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ABSTRACT 

 Hyperuricaemia, pathologically defined as the presence of higher levels of serum 

urate, results from a compromise in the delicate balance between the production and 

excretion of urate primarily in the liver and the kidneys, respectively. Hyperuricaemia is a 

prerequisite for gout, a painful inflammatory arthritis. The symptoms of gout arise from 

the body’s immune response to monosodium urate crystals that accumulate in the 

synovial fluid of the joints. Hyperuricaemia and gout are complex traits. A number of 

genetic loci confer risk to develop hyperuricaemia. Genome-wide association studies 

(GWAS), an indispensable tool in population genetics, has identified at least twenty eight 

genomic loci that contain variants affecting serum urate concentration. Gene-environment 

interactions also play a significant role in this context. Exogenous factors such as the 

intake of purine-rich foods increase the frequency of gout flares. Population-specific 

genetic effects on gout are as evident, if not more, as for other complex phenotypes. 

 The prevalence of gout is much higher in the New Zealand Polynesian population 

compared to other populations. Approximately 7% of New Zealand Māori and Pacific 

Island people and 3% of New Zealand Europeans are affected by gout. The coexistence of 

metabolic conditions with gout, usually called gout-comorbidities, adds another level of 

complexity. However, not many studies have attempted to address the causal relationship 

between these traits. In fact, my research project was instigated as an attempt to study the 

causal associations between gout and its comorbidities and fill in some gap in the 

scientific literature. The research was, however, limited to three metabolic 

conditions/comorbidities of gout – imbalanced iron homeostasis, metabolic syndrome and 

disrupted lipid metabolism. 

 My study shows an association between increased serum ferritin and the risk of 

gout and seeded an idea that the consumption of iron-rich diet may play a role in 

increasing the frequency and severity of gout flares. Genetic association analysis using 

two variants in the HFE gene was done to confirm the association between ferritin and 

urate, which showed positive association in a smaller dataset and provoked the idea to 

investigate the causality, if it exists, between gout and iron metabolism. Using the robust 

‘Two-sample Mendelian randomisation’ approach and exploiting summary statistics data 

from two large GWA studies, I was able to find an evidence of a causal effect of iron on 

urate metabolism, but not urate on iron metabolism. 
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 In the context of the metabolic syndrome, the role of variants within/near the 

ADRB3, MC3R, MC4R and ADTRP genes were investigated. The positive effects 

identified for these variants supported the possible involvement of obesity and insulin 

resistance-related genes in gout pathophysiology. 

 With the help of gene sequencing-based rare variant analyses, several novel 

population-specific association signals were found within the coding regions of two lipid-

related genes, LRP2 and A1CF. Polynesian-specific novel genetic effects were identified 

to be predictive for gout for common variants within the LRP2 gene. Rare variants within 

the LRP2 gene were also identified and a higher prevalence of non-synonymous 

polymorphisms that can increase the risk of hyperuricaemia was observed in European 

individuals compared to Polynesians. These results indicated LRP2 to contribute to the 

difference in gout prevalence between Māori and Pacific Island individuals compared to 

the New Zealand European population. 

 Collectively, my study reports a causal role of iron and ferritin in increasing 

serum urate concentration and the involvement of imbalanced iron homeostasis in 

hyperuricaemia. Also, positive genetic associations indicated that genes contributing to 

metabolic syndrome and lipid metabolism can increase the risk of gout, and also have 

population-specific effects for the Polynesian and European ancestral groups in New 

Zealand
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PICTORIAL ABSTRACT 

Figure 1: Pictorial abstract of discrete sections and major findings of this thesis
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SECTION 1.1 INTRODUCTION TO URATE, GOUT AND 

METABOLIC DISEASE 

1.1.1 Background 

 The uric acid story began several centuries ago when the German-Swedish 

chemist, Karl Wilheim Scheele (in 1776), isolated the substance from a bladder stone. He 

called it ‘lithic acid’ by virtue of its acidic properties (reviewed in Richet (1995)). The 

name was later changed to ‘uric acid’ by George Pearson and Antoine Fourcroy, 

reflecting its presence in normal urine (Fourcroy, 1804). Since then, researchers across 

the globe have been intrigued to establish the physiological and pathophysiological roles 

of uric acid in the human body, especially following the scientific speculation of the 

crucial significance of uric acid homeostasis in the prevention and/or management of 

several disorders including gout. The story particularly relevant to disorders other than 

gout, however, remains incomplete and merits further exploration. 

1.1.1.1 Basic chemical properties of uric acid 

 Uric acid (C5H4N4O3; 2,6,8-trihydroxypurine) is a weak diprotic acid with pKa1 

~5.4 and pKa2 ~10.3. Under physiological pH (~7.4), it is mostly present in the form of 

monovalent urate anion formed by the dissociation of a proton from the molecule (Figure 

1.1). Therefore, the term urate is often used in literature to denote the dissociated 

monovalent anionic state of uric acid in the extracellular fluid. The terms uric acid and 

urate are interchangeably used to refer to the total uric acid pool in the body (Bobulescu 

and Moe, 2012). 

Figure 1.1: Formation of urate from uric acid via dissociation of one proton. Uric acid and urate are used 

interchangeably in the literature. Urate is the anionic form that circulates in blood at the normal physiological 

pH. 
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1.1.1.2 Urate handling - evolutionary insight 

 Although purine degradation is conserved across species, the end product of 

degradation is species dependent. In several organisms including most other mammals, 

urate is only an intermediary product of metabolism and is further subjected to oxidative 

degradation by the enzyme uricase (urate oxidase) in the peroxisomes of hepatocytes to 

form allantoin. Allantoin, being water soluble, is relatively easily excreted by the kidneys 

(Briggs et al., 1977). However, birds, reptiles and some primates including humans, lack 

the uricase enzyme as a consequence of mutational silencing of the uricase gene. 

Evolutionary evidence suggests the occurrence of multiple missense and frameshift 

mutations in the promoter and coding regions of the gene during hominoid evolution, 

gradually decreasing the expression of the uricase gene and rendering the protein non-

functional (Kratzer et al., 2014; Masako et al., 2013; Oda et al., 2002). As a result, urate 

remains the end product of purine metabolism in these species and it is excreted as such 

by the kidneys (Rafey et al., 2003). Figure 1.2 illustrates the uricase mutations during the 

early hominoid evolution. 

 

Figure 1.2: Uricase mutation in early hominoid evolution. Figure illustrates the process of loss of uricase enzyme 

through space and time. Source: (Johnson et al., 2008). 

 The mechanism for the clearance of urate from the body largely depends on the 

presence or absence of functional catabolic enzymes in the pathway and varies from 

species to species, as outlined in Figure 1.3.   
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Figure 1.3: Flow sheet for conserved purine degradation and its variable end product metabolism among animal 

taxa. 1 indicates the end product of purine (AMP, IMP, GMP) metabolism in humans and other higher primates 

due to the evolutionary loss of uricase (indicated by red cross). Steps 2 to 9 illustrate the variation in end 

excretory products of purine metabolism between different species. Redrawn from Johnson et al. (2009b) and 

Lee et al. (2013).  
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1.1.1.3 Urate homeostasis in humans 

 In the human body, urate is the final breakdown product of purine catabolism. 

Degradation of endogenous (derived from nucleic acid metabolism) and exogenous 

purines (derived from dietary sources) result in the intracellular production of urate. In 

order to maintain a relatively constant (desirable) level of circulating urate in the body, a 

homeostatic mechanism functions to create a balance between the net production and 

excretion of urate. Urate homeostasis involves three determinants- its production in the 

liver, renal excretion and intestinal secretion (Rafey et al., 2003). The production of uric 

acid occurs primarily in the liver by the action of a molybdenum metalloenzyme called 

xanthine oxidase. This poorly soluble intracellular product enters the body’s circulation 

(as urate) by cellular efflux and is delivered to the kidney for excretion (Brondino et al., 

2006). Renal excretion of urate contributes to two-third of total urate excretion. A small 

proportion of urate that gains entrance to the intestine is degraded by the colonic bacteria 

and eliminated (Bobulescu and Moe, 2012; Rafey et al., 2003). This process, termed 

intestinal/extra-renal uricolysis, is especially significant when renal handling of urate is 

compromised (Sorensen and Levinson, 1975). 

Figure 1.4: Schematic representation of the key determinants of urate homeostasis in humans. Redrawn from 

Bobulescu and Moe (2012).  
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1.1.2 Renal handling of urate and hyperuricaemia 

 Once urate in circulation reaches the kidney, it is freely filtered. However, under 

normal conditions, bidirectional transport of urate occurs in the renal proximal tubules, 

resulting in > 90% of the filtered urate being reabsorbed and < 10% of the filtered urate 

being excreted. The proportion of filtered urate eventually excreted in the urine (as uric 

acid) is termed as fractional excretion of uric acid (FEUA) (Fushimi et al., 1990). The 

physiological value of FEUA under normal conditions is approximately 10% and is 

higher in females than males (Bobulescu and Moe, 2012). Fractional excretion of uric 

acid is indicative of renal function. 

 The serum urate level in humans is about ten times higher than in other mammals 

(Mandal and Mount, 2015). This can be attributed to the absence of the uricase enzyme 

and the urate reabsorption system in the kidney. The fact that the kidney invests resources 

in reabsorption of a large proportion of filtered urate compels us to speculate that urate is 

beyond an inert metabolic product in humans. Indeed, urate does have more roles to play 

in the human body apart from the undoubtedly important role of shuttling purine waste to 

the exterior (Richet, 1995). There is overwhelming evidence for its role as a respiratory 

and circulatory antioxidant (Carocho and Ferreira, 2013; Kang and Ha, 2014; Peden et al., 

1990). 

 Since the urate reabsorption system operates in the kidney, renal handling of urate 

is critical to maintain the desirable level of serum urate. The presence of a lower than 

normal level of serum urate is termed hypouricaemia. Hypouricaemia is defined as a 

serum urate concentration of < 0.2 mmol L-1 (Martín and Nieto, 2011). Defective urate 

reabsorption in the kidney has been shown to cause hereditary renal hypouricaemia 

characterised by hypouricaemia and increased FEUA (Windpessl et al., 2016). Hereditary 

renal hypouricaemia is caused by mutations in two genes encoding renal transporters in 

the proximal renal tubule, SLC22A12 (Solute carrier family 22 member 12) and SLC2A9 

(Solute carrier family 2 member 9) (Dinour et al., 2010; Komoda et al., 2004; Windpessl 

et al., 2016). Conversely, hyperuricaemia is described as the presence of a greater than 

normal level of circulating urate in the blood stream. 

 Hyperuricaemia can be caused by either increased production of uric acid in the 

liver and/or reduced excretion by the kidney and gut. This in turn may be a consequence 
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of excessive intake of purine rich foods, and/or defective endogenous purine metabolism 

and/or endogenous defects in the urate reabsorption/secretion system. A lower FEUA is 

indicative of hyperuricaemia. The commonly used threshold values to define 

hyperuricaemia in adults include serum urate concentration of > 0.41 mmol L-1 in males 

and > 0.35 mmol L-1 in females (Dalbeth et al., 2016). 

 Hyperuricaemia has been linked to diseases such as kidney stones and chronic 

uric acid nephropathy, evidence for causation being limited (Bobulescu and Moe, 2012). 

The relevance of hyperuricaemia in disease is most evident from its causal link with gout. 

Hyperuricaemia has also been described to be associated with gout-related comorbidities 

especially hypertension and diabetic renal disease (Doria and Krolewski, 2011; Perlstein 

et al., 2006) and found to be a concomitant of the metabolic syndrome (MetS) that 

encompasses hypertension, obesity, insulin resistance and dyslipidaemia (Mandal and 

Mount, 2015). Hyperuricaemia observed in non-symptomatic patients is described as 

asymptomatic hyperuricaemia (aHU) (Richardson, 1991). 

1.1.3 Gout 

 Gout being a complex disease is influenced by multiple genetic, environmental 

and interlinking risk factors (Robinson and Horsburgh, 2014). It is a painful inflammatory 

arthritic disease characterised by hyperuricaemia, hyperuricaemia being a necessary, 

although not sufficient, parameter for gout. Gout is the most common form of 

inflammatory arthritis in the elderly population. The global prevalence of gout is 

gradually increasing, which may be attributed partly to population aging, a rise in obesity 

and insulin resistance as well as changing lifestyle and dietary practices (Dalbeth et al., 

2016). The factors determining gout in the presence of hyperuricaemia are diverse and 

not completely understood (Dalbeth et al., 2016). 

 The basic pathophysiological feature of gout is the deposition of monosodium 

urate (MSU) crystals in the synovial fluid of the joints following longstanding 

hyperuricaemia. Gout is therefore referred to as a urate crystal deposition disease. Joints 

at the extremities/periphery are commonly affected (Underwood, 2006), especially the 

metatarsal phalangeal joint of the big toe (Dalbeth et al., 2016). The clinical features of 

gout arise due to the body’s innate immune response to the accumulated crystals. 

Diagnosis of gout includes an inspection of clinical history, microscopic examination, 
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imaging and laboratory testing (Peláez-Ballestas et al., 2010). The presence of tophus, 

defined as chronic inflammatory granulomatous lesions formed in response to crystal 

deposition (Dalbeth et al., 2016) and elevated serum urate concentration, are strongly 

suggestive of gout (Janssens et al., 2010). 

Figure 1.5: Pathophysiology of gout: Acute gout is characterised by redness, swelling and severe pain due to 

formation of monosodium urate (MSU) crystals within the synovial spaces of joints and an inflammatory 

response, while longstanding untreated hyperuricaemia can lead to deposition of MSU crystals (tophi) and 

subsequent permanent damage to the joints. 

 Acute gouty arthritis, the most common clinical presentation of gout, is 

characterised by severe pain, redness, tenderness, heat and swelling of the affected joint 

and causes restricted joint movement (Rome, 2012). Exogenous factors that trigger gout 

flares are diverse and include dehydration, starvation, alcohol consumption and intake of 

purine rich foods (Choi et al., 2004b; Zhang et al., 2012a)An acute gout flare peaks 

within the first day of attack and typically lasts for about a week, in the absence of 

treatment (Bellamy et al., 1987; Lindsay et al., 2011; Snaith, 2003). 

 If left untreated, acute gout may progress to advanced stage gout commonly called 

‘chronic gout’. Chronic gout is essentially characterised by continuous low-level pain and 

frequent intermittent attacks (flares) of severe pain. Despite having low pain, the severity 

of gout may keep increasing over time (Choi et al., 2005b; Lindsay et al., 2011). This can 

lead to joint disability due to the formation of large deposits of MSU crystals in the joints 

called ‘tophi’ (singular: tophus) (Figure 1.5). Formation of tophi not only may be visually 
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distressing but can also cause irreparable damage to the joints in addition to restricted 

mobility (Choi et al., 2005b). 

1.1.3.1 Immunological perspective 

 Monosodium urate crystals are extremely potent elicitors of inflammation. A local 

immune response is evoked at the site of MSU crystal deposition via the recruitment of 

neutrophils, production of inflammatory mediators and proinflammatory cytokines (So, 

2008). This process involves components of the innate immune system that can detect 

cellular products released by damaged cells in the body. The initial inflammatory 

response is triggered by two components, the toll-like receptors (TLRs) namely TLR2 

and TLR4 (Akira and Takeda, 2004; Lim and Staudt, 2013), and the pattern recognition 

molecule called CD14 (Cluster of differentiation 14) (Fujihara et al., 2003). Multiple 

intracellular processes lead to the formation of an inflammasome complex that triggers 

the maturation of interleukin 1-beta (IL1-ß) from pro-IL1-ß, which is the major mediator 

of the inflammatory effect (So, 2008) (Figure 1.6). 

Figure 1.6: Immunological perspective of gout: MSU crystals activate monocytes via the Toll-like receptor 

(TLR) pathway and the inflammasome. Binding to TLR and CD14 promotes phagocytosis and cell activation 

through MYD88-dependent signalling mechanisms. In the cytosol, MSU crystals induce the formation of the 

NALP-3/NLRP3 (NACHT, LRR, and pyrin domain-containing-3) inflammasome and lead to caspase-1 

processing of pro-IL-1β. Activation of the endothelium by IL-1β increases trafficking of neutrophils to the 

inflammatory site. ASC, apoptosis-associated speck-like protein containing a caspase-associated recruitment 

domain; IL, interleukin; NF-κB, nuclear factor-kappa-B. Modified and redrawn from So (2008). 
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1.1.4 Genetics of hyperuricaemia and gout 

 Hyperuricaemia is a complex trait. Variants in dozens of genes play a role in 

conferring risk to develop the phenotype. The interplay between the genetic risk variants 

and environmental risk factors is of crucial significance (Robinson and Horsburgh, 2014). 

Genome-wide association studies (GWAS), typically used to scan the genome to identify 

common genetic variants, mostly single nucleotide polymorphisms (SNPs), causally 

associated with a given phenotype/trait, is a methodology that has significantly improved 

our understanding of the genetic basis of complex traits including hyperuricaemia. At 

least 28 loci conferring risk to develop hyperuricaemia have been identified to date. Two 

major urate loci, namely SLC2A9 and ABCG2, have been shown to collectively explain 3-

4% of variance in serum urate concentration and thereby strongly influence serum urate 

levels in the body (Köttgen et al., 2013). 

 Genome-wide association studies before 2013 identified a total of 11 urate loci, 

collectively explaining 5-6% variance in serum urate (Dehghan et al., 2008a; Döring et 

al., 2008; Kolz et al., 2009; Yang et al., 2010b). The loci were identified either in or near 

these genes; PDZK1, GCKR, SLC2A9, ABCG2, RREB1, SLC17A1, SLC16A9, SLC22A11, 

NRXN2, INHBC. The most recent serum urate GWAS data comes from Köttgen et al. 

(2013), who identified 18 novel urate related loci using the data from a population of 

>110,000 European individuals. The loci were identified in or near the TRIM46, INHBB, 

SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, 

UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B/ACVRL1, and B3GNT4 genes and 

collectively explained ~7% variance in serum urate concentration (Köttgen et al., 2013). 

 Given that hyperuricaemia is a prerequisite for the development of gout, it is 

highly likely that urate-associated genes are also associated with gout (Hollis-Moffatt et 

al., 2012a; Hollis‐ Moffatt et al., 2009; Köttgen et al., 2013; Phipps-Green et al., 2010). 

Recently 28 urate-associated loci, identified by Köttgen et al. (2013), were tested for their 

association with gout at the Merriman Laboratory (Phipps-Green et al., 2016) using data 

from > 4,000 New Zealand European and Polynesian individuals. In addition to SLC2A9, 

ABCG2, SLC17A1 and GCKR, significant associations with gout were identified, 

especially for four novel gout loci in or near IGF1R, PDZK1, MAF and HLF (Phipps-



1| Introduction 

 12 

Green et al., 2016). These results also indicated a possible role of non-urate transporter 

genes in the development of gout. 

1.1.5 Prevalence of hyperuricaemia and gout 

 As mentioned before, serum urate concentration of ≥ 0.41 mmol L-1 in men and ≥ 

0.35 mmol L-1 in women is used to define hyperuricaemia (Dalbeth et al., 2016). The fact 

that average recorded levels of serum urate may fall differently within this range for 

different populations (explained hereafter) means that the prevalence of hyperuricaemia 

varies between different regions of the world (Table 1.1). For example, the average serum 

urate concentrations have been recorded to be as low as 0.24 mmol L-1 and as high as 

0.46 mmol L-1 in Brazilian and Taiwanese Aborigine males, respectively. For females, 

this range varies between 0.22 mmol L-1 to 0.37 mmol L-1 for Brazilian and Tibetan 

populations, respectively (Acheson and Florey, 1969; Chou and Lai, 1998; Gosling et al., 

2014). This average makes some populations to fall within the hyperuricaemic range e.g., 

Tibetans, Taiwanese Aborigine, Cook Island and New Zealand Māori (Brauer and Prior, 

1978; Chou and Lai, 1998; Evans et al., 1968). This, in turn, results in higher prevalence 

of hyperuricaemia in these populations (Chang et al., 2001; Prior et al., 1966). 

Table 1.1: Country specific prevalence of hyperuricaemia 

Country Prevalence (%) Country Prevalence (%) 

Brazil 13 Philippines 25 

China 6 to 25 Russia 17 

Indonesia 18 Samoa 33 

Iran 8 Saudi Arabia 8 

Italy 9 to 12 Seychelles 25 

Japan 20 to 26 South Korea 5 

Marshall Islands 85 Spain 5 to 11 

Mexico 11 Sweden 10 to 16 

Mongolia 5 to 18 Taiwan 10 to 52 

New Zealand 8 (non-Māori)/17 to 19 (Māori) Thailand 9 to 11 

Nigeria 17 Turkey 12 

Papua New Guinea 1 USA 21 to 22 

Source: (Smith and March, 2015). 

 Although hyperuricaemia is essential for the development of gout, their 

prevalence may differ for the same population. The reason behind is evident – not all 

individuals with hyperuricaemia develop gout. For example, Taiwanese Aborigines have 

the highest prevalence of hyperuricaemia while the prevalence of gout has been recorded 

to be highest in Australasian populations (explained in the subsequent paragraph). The 

average level of urate is higher in males than females, and so is the prevalence of gout 
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(reviewed in Kuo et al. (2015)). An approximate range of the worldwide prevalence of 

gout was recorded to be 0.02% (for countries in South Asia: Afghanistan, Bhutan, India, 

Nepal and Pakistan) to 0.39% (Australasian countries; Australia and New Zealand) in a 

2014 World Health Organisation (WHO) survey (Smith et al., 2014), however this is 

likely to be an underestimate owing to the method of data capture. According to a recent 

study by Kuo et al. (2015), the overall prevalence of gout was recorded to be > 1% in 

most developed countries (especially in Europe and North America) (Figure 1.7). The 

overall prevalence of gout was recorded to be 3.9% in the adult US population (age ≥ 20 

years) in the National Health and Nutritional Examination Survey (NHANES 2007-2008) 

(Zhu et al., 2011). For Canada, an estimated general prevalence was suggested to be ~3% 

in adults (Badley and DesMeules, 2003; O'Donnell et al., 2015). In Europe, Greece has 

been reported to have the highest prevalence of gout, at 4.75%, in the adult population 

(Anagnostopoulos et al., 2010). Kuo et al. (2014b) provided the latest estimate of gout 

prevalence to be 3.22% in the adult (age ≥ 20 years) UK population, with an overall 

population estimate to be 2.49%. The overall estimates are similar to what have been 

reported for other European countries i.e., 3.3% for Spain (Sicras-Mainar et al., 2013) and 

3.7% for the Netherlands (Picavet and Hazes, 2003). On the other side of the picture, 

within Europe, the lowest prevalence of gout (0.3%) has been reported for the adult 

population of Portugal (Reis and de Queiroz, 2014) and Czech Republic (Hanova et al., 

2006). 

Figure 1.7: The estimated prevalence of gout across the world showing higher prevalence of gout in developed 

countries, especially in Oceania populations (Australia and New Zealand). Source: Kuo et al. (2015). 
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 As illustrated in Figure 1.7 (Kuo et al., 2015), the prevalence of gout is highest in 

Australasian countries i.e., Australia and New Zealand. Two equivalent studies indicated 

an overall prevalence of gout to be 1.5% for Australian (Robinson et al., 2015) and 3.75% 

for New Zealand (Winnard et al., 2012) adults. Interestingly, the prevalence and severity 

of gout differ strikingly among diverse ancestral groups in these regions, with Pacific 

Islanders and Māori having a higher prevalence of gout than people of European decent. 

About 3.8% of adults have been reported to have gout in an Australian aboriginal 

community in North Queensland, with 22% cases being identified as having severe gout 

(presence of subcutaneous tophi) (Minaur et al., 2004). In contrast, an overall prevalence 

of 1.44% (all-age) was reported in Australian National Health Survey (ANHS) data 

(Skinner, 1997). For New Zealand, using data from the Aotearoa New Zealand Health 

Tracker (ANZHT), the prevalence of gout has been reported to be 3.2% in European 

individuals (Winnard et al., 2012). In comparison, the prevalence of gout was as high as 

7.6 and 6.1% for Pacific Island and Māori individuals, respectively (Winnard et al., 2012). 

This indicated the rate of gout to be almost double in Pacific Island and Māori 

populations than Europeans. Over the passage of time, the prevalence of gout has 

progressively increased in the New Zealand Māori and European individuals (Figure 1.8), 

with a minimum rate of 2.7% and 0.3% recorded in 1958 to 6.06% and 3.24% in 2009 in 

both populations, respectively (Klemp et al., 1997; Lennane et al., 1960; Prior and Rose, 

1966; Winnard et al., 2012). 

Figure 1.8: The estimated prevalence of gout in the New Zealand Māori and European population over time. 

Note: All values in the graph are presented for the year(s) when data were collected from the respective 

populations, which may differ from the year(s) it was published. A prevalence of ‘zero’ does not represent the 

absence of data.  
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1.1.6 Urate, gout and metabolic disease 

1.1.6.1 Foreword 

 As mentioned earlier, gout has a high rate of co-occurrence with other metabolic 

conditions. These co-occurring conditions are generally referred to as ‘comorbidities’. 

Considering hyperuricaemia and gout as index diseases under study, comorbidity is 

defined following Feinstein’s definition (Feinstein, 1970) in my thesis. According to this 

definition: 

“A comorbidity is any distinct additional entity that has existed or may occur during the 

clinical course of a patient who has the index disease under study.” 

 Ample evidence is available linking gout to metabolic syndrome (or its 

components) (Puig and Martinez, 2008), renal disease (Kramer et al., 2003; Kramer and 

Curhan, 2002; Yu et al., 2012), hyperlipidaemia (reviewed in Kuo et al. (2014a)) and 

cardiovascular disease (CVD) (Choi and Curhan, 2007b; Krishnan et al., 2006; Kuo et al., 

2013). However, evidence for its possible association with other, relatively less studied 

comorbidities, is still limited e.g., hypothyroidism (Durward, 1976; Kuzell et al., 1955), 

cancer (Boffetta et al., 2009; Kuo et al., 2012) and anaemia (McAdams-DeMarco et al., 

2012). 

 The clinical guidelines and recommendations approved by American College of 

Rheumatology (ACR) (Nuki, 2014), American College of Physicians (ACP) (Shekelle et 

al., 2017), European League against Rheumatism (EULAR) (Richette et al., 2017) and 

the British Society for Rheumatology (BSR) (Roddy, 2016) have insisted and discussed 

more about the diseases that are pathophysiologically related to gout. Their guidelines 

also recommend urate-lowering therapy (ULT) only to the patients with either a high 

urate load or kidney-related comorbidities. Although it is understandable that a great 

focus was placed on comorbidities that are causally correlated with gout, multiple 

metabolic conditions may appear simply as co-occurring ailments rather than causes in 

many patients. Such metabolic conditions that may or may not indicate a direct (or 

causal) relationship with gout still merit provision of management guidelines. 
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 Although the above-described observational studies have been useful in providing 

proof for a possible association between gout and other metabolic conditions, yet the 

information provided in these studies cannot ascribe the causality between cause and 

effect relationship. The main reason behind this uncertainty is that the data presented in 

such studies are purely observational based on the co-occurrence of the two conditions, 

which may in turn be prone to biases due to additional metabolic conditions as potential 

confounders of cause (exposure) and effect (disease) relationship (Bowden et al., 2017). 

As complex traits (like gout) are affected by a number of environmental factors, getting 

false positive associations without accounting for confounders is highly likely (Hayden et 

al., 2013; Shrank et al., 2011). Unaccounted confounding is a reason why such studies 

may fail to replicate the reported associations or prove any causality when tested in 

randomised controlled trials (RCTs) (Kovesdy and Kalantar-Zadeh, 2012; Smith and 

Ebrahim, 2001, 2008). However, it may not always be possible to carry a large 

randomised controlled trial due to several social reasons. In such scenarios, Mendelian 

randomisation (MR) can be used as a successful approach, analogous to RCT, to infer a 

possible causal relationship between cause and effect (Iturrieta-Zuazo and Walter, 2015; 

Smith and Hemani, 2014). Mendelian randomisation makes use of genetic variants 

robustly associated with exposure (e.g., body iron levels) as instruments to identify their 

predictive effect on the outcome (e.g., serum urate/gout), adjusting simultaneously for 

potential confounders (Smith and Ebrahim, 2003). The MR exploits the basic principle of 

random assignment of alleles at conception that are not prone to confounding via 

environmental factors as well as reverse causation due to unidirectional flow of biological 

information i.e., information can be only translated from genome to protein and not in the 

reverse direction. Hence, exploring new information between gout and other metabolic 

conditions not only requires broadening the range of coexisting conditions being 

considered but also a more robust approach, like genetic association analysis and/or MR, 

to explain ‘which is driving which’ relationship between them. 

