

Kobayashi et al. (2006) perform 3D head tracking in a room with several cameras.

A 3D particle filter is used for tracking. Each particle is a possible 3D position of the

tracked head and its orientation. A likelihood of a human head is evaluated by several

cascaded classifiers trained to detect a face in different orientations.

Rougier and Meunier (2010a) also use the 3D particle filter to perform 3D head

tracking. In their work, the state of the head is represented by its 3D position and two

rotation angles. The foreground segmentation, the body position, and head candidate

color observations are used to estimate the likelihood of each particle.

24

2.1.5 3D tracking without building a depth map

As explained earlier, the depth map can be very useful for foreground segmentation

or for computing plan-view statistics. However, the accuracy of results is affected by

missing information such as that caused by occlusions, slanted surfaces, textureless

regions and non-Lambertian surfaces along with the difficulties of perfectly calibrating

cameras, and other issues relating to extracting information about three dimensions

from two dimensional images. Also depth map computation is a very time consuming

process, especially for high resolution images. The number of pixels that each image

contains increases the number of calculations required to match it with any number

of possible matches, making the correspondence problem a computationally complex

one that severely limits the speed at which one can obtain results. A comparison of

performance times for different stereo matching algorithms can be found in the paper

of Tippetts et al. (2016).

Depth map computation is more difficult in stereo camera systems with a wide

baseline between the cameras. A wide baseline generates a large viewing angle dif-

ference between an image pair which leads to more occlusions and more difficulties in

stereo matching (Llewellyn et al., 2010). Stereo systems with a wide baseline can be

preferable in some applications because they allow higher depth accuracy when recon-

structing 3D position of the tracked object (Chang and Chatterjee, 1992). There is

no specific length that is considered to be a wide baseline. Usually a stereo system is

considered to have a wide baseline if the cameras observe the same scene from strongly

different angles (Llewellyn et al., 2010). For example, cameras installed in the corners

of a room and directed into its center have a wide baseline. In this situation, these

two cameras have completely different views of the scene and it is very hard to find

matching points because they look different in the stereo views.

Because of these problems, there are 3D tracking methods that use overlapping

cameras and do not compute a depth map. Cai et al. (2010) and Abbaspour et al.

(2014) detect a sparse set of features (corners and edge points). In the beginning, a

static region of interest is defined manually to omit the background points which lie

out of region (see Figure 2.12). The feature points in the region of interest are filtered

by height and then projected on the ground plane. In the ground plane, clustering is

performed to find people. The found clusters are tracked with the help of the Kalman

filter.

Mittal and Davis (2003) use 6 cameras with the overlapping field of view to track

a crowd of people. Instead of finding and matching feature points in different views,

25

Figure 2.12: (a) Feature points extracted from the original grey scale

image and (b) their projections to the world coordinate system. The

green polygon is the region of interest used to remove background

points. The image is taken from Cai et al. (2010) with permission

from Elsevier.

region based stereo is used. They create a color model of each person at different heights

using the method of non-parametric kernel density estimation (Elgammal et al. 2000).

These color regions are matched in pairs of camera views along epipolar lines. The

matched segments are then used to yield 3D points potentially lying inside objects

(see Figure 2.13 for explanation). These points are projected on the ground plane and

tracked with the help of the Kalman filter framework.

Stereo systems with a wide baseline often use a 3D particle filter for connecting

information from different cameras and other sensors without building a depth map.

Kobayashi et al. (2006) use a 3D particle filter together with several Haar cascaded

classifiers to detect faces in different orientations. Nickel and Gehrig (2005) employ a

3D particle filter to track a lecturer’s head position receiving observations from two

wide baseline cameras and a pair of microphones.

2.1.6 Tracking methods

The three popular ways of tracking used in the 3D tracking applications involve mean

shift, the Kalman filter and the particle filter frameworks.

26

Optical
center

3D points found to be
inside objects

Optical
center

Corresponding
epipolar lines

Figure 2.13: The concept of region based stereo matching. The point

of intersection of the quadrilateral formed by back-projecting the end-

points of the matched segments yields a 3D point lying inside an

object. The matching segments are 1 and 1’, and 2 and 2’ respectively.

This image and its caption are taken from Mittal and Davis (2003)

with permission of Springer.

Mean shift is a kernel based gradient descent procedure that finds the local max-

ima/minima of a function (Cheng, 1995). When using the mean shift algorithm for

visual tracking, a confidence map is created in the new image based on the object

observations in the previous image. Then the algorithm finds the peak of this confi-

dence map near the object’s old position. The confidence map is a probability density

function on the new image, assigning each pixel of the new image a probability, which

is the probability of the pixel to belong to the tracked object.

Choi et al. (2006) adapt the color mean shift to use a disparity-weighted color his-

togram. They assume that the disparity distribution of the detected human body shows

small variations with respect to the background regions or other objects. Kovacevic

et al. (2011) implement a similar idea. They compute color probability distribution

and disparity probability distribution of the region centred at the mean shift search

window. Then they multiple and normalize these two distributions and get the joint

27

colour-disparity distribution and perform mean shift search on it. This helps to solve

the problem with partial occlusion and when the background and the target have sim-

ilar colors.

Mean shift based tracking algorithms are very efficient but they fail when facing

occlusions or large target appearance changes or when the tracked object is under

the action of non-linear forces. This method would not be appropriate in the case

of tracking ambiguities that lead to running the optimisation procedure over a multi-

modal objective function.

The Kalman filter (Kalman, 1960) is another popular framework that is often used

for tracking. It is a linear quadratic estimator that works in two steps. In the prediction

step, it computes estimates of the current state variables and their uncertainties. Once

the next measurement (corrupted with some amount of error, including random noise)

is observed, these estimates are updated using a weighted average, with more weight

being given to estimates with higher certainty. The Kalman filter is often used to

estimate a variable that cannot be measured directly, but an indirect measurement is

available. Also it is often used to find the best estimate of the target state by combining

measurements from various sensors in the presence of noise.

The Kalman filter is used in 3D tracking algorithms to predict the tracked object

position taking into account the color and depth information (e.g. Abbaspour et al.

2014, Zoidi et al. 2014, Muscoloni and Mattoccia 2014, Cai et al. 2010, Harville 2004).

Kalman filtering is often performed in the plan view space (Muñoz-Salinas et al. 2007,

Mittal and Davis 2002, Kalarot et al. 2012, Bahadori et al. 2007), but can work in the

3D space as well (e.g. Butt and Morris 2011).

The Kalman filter is adequate for a simple linear model and runs faster due to

computational simplicity. However, it does not perform well if used in a system that

does not fit well into a linear model, or sensors’ uncertainty is not Gaussian. In this case,

the particle filter also known as the Condensation algorithm (Isard and Blake, 1998)

and bootstrap filter (Gordon et al., 1993) can work better by discretizing the problem

into individual particles. Each particle is basically one possible state of the model,

and a sufficiently large number of particles allows to handle any kind of probability

distribution, and any kind of evidence. However, the amount of computations grows

fast with the number of particles. Also a particle depletion problem can occur. Once

the system runs out of particles in one area of the solution space, it’s hard to get

them back, so the correct estimate may just drop out permanently unless a very large

number of particles is used.

28

Nickel and Gehrig (2005), Butt and Morris (2011), Kobayashi et al. (2006), Rougier

and Meunier (2010a) use a 3D particle filter to estimate the target position in the 3D

space. Muñoz-Salinas et al. (2008) use a particle filter to track the target in the

reference camera 2D view. Checka et al. (2003) use combined probability for audio and

video data in plan view space to track the target in the 2D particle filter framework.

2.1.7 3D tracking review summary

The choice of a particular hardware setup (number of cameras, their position, etc.) and

methods used for 3D tracking is often defined by the final application. Surveillance and

human-machine interaction (HMI) are the two most common applications of 3D people

tracking. In this section, I summarize different hardware setup choices and methods

and describe their advantages, disadvantages, possible applications and whether they

can be used to achieve my research goal. I chose not to put citations here to make this

review brief. All the appropriate citations are mentioned in the previous sections.

3D tracking system hardware setup choices:

• Structured light or time-of-flight depth sensor versus standard cam-

eras. Kinect is a cheap and most popular depth sensor that is often used for

HMI applications. Other industrial or custom made sensors are usually more

expensive and/or not so easily available. Kinect gives a fast way to get a depth

map synchronised with a luminance image. However the field of view of Kinect

is limited and using multiple Kinect sensors poses additional challenges such as

synchronization, interference and stereo calibration. Nevertheless Kinect achieves

high 3D tracking accuracy and speed and can be used for whole body view face

tracking in real time. I chose to use standard luminance cameras, to see if I can

achieve similar robustness and accuracy.

• Cameras number. One, two or multiple cameras can be used for 3D tracking.

Using one camera can be fast, but the accuracy of the 3D position estimation is

limited. Multiple cameras are more often used in surveillance applications. Using

multiple cameras with wide baselines gives a better view of a scene and helps to

eliminate occlusion. However, processing frames from multiple cameras is time

consuming. I chose to use a pair of cameras which is the most common way to

do 3D tracking with luminance cameras in HMI applications. Using two cameras

allows to achieve high 3D position estimation accuracy and speed of processing.

29

• Baseline between the cameras. Short baseline systems are most often used

with a disparity map estimation which is a very time consuming process. Wide

baseline systems allow higher depth accuracy when reconstructing 3D positions,

but in such systems it is often impossible or very hard to compute a disparity

map. In wide baseline cameras systems, usually a sparse set of features is used.

I chose a medium baseline of 80cm with 30 degrees angle that gives reasonable

depth resolution for the chosen operation range (see Section 3.2).

• Cameras position. In 3D tracking, one of the three cameras’ positions is usu-

ally used: a top corner position, a ceiling-mounted, straight-down position or a

front facing position. When using a top corner or ceiling-mounted, straight-down

position, it is easier to eliminate occlusion and track several people at the same

time. These cameras’ positions are most often used in surveillance applications.

A forward facing position is almost always used in HMI applications. When using

this cameras’ position, the tracked person’s face is clearly visible. I do not need

to track several people simultaneously and using face appearance can facilitate

tracking. Therefore, I chose to use the forward facing position.

Like 2D tracking algorithms, 3D tracking algorithms based on stereo cameras also

use the same tracking cues such as location, color, shape, and other observations to

model the tracked target appearance. A comprehensive review of appearance models

used in 2D tracking can be found in Li et al. (2013). The extra depth information from

stereo cameras improve the quality of location information.

This list summarizes methods that are specific for 3D tracking algorithms:

• Disparity map. A disparity map is often used for foreground segmentation

or for computing plan view statistics. Disparity maps are very popular in HMI

applications with short baseline stereo systems. With a disparity map, the 3D

location of each pixel is available. Combining this information with standard fea-

tures used in 2D tracking such as color or shape can give good results. However,

building a disparity map is a highly computational process and might take a lot

of time, especially for high resolution video feed.

• Feature points detection and clustering. This method does not employ

disparity maps and is often used in wide baseline stereo systems in surveillance

applications. Such challenges as proper matching of points in different views and

filtering out background points arise.

30

• Plan view statistics. This method involves projecting a depth map or a sparse

3D features set on the floor plane. Plan view statistics help to resolve occlusions

and filter out background.

• Deep learning. Training a convolutional neural network on color images com-

bined with disparity maps is a very promising method. There are not many

papers on 3D tracking based on this method now (e.g.Boschini et al. (2016)).

The downside is that it needs an extensive dataset and a lot of training time.

The methods listed above are all very promising and can be tried out for my research

task. However, I chose a different way. Even though there is an emerging interest in

3D tracking and many new applications based on it appear regularly, this field is not

so well studied and described in the literature as 2D tracking. A large variety of

different learning methods, appearance models and tracking features that have been

thoroughly evaluated in many different combinations in 2D tracking papers (Yang et al.

2011, Li et al. 2013), have not yet been tried out in 3D tracking. It is possible that

incorporating some of the methods from the 2D tracking field will likely make the 3D

tracking performance even better.

Another problem with 3D tracking methods is that it is hard to compare them

quantitatively and find the one that suits better for a particular task. This can be

explained by a large variate of setups that can be used for 3D tracking and initialization

parameters that are needed to start the tracking. Therefore, it is hard to create a

dataset that will suit a large number of methods to try them out. This is not the

case for generic 2D tracking algorithms. They all run on image sequences and most

of them need just a bounding box for initialization. There is a number of frameworks

that put together state of the art 2D generic tracking algorithms and a number of

evaluation datasets (e.g. Smeulders et al. 2014, Wu et al. 2015). This allows to compare

quantitatively these algorithms and find the one that suits best of all for a specific goal.

For these reasons, I took an approach that is different to the classical way of devel-

oping 3D tracking applications. I decided to use the power of all latest improvements

in the 2D tracking field and choose one of state of the art 2D tracking algorithms that

shows best performance results on public datasets and on my datasets for whole body

view face tracking. After finding such tracking algorithm I explored different ways to

improve its accuracy even further by adapting it for tracking faces. At the final stage

of my research, I explored different ways of extending this 2D face tracking algorithm

into 3D space.

31

2.2 2D face tracking

2D visual tracking has always been a highly active research area due to a large number

of potential applications. The interest in this area has led to a significant amount

of literature. A review of advances and trends in visual tracking can be found in

Yilmaz and Javed (2006), Cannons (2008), Yang et al. (2011). Li et al. (2013) made a

comprehensive review of appearance models used in tracking. In recent years instead

of just reviewing state of the art trackers, more authors try to perform a fair, extensive

and unbiased evaluation of different trackers (e.g. Smeulders et al. (2014) and Wu et al.

(2015)).

For a large number of tracking scenarios, the visual class of the object of interest

is known. These tracking algorithms are different from generic trackers because they

integrate some prior knowledge about the object class. The most straight forward way

to do that is to train an object class detector in advance and integrate it into the

tracking process. Face tracking is one example of such tracking scenarios.

A very popular method of face tracking is fitting deformable models of facial land-

marks (e.g. Saragih et al. (2011), Asthana et al. (2014)). A parametrized model of

facial landmark locations is created. The image analysis is performed by fitting the

deformable model to a new image, thereby parametrizing the new image in terms of

the known model. A simple tracking algorithm such as mean shift and different feature

detectors can be used to predict new locations of landmarks. These specialized face

tracking methods show great results for tracking faces and facial features. They are

less likely to drift away to the background. However all these methods are designed

to work on faces with facial landmarks that are clearly visible. This is often the case

for the head-and-shoulders view videos, when a person sits in front of a camera. These

methods can not be applied to the whole body view tracking scenarios, because the

tracked face is often too small and facial landmarks are hardly distinguishable. Pham

and Pavlovic (2016) use Kinect in addition to a luminance camera to fit a 3D blend-

shape face model to the face region in color and depth streams. Their method showed

reasonable results when tracking faces at the distance up to 2.5 meters on synthetic

datasets. In this research, my goal is to do face tracking at the range of 0.5 meters to

5 meters using just luminance cameras (see the requirements analysis in Section 1.2).

Recently, features extracted from a convolutional neural network (CNN) trained on

a large-scale object recognition dataset have been successfully applied to face recogni-

tion, identification, and clustering tasks (e.g. DeepID by Sun et al. (2014), DeepFace

32

by Taigman et al. (2014), FaceNet by Schroff et al. (2015), VGG-Face by Parkhi et al.

(2015)). These CNN-based face representations are learned by training CNNs using

large-scale face recognition datasets in a fully supervised manner. Zhang et al. (2016)

propose to use a pre-trained CNN to learn video-specific features in an unsupervised

manner and then track multiple persons through an unconstrained video sequence such

as a sitcom episode. This method is very promising, but the downside that it is de-

signed for offline processing. Several runs through the same sequence a needed to adapt

the pre-trained CNN and then correct the initial characters’ trajectories.

Whole body view face tracking is often used in surveillance. Face tracking algo-

rithms designed for surveillance usually use a wide-angle camera to detect and track

faces or silhouettes and a pan-tilt-zoom camera to get a closer view of a face Bagdanov

et al. (2006), Park et al. (2013). The main challenge faced by such systems arises

in registering the pan and tilt angles of the PTZ camera and a complex calibration

procedure between the two cameras. These algorithms mostly concentrate on getting

high-resolution images of pedestrians’ faces, but fail to do continuous smooth tracking

with reacquisition.

Another class of whole body view face tracking algorithms utilise face specific in-

formation by integrating some sort of a face detector into the tracking process. Using

a face detector can help to handle tracking with a large scale change (from the whole

body view to the head-and-shoulders view) together with rapid movements and oc-

clusions while distinguishing different people’s faces. Li et al. (2008) proposed using

three face observation models with different feature sets and different lifespans: short

(updated every frame), middle (updated every five frames) and long (a face detector,

learned offline) (see Figure 2.14 for illustration). These three models are combined in

a cascade fashion in the particle filter framework.

Kim et al. (2008) use non-adaptive, non-person specific constraints on face pose and

localization to adapt the incremental visual tracker (IVT, Ross et al. 2008) for tracking

faces. These constraints are learned offline. They include a generative model and a

discriminative model. The generative model contains a set of facial pose subspaces or

manifolds, each of which represents a particular out-of-plane pose. The discriminative

model is based on a support vector machine (SVM) that helps to estimate how well

the cropped face is aligned (see Figure 2.15).

Both methods described above (Li et al. 2008 and Kim et al. 2008) are based on

the particle filter framework and are able to track the target in the field of view. In

scenarios where a face moves in and out of the viewing zone, these trackers usually fail

33

Figure 2.14: Using three models with different life spans for face

tracking. Image is taken from Li et al. (2008) c©IEEE.

Figure 2.15: Visual constraints for face tracking used in the work

of Kim et al. (2008). (a) A generative PCA model where each row

represents a certain pose subspace. To predict a pose It, the shortest

distance between the current tracked face It and all the subspaces is

found. (b) SVM classifier that discriminates face-centred images (+,

in blue) against badly cropped face images (−, in red). This image

was taken from Kim et al. (2008) c©IEEE.

because they do not have a face reacquisition system.

FaceTLD by Kalal et al. (2010a) uses a combination of a simple optical flow tracker

and an offline trained face detector. Structural constraints in video are used to build

a model of the tracked face. The build face model is utilized to correct the tracker or

reinitialize it if it loses the target. This method is discussed in details in Section 4.3.1.

34

In general using some sort of face detection in combination with a robust generic

tracker can be very beneficial for whole body view face tracking. A face detector (or a

combination of detectors) that can detect faces in different orientations is even better.

Tracking body parts or whole body silhouette can also help. On the contrary tracking

facial features such as eyes or mouth is not useful because in whole body view videos

these features are often too small.

2.3 Conclusion

In this chapter I reviewed state of the art algorithms for whole body view people

tracking in 3D space. Works on face tracking were also reviewed in this chapter.

Based on this review, I decided to follow a non classical approach and develop a 2D

face tracking algorithm first. Next chapter describes all preparation steps required for

designing 2D and 3D tracking algorithms: stereo calibrating cameras, recording and

annotating evaluation datasets, choosing metrics that will be used to compare different

algorithms. The process of developing 2D face tracker for whole body view video is

described in Chapter 4. Then in Chapter 5, I investigate different ways of converting

the developed 2D face tracking algorithm into 3D space.

35

Chapter 3

Tracking evaluation framework

This chapter describes all preparation steps required for designing a tracking algorithm.

For developing a successful tracker, it is necessary to compare it to other publicly avail-

able state-of-the-art trackers and to different versions of itself. The evaluation should

be performed on a dataset with ground truth annotation. A fair and representative

metric is needed for interpreting the results.

Section 3.1 describes how the evaluation datasets were collected. Section 3.2 focuses

on the stereo cameras system used for recording the datasets and real time tracking

evaluation. The datasets annotation process is described in Section 3.3. The evaluation

metric is chosen in Section 3.4.

3.1 Collecting evaluation datasets

For comprehensive tracking performance evaluation, it is necessary to collect a repre-

sentative testing dataset. Running trackers on such a dataset helps to fairly compare

them and reveal their weaknesses. A representative dataset should contain different

scenarios and challenging factors specifically for the chosen tracking task (e.g. pedes-

trian tracking, car tracking, tracking elderly people for fall detections, face detection

and recognition in an airport gate). As the goal of this research is long term whole

body view tracking, I need to tailor the evaluation dataset specifically for this task.

The dataset should comply with the requirements listed in Section 1.2. Videos in my

datasets should feature a person moving in front of the cameras and facing the cameras

most of the time. I consider the user moving freely in front of the cameras, therefore

it is the whole body view, not the head-and-shoulders view that can be achieved by

recording a video on a hand-held smart phone or a desktop web camera. Furthermore,

36

it should be a stereo dataset made with two cameras with an overlapping field of view.

Each feed separately can be used for testing long-term 2D face tracking. The other

challenging factors are described in Table 3.1.

Recently, significant efforts have been made to collect large public annotated datasets

with different challenging factors for testing single object 2D tracking. The most no-

table datasets are the object tracking benchmark by Wu et al. (2015) (100 sequences),

the Amsterdam Library of Ordinary Videos for tracking by Smeulders et al. (2014)

(315 sequences) and the VOT challenge 2015 dataset by Kristan et al. (2015) (356

sequences). These datasets include videos for evaluating 2D tracking of pedestrians,

cars, sportsmen, animals and other objects.

The 3D tracking evaluation datasets can be divided into two main applications:

surveillance and human motion recognition. One example of 3D tracking datasets for

surveillance is the KITTI vision benchmark suite (Geiger et al., 2012). It contains

50 annotated stereo videos of cars and pedestrians on crowded streets. The stereo

calibration information is provided. It also contains videos for optical flow, visual

odometry/SLAM and 3D object detection. The surveillance datasets are not suitable

for my research because people in videos are usually far away from cameras and looking

away from the cameras.

