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Abstract 

 

The purpose of this research was to produce and characterise novel hybrid biomaterials. 

Currently, there is a research gap in the area of producing hybrid biomaterials with shape 

memory properties for use in the fields of bioengineering or biomedical devices. This research 

will provide the initial results for a novel hybrid biomaterial that could be further researched 

for use in a biomedical device. In this study, melt extrusion methods were applied to the 

hybrid polymers. Three characterisation methods were employed within this work: 

mechanical (tensile) testing, shape recovery, and in vitro (trypsin) degradation. Across the 

three characterisation methods, PCL:PLA 30:70WT% 20% PEG-200 plasticised hybrid fibres 

were found to outperform the other materials reported in this thesis. Three key findings 

resulted from this research. The melt extrusion method used proved to be successful. PCL:PLA 

hybrid fibres could be produced consistently. Both glycerol and PEG-200 plasticisers used 

within this work were found to improve the blend properties of the hybrids. A total of 65% of 

tested hybrid fibres exhibited shape recovery when tested at a temperature of 37.5°C. The 

overall results of this study indicate that the hybrid materials produced here need to undergo 

further testing prior to use in biomedical applications.  
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C Carbon 
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REML Restricted Maximum Likelihood 

SME Shape Memory Effect 

SMP Shape Memory Polymer 

SSE Single Screw Melt Extruder 
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Tg Glass Transition Temperature 

TGA Thermogravimetric Analysis 

Tm Melting Temperature 

TS Tensile Strength 

WT% Weight Percentage 

YM Young’s Modulus 

ø Fibre Diameter 
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Units 

 

Unit Definition 

mg/mL Concentration (Enzyme) 

% Concentration (Plasticisers) 

M Concentration (Solutions) 

WT% Constituent Ratio 

mm Diameter, ø 

mm Dimensions 

mm Distance 

% Elongation at Break 

lb force Force (Fishing Line) 

N Force (Tensile Testing) 

RH% Humidity 

g/mol Molecular Weight 

% Strain 

MPa Stress 

°C Temperature 

MPa Tensile Strength 

Wm-1K-1 Thermal Conductivity 

s Time (seconds) 

N/m Torque 

mm/min Velocity 

mL Volume 

G Weight 

MPa Yield Strength 

MPa Young’s Modulus 
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Chapter 1 Introduction 

 

1.1 Background 

 

Polymers are large molecules that contain repeated subunits, referred to as monomers (Garni, 

Thamboo et al. 2017). Two broad categories of polymers exist: natural (biopolymers) and 

synthetic (Sionkowska 2011). Natural polymers are those which occur within organisms and 

nature, such as chitosan, keratin and collagen (Sionkowska 2011). Synthetic polymers are 

man-made, such as polyethylene glycol or polypropylene (Liang, Chen et al. 2015). It is 

common for polymers to be blended together (Sionkowska 2011). Natural and synthetic 

polymers are frequently blended to produce hybrid polymers; however, blends between only 

synthetic polymers are also used (Sionkowska 2011). This work will focus on synthetic 

polymers, referring to only these as polymers. 

 

Polymers are of great importance in biomedical applications, such as in sutures or orthodontic 

retainers (Chabrier, Lloyd et al. 1999, Catanzano, Acierno et al. 2014). Polymers possess a 

variety of properties that make them suitable for biomedical applications (Lendlein and Kelch 

2002). Polymers are typically much cheaper and easier to use than metallic devices (Lendlein 

and Kelch 2002). Suitable polymers for biomedical applications are biocompatible and 

typically biodegradable. A number of biomedical applications have been reported for 

polymeric materials and hybrids. These include (but are not limited to): synthetic muscle 

(Yeong, Sudarmadji et al. 2010); bone tissue regeneration (Costa, Puga et al. 2015); controlled 

drug release (Costa, Puga et al. 2015, Preis, Breitkreutz et al. 2015); and blood bags (Zhang, 

Chen et al. 2010, Pan, Trempont et al. 2016). 

 

Polymers, like metallic alloys, can exhibit shape recovery properties (Lendlein and Kelch 

2002, Behl and Lendlein 2007). The ability of polymers to undergo shape recovery is termed 

either, shape memory, or stimuli responsive (Meng and Hu 2009, Meng and Li 2013). The term 

stimuli responsive adequately describes shape recovery; a polymer’s recovery is triggers by 

an external stimulus (Meng and Hu 2009, Meng and Li 2013). Shape memory polymers are of 

significant interest in biomedical applications, allowing a reduced initial loading on damaged 

tissue. The polymer will undergo shape recovery as it heats to the temperature of the 

implanted site, allowing the function to be fulfilled. Shape memory has been applied in 

medical sutures (Lendlein and Langer 2002). In this event, the sutures need not be pulled 

tight; as they heat to body temperature (37.5°C), they self-tighten (Lendlein and Langer 2002). 

The self-tightening of these sutures reduces tissue damage around the wound sites (Lendlein 

and Langer 2002).  

 

1.2 Research Gap 

 

There is a large scope for the application of shape memory polymers as components in 

biomedical devices (Lendlein and Kelch 2002). Several potential applications have been 

proposed for shape memory polymers: sensors, tools, sutures, and actuating materials 

(synthetic muscle) (Lendlein and Kelch 2002, Xie 2011, Moon, Choi et al. 2016). However, very 
few shape memory materials have been successfully applied in these applications. As such, 
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there is potential for new research to provide a useful contribution to the field of polymer 

science. Novel hybrid biomaterials have the potential to fulfil one, or more, biomedical 

applications. 

 

1.3 Aims and Objectives 

 

The aim of this work is to investigate and fabricate hybrid biomaterials exhibiting shape 

memory properties. The four research objectives to achieve the aims are to: 

 

1. Investigate biocompatible polymers, and their fabrication techniques [Ch. 2,3,7] 

2. Investigate shape memory polymers, their functionality and processing methods. [Ch. 2,5,7] 

3. Investigate methods for analysing polymer hybrids [Ch. 2-8] 

4. Define the ideal material properties. [Ch. 2-8] 

 

1.4 Thesis Outline 

 

Outlines of each chapter in the thesis are provided below. 

 

Chapter 1: Introduction 

This chapter introduces the main concepts of the research, the context in which it is to be 

undertaken, and defines the overall research aim and objectives.  

 

Chapter 2: Literature Review 

Chapter 2 provides a summary of published literature in relation to this field. The primary 

focus is on polymers, processing and testing. The materials used within the scope of this 

project are identified, and justified. Criteria for the ideal polymer hybrid is defined.  

 

Chapter 3: Fibre Processing 

Chapter 3 summarises the materials and methodologies employed to produce the polymeric 

fibres. An initial pilot study on the processing methods is reported within this chapter. The 

effects the processing conditions have on the materials are identified and discussed.  

 

Chapter 4: Mechanical Testing 

Chapter 4 provides the materials and methodologies required to undergo tensile testing of 

polymeric fibres. A pilot study carried out to determine the ideal tensile testing conditions is 

detailed. Further, the results of the mechanical tests are identified and explained.  

 

Chapter 5: Shape Recovery 
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Chapter 5 summarises the materials and methods required to carry out shape recovery testing 

on polymeric fibres. The results are identified and explained.  

 

Chapter 6: in vitro Trypsin Digestion 

Chapter 6 identifies the materials and methods required to undergo trypsin digestion of 

polymer fibres. The results of this study are identified and discussed. 

 

Chapter 7: Overall Discussion 

Chapter 7 provides the overall discussion. The overall discussion compares the effects 

between the processing method(s) and properties – physical, mechanical, degradation and 

shape recovery. Further, the criteria defined for the best fibres is critiqued. The limitations to 

this study, and future work are discussed.  

 

Chapter 8: Conclusion 

Chapter 8 identifies the overall conclusions from this work.  
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Chapter 2 Literature Review 

 

2.1 Introduction 

 

This work primarily focuses on polymers and their characterisation. The issue of polymer 

biocompatibility is a central point for this work. As such, polymers that have been used in 

human related medical devices will be identified. However, it is common that polymers 

require additives. As such, these additives must be identified and discussed. A particular focus 

is placed on the ability of polymers to undergo shape recovery. This has significant benefits for 

a variety of human medical applications; such as sutures (Lendlein and Langer 2002). 

Polymers must first be processed into suitable forms; therefore, three common polymer 

processing methods are identified and discussed. Polymers must be characterised prior to use 

as medical devices. As such, a number of important polymer characterisation techniques are 

identified and discussed. This chapter concludes with a summary of what will be used in this 

project. Detailing why these materials and methods were chosen; and the criteria for what 

were considered the best fibre(s) are identified.  

 

2.2 Polymers 

 

By definition, a polymer is a molecular chain of repeated subunits (Garni, Thamboo et al. 

2017). These subunits are typically referred to as monomers. However, two categories of 

polymer exist: those that have a single type of subunit, and those that have multiple. These are 

referred to as homopolymers (one type of monomer), and copolymers (more than one type of 

monomer) (Prud’homme 2016, Sedlak 2016, Huang and Turner 2017). A total of seven 

copolymer types have been identified (Huang and Turner 2017), see figure 2: 1 for pictorial 

representations:  

1. Random: monomer types are randomly distributed. 

2. Block: monomer types are in distinct, individual, groupings.  

3. Graft: side chains are attached to the main monomer chain. These do not have to be singular 

monomers.  

4. Alternating: the types of monomer alternate. This can be as either single monomers or groups.  

5. Periodic: groupings of monomers randomly distributed.  

6. Aperiodic copolymers: two (or more) aligned periodic chains.  

7. Gradient: increases or decreases in monomer concentration across the polymer chain.  
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Figure 2: 1 Types of Copolymers. The red and blue circles are the two types of polymer used. Adapted from 

(Huang and Turner 2017). 
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The macrostructures of polymers are of vital importance. In this instance, macrostructure 

refers to the crystallinity of the polymer. In terms of polymer crystallinity, two phases are 

typically identified. Polymers are either termed semi-crystalline, or amorphous (little to no 

crystalline structure) (Middleton and Tipton 2000). There are several key distinction between 

semi-crystalline and amorphous polymers. The most important distinction relates to thermal 

transition points. Semi-crystalline polymers exhibit two distinct thermal transitions: glass 

transition and melting (Martin and Avérous 2001, Cadek, Coleman et al. 2002). However, 

amorphous polymers only exhibit glass transition; they cannot melt (Cadek, Coleman et al. 

2002). Rather than melting, amorphous materials soften over a range of temperatures, 

increasing malleability (Sarode, Sandhu et al. 2013). Polycaprolactone (PCL) and 

polypropylene (PP) are typical semi-crystalline polymers (Middleton and Tipton 2000, Shi, 

Chen et al. 2010, Ostafinska, Fortelny et al. 2015, Urquijo, Guerrica-Echevarría et al. 2015), 

while polylactic acid (PLA) and Polyvinyl chloride (PVC) are amorphous (Middleton and 

Tipton 2000, Wei, Wu et al. 2014, Ostafinska, Fortelny et al. 2015, Urquijo, Guerrica-

Echevarría et al. 2015, Mallakpour, Abdolmaleki et al. 2016). In the event that amorphous and 

semi-crystalline polymers are blended, they can produce varying degrees of crystallinity 

(Middleton and Tipton 2000). The crystallinity of the materials are vital for shape recovery. A 

higher crystallinity equates to a more rigid molecular structure (Yang, Li et al. 2015). A high 

crystallinity translates to a highly stable molecular matrix (Yang, Li et al. 2015). Shape 

recovery is to a degree, reliant on the ability of the polymer matrix to shift; therefore, a low 

crystallinity is preferable.  

 

2.2.1 Polymer Processing and Properties 

 

Many types of polymers exist, each with their own properties and optimal processing 

conditions. A polymer’s thermal properties are of vital importance during processing. All 

traditional polymer processing methods first apply heat, to melt or soften the polymer. 

Without the knowledge of the specific polymers’ thermal properties, this process becomes 

difficult and potentially damaging towards the equipment. Differential scanning calorimetry 

(DSC) and thermogravimetric analysis (TGA) methods (see section 2.6) are used to report the 

thermal properties of PCL, PLA, PP and PVC (table 2: 1). Three polymer processing techniques 

exist to process polymer powders and/or granules into usable fibres/products: melt 

extrusion, compression moulding and injection moulding (reviewed in section 2.5). 

 

The particular processing technique used influences the properties of the materials produced 

(Chung 2017). During processing, it is common to blend a variety of polymers and additives to 

produce the desired composite material (Frketic, Dickens et al. 2017). When two or more 

polymers are blended into a composite, phase separation issues can arise (El-Hadi 2014). Two 

reasons are known for this, the primary one being the formation of two or more distinct glass 

transition temperatures (El-Hadi 2014). All polymer hybrids should have a single glass 

transition temperature, otherwise they produce sub-optimal mechanical properties. A further 

issue during polymer blending is that of phase miscibility (Chavalitpanya and Phattanarudee 

2013). Phase miscibility issues occur when the surface properties of the polymers are 

incompatible: a gap forms between the polymer molecules (Chavalitpanya and Phattanarudee 

2013). Additives are required to fix this problem. Plasticisers are materials that can be added 

to reduce the glass transition temperatures of a material, significantly reducing the probability 

of distinct glass transition zones along the material (El-Hadi 2014). Another additive, a 

compatabiliser, can be added to improve interfacial adhesion between the polymer molecules 

(El-Hadi 2014). Additives are further explained in section 2.3.  
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Polycaprolactone (PCL) is a semi-crystalline polyester homopolymer, typically with 50% 

crystallinity (Wan, Wu et al. 2008, Mallakpour and Nouruzi 2016). At room temperature 

(20°C), PCL fibres are highly elastic (Wan, Lu et al. 2009). This is a result of the low glass 

transition temperature of PCL (table 2: 1), approximately -60°C (Wan, Lu et al. 2009). 

However, while PCL is highly elastic, it is a relatively low strength polymer (table 2: 2), 

breaking easily under high load conditions (Monticelli, Calabrese et al. 2014). PCL’s properties 

specified in table 2: 2 are for compression moulded bars (Monticelli, Calabrese et al. 2014). 

However, both melt extrusion (Ghosh, Ali et al. 2010, Bélard, Poncin-Epaillard et al. 2013, 

Catanzano, Acierno et al. 2014, Huo, Rojas et al. 2014, Wang, Langhe et al. 2014, Zhao and 

Zhao 2016) and injection moulding (Zhao and Zhao 2016) have been used to produce PCL 

products.  

 

Polylactic acid (PLA) is an aliphatic (open chain) polyester, with carrying degrees of 

crystallinity: 1 – 37% (Middleton and Tipton 2000, Martin and Avérous 2001, Chavalitpanya 

and Phattanarudee 2013, Ostafinska, Fortelny et al. 2015). Further, PLA is hygroscopic in 

nature, meaning it readily absorbs ambient moisture (Jamshidian, Tehrany et al. 2010). As a 

result of PLA’s crystallinity, it can be classified as an amorphous polymer, that is, it lacks a 

defined molecular structure (Guttman, DiMarzio et al. 1981). Variations in PLA’s crystallinity 

are a result of its nature as a cyclic dimer (Middleton and Tipton 2000). Cyclic dimer 

molecules are those that can occur as multiple stereoisomers, that is, the materials atoms can 

appear in different spatial arrangements (Middleton and Tipton 2000). PLA is produced from 

lactic acid sugars (literally, many lactic acids); lactic acid sugars produce L and D 

stereoisomers, this is translated to the PLA molecule (Middleton and Tipton 2000). Typically, 

while both D and L isomers are apparent in sugars, the L isomer is considerably more 

common; this is reported in PLA molecules (Middleton and Tipton 2000). A synthetic, DL PLA 

molecule can be produced; this occurs when PDLA (D-isomer) and PLLA (L-isomer) are 

combined, and cannot happen naturally (Middleton and Tipton 2000). PLA has a high glass 

transition temperature, 60°C (table 2: 1), meaning it is rigid at room temperature (Ostafinska, 

Fortelny et al. 2015). PLA’s amorphous nature results in softening at temperatures exceeding 

the glass transition (Sarode, Sandhu et al. 2013, Ostafinska, Fortelny et al. 2015). A variety of 

melting temperatures have been quoted for PLA (table 2: 1), ranging from 155 – 175°C, this is 

dependent on the crystallinity of the specific PLA (Middleton and Tipton 2000, Jamshidian, 

Tehrany et al. 2010, Khankrua, Pivsa-Art et al. 2014, Ostafinska, Fortelny et al. 2015, Urquijo, 

Guerrica-Echevarría et al. 2015). However, while PLA lacks elasticity, it has both a high 

strength and Young’s modulus (table 2: 2) allowing it to withstand large loads and still 

undergo elastic deformation (Monticelli, Calabrese et al. 2014). The properties given for 

tensile testing in table 2: 2 are with compression moulded specimens (Monticelli, Calabrese et 

al. 2014). PLA can however be processed through thermal melt extrusion (Mosanenzadeh, 

Khalid et al. 2015) and injection moulding (Zhao and Zhao 2016). 

 

Polypropylene (PP) is a commonly used semi-crystalline polymer (Liang, Chen et al. 2015). 

Several advantages exist for the use of PP: it is cheap, easy to work with, and it is recyclable; 

however, it produces mechanically weak materials (Liang, Chen et al. 2015). The glass 

transition temperature of PP, 12°C (table 2: 1) is such that it is rubbery at room temperature 

(Shi, Chen et al. 2010). PP reportedly has a max elongation of between 128 – 308% (table 2: 2) 

(Eslami-Farsani, Reza Khalili et al. 2014, Li, Zhang et al. 2014). The Young’s modulus of PP is 

reported to be 523.42 MPa (table 2: 2), this suggest a low load is required for elongation 

(Eslami-Farsani, Reza Khalili et al. 2014). Several processing methods have been employed for 

PP within the literature: injection moulding (Suplicz, Szabo et al. 2013, Ameli, Kazemi et al. 
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2017), melt extrusion (Shi, Chen et al. 2010), and compression moulding (Goodship, Brzeski et 

al. 2014). Compression moulded sheets of polypropylene have been used in orthodontic 

vacuum formed retainers (Gardner, Dunn et al. 2003).  

 

Polyvinyl chloride (PVC) is currently one of the most used polymers worldwide (Sterzyński, 

Tomaszewska et al. 2010). Several properties of PVC make it an ideal polymer: it is cheap, easy 

to process, and easy to, modify (Sterzyński, Tomaszewska et al. 2010). PVC is an amorphous 

polymer, lacking molecular structure (Cadek, Coleman et al. 2002, Wei, Wu et al. 2014). The 

glass transition temperature (69°C) of PVC means it is rigid, at room temperature (Sterzyński, 

Tomaszewska et al. 2010). PVC has a comparatively (to other polymers) high Young’s modulus 

(table 2: 1), meaning it will show minimal elongation when a force is applied (Mallakpour, 

Abdolmaleki et al. 2016). Coupled with biocompatibility, the high Young’s modulus makes PVC 

ideal for medical devices such as: medical tubing and blood bags (Ajili, Ebrahimi et al. 2003). 

Melt extrusion is frequently used to process PVC (producing piping) (Zhang, Chen et al. 2010, 

Pan, Trempont et al. 2016); compression moulding (Dan-asabe 2016) and injection moulding 

(Lladó and Sánchez 2008) are also used.  

 

Large varieties of hybrid fibres have been produced with constituent materials that include at 

least on of: PCL, PP, PLA or PVC. Hybrid materials of PCL:PLA have been produced with ratios 

ranging from 10:90WT% – 80:20WT%; all of which are produced using twin-screw extrusion 

(Chavalitpanya and Phattanarudee 2013, Ostafinska, Fortelny et al. 2015, Urquijo, Guerrica-

Echevarría et al. 2015, Malinowski 2016). PLA materials have been blended with polyamide 

(PA) materials to produce 70:30WT% hybrids through twin screw extrusion (Khankrua, 

Pivsa-Art et al. 2014). PP materials are frequently blended with multiwall carbon nanotubes 

(MWCNT) (Liang, Chen et al. 2015, Ameli, Kazemi et al. 2017). Injection moulded 90:10WT% – 

95:5WT% PP:MWCNT hybrids have been successfully produced (Ameli, Kazemi et al. 2017). 

Further, twin-screw melt extruders have been used to process PP:MWCNT hybrids with 

99:1WT% – 95:5WT% (Liang, Chen et al. 2015). There are reports of PVC materials being 

blended with both PEG and CNT (). A block copolymer between PEG-600 (600 g/mol) and PVC 

was produced through grafting (ratio unspecified) (Balakrishnan, Kumar et al. 2005). In a 

separate work, 70:30WT% PVC:PEG-400 (400 g/mol) hybrids were cast into moulds (Chen, 

Sheng et al. 2011). In both works, the addition of PEG to PVC improves the biocompatibility of 

the final materials, making them more suitable for biomedical applications (Balakrishnan, 

Kumar et al. 2005, Chen, Sheng et al. 2011). Ranges of PVC:MWCNT hybrids of 99.9:0.1WT% – 

99.5:0.5WT% (Sterzyński, Tomaszewska et al. 2010).  
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Table 2: 1 Thermal Properties for Polycaprolactone (PCL), Polypropylene (PP), Polylactic acid (PLA) and 

Polyvinyl chloride (PVC) 

Polymer Molecular 

Weight 

Crystal 

Structure 

Melting 

Point 

Glass 

Transition 

Degradation 

Temperature 

References 

PCL A variety 

exists for 

all.  

Semi-

crystalline 

58 – 63 -65 – -60  358 (Koleske and 

Lundberg 

1969, 

Middleton 

and Tipton 

2000, Wan, 

Lu et al. 

2009, 

Jamshidian, 

Tehrany et al. 

2010, Zhao 

and Zhao 

2016) 

PP  Semi-

crystalline 

165 – 

167 

12 350-470 (Gómez-del 

Río and 

Rodríguez 

2010, Shi, 

Chen et al. 

2010) 

PLA  Amorphous 155 

(softens) 

168 

(softens) 

175 

(softens) 

40 – 70 200°C and 

above 

(Middleton 

and Tipton 

2000, 

Jamshidian, 

Tehrany et al. 

2010, 

Khankrua, 

Pivsa-Art et 

al. 2014, 

Ostafinska, 

Fortelny et al. 

2015, 

Urquijo, 

Guerrica-

Echevarría et 

al. 2015, Wu 

and 

Hakkarainen 

2015) 

PVC  Amorphous  69 – 70 

91 

 (Sterzyński, 

Tomaszewska 

et al. 2010, 

Zhang, Chen 

et al. 2010) 
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Table 2: 2 Tensile Properties for Polycaprolactone (PCL), Polypropylene (PP), Polylactic acid (PLA) and 

Polyvinyl chloride (PVC). Details of the test conditions and specimens are provided, where reported.  

Material 

(Product 

code) 

Tensile 

Test 

Conditions 

Test 

Specimen 

Tensile 

Strength 

(MPa) 

Elongation 

at break 

(%) 

Young’s 

(Elastic, 

Tensile) 

Modulus 

(MPa) 

Reference 

PCL 

(CAPA 

6500) 

Cross-head 

speed: 50 

mm/min. 

Rectangular 

bars. 

10x25x0.5 

mm 

20±8 1200±400 220±10 (Monticelli, 

Calabrese et 

al. 2014) 

PLA Cross-head 

speed: 50 

mm/min. 

Rectangular 

bars. 

10x25x0.5 

mm 

65±2 

 

59.90±4.93 

9±1 

 

1.86±0.06 

1200±40 

 

3990±420 

(Monticelli, 

Calabrese et 

al. 2014) 

(Pinto, 

Ramos et al. 

2017) 

PP LC 25 kN 

5 mm/min 

Electrospun 

fibre 

membrane 

Injection 

moulded 

dumbbell, 

3x13x165 

mm 

(DxWxL) 

5.14 

19.76 

128.19 

307.64 

Not Shown 

523.42 

(Li, Zhang et 

al. 2014) 

(Eslami-

Farsani, Reza 

Khalili et al. 

2014) 

PVC ND. Thin films. 

Size 

unspecified. 

43.3 2.63 2060 (Mallakpour, 

Abdolmaleki 

et al. 2016) 
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2.3 Additives 

 

An additive is any material processed with the polymer blend. Typically, these aim to improve 

either processing or mechanical properties of the final materials. Plasticisers function to 

increase molecular gaps, resulting in a decreased glass transition temperature; whereas 

compatabilisers function to improve interfacial adhesion (El-Hadi 2014).  

 

2.3.1 Plasticisers 

 

Plasticisers are small molecules that can be combined with a polymer. When added, the 

plasticiser acts to increase intermolecular space (Mekonnen, Mussone et al. 2013). Primarily, 

this provides a benefit to the system because the intermolecular forces are weakened 

(Mekonnen, Mussone et al. 2013). As the intermolecular forces decrease, the molecules relax 

and are able to move more freely (Mekonnen, Mussone et al. 2013). The overall effect of this is 

a reduction in polymer glass transition temperature (Tg) (Byun, Kim et al. 2010). Essentially, 

this functions to allow the polymer to soften at a lower temperature, allowing lower 

temperature processing (Douglas, Andrews et al. 2010). However, because the polymer chains 

are being separated, the mechanical properties are affected. The reduction in intermolecular 

forces allows the polymer molecules to be more mobile, allow better/faster alignment when 

placed under tension: the Young’s modulus is reduced (Mekonnen, Mussone et al. 2013). 

Polymeric fibres that undergo tension elongate without breaking because their molecules 

move and realign (stretch) to stabilise the system. However, when the molecules can no 

longer elongate (effected by intermolecular forces) the material fractures. This means that 

with a reduction in intermolecular forces, a reduction in applied tensile load is required to 

achieve the same elongation. That is to say, a non-plasticised system could require 10 N force 

to elongate by 100 mm; however, a plasticised system may only require 8 N to elongate by 100 

mm (Byun, Kim et al. 2010). An acceptable compromise must be found between the desired 

effect (Tg reduction) and undesired effects (mechanical property reductions). Two types of 

plasticiser exist: internal and external (Mekonnen, Mussone et al. 2013). The major difference 

between these is how they are introduced to the polymer system. Internal plasticisers require 

a chemical reaction to integrate into the polymer chain to act (Mekonnen, Mussone et al. 

2013). Several issues are identified with the method: the plasticiser does not function over a 

large temperature range; the polymer is softened at a higher rate; and, the plasticiser side 

chains crystallise, reducing/negating their effect (Mekonnen, Mussone et al. 2013). 

Conversely, external plasticisers can act without a chemical reaction. Typically, external 

plasticisers require an increased processing temperature (when compared to internal 

plasticisers) to have an effect; however, this must be below the degradation temperature 

(Mekonnen, Mussone et al. 2013).  

 

It has been reported that glycerol, sorbitol and poly(ethylene glycol) (PEG) are universally the 

most common plasticisers used in biomedical applications (Jung, Deng et al. 2016). Glycerol is 

a hygroscopic polyol molecule, meaning it readily takes up ambient moisture (Vieira, da Silva 

et al. 2011, Wu and Hakkarainen 2015). A search of ScienceDirect (www.sciencedirect.com, 

January 2017) did not provide any literature in support of glycerol plasticised PLA. 

Approximately 140 results were returned, for the most part, none of these used straight, 

unmodified glycerol. It has been suggested that PLA and glycerol are immiscible (Müller, Bere 

et al. 2016). Evidence for this exists from two DSC graph peaks, one at PLA’s 60°C, the other at 

glycerol’s -80°C (Müller, Bere et al. 2016). In the case of glycerol plasticised PVC, a search on 

http://www.sciencedirect.com/
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ScienceDirect yielded 26 results (www.sciencedirect.com, January 2017). It appears that 

glycerol acts as a wetting agent, when blended with PVC (Wang, Wang et al. 2014). A wetting 

agent is any material added to a blend that changes the floating behaviour of the polymer 

(Wang, Wang et al. 2014). No applications aside from as a wetting agent have been identified 

for blending glycerol with PVC. Based on similar searches of ScienceDirect 

(www.sciencedirect.com, January 2017) with sorbitol, this has rarely been used with PLA (4 

results) or PVC (7 results). Both glycerol and sorbitol have been used in PLA to reduce the 

glass transition temperature (Wu and Hakkarainen 2015). Glycerol (10% solution) provided a 

54.3°C temperature, while sorbitol provided a 59.3°C, both decreases in comparison to raw 

PLA, 61.8°C(table 2: 1) (Wu and Hakkarainen 2015).  

 

PEG is a biocompatible United States Food and Drug Administration (FDA) approved water 

soluble polymer; it was claimed to be the most blood compatible plasticiser as of 2011 (Chen, 

Sheng et al. 2011, Cipolatti, Moreno-Pérez et al. 2015). Various molecular weight variants of 

PEG have been applied as plasticisers for PLA and PVC, ranging from 300 – 20,000 g/mol 

(Martin and Avérous 2001, Chen, Xie et al. 2006, Cao, Yang et al. 2009, Douglas, Andrews et al. 

2010, Chen, Sheng et al. 2011, Hassouna, Raquez et al. 2011, Mekonnen, Mussone et al. 2013). 