1.1.6.2 Gout and metabolic disease in New Zealand 

 Aotearoa New Zealand has one of the highest documented prevalence of gout 

worldwide (as mentioned above) as well as its related comorbidities (Winnard et al., 

2013); worth mentioning is the co-prevalence of obesity, kidney disease, type 2 diabetes 

(T2DM) and CVDs, occurring individually or as components of the metabolic syndrome, 
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with hyperuricaemia or gout. Gout has generally been associated with all-cause mortality, 

mostly due to death from renal disease or CVD (Choi and Curhan, 2007b; Stamp and 

Chapman, 2013; Teng et al., 2012). Despite their utmost clinical importance and 

subsequent increased demand for health care resources, studies exploring metabolic 

disease(s) as a comorbidity of gout have been seldom carried out in the New Zealand 

population. In the following paragraphs, using the data available in the literature, I have 

summarised the history of the prevalence of some well-known metabolic conditions. The 

summary is structured to specifically outline these comorbidities in the context of their 

coexistence with hyperuricaemia and gout, both globally and in New Zealand. 

1.1.6.2.1 Obesity 

 Ranking first in the list of gout-associated comorbidities is obesity. Generally, a 

body mass index (BMI) > 30 kg/m2 is referred as a cut off to specify obesity. Obesity, 

particularly visceral obesity, is also a well-recognised risk factor for other metabolic 

diseases e.g., T2DM and CVD (Després and Lemieux, 2006; Mokdad et al., 2003). Being 

obese has also been reported to increase the xanthine oxidase (XO) catabolism of purines 

and, thereby, enhanced production of urate in adipose tissues (Tsushima et al., 2013). 

High BMI measures and obesity have been described to be associated with increased 

urate levels in several human-based studies, mostly as components of metabolic 

syndrome (Billiet et al., 2014; Johnson et al., 2013b; Nejatinamini et al., 2015). In 

addition, data from MR studies have also described a causal association between 

genetically determined adiposity measures and higher urate levels. These studies have 

described an elevation in urate to occur as a consequence of an increase in triglycerides, 

BMI, adiposity and its associated risk factors (Lyngdoh et al., 2012; Palmer et al., 2013; 

Rasheed et al., 2014). Moreover, in a study including the data of 15,533 American 

individuals from a community-based cohort (Campaign Against Cancer and Heart 

Disease/CLUE II), McAdams-DeMarco et al. (2011) reported the onset of gout to be 3 

years earlier on an average in obese (age > 21 years) compared to non-obese participants. 

An analysis of the US population data from NHANES 2007-2008 showed that 53% of the 

individuals with gout (age > 20 years) were obese (Zhu et al., 2012). 

 An early survey of 115 Māori men revealed that individuals with hyperuricaemia 

and gout tend to be heavier than their comparative normouricaemic controls (Gibson et 
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al., 1984). In general, New Zealand is facing a continuous rise in the prevalence of 

obesity. Recent data from the New Zealand Ministry of Health reported an overall 31% of 

the individuals to be obese and 34% still overweight (www.health.govt.nz/). New Zealand 

has also been ranked as 3rd in the 2014 OECD (Organisation for Economic Co-operation 

and Development) report for the worldwide prevalence of obesity (Ng et al., 2014). 

According to this survey, Polynesians largely contributed to the burden of obesity in New 

Zealand (www.oecd.org/). The New Zealand Ministry of Health further confirmed the 

prevalence of obesity for different ancestral groups in New Zealand, with Pacific 

Islanders being at the top (66.2%) followed by Māori (46.5%) and Europeans (and other 

ethnicities (29.2%) (Figure 1.9) (www.stats.govt.nz/ and www.health.govt.nz/). 

Figure 1.9: Graphical illustration of the proportion of the New Zealand obese population, stratified by ethnicity 

and gender. Source: www.stats.govt.nz/ and www.health.govt.nz/). 

1.1.6.2.2 Renal impairment and chronic kidney disease 

 Renal dysfunction is common in patients with hyperuricaemia or gout. Increased 

serum creatinine and decreased glomerular filtration rate (GFR) are indicative of reduced 

kidney function. Higher serum creatinine levels have been classically associated with 

higher levels of serum urate in gout patients (Nishida, 1992). Contradictory to this, a 

Mendelian randomisation (MR) study found a causal association between genetically 

higher levels of serum urate and decreased serum creatinine (Hughes et al., 2014). 

Evidence has also indicated reduced GFR to be associated with higher urate levels 

(Johnson et al., 2013a; Mohandas and Johnson, 2008; Suliman et al., 2006). A study 

http://www.health.govt.nz/
http://www.oecd.org/
http://www.stats.govt.nz/
http://www.health.govt.nz/
http://www.stats.govt.nz/
http://www.health.govt.nz/
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including data from NHANES 2009-2010 reported a 2-3 fold increase in the prevalence 

of gout for a decrease in GFR (data for every 30 mL/min/1.73m2 decrease in GFR) 

(Krishnan, 2012). Several studies have reported an elevation in urate to be predictive for a 

progressive increase in pre-established chronic kidney disease (CKD) (Shi et al., 2011) or 

the development of renal impairment in individuals with normal renal function (Ohno et 

al., 2001; Shi et al., 2011; Syrjänen et al., 2000). Chronic hyperuricaemia has strongly 

been associated with CKD (Johnson et al., 1999; Johnson et al., 2013a). Higher 

prevalence of CKD has also been reported in gout patients. Data from the large US 

population-based study, NHANES 2007-2009, revealed about 71% of the gout patients to 

have CKD at stage 2 or higher (Zhu et al., 2012). In a recent meta-analysis of data from 

17 large studies including multiple populations, the global co-prevalence of gout with 

advanced stage CKD was found to be 24% (Roughley et al., 2015). In contrast, two other 

recent studies reported a prevalence of gout in CKD patients to be 6.8% and 24.3% in the 

US and Dutch populations, respectively (Jing et al., 2014; Wang et al., 2015). In addition, 

a possible relationship of increased urate concentration has been marked as an 

independent predictor for the development of CKD in patients with T2DM (Altemtam et 

al., 2011; Zoppini et al., 2012). Having chronic kidney disease has also been regarded as 

a factor that increases the risk for the development of diabetes, CVD and other heart-

related complications (Go et al., 2004). 

 Likewise, a few studies have also reported the co-prevalence of gout with CKD in 

the New Zealand (NZ) population. A study reported a 3.5-fold higher rate of ESRD (end-

stage renal disease) in Māori and Pacific Islanders than Europeans (Collins, 2010). 

Robinson et al. (2012) found that ~16-27% of gout patients who were admitted in any of 

the New Zealand hospitals between 1999 and 2009 had renal complications, with most 

patients being either Māori or Pacific Islanders. Although exact figures are still unknown, 

a 2014 national consensus statement from the New Zealand Ministry of Health 

(www.health.govt.nz/) suggested about 7% of the adult New Zealand population to be 

CKD sufferer (NZMH, 2014). 

1.1.6.2.3 Type 2 diabetes 

 Type 2 Diabetes (T2DM) is another metabolic condition that has been consistently 

reported for its coexistence with hyperuricaemia and gout (Winnard et al., 2013). 

http://www.health.govt.nz/
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Elevated levels of serum urate have been shown to be strongly associated with an 

increased risk of T2DM (Sluijs et al., 2015). However, the same study was unable to find 

a causal relationship between genetically high serum urate and T2DM using the MR 

approach (Sluijs et al., 2015). Moreover, hyperuricaemia has been generally associated 

with a high risk of T2DM (Billiet et al., 2014; Johnson et al., 2009a). In contrast, the 

relationship between gout and diabetes is rather complex (Stamp and Chapman, 2013), 

with one study showing reduced risk of developing gout in patients with advanced T2DM 

(was ascribed to increased urination leading to increased urate excretion) (Choi and Ford, 

2008). Additionally, a large study in the US population showed a higher risk of 

developing T2DM in male gout patients with higher risk of CVD (Choi et al., 2008). 

Another study in the UK based population also found a similar relationship between gout 

and the risk of developing T2DM (Rho et al., 2016). However, the risk ratio (RR) was 

higher in females (RR = 10.1) than males (RR = 9.5) (Rho et al., 2016). 

 Consistent with the aforementioned study findings, a higher risk of developing 

T2DM has also been observed in the New Zealand individuals, with disproportionate 

adverse effects in the Polynesian populations (explained hereafter). According to a recent 

report from the New Zealand Ministry of Health (www.health.govt.nz/), being a Māori or 

Pacific Islander increases the risk of developing T2DM by 3-fold in comparison to other 

ancestral backgrounds. An overall prevalence of T2DM has been reported to be 6.6% in 

the New Zealand population (Winnard et al., 2013), while other studies reported the 

prevalence to be highest in Pacific Islanders (Chan et al., 2014). A recent study by 

Coppell et al. (2013), using data from the 2008/09 New Zealand Adult Nutrition Survey 

(NZANS), found an overall prevalence of prediabetes and diabetes to be 25.5% and 7.0%, 

respectively. The study also reported the prevalence of diabetes to be higher in males 

(8.3%) than females (5.8%). Winnard et al. (2013) reported a higher co-prevalence of 

gout and T2DM, with 25.6% of the gout patients (n = 119,234) in the ANZHT database 

also having T2DM. 

1.1.6.2.4 Cardiovascular disease 

 A high prevalence of CVD and T2DM travels concomitantly with gout (Winnard 

et al., 2013). Linking the above mentioned comorbidities, elevated levels of urate have 

been associated with an increased risk of cardiovascular mortality in patients with CKD 

http://www.health.govt.nz/
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(Kanbay et al., 2012; Madero et al., 2009) and T2DM (Ito et al., 2011). Hyperuricaemia 

has been described as a potential risk factor for a number of heart-related problems 

including hypertension (Grayson et al., 2011), coronary heart disease (CHD)/ischemic 

heart disease (IHD) (Kim et al., 2010), heart failure (Huang et al., 2014), stroke (Kim et 

al., 2009) and peripheral vascular disease (Baker et al., 2007). More recent MR studies 

have reported a causal relationship between genetically predicted serum urate and adverse 

cardiovascular outcomes including sudden cardiac death (Kleber et al., 2015). However, 

other studies using the same approach were unable to find such causal associations, 

between serum urate and CHD (Palmer et al., 2013; White et al., 2016) or biomarkers of 

CHD (Rasheed et al., 2014). Despite these findings, hyperuricaemia has been associated 

with all-cause cardiovascular mortality in several populations (Chen et al., 2015a; Li et 

al., 2016; Moulin et al., 2017). In line with these studies, gout has also been described to 

be strongly associated with cardiovascular mortality (Kuo et al., 2009), especially CHD 

associated mortality (Choi and Curhan, 2007b; Clarson et al., 2013) and myocardial 

infarction (Kuo et al., 2013). 

 An overall prevalence of CVD in the New Zealand population has been reported 

to be 5.4%, with ~22.7% co-prevalence of gout and cardiovascular events (Winnard et al., 

2013). Heart failure and CVD were reported as potential comorbid conditions, 

respectively, in 27.6% and 39.1% of the gout patients who were admitted to the New 

Zealand hospitals between the years 1999-2009 (Robinson et al., 2012). In the context of 

the New Zealand population, CHD has been declared as most common type of CVD. 

According to the 2014 data from the New Zealand Ministry of Health 

(www.health.govt.nz/), one in every eighteen adults has been diagnosed with CHD, with 

a death rate of one every 40 minutes. Again, the prevalence of CHD is higher in Māori 

(6.2%) and Pacific Islanders (5.04%) in comparison to the individuals of European 

descent (4.2%) (Thornley et al., 2011). Bramley et al. (2004) showed that Māori had risk 

ratios of 1.9 and 5.7 for death by IHD and diabetes, respectively, when referenced against 

the non-indigenous New Zealand population. Data from The Auckland Region Coronary 

or Stroke Study (ARCOS) further supported this fact, in which Māori (Death rate = 68%) 

and Pacific Island (Death rate = 64%) individuals had higher death rates caused by a 

coronary event compared to Europeans (Death rate = 44%) (Bullen and Beaglehole, 

1997). Another more recent analysis in the same database revealed that heart stroke 

http://www.health.govt.nz/
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occurs at a comparatively younger age in Polynesians (61.9 years) than Europeans (74.6 

years) (Feigin et al., 2006). 

1.1.7 Metabolic disease/comorbidities included in this study 

 The research in my thesis was broadly conducted and limited to the occurrence of 

(or changes in) the following three metabolic conditions/comorbidities of gout. These 

metabolic conditions have been abundantly reported for their possible coexistence with 

hyperuricaemia and/or gout as potential comorbidities. 

1. Imbalanced iron homeostasis 

2. Metabolic syndrome 

3. Imbalanced lipid metabolism (dyslipidaemia) 

 To make this section precise for the readers and due to the discrete nature of 

selected comorbidities, extensive cumbersome text explanations are avoided here. Instead, 

section 1 of each chapter (Chapter 2 to Chapter 5) is dedicated to a detailed description of 

the history, background concept and biological mechanisms for each of the metabolic 

diseases plus rationale for its possible relationship with urate metabolism and gout, as 

described in the literature per se. The following paragraphs provide only a summary 

background for each of these comorbidities in a bigger picture before explaining the aims 

of this study. 

1.1.7.1 Iron homeostasis and gout 

 Iron is an essential element of the human body and is vital for an array of 

metabolic functions, such as oxygen transport and oxidative phosphorylation. The human 

body is specialised to strictly maintain the normal blood levels of iron within a narrow 

range of 3 to 4 grams (3.8 g in males and 2.3 g in females) of the total body weight 

(Leong and Lonnerdal, 2012). However, the range may vary between 4 and 5 grams for 

well-nourished people (Gropper and Smith, 2013). 

 Food is the primary source of iron, providing heme and non-heme iron through 

animal and plant sources, respectively. In comparison to non-heme iron derived from 

plants, heme iron derived from animal sources (meat, fish and seafood) is more readily 

absorbable in the body. Dietary heme iron accounts for two-thirds of the average person’s 
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total iron stores (Bezwoda et al., 1983; Carpenter and Mahoney, 1992; West and Oates, 

2008) and due to its high bioavailability, the absorption of heme iron is 5 to 7 times 

higher than that of non-heme iron in the gastrointestinal tract (Björn-Rasmussen et al., 

1974; Reizenstein, 1979). The amount of iron gained from a non-heme source is totally 

dependent upon the individual’s body iron status (Hurrell and Egli, 2010). 

 Maintaining iron in strict limits is crucial due to its biological toxicity and 

catalytic activity. Iron in its free floating form can primarily cause oxidative stress and, 

thereby, destruction and/or death of otherwise healthy cells due to the increased 

production of reactive oxygen species (ROS) (Bresgen and Eckl, 2015; Dixon and 

Stockwell, 2014). The human body is specialised to not only regulate its pre-existing 

endogenous iron pools but also the amount of iron from the diet, which is regulated at 

both the systemic and cellular levels (Ganz, 2013; Wang and Pantopoulos, 2011). The 

regulation of iron homeostasis involves a number of proteins, enzymes, and other cellular 

structures to properly distribute and store the metal. After reaching the stomach, iron in 

the food is absorbed by the duodenal enterocytes in a controlled fashion (Fuqua et al., 

2012). Once it enters the circulatory blood pool, the transport of iron in the blood is 

controlled by a glycoprotein named transferrin, which reversibly binds iron ions and 

carries them to the surrounding tissues (Rouault, 2003). The cellular uptake of iron is 

mainly governed by transferrin receptor mediated import from transferrin into the cells 

(Moos, 2002). As the human body does not possess any specialised excretory mechanism 

for the removal of iron, at each successive stage of its distribution, any extra amount of 

iron is required to be liganded and stored. This exceptionally important need to sequester 

iron in a suitable liganded form is fulfilled via ‘ferritin’. Ferritin is a hollow globular 

protein, synthesised in the liver and specialised for the storage of excess iron in a non-

toxic form and its release in a controlled fashion (Harrison et al., 1986). 

 Failure to maintain normal body iron levels may end up with negligible iron 

imbalance to severe iron-related disorders. Two disorders of abnormal iron levels in the 

body are iron deficiency – too low iron, and iron overload – too high iron. In aggregate, 

iron deficiency and haemochromatosis (iron overload) have been reported to affect over 1 

billion people around the globe (Crownover and Covey, 2013; Hentze et al., 2004; WHO, 

2015). 
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1.1.7.1.1 Body iron profile 

 Ferritin reflects cumulative iron stores in the body and is measured under regular 

laboratory practices as a surrogate marker to determine iron levels in the blood and iron-

related disorders (WHO, 2011). In addition, body iron profile is reflected via the amount 

of total blood (serum) iron, serum transferrin, total iron binding capacity (TIBC) and 

transferrin saturation (TSAT). Total iron binding capacity (TIBC) is the capacity of the 

blood to bind iron with transferrin, that in turn indicates the maximum amount of iron that 

blood can carry and is an indirect measure of blood transferrin (Yamanishi et al., 2003). 

Transferrin saturation (TSAT), on the other hand, is an indirect estimate of the amount of 

transferrin available for iron to bind. It is calculated as the ratio between total blood iron 

and TIBC and represents the percentage of transferrin’s iron-binding sites occupied by 

iron i.e., a TSAT of 10% indicates that 10% of the iron-binding sites on the transferrin 

possess bound iron while 90% of the sites are still free for the iron to bind. 

1.1.7.1.2 Iron homeostasis, urate and gout 

 Urate is a well known iron chelator i.e., it has the ability to bind to and protects 

the body tissues from metal (iron)-mediated free radical damage (Davies et al., 1986; 

Ghio et al., 1994). Iron, in turn, is known for its ability to modulate the activity of 

xanthine oxidase and subsequently the production of urate (Ghio et al., 2002). Ferritin, 

TIBC and TSAT have been positively correlated with urate in the US National Health and 

Nutrition Examination Survey (NHANES III) (Ghio et al., 2005; Mainous et al., 2011) 

with elevation in serum urate suggested as an indicator of iron overload (Mainous et al., 

2011). 

 Supportive evidence for iron as a trigger for gout flares is provided by the ability 

of iron to form complexes with MSU crystals in vitro, their presence in the synovial fluid, 

stimulation of oxidative stress through the generation of ROS, granulocyte and 

complement activation and production of lymphocytes (Ghio et al., 1994). Association of 

iron with a number of pro-inflammatory activities in animal models (Dabbagh et al., 

1992) and a decrease in gouty flares following phlebotomy to attain near iron-deficient 

levels in hyperuricaemic patients (Facchini, 2003) are also suggestive of its role in gouty 

arthropathy. Consistent with these observational studies, a recent study reported the 

association of a genetic variant in the transferrin receptor (TFRC: rs1466085) with gout. 
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Individuals carrying the risk allele of this variant also self-reported a higher likelihood of 

an iron-rich food as a trigger of flares (Merriman et al., 2015). 

 Interestingly, purine-rich foods from  animal-based diet have been associated with 

increased risk of recurrent gout attacks while purine-rich foods from plant-based diet did 

not show a strong correlation (Zhang et al., 2012b). These observations, combined with 

the other observational and intervention data (Facchini, 2003; Ghio et al., 2005; Mainous 

et al., 2011), are consistent with the idea that iron in purine-rich foods (red meat for 

example) could be a causal factor of gout. 

 Despite the presence of evidence in literature suggesting a possible role of iron 

and its related disorders in predicting hyperuricaemia and gout, this important 

relationship has been excessively neglected in New Zealand population-based studies. In 

fact, apart from studies that are more observational and conventional, data providing 

information on a causal relationship between these two important metabolic components 

are not available in the literature. Therefore, imbalanced iron homeostasis was selected as 

one of the major metabolic complications of gout in my thesis. My research was 

conducted with the hope of shedding light on a possible causal relationship between these 

two metabolic conditions and to fill in the substantial gap in literature, especially in the 

context of the New Zealand population. 

1.1.7.2 Metabolic syndrome and gout 

 Almost all of the metabolic diseases described in Section 1.1.6 are collectively 

considered as ‘metabolic syndrome’ or MetS. However, the debate of inclusion of 

hyperuricaemia per se in the definition is still controversial (Nejatinamini et al., 2015; 

Wei et al., 2015). The main reason for considering hyperuricaemia as one of the MetS 

components is the presence of plentiful data in a number of epidemiological studies 

reporting co-occurrence of and/or association between hyperuricaemia and MetS 

components (detailed in Section 1.1.6) (Billiet et al., 2014; Chen et al., 2007; Liu et al., 

2015; Yamasaki and Tomita, 2008). 

 Most of the epidemiological studies have suggested hyperuricaemia to be a 

condition occurring secondary to hyperinsulinaemia (Muscelli et al., 1996; Soltani et al., 

2013) and thereby its positive association with insulin resistance and diabetes (Li et al., 
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2013; Lippi et al., 2008). Additionally, data for its positive association with other MetS 

components is abundant too e.g., obesity (Han et al., 2014; Tang et al., 2010), 

cardiovascular disorders and hypertension (Borghi et al., 2014; Nakanishi et al., 2003). A 

more recent study has indicated a positive correlation between elevated serum urate and a 

collection of risk factors that culminates as MetS (Nejatinamini et al., 2015). 

 Components of MetS and the data for their possible relationship with 

hyperuricaemia and gout are already detailed in Section 1.1.6. However, despite the 

above-mentioned observational data (and data provided in Section 1.1.6), the number of 

studies providing a genetic association between gout and the metabolic syndrome are 

scarce. The research in my thesis was structured not only to fill in this substantial gap in 

the literature but also to provide a genetic basis to this observational relationship between 

the two metabolic conditions, especially with an emphasis given to the New Zealand-

based ancestral population groups. 

1.1.7.3 Lipid metabolism and gout 

 A number of lipid biomarkers and their transport proteins collectively make the 

blood lipid profile. However, most of this profile is characterised by two types of lipids, 

cholesterol and triglycerides (TG) and their carrier proteins called ‘lipoproteins’. 

Lipoproteins are generally categorised by their density, the amounts of lipids and proteins 

in the molecule and the type of lipid biomarker they tend to transport through circulation. 

Whilst very low-density lipoproteins (VLDL) mainly transport TG, low-density 

lipoproteins (LDL) and high-density lipoproteins (HDL) are the major transporters of 

cholesterol (Voet et al., 2006). An abnormal amount (hypo or hyper) of lipids in the 

blood is referred to as ‘dyslipidaemia’. 

  As mentioned earlier, hyperuricaemia has been associated with dyslipidaemia as 

part of the metabolic syndrome (Mandal and Mount, 2015). A number of reports 

explained an association of hyperuricaemia and gout with all-cause and CVD mortality 

and myocardial infarction independent of confounders (Chen et al., 2009a; Krishnan et al., 

2006; Kuo et al., 2009). In addition, a recent MR study has provided evidence for a 

causal role of elevated triglyceride levels in raising serum urate in European individuals 

(Rasheed et al., 2014). However, the biochemical basis for the causal relationship 

between serum urate and lipids is still poorly understood. 
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 Genome-wide association studies have successfully identified hundreds of 

common variants with a significant association with the studied phenotype/disease. These 

variants, however, usually explain a relatively small proportion of disease heritability 

with a large proportion still ‘missing’ or ‘hidden’ (Goldstein et al., 2013). For example, 

the most recent genome-wide association study from Köttgen et al. (2013), that combined 

data from > 110,000 European-ancestry individuals, provided evidence for association of 

28 loci that collectively explain 7.0% of the variance in urate. Albeit considering all 

common variants included in the Köttgen et al. (2013) GWAS could collectively explain 

~27-41% variance in urate, a significant portion of variance still remains unexplained. 

Non-urate loci (besides those involved in urate transport) may not only be helpful in 

exploring the ‘missing’ part of the urate variance but would also help to characterise the 

shared genetic basis of gout or urate with other metabolic conditions. Two lipid-related 

genes, LRP2 (lipoprotein receptor-related protein 2/megalin) and A1CF (apolipoprotein B 

mRNA-editing enzyme 1 (APOBEC1) complementation factor) (explained below), are 

examples of such non-urate loci that have been selected to study in this thesis. 

1.1.7.3.1 LRP2 and A1CF 

 Lipoprotein receptor-related protein 2 (LRP2) or megalin is a protein which in 

humans is encoded by the LRP2 gene (Fisher and Howie, 2006; Saito et al., 2005). 

Lipoprotein receptor-related protein 2 gene is a non-urate transport locus that has been 

identified for its predominant function in lipid metabolism (Cabezas et al., 2011; 

Christensen and Birn, 2002) and reabsorption and metabolism of glomerular-filtered 

substances (Hosaka et al., 2009). The T allele of a common variant (rs2544390) within 

the LRP2 gene has been reported to be associated with higher serum urate concentration 

in Japanese individuals (Hamajima et al., 2012; Kamatani et al., 2010). A more recent 

study (Rasheed et al., 2013b) was able to identify the population-specific effects for the T 

allele of the rs2544390 variant with an increased gout risk in New Zealand Māori and 

Pacific Island individuals but not Europeans. The study further indicated that alcohol 

intake in New Zealand Polynesian population over-rides the otherwise protective role of 

the C allele of this variant and thus causes increase in gout risk due to a non-additive gene 

(C allele of LRP2 SNP rs2544390)-environment (alcohol intake) interaction (Rasheed et 

al., 2013b). Consistently, Dong et al. (2015) also reported the T allele of rs2544390 to be 

associated with increased susceptibility to gout in the Han Chinese population. 
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 In addition to common variants, low frequency (or rare) variants within the LRP2 

gene have been reported for their association with several other disease phenotypes. A 

study identified disease mutation clusters of rare variants within LRP2 to be associated 

with Autism Spectrum Disorders (ASD) in three different datasets (Ionita-Laza et al., 

2012). A more recent study that measured 13 urinary biomarkers in the Framingham 

Heart Study (FHS) Offspring Cohort (n = 2,640) reported a cluster of rare variants in the 

LRP2 gene to be associated with urinary levels of Trefoil Factor-3 (TFF3; gene encoding 

the TFF3 protein, expressed in gastrointestinal mucosa and possibly involved in 

protecting, stabilizing and healing of mucus layer) along with multiple common variants 

of LRP2 to be associated with TFF3 levels in urine and kidney injury molecule 1 

(McMahon et al., 2014). 

 Another emerging candidate in the non-urate transport gene list is apolipoprotein 

B mRNA-editing enzyme 1 (APOBEC1) complementation factor or A1CF, which plays a 

role in the production of two different protein isomers, apo B-48 and apo B-100 from one 

nuclear gene (Chen et al., 1987; Powell et al., 1987). In the recent GWAS, the A1CF 

variant (rs10821905) was associated with serum urate levels in Europeans (Köttgen et al., 

2013), along with significant association with gout risk in New Zealand Europeans 

although not in Māori and Pacific Islanders (Phipps-Green et al., 2014). In terms of data 

from fine mapping and whole genome or exonic sequencing, no study has yet reported 

any disease-based association for other variants within A1CF. 

 Both, LRP2 and A1CF, have also been reported as loci associated with kidney 

function in a recent GWAS (LRP2 = 3.5E-08; A1CF = 1.07E-12) that included the data 

from > 130,000 European individuals (Pattaro et al., 2016). Despite evidence for the 

involvement of LRP2 and A1CF in a number of physiological processes, little is known 

about the effect of their possible causal variants on biological pathways, particularly those 

leading to gout. Based on the above described literature, it was hypothesised that other 

less common variants within LRP2 and A1CF coding regions could contribute to gout risk 

in New Zealand Māori and Pacific Islanders and Europeans, which may prove helpful in 

explaining some part of the ‘unexplained heritability’ for gout. 
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1.1.8 Specific aims of the study 

 The research was carried out to add new data to the repository of ‘gout and 

metabolic disease’, especially by focusing on those coexisting metabolic conditions that 

have been regularly ignored and/or the data for which are scarce/absent in relation to 

hyperuricaemia and gout. While the broader aim of this study was to test the biochemical 

and genetic association of metabolic diseases with gout and hyperuricaemia in the 

European and New Zealand Polynesian populations, the specific aims were based on 

discrete hypotheses, outlined as follows: 

1. To characterise iron profile biomarkers (total iron, transferrin, ferritin, transferrin 

saturation and total iron binding capacity) and test the hypothesis that changes in 

these markers are linearly correlated with a change in serum urate concentration 

and are predictable for hyperuricaemia and gout in the New Zealand European 

and Polynesian (Māori and Pacific Islanders) individuals. 