HumanEva (Sigal et al., 2010) and i3DPost (Gkalelis et al., 2009) are examples

of articulated human motion and pose estimation datasets. Each sequence in these

datasets is recorded using several overlapping calibrated cameras and features a person

moving in a limited space. The ground truth data contains all body parts and joints

annotations for each frame. These datasets can be used for evaluation of my tracking

algorithm. However, as it is designed not for 3D face tracking, but for pose estimation,

the ground truth data has to be customized. For each pair of cameras, I have to choose

the frames when the face is visible and extract its 3D position from the provided ground

truth data. Also I could not find any 3D head or face tracking algorithms reporting

their results on these datasets. Therefore, I decided to record my own datasets. One of

the contributions of this research are three new extensive annotated datasets created

specifically for evaluating long term whole body view 3D face tracking. I collected the

following datasets:

• 2D dataset with public videos. I examined the object tracking benchmark

(Wu et al., 2013) and selected 17 videos that contain a person facing the camera.

For some examples, see Figure 3.1. The resolution ranges from 128 × 96 to

1Short video example of the “Asteroid” game with Kinect https://youtu.be/61wpZArEKuc

37

https://youtu.be/61wpZArEKuc

Factors Occur. Explanation

Occlusion Yes The tracked person can hide his or her face with

the hands, or another person can walk between the

tracked person and the cameras.

Fast motion

and motion blur

Yes If the tracking algorithm is used in an head-

coupled display, the tracked person can play some

game on the display that includes rapid move-

ments, e.g. evading flying objects 1.

Scale variation Yes The tracked person can go up to 4-5 meters away

from the cameras and then come back close to the

cameras.

Rotations Yes In-plane and out-of-plane head rotations are pos-

sible.

Out-of-view Yes The tracked person can leave the cameras’ field of

view and return some time later.

Background clutters Yes The background near the target can have color

or texture similar to the target or there might be

other people in the background.

Low resolution Yes Some of my evaluation videos have low resolution.

Camera moving No The cameras’ position is fixed.

Illumination variation Possible I assume that the tracking is performed in an in-

door environment, but lightning conditions can

change (see Figure 1.5 for an example).

Deformation No The tracked person can move freely in front of the

cameras. Most of the time the whole body of the

person is visible in each frame and the head occu-

pies a small portion of the image. In this case, the

head can be considered as a rigid object. Therefore

no deformation is present.

Table 3.1: The table describes common challenging factors and their

occurrence in my evaluation datasets.

720 × 576. The videos are 300 to 1500 frames long. This dataset is used to

compare different public 2D tracking algorithms.

38

• My high resolution gray scale stereo dataset. The dataset was collected

using two stereo calibrated gray scale Ximea cameras with 79◦× 59◦ angle lenses

at the rate of 30 frames per second and resolution of 1280 × 1024 pixels. For

some examples, see Figure 3.2. The testing sequences are 600 to 3000 frames

long featuring a person freely moving in front of the cameras. The sequences

include all the challenging factors described in Table 3.1. The dataset consists

of 23 pairs of videos and is used for evaluating different versions of my 3D face

tracking algorithm. Also for evaluating 2D tracking, one feed (from the left or

right camera) of each stereo sequence is used.

• My low resolution gray scale stereo dataset. This dataset was created by

resampling my high resolution dataset at the resolution of 640× 512. The moti-

vation for creating this dataset is to check how much speed up can be achieved

by trading off accuracy.

• My fisheye color stereo dataset. A separate stereo dataset was created using

cameras with Omnitech Robotics ORIFL190-3 fisheye lenses with the field of

view of 190◦. The motivation for creating this dataset is to evaluate how the

3D face tracking algorithms perform in videos with a wide field of view and high

distortion. For the task of 3D face tracking for interactive displays, having a

large joint field of view of the two stereo cameras allows smooth and convincing

experience when using the display. The dataset consists of 10 pairs of videos.

Each video is around 2000 frames long and was made at the rate of 30 frames

per second with the resolution 640× 480 pixels. Similarly to my other datasets,

this one features a person moving in front of the cameras and facing the cameras

most of the time. The sequences include all the challenging factors described in

Table 3.1. For some examples, see Figure 3.3. Also at the same time as recording

this dataset, I recorded the Kinect face tracking data. This allows to compare

the Kinect head tracking method with other visual trackers on fisheye video. You

can read more about capturing the Kinect data in Section 6.1.

3.2 Stereo setup and calibration

In this section I describe the stereo system used for recoding the evaluation datasets and

qualitative evaluation of tracking algorithms in real time. The stereo system consists

of two synchronized cameras with an overlapping field of view. More cameras can be

39

Figure 3.1: Examples from the 2D dataset with public videos.

Figure 3.2: Examples from my high resolution gray scale stereo

dataset.

Figure 3.3: Examples from my fisheye color stereo dataset.

used, but for many 3D face tracking applications, two cameras are enough to cover a

large area in front of the cameras. For recording the high resolution gray scale dataset,

40

I used two gray scale Ximea cameras1 with Goyo lenses2. The Ximea cameras were

chosen because they are relatively cheap high quality cameras. The field of view of the

lenses is 79◦ × 59◦ × 98◦ (H × V × D). These lenses can be considered transitional

between normal lenses and wide-angle lenses. They provide quite large field of view,

but the distortion is still reasonable.

The baseline and the angle between the cameras should be chosen carefully. The

baseline affects the depth resolution that refers to the accuracy with which a stereovi-

sion system can estimate changes in the depth of a surface. In the stereo system where

the cameras are axis aligned, the depth resolution δZ is computed by the following

equation:

δZ = −Z
2

fb
δd, (3.1)

where f is the cameras focal length, b is the baseline distance and δd is the disparity

resolution (Chang and Chatterjee, 1992). It means that a good depth resolution re-

quires a large baseline value, a large focal length value, and a small depth value for a

given disparity resolution. The baseline and the angle between the cameras were chosen

for the depth range of 0.5 - 5 meters from the cameras (according to the requirements

set in Section 1.2). The baseline of 80 cm is considered large enough to give a good

depth resolution for the chosen depth range. The angle between the cameras is chosen

to be 30◦ to move the stereo system viewing zone closer to the cameras. The shared

viewing volume is shown in Figure 3.4.

To be able to compute a 3D position of an object present in the cameras shared

field of view, the cameras have to be stereo calibrated. A stereo calibration involves

computing each camera’s intrinsic parameters (the camera matrix and distortion co-

efficients) and the extrinsic parameters (the camera coordinate system position and

orientation in the world coordinate system). Usually in the stereo cameras setup, one

camera coordinate system is assumed to coincide with the world coordinate system. In

this case the extrinsic parameters are the rotation matrix and the translation vector

needed to transform from one camera coordinate system to the other camera coordinate

system. To stereo calibrate the cameras, I used a chequerboard pattern to find the cor-

responding points in the two cameras’ views and the Matlab stereo camera calibration

application which is based on the Zhang (2000) calibration algorithm. This tool can

1Model https://www.ximea.com/en/products/usb3-vision-cameras-xiq-line/mq013rg-e2
2Model http://www.rmaelectronics.com/goyo-optical-gmthr24514mcn-1-2-4-5mm-f1-4-

manual-iris-c-mount-lens-3-megapixel-rated/

41

https://www.ximea.com/en/products/usb3-vision-cameras-xiq-line/mq013rg-e2
http://www.rmaelectronics.com/goyo-optical-gmthr24514mcn-1-2-4-5mm-f1-4-manual-iris-c-mount-lens-3-megapixel-rated/
http://www.rmaelectronics.com/goyo-optical-gmthr24514mcn-1-2-4-5mm-f1-4-manual-iris-c-mount-lens-3-megapixel-rated/

Figure 3.4: The shared viewing volume of the stereo system.

be used for cameras with the field of view up to 95◦. The average reprojection error

is normally employed to estimate the calibration accuracy. The reprojection error is a

geometric error corresponding to the image distance between a projected point and a

measured one. It is used to quantify how closely an estimate of a 3D point recreates

the point’s true projection. For the stereo calibration that I performed, the average

reprojection error was 0.55 pixels. This error makes up 0.05% of the image height

which can be considered a good result.

For recording the fisheye dataset, I used the Fire-i Unibrain cameras1 with the

Omnitech Robotics ORIFL190-3 fisheye lenses2 with a field of view of 190◦. The

Matlab stereo calibration tool cannot be used for the cameras with such wide angle

lenses. Instead I used the OCamCalib toolbox3 (Scaramuzza et al., 2006) for finding the

intrinsic parameters of each camera. This toolbox is designed specifically for calibrating

wide angle and omnidirectional cameras. In this calibration application the image

projection function is described by a Taylor series expansion whose coefficients are

estimated by solving a two-step least-squares linear minimization problem. For both

of my fisheye cameras’ calibrations, the resulting average reprojection error is around

0.7 pixels which is 0.15% of the image height.

After calibrating the two fisheye cameras, I performed stereo calibration to find one

camera position and orientation in the other camera coordinate system. To do that

1Model http://www.unibrain.com/products/fire-i-board-camera/
2Model http://www.omnitech.com/fisheye.html
3https://sites.google.com/site/scarabotix/ocamcalib-toolbox

42

http://www.unibrain.com/products/fire-i-board-camera/
http://www.omnitech.com/fisheye.html
https://sites.google.com/site/scarabotix/ocamcalib-toolbox

I used the OpenCV stereoCalibrate function that applies an iterative optimization

algorithm to minimize the reprojection error of the chequerboard corners for both

camera views. This function can perform each camera calibration for the intrinsic

parameters internally or accept the camera matrix and the distortion parameters. As

I calibrated the fisheye cameras separately by the OCamCalib tool, I provided the

intrinsic parameters to stereoCalibrate. The baseline between the cameras is 105 cm

and the angle between the optical axes is 0◦. These baseline and angle were chosen to

provide optimal viewing zone and depth resolution for the fisheye stereo cameras. The

final average reprojection error is 0.8 pixels. This error is 0.17% of the image height

which can be considered as an acceptable result.

3.3 Ground truth annotation

To be able to use the collected datasets for tracking evaluation, the ground truth

annotation has to be obtained. I collected two large independent datasets: my high

resolution gray scale stereo dataset with around 46000 frames in it and my fisheye color

stereo dataset with 20000 frames. It is necessary to obtain the ground truth for every

frame in these datasets. This task is very tedious and time consuming if not automated

at least partially. In this section I describe two methods of fast ground truth labelling.

Figure 3.5: Different ground truth labelling formats: axis aligned

bounding box, oriented bounding box, head contour.

Before choosing the ground truth labelling method, I need to select the format of

the ground truth data. The most common ground truth formats for tracking algorithms

are shown in Figure 3.5. The axis aligned box is the most rough and the easiest to

43

create format. The oriented box and the head contour are more accurate and take

more time to generate. For my experiments I choose to use the axis aligned box. The

center of the head bounding box usually coincides with the head center. Therefore,

by triangulating the bounding boxes centers, it is possible to find the 3D position of

the head. All current publicly available tracking algorithms discussed in this research,

output axis aligned rectangular bounding boxes.

After choosing the ground truth format, it is important to find a way to do fast

and accurate labelling. In recent years many different annotation tools have appeared

for reducing the human effort necessary to generate ground truth data for large scale

visual datasets and improve the annotation quality. Most of these tools allow the

annotation of only a few frames (i.e. key frames) and then propagate the annotation

by means of dedicated algorithms (Mihalcik and Doermann 2003, Yuen et al. 2009).

These tools incorporate a form of basic annotation propagation exploiting the visual

coherence of neighbour frames and more sophisticated computer vision and machine

learning methods to automatically label some of the frames (Kavasidis et al. 2012,

D’Orazio et al. 2009, Bianco et al. 2015). Some annotation tools promote the use of

crowd-sourcing based platforms to improve the quality of the annotations (Kavasidis

et al. 2014, Kavasidis et al. 2013, Vondrick et al. 2013).

All the tools described above can be really helpful when annotating large datasets.

However, these tools are generic software solutions designed to create ground truth

data for different computer vision datasets. It takes some time to choose one of them,

install and understand the complex interface and customize it for specific purposes

(head tracking in my case). Instead, I developed my own method of annotating datasets

described further.

As mentioned above, many of the recent ground truth labelling tools use annota-

tion propagation and machine learning methods to partially automate the annotation

process. Most often a tracking algorithm or detection algorithm is used to propagate

the target annotation marked manually by the user to the next frame. I decided to

do ground truth labelling using this principle and chose the TLD tracking algorithm

(Kalal, 2011) for this task. As discussed later in Section 4.1, TLD shows superior re-

sults over other public tracking algorithms and is also very fast. To use it for ground

truth labelling, I initialize TLD manually on the first frame of a video and then allow

it to do the tracking. I changed it slightly, so that it moves to each next frame after I

press the ENTER button. That gives me time to quickly review that the tracking is

still correct. If the tracker lost the target or the tracking box starts to diverge from

44

the target, I press the Q button to stop the tracking and reinitialize it. For simple

parts of a sequence the TLD tracking can go uninterrupted for as long as 30-40 frames.

For difficult parts with rapid movements or occlusions, the tracking can be restarted

as often as needed. This showed to be a very fast and accurate way of ground truth

annotation.

3.4 Tracking evaluation

Choosing a proper visual tracking evaluation metric is a very important step in the

process of developing a new tracker. The visual tracking metric should be selected

specifically for some particular tracking task (multi-target tracking for surveillance, 2D

short-term single target tracking, 3D long-term single target tracking, etc.). An unbi-

ased and easy to interpret metric provides valuable insights into a tracker performance.

Ideally such metric should be used by everybody in the research community. However,

currently, there is no standard widely accepted tracking metric either in the field of 2D

tracking or in the field of 3D tracking. In this section I review the most popular metric

on 2D and 3D single target tracking and justify the choice of the ones that I use in my

research. All the experiments described in this thesis were performed on an Intel Core

i5-4570, 3.20 GHz personal computer. The implementation language is C++.

All monocular and stereo datasets used in my experiments have a ground truth

annotation. Therefore, I discuss only evaluation methods based on comparing the

tracking results to the ground truth data. For details on how the ground truth data

was obtained, see Section 3.3.

3.4.1 Evaluation metric for 2D tracking

The choice of a tracking evaluation metric depends greatly on the primary application

of the tracker. The gole of this research is long term 3D whole body view face tracking.

As the first step towards this goal, I developed a 2D face tracking algorithm that is

able to track a person reliably and accurately in real time, distinguish this person from

other people present in the field of view, reinitialize the tracking automatically if the

person leaves the room and then comes back after some time. In other words, I chose

a metric for 2D single target long-term tracking.

Often authors of generic single target tracking algorithms use some simple metric

to compare their own tracker with other trackers. This is usually an average center

location error (Xu Jia et al. 2012, Dinh et al. 2011, Ross et al. 2008) or average overlap

45

(Wei Zhong et al. 2012, Hare et al. 2011). The average overlap and average center

position error are not very descriptive. When using these measures, it is hard to tell

whether a tracker was very accurate to some point in a sequence and then failed and

could not recover or it followed the target to the very end of the sequence, but not

very accurately. In both situations, the resulting average center position errors can be

quite similar. Other examples of simple measures used to compare trackers are tracking

length (Kwon and Lee, 2009), failure rate (Kristan et al., 2010), F-score (Smeulders

et al., 2014). They have the same disadvantage as the average center location error -

they offer little insight into the tracker performance which limits their interpretability.

Often quantitative comparison involves plotting the center location error or overlap

versus frame number (Xu Jia et al. 2012, Ross et al. 2008). It is possible to use this

plot to illustrate performance of several trackers on one particular sequence. Such plot

can show at which frame each tracker failed. However, if the testing dataset consists

of dozens of sequences, these plots are not very descriptive.

To overcome these problems with single value measures, several authors propose to

visually compare tracking performance via performance summarization plots (Babenko

et al. 2011, Wu et al. 2013, Salti et al. 2012). The two most notable examples are the

precision plot and success plot, described in the next two paragraphs. Following Wu

et al. (2013), I used these two plots for the 2D tracking evaluation in this research.

The precision plot (called “location error plot” in this thesis) shows the percentage

of frames for which the estimated object location is within some threshold distance of

the ground truth. The score for the threshold of 20 pixels is used as the representative

score for each tracker. The threshold of 20 pixels was adopted from Wu et al. (2013).

However, this threshold also has a special meaning for my dataset. For sequences with

the 1280× 1024 resolution, 20 pixels is approximately the average width of the tracked

face. It is important to mention that my evaluation dataset contains videos with

different resolutions. A location error equal to 20 pixels has a different impact in the

320×256 sequence compared to the 1280×1024 sequence. Therefore, when computing

the location error plot, all errors are scaled in respect to the highest resolution used in

the experiment (which is usually 1280× 1024). For example, the 5 pixels error in the

320× 256 sequence is multiplied by 4. This allows all different sequences to have equal

impact to the final location error plot.

The success plot (called “overlap plot” in this thesis) uses the region overlap instead.

The overlap score is defined as

46

S =
|Bt ∩Bgr|
|Bt ∪Bgr|

, (3.2)

where Bt is the tracked bounding box, Bgr is the ground truth bounding box, ∩ and

∪ denote the intersection and union of two regions, respectively, and | · | denotes the

number of pixels in the region. To measure the accuracy of a tracking algorithm on a

sequence of frames, I count the number of frames whose overlap S is larger than the

given threshold. The overlap plot shows the ratios of successful frames at the thresholds

varied from 0 to 1. As the representative score for each tracker, I use the area under

curve (AUC) of each overlap plot. Recently Čehovin et al. (2015) proved that the area

under curve is equal to the average overlap. Also Čehovin et al. (2015) performed

experimental evaluation of correlation of different tracking performance metrics. Their

experiment showed that the correlation between the average center location error and

average overlap is high. This is also true for the location error plot and the overlap plot.

In my research in most cases these two plots look very similar with rare exceptions. For

an example when the location plot and overlap plot look different, see Section 4.4.7).

overlap = 0.8
location error = 10 pxls

penalty overlap = 0
penalty loc. err. = 1000 pxls

penalty overlap = 0
penalty loc. err. = 1000 pxls

- tracker box - ground truth box

Figure 3.6: If the tracker outputs the target bounding box, when

the target is not really visible, or the tracker cannot find the target,

when the target is present in the image, then the penalty overlap and

penalty location error are added to the final result.

In Wu et al. (2013) the location error plot and overlap plot are computed only for

the frames where the ground truth bounding box is present and the evaluated tracker

outputs a bounding box. This way the frames where the tracked target leaves the

47

camera field of view are not taken into account. To properly account for such frames,

I use penalties described further. The following three situations depicted in Figure 3.6

are possible when evaluating tracking performance:

• A tracker outputs a bounding box and the ground truth box is available for this

frame. Then the location error and overlap are estimated. If the boxes do not

intersect, then the overlap is equal to 0.

• A tracker outputs a bounding box, but the target is not in the image and there is

no ground truth box for this image. It means that the tracker is wrong and the

penalty location error equal to 1000 pixels and penalty overlap of 0 are added.

• A tracker does not output a bounding box, but the target is present in the image

and there is a ground truth box in this image. It means that the tracker is wrong

and the penalty location error equal to 1000 pixels and penalty overlap of 0 are

added.

For the location error, the penalty equal to 1000 pixels is chosen because it is a round

number and it is close to the highest resolution in my dataset which is 1280 × 1024

pixels. This way the penalty error is similar to the highest location error that can

occur in my testing dataset.

Another important issue that is often addressed in different metrics is how long a

tracker can track the target. If in an experiment a tracker is initialized once in the

beginning, it can fail in the beginning and the remaining part of the tracking results

can be considered irrelevant. To solve this problems some authors propose to restart

a tracker when it fails and count the restarts (Kristan et al. 2015, Kristan et al. 2016,

Wu et al. 2015). Another approach is to evaluate each tracking algorithm numerous

times from different starting frames across an image sequence (Wu et al. 2015, Wu

et al. 2013). However, for my goal of long-term tracking, it is important for the tracker

to be able to restart itself. In long term tracking, the tracked person can leave the

cameras’ field of view and come back after some time. The tracker should be able to

cope with such a situation. Therefore I decided to initialize the tracker only once in

the start of each sequence and see how it performs.

3.4.2 Evaluation metric for 3D tracking

My final goal is to do real time long-term 3D face tracking in the stereo feed coming from

two cameras with an overlapping field of view. The system is set up so that the whole

48

body of the tracked person is visible most of the time. There is not much research in this

area and there is no widely used metric for single target long-term 3D tracking using

cameras with an overlapping field of view. Zoidi et al. (2014) measures the Stereo Frame

Detection Accuracy (SFDA), which is the average overlap area between the tracked

object in the left and right frame and the corresponding ground truth. Kobayashi et al.

(2006) and Rougier and Meunier (2010b) propose to measure the average Euclidean

distance in cm between the estimated position and the 3D ground truth. Many papers

describing new 3D tracking algorithms perform qualitative estimation of 3D tracking

results (for example Zoidi et al. (2013)). The 3D tracking field is so diverse and

undeveloped, that I could not find any papers where the authors compare their own

3D tracking algorithm to 3D trackers published by other researchers.

As there is no standard metric for 3D tracking, I decided to adapt the metric that I

use for 2D tracking (the location error plot and overlap plot) described in the previous

section. However, in the case of 3D head tracking the overlap is a strong cue itself

and can be used to improve tracking accuracy. Section 5.2.1 describes how to use the

overlap to check that the 3D result is consistent. Therefore, I use the location error

plot to measure the 3D tracking performance.

Figure 3.7: The relative 3D error is a ratio of the absolute location

error e and the distance between the true target position and the

midpoint of the cameras d.