In all instances, reductions to glass transition temperatures, tensile strengths and Young’s 

moduli are observed; however, PEG-400 produces the most significant changes (Hassouna, 

Raquez et al. 2011, Mekonnen, Mussone et al. 2013). At a 90% PLA plasticised with 10% PEG-

400, produced a glass transition of 34.3°C, and 80% PLA plasticised with 20% giving a 21.0 – 

23.2°C glass transition (Hassouna, Raquez et al. 2011, Mekonnen, Mussone et al. 2013). Across 

a range of PEG molecular weights, trends are observed. When PLA is plasticised with a lower 

molecular weight PEG, a lower glass transition, and better elongation properties appear; 

conversely, when a higher molecular weight PEG is used, the opposite happens: a higher glass 

transition is observed, with a reduction to elastic properties (Cao, Yang et al. 2009). PVC 

polymers have also undergone PEG plasticisation (Balakrishnan, Kumar et al. 2005, Chen, 

Sheng et al. 2011). An increase in elongation is observed up to 40% PEG-400 loading, and a 

glass transition reduction is observed (Chen, Sheng et al. 2011).  

 

2.3.2 Compatabilisers 

 

Compatabilisers are essential in many hybrid materials, these act to reduce phase separation 

(Wu, Zhang et al. 2010). This is accomplished by a reduction in interfacial tension between the 

components in the hybrid polymer matrix (Wu and Hakkarainen 2015). Typically, anhydride 

based compatabilisers are used with biocompatible polymers (Carlson, Nie et al. 1999). Of the 

anhydride compatabilisers, maleic anhydride is the common (Carlson, Nie et al. 1999, Wu and 

Hakkarainen 2015).  

 

Typically, one component in the hybrid undergoes reactive (melt) extrusion with maleic 

anhydride (Mekonnen, Mussone et al. 2013). PLA has undergone melt extrusion with maleic 

anhydride (Carlson, Nie et al. 1999, Hassouna, Raquez et al. 2011, Wu and Hakkarainen 2015). 

This process increases hydrogen bonding, lowering chain mobility and improves the overall 

intramolecular stability (Mekonnen, Mussone et al. 2013). An increase in glass transition and 

ductility was reported with the addition of maleic anhydride to PLA (Hassouna, Raquez et al. 

2011, Hassouna, Raquez et al. 2012, Mekonnen, Mussone et al. 2013). In terms of hybrids, 

PLA-polypropylene carbonate (PPC) blends have been trialled with and without maleic 

anhydride compatabiliser (Yao, Deng et al. 2011). Without the compatabiliser, the blends 

http://www.sciencedirect.com/
http://www.sciencedirect.com/
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showed comparatively low elongation (82%); however, with the addition of 1.5WT% maleic 

anhydride, this increased to 243% elongation, an almost 300% increase (Yao, Deng et al. 

2011).  

 

2.4 Shape Recovery 

 

Shape memory polymers (SMPs) are a class of polymer that exhibit shape memory effects 

(SMEs). It has been established that SMEs are not an innate property of polymers, rather, it 

has to be induced (Behl and Lendlein 2007). Essentially, this is a result of stimuli induced 

molecular interactions. In all cases, a transfer of energy triggers SME. All SMEs exhibit three 

key stages. The as produced (permanent) shape, the deformed shape, and the recovered shape 

(Behl and Lendlein 2007). In an ideal situation, the recovered and permanent shapes will be 

identical: there is usually a small degree of difference between them (Behl and Lendlein 

2007). Five separate stimuli to trigger shape recovery have been identified: temperature 

(2.4.1), light (2.4.2), pH (2.4.3), electric (2.4.4) and magnetic (2.4.5) fields.  

 

2.4.1 Thermal 

 

Thermal shape memory polymers use heat changes to trigger recovery (Behl and Lendlein 

2007). Amorphous polymers are typically most appropriate for thermal shape recovery (Lei, 

Yu et al. 2017). Following formation of a thermoplastic material, a shape is maintained – the 

permanent shape (Behl and Lendlein 2007). To maintain any material shape, the polymer 

chains (molecules) undergo thermally induced cross-linking (Moon, Cui et al. 2015). These 

cross-linked bonds ensure the molecules stay in one position; however, these bonds can be 

removed, or repositioned. The alteration to molecular cross-linking is the basis for thermal 

shape memory polymers (Behl and Lendlein 2007). If a given SMP is heated above what is 

termed the transition temperature (this is different to the glass transition temperature), the 

material can be deformed; further, the deformed polymer can be rapidly cooled and the new 

shape ‘stored’ – this is called the programed shape (Behl and Lendlein 2007). Thermal SMPs 

can return to their permanent shape upon the addition of heat (stimuli) (Behl and Lendlein 

2007). In terms of medical devices, the ability for a polymer to recover its shape is of 

significance. Medical sutures have been produced from shape memory materials and used in 

wound management applications (Lendlein and Langer 2002). Shape memory sutures allow 

less force to be applied during wound closure: as the sutures heat to body temperature, they 

tighten, completely sealing the wound (Lendlein and Langer 2002).  

 

2.4.2 Light 

 

Light induced (photo induction) SMPs use photochemical modifications to trigger shape 

changes (Chatani, Kloxin et al. 2014). However, photosensitive cells (i.e. chromophores) are 

required in the polymer matrix to allow photo induction (Chatani, Kloxin et al. 2014). Further, 

the light (photon) must carry a sufficient amount of energy to trigger the reaction; this can be 

an obstacle when deigning an SMP (Chatani, Kloxin et al. 2014). When triggered, 

photochemical reactions can operate through one of three paths: isomerisation, bond 

formation or bond breaking reactions (Chatani, Kloxin et al. 2014). If induced, any of these 

three processes can cause a shape change in the polymer; regardless of which it is, the 
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molecular structure will be modified. There are three useful benefits that photo induction has 

over other SME induction stimuli. The most important of these benefits is the rapid induction 

of change – photons typically have a much higher energy than other stimuli e.g. temperature 

(Chatani, Kloxin et al. 2014). It is approximated that at 365 nm wavelengths, photons have 130 

times more available energy than the energy available at 25°C (Chatani, Kloxin et al. 2014). It 

is immediately apparent that this increase in energy is significant and vital in some cases for 

appropriate SMP activation. A second important benefit to photo induction is that of temporal 

activation (Chatani, Kloxin et al. 2014). Essentially, to trigger the SMP, a light is switch on/off. 

Light activation is easy to control; it is often as easy as the flick of a switch. Typically, lights do 

not trigger adverse effects in humans. This is a significant benefits over other stimuli, such as 

heat – in many instances the SME only triggers at non-physiological temperatures, creating a 

potentially harmful environment for humans (Chatani, Kloxin et al. 2014). Finally, photo 

induction also affords spatial control of SMP activation (Chatani, Kloxin et al. 2014). That is, 

the SMP can be triggered in a specific place – other methods do not allow this control, it is 

universal activation. To sum up, photo induction allows low energy activation, with excellent 

control over when the effect is triggered, and where (Chatani, Kloxin et al. 2014). This allows 

more complex activation patterns than other SME stimuli.  

 

2.4.3 pH 

 

Chemical methods (pH) do not appear to be particularly common in the literature. A brief 

search has yielded only one paper on this topic (Han, Dong et al. 2012). However, it would 

appear, based on this paper, that pH induction is a powerful tool. Essentially, pH induction is a 

result of reversible bond formation (Han, Dong et al. 2012). In this example, it would appear 

that the beta-cyclodextrins and diethylenetriamine molecules crosslink dependent on the pH 

of the solution (Han, Dong et al. 2012). It is evident that the crosslinking is responsible for the 

shape memory properties in pH induced SMPs. Reversible crosslinking has been established 

as a result of pH changes: at pH 7, the materials do not undergo crosslinking, they do however 

undergo crosslinking at pH 11.5 (Han, Dong et al. 2012). The very nature of crosslinking 

explains how the material gets its shape memory: the polymer chains are drawn together if 

crosslinks are present (Han, Dong et al. 2012). Based on this fact, it is clear that reversible 

crosslinking would be greatly beneficial in SMP applications. pH sensitive SMPs can be used in 

human biomedical applications (Han, Dong et al. 2012). Ideally, these SMPs should recover at 

approximately human physiological pH of 7 (Han, Dong et al. 2012).  

 

2.4.4 Electric Fields 

 

It is apparent that the use of electric fields in SMP’s is still a developing area. Essentially, to 

enable electrical stimulation, the polymer must be blended with a conductive element; such as 

carbon nanotubes (CNTs) (Cho, Kim et al. 2005, Raja, Ryu et al. 2013) or carbon sheets (Lu, Liu 

et al. 2010). The conductive carbon elements found within electroactive SMPs act by resistive 

heating (Lu, Liu et al. 2010). That is to say, they resist the flow of electricity, and heat as a 

result – SMP behaviour is therefore similar to how thermally responsive SMPs act. It has been 

suggested that electroactive SMPs could be used in light aerial vehicles or electrical actuation 

(Cho, Kim et al. 2005, Lu, Liu et al. 2010, Raja, Ryu et al. 2013).  
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2.4.5 Magnetic Fields 

 

Magnetic fields and SMPs are not typically studied, only one paper has been found that 

references this (Yu, Zhou et al. 2009). To enable magnetic sensitivity, iron (III) oxide (Fe3O4) is 

blended with PCL (Yu, Zhou et al. 2009). Iron oxide is a typical magnetic element; this is well 

studied and biocompatible. It has been suggested that magnetic SMPs can provide a significant 

benefit to medical devices as magnetism does not require contact (Yu, Zhou et al. 2009). 

 

2.5 Polymer Processing Techniques 

 

Polymer processing techniques are those employed to turn raw polymer materials into parts, 

products or fibres. Three processing techniques have been identified in section 2.2. Melt 

extrusion (2.5.1), injection moulding (2.5.2) and compression moulding (2.5.3) will be 

explained. It is important to establish how each method operates, the benefits and detriments 

of each method, and finally, what the output object is. It is important to note that hybrid 

materials typically undergo several passes of processing (Middleton and Tipton 2000).  

 

2.5.1 Melt Extrusion 

 

Melt extrusion is a relatively common process to produce polymer hybrids. Two broad classes 

of melt extruder exist: screw and screwless. Three classes of screw extruder exist: single, multi 

(typically twin), and vane (refer to figure 2: 2, A, B and C). Single and multi-screw extruders 

are similar; they both use a standard screw; whereas vane extruders employ a screw with 

offset platforms surrounding the barrel (Treece and Oberhauser 2007, Chen, Zou et al. 2014). 

The second class, screwless extruders employ a smooth rotating drum (figure 2: 2, D) rubbing 

on a flat plate (Jayaraman and Halliwell 2009). Essentially, all thermal melt extruders operate 

in the same way. Polymer resins (powders or granules) are melted within an auger, then 

forced out through a small die hole (Treece and Oberhauser 2007, Jayaraman and Halliwell 

2009, Jia, Qu et al. 2013). The screws and smooth drums exert shear forces on the molten 

polymers within the auger; this enables extrusion, with higher shear forces producing better 

results (Treece and Oberhauser 2007, Jayaraman and Halliwell 2009, Jia, Qu et al. 2013). Of 

the three screw types, single screws produce the lowest quality hybrid polymers: they exert 

the lowest shear forces during processing (Treece and Oberhauser 2007). The use of a multi-

screw extruder reportedly solves this issue (Treece and Oberhauser 2007). Twin screw 

extruders are the most common type of multi-screw extruder; these exert relatively high 

shear forces, producing high quality results (Treece and Oberhauser 2007). However, vane 

extruders reportedly produce the best results of all screw based extruders (Jia, Qu et al. 2013). 

Due to the offset plates around the barrel, dynamic shear forces are exerted on the materials 

(Jia, Qu et al. 2013). The use of dynamic forces produces the most homogeneous blends, with 

the most consistent mechanical properties (Jia, Qu et al. 2013). Very little work has been done 

with screwless extruders, as such, no comparisons can be made with the screw extruders. In 

all cases, polymer filaments are produced. These are suitable for use as sutures or tubing 

(Zhang, Chen et al. 2010, Catanzano, Acierno et al. 2014, Pan, Trempont et al. 2016). 
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2.5.2 Injection Moulding 

 

In its simplest form, injection moulding is the same as melt extrusion (section 2.5.1). Injection 

moulding uses a mould and a hydraulic screw, melt extrusion does not (Chinn, Kate et al. 

2016, López, Aisa et al. 2016, Zhang, Zhao et al. 2017). Two forms of injection moulding have 

been identified: conventional (industrial) and microinjection moulding. Both types of injection 

moulding operate in the same manner (Giboz, Copponnex et al. 2007). The use of a hydraulic 

screw in injection moulding allows more materials to be pushed into the mould, and the 

mould to be blocked with the screw head (Chinn, Kate et al. 2016). The mould itself has two 

panels, one of which is hydraulically operated, ensuring adequate mould seals (Attia, Marson 

et al. 2009). The hydraulic panel facilitates part removal; the panel is pulled onto ejector pins, 

removing the part (Attia, Marson et al. 2009). The main limitation of injection moulding is the 

requirement of a precise mould.  

 

2.5.3 Compression Moulding 

 

Compression moulding is one of the simplest and most commonly used polymer processing 

techniques in laboratories worldwide (De Focatiis 2012). A polymer is loaded into a heated 

mould, and compressed to form a part (Schotzko, Reuter et al. 2015). Prior to compression, 

polymers must be sufficiently heated. Amorphous polymers must be taken passed their glass 

transition temperatures, whereas semi-crystalline polymers are taken passed their melting 

points; the mould will remain stable at the required temperature (De Focatiis 2012). Moulds 

must be cooled prior to part removal. Cooling is carried out by one of two methods, either 

ambient air temperature, or convection forced (water or air) (De Focatiis 2012). Two 

moulding methods exist: flash moulding and positive moulding (De Focatiis 2012). Flash 

moulding requires a support frame for the polymer materials, the frame and materials are 

compressed by two plates (De Focatiis 2012). Conversely, positive moulding has two plates, 

one of which fits inside the other, compressing the materials (De Focatiis 2012). Flash moulds 

are reported to be considerably easier to remove parts from,; positive moulds produce parts 

that fit near perfectly in the mould, meaning shrinkage of the part is required, or dismantling 

of the mould (De Focatiis 2012). Compression moulding is stated to be better than injection 

moulding: the process does not use shear forces (Schotzko, Reuter et al. 2015). However, that 

significantly restricts the amount of material mixing that can occur (De Focatiis 2012). It is 

suggested that this method should not be used where material mixing is useful or essential 

(De Focatiis 2012).  
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Figure 2: 2 The four types of driving mechanism for melt extrusion. A) Single Screw (SSE). B) Multi (twin) 

Screw (MSE, TSE). C Vane (VE). D) Screwless/Drum.  
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2.6 Test Methods 

 

It is essential to determine the appropriate mechanical, in vitro and in vivo properties of any 

new combination of materials. The final application of the materials dictates what test 

methods are appropriate. Tensile, shape recovery and thermal properties are physical 

properties considered to be of importance to biocompatible polymers. in vitro properties are 

limited to degradation and cytotoxicity properties, while in vivo investigate biocompatibility.  

 

2.6.1 Tensile Property Testing 

 

The physical properties of a new material are important to identify. However, prior to testing 

the physical properties, the materials must undergo conditioning. Material conditioning aims 

to standardise the temperature and humidity of the materials, to improve repeatability 

(European Committee for Standization 1997, International Organization for Standardization 

2005). Tensile strength is seen to be the most important factor in this project, as such; 

compressive strength and impact toughness will not be discussed.  

 

Tensile testing investigates the material displacement, and resultant forces across the gauge 

length of a tested material (Chen, Yeh et al. 2017). In tensile testing, the gauge length is the 

area that undergoes testing: it rests between the grips (Chen, Yeh et al. 2017). From the output 
data (force and displacement), several important factors can be determined table 2: 3. Stress 

and strain are graphed to determine the remainder of the properties listed in table 2: 3; figure 

2: 3 displays an example stress strain curve for PLA 100WT% fibres.  

 

Two possible endpoints exist in a tensile test, either sample fracture, or specified 

displacement. Typically, it is useful to carry out the test until the break point – especially when 

investigating elastic materials (Chen, Yeh et al. 2017). However, in some instances, it is only 

necessary to prove that a given material will not fracture at a set displacement – typically a 

safety test. Some tensile testing data is provided in table 2: 2 (section 2.2), all of which 

required materials to fracture.  
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Table 2: 3 Typically Reported Tensile Properties. 

Property Unit 

Stress MPa 

Strain % 

Tensile Strength MPa 

Yield Strength MPa 

Young’s (Elastic, Tensile)Modulus MPa 

Elongation at Break % 
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Figure 2: 3 Annotated stress-strain curve. Stars indicate the following: Black: Yield Strength 

(MPa); Orange: Tensile Strength (MPa); and Green: elongation at break (%). Lines indicate 

Elastic Deformation: red; and plastic deformation: purple. Young’s (elastic, tensile) Modulus 

(MPa) calculation is indicated by the black triangle   
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2.6.2 Thermal Properties 

 

Two methods exit for establishing a materials thermal properties: DSC and TGA. The two 

methods operate in essentially the same manner. An inert gaseous atmosphere (typically 

argon or nitrogen) is required, with a range of temperatures trialled in both DSC and TGA 

(Khankrua, Pivsa-Art et al. 2014, Gu, Lv et al. 2017, Yuan, Liu et al. 2017). While the method is 

similar, the result is different. TGA determines weight loss – degradation occurs; whereas DSC 

determines thermal transition points – melting (Tm) and glass transition temperatures (Tg) 

(Gu, Lv et al. 2017, Yuan, Liu et al. 2017). DSC testing reveals different results, dependent on 

whether a polymer is amorphous or semi-crystalline; melting is a first order response in only 

semi-crystalline materials (Cadek, Coleman et al. 2002). Amorphous polymers only show a 

glass transition (Cadek, Coleman et al. 2002). 

 

2.7 in vitro Testing 

 

In biocompatible polymers, in vitro testing is essential. Polymer degradation behaviour and 

cytotoxicity must be investigated prior to human testing (2.6.4). 

 

2.7.1 Degradation Testing 

 

Polymers implicated in biomedical applications must undergo enzymatic degradation testing 

(Jiang, Jiang et al. 2010). A multitude of enzymes exist within the human body; many of these 

have the potential to interact with polymeric materials (Jiang, Jiang et al. 2010). Wherever 

possible, degradation testing should be carried out at human physiological temperature, 

37.5°C (Vieira, Vieira et al. 2011, Pinho, Rodrigues et al. 2016). Typically, this process involves 

a buffered solution and one type of enzyme (Jiang, Jiang et al. 2010). Typically, a combination 

of PBS buffer and trypsin enzyme is applied (Cai, Shi et al. 2003, Almany and Seliktar 2005, 

Lim, Raku et al. 2005, Moody, Brown et al. 2006, Ghosh, Ali et al. 2010, Bardsley, Wimpenny et 

al. 2016). All enzymes are found to act on the surface of the material (Puri 1984). Therefore, 

as surface area increases, the rate of degradation also increases (Puri 1984). Equation 2: 1 

displays the equation for the surface area of a cylinder, suggesting that as the radius of the 

cylinder increases, surface area will increase. In the event of free enzyme being present in the 

solution, a surface area increase will result in an increased degradation rate (Puri 1984). 

However, a second phenomenon can be frequently observed with free enzyme: self-autolysis 

(Nord, Bier et al. 1956). This occurs in enzymes such as trypsin (Nord, Bier et al. 1956). 

Typically, self-autolysis is most apparent when the enzyme is added to excess (Nord, Bier et al. 

1956). Enzymes undergoing self-autolysis suffer a reduction in desired effects; such as 

degrading a target material (Nord, Bier et al. 1956).  

 

𝐴 = 2𝜋𝑟ℎ + 2𝜋𝑟2 (equation 2: 1), 

Where: 

A is the surface area; 

r is the radius; and 

h is the height. 
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2.7.2 Cytotoxicity 

 

Prior to human testing of any materials, they must be proven safe for cell contact (Mercado, 

Orellana-Tavra et al. 2016). Cytotoxicity studies are able to provide useful information on 

materials, at a lower cost than human trials (Riaz Ahmed, Nagy et al. 2017). Typically, cells 

from the desired active site are used: skin cells (sutures) or bone cells (bone stents/grafts) 

(Robey and Termine 1985, Corden, Jones et al. 2000, Grenade, De Pauw-Gillet et al. 2017).  

 

2.8 Biocompatibility (in vivo) Testing 

 

In vivo testing is typically one of the last steps in material characterisation. It aims to 

demonstrate safety in humans (Hamm, Sullivan et al. 2017). Further, animal models are used 

to determine the lethal dose in 50% of specimens (LD50) (Hamm, Sullivan et al. 2017). LD50 is 

never measured in humans; experiments of this nature would be highly unethical.  

 

2.9 Discussion 

 

Shape recovery is one of the most important properties in this study, as such, an amorphous 

polymer must be used (Lei, Yu et al. 2017). PLA is an amorphous polymer, stated to be one of 

the most important biodegradable and biocompatible polymers available (Guttman, DiMarzio 

et al. 1981, Luzi, Fortunati et al. 2015, Malinowski 2016). A second polymer, PCL, is another 

important biocompatible and biodegradable polymer (Malinowski 2016). As such, a blend 

between PCL and PLA materials will be investigated. However, due to thermodynamic 

incompatibility, the two materials will not blend without the addition of plasticisers or 

compatabilisers (Malinowski 2016). Glycerol and PEG are commonly used plasticisers for 

biomedical applications, as such, they will both be trialled in this work (Jung, Deng et al. 

2016). Little evidence could be identified for glycerol’s use as a plasticiser in PCL:PLA blends. 

This contributes to the novelty of the hybrid blends. Further, no evidence for PEG-200 with 

PCL:PLA blends was identified, also contributing to blend novelty. With the potential 

application in sutures, thermal melt extrusion is the most applicable method: it is used to 
produce pipes and sutures (Zhang, Chen et al. 2010, Catanzano, Acierno et al. 2014, Pan, 

Trempont et al. 2016). Compression moulding was not found to be suitable as blending does 

not occur (De Focatiis 2012). Based on time constraints, thermal shape memory is the most 

appropriate for testing: it is the easiest and most common method (Behl and Lendlein 2007). 

The tensile properties of new materials must be characterised. However, the focus is primarily 

on having a high elongation at break and Young’s modulus, and comparison to the component 

materials; table 2: 4 summaries the cut off points for these. The properties defined in table 2: 4 

are based off intermediates between the two constituent polymers (PCL and PLA); refer to 

table 2: 2. At this stage, the final application of the materials are unknown. Degradation testing 

will be carried out using trypsin enzymes: this is the most common. However, at this early 

stage, there is interest in establishing a degradation profile. Whether degradation is required 

or not is influenced by the application, and required length of time in said application.  
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Table 2: 4 Minimum Property Values for PCL:PLA Hybrid Fibres. 

Property Value 

Young’s Modulus 1500 MPa 

Elongation at Break 250% 

Shape Recovery Essential 

Degradation Profile. No amount is required; 

want to see how it behaves.  
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Chapter 3 Fibre Fabrication 

 

3.1 Introduction 

 

Polymer processing is a vital step in developing a new polymeric material. This step 

determines how homogeneous the final fibres are. Typically, several stages are required to 

define the most appropriate processing technique. Initially, pilot studies into the method are 

required. Prior to full scale production, the method must be proven effective. Several factors 

are considered when determining an appropriate method. The produced fibres must be of 

high quality; the diameter should be consistent, with no air bubbles present (Sastra, Siregar et 

al. 2006).  

 

3.2 Materials and Methods 

 

This section provides the materials and methods employed to process the materials. Further, 

this section gives the details and implications of the single screw melt extruder (SSE) pilot 

study, section 3.2.2. The method used for screwless extrusion is described in section 3.2.3.  

 

3.2.1 Materials 

 

Fibre processing involved the use of two polymer materials. Polycaprolactone (PCL), Capa 

6506 was sourced from Perstorp UK Ltd (UK). PCL was supplied as a fine white powder, and 

used as supplied. The Capa 6506 line of PCL has an average molecular weight of 50,000 g/mol; 

with an average particle size of less than 600 µm, with at least 98% of all particles within this 

range [Capa 6506 Datasheet]. The melting point is quoted as 58 – 60°C on the product data 

sheet [Capa 6506 Datasheet]. The glass transition temperature of Capa 6506 is not specified in 

the datasheet; however, PCL has a typical glass transition temperature of approximately -60°C 

(Koleske and Lundberg 1969). Polylactic acid (PLA) was supplied by Donaghys Industries Ltd, 

Dunedin (NZ); PLA was originally sourced from NatureWorks LLC Ingeo PLA biopolymers. 

The supplied PLA was supplied as transparent 3 mm granules, and used as received. However, 

the product code, and previous storage conditions are unknown; it is possible the material has 

undergone pre-treatment. Typically, PLA has a glass transition temperature of around 58°C, 

and a recommended processing temperature of 200 – 205°C (NatureWorks LLC Ingeo 3051D) 

(Jamshidian, Tehrany et al. 2010).  

 

Two plasticisers were used in the hybridisation process. Glycerol was sourced from Sigma-

Aldrich (https://www.sigmaaldrich.com/new-zealand.html) product code: G5516. The 

supplied glycerol had an average molecular weight of 92.09 g/mol, and was found to be 

greater than 99% pure [Glycerol G5516 datasheet]. Prior to use, glycerol was diluted in 

distilled water to one of three concentrations: 5, 10, or 20% glycerol. Polyethylene glycol 

(PEG-200) with an average molecular weight of 200 g/mol was purchased from Sigma-Aldrich 

(https://www.sigmaaldrich.com/new-zealand.html) product code: P3015. The supplied PEG-

200 was diluted in distilled water, to one of the following: 5, 10, or 20% PEG-200 prior to use.  

 

https://www.sigmaaldrich.com/new-zealand.html
https://www.sigmaaldrich.com/new-zealand.html
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Initially, an in-house produced single screw thermal melt extruder (SSE) was trialled. The 

extrusion die on the SSE machine had a diameter of 1 mm, and the screw driving extrusion 

was a standard, steel single-stage drill-bit; L/D ratio: 12.5:1, with a compression ratio of 1:1. 

While the exact carbon (C) content of this steel drill bit is unknown, it is expected to be either 

high (1.5 – 2 C) or low (0.5 – 1 C) steel. This machine has a temperature range of 30 – 250°C. A 

second thermal extruder was trialled when the SSE was found to be unsuitable. A variable 

speed rotating drum screwless extruder was obtained from the Chemistry Department, 

University of Otago, Dunedin. The screwless extruder was purchased by the Chemistry 

Department, from CSI Custom Scientific Instruments (USA) product code: CSI LE-075. It is 

reported in the manual provided by CSI Custom Scientific Instruments (USA) that the 

screwless extruder has a temperature range of 20 – 400°C. Unlike the SSE machine, the 

screwless extruder uses a rotating smooth drum to drive extrusion; a 3 mm extrusion die was 

equipped. All materials were weighed out prior to extrusion using a 3-digit Shimadzu Libror 

EB-280 balance. The EB-280 balanced had an error of 0.01 g (10 mg). 

 

Temperature testing was carried out with a Digitech branded infra-red non-contact digital 

thermometer purchased from Jaycar Dunedin (NZ) product code: QM7215. This device was 

quoted as having a detection range of -30 - +260°C, with an error of 2% of the reading. No 

modifications were made to the device, or any item undergoing temperature measurements. 

All diameter measurements were made using an electronic digital Vernier calliper (non-

Absolute), model number TD2082. The calliper was able to measure values between 0.01 and 

150.00 mm, with a resolution of 0.01 mm. The calliper was compliant with ISO 9001:2000 

(Quality management system – requirements). While ISO 9001:2000 is a withdrawn standard, 

there is not substantial difference between that, and the current ISO 9001:2015 standard.  

 

3.2.2 Single Screw Melt Extruder (SSE) Pilot Study 

 

The single screw melt extruder (SSE) was solely used for the purpose of a pilot study; this 

aimed to ensure PCL and PLA could be both separately processed, and processed to a hybrid. 

Further work was done ensuring the SSE machine was appropriate for use. To achieve this, 

three different extrusion runs were carried out. 

 

3.2.2.1 Pilot Method 

 

The SSE machine had a low capacity powder hopper, taking approximately 2 g of material at a 

time. Material was forced into the auger with the aid of a manually operated piston. Initially, 

two sets of fibres were produced: 50 fibres containing 100WT% PCL; and 50 fibres containing 

100WT% PLA were extruded. For each material set, a variety of temperatures were trialled, 

table 3: 1 provides the temperatures tested. To ensure that the temperature was accurate, the 

machine was left to heat for one hour prior to any testing commencing. When switching 

between the materials, the SSE machine was dismantled and cleaned. This step was required 

as it ensured that only what was expected to be extruded, was extruded. At each temperature, 

the fibres were visually inspected to determine suitability. In this instance, suitability was 

defined as no air-bubbles, correct colour (PCL, white; PLA, transparent), and visual diameter 

consistency (no large variations). Finally, a PCL:PLA 60:40WT% hybrid was processed 

through the SSE machine, figure 3: 1 provides an image of this process (table 3: 1 gives the 



26 

temperatures used). The hybrid material produced was examined for defects and tensile 

properties (see section 4: Tensile Properties).  

 

During the extrusion process, it was noted that the temperature displayed did not equal the 

actual temperatures observed in the machine. As a result, the machine was analysed for how 

well the displayed temperature represented the actual temperature, and how consistent this 

temperature was. To achieve this, two set temperatures were trialled: 100±1°C and 200±2°C, 

table 2 provides a list of temperatures and results for this test. The temperature testing sites 

are displayed in figure 3: 2. During both 100°C and 200°C testing, the machine was given a 1 

hour warm up period. This ensured all surfaces identified in figure 3: 2 were at equilibrium 

temperature. The temperature test did not involve material extrusion; however, the screw 

was set to rotate, ensuring the test was representative.  