2. To test the hypothesis that variants in the haemochromatosis gene (HFE) are 

independently involved in gout risk in the New Zealand Polynesian and European 

individuals. 

3. To exploit the summary statistics data from recent genome-wide association 

studies (European population) and test the hypothesis that there is a causal 

relationship between the above-mentioned serum iron biomarkers and urate 

concentrations using the Mendelian randomisation approach. 

4. To test the hypothesis that variants in metabolic syndrome related genes are 

independently involved in gout risk in Polynesian (Māori and Pacific Island) and 

European New Zealanders. 

5. To identify and characterise other common variants obtained from exon 

sequencing of two lipid-related genes (LRP2 and A1CF) and use a replication-

based approach to test the hypothesis that common variants in these genes have an 

independent association with hyperuricaemia and gout in European and/or New 

Zealand Polynesian individuals. 

6. To identify and characterise the rare and non-synonymous variants obtained from 

exon sequencing of two lipid-related genes (LRP2 and A1CF) and test the 

hypothesis that these rare and/or non-synonymous variants collectively have an 
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influence on hyperuricaemia in European and New Zealand Polynesian 

individuals. 

1.1.9 Thesis structure 

 This thesis is divided into six chapters. Each chapter, whilst describing 

experimental results/findings (Chapter 2 to Chapter 5), has its own comprehensive 

introduction and specified aims. This is primarily an attempt to bridge the distinct 

background of each comorbid condition as well as to provide a logical rationale in the 

context of hyperuricaemia and gout. Chapter 2 to Chapter 5 also provides relevant 

information available in literature, for the different ancestral groups in New Zealand. 

 The next two chapters (Chapter 2 and Chapter 3) provide the biochemical and 

genetic association analysis results of hyperuricaemia and gout with abnormal iron 

homeostasis as a coexisting potentially causal phenomenon. The findings explained in 

these two chapters mostly are ‘first time ever’ findings, especially within the New 

Zealand setting. 

 Chapter 2 was exclusively designed to provide information about the initial 

biochemical association analyses for blood iron biomarkers with hyperuricaemia and gout. 

In addition, the genetic association analysis for two well-known iron overload-related 

variants was carried out to assess their association with hyperuricaemia and/or gout 

within the NZ Polynesian and European populations. The positive observational 

outcomes from this chapter were the basic prompts to extend this work to Chapter 3. 

 Chapter 3 presents findings of the first-ever Mendelian randomisation analysis 

done using summary statistics from genome-wide association studies (GWAS) to find a 

possible causal relationship between serum iron biomarkers and urate concentrations. 

 Chapter 4 deals with the second comorbid condition, metabolic syndrome. This 

chapter provides outcomes of genetic association analyses to describe a relationship 

between several components of the metabolic syndrome, urate and gout. It also provides 

genetic evidence for an involvement of MetS components in the aetiology of gout for the 

first time in the New Zealand population. 
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 Chapter 5 provides an extensive ‘rare variant analyses’ for exon sequencing data 

from the two well-recognised lipid-related genes (LRP2 and A1CF). This study for the 

first time reports population-specific findings for common variants associated with 

hyperuricaemia and gout in the New Zealand population. The study also reports for the 

first time the population-specific rare variant burden of hyperuricaemia for LRP2. 

 Finally, Chapter 6 includes the overall discussion and conclusion of the thesis. 

 Anywhere in this thesis, unless specified in the footnotes, I performed all wet lab 

experiments and statistical analyses plus in silico data handling for Chapter 3 for MR 

software. 
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SECTION 1.2 POPULATION DATASETS USED IN THIS 

STUDY 

 Data of the participants collected from different regions of the world, including 

diverse populations, were used for demographic and clinical information and subsequent 

analyses. In order to avoid the unnecessary repetition of the text explaining the same 

details, a comprehensive summary of each dataset is provided here. In general, this 

summary provides the information about the recruitment criteria, gross total number, 

ancestral background and ethical approval for each study group. Hence these details are 

avoided while referring to these data sets in different chapters of this thesis. 

1.2.1 Gout Case-Control Cohorts 

1.2.1.1 New Zealand Gout Cohort 

 For the most part of this thesis, demographic and clinical data of subjects within 

the New Zealand Gout Cohort have been analysed. The New Zealand Gout Cohort is a 

case-control cohort that was developed for the evaluation of environmental and genetic 

risk factors for gout and hyperuricaemia in the New Zealand-resident European and 

Polynesian populations. Currently, the cohort contains data from > 1,800 European and > 

2,800 Polynesian individuals. 

 For this cohort, the recruitment of gout cases was initiated back in 2001 at The 

University of Auckland, New Zealand, under the supervision of Dr. Lachy McLean. The 

project supervision was transferred to Professor Tony Merriman (University of Otago, 

Dunedin, New Zealand) in 2006. Under his overall supervision, the gout cases were 

initially recruited from two North Island cities, Auckland and Rotorua. The gout case 

recruitment was then extended to healthcare facilities within four major regions of New 

Zealand including Auckland, Wellington, Canterbury and Otago. The recruitment of the 

control group began in 2009, following which data of non-gout individuals were 

convenience sampled from above four regions of New Zealand. In 2010, the recruitment 

of a gout case-control sample set began in collaboration with Ngati Porou Hauora (NPH: 

operates in the rohe of Ngati Porou Hauora (tribal territory) located in the East Coast 

region (Te Tai Rāwhiti) of New Zealand) in collaboration with Ngati Porou Hauora 

Charitable Trust (NPHCT: www.nph.org.nz). The NPH cohort currently contains the data 

http://www.nph.org.nz/
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of > 450 individuals. The purpose of the study was explained and a written informed 

consent was obtained from participants for the collection of their blood. In conjunction to 

this, every participant was asked to manually fill out a questionnaire about their socio-

demographic status, family history of gout, grand-parental ancestry information, medical 

history and certain dietary habits. The American College of Rheumatology (ACR) gout 

criteria (Wallace et al., 1977) were followed to ascertain the diagnosis of gout. 

Participants who fulfilled the ACR criteria were further asked to fill out a questionnaire to 

provide details of particular gout characteristics e.g., use of diuretics or other urate-

lowering therapy (ULT), the frequency of acute attacks and presence of tophus/tophi 

(information about presence of tophi were obtained by physical examination). All gout 

participants were also asked to name and provide detailed information about the 

particular foods/drinks that trigger their gout flares. Following the questionnaires, blood 

and urine samples were collected from each participant and were sent to the Merriman 

Laboratory (University of Otago, Dunedin, New Zealand) for further processing. At the 

Merriman Laboratory, a portion of each serum and urine sample was sent to southern 

Community Laboratory (SCL), Dunedin (www.sclabs.co.nz) for biochemical analysis, 

and the remainder of the serum samples were aliquoted and were stored at -80°C for 

future use. Serum urate was measured using the uricase oxidation method (details in 

Section 2.2), while the DNA extraction was done using a standard chloroform/ethanol 

extraction protocol (Sambrook and Russell, 2006). All experimental procedures were 

followed in accordance with the ethical standards of the responsible committee on human 

experimentation and with the Helsinki Declaration of 1975, as revised in 1983. 

 The Lower South Ethics Committee (OTA/99/11/098) and the New Zealand 

Multi-Region Ethics Committee (MEC/05/10/130) granted ethical approval for the 

recruitment and subsequent study. The ethical approval for the Ngati Porou Hauora 

Cohort recruitment was granted by the Northern Y Region Committee (NTY/07/07/074) 

and University of Otago Human Ethics Committee (13/117). The formation and 

continued recruitment of the New Zealand Gout Cohort were funded by several funding 

bodies within New Zealand i.e., the New Zealand Health Research Council 

(www.hrc.govt.nz), University of Otago (www.otago.ac.nz), Arthritis New Zealand 

(www.arthritis.org.nz) and Lottery Heath Research New Zealand 

(www.communitymatters.govt.nz). 

http://www.sclabs.co.nz/
http://www.hrc.govt.nz/
http://www.otago.ac.nz/
http://www.arthritis.org.nz/
http://www.communitymatters.govt.nz/
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 For the purpose of analysis at several instances in this thesis, the Polynesian data 

set in New Zealand Gout Cohort was divided into three ancestral sub-groups as described 

by Hollis-Moffatt et al. (2012a): Eastern Polynesian (EP: primarily included Cook Island 

and NZ Māori), Western Polynesian (WP; primarily included individuals from Samoa, 

Tonga, Tuvalu, Niue and Tokelau) and mixed Eastern and Western Polynesian (EPWP). 

Eastern Polynesian participants were further subdivided into two sub-groups: EPN 

(subjects with high EP ancestry) and EPZ (subjects with low EP ancestry). 

1.2.1.2 Additional Gout Cohorts from Europe & Australia 

 Two additional, relatively smaller, European gout case-only cohorts were 

recruited from the Merriman Lab's collaborating institutes of Europe and Australia. The 

participants in these groups were recruited to increase the number of gout cases and also 

analyse them, treating non-gout samples from NZ Gout Cohort as their respective 

controls. The first group was recruited in collaboration with European Crystal Network 

(Eurogout Consortium) (Lioté et al., 2013) and included the data of 827 individuals of 

European ancestry. The samples in the Eurogout Cohort were mainly recruited at the 

collection centres of these institutes; 1) University of Edinburgh, Keele University, Queen 

Elizabeth Hospital and City Hospital in the UK, 2) Universitario de Alicante, Hospital De 

Cruces, 3) Rijnstate Hospital, Radboud University Medical Centre, University Medical 

Centre Utrecht in Netherlands and 4) Universitätsklinikum Carl Gustav Carus an der 

Technischen Universität Dresden in Germany. Ethical review boards of the respective 

institutes granted ethical approval for the subject recruitment and subsequent analyses for 

the Eurogout Cohort. The details of ethical approvals are; Ethikkommission, Technische 

Universität Dresden (EK 8012012), South East Scotland Research Ethics Committee 

(04/S1102/41), Commission Cantonale (VD) D'éthique de la Recherche sur l'être Humain, 

Université de Lausanne, Commissie Mensgebonden Onderzoek regio Arnhem—

Nijmegen and Partners Health Care System Institutional Review Board. The second 

group was recruited in collaboration with Arthritis Genomics Recruitment Initiative in 

Australia (AGRIA) and included data from 215 individuals of European ancestry. The 

samples in the AGRIA Cohort were mainly recruited at the collection centres of these 

institutes within Australia; 1) the University of Queensland and Diamantina Institute at 

the University of Queensland, 2) The University of New South Wales, St. Vincent's 

Hospital and 3) The University of Adelaide. The details of ethical approvals are: 
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Research and Ethics Committee, Repatriation General Hospital, South Australia (32/08); 

Research Ethics Committee, University of New South Wales. All subjects in these two 

cohorts had gout clinically ascertained using ACR criteria described above (Wallace et al., 

1977). A written informed consent was obtained from all subjects in Eurogout and 

AGRIA Cohorts. 

1.2.1.3 UK Biobank Cohort 

 The UK Biobank is a large, non-commercial, repository that was established in 

the United Kingdom (UK) in 2007 (www.ukbiobank.ac.uk/). It was established (in 

Stockport, Greater Manchester, UK) to facilitate the investigation of the contribution of 

genetic predisposition and environmental exposure to the development of a range of 

diseases including heart disease, cancer, dementia, diabetes, osteoporosis, arthritis, eye 

disorders and forms of depression. The UK Biobank is a 25-year follow-up study that 

includes data from ~500,000 volunteers in the UK. All individuals in the study ranged 

from 40 to 69 years of age at the time of initial recruitment (2006-2009). The participants 

were invited to visit different assessment centres based in the UK and were interviewed 

about baseline demographic variables, medical history, lifestyle and nutritional habits. 

 For the purpose of this study, the gout case-control genotype and phenotype data 

were sourced and analysed from the UK Biobank Cohort under approval number 12611 

(Ollier et al., 2005). 1  The samples in the UK Biobank were genotyped using the 

Affymetrix Axiom array for 820,967 markers. The data of the participants were selected 

for analysis based on the European ancestry and availability of genotype information. 

Data of individuals that failed to either fulfil the genotype quality control assessment, had 

self-reported sex mismatch with genetic sex or had hospital diagnosed kidney disease 

(ICD10 I12, I13, N00-N05, N07, N11, N14, N17-N19, Q61, N25.0, Z49, Z94.0, Z99.2) 

were excluded from the study. Applying these selection criteria, genotyping data of 

~73.3M SNPs were imputed using SHAPEIT3 and IMPUTE2 platforms and UK10K and 

1000 Genomes as the combined reference panel. 

                                                 

1 Professor Tony R Merriman (PhD supervisor) and Professor Nicola Dalbeth (Collaborator: The University 

of Auckland, New Zealand) supervised the UK Biobank project-associated work and a staff member of the 

Merriman Laboratory, Murray Cadzow (Assistant Research Fellow), determined the gout definitions and 

carried out the association analyses in the UK Biobank data. 

http://www.ukbiobank.ac.uk/
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 For the UK Biobank Cohort, the diagnosis of gout was not ascertained following 

ACR criteria (described above). Therefore, gout status was defined following a 

combination of definitions (Cadzow et al., 2016) provided in the previous 

epidemiological literature (Colhoun et al., 2003; Dalbeth et al., 2016; Köttgen et al., 

2013). The gout diagnosis criteria were broadly divided into four categories; self-reported, 

hospital diagnosed, use of ULT and Winnard-defined gout (Winnard et al., 2012). Self-

report of gout was defined as ‘participant reporting as having gout at the time of 

interview’. Hospital diagnosed gout was defined as ‘having a primary or secondary 

hospital discharge coding for gout (ICD10 M10 including subcodes). Use of ULT was 

defined as ‘participant reporting as being on any ULT (allopurinol, febuxostat or 

sulphinpyrazone) and not being diagnosed as having leukemia or lymphoma (ICD10 C81-

C96) by the hospital’. Winnard-defined gout was defined as ‘having a hospital diagnosis 

of gout or being on gout-specific medication (any ULT or colchicine)’ as described by 

Winnard et al. (2012). 

1.2.2 Non-Gout (Control only) Cohorts 

1.2.2.1 Jackson Heart Study Cohort 

 The Jackson Heart study is a population-based longitudinal study based in the 

City of Jackson, US (United States) state of Mississippi. The Jackson Heart Study was 

established in 1997 as a partnership among three major institutes in Jackson (Jackson 

State University, the University of Mississippi Medical Centre and Tougaloo College, 

Jackson Mississippi) and the National Institutes of Health’s National Heart, Lung, and 

Blood Institute (NHLBI) and Office of Research on Minority Health, while the initial 

recruitment of the subjects was started in the year 2000. The JHS was designed to identify 

the risk factors for the cardiovascular disease and its associated manifestations including 

obesity, hypertension, diabetes, stroke, coronary heart disease and chronic kidney disease 

in more than 5000 African American individuals from Jackson, Mississippi (Taylor, 

2005). The JHS represents the largest single-site, prospective study conducted in African 

Americans to investigate the inherited (genetic) factors that affect above defined 

metabolic conditions and to develop potential treatments that do more good and less harm 

than treatments that are available today. The JHS Cohort currently has data from ~5,300 

male and female adults aged 35 to 84 years, from more than 400 families. The 
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information provided on the JHS official website (www.jacksonheartstudy.org/) indicates 

3 phases (Exam 1 to 3) of the subject recruitment (information of year of recruitment was 

not provided). Publicly-accessible data includes demographic, clinical, dietary and social 

information of the recruited subjects in three directories (visit 1 to 3). Permission to 

access the data was granted to Professor Merriman under the dbGaP controlled access 

agreement (project name: “Genetic Basis of Gout”; project approval #384). The 

phenotype data for iron profile and baseline health information from Exam 1 phase 1 

(visit 1) was used in this thesis for several analyses in Chapter 2 (Section 2.2). 

1.2.2.2 Third National Health and Nutrition Examination Survey Cohort 

 The US Third National Health and Nutrition Examination Survey (NHANESIII) 

is a nationwide population-based study that was designed to investigate the prevalence 

and risk factors of multiple common diseases in the US population 

(www.cdc.gov/nchs/nhanes). The National Centre for Health Statistics (NCHS) and 

Centres and Disease Control and Prevention (CDC) are the supporting bodies for 

NHANESIII. The study contains data from 39,695 male and female individuals (at least 2 

months of age or older), with the data being considered as illustrative for the general US 

population. The study started in 1988 and includes data from more than 85 regions within 

the US. The subjects in the NHANESIII were recruited in two phases. Phase 1 was 

conducted between the years 1988 to 1991 and collected data from 44 counties, while 

Phase 2 was conducted between the years 1991 to 1994 and collected the data from 45 

different counties. Within the time period of six years, a total of 33,994 participants were 

interviewed at their home about their demographic status, dietary habits and medical 

histories followed by a visit for medical examination in a mobile examination centre 

(examination response rate was 78%). The phenotype data for NHANESIII is publicly 

available at their official website (www.cdc.gov/nchs/nhanes/nhanes3.htm) and can be 

downloaded without permission requirements. The phenotype data for iron profile and 

baseline health information from Phase 1 and 2 (European and African American 

individuals) were downloaded for various analyses in Chapter 2 (Section 2.2). 

1.2.2.3 Atherosclerosis Risk in Community Study Cohort 

 The Atherosclerosis Risk in Community (ARIC) Study is a population-based, 

longitudinal study designed to investigate established and new risk factors for 

https://www.jacksonheartstudy.org/
http://www.cdc.gov/nchs/nhanes
http://www.cdc.gov/nchs/nhanes/nhanes3.htm
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atherosclerosis in the US population (www2.cscc.unc.edu/aric/; Database of Genotype 

and Phenotype/dbGaP; www.ncbi.nlm.nih.gov/gap accession # phs000280). The study 

includes data from 15,485 male and female adults mainly from four different 

communities in the US – Forsyth County, North Carolina; Northwest Minneapolis, 

Minnesota, Jackson, Mississippi and Washington County, Maryland. The subject 

recruitment for the study started in 1987. All individuals who agreed to participate in the 

study were interviewed in Exam 1 between 1987 and 1989 about the baseline 

demographic and clinical characteristics along with details of food intake. The average 

age of participants ranged between 45 and 64 years. The study then followed the clinical 

information of the participants on re-examination every 3-years along with annual 

detailed telephone interviews. The ARIC study currently has the data for a total of five 

clinical examinations completed – Exam 1: 1987-1989, Exam 2: 1990-1992, Exam 3: 

1993-1995, Exam 4: 1996-1998 and Exam 5: 2011-2013. The study also had whole-

genome genotyping performed as part of the GENEVA (Gene-Environment Association 

Studies) initiative (dbGaP accession #phs000090). The genotyping was performed for 

~934,930 SNPs using the Affymetrix 6.0K Chip genotyping platform. Four major 

funding bodies - NHLBI: #N01-HC-55015, N01 HC-55016, N01-HC-55018, N01-HC-

55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, R01HL087641, R01HL59367 

and R01HL086694, National Human Genome Research Institute/NHGRI: 

#U01HG004402, National Institute of Health/NIH: #HHSN268200625226C and 

University of Carolina, Chapel Hill, collectively support the ARIC study. The permission 

to access the data was granted to Professor Merriman under the dbGaP controlled access 

agreement (project name: “Genetic Basis of Gout”; project approval #384). For the 

purpose of various analyses in this thesis (Chapter 4: Section 4.2), the phenotype and 

genotype data were obtained from visit 1 (1987-1989) only. 

1.2.2.4 Framingham Heart Study Cohort (Offspring & Generation 3) 

 The Framingham Heart study (FHS), established in 1948, is a population-based 

longitudinal study aimed to identify and investigate common genetic and environmental 

risk factors that contribute to cardiovascular disease (www.framinghamheartstudy.org/; 

dbGaP accession # phs000007). The FHS cohort also includes data for other metabolic 

conditions including gout, hyperuricaemia, osteoporosis and diabetes. The current data in 

the FHS cohort were established over a period of time following a large number of 

http://www2.cscc.unc.edu/aric/
http://www.ncbi.nlm.nih.gov/gap
http://www.framinghamheartstudy.org/


1 | Introduction 

 39 

asymptomatic male and female individuals for the development of CVD or related 

symptoms. The original FHS cohort consisted of 5,209 individuals from Framingham, 

Massachusetts; all aged 28 to 62 years. Since the recruitment of the Original FHS cohort 

in 1948, two more cohorts were recruited – the Offspring and Generation 3 cohorts. The 

Offspring cohort was established in 1971, which essentially included 5,124 offspring of 

the participants in the ‘Original’ cohort and their spouses. The Generation 3 cohort was 

established in 2002 and included 4,148 grandchildren of the ‘Original’ cohort. 

Participants in both the Offspring (1971-1975) and Generation 3 (2002-2005) cohorts 

were asked to give written consent for the study. All interested participants were then 

interviewed about baseline demographic, social and clinical aspects. The individuals in 

the FHS cohort were also genotyped as part of the SNP Health Association Resource 

(SHARe) project (dbGaP accession # phs000342). The genotyping was performed for 

~934,500 SNPs using the Affymetrix 500K mapping array. Two funding bodies - NHLBI 

and Boston University (www.bu.edu), collectively support the FHS. Permission to access 

the data was granted to Professor Merriman under the dbGaP controlled access agreement 

(project name: “Genetic Basis of Gout”; project approval #384). For the purpose of 

various analyses in this thesis (Chapter 4: Section 4.2), the phenotype and genotype data 

were obtained from examination 1 (Offspring: 1971-1975 and Generation 3: 2002-2005). 

1.2.2.5 Cardiovascular Health Study Cohort 

 The Cardiovascular Health Study (CHS) is a prospective population-based 

observational study that was established to evaluate the risk factors, development and 

progression of cardiovascular disease (www.chs-nhlbi.org; dbGaP accession # 

phs000287). The CHS subject recruitment was started in 1989 with coverage of four 

major regions; California, Maryland, North Carolina and Pennsylvania. A total of 5,582 

participants were interviewed and underwent extensive annual clinical examinations 

between the years 1989 and 1999. The cohort was divided into two age groups - Senior: 

aged between 65 and 79 years, and Aged: 80 years or older. The measurements included 

socio-demographic status, dietary habits and measurements of potential CVD risk factors 

such as hypertension, complete lipid profiles and the presence of subclinical disease 

(echocardiography, carotid ultrasound and cranial magnetic resonance imaging/MRI). 

During the follow-up, participants were contacted via phone calls to update their health 

status and hospitalisation. The main outcomes recorded in the follow-up were coronary 

http://www.bu.edu/
http://www.chs-nhlbi.org/
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heart disease, heart failure, angina, heart stroke, transient ischemic attack and mortality. 

The CHS cohort was genotyped as part of SNP Typing for Association with Multiple 

Phenotypes from Existing Epidemiologic Data (STAMPEED; dbGaP accession # 

phs000226) using the Illumina HumanCNV370 duo bead chip as the genotyping platform. 

The National Institutes of Health’s National Heart, Lung, and Blood Institute (NHLBI) is 

the main funding body for the CHS cohort. Permission to access the data was granted to 

Professor Merriman under the dbGaP controlled access agreement (project name: 

“Genetic Basis of Gout”; project approval #384). For the purpose of various analyses in 

this thesis (Chapter 4: Section 4.2), the phenotype and genotype data were obtained from 

visit 1 (1989-1991). 

1.2.2.6 Coronary Artery Risk Development in Young Adults Study Cohort 

 The Coronary Artery Risk Development in Young Adults (CARDIA) Study was 

designed ‘to examine the determinants and development of clinical and sub-clinical 

cardiovascular disease and its risk factors’ (www.cardia.dopm.uab.edu; dbGaP accession 

# phs000285). The study began in 1985 with recruitment of 5,115 adult males and 

females aged 18-30 years. The participants were selected with equal numbers in sub-

groups of race, ethnicity, gender, age and education. The recruitment was done in four 

centres - Birmingham, Alabama; Minneapolis, Minnesota; Chicago, Illinois and Oakland, 

California. After the initial interview about demographic and clinical history between 

1985 and 1986, all participants were asked to participate in follow-up at year 2 (1987-

1988), year 5 (1990-1991), year 7 (1992-1993), year 10 (1995-1996), year 15 (2000-

2001) and year 20 (2005-2006). At a re-examination success rate of 72%, the current 

cohort includes the data completed for 3,622 individuals. The data collected were mainly 

for risk factors of cardiovascular disease e.g., blood pressure, glucose, cholesterol and 

other lipids. Baseline characteristics included the measurement of weight, skinfold fat, 

exercise pattern, dietary habits and alcohol consumption. Genotyping of the CARDIA 

cohort was also performed as a part of GENEVA initiative (dbGaP accession # 

phs000309) using the Affymetrix 6.0K genotype platform at Boston Massachusetts. In 

addition to NHLBI and NIH, the CARDIA study is funded by University of Alabama, 

Birmingham (www.uab.edu). Permission to access the data was granted to Professor 

Merriman under the dbGaP controlled access agreement (project name: “Genetic Basis of 

Gout”; project approval #384). For the purpose of various analyses in this thesis (Chapter 

http://www.cardia.dopm.uab.edu/
http://www.uab.edu/
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4: Section 4.2), the phenotype and genotype data were obtained from visit 2 of CARDIA 

cohort. 

1.2.3 ReSequencing Cohort 

 In addition to a subset selected from NZ Gout Cohort for resequencing (details in 

Chapter 5), samples from two small European cohorts were also selected for resequencing. 

A description of these cohorts is provided below. The combined resequencing data set 

including all three subsets is referred to as ‘ReSequencing Cohort’ in the thesis text. 

1.2.3.1 Nurse’s Health Study Cohort 

 The Nurse’s Health Study (NHS) is a female-based longitudinal study that was 

established in 1976 (www.channing.harvard.edu/nhs). The initial aim of the study was to 

investigate long-term health effects of oral contraceptives in female population of the 

USA. A total of 121,700 female nurses, aged between 30 and 55 years, were recruited 

from 11 different states of the USA. All participants were sent a questionnaire via email 

to record their demographic, medical and lifestyle details with success return rate of 

~70%. Every two years, participants in the Nurse’s Health Study are mailed a 

questionnaire to detail their medical history, hormonal medication usage, menopausal 

status and quality of life. The National Institute of Health (www.nih.gov), Brigham and 

Women’s Hospital, and Harvard School of Public Health and Harvard Medical School 

(Boston, Massachusetts) are funding bodies for NHS. 

1.2.3.2 Health Professionals Follow-up Study Cohort 

 The Health Professionals Follow-Up Study (HPFS) is a men’s health based 

longitudinal study that began in 1986 (http://www.hsph.harvard.edu.hpfs). The aim of the 

study was to evaluate the potential link between nutritional factors and men’s health via 

relating diet with incidence of serious illnesses e.g., heart disease, cancer, pulmonary and 

vascular disease. The HPFS all-male study was established to complement the all-female 

Nurse’s Health Study (NHS; explained above in section 1.2.3.1), which inspects similar 

hypotheses in a population of females. More than 51,000 males, aged between 40 and 75 

years, were recruited from different regions of United States of America (USA). 

Professions of the males included in the study were recognised as being pharmacists, 

http://www.channing.harvard.edu/nhs
http://www.nih.gov/
http://www.hsph.harvard.edu.hpfs/
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dentists, osteopaths, podiatrists, optometrists or veterinarians. All participants are mailed 

a questionnaire to provide their health, medication and exercise history every two years. 

The Harvard School of Public Health and the National Cancer Institute (www.cancer.gov) 

are financial sponsors for HPFS. 

http://www.cancer.gov/
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SECTION 2.1 IRON HOMEOSTASIS, URATE AND GOUT: AN 

INTRODUCTION 

2.1.1 Background 

 Iron is an essential element of the human body and is vital for an array of 

metabolic functions, such as oxygen transport and cellular respiration (oxidative 

phosphorylation). The importance of this metal lies in its ability to act as an electron 

donor in its ferrous (Fe2+) state and acceptor in its ferric (Fe3+) state. When present in 

abnormally excess amounts, iron can create potential hazards to the surrounding cells by 

catalysing the reaction of production of free radicals from hydrogen peroxide. These free 

radicals can end up in damaging a wide range of cellular structures, and ultimately killing 

the cells. While our body needs the right amount of iron for several metabolic functions, 

it also needs to protect its cells from the harm done by free floating iron. Being a trace 

element, iron is required only in small amounts in the body. This is why the human body 

is specialised to strictly maintain the normal blood levels of iron within a narrow range of 

3 to 4 grams (3.8 g in males and 2.3 g in females) of the total body weight (Leong and 

Lonnerdal, 2012). For well-nourished people, this range may vary from 4 to 5 grams 

(Gropper and Smith, 2013). 