I tried three different ways of computing the location error plot for 3D tracking:

• Absolute 3D location error in cm. To compute this error, the 3D ground

truth position of the tracked head is computed by triangulating the center of the

ground truth face bounding boxes. Then the 3D euclidean distance between the

49

triangulated 3D ground truth position and the 3D position output by the 3D

tracker is estimated. As the representative precision score for each tracker, I use

the score for the threshold of 20 cm. This threshold is chosen because it is similar

to an average head size.

• Relative 3D location error. It is harder to track the head when it is further

away, so the errors in the near distance tracking are more important than the

errors in the long distance tracking. To take this into account, I compute the

relative 3D location error as L = e
d
, where e is the 3D location error and d is

the distance between the ground truth 3D head position and the middle point

between the cameras (see Figure 3.7). The relative 3D location error plot shows

the ratios of successful frames at the thresholds varied from 0 to 1. The area

under curve (AUC) of each plot is used to rank the tracking algorithms.

• 2D location error in pixels averaged for the two cameras views. The absolute

2D error is computed as L = 0.5(L1 + L2), where L1 is the left camera 2D error

in pixels, and L2 is the right camera 2D error in pixels. As the representative

score for each tracker, I use the score for the threshold of 20 pixels (similarly to

the 2D tracking metric).

Examples of all three plots are shown in Figure 3.8. The three plots are very similar

and there is no particular difference in using any of them. I decided to use the absolute

3D location error because the error is measured in cm and it is easier to interpret this

error for real life 3D tracking applications than the averaged 2D error in pixels or the

relative 3D error.

The absolute 3D location error is estimated only when the ground truth 3D location

can be computed (the tracked target is visible in both views) and the evaluated 3D

tracker was able to compute the 3D position. The penalty error equal to 1000 cm

is added in two cases. The first case is when the ground truth 3D position cannot

be computed, but the evaluated tracker returns the 3D position. The second case is

when the ground truth 3D position is available, but the tracker does not return the 3D

position because it failed in either of the views or in both views. The penalty error of

1000 cm is chosen because it is large enough to represent complete 3D tracking failure.

For 3D tracking similar to 2D tracking, I do not estimate robustness or restart the

trackers when they fail. My experimental videos include a lot of full occlusions and

other difficult scenarios. The trackers need to be able to recover by themselves.

50

Figure 3.8: Three different location error plots (the 2D location error

plot and the 3D location error plot in the top row, the relative error

plot in the bottom row) show the results of the experiment that com-

pares 3D face adapted TLD and 3D face adapted median flow. This

experiment is described in Section 5.1.

For the goal of 3D tracking for real time interactive applications such as interactive

displays, a few more specific metrics could be introduced, such as the smoothness of

tracking and how fast the tracker recovers from full occlusion when the target reappears

in the field of view. This is not in the scope of this research, but can be included in

future research.

3.4.3 Frame rate estimation

The tracking frame rate is very important for real time applications. According to the

requirements set in Section 1.2, the frame rate of my final 3D face tracking algorithm

should be as close to real time (30 fps) as possible. At the first glance, the frame rate

estimation is straight forward. The frame rate is usually computed as the number of

frames processed by a tracker in one second. This works fine when the tracker speed

51

time

fr
am

es
 p

er
 s

ec
on

d

successful tracking
tracking failed,
redetection is performed
to restart the tracking

target left the room,
full frame detection is performed every frame
until target reappears and tracking is restarted

Figure 3.9: In the face adapted median flow tracker, the frame rate

is slower for the frames when the target is lost and the whole frame

detection is performed to restart the tracker.

is approximately constant through the sequence. However this is not the case for face

adapted median flow described in this research. Face adapted median flow consists

of two main parts: the median flow tracker (Kalal et al., 2010b) and the Viola Jones

face detector (Viola and Jones, 2001). Median flow is very fast and can run 30-60

fps depending of the image resolution. In contrast, the Viola Jones detector is pretty

slow, running 1-10 fps depending of the image size. As explained in Section 4.4, in face

adapted median flow the face detection on the whole image is performed only when

the tracker lost the target. The rest of the time, the face detection is performed in

two subwindows: in one random subwindow in the background and in one subwindow

around the previous head position. Obviously, when tracking is successful, the area

of search for the Viola Jones detector is smaller than the whole frame detection when

the tracker has failed. Therefore, the tracking mode is considerably faster than the

detection mode. The average frame rate of processing a sequence depends on how

often and for how many frames the detection was performed (see Figure 3.9).

I tried two different ways of computing the frame rate for face adapted trackers: the

average frame rate and the successful tracking frame rate. The average frame rate is the

averaged value for the whole sequence. The successful tracking frame rate is the speed

of tracking when tracking is successful. For most of my experiments I recorded both

the average frame rate and the successful tracking frame rate. However, the average

52

Figure 3.10: The successful tracking frame rate and the average frame

rate for face adapted TLD for 37 high resolution videos. The two

frame rates are very similar in this experiment.

frame rate was very close to the successful tracking frame rate most of the time. For

example for the experiment described in Section 4.4.7, I evaluated face adapted TLD

on 37 high resolution sequences and computed the successful tracking frame and the

average frame rate. The two frame rates are shown in Figure 3.10. Even though they

might differ substantially for some of the videos, they are very similar for the whole

dataset. These two frame rates are very similar for other experiments as well. As there

is not much difference between the two frame rates, I report the average frame rate in

the following chapters.

3.5 Conclusion

In this chapter I described the tracking evaluation framework that I developed. It in-

cludes the video datasets with ground truth annotation and the metrics for 2D and 3D

tracking evaluation. As there are very few publicly available datasets that are suitable

for my research task, I recorded two large datasets: one using high resolution cameras

with standard lenses and one using low resolution cameras with fisheye lenses. For cre-

ating datasets I carefully chose the content of the sequences and the challenging factors

that are present in the videos. The developed tracker needs to be able to overcome

some difficulties, but it is not expected to work in an arbitrarily difficult environment.

I described how the TLD tracker can be used for semiautomatic ground truth annota-

53

tion. I chose fair and easy to interpret metrics for 2D and 3D tracking. The location

error plot and overlap plots are used to visualize different trackers’ performance. This

evaluation framework can now be used for developing 2D and 3D trackers. The 2D

tracker is discussed in Chapter 4. In Chapter 5 I talk about the 3D tracker.

54

Chapter 4

2D Face Tracking

The goal of this research is developing a real-time long-term 3D face tracking algorithm

for whole body view videos. As the first step towards this goal, in this chapter I develop

a 2D long-term face tracking algorithm.

This chapter is structured as follows. In Section 4.1 I explore the existing generic

trackers to find out which one works best on the face tracking datasets that I collected.

TLD and the context tracker show the best performance. Section 4.2 studies ways of

speeding up TLD for working on high resolution video. In Section 4.3.3 I develop a novel

approach of adapting generic trackers for tracking faces. Also this section compares

different face adapted trackers. For the goal of face tracking for interactive displays,

face adapted median flow shows the best results. In Section 4.4 several experiments

are performed to find the best parameters for face adapted median flow.

4.1 Choosing the best public tracker

In this section, one of the contributions of this thesis is reported. The described experi-

ments aim to find out which one of the publicly available generic tracking algorithms is

best for long-term whole body view face tracking. It is hard to fairly compare different

trackers and determine which one is the best due to the difficulty of choosing unbiased

testing sequences. Often due to implementation specifics, a tracker can perform very

well on one set of videos and fail on a different testing set. For example, trackers that

perform very well on short videos, sometimes fail and cannot recover on long sequences.

Therefore, to find the best existing tracker for some particular task, a dataset of videos

specifically for this task should be collected. A dataset was collected to specifically

evaluate long-term whole body view face tracking (for more details see Section 3.1).

55

The testing framework described in Wu et al. (2013) was used to compare the

existing generic trackers on our dataset. Wu et al. (2013) provide the executables for 29

publicly available generic trackers with uniform input and output formats to facilitate

large scale performance evaluation. In this experiment, I managed to evaluate only 17

out of 29 trackers. The other 12 trackers do not work properly on some of our videos.

It is not possible to fix them because their source code is not available. However, it

was possible to test the 5 trackers (SCM (Wei Zhong et al., 2012), Struck (Hare et al.,

2011), ASLA (Xu Jia et al., 2012), TLD (Kalal et al., 2011), CXT (Dinh et al., 2011))

that showed the best results in Wu et al. (2013), and many other trackers as well.

Figure 4.1: The performance of the generic tracking algorithms on

our dataset.

Figure 4.2: The performance of the generic tracking algorithms on

the public face tracking dataset.

Figure 4.1 shows the performance of the generic trackers tested on my high resolu-

tion gray scale dataset. There are two clear leaders that perform much better than the

56

other trackers: TLD and the context tracker (CXT). Figure 4.2 shows the performance

of the same trackers on the public face tracking dataset from Wu et al. (2013). The

context tracker, Struck and TLD are leading on this dataset. Unlike the performance

on my dataset, in the case of the public dataset, there is no large gap between the lead-

ing trackers and the rest of the trackers. Also it is interesting to note that two other

trackers (ASLA and SCM) that show strong performance in the public dataset from

Wu et al. (2013), perform considerably worse on our dataset. This can be explained

by the fact that trackers that perform very well on short sequences, can fail on long

videos. All public videos are around 500 frames long, while videos in our dataset are

1500-3000 frames long. When running on long videos, the ability of a tracker to detect

a failure and reinitialize itself plays an important role. The context tracker and TLD

have very strong failure detection and reinitialization procedures. That is why they

have a clear advantage on our long-term sequences.

The context tracker and TLD show the best performance both on our dataset and

on the public dataset. The context tracker is based on TLD and uses similar principles.

Unfortunately, the authors of the context tracker do not provide the source code. For

this reason, TLD was chosen for developing the long-term whole body view face tracker.

The C++ implementation of TLD by George Nebehay (Nebehay, 2012) was used. The

Nebehay implementation of TLD has the foreground segmentation as an additional

stage in the cascade detector. Nebahay claims that his implementation is 3 times

faster than the original MatLab implementation and can be even faster for a GPU

implementation.

The experiments described in this section also show that the choice of video se-

quences for testing tracking algorithms can drastically affect the experimental results.

4.2 Speeding up TLD

In the experiment described in the previous section TLD shows outstanding perfor-

mance on our datasets. This section investigates two ways of speeding up TLD. The

average frame rate of running TLD on our high resolution video sequences (1280×1024)

is around 5 fps. For stereo tracking the speed is even slower. It’s important to speed

up the tracker to get the performance as close to real time (30 frames per second) as

possible.

57

4.2.1 Background subtraction

TLD performs tracking and detection on every frame. On each frame around 40 ms is

spent on tracking and around 150 ms is spent on detection. One way to speed up TLD

is to limit the search area of the TLD detector. If the background is stable, this can

be done by background subtraction.

Figure 4.3: Background subtraction. The white rectangles show the

segmented foreground. The yellow rectangle shows the tracked target.

Figure 4.4: The performance of TLD with background subtraction

and without it.

There are many different methods of background subtraction. The survey of these

methods can be found in Radke et al. (2005). I used the method implemented by

58

Nebehay (2012). In this implementation, background subtraction is performed in four

steps:

1. The absolute difference between the background image Ibg and the current image

I is calculated:

IabsDiff = |Ibg − I| (4.1)

2. Then a threshold of 16 is applied to get a binary image:

Ibinary(x, y) =

1 if IabsDiff(x, y) > 16

0 otherwise
(4.2)

3. Then the labelling algorithm described in Chang and Chen (2003) is applied. This

algorithms computes contours of all connected components and their bounding

boxes.

4. The components whose bounding boxes are smaller than the original selected box

are discarded.

After background subtraction is finished, the search for the target is performed in

the segmented area only. Figure 4.3 shows a successful background segmentation.

To compare TLD performance with background subtraction and without it, I con-

ducted an experiment on 10 prerecorded sequences with a background image available.

The results are shown in Figure 4.4. The accuracy of the TLD tracker with background

subtraction is worse because foreground segmentation is not always correct. Also when

the detector search area is limited, some of the false positive examples are not detected

and the detector learning is not as effective. The average frame rate of TLD with back-

ground subtraction is 6.4 fps. The average frame rate of TLD without background

subtraction is 4.8 fps. The speed-up is not significant considering the accuracy loss.

Therefore, it was decided to try other methods for speeding up TLD.

4.2.2 Subwindow detection

Another way to speed up TLD by limiting the detection area is investigated further.

TLD performs tracking and detection on every frame. If tracking is not successful,

detection is used to reinitialize the tracking. If tracking is successful and confident, the

59

Figure 4.5: The subwindow detection. Red boxes show the detection

area. Yellow solid line boxes show the tracked target. The dashed

yellow boxes show the false positive examples.

results of the tracker and the detector are used for learning. The structural constraints

of the data together with the tracker and detector responses are used to find false

positive detections. These false positive results are used as negative examples for

updating the object model in the detector. Most of these negative examples are patches

in the background that have similar appearance to the tracked target. Therefore, if

the background is stable, these patches usually appear in the same places for several

frames in a row and are learned by the detector several times. Consequently, there

is no need to perform the whole frame detection every frame. When the tracker and

the detector are confident in one frame, in the next frame it is possible to perform

detection around the previous target position. This will help to correct the tracker if

it starts to drift away from the target. Also, it is important to scan some part of the

background to check if any new false positive examples have appeared. The detection

subwindow in the background changes its position every frame. In a number of frames

the whole image area is scanned. If the detector and the tracker are not confident,

then the whole frame detection is performed in the next frame.

Figure 4.5 illustrates the subwindow detection method. The top row shows the full

frame detection. All the false positives are found every frame (the dashed yellow boxes

60

around other people’s faces and a face-like patch in the background). The bottom row

shows the subwindow detection. The true positive (the tracked target) is found in every

frame because the detection is performed in a subwindow around the target location

in the previous frame. The false positive examples are found when the subwindow

detection is performed in that region. The subwindow detection is performed on every

part of the image at least once in 10 frames.

The experiment described further investigates how the subwindow detection method

affects the speed and accuracy of TLD. In TLD all the subwindows are defined during

the initialization step in the beginning. These subwindows are divided into 10 equal

size batches and the search is performed on one of these batches at a time. The

TLD detector with the subwindow detection is called FastTLD. Figure 4.6 shows the

results of the experiments. Both methods were checked on high resolution sequences

(1280×1024 pixels) and on low resolution sequences (640×512 pixels) separately. The

corresponding frame rates are provided in Figure 4.7.

Figure 4.6: The performance of TLD and FastTLD on high resolution

sequences and on low resolution sequences.

This experiment showed that the FastTLD accuracy is worse than the TLD accu-

racy. Also both methods perform better in high resolution images compared to the

performance on low resolution images. Using FastTLD and low resolution sequences

helps to speed up the performance significantly (24 fps versus 8 fps) and gets close to

real time.

4.3 Adapting for face tracking

Note: Some portions of this section were published in Mikhisor et al. (2015).

61

Figure 4.7: The frame rates of TLD and FastTLD in low resolution

images and in high resolution images.

If we employ a generic tracker to track a face, we do not use one very important

source of information: we know what a typical face looks like. This information can

improve tracking considerably. In this section, I first discuss the face adaptation of

TLD called FaceTLD (Kalal et al., 2010a) developed by the author of TLD. Then I

describe my adaptation of a generic tracker for tracking faces using the Viola Jones face

detector (Viola and Jones, 2001) and the structural constraints of the video volume.

This face tracking adaptation can be used with any generic tracker. Also it is possible

to adapt a tracker to track any other category of subjects such as cars or human figures

if the corresponding offline trained detector is available. I performed experiments with

the three generic trackers: MIL, TLD and Struck. For all the three trackers, the face

adaptation shows substantial tracking accuracy and robustness improvement.

4.3.1 FaceTLD

It is possible to increase tracking accuracy by giving up generality. TLD shows great

performance because it has very strong procedures to learn the changing appearance

of the tracked subject and to reinitialize tracking when it fails. However, even TLD

fails in longer sequences with difficult scenarios such as rapid movements, a confusing

background, or when the tracked subject goes in and out of the camera’s view. Due

to occlusion or rapid movement, the median flow tracker used in TLD can drift away

from the target and the TLD detector starts to learn false examples and its reliability

deteriorates. By restricting the domain of possible targets to a certain type of object

62

(faces in our case), it is possible to improve TLD or any other generic tracker greatly.

Figure 4.8: The Viola Jones face detector finds many false positive

examples.

The face adaptation method described in this research was inspired by the face

adaptation of TLD, called FaceTLD (Kalal et al., 2010a). In FaceTLD, the online

TLD detector is replaced by an offline trained face detector and a validator. The

authors used their own offline trained face detector (Kalal et al., 2008). The offline

trained detector localizes frontal faces and the online trained validator decides which

faces correspond to the tracked subject. The validator consists of a collection of positive

and negative examples. To decide whether a new face found by the detector is the true

target or not (another person’s face or a face-like background patch), the validator

compares this new detection with its collections of positive and negative examples.

In FaceTLD, the tracking is initiated in the first frame. This initial example is

tracked by a tracker and all patterns along the trajectory are accepted as positive

examples. Patches surrounding a validated trajectory are considered as negative ex-

amples.

According to Kalal et al. (2010a), FaceTLD is considerably more accurate than

TLD. This method seems very promising. However, offline trained face detectors, such

63

as the Viola Jones detector, often have high recall and low precision. This means

that usually they find most of the faces in an image and many face-like patches in the

background. In the example shown in Figure 4.8, the Viola Jones face detector found

the one true face and mistook five patches in the cluttered background for faces. By

learning negative patches as the ones that surround the validated tracker’s trajectory,

these face-like background patches far away from the track are not taken into account.

If the target is lost, and the detector tries to restart the tracking, it’s hard to choose

which one of the many detections is the true target.

The face adaptation method that I developed is inspired by FaceTLD but has several

differences to FaceTLD. Firstly, it can be applied to any generic tracker. Secondly, it

uses a different strategy of collecting positive and negative examples using the data

structural constraints. This method is described in the next section. Unfortunately

the authors of FaceTLD do not provide its source code and the dataset that they used

for their experiments is not publicly available. Therefore, I cannot compare my face

adaptation method described in the next sections to FaceTLD.

4.3.2 Using structural constraints for creating the face model

In this section, one of the main contributions of this thesis is described. I propose a

novel method of adapting any generic tracker for tracking faces using a face detector

and structural constraints in the unlabelled data. The face detector is executed in

parallel with the tracker and then structural constraints are used to create the tracked

face model in the space of the face detector results. This model is used together with

the detector to correct or restart the tracker.

The data are structured if knowing the label of one example restricts the labelling

of the others. For instance, in object detection, the task is to label all possible image

patches of an input image either as positive (object) or as negative (background). A

unique object can occupy at most one location in the input image. In a video, the

object location defines a trajectory, which is illustrated in Figure 4.9. The trajectory

represents a structure in the labelling of the video sequence. All patches close to the

trajectory share the same positive label, patches far from the trajectory are negative.

These structural constraints allow to label some of the unlabelled data. In TLD, the

structured unlabelled data is used to update the TLD detector after processing each

frame.

I propose to use structural constraints to create the tracked face model in the space

of the face detector detections. In my work I use the Viola Jones face detector, although

64

Figure 4.9: Illustration of a scanning grid applied to three consecutive

frames (a) and corresponding spatio-temporal volume of labels with

unacceptable (b) and acceptable (c) labelling. Red dots correspond

to positive labels. The image is taken from Kalal (2011).

other detectors can be used (e.g. Liao et al. 2016, Mathias et al. 2014). This detector

is learned offline using the supervised learning method. The detector is trained to find

any face in an image. However, for the task of one person tracking, we need to ignore

all other faces except the one that we are tracking. Another problem with the face

detector is that it outputs many face-like background patches (see an example in Figure

4.8). It is not possible to retrain the Viola Jones face detector online the same way

as the TLD detector is retrained every frame. For this reason, we create the tracked

face model M in the space of all Viola Jones detections. The face model is a dynamic

data structure that represents the object appearances and its surroundings observed

so far. It is a collection of positive and negative patches. Positive patches are the true

target face detected by the detector. Negative patches are other faces and face-like

background patches detected by the detector. The tracked face trajectory in the video

volume and the corresponding trajectory in the Viola Jones detections space is shown

in Figure 4.10.

The same way as in TLD, the relative similarity measure Sr is used throughout

the system to indicate how much an arbitrary patch P resembles the face appearance

represented in the face model M . To compute the relative similarity Sr, we first

compute the similarity with the positive nearest neighbour S+(P,M) and the similarity

with the negative nearest neighbour S−(P,M):

S+(P,M) = maxP+
i ∈M

S(P, P+), (4.3)

65

Object model:
collection of patches

Current frame

tracked face
patch

face-like patch

other face

Relative
similarity Sr

First frame

tracked face trajectory
in the space of face detections

Figure 4.10: Illustration of a trajectory in video volume and corre-

sponding trajectory in the appearance space.

.

S−(P,M) = maxP−
i ∈M

S(P, P−). (4.4)

The similarity between two patches Pi, Pj is defined as

S(Pi, Pj) =
1

2
(NCC(Pi, Pj) + 1), (4.5)

where NCC is a Normalized Correlation Coefficient (Rodgers and Nicewander, 1988).

The similarity ranges from 0 to 1. The relative similarity is computed as

Sr =
S+

S+ + S−
. (4.6)

Relative similarity ranges from 0 to 1, higher values mean high confidence that the

patch depicts the object.

The face model M is built up when tracking and detection are successful. It is used

to restart the tracking when it fails. The implementation details follow in the next

subsection.