 

3.2.2.2 Pilot Results and Discussion 

 

Three fibre ratios were extruded: PCL 100WT%, PLA 100WT%, and PCL:PLA 60:40WT% 

(figures 3: 3 – 5). All three fibre types were able to be successfully extruded. In this instance, a 

successful extrusion meant consistent fabrication of fibres of at least 200 mm in length, with 

regular diameters. Fibre were examined for deformities both on the surface and internally (air 

bubbles). In most cases the fibres examined were smooth to touch; however, many fibres were 

found to have air-bubbles present internally. It must be noted that the air bubbles reduce the 

quality of the fibre. The issue of air bubbles is significant during tensile testing: air bubbles are 

voids in the fibre, these cause points of weakness (Sastra, Siregar et al. 2006). As a result of the 

processing method, fibres had curved ends: this did not impact the fibre, it was solely a 

processing artefact.  

 

Over the course of the extrusion process, it was noted that the SSE’s displayed temperature 

was not comparable to the internal temperature of the machine. It was determined that this 
phenomenon could have a negative impact on the extrusion process: if the temperature is too 

low, it will not allow for correct extrusion. The results of this test are found in table 3: 2. The 

difference between the actual temperature and displayed temperature appeared to follow a 

relatively consistent pattern. It must be noted that the three temperature points taken from 

the driving screw gave very low temperatures: on average the screw was 69% lower in 

temperature than the display. In reality, this would prevent polymer extrusion – the polymer 

will cool to a point where it cannot be extruded. As such, it must be assumed that these 

measurements possessed a high degree of error, given that the polymer could be extruded. It 

is reasonable to assume that the screw would cool rapidly after removing it from the device – 

the auger has three heating coils in it, with radiant heat allowing the screw to be heated; the 

screw does not possess its own heating element. As mentioned in the materials section 

(section 3.2.1), the screw was a standard steel drill-bit, with a 5.76 mm diameter. Based on the 

thermal conductivity of steel, this should cool rapidly when removed from the heat source: 0.5 

C WT% steel, 55 Wm-1K-1, 1.5 C WT% steel 37 Wm-1K-1 at 0°C (Peet, Hasan et al. 2011). Across 

the temperature range tested (100 and 200°C) the high carbon (1.5 C WT%) steel has a 

constant thermal conductivity; whereas the low carbon (0.5 C WT%) steel displays a 

reduction in thermal conductivity: 53 Wm-1K-1 at 100°C, and 48 Wm-1K-1 at 200°C (Peet, Hasan 

et al. 2011). Essentially, an increase in temperature gives a decrease in thermal conductivity; 

however, higher carbon contents reduce this effect significantly (Peet, Hasan et al. 2011). A 

range of 37 Wm-1K-1 (0°C) to 28 Wm-1K-1 (1000°C) is observed in high carbon (1.5 C WT%) 
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steel, while 55 Wm-1K-1 (0°C) to 30 Wm-1K-1 (1000°C) is observed in low carbon (0.5 C WT%) 

steel (Peet, Hasan et al. 2011). Thermal conductivity provides an indication of the rate of heat 

transfer across a material, therefore, a higher thermal conductivity indicates a more rapid heat 

loss (Peet, Hasan et al. 2011). The main problem associated with the heat loss is the potential 

for motor damage, If the required temperature for extrusion is set to 140°C (arbitrary), but 

the actual temperature is between 40 – 75% lower (table 3: 2), this is likely to damage the 

motor. 

 

A further challenge was the operation of the SSE device. During the extrusion process, 

materials in the hopper had to be manually compressed. During compression, the majority of 

the materials would not enter the auger, most erupted up and out the hopper. Further, no 

variable speed motor was attached. Therefore, screw speed was constant. This resulted in a 

very limited throughput: the screw speed was relatively slow. The combination of manual 

compression and slow screw speed resulted in processing issues. Primarily, air bubbles were 

observed in the fibres. Typically, the air bubbles were caused by the machine’s inability to 

sustain a suitable material input. Voids frequently formed along the screw, causing fibre 

truncation. It was further established that the SSE machine could not produce a drawn fibre.  
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Figure 3: 1 Extrusion using the 1 mm diameter single screw melt extruder. 
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Table 3: 1 Single Screw Melt Extruder Processed Fibre Pretest 

Material Ratio (WT%) Temperatures Investigated (°C) 

PCL 100 60 70 80 90 100    

PLA 100 140 150 160 170 180 190 200 210 

PCL:PLA 60:40 70 160 180 200     
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Table 3: 2 Single Screw Melt Extruder Actual temperature compared to Displayed temperature (°C) 

Location Temperature 

(°C) 

Percentage 

Difference 

(%) 

Temperature 

(°C) 

Percentage 

Difference 

(%) 

Average 

Difference 

(%) 

Display 

(set) 

200±2 N/A 100±1 N/A N/A 

Hopper 180 10 88 12 11 

Front of 

Die 

112 44 64 36 40 

Under 

Die 

125±5 37 65±5 35 36 

Screw 

Base 

50 75 30 70 72.5 

Screw 

Middle 

70 65 27 73 69 

Screw Tip 65 67 36 64 65.5 
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Figure 3: 2 Image series of temperature testing regions. A: The machine, 198°C display temperature. B: The 

hopper. C: The screw, locations are marked. D and E: are the front and back of the extrusion die respectively. 
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Figure 3: 3 PCL 100WT% fibre. Produced using the 1 mm diameter single screw melt extruder. 
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Figure 3: 4 PLA 100WT% fibre. Produced using the 1 mm diameter single screw melt extruder. 
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Figure 3: 5 PCL:PLA 60:40WT% fibre. Produced using the 1 mm diameter single screw melt extruder. 
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3.2.2.3 SSE Pilot Study Summary 

 

Overall, the pilot study demonstrated that PCL:PLA hybrid fibres could be melt extruded. 

However, air bubbles within the hybrid fibres were observed. The air bubbles were primarily 

due to the processing method. Further, the processing method meant the conventional 

approach of drawing fibres could not be applied. As such, a commercially produced, CSI LE 

075 screwless extruder was used.  

 

3.2.3 Screwless Extruder 

 

Fibre extrusion with the screwless extruder was a relatively straightforward process. Prior to 

initiating fibre extrusion, several steps were required. Initially, the machine was allowed to 

heat: the CSI LE-075 has two thermocouple locations, the head and rotor region. Typically, 30 

minutes was allowed to ensure complete and consistent heating. Secondly, the rotor was 

allowed to turn at low speed – set to 30% of the maximum voltage (motor RPM is unspecified). 

The motor was not easily damaged at 30% of maximum voltage, making it an appropriate test 

speed. When extrusion was successful at 30% maximum voltage, the motor speed was 

increased to 80% to allow higher flow melt extrusion. It was identified early on that 80% of 

maximum voltage was an easily workable motor speed for extrusion: when drawing the fibres, 

a balance between extrusion speed and material viscosity was required. At 80% of maximum 

voltage, the material was extruded at a rate that meant it was still relatively viscous, allowing 

extrusion and drawing to occur in the desired manner.  

 

Materials were weighed out and set aside prior to extrusion starting. During the extrusion 

process, the powder hopper was half filled: this was approximately 4 g of materials. It was 

identified that overfilling the hopper would reduce extrusion efficiency – the hopper would 

become blocked, reducing/preventing extrusion. In the event that the powder hopper became 

blocked, the motor speed was reduced to 30% of maximum voltage, and a glass rod used to 

remove the blockage.  

 

During extrusion, the fibre was hand drawn. Figure 3: 6 displays a single fibre being drawn 

from the extruder. Trial and error was used to identify the best rate to draw the extruded 

fibres: eventually, a speed of approximately 2 – 4 mm/second was found to work well. This 

rate was suitable for the most part, however, at times this rate was either increased or 

decreased (viscosity dependent). Essentially, the rate at which the fibre was drawn centred on 

achieving a suitable, consistent diameter. A suitable diameter was arbitrarily defined as at 

least 100 µm. Nothing under 100 µm worked for other testing.  
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Figure 3: 6 Fibre drawing process. The drawn fibres are extruded from the screwless melt extruder, and pulled 

over the metal doorframe. 

  



37 

3.2.3.1 Non-plasticised Fibre Processing 

 

A large variety of non-plasticised fibres were produced (tables 3: 3 – 5). Regardless of the 

ratio used, the method employed was the same. For each extrusion, a total of 20 g of material, 

this was found to produce a significant amount of fibre. In the instances of the control fibres, 

PCL and PLA, 20 g of material was spooned into the hopper, 4 g at a time. In the case of hybrid 

fibres, a slight change to the method was made. 

 

All hybrid fibres had their respective materials weighed out, these were stirred using a spoon 

prior to extrusion. All hybrid fibres required further extrusion steps. Following the initial 
extrusion, hybrid fibres were cut and re-extruded; a process termed passes here. A number of 

passes were used, 1, 2, 3 and 6. A 2 pass hybrid variant would undergo two extrusion steps, 

and one cutting step (figure 3: 7). A weight loss of 5 – 15% was observed between passes. To 

ensure consistency across the fibres, the full 20 g was extruded until the first allocated pass 

count, then divided in half (10 g) and one half reserved, with the other cut and processed 

further. In the instance of a PCL:PLA 50:50WT% 3 and 6 pass variants, 10 g of PCL was 

combined with 10 g of PLA. This was extruded and cut twice (2 passes). Approximately 10 g of 

fibre was reserved as the 3 pass variant. The remaining 10 g underwent a further 3 passes, to 

produce the final 6 pass variant.  

 

3.2.3.2 Plasticisation 

 

To plasticise the fibres, glycerol and polyethylene glycol (average molecular weight 200 

g/mol) were used. These plasticisers were diluted in distilled water prior to use, into one of 

three concentrations, see table 3: 6. Three separate material ratios were tested with each 

plasticiser ratio, at either 1 or 2 passes (table 3: 7). A variation to the method describe in 

sections 3.2.3 – 3.2.3.1 is used. The materials are weighed out as described above. Following 

material blending, 6 mL of diluted plasticiser is added. A second blending step is required to 

ensure adequate soaking of PCL and PLA in the plasticisers: not all of the liquid is soaked up. 

The materials were given 30 minutes to absorb the plasticiser prior to extrusion.  
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Table 3: 3 Compositions of Non-plasticised control and hybrid fibres from the Screwless Pilot Study. 

Composition Number Processing Temperature (°C) Passes PCL 

(WT%) 

PLA 

(WT%) 

PCL 1 – 5 75 1 100 0 

PCL 6 – 10 80 1 100 0 

PCL 11 – 15  85 1 100 0 

PCL:PLA 1 – 5 160 3 50 50 

PCL:PLA 6 – 10  170 3 50 50 

PCL:PLA 11 – 15  180 3 50 50 

PCL:PLA 16 – 20 160 6 50 50 

PCL:PLA 21 – 25 170 6 50 50 

PCL:PLA 26 – 30  180 6 50 50 

PLA 1 – 5 160 1 0 100 

PLA 6 – 10  170 1 0 100 

PLA 11 – 15  180 1 0 100 

PLA 16 – 20 190 1 0 100 

PLA 21 – 25 200 1 0 100 

PLA 26 – 30  210 1 0 100 
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Table 3: 4 Fibre Compositions for Determination of PCL and PLA Control Fibre Best processing temperature. 

Composition Number Processing 

Temperature (°C) 

Passes PCL 

(WT%) 

PLA 

(WT%) 

PCL 1 160 1 100 0 

PCL 2 160 1 100 0 

PCL 3 160 1 100 0 

PCL 1 170 1 100 0 

PCL 2 170 1 100 0 

PCL 3 170 1 100 0 

PCL 1 180 1 100 0 

PCL 2 180 1 100 0 

PCL 3 180 1 100 0 

PCL 1 190 1 100 0 

PCL 2 190 1 100 0 

PCL 3 190 1 100 0 

PLA 1 160 1 0 100 

PLA 2 160 1 0 100 

PLA 3 160 1 0 100 

PLA 1 170 1 0 100 

PLA 2 170 1 0 100 

PLA 3 170 1 0 100 

PLA 1 180 1 0 100 

PLA 2 180 1 0 100 

PLA 3 180 1 0 100 

PLA 1 190 1 0 100 

PLA 2 190 1 0 100 

PLA 3 190 1 0 100 
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Table 3: 5 Fibre Compositions for Determination of PCL:PLA Hybrid Fibre Best processing temperature.  

Composition Number Processing Temperature (°C) Passes PCL 

(WT%) 

PLA 

(WT%) 

PCL:PLA  160 2 50 50 

PCL:PLA  160 3 50 50 

PCL:PLA  170 2 50 50 

PCL:PLA  170 3 50 50 

PCL:PLA  180 2 50 50 

PCL:PLA  180 3 50 50 

PCL:PLA  160 2 60 40 

PCL:PLA  160 3 60 40 

PCL:PLA  170 2 60 40 

PCL:PLA  170 3 60 40 

PCL:PLA  180 2 60 40 

PCL:PLA  180 3 60 40 

PCL:PLA  160 2 70 30 

PCL:PLA  160 3 70 30 

PCL:PLA  170 2 70 30 

PCL:PLA  170 3 70 30 

PCL:PLA  180 2 70 30 

PCL:PLA  180 3 70 30 

PCL:PLA  160 2 80 20 

PCL:PLA  160 3 80 20 

PCL:PLA  170 2 80 20 

PCL:PLA  170 3 80 20 

PCL:PLA  180 2 80 20 

PCL:PLA  180 3 80 20 
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Figure 3: 7 Flow diagram displaying the method to produce 1 and 2 pass fibres. 
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Table 3: 6 Compositions of Glycerol and PEG-200 Plasticiser Solutions 

Concentration 

(%) 

Plasticiser Glycerol (mL) PEG-200 

(mL) 

Distilled 

Water (mL) 

5 Glycerol 5 0 95 

10 Glycerol 10 0 90 

20 Glycerol 20 0 80 

5 PEG-200 0 5 95 

10 PEG-200 0 10 90 

20 PEG-200 0 20 80 
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Table 3: 7 Compositions of Plasticised Control and Hybrid Fibres. 

Material Ref.  Processing 

Temperature 

(°C) 

Passes PCL 

(WT%) 

PLA 

(WT%) 

Glycerol 

Concentration 

(%) 

PEG-200 

Concentration 

(%) 

PCL 

1-5 150±5 1 100 0 5 0 

6-10 150±5 1 100 0 10 0 

11-15 150±5 1 100 0 20 0 

1-5 150±5 1 100 0 0 5 

6-10 150±5 1 100 0 0 10 

11-15 150±5 1 100 0 0 20 

PCL:PLA 

81-85 150±5 1 30 70 5 0 

86-90 150±5 2 30 70 5 0 

61-65 150±5 1 30 70 10 0 

66-70 150±5 2 30 70 10 0 

71-75 150±5 1 30 70 20 0 

76-80 150±5 2 30 70 20 0 

1-5 150±5 1 50 50 5 0 

6-10 150±5 2 50 50 5 0 

41-45 150±5 1 50 50 10 0 

46-50 150±5 2 50 50 10 0 

21-25 150±5 1 50 50 20 0 

26-30 150±5 2 50 50 20 0 

11-15 150±5 1 70 30 5 0 

16-20 150±5 2 70 30 5 0 

51-55 150±5 1 70 30 10 0 

56-60 150±5 2 70 30 10 0 

31-35 150±5 1 70 30 20 0 

36-40 150±5 2 70 30 20 0 
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Table 3: 8.Continued: Compositions of Plasticised Control and Hybrid Fibres. 

Material Ref.  Processing 

Temperature 

(°C) 

Passes PCL 

(WT%) 

PLA 

(WT%) 

Glycerol 

Concentration 

(%) 

PEG-200 

Concentration 

(%) 

PCL:PLA 

61-65 150±5 1 30 70 0 5 

66-70 150±5 2 30 70 0 5 

41-45 150±5 1 30 70 0 10 

46-50 150±5 2 30 70 0 10 

51-55 150±5 1 30 70 0 20 

56-60 150±5 2 30 70 0 20 

71-75 150±5 1 50 50 0 5 

76-80 150±5 2 50 50 0 5 

1-5 150±5 1 50 50 0 10 

6-10 150±5 2 50 50 0 10 

21-25 150±5 1 50 50 0 20 

26-30 150±5 2 50 50 0 20 

81-85 150±5 1 70 30 0 5 

86-90 150±5 2 70 30 0 5 

11-15 150±5 1 70 30 0 10 

16-20 150±5 2 70 30 0 10 

31-35 150±5 1 70 30 0 20 

36-40 150±5 2 70 30 0 20 

PLA 

1-5 150±5 1 0 100 5 0 

6-10 150±5 1 0 100 10 0 

11-15 150±5 1 0 100 20 0 

1-5 150±5 1 0 100 0 5 

6-10 150±5 1 0 100 0 10 

11-15 150±5 1 0 100 0 20 
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3.2.4 Fibre Imaging 

 

All fibres produced using the screwless extruder were imaged using the Nikon D90 camera 

and lighting rig set-up. The Nikon D90 was equip with a AF-S Nikkor 1:3.5 – 6.3G ED VR lens. 

The lighting rig was acquired from Durst Phototechnik AG (Brixen, Italy) in 1998. Two large 

reprolamps were attached the rig. The camera was positions 500 mm away from the fibres to 

be imaged. A spirit level was used to ensure the camera was resting flat.  

 

3.2.5 Fibre Diameter Measurements 

 

All fibres diameters (ø) were measured using a digital Vernier calliper (TD2082). The 

diameters were measured in four independent locations along the gauge lengths of the fibres 

used. No measurements were taken within 5 mm of the mount attachment points. The four 

measurements were taken at approximately 7 mm intervals, and averaged to give the final 

value for mechanical testing. The range, average and standard deviation of the fibre diameters 

(ø) for the best fibres are located in table 3: 9 (the remainder can be found in Appendix A, Part 

1).  

 

3.3 Observations and Implications 

 

Table 3: 9 provides a summary of the results for the best fibres. Appendix A, Part 1 contains 

the complete set of tables for fibre quality. Fibre diameter (ø) values were collected for 

mechanical testing using Vernier Callipers (as per 3.2.5). Figure 3: 8 – 10 provide a selection of 

images are as points of reference for table 3: 9. The remaining images can be located in 

appendix A, Part 2.  
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Table 3: 9 Physical Characteristics of the Best Fibres. The symbol ø is used to represent diameter. 

Fibre Code 

(DD/MM/YY) 

PCL:PLA:Gly 30:70:20_1P 

Fibre ø (mm) 

Average ø Range ø Standard 

Deviation ø 

Visual ø 

Consistency 

Reflectiveness 

0.64 0.56 – 0.72 0.03 Consistent Reflective 

Colour Opacity Observations/Comments: Smooth surface. Feels tough. 

Silver Translucent 

Fibre Code 

(DD/MM/YY) 

PCL:PLA:Gly 30:70:20_2P 

Fibre ø (mm) 

Average ø Range ø Standard 

Deviation ø 

Visual ø 

Consistency 

Reflectiveness 

0.79 0.56 – 0.77 0.05 Consistent Reflective 

Colour Opacity Observations/Comments: Smooth surface. Feels tough.  

Silver Translucent 

Fibre Code 

(DD/MM/YY) 

PCL:PEG-200 100:20 6-10 

Fibre ø (mm) 

Average ø Range ø Standard 

Deviation ø 

Visual ø 

Consistency 

Reflectiveness 

0.65 0.34 – 1.29 0.30 Inconsistent None 

Colour Opacity Observations/Comments: Feels smooth and wet. Highly 

irregular diameter.  
White Opaque 

Fibre Code 

(DD/MM/YY) 

PLA:PEG-200 100:10 1-5 

Fibre ø (mm) 

Average ø Range ø Standard 

Deviation ø 

Visual ø 

Consistency 

Reflectiveness 

0.43 0.22 – 0.64 0.11 Inconsistent Moderate 

Colour Opacity Observations/Comments: PCL was present in some parts, 

this burnt. Smooth to touch. 
Brown Transparent 
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Figure 3: 8 PCL:PLA 30:70WT% fibre after 2 passes, plasticised with 20% PEG-200. 
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Figure 3: 9 PCL:PLA 50:50WT% fibre after 1 pass, plasticised with 5% PEG-200. 
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Figure 3: 10 PCL:PLA 70:30WT% fibre after 1 pass, plasticised with 10% PEG-200. 
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3.3.1 PCL and PLA Consistency 

 

Numerous batches of both PCL and PLA 100WT% control fibres were extruded. This provides 

insight into the repeatability of fibre processing. Overall, it was observed that PLA was highly 

repeatable across the entire tested temperature range (140 – 210°C). However, PLA was 

found to produce a better fibre when extruded at a higher temperature. This phenomenon 

relates to the recommended extrusion temperature 175°C (Middleton and Tipton 2000) and 

210°C [NatureWorks LLC Datasheet]. It must be noted that the recommended temperatures 

are not necessarily for the PLA used in this work, as such, the processing temperature cannot 

be guaranteed to be relevant. Further, it was observed that PLA would extrude with relative 

ease at 140°C, 70°C under the 210°C temperature recommended by NatureWorks LLC. The 

70°C discrepancy between the extruder temperature and recommended temperature could be 

put down to either: using the wrong datasheet (it is unknown what version PLA was used, see 

Section 3.2.1), or PLA’s amorphous nature (Ostafinska, Fortelny et al. 2015). The fact that PLA 

is an amorphous polymer allowed it to be extruded below the recommended temperature. 

PLA does not undergo crystalline melting, rather, it softens to a rubbery consistency when 

taken passed its glass transition temperature (Tg): 60°C (Middleton and Tipton 2000). Further, 

during low temperature (140°C) extrusion of PLA it was observed that the polymer was tough 

and rubbery (highly viscous) as it came out of the extrusion die. However, as the temperature 

approached 210°C, PLA lost its rubbery nature and became free flowing.  

 

Unlike PLA which is processed at higher temperatures, PCL is best processed at relatively low 

temperatures: 60°C (Wan, Lu et al. 2009). Initially, PCL was processed across a range of low 

temperatures, 75, 80, 85°C. This is slightly higher than the recommend 60°C temperature 

(Wan, Lu et al. 2009); however, the extrusion machine would not function below 75°C. Even 

with the increased temperature, PCL extruded easily, producing consistent fibres. It was 

observed that at 80 and 85°C, the PCL fibres were relatively thin (figure 3: 11). While PCL 

extrudes consistently between these temperatures, it has to be blended with PLA. It is 

important to note that PLA will not extrude at temperatures of 75 – 85°C; while this does 

exceed the glass transition temperature of 60°C, it is too rubbery to process (Middleton and 

Tipton 2000). Therefore, PCL was also tested at higher temperatures suitable for PLA 

processing. To this end, temperatures between 160 – 190°C were trialled. Overall, these fibres 

were found to be relatively consistent. However, in some instances at temperatures of 180 or 

190°C the fibres were observed to have a yellow-brown colour: indicating some degradation.  
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Figure 3: 11 PCL fibre extruded at 80°C. Notice that it is cobweb like in consistency 
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3.3.2 Processing Challenges 

 

Processing of the various fibre ratios proved to cause a number of processing challenges. 

These were noted during processing of both PCL control and PCL:PLA hybrid fibres. Fibre 

degradation was noted during PCL control extrusion, when processed at high temperatures. 

Further, PCL degradation was observed during hybridisation, at similar temperatures. Finally, 

the produced PCL:PLA hybrid fibres were of a relatively low quality, which were not suitable 

for mechanical testing.  

 

3.3.2.1 Degradation during extrusion 

 

During fibre processing, one issue was readily apparent: fibre browning. On its own, the 

brown/yellow colour of a fibre makes no difference: the fibre colour is not important. 

However, fibre browning was a visual sign of degradation. Fibres that had degraded were 

brittle, and unable to elongate. As such, it was determined, that if possible, brown fibres 

should be avoided. During processing of triplicate repeat PCL 100WT% fibres, no were 

brown/yellow. However, previous PCL 100WT% fibre processing had displayed fibre 

yellowing: this indicates the heating was inconsistent. Further, it was observed that the 

PCL:PLA hybrids fibres exhibited yellowing of the fibres at all tested temperatures (160 – 

185°C). As temperature increased, yellowing was increased in hybrid fibres; further, with 

increased passes, degradation also increased. Degradation of the fibres is clearly a result of the 

temperature. This phenomenon can explain why additional passes cause more degradation. 

Essentially, each extrusion of a fibre exposes it to some damaging temperatures: degradation 

is minimal after the initial extrusion. However, as the fibre is cut and re-extruded, it was 

exposed to additional damaging temperatures. Each application of the damaging temperature 

was found to cause exponentially more degradation within the fibres, as such, a 6 pass fibre 

will be more degraded than a 3 pass fibre (Pospıš́il, Horák et al. 1999).  

 

3.3.2.2 Non-Plasticised Hybrid Fibres Processing and Issues 

 

Hybrid fibres proved to be difficult to process using manual melt extrusion and drawing. 

Typically, the fibres did not have consistent diameters, suffering extreme lows (0.08 mm) or 

highs (1.50 mm) diameter ranges. Further, during processing, it was observed that the two 

materials did not melt (or soften) at the same rate. This was expected, as the PCL and PLA 

possess significantly different processing temperatures. To minimise the temperature 

difference’s effects, multiple passes were required. However, the use of multiple passes caused 

fibre yellowing during processing. Typically, either 3 or 6 passes were trialled. The overall 

result of this was inconsistent and highly brittle fibres; essentially, significant degradation had 

occurred. Interestingly, it was observed during processing that higher PCL hybrids appeared 
less yellow/brown. PCL:PLA 50:50WT% hybrids were brown in appearance, compared to 

PCL:PLA 80:20WT% hybrids, which were pale yellow. This phenomenon is the opposite of 

what would be expected, assuming PCL is the cause of the colour change: if more is present, 

the effect should be bigger. However, the opposite effect was observed. The PCL powder used 

was white in colour; as a result, it is possible that this can mitigate the effects of degradation 

on the colour change. However, this was not investigated further. It was observed that in 

higher PCL content hybrids, extrusion was more rapid: the molten solution has a lower 
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viscosity. This increased processing speed meant the materials experienced less of the 

damaging temperatures; this could explain the observed reduction in degradation.  

 

3.3.3 Effects of Plasticising the Hybrids Fibres 

 

Three separate ratios were attempted (PCL:PLA 70:30, 50:50, 30:70WT%) with the addition 

of plasticisers (see table 3: 7). This aimed to provide improved processing between the 

materials. It is essential to note that plasticised fibres were processed at a lower temperature 

(not significantly) than the previous non-plasticised hybrids. A temperature of 150±5°C was 

used, as opposed to 160 – 185°C previously. As such, it is possible that the temperature 
reduction had some effect on fibre processing.  

 

During fibre processing addition of liquid plasticisers disrupted the extrusion process. Two 

disruptive effects were observed: firstly, the materials suffered minor cooling, slowing 

extrusion; secondly, the water boiled in the extruder barrel, causing air bubbles in the fibre. 

Both of these effects were observed in all plasticised fibre during the initial extrusion step. 

However, these effects were only evident in certain parts of the fibres. In the event that air 

bubbles formed, they were only spread across about 100 mm of fibre length at a time. Affected 

areas were not used in any tests. Essentially, these two effects did not alter the results at all; 

rather, they slowed the process, and caused increased material wastage.  

 

While the extrusion process was slightly more challenging than in non-plasticised fibres, 

plasticisation significantly improved the quality of the fibres. Further, the second processing 

step was not subject to the issues of liquid plasticiser. During the second extrusion step, 

significant improvements to fibre processing were observed, when compared with non-

plasticised. The main issue in non-plasticised fibre processing must also be considered: 

thermal degradation. Across all plasticised fibres, thermal degradation was not apparent. This 

was considered a significant improvement in the processing method: the fibres were not 

brittle when plasticised.  

 

Several factors were observed with plasticised fibre. A large number of the plasticised fibres 

presented a reflective surface: this was absent in all previous hybrids. Typically, plasticised 

fibres presented a comparatively smooth surface. The presence of a smooth surface is 

indicative of a more homogeneous blend – lumps are a sign of blend issues. Interestingly, 

several plasticised fibres had incredibly smooth surfaces: slippery to the touch. In instances 

where a slippery surface is present, these fibres were of a very high quality. Three sets of 

fibres presented this effect: a PCL:PLA 70:30WT% fibre plasticised with 10% glycerol after 2 

passes, and two PCL 100WT% fibres, plasticised with 10% and 20% PEG-200.  
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3.5 Summary 

 

Overall, it was noted that thermal degradation was occurring in many of the fibres. This was 

almost exclusively observed in the non-plasticised hybrid fibres. Both the temperature and 

number of processing passes was important factors in producing this effect. This suggested 

that a lower temperature, with less processing passes was required. The addition of 

plasticisers and the slight processing temperature reduction were found to significantly 

improve the quality of the fibres.  

 

Based on ease of processing, the best fibres were found to be those containing plasticisers. 
Overall, the best fibres were determined to be the PCL:PLA 30:70WT% fibres, plasticised with 

PEG-200. In terms of physical appearance and processing ease, there was no observable 

difference with plasticiser concentration (5, 10 or 20%).  
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Chapter 4 Mechanical Testing 

 

4.1 Introduction 

 

The mechanical properties of polymeric hybrids fibres are important to identify. This will 

allow determination of fibre quality – lower quality fibres show reduced mechanical 

properties. Initially, two pilot studies were carried out on the materials. The first pilot dealt 

with the SSE 1 mm fibres (section 3.2.2), the second with lower diameter drawn fibres using 

the screwless extruder (section 3.2.3). Out of all the properties investigated, the tensile 

properties are the most vital. The tensile properties are a deciding factor in the quality of the 

produced fibres. Typically, hybrid fibres that present significantly reduced mechanical 

properties, when compared to their components, are of very low quality (Pospıš́il, Horák et al. 