2.1.2 Forms of dietary iron 

 Diet acts as the major source of iron for an adult human being. Food-based iron is 

typically categorised into heme and non-heme forms (Sharp, 2010). The readily 

absorbable heme is abundantly found in animal-based foods (meat, fish and seafood) as 

part of hemoproteins, myoglobin and hemoglobin. Studies estimate that dietary heme iron 

accounts for two-thirds of the average person’s total iron stores (Bezwoda et al., 1983; 

Carpenter and Mahoney, 1992; West and Oates, 2008). Due to its high bioavailability, the 

absorption of heme iron is 5 to 7 times higher in the gastrointestinal tract than non-heme 

iron (Björn-Rasmussen et al., 1974; Reizenstein, 1979). The presence of proteolytic 

enzymes and low pH (which increases iron solubility) in the stomach and small intestine 

makes an ideal environment for the release of heme from hemoproteins (Collins and 

Anderson, 2012). Once entered into the enterocytes, iron is released from heme to be 

transported to the blood. In a meat-eating population, heme iron is estimated to contribute 

10 to 15% of the total iron intake. However, it can contribute > 40% of the absorbed iron 
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due to its simpler form and higher absorption (Carpenter and Mahoney, 1992; Hunt, 

2002). Non-heme iron, which comes from both plant and animal-based foods is much less 

well absorbed than heme iron. Heme iron being preferentially absorbed in the intestine, 

the amount of iron gained from a non-heme source is totally dependent upon the 

individual’s iron status (Hurrell and Egli, 2010). 

2.1.3 Mechanism of iron regulation 

 Iron homeostasis is a tightly regulated set of biochemical processes. A number of 

proteins, enzymes, and other cellular structures are involved in maintaining the normal 

body iron concentration. Figure 2.1 illustrates the series of mechanisms and their 

components involved in human iron homeostasis. In addition to the regulation of 

endogenous iron pools, the amount of iron from the diet is regulated in the body at two 

different levels namely systemic and cellular (Ganz, 2013; Wang and Pantopoulos, 2011). 

2.1.3.1 Systemic regulation 

 The control of iron concentrations at the systemic level is accomplished by its 

precise uptake, distribution and storage. Duodenal enterocytes work in a controlled 

fashion to absorb a specific amount of the dietary iron via the villi/brush border (Fuqua et 

al., 2012). The heme is directly imported inside the enterocytes via the enterocyte’s cell 

membrane protein called divalent metal ion transporter 1/DMT1 (Collins and Anderson, 

2012; Courville et al., 2006). Conversely, the non-heme iron needs to be reduced to its 

ferrous form to act as DMT1 substrate. Two metalloreductases, duodenal cytochrome 

B/DCYTB and STEAP2 are known to perform this function (McKie, 2008), yet the exact 

mechanism involved in this reduction process is unknown (Zhang et al., 2012a). In 

addition, a human cell culture study also presented some evidence of absorption of 

dietary ferritin in the enterocyte through endocytosis (San Martin et al., 2008). Once the 

enterocyte uptake of heme or non-heme is completed, it is broken down to release iron 

(ferrous/Fe2+ form) by heme oxygenases (Fuqua et al., 2012; Raffin et al., 1974). Iron has 

two fates at this stage, either stored inside endogenous ferritin or exported out of the 

enterocytes into the circulation for its transport to other tissues of the body. A 

transmembrane protein at the basolateral surface of the enterocytes, ferroportin (FPN1), is 

the only known mammalian protein that makes this export possible (Anderson and Vulpe, 

2009). Ferroportin exports iron in its ferrous form, but before release into the blood, it is 
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oxidised to its ferric form (only form that can bind the iron transporting protein) by 

ferroxidases (e.g., hephaestin) (De Domenico et al., 2007). Once  it reaches the 

circulatory blood pool, the transport of iron in the blood is controlled by a glycoprotein 

named transferrin/TF. Transferrin reversibly binds iron ions absorbed from the duodenum 

and carries them to the surrounding tissues (Rouault, 2003). 

Figure 2.1: Steps involved in maintiaing iron balance in the human body. 

 The human body does not possess any specialised excretory mechanism for the 

removal of iron. Thus, it is essential to have tight regulation of iron absorption in order to 

match the body iron requirements. In conjunction to its absorption, two major 

mechanisms help to maintain the body iron levels within the normal range i.e., recycling 

and loss. The reticuloendothelial system, mainly comprised of monocytes and tissue 

macrophages, efficiently recycles iron through the breakdown of senescent (aged) red 

blood cells. In addition, a small but steady quantity of iron is lost through faeces, 

epithelial cell sloughing, sweating and menstrual bleeding in women (Knutson and 

Wessling-Resnick, 2003). According to a survey, the total amount of the average daily 

iron loss is 1 mg for men, 1.5 to 2 mg for pre- and 1 mg for postmenopausal women 

(Hunt et al., 2009). A 25 amino acid peptide hormone ‘hepcidin’ is known for its ability 

Possibly contributing to 
serum ferritin 
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to inhibit the over-efflux of iron through intestinal enterocytes and reticuloendothelial 

cells (Knutson, 2010; Nemeth and Ganz, 2009). Hepcidin is a hepatic hormone, which 

freely circulates in the blood and can bind, internalise and degrade the iron exporter FPN1 

to decrease blood iron release (Nemeth et al., 2004). 

2.1.3.2 Cellular regulation 

 Cellular iron levels are controlled differently by different cell types via the 

expression of particular iron regulatory and transport proteins. The cellular uptake of iron 

is mainly governed by transferrin receptor 1/TFR1 and transferrin receptor 2/TFR2 

mediated import from transferrin into cells (Moos, 2002). In contrast to TFR2, TFR1 

possesses 30 times higher affinity for transferrin-bound iron and is known to play the 

main role in iron uptake at the cellular level (Kawabata et al., 2000; West et al., 2000). 

Transferrin receptors can only recognise transferrin-bound iron, which means any free 

floating (unliganded) iron is not transported inside the cells via TFRs. This specific 

recognition is necessary to cause a conformational change on the cell surface to begin 

endocytosis of the iron and formation of endosome (Hentze et al., 2010). The DMT1 and 

ZIP14 (Zrt-Irt-like protein) also allow iron to directly enter the cells via the plasma 

membrane (Lane et al., 2015). As ferric iron can potentially introduce toxicity to cellular 

organelles, it needs to be reduced to its ferrous state before entering the cytoplasm. Two 

components, the DMT1 and STEAP family reductases, perform the functions of reduction 

and import, respectively (Hentze et al., 2010). The ferrous form of iron imported into the 

cell makes up a labile iron pool where it stays in a soluble and chelateable state (Yehuda 

and Mostofsky, 2010). 

 Like enterocytes, iron is also exported out of other cells (neurons, erythrocytes 

and macrophages) that ultimately determine the systemic iron levels. The iron exporter 

FPN1 transports ferrous iron out of the cell (Ganz, 2005), simultaneously assisted with 

conversion of ferrous to ferric state before releasing it in the cytoplasm (Hentze et al., 

2010). Hepcidin performs its function of internalisation and degradation of FPN1 to 

regulate iron efflux at the cellular level. The exact mechanism being unknown, hepcidin 

may also downregulate TFR1 and DMT1 (Du et al., 2011). 
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2.1.4 Iron storage in the body 

 Due to the high potential for biological toxicity and catalytic activity, iron ions 

should never stay ‘free’ or unliganded. This exceptionally important need to sequester 

iron in a suitable liganded form is fulfilled via ‘ferritin’. Ferritin is a hollow globular 

protein, made of 24 subunits of heavy (FtH1) and light (FtL) chains (Arosio and Levi, 

2010). Ferritin is the only protein specialised for the storage of excessive iron in a non-

toxic or redox inactive form and its release in a controlled fashion (Harrison et al., 1986). 

The ability of cells to regulate their iron uptake by modulating the conformation 

(endocytosis) and expression of the receptors (TFRs) on the cell surface and storage of 

excess iron as ferritin is one of the major features that tightly maintains iron homeostasis. 

Synthesis of ferritin mainly takes place in hepatocytes (liver cells), with minor amounts 

being synthesised by other cells (Anderson and Shah, 2013; Theil, 1987). It has been 

estimated that ferritin contains about 2 grams of the total iron (out of 3 to 4 grams) in the 

body, most of which is commonly found in blood regulatory tissues/organs i.e., bone 

marrow, spleen, liver, duodenum and skeletal muscle (Gropper and Smith, 2013; Saito, 

2014). Iron stored in the heptaocytes makes up the primary physiologic iron reserve that 

can be mobilised to release iron according to the systemic metabolic demands (Anderson 

and Shah, 2013). Serum ferritin reflects cumulative iron stores in the body and it is 

measured under regular laboratory practices to determine the blood levels of iron (Saito et 

al., 2013; Shoden et al., 1953). 

 Hemosiderin is another iron storage complex, that works alongside ferritin to 

decrease and increase the iron supply to the cells under iron overload and deficiency, 

respectively. Mostly referred as ‘inactive ferritin’, hemosiderin is created by macrophages 

as an ill-defined complex of denatured ferritin and iron (Fischbach et al., 1971). Any iron 

contained in hemosiderin has a minimal chance to be delivered to the body tissues. 

Ferritin has been shown to be actively converted to hemosiderin to protect cells from 

damage caused by iron overload (Saito and Hayashi, 2015). Also, as a protective 

mechanism towards iron deficiency, any drastic decrease in iron levels can instantly 

convert hemosiderin back to ferritin to normalise the total body iron concentration (Saito 

et al., 2013). 
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2.1.5 Disorders of iron metabolism 

 Two disorders of abnormal body iron levels are iron deficiency – too low iron, 

and iron overload – too high iron. In aggregate, iron deficiency and overload have been 

reported to affect over 1 billion people around the globe (Hentze et al., 2004). More 

recent studies indicated haemochromatosis (iron overload) to be more prevalent in men 

with an occurrence of 0.6% in European populations (Crownover and Covey, 2013). In 

contrast, a study based on 1995-2011 data collected from several populations (children 

and adult women only) estimated 800 million children (43% of total) and women (29% of 

total) to be affected with iron deficiency or anaemia globally (WHO, 2015). 

2.1.5.1 Iron deficiency 

 Iron deficiency occurs when body iron concentrations drastically decrease to a 

level that could create potential hazards to health and life (CDC, 2006). Malnutrition is 

the most common cause of iron deficiency worldwide, especially in children and pre-

menopausal women (Dlouhy and Outten, 2013; Robert and Xiaole, 2013). When dietary 

intake and systemic and cellular regulatory mechanisms are not able to compensate 

sufficiently for iron loss, the body develops a state of iron deprivation over time. The 

continuous deprivation could clinically manifest as iron deficiency anaemia (Njajou et al., 

2006) – a condition characterised by low levels of iron, reduced production of 

haemoglobin and oxygen supply to the tissues and microcytic erythrocytes. An iron-rich 

diet may be sufficient to treat mild iron deficiency, while anaemia may only be corrected 

following an appropriate therapy i.e., oral or parenteral iron intake (Camaschella, 2015; 

Lopez et al., 2016). 

2.1.5.2 Iron overload and haemochromatosis 

 Iron overload is characterised by accumulation of iron in the body due to genetic 

or environmental causes (Hider and Kong, 2013). Repeated blood transfusions and 

excessive intake of iron-rich supplements can lead to iron overload (Barton et al., 2006; 

Robert and Xiaole, 2013). On the other hand, hereditary haemochromatosis (HHC) occurs 

due to one or two autosomal recessive mutations in the HFE (Human haemochromatosis) 

gene (Feder et al., 1996) i.e., rs1800562 (Cys282Tyr: replaces cysteine to tyrosine at 

amino acid 282) and rs1799945 (His63Asp: replaces histidine with aspartate at amino 
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acid 63) (Merryweather-Clarke et al., 1997). Haemochromatosis is considered the most 

common form of iron overload in Europeans (Merryweather-Clarke et al., 1997; Powell 

et al., 2016), however it accounts for less than 5% of known impaired iron metabolism 

conditions (Cherfane et al., 2013). In addition, Pacific Islanders and Asians have been 

shown to have the highest geometric mean levels of ferritin and TSAT despite having 

lowest prevalence of C282Y homozygotes (Adams et al., 2005). The presence of 

haemochromatosis mutations can disrupt a pathway of iron homeostasis and may 

manifest as reduced hepcidin production and increased intestinal iron absorption in the 

body (Powell et al., 2016). Either through iron overload or haemochromatosis, too much 

iron in the blood could eventually overwhelm the storage capacity of the body. This can 

result in iron-mediated oxidative tissue damage, organ disease and complete organ failure 

(Kohgo et al., 2008; Powell et al., 2016). 

2.1.6 Iron profile, urate and gout – evidence presenting possible 

correlation 

 Urate is well known for its physiological role as an antioxidant with an estimated 

60% contribution to antioxidant activity in the human body (Nieto et al., 2000). In 

addition, it is also known to protect body tissues from iron-mediated free radical damage 

via iron chelation (Davies et al., 1986; Ghio et al., 1994). Iron, in turn, can modulate the 

activity of xanthine oxidase and thereby the production of urate (Ghio et al., 2002). 

 A number of studies have provided evidence for imbalanced iron homeostasis in 

renal and joint diseases e.g., chronic kidney (Macdougall et al., 2016; Zumbrennen-

Bullough and Babitt, 2014) and rheumatic disease (Baker and Ghio, 2009; Hachem and 

El-Zimaity, 2007). Ferritin, iron binding capacity and transferrin saturation have been 

positively associated with urate in European and African American individuals from the 

US National Health and Nutrition Examination Survey (NHANES) (Ghio et al., 2005; 

Mainous et al., 2011). One of these studies also suggested serum urate to be a potential 

indicator of iron overload (Mainous et al., 2011). 

 There are a number of possible ways that iron could contribute to gouty 

inflammation. Iron is able to form complexes with MSU crystals in vitro, stimulate 

oxidative stress through the generation of reactive oxygen species, contribute to 

granulocyte and complement activation and production of lymphocytes (Ghio et al., 
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1994). Association of iron with a number of pro-inflammatory activities in animal models 

(Dabbagh et al., 1992) and a decrease in gouty flares following phlebotomy to attain near 

iron-deficient levels in hyperuricaemic patients (Facchini, 2003) are also suggestive of a 

role in gouty arthropathy. Consistent with these observational studies, data from an 

immune-focused GWAS over 450 NZ Europeans indicated a causal association of a 

variant in the transferrin receptor (TFRC: rs1466085) with an increased risk of gout 

(Merriman et al., 2015). Individuals carrying the risk allele of this variant also self-

reported a higher likelihood of an iron-rich food as a trigger of gout flares (Merriman et 

al., 2015). 

 Food, as the basic source of iron for an adult human, provides heme (from animal-

based food) and non-heme (from animal and plant-based foods) iron to the body, with 

dietary heme iron contributing two-thirds of a person’s average iron stores (Bezwoda et 

al., 1983; Carpenter and Mahoney, 1992; West and Oates, 2008). Diet is also a key 

source of purines. Interestingly, purine-rich foods from an animal-based diet have been 

associated with increased risk of recurrent gout attacks while purine-rich foods from a 

plant-based diet did not show a strong correlation (Zhang et al., 2012b). These 

observations, combined with the other observational and intervention data (Facchini, 

2003; Ghio et al., 2005; Mainous et al., 2011), are consistent with an alternative 

hypothesis that iron in purine-rich foods (red meat for example) could be a causal factor 

in gout. 

 This part of the thesis was based on an observational and genetic association study 

to test for any possible correlation of total iron, transferrin, ferritin, total iron binding 

capacity (TIBC) and transferrin saturation (TSAT) with serum urate and/or gout in 

individuals with different ancestries. The specific aims of this study were; 

1. To evaluate any difference in the average levels of total iron, transferrin and 

ferritin between people with and without gout. 

2. To replicate the association of serum ferritin with urate and to test for its 

association with hyperuricaemia in European and African American populations. 

3. To test for an association of other blood iron profile markers (total iron, 

transferrin, TIBC and TSAT) with urate in NZ European and Polynesian datasets. 

4. To test for association of serum ferritin with gout and flare frequency in European 

and NZ Polynesian individuals. 
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5. To analyse the genetic association of two haemochromatosis variants, rs1800562 

and rs1799945, within the HFE gene with urate and gout in NZ European and 

Polynesian populations. 
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SECTION 2.2 ASSOCIATION OF IRON BIOMARKERS AND 

HAEMOCHROMATOSIS VARIANTS WITH URATE AND GOUT 

2.2.1 Background 

 As mentioned in Section 2.1, blood levels of total iron, transferrin and ferritin 

collectively make-up an adult body’s iron profile and are measured in daily laboratory 

practices to assess a person’s iron status (Sajeevan et al., 2016). Ferritin directly reflects 

cumulative iron stores in the body and thereby acts as a reliable surrogate indicator of an 

iron-related disorder (WHO, 2011). In conjunction to these, the capacity of blood to bind 

iron with transferrin is calculated as total iron binding capacity (TIBC). Total iron 

binding capacity mirrors the maximum amount of iron that blood can carry and is an 

indirect measure of blood transferrin (Yamanishi et al., 2003). Another important 

measure for iron status is transferrin saturation (TSAT), which indirectly estimates the 

amount of transferrin available for iron to bind. Calculated as a percentage, TSAT is a 

ratio between total iron and TIBC that represents the percentage of transferrin’s iron-

binding sites occupied by iron i.e., a TSAT of 20% means that, 80% sites on the 

transferrin are still free for iron to bind. Table 2.1 below shows the normal reference 

range for each of these parameters. 

Table 2.1: Standardised normal levels/reference range for iron profile markers 

Iron profile variable 
Reference range 

Male Female 

Serum iron 
65-177 μg dL-1 

(11.6-31.7 μmol L-1) 

50-170 μg dL-1 

(9.0-30.4 μmol L-1) 

Serum ferritin 20-250 μg L-1 (ng mL-1) 15-150 μg L-1 (ng mL-1) 

TIBC 250-370 μg dL-1 (45-66 μmol L-1) 

TSAT 20-50% 15-50% 

Note: Reference range for each biomarker is presented as average for European population only. Source: (Fauci, 2008). 

 As described in section 2.1, elements of the iron profile have been positively 

associated with serum urate (SU) and present a possible relationship with gout and gout 

flares. The association of TFRC: rs1466085 with gout in NZ Europeans somewhat 

provides the genetic basis to these observations (Merriman et al., 2015). Despite such 

evidence, no study has yet provided a direct measure of iron markers in the context of 

their association with urate or gout in NZ populations. This part of my thesis is 
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specifically based on the hypothesis that body levels of iron contribute to gout risk, either 

by increasing serum urate or via another independent unknown metabolic route. 

 This section represents the biochemical and genetic association analyses carried 

out to investigate the association of iron with gout and urate in NZ European, Polynesian 

and African American populations. First a preliminary observational analysis was done, 

based on measuring serum levels of total iron, ferritin, transferrin, TSAT and TIBC and 

investigating their possible relationship with urate and gout. To support the previously 

reported findings of the intake of iron-rich food to be a possible factor in gout (Choi et al., 

2004b; Öztürk et al., 2013; Williams, 2008), the observational analysis was further 

extended and food-based data collected from NZ individuals were analysed. 

 Given that ferritin has been reported as a marker of acute inflammation (Kell and 

Pretorius, 2014), C-reactive protein (CRP) was included as an adjustor in the regression 

models to rule out the possibility that any likely association between ferritin and risk of 

gout and flare frequency could be a consequence of inflammation. C-reactive protein is 

an acute-phase protein, which increases in inflammation and has previously been 

demonstrated to elevate in hyperuricaemia (Ruggiero et al., 2006) and gout (Roseff et al., 

1987). Also, to rule out the possibility of getting biased results due to inflammation via 

liver damage, any participant with hepatic disease was excluded from the various 

analyses. 

 In addition, genetic association analysis of two haemochromatosis variants, 

rs1800562 and rs1799945, was also done to test for any possible association with urate 

and gout in NZ European and Polynesian populations. 

2.2.2 Methods 

2.2.2.1 Biochemical analysis 

2.2.2.1.1 Study participants 

 Four different datasets were used for this study, comprising two gout case-control 

sets from NZ and US (The United States of America) and two subsets of non-gout 

individuals selected from two publicly available cohorts, The Jackson Heat Study (JHS) 

and The US Third National Health and Nutrition Examination Survey (NHANES III) 
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(Chapter 1: Section 1.2). Table 2.2 and 2.3 report the demographic and clinical details for 

these study groups. The NZ data set included 320 European and Polynesian male 

individuals and was selected as a sub-set of New Zealand Gout Cohort (Chapter 1: 

Section 1.2). The US data set included 249 male individuals (gout and non-gout), 

recruited during 2014-2016 from community-based settings in the US2. The NZ sample 

set comprised male NZ European (100 cases and 60 controls) and Polynesian (100 cases 

and 60 controls) individuals. The data for consumption of iron-rich food (red meat, 

seafood and fish) were determined as previously reported (Flynn et al., 2015). The US 

group comprised a mixture of Latino, African Americans and Europeans (189 cases and 

60 controls). All US gout cases had crystal proven or clinically diagnosed gout, with no 

active acute gout at the time of sample draw (no NSAID or colchicine usage within 2 

weeks before the sample draw). New Zealand participants without gout (controls) 

included in this study were convenience sampled from the Auckland, Otago and 

Canterbury regions of NZ. The US control group comprised sex- and ancestrally-matched 

volunteers. Individuals with a history of liver damage or disease were excluded from the 

NZ and US case groups and US control participants were included if they had never been 

diagnosed with gout and were not currently taking any non-steroidal anti-inflammatory 

drugs (NSAIDs) or colchicine. The Independent Ethics Committee E6 Good Clinical 

Practice granted ethical approval for the US samples. The collection was done in 

accordance with the Declaration of Helsinki (October 2008), and applicable local 

regulatory requirements (including Institutional Review Board approval). Written 

informed consent was obtained from all subjects for the collection of samples and 

subsequent analyses. 

 Publicly-available data from two larger cohorts, JHS and NHANES III, were used 

only for serum ferritin versus urate association analyses. These data sets have been 

detailed in Chapter 1 (Section 1.2). The JHS data included a total of 1,260 African 

American individuals, while the NHANES III data were comprised 4,355 African 

American and 5,112 European individuals. All individuals recruited from the JHS and 

                                                 

2 Drs Jeffrey N Miner and Cory N Iverson (Biology, Ardea Biosciences, Inc., AstraZeneca Group, San 

Diego, US) kindly provided demographic and clinical information for the US data set. 
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NHANES III cohorts were at least 21 years of age. Subjects who self-reported as taking 

any diuretic or other urate-lowering medication, or had kidney disease or gout, or had 

first-degree relatives with gout were excluded from the serum/plasma urate association 

analyses. This categorisation was made to assess urate association only in non-gout 

subjects and to remove any chances of getting biased results due to gout or other potential 

factors affecting urate concentration and thus differed from the criteria applied to the 

previous study that used the NHANES III data (Ghio et al., 2005). Additionally, none of 

the participants used here overlapped with Ghio et al. (2005), and the data were analysed 

separately in the NHANES III European and African American participants. In order to 

assess the association with hyperuricaemia, both cohorts were stratified on the basis of 

serum urate levels with a cut-off value of ≥ 0.41mmol L-1 between hyperuricaemic cases 

(serum urate ≥ 0.41 mmol L-1) and normouricaemic controls (serum urate ≤ 0.37mmol L-

1). 

 The iron profile marker data provided for the US group included only ferritin, 

while the data sourced from JHS and NHANES III included total iron, ferritin, TIBC and 

TSAT. 
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Table 2.2: Demographic and clinical information for NZ, US, JHS and NHANES III data sets 

Populations NZ Europeans NZ Polynesian US JHS 
NHANES III 

(EUR) 

NHANES III 

(AA) 

Group Non-gout Gout Non-gout Gout Non-gout Gout Non-gout Non-gout Non-gout 

Baseline Information 

Total Participants (n) 60 100 60 100 60 193 1260 5112 4355 

Males, n (%) 60 (100) 100 (100) 60 (100) 100 (100) 60 (100) 189 (97.92) 567 (45.00) 2460 (48.09) 1925 (44.41) 

Age (years)^ 53.41 ± 14.95 64.3 ± 11.73 41.98 ± 13.71 48.18 ± 13.42 52.1 ± 6.89 56.55 ± 10.76 47.59  ± 10.82 52.95 ± 19.87 41.90 ± 17.63 

BMI (kg/m2)^ 26.30 ± 3.02 30.05 ± 4.46 31.09 ± 5.68 36.32 ± 7.75 - - 31.16 ± 7.23 26.01 ± 5.05 27.65 ± 6.58 

Serum Urate (mmol L-1)^ 0.33 ± 0.07 0.38 ± 0.10 0.32 ± 0.03 0.49 ± 0.10 0.35 ± 0.08 0.38 ± 0.11 0.31 ± 0.08 0.31 ± 0.07 0.32 ± 0.09 

CRP (mg dL-1)^ 0.39 ± 0.25 0.59 ± 0.28 0.39 ± 0.26 0.60 ± 0.27 0.61 ± 0.81 1.03 ± 1.44 0.43 ± 0.71 0.41 ± 0.62 0.52 ± 0.82 

Iron Profile Measurements 

Serum iron (μg dL-1)^ 105.74 ± 30.91 100.62 ± 33.76 90.01 ± 29.07 82.91 ± 27.77 - - 81.38 ± 31.61 90.21 ± 36.39 80.18 ± 35.62 

Serum ferritin (ng mL-1)^ 230.71 ± 182.91 268.42 ± 197.04 
323.39 ± 

173.22 

462.42 ± 

245.25 

69.45 ± 

63.41 

206.63 ± 

176.13 

157.89 ± 

156.95 
130.62 ± 139.86 144.21 ± 163.74 

Serum transferrin (g L-1)^ 2.52 ± 0.39 2.53 ± 0.34 2.62 ± 0.47 2.79 ± 0.57 - - - - - 

TIBC (μmol L-1)^ 63.47 ± 9.99 63.65 ± 8.76 65.82 ± 12.01 70.18 ± 14.40 - - 52.85 ± 8.91 62.70 ± 10.01 62.14 ± 10.54 

TSAT (%)^ 30.22 ± 9.12 28.8 ± 10.06 24.92 ± 8.05 21.56 ± 7.11 - - 28.13 ± 11.05 26.37 ± 11.36 23.72 ± 10.81 

Gout Characteristics 

No of gout flares/year^ - 3.72 ± 7.02 - 7.73 ± 23.71 - 2.02 ± 1.87 - - - 

% Allopurinol treatment 

(% reported) 
- 75 (100) - 75.75 (99) - 97.92 (84.56) - - - 

% Gout tophus (% 

reported) 
- 27 (100) - 66 (100) - NA - - - 

NZ: New Zealand, US: The United States of America, JHS: Jackson Heart Study, NHANES III: US Third National Health and Nutrition Examination Survey, EUR: White Caucasian/European, 

AA: African American, BMI: Body mass index, n (%): total number (percentage), % (% reported): total percentage# of individuals reported yes/no for the particular criteria (percentage who 

reported yes for the particular criteria out of #), CRP: C-reactive protein, TIBC: Total iron binding capacity, TSAT: Transferrin saturation. ^Data are shown as mean ± standard deviation. 