4.3.3 Face adaptation implementation

Any tracker can be adapted for tracking faces using the proposed method described

here. A tracker is treated as a black box which receives an initialization rectangle in

66

Figure 4.11: The block diagram of the face tracking adaptation

method.

the first frame, and then for each subsequent frame it outputs the target’s bounding

box. The only requirement is that the tracker can be reinitialized when needed. The

block diagram of the face tracking adaptation method is shown in Figure 4.11. This

gives a wide variety of trackers that can be adapted for face tracking using this method.

It allows a combination of all the best features of any state-of-the-art tracker and a

reliable face redetection system.

The system consists of the main parts:

• Tracker. Any generic tracker that can track a target from frame to frame.

• Detector. An offline trained detector learned to detect some domain of objects.

I use the Viola Jones detector to detect faces. However, it is possible to train and

use any other detector, for example a car detector (Yebes et al., 2014) or other

sort of face detector (e.g. Liao et al. 2016, Mathias et al. 2014).

• Structural constraints. The temporal and spatial structure of the video vol-

ume is utilized as the structural constraints. The constraints are used to build

the tracked face model in the space of the face detector results.

• Validator. This module validates the final tracking result for the current frame

or sends a reinitialization signal to the tracker.

The processing of each frame consists of 4 main steps shown in Alg. 1. Each step

is explained in detail further.

67

Algorithm 1 Face adapted tracking
Input: Current image It

Output: The target face bounding box trackerBox

1: Tracker → trackerBox

2: Detector → faceCandidates

3: (trackerBox, faceCandidates)→ StructConstraints → (posCandidates, negCandi-

dates)

4: (posCandidates, negCandidates) → Validator → result

Tracking

The first step is tracking that is performed on every frame by the chosen tracker.

The tracker returns a rectangle which is the tracked face bounding box if the tracker

is right, or a box somewhere in the background or around another person’s face if the

tracker has failed.

Face detection

At the second step, face detection is performed. If frames are small and the de-

tector is fast, detection can be performed on every frame. Otherwise, it can be done

periodically and when the tracker fails. The face detector often outputs several face

candidates if there are other people in the camera viewing zone or face-like background

patches.

Applying structural constraints

After the tracking and detection is finished, the structural constraints are applied

to the tracking and detection results (Alg. 2). The temporal and spatial constraints are

used for processing of labelled and unlabelled data. In this situation the tracker result

can be considered as a labelled patch because the tracker is supposed to be tracking the

target face. However, the tracker can be wrong. The detector outputs several patches

which can be faces or face-like background. We do not know in advance which one

of these patches is the tracked face. Therefore, we can say that the detector outputs

unlabelled data. After applying the structural constraints, the tracker and detector

results are labelled as positive examples (examples of the tracked face) and negative

examples (face-like background or other faces).

68

Algorithm 2 Applying structural constraints

Input: trackerBox, faceCandidates

Input: threshold 1 (0.3)

Output: posCandidates, negCandidates

Output: posExamples, negExamples

1: clear posCandidates

2: clear negCandidates

3: for each faceCandidate in faceCandidates do

4: if overlap (faceCandidate, trackerBox)> threshold 1 then

5: Add faceCandidate to posCandidates

6: else

7: Add faceCandidate to negCandidates

8: end if

9: end for

10:

11: if |posCandidates| == 1 then

12: Add posCandidates to posExamples

13: Add negCandidates to negExamples

14: end if

The temporal structure of the video volume implies that the object moves on a

smooth trajectory. The tracker estimates the trajectory. If the tracker box overlaps

with one of the detection boxes, this is a positive example and it is added to the

collection of positive examples. The overlap is defined as

S =
|Bt ∩Bgr|
|Bt ∪Bgr|

, (4.7)

where Bt is the tracked bounding box, Bgr is the ground truth bounding box, ∩ and

∪ denote the intersection and union of two regions, respectively, and | · | denotes the

number of pixels in the region.

The spatial structure of the video volume implies that the object can appear at a

single location in a single frame only. When one of the detection results is marked as

positive, all the other detections in the frame are marked as negative examples and

added to the collection of negative examples.

If the tracker box does not overlap with any of the detection boxes, then the tracker

and detection are considered unreliable. No positive or negative results are added to

69

the collections and the tracker needs to be restarted.

An example of applying structural constraints is shown in Figure 4.12. In this

image, one of the detector results has a high overlap with the tracking result. This

result is saved as a positive example. All the other detections are saved as negative

examples.

Figure 4.12: When tracking and detection is successful, the structural

constraints are applied to the results.

In Alg. 2, threshold 1 is used to determine weather an overlap of a face detection

and a tracking result is large enough to add this face detection to positive candidates.

I found the optimal value of this threshold experimentally. The results for different

threshold values for face adapted TLD are shown in Table 4.3.3. The default value of

this threshold was set to 0.3.

Result validation

After the structural constraints are applied, the result validation happens (see

Alg. 3). The validator evaluates the positive and negative examples and either outputs

the tracker bounding box as the final target face position for this frame or initiates

the tracker reinitialization. There are two cases when the tracker reinitialization can

happen.

70

threshold 1 Average overlap

0.05 0.628

0.1 0.627

0.2 0.629

0.3 0.629

0.4 0.629

0.5 0.583

Table 4.1: Average overlap of the face adapted TLD tracking results

and the ground truth boxes for different values of threshold 1. In

bold is the default value that was used in all other experiments.

Figure 4.13: If the tracker and the detector results overlap is lower

than a threshold, the tracker is reinitialized.

In the first case, the tracker box overlaps with one detection box and therefore

there is exactly one positive candidate, but the overlap between the detection box and

the tracker box is small. This means that the tracker is still tracking the target but

started to drift away. In this case the reinitialization helps to prevent drifting. The

validator sends the positive example (the overlapping detection result) to the tracker.

The tracking starts from the new position in the next frame. An example of this case

is shown in Figure 4.13.

The second case when the tracker reinitialization can happen is when there are no

positive candidates or more than one positive candidate. In other words, there is no

71

Algorithm 3 Result validation

Input: trackerBox, posCandidates, negCandidates

Input: threshold 2 (0.8), threshold 3 (0.3), threshold 4 (1), threshold 5 (0.6)

Output: trackerBox

1: if |posCandidates| == 1 then

2: if overlap (posCandidate, trackerBox)< threshold 2 then

3: trackerBox ← posCandidate

4: reinitTracker()

5: end if

6: end if

7:

8: if |posCandidates| == 0 OR |posCandidates| > 1 then

9: find (faceCandidates) → [bestCand, bestScore]

10: if overlap (bestCand, prevDetect)> threshold 3 then

11: redetectCount += 1

12: else

13: redetectCount = 0

14: end if

15: if redetectCount >= threshold 4 AND bestScore > threshold 5 then

16: trackerBox ← bestCand

17: reinitTracker()

18: end if

19: prevDetect ← bestCand

20: end if

overlap between the tracker box and any of the detection results or the tracker box

overlap with more than one detection result. In this situation it is assumed that the

tracker has lost the target and needs to be reinitialized. An example of this situation

is shown in Figure 4.14. To do that, the validator computes the relative similarity Sr

(Equation 4.6) for each detection result and finds the one with highest similarity to

the tracked face model. If the candidate with the highest similarity is temporally and

spatially consistent (holds for at least two frames in a row), the validator assumes that

this is the true target and reinitializes the tracker. The validator helps to distinguish

the true target from the background and from other people’s faces as well. The function

reinitTracker() in Alg. 3 calls the tracker specific reinitialization procedure.

72

Figure 4.14: If the tracker and the detector results do not overlap,

the tracker needs to be reinitialized. To reinitialize the tracker, the

detection result with the highest similarity to the face model needs

to hold for at least two frames.

Four different thresholds are used in Alg. 3. threshold 2 is used to determine

weather an overlap of the face detection and the tracking result is small enough to

reinitilize the tracker. threshold 3 is used to determine weather an overlap of the

current face detection and the detection in the previous frame is large enough to believe

that the same face was detected in this frame and in the previous frame. threshold 4

is how many frames in a row the face should be redected to be able to reinitilize the

tracker. threshold 5 is the minimum relative similarity Sr that the best face detection

needs to have to be able to reinitilize the tracker. All these thresholds were estimated

experimentally. The results are shown in Table 4.3.3.

4.3.4 Adapting generic trackers for tracking faces

The described face adaptation method can be applied to any generic tracker if this

tracker can be restarted on demand. I evaluated the method on three generic track-

ers: TLD1 (Kalal et al., 2011), Struck2 (Hare et al., 2011) and MIL3 (Babenko et al.,

2011). According to the evaluation of 29 trackers by Wu et al. (2013) and a more

1https://youtu.be/8xYphOdOZbU
2https://youtu.be/LOWsRXVYUBI
3https://youtu.be/zZcZWW9elgM

73

https://youtu.be/8xYphOdOZbU
https://youtu.be/LOWsRXVYUBI
https://youtu.be/zZcZWW9elgM

threshold 2 AO threshold 3 AO threshold 4 AO threshold 5 AO

0.4 0.564 0.05 0.629 0 0.604 0.3 0.628

0.5 0.610 0.1 0.629 1 0.639 0.4 0.629

0.6 0.630 0.2 0.629 2 0.637 0.5 0.622

0.7 0.578 0.3 0.631 3 0.633 0.6 0.637

0.8 0.629 0.4 0.631 0.7 0.582

0.9 0.593 0.5 0.626

0.6 0.620

Table 4.2: Average overlap (AO) of the face adapted TLD tracking

results and the ground truth data for different values of thresholds

used in Alg. 3. The values used as default are shown in bold for each

threshold.

recent extensive evaluation of 19 trackers by Smeulders et al. (2014), TLD and Struck

are among the best 5 trackers and MIL is among the best 15 trackers. I chose these

trackers because of their outstanding performance and because their implementations

are available online. All three algorithms were used with the default parameters pro-

vided by the authors. For face detection I use the standard Viola Jones face detector

provided in the OpenCV library. In this experiment the Viola Jones detector is used

once in 25 frames or when the tracker loses the target.

The performance of TLD, Struck and MIL with and without the face tracking adap-

tation on public sequences is shown in Fig. 4.15 and on my sequences in Fig. 4.16. The

face tracking adaptation improves tracking performance for all image sequences and all

the three trackers. However, for my image sequences the face tracking adaptation of

Struck and MIL shows a much greater improvement than TLD. This can be explained

by the fact that Struck and MIL perform much better on short sequences, while on

long ones they eventually drift away and are unable to recover. At the same time TLD

has its own re-detection procedure, which helps to recover tracking on long sequences.

That is why TLD shows similar performance on public short sequences as well as on

my long sequences.

The results for testing the method on the public dataset are shown separately from

the results of testing on our dataset to show that the dataset that I made is not biased.

The face adaptation improvement is clearly visible on both my dataset and the public

dataset. To prove that the results are significant, the standard deviation is shown by

74

Figure 4.15: Performance evaluation on public image sequences. The

overlap success plots for the three trackers are shown in the top row

and the location precision plots are shown in the bottom row. Each

line in a plot shows the mean performance over the image sequences

and the shading shows one standard deviation.

shading in the plots in this subsection. In the following sections the standard deviation

is not shown to keep the plots uncluttered.

Some examples of face tracking adaptation on public sequences are shown in Fig. 4.17.

In this figure three difficult cases are shown. In the top row, the lecturer’s face disap-

pears for more than 50 frames in the middle of the sequence. When the target reap-

pears, TLD cannot resume tracking. In the face tracking adaptation, the face detector

helps to reacquire the face and reinitilize TLD. In the middle row, the subject per-

forms many rapid movements. Struck loses the target and fixates on the background.

In the face tracking adaptation of Struck, face detection is performed periodically.

This helps to correct the mistake and reacquire the true target. In the bottom row,

the MIL tracker loses the target because of drastic lighting changes. The face tracking

adaptation of MIL is able to track the target to the end of the sequence.

This face adaptation framework makes it easy to combine powerful state-of-the-art

75

Figure 4.16: Performance evaluation on my image sequences. The

overlap success plots for the three trackers are shown in the top row

and the location precision plots are shown in the bottom row. Each

line in a plot shows the mean performance over the image sequences

and the shading shows one standard deviation.

trackers with a robust face re-detection system. I compared public datsets for face

tracking with our dataset and showed that public datasets are not representative. I

demonstrated using public datasets and my own dataset that this method improves

tracking accuracy considerably. Potentially this method can be used for tracking ob-

jects other than faces if a corresponding detector is available. The Viola Jones ap-

proach, while usually used for faces, can be used for other objects if given appropriate

training data.

It is interesting to note that in Figure 4.15 and Figure 4.16, the original TLD

method without face detection has a higher success rate for overlaps more than 0.8 and

location error less than 5 pixels. This can be explained by the fact that the ground

truth face bounding boxes usually have elongated shapes to fit closely to the face shape.

TLD retains the shape of the initialization bounding box to the end of a video. If in

76

Figure 4.17: Examples of tracking results highlighting how face track-

ing adaptation helps to recover tracking after occlusions or rapid

movements. The red boxes show the original trackers’ performance

and the green boxes show the face tracking adaptation performance.

Figure 4.18: The comparison of TLD, Struck and MIL, adapted for

tracking faces.

the beginning it is initialised by an elongated rectangle (the shape of a face bounding

box) and the tracking is successful, then it will be a rectangle of the same proportions

at the end of the sequence. At the same time the Viola Jones detector always outputs a

square bounding box. If the tracker is reinitialized by the Viola Jones face detector, the

77

tracked target will have a square bounding box. This problem can be solved by using

a face detector that outputs a rectangle closer to the real face shape or by correcting

the face detector rectangles.

Figure 4.18 shows the comparison of TLD, Struck and MIL with the face adaptation.

These results are shown for the joint dataset of our sequences and the public sequences.

The face adapted TLD considerably outperforms the face adaptations of Struck and

MIL.

4.3.5 Different modifications of TLD

The experiments in the previous subsection showed that the face adaptation of TLD

outperforms the face adaptations of Struck and MIL. This subsection compares several

different modifications of TLD:

• The original version of TLD.

• FastTLD, the fast version of TLD, described in Section 4.2.2.

• Face adapted TLD.

• The face adaptation of TLD with the TLD detector switched off. This version is

basically face adapted median flow.

• Face adapted FastTLD. In this version the face detector is used to reinitialize

the tracker. The TLD detector performs sparse detections, as described in section

4.2.2

The accuracy of the trackers is shown in Figure 4.19. This results are for the

combined dataset of high resolution and low resolution sequences (including the public

face tracking videos). The average frame rates are shown in Figure 4.23.

The following conclusions can be made:

• If accuracy is the most important then face adapted TLD should be used. It

is possible to make it even more accurate by running the face detector on each

frame.

• If speed is crucial, then it’s preferable to use face adapted median flow. It also

shows the second best accuracy.

78

Figure 4.19: The performance of TLD, face adapted TLD, face

adapted median flow.

Figure 4.20: The frame rate summary for the trackers.

As I am trying to develop close to real time face tracking, I chose face adapted

median flow for further investigation.

As it was discussed earlier, in Figure 4.19, the TLD methods without face detection

(TLD and FastTLD) have higher success rates for overlaps more than 0.8 and location

error less than 5 pixels. This is explained by the fact the ground truth face bounding

boxes have elongated shape and at the same time the Viola Jones detector always

outputs a square bounding box. If the tracker is reinitialized by the Viola Jones face

detector, the tracked target will have a square bounding box (see Figure 4.21). This

problem can be solved by using a face detector that outputs a rectangle closer to the

79

Figure 4.21: TLD retains the shape of the initial bounding box (green

rectangle). If it is reinitialized by the face detector, the shape of the

bounding box is changed to a square (yellow rectangle).

real face shape or by correcting the face detector rectangles.

4.4 Experimenting with parameters of face adapted

median flow

The goal of this research is to develop a real time face tracking algorithm. I decided

to carry on with face adapted median flow because face adapted median flow is the

fastest modification of TLD and shows the second best accuracy, not much worse then

the accuracy of face adapted TLD. This section describes experiments for finding the

optimal parameters of face adapted median flow.

4.4.1 Frequency of running the face detector

The experiment described in this subsection estimates the optimal frequency of run-

ning the face detector. Any generic tracker if it can be restarted on demand, can be

adapted for tracking faces using the method described above. However, running the

face detector on every frame, especially on high resolution sequences, is very slow and

80

not necessary. The speed of the face detector depends on the detector implementation

and the image size. The standard Viola Jones detector implemented in OpenCV scans

a 1240 × 1024 image in 500 ms, and a 320 × 240 image in 50ms. If the tracker is

supposed to run in real time, then a compromise between speed and accuracy must be

found.

Figure 4.22: The performance of the median flow tracker adapted for

tracking faces with different frequencies of running the face detector.

Figure 4.23: The frame rate summary for the median flow with dif-

ferent detection frequencies.

Figure 4.22 shows the performance of face adapted median flow with different de-

tection frequencies. The accuracy of tracking decreases gradually with lowering the

detection frequency. There is a big drop in accuracy when no detection is performed.

81

Median flow without face detection has higher success rates for overlaps more than

0.8 and location error less than 3 pixels. As before, this can be explained by the fact

that if the tracker is reinitialized by the Viola Jones face detector, the tracked target

will have a square bounding box. Otherwise, it will retain the shape of the initial

bounding box. The ground truth bounding boxes also retain the shape of the initial

bounding box. This results in a higher success rate for overlaps more than 0.8 for

median flow without face detection

Figure 4.23 shows the corresponding frame rates. As explained in Section 3.4.3,

the average frame rate is measured. The average frame rate can depend a lot on

the tracking accuracy. On the frame rate plot, two extremes are visible: a very fast

performance of the median flow tracker without detection and a very slow performance

of the median flow tracker with detection on every frame. All the other trackers have

similar frame rates. Is is important to note that when running the face detection once

in certain number of frames, the overall tracking becomes jerky: it goes fast and smooth

and then slows down on the detection stage. This problem can be solved by performing

detection in a small part of the image on every frame (see Section 4.4.2).

4.4.2 Subwindow based detection

As mentioned in the previous section, running the face detector once in a certain

number of frames makes the overall tracking jerky because tracking is much faster

than detection, especially on large frames. To solve this problem, it is possible to use

the same method as was used for speeding up TLD (see Section 4.2.2). Instead of

performing detection on a full image once in a certain number of frames, the detection

is performed each frame on two subwindows (Figure 4.24):

• The “following” subwindow around the previous target face position. The sub-

window size depends on the previous target bounding box size. This subwindow

is used to follow the target closely and correct the tracker if it start to divert

from the target.

• Some subwindow in the background. This subwindow position changes each

frame in a sliding window manner. This subwinow is used to monitor the back-

ground and find other people’s faces and new confusing background patches to

record them as negative examples.

82

Figure 4.24: The face detection is performed in two subwindows.

Subwindow 1 is a subwindow centred at the previous target position.

Subwindow 2 is positioned in the background. It this example two

faces are found. They are classified as either positive or negative

examples in the next step.

Figure 4.25: The performance of face adapted median flow with detec-

tion performed on a full frame once every 10 frames and face adapted

median flow with subwindow based detection.

The faces found by the detector in these subwindows are classified as positive or

negative examples according to the data structural constraints. Usually the face found

in the subwindow around the previous head position is the true positive example of

the target face. This example is added to the collection of positive examples. The

faces found in the background subwindow are usually false positive examples (other

83

Figure 4.26: The frame rates of face adapted median flow with detec-

tion performed on a full frame once every 10 frames and face adapted

median flow with subwindow based detection.

people’s faces or face-like patches in the background). They are added to the collection

of negative examples. The background subwindow position changes every frame in the

sliding window manner. However, the full frame detection is performed if the target is

considered to be lost in the previous frame.

In this experiment, the periodic detection is performed once in 10 frames. In the

subwindow detection, the background subwindow covers 11% of the image area. The

whole image area is covered in 9 frames. The results are shown in Figure 4.25. The

two methods have similar accuracy. As shown in Figure 4.26, the frame rate of the

subwindow detection is lower. However, it is more important that this methods provides

smooth performance, which can be crucial in real time applications.

4.4.3 Different sliding window methods

As discussed in the previous section, the sliding window approach across several frames

is used for positioning a detection subwindow. This travelling subwindow is used for

examining the background in a search for new negative examples. A scan-line order is

used because it doesn’t matter where exactly a new negative example is found. Such

examples can be the faces of other people entering the camera viewing zone. If the

camera moves and the background changes, there might be new face-like patches in the

background. It is important to detect these new face-like patches as soon as possible

and save them to the collection of negative examples.

In the field of object localization with bounding boxes, sliding window approaches

84

have been the method of choice for many years (Castrillón et al., 2010). Usually such

localization methods rely on evaluating a quality function, e.g. a classifier score, over

many rectangular subregions of the image and taking its maximum as the object’s

location. Because the number of rectangles of all sizes in an n × n image is of the

order n4, this maximization usually cannot be done exhaustively. Instead, several

heuristics have been proposed to speed up the search. Typically, these consist of

reducing the number of necessary function evaluations by searching only over a coarse

grid. The coarser the grid is, the more efficient, but the higher the chance of missing

the object of interest. Another approach, which can be used in combination with

a coarse grid of subwindows, is to use ground plane constraints of the scene to skip

irrelevant subwindows and evaluate only those patches that correspond to geometrically

valid object detections (Sudowe and Leibe, 2011). Using ground plane constraints is a

promising method. However because of limited time, I left it for future work.

Figure 4.27: The illustration of the different sliding window methods.

I compared the standard sliding window method and my two simple modifications

of it (see Figure 4.27):

• The standard method. Running the sliding window with a 0.2 overlap. The

85

scanning subwinow shape is a square and its height is 0.4 of the frame height.