1999). As such, the tensile properties of the produced fibres inform the rest of the project.  

 

4.2 Materials and Methods 

 

Two pilot studies into the tensile testing methods were required. Initially, the 1 mm diameter 

fibres produced in section 3.2.2 were used. The initial study aimed to demonstrate that the 

fibre could be tested. However, due to failings with the 1 mm fibre processing, a second pilot 

test was required. The second pilot study employed the drawn fibres from section 3.2.3. The 

results from the second pilot study were used to inform the remainder of the testing within 

this section.  

 

4.2.1 Materials 

 

Across all testing, a polyamide fishing line control fibre was used. The purpose of this was to 

act as a blank, demonstrating that the machine was acting in a consistent way across all tests. 

The particular line used was a 6 ¼ lb force green Platypus Classics product.  

 

Prior to any mechanical testing taking place, all samples underwent conditioning. The purpose 

is this step is to ensure that the materials are all at equilibrium with the environment and 

improves repeatability. Realistically, due to the nature of testing, a temperature of 23±1°C and 

humidity of 50±5RH% should have been used (European Committee for Standization 1997). 

However, the conditioning space is primarily used for textile fibres, which require different 

conditions. As such, 20±2°C and 65±2RH% were used (International Organization for 

Standardization 2005).The difference between these conditions is unlikely to have any 

significant effects. In all cases, the samples were allowed a minimum of 48 hours to condition. 

It has been reported that after 24 hours, the fibres will have reached equilibrium at these 

conditions (Ghosh, Ali et al. 2010, Ghosh, Ali et al. 2010) . The conditions of the room were 

able to be monitored using an Elsec 765C UV+ data logger. This data logger was able to 

measure both the ambient temperature and the humidity of the room. The temperature was 

provided with an error of ±0.5°C; and an error of 3.5%RH for humidity, as per the item 

datasheet. 
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An Instron 4464 Universal Tester was used for the majority of testing. The Instron machine 

was located in the conditioned space. This particular Instron machine has a maximum load 

capacity of 2000 N, and a speed range of 0.05 – 2500 mm/min as reported on the Instron 4464 

datasheet. Further, the load accuracy is either, 0.5%, or ±1 N, whichever is higher. Fibres were 

clamped in place using flat plate grips. The maximum test range on this machine is 1192 mm: 

excluding the grips. A torque wrench set to 10N/m was used to ensure adequate grip strength 

for the control specimens. A 100 N load cell was fitted to the Instron 4464 Universal Tester for 

all testing. A 16 channel ADInstruments Power Lab was connected to the Instron 4464 tester. 

Across all mechanical testing, the Power Lab setup was the same.  

 

4.2.2 Pilot Study 1: 1 mm Fibres 

 

Fibres processed using the SSE machine undergo tensile testing within this section. Refer to 

section 3.2.2 for details on how these fibres were produced. 

 

4.2.2.1 Method 

 

Two separate methods were attempted to identify the tensile properties of the 1 mm SSE 

fibres. Initially, the fibres were placed centrally within the flat plate grips of the Instron 4464 

machine. A torque wrench was used to tighten the grips with 10 N/m of torque.  

 

A second pilot method was employed, due to failings in the first. The second pilot method 

involved attaching materials to the flat plate grips: paper, corrugated cardboard, nitrile gloves, 

and sandpaper – all independently of each other. In all cases, the flat plate grips were first 

coated in double-sided cellotape, and the materials were attached. All materials were trimmed 
to size after grip attachment: ensuring maximum coverage. The materials essentially acted as 

the new grip faces. All testing was done using single fibres centralised on the grip. A torque 

wrench set to 10 N/m or torques was employed to tighten the grips.  

 

4.2.2.2 Results and Discussion 

 

Initial tensile testing experiments on the Instron 4464 machine were found to consistently fail. 

It was identified that in approximately 95% of testing carried out, the fibre would be pulled 

from the grip: a null result. Typically, a test specimen is pulled from the grip when the exerted 

grip force is too low. It was decided that the flat plate grips could not exert the required 

friction on the samples: the grip surfaces were smooth. A new surface was applied to the grips 

hoping to improve the exerted friction. Of the four new surfaces trialled, only one was found to 

offer any benefit: the sandpaper. The addition of the sandpaper allowed successful testing to 

be carried out. However, a serious flaw was identified in this remedial action: the sandpaper 

surface quickly wore away. Essentially, the sandpaper was only ‘textured’ for five test runs. 

After five runs, the surface of the sandpaper was entirely removed, exposing the paper 

underneath. This resulted in the sandpaper requiring changing every five tests. The sandpaper 

lost a percentage of its coating after each test, as such, lower friction would be applied on each 

subsequent test. It was decided that this would significantly impact the reliability of the 

results. The other three materials (paper, cardboard, and nitrile gloves) were found to 
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increase fibre slippage. Essentially, these were worse than the bare grip surfaces. The 

corrugated cardboard created a secondary issue: the lumps from the compressed corrugation 

prevented correct tightening of the grips. The corrugated cardboard essentially prevented 

fibre gripping altogether.  

 

4.2.3 Pilot Study 2: Drawn Fibres 

 

The drawn fibre pilot investigates if the drawn fibres (produced in section 3.2.3) could be 

successfully tested. Further, a remedy to the issues found in section 4.2.2 was investigated.  

 

4.2.3.1 Method 

 

Three sets of methods were trialled to test drawn fibres produced in section 3.2.3. Initially, the 

Instron 4464 Universal Testing machine was employed. All initial testing was done using the 

bare flat plate grips. Secondary testing was done with the addition of new surfaces to the grips 

(paper, corrugated cardboard, nitrile gloves and sandpaper). The first test method was carried 

out using the same methods as described for the 1 mm diameter pilot (4.2.2.1). 

 

Due to the previously mentioned tests not performing correctly, the method was adapted. The 

drawn fibres were cellotaped and/or glued to a fibre mount. Once attached, the fibres were 

tested on the Instron 4464 machine using the flat plate grips. The grips were trialled as 

tightened using a torque wrench (10 N/m), and as finger tight.  

 

4.2.3.2 Results and Discussion 

 

The first phase of tensile testing with drawn fibres used the same method as the 1 mm pilot 
(section 4.2.2). Initially, individual drawn fibres were tested: the grips could not physically 

restrain the fibres. Due to the very low diameter of the fibres, it was determine the grips were 

unsuitable as they were. The addition of new surface materials was attempted, but no 

improvement was noted. Unlike the 1 mm pilot, sandpaper provided no benefit – the fibre 

diameter was far too narrow.  

 

However, it was clear the grips themselves were unsuitable but no other grips were available. 

As such, a system of mounting single fibres on card was devised. A single fibre would be 

cellotaped to the mount, and allowed to condition. Three methods of attaching the fibre to the 

mount were attempted: a single layer of cellotape over the fibre; a strip of double sided 

cellotape between the mount and fibre, with a layer of single sided over the top; and, two 

mounts attached to each other with double sided cellotape. Images of the three mounts are 

found in figure 4: 1 – 3. All three methods proved to be equally effective; however, the fibre 
was able to elongate into the grips: the cellotape could not exert enough force. To remedy this, 

the fibres were instead glued to the mount (further details can be found in section 4.2.3).  
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Results from the drawn fibre pilot study are located in table 4: 1. A summary of reported 

tensile properties can be found in table 2: 1 for both PCL and PLA 100WT%. It can be noted 

that the values stated within the literature (table 2: 1) vary from those determined within this 

pilot test. In all cases, the achieved tensile strength values are not the same as the literary 

values; further, in all but one case, the Young’s Modulus achieved are out of range of the 

literary values (PLA at 200°C is within range). The tensile properties of PCL:PLA 50:50WT% 

hybrid fibres have been reported previously (Zhao and Zhao 2016). It has been stated that 

these fibres have a tensile strength of 30±2 MPa, a Young’s modulus of 800 MPa and 600±50% 

elongation at break (Zhao and Zhao 2016). For the most part, the elongation at break values of 

PCL and PLA 100WT% control fibres are within range. PCL:PLA (50:50WT%) hybrid fibres 

however, are a factor of 100 out. It is important to note that some variation between the 

literary values and experimental ones will be present: in no case do the literary values test 

fibres; rather, sheets are used. 

 

4.2.3.3 Pilot Study Conclusions and Implications 

 

Overall, the pilot studies proved to be useful. It was demonstrated early on that the Instron flat 

plate grips were not suitable for direct contact with the fibres. Ultimately, the pilot studies 

were able to demonstrate that a simple fibre mount can enable significant improvements in 

tensile testing. The use of the mount meant the test behaved in a suitable way: little to no 

inappropriate elongation and fibres broke within the gauge length. 

 

The primary result of these pilot studies was fibre mount development. The fibre mount was 

used for the remainder of the tensile property investigation.  
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Table 4: 1 Mechanical Properties of PCL, PLA and PCL:PLA (50:50WT%) Hybrid Fibres.  

Material 
Temperature 

(°C) 
Pass 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus (MPa) 

Graph 

Strain 

(%) 

Max Strain 

(%) 

PCL 

75 1 19.66±1.6 19.66±1.6 411.30±66.1 274.14 492.64±301.0 

80 1 50.07±7.9 28.39±4.3 708.80±72.3 575.37 657.28±64.4 

85 1 36.03±1.7 20.26±2.4 195.19±31.4 848.71 686.36±11.6 

PLA 

160 1 25.60±2.2 NA 1371.41±226.0 4.99 7.76±2.1 

170 1 39.40±5.5 NA 596.40±67.1 7.21 13.40±4.9 

180 1 37.72±11.1 NA 1211.74±204.1 8.53 15.87±5.3 

190 1 36.26±5.7 NA 2347.33±140.5 2.17 3.14±0.9 

200 1 27.89±8.3 NA 1511.41±92.9 4.78 5.49±0.5 

210 1 25.94±1.7 NA 2444.44±372.1 1.31 2.98±2.2 

PCL:PLA 

50:50WT% 

160 3 51.95±17.0 NA 4814.55±1360.1 1.62 2.69±1.1 

170 3 32.78±4.8 NA 1107.69±156.3 4.74 5.85±0.8 

180 3 35.00±16.7 NA 2557.61±1713.8 1.85 4.08±1.7 

160 6 24.87±1.7 NA 1089.98±12.2 3.26 3.41±0.1 

170 6 24.95±9.7 NA 1981.93±943.1 1.77 2.65±0.6 

180 6 32.41±2.8 NA 1166.29±64.4 4.87 4.91±0.0 
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Figure 4: 1 First iteration mount. A paper mount with single sided cellulose tape attachment. 

 

 

Figure 4: 2 First iteration mount. A paper mount with single sided and double-sided cellulose tape attachment. 

 

 

Figure 4: 3 First iteration mount. Two stacked paper mounts, with double-sided cellulose tape attachments on 

both mounts. 
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4.2.4 Fibre Mounts 

 

Several iterations of mount design were developed (Ilankeeran, Mohite et al. 2012). Over the 

course of this work, two materials were used for the mounts: initially, light cardboard (figure 

4: 4); ending with paper (figure 4: 5). It was established that the difference between the two 

materials did not affect the results. All mounts used retained the same markings, and the 

gauge length remained constant at 40±1 mm. A slight variation was observed in the gauge 

length of the mount; this was solely due to removal of the rectangle (see figures 4: 4 and 5) 

and was not found to alter the results.  

 

The method for attaching fibres to the mounts was straightforward. Initially, both the fibre 

and the mount were attached to a solid surface. Fibres were attached above the fibre line (see 

figures 4: 4 and 5). This ensured that over the gluing process, neither the mount nor the fibre 

would move. Once secure, the fibres were glued to the mounts (figures 4: 4 and 5). To ensure 

even gluing, only one side of the fibre was glued at a time. To ensure adequate drying, the glue 

was left for 24 hours between each step. Once gluing was complete, fibres were sent to 

condition prior to testing.  
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Figure 4: 4 Example of the initial white cardboard mounts. This has the dimensions 145±5x40±5 mm (LxW). 

The gauge length is 40±2 mm. The fibre is glued along the black centre line. 
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Figure 4: 5 Example of the final white paper mounts. This has the dimensions 140±5x30±5 mm (LxW). The 

gauge length is 40±2 mm. The fibre is glued along the black centre line 
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4.2.5 Mechanical Testing 

 

Across all mechanical test steps, the set up was the same. The Instron 4464 Universal Tester 

was fitted with a 100 N load cell, and a cross-head speed of 20 mm/min was used . All 

specimens used a 40 mm gauge length. The Instron 4464 flat plate grips were used in all tests 

(excluding pilot studies); the grips had the centre point marked on the base of the grips. All 

fibre mounts were loaded into the grips ensuring the fibre itself was coincident with the 

centre point marks. With fibre testing, the torque wrench was unusable – it cut the fibres. As 

such, the grips were set to finger tight. Unlike the fibre test specimens, the fishing line blanks 

required the use of a torque wrench, exerting 10 N/m of torque.  

 

4.2.6 Statistical Analysis 

 

Statistical analysis was carried out on a number of parameters. R studio was used for all 

statistical analysis reported. However, prior to analysis, several additional R studio packages 

were required. The four required packages were as follows: nlme, lsmeans, car and 

estimability. These packages allowed for a variety of useful testing to take place. The first step 

in the process was to define the independent factors: processing temperature (Temp), PCL 

and PLA content, number of passes (Pass), plasticiser concentration (Conc), and plasticiser 

type (Plast); and the dependent factors: tensile strength (TS), Young’s modulus (YM) and 

elongation at break (EB). Refer to Appendix B (part 1) for the scripts required in R studio, and 

the outputs these gave. Three analyses took place: generalised least squares (GLS), least 

square means (LSM) and ANOVA type 3. GLS testing was processed using restricted maximum 

likelihood (REML) methods. The results from GLS testing are not reported. Rather, the GLS 

test methods were used to calculate both the LSM and ANOVA type 3 results. LSM methods 

determine the pairwise comparisons between two or more factors; the comparisons employed 

here are found in Appendix B (part 1). The complete outputs from the scripts are found in 

Appendix B (part 2), with the data used located in Appendix B (part 3). Intercept values are 

not provided. These indicate the likelihood of the mean being zero. A zero value is not realistic 

for any tensile properties in these polymeric fibres.  

 

Statistical analysis could not be carried out on the yield strength values. The large number of 

missing values means the analysis is meaningless. Methods not employed here could have 

been trialled, such as a binary analysis. However, this method will not return meaningful 

results: too many sets have complete presence or absence. In this event, the output is 

meaningless.  

 

4.3 Results 

 

The initial part of the results looks at determining the best processing temperature for the 

fibres. That is to say, the temperature where the results are the most consistent with each 

other, and table 2: 2 displaying the literature values for PCL and PLA. It was vital that this 

started with the control materials. This provided conformation that the control materials 

could be processed at the desired temperatures. Hybrid fibres were trialled at a variety of 

temperatures. The aim was to determine what temperature would produce the most 

consistent mechanical properties. The initial hybrids produced did not contain plasticisers, as 
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such, they provided a point of comparison for the plasticised hybrids. Further work was done 

to analyse whether or not hybrid plasticisation improved the mechanical properties of the 

fibres, when compared to the non-plasticised variants. A large number of stress-strain curves 

have been produced. However, the curves are not reported. The stress-strain curves can be 

found Appendix C.  

 

4.3.1 Ideal Processing Properties 

 

During mechanical testing, it is essential to use the highest quality fibres. To this end, an 

investigation into how the virgin control fibres behave across a variety of temperatures (160 – 
190°C) must be carried out. The ideal processing temperature is directly related to a fibre’s 

mechanical properties. Ideally, a minimal variation in mechanical properties will be observed 

at the fibre’s processing temperature. To determine the ideal fibre processing temperature, 

only PCL and PLA fibres were studied. A particular emphasis was placed on a loss in 

elongation characteristics. Ideally, the optimal fibre processing temperature will produce the 

highest and most consistent elongation at break (table 2: 4). The fibre processing temperature 

identified as optimum that was used for plasticised hybrid fibres.  

 

Across the PCL 100WT% fibres, several temperature dependent trends were identified. A near 

complete loss in average yield strength was observed, as temperature increases (table 4: 2). At 

both 160° and 170°C, yield points were observed; however, 180°C shows no yield points 

(table 4: 2). A single fibre set displayed a yield point when processed at 190°C: set 1 (table 4: 

2). Across the range of temperatures, no trends were observed in average tensile strength or 

Young’s modulus (table 4: 2). Average elongation at break displayed a decrease, in respect to 

increasing temperature (table 4: 2). Based on the information available in table 4: 2, it appears 

PCL fibre set 1, at 190°C has a significantly higher elongation at break than the other two sets. 

With an average of 1101.9% elongation at break, fibre set 1 at 190°C is 120 times the average 

value for set 2, and near 300 times the value for set 3. This is indicative of an outlier; however, 

this was a real result, so it is retained. Statistically, no variations in raw tensile strength values 

were observed (table 4: 3). However, raw values for both Young’s modulus and elongation at 

break produced a temperature dependent change (table 4: 3). 

 

PLA 100WT% fibres displayed a completely different result. The yield strength of PLA fibres is 

observed in all cases at 160°C; however, this is reduced to 2 sets at 170° and 180°C, with only 

1 present at 190°C (table 4: 4). Average tensile strength does not show any variations in 

response to processing temperature (table 4: 4). The average Young’s modulus shows a slight 

increase as processing temperature increases (table 4: 4). Average elongation at break is 
reduced in response to increasing processing temperature (table 4: 4). Based on the statistical 

analysis, no temperature effects were observed in PLA 100WT% fibres (table 4: 5).  

 

Based on the mechanical properties identified for both PCL 100WT and PLA 100WT% fibres, 

the optimal processing temperature is 160°C. PCL produces the most consistent elongation at 

break values at 160°C. The ideal processing temperature for PLA fibres could not be identified 

from the results. PLA showed no change in mechanical properties in respect to temperature.  
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The most apparent trend identified with the non-plasticised hybrid fibres is the lack of yield 

points for all fibres (table 4: 6). Average tensile strength and elongation at break measures 

were consistent across all hybrid fibres and processing temperatures (table 4: 6). The material 

ratio (PCL:PLA) effects the average Young’s modulus (table 4: 6). As PCL content of the ratio 

increases, Young’s modulus decreases (table 4: 6). Neither processing temperature nor 

number of passes effects any of the average properties (table 4: 6). Statistical analysis of raw 

data suggests that Young’s modulus changes, dependent on the conditions (table 4: 7). 

However, it must be noted that Young’s modulus is significantly affected by material ratio 

(table 4: 7). Neither temperature nor passes display any significant effects on the raw values 

(table 4: 7). The exception to this is the raw elongation at break values; the number of passes 

applied alters the mean (table 4: 7). In no cases do the raw values for tensile strength change, 

this is essentially independent of the processing properties (table 4: 7). Further testing using 

an ANOVA type 3 analysis provided no evidence to support any temperature dependant 

affects (table 4: 8). The sole statistically significant effect observed was that of the PCL:PLA 

ratio on Young’s modulus (table 4: 8). 
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Table 4: 2 Mechanical properties for PCL 100WT%.  

Temperature 

(°C) 
Number 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max Strain 

(%) 

160 

1 21.2±1 19.7±3 488.3±2 494.47 532.4±45 

2 15.3±1 15.3±1 462.2±6 425.38 533.1±80 

3 18.1±2 18.1±2 407.7±19 525.47 538.6±14 

170 

1 18.6±1 17.7±2 472.1±13 404.92 479.8±85 

2 14.6±5 12.3±2 526.4±21 7.50 60.0±70 

3 20.0±5 18.2±3 463.4±58 575.37 814.7±295 

180 

1 18.0±1 None 528.4±51 5.92 7.7±2 

2 16.4±2 None 470.8±52 3.88 6.8±2 

3 22.5±0.3 None 497.3±10 6.72 9.0±2 

190 

1 31.9±5 23.2±4 579.7±61 863.56 1101.9±332 

2 20.9±2 None 453.2±9 7.92 9.2±2 

3 13.0±2 None 450.4±58 3.02 3.8±0.5 

 

Table 4: 3 Statistical Analysis on PCL. Significant values are underlined and italicised. Factor of Significance 

0.05. Rounded to 4 D.P.  

 Methods 

LSMEANS 
ANOVA 

Contrasts 

Property 160-

170 

160-

180 

160-

190 

170-

180 

170-

190 

180-

190 

Temperature 

Tensile Strength 0.8789 0.9640 0.2208 0.9936 0.6193 0.4651 0.2498 

Young’s Modulus 0.9675 0.0735 0.1157 0.2007 0.2798 0.9991 0.0202 

Elongation at 

Break 

0.9975 0.0315 0.9808 0.0571 0.9975 0.1017 0.0131 
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Table 4: 4 Mechanical properties for PLA 100WT%.  

Temperature 

(°C) 
Number 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max 

Strain 

(%) 

160 

1 29.6±5 29.6±5 1954.6±21 9.35 35.5±40 

2 49.7±10 49.7±18 2296.6±274 4.02 30.6±34 

3 20.5±4 20.5±4 1431.0±295 6.72 95.5±123 

170 

1 31.3±11 31.3±11 2399.0±375 3.14 4.1±0.9 

2 35.8±3 None 2280.4±276 2.84 4.7±2 

3 35.6±11 35.6±11 2263.4±448 11.41 23.4±11 

180 

1 34.94±14 None 2281.5±106 3.21 5.6±2 

2 33.08±0.7 33.08±0.7 2294±122 2.91 3.7±0.5 

3 26.98±3 26.98±3 1923.1±130 5.37 8.5±3 

190 

1 23.82±3 None 2339.4±398 1.33 2.6±1 

2 24.52±8 23.38±2 2685.5±66 1.58 3.7±2 

3 30.58±10 None 2604.3±248 2.14 3.1±0.7 

 

Table 4: 5 Statistical Analysis on PLA. Significant values are underlined and italicised. Factor of Significance 

0.05. Rounded to 4 D.P.  

 Methods 

LSMEANS 
ANOVA 

Contrasts 

Property 160-

170 

160-

180 

160-

190 

170-

180 

170-

190 

180-

190 

Temperature 

Tensile Strength 0.5954 0.9901 0.2094 0.7592 0.8829 0.3187 0.1602 

Young’s Modulus 0.9849 0.7212 0.3297 0.8877 0.5047 0.9092 0.3081 

Elongation at 

Break 

0.0890 0.0740 0.0459 0.9997 0.9942 0.9985 0.0216 
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Table 4: 6 Mechanical properties of Non-plasticised PCL:PLA Hybrids 

Ratio 

(WT%) 

Temperature 

(°C) 
Pass 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max 

Strain 

(%) 

50:50 

160 2 7.58±1.8 NA 761.85±331.3 1.10 2.40±1.2 

160 3 11.10±0.45 NA 910.57±18.6 1.36 2.26±0.7 

170 2 6.16±1.3 NA 1239.15±275.9 0.62 1.81±0.9 

170 3 15.99±2.54 NA 954.40±146.8 3.18 3.38±0.2 

180 2 16.88±6.0 NA 1189.44±10.8 2.57 2.25±0.6 

180 3 14.06±0.4 NA 901.30±16.1 3.47 3.61±0.1 

60:40 

160 2 9.82±2.6 NA 718.89±241.9 2.12 2.61±0.4 

160 3 14.08±1.2 NA 1020.11±130.1 3.28 3.73±0.4 

170 2 10.09±3.2 NA 714.66±29.2 1.90 3.07±0.8 

170 3 6.65±0.4 NA 948.86±20.5 0.82 3.40±1.9 

180 2 16.34±0.3 NA 873.58±158.7 3.87 4.19±0.2 

180 3 15.09±2.3 NA 974.42±167.0 2.94 4.04±1.0 

70:30 

160 2 16.67±1.2 NA 946.41±11.66 2.64 3.18±0.5 

160 3 17.06±6.7 NA 798.75±101.5 4.87 5.32±0.3 

170 2 7.02±3.1 NA 492.33±229.9 1.94 2.64±0.5 

170 3 10.87±0.5 NA 683.39±43.1 2.27 4.05±1.5 

180 2 9.60±1.3 NA 658.30±23.0 1.86 2.34±0.6 

180 3 11.46±2.1 NA 751.71±9.9 2.37 2.72±0.3 

80:20 

160 2 12.65±1.0 NA 676.63±108.8 3.00 3.57±0.4 

160 3 15.24±1.1 NA 599.62±145.7 3.77 4.81±0.8 

170 2 15.90±2.0 NA 702.96±34.2 5.62 5.73±0.1 

170 3 13.02±1.7 NA 611.05±150.7 4.27 4.87±0.7 

180 2 14.49±2.1 NA 539.29±85.3 3.59 4.22±0.8 

180 3 15.01±0.9 NA 636.35±36.4 3.57 5.36±1.6 
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Table 4: 7 LSMEANs Analysis on Non-plasticised Hybrid Fibres. Significant values are underlined and 

italicised. Factor of Significance 0.05. Rounded to 4 D.P.  

 Ratio 50:50WT% 60:40WT% 70:30WT% 80:20WT% 

Property Contrast

s 

2 3 2 3 2 3 2 3 

Tensile 

Strength 

160-170 0.897

1 

0.961

2 

0.806

1 

0.925

6 

0.001

2 

0.540

9 

0.601

0 

0.941

7 

160-180 0.281

9 

0.885

4 

0.517

3 

0.892

7 

0.026

8 

0.209

8 

0.970

1 

0.817

0 

170-180 0.127

2 

0.741

9 

0.883

2 

0.686

9 

0.508

2 

0.792

3 

0.458

0 

0.958

7 

Young’s 

Modulus 

160-170 0.974

4 

0.702

8 

0.677

3 

0.032

9 

0.000

1 

0.673

1 

0.973

6 

0.995

3 

160-180 0.921

6 

0.218 0.646

3 

0.036

8 

0.098

7 

0.775

1 

0.510

4 

0.991

4 

170-180 0.819

6 

0.133

8 

0.998

6 

0.998

8 

0.054

3 

0.284

5 

0.647

1 

0.974

4 

Elongatio

n at Break 

160-170 0.807

5 

0.420

0 

0.851

7 

0.959

5 

0.863

1 

0.348

4 

0.026

4 

0.546

6 

160-180 0.665

2 

0.298

1 

0.280

7 

0.884

7 

0.615

3 

0.016

8 

0.723

6 

0.195

7 

170-180 0.305

3 

0.969

8 

0.579

6 

0.737

3 

0.904

8 

0.318

1 

0.145

4 

0.764

3 

 

 

Table 4: 8 ANOVA type 3 Analysis on Non-plasticised Hybrid Fibres. Significant values are underlined and 

italicised. Factor of Significance 0.05. Rounded to 4 D.P.  

Property Temperature Ratio Passes Temperature:Ratio:Passes 

Tensile 

Strength 

0.1145 0.2557 0.4700 0.2023 

Young’s 

Modulus 

0.8303 0.0033 0.6578 0.0138 

Elongation 

at Break 

0.3270 0.5431 0.8820 0.2783 
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4.3.2 Effect of Plasticisation 

 

Based on the results determined results in section 4.3.2, plasticised hybrids were produced. 

 

4.3.2.1 Plasticised Control Fibres 

 

Across the plasticised PCL 100WT% fibres, very little variation is observed in the average 

mechanical properties (table 4: 9). All plasticised PCL 100WT% fibres underwent yielding 

(table 4: 9). Average tensile strength and Young’s modulus values were near constant across 

the data (table 4: 9). However, the average elongation at break displayed plasticiser 

dependent changes (table 4: 9). When glycerol plasticiser was used, a 20% solution 

concentration produced a lower elongation than 5 or 10% (table 4: 9). Conversely, when PEG-

200 plasticiser was used, the lowest elongation resulted from a 5% solution concentration 

(table 4: 9). Statistical analysis of the raw data produced results not in keeping with the 

averages. Statistically, the plasticiser type and concentration were both, individually and 

cumulatively, found to effect the results (table 4: 10). However, Young’s modulus showed no 

statistically significant effects as a result of any factors (table 4: 10). The lack of any statistical 

effects on Young’s modulus was supported in table 4: 11; no differences were observed 

between the two plasticises, or their concentrations. The raw values from tensile strength 

displayed, at 5% concentration, a difference between glycerol and PEG-200 plasticiser types 

(tables 4: 11 and 12). Elongation at break produced a useful result. A comparison between 

glycerol and PEG-200 as plasticisers demonstrated no difference at 10%; however, both 5 and 

20% plasticiser concentrations produced a difference as a result of plasticiser type (table 4: 

11). This was supported when comparing the plasticiser concentrations independently. PEG-

200 plasticised fibres showed difference between 5 and 10% and 5 and 20% (table 4: 12). 

However, no difference was observed between the raw elongation at break attributable to 10 

and 20% PEG-200 plasticisers (table 4: 12). This means that a 5% PEG-200 loading is all that 

is required in PCL 100WT% fibres. Conversely, glycerol plasticisation demonstrated that 5 and 

10% loadings were the same; the difference was between 5 and 20%, and 10 and 20% (table 

4: 12). This would suggest a minimum of 10% glycerol loading is required in PCL 100WT% 

fibres.  