2 | Iron Metabolism – Biochemical Analysis 

 59 

Table 2.3: Detailed demographic and clinical information for non-gout individuals from the JHS and NHANES III study groups: 

stratified on the basis of gender 

Populations JHS (African American) NHANES III (White Caucasian/European) NHANES III (African American) 

Group Male Female Male Female Male Female 

Baseline Information 

Number (% of total) 567 (45.00) 693 (55.00) 2460 (48.09) 2652 (51.87) 1925 (44.41) 2430 (55.79) 

Age (years)^ 47.57 ± 10.63 47.61 ± 10.98 54.22 ± 19.54 51.77 ± 20.10 42.04 ± 17.67 41.79 ± 17.61 

BMI (kg/m2)^ 29.57 ± 6.03 32.47 ± 7.85 26.34 ± 4.39 25.70 ± 5.57 26.32 ± 5.22 28.71 ± 7.31 

Serum Urate (mmol L-1)^ 0.34 ± 0.07 0.26 ± 0.07 0.35 ± 0.07 0.27 ± 0.06 0.36 ± 0.08 0.28 ± 0.08 

CRP (mg dL-1)^ 0.29 ± 0.49 0.55 ± 0.82 0.39 ± 0.63 0.42 ± 0.61 0.42 ± 0.67 0.60 ± 0.92 

Iron Profile Measurements 

Serum iron (μg dL-1)^ 90.22 ± 30.23 74.14 ± 30.87 94.92 ± 35.14 85.83 ± 36.98 89.89 ± 35.11 72.48 ± 34.13 

Serum ferritin (ng mL-1)^ 224.47 ± 180.17 103.38 ± 107.95 178.81 ± 152.05 85.97 ± 110.121 204.03 ± 175.96 96.77 ± 135.80 

Serum transferrin (g L-1)^ - - - - - - 

TIBC (μmol L-1)^ 51.02 ± 7.01 54.58 ± 9.32 60.91 ± 9.02 64.37 ± 10.58 60.03 ± 9.24 63.81 ± 11.19 

TSAT (%)^ 31.96 ± 10.52 24.99 ± 10.48 28.41 ± 11.17 24.49 ± 11.21 27.18 ± 10.57 20.98 ± 10.19 

JHS: Jackson Heart Study, NHANES III: US Third National Health and Nutrition Examination Survey, EUR: White Caucasian/European, AA: African American, BMI: Body mass index, CRP: 

C-reactive protein, TIBC: Total iron binding capacity, TSAT: Transferrin saturation. ^Data are shown as mean ± standard deviation. 
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2.2.2.1.2 Biochemical measurements 

 The following paragraphs detail the methodologies adopted for the determination 

of biochemical markers (serum urate, total iron, transferrin, ferritin and CRP) for this 

study. 

2.2.2.1.2.1 Plasma/serum urate measurements 

 Serum urate measurement in NZ subjects was carried out following uricase 

oxidation method. The endpoint measurement was done using fully automated Roche 

Cobas 8000 Modular P/D analyser and reagents provided by the manufacturers. The 

median coefficient of variation for this machine is 2.1% and the within-sample 

measurement correlation 99.6%. The test is based on an enzymatic colorimetric principle 

that eliminates interference intrinsic to chemical oxidation. Uricase was added to the 

serum samples as the specific reaction enzyme. This enzyme specifically catalyses the 

oxidation of urate to produce hydrogen peroxide, allantoin, and carbon dioxide. The 

amount of hydrogen peroxide produced in the uricase reaction is then used for the 

coupling of sulphonated dichlorophenol and 4-aminoantipyine to produce a colour. The 

difference in absorbance was measured at 515nm before and after addition of uricase, 

where the difference is directly proportional to the amount of urate present in the sample. 

 For US participants, urate was measured by Liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) in a replicate plasma biomarker sample aliquot; hence urate is 

referred to as PU (plasma urate) in this data set. To measure PU levels, LC-MS/MS 

method was developed at Seventh Wave Laboratories (Missouri, USA). Separation was 

achieved on a Synergi Polar-RP 80A (4.6 x 50 mm, 4 µm) column with mobile phases of 

0.1% formic acid in water and 0.1% formic acid in acetonitrile. Quantification was done 

using a multiple reaction-monitoring mode to monitor the precursor-to-product ion 

transitions of mass to charge ratio or m/z 167.0 to m/z 124.0 for urate and m/z 169 to m/z 

125 for 1,3-(15) N urate in negative ionisation mode. The calibration curve was 

established over the range of 10-250 µg mL-1, and the correlation coefficient was 0.999. 

The accuracy determined at eight concentrations ranged between 92.7 and 107%. 
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2.2.2.1.2.2 Measurement of iron profile markers 

 For NZ participants, serum iron profile markers were measured using Roche 

Cobas® systems (Roche Diagnostics GmbH D-68298 Mannheim, Germany). Standard 

laboratory protocols provided by Cobas® systems e602, c702 and c701/702 were 

followed to measure total iron, ferritin and transferrin, respectively3. 

 The Roche ferritin assay module was based on an in vitro 

electrochemiluminescence immunoassay system. The assay consisted of two rounds of 

incubation followed by aspiration and calibration. A total of 10L of each sample was 

incubated with monoclonal mouse antibodies – M-4.184 and M-3.170 to build up a 

sandwich complex. The plates were incubated for 18 minutes at room temperature. After 

addition of streptavidin-coated micro-particles followed by the second round of 

incubation, the complex became bound to the solid phase via interaction of biotin and 

streptavidin. The reaction mixture was aspirated into the measuring cell where the micro 

particles were magnetically captured onto the surface of the electrode. Unbound 

substances were then removed with ProCell/ProCell M. Chemiluminescent emission was 

then induced through voltage electrode and measured by a photomultiplier. Results were 

determined via a calibration curve (instrument specifically generated by 2-point 

calibration and a master curve provided via the reagent barcode). 

 In vitro tests for the quantitative determination of iron and transferrin in serum 

samples were done using a Roche Cobas c system (c701 and 702). The assay for 

determination of iron was based on colorimetric and photometric analysis and was 

performed by fully automated chemistry analysers (IRON2: ACN 8661). In the first step, 

serum detergent or acids were added to liberate Fe3+ from transferrin-Fe-complex, leaving 

apo-transferrin and Fe3+ as reaction products. Detergent was then used to further clarify 

any lipemic samples. The acid added was ascorbic acid, to provide ascorbate, which 

reduced the released Fe3+ ions to Fe2+ ions to react with FerroZine to form a coloured 

complex. The colour intensity was measured photometrically at 570nm using the Roche 

chemistry analyser. The colour intensity was directly proportional to the iron 

concentration in the serum sample. The measurement of transferrin was done using 

                                                 

3 Vivienne Trethowen (Clinical Trials Assistant at Southern Community Laboratory, Dunedin Hospital, 

New Zealand) carried out the iron profile measurements for the New Zealand sample set. 
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module cobas c701 (TRSF2: ACN 8187). This test employed a 2-point end 

immnoturbidimetric assay i.e., human transferrin formed precipitates with a specific 

antiserum, which was then determined turbidimetrically at 700nm. The assay was 

performed in fully automated Roche/Hitachi chemistry analyser that calculates the 

concentration of the analyte in each sample on a pre-set protocol. 

 Total iron binding capacity (TIBC) and transferrin saturation (TSAT) were 

calculated using the following standardised formulas; 

TIBC (μmol L-1) = 25.1 × Transferrin (g L-1) 

TSAT (%) =  Iron / TIBC × 100 

Where ‘25.1’ is the theoretical ratio of TIBC (in μmol L-1) to transferrin (in g L-1) 

2.2.2.1.2.3 Measurement of C-reactive protein  

 C-reactive protein levels in NZ subjects were measured by me in the Merriman 

Laboratory, using commercially available CRP human enzyme-linked immunosorbent 

assay (ELISA) kits from Abcam (ab99995 from R&D Systems, USA), according to 

manufacturer’s instructions. This assay employs an antibody specific for human CRP 

coated on a 96-well plate. Standards and samples were pipetted into the wells to allow the 

binding of CRP to the immobilised antibody. The wells were then washed and 

biotinylated anti-Human CRP antibody was added. After washing away unbound 

biotinylated antibody, HRP-conjugated streptavidin was pipetted into the wells. The wells 

were again washed, followed by adding a 3,3',5,5'-Tetramethylbenzidine (TMB) substrate 

solution to each well. The intensity of colour developed after adding TMB was directly 

proportional to the bound CRP. Then a stop solution was added that changed the colour 

from blue to yellow. The intensity of the colour was measured at 450nm using a Thermo-

Labsystems multiskan FC absorbance plate reader. 

 The Myriad Rules Based Medicine Human Multi-Analyte Profile system (Myriad 

RBM, Inc., Austin, Texas; https://myriadrbm.com/) was used to measure plasma ferritin 

(assession number P02794 and P02792) and CRP (assession number: P02714) in the US 

subjects. The samples were spun and transferred to a master microtiter plate. Using 

automated pipetting, an aliquot of each sample was added to individual microsphere 
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multiplexes of the selected Multi-Analyte Profile and blocker. This mixture was 

thoroughly mixed and incubated at room temperature for 1 hour. Multiplexed cocktails of 

biotinylated reporter antibodies were added robotically and after thorough mixing 

incubated for an additional hour at room temperature. Multiplexes were labelled using an 

excess of streptavidin-phycoerythrin solution, thoroughly mixed and incubated for one 

hour at room temperature. The volume of each multiplexed reaction was reduced by 

vacuum filtration and washed three times. After the final wash, the volume was increased 

by addition of buffer for analysis using a Luminex instrument and the resulting data 

interpreted using proprietary software developed by Myriad RBM. For each multiplex 

reaction, both calibrators and controls were included on each microtiter plate. Eight-point 

calibrators to form a standard curve were run in the first and last column of each plate and 

controls at three concentration levels were run in duplicate. The standard curve, control, 

and sample QC were performed to ensure proper assay performance. Study sample values 

for each of the analytes were determined using four and five parameter logistics, 

weighted and non-weighted curve fitting algorithms included in the data analysis package. 

 The methodologies followed for urate (Carpenter et al., 2004), iron profile (Li et 

al., 2015) and CRP (Fox et al., 2008) measurements for the JHS are described elsewhere 

while Gunter (1996) provide details for the laboratory measurement protocols in the 

NHANES III cohort. 

2.2.2.2 HFE Genetic association analysis 

 In order to validate the findings from the above observational analyses, two 

variants within haemochromatosis (HFE) gene, rs1799945 and rs1800562, have been 

analysed for their association with urate and gout in New Zealand population. 

2.2.2.2.1 Study participants 

 Participants from the NZ Gout Cohort (Chapter 1: Section 1.2), for whom 

genotype information was available, were included in these analyses. The NZ Gout 

Cohort was categorised into two major ancestral groups, NZ Polynesian (Māori and 

Pacific Islanders: n = 2,017; 941 cases and 1,076 controls) and NZ European (n = 1,421; 

862 cases and 559 controls). In order to keep consistency with above analyses, the NZ 

Polynesian group was not divided further into any sub-groups. Data from the Ngati Porou 
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Hauora (NPH) individuals were also included as a separate Māori sample set (NPH: 144 

cases and 65 controls). Gender-based stratification was done to analyse the associations 

separately in males and females. Data for non-gout or control subjects (from NZ Gout 

Cohort only) were used to test for an association of the two HFE variants (rs1800562 and 

rs1799945) with serum urate. Of these, all subjects who self-reported as taking diuretic 

medication, or had renal failure, gout, or had first-degree relatives with gout were 

excluded from the various analyses. Table 2.4 provide demographic details of the study 

groups.  

2.2.2.2.2 Genotyping 

 Genotype data for the two HFE gene variants, rs1800562 and rs1799945, were 

sourced from the Illumina Chip CoreExome dataset. The genotyping in this dataset was 

done using the Illumina Infinium CoreExome (version 24) bead chip platform. 

Genotyping was performed at the University of Queensland (Centre for Clinical 

Genomics), followed by auto-clustering using GenomeStudio version 2011.1 software 

(Illumina, San Diego). The Illumina GenomeStudio best practice guidelines (Illumina, 

2014) and quality control protocols of Guo et al. (2014) were followed to ensure that final 

genotype calls obtained from the auto-clustered genotypes were of highest possible 

quality. 

2.2.2.2.3 Statistical analysis 

 Multiply-adjusted logistic and linear regression analyses were done using 

statistical software R version 3.3.2 (RCore, 2016) to test for an association of serum iron, 

transferrin, ferritin, TIBC and TSAT (explanatory variables) with gout and 

hyperuricaemia (binary response variables) and urate (continuous response variable), 

respectively. The regression model describes per unit change in response variable via per 

unit change in explanatory variable. Adjusted regression models were also used to assess 

the association of rs1800562 and rs1799945 (explanatory variables) with gout and serum 

urate, where again the regression model describes per unit change in response variables 

via addition of each affected allele (as per unit change in explanatory variables). The 

adjusted odds ratio (OR) and β-estimates were obtained by including age (in years), sex 

and BMI (wherever possible) as baseline covariates in the regression models. Beside 

these, two additional adjustors added in regression models were serum levels of CRP for 
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serum ferritin analysis, and number of self-reported Polynesian grandparents for the 

Polynesian sample set. Adherence to Hardy-Weinberg equilibrium (HWE) was calculated 

using the SHEsis package (Yong and Lin, 2005), with a significant deviation from HWE 

if PHWE ≤ 0.016 (0.05 divided by 3 – the number of data sets tested in Table 2.12). To 

increase the power of analysis, all ORs for logistic and all β-estimates for linear 

regression models were combined together in meta-analysis using meta package in R 

(version 4.3-2). A Q-statistic was calculated to measure the heterogeneity between the 

datasets. If the heterogeneity was significant (P < 0.05), the fixed-effect model was 

replaced with a random-effect model. Differences in the means for inter- and intragroup 

comparisons were calculated using an unpaired t-test in R version 3.3.2. 
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Table 2.4: Demographic and clinical information for study groups used for HFE variant analyses 

Population NZ Polynesian NZ European Ngati Porou Hauora 

Group Gout Non-gout Gout Non-gout Gout Non-gout 

Baseline Information 

Total number (n) 941 1,076 862 559 144 65 

Males, n (%) 804 (85.44) 555 (51.57) 729 (84.57) 416 (74.42) 122 (84.72) 34 (52.31) 

Age (years)^ 52.06 ± 13.14 43.15 ± 15.09 63.86 ± 12.83 54.32 ± 16.71 59.00 ± 11.46 46.30 ± 14.40 

BMI (kg/m2)^ 36.07 ± 7.65 33.04 ± 7.59 30.29 ± 5.33 27.63 ± 5.61 36.54 ± 7.54 29.69 ± 5.69 

Serum Urate (mmol L-1)^ 0.43 ± 0.11 0.37 ± 0.09 0.39 ± 0.11 0.34 ± 0.11 0.41 ± 0.10 0.36 ± 0.08 

Co-morbidities 

Type 2 Diabetes, n (%) 198 (23.77) 138 (14.36) 123 (0.15) 31 (0.07) 42 (0.29) 5 (7.94) 

Dyslipidaemia, n (%) 390 (46.81) 121 (12.59) 382 (0.47) 89 (0.19) 80 (0.56) 19 (30.16) 

Heart problems, n (%) 244 (29.29) 102 (10.61) 300 (0.37) 69 (0.15) 46 (0.32) 6 (9.52) 

Hypertension, n (%) 455 (54.62) 211 (21.95) 439 (0.54) 105 (0.23) 105 (0.73) 11 (17.46) 

Liver problems, n (%) 6 (0.72) 3 (0.13) 17 (0.02) 7 (0.01) 2 (0.013) 0 (0.00) 

Kidney problems, n (%) 173 (20.76) 33 (3.44) 180 (0.22) 23 (0.05) 15 (0.10) 2 (3.17) 

Gout Characteristics 

Age at onset gout (years)^ 38.06 ± 7.66 - 48.81 ± 16.87 - 39.23 ± 14.56 - 

On Allopurinol n (%) 712 (85.47) - 623 (0.769) - 109 (0.762) - 

No of gout flares/year^ 10.65 ± 33.95 - 7.86 ± 34.98 - 3.09 ± 4.67 - 

Gout tophus, n (%) 338 (40.72) - 280 (34.56) - 126 (87.50) - 

NZ: New Zealand, BMI; Body mass index, n (%): total number (percentage), ULT: Urate lowering therapy. ^Data are shown as mean ± standard deviation. Data for the co-morbidities are self-

reported.
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2.2.3 Results 

2.2.3.1 Biochemical analysis 

 Analyses of data from all four groups indicated only ferritin to have consistent 

significant associations with binary and continuous variables under study. The paragraphs 

below mostly provide association results for plasma/serum ferritin, while results for all 

other iron profile markers are provided in Appendix A, Table 2.1 through 2.4. 

 Serum ferritin concentration was positively associated with serum urate 

concentration in non-gout African American individuals from the JHS (Males: ß (mmol 

L-1) = 0.04, Pß = 9.3E-03; Females: ß (mmol L-1) = 0.08, Pß = 1.7E-03) and NHANES III 

(Males: ß (mmol L-1) = 0.03, Pß = 5.1E-04; Females: ß (mmol L-1) = 0.09, Pß = 1.76E-15) 

studies as well as Europeans (Males: ß (mmol L-1) = 0.02, Pß = 6.6E-03; Females: ß 

(mmol L-1) = 0.07, Pß = 3.4E-10) from the NHANES III study (Table 2.5). A positive 

association between ferritin and urate was also observed in NZ Polynesian (ß (mmol L-1) 

= 0.09, Pß = 2.5E-04), but not NZ European (ß (mmol L-1) = 0.05, Pß = 0.31) or US 

individuals (ß (mmol L-1) = 0.24, Pß = 0.15) (Table 2.5). Combining all datasets in meta-

analysis indicated a positive association between serum ferritin and urate (ß (mmol L-1) = 

0.05, PHet = 0.27, Pß = 3.9E-32) (Table 2.5). Among other markers, serum iron, TIBC and 

TSAT were positively associated with urate in NHANES III Europeans (Iron: ß (mmol L-

1) = 0.16, Pß = 3.3E-10; TIBC: ß (mmol L-1) = 0.31, Pß = 0.001; TSAT: ß (mmol L-1) = 

0.35, Pß = 1.1E-05). For NHANES III African Americans, positive associations were 

observed between serum iron, TSAT and urate (Iron: ß (mmol L-1) = 0.16, Pß = 1.5E-06; 

TSAT: ß (mmol L-1) = 0.54, Pß = 8.7E-04) (Appendix A, Table 2.1). 

 Analyses comparing normouricaemic with hyperuricaemic individuals also 

indicated association of ferritin with an increased risk of hyperuricaemia in African 

Americans from the JHS (Males: OR (95% CI) =1.012 (1.01 ; 1.02), POR = 1.4E-02; 

Females: OR (95% CI) = 1.040 (1.01 ; 1.07), POR = 3.3E-03) and NHANES III (Males: 

OR (95% CI) = 1.013 (1.01 ; 1.02), POR = 2.4E-06; Females: OR (95% CI) = 1.022 

(1.01 ; 1.03), POR = 7.1E-06) studies (Table 2.6). Odds ratios represent change in serum 

urate per 10 ng mL-1 increase in concentration of serum ferritin. A similar association was 

observed when the normouricaemia and hyperuricaemia comparison was done for 
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NHANES III Europeans (Males: OR (95% CI) = 1.011 (1.01 ; 1.02), POR = 6.8E-04; 

Females: OR (95% CI) = 1.022 (1.01 ; 1.03), POR = 1.7E-08) (Table 2.6). Combining the 

JHS and NHANES III datasets together in meta-analysis showed a significant association 

of serum ferritin with an increased risk of hyperuricaemia (OR (95% CI) = 1.013 (1.01 ; 

1.02), PHet = 0.15, POR = 6.9E-23) (Table 2.6). 

 Average levels of ferritin were significantly elevated in both NZ Polynesian (P = 

2.3E-04) and US (P = 2.4E-17) gout cases compared to controls. The values were not 

significantly different between NZ European gout case-controls (P = 0.21) (Appendix A, 

Table 2.4 and Figure 2.2). Serum ferritin was associated with an increased risk of 

developing gout in NZ Polynesian (OR (95% CI) = 1.032 (1.01 ; 1.05), POR = 1.8E-03) 

and US individuals (OR (95% CI) = 1.112 (1.06 ; 1.17), POR = 7.4E-06) (Table 2.7). An 

increase of 10 ng mL-1  of ferritin was associated with an increased risk of gout of 3% in 

NZ Polynesian and 11% in the US male individuals. Ferritin was not associated with an 

increased risk of gout in European male participants from NZ (OR (95% CI) = 0.99 

(0.97 ; 1.02), POR = 0.83) that possibly introduced heterogeneity in meta-analysis. 

However, meta-analysis still indicated a direction of susceptibility to gout (OR (95% CI) 

= 1.039 (0.99 ; 1.08), PHet = 0.003, POR = 0.09) (Table 2.7). 

Figure 2.2: Distribution of serum ferritin and difference in means between gout case-control groups (males only) 

in (A) NZ European, (B) NZ Polynesian and (C) US datasets. P-values are given for a difference between the 

means. 

A B 

C 

p = 0.21 p = 2.3E-04 

p = 2.4E-17 
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     Table 2.5: Association of ferritin (ng mL-1) with serum urate (μmol L-1) 

Population n ß [95% CI] P ß [95% CI]* P* 

NZ European 60 0.062 [-0.041 ; 0.165] 0.24 0.055 [-0.054 ; 0.165] 0.31 

NZ Polynesian 60 0.092 [0.045 ; 0.139] 1E-04 0.086 [0.040 ; 0.132] 2.5E-04 

US 60 0.289 [-0.034 ; 0.612] 0.079 0.245 [-0.093 ; 0.584] 0.15 

JHS (Males) 567 0.047 [0.011 ; 0.083] 9.5E-03 0.046 [0.011 ; 0.081] 9.3E-03 

JHS (Females) 693 0.138 [0.087 ; 0.189] 1.6E-07 0.081 [0.030 ; 0.131] 1.7E-03 

JHS (Combined) 1,260 0.163 [0.137 ; 0.196] 1.8E-27 0.059 [0.031 ; 0.087] 3.2E-05 

NHANES III AA (Males) 1,925 0.061 [0.041 ; 0.082] 7.2E-09 0.035 [0.015 ; 0.056] 5.1E-04 

NHANES III AA (Females) 2,430 0.167 [0.143 ; 0.191] 1.3E-42 0.096 [0.072 ; 0.121] 1.8E-15 

NHANES III AA (Combined) 4,355 0.173 [0.158 ; 0.189] 1.9E-97 0.064 [0.049 ; 0.079] 2.1E-16 

NHANES III EUR (Males) 2,460 0.036 [0.018 ; 0.055] 1.0E-04 0.024 [0.006 ; 0.042] 6.6E-03 

NHANES III EUR (Females) 2,652 0.114 [0.091 ; 0.137] 1.3E-22 0.071 [0.048 ; 0.092] 3.4E-10 

NHANES III EUR (Combined) 5,112 0.152 [0.136 ; 0.167] 6.9E-84 0.045 [0.032 ; 0.059] 5.1E-11 

Meta-analysis (All) 10,907 0.149 [0.125 ; 0.173] 9.3E-34 0.056 [0.046 ; 0.065] 3.9E-32 

NZ: New Zealand, US: The United States of America, JHS: Jackson Heart Study, NHANES III: US Third National Health and Nutrition Examination Survey, EUR: 

White Caucasian/European, AA: African American, n; number of non-gout individuals included in serum urate analysis. *Adjusted for age, sex, BMI, C-reactive 

protein and number of self-reported Polynesian grandparents for the NZ Polynesian group. 
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Table 2.6: Association of serum ferritin with hyperuricaemia 

Population OR [95% CI] P OR [95% CI]* P* 

JHS (Males) 1.012 [1.010 ; 1.022] 1.7E-02 1.012 [1.010 ; 1.023] 1.4E-02 

JHS (Females) 1.046 [1.021 ; 1.071] 1.7E-04 1.040 [1.011 ; 1.067] 3.3E-03 

JHS (Combined) 1.031 [1.022 ; 1.041] 8.7E-11 1.021 [1.011 ; 1.026] 1.1E-03 

NHANES III AA  

(Males) 
1.022 [1.017 ; 1.027] 1.5E-17 1.013 [1.007 ; 1.018] 2.4E-06 

NHANES III AA 

(Females) 
1.042 [1.032 ; 1.051] 1.2E-20 1.022 [1.012 ; 1.032] 7.1E-06 

NHANES III AA 

(Combined) 
1.036 [1.032 ; 1.041] 1.3E-58 1.016 [1.011 ; 1.021] 9E-12 

NHANES III EUR 

(Males) 
1.013 [1.010 ; 1.017] 1.8E-13 1.011 [1.002 ; 1.012] 6.8E-04 

NHANES III EUR 

(Females) 
1.036 [1.029 ; 1.043] 3.1E-25 1.022 [1.012 ; 1.025] 1.7E-08 

NHANES III EUR 

(Combined) 
1.030 [1.026 ; 1.032] 1.2E-68 1.011 [1.007 ; 1.014] 4.2E-11 

Meta-analysis (All) 1.032 [1.027 ; 1.037] 4.3E-35 1.013 [1.013 ; 1.016] 6.9E-23 

JHS: Jackson Heart Study, NHANES III: US Third National Health and Nutrition Examination Survey, EUR: White 

Caucasian/European, AA: African American, n: number of non-gout individuals included in serum urate analysis, OR: 

Odds ratio, 95% CI: 95% confidence interval, P; p-values. *Adjusted for age, sex, BMI, C-reactive protein and number 

of self-reported Polynesian grandparents for the NZ Polynesian group. All values represent change in risk for every 10 

ng mL-1 increase in serum ferritin. 

 

 

Table 2.7: Association of serum ferritin with gout 

Population OR [95% CI] P OR [95% CI]* P* 

NZ European 1.011 [0.993 ; 1.031] 0.22 0.997 [0.971 ; 1.023] 0.84 

NZ Polynesian 1.026 [1.011 ; 1.045] 1.7E-03 1.032 [1.013 ; 1.055] 1.8E-03 

US 1.115 [1.072 ; 1.171] 1.3E-06 1.112 [1.066 ; 1.170] 7.4E-06 

Meta-analysis (All) 1.043 [1.014 ; 1.081] 0.02 1.039 [0.993 ; 1.088] 0.09 

NZ: New Zealand, US: The United States of America, OR: Odds ratio, 95% CI: 95% confidence interval, P: p-values. 

*Adjusted for age, sex, BMI, C-reactive protein and number of self-reported Polynesian grandparents for the NZ 

Polynesian group. All values represent change in risk for every 10 ng mL-1 increase in serum ferritin. 
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 As ferritin was positively associated with gout (in NZ Polynesian and US 

datasets), the analysis was extended to assess any possible association of serum ferritin, 

CRP and urate with self-reported data of frequency of gout flares (per year) in the NZ 

Polynesian, NZ European and the US sample sets. It was observed that each 10 ng mL-1 

increase in ferritin was significantly associated with an increased frequency of gout flares 

in the US (ß (flares/year) = 0.02, Pß = 2.0E-03) and NZ European (ß (flares/year) = 0.09, 

Pß = 0.04) but not in NZ Polynesian (ß (flares/year) = -0.11, Pß = 0.14) individuals. C-

reactive protein and urate concentrations were not significantly associated with for the 

self-reported number of gout flares in all three data sets (Table 2.8). 

 The urate-producing enzyme xanthine oxidase also releases iron from ferritin 

(Bolann and Ulvik, 1987). As allopurinol is widely used to treat gout as an inhibitor of 

this enzyme, the average levels of ferritin (and other iron measures) were also compared 

for NZ and US gout cases by stratifying the data sets according to the usage of allopurinol. 

Significantly increased serum ferritin levels were observed in the NZ Polynesian (P = 

0.005) and the US (P = 0.02) participants who reported taking allopurinol for 

management of gout in comparison to those who didn’t report allopurinol usage for gout 

treatment. The average levels of ferritin were not different in NZ European when the 

same stratification was done (P = 0.47) (Table 2.9). Assuming that allopurinol could be a 

possible confounder for an association of ferritin with gout and flare frequency, additional 

analyses were done excluding the individuals not taking allopurinol and adjusting for 

allopurinol usage for gout and flare frequency, respectively. The results obtained, 

however, did not indicate allopurinol as a confounder (Appendix A Table 2.7 and 2.8). 