It takes 108 frames to cover the whole image. The downside of this method is

that it takes so long to cover the background. Some of the important negative

examples in the background can be missed while the scanning window is in the

other part of the background.

• No overlap. Running the sliding window back to back with no overlap. Com-

pared to the previous method, it takes only 9 frames to cover the whole image.

The downside side is that the object of interest can be missed because it falls on

the ridge between the two subwindows.

• Permuted standard method. Running the sliding window back to back with

no overlap, but after running the full image area, starting over with a 0.2 shift.

This method has advantages of the both previous methods and eliminates the

downsides. It covers the whole image in 9 frames. It performs the same exhaustive

work as the standard method in 108 frames.

Figure 4.28: The performance of face adapted median flow with dif-

ferent sliding window methods

The scanning subwindow width and height are the same for all the three methods

(0.4 of the image height). The results of the experiment are shown in Figure 4.28 and

Figure 4.29. All three methods showed similar accuracy and speed. For the following

experiments, I used the permuted standard method.

4.4.4 The “following” subwindow size

The performance of face adapted median flow with different “following” subwindow

sizes was tested experimentally. Three sizes were tested: 3x3, 2x2, 1.5x1.5 of the

86

Figure 4.29: The frame rate of face adapted median flow with different

sliding window methods.

Figure 4.30: The performance of face adapted median flow with dif-

ferent sizes of the “following” subwindow.

previous target bounding box size. The background subwindow size (0.4 of the frame

height) and shift (0.2 of the background subwindow size) were fixed in the experiment.

The results of the experiment are shown in Figure 4.30 and Figure 4.31. The

accuracy is almost the same for all the three sizes, but the frame rate is slightly lower

for the larger subwindow. The 2x2 size is used for the following experiments.

87

Figure 4.31: The frame rate of face adapted median flow with different

sizes of the “following” subwindow.

Figure 4.32: The accuracy of face adapted median flow with different

sizes of the sliding window: 0.1, 0.2, 0.3, 0.4, and 0.5 of the frame

height.

4.4.5 Sliding window size

This experiment was performed to check how the sliding window size affects speed

and accuracy. Five sizes were checked: 0.1, 0.2, 0.3, 0.4, and 0.5 of the frame height.

The accuracy is shown in Figure 4.32. The frame rates are shown in Figure 4.33. As

expected, for larger sliding windows, the frame rate is lower. Note that the 0.1 sliding

window is slower than the 0.2 sliding window in low resolution sequences. This happens

because the accuracy of the 0.1 sliding window is low and more restarts are needed and

this slows down the tracker.

The 0.4 window was used for the following experiments.

88

Figure 4.33: The frame rate of face adapted median flow with different

sizes of the sliding window.

4.4.6 Average face size and Haar cascade limits

Another way to speed up face adapted median flow is to adjust the Haar cascade limits.

The Haar cascade face detection takes a lot of time. I use the OpenCV implementation

of the face detector, which is parallelized and highly optimised but still quite slow. The

detector divides the searched window into subwindows of different sizes and checks each

subwindow separately. It is possible to speed up the detector by reducing the number

of subwindows that it has to check. The number of subwindows can be reduced by

putting limits on the smallest face possible. It is not desirable to put the upper limit

because the face can occupy the whole frame if the target person comes close to the

camera. Also the lower limit cuts out many more subwindows than the upper limit.

Before deciding on the lower limit of the Haar cascade, I estimated the average face

size in relation to the frame size in the high resolution videos in our dataset. As the

face height is larger than its width, the average height was estimated. The results are

shown in Figure 4.34.

For the videos with resolution of 1280 × 1024 pixels, 90% of faces have height

between 0.03 and 0.23 of the frame height or between 51 and 143 pixels.

In the following experiment, two limits were compared: 5 x 5 pixels and 30 x 30

pixels. The results are shown in Figure 4.35. The 30 x 30 limit performs slightly worse.

The 30x30 limit is too large and misses some of the small faces. Using the 30 x 30

89

Figure 4.34: The face height distribution in the high resolution videos

in our dataset.

Figure 4.35: The performance of different detection limits in the high

resolution videos.

limits helps to speed up the tracker performance (see Figure 4.36). It was decided to

use the 5 x 5 limit for all videos in the following experiments.

90

Figure 4.36: The frame rate for different detection limits.

4.4.7 Final comparison: TLD modifications and context tracker

The context tracker showed the best results on the public dataset and on our dataset

in the experiment described in Section 4.1. To conclude this chapter, I compared the

original TLD method, the context tracker, face adapted TLD and face adapted median

flow. The results are shown in Figure 4.37 and Figure 4.38. Face adapted median flow

is the fastest method and shows second best accuracy results, very close to the best

result, shown by face adapted TLD. Developing this robust 2D face tracking algorithm

is one of the main contributions of this thesis.

Figure 4.37: The final comparison of face adapted median flow, TLD,

face adapted TLD and CXT.

Figure 4.37 is an example when the location error plot and overlap plot show slightly

different results. In the location error plot, the context tracker, face adapted median

flow and face adapted TLD show very similar success rates for location errors less than

91

Figure 4.38: The frame rate comparison for face adapted median flow,

TLD, face adapted TLD and CXT.

7 pixels. At the same time in the overlap plot, the context tracker has higher success

rates for the overlaps higher than 0.7. This can be explained by the fact that the

context tracker retains the shape of the initial rectangular face bounding box, while

face adapted median flow and face adapted TLD get a square bounding box when

reinitialized by the Viola Jones face detector. A square bounding may not affect the

location error, but definitely affects the overlap with the ground truth face box, as

most ground truth face bounding boxes have an elongated rectangular shape. For this

reason in Figure 4.37, TLD shows higher success rates for overlaps higher than 0.9.

4.5 Conclusion

This chapter was concerned with developing a 2D long-term tracking algorithm for

tracking faces in whole body view video sequences. As initial step towards this goal,

I explored the existing publicly available generic trackers on face tracking datasets.

TLD and the context tracker showed the best performance. Then a novel method

of adapting generic trackers for tracking faces was developed and evaluated. The

experiments showed that face adaptation of generic tracker improves their accuracy

considerably on the face tracking datasets. For real time applications, face adapted

median flow shows the most suitable combination of speed and accuracy. On low

92

resolution images (640× 512) it can run at around 19 frames per second which is close

to real time. Also, I performed a set of experiments to find the best parameters for

face adapted median flow. The experiments show that performing detection in the

sliding window manner across several frames is better than running it periodically on

a full frame. The parameters such as the cascade detector limits and the detection

subwindow size and position do not play an important role.

In the next chapter we will look into developing a 3D face tracking algorithm on

the base of face adapted median flow.

93

Chapter 5

3D Face Tracking

This chapter investigates building a 3D face tracker based on the 2D face adapted

median flow tracker described in the previous chapter. The straightforward way to do

that is to run two instances of 2D face adapted median flow and then triangulate the

results to find the target’s 3D position. However, the stereo feed coming from the two

cameras contains useful information that can be employed to facilitate 3D tracking.

Therefore the goal of this chapter is to find ways of using the stereo information in the

most effective manner.

The chapter is structured as follows. Section 5.1 focuses on converting a 2D tracking

algorithm into 3D algorithm. 3D face adapted median flow is experimentally compared

to 3D TLD. Section 5.2 investigates methods of using stereo information to improve

tracking accuracy. A novel method of checking the consistency of the target size and

3D position is developed. This method helps to recognize tracking failures early and

restart the tracking. Section 5.3 studies ways of converting the 2D Lucas-Kanade

tracker into 3D to speed up the final 3D face adapted median flow tracker.

5.1 Converting 2D tracking into 3D tracking by tri-

angulation

In Chapter 4 I introduced face adapted median flow. The straightforward way to

convert this fast and accurate 2D tracker into 3D is to run two independent instances

of the tracker. The tracking results (consisting of a bounding box around the subject’s

face) are then triangulated to find the 3D head position. The block scheme of this 3D

tracker is shown in Figure 5.1. Any other 2D tracker can be converted into 3D the

same way. I converted 2D TLD into 3D TLD according to this scheme.

94

Figure 5.1: The block scheme of a simple 3D tracker composed out of

two independent instances of a 2D tracker. This way any 2D tracker

can be converted into 3D.

Figure 5.2: The location error plot for 3D face adapted median flow

and 3D TLD. The success ratio at the threshold of 20 cm is given in

brackets after the trackers names.

As there are no publicly available 3D visual trackers to compare to my 3D trackers,

I compared 3D face adapted median flow to 3D TLD that I developed according to the

scheme in Figure 5.1. The performance comparison of the two 3D trackers is shown in

Figure 5.2 (for an explanation of the 3D tracking performance metric see Section 3.4.2).

This experiment and all the following experiments in this chapter were performed on

my high resolution and low resolution stereo datasets (see Section 3.1 for the datasets

95

Figure 5.3: The frame rate plot for the 2D and 3D face adapted

median flow and 2D and 3D TLD.

description). As 2D face adapted median flow outperforms 2D TLD, there is no surprise

that 3D face adapted median flow outperforms 3D TLD. The frame rates are shown

in Figure 5.3. 3D face adapted median flow is considerably faster than 3D TLD. The

frame rate for 2D face adapted median flow and 2D TLD are also shown in this plot

to illustrate that they are approximately two times as fast as the 3D versions of these

trackers.

On the low resolution images, 3D face adapted median flow runs on around 9

fps. At high resolution, the speed is around 4 fps. This is considerably slower than

the required real time performance (30 frames per second). The slowest part of face

adapted median flow is the Viola Jones face detector. According to Pulli et al. (2012),

the GPU implementation of the Viola Jones detector is on average 6 times faster than

the CPU implementation. Wai et al. (2015) managed to achieve the 22 times speed up

of the detector on 640× 480 images using the NVidia K40 card. These results indicate

that it is possible to make face adapted median flow faster and possibly close to real

time.

5.2 Using stereo information

Building a 3D tracker out of two independent instances of a 2D tracker is not efficient

as the 2D trackers do not make use of stereo information. By stereo information I mean

all the mutual dependencies between the video feeds of the two cameras overlooking the

96

same scene. For example, if an object in the shared field of view moves, the direction

of its projections movements in the two cameras feeds must agree. Using stereo infor-

mation can improve tracking performance and speed up the tracking. For review of

multiple ways of using stereo information see Section 2.1. This section discusses using

stereo information to assist tracking accuracy and speed. I first examine the use of

size and 3D position consistency in the stereo camera feeds to detect tracking failures.

Then I explore methods for sharing information (examples of the target appearance)

between the trackers with the aim of increasing the accuracy and speed of the tracking.

Figure 5.4: The illustration of the epipolar constraint. The face is

denoted by the bounding box in the left image. In the right image

the epipolar line corresponding to the center of the bounding box is

shown.

5.2.1 Checking size and 3D position

The 3D tracker consisting of two independent 2D trackers does not use any stereo

information. Therefore, it is important to check that the two 2D tracking results give a

consistent 3D result. This can be done by using the epipolar constraint and the target

size. The epipolar constraint means that for a point observed in one image the same

point must be observed in the other image on a known epipolar line. An illustration of

an epipolar line is shown in Figure 5.4. Another constraint is given by a fixed object

size. In our case the head size is known. It is possible to use an average head size or

to compute the tracked head size at the initialization step. In the following procedure,

we can use these two constraints to check if the tracking results in both views give a

97

Figure 5.5: Checking the consistency of the 3D result.

meaningful 3D head position. This method is one of the contributions of this thesis.

The procedure is illustrated in Figure 5.5 and can be summarised as follows:

1. The two 2D tracking results (the centres of the face bounding boxes) are trian-

gulated to find the 3D position of the head centre Xc.

2. The 3D positions of the top of the head Xt and the left middle point Xl are

computed.

3. These two 3D points Xt and Xl are reprojected back into the left and right

images.

4. The face boxes are reconstructed from the two reprojected points.

5. The overlap between the tracking boxes and the reconstructed boxes is computed.

98

Ideally, these two reconstructed boxes should match the tracking boxes precisely,

but this is never the case. Therefore, we assume that the tracking results are correct

if the overlaps between the tracking boxes and the reconstructed boxes in both views

are above a certain threshold. If the overlap is lower than the threshold in either view,

then this indicates that one of the trackers started to drift away from the target, and

the two trackers do not produce a meaningful 3D result.

In this case it is important to decide which of the two 2D trackers has failed. To do

that, the confidence of both tracking results is computed. To compute the confidence

of a face candidate, it is compared to the collections of positive and negative examples

(for more details see Section 4.3.3). The result with the lower confidence is discarded

and the face search is performed in that image.

Figure 5.6: The location error plot for 3D face adapted median flow

with the size and 3D position check and without it.

An experiment was performed to find out if the described size and 3D position

check helps to detect failures earlier and correct them. I compared a simple 3D tracker

composed out of two independent 2D face adapted median flow trackers and a 3D face

adapted median flow tracker with the size and 3D position check performed on every

pair of stereo frames. The results are shown in Figure 5.6. 3D face adapted median flow

with the size and 3D position check does show better accuracy than 3D face adapted

median flow without the check. The frame rate plot is not provided because the size

99

Figure 5.7: The location error plot for different overlap thresholds.

and 3D position check is a very fast operation and it does not affect the tracking speed.

I performed another experiment to find out which overlap threshold shows better

results. If the threshold is too small, a significant violation of the epipolar constraint

or the head size constraint may go undetected for a while. If the threshold is too

high, the tracker can be restarted more often than needed because there is never 100%

alignment between the tracking box and the reconstructed face box. The results of

different overlap thresholds are shown in Figure 5.7. All thresholds show similar results,

but the 0.3 threshold is slightly better.

5.2.2 Sharing information between the views

In our stereo setup, the two cameras have quite similar views of the scene. Therefore

the two 2D trackers might benefit from sharing information between each other. As

discussed in Section 4.3.3, each of the two face adapted median flow trackers maintain

its own collections of true positive and false positive face examples. As the two cameras

have similar views of the scene, the 2D trackers collect similar positive and negative

examples. It is possible that the examples collected by one tracker can make the other

tracker more accurate. In this experiment, I check if sharing the information about

the face’s appearance between the 2D trackers can improve the overall performance.

The shared collections of positive and negative examples are illustrated in Figure 5.8.

100

Figure 5.8: The collections of positive and negative examples are

shared between the views.

Figure 5.9: The location error plot for 3D face adapted median flow

with shared face examples collections and with separate collections.

The accuracy of this approach is shown in Figure 5.9, and there is very little difference

between the two 3D trackers. On our dataset, the trackers do not show any accuracy

improvement when sharing information about what the face looks like.

In this experiment, an interesting observation can be made about the collections

sizes. The collections grow when new examples are added to them. As explained in

Section 4.3.3, every frame the structural constraints create new positive and negative

examples. However, these new examples are added to the collections if only they are

101

different enough from the examples that are already collected. For more details on

how it is performed, see Section “P/N-learning” in Nebehay (2012). This experiment

showed that when sharing the information between the views, the size of the shared

collection of positive examples is approximately equal to the combined size of the two

separate positive collections when the information is not shared. The same is true for

the negative collections. This fact can lead to a conclusion that the examples in one

view are not similar to the examples in the other view even though they look similar

to a human eye. It does not really matter whether we put all positive examples into

one bin or into two separate bins, one for each tracker. Each 2D face adapted tracker

uses its own sets of positive and negative examples.

5.3 3D median flow tracker

One of the main components of our 2D face adapted median flow is the median flow

tracker. The median flow tracker is the Lucas-Kanade tracker (Lucas and Kanade,

1981) with the forward-backward (FB) failure detection (Kalal et al., 2010b). It is

possible to convert it into a 3D median flow tracker. In this section I investigate and

compare several 3D median flow trackers in an attempt to optimize and speed up the

final 3D face adapted median flow tracker.

5.3.1 3D Lucas-Kanade tracking

The median flow tracker is the Lucas-Kanade tracker with the forward-backward (FB)

failure estimation. The FB failure estimation will be described later in Section 5.3.3.

The original 2D Lucas-Kanade method is described in Lucas and Kanade (1981). The

pyramid implementation of this method can be found in Bouguet (2001). The 3D

Lucas-Kanade tracking algorithm can be found in Harguess et al. (2011) and Xiao

et al. (2002) and is described here.

In general, the 2D Lucas-Kanade method studies the spatial and temporal gradient

of a local region of an image to find, where this region moved in the next frame. The

3D Lucas-Kanade method performs the same procedure, but the spatial and temporal

gradient is computed for the two pairs of images that come from the two cameras. The

mathematical description follows.

Let us assume that we have two stereo calibrated cameras: C and C ′. The main

coordinate system, in which we work, coincides with the coordinate system of camera

102

Figure 5.10: The 3D point p in the C system is projected to the 3D

point p′ in the C ′ coordinate system.

C. The 3D point p in the C system is projected to the 3D point p′ in the C ′ coordinate

system (see Figure 5.10):

p′ = Rp + t (5.1)

where R is the rotation matrix and t is the translation vector between the coordinate

systems of C and C ′. Let It be an image from camera C and I ′t be an image from

camera C ′ at moment t. Let It+1 and I ′t+1 be another pair of images taken in the next

moment. Consider a 3D point in space m = [mx,my,mz]
T . The goal of tracking is

to find the location n = m + d = [mx + dx,my + dy,mz + dz], such that these points

projections in camera C images are similar It(m) ≈ It+1(n) and the same is true for

the pair of images from camera C ′: I ′t(m
′) ≈ I ′t+1(n′). To find d, we minimize the

residual function E defined as follows:

E(d) = E1(d) + E2(d′) (5.2)

E(d) =
∑

Ω

(It(m)− It+1(m + d))2 +
∑

Ω

(I ′t(m
′)− I ′t+1(m′ + d′))2, (5.3)

where Ω is a neighbourhood of pixels around the 2D projection of the point m. To

minimize E, we set its derivative with respect to d to zero:

∂E

∂d
=
∂E1

∂d
+
∂E2

∂d′
∂d′

∂d
= 0 (5.4)

103

Knowing that d′ = Rd, we can rewrite this as:

∂E1

∂d
+
∂E2

∂d′
R = 0 (5.5)

For camera C we get:

∂E1

∂d
= −2

∑
Ω

(It(m)− It+1(m + d))

[
∂It+1

∂dx

∂It+1

∂dy

∂It+1

∂dz

]
(5.6)

Let us now substitute It+1(m + d) by its first order Taylor expansion about the point

d = [0 0 0]T :

∂E1

∂d
= −2

∑
Ω

(
It(m)− It+1(m)−

[
∂It+1

∂dx

∂It+1

∂dy

∂It+1

∂dz

]
d

)[
∂It+1

∂dx

∂It+1

∂dy

∂It+1

∂dz

]
(5.7)

The quantity I(m) − It+1(m) can be interpreted as the temporal image derivative at

the point m:

δIt(m)
.
= I(m)− It+1(m) (5.8)

Suppose that the 3D point m is projected to some 2D point with pixel coordinates

(u, v):

u =
f1mx

mz

+ C1x, v =
f1my

mz

+ C1y, (5.9)

where f1 is the camera C focal center, and (C1x, C1y) is the optical center. The matrix[
∂It+1

∂dx

∂It+1

∂dy

∂It+1

∂dz

]
is the image gradient vector with respect to the 3D displacement

d:

∇I =


Ix

Iy

Iz

 =


∂It+1

∂dx

∂It+1

∂dy

∂It+1

∂dz

 =


∂It+1

∂u
∂u
∂dx

+ ∂It+1

∂v
∂v
∂dx

∂It+1

∂u
∂u
∂dy

+ ∂It+1

∂v
∂v
∂dy

∂It+1

∂u
∂u
∂dz

+ ∂It+1

∂v
∂v
∂dz

 =


∂It+1

∂u
f1
mz

+ 0

0 + ∂It+1

∂v
f1
mz

−∂It+1

∂u
mxf1
m2

z
− ∂It+1

∂v

myf1
m2

z

 (5.10)

The image derivatives ∂It+1

∂u
and ∂It+1

∂v
are computed using the Sharr operator. Following

the new notation, equation 5.7 may be rewritten as:

1

2

∂E1

∂d
=
∑

Ω

(∇ITd− δI)∇IT (5.11)

104

For camera C ′ all the computations are the same as those for C, but they are performed

in the C ′ coordinate system:

1

2

∂E2

∂d
=

1

2

∂E2

∂d′
R =

∑
Ω

(∇I ′Td′ − δI ′)∇I ′TR =
∑

Ω

(∇I ′TRd− δI ′)∇I ′TR (5.12)

Denote:

G1
.
=
∑

Ω

∇IT∇I, G2
.
=
∑

Ω

∇I ′TRRT∇I ′, (5.13)

b1
.
=
∑

Ω

δI∇I, b2
.
=
∑

Ω

δI ′∇I ′R (5.14)

Finally, we get:

1

2

[
∂E

∂d

]
= (G1 + G2)d− (b1 + b2) = 0 (5.15)

dopt = (G1 + G2)−1(b1 + b2) (5.16)

The 2D Lucas-Kanade tracking method is usually performed in an iterative manner

on a pyramid of images to tolerate for large displacements. The same can be done for

the 3D Lucas-Kanade tracking. I used 4 levels of the pyramid. The “zeroth” level is the

highest resolution (original) image. For each next level, the resolution is reduced twice

in each dimension. Let L = 1, 2... be a generic pyramid level. If point m is projected to

a point (u0, v0) in the original image, then on level L it will be projected to 1
2L

(u0, v0).