 

The average values for plasticised PLA 100WT% fibres showed large variations in the tested 

mechanical properties (table 4: 13). Only five of the six PLA 100WT% plasticised fibres 

produced a yield point: a 5% loading of glycerol plasticiser did not yield (table 4: 13). For the 

most part, the average Young’s modulus values are similar across all fibres (table 4: 13). The 

non-yielding 5% glycerol loaded PLA 100WT% fibre shows a substantially increased Young’s 

modulus, approximately 1500 MPa higher than the next highest (table 4: 13). The average 

tensile strength values produced different values dependent on both plasticiser type and 

concentration (table 4: 13). When glycerol plasticised, PLA 100WT% fibres produced three 

seemingly distinct tensile strengths, with the highest at 5% glycerol (table 4: 13). Conversely, 

PEG-200 plasticised fibres produced a high average tensile strength at both 5 or 10% loadings; 

with a 20% loading halving the tensile strength (table 4: 13). In both glycerol and PEG-200 

plasticised PLA 100WT% fibres, three distinct averages for elongation at break were 

observed. When glycerol plasticised, a 20% solution concentration produced the highest 

elongation at break, however, only 10% was required for PEG-200 plasticised fibres to reach 

their peak (table 4: 13). Statistical analysis of the raw data for both tensile strength and 

elongation at break supported these observations (table 4: 14). It must be noted however that 
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Young’s modulus reported significant variations as a result to both and individual and 

cumulative effect of plasticiser type and concentration (table 4: 14). Based on tables 4: 15 and 

16, it appears that the sole reason for the reported variations in Young’s modulus is the 5% 

glycerol plasticised PLA 100WT% fibre: this is the only significant interaction identified.  

 

4.3.2.2 Plasticised Hybrid Fibres 

 

Two factors are considered with plasticised hybrid fibres. Firstly, the effect of PCL:PLA ratio 

on the mechanical properties, at a constant plasticiser value. Secondly, the effect of plasticiser 

concentration on the properties, assuming a constant PCL:PLA ratio. 

 

4.3.2.2.1 Effect of PCL:PLA Blend Ratio 

 

The basis of the fibres is the ratio of the component materials, PCL and PLA. As such, it is 

important to determine what effects this ratio has on the mechanical properties, so the best 

fibres can be produced. Across the glycerol and PEG-200 plasticised fibres, a similar trend is 

observed in regards to PCL:PLA ratios (tables 4: 17 and 18). In both instances, average 

elongation at break displays a reduction in respect to PCL content; that is, PCL:PLA 30:70WT% 

has a higher elongation at break than the 70:30WT% hybrids (tables 4: 17 and 18). ). In all 

cases, PCL:PLA 30:7WT% plasticised fibres display the highest average values for the three 

mechanical properties (tables 4: 17 and 18). The ability of the fibres to undergo yield is 

compromised by the increase in PCL content; at PCL:PLA 30:70WT%, all fibres undergo yield 

(tables 4: 17 and 18). However, at a PCL:PLA 50:50WT% ratio, only five of the 12 fibres yield 

(tables 4: 17 and 18). None of the fibres undergo yielding in the PCL:PLA 70:30WT% sets 

(tables 4: 17 and 18).  

 

Statistical analysis on the raw data values provided the expected results: the ratio of PCL:PLA 

is significant (table 4: 19). Overall, the interactions can be separated out further (table 4: 20). 

It is readily apparent that a large number of differences attributable to PCL:PLA ratio are 

presentation (table 4: 20). Of the potential interactions, 46% show significant effects as a 

result of a ratio change (table 4: 20). Interestingly, the majority (56%) of the interactions in 

table 15 are attributable to glycerol plasticised materials. This suggests that the mechanical 

properties in PEG-200 plasticised hybrid fibres were more consistent. A total of seven sets 

produced no differences in raw values attributable to PCL:PLA ratio (table 4: 20). When 

plasticised with glycerol, elongation at break shows no ratio dependent differences at a 10% 

concentration (table 4: 20). Further, at 5% glycerol concentration and 1 pass, elongation at 

break shows no ratio dependent differences (table 4: 20). PEG-200 plasticisation produces a 

different result to this. At 2 passes, a 5% PEG-200 solution shows no elongation at break 

variations (table 4: 20). Further, 20% PEG-200 plasticised fibres had no ratio dependent 

variations at 2 passes (table 4: 20). Interestingly, 10% PEG-200 plasticised fibres at 1 pass 

have constant tensile strength and elongation at break values (table 4: 20).  
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4.3.2.2.2 Effect of Plasticiser Concentration 

 

An increasing concentration of glycerol or PEG-200 as plasticisers for PCL:PLA 30:70WT% 

fibres appears to improve elongation at break (tables 4: 17 and 18, figures 4: 6 and 7). 

Conversely, an increasing plasticiser concentration reduces the tensile and yield strengths of 

the PCL:PLA 30:70WT% fibres (tables 4: 17 and 18). In all but two cases, there is no statistical 

support for these apparent trends (table 4: 21). Glycerol plasticised fibres show a significant 

difference in mean tensile strength between concentrations of 10 and 20% (table 4: 21). 

PCL:PLA 30:70WT% fibres plasticised with PEG-200 displayed a significant difference in mean 

elongation at break between 5 and 20% plasticiser concentrations (table 4: 21). Between 

glycerol and PEG-200 PCL:PLA 30:70WT% plasticised fibres, almost no differences in mean 

mechanical properties are observed (table 4: 21). At a 10% plasticiser concentration, a 

significant difference in tensile strength is observed between glycerol and PEG-200 plasticised 

fibres. A comparison between the glycerol concentrations in figure 4: 6 show a consistent 

elongation at break. However, a different observation is made when comparing the PEG-200 

concentrations (figure 4: 7). A PEG-200 20% solution allowed the PCL:PLA 30:70WT% fibres 

to extend considerably more than the 5% or 10% equivalents (figure 4: 7). 

 

PCL:PLA 50:50WT% plasticised fibres appear to have plasticiser type dependent trends. When 

plasticised with glycerol, an increasing concentration (5 – 20%) has little effect on the 

mechanical properties (table 4: 18). The elongation at break appears to be consistent at both 5 

and 20% glycerol concentrations; however, at 10%, two elongation extremes were reached 

(table 4: 17). A 10% glycerol solution gives the PCL:PLA 50:50WT% fibres either a 218% 

elongation (at 1 passes), or a 4.14% elongation (at 2 passes) (table 4: 17). Tensile strength is 

reduced across the glycerol concentration range; the PCL:PLA 50:50WT% 10% 2 passes 

variant displays the lowest, at 16.0 MPa (table 4: 17). Young’s modulus of 50:50WT% 

(PCL:PLA) fibres is variable. At a 10% solution, with 2 passes, a 897.2 MPa Young’s modulus is 

achieved; further, when plasticised with a 20% solution, a 1 passes, a 987.5 MPa value is 

displayed (table 4: 17). In both cases, this is a reduction on the rest of the set (1686.3 MPa or 

higher). PEG-200 plasticised PCL:PLA 50:50WT% fibres display a more variable elongation at 

break and Young’s modulus, when compared with the same glycerol plasticised fibres (table 4: 

18). Half of the PEG-200 fibres lack a yield point; these same fibres display low (below 10%) 

elongation at break (table 4: 18). Tensile strength and Young’s modulus showed little 

variation as a result of the PEG-200 concentration (table 4: 18). For the most part, none of 

these trends are statistically supported (tables 4: 19 and 20). When a glycerol plasticiser was 

incorporated, tensile strength display significant variations in tensile strength between 5 – 

10%, and 5 and – 20% glycerol concentrations (table 4: 19). PEG-200 plasticised fibres did not 

display any significant variations in tensile strength (table 4: 19). Both glycerol and PEG-200 

plasticised fibres displayed a significant Young’s modulus difference between plasticiser 

concentrations of 5 – 10% (table 4: 19). When the two plasticisers were compared, a 

difference at 5% concentration was observed in PCL:PLA 50:50WT% fibres for all three 
mechanical properties: tensile strength, Young’s modulus, and elongation at break (table 4: 

20). No other statistically significant variations in mean mechanical property were identified 

between the two plasticisers (table 4: 20).  

 

Across the PCL:PLA 70:30WT% datasets the results are similar (tables 4: 17 and 18). When 

compared with the PCL:PLA 30:70WT% and 50:50WT% hybrids, the 70:30WT% hybrids have 

reduced mechanical properties (table 4: 21). However, for the most part, elongation at break 

displays no difference between PCL:PLA 50:50WT% and 70:30WT% hybrids (table 4: 21). The 
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exception to this is 5% PEG-200 plasticised fibres (table 4: 21). No variations in mechanical 

properties resulted from either plasticiser concentration (table 4: 19), or plasticiser type 

(table 4: 20).  

 

4.3.2.2.3 Differences Between 1 and 2 Pass Variants 

 

The pass system showed several differences between the average mechanical properties 

(tables 4: 17 and 18). However, this is difficult to judge in a non-statistical manner. For the 

most part, average tensile strength and Young’s modulus do not show any pass dependent 

effects (tables 4: 17 and 18). Average elongation at break however does show a pass 

dependent effect (tables 4: 17 and 18). A consistent change is not present; in some instances 

the 1 pass variant is higher, in others it is lower (tables 4: 17 and 18). Statistically, there is 

little evidence for differences in mean as a result of the pass system (table 4: 19 and 23). When 

considering solely the number of passes, the raw Young’s modulus displays a significant 

difference (table 4: 19). However, this is a result of the result of Young’s modulus’s 

dependence on the ratio. Table 4: 23 provides a more reliable statistical analysis of the pass 

system. When plasticised with glycerol, only a 5% concentration in PCL:PLA 30:70WT% fibres 

was there a difference (table 4: 23). PEG-200 plasticised fibres displayed a total of three 

statistically significant effects (table 4: 23). When a PCL:PLA 30:70WT% fibre was plasticised 

with 10% PEG-200, Young’s modulus had a significant pass dependent effect (table 4: 23). 

Further, the 20% PEG-200 plasticised PCL:PLA 30:70WT% fibres displayed a change in 

elongation at break in response to the number of passes (table 4: 23). A PCL:PLA 50:50WT% 

fibre, plasticised with 5% PEG-200 produced a significant effect on elongation at break, in 

respect to number of passes (table 4: 23).  

 

4.3.2.2.4 Presence or Absence of Yielding 

 

Statistical analysis could not be performed on yield strength values. It can be seen in both 

tables 4: 17 and 18 that a number of fibres did not yield. Statistical analysis using the same 

methods as previously described could not be carried out, due to the large number of missing 

yield strengths. Alternate statistical methods could have been carried out; however, these 

require that no data set has either a 100% presence or absence of values. This was not 

observed in this data. Trends based on the average values can be speculated on (tables 4: 17 

and 18). Across both glycerol and PEG-200 plasticised hybrids, the same trend is observed: as 

PCL content increases, the ability to yield seems to be compromised (tables 4: 17 and 18). At a 

ratio of PCL:PLA 30:70WT%, all fibres underwent yielding, irrespective of the other factors 

(plasticiser type, concentration, passes). Conversely, at PCL:PLA 70:30WT%, none of the fibres 

underwent yielding (table 4: 17 and 18). Interestingly, a PCL:PLA 50:50WT% hybrid fibre 

plasticised with glycerol produced a yield in four out of six (66.7%) instances (table 4: 12). 

Whereas, PEG-200 plasticised PCL:PLA 50:50WT% hybrids in table 4: 17 showed only three of 

the six (50%) undergoing yielding. Regardless of plasticiser type, the lack of yield in PCL:PLA 

50:50 WT% fibres did not appear to have any contributing factors.  
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Figure 4: 6 Comparative graph displaying the effect of varying the Glycerol concentration on PCL:PLA 

30:70WT% fibres. Blue circle: 5% glycerol. Orange circle: 10% glycerol. Grey circle: 20% glycerol. 

 

 

Figure 4: 7 Comparative graph displaying the effect of varying the PEG-200 concentration on PCL:PLA 

30:70WT% fibres. Blue circle: 5% PEG-200. Orange circle: 10% PEG-200. Grey circle: 20% PEG-200. 
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Table 4: 9 PCL 100WT% fibres Plasticised with Glycerol and PEG-200.  

Glycerol 

(%) 

PEG-

200 

(%) 

Number 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max Strain 

(%) 

10  1-5 21.4±1.7 17.73±1.0 395.1±12.2 701.82 818.55±89.8 

20  6-10 18.4±0.8 12.1±1.6 369.3±27.3 446.22 459.10±15.9 

5  11-15 21.7±5.1 13.7±2.8 380.5±103.0 654.47 772.94±86.2 

 10 1-5 21.5±3.5 16.26±1.3 370.8±110.4 750.18 851.36±106.1 

 20 6-10 22.6±3.7 15.3±0.6 322.1±33.5 850.34 897.59±40.8 

 5 11-15 16.4±0.7 14.2±0.5 361.6±8.4 272.47 466.55±137.2 

 

Table 4: 10 ANOVA type 3 Analysis on PCL 100WT% plasticised controls. Significant values are underlined 

and italicised. Factor of Significance 0.05. Rounded to 4 D.P.  

Property Plasticiser 

Type 

Plasticiser 

Concentration 

Plasticiser Type: 

Plasticiser Concentration 

Tensile 

Strength 

0.0020 0.0063 0.0034 

Young’s 

Modulus 

0.7117 0.9960 0.9164 

Elongation 

at Break 

0.0007 0.0000 0.0000 

 

Table 4: 11 LSMEANs Comparisons for plasticised PCL 100WT% controls fibres. Comparisons are made 

between plasticiser types. Significant values are underlined and italicised. Factor of Significance 0.05. 

Rounded to 4 D.P.  

Property Contrasts 5 10 20 

Tensile 

Strength 

Gly-

PEG-200 

0.0093 0.8425 0.1157 

Young’s 

Modulus 

Gly-

PEG-200 

0.7181 0.5147 0.2123 

Elongation 

at Break 

Gly-

PEG-200 

0.0203 0.7444 0.0001 
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Table 4: 12 LSMEANs Comparisons for plasticised PCL 100WT% controls fibres. Comparisons are made 

between plasticiser concentrations. Significant values are underlined and italicised. Factor of Significance 

0.05. Rounded to 4 D.P.   

Property Contrasts Glycerol PEG-

200 

Tensile 

Strength 

5-10 0.8514 0.1401 

5-20 0.0660 0.1121 

10-20 0.1262 0.9998 

Young’s 

Modulus 

5-10 0.9967 0.8802 

5-20 0.9979 0.9867 

10-20 0.9986 0.8642 

Elongation 

at Break 

5-10 0.8642 0.0217 

5-20 0.0008 0.0030 

10-20 0.0003 0.8358 

 

Table 4: 13 PLA 100WT% fibres Plasticised with Glycerol and PEG-200. 

Glycerol 

(%) 

PEG-

200 

(%) 

Number 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max Strain 

(%) 

5  1-5 63.1±6.2 N/A 3574.0±350.0 2.3 2.37±0.1 

20  6-10 35.2±18.8 35.2±18.8 2169.7±322.1 49.4 84.01±44.2 

10  11-15 27.3±3.6 27.3±3.6 2657.9±136.8 4.85 10.18±3.8 

 10 1-5 52.8±13.4 52.8±13.4 2657.9±71.4 94.0 121.92±22.2 

 20 6-10 27.5±4.5 27.5±4.5 2463.8±201.4 10.3 15.83±3.9 

 5 11-15 50.9±2.6 50.9±2.6 2579.4±93.9 5.17 6.81±1.3 

 

Table 4: 14 ANOVA type 3 Analysis on PLA 100WT% plasticised controls. Significant values are underlined 

and italicised. Factor of Significance 0.05. Rounded to 4 D.P. 

Property Plasticiser 

Type 

Plasticiser 

Concentration 

Plasticiser Type: 

Plasticiser Concentration 

Tensile 

Strength 

0.01137 0.0000 0.0000 

Young’s 

Modulus 

0.0191 0.0000 0.0164 

Elongation 

at Break 

0.0000 0.0000 0.0000 
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Table 4: 15 LSMEANs Comparisons for plasticised PLA 100WT% controls fibres. Comparisons are made 

between plasticiser type. Significant values are underlined and italicised. Factor of Significance 0.05. 

Rounded to 4 D.P.   

Property Contrasts 5 10 20 

Tensile 

Strength 

Gly-

PEG-200 

0.0264 0.0019 0.3946 

Young’s 

Modulus 

Gly-

PEG-200 

0.0372 0.5140 0.1333 

Elongation 

at Break 

Gly-

PEG-200 

0.0005 0.0001 0.0506 

 

Table 4: 16 LSMEANs Comparisons for plasticised PLA 100WT% controls fibres. Comparisons are made 

between plasticiser concentrations. Significant values are underlined and italicised. Factor of Significance 

0.05. Rounded to 4 D.P.   

Property Contrasts Glycerol PEG-

200 

Tensile 

Strength 

5-10 0.0005 0.5156 

5-20 0.0935 0.0001 

10-20 0.7812 0.0006 

Young’s 

Modulus 

5-10 0.1176 0.8858 

5-20 0.0014 0.9105 

10-20 0.0702 0.9679 

Elongation 

at Break 

5-10 0.0345 0.0001 

5-20 0.0553 0.0229 

10-20 0.0864 0.0001 
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Table 4: 17 PCL:PLA Hybrid Fibres Plasticised with Glycerol. 

Glycerol 

(%) 

Ratio 

(WT%) 
Pass 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max Strain 

(%) 

5 30:70 1 43.4±4.1 43.4±4.1 2284.9±250.0 79.76 97.91±13.3 

5 30:70 2 41.0±6.1 41.0±6.1 2163.5±291.3 143.97 216.4±55.7 

10 30:70 1 49.9±3.0 49.9±3.0 2132.8±54.8 90.32 120.43±32.7 

10 30:70 2 43.0±0.7 43.0±0.7 2172.3±28.5 51.30 62.73±12.1 

20 30:70 1 29.4±14.5 29.4±14.5 2066.2±419.5 88.75 203.52±83.8 

20 30:70 2 32.9±7.8 32.9±7.8 2049.5±247.7 80.88 188.58±5.4 

5 50:50 1 48.9±11.6 None 2423.6±760.0 3.0 12.50±12.3 

5 50:50 2 38.2±16.5 38.2±16.5 1547.6±605.6 8.7 56.7±47.1 

10 50:50 1 27.2±9.5 27.2±9.5 1686.3±11.6 113.02 180.63±47.9 

10 50:50 2 16.0±0.7 None 897.2±37.0 2.50 2.76±0.2 

20 50:50 1 31.1±10.3 31.1±10.3 987.5±357.9 32.7 47.49±12.5 

20 50:50 2 32.2±9.2 32.2±9.2 1864.4±85.1 16.2 20.39±4.5 

5 70:30 1 16.0±1.9 None 482.4±74.3 5.0 5.65±0.7 

5 70:30 2 13.5±1.3 None 469.3±107.1 4.2 7.08±2.1 

10 70:30 1 17.4±1.5 None 643.9±21.7 4.57 5.57±0.7 

10 70:30 2 18.9±1.2 None 549.3±35.5 5.37 6.31±0.7 

20 70:30 1 8.9±1.1 None 436.4±48.8 5.8 3.98±1.2 

20 70:30 2 19.3±0.9 None 461.7±1.4 9.1 9.76±0.7 
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Table 4: 18 PCL:PLA Hybrid Fibres Plasticised with PEG-200. 

PEG-

200 

(%) 

Ratio 

(WT%) 
Pass 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max Strain 

(%) 

5 30:70 1 40.5±7.3 40.5±7.3 2102.2±284.3 31.83 92.63±57.9 

5 30:70 2 34.3±5.2 34.3±5.2 2307.7±145.1 45.75 58.78±15.8 

10 30:70 1 30.0±3.9 29.3±3.4 1839.1±658.3 13.34 38.22±17.8 

10 30:70 2 30.0±9.1 30.0±9.1 2011.7±640.3 306.53 323.06±21.5 

20 30:70 1 38.5±4.1 38.5±4.1 2169.3±166.3 241.31 301.89±83.3 

20 30:70 2 24.6±4.3 24.6±4.3 1952.4±573.8 119.90 234.44±95.0 

5 50:50 1 34.1±1.6 34.1±1.6 1860.0±190.7 108.05 239.20±103.1 

5 50:50 2 17.1±2.4 None 1105.6±127.8 3.27 4.54±1.3 

10 50:50 1 23.1±2.0 None 945.2±133.3 3.4 4.04±0.5 

10 50:50 2 27.9±2.7 27.9±2.7 1210.2±228.7 73.4 99.51±29.3 

20 50:50 1 25.9±3.6 25.9±3.6 1703.9±107.8 124.6 214.3±68.0 

20 50:50 2 25.2±2.2 None 1124.5±91.2 3.3 3.95±0.7 

5 70:30 1 21.0±4.0 None 949.20±178.0 3.77 5.83±1.7 

5 70:30 2 19.7±0.9 None 535.2±13.6 6.13 6.56±0.3 

10 70:30 1 8.2±1.0 None 648.2±21.2 1.4 3.34±2.1 

10 70:30 2 13.1±1.2 None 593.7±52.1 2.7 4.44±1.2 

20 70:30 1 14.1±1.4 None 573.8±6.2 3.7 5.43±1.4 

20 70:30 2 15.1±0.6 None 582.4±13.4 3.9 4.17±0.2 
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Table 4: 19 Significant Interactions resulting from Individual factors, and Combined. Significant values are 

underlined and italicised. Factor of Significance 0.05. Rounded to 4 D.P. 

Mechanical 

Property 

Plast Conc PCL Pass Plast:Conc:PCL:Pass 

Tensile 

Strength 

0.2793 0.0367 0.0000 0.2383 0.6216 

Young’s 

Modulus 

0.0293 0.0291 0.0000 0.0302 0.3598 

Elongation 

Break 

0.4501 0.7537 0.0475 0.7395 0.2462 

 

Table 4: 20 Effect of PCL content, with respect to Plasticiser type, concentration and number of passes. 

Significant values are underlined and italicised. Factor of Significance 0.05. Rounded to 4 D.P. 

  Concentration 5 10 20 

Plasticiser Mechanical 

Property 

Contrasts 1 2 1 2 1 2 

Glycerol 

Tensile 

Strength 

30-50 0.8382 0.7029 0.0105 0.0001 0.5804 0.9549 

30-70 0.0001 0.0032 0.0001 0.0001 0.0018 0.0043 

50-70 0.0001 0.0002 0.1603 0.9352 0.0314 0.0017 

Young’s 

Modulus 

30-50 0.1308 0.9984 0.0220 0.0013 0.1851 0.2067 

30-70 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

50-70 0.0001 0.0001 0.0542 0.2778 0.0031 0.0001 

Elongation 

at Break 

30-50 0.1017 0.0729 0.9048 0.9063 0.1404 0.0062 

30-70 0.0791 0.0343 0.1928 0.6175 0.0399 0.0026 

50-70 0.9926 0.9461 0.0816 0.8636 0.8383 0.9564 

PEG-200 

Tensile 

Strength 

30-50 0.4365 0.0425 0.8822 0.2122 0.0912 0.9969 

30-70 0.0055 0.0226 0.0792 0.0006 0.0018 0.0870 

50-70 0.1247 0.9663 0.2065 0.0735 0.3246 0.1022 

Young’s 

Modulus 

30-50 0.3073 0.0527 0.5882 0.0001 0.2278 0.3332 

30-70 0.0014 0.0001 0.0461 0.0001 0.0001 0.0002 

50-70 0.0816 0.0283 0.3255 0.8926 0.0043 0.0186 

Elongation 

at Break 

30-50 0.2206 0.9721 0.2742 0.0385 0.0072 0.1535 

30-70 0.3129 0.7536 0.0694 0.0042 0.0001 0.0087 

50-70 0.0067 0.8755 0.7630 0.7024 0.0974 0.4675 
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Table 4: 21 Effect of Plasticiser Concentration, with respect to PCL content, plasticiser type, and number of 

passes. Significant values are underlined and italicised. Factor of Significance 0.05. Rounded to 4 D.P. 

   30 50 70 

Plasticiser  Mechanical 

Property 

Contrasts 1 2 1 2 1 2 

Glycerol 

Tensile 

Strength 

5-10 0.9827 0.3843 0.0033 0.0002 0.9992 0.9304 

5-20 0.0904 0.9604 0.0012 0.7144 0.5253 0.9822 

10-20 0.0607 0.2527 0.9456 0.0032 0.5484 0.8506 

Young’s 

Modulus 

5-10 0.2044 0.7957 0.0399 0.0112 0.8380 0.9442 

5-20 0.0288 0.7365 0.0451 0.6335 0.9067 0.8312 

10-20 0.6451 0.9943 0.9986 0.1064 0.5862 0.6403 

Elongation 

at Break 

5-10 0.8865 0.2546 0.1109 0.9753 0.9996 0.9999 

5-20 0.9589 0.6133 0.9017 1.0000 0.9998 0.9994 

10-20 0.7384 0.0349 0.2511 0.9753 0.9999 0.9998 

PEG-200 

Tensile 

Strength 

5-10 0.2281 0.9306 0.6415 0.9159 0.8002 0.2619 

5-20 0.6521 0.2004 0.5329 0.7906 0.8527 0.4738 

10-20 0.3076 0.3617 0.9835 0.9649 0.9946 0.9133 

Young’s 

Modulus 

5-10 0.1355 0.9890 0.3233 0.0575 0.7602 0.9850 

5-20 0.9977 0.1845 0.9925 0.6847 0.4376 0.5841 

10-20 0.1190 0.2374 0.3843 0.2960 0.8587 0.6876 

Elongation 

at Break 

5-10 0.7187 0.0365 0.0435 0.9668 1.0000 0.9978 

5-20 0.0010 0.0637 0.5532 0.7977 1.0000 0.9987 

10-20 0.0107 0.9706 0.3414 0.9181 0.9999 0.9999 

 

  



83 

Table 4: 22 Effect of Plasticiser type, with respect to PCL content, plasticiser concentration and number of 

passes. Significant values are underlined and italicised. Factor of Significance 0.05. Rounded to 4 D.P. 

   30 50 70 

 Mechanical 

Property 

Contrasts 1 2 1 2 1 2 

5 

Tensile 

Strength 

Gly-PEG 0.2829 0.9317 0.0052 0.0022 0.7423 0.4469 

Young’s 

Modulus 

Gly-PEG 0.0326 0.3659 0.0930 0.1637 0.1303 0.4241 

Elongation 

at Break 

Gly-PEG 0.4526 0.0751 0.0037 0.8441 0.9775 0.9818 

10 

Tensile 

Strength 

Gly-PEG 0.0047 0.1132 0.6856 0.1657 0.7882 0.2439 

Young’s 

Modulus 

Gly-PEG 0.0191 0.9023 0.5105 0.4431 0.7983 0.7530 

Elongation 

at Break 

Gly-PEG 0.6263 0.0237 0.1414 0.8172 0.9923 0.9567 

20 

Tensile 

Strength 

Gly-PEG 0.3875 0.1733 0.7947 0.0862 0.3826 0.8215 

Young’s 

Modulus 

Gly-PEG 0.6181 0.1109 0.5395 0.1893 0.4744 0.6964 

Elongation 

at Break 

Gly-PEG 0.0080 0.6453 0.1316 0.4043 0.9950 0.9532 
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Table 4: 23 Effect of Pass Number, with respect to PCL content, Plasticiser Type and Concentration. 

Significant values are underlined and italicised. Factor of Significance 0.05. Rounded to 4 D.P. 

   30:70 50:50 70:30 

Plastici

ser 

Mechan

ical 

Property 

Contra

sts 

5 10 20 5 10 20 5 10 20 

Glycer

ol 

Tensile 

Strength 

1-2 0.24

22 

0.97

71 

0.49

71 

0.34

85 

0.085

6 

0.05

27 

0.95

37 

0.64

86 

0.33

80 

Young’s 

Modulu

s 

1-2 0.03

35 

0.84

30 

0.23

57 

0.79

09 

0.456

2 

0.21

30 

0.75

55 

0.94

8 

0.87

77 

Elongati

on 

Break 

1-2 0.74

05 

0.42

98 

0.31

95 

0.85

75 

0.104

70 

0.80

07 

0.98

32 

0.98

41 

0.97

74 

PEG-

200 

Tensile 

Strength 

1-2 0.99

11 

0.20

26 

0.12

27 

0.22

02 

0.949

5 

0.62

43 

0.62

36 

0.65

58 

0.88

87 

Young’s 

Modulu

s 

1-2 0.35

95 

0.00

82 

0.36

11 

0.97

67 

0.393

1 

0.49

54 

0.68

01 

0.89

89 

0.86

32 

Elongati

on 

Break 

1-2 0.47

48 

0.30

75 

0.03

18 

0.01

06 

0.939

7 

0.35

06 

0.97

60 

0.98

02 

0.98

08 
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4.4 Discussion 

 

Comparisons between the various processing temperatures were discussed. This allows 

identification of the temperature that produces the highest quality fibres. Further, 

comparisons are made between the plasticised and non-plasticised fibres. This aims to 

determine if plasticising the fibres was beneficial.  

 

4.4.2 PCL and PLA Repeatability 

 

When PCL control fibres are processed, a high repeatability is noticed: this indicates the 

process is good. PCL control fibres exhibited a temperature dependent effect. It was 

determined that, as processing temperature increases, PCL’s mechanical properties reduce. 