 A significant difference (P = 0.04) between the mean levels of ferritin was found 

in NZ Polynesian gout participants when participants who self-reported iron-rich food as 

a trigger for gout attacks were compared to those who did not report any trigger. The 

results were however not significant in NZ Europeans (P = 0.78). Also, no significant 

difference was observed in average levels of total iron, transferrin, TIBC and TSAT when 

the same stratification criterion was applied (Table 2.10).  
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Table 2.8: Association of serum ferritin, CRP and urate with gout flares/year 

Population 

Ferritin (ng mL-1)† C-reactive protein (mg dL-1) Serum urate (mg dL-1) 

ß [95% CI] P ß [95% CI]* P* ß [95% CI] P ß [95% CI]* P* ß [95% CI] P ß [95% CI]* P* 

NZ European 
0.08 

[0.001 ; 0.16] 
0.04 

0.09 

[0.003 ; 0.17] 
0.042 

1.55 

[-3.86 ; 6.97] 
0.57 

1.75 

[-3.85 ; 7.37] 
0.54 

-0.61 

[-1.47 ; 0.23] 
0.16 

-0.61 

[-1.48 ; 0.25] 
0.16 

NZ Polynesian 
-0.11 

[-0.24 to 0.03] 
0.13 

-0.11 

[-0.24 ; 0.03] 
0.14 

-11.17 

[-24.47 ; 2.11] 
0.09 

-9.95 

[-23.75 ; 3.84] 
0.16 

-1.79 

[-4.04 ; 0.44] 
0.12 

-1.59 

[-3.88 ; 0.71] 
0.17 

US 
0.02 

[0.01 ; 0.041] 
0.003 

0.02 

[0.01 ; 0.04] 
0.002 

0.07 

[-0.17 ; 0.32] 
0.58 

0.01 

[-0.01 ; 0.03] 
0.39 

0.07 

[-0.09 ; 0.23] 
0.39 

0.13 

[-0.03 ; 0.29] 
0.12 

NZ: New Zealand, US: The United States of America, ß: ß-estimates, 95% CI: 95% confidence interval, P: p-values. *Adjusted for age, sex, BMI and number of self-reported Polynesian 

grandparents in the NZ Polynesian group. 
†
Values represent change in the annual frequency of flares for every 10ng mL-1 increase in serum ferritin. Levels of urate are as per recorded at the 

time of subject recruitment. 

 



2 | Iron Metabolism – Biochemical Analysis 

 73 

Table 2.9: Self-reported allopurinol use and iron profile comparison in gout patients 

Population/Marker n 
Mean/n 

SE P 
95%CI  

(for difference) 
NoAllop Allop 

NZ European 

Total number 89 23 66 - - - 

Serum Iron (μmol L-1) - 100.44 98.64 6.35 0.77 [-10.66 ; 14.25] 

Serum Transferrin (g L-1) - 2.53 2.61 0.08 0.40 [-0.22 ; 0.09] 

Serum Ferritin (ng mL-1) - 253.71 284.31 43.46 0.47 [-115.78 ; 54.59] 

TIBC (μmol L-1) - 63.63 65.29 2.01 0.41 [-5.58 ; 2.26] 

TSAT (%) - 28.99 27.57 2.29 0.53 [-3.07 ; 5.91] 

NZ Polynesian 

Total number 96 22 74 - - - 

Serum Iron (μmol L-1) - 91.21 85.08 5.46 0.26 [-4.59 ; 16.82] 

Serum Transferrin (g L-1) - 2.61 2.76 0.09 0.07 [-0.34 ; 0.01] 

Serum Ferritin (ng mL-1) - 373.81 494.32 42.83 0.005 [-204.46 ; -36.54] 

TIBC (μmol L-1) - 65.33 69.51 2.31 0.07 [-8.72 ; 0.35] 

TSAT (%) - 22.9 22.67 1.91 0.90 [-3.50 ; 3.96] 

US 

Total number 189 29 160 - - - 

Serum Ferritin (ng mL-1) - 158.57 248.21 38.36 0.02 [-164.81 ; 14.45] 

NZ: New Zealand, US: The United States of America, n: number of individuals, NoAllop: Not taking allopurinol, 

Allop: taking allopurinol, 95% CI: 95% confidence interval, P: p-values, TIBC: Total iron binding capacity, TSAT: 

Transferrin saturation. 

Table 2.10: Comparison of average values of iron markers in iron-rich food trigger 

data for NZ European and Polynesian gout cases 

Marker 
Mean 

SE P 
95% CI 

(for difference) Trigger No trigger 

NZ European 

Serum Iron (μg dL-1) 92.81 103.29 6.079 0.08 [-1.439 ; 22.392] 

Serum Transferrin (g L-1) 2.52 2.64 0.075 0.11 [-0.027 ; 0.268] 

Serum Ferritin (ng mL-1) 283.45 270.87 39.241 0.78 [-121.21 ; 32.613] 

TIBC (μmol L-1) 66.43 63.41 1.900 0.11 [-0.701 ; 6.748] 

TSAT (%) 29.31 26.68 2.024 0.19 [-1.341 ; 6.593] 

NZ Polynesian 

Serum Iron (μg dL-1) 81.82 90.41 6.446 0.18 [-4.04 ; 21.23] 

Serum Transferrin (g L-1) 2.75 2.81 0.117 0.59 [-0.17 ; 0.29] 

Serum Ferritin (ng mL-1) 528.26 402.27 62.153 0.04 [-247.81 ; -4.17] 

TIBC (μmol L-1) 69.02 70.63 0.819 0.59 [4.31 ; 7.52] 

TSAT (%) 21.99 23.31 1.607 0.41 [-1.83 ; 4.47] 

NZ: New Zealand, US: The United States of America, n: number of individuals, 95% CI: 95% confidence interval, P: 

p-values, TIBC: Total iron binding capacity, TSAT: Transferrin saturation. Trigger: data from the gout subjects 

reporting any iron rich food (seafood, fish, red meat) as a trigger of gout flares, No trigger: data from gout subjects who 

didn’t report any food as a trigger of gouty flares. 



2 | Iron Metabolism – Biochemical Analysis 

 74 

2.2.3.1.1 Analysis with log transformed ferritin 

 In contrast to the iron and transferrin, the distribution of the data for ferritin were 

not normal (linear) for all study groups (Appendix B Figure 2.1 and Figure 2.2). In order 

to validate the above significant findings with ferritin, the data were log transformed 

(Appendix B Figure 2.3 and Figure 2.4) to obtain a linear distribution and to test if the 

association for urate, hyperuricaemia, gout and frequency of gout flares still persisted. 

Results for the transformed (normalised) data are presented in Appendix A Table 2.5 

through Table 2.8. Analyses of these data followed a similar pattern of associations as for 

the non-transformed data. 

2.2.3.2 HFE Genetic association analysis 

 The two SNPs in the HFE gene were not in LD with each other in the European 

population (Figure 2.3). It was not possible to calculate LD in Chinese Han individuals, 

as the 1000 Genome database (www.browser.1000genomes.org) did not have any 

information available for rs1800562 for this population. The minor allele (A allele) 

frequency for rs1800562 was higher in Europeans (0.079) than Māori and Pacific 

Islanders (NZ Polynesian = 0.015, NPH = 0.021) (Table 2.12). Similarly, the minor allele 

(G allele) frequency for rs1799945 was higher in NZ European (0.152) than Māori and 

Pacific Island (NZ Polynesian = 0.033, NPH = 0.048) individuals (Table 2.12). 

 When tested for an association, the minor allele (A) of rs1800562 did not show 

any association with serum urate in NZ European (Males: ß (mmol L-1) = 0.012, Pß = 

0.40; Females: ß = -0.017, Pß = 0.31), NZ Polynesian (Males: ß = 0.004, Pß = 0.86; 

Females: ß (mmol L-1) = 0.011, Pß = 0.69) or NPH (Males: ß (mmol L-1) = 0.008, Pß = 

0.91; Females: ß (mmol L-1) = -0.075, Pß = 0.40) individuals (Table 2.11). Analysing 

males and female together also did not show any association of the A allele with serum 

urate in any population dataset (NZ European: ß (mmol L-1) = 0.002, Pß = 0.83; NZ 

Polynesian: ß (mmol L-1) = 0.002, Pß = 0.69; NPH: ß (mmol L-1) = -0.019, Pß = 0.73) 

(Table 2.11). When combined in meta-analysis, the only difference was the direction of 

association between males and females, with males having positive (ß (mmol L-1) = 0.010 

mmol L-1, Pß = 0.41, PHet = 0.002) and females having negative (ß (mmol L-1) = -0.012, 

Pß = 0.43, PHet = 0.42) direction without any significant effect (Table 2.11). The meta-

analysis also indicated significant heterogeneity (PHet = 0.002) between male groups from 

http://browser.1000genomes.org/
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the NZ European, NZ Polynesian and NPH datasets (Table 2.11). Combining male and 

female groups together also did not indicate any association between the A allele of 

rs1800562 and urate (ß (mmol L-1) = 0.003, Pß = 0.75, PHet = 0.89) (Table 2.11). 

 The allele A of rs1800562 did not show any association with gout when tested in 

three data sets i.e., NZ European (Males: OR = 0.95, POR = 0.79; Females: OR = 1.06, 

POR = 0.87), NZ Polynesian (Males: OR = 1.09, POR = 0.80; Females: OR = 1.39, POR = 

0.61) and NPH (Males: OR = 0.63, POR = 0.56; Females: OR = 1.64, POR = 0.82) (Table 

2.13). The non-significant associations remained consistent for all population datasets 

when assessed for all individuals together (NZ European: OR = 1.01, POR = 0.98; NZ 

Polynesian: OR = 1.13, POR = 0.70; NPH: OR = 0.53, POR = 0.49) (Table 2.13). The A 

allele also did not show any association when sex-specific groups were combined 

separately (Males: OR = 0.96, POR = 0.82, PHet = 0.81; Females: OR = 1.17, POR = 0.65, 

PHet = 0.93) and together (Male: OR = 1.09, POR = 0.93, PHet = 0.74) in meta-analysis 

(Table 2.13). 

 The G allele of rs1799945 did not show any association with serum urate in NZ 

European males (ß (mmol L-1) = 0.007, Pß = 0.51), while it indicated a nominal negative 

association in females (ß (mmol L-1) = -0.028, Pß = 0.05) (Table 2.11). The G allele was 

also negatively associated with urate in NZ Polynesian males (ß (mmol L-1) = -0.050, Pß 

= 0.02) with no association in females (ß (mmol L-1) = 0.016, Pß = 0.97) (Table 2.11). 

However, for the NPH data set a positive association was observed between G allele and 

urate for males (ß (mmol L-1) = 0.085, Pß = 0.02) but not females (ß (mmolL-1) = 0.015, 

Pß = 0.82) (Table 2.11). The G allele, however, did not show any association with urate 

when all individuals were analysed together in different data sets (NZ European: ß (mmol 

L-1) = -0.003, Pß = 0.75; NZ Polynesian: ß (mmol L-1) = -0.021, Pß = 0.12; NPH: ß (mmol 

L-1) = 0.044, Pß = 0.16) (Table 2.11). Combined meta-analysis did not show any 

significant association of the SNP rs1799945 (G allele) with urate in both males (ß (mmol 

L-1) = 0.008, Pß = 0.78, PHet = 0.96) and females (ß (mmol L-1) = -0.015, Pß = 0.16, PHet = 

0.52) and all individuals together (ß (mmol L-1) = -0.005, Pß = 0.45, PHet = 0.14) (Table 

2.11). 

 The G allele of rs1799945 indicated a positive association with the risk of gout in 

NZ European females, where addition of each allele (G) was associated with a 28% 

increase in the risk of developing gout (OR = 2.28, POR = 0.03) (Table 2.13). The 
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association was not significant for NZ European males (OR = 0.89, POR = 0.47), NZ 

Polynesian males (OR = 1.03, POR = 0.89) and females (OR = 1.24, POR = 0.61) and NPH 

males (OR = 0.62, POR = 0.62) (Table 2.13). The number of female individuals was not 

enough to test for an association of rs1799945 with gout in the NPH data set (Table 2.13). 

However, the association did not remain when male and female individuals were 

combined together for different population data sets (NZ European: OR = 1.04, POR = 

0.78; NZ Polynesian: OR = 1.07, POR = 0.74; NPH: OR = 0.75, POR = 0.70) (Table 2.13). 

Meta-analysis showed a trend towards susceptible association between the G allele and 

gout in females (OR = 1.71, POR = 0.06, PHet = 0.29) but not males (OR = 0.96, POR = 

0.82, PHet = 0.81) (Table 2.13). However, combining sex-specific groups together in 

meta-analysis did not show any association between the G allele of rs1799945 (OR = 

1.03, POR = 0.73, PHet = 0.90) (Table 2.13). 
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Figure 2.3: Linkage disequilibrium (LD) plot indicating ‘R-squared/r2’ values between the HFE variants (rs1800562 and rs1799945 highlighted in the legend on the right side) in 

European population. Information for variant location, rs ID and LD values are from 1000 Genome database (http://browser.1000genomes.org/). The plot was generated using 

Haploview v4.2. 
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Table 2.11: Association analysis results for the HFE variants for serum urate (mmol 

L-1) 

Population ß [95% CI]† P ß [95% CI]* P* 

rs1800562 

NZ European (Males) -0.008 [-0.041 ; 0.024] 0.59 0.012 [ -0.016 ; 0.041] 0.40 

NZ European (Females) 0.005 [-0.038 ; 0.050] 0.79 -0.017 [-0.051 ; 0.017] 0.31 

NZ European (All) 0.001 [-0.024 ; 0.029] 0.95 0.002 [-0.019 ; 0.024] 0.83 

NZ Polynesian (Males) 0.001 [-0.065 ; 0.064] 0.99 0.004 [ -0.146 ; 0.164] 0.86 

NZ Polynesian (Females) 0.027 [-0.041 ; 0.065] 0.65 0.011 [ -0.043 ; 0.065] 0.69 

NZ Polynesian (All) 0.007 [-0.036 ; 0.051] 0.74 0.007 [-0.013 ; 0.045] 0.69 

NPH (Males) 0.012 [-0.153 ; 0.176] 0.88 0.008 [ -0.146 ; 0.164] 0.91 

NPH (Females) -0.056 [-0.225 ; 0.113] 0.49 -0.075 [ -0.266 ; 0.114] 0.40 

NPH (All) -0.023 [-0.142 ; 0.096] 0.70 -0.019 [-0.132 ; 0.094] 0.73 

Meta-analysis (Males) - - 0.010 [-0.014 ; 0.034] 0.41 

Meta-analysis (Females) - - -0.012 [-0.037; 0.017] 0.43 

Meta-analysis (All) - - 0.003 [-0.016 ; 0.022] 0.75 

rs1799945 

NZ European (Males) 0.013 [-0.012 ; 0.037] 0.30 0.007 [-0.014 ; 0.028] 0.51 

NZ European (Females) -0.015 [-0.048 ; 0.018] 0.36 -0.028 [-0.058 ; 0.001] 0.05 

NZ European (All) 0.011 [-0.010 ; 0.032] 0.30 -0.003 [-0.019 ; 0.014] 0.75 

NZ Polynesian (Males) -0.059 [-0.107 ; -0.011] 0.01 -0.050 [-0.092 ; -0.008] 0.02 

NZ Polynesian (Females) 0.004 [-0.033 ; 0.042] 0.83 0.016 [-0.131 ; 0.162] 0.97 

NZ Polynesian (All) -0.025 [-0.057 ; 0.005] 0.11 -0.021 [-0.047 ; 0.006] 0.12 

NPH (Males) 0.019 [-0.049 ; 0.088] 0.56 0.085 [0.012 ; 0.158] 0.02 

NPH (Females) -0.010 [-0.133 ; 0.113] 0.87 0.015 [-0.131 ; 0.162] 0.82 

NPH (All) 0.018 [-0.042 ; 0.080] 0.54 0.044 [-0.019 ; 0.108] 0.16 

Meta-analysis (Males) - - 0.008 [-0.049 ; 0.065] 0.78 

Meta-analysis (Females) - - -0.015 [-0.037 ; 0.006] 0.16 

Meta-analysis (All) - - -0.005 [-0.019 ; 0.008] 0.45 

NZ: New Zealand, NPH: Ngati Porou Hauora, ß: ß-estimates, 95% CI: 95% confidence interval, P: p-value. * All 

values are adjusted for age, BMI and grand-parental ancestry for Polynesian datasets. 
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Table 2.12: Genotype/allele frequencies of the HFE variants in gout case/control 

groups 

Population Group Genotype/Allele frequency PHWE 

rs1800562 

 GG AG AA A  

NZ European 
Case 731 (0.848) 125 (0.145) 6 (0.070) 137 (0.079) 0.79 

Control 478 (0.855) 78 (0.139) 3 (0.054) 84 (0.075) 0.92 

NZ Polynesian 
Case 912 (0.969) 28 (0.029) 1 (0.001) 30 (0.015) 0.11 

Control 1047 (0.973) 29 (0.027) 0 (0.000) 29 (0.013) 0.65 

NPH 
Case 138 (0.958) 6 (0.042) 0 (0.000) 6 (0.021) 0.79 

Control 62 (0.954) 3 (0.046) 0 (0.000) 3 (0.023) 0.84 

rs1799945 

 CC CG GG G  

NZ European 
Case 613 (0.711) 235 (0.273) 14 (0.016) 263 (0.152) 0.11 

Control 406 (0.727) 142 (0.254) 10 (0.179) 162 (0.145) 0.54 

NZ Polynesian 
Case 879 (0.931) 59 (0.063) 2 (0.002) 63 (0.033) 0.34 

Control 1008 (0.936) 66 (0.061) 2 (0.002) 70 (0.032) 0.40 

NPH 
Case 131 (0.909) 12 (0.083) 1 (0.007) 14 (0.048) 0.23 

Control 60 (0.923) 4 (0.061) 1 (0.015) 6 (0.046) 0.05 

NZ: New Zealand, NPH: Ngati Porou Hauora, PHWE: p-value for Hardy Weinberg Equilibrium. 
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Table 2.13: Association analysis results for the HFE variants for gout 

Population 

Males Females Combined (Males and Females) 

OR 

[95% CI]
†
 

P
†
 

OR 

[95% CI]* 
P* 

OR 

[95% CI]
†
 

P
†
 

OR 

[95% CI]* 
P* 

OR 

[95% CI]
†
 

P
†
 

OR 

[95% CI]* 
P* 

HFE: rs1800562 

NZ European 
0.89 

[0.64 ; 1.25] 
0.51 

0.95 

[0.65 ; 1.40] 
0.79 

1.69 

[0.97 ; 2.99] 
0.06 

1.06 

[0.04 ; 2.53] 
0.87 

1.06 

[0.80 ; 1.41] 
0.67 

1.01 

[0.72 ; 1.40] 
0.98 

NZ Polynesian 
1.22 

[0.64 ; 2.43] 
0.53 

1.09 

[0.53 ; 2.31] 
0.80 

0.72 

[0.17 ; 2.07] 
0.58 

1.39 

[0.32 ; 4.65] 
0.61 

1.18 

[0.71 ; 1.97] 
0.52 

1.13 

[0.59 ; 2.13] 
0.7 

NPH 
0.77 

[0.16 ; 5.47] 
0.76 

0.63 

[0.15 ; 3.61] 
0.56 

0.73 

[0.03 ; 8.13] 
0.81 

1.64 

[0.02 ; 1.06] 
0.82 

0.72 

[0.23 ; 4.36] 
0.88 

0.53 

[0.09 ; 3.74] 
0.49 

Meta-analysis - - 
0.96 

[0.69 ; 1.33] 
0.82 - - 

1.17 

[0.58 ; 2.35] 
0.65 - - 

1.09 

[0.75 ; 1.35] 
0.93 

HFE: rs1799945 

NZ European 
0.92 

[0.72 ; 1.18] 
0.53 

0.89 

[0.67 ; 1.20] 
0.47 

1.36 

[0.86 ; 2.16] 
0.18 

2.28 

[1.04 ; 5.05] 
0.03 

1.11 

[0.85 ; 1.32] 
0.58 

1.04 

[0.79 ; 1.35] 
0.78 

NZ Polynesian 
0.96 

[0.62 ; 1.48] 
0.84 

1.03 

[0.63 ; 1.71] 
0.89 

0.99 

[0.47 ; 1.92] 
0.99 

1.24 

[0.51 ; 2.47] 
0.61 

1.03 

[0.73 ; 1.44] 
0.86 

1.07 

[0.69 ; 1.64] 
0.74 

NPH 
0.77 

[0.17 ; 5.47] 
0.76 

0.62 

[0.10 ; 5.34] 
0.62 - - - - 

1.04 

[0.44 ; 2.85] 
0.92 

0.75 

[0.20 ; 3.73] 
0.7 

 - - 
0.92 

[0.72 ; 1.18] 
0.54 - - 

1.71 

[0.97 ; 3.02] 
0.06 - - 

1.03 

[0.82 ; 1.29] 
0.73 

NZ: New Zealand, NPH: Ngati Porou Hauora, OR: Odds ratio, 95% CI: 95% confidence interval, P: p-values. 
†
Unadjusted analysis, *All values are adjusted for age, BMI and grand-parental 

ancestry for Polynesian datasets. The combined male and female analysis is additionally adjusted for sex. 
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SECTION 2.3 DISCUSSION 

 The study successfully replicated the previously reported association of serum 

ferritin and TSAT with serum urate (Ghio et al., 2005) in two NHANES III sample sets 

(Table 2.5). Additionally, including CRP as an adjustor ensured that the positive 

relationship with ferritin was not the consequence of the association of ferritin with 

inflammatory states (e.g., hyperuricaemia and gout). The association of serum ferritin 

with urate was extended from Europeans and African Americans to Polynesians (Table 

2.5). For the first time, the study associated increased serum ferritin with the risk of gout 

and gout flares, although for both relationships association was observed in only two of 

the three data sets used (Table 2.7 and 2.8). Collectively the data associates ferritin with 

both serum urate levels and the risk of gout, including frequency of flares once gout is 

established. 

 The inconsistent association of ferritin with gout and gout flares between the NZ 

(ß (flares/year) = 0.09, P = 0.04) and US (ß (flares/year) = 0.02, P = 2E-03) European and 

NZ Polynesian (ß (flares/year) = -0.11, P = 0.14) data sets could be due to one of the 

several possible reasons. It is possible that the data represent a false positive association. 

Noting that the sample sets used here are relatively small, analysis of larger well-

phenotyped sample sets to replicate the associations is required. Other factors 

contributing to inconsistent data could be genetic backgrounds of the populations, 

additive or non-additive influence from other environmental factors and population-

specific dietary exposures. As far as usage of allopurinol is concerned, it was not found to 

be a potential confounder for positive association of ferritin with gout or gout flare 

frequency in my analyses (Appendix A Table 2.7 and 2.8). Urate was not found to be 

associated with frequency of gout flares in the literature that agrees with the findings in 

Table 2.8. An increase in ACTH in response to inflammation in gout and its consequent 

effect to increase urate excretion has been described as a possible mechanism behind this 

association (Bădulescu et al., 2013). 

 Serum ferritin concentration has been demonstrated to correlate with body iron 

stores and reflect total metal accumulation in humans (Jacobs et al., 1972; Lipschitz et al., 

1974) and reports of a possible direct relationship of iron and/or ferritin with urate and its 

related arthropathies are not recent (Green and Mazur, 1957; Mazur et al., 1958; Muirden 

and Senator, 1968). It is known that metal ions can potentially cause oxidative stress 
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when bound to storage or transport proteins (Aust et al., 1985) and urate is a well-known 

antioxidant in humans governing its antioxidant abilities by scavenging oxygen radicals, 

singlet oxygen and oxo-haem oxidants (Ames et al., 1981; Howell and Wyngaarden, 

1960; Kellogg and Fridovich, 1977). Thus it has been proposed that urate could reduce 

iron-catalysed oxidative stress by acting as a metal chelator by forming a highly stable 

2:1 complex with Fe3+ ions, which doesn’t support electron transport for iron oxidation 

(Davies et al., 1986). Xanthine oxidase acts as the sole enzymatic source of urate in 

humans and exposure to increased iron may control the oxidation of hypoxanthine or 

xanthine by enhancing the activity of xanthine oxidase (Ghio et al., 2002; Martelin et al., 

2002; Stonehuerner et al., 1998). An increase in urate in both rodents (Muntane et al., 

1993; Ward et al., 1993) and humans (Livrea et al., 1996) in response to acute exposure 

to iron supports a direct link between levels of iron and urate, and elevated serum urate is 

sometimes used as a cue to screen for haemochromatosis (Mainous et al., 2011). 

 Although hyperuricaemia is an essential requirement for gout, there are other 

factors involved in the formation and deposition of MSU crystals in the synovial fluid 

(Chhana et al., 2015). There may be overlap between factors that reduce urate solubility 

(promoting MSU crystal formation) and those that are either associated with elevation of 

iron levels or iron-associated oxidative stress. One such factor is lower levels of albumin 

at a lower temperature (Kippen et al., 1974), with one study demonstrating a negative 

relation between iron-induced acute oxidative stress and serum albumin level in a cohort 

of patients with chronic renal failure (Sezer et al., 2007). The concentration of several 

cations (Füredi-Milhofer et al., 1987; McNabb and McNabb, 1980) and a certain pH (7-8) 

also reduces urate solubility (Wilcox et al., 1972); iron stays as a cation in its free toxic 

state and the presence of significant concentrations of this ionisable iron in the crystals 

from human tophus at physiological pH (Ghio et al., 1994) suggests a connection 

between iron and MSU crystal formation. 

 Another important finding of the study is a positive correlation between the 

number of gout flares and ferritin in both NZ European and US gout subjects (Table 2.8). 

Iron deposits have been reported to be consistently present in the synovial membrane of 

people with rheumatoid arthritis (n = 23) but not those with other joint pathologies 

(Muirden and Senator, 1968). Some rodent-model studies have also demonstrated a 

remarkable improvement in joint-related inflammation following the removal of iron 
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from joints through chelation treatment(s) (Andrews et al., 1987; Blake et al., 1983). A 

28-month follow-up study to maintain a near iron-deficiency by depleting the levels of 

metal via phlebotomy in hyperuricaemic patients (with gout) has been reported to induce 

either complete or marked reduction in incidence and severity of gout flares in humans 

(Facchini, 2003). 

 This study found an increased serum ferritin in NZ Polynesian people (P = 0.04) 

with gout who self-reported the consumption of an iron rich food (seafood, fish & red 

meat) as a trigger for gout (Table 2.10). Another recent study that provides self-reported 

food-trigger data for NZ Māori, Pacific Island and European individuals also indicated 

iron rich foods to be one of the top triggers for gout with 62.54% reporting either seafood 

or fish, and 35.18% reporting red meat as a trigger for gout flares (Flynn et al., 2015). A 

positive correlation between the consumption of red meat and incident gout risk has been 

described previously in a 7.7-year follow-up study of 28,990, ostensibly healthy, men 

(Williams, 2008). Another 12-year prospective study in 47,150 men associated the 

consumption of meat and seafood but not purine-rich vegetables with an increased risk of 

gout (Choi et al., 2004b). A Turkish retrospective study in people with gout indicated that 

higher consumption of total meat (including fish) acts as a precipitating factor for gout 

flares (Öztürk et al., 2013). Also, purines from animal based, but not plant-based, food 

have been associated with increased risk of recurrent gout attacks (Zhang et al., 2012b). 

In line with these findings, a large prospective study in NHANES III data, including 

14,809 participants reported an association of increased consumption of red meat with 

hyperuricaemia (Choi et al., 2005a). It is possible that additional to purines, the iron 

content of such animal-based foods are playing a role in determining the risk of gout and 

gout flares in several populations. 

 The study also indicated a significant elevation of serum ferritin levels in US 

European (P = 0.02) and NZ Polynesian (P = 0.005) gout individuals who were on 

allopurinol treatment (Table 2.9). This is of interest as xanthine oxidase is involved in the 

release of iron from ferritin and facilitating cellular stress through the production of 

hydroxyl radicals (Bolann and Ulvik, 1987). Use of allopurinol as a xanthine oxidase 

inhibitor has been attributed to an increased iron overload in rodent liver cells and 

elevated serum iron in patients with secondary gout (Powell and Emmerson, 1966). 

Although the debate of involvement of allopurinol in affecting iron metabolism in human 
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is controversial (Emmerson, 1966; Powell, 1970), my results suggest higher serum 

ferritin levels in gout patients on allopurinol therapy. Confirming the possible effect of 

allopurinol on iron metabolism in gout patients may be helpful in decision-making 

regarding treatment options for patients with a risk of iron overload. 