It means that the image gradient vector with respect to the 3D displacement d on level

L will be different:

∇IL =
1

2L


ILx

ILy

ILz

 =
1

2L


∂It+1(L)

∂u
f1
mz

+ 0

0 +
∂It+1(L)

∂v
f1
mz

−∂It+1(L)

∂u
mxf1
m2

z
− ∂It+1(L)

∂v

myf1
m2

z

 (5.17)

The rest is the same for each level. We start from the most coarse level and on each

level the displacement d is computed and then used as an initial guess on the next

level.

5.3.2 Two head models and two ways of computing displace-

ment

I tried two different head models: a cylinder and a flat rectangle. Also two different

ways of computing a displacement were evaluated.

105

Cylinder head model, computing overall displacement for the whole head

In the first version of the 3D Lucas-Kanade tracker, the head is modelled as a

cylinder. This tracker is described in Harguess et al. (2011) and Xiao et al. (2002).

The template points are placed on the cylinder surface, so that around 100 points are

visible at any moment in time. An example of the cylinder head model is shown in

Figure 5.11. The equation 5.16 is solved for all the sample points at the same time and

the overall head displacement is computed.

Figure 5.11: The set of points in the cylinder head model.

According to the surface geometry, the template points do not have a uniform

density in the image. This affects their contribution. To take this into account, a set of

weights is used. Suppose u is the projection of a head point X. θ is the angle between

the surface normal at X and the direction from the head center to the camera center,

as shown in Figure 5.12. We compute the pixel density weight by a quadratic function

because a quadratic surface (cylinder) is used as the model:

w =

(
1−min

(
|θu|,

π

2

) 2

π

)2

(5.18)

When θ ≥ π
2
, w is 0 because the point projection u is not visible. Smaller values of

θ mean that u is closer to the template center and has lower density, so w is larger

accordingly.

The 3D Lucas-Kanade tracking with the cylinder head model is usually used in

videos, where the head occupies a large part of the camera viewing zone (head-and-

106

Figure 5.12: Angle θ between the surface normal and the direction

from the head center to the camera center, which is used to determine

the pixel density weight. The image is taken from Xiao et al. (2002)

c©IEEE

shoulders videos). The head translation and rotation are usually estimated. I evaluated

this method on the whole body view videos. In this type of video, the face is not large

enough to estimate rotation accurately. Therefore, only head translation is estimated1.

Flat face model, computing displacements for sample points separately

The 3D Lukas-Kanade tracking with the flat face model is one of my contributions.

An example of the flat rectangle face model is shown in Figure 5.11. Another major

difference of this method to the previous method is that a separate displacement is

computed for a 4 × 4 pixel subwindow around each sample point. Then an average

displacement is computed for the overall head displacement2. An example of the sample

points’ displacements is shown in Figure 5.14.

These two methods were compared experimentally. The experiment was performed

on a short dataset of 5 videos with easy slow motions. Each video is 600 frames long.

The results are shown in Figure 5.15. The second method with the flat rectangle face

model and computing displacements separately for each point showed considerably

better performance. Even though it looks like that the cylindrical model fits the head

shape much better than the flat rectangle model, the model shape does not really play

an important role because the tracked person is several meters away from the camera

1A short example of the implemented method can be seen in this video: https://youtu.be/

QfJnwxOCsJo.
2A short example of the implemented method can be seen in this video: https://youtu.be/

IarIt0d6zYs.

107

https://youtu.be/QfJnwxOCsJo
https://youtu.be/QfJnwxOCsJo
https://youtu.be/IarIt0d6zYs
https://youtu.be/IarIt0d6zYs

Figure 5.13: The set of points on the flat rectangle face model.

Figure 5.14: A separate displacement is computed for each sample

point.

and the face is small.

5.3.3 Forward-backward tracking

As mentioned earlier, the main component of face adapted median flow is the median

flow tracker. The median flow tracker is the Lucas-Kanade tracker with the forward-

backward (FB) failure detection. This failure detection method was developed by the

108

Figure 5.15: The location error plot for the 3D Lucas-Kanade tracker

with flat model and the cylinder model.

Figure 5.16: The FB error penalizes inconsistent trajectories. Point

1 is visible in both images, tracker works consistently forward and

backward. Point 2 is occluded in the second image, forward and

backward trajectories are inconsistent. The image is taken from Kalal

et al. (2010b) c©IEEE.

author of TLD and described in Kalal et al. (2010b).

The FB method is based on the so called forward-backward consistency assumption

that correct tracking should be independent of the direction of time-flow. Each point

tracked from frame I1 to frame I2, is then tracked backwards from from frame I2 to

frame I1. If it ends up in a location different to the initial one, this point is penalized.

In Figure 5.16, the FB trajectory of point 1 is consistent, while point 2 ends up in a

109

Figure 5.17: The Lucas-Kanade tracker accepts a bounding box and

a pair of images. A number of points within the bounding box are

tracked, their error is estimated and the outliers are filtered out. The

remaining estimate the bounding box motion. The image is taken

from Kalal et al. (2010b) c©IEEE.

different place to its initial location.

Figure 5.18: The location error plot for the 3D Lucas-Kanade tracker

with FB tracking and without it.

110

This method can be used to modify the Lucas-Kanade tracker when displacement

is computed for each sample point separately (as a sparse motion flow). The block-

diagram of the Lucas-Kanade tracker with the FB error estimation is shown in Figure

5.17. The FB error can be computed as an Euclidean distance between the initial

sample point location and the final sample point location after backward tracking.

The best 50% of the sample points are retained, and used to estimate the target’s new

position.

The following experiment checked whether the FB error estimation improves the

3D Lucas-Kanade tracker with the flat rectangular face model. The performance of

the trackers is shown in Figure 5.18. The FB error estimation improved results greatly.

Following the author of the method, I will call the 3D Lucas-Kanade tracker with the

FB tracking the 3D median flow tracker.

5.3.4 Comparing 2D and 3D median flow trackers

Finally, I explored whether the 3D median flow tracker is better than using two inde-

pendent instances of the 2D median flow tracker and triangulating the result. Both

trackers estimate displacements for all sample points separately and use the FB method

to detect failures. The experiment was performed on the set of 23 pairs of high res-

olution stereo videos ranging from 600 to 3000 frames long. As our dataset is quite

challenging and contains many rapid movements and full occlusions, the median flow

trackers usually fail in the beginning. To overcome this problem, the tracking was reini-

tialized from the ground-truth data every 25 frames. This reinitialization frequency is

equal to the optimal frequency of face redetection in the face adapted tracking methods

(see Section 4.4.1).

The performance of the two methods is shown in Figure 5.19. The performance

is very similar, but the 3D median flow tracker is slower. The frame rates of the two

methods are shown in Figure 5.20.

It is possible that the 3D median flow tracker can outperform the 2D median flow

tracker in the head-and-shoulders videos. When a face occupies a large part of the

screen, there is more information to use. In the head-and-shoulders videos, the head

rotation can be estimated and it can improve the overall tracking accuracy. However,

for our task of the whole body view face tracking, the 2D median flow tracker does a

better job. Its accuracy is similar to 3D median flow, but it is 1.5 times faster.

111

Figure 5.19: The location error plot for the 3D median flow and the

2D median flow.

Figure 5.20: The frame rate plot for 3D median flow and 2D median

flow.

5.4 Compliance with requirements

In this section, I evaluate how the resulting 3D face adapted median flow tracker

complies with the requirements set for this research in Section 1.2.

• The resulting 3D face tracker works on feed from two luminance stereo cameras.

• It shows satisfactory accuracy in the range of 0.5 - 5 meters. The tracked person

can move freely in this range, walk, run, jump and perform other actions.

112

• On low resolution videos (640 × 512) it can run at around 10 fps. On high

resolution videos (1280×1024) the tracking accuracy is higher, but the frame rate

is around 4 fps. That is not quite enough for tracking in real time applications,

but the speed could be improved by the code optimization and using GPU.

• The resulting 3D face adapted median flow gives a reliable long-term tracking of

faces. It can recover after full-occlusions and other tracking failures.

• It was evaluated on an extensive dataset in an indoor environment with a clut-

tered background and multiple occlusions and changes in illumination (for the

list of all challenges in the evaluation dataset, see Table 3.1). It shows reasonable

accuracy on this dataset.

5.5 Conclusion

This chapter was concerned with converting 2D face adapted median flow into 3D

tracking in the most efficient way. The straightforward way is to run two independent

instances of the 2D tracker and then triangulate the result. I looked into ways of using

stereo information to facilitate 3D tracking. A novel method of checking the consistency

of the target 3D position and size was developed and evaluated. Also I examined

sharing the collections of positive and negative examples between the 2D trackers.

However, this does not improve the tracking performance. Several 3D Lucas-Kanade

trackers were described and evaluated. I developed and evaluated my own version of

the 3D Lukas-Kanade tracker with the flat face model. For the whole body view 3D

face tracking, running two independent instances of the 2D median flow trackers and

triangulating the results gives a higher frame rate and a slightly better accuracy.

In general, the resulting 3D face adapted median flow gives a reliable long-term

tracking of faces and complies with the requiremnts set in Section 1.2. It can recover

after full-occlusions and other tracking failures. On low resolution videos (640 × 512)

it can run at around 10 fps and with reasonable accuracy. On high resolution videos

(1280×1024) the tracking accuracy is higher, but the frame rate is around 4 fps. That

is not quite enough for tracking in real time, but the speed could be improved by the

code optimization and using GPU.

113

Chapter 6

3D Face tracking in fisheye video

Note: Some portions of this chapter were published in Mikhisor et al.

(2014).

Stereo cameras with wide lenses give a wider joint field of view which can be useful

in many practical applications. For all the experiments described in previous chapters,

I used image sequences created by cameras with normal perspective lenses with the

79◦ × 59◦ field of view (horizontal dimension × vertical dimension). A much wider

field of view can be achieved by using fisheye lenses with the 180◦× 180◦ field of view.

A comparison of the joint viewing zones and resulting images for normal perspective

cameras and fisheye cameras is illustrated in Figure 6.1. The downside of a fisheye

camera is that all objects are smaller in the resulting images and the distortion gets

significant close to the edges. Because a camera with a fisheye lens covers a substantially

larger space compared to a camera with a normal lens, each pixel in a resulting fisheye

image covers a larger volume in space and everything looks smaller in this image.

The closer a pixel is to a fisheye image edge, the larger the volume in space that is

represented by this pixel and the more distorted and squished are objects that are

shown in this part of the fisheye image.

Using fisheye cameras allows an extra large viewing zone, but higher distortion and

smaller objects’ sizes pose additional challenges for tracking. In this chapter I will

evaluate several 3D face tracking methods on fisheye stereo dataset. I will compare 3D

face adapted median flow and 3D face adapted TLD trackers developed in Chapter 5

with a simple colour particle filter and a 3D version of this particle filter. Also these

methods will be compared with the Kinect face tracking application. The contributions

of this chapter are the following. I demonstrate how a visual tracking method can be

compared to a Kinect based tracking method. Also I show that a 3D particle filter

114

Figure 6.1: Top row: the joint viewing zone and an image example for

the cameras with perspective lenses. Bottom row: the joint viewing

zone and an image example for the cameras with fisheye lenses.

outperforms a 2D particle filter for the task of 3D tracking.

Colour particle filters were not evaluated in Chapter 5 because they rely heavily

on the color information and do not work properly in my main grey-scale dataset used

in the experiments in Chapter 5. Kinect was not compared to the other 3D tracking

methods in Chapter 5 because prerecording the Kinect data is a tedious and time

consuming process and it was not done for my main stereo dataset.

Section 6.1 describes how to record a dataset to compare a Kinect based tracking

method to visual tracking methods that work on ordinary luminance video. In Section

6.2 2D and 3D particle filters are introduced. In Section 6.3 five different tracking

methods are evaluated: a 3D particle filter, a 2D particle filter with triangulation, 3D

face adapted median flow, 3D face adapted TLD (these four methods run on the fisheye

stereo video) and the Kinect face tracking application.

115

6.1 Comparing Kinect to visual tracking methods

Kinect is the most popular and accessible depth sensor (Han et al., 2013). It is used in

many 3D face tracking applications (see Section 2.1.1). One of the goals of this chapter

is to compare the performance of the Kinect 3D face tracking application1 and other

visual 3D face tracking methods. Comparing a Kinect based method to other tracking

methods running on normal luminance cameras is not a straight forward task. The

standard way of comparing trackers is to obtain a dataset (record, or download from

the internet) and then run the evaluated methods as many times as you need. However,

to compare visual tracking methods to Kinect, the Kinect face tracking results have to

be recorded at the same time as recording the dataset using luminance cameras. For

the experiment described in this chapter, I recorded only 3D positions of the face de-

tected by Kinect. However, it is possible to record the face size and orientation as well

if needed. To be able to compare the tracking results, Kinect and the stereo cameras

have to be synchronized and stereo calibrated. These two procedures are explained in

this section.

Visual cameras and Kinect calibration

Before recording stereo videos and the face tracking data from Kinect, Kinect and

the cameras have to be calibrated. Kinect returns the head position and orientation

in the coordinate system of its depth sensor. Visual tracking methods return the head

position in the coordinate system of one of the two stereo cameras. To compare these

results, stereo calibration for the depth sensor and one of the fisheye cameras has to be

performed. In other words, we need to find the rotation matrix R and the translation

vector t required to transform the fisheye camera coordinate system into the coordinate

system of the Kinect depth sensor. These two parameters can be found in the form

of the essential matrix E = R[t]x, where [t]x is the matrix representation of the cross

product with t. To estimate the essential matrix, I used the normalized eight-point

algorithm (Hartley, 1997). The corresponding points in the depth sensor images and

the fisheye camera images were selected manually (see an example in Figure 6.2). Af-

ter selecting 120 corresponding points and computing the calibration parameters, I got

the reprojection error of 2.26 pixels which is acceptable. It is hard to achieve higher

accuracy because both the fisheye image and the Kinect depth image are noisy and

1The Microsoft Face Tracking Software Development Kit for Kinect for Windows https://msdn.

microsoft.com/en-us/library/jj130970.aspx

116

https://msdn.microsoft.com/en-us/library/jj130970.aspx
https://msdn.microsoft.com/en-us/library/jj130970.aspx

have low resolution. The error of 2.26 pixels is equivalent to the 5 cm error at the

distance of 3 meters.

Figure 6.2: Selecting corresponding points in the depth sensor image

and the fisheye camera image. The three corresponding points (the

head and hands of the wooden figure) are marked by red circles in

both views.

Figure 6.3: A synchronization sequence was recorded in the start and

end of each evaluation video to help synchronizing the Kinect data

and the fisheye video.

Visual cameras and Kinect synchronization

Another challenge when comparing a Kinect based tracking method to other visual

tracking methods is two synchronize the visual dataset and the Kinect tracking data.

This means that the recording of both stereo videos and the Kinect data should start

at the same time. The Unibrain cameras that I used for recoding fisheye videos have

a slightly uneven frame rate because some frames take longer to be recorded to the

117

hard drive. Even though nominally Kinect and the cameras work at the same frame

rate of 30 frames per second, in the end the tracking data recorded from Kinect does

not match the fisheye video. To overcome this problem, the end of recoding the stereo

datasets and the Kinect tracking data should be synchronized as well. Kinect and

the cameras cannot be synchronized on the software level because for performance

reasons these devices run on separate computers. Instead, I synchronised the recording

manually. In the beginning and in the end of each evaluation video, I recorded a short

synchronization sequence (some changing numbers shown on a laptop, see Figure 6.3

for an illustration) on the Unibrain fisheye cameras and on the Kinect color stream.

After finishing the recording, I had to synchronize the Kinect color stream and the

fisheye cameras recordings and adjust the ground truth data recorded from Kinect. To

do that, I looked though the cameras’ streams and the Kinect color stream and found

the frames that show exactly the same image in the synchronization sequence shown

on a laptop (for example, the moment when number “3” appears). This is done for the

start and for the end of a recording. All the cameras’ frames and the Kinect tracking

data before the start and after the end synchronization point were discarded. After

that I had to make sure that both stereo cameras have exactly the same number of

frames between the start and the end syncronization points and this number matches

the number of entries in the Kinect tracking data. The results were checked visually by

projecting the Kinect ground truth data into the fisheye video1. This is an approximate

method of synchronization, but it gives pretty good results.

After the calibration and synchronization of the Kinect tracking data and the visual

dataset, any visual tracking method can be evaluated on the visual dataset and com-

pared to Kinect. The results of this experiment are described in Section 6.3. Stereo

calibrating and synchronizing Kinect with luminance cameras is a tedious and time

consuming process. For this reason, I did not record the Kinect data for my main

dataset with normal cameras and Kinect was not evaluated on it and not compared to

the other methods in Chapter 5.

6.2 Using a particle filter for 3D tracking

Besides Kinect 3D face tracking, 3D face adapted median flow and 3D face adapted

TLD, I evaluated the conventional particle filter with color histograms for the task of 3D

1An example of Kinect data projected to the fisheye video can be found at https://youtu.be/

nUQfXrb35iM.

118

https://youtu.be/nUQfXrb35iM
https://youtu.be/nUQfXrb35iM

tracking in stereo fisheye video. I decided to try out a simple and popular approach of

2D particle filtering and see if extending it into 3D can give better performance results.

Colour particle filters were not evaluated in Chapter 5 because they rely heavily on the

color information and do not work properly in my main grey-scale dataset used in the

experiments in Chapter 5.

Particle filtering, also known as the Condensation algorithm (Isard and Blake, 1998)

and bootstrap filter (Gordon et al., 1993), has been proven to be a powerful and reliable

tool for nonlinear systems (Carpenter et al. 1999). Particle filtering is an established

technique because of its inherent property to allow fusion of different sensor data,

to account for different uncertainties, to cope with data association problems when

multiple targets are tracked with multiple sensors and to incorporate constraints.

The particle filter framework has been used in many people tracking algorithms (e.g

Ali and Dailey 2012, Maggio 2007, Chang et al. 2005), including multi-camera tracking

(e.g. Nummiaro et al. 2003, Wang et al. 2005, Li et al. 2012). There are several ways

of using particle filters in a multi-camera environment: independent 2D particle filters,

collaborating 2D particle filters, a 3D particle filter or a combination of 2D and 3D

particle filters.

Nummiaro et al. (2003) describe collaborating 2D particle filters. When the tracked

object is lost in one camera view, the epipolar constraint is used to estimate the target

position from the other camera view. Wang et al. (2005) estimate the target position

using the view that provides the most likely observations. In a sense this method

switches observation models from one model to another.

In other papers a homography matrix is computed to align the ground plane of

different cameras’ views. Using this homography, it is possible to project some hy-

potheses from the 2D particle filter of one camera to the 2D particle filter of the other

camera and make the two trackers collaborate (Li et al., 2012). Du and Piater (2007)

and Sunderrajan and Manjunath (2013) use a separate 2D particle filter in the ground

plane together with 2D particle filters in each camera view. The main complication in

using the homography of the ground plane is that usually the position of the person’s

feet is used as the particle position and it is often difficult to determine accurately. In

the case of head tracking the ground plane homography is not useful at all because the

head is too far from the feet.

One way to avoid using the ground plane homography is to use a 3D particle filter

(Kobayashi et al. 2006,Nickel and Gehrig 2005). In a 3D particle filter, the tracked

target state is represented as a 3D position in space. Each particle is projected into

119

each camera’s image plane where the observations are made.

The particle filter framework

Using particle filters for visual tracking is described in the paper of Isard and Blake

(1998). The basic particle filter framework is described further. The state of a tracked

object at time t is described by the vector xt, while the vector Zt contains all the

observations {z1 . . . zt} up to time t. To estimate the current state xt of the tracked

object, we build the posterior probability distribution p(xt|Zt).
The probability distribution is represented by a set of N samples {xit}i=1...N (also

called particles) with associated importance weights πit. A particle weight is propor-

tional to the likelihood that this particle coincides with the tracked object at that

moment.

Figure 6.4: Three stages of the particle filter framework. The image

is taken from Li et al. (2016).

The particle filter framework consists of essentially three stages: probability update,

resampling according to the probability, and prediction according to the dynamical

model (see Figure 6.4). When a new frame arrives, we make a new measurement zt

and update the probability distribution using Bayes rule (Stage 1):

p(xt|zt) =
p(zt|xt)p(xt|Zt−1)

p(zt|Zt−1)
. (6.1)

120

Then the particles are resampled according to their probability (Stage 2). After

that during the prediction stage (Stage 3), we use a probabilistic dynamical model

p(xt|xt−1) to predict the expected motion of particles between time steps:

p(xt|Zt−1) =

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1. (6.2)

Colour histograms provide an efficient feature for estimating a particle likelihood

because they are robust to rotation, partial occlusion and scale invariant and com-

putationally efficient (Pérez et al., 2002). During the initialization step, the target

histogram q of the face region is computed. Then for each particle, the histogram

over its region pxt is computed. To estimate the particle likelihood, the Bhattacharyya

coefficient is used:

ρ[pxt , q] =
m∑
u=1

√
p

(u)
xt q(u), (6.3)

where m is the number of bins for the histograms, and p
(u)
xt is a value contained in the

uth bin of the histogram pxt .

2D particle filter for 3D head tracking

In the case of a 2D particle filter for head tracking1, each particle is an ellipsoid and

is characterized by its 2D position in the image and half-axes. For 3D head tracking

using a 2D particle filter, two instances of the tracker run independently in each video

stream. Then the probability is estimated and the particle with the highest probability

is found in each view. The positions of the two particles with the highest probabilities

are then triangulated to find the 3D head position.

3D particle filter for 3D head tracking

When running two independent instances of the 2D particle filter, the stereo depen-

dencies are not used. To take advantage of the stereo dependencies, I developed the

3D particle filter. This algorithm is one of the contributions of this thesis. In the case

of the 3D particle filter, each particle is a 3D position in space. All the stages apart

from the observation stage are the same as for the 2D particle filter. At the probability

update stage also known as the observation stage, each particle is projected to the

image planes of both cameras as shown in Figure 6.5. I assume that the head height is

1A video example showing 2D particle filter in fisheye video can be found at http://youtu.be/

XoEQdjCdZns.