This was proposed to relate to PCL undergoing thermal degradation. It has been reported that 

PCL 100WT% materials degrade at 358° (Zhao and Zhao 2016). While the actually 

degradation temperature was never tested with PCL, it must be noted that clear degradation 

symptoms were present. The PCL fibres, especially when processed at 180 or 190°C displayed 

reduced properties, and yellowing of the fibre (Pospı́šil, Horák et al. 1999). PCL’s thermal 

degradation occurs at these temperatures because of several factors: the internal temperature 

of the machine, and the molecular weight of PCL. It is not possible to determine the real 

temperature the material is exposed to, as several factors must be considered. Firstly, the 

temperature as a result of electrical heating: this is approximately the reported temperature 

(180 or 190°C). However, the screwless extrusion machine applies shear forces to allow 

extrusion. When applied to the polymer, the shear forces heat the material, increasing the 

‘real’ temperature to be above the displayed temperature (Pospıš́il, Horák et al. 1999). This 

increase has the potential to take the actual applied temperature passed the reported thermal 

degradation temperature for PCL (358°C) (Zhao and Zhao 2016). Further, a polymers thermal 

degradation rate is a result of its molecular weight (Mittal, Sahana et al. 2007). The CAPA 6506 

(PCL used) datasheet stats the molecular weight as 50,000 g/mol, no error is provided. 

Variations to the molecular weight will alter the degradation rate (Mittal, Sahana et al. 2007). 

Based on the machine’s temperature, slight variations in the molecular weight of PCL could 

significantly alter the speed of degradation. In the event that the extruded PCL’s molecular 

weight is lower in comparison to the quoted value, degradation symptoms would be expected 

to appear at an increased rate (Mittal, Sahana et al. 2007). Based on the observations for PCL 

100WT% fibres, a 160°C extrusion temperature produces the best results. The results 

observed at 160°C are within the expected error or literary values (Monticelli, Calabrese et al. 

2014). 

 

In terms of repeatability, PLA control fibres were found to be highly consistent. Over the range 

of temperatures used, PLA does not show any significant differences. The fact that PLA’s 

mechanical properties show no temperature dependent effects is highly beneficial in this 

work. Ideally, PLA would be processed at the lowest possible temperature, providing higher 

quality hybrid fibres (PCL works best at lower temperatures). One likely explanation for PLA’s 

consistency is that it is amorphous (Guttman, DiMarzio et al. 1981). Essentially, an amorphous 

polymer will show very little in terms of temperature dependent effects (Guttman, DiMarzio et 

al. 1981). An amorphous polymer does not undergo melting in the same manner as a 

crystalline polymer – no crystal-structure changes occur (Guttman, DiMarzio et al. 1981). 
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4.4.3 PCL:PLA Hybrid Fibre 

 

It was readily apparent that the non-plasticised hybrid fibres blended poorly (see section 3.3). 

Typically, it was noted that the fibres were brittle, with some discolouration; these effects 

were more pronounced when the fibres underwent 3 passes. These are signs of a degraded 

fibre (Pospıš́il, Horák et al. 1999). The fibres showed a significant reduction in mechanical 

properties, a further indication of thermal degradation (Pospıš́il, Horák et al. 1999). No hybrid 

fibre displayed properties in keeping with the minimum criteria (table 2: 4). Primarily, this is 

a result of issues with interfacial bonding between the two materials (PCL and PLA); issues in 

bonding produce mechanically weak, unusable fibres (Malinowski 2016). There is a large 

amount of support in this issue: materials with vastly different glass transition temperatures 

do not blend well (El-Hadi 2014). What this means is that a plasticiser must be added to the 

blend to produce acceptable fibres (El-Hadi 2014). For this reason, glycerol and PEG-200 were 

investigated as plasticisers.  

 

For the most part, plasticisation of the hybrid blends improved the blend properties. The 

fibres were not found to exhibit traces of degradation (see section 3.3). This is a significant 

improvement over the non-plasticised hybrids. The significant improvement in mechanical 

properties would suggest that the plasticisation process has been successful: no distinct glass 

transitions are present (El-Hadi 2014). Based on the results displayed in tables 4: 17 and 18, 

an interesting trend has been observed. The plasticisation process (both PEG-200 and 

glycerol) proved to be significantly more successful when PLA content was high (tables 4: 17 

and 18). One possible explanation for this is the plasticiser primarily effecting PLA. The glass 

transition temperature of PLA, 60°C (Urquijo, Guerrica-Echevarría et al. 2015) can be 

beneficially reduced in this system. However, PCL has a -60°C glass transition temperature 

(Wan, Lu et al. 2009); further reductions to this are not beneficial. A higher PLA content could 

be proportional to a higher reduction in the glass transition temperature of PLA, resulting in a 

higher quality blend. However, further work would be required to prove this effect.  

 

Based on the mechanical property criteria specified in table 2: 4 several suitable fibres can be 

identified. Briefly, the mechanical properties criteria are: fibres will have high elongation at 

break (over 300%), and have a reasonable Young’s modulus (2500 MPa or higher, inclusive of 

standard deviation). Table 4: 24 displays the four hybrid fibres that fit these criteria. The 

criteria from table 2: 4 were not suitable for the plasticised control fibres. PCL 100WT% fibres 

were not found to reach a 2500 MPa Young’s modulus; likewise, PLA 100WT% fibres did not 

reach a 300% elongation at break. However, for the sake of comparison, the control fibres 

were essential. As such, new criteria were defined, based on literature. It was desired that the 

plasticised control fibres would not display a significant reduction in mechanical properties, 

based on the non-plasticised literary values in table 2: 2. Four plasticised control fibres were 

found to meet these criteria; one PLA and three PCL fibres (table 4: 24). The elongation at 

break and Young’s modulus were improved by plasticising; whereas the PCL fibres displayed a 

small Young’s modulus increase, and the same elongation at break (within error) as the 

literary values reported by Monticelli, Calabrese et al. (2014).  

 

Based on the eight fibres that meet their respective criteria, a clear trend is noted (table 4: 24). 

Hybrid fibres plasticised with PEG-250 had more improved properties when compared to 

glycerol plasticised fibres, with six of the eight fibres containing PEG-250 (table 4: 24). Further 

analysis of glycerol plasticised fibres was not beneficial to this work as too few fibres met the 
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criteria. Four hybrid fibres were chosen to be progressed for degradation (section 5) and 

shape recovery (section 6) testing, these are summarised in table 4: 25. PCL:PLA 30:70WT% 

fibres, with 25% PEG-250 had both 1 and 2 pass variants meet the criteria, therefore these 

were progressed. Plasticised PCL fibres had a 25% solution meet the criteria, therefore this 

was used, due to its similarities with the hybrid (all 25% PEG-250). However, a single PLA 

fibre was found to meet the criteria: PLA 100WT% plasticised with 10% PEG-250. While this 

used a lower PEG-250 content (10% instead of 25%), it was the only PLA fibre that was 

suitable.  

 

4.5 Summary 

 

Overall, several conclusions were made in relation to mechanical properties of the produced 

hybrid fibres. During the repeatability testing, PCL exhibited a temperature dependent 

degradation to mechanical properties, where a higher temperature increased the reduction. In 

this same scenario, PLA was found to lack any processing temperature dependent change in 

its mechanical properties. PCL:PLA hybrid fibres had low mechanical properties when not 

plasticised. The non-plasticised hybrid were unusable for future work. Plasticisation of the 

PCL:PLA hybrid blends proved successful. A set of four fibres were identified (table 4: 25) as 

the best hybrid fibres based on the relevant criteria mentioned in table 2: 4. These fibres were 

progressed for shape recovery (section 5) and degradation (section 6) studies.  
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Table 4: 24 Best Plasticised Hybrid and Control Fibres based on The Mechanical Property Criteria Given in 

Table 2: 4 

Material 
Ratio 

(WT%) 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max 

Strain 

(%) 

PCL:PLA:Gly 30:70:20_1P 32.9±7.8 32.9±7.8 2049.5±247.7 80.88 316.42 

PCL:PLA:PEG-

200 

30:70:20_0P 38.5±4.1 38.5±4.1 2169.3±166.3 241.31 419.72 

PCL:PLA:PEG-

200 

30:70:20_1P 24.6±4.3 24.6±4.3 1952.4±573.8 119.90 352.42 

PCL:PLA:PEG-

200 

50:50:5_0P 34.1±1.6 34.1±1.6 1860.0±190.7 108.05 359.92 

PLA:PEG-200 100:10 52.8±13.4 52.8±13.4 2657.9±71.4 94.0 148.37 

PCL:Gly 100:10 21.4±1.7 17.73±1.0 395.1±12.2 701.82 920.37 

PCL:PEG-200 100:10 21.5±3.5 16.26±1.3 370.8±110.4 750.18 997.97 

PCL:PEG-200 100:20 22.6±3.7 15.3±0.6 322.1±33.5 850.34 949.89 

 

Table 4: 25 Fibres Progressed for Shape Recovery (section 5) and Degradation (section 6) Testing. 

Material 
Ratio 

(WT%) 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Graph 

Strain 

(%) 

Max 

Strain 

(%) 

PCL:PEG-200 100:20 22.6±3.7 15.3±0.6 322.1±33.5 850.34 949.89 

PCL:PLA:PEG-

200 

30:70:20_0P 38.5±4.1 38.5±4.1 2169.3±166.3 241.31 419.72 

PCL:PLA:PEG-

200 

30:70:20_1P 24.6±4.3 24.6±4.3 1952.4±573.8 119.90 352.42 

PLA:PEG-200 100:10 52.8±13.4 52.8±13.4 2657.9±71.4 94.0 148.37 
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Chapter 5 Shape Recovery 

 

5.1 Introduction 

 

Establishing the shape recovery ability and properties of the materials is important. The 

ability of a material to exhibit shape recovery is important for some biomedical applications, 

such as sutures (Lendlein and Langer 2002). While five stimuli methods have been identified 

(section 2.4), only thermal shape recovery is investigated here. The methods employed to test 

thermal shape recovery are solely meant to gain preliminary insight into how the fibres 

behave. The methods will be further refined in a separate study to characterise the shape 

recovery behaviours of the optimal fibres. 

 

5.2 Materials and Methods 

 

The materials and methods employed in shape recovery testing are described here. 

 

5.2.1 Materials 

 

Across all shape recovery testing, the same equipment was used. Two solutions were required 

for shape recovery testing: heated water, and cold water. To achieve this, a Lab Companion 

TS-14S hotplate and magnetic stirrer was used. This device could heat up to 350°C with a 

0.1°C resolution. A glass petri dish was filled with water and heated on top of this to create the 

water bath. Cold water was in a second, non-heated petri dish. All temperature measurements 

were taken using a Digitech QM7215 non-contact thermometer. This device has a range of -30 

– +260°C, with a 2% error.  

 

The materials used in this section were those fabricated in the materials processing chapter 3. 

The original materials were cut to 70 mm lengths prior to testing. The best fibres referred to 

in this chapter are those identified in table 4: 20. Fifty-two polymer fibres were used in this 

section; table 5: 1 indicates the polymer ratios used. 
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Table 5: 1 Materials used in Shape Recovery Testing 

Polymer 

Constituents 

Ratio 

(WT%) 

Passes Glycerol Content 

(%) 

PEG-200 Content 

(%) 

PCL 

100 1 0 0 

100 

1 5 0 

1 10 0 

1 20 0 

100 

1 0 5 

1 0 10 

1 0 20 

PCL:PLA 

50:50 3  0 

70:30 3  0 

30:70 

1 5 0 

2 5 0 

1 10 0 

2 10 0 

1 20 0 

2 20 0 

50:50 

1 5 0 

2 5 0 

1 10 0 

2 10 0 

1 20 0 

2 20 0 

70:30 

1 5 0 

2 5 0 

1 10 0 

2 10 0 

1 20 0 

2 20 0 
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Table 5: 2.Continued Materials used in Shape Recovery Testing 

Polymer 

Constituents 

Ratio 

(WT%) 

Passes Glycerol Content 

(%) 

PEG-200 Content 

(%) 

PCL:PLA 

30:70 

1 0 5 

2 0 5 

1 0 10 

2 0 10 

1 0 20 

2 0 20 

50:50 

1 0 5 

2 0 5 

1 0 10 

2 0 10 

1 0 20 

2 0 20 

70:30 

1 0 5 

2 0 5 

1 0 10 

2 0 10 

1 0 20 

2 0 20 

PLA 

100 1 0 0 

100 

1 5 0 

1 10 0 

1 20 0 

100 

1 0 5 

1 0 10 

1 0 20 
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5.2.2 Methods 

 

A petri-dish of 70 mL water was heated on the hot plate to a variety of temperatures. The petri 

dish was placed centrally on the hot plate, with no overhang; this ensured equal heat 

distribution. Initially, testing involved a single 70 mm fibre from each set placed into 37.5°C 

water (requiring a machine temperature of 43°C), following the method detailed above. 

Typically, 37.5°C is identified as human physiological temperature (Vieira, Vieira et al. 2011, 

Pinho, Rodrigues et al. 2016). This test is important to investigate shape recovery for 

biocompatible materials. A second run of experiments involving the best fibres (identified in 

table 4: 20) were carried out across a broad range of temperatures: 30 – 90°C. However, it was 

noted that the hot plate temperature was, in most cases, considerably higher than the water 

temperature. Table 5: 2 displays a comparison of the water temperature and the required hot 

plate temperature. For each temperature tested, a new 70 mm fibre was used. In all cases, the 

fibre was completely submerged in 70 mL of heated water, and left for 30 seconds. The fibre 

was then removed and deformed (curled into a circle), then cooled in a 1000 mL beaker of 

cold water for 30 seconds. Finally, the fibre was again submerged in the 70 mL of hot water, 

and recovery to its original shape timed until recovery had stopped.  

 

Table 5: 3 Comparison of Required to Machine Temperatures for Shape Recovery 

Required Temperature (°C) Hot Plate Temperature (°C) 

30 33 

40 47 

50 60 

60 75 

70 90 

80 130 

90 190 
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5.3 Results 

 

Two shape memory studies were performed. The initial study tested all plasticised fibres for 

their shape recovery ability at human physiological temperature (37.5°C). The second study 

performed used only the best fibres as defined in table 4: 25 across a 30 – 90°C temperature 

range.  

 

5.3.1 In Vitro Study Under Human Physiological Temperature (37.5°C) 

 

In total, there were 52 different fibre sets tested at human physiological temperature, 37.5°C 

(table 5: 3). Of those 52 fibres, 18 (35%) were found to not exhibit shape recovery. PCL 

(100WT%) fibres, plasticised or not, did not display shape recovery. One plasticised PLA fibre, 

PLA 100WT% plasticised with 5% glycerol also did not exhibit shape recovery. It must be 

noted that said fibre had a milky-yellow appearance, as opposed to the typical PLA appearance 

of clear and transparent. This suggests the fibre was contaminated during processing. Out of 

all hybrid fibres plasticised with PEG-200, only one did not exhibit shape recovery: PCL:PLA 

70:30WT%, plasticised with 20% PEG-200, 1 pass variant. Seven of the glycerol plasticised 

PCL:PLA fibres did not exhibit shape recovery. The remaining 34 fibres (65%) were found to 

exhibit shape recovery.  

 

Across those that exhibited shape recovery, 31 fibres had identical responses: a 5 second 

recovery time. Two fibres recovered slower, at 20 seconds: PCL:PLA 50:50WT% 5% glycerol 

plasticised, 1 pass variant; and PLA 100WT%. One fibre produced an instant response: PLA 

100WT% plasticised with 20% PEG-200. Two non-plasticised hybrid fibres underwent shape 

recovery testing at 37.5°C: PCL:PLA 50:50WT% and 70:30WT%. Neither of these fibres 

exhibited shape recovery when tested at 37.5°C. The significant improvement in shape 

recovery properties when the fibres were plasticised suggests that the process was successful.  
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Table 5: 4 Results from Physiological Temperature Testing: Shape Recovery. 

Material Ratio Pass Set Ref Number Response to 37.5°C Recovery Time (s) 

PCL 100 1 N/A None N/A 

PCL:Gly 

100:10 1 1-5 None N/A 

100:20 1 6-10 None N/A 

100:5 1 11-15 None N/A 

PCL:PEG-200 

100:10 1 1-5 None N/A 

100:20 1 6-10 None N/A 

100:5 1 11-15 None N/A 

PCL:PLA:Gly 

50:50:5 
1 1-5 Yes 20 

2 6-10 None N/A 

70:30:5 
1 11-15 Yes 5 

2 16-20 Yes 5 

50:50:20 
1 21-25 None N/A 

2 26-30 Yes 5 

70:30:20 
1 31-35 None N/A 

2 36-40 None N/A 

50:50:10 
1 41-45 Yes 5 

2 46-50 None N/A 

70:30:10 
1 51-55 Yes 5 

2 56-60 Yes 5 

30:70:10 
1 61-65 Yes 5 

2 66-70 None N/A 

30:70:20 
1 71-75 Yes 5 

2 76-80 Yes 5 

30:70:5 
1 81-85 None N/A 

2 86-90 Yes 5 
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Table 5: 5.Continued Results from Physiological Temperature Testing: Shape Recovery. 

Material Ratio Pass Set Ref 

Number 

Response to 

37.5°C 

Recovery Time (s) 

PCL:PLA:PEG-

200 

50:50:10 
1 1-5 Yes 5 

2 6-10 Yes 5 

50:50:20 
1 11-15 Yes 5 

2 16-20 Yes 5 

70:30:10 
1 21-25 Yes 5 

2 26-30 Yes 5 

70:30:20 
1 31-35 None N/A 

2 36-40 Yes 5 

30:70:10 
1 41-45 Yes 5 

2 46-50 Yes 5 

30:70:20 
1 51-55 Yes 5 

2 56-60 Yes 5 

30:70:5 
1 61-65 Yes 5 

2 66-70 Yes 5 

50:50:5 
1 71-75 Yes 5 

2 76-80 Yes 5 

70:30:5 
1 81-85 Yes 5 

2 86-90 Yes 5 

PLA 100 1 N/A Yes 20 

PLA:Gly 

100:5 1 1-5 None N/A 

100:20 1 6-10 Yes 5 

100:10 1 11-15 Yes 5 

PLA:PEG-200 

100:10 1 1-5 Yes 5 

100:20 1 6-10 Yes Instant/unmeasurable 

100:5 1 11-15 Yes 5 

PCL:PLA 
50:50 3 N/A None N/A 

70:30 3 N/A None N/A 
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5.3.2 Best Fibre Test 

 

Of the best fibres identified in the mechanical testing section (table 4: 20), PCL was deemed to 

be not appropriate for shape recovery testing as it will melt when the temperature exceeds 

60°C (Monticelli, Calabrese et al. 2014). Further, PCL was not observed to recover at 37.5°C 

(table 5: 3). Table 5: 4 summarises the results from the best fibre shape recovery study. 

Further, figures 5: 1 – 4 provide a series of images to demonstrate what the fibre looks like at 

each stage of the shape recovery test. High quality images are available for every stage of best 

fibre testing in Appendix D. 

 

The best fibres, based on mechanical properties underwent shape recovery testing across a 

range of temperatures (30°C – 90°C). All of the fibres tested were able to display shape 

recovery across all temperatures (table 5: 4). However, recovery occurred at varying rates in 

response to the temperature. PLA 100WT% fibres plasticised with 10% PEG-200 displayed 

complete recovery at all temperatures. At lower temperatures (30°C – 40°C) PLA 100WT% 

fibres plasticised with 10% PEG-200 took 5 seconds to recover completely. However, at 

temperatures of 50°C and higher, PLA 100WT% fibres plasticised with 10% PEG-200 fibres 

underwent what is being termed here as heat constriction. This is the phenomenon that 

occurs when the materials contract as a result of the heat. The constriction resulted in a new, 

semi-deformed conformation. As such, the fibres were only able to recover to the semi-

deformed shape (figure 5: 1 – 4).  

 

The two hybrid fibres, PCL:PLA 30:70 plasticised with 20% PEG-200 1 and 2 pass variants, 

produced almost identical results to each other (table 5: 4). At 30°C, neither hybrid material 

displayed complete recovery. The recovery times at 40°C varied, dependent on whether the 

hybrid underwent 1 or 2 pass. The 1 pass variant took 20 seconds to fully recover, while the 2 

pass variant recovered in 5 seconds. At 50°C, the complete recovery of both hybrid fibres took 

5 seconds. Heat constriction was apparent in both 1 and 2 pass variants from 60°C – 90°C; in 

all cases, the effects were instant. The fibres however, could only recover to the point of heat 

constriction (figures 5: 1 – 4).  
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Figure 5: 1 PCL:PLA 30:70WT% plasticised with 20% PEG-200 2 pass variant. Permanent shape. 

 

 

Figure 5: 2 PCL:PLA 30:70WT% plasticised with 20% PEG-200 2 pass variant. Thermal Contraction. 
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Figure 5: 3 PCL:PLA 30:70WT% plasticised with 20% PEG-200 2 pass variant. Deformed shape 

 

 

Figure 5: 4 PCL:PLA 30:70WT% plasticised with 20% PEG-200 2 pass variant. Recovered shape 
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Table 5: 6 Results of Shape Recovery Testing for the Best Fibres 

Temperature 

(°C) 

PLA:PEG-200 PCL:PLA:PEG-200 

100:10 30:70:20_1P 30:70:20_2P 

30 

Complete 

recovery. ~t=5 

sec. 

Incomplete recovery after 

30 seconds. 

Incomplete recovery after 

30 seconds. 

40 

Complete 

recovery. ~t=5 

sec. 

Complete recovery to pre-

30°C conformation. ~t=20 

secs. 

Complete recovery to pre-

30°C conformation. ~t=5 

sec. 

50 
Thermal 

contraction. 

Complete recovery. ~t=5 

sec. 

Complete recovery. ~t=5 

sec. 

60 

Thermal contraction occurs on all fibres. Recovering to the point of heat 

constriction. 

Recovery was instant in all cases. As soon as the fibres made contact with the 

heated water, they recovered.  

70 

80 

90 
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5.4 Discussion 

 

The results from both shape recovery studies are discussed in sections 5.4.1 and 5.4.2. 

 

5.4.1 Human Physiological Temperature 

 

In no case were PCL 100WT% fibres observed to display shape recovery. The ability of a 
material to undergo thermal transitions is important for their ability to display shape recovery 

(Behl and Lendlein 2007). In the case of PCL 100WT% fibres, two thermal transition points 

are observed: glass transition, -60°C, and melting 60°C (Jamshidian, Tehrany et al. 2010). As a 

result of these transition points, PCL undergoes recovery at temperatures above -60°C. 

However, the temperatures applied to the fibres here were considerably higher than PCL’s 

glass transition. As a result, PCL 100WT% fibres could not undergo shape fixation, a 

temperature below the thermal transition temperatures is required (Behl and Lendlein 2007). 

Within the tested temperature range, PCL’s melting point was observed (60°C); however, a 

polymer will not undergo shape recovery after it has melted. It is possible, that if 

temperatures were applied around PCL’s glass transition, it would in fact undergo shape 

recovery. No future work needs to be done around the glass transition of PCL: it is not 

appropriate for human use. 

 

Unlike PCL 100WT% fibres, all but one PLA 100WT% fibre exhibited shape recovery. A single 

PLA 100WT% fibre, plasticised with 5% glycerol did not exhibit shape recovery (table 5: 3). 

However, this fibre was milky yellow in colour, rather than transparent and colourless; this 

would suggest the fibre was contaminated. The one major difference between the two 

materials are their thermal transition points: PLA’s glass transition is 60°C, with no melting 

point (Jamshidian, Tehrany et al. 2010). As such, the temperatures applied here are more 

suited for PLA’s glass transition. Further, PLA is an amorphous polymer, while PCL is semi-

crystalline (Middleton and Tipton 2000). PLA fibres can easily undergo molecular chain 

realignment as there is not defined molecular structure in amorphous materials (Guttman, 

DiMarzio et al. 1981). An effect on shape recovery was observed with both types of plasticiser 

(glycerol and PEG-200). When not plasticised, PLA 100WT% fibres had a slower recovery than 

the plasticised variants. The PLA 100WT% fibres were found to take 20 seconds to completely 

recovery, when plasticised this was reduced to 5 seconds. One fibre, PLA 100WT% plasticised 

with 20% PEG-200 was observed to recover instantly, much faster than both the control and 

other plasticiser concentrations. The two plasticisers (Glycerol and PEG-200) used here 

function to reduce the glass transition temperature of the material they are applied to (Byun, 

Kim et al. 2010). The reduction in proposed glass transition temperature could explain why 

the plasticised PLA fibres recover faster: the applied temperature is closer to the transition 

point, so a more pronounced effect was observed A reduction in glass transition temperature 

to 21°C in PLA, with the addition of 20% PEG-400 has been reported (Mekonnen, Mussone et 

al. 2013). However, the glass transition temperatures of the plasticised fibres was never 

tested. As such, future work would aim to quantify the reduction to glass transition 

temperatures.  

 

There were inconsistencies in plasticised hybrid fibre recovery. Glycerol plasticisation of 

hybrid fibres appeared to be substantially less effective than PEG-200 plasticisation. In the 

case of glycerol plasticised hybrid fibres, only 61% exhibited shape recovery (11/18), whereas 
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94% of hybrid fibres plasticised with PEG-200 exhibited shape recovery (17/18). Within the 

glycerol plasticised hybrid set, there appears to be a trend in whether or not fibres recover. 

Regardless of the glycerol concentration (5, 10, or 20%) PCL:PLA 50:50WT% hybrids display 

one fibre or the pair unable to recover. PCL:PLA 30:70WT% fibres plasticised by 5% glycerol 

at 1 passes did not display shape recovery. Similarly, the 2 pass variant of PCL:PLA 30:70WT% 

fibre plasticised with 10% glycerol did not recover. When a PCL:PLA 70:30WT% ratio was 

plasticised with 20% glycerol fibres did not exhibit shape recovery. The large number of fibres 

that could not undergo shape recovery suggest that glycerol is not the optimal plasticiser for 

these materials. Unlike glycerol plasticised hybrid fibres, only a single PEG-200 plasticised 

hybrid fibre lacked shape recovery: PCL:PLA 70:30WT% 2 pass variant. The significant 

difference in shape recovery is a result of how the two separate plasticisers operated on the 

materials. There is some evidence reported in the literature that PLA and glycerol are 

immiscible (Müller, Bere et al. 2016). It must be noted that Müller, Bere et al. (2016) used 

difference processes and materials to the work carried out for this project. This could have 

prevented adequate plasticisation of the materials.  

 

While only 61% of the plasticised hybrid fibres exhibited shape recovery, this is a significant 

improvement on the non-plasticised hybrids. Neither the PCL:PLA 50:50WT% or 70:30WT% 

non-plasticised fibres exhibited shape recovery. This would suggest that, for the most part, 

plasticising the hybrid fibres improved their ability to undergo shape recovery.  

 

5.4.2 Best Fibre Test 

 

The best fibres summarised in table 4: 20 underwent a series of tests. PCL (100WT%) best 

fibres were excluded from this analysis. Any fibre that contains PCL 100WT%, was 

demonstrated to not exhibit a shape recovery (table 5: 3). Further, the 60°C melting 

temperature of PCL meant half of the temperatures tested (60°C – 90°C) were not suitable 

(Middleton and Tipton 2000). It was determined that due to the lack of shape recovery at 

37.5°C, and PCL’s melting point (60°C), testing PCL 100WT% fibres across this range would 

not yield any useful results.  

 

During shape recovery testing at 30°C, two different effects were observed. PLA fibres 

completely recovered, while hybrid fibres only partially recovered. This effect is primarily 

observed as a result of the differing polymer contents in the fibres. Hybrid fibres are liable to 

exhibit blend homogeneity issues (Middleton and Tipton 2000). PCL does not exhibit shape 

recovery, therefore in the event that the hybrid fibres are not optimally blended, reductions to 

shape recovery are expected. All three fibre types tested in at temperatures of 40°C displayed 
complete shape recovery. Both PLA 100WT% (10% PEG-200 plasticised) and the 2 pass 

hybrid fibre variant exhibited complete shape recovery after 5 seconds at 40°C (table 5: 4). 

The 1 pass variant of PCL:PLA 30:70WT%, plasticised with a 20% PEG-200 solution did 

exhibit shape recovery, but took 20 seconds to recover at 40°C. This would suggest that the 1 

pass hybrid fibre variant lacked blend homogeneity, thereby reducing its recovery time. At a 

temperature of 50°C, the two PCL:PLA 30:70WT%, 20% PEG-200 plasticised fibres both 

displayed complete shape recovery after 5 seconds. This would suggest that the 50° is hot 

enough to overcome blend homogeneity issues. However, PLA 100WT% 10% PEG-200 

plasticised fibres exhibited thermal contraction. It has been suggested that amorphous 

polymers undergo thermal contraction when their glass transition temperatures are exceeded 

(Kobayashi, Okajima et al. 1967). This would suggest that PLA 100WT% fibres plasticised with 
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10% PEG-200 are displaying a reduction in glass transition temperature. PLA 100WT% 

materials are suggested to have a 60°C glass transition temperature (Middleton and Tipton 

2000). The difference in the two values would suggest that PLA’s glass transition temperature 

has been reduced by 10°C, to 50°C.  