 The associations described above are based on observational data and are, 

therefore, prone to biases due to presence of possible confounding (Mann and Wood, 

2012). Whilst its not possible to assign the causality based on my findings, the positive 

association of the G allele of HFE: rs1799945 with gout in European females (OR = 2.28, 

P = 0.03; Table 2.12) and its association with serum urate in New Zealand population 

groups (Table 2.11) provided support to my observational data. Homozygosity of the 

same allele (G/G) has been classically associated with moderate risk of 

haemochromatosis (Hanson et al., 2001). However, a single positive association in the 

NZ European female dataset could also be spurious and cannot be inferred unless 

assessed in the larger population dataset. 

Figure 2.4: Proposed mechanism of involvement of iron in hyperuricaemia and gout pathophysiology. 

 Albeit it seems rather early to evaluate a possible mechanism underpinning the 

particular correlation of increased iron and/or consumption of red meat and seafood/fish 

with increased gout flares, the elevated urate production in the presence of ferritin still 

indicates a biological mechanism between iron availability and urate production in 

healthy humans. Based on my findings and previous data (Dabbagh et al., 1992; Facchini, 
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2003; Ghio et al., 1994), it is suggested that the production of reactive oxygen species 

directly through increased intracellular iron pools or indirectly through modulating the 

activity of XO via elevated ferritin, increased urate production, the formation of MSU 

crystals and hence activation of the NLRP3 inflammasome could lead to gout and gout 

flares (Figure 2.4). 

2.3.1 Strengths and limitations of the study 

 Inclusion of acute-phase inflammatory protein CRP as an adjustor in various 

analyses represents the first strength of this study. While it is not possible to assign 

causality on the basis of the observational data in Section 2.2, the preliminary association 

of ferritin with urate independent of CRP suggests that the relationship is not due to the 

elevation of ferritin in inflammation (Kell and Pretorius, 2014). The consistency of the 

observational findings in this study with previously reported experimental and clinical 

intervention studies supports the argument for a relationship between serum ferritin and 

urate that predicts hyperuricaemia and gout. 

 Although serum urate associations were investigated in larger study cohorts, the 

study groups used for investigating the association of gout were comparatively small. A 

huge overlap between iron and purine rich foods could also be a difficult confounder to 

work with. However, using a larger cohort with richer information for food consumption 

(especially intake of iron rich low purine foods) and gout ascertained may provide a 

clearer picture of the observed relationship. Further investigation of a likelihood of intake 

of iron rich diet as a possible trigger for gout flares in larger cohorts may also help in 

advice for an appropriate diet with low iron content to avoid or decrease the severity of 

gout attacks in patients with gout. 

2.3.2 Conclusion and future directions 

 This study replicates the association of ferritin with serum urate. Increased ferritin 

levels were also associated with gout and self-reported frequency of flares. As the 

associations reported here are derived from cross-sectional observational data, the 

causality of ferritin in control of urate concentration, the risk of gout and gouty flares 

cannot be inferred. Although the genetic association findings for HFE variant rs1799945 

provides some support to these observations, the NZ European female dataset was 
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relatively small and positive results warrant validation. This can either be done 

considering replication in a larger dataset, via randomised clinical trials or the use of 

genetic epidemiological approaches. One such approach is Mendelian randomisation that 

could shed light on any causal relationship (Robinson et al., 2016). This approach is 

increasingly used as it can exploit existing data sets and is, therefore, a considerably 

cheaper alternative to a randomised clinical trial. The next chapter of my thesis is based 

on Mendelian randomisation analyses, which may help to provide a causal basis to the 

above observations. 



 

 

 
 
 
 
 
 

 
  



 

 

 



3 | Iron Metabolism – Mendelian Randomisation 

 89 

SECTION 3.1 MENDELIAN RANDOMISATION: AN 

INTRODUCTION 

3.1.1 Background 

 Interventional and observational studies that apparently represent robust 

associations between environmental and physiological measures and disease risk are 

subject to a variety of biases or confounding (Hayden et al., 2013; Shrank et al., 2011). 

This means that statistical associations observed in the observational studies are not 

enough to draw a causal relationship between an exposure and an outcome. The biases in 

such studies sustain unless potential association confounders are appropriately adjusted 

for following their identification and perfect measurements (Bowden et al., 2017). 

Unaccounted confounding along with misclassification and selection bias are the reasons 

why such studies may fail to replicate the reported associations or prove any causality 

when tested in randomised controlled trials (RCTs) (Kovesdy and Kalantar-Zadeh, 2012; 

Smith and Ebrahim, 2001, 2008). Detecting association in an observational study could 

be the result of influence of a confounder rather than the direct effect of the biomarker on 

a disease itself. As it is hard to separate the causal associations from confounding and/or 

reverse causation (Lipsitch et al., 2016), incorrect causal inferences have been reported in 

such studies even after careful statistical adjustments for possible measured confounders 

and careful study design (Fewell et al., 2007; Smith and Ebrahim, 2001). In addition, 

effect estimates from interventional studies may be prone to errors e.g., regression 

dilution bias and/or incorrect measurement of biomarkers for technical (or biological) 

reasons (Smith and Ebrahim, 2005). After the identification of these problematic aspects 

of epidemiological investigation, a number of methods, aimed at improving causal 

inference, were developed (Lipsitch et al., 2012; Smith, 2008). One such successful 

approach, analogous to RCT (Iturrieta-Zuazo and Walter, 2015; Smith and Hemani, 

2014), is Mendelian randomisation or MR (Smith and Ebrahim, 2003). 

3.1.2 Basic principle of Mendelian randomisation 

 Presented for the first time by Smith and Ebrahim (2003), the Mendelian 

randomisation approach is based on ‘Mendel’s law of independent assortment’ that states 

that ‘during gamete-formation, individual hereditary factors (alleles) are assorted 

independent of each other and thus their associated traits get equal opportunity to occur 



3 | Iron Metabolism – Mendelian Randomisation 

 90 

by chance (or together)’. Also known as nature’s randomised trial, this statistical 

approach exploits random assignment of alleles at conception to disentangle cause and 

effect in the presence of confounding. Genetic variants robustly associated with exposure 

phenotype (usually a physiological biomarker also known as the risk factor) can be used 

to identify the predictive (causal or non-causal) effect of the variant on the outcome 

(usually a disease) (Didelez and Sheehan, 2007). The promising applicability of MR is 

made possible via two unique characteristics of the genotype. First, the random allocation 

of alleles at conception independent of the environmental exposures lowers the chances 

of potential confounding to occur in genetic association studies in the same way as 

randomised treatment allocation in RCT (Hingorani and Humphries, 2005). Second, the 

invariable nature of DNA sequence and unidirectional flow of the information from DNA 

to complex phenotype or disease make reverse causation impossible (Swerdlow et al., 

2016). Thus MR can also provide valid cause-effect information that is not prone to 

variability via environmental influences. 

3.1.3 Mendelian randomisation model and instrumental variable 

 The first step of any MR study is to select a valid instrumental variable (IV), 

which is usually a genetic variant (G) robustly associated with the exposure/risk factor 

(X) that can be used as a proxy indicator for ‘X’. The number of instrumental variables is 

solely dependent on their validity, which is in turn determined by three major 

assumptions (Smith and Ebrahim, 2003). Illustrated in the MR model in Figure 3.1, these 

assumptions are detailed below; 

1. IV1: The instrument (G) is associated with the exposure/risk factor (X). 

2. IV2: The instrument (G) is not associated with any known and unknown 

confounders (U) of the exposure (X)-outcome (Y) association. 

3. IV3: The instrument (G) is independent of the outcome (Y) conditional on the 

exposure (X) and confounders (U) i.e., no horizontal pleiotropy (Burgess et al., 

2013; Hemani et al., 2016). 

 In addition to finding causality, the selection of a valid IV can provide a clear 

picture of two attributes of the relationship between exposure and outcome i.e., the 

‘direction of association’ and ‘horizontal pleiotropy’ (Smith and Hemani, 2014). As the 

whole point of MR is to indicate a cause and effect relationship between ‘X’ and ‘Y’ 
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independent of ‘U’, provided the direction of association (either positive or negative) 

between ‘G’ and ‘X’ is known, the direction of causal association between ‘X’ and ‘Y’ 

can be inferred. Also, interpretation of results from MR analyses must be done carefully 

if the genetic variant (G) chosen as the IV exhibits horizontal pleiotropy i.e., ‘G’ is 

associated with ‘X’ but also influences ‘Y’ through a pathway that does not include ‘X’. 

If any horizontal pleiotropy is found, the IV3 assumption in the MR model is violated 

(Haycock et al., 2016; Smith and Ebrahim, 2003). Unlike the IV1 assumption in the MR 

model, the chances of selecting an instrument that completely fulfils IV2 and IV3 are low 

(Bowden et al., 2016), the IV3 assumption being reported to be nearly impossible to 

prove (Didelez and Sheehan, 2007). 

 

 

 

 

 

 

 

 

 
Figure 3.1: The Mendelian randomisation model detailing selection of exposure (X) instrument variable (IV or 

G) and the assumptions (solid blue arrows) it should fulfil with regard to its association with potential 

confounders (U) and the outcome (Y). Dotted arrows indicate potential violation of the MR model. Adapted from 

Burgess et al. (2013) and Hemani et al. (2016). 

3.1.4 Extensions to basic MR in the wake of time 

 Given that the use of MR as a genetic epidemiological approach could shed light 

on a causal relationship (Robinson et al., 2016), there have been a number of 

developments and extensions to the basic MR study design since its first proposal by 

Smith and Ebrahim (2003). Like conventional MR, each extension has its own 

advantages and limitations. More broadly and in the milieu of this chapter, MR study 

designs can be categorised on the basis of the number of variants and samples (datasets) 

used. 
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3.1.4.1 Multiple-instrument MR 

 Mendelian randomisation is conventionally performed using a single genetic 

variant as IV, whose biological aspects for an association with exposure are well 

understood. If a single variant is used as a proxy indicator (or IV) for an exposure 

phenotype, it should have a strong association with the exposure i.e., it must explain 

sufficiently large variance in the exposure (trait) in the said population and must be 

exclusively associated with the exposure independent of other traits (Smith and Ebrahim, 

2008; Taylor et al., 2014). Using as an instrument a variant that is known for its 

association(s) with traits other than exposure would increase the chances of pleiotropy. 

This means that the same genetic variant may be a proxy for more than one 

environmentally modifiable exposure or may be in linkage disequilibrium (LD) with 

another variant that is known to be affecting the outcome (Smith and Ebrahim, 2008; 

Solovieff et al., 2013). Both of these scenarios would make the selected variant a weak 

instrument and could increase the degree of biases in MR analyses. 

 The limitation to the MR approach arising from usage of a single weak IV can be 

partially alleviated by increasing the number of selected instruments (genetic variants). 

For example, using multiple instruments instead of one would increase the proportion of 

explained variance for an exposure and thereby improve the accuracy in two-stage least 

squares (2SLS) regression (Smith and Hemani, 2014). In this situation, the variance 

explained by all of the selected instruments is combined into a weighted allele score as an 

optimal approach (Burgess and Thompson, 2013). When using a multiple-instrument MR 

approach, the selection of variants should be done carefully as the presence of a complete 

LD between the selected instruments can cause drastic biases in the MR outcomes. 

Similar predicted causal effects of low-density lipoprotein cholesterol (LDL-C) on 

coronary heart disease (CHD) through 9 genetic variants from 6 genes provides a 

convincing example of pleiotropy via intra-instrument LD (Ference et al., 2012). 

3.1.4.2 Two-sample MR 

 Another advantageous extension to the basic MR model is to utilise data from two 

independent samples rather than one, an approach known as two-sample MR (Inoue and 

Solon, 2010; Pierce and Burgess, 2013). The idea behind two-sample MR is to obtain the 

estimates of instrument-exposure association and instrument-outcome association from 
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two different sets of participants. The phenomenon of underestimation of true causal 

effects or having ‘winners curse’ in one-sample MR (Taylor et al., 2014) is unlikely to 

happen when the two-sample approach is applied. Also, unlike one-sample MR using 

multiple instruments, the impact of weak instrument bias (biased due to confounding in 

multivariable regression) is towards the null in the two-sample model (Smith and Hemani, 

2014). This approach can also successfully reduce the finite (small) sample biases, 

especially in the cases where the instruments are weak and individual-level data are tested 

through 2SLS regression (Burgess et al., 2016). 

 Two-sample MR holds best when no information about the intermediate 

phenotype (individual-level data) is available and the data to be tested only provide 

values of estimates and effect sizes e.g., the summary data from GWA studies’ or large 

consortia (Smith and Hemani, 2014). Use of multiple instruments from two large studies 

not only increase the statistical power (Burgess and Thompson, 2015) but also provide 

the opportunity to use proxy variants for the instruments whose information is not 

available in the outcome study data (Gao et al., 2016). While considering large samples, 

however, a huge overlap of the participants between the two studies should be avoided as 

it could lead to potential biases, especially if the outcome is a continuous variable 

(Burgess et al., 2016). 

3.1.5 Use of summary-level data in MR and possible statistical 

approach 

 As the field of biological research develops, more and more data becomes 

publicly-available on a larger number of participants e.g., GWA studies that often provide 

genetic association results over tens of thousands of samples (Benyamin et al., 2014; 

Köttgen et al., 2013). For most GWAS, however, it may not be possible for the authors to 

provide public access to the individual-level data due to ethical reasons. The availability 

of limited data, in turn, makes it challenging to carry out MR analysis especially via using 

the 2SLS regression approach in the absence of intermediate phenotype information. A 

number of statistical models (explained further in the next paragraph) have been 

introduced that could exploit the summarised data from GWAS in MR analyses, each 

having its own advantages and limitations. 
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 In order to obtain MR estimates for each variant in summary data, the Wald ratio 

method (Lawlor et al., 2008) can be applied. This approach employs the ratio method to 

calculate the estimate (Wald estimate: equivalent to regression coefficient) wherein the 

regression coefficient of ‘Y’ on ‘G’ is divided by the regression coefficient of ‘X’ on ‘G’. 

The estimates from individual variants can be combined using the inverse-variance 

weighted (IVW) method using summary data. The IVW method averages the estimates 

(ß) of causality of ‘X’ on ‘Y’ across the sample(s) and does not require information of 

intermediate phenotype (Burgess et al., 2013). Another method that can combine 

estimates across the sample is the likelihood-based method, constructed assuming a linear 

relationship between ‘X’ and ‘Y’ and normal distribution of ‘ß’ (Burgess et al., 2013). 

 Although, the IVW and likelihood methods provide equivalent statistics to 2SLS, 

yet both methods are unable to cope with possible horizontal pleiotropy that usually arises 

in the presence of multiple weak variants (violation of IV3 assumption). A more robust 

approach that can address this problem is sensitivity analysis e.g., Egger-regression 

(termed as MR-Egger for MR analysis) (Bowden et al., 2015). A recent study indicating a 

causal association of adiposity-related traits with breast cancer provides a convincing 

example of the applied use of IVW and MR-Egger on the summary data from GWA 

studies (Gao et al., 2016). 

3.1.6 Mendelian randomisation studies for iron biomarkers 

 In the context of rheumatology, the MR approach has predominantly been applied 

to explain the cause-effect relationship between urate levels and cardio-metabolic traits 

e.g., hypertension (Kleber et al., 2015), coronary heart disease/CHD (Palmer et al., 2013; 

White et al., 2016), diabetes (Pfister et al., 2011; Sluijs et al., 2015), BMI (Palmer et al., 

2013; White et al., 2016), obesity (Chen et al., 2017; Lyngdoh et al., 2012) and renal 

function (Hughes et al., 2014). However, there are only a couple of studies using MR 

analyses to explain a causal relationship between iron metabolism and other traits, 

including an MR study that provided evidence supporting a causal association between 

blood iron and decreased risk of Parkinson disease using iron-related variants as 

instruments from GWAS data (from European and Australian individuals) (Pichler et al., 

2013), and another more recent study that indicated a protective effect of iron and ferritin 

on kidney function via MR analysis (del Greco et al., 2016). The latter is the only MR 
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study available until now (to my knowledge) that has reported that exposure to iron is 

causal in decreasing the risk of kidney disease. 

 Since it is impossible to exclude pleiotropy due to the presence of potential 

confounders in observational studies, an RCT should be done to determine if the 

association is causal. Whilst it was not possible to carry out an RCT, I chose Mendelian 

randomisation (MR) as an alternative approach to investigate the causal relationship of 

the associations between iron profile markers and urate found in the biochemical analysis 

in Chapter 2. The specific aim of my study was ‘to use Mendelian randomisation as an 

alternative to RCT to test for a causal role of total serum iron, serum ferritin, serum 

transferrin and TSAT (the exposures) in raising or lowering urate levels (the outcome) 

using multiple variants as instruments by exploiting summarised data from recent GWAS. 

In addition, the causal role of urate in increasing/decreasing the levels of total serum iron, 

serum ferritin, serum transferrin and TSAT was also assessed by selecting urate-related 

variants as instruments for iron profile biomarkers as outcome using summary statistics 

from same GWAS datasets. 

 The results are expected to provide additional information to address the broader 

question of whether or not iron homeostasis is causally involved in affecting urate 

concentrations and its associated aetiologies. 
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SECTION 3.2 MENDELIAN RANDOMISATION ANALYSES 

USING SUMMARY DATA FROM GENOME-WIDE 

ASSOCIATION STUDIES 

3.2.1 Background 

 As described in Section 3.1, whilst searching for a causal effect of a risk factor on 

a disease outcome, it is mandatory to carefully adjust error due to confounding to increase 

the reliability of results in observational studies. This section was aimed to make use of 

large summary-level data from GWA studies to run MR analysis through a valid 

statistical approach that is equivalent or even more robust than 2SLS (used when 

individual-level data are available). 

3.2.2 Methods 

 The two-sample bidirectional (iron as a cause for urate as an effect and urate as a 

cause for iron as an effect) MR approach was adopted in this study using multiple 

instruments. This approach allows the selection of variant-exposure associations 

(instruments) from one GWAS, and variant-outcome associations from a different GWAS 

(Burgess et al., 2015a). Two-sample MR increases the sample size, which in turn 

provides MR analysis with adequate statistical power to identify small-sized causal 

effects of common variants (Gage et al., 2016). The MR model was built on the basis of a 

hypothesis that states that “an increase in exposure (iron profile biomarkers or urate) is 

causal for an increase in the outcome (urate or iron profile biomarkers)”. 

3.2.2.1 Selection of GWAS datasets 

 Mendelian randomisation analysis in this study was based on publicly-available 

summary-level data from two large previously reported GWAS for iron (Benyamin et al., 

2014) and urate (Köttgen et al., 2013). 
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3.2.2.1.1 Iron as exposure for urate as outcome 

3.2.2.1.1.1 Exposure instrument data 

 Summary statistics from a recent GWAS of iron-related phenotypes (Benyamin et 

al., 2014) were used to select the exposure-associated instruments. Overall, this GWA 

study reported genetic association data for a sample set of over 48,900 European male 

and female individuals from 18 study cohorts (Discovery and Replication cohorts; see 

Appendix A Table 3.1) within ‘Genetics of Iron Status Consortium’ (GIS). Publicly-

available meta-analysis effect estimates (in standard deviation/SD units) for serum iron 

(2,096,457 SNPs), serum ferritin (2,036,124 SNPs), serum transferrin (2,104,242 SNPs) 

and transferrin saturation/TSAT (2,102,226 SNPs) were sourced from ‘GeneEpi platform’ 

(Genetic Epidemiology, Psychiatric Genetics, Asthma Genetics and Statistical Genetics 

Laboratories Brisbane, Australia; Link: www.genepi.qimr.edu.au). 

 As it was not possible to calculate F-statistics (F-statistics is calculated as a 

measure of strength of association of IV to exposure in MR studies) for variants based on 

the summary information in the available data, the threshold of p < 5 x 10-8 was set for a 

SNP to be a valid instrument for exposure. The GWAS-level (p < 5 x 10-8) threshold is 

known to correspond to an F-statistic of 30 (Burgess et al., 2013), and as most variants 

were well below the above threshold, their F-statistics would be even greater than 30. 

Following this criteria, all SNPs that were significantly associated (p < 5 x 10-8) with 

serum iron, transferrin, ferritin or TSAT, were selected as MR instruments (Table 3.1) for 

the study. A number of these SNPs were in high LD with each other. For each iron-

related trait, where r2 > 0.6, one SNP was randomly designated as a potential instrument 

for the MR analysis and all other highly correlated SNPs were omitted. Any variant that 

was in LD with a known urate-related variant or was in high eQTL (i.e., coexpressed with 

another gene) with any known urate loci, was also excluded. Two different gene-

expression platforms, GTEx portal (www.gtexportal.org) and HaploReg v4.1 

(www.archive.broadinstitute.org) were used to determine the degree of coexpression of 

the instrument SNPs with other genes to check if any of the instrument carries a 

pleiotropic effect by up/down-regulating expression of other genes. Using these criteria 

resulted in a list of three instruments for serum iron (rs1525892, rs1800562, rs855791), 

eight for serum transferrin (rs1495741, rs174577, rs1800562, rs744653, rs7646473, 

http://genepi.qimr.edu.au/
http://www.gtexportal.org/
http://archive.broadinstitute.org/
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rs8177240, rs9268633, rs9990333), five for serum ferritin (rs12693541, rs1800562, 

rs2413450, rs651007, rs411988) and three for TSAT (rs1800562, rs8177272, rs855791). 

Table 3.2 provides complete detail for all selected exposure-instruments. Any instrument 

showing possible pleiotropy due to high LD with another instrument (rs1525892, 

rs1495741, rs411988), high co-expression with urate-related genes (rs1799945), and 

possible pleiotropic effect reported in the literature (rs7385804) has been removed from 

the various MR analyses. 

3.2.2.1.1.2 Outcome data 

 Summary statistics data from the largest urate GWAS (Köttgen et al., 2013) were 

used for outcome-instrument association estimates in the MR model. This GWA study 

provided the meta-analysis data for urate-associated loci in > 110,000 European male and 

female individuals from 48 study cohorts (Appendix A Table 3.1) within Global Urate 

Genetics Consortium (GUGC). Publicly-available effect estimates (for urate) of 

2,450,547 SNPs were used as outcome-association variables 

(www.metabolomics.helmholtz-muenchen.de/gugc/). 

3.2.2.1.2 Urate as exposure for iron as outcome 

3.2.2.1.2.1 Exposure instrument and outcome data 

 To assess the exposure-outcome relationship between urate and iron, a reverse 

MR analysis was also carried out via instrumenting the urate-related variants from 

Köttgen et al. (2013) GWAS summary statistic data while summary GWAS statistics 

from Benyamin et al. (2014) were used as outcome data. 

 Using the above-described criteria for selection of IVs, four variants from known 

urate transporter genes were selected as potential urate instruments from the exposure 

GWAS (Köttgen et al., 2013); SLC2A9: rs12498742, SLAC16A9: rs1171614, SLC22A11: 

rs2078267 and SLC22A12: rs478607 (Table 3.1). Although the effect estimate at SLC2A9 

locus was strong enough (ß (mg dL-1) = 0.373, P = 1E-700) to be selected as a single IV 

in the MR model, additional loci were required to be selected to fulfil the IV selection 

requirements of the statistical approach applied in this study (explained in Section 3.2.2.2 

below). 

http://metabolomics.helmholtz-muenchen.de/gugc/
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3.2.2.1.3 Assessment of GWAS sample overlap 

 As mentioned earlier, the use of two datasets in the two-sample MR model can 

lead to false positive results and can create bias due to large sample overlap between the 

exposure and outcome datasets (Burgess et al., 2016). The GWA studies used in this 

chapter provide the meta-analysis results from several study cohorts of European ancestry. 

Due to the same ancestral background of the participants within two selected GWA 

studies (Benyamin et al., 2014; Köttgen et al., 2013), it was highly likely to expect a large 

sample overlap between them making the two-sample MR prone to biases. Before 

running the MR analysis, the percentage of the sample overlap was also measured 

between the two studies. 
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Table 3.1: Details for the exposure-associated instrument variants selected for the study 

Expo/Outc 

phenotype 
rs ID 

Allele 
Chr 

Gene/Near

est gene 

Exp-

GWAS_ß 
SE 

Exp-

GWAS_p 

OutC-

GWAS_p 

r2  

(in LD with) 

eQTL-gene (p)/ 

pleiotropy/Status 
Eff Ref 

Iron profile-related instruments 

Iron/Urate 

rs1525892 A G 3 TF 0.074 0.0104 1.65E-12 0.096 - - 

rs1800562 A G 6 HFE 0.372 0.02 3.96E-77 0.001 - - 

rs855791 A G 22 TMPRSS6 -0.186 0.0101 4.31E-77 0.979 - - 

rs1799945 C G 6 HFE -0.189 0.01 1.10E-81 2.94E-06 - SLC17A3 (8.5E-06) 

rs7385804 A C 7 TFR2 0.064 0.007 1.36E-18 0.396 - Pleiotropic 

rs8177240 T G 3 TF -0.089 0.011 2.37E-12 0.091 1 (rs1525892) - 

Trf/Urate 

rs1495741 A G 8 NAT2 0.082 0.0122 1.57E-11 0.309 - - 

rs174577 A C 11 FADS1 0.068 0.0107 1.90E-10 0.002 - - 

rs1800562 A G 6 HFE -0.549 0.0208 1.26E-153 0.001 - - 

rs744653 T C 2 SLC40A1 0.092 0.0144 2.00E-10 0.558 - - 

rs7646473 A G 3 SLC20A1 -0.062 0.0107 6.84E-09 0.457 - - 

rs8177240 T G 3 TF -0.423 0.0107 3.82E-340 0.091 - - 

rs9268633 A G 6 HLA-DRA -0.072 0.0128 2.31E-08 0.522 - - 

rs9990333 T C 3 TFRC -0.067 0.0101 3.01E-11 0.381 - - 

rs4921915 A G 8 NAT2 0.082 0.012 1.74E-11 0.289 1 (rs1495741) - 

rs1799945 C G 6 HFE 0.114 0.01 9.36E-30 2.94E-06 - SLC17A3 (8.5E-06) 

Ferritin/Urate 

rs12693541 T C 2 SLC40A1 -0.106 0.014 4.18E-14 0.375 - - 

rs1800562 A G 6 HFE 0.211 0.0187 1.43E-29 0.001 - - 

rs2413450 T C 22 TMPRSS6 -0.056 0.0095 3.57E-09 0.913 - - 

rs368243 T C 17 TEX14 0.051 0.0093 3.80E-08 0.620 0.9 (rs411988) - 

rs651007 T C 9 ABO -0.05 0.009 1.31E-08 0.021 - - 

rs411988 A G 17 TEX14 -0.044 0.007 1.59E-10 0.692 - - 

rs1799945 C G 6 HFE -0.065 0.01 1.36E-18 2.94E-06 
 

SLC17A3 (8.5E-06) 

TSAT/Urate 

rs1800562 A G 6 HFE 0.577 0.0203 1.52E-178 0.001 - - 

rs8177272 A G 3 TF -0.097 0.0106 5.52E-20 0.107 - - 

rs855791 A G 22 TMPRSS6 -0.192 0.0101 3.50E-80 0.979 - - 

rs1799945 C G 6 HFE -0.231 0.01 5.13E-109 2.94E-06 - SLC17A3 (8.5E-06) 
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Urate-related instruments 

Urate/Iron 

rs12498742 A G 4 SLC2A9 0.373 0.006 1E-700 0.312 - - 

rs1171614 T C 10 SLC16A9 -0.079 0.007 2.3E-28 0.940 - - 

rs2078267 T C 11 SLC22A11 -0.073 0.006 9.4E-38 - - Not in outcome data 

rs478607 A G 11 SLC22A12 -0.047 0.007 4.4E-11 0.871 - - 

Urate/Trf 

rs12498742 A G 4 SLC2A9 0.373 0.006 1E-700 0.929 - - 

rs1171614 T C 10 SLC16A9 -0.079 0.007 2.3E-28 0.333 - - 

rs2078267 T C 11 SLC22A11 -0.073 0.006 9.4E-38 - - Not in outcome data 

rs478607 A G 11 SLC22A12 -0.047 0.007 4.4E-11 0.546 - - 

Urate/Ferritin 

rs12498742 A G 4 SLC2A9 0.373 0.006 1E-700 0.460 - - 

rs1171614 T C 10 SLC16A9 -0.079 0.007 2.3E-28 0.551 - - 

rs2078267 T C 11 SLC22A11 -0.073 0.006 9.4E-38 - - Not in outcome data 

rs478607 A G 11 SLC22A12 -0.047 0.007 4.4E-11 0.059 - - 

Urate/TSAT 

rs12498742 A G 4 SLC2A9 0.373 0.006 1E-700 0.108 - - 

rs1171614 T C 10 SLC16A9 -0.079 0.007 2.3E-28 0.857 - - 

rs2078267 T C 11 SLC22A11 -0.073 0.006 9.4E-38 - - Not in outcome data 

rs478607 A G 11 SLC22A12 -0.047 0.007 4.4E-11 0.523 - - 

Trf: Transferrin, Ferritin: Log ferritin, TSAT: Transferrin saturation, Exp/Outc: Exposure and outcome traits, rs ID: SNP reference number, Eff: effect allele, Ref: reference allele, Chr: 

chromosome, SE: standard error, Exp-GWAS_ß: Effect estimate for association with exposure trait in Exposure GWAS, Exp-GWAS_p: p-value from exposure association GWAS, OutC-

GWAS_p: p-value from outcome association GWAS, r2: R-squared value for the LD (linkage disequilibrium) with another SNP in the list, eQTL-gene: gene with which the said SNP is 

coexpressed, eQTL: expression quantitative trait loci, Status: Absence of selected IV in the outcome data. 
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3.2.2.2 Statistical analysis 

 Two-sample MR analysis was performed using the MR-Base (Mendelian 

Randomisation-Base) platform (www.mrbase.org) (Hemani et al., 2016). The files for 

exposure instruments were manually uploaded in the MR-Base. In order to assure no LD 

between the instruments, the ‘LD clumping’ command was used that excluded one out of 

any two instruments that were in LD with each other at the threshold of 60% or above (r2 

> 0.6) for each exposure trait. For any instrument (SNP) that was absent in the outcome 

data, a proxy instrument was used (if it was available in the outcome data) at LD 60% or 

above (r2 > 0.6) to assure that the power of using multiple instruments was not lost (Table 

3.1). The proxy variants were obtained within MR-Base from outcome data in the 

European population using the 1000 Genomes database (www.internationalgenome.org), 

with a limit of +/- 250kb or +/- 1000 SNPs for each variant. In order to make sure that the 

effect estimate of exposure-instrument corresponds to the same allele as their effects on 

the outcome, the ‘allele harmonisation’ command was used that attempts to align strands 

for palindromic sequences (at MAF > 0.3) before the MR model is run. 