121

http://youtu.be/XoEQdjCdZns
http://youtu.be/XoEQdjCdZns

Figure 6.5: For each 3D particle, a 3D position is projected to the

image plane and then an ellipsoid of the size that corresponds to 0.2

meters in 3D world, is created.

Figure 6.6: A visualization of 100 particles, projected to one of the

cameras view. Ellipses with lighter colour have higher likelihood.

Black ellipses have very small likelihood.

0.2 meters (from top of head to bottom of chin). By projecting the particle 3D position

to the image plane and computing the corresponding head height in pixels, I get a face

ellipsoid as in the case of the 2D particle filter. Figure 6.6 shows an example of 100

particles projected to one view. Then for each particle, I compute its histogram and

compare it with the target histogram. As a result of the probability update step, I

get two likelihood weights: one from each camera. The final weight for each particle

122

is the product of these two weights. After computing the weights, the particle set is

resampled, and then the distribution is updated according to the 3D motion model1.

6.3 Comparing 3D trackers on fisheye video and

Kinect face tracking

In the experiment described in this section, I compared 3D face adapted TLD, 3D

face adapted median flow, the 3D particle filter and a pair of 2D particle filters with

triangulation on fisheye stereo videos and the Kinect 3D face tracking application. I

recorded 10 pairs of videos of different complexity using two low resolution cameras

with fisheye lenses (the Omnitech Robotics ORIFL190-3 fisheye lens with a field of

view of 190◦). All videos are about 2000-3000 frames long. The videos feature different

people performing different actions (walking, running, jumping, rotating, exercising,

dancing, etc.) and moving freely in the range of 0.5 - 5.0 meters from the camera.

Some videos show 2 or 3 people at the same time.

This experiment was intended to test some scenarios of using an interactive display.

However, it is more a qualitative evaluation rather than a proper user study of 3D face

tracking for an interactive display. A proper user study is not in the scope of this

research. One of the goals of this experiment is to show that visual tracking methods

on fisheye stereo video can track a person in a larger viewing zone than Kinect. The

Kinect viewing zone is smaller than the joint viewing zone of the two fisheye cameras.

Both Kinect V1 and V2 have a very short depth range of 3.5 m and limited viewing

angles (see Table 6.3). Kinect V1 was used in this experiment. Approximately 50% of

all frames in the fisheye datasets, the tracked person is out of the Kinect viewing zone.

Factors Kinect V1 Kinect V2

Hor. field of view 57◦ 70◦

Ver. field of view 43◦ 60◦

Depth sensor 1.8 - 3.5 m 1.3 - 3.5 m

Table 6.1: Kinect field of view.

The results of the experiment are shown in Figure 6.7. The 3D particle filter

outperforms the paired 2D particle filters. This shows that using stereo dependencies

1A video example showing 3D particle filter in fisheye stereo video can be found at http://youtu.

be/ec289yuCuwQ.

123

http://youtu.be/ec289yuCuwQ
http://youtu.be/ec289yuCuwQ

Figure 6.7: The location error plot for the five 3D trackers evaluated

on the fisheye stereo dataset in the unconstrained viewing zone.

Figure 6.8: The location error plot for the five 3D trackers evaluated

on the fisheye stereo dataset in the Kinect viewing zone.

can improve 3D tracking dramatically. The 3D particle filter also shows superior results

over Kinect, 3D face adapted TLD and face adapted median flow. The Kinect face

124

Figure 6.9: The frame rate plot for the five 3D trackers evaluated on

the fisheye stereo dataset.

tracking performance is not high because approximately half of the time the target is

out of the Kinect viewing zone. In Figure 6.8 the results of this experiment are shown

only for those frames where the target is visible by Kinect. In this plot the Kinect face

tracking shows superior results other all the other trackers.

Several questions arise from the results of this experiment. 2D and 3D versions of

face adapted median flow showed superior results in videos made with normal cameras

with resolution equal or higher than 640×480 (for example see Figure 4.37 and Figure

5.2). In the fisheye video the 3D face adapted median flow performance is dramatically

low and is close to the performance of the paired 2D particle filters (Figure 6.7). The 3D

face adapted TLD performance is also lower than on normal medium or high resolution

videos. These two trackers are based on the Viola Jones detector. The Viola Jones

detector recall is low for small faces. The TLD detector accuracy is also lower for small

faces. In the stereo fisheye dataset the average head size is very small (around 10-15

pixels). That is why the performance of these two trackers is so low in this experiment

compared to the experiments described in the previous chapters. In future work, it

would be interesting to find experimentally what are the face size limits for using face

adapted TLD and face adapted median flow and if there are any other limitations on

using these trackers.

Also it is interesting to note that using the stereo dependencies substantially im-

proved the 3D particle filter performance compared to the paired 2D paired particle

filters. In Chapter 5, I tried to find a way how to use stereo dependences to improve

125

the 3D face adapted median flow. I got a minor improvement by using the epipolar

constraint (see Figure 5.6), but this is not as great as the improvement shown by the

3D particle filter over the paired 2D particle filters. It is a challenge for future work to

find the way to use stereo information to get a similar improvement in 3D face adapted

median flow. Also it would be interesting to compare 3D particle filter and 3D face

adapted median flow on normal high resolution video. I cannot do that on my high

resolution dataset, because it is grey scale and the color particle filter does not work

properly on it.

The frame rates of the tested trackers are shown in Figure 6.9. The 3D particle

filter is the fastest and is almost three times faster than the paired instances of the

2D particle filter. Even though the 3D particle filter runs in real time and shows the

best performance, its accuracy is pretty low. In only 40% of the frames are the tracked

head positions more than 20 cm away from the real head position. However, I used

the simplest version of the particle filter frame with color histograms. There are many

more complex versions of 2D particles filters (for example a cascade particle filter with

discriminative observers by Li et al. 2008) that can improve the 3D particle filter and

make its accuracy on fisheye stereo video acceptable.

6.4 Conclusion

In this chapter, I demonstrated how a Kinect based tracking method can be compared

to visual tracking methods running on luminance stereo video. Five different trackers

were compared: the 3D particle filter, two 2D particle filters with triangulation, 3D face

adapted median flow, 3D face adapted TLD and the Kinect face tracking application.

The four visual tracking methods were evaluated on low resolution fisheye stereo videos.

The 3D particle filter shows the best results out of all five trackers.

126

Chapter 7

Conclusion

Even though there is an emerging interest in 3D tracking and many new applications

based on it appear regularly, this field is not so well studied and described in the

literature as 2D tracking. A large variety of different learning methods, appearance

models and tracking features that have been thoroughly evaluated in many differ-

ent combinations in 2D tracking papers (Yang et al. 2011, Li et al. 2013), have not

yet been tried out in 3D tracking. Also for 2D tracking recently, it has become a

widely used practice to make the source code available to allow easy evaluation and

comparison. There are several projects (e.g. http://www.votchallenge.net and

http://cvlab.hanyang.ac.kr/tracker_benchmark/) that maintain state of the art

2D trackers source code repositories as well as easy to use and interpret evaluation

metrics and categorized annotated evaluation datasets. This allows us to choose a 2D

tracking algorithm that is most suitable for a specific application or compare a new

algorithm to state of the art 2D trackers. For 3D tracking there are hardly any track-

ers or evaluation datasets available online. For this reason, I followed a non-classical

approach of developing a 3D tracking algorithm: instead of computing a disparity map

or using stereo feature matching techniques, I developed a 2D face tracking algorithm

in one view and then extended it into stereo tracking.

Even though there are many successful generic 2D trackers available online and these

trackers are designed to perform reasonably well on all sorts of different scenarios, all

trackers have their strengths and weaknesses. Therefore, instead of using results of

evaluation experiments conducted on public datasets (Kristan et al. 2015, Wu et al.

2015), I recorded and annotated my own extensive dataset specifically for 2D face

tracking in whole body view video. By evaluating 17 state of the art 2D trackers on my

dataset, I found out that TLD suits best of all for long term 2D face tracking in whole

127

http://www.votchallenge.net
http://cvlab.hanyang.ac.kr/tracker_benchmark/

body view video. The reason for that is that it handles robustly the two challenges that

are the most prominent in my dataset: drastic scale change and frequent prolonged

occlusions.

Furthermore, I showed that giving up tracking generality can improve accuracy

greatly. This is often useful because for a large number of tracking applications, the

visual class of the object of interest is known. In this research, I focus on tracking faces.

I designed and implemented the adaptation of generic trackers for tracking exclusively

faces. Generic trackers adapted for face tracking using this method showed considerable

accuracy improvement. I developed close to real time face adaptation of the median

flow tracker (Kalal et al., 2010b). Originally, the median flow tracker is a part of

TLD. However, my experiments showed that face adapted median flow outperforms

face adapted TLD. Also, I developed the sliding window detection method that allows

to run face adapted median flow close to real time on low resolution videos.

After developing a robust 2D face tracker, I explored different ways of extending

2D tracking into 3D and developed a method of using the epipolar constraint to check

consistency of 3D tracking results. This method allows to detect tracking failures early

and improves overall 3D tracking accuracy. The final 3D face adapted median flow

tracker shows good tracking results and reasonable speed that could be improved by

code parallelisation and optimization.

Using cameras with fisheye lenses gives a larger field of view and a smoother experi-

ence when performing 3D face tracking for real time interactive applications. However,

cameras with wide angle lenses also have high distortion and information density issues

that pose additional challenges for tracking. Five different trackers were compared: the

3D particle filter, two 2D particle filters with triangulation, 3D face adapted median

flow, 3D face adapted TLD and the Kinect face tracking application. The four visual

tracking methods were evaluated on low resolution fisheye stereo videos. I demon-

strated how a Kinect based tracking method can be compared to visual tracking meth-

ods running on luminance stereo video. The 3D particle filter shows the best results

out of all five trackers.

7.1 Future work

The contributions of this thesis raise the following issues for future research:

• One important assumption that was held throughout the work presented here is

that state of the art 2D tracking methods can improve 3D tracking performance.

128

Therefore, instead of using standard stereo matching techniques, I explored a 2D

tracking algorithm and different ways to extend it into 3D space. The only stereo

technique used in the final 3D face adapted median flow is the epipolar constraint

to check the 3D tracking result consistency. However, the addition of such popular

3D tracking techniques as computing depth map for foreground segmentation,

creating an online updated background model, plan view statistics, and special

points (edges and corners) stereo matching are likely to improve tracking results.

• As each face is attached to a body, information contained in the body appearance

can be used to improve tracking performance. Local key-points under the tracked

face with consistent co-occurrence and motion correlation could be extracted and

used to help the tracker differentiate the target from a background and from other

people faces. These key-points can be treated as ‘supporters’, as described in the

work of Dinh et al. (2011).

• Detecting faces with different in plane and out of plane rotations can help to

further improve the resulting 3D tracking accuracy. The rotation invariant multi-

view face detector developed by Bo Wu et al. (2004) could be used for this

purpose.

• For interactive applications such as head coupled display, smooth tracking is often

more important than precise 3D position. Currently, the 3D face adapted median

flow can be jerky sometimes, when the face detector corrects the tracker. Some

trajectory smoothing could be introduced to address this problem.

• Finally, it would be interesting to perform a user study of the tracking algorithm

in some application such as a personal 3D display or a public display and see if

the 3D tracking algorithm is accurate and robust enough to provide an adequate

experience to users.

129

References

Abate, A. F., Nappi, M., Riccio, D., and Sabatino, G. (2007). 2D and 3D face recog-

nition: A survey. Pattern Recognition Letters , 28 (14), 1885–1906.

Abbaspour, M. J., Yazdi, M., and Shirazi, M.-a. M. (2014). Robust approach for

people detection and tracking by stereo vision. In 7th International Symposium on

Telecommunications (IST)., 326–331.

Ali, I. and Dailey, M. N. (2012). Multiple human tracking in high-density crowds.

Image and Vision Computing , 30 (12), 966–977.

Argyros, A. A. and Lourakis, M. I. (2004). Three-dimensional tracking of multiple

skin-colored regions by a moving stereoscopic system. Applied optics , 43 (2), 366–

378.

Asthana, A., Zafeiriou, S., Cheng, S., and Pantic, M. (2014). Incremental Face Align-

ment in the Wild. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 1859–1866.

Babenko, B., Yang, M.-H., and Belongie, S. (2011). Robust Object Tracking with

Online Multiple Instance Learning. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33 (8), 1619–1632.

Bagdanov, A. D., Del Bimbo, A., and Nunziati, W. (2006). Improving evidential quality

of surveillance imagery through active face tracking. Proceedings - International

Conference on Pattern Recognition, 3 (September), 1200–1203.

Bahadori, S., Iocchi, L., Leone, G. R., Nardi, D., and Scozzafava, L. (2007). Real-

time people localization and tracking through fixed stereo vision. Applied Intelli-

gence, 26 (2), 83–97.

130

Bianco, S., Ciocca, G., Napoletano, P., and Schettini, R. (2015). An interactive tool

for manual, semi-automatic and automatic video annotation. Computer Vision and

Image Understanding , 131, 88–99.

Bo Wu, Haizhou Ai, Chang Huang, and Shihong Lao (2004). Fast rotation invariant

multi-view face detection based on real adaboost. Sixth IEEE International Confer-

ence on Automatic Face and Gesture Recognition, 2004. Proceedings., 79–84.

Boschini, M., Poggi, M., and Mattoccia, S. (2016). Improving the reliability of 3D

people tracking system by means of deep-learning. In 2016 International Conference

on 3D Imaging (IC3D), 1–8. IEEE.

Bouguet, J.-Y. (2001). Pyramidal implementation of the affine lucas kanade feature

tracker description of the algorithm. ntel Corporation, 5 (4), 1–10.

Brar, R. S., Surman, P., Sexton, I., and Hopf, K. (2010). Multi-user glasses free

3D display using an optical array. 3DTV-CON 2010: The True Vision - Capture,

Transmission and Display of 3D Video, 2 (1), 4–7.

Butt, M. U. and Morris, J. (2011). Precise Tracking using High Resolution Real-

time Stereo. In Proc. 26th Image and Vision Computing New Zealand Conf.(IVCNZ

2011), 143–148.

Cai, L., He, L., Xu, Y., Zhao, Y., and Yang, X. (2010). Multi-object detection and

tracking by stereo vision. Pattern Recognition, 43 (12), 4028–4041.

Cannons, K. (2008). A Review of Visual Tracking. Dept. Comput. Sci. Eng., York

Univ., Toronto, Canada, Tech. Rep. CSE-2008-07 , 242.

Carpenter, J., Clifford, P., and Fearnhead, P. (1999). Improved particle filter for

nonlinear problems. IEE Proceedings - Radar, Sonar and Navigation, 146 (1), 2.

Castrillón, M., Déniz, O., Hernández, D., and Lorenzo, J. (2010). A comparison of

face and facial feature detectors based on the Viola-Jones general object detection

framework. Machine Vision and Applications , 22 (3), 481–494.

Čehovin, L., Leonardis, A., and Kristan, M. (2015). Visual object tracking performance

measures revisited. IEEE Transactions on Image Processing , 25 (3), 1–14.

131

Chang, C. and Chatterjee, S. (1992). Quantization error analysis in stereo vision. [1992]

Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems &

Computers , 1037–1041.

Chang, C., Member, S., and Ansari, R. (2005). Kernel Particle Filter for Visual Track-

ing. IEEE signal processing letters , 12 (3), 242–245.

Chang, F. and Chen, C. J. (2003). A component-labeling algorithm using contour

tracing technique. Proceedings of the International Conference on Document Analysis

and Recognition, ICDAR, 741–745.

Checka, N., Wilson, K., Rangarajan, V., and Darrell, T. (2003). A Probabilistic Frame-

work for Multi-modal Multi-Person Tracking. In 2003 Conference on Computer Vi-

sion and Pattern Recognition Workshop, 100–100. IEEE.

Cheng, Y. (1995). Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17 (8), 790–799.

Choi, C., Ahn, J., Lee, S., and Byun, H. (2006). Disparity Weighted Histogram-Based

Object Tracking for Mobile Robot Systems. Advances in Artificial Reality and Tele-

Existence, 584–593.

Choi, W., Pantofaru, C., and Savarese, S. (2011). Detecting and Tracking People using

an RGB-D Camera via Multiple Detector Fusion. IEEE International Conference

on Computer Vision, 1076–1083.

Dalal, N. and Triggs, B. (2005). Histograms of Oriented Gradients for Human Detec-

tion. CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 , 886–893.

Darrell, T., Demirdjian, D., Checka, N., and Felzenszwalb, P. (2001). Plan-view tra-

jectory estimation with dense stereo background models. Proceedings Eighth IEEE

International Conference on Computer Vision. ICCV 2001 , 2 (February), 628–635.

Darrell, T., Gordon, G., and Harville, M. (2000). Integrated Person Tracking Using

Stereo, Color, and Pattern Detection. International Journal of Computer Vision

(IJVC), 37 (2), 175–185.

Davies, N., Langheinrich, M., Jose, R., and Schmidt, A. (2012). Open Display Net-

works: A Communications Medium for the 21st Century. Computer , 45 (5), 58–64.

132

Davies, Nigel, Langheinrich, Marc, Krüger, A. (2016). Pervasive Displays. IEEE

Pervasive Computing , 15 (3), 11–13.

De Boer, F. A. and Verbeek, F. J. (2009). Seeing through virtual windows. In ACM

Conference on Human Factors in Computing Systems.

Dinh, T. B., Vo, N., and Medioni, G. (2011). Context tracker: Exploring supporters

and distracters in unconstrained environments. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1177–1184.

D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., and Mazzeo, P. L. (2009). A semi-

automatic system for ground truth generation of soccer video sequences. 6th IEEE

International Conference on Advanced Video and Signal Based Surveillance, AVSS

2009 , 559–564.

Du, W. and Piater, J. (2007). Multi-camera people tracking by collaborative parti-

cle filters and principal axis-based integration. In Proc. of Asian Conference on

Computer Vision, 365–374. Springer Berlin Heidelberg.

Dundas, J. and Wagner, M. (2014). Adaptive Projection Displays: a low cost system for

public interactivity. In WSCG 2014: Poster Papers Proceedings: 22nd International

Conference in Central Europeon Computer Graphics, Visualization and Computer

Vision in co-operation with EUROGRAPHICS Association, 55–60.

Elgammal, A., Harwood, D., and Davis, L. (2000). Non-parametric model for back-

ground subtraction. In Computer VisionECCV, 751–767.

Englebienne, G., Van Oosterhout, T., and Kröse, B. (2009). Tracking in sparse multi-

camera setups using stereo vision. 2009 3rd ACM/IEEE International Conference

on Distributed Smart Cameras, ICDSC 2009 .

Eveland, C., Konolige, K., and Bolles, R. C. (1998). Background modeling for seg-

mentation of video-rate stereo sequences. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 266–271.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driv-

ing? the KITTI vision benchmark suite. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 3354–3361.

133

Gkalelis, N., Kim, H., Hilton, A., Nikolaidis, N., and Pitas, I. (2009). The i3DPost

multi-view and 3D human action/interaction database. CVMP 2009 - The 6th Eu-

ropean Conference for Visual Media Production, 159–168.

Gokturk, S. B., Yalcin, H., and Bamji, C. (2004). A Time-Of-Flight Depth Sensor Sys-

tem Description , Issues and Solutions. In Computer Vision and Pattern Recognition

Workshop, 35 – 35.

Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEEE Proceedings of Radar and Signal Process-

ing , 140 (2), 107–113.

Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision with

Microsoft Kinect sensor: A review. IEEE Transactions on Cybernetics , 43 (5), 1318–

1334.

Hare, S., Saffari, A., and Torr, P. H. S. (2011). Struck: Structured output tracking with

kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (10),

2096–2109.

Harguess, J., Hu, C., and Aggarwal, J. K. (2011). Occlusion Robust Multi-Camera

Face Tracking. In IEEE Computer Society Conference, Computer Vision and Pattern

Recognition Workshops (CVPRW), 2011, 31–38.

Hartley, R. I. (1997). In Defence of the 8-point Algorithm. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19 (6), 580–593.

Harville, M. (2004). Stereo person tracking with adaptive plan-view templates of height

and occupancy statistics. Image and Vision Computing , 22 (2), 127–142.

Harville, M. and Dalong Li (2004). Fast, integrated person tracking and activity recog-

nition with plan-view templates from a single stereo camera. Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2004. CVPR 2004., 2 (July), 398–405.

Isard, M. and Blake, A. (1998). CONDENSATION Conditional Density Propagation

for Visual Tracking. Advances in Neural Information Processing Systems , 361–367.

Johnsen, K. J., Wins, P., and Johnsen, K. (2013). Single Viewer Walk-around Quasi

Volumetric Display. In IEEE Workshop on Off-the-Shelf Virtual Reality.

134

Kalal, Z. (2011). Tracking Learning Detection. Ph. D. thesis, University of Surrey.

Kalal, Z., Matas, J., and Mikolajczyk, K. (2008). Weighted Sampling for Large-Scale

Boosting. Procedings of the British Machine Vision Conference 2008 , 42.1–42.10.

Kalal, Z., Mikolajczyk, K., and Matas, J. (2010a). Face-TLD: Tracking-Learning-

Detection applied to faces. Image Processing (ICIP), 2010 17th IEEE International

Conference on. IEEE , 3789–3792.

Kalal, Z., Mikolajczyk, K., and Matas, J. (2010b). Forward-Backward Error: Auto-

matic Detection of Tracking Failures. 2010 20th International Conference on Pattern

Recognition, 2756–2759.