 

The response of all three fibres to temperatures of, and exceeding, 60°C is identical. All fibres 

undergo thermal contraction when submerged in the water (figure 5: 2 displays this effect). In 

this work, the fibres curled in response to heat. However, the response to heat disrupted the 

recovery process. Any fibre that curled in response to heat could not recover to the initial 

conformation. No testing was carried out to demonstrate the ability of the fibres to reverse 

thermal contraction. Future work could be centred on this; heating the fibres to above 60°C, 

then attempting shape recovery at 40°C. This was not attempted here. Thermal contraction 

causes the fibres to recover to their contracted state, rather than their permanent shapes. The 

two PCL:PLA 30:70WT% hybrid fibres, plasticised with 20% PEG-200 appear to exhibit 

thermal contraction at PLA’s glass transition temperature: 60°C (Middleton and Tipton 2000). 

The discrepancy between the two hybrid fibres, and PLA fibre suggests that the plasticiser has 

not affected the glass transition temperature in the hybrid fibres. Thermal contraction occurs 

below PLA’s reported 60°C glass transition temperature in PLA 100WT% 10% PEG-200 

plasticised fibres; but at it in the 1 and 2 pass PCL:PLA 30:70WT% 20% PEG-200 plasticised 

fibres. 

 

5.5 Summary 

 

In terms of shape recovery, it is better to use PEG-200 as the plasticising agent than glycerol. 

No PCL 100WT% fibres were found to undergo shape recovery; while all but one 

(contamination) PLA fibre exhibited shape recovery. The best fibres were able to undergo 

shape recovery at all temperatures investigated. In temperatures of, or exceeding, 60°C, the 

fibres exhibited thermal contraction.  
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Chapter 6 in vitro Trypsin Digestion 

 

6.1 Introduction 

 

The aim of this project was to produce a biocompatible material; enzyme digestions are an 

important first step in this process. The use of trypsin as the digestive enzyme functions as a 

preliminary study. This allows initial quantification of potential degradation profiles for the 

various fibres. However, based on the application(s) for the materials, a variety of degradation 

profiles are required. Currently, no application has been defined for this material. As such, 

further work will be undertaken.  

 

6.2 Materials and Methods 

 

The materials and methods employed in in vitro trypsin digestion are discussed here.  

 

6.2.1 Materials 

 

Trypsin was purchased from Sigma-Aldrich (SKU: T1426). Once received, the trypsin was 

immediately stored in a freezer to prevent denaturation. Approximately 2 hours prior to use, 

trypsin was removed from storage and placed in a fridge to defrost. After use, the remaining 

trypsin was returned to the freezer for storage. Phosphate Buffered Saline (PBS) tablets were 

purchased from Sigma-Aldrich (SKU: P4417). PBS tablets were dissolved in distilled water 

prior to use, with one tablet per 200 mL water yielding a 0.01 M solution as per the 

instructions provided with the product. In this case, a 0.05 M solution was required. As such, 5 

tablets per 200 mL water were required. Hydrochloric acid (HCl) concentrate was purchased 

from Sigma-Aldrich (SKU: H1758). HCl concentrate was diluted in distilled water to a 

concentration of 0.05 M. Sodium Hydroxide (NaOH) pellets were purchased from Sigma-

Aldrich (SKU: S5881). NaOH pellets were dissolved in distilled water to produce a 0.5 M stock 

solution; the stock solution was further diluted to 0.05 M.  

 

The best fibres identified in table 4: 20 were employed here. These fibres were cut from the 

same batches as those used in mechanical testing (section 4) and fibre processing (section 3). 

For the purposes of this section, the two hybrid fibres (PCL:PLA 30:70WT% 20% PEG-200 

plasticised) will be referred to only has 1 pass or 2 pass hybrids. No other hybrid fibres are 

tested for enzymatic degradation. Coloured strings were used to label the samples. Three 

different colours of thread were used: dark green (Mölnlycke Sytrad), pale yellow (Mettler, 

Metrosene series), and grey (Scanfil PLC). All three threads are stated to be 100% polyester.  

 

A Daihan Scientific WCB-11 water circulating bath was used. This device has an 11 L capacity, 

and circulates the water to ensure even heating. The temperature range for the WCB-11 is 

stated to be 20°C – 100°C with an error of ±0.1°C. The effective space within the machine is 

quoted as 120x155x150 mm (LxWxH).  
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A desiccator was employed to remove moisture from the samples. The desiccator was a glass 

canister containing a wire rack and desiccant. The desiccant used was Silica gel, 2.5 – 6 mm 

self-indicating (sourced from ThermoFisher Scientific, SKU: S/0761/60). To ensure an 

adequate seal on the desiccator, Vaseline was spread around the lid’s rim. Vaseline’s active 

ingredient is listed as white petrolatum 100%. The desiccator was placed into the Contherm 

Thermotec 2000 oven.  

 

A&D Company Ltd, HR-250AZ Super Hybrid Sensor 5-digit balance was used. All samples, and 

trypsin weights were taken using this balance. In all cases, weights were taken with a muffin 

cup holding the materials. 

 

To measure the pH values, a Digitech QM-1670 Hand Held pH Meter, purchased from Jaycar 

Electronics, Dunedin (https://www.jaycar.co.nz/hand-held-ph-meter/p/QM1670). Prior to 

use, this device was calibrated with the provided control solution, using the method specified. 

Briefly, the pH meter was inserted into the control solution, and the tuning screw adjusted 

until the correct (pH 7.0) was displayed. The pH meter can detect pH 1 – 14, with a resolution 

of 0.1. The quoted device accuracy is 0.2.  

 

6.2.2 Methods 

 

6.2.2.1 Degradation Solution 

 

Three different solutions were prepared for degradation testing: PBS control, 0.1 mg/mL and 

0.05 mg/mL solution types (Almany and Seliktar 2005). In all instances, a 40 mL solution of 

0.05M PBS was added to a falcon tube (Almany and Seliktar 2005). The PBS used was from a 

premade stock solution; prior to the addition of trypsin, the solution was pH balanced. For 

trypsin’s activity, a pH of 7.4 was required (Almany and Seliktar 2005). However, the stock 

PBS solution exhibited a pH of 7.2; two solutions were added to adjust this. Initially, 0.05 M 

NaOH (alkaline) solution was added: this increased the pH. To ensure a correct pH reading, 

the solution was thoroughly mixed prior to measurement. In the event that the pH went over 

7.4, an acid, 0.05 M HCl, was added to reduce the pH. This process was repeated until a 

consistent pH value of 7.4 was achieved.  

 

The aliquoted PBS solutions were labelled to indicate the contents: those labelled PBS were 

left aside as control solutions with no trypsin. Two trypsin concentrations were used in the 

test solutions: 0.1 mg/mL, and 0.05 mg/mL, trypsin to PBS. In all cases, 40 mL of PBS was 

used, as such, either 4 mg (0.1 mg/mL) or 2 mg (0.05 mg/mL) of trypsin were required. 

Trypsin was weighed out using the high accuracy A&D Company Ltd, HR-250AZ balance. After 

the addition of trypsin, the solutions were inverted three times. This ensures the solutions are 

mixed well, with no trypsin on the walls of the tubes. 

 

 

 

https://www.jaycar.co.nz/hand-held-ph-meter/p/QM1670
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6.2.2.2 Sample Set-Up 

 

During degradation testing, only the fibres identified as the best, table 4: 20 were used. All 

fibres used were 70 mm long; these were cut to size from the same stock as those produced in 

section 3, and tested in section 4. All fibres had coloured polyester string of varying length 

attached. The string acted as a labelling system. Table 6: 1 provides a summary of what string 

colour/length translated to what sample. One string was tied to one sample prior to the initial 

desiccation; figures 1 – 3 display this.  

 

Table 6: 1 Polyester String Labelling Key 

Numbering Time 

Sample 

Number 

Length 

(mm) 

Colour Period 

(Days) 

1 200 Grey 7 

2 300 Green 14 

3 400 Yellow 21 

 

6.2.2.3 Desiccation 

 

All samples were sorted into their respective material types and placed into labelled brown 

paper bags. Bags were placed into a desiccation chamber – paper was used as it allows for 

airflow. To desiccate the samples, the materials were left in the desiccator for 24 hours, in an 

oven heated to 37.5°C (Vieira, Vieira et al. 2011). Samples were removed and weighed 

following desiccation. All samples underwent an additional 24 hours of degradation at 37.5°C 

following their respective degradation times (Vieira, Vieira et al. 2011).  

 

6.2.2.4 Degradation 

 

All samples underwent the same method for in vitro degradation. Following the initial 24 hour 

desiccation step, samples were randomly allocated to groups – maintaining nine samples per 

group, strings were attached to fibres as labels, as per table 6: 1. The labelled samples were 
placed into falcon tubes; the strings were attached to the outside of the tube (figure 6: 4). The 

tubes were placed inside the water bath heated to 37.5°C (Ghosh, Ali et al. 2010), and left for 

the required period of time (7, 14 or 21 days). At the three seven day intervals (7, 14 and 21), 

the required samples were removed from the tubes (table 6: 1) and desiccated following the 

method reported in section 6.2.2.3. PA fishing lines were used as a control to establish if the 

solutions were working. Due to the strings being used as labels for the fibres, these needed to 

be tested separately. It was important to identify if the strings degraded, as this could be an 

influencing factor in the weight loss of the fibres.  
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Figure 6: 1 Fibres labelled with grey string for 7 days of degradation. 

 

 

Figure 6: 2 Fibres labelled with green string for 14 days of degradation. 
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Figure 6: 3 Fibres labelled with yellow string for 21 days of degradation. 
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Figure 6: 4 String labels attached to the outside wall of the falcon tube. Each colour is grouped together.   
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6.2.2.5 Statistical Analysis 

 

The method employed for statistical analysis of the degradation results followed that which 

was described for mechanical testing (section 4.2.6). The R scripts applied for these datasets 

are found in Appendix E, Part 1. Generalised least square, restricted maximum likelihood 

fitted (GLS REML) was carried out at each stage. GLS data is not reported here. Comparisons 

were made between materials and solution type at each time point. Further, the same method 

was applied to compare solution type, with degradation duration when comparing the trends 

across a single material. All statistical outputs are located in Appendix E, Part 2, these used the 

data located in Appendix E, Part 3. In all cases, unweighted testing was carried out. The output 

from GLS REML was used in both the type 3 ANOVA and least squares mean (LSM) testing. In 

all cases, LSM testing used pairwise comparisons. When looking at the individual material 

interactions at each time point, pairwise comparisons were made between with the material 

and solution type. These looked at what was attributable to changing materials under a 

constant solution type; and, changing solution type, under a constant material. However, when 

comparing the trends for each material, pairwise comparisons were made between solution 

type and degradation duration. Unlike the mechanical testing section (4.2.6), the intercept 

values are reported here. Statistical analysis using R studio provides an intercept probability. 

That is, the likelihood that the average values have a mean of zero.  

 

6.3 Results 

 

There are several important factors to compare within the degradation testing. Firstly, it is 

vital that the solutions causing the most and least weight loss can be identified: PBS control, 4 

mg trypsin, or 2 mg trypsin. Comparisons should be made between the three solutions (PBS 

control, 4 mg and 2 mg of trypsin) to determine if trypsin has an effect; and what this effect is. 

Further results should determine how the hybrids behave, compared to the PCL and PLA 

controls. It is also important to determine any differences between the 1 and 2 pass hybrids. 

An overall summary of weight loss (%) over the duration of the testing is found in table 6: 2. A 

large percentage error has been identified on the values in table 6: 2. The median error is 

58%, with a range of 3 – 507%. As such, conclusions based off this data are of a low quality. 

For all tables 6: 3 – 10, the statistical output values are rounded to 4 D.P.  
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Table 6: 2 Trypsin Digestion Weight Loss (%). Values displayed are the mean±SD. 

Polymer Characteristics  Solution Type 

Material Ratio 

(WT%) 

PEG-200 

Concentration 

(%) 

Passes Degradation 

Period 

PBS 

Control 

4 mg 

Trypsin 

2 mg 

Trypsin 

PCL 100 20 1 

7 3.4±2.5 2.3±1.2 1.1±2.1 

14 13.6±9.4 6.9±2.7 3.1±1.9 

21 36.7±13.9 20.6±7.2 26.7±12.2 

PCL:PLA 30:70 20 1 

7 7.5±2.4 7.7±8.5 25.6±5.8 

14 8.0±8.6 15.7±0.5 23.7±7.2 

21 5.0±3.2 30.5±3.0 16.2±2.4 

PCL:PLA 30:70 20 2 

7 4.3±2.0 2.7±1.5 -2.5±2.0 

14 5.4±2.8 1.5±2.0 -12.4±4.5 

21 -3.0±1.8 -1.3±1.8 -14.8±5.6 

PLA 100 10 1 

7 1.8±0.9 3.1±3.9 0.9±0.4 

14 9.8±5.7 2.0±3.5 15.7±16.8 

21 -0.6±3.0 12.6±5.4 15.9±7.5 

PA NA 0 NA 

7 11.9±4.0 7.4±3.7 14.9±7.0 

14 15.5±5.5 18.9±7.4 9.4±13.8 

21 15.9±13.3 9.6±5.5 13.2±2.2 

Strings NA 0 NA 

7 -3.5±14.0 3.1±15.7 10.9±11.2 

14 -1.2±5.6 4.1±6.8 6.9±8.2 

21 -3.6±6.4 5.6±6.4 3.9±2.9 
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6.3.1 Day 7: in vitro Digestion 

 

Considerable variations in weight loss were identified after 7 days of degradation (figure 6: 5). 

However, large standard deviations (error bars) were observed in these samples, as such, very 

few real differences in mean were observed. Statistically, in neither the PBS control nor the 4 

mg trypsin solution were any significant variations detected between the material types (table 

6: 3). However, three significant interactions were identified when degradation was carried 

out in 2 mg solutions of trypsin (table 6: 3). Statistically significant variations in mean were 

observed between the 1 and 2 pass hybrid variants; and the 1 pass hybrid with both PCL and 

PLA (table 6: 3). Table 6: 4 indicates that the 1 pass hybrid variant is the only material to 

undergo any changes in response to solution type. The 2 mg trypsin solution was observed to 

produce statistically significant differences in mean weight loss of 1 pass hybrid fibres, when 

compared with the PBS control, and the 4 mg trypsin solution (table 6: 4). Table 6: 5 indicated 

that only solution type was found to effect the mean weight loss across the dataset. It must be 

noted that table 6: 5 does not display a significant intercept value; as such, the mean weight 

loss could be zero (no weight loss).  
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Figure 6: 5 Bar graph indicating the weight loss mean±SD (%) of samples after 7 days. Colours indicate the materials: Blue, Polyamide; Brown, 20% PEG-200 plasticised PCL; Grey, 

1 pass 20% PEG-200 plasticised hybrid PCL:PLA 30:70WT%;Yellow, 2 pass 20% PEG-200 plasticised hybrid PCL:PLA 30:70WT%; Green, 10% PEG-200 plasticised PLA; Red, 

labelling strings. The solution types are indicated by pattern: solid, PBS; narrow stripe, 4 mg trypsin; thick stripe, 2 mg trypsin.  
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Table 6: 3 Day 7: LSMEANs Material Interactions Summary. Significant values are underlined and italicised. 

Factor of Significance 0.05. Rounded to 4 D.P.  

 Solution 

Contrasts PBS Control (0 mg) 2 mg 4 mg 

1P-2P 0.9964 0.0020 0.9737 

1P-PA 0.9850 0.6050 1.0000 

1P-PCL 0.9895 0.0092 0.9654 

1P-PLA 0.9542 0.0084 0.9829 

1P-Strings 0.5701 0.2608 0.9829 

2P-PA 0.8581 0.1183 0.9793 

2P-PCL 1.0000 0.9940 1.0000 

2P-PLA 0.9990 0.9956 1.0000 

2P-Strings 0.8491 0.3546 1.0000 

PA-PCL 0.7976 0.3205 0.9722 

PA-PLA 0.6552 0.3030 0.9870 

PA-Strings 0.2147 0.9899 0.9870 

PCL-PLA 0.9999 1.0000 1.0000 

PCL-Strings 0.9004 0.6830 1.0000 

PLA-Strings 0.9663 0.6615 1.0000 

 

Table 6: 4 Day 7: LSMEANs Solution Type Interactions Summary. Significant values are underlined and 

italicised. Factor of Significance 0.05. Rounded to 4 D.P.   

 Materials 

Contrasts 1P 2P PA PCL PLA Strings 

0-2 0.0267 0.5711 0.8921 0.9346 0.9892 0.0913 

0-4 0.9997 0.9686 0.7786 0.9850 0.9781 0.5835 

2-4 0.0283 0.7196 0.5008 0.9812 0.9381 0.4800 

 

Table 6: 5 Day 7: Type 3 ANOVA of Material Interactions. Significant values are underlined and italicised. 

Factor of Significance 0.05. Rounded to 4 D.P.  

Interaction P-Value 

(Intercept) 0.1109 

Material 0.2932 

Solution Type 0.0077 

Material*Solution Type 0.1746 
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6.3.2 Day 14: in vitro Digestion 

 

It would appear, based on the graphed averages alone, that there are many different weight 

changes (figure 6: 6). However, the standard deviations (error bars) overlap on almost all 

cases. Statistically, there are few significant effects on the mean. Table 6: 6 indicates that the 

only statistically significant weight losses occurred when a 2 mg trypsin solution was used for 

the digestion. Within the 2 mg trypsin solution digestions, the 1 and 2 pass hybrid variants 

exhibit a significant difference in mean, as does the 2 pass hybrid with PLA (table 6: 6). Table 

6: 7 failed to identify any statistically significant changes in mean weight loss in response to 

changing solution types. Overall, a significant difference in means result from an interaction 

between the material and solution type (table 6: 8). No significant intercept value was 

reported in table 6: 8; suggesting the mean weight loss across the dataset could be equal to 

zero (no weight loss).  

 

 

 



115 

 

Figure 6: 6 Bar graph indicating the weight loss mean±SD (%) of samples after 14 days. Colours indicate the materials: Blue, Polyamide; Brown, 20% PEG-200 plasticised PCL; 

Grey, 1 pass 20% PEG-200 plasticised hybrid PCL:PLA 30:70WT%;Yellow, 2 pass 20% PEG-200 plasticised hybrid PCL:PLA 30:70WT%; Green, 10% PEG-200 plasticised PLA; 

Red, labelling strings. The solution types are indicated by pattern: solid, PBS; narrow stripe, 4 mg trypsin; thick stripe, 2 mg trypsin.
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Table 6: 6 Day 14 LSMEANs Material Interactions Summary. Significant values are underlined and italicised. 

Factor of Significance 0.05. Rounded to 4 D.P. 

 Solution 

Contrasts PBS Control (0 mg) 2 mg 4 mg 

1P-2P 0.9993 0.0003 0.4119 

1P-PA 0.9133 0.4119 0.9980 

1P-PCL 0.9732 0.0905 0.8417 

1P-PLA 0.9999 0.8910 0.4541 

1P-Strings 0.8224 0.2425 0.6327 

2P-PA 0.7562 0.0613 0.2049 

2P-PCL 0.8787 0.3173 0.9771 

2P-PLA 0.9911 0.0073 1.0000 

2P-Strings 0.9489 0.1270 0.9992 

PA-PCL 0.9999 0.9588 0.5961 

PA-PLA 0.9726 0.9570 0.2331 

PA-Strings 0.2501 0.9994 0.3715 

PCL-PLA 0.9955 0.5537 0.9855 

PCL-Strings 0.3740 0.9959 0.9990 

PLA-Strings 0.6852 0.8438 0.9997 
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Table 6: 7 Day 14 LSMEANs Solution Type Interactions Summary. Significant values are underlined and 

italicised. Factor of Significance 0.05. Rounded to 4 D.P.  

 Materials 

Contrasts 1P 2P PA PCL PLA Strings 

0-2 0.1042 0.0565 0.6949 0.3504 0.7139 0.5347 

0-4 0.5566 0.8587 0.8883 0.6452 0.5538 0.7591 

2-4 0.5456 0.1643 0.4144 0.8695 0.1740 0.9289 

 

Table 6: 8 Day14 Type 3 ANOVA of Material Interactions. Significant values are underlined and italicised. 

Factor of Significance 0.05. Rounded to 4 D.P. 

Interaction P-

Value 

(Intercept) 0.1312 

Material 0.2651 

Solution Type 0.1105 

Material*Solution 

Type 

0.0414 
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6.3.3 Day 21: in vitro Digestion 

 

A large variation in the average values was observed after 21 days of degradation (figure 6: 7). 

A total of 5 (of 18) samples show an increase in weight (figure 6: 7). Fourteen interactions 

were identified in response to changing material types (table 6: 9). However, only eight of the 

14 interactions were deemed to be useful. Any interaction with either PA or string controls 

were insignificant. Neither the PA or string controls were being investigated here; rather, they 

were to demonstrate the enzyme was functional (PA), and to demonstrate that the string 

would not lose weight, confounding the results. The PBS control digestion identified three 

statistically significant differences in mean between PCL fibres and the 1 and 2 pass hybrid 

variants; and a difference between PCL and PLA (table 6: 9). A further three useful interaction 

were identified when 2 mg trypsin solutions were employed (table 6: 9). The 2 pass hybrid 

variants were found to exhibit a different weight loss profile to the 1 pass variant; further, 

both PCL and PLA were displayed different weight loss profiles to the 2 pass hybrid variant 

(table 6: 9). In the case of the 4 mg trypsin solution, only two significant interactions were 

identified (table 6: 9). Both the 1 pass hybrid variant and PCOL fibres were found to exhibit 

significantly difference mean weight losses when compared with the 2 pass hybrid variant 

(table 6: 9). Table 6: 10 indicates that only the 1 pass hybrid variant experienced solution type 
dependent weight loss. PBS control solutions and the 4 mg trypsin solution were found to 

exhibit statistically significant differences in weight loss in the 1 pass hybrid variant (table 6: 

10). Across the dataset, both material and solution type, and the interaction between the two 

were demonstrated to produce statistically significant mean weight loss differences (table 6: 

11). However, no significant intercept value was present, suggesting the overall weight loss 

could be equal to zero (no weight loss) (table 6: 11). 
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Figure 6: 7 Bar graph indicating the weight loss mean±SD (%) of samples after 21 days. Colours indicate the materials: Blue, Polyamide; Brown, 20% PEG-200 plasticised PCL; 

Grey, 1 pass 20% PEG-200 plasticised hybrid PCL:PLA 30:70WT%;Yellow, 2 pass 20% PEG-200 plasticised hybrid PCL:PLA 30:70WT%; Green, 10% PEG-200 plasticised PLA; 

Red, labelling strings. The solution types are indicated by pattern: solid, PBS; narrow stripe, 4 mg trypsin; thick stripe, 2 mg trypsin. 
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Table 6: 9 Day 21 LSMEANs Material Interactions Summary. Significant values are underlined and italicised. 

Factor of Significance 0.05. Rounded to 4 D.P. 

 Solution 

Contrasts PBS Control (0 mg) 2 mg 4 mg 

1P-2P 0.8514 0.0009 0.0006 

1P-PA 0.5202 0.9978 0.0468 

1P-PCL 0.0007 0.6505 0.7068 

1P-PLA 0.9612 1.0000 0.1232 

1P-Strings 0.8070 0.4893 0.0105 

2P-PA 0.0925 0.0032 0.6110 

2P-PCL 0.0001 0.0001 0.0322 

2P-PLA 0.9994 0.0010 0.3490 

2P-Strings 1.0000 0.0964 0.9156 

PA-PCL 0.0468 0.3834 0.6018 

PA-PLA 0.1842 0.9987 0.9978 

PA-Strings 0.0755 0.7575 0.9910 

PCL-PLA 0.0001 0.6232 0.8492 

PCL-Strings 0.0001 0.0241 0.2654 

PLA-Strings 0.9979 0.5163 0.9058 
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Table 6: 10 Day 21 LSMEANs Material Interactions Summary. Significant values are underlined and 

italicised. Factor of Significance 0.05. Rounded to 4 D.P.  

 Materials 

Contrasts 1P 2P PA PCL PLA Strings 

0-2 0.2494 0.2137 0.9208 0.3205 0.0549 0.5235 

0-4 0.0020 0.9695 0.6372 0.0624 0.1469 0.3897 

2-4 0.1088 0.1390 0.8606 0.6553 0.8814 0.9707 

 

Table 6: 11 Day 21 Type 3 ANOVA of Material Interactions. Significant values are underlined and italicised. 

Factor of Significance 0.05. Rounded to 4 D.P. 

Interaction P-

Value 

(Intercept) 0.3010 

Material 0.0000 

Solution Type 0.0010 

Material*Solution 

Type 

0.0007 
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6.3.4 Time Series Trends 

 

A limited number of statistically significant interactions were identified across the time series 

dataset. This aimed to determine if degradation period had any effect on mean weight loss 

(tables 6: 12 and 13). Table 6: 12 provides contrasts between the degradation period, for each 

material and solution type. Table 6: 13 compares the overall effects across the datasets, in 

respect to the material tested.  

 

Over the 21 day degradation period, the polyamide fishing line showed no trends (figure 6: 8). 

Statistically, there is no difference between any of the means across this data set, in response 

to variations in degradation period (table 6: 12). Neither the solution type, degradation 

period, nor a combined effect resulted in any statistically significant differences in mean (table 

6: 13). A significant intercept point was identified (tables 6: 13). The significant intercept 

supports that the average values are not zero (no weight change).  

 

Testing of the string controls displayed a fairly linear response in all three data sets (figure 6: 

13). PBS appears to grant an increase in weight in all cases. The 2 mg solution type provides a 

more pronounced effect than 4 mg, until 21 days of degradation. Statistically, there is no 

difference between any of the means across this data set, in response to variations in 

degradation period (table 6: 12). There is no statistical support for any degradation time, or 

solution type related effects on weight loss, nor is there support for a cumulative effect 

between the two factors (table 6: 13). The lack of a significant intercept suggests that there is 

no statistically significant degradation of the string in these solutions (table 6: 13).  

 

The 20% PEG-200 plasticised PCL 100WT% fibres all displayed the same trend across the 

time series: weight loss increases with respect to time (figure 6: 9). Of the three degradation 

media, the PBS control returned the largest weight loss over the period (figure 6: 9). Across 

the time series data, differences were observed between 7 and 21 days, in all three solution 

types (table 6: 12). Differences between 14 and 21 days were also noted; this only occurred in 

the PBS control and 2 mg trypsin solutions (table 6: 12). Statistically, the sole factor 

responsible for changes in the mean weight loss is the degradation period (table 6: 13). No 

significant intercept is present, suggesting the mean weight loss could be zero (table 6: 13).  

 

Two trends are observed across the 1 pass variant PCL:PLA 30:70WT% 20% PEG-200 

plasticised fibre datasets (figure 6: 10). The 4 mg solution type displays an increased weight 

loss with respect to time. Both the PBS control solution and 2 mg solution type display a slight 

decrease in weight loss over time. It is worth noting that the PBS control solution has the 

lowest weight loss (%) of the three solutions. Statistically, across the time series only one 

significant interaction was identified (table 6: 12). When a 4 mg trypsin solution was used as 

the degradation media, a significant difference in mean weight loss was observed between 7 

and 21 day (table 6: 12). No other time series effects were detected. Overall, the 1 pass variant 

time series displayed significant responses to solution type, and a cumulative effect between 

solution type and degradation period (table 6: 13). However, the degradation period itself was 

not found to explain any variation in the means (table 6: 13). A significant intercept value was 

observed, suggesting that the mean weight loss cannot equal zero (table 6: 13).  
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All 2 pass variant PCL:PLA 30:70WT% 20% PEG-200 plasticised fibre datasets displayed a 

downwards trend in response to an increased degradation time (see figure 6: 11). It appears, 

based on figure 6: 11, that a PBS solution causes the greatest weight loss after 7 and 14 days. 

Both the PBS solution and 4 mg solution type produce a weight loss at 7 and 14 days, with a 

near 0 weight gain at 21 days. At all time points, a 2 mg solution type causes a weight gain, 

increasing with respect to degradation time. No statistically significant changes in mean 

weight loss were identified between the time points, when the solution type was accounted 

for (table 6: 12). Overall however, degradation time was found to be a contributing factor to 

mean weight loss (table 6: 13). A statistically significant intercept was present, suggesting the 

mean weight loss does not equal zero (table 6: 13).  

 

All three solutions produced different trends across the 10% PEG-200 plasticised PLA 

100WT% fibres time series (figure 6: 12). The PBS control solution peaked after 14 days, but 

dropped to 0 for 21. Solutions containing 4 mg of trypsin had a steady weight loss at 7 and 14 

days, with an increased weight loss after 21 days. Solution types of 2 mg had a large increase 

in weight loss between 7 and 14 days, but appeared to plateau between 14 and 21 days. 

Statistically, no variations in weight loss were observed between the three time points (table 

6: 12). No significant intercept is present, suggesting the mean weight loss could be zero (table 

6: 13). 
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Table 6: 12 Overall Results: LSMEANs Time Dependent Effects Summary. Significant Factor 0.05. 

Significant values are underlined. Rounded to 4 D.P. 

  Solution Type 

Material Type Contrasts PBS Control (0 mg) 2 mg 4 mg 

1P 

7-14 0.9976 0.9589 0.4850 

7-21 0.9340 0.3781 0.0042 

14-21 0.9080 0.5405 0.0931 

2P 

7-14 0.9857 0.3355 0.9840 

7-21 0.5583 0.1914 0.8359 

14-21 0.4594 0.9408 0.9158 

PA 

7-14 0.8672 0.7073 0.2311 

7-21 0.8384 0.9668 0.9472 

14-21 0.9982 0.8482 0.3807 

PCL 

7-14 0.3188 0.9547 0.7918 

7-21 0.0001 0.0012 0.0276 

14-21 0.0037 0.0030 0.1273 

PLA 

7-14 0.4908 0.0922 0.9857 

7-21 0.9357 0.0856 0.3704 

14-21 0.3003 0.9994 0.2891 

Strings 

7-14 0.9408 0.8334 0.9888 

7-21 0.9999 0.5822 0.9374 

14-21 0.9357 0.9080 0.9782 
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Table 6: 13 Overall Results: Type 3 ANOVA of Material Interactions. Significant Factor 0.05. Significant 

values are underlined. Rounded to 4 D.P. 