Kalal, Z., Mikolajczyk, K., and Matas, J. (2011). Tracking-Learning-Detection. IEEE

transactions on pattern analysis and machine intelligence, 6 (1), 1–14.

Kalarot, R., Gimel’farb, G., and Morris, J. (2012). 3D object tracking with a high-

resolution GPU based real-time stereo. Proceedings of the 27th Conference on Image

and Vision Computing New Zealand - IVCNZ ’12 , 394–399.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering , 82 (1), 35–45.

Kavasidis, I., Palazzo, S., Di Salvo, R., Giordano, D., and Spampinato, C. (2012). A

semi-automatic tool for detection and tracking ground truth generation in videos.

Proceedings of the 1st International Workshop on Visual Interfaces for Ground Truth

Collection in Computer Vision Applications - VIGTA ’12 , 1–5.

Kavasidis, I., Palazzo, S., Salvo, R. D., Giordano, D., and Spampinato, C. (2014). An

innovative web-based collaborative platform for video annotation. Multimedia Tools

and Applications , 70 (1), 413–432.

Kavasidis, I., Spampinato, C., and Giordano, D. (2013). Generation of ground truth for

object detection while playing an online game: Productive gaming or recreational

working? IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops , 694–699.

Khan, S. M. and Shah, M. (2006). A Multiview Approach to Tracking People in

Crowded Scenes Using a Planar Homography Constraint. In European Conference

on Computer Vision, Volume 3954, 133–146.

135

Kim, M., Kumar, S., Pavlovic, V., and Rowley, H. (2008). Face Tracking and recogni-

tion with Visual Constrains in Real-world Videos. In Proceedings of IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (CVPR), 1–8.

Kobayashi, Y., Sugimura, D., Hirasawa, K., Suzuki, N., Kage, H., Sato, Y., and Sugi-

moto, A. (2006). 3D Head Tracking using the Particle Filter with Cascaded Classi-

fiers. Procedings of the British Machine Vision Conference 2006 , 5.1–5.10.

Kovacevic, J., Juric-Kavelj, S., Petrovic, I., Kovačević, J., and Petrović, I. (2011). An

Improved CamShift Algorithm Using Stereo Vision For Object Tracking. MIPRO,

2011 Proceedings of the 34th International Convention, 707–710.

Kristan, M., Kovacic, S., Leonardis, A., and Pers, J. (2010). A two-stage dynamic

model for visual tracking. IEEE transactions on systems, man, and cybernetics.

Part B, Cybernetics , 40 (6), 1505–1520.

Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., Nebe-

hay, G., Porikli, F., and Cehovin, L. (2016). A Novel Performance Evaluation

Methodology for Single-Target Trackers. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38 (11), 2137–2155.

Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Čehovin, L., Nebehay, G., Voj́ıvr,

T., Fernandez, G., and Others (2015). The Visual Object Tracking VOT2015 Chal-

lenge Results. In 2015 IEEE International Conference on Computer Vision Work-

shop (ICCVW), 564–586. IEEE.

Kwon, J. and Lee, K. M. (2009). Tracking of a non-rigid object via patch-based dy-

namic appearance modeling and adaptive basin hopping monte carlo sampling. 2009

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, CVPR Workshops 2009 , 1208–1215.

Lee, C., Kwon, Y.-m., and Kim, S.-k. (2013). Multi-User Pupil Tracking for 3D Mul-

tiview Display. In Proceedings of 3D Systems and Applications (3DSA), 3–6.

Lee, J. C. (2008). Hacking the Nintendo Wii remote. IEEE Pervasive Computing , 7 (3),

39–45.

Li, A. M., Park, P. S., and Chen, Y. H. (2012). An adaptive particle filter tracking

method based on homography and common FOV. In Proceedings of the 2012 ACM

136

Research in Applied Computation Symposium, New York, New York, USA, 126. ACM

Press.

Li, T., Yuan, G., and Li, W. (2016). Particle filter with novel nonlinear error model for

miniature gyroscope-based measurement while drilling navigation. Sensors , 16 (3),

371.

Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., and Hengel, A. V. D. (2013). A Survey

of Appearance Models in Visual Object Tracking. ACM transactions on Intelligent

Systems and Technology (TIST), 4 (4), 58.

Li, Y., Ai, H., Yamashita, T., Lao, S., and Kawade, M. (2008). Tracking in low

frame rate video: a cascade particle filter with discriminative observers of different

life spans. IEEE transactions on pattern analysis and machine intelligence, 30 (10),

1728–40.

Liao, S., Jain, A. K., and Li, S. Z. (2016). A Fast and Accurate Unconstrained Face

Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (2),

211–223.

Llewellyn, G., Morgan, K., Member, S., Liu, J. G., and Yan, H. (2010). Precise Subpixel

Disparity Measurement From Very Narrow Baseline Stereo. IEEE Transactions on

Geoscience and Remote Sensing , 48 (9), 3424–3433.

Luber, M., Spinello, L., and Arras, K. O. (2011). People Tracking in RGB-D Data

With On-line Boosted Target Models. In 2011 IEEE International Conference on

Intelligent Robots and Systems, 3844–3849.

Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with

an application to stereo vision. In Proceedings of Imaging Understanding Workshop,

121–130.

Maggio, E. (2007). Adaptive multifeature tracking in a particle filtering framework.

IEEE Transactions on Circuits and Systems for Video Technology , 17 (10), 1348–

1359.

Maimone, A. and Fuchs, H. (2012). Reducing Interference Between Multiple Structured

Light Depth Sensors Using Motion. In Virtual Reality Short Papers and Posters

(VRW), IEEE, 51–54.

137

Malleson, C. and Collomosse, J. (2013). Virtual Volumetric Graphics on Commodity

Displays Using 3D Viewer Tracking. International Journal of Computer Vision, 101,

519–532.

Mastorakis, G. and Makris, D. (2014). Fall detection system using Kinect’s infrared

sensor. Journal of Real-Time Image Processing , 9 (4), 635–646.

Mathias, M., Benenson, R., Pedersoli, M., and Van Gool, L. (2014). Face detection

without bells and whistles. In European Conference on Computer Vision. Springer,

720–735.

Mihalcik, D. and Doermann, D. (2003). The Design and Implementation of ViPER.

In University of Maryland, 234–241.

Mikhisor, M., Wyvill, G., Mccane, B., and Mills, S. (2014). 3D Face Tracking in

Fisheye Stereo Video Using Particle Filters. In Proceedings of the 29th International

Conference on Image and Vision Computing New Zealand. ACM, 2014.

Mikhisor, M., Wyvill, G., McCane, B., and Mills, S. (2015). Adapting Generic Trackers

for Tracking Faces. In Proc. of Image and Vision Computing New Zealand (IVCNZ),

2015 International Conference, IEEE, 1–6.

Mittal, A. and Davis, L. S. (2002). M2Tracker: A Multi-View Approach to Segmenting

and Tracking People in a Cluttered Scene Using Region-Based Stereo. In European

conference on computer vision. Springer Berlin Heidelberg, 18–33.

Mittal, A. and Davis, L. S. (2003). M2 tracker: A multi-view approach to segment-

ing and tracking people in a cluttered scene. International Journal of Computer

Vision, 51 (3), 189–203.

Muller, J., Wilmsmann, D., Exeler, J., Buzeck, M., Schmidt, A., Jay, T., and Kruger,

A. (2009). Display Blindness: The Effect of Expectations on Attention towards

Digital Signage. In Pervasive Computing, 1–8.

Muñoz-Salinas, R. (2007). People Detection and Tracking Using Stereo Vision and

Color. Image and Vision Computing , 25 (6), 995–1007.

Muñoz-Salinas, R. (2008). A Bayesian plan-view map based approach for multiple-

person detection and tracking. Pattern Recognition, 41 (12), 3665–3676.

138

Muñoz-Salinas, R., Aguirre, E., and Garćıa-Silvente, M. (2007). People detection and

tracking using stereo vision and color. Image and Vision Computing , 25 (6), 995–

1007.

Muñoz-Salinas, R., Garćıa-Silvente, M., and Medina Carnicer, R. (2008). Adaptive

multi-modal stereo people tracking without background modelling. Journal of Visual

Communication and Image Representation, 19 (2), 75–91.

Muscoloni, A. and Mattoccia, S. (2014). Real-time tracking with an embedded 3D

camera with FPGA processing. International Conference on 3D Imaging (IC3D),

2014 , 1–7.

Nakanishi, Y., Fujii, T., and Kiatjima, K. (2002). Vision-Based Face Tracking Sys-

tem for Large Displays. Proceedings of The International Conference on Ubiquitous

Computing (UbiComp ’02), 152–159.

Nanda, H. and Fujimura, K. (2004). Visual Tracking Using Depth Data. In Conference

on Computer Vision and Pattern Recognition Workshop, 2004, 37–37.

Nebehay, G. (2012). Robust Object Tracking Based on Tracking-Learning-Detection.

Technical report, Technischen Universität Wien.

Nickel, K. and Gehrig, T. (2005). A joint particle filter for audio-visual speaker tracking.

Proc. of International Conference on Multimodal Interfaces , 61–68.

Nummiaro, K., Koller-Meier, E., and Svoboda, T. (2003). Color-based object tracking

in multi-camera environments. Pattern Recognition, Springer Berlin Heidelberg , 591–

599.

Oygard, M. A. (2012). Head Tracking With WebRTC.

Pantic, M. and Bartlett, M. S. (2007). Machine analysis of facial expressions. In Face

recognition, InTech.

Park, U., Choi, H. C., Jain, A. K., and Lee, S. W. (2013). Face tracking and recognition

at a distance: A coaxial and concentric ptz camera system. IEEE Transactions on

Information Forensics and Security , 8 (10), 1665–1677.

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep Face Recognition. In

Procedings of the British Machine Vision Conference 2015, Number Section 3, 41.1–

41.12.

139

Pérez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002). Color-Based Probabilistic

Tracking. In Proc. of European Conference on Computer Vision, 661–675.

Pham, H. X. and Pavlovic, V. (2016). Robust real-time 3D face tracking from RGBD

videos under extreme pose, depth, and expression variation. Proceedings - 2016 4th

International Conference on 3D Vision, 3DV 2016 , 441–449.

Pulli, K., Baksheev, A., Kornyakov, K., and Eruhimov, V. (2012). Real-time computer

vision with OpenCV. Communications of the ACM , 55 (6), 61.

Radke, R., Andra, S., Al-Kofahi, O., and Roysam, B. (2005). Image change detection

algorithms: a systematic survey. IEEE Transactions on Image Processing , 14 (3),

294–307.

Rautaray, S. S. and Agrawal, A. (2015). Vision based hand gesture recognition for

human computer interaction: a survey. Artificial Intelligence Review , 43 (1), 1–54.

Rekimoto, J. and Building, T. M. (1995). A Vision-Based Head Tracker for Fish Tank

Virtual Reality - VR without Head Gear -. In Virtual Reality Annual International

Symposium, 1995. Proceedings. IEEE, 94–100.

Ren, G., Li, C., O’Neill, E., and Willis, P. (2013). 3D freehand gestural navigation

for interactive public displays. IEEE Computer Graphics and Applications , 33 (2),

47–55.

Rodgers, J. L. and Nicewander, W. A. (1988). Thirteen Ways to Look at the Correlation

Coefficient. The American Statistician, 42 (1), 59 – 66.

Ross, D., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). Incremental Learning for Robust

Visual Tracking. International Journal of Computer Vision, 77 (1-3), 125–141.

Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., and Meunier, J. (2011). Fall

Detection from Depth Map Video Sequences. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Volume 6719, 121–128.

Rougier, C. and Meunier, J. (2010a). 3D Head Trajectory Using a Single Camera. In

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Volume 6134 LNCS, 505–512.

140

Rougier, C. and Meunier, J. (2010b). 3D head trajectory using a single camera. In-

ternational Journal of Future Generation Communication and Networking , 3 (4),

505–512.

Salti, S., Cavallaro, A., and Di Stefano, L. (2012). Adaptive appearance modeling

for video tracking: Survey and evaluation. IEEE Transactions on Image Process-

ing , 21 (10), 4334–4348.

Samarawickrama, M. G. (2010). Performance Evaluation of Vision Algorithms on

FPGA. Ph. D. thesis, University of Moratuwa.

Saragih, J. M., Lucey, S., and Cohn, J. F. (2011). Deformable Model Fitting by Reg-

ularized Landmark Mean-Shift. International Journal of Computer Vision, 91 (2),

200–215.

Scaramuzza, D., Martinelli, a., and Siegwart, R. (2006). A Toolbox for Easily Cali-

brating Omnidirectional Cameras. Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (2006), (June), 5695–5701.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A Unified Embedding

for Face Recognition and Clustering. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 815–823.

Sigal, L., Balan, A. O., and Black, M. J. (2010). HumanEva: Synchronized video and

motion capture dataset and baseline algorithm for evaluation of articulated human

motion. International Journal of Computer Vision, 87 (1-2), 4–27.

Sippl, A., Holzmann, C., Zachhuber, D., and Ferscha, A. (2010). Real-time gaze

tracking for public displays. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6439

LNCS (818652), 167–176.

Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., and

Shah, M. (2014). Visual tracking: An experimental survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 36 (7), 1442–1468.

Stone, E. E. and Skubic, M. (2014). Fall Detection in Homes of Older Adults Using

the Microsoft Kinect. IEEE journal of biomedical and health informatics , 19 (1),

290–301.

141

Sudowe, P. and Leibe, B. (2011). Efficient use of geometric constraints for sliding-

window object detection in video. Proceedings of the 8th international conference on

Computer vision systems , 11–20.

Sun, Y., Wang, X., and Tang, X. (2014). Deep Learning Face Representation From

Predicting 10 000 Classes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 1891–1898.

Sunderrajan, S. and Manjunath, B. (2013). Multiple view discriminative appearance

modeling with IMCMC for distributed tracking. 2013 Seventh International Confer-

ence on Distributed Smart Cameras (ICDSC), 1–7.

Surman, P., Day, S., Liu, X., Benjamin, J., Urey, H., and Aksit, K. (2015). Head tracked

retroreflecting 3D display. Journal of the Society for Information Display , 23 (2),

56–68.

Taigman, Y., Yang, M., and Ranzato, M. (2014). Deepface: Closing the gap to human

-level performance in face verification. In Proceedings of the IEEE conference on

computer vision and pattern recognition, 1701–1708.

Tang, F., Tao, H., Harville, M., and Robinson, I. N. (2008). Fusion of local appearance

with stereo depth for object tracking. In 2008 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, CVPR Workshops, 1–8.

Tao Zhao, Aggarwal, M., Kumar, R., and Sawhney, H. (2005). Real-Time Wide Area

Multi-Camera Stereo Tracking. 2005 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR’05), 1, 976–983.

Tippetts, B., Lee, D. J., Lillywhite, K., and Archibald, J. (2016). Review of stereo

vision algorithms and their suitability for resource-limited systems. Journal of Real-

Time Image Processing , 11 (1), 5–25.

Tulyakov, S., Vieriu, R.-L., Sangineto, E., and Sebe, N. (2015). FaceCept3D: Real Time

3D Face Tracking and Analysis. 2015 IEEE International Conference on Computer

Vision Workshop (ICCVW), 28–33.

Turaga, P., Member, S., Chellappa, R., and Subrahmanian, V. S. (2008). Machine

Recognition of Human Activities: A survey. IEEE Transactions on Circuits and

Systems for Video Technology , 18 (11), 1473–1488.

142

Viola, P. and Jones, M. (2001). Robust real-time face detection. Proce. of 8th IEEE

International Conference on Computer Vision, 2 (2), 137–154.

Vondrick, C., Patterson, D., and Ramanan, D. (2013). Efficiently scaling up crowd-

sourced video annotation: A set of best practices for high quality, economical video

labeling. International Journal of Computer Vision, 101 (1), 184–204.

Wai, A. W. Y., Tahir, S. M., and Chang, Y. C. (2015). GPU acceleration of real

time Viola-Jones face detection. In 2015 IEEE International Conference on Control

System, Computing and Engineering (ICCSCE), 183–188. IEEE.

Wang, J., Yin, L., Wei, X., and Sun, Y. (2006). 3D Facial Expression Recognition

Based on Primitive Surface Feature Distribution. In Computer Vision and Pattern

Recognition, 2006 IEEE Computer Society Conference, 1399–1406.

Wang, L., Hu, W., and Tan, T. (2003). Recent developments in human motion analysis.

Pattern recognition, 36 (3), 585–601.

Wang, Y.-D., Wu, J.-K., and Kassim, A. A. (2005). Particle Filter for Visual Tracking

Using Multiple Cameras. MVA2005 IAPR Conference on Machine VIsion Applica-

tions .

Wei Zhong, Huchuan Lu, and Ming-Hsuan Yang (2012). Robust object tracking via

sparsity-based collaborative model. In 2012 IEEE Conference on Computer Vision

and Pattern Recognition, 1838–1845. IEEE.

Wu, Y., Lim, J., and Yang, M. H. (2013). Online object tracking: A benchmark.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2411–2418.

Wu, Y., Lim, J., and Yang, M.-H. (2015). Object Tracking Benchmark. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 37 (9), 1834–1848.

Xiao, J., Kanade, T., and Cohn, J. F. (2002). Robust full-motion recovery of head by

dynamic templates and re-registration techniques. Proceedings - 5th IEEE Interna-

tional Conference on Automatic Face Gesture Recognition, FGR 2002 , 163–169.

Xiaoyu Huang, Liyuan Li, and Sim, T. (2004). Stereo-based human read detection

from crowd scenes. In 2004 International Conference on Image Processing, 2004.

ICIP ’04., Volume 2, 1353–1356. IEEE.

143

Xu Jia, Huchuan Lu, and Ming-Hsuan Yang (2012). Visual tracking via adaptive

structural local sparse appearance model. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, 1822–1829. IEEE.

Xue, Y. and Wang, Y. (2014). Multi-User Autostereoscopic 2D/3D Switchable Flat-

Panel Display. Journal of Display Technology , 10 (9), 737–745.

Yang, H., Shao, L., Zheng, F., Wang, L., and Song, Z. (2011). Recent advances and

trends in visual tracking: A review. Neurocomputing , 74 (18), 3823–3831.

Yebes, J. J., Bergasa, L. M., Arroyo, R., and Lázaro, A. (2014). Supervised learning and

evaluation of KITTI’s cars detector with DPM. In Intelligent Vehicles Symposium

Proceedings, 768–773.

Yilmaz, A. and Javed, O. (2006). Object Tracking: A Survey. ACM Computing Surveys

(CSUR), 38 (4), 13.

Yuen, J., Russell, B., Ce Liu, and Torralba, A. (2009). LabelMe video: Building a video

database with human annotations. In 2009 IEEE 12th International Conference on

Computer Vision, 1451–1458.

Zhang, S., Gong, Y., Huang, J. B., Lim, J., Wang, J., Ahuja, N., and Yang, M. H.

(2016). Tracking persons-of-interest via adaptive discriminative features. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), 9909 LNCS (August), 415–433.

Zhang, Y., Bulling, A., and Gellersen, H. (2013). SideWays: A Gaze Interface for

Spontaneous Interaction with Displays. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems , 851.

Zhang, Y., Chong, M. K., Müller, J., Bulling, A., and Gellersen, H. (2015). Eye

tracking for public displays in the wild. Personal and Ubiquitous Computing , 19 (5-

6), 967–981.

Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Transac-

tions on pattern analysis and machine intelligence, 22 (11), 1330–1334.

Zoidi, O., Nikolaidis, N., and Pitas, I. (2013). Appearance based object tracking in

stereo sequences. International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), 2434–2438.

144

Zoidi, O., Nikolaidis, N., Tefas, A., and Pitas, I. (2014). Stereo object tracking with

fusion of texture, color and disparity information. Signal Processing: Image Com-

munication, 29 (5), 573–589.

145

	Introduction
	Motivation
	Requirements analysis
	Contributions
	Thesis layout

	Literature Survey
	3D tracking
	Cameras number and position
	Using stereo information
	Foreground segmentation
	Tracking Space
	3D tracking without building a depth map
	Tracking methods
	3D tracking review summary

	2D face tracking
	Conclusion

	Tracking evaluation framework
	Collecting evaluation datasets
	Stereo setup and calibration
	Ground truth annotation
	Tracking evaluation
	Evaluation metric for 2D tracking
	Evaluation metric for 3D tracking
	Frame rate estimation

	Conclusion

	2D Face Tracking
	Choosing the best public tracker
	Speeding up TLD
	Background subtraction
	Subwindow detection

	Adapting for face tracking
	FaceTLD
	Using structural constraints for creating the face model
	Face adaptation implementation
	Adapting generic trackers for tracking faces
	Different modifications of TLD

	Experimenting with parameters of face adapted median flow
	Frequency of running the face detector
	Subwindow based detection
	Different sliding window methods
	The ``following'' subwindow size
	Sliding window size
	Average face size and Haar cascade limits
	Final comparison: TLD modifications and context tracker

	Conclusion

	3D Face Tracking
	Converting 2D tracking into 3D tracking by triangulation
	Using stereo information
	Checking size and 3D position
	Sharing information between the views

	3D median flow tracker
	3D Lucas-Kanade tracking
	Two head models and two ways of computing displacement
	Forward-backward tracking
	Comparing 2D and 3D median flow trackers

	Compliance with requirements
	Conclusion

	3D Face tracking in fisheye video
	Comparing Kinect to visual tracking methods
	Using a particle filter for 3D tracking
	Comparing 3D trackers on fisheye video and Kinect face tracking
	Conclusion

	Conclusion
	Future work

	References