Material Coefficient P Value 

1 Pass Hybrid 

Intercept 0.0493 

Solution type 0.0006 

Degradation Time 0.8431 

Solution type*Degradation 

Time 

0.0004 

2 Pass Hybrid 

Intercept 0.0436 

Solution type 0.0609 

Degradation Time 0.0100 

Solution type*Degradation 

Time 

0.0530 

Polyamide 

Intercept 0.0337 

Solution type 0.6328 

Degradation Time 0.8591 

Solution type*Degradation 

Time 

0.6047 

PCL 

Intercept 0.5167 

Solution type 0.9526 

Degradation Time 0.0000 

Solution type*Degradation 

Time 

0.6460 

PLA 

Intercept 0.7156 

Solution type 0.9482 

Degradation Time 0.2951 

Solution type*Degradation 

Time 

0.1391 

String 

Intercept 0.5997 

Solution type 0.3109 

Degradation Time 0.9583 

Solution type*Degradation 

Time 

0.9624 
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Figure 6: 8 Polyamide fishing line’s time series graph. Solution types: PBS, solid; 4 mg, dotted; 2 mg, dashed. 

 

 

Figure 6: 9 PCL 100WT% plasticised with a 20% solution of PEG-200 time series graph. Solution types: PBS, 

solid; 4 mg, dotted; 2 mg, dashed. 
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Figure 6: 10 PCL:PLA 30:70WT% 1 pass hybrid plasticised with a 20% PEG-200 solution time series graph. 

Solution types: PBS, solid; 4 mg, dotted; 2 mg, dashed. 

 

 

Figure 6: 11 PCL:PLA 30:70WT% 2 pass hybrid plasticised with a 20% PEG-200 solution time series graph. 

Solution types: PBS, solid; 4 mg, dotted; 2 mg, dashed. 
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Figure 6: 12 PLA 100WT% plasticised with a 10% solution of PEG-200 time series graph. Solution types: 

PBS, solid; 4 mg, dotted; 2 mg, dashed. 

 

 

Figure 6: 13 Labelling String time series graph. Solution types: PBS, solid; 4 mg, dotted; 2 mg, dashed. 
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6.4 Discussion 

 

Several aspects are discussed in this section. Firstly, the relationships between the materials 

at each time point are discussed. Secondly, the relationship between the individual materials 

across the time series are discussed. Finally, the suitability of the methods used will be 

analysed 

 

6.4.1 Material Trends 

 

The trypsin enzyme acts to degrade materials. To achieve degradation, intramolecular bonds 

are broken by the enzyme. All different materials contain different molecular compositions, 

with variations in bond presence. As such, each material is liable to degrade at a different rate 

so it is important to compare the two hybrid variants. Across the three time points, the 2 mg 

trypsin solutions produced statistically significant differences in mean between the 1 and 2 

pass hybrid variants (tables 6: 3, 6 and 9). A 4 mg trypsin solution produced a difference in 

mean between 1 and 2 pass hybrid variants after 21 days (table 6: 9). When visualised (figures 

6: 5 and 6), it is clear that a 2 pass hybrid variant shows significantly less weight loss.  

 

At 2 mg of trypsin, the highest degradation rate is observed. It was observed that the 4 mg 

trypsin, and PBS control solution did not have a significant variation in degradation. This 

would suggest that the trypsin enzyme is essentially non-functional here. Trypsin enzymes 

can undergo self-autolysis, this could explain the result (Nord, Bier et al. 1956). It is reported 

that as trypsin concentration increases, so does the rate of self-autolysis (Nord, Bier et al. 
1956). In the instance that this occurs, the trypsin enzymes will bind, and breakdown, other 

trypsin found in the solution. If no functional enzyme is targeting the fibres, the weight change 

should be roughly equivalent to the PBS control solution. However, it is unlikely that all of the 

trypsin enzyme would be tied up in self-autolysis; a low degradation rate of the fibre would be 

expected. That is, until a sufficient amount of trypsin had degraded, such that the majority of 

enzyme then targeted the fibres. In the case of 2 mg solution types, there is not enough ‘free 

enzyme’ to undergo sufficient self-autolysis to prevent a reaction.  

 

After 21 days, unlike the previous time points (7, 14 days) the 4 mg solution type showed a 

significant effect on degradation when compared to PBS. However, the 2 mg solution type did 

not. The idea of trypsin self-autolysing was mentioned previously. After 21 days, it appears 

that the 4 mg solution type has stabilised, and acted on the fibres: 4 mg is now different to 

PBS. It is likely that the free trypsin enzymes have reduced in number enough to have a large 

proportion targeting the fibre, allowing degradation to occur. Previously, it was possible that 

too much free enzyme was present, encouraging self-autolysis, as opposed to fibre 

degradation.  

 

No work has been carried out in this project on the amount of active enzyme in the solution. 

As such, there is no way to determine if trypsin is undergoing self-autolysis. However, future 

work could be carried out to study this effect: enzyme activity assays.  
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6.4.2 Time Series Trends 

 

A number of trends have been identified across the individual time series. Firstly, trends were 

discussed in relation to a weight change. And secondly, trends were discussed in relation to 

the effects of the two factors (time and solution type) on the weight change.  

 

6.4.4.1 Weight Change 

 

One fibre type displayed a net weight gain across the time series: 2 pass hybrid fibre, in 2 mg 

of trypsin. This result was statistically significant. Other fibres also displayed a net weight 

increase; however, these lacked statistical support. This effect could be in response to material 

uptake from the solution, by the fibre. Trypsin enzyme act to cleave intramolecular bonds. 

When these bond break, spaces open in the molecular matrix of the fibre. If the spaces are 

large enough, other molecules can enter (water, trypsin) and become stuck internally in the 

fibre.  

 

Across all data sets, only three fibres showed a statistically significant non-zero weight change 

(see table 6: 10). The polyamide blank, and two hybrid fibres, at 1 and 2 pass, showed a non-

zero weight change; the remainder lack statistical evidence in support of a weight change. A 

likely reason for this is material crystallinity (Yang, Li et al. 2015). It has been identified that 

materials with a higher crystallinity exhibit a denser molecular matrix; this significantly 

reduces the ability of enzyme penetration and degradation (Yang, Li et al. 2015). Cross-linked 

PCL fibres have been investigated by Yang, Li et al. (2015), a higher crosslinking ratio equated 
to increased crystallinity. Work carried out on all crosslinked PCL materials displayed non-

zero weight losses (Yang, Li et al. 2015). However, the PCL fibres used for this work did not 

display degradations over the degradation period.  

 

Work done by Vieira, Vieira et al. (2011) suggests that PCL, PLA and PCL:PLA hybrids typically 

exhibit slow or no degradation in alkaline PBS solutions. The work carried out for this text 

demonstrated that in PBS buffered solution types, neither PCL nor PLA display a weight 

change. However, PCL:PLA hybrids did exhibit a statistically significant weight loss.  

 

6.4.4.2 Effects of the Factors on Weight Change 

 

Typically, within the literature there is support for a larger weight loss in respect to an 

increase in time (Vieira, Vieira et al. 2011, Yang, Li et al. 2015). However, it is important to 

note that degradation times can vary significantly between studies. A 5 day degradation was 

employed by (Yang, Li et al. 2015), whereas up to 30 weeks was used by (Vieira, Vieira et al. 

2011). Three of the materials within this work displayed a significant difference in mean 

weight change, as a result of time (table 6: 10). PCL fibres, and the 2 pass hybrid variant 

display significant independent effects as a result of degradation time (table 6: 10). An 

interaction between solution type and degradation time was established in 1 pass hybrid 

fibres (table 6: 10). Given that PLA fibres lack any significant effects, it would appear likely 

that PCL is primarily responsible for degradation within the hybrid fibres.  
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Across all of the fibre types, only the hybrid variants exhibited any significant differences in 

average weight change, in respect to the solution type (tables 6: 9 and 10). In the case of the 1 

pass variant, PBS and 2 mg solution types are different at 7 and 14 days of degradation; PBS 

and 4 mg solution types are equivalent. This is likely a result of the solution reaching optimal 

trypsin at 2 mg. As previously described a 4 mg solution type has a large amount of free 

enzyme, resulting in self-autolysis (Nord, Bier et al. 1956). After 21 days, the 1 pass hybrid 

exhibits an equivalent degradation between PBS buffer and 2 mg trypsin. In this instance, it 

appears that the trypsin may have become non-functional (Nord, Bier et al. 1956). At 7 days, 

all three solutions produced equal weight change in the 2 pass hybrid variant. This is a 

variation from the 1 pass hybrid. It would seem that the 2 pass variant is exhibiting a higher 

crystallinity than 1 pass. At both 14 and 21 days of degradation, the 2 pass variant displays a 

significant effect from 2 mg of trypsin, compared to PBS or 4 mg solution types.  

 

6.4.3 Effectiveness of the Method 

 

Overall, the methods were found to produce ambiguous results. Across the majority of 

samples, a high error was present. This was thought to be in response to the low sample size 

and inconsistency in fibre diameter. Within each set, a total of three samples was used at each 

time point. This results in a relatively high error, in response to variations in weight change. 

Further influencing this issue is that of sample diameter. Enzymes typically act on a material’s 

surface, as such, a larger diameter should give a higher degradation rate (Yang, Li et al. 2015). 

However, in this scenario, the difference in diameter may only play a limited role in the 

observed changes in weight. A percentage value was obtained, based on the differences in 

initial and final weights. As the diameter changes, the initial weight will also change, meaning 

the dimeter could have a limited effect in producing error.  

 

The method of desiccation could be revised in future work. There is a potential for PLA to 

uptake large amount of moisture, due to its hygroscopic nature (Jamshidian, Tehrany et al. 

2010). In the event that the desiccation process is not able to remove the additional water 

from the materials, a reduction in weight decreases could be expected (Vieira, Vieira et al. 

2011). 

 

Future work would initially be centred on improving this method. It would be useful to 

reproduce the results, with minimal error. When an application is identified in the future, a 

number of modifications to the method can be carried out. The site of the potential application 

must be considered: the enzymes and conditions likely to present here should be accounted 

for.  

 

6.5 Summary 

 

Overall, three fibres types showed degradation from trypsin: the 1 and 2 pass hybrid variants 

and polyamide fishing line. PCL fibres displayed some evidence of degradation. 2 pass hybrid 

fibres degraded in 2 mg of trypsin displayed a weight gain. Both the PLA fibres and the strings 

showed no net weight loss. However, the overall method trialled here produced highly 

inconsistent results. The small (three) sample size resulted in large error rates on many of the 

samples. This method must be further refined prior to additional testing. Two factors should 

be considered here: firstly, the optimal number of samples; and lastly, if the diameter should 
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be standardised. Further trypsin digestions can be carried out after these factors are 

accounted for. If the method can produce consistent results, a more targeted experiment can 

proceed. An application must be determined for the materials prior to targeted degradation 

testing. The application will dictate the exact conditions and enzymes required.  
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Chapter 7 Overall Discussion 

 

7.1 Introduction 

 

The overall discussion will focus on the project aim: to investigate and fabricate biocompatible 

hybrid polymers that exhibit shape recovery properties. The four research objectives will be 

used to guide the overall discussion:  

 

1. Investigation of biocompatible polymers and their fabrication techniques; 

2. Investigation of shape memory polymers, their functionalities and processing methods; 

3. Investigation of suitable polymer hybrid analyses methods; and 

4. Provide a definition for the best materials properties in this work.  

 

Within this project, the effects of both fibre quality and composition were determined to have 

significant effects on the mechanical, shape memory, and degradation properties. Based on the 
effects observed in response to fibre quality and composition, the suitability of the fabrication 

process can be questioned. Comparisons were made between the control fibres with the 

literary values; and between the hybrid fibres and the criteria defined for the best fibres. The 

best fibre criteria was defined, based on comparisons with the control PCL and PLA fibres. As 

a result, the suitability of the defined best fibre criteria must be critiqued. Four fibres were 

defined as the best, based on the criteria. The effect of using only four fibres must be 

discussed: it could either improve or hinder the ability to adequately complete the research 

objectives. Finally, the aim will be discussed. This project aimed to investigate and fabrication 

biocompatible hybrid polymers with shape that display shape memory properties. Did this 

project achieve the prescribed aim, and what were the main challenged in doing so? The 

limitations to this study will be identified and discussed. Future work to remedy these 

limitations will be identified and allow the research to be taken further.  

 

7.2 Hybrid Polymer Processing and Properties 

 

Overall, melt extrusion of polymer hybrids produced a large variety of fibre qualities. As 

mentioned in Chapter 3 (Fibre Processing) the initial, non-plasticised fibres produced were 

not homogeneous, yielding low quality fibres. As a result, the fibres were brittle, and displayed 

yellowing; both symptoms of degradation (Pospıš́il, Horák et al. 1999). Non-plasticised fibres 

were found to have significantly reduced mechanical properties, over what was suggested in 

the literature (Monticelli, Calabrese et al. 2014, Zhao and Zhao 2016). Elongation was typically 

below 5% (table 4: 6), compared to literary values of 600% elongation minimum (Zhao and 

Zhao 2016). However, when the fibres were plasticised with either glycerol or PEG-200, the 

overall fibre quality was significantly improved (chapter 3). No fibres that underwent 

plasticisation display any signs of degradation: the fibres were not brittle, or displayed 

yellowing (Pospıš́il, Horák et al. 1999). A correlation was identified between the overall 

increase in fibre quality, and the mechanical properties. As the fibre quality improved, the 

mechanical properties also increased. While the plasticised hybrid fibres displayed a 

significant increase in elongation at break, up to 420% (tables 4: 12 and 13), this did not 

match the proposed 600% minimum reported by Zhao and Zhao (2016). However, no 

literature was identified that used melt extrusion to produce single hybrid fibres that 



134 

subsequently underwent tensile testing; therefore, some degree of variation between the 

results obtained within this study, and literary values is to be expected, as different processes 

were employed. 

 

The overall fibre quality did effect, to a degree, the shape recovery effect. All non-plasticised 

(low quality) fibres tested were unable to undergo shape recovery, regardless of soak time. 

However, when looking at the plasticised fibres (both glycerol and PEG-200), this result is 

inconsistent. Fibre quality is, on average, the same between the glycerol and PEG-200 

plasticised fibre sets. This does not translate into an effect on shape recovery. Human 

physiological temperature recovery testing (table 5: 3) indicates that only one PEG-200 

plasticised fibre does not recover, but seven glycerol fibres do not recover. Within this work, 

no link was found between slight variations in fibre qualities and shape recovery. In terms of 

mechanical properties, no correlation is identifiable. It is apparent that the plasticiser choice 

does effect the ability of the fibres to undergo shape recovery. No explanation has been 

identified for why PEG-200 produces better responses than glycerol. However, glycerol has 

previously been reported to not blend with PLA (Müller, Bere et al. 2016); this has the 

potential to be affect the overall fibre quality. DSC curves were used to establish this affect; 

distinct glass transition points were identified for both PLA and glycerol (Müller, Bere et al. 

2016). As such, DSC methods could be carried out to identify the efficacy of glycerol 

plasticisation of PLA.  

 

Degradation testing was found to experience a single effect in relation to all other 

tests/properties. During testing, it was noted that the fibres with larger diameters expressed 

an increased weight loss. However, the initial weight was also increased; therefore, the actual 

percentage weight change was not substantially different to the other fibres. Ultimately, this is 

to be expected. Enzymes function to degrade the outer surface of the materials (Yang, Li et al. 

2015). As a result, if the surface area increases, so does degradation rate, assuming free 

enzyme is present (Puri 1984). Equation 2: 1 provides the formula for the surface area of a 

cylinder (all fibres were roughly cylindrical). All fibres used in the degradation testing had 

their length (h) standardised; however, the average diameter (therefore radius, r) was 

inconsistent between fibres.  

 

7.3 The Best Fibres 

 

The best fibres were defined by the criteria stipulated in table 2: 4. Based on the mechanical 

properties, a very limited number (five) of the hybrid polymer fibres were identified as 

matching the criteria (table 4: 24). This proved to be a suitable number for use in this work, as 

it informed the number of samples for use within the limitations of the degradation pilot study 

(table 4: 25). However, for a more detailed study, the mechanical properties provide a far too 

narrow selection. For the most part, the PCL:PLA ratio is constant among the best fibres 

(30:70WT%); and the plasticiser concentration is at 20% (both glycerol and PEG-200). 

Further, based solely on whether shape recovery effects are present, a large number of fibres 

are suitable. The ability of hybrid fibres to undergo shape recovery was a central point in this 

work. As such, there is a potential need to further analyse more fibres. Table 5: 3 shows that 

34 (of 52) hybrid fibres were able to undergo shape recovery. This would suggest that only 

selecting five fibres as the best, and only testing two for degradation, based on their 

mechanical properties is too few.  
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There is potential to relax the tensile property requirements. However, this change would be 

application dependent. Currently, the lack of a defined application means that only a limited 

weighting can be placed on the tensile properties. Within this work, no weighting was placed 

on the tensile (or yield) strength of the materials; rather, the ability to elongate was 

considered. The lack of a defined application also impacted the desired degradation 

properties. Currently, a pilot study was carried out to determine the profiles, and if the 

method was suitable. However, this degradation study potentially bears no relevance to the 

actual usage sites of the materials. Future work must be done to further characterise the fibres 

with both enzymes and conditions relevant to the proposed applications. Further work must 

be done to determine if degradation is beneficial or detrimental to the application. Most 

materials do degrade over time; therefore, the duration required in the application and rates 

of degradation must be identified.  

 

Overall, the criteria for the best fibres (table 2: 4) were too narrow for an in depth analysis. 

However, they were suitable for this work. The majority of this work aimed to provide novel 

hybrid materials that have appropriate tensile properties, and exhibited shape recovery. The 

materials and methods should be further refined, to ensure the optimal fibres can be produced 

for a particular application.  

 

7.4 Achieving the Research Aim 

 

The aim of this work was to investigate and fabricate biocompatible hybrid polymers with 

shape memory properties. There are several key parts to this aim, firstly, production of 

polymer hybrids, biocompatibility, and finally, presence of shape recovery. This work has thus 

far demonstrated that polymer hybrids can be fabricated from PCL and PLA blends. Further, 

shape recovery properties have been identified in almost all polymer hybrids. However, only 

an initial pilot study has been carried out into biocompatibility, with further refinement 

required. Ultimately, both in vivo and human clinic trials would be required with the preferred 

hybrid polymers – this will prove biocompatibility, if present (Mihai, Florescu et al. 2011). 

However, prior to this, the materials will need to be refined and tested further in response to 

application criteria.  

 

7.5 Limitations 

 

Several limitations were present within this study. The melt extrusion and manual drawing 

processing method produced fibres with a larger than desired variation in diameter. Ideally, a 

minimal variation in diameter should be achieved. However, the only option available to draw 

the fibres was a manual draw. In the event that the fibres could have been mechanically 

drawn, there would be less variation in the diameters. A further limitation was the number of 

repeats used in the analysis. This appeared to limit statistical power to a degree. If more 

samples had been used, the statistical predictions may have been more accurate. Further, the 

samples used for mechanical testing may not have been representative. Only three different 

samples were mechanically tested from each batch of fibres. This means that approximately 

120 mm (3 times 40 mm gauge length) out of several meters of fibre was tested. While the 



136 

fibres were randomly selected, a larger number of test specimens could have improved this 

study.  

 

Further limitations centred on access to resources, and time. A number of further experiments 

would ideally have been done; but they could not due to time constraints. Thermal properties 

of the hybrid fibres should have been identified through DSC methods. The results from DSC 

analysis would have identified the glass transition points of the materials; and, by proxy, if the 

plasticisers had been incorporated correctly into the blends. SEM and TEM studies should 

have been carried out to characterise the morphology and associated micro level homogeneity 

of the hybrid fibres.  

 

The lack of a defined application proved to be a limitation in this work. The criteria defined in 

table 2: 4 were not tailored towards a specific application. As such, the best fibres discussed 

within this work are not necessarily suitable for all biomedical applications. This was most 

evident during degradation testing. No defined objectives could be defined within the in vitro 

degradation study. Rather, a degradation profile was identified. However, the profile is 

essentially meaningless without an application. The in vitro degradation pilot study 

demonstrated two additional limitations: sample size and enzyme choice. By only using three 

samples for each measure, a large amount of variation in weight loss was achieved for most 

fibres. This suggests that more samples were required. Trypsin enzymes undergo self-

autolysis; this was not accounted for (Nord, Bier et al. 1956). Based on the obtained results, it 

is difficult to determine the effect of the trypsin enzyme: very few fibre types displayed 

solution dependent changes. This could suggest that the enzyme was essentially non-

functional, and the PBS buffer was acting solely to degrade the materials. Alternatively, the 

trypsin enzyme was not able to effect the materials. Further analysis could be carried out to 

identify the extent of trypsin’s self-autolysis within the solutions.  

 

The material choice also poses an application dependent limitation. There is a distinct 

possibility that PCL and PLA will not be suitable for some applications. As such, this could 

considerably limit the scope of future research into applications. There is little use in testing 

materials for applications that they are known to be unsuitable for.  

 

7.6 Future Work 

 

The primary objective for future work is to determine biomedical applications for this 

material. Based on the potential applications, a number of further methods would be 

employed. Initially, the material would be further refined. Mechanical drawing of the fibres 

would be carried out to ensure industrial scale repeatability. If the materials were not suitable 

for industrial production, alterations to the process would be required. An expansion on the 

trypsin digestion pilot study can be carried out. Several additional processes will be required. 

Initially, a larger sample size will be employed – likely five or more hybrid fibres. This should 

significantly increase the studies reliability. Enzyme activity assays can be carried out to 

quantify the self-autolysis of trypsin. Nord, Bier et al. (1956) reported that a 0.1 mg/mL 

trypsin solution lost approximately 40% of its activity after just 7 hours of incubation. It must 

be noted that the reported decrease is for a 0.1 M borate buffer solution with pH 8.5, and 25°C 

temperature (Nord, Bier et al. 1956). While these differ to the conditions used in this study 

(PBS solution, pH 7.4, 37.5°C) it would be useful to quantify the effect of self-autolysis.  
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A more in depth degradation study will be required. Based on the application, the samples 

may require a longer than 21 day period of activity. In this event, the samples must be proven 

safe for this period. Finally, further characterisation methods will be employed. Primarily, 

DSC, TEM and SEM studies will be used to demonstrate how effective the plasticisation 

process was.  

 

Based on the application for this material, a number of further tests will be required. 

Assuming the material is used to be used in humans for some purpose, in vitro and in vivo 

testing will be required. Initially, the materials will be tested against biologically relevant cell 

lines, such as human fibroblasts (skin) cells. If that proved successful, further work could be 

carried out in animal models (mice, sheep). With the potential to progress to human clinical 

trials.  

 

A potential alternate route to take is that of thermal contraction. The tested materials, when at 

or exceeding 60°C, curled. This has the potential to be useful in biomedical applications. If the 

material is able to undergo recovery at temperatures below 60°C following contraction, this 

allows for a number of applications. Essentially, a small mass of material could be first 

contacted, but expand once implanted in a human. However, no work on this phenomenon has 

been carried out here. A number of future experiments would be required, primarily centred 

around how the materials recover following thermal contraction.  

 

A variety of factors require more investigation in shape recovery. However, several of these 

are application dependent. Based on the aim of this project, a biocompatible material is 

desired. This means a temperature of approximately 37.5°C is useful for shape recovery 

(Vieira, Vieira et al. 2011, Pinho, Rodrigues et al. 2016). This desired application precludes the 

use of temperature outside of a 30 – 45°C range. However, one interesting factor identified 
was the ability of the fibres to undergo thermal contraction. This phenomenon was observed 

at temperatures exceeding 60°C, therefore not suitable for human use. The use of thermal 

contraction has the potential to be beneficial to other applications. There is significant 

potential for medical applications. If the fibre could be forced to undergo thermal contraction 

at a higher temperature than the human body, but recovered to the original shape on 

application of a 37.5°C temperature. This provides scope for future work. Further, it is 

possible that PCL 100WT% fibres could exhibit shape recovery if they undergo thermal 

transitioning. However, PCL has a glass transition of -60°C (Middleton and Tipton 2000); 

again, this is not suitable for human use. Further investigations into the potential shape 

recovery of PCL 100WT% fibres could be carried out, with other applications in mind.  

 

Further work could be carried out on quantifying the reduction in glass transition 

temperatures in the hybrid fibres. This has the potential to explain some of the results 
observed here. It has been reported in published literature that thermal shape recovery has at 

least some degree of dependency on the glass transition temperature of the polymer (Behl and 

Lendlein 2007).  
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Chapter 8 Conclusions 

 

A number of findings were identified within the separate aspects of this study. The initial, and 

arguably most important result of this work was that PCL:PLA hybrid biomaterials (fibre) 

could be produced through melt extrusion processes. During fibre processing, it was evident 

that PCL:PLA fibres could be extruded without the addition of any plasticisers. However, these 

fibres were inadequately blended, as a result, the extruded fibres were of a low quality. The 

fibres had yellow tinges and were brittle, both potential indicators of thermal degradation 

(Pospıš́il, Horák et al. 1999). Due to the brittleness, the fibres could not successfully undergo 

mechanical testing, such as tensile testing and elongation. Typically, the non-plasticised hybrid 

fibres produced low tensile properties, when compared to those reported by Zhao and Zhao 

(2016), using similar PCL and PLA hybrid ratios. The addition of either glycerol or PEG-200 as 

plasticisers were found to improve the overall quality of the PCL:PLA hybrid fibres, when 

compared with the non-plasticised hybrid variants. Regardless of plasticiser type and 

concentration, a significant improvement was observed in tensile properties. Tensile testing 

was found to be successful only when fibre mounts were used. Without the use of a mount, the 

fibres were found to slip from the grip negating the results. Within the scope of this study, 

higher PLA content fibres produced higher elongation at break and Young’s modulus values, 

and overall higher quality fibres. Plasticised PCL:PLA 30:70WT% fibres were consistently 

identified as the most appropriate as per the criteria identified in table 2: 4. Further, the use of 

PEG-200 as a plasticiser was found to produce tensile properties that were more desirable 

than glycerol plasticised fibres (table 4: 24). More PEG-200 plasticised fibres had desirable 

mechanical properties (table 4: 24) and exhibited shape recovery (table 5: 3).  

 

Overall, the method for shape recovery testing was successful. Two distinct methods were 

employed; in vitro shape recovery testing was carried out at human physiological 

temperature, 37.5°C (Pinho, Rodrigues et al. 2016). Overall, this testing demonstrated that 

most PCL:PLA hybrid fibres did display shape recovery. Fibres that did not undergo shape 

recovery were thought to have low homogeneity – PCL fibres did not display shape recovery. 

A second test using a range of temperatures between 30 – 90°C, using solely the best fibres 

identified in table 4: 25. During the shape recovery testing of the best fibres, an unexpected 

result was identified: thermal contraction. That is, when the tested fibres were exposed to 

temperature in excess of 50°C (PLA 100WT% 10% PEG-200), or 60°C (PCL:PLA 30:70WT% 

20% PEG-200 plasticised 1 and 2 pass), they curled and did not return to their original 

conformations (table 5: 4). This phenomenon has the potential to be useful in a variety of (not 

established) applications. Further work is required on thermal contraction to provide an 

insight into what the potential uses of these materials are.  

 

The in vitro trypsin digestion pilot study proved to be informative in regards to the method 

used, but unsuccessful in obtaining suitable results. The error was identified to be too great in 

the samples, producing inconsistent results. Three samples were used at each point, meaning 

large variations in weight loss were more apparent. An increase in sample number could act to 

mitigate this effect. A number of results were observed during in vitro trypsin degradation. 

PCL 100WT% fibres plasticised with 20% PEG-200 were the only set to, in all solutions, 

display a weight loss. All solutions appeared to cause a weight gain in the 2 pass variant of 

PCL:PLA 30:70WT% hybrid fibres, plasticised with 20% PEG-200. Two solutions, PBS control 

and 2 mg trypsin, appeared to cause a weight increase in 1 pass variant of PCL:PLA 

30:70WT% hybrid fibres, plasticised with 20% PEG-200; however, a weight loss was seen in 

the same fibre type, in solutions of 4 mg trypsin. The remaining fibre types, PLA 100WT%, 
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10% PEG-200 plasticised, string controls, and PA controls, displayed no weight changes. 

However, the high error rate identified meant that these results lack accuracy.  

 

Overall, the best hybrid fibre was found to be PCL:PLA 30:70WT% plasticised with 20% PEG-

200. In terms of mechanical and shape recovery properties, the 1 and 2 pass variants were 

similar. However, in vitro digestion with trypsin enzymes yielded different results, based on 

whether the 1 or 2 pass variant was used. At this stage, the study outcomes demonstrated that 

the hybrid biomaterials have the potential to be applied in biomedical applications. Without a 

particular application in mind, it cannot be determined if a presence or absence of degradation 

is beneficial. Both variants of PCL:PLA 30:70WT% PEG-200 20% plasticised fibres exhibited 

shape recovery.  
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