 The following four statistical approaches were used to assure robust analysis and 

to attain reliable causal outcomes in the MR model. All of these methodologies are 

considered valid while dealing with summarised data from GWA studies in presence of a 

continuous exposure and a continuous outcome (Section 3.1.5). 

1. Wald ratio method (single SNP MR estimate analysis) 

2. Inverse-variance weighted (IVW) method (combined MR estimate analysis) 

3. Leave-one out method (sensitivity analysis for an outlier IV) 

4. Egger-regression method (sensitivity analysis for horizontal pleiotropy) 

3.2.2.2.1 Wald ratio method 

 First, the MR estimates (Wald estimate) were calculated and obtained within MR-

Base using the ratio of coefficients or Wald ratio method (Wald, 1940). The Wald ratio is 

the simplest method that estimates the causal effect of the exposure (X) on the outcome 

(Y) using each IV as a separate entity. If the IV is indexed as ‘k’, the Wald estimate 

represents the ratio between estimates of two linear regressions i.e., a regression of 

outcome/Y on ‘k’ and the regression of exposure/X on ‘k’ (Burgess et al., 2015b; Lawlor 

http://www.mrbase.org/
http://www.internationalgenome.org/
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et al., 2008). For the continuous outcome under study i.e., urate, the Wald ratio for each 

variant ‘k’ was calculated as; 

 

 Where, Yk is the coefficient of ‘k’ (IV) in the regression of ‘Y’ on ‘k’ and Xk is the 

coefficient of ‘k’ in the regression of ‘X’ on ‘k’. 

3.2.2.2.2 Inverse-variance weighted (IVW) method 

 As the Wald ratio method is more efficient for single IV MR, and the data 

employed in this study included multiple-variants, the combined cause-effect relationship 

was analysed via the inverse-variance weighted (IVW) method that requires at least two 

IVs to provide accurate MR measurements (Burgess et al., 2013; Burgess et al., 2015b). 

Under the IVW model, the combined ratio estimate (βIVW) of the effect of the exposure ‘X’ 

on the outcome ‘Y’ using genetic variants k = 1, …, K was calculated as; 

 

 

 Where Xk is the per-allele addition effect of SNP k (IV) with exposure (e.g., iron 

biomarkers in SD units), Yk is the per-allele addition change in the outcome (e.g., urate in 

mg dL-1 units), σYk
-2 indicates inverse-variance of the gene-outcome associations. The 

IVW analysis assumes all genetic variants used in the MR model to be valid instruments. 

 Further to these, two sensitivity analyses were done to provide robustness to the 

MR outputs. The details as to why these methods were adopted are described in the 

paragraphs below. 

3.2.2.2.3 Leave-one-out method 

 Leave-one-out analysis (Corbin et al., 2016) was applied as an extension to the 

IVW analyses above. The basic calculations in the leave-one-out method are same as 

IVW, except that it provides the MR estimates between exposure and outcome by 

excluding each IV, one at a time, from the IVW model. The test checks if one particular 
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SNP (IV) disproportionately influences the summary causal estimates or is an outlier. 

Briefly, the method sequentially removes each SNP from the MR model as ‘leave-one-out 

permutation analysis’. 

3.2.2.2.4 Egger-regression method 

 Given that MR analysis is prone to horizontal pleiotropy that violates IV3 in the 

MR model (Section 3.1), the MR-Egger test (Egger-regression) was applied as a 

sensitivity analysis to detect directional (horizontal pleiotropy) within MR-Base (Bowden 

et al., 2015). The MR-Egger test is a regression of the Yk (gene-outcome) on the Xk (gene-

exposure) associations where the intercept is not constrained to pass through zero and 

requires at least three IVs to provide accurate assessment of the pleiotropy. In detail, the 

MR-Egger intercept allows the information on the directional pleiotropy to be detected 

i.e., if the Xk is zero, the Yk should also be zero and represent average pleiotropic effect 

across the genetic variants. Any contrary result indicates the presence of a ‘direct effect’, 

that is a pathway between the gene (G or IV or k) and the outcome (Y) independent of the 

exposure (X). In practice, the bias detected via MR-Egger is equivalent to the detection of 

finite-study or weak instrument bias (Burgess et al., 2015b). In contrast to IVW, MR-

Egger assumes all instruments to be violating the IV assumptions in the MR-model. 

 Both IVW and MR-Egger are efficient enough to calculate small causal effects or 

information on the gene-outcome relationship independent of the exposure under variable 

number (at least two for IVW and three for MR-Egger) and strength of instruments 

(Bowden et al., 2017; Bowden et al., 2015; Burgess et al., 2015b). Heterogeneity of 

estimates across the variants was also calculated using the Cochran Q test via IVW and 

MR-Egger methods, with a threshold of p ≤ 0.05 indicating the presence of heterogeneity. 

3.2.3 Results 

3.2.3.1 Selection of iron exposure instruments 

 Of the variants associated with iron-related phenotypes in the combined discovery 

and replication data from the GIS consortium (Benyamin et al., 2014), the HFE variant 

rs1799945 was excluded from the list because of the possible pleiotropic effect with a 

known urate locus. The SNP rs1799945 has been reported to be in a cis-eQTL in the 
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adrenal gland and is associated with the expression of solute carrier family 17 member 3 

gene (SLC17A3: P = 8.5E-06) that encodes a urate transporter (www.gtexportal.org). 

Also, the SNP was observed to be significantly associated with urate (P = 2.9E-06) in the 

outcome data (Köttgen et al., 2013), which might be indicative of this SNP to be a urate-

association signal independent of iron and its related serum biomarkers. Another iron-

associated SNP within the TFR2 gene, rs7385804, has been reported as a cis-eQTL in 

whole blood (Westra et al., 2013) and is associated with the expression of solute carrier 

family 12 member 9 gene (SLC12A9: P = 1.29E-05) and Ephrin type-B receptor 4 gene 

(EPHB4: P = 2.7E-34) (www.archive.broadinstitute.org). The SLC12A9 gene encodes a 

protein that acts as the inhibitor of member 2 gene within same family (SLC12A2) (Caron 

et al., 2000). Expressed ubiquitously in the body, SLC12A2 is a Na+-K+-Cl- cotransporter, 

which is inhibited by diuretics (Markadieu and Delpire, 2014) and its increased activity is 

associated with increased blood pressure in animals (Orlov et al., 2015). As blood 

pressure could influence glomerular filteration rate independent of iron metabolism, a 

pleiotropic effect could not be ruled out. The EPHB4 gene is known to upregulate 

podocyte activity in glomerulonephritis (Wnuk et al., 2012), and thereby suggested to 

have an additional pleiotropic effect via the iron-independent influence on renal function. 

Two SNPs, NAT2: rs4921915 and TEX14: rs368243 were excluded from the list of 

potential instruments due to their high LD with NAT2: rs1495741 (r2 = 1.0) and TEX14: 

rs411988 (r2 = 0.93), respectively. For other selected instruments, no evidence of a 

pleiotropic effect was found based on literature and gene-expression search on 

bioinformatics platforms. 

3.2.3.2 Selection of urate exposure instruments 

 The variants selected as instruments for urate exposure were exclusively selected 

from urate-transporter genes and have not been reported in the literature to possess 

pleiotropic effect for iron metabolism (to my knowledge). The SLC2A9 (solute carrier 

family 2 member 9) is a member of the SLC2A facilitative glucose transporter family that 

encodes for a protein GLUT9/human glucose transporter 9 (www.genecards.org). 

Members of the SLC2A family play a significant role in maintaining glucose homeostasis 

with SLC2A9 specifically being recognised as major urate transporter gene (Vitart et al., 

2008). The SLC2A9: rs12498742 was the top urate-associated locus in Köttgen et al. 

(2013) GWAS. No cis-eQTL has been reported for the SNP rs12498742 in two gene-

http://www.gtexportal.org/
http://archive.broadinstitute.org/
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC2A9&keywords=SLC2A9
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expression platforms used in this study (HaploRegv4: www.archive.broadinstitute.org 

and GTEx portal: www.gtexportal.org) except SLC2A9 in the whole blood (P = 6.42E-

09). A number of other variants have been reported to be in complete LD with 

rs12498742, all within or near the SLC2A9 locus (www.archive.broadinstitute.org and 

www.gtexportal.org). The second IV (rs1171614) was selected from a urate-transport 

gene called solute carrier family 16 member 9 (SLC16A9), which encodes for MCT9 

(monocarboxylate transporter 9) protein. The SNP rs1171614 has been reported to be 

mainly associated with expression of only SLC16A9 in several tissues in cis-eQTL data 

(Westra et al., 2013) i.e., artery aorta (P = 1.92E-06), esophagous mucosa: (P = 2.31E-

08) and thyroid gland (P = 1.77E-06) (www.archive.broadinstitute.org and 

www.gtexportal.org). The variant rs1171614 was not reported to alter the expression of 

another gene that could have suggested its possible pleiotropic effect on iron metabolism. 

The third IV (rs478607) was selected from the gene SLC22A12/URAT1 (solute carrier 

family 22 member 12). The protein encoded by this gene is a member of the organic 

anion transporter (OAT) family, and acts as a urate transporter to regulate urate levels in 

the blood (www.genecards.org). The SNP rs478607 has been reported to be a cis-eQTL 

for expression of SLC22A12 in several tissues and expression of splicing factor 1 (SF1) 

gene in the whole blood (P = 3.15E-08) (www.archive.broadinstitute.org and 

www.gtexportal.org), which is not suggestive for possible pleiotropy. No data were found 

for the SLC22A11: rs2078267 variant in the outcome GWAS (Benyamin et al., 2014), 

which is why this variant was not included as an IV in the MR model. 

3.2.3.3 Sample overlap in selected GWAS datasets 

 The two GWA studies selected for two-sample MR (Benyamin et al., 2014; 

Köttgen et al., 2013) were found to have only 14% participant overlap (Appendix B 

Figure 3.1) when their corresponding European cohorts (Appendix A Table 3.1) were 

observed. As the overlap was sufficiently low, it was considered to not drastically affect 

the MR model with sample biases. 

http://archive.broadinstitute.org/
http://www.gtexportal.org/
http://archive.broadinstitute.org/
http://www.gtexportal.org/
http://archive.broadinstitute.org/
http://www.gtexportal.org/
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC22A12&keywords=SLC2A9
http://archive.broadinstitute.org/
http://www.gtexportal.org/
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3.2.3.4 Iron biomarkers as exposure for urate as outcome 

3.2.3.4.1 Iron as exposure for urate as outcome 

 Single variant two-sample MR using the Wald ratio method indicated a positive 

causal association between iron and urate via one instrument only i.e., rs1800562 (ß = 

0.107, P = 0.0008) (Table 3.2, Figure 3.2: A). No causal iron-urate relationship was 

observed in primary combined MR analysis using IVW (ß = 0.05, P = 0.16) (Table 3.2, 

Figure 3.2: A). Heterogeneity between the effects across the variants was not significant 

for IVW (Q-P = 0.11), but significant when MR-Egger (Q-P = 0.02) was done (Table 3.2, 

Figure 3.3: A). However, a sensitivity MR-Egger indicated little evidence of pleiotropy 

(intercept: ß = -0.006, OR = 0.99, P = 0.63) for an association between iron and urate 

using all 3 SNPs (Table 3.3, Figure 3.3: B). The MR-Egger combined causal estimate was 

also not significant and similar to the primary (IVW) analysis (ß = 0.083, P = 0.37) 

(Table 3.2, Figure 3.2: A). Leave-one-out IVW meta-analysis showed a significant causal 

iron-urate relationship (ß = 0.110, P = 1.96E-04) after removing rs855791 from the iron-

instrument list (Table 3.4). The result also indicated that the non-causal association in the 

IVW meta-analysis was driven by rs855791 (Table 3.4, Figure 3.2: B). All MR ß-

estimates are presented as an effect of an SD unit increase in iron on urate (mg dL-1). This 

analysis provided evidence that iron plays a causal role in increasing urate concentrations. 

3.2.3.4.2 Transferrin as exposure for urate as outcome 

 Two independent instruments showed a causal transferrin-urate association when 

assessed via the Wald ratio method i.e., rs174577 (ß = 0.263, P = 0.002) and rs1800562 

(ß = -0.073, P = 0.0008) (Table 3.2, Figure 3.4: A). Transferrin was not causally 

associated with urate in combined IVW meta-analysis (ß = 0.001, P = 0.97) (Table 3.2, 

Figure 3.4: A). Significant heterogeneity (IVW: Q-P = 0.002, MR-Egger: Q-P = 0.001) 

was found for effect estimates across the instruments (Table 3.2, Figure 3.5: A). A 

sensitivity MR-Egger, however, did not indicate evidence of pleiotropy for an association 

between transferrin and urate using the full list of 8 SNPs (intercept: ß = 0.005, OR = 

1.00, P = 0.45) (Table 3.3, Figure 3.5: B). The combined causal estimate via MR-Egger 

did not show a significant association (ß = -0.016, P = 0.61) (Table 3.2, Figure 3.4: A). 

Leave-one-out permutation analysis also did not indicate any variant to be 

unproportionately altering the non-significant association in IVW (Table 3.4, Figure 3.4: 
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B). All MR ß-estimates are presented as an effect of an SD unit increase in transferrin on 

urate (mg dL-1). Overall, this analysis did not provide any evidence of a causal role of 

serum transferrin in changing serum urate concentrations. 

3.2.3.4.3 Ferritin as exposure for urate as outcome 

 The Wald ratio method showed two instruments indicating a positive causal 

association between ferritin and urate i.e., rs1800562 (ß = 0.190, P = 0.0002) and 

rs651007 (ß = 0.320, P = 0.022) (Table 3.2, Figure 3.6: A). However, when combined in 

standard IVW analysis, no significant ferritin-urate association was observed (ß = 0.089, 

P = 0.17) (Table 3.2, Figure 3.6: A). Heterogeneity between the effects across the 

variants was not significant for IVW (Q-P = 0.06), but significant when assessed through 

MR-Egger regression (Q-P = 0.01) (Table 3.2, Figure 3.7: A). A sensitivity MR-Egger 

indicated very little pleiotropy (intercept: ß = -0.007, OR = 0.99, P = 0.57) in association 

between ferritin and urate using the full list of 5 SNPs (Table 3.3, Figure 3.7: B). The 

combined causal estimate obtained using MR-Egger was not significant similar to 

standard MR analysis (ß = 0.160, P = 0.32) (Table 3.2, Figure 3.6: A). The secondary 

sensitivity approach using leave-one-out analysis did not indicate any variant to be 

considerably changing the non-significant association in IVW, except rs12693541, 

removal of which showed a positive causal association between ferritin and urate (ß = 

0.14, P = 0.02) (Table 3.4, Figure 3.6: B). All MR ß-estimates are presented as an effect 

of an SD unit increase in ferritin (log10) on urate (mg dL-1). The analysis provided 

evidence of a causal relationship of ferritin with urate. 

3.2.3.4.4 Transferrin saturation as exposure for urate as outcome 

 None of the 3 instruments indicated a causal TSAT-urate association when 

assessed via the Wald ratio method, except rs1800562 (ß = 0.069, P = 0.001) (Table 3.2, 

Figure 3.8: A). Transferrin saturation was also not causal for urate in combined IVW 

meta-analysis (ß = 0.035, P = 0.31) (Table 3.2, Figure 3.8: A). No significant 

heterogeneity (IVW: Q-P = 0.106, MR-Egger: Q-P = 0.924) was found for effect 

estimates across the instruments (Table 3.2, Figure 3.9: A). A sensitivity MR-Egger, 

however, did not indicate evidence of pleiotropy for an association between TSAT and 

urate using full list of 3 SNPs (intercept: ß = -0.019, OR = 0.98, P = 0.20) (Table 3.3, 

Figure 3.9: B). The combined causal estimate via MR-Egger did not show a significant 
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association (ß = 0.102, P = 0.17) (Table 3.2, Figure 3.8: A). Leave-one-out permutation 

analysis also did not indicate any variant to be unproportionately altering the non-

significant association in IVW (Table 3.4, Figure 3.8: B). All MR ß-estimates are 

presented as an effect of an SD unit increase in TSAT on urate (mg dL-1). This analysis 

did not provide any evidence of a causal role of transferrin saturation in changing serum 

urate concentrations. 
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Table 3.2 Association between iron-related traits and urate using two-sample Mendelian randomisation 

MR-analysis Method 
Phenotype Gene/locus Instrument 

variant 

ß-

estimate 
SE [95% CI] p-causal Q-p 

Exposure Outcome  

Wald ratio Iron Urate TF rs1525892 0.127 0.076 [-0.02 ; 0.28] 0.093 - 

- Iron Urate HFE rs1800562 0.107 0.032 [0.04 ; 0.17] 0.0008 - 

- Iron Urate TMPRSS6 rs855791 -0.001 0.031 [-0.06 ; 0.06] 0.986 - 

All - IVW Iron Urate - All 0.056 0.039 [-0.02 ; 0.13] 0.151 0.179 

All - MR Egger Iron Urate - All 0.064 0.109 [-0.15 ; 0.28] 0.661 0.011 

Wald ratio Transferrin Urate NAT2 rs1495741 -0.079 0.077 [-0.23 ; 0.07] 0.310 - 

- Transferrin Urate FADS1 rs174577 0.263 0.083 [0.10 ; 0.43] 0.001 - 

- Transferrin Urate HFE rs1800562 -0.073 0.022 [-0.12 ; -0.03] 0.0008 - 

- Transferrin Urate SLC40A1 rs744653 0.049 0.084 [-0.12 ; 0.21] 0.559 - 

- Transferrin Urate SLC20A1 rs7646473 0.071 0.101 [-0.13 ; 0.27] 0.485 - 

- Transferrin Urate TF rs8177240 0.023 0.013 [0.01 ; 0.05] 0.092 - 

- Transferrin Urate HLA-DRA rs9268633 0.064 0.100 [-0.13 ; 0.26] 0.523 - 

- Transferrin Urate TFRC rs9990333 -0.070 0.081 [-0.23 ; 0.09] 0.384 - 

All - IVW Transferrin Urate - All 0.001 0.021 [-0.04 ; 0.04] 0.970 0.002 

All - MR Egger Transferrin Urate - All -0.016 0.031 [-0.08 ; 0.04] 0.611 0.0004 

Wald ratio Log Ferritin Urate SLC40A1 rs12693541 -0.068 0.076 [-0.22 ; 0.08] 0.374 - 

- Log Ferritin Urate HFE rs1800562 0.190 0.057 [0.08 ; 0.30] 0.0002 - 

- Log Ferritin Urate TMPRSS6 rs2413450 0.011 0.106 [-0.20 ; 0.22] 0.919 - 

- Log Ferritin Urate TEX14 rs411988 -0.048 0.123 [-0.29 ; 0.19] 0.697 - 

- Log Ferritin Urate ABO rs651007 0.320 0.140 [0.05 ; 0.59] 0.022 - 

All - IVW Log Ferritin Urate - All 0.089 0.066 [-0.04 ; 0.22] 0.176 0.063 

All - MR Egger Log Ferritin Urate - All 0.160 0.134 [-0.10 ; 0.42] 0.320 0.014 

Wald ratio TSAT Urate HFE rs1800562 0.069 0.021 [0.03 ; 0.11] 0.0001 - 

- TSAT Urate TF rs8177272 -0.094 0.059 [-0.21 ; 0.02] 0.110 - 

- TSAT Urate TMPRSS6 rs855791 -0.001 0.030 [-0.06 ; 0.06] 0.986 - 

All - IVW TSAT Urate - All 0.035 0.034 [-0.03 ; 0.10] 0.306 0.106 

All - MR Egger TSAT Urate - All 0.102 0.027 [0.05 ; 0.16] 0.168 0.924 

TSAT: Transferrin saturation, All - IVW: Meta-analysis using inverse-variance method, All - MR Egger: Mendelian randomisation using Egger regression, ß: beta estimates, SE: standard error, 

95% CI: 95% confidence interval, p-causal: p-value using MR analysis, Q-p: Cochran’s heterogeneity test p-value for heterogeneity. 
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Table 3.3: Results of horizontal pleiotropy for two-sample MR-Egger test 

Phenotype Horizontal pleiotropy-MR Egger 

Exposure Outcome 
Egger 

intercept-ß (OR) 
SE p-value 

Iron Urate -0.0016 (0.99) 0.019 0.946 

     
Transferrin Urate 0.0052 (1.00) 0.006 0.451 

     
Log Ferritin Urate -0.0067 (0.99) 0.011 0.577 

     
TSAT Urate -0.0193 (0.98) 0.006 0.205 

TSAT: Transferrin saturation, MR Egger: Mendelian randomisation using Egger regression, ß (OR): beta estimates 

(odds ratio for ß), SE: standard error, p-value: p-value for directional pleiotropy. 
 

Table 3.4: Results of leave-one-out sensitivity analysis for association between iron-

related traits and urate using two-sample Mendelian randomisation 

Phenotype Instrument variant 

excluded from 

IVW analysis 

ß-

estimate 
[95% CI] p-causal 

Exposure Outcome 

Iron Urate rs1525892 0.050 [-0.06 ; 0.16] 0.348 

Iron Urate rs1800562 0.017 [-0.07 ; 0.10] 0.697 

Iron Urate rs855791 0.110 [0.05 ; 0.17] 1.96E-04 

Iron Urate All 0.050 [-0.02 ; 0.13] 0.151 

Transferrin Urate rs1495741 0.002 [-0.04 ; 0.05] 0.917 

Transferrin Urate rs174577 -0.004 [-0.04 ; 0.03] 0.838 

Transferrin Urate rs1800562 0.025 [-0.01 ; 0.06 0.153 

Transferrin Urate rs744653 0.0001 [-0.05 ; 0.05] 0.999 

Transferrin Urate rs7646473 0.0001 [-0.05 ; 0.05] 0.999 

Transferrin Urate rs8177240 -0.041 [-0.11 ; 0.02] 0.220 

Transferrin Urate rs9268633 0.0001 [-0.05 ; 0.05] 0.999 

Transferrin Urate rs9990333 0.002 [-0.04 ; 0.05] 0.927 

Transferrin Urate All 0.001 [-0.04 ; 0.04] 0.970 

Log Ferritin Urate rs12693541 0.141 [0.02 ; 0.27] 0.027 

Log Ferritin Urate rs1800562 0.007 [-0.14 ; 0.15] 0.929 

Log Ferritin Urate rs2413450 0.101 [-0.05 ; 0.26] 0.204 

Log Ferritin Urate rs411988 0.103 [-0.04 ; 0.25] 0.168 

Log Ferritin Urate rs651007 0.070 [-0.06 ; 0.20] 0.303 

Log Ferritin Urate All 0.089 [-0.04 ; 0.22] 0.176 

TSAT Urate rs1800562 -0.019 [-0.09 ; 0.05] 0.604 

TSAT Urate rs8177272 0.046 [-0.02 ; 0.11] 0.158 

TSAT Urate rs855791 0.051 [-0.05 ; 0.15] 0.319 

TSAT Urate All 0.035 [-0.03 ; 0.10] 0.306 

IVW: meta-analysis using inverse-variance method, ß: beta estimate, 95% CI: 95% confidence interval, p-causal: p-

value using IVW meta-analysis. 
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Figure 3.2: Forest graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum iron as exposure (and serum urate as outcome) with their effect sizes on 

the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots indicate Wald ratio 

estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at the bottom 

indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate from MR-

Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot indicates 

IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each estimate. 

The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed line in (A) 

and (B) represents effect size = zero (null). 

A B 
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Figure 3.3: Graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum iron as exposure on serum urate as an outcome via ‘Inverse-variance weighted 

(IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via IVW and MR-

Egger methods. Values on the x and y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by black dots). Less 

precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the estimates (B) 

Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome [urate (mg dL-1) on 

y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [iron (SD) on x-axis]. All SNPs with negative effects on 

the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A A B 
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Figure 3.4: Forest graphs showing results of MR-analysis for eight variants (SNPs) instrumented for serum transferrin as exposure (and serum urate as outcome) with their effect 

sizes on the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots indicate Wald ratio 

estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at the bottom 

indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate from MR-

Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot indicates 

IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each estimate. 

The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed line in (A) 

and (B) represents effect size = zero (null). 

A B 
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Figure 3.5: Graphs showing results of MR-analysis for eight variants (SNPs) instrumented for serum transferrin as exposure on serum urate as an outcome via ‘Inverse-variance 

weighted (IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via IVW and 

MR-Egger methods. Values on the x and y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by black dots). 

Less precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the estimates 

(B) Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome [urate (mg dL-1) 

on y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [transferrin (SD) on x-axis]. All SNPs with negative 

effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A A A B 
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Figure 3.6: Forest graphs showing results of MR-analysis for five variants (SNPs) instrumented for serum ferritin (log) as exposure (and serum urate as outcome) with their effect 

sizes on the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots indicate Wald ratio 

estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at the bottom 

indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate from MR-

Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot indicates 

IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each estimate. 

The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed line in (A) 

and (B) represents effect size = zero (null). 

A B A 
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Figure 3.7: Graphs showing results of MR-analysis for five variants (SNPs) instrumented for serum ferritin (log) as exposure on serum urate as an outcome via ‘Inverse-variance 

weighted (IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via IVW and 

MR-Egger methods. Values on the x and y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by black dots). 

Less precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the estimates 

(B) Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome [urate (mg dL-1) 

on y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [ferritin (log) (SD) on x-axis]. All SNPs with 

negative effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A B 
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Figure 3.8: Forest graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum transferrin saturation (TSAT) as exposure (and serum urate as outcome) 

with their effect sizes on the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots 

indicate Wald ratio estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at 

the bottom indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate 

from MR-Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot 

indicates IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each 

estimate. The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed 

line in (A) and (B) represents effect size = zero (null). 

B A 
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Figure 3.9: Graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum transferrin saturation/TSAT as exposure on serum urate as an outcome via 

‘Inverse-variance weighted (IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity 

assessed via IVW and MR-Egger methods. Values on the x and y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs 

indicated by black dots). Less precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity 

between the estimates (B) Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the 

outcome [urate (mg dL-1) on y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [TSAT (SD) on x-axis]. 

All SNPs with negative effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A B 
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3.2.3.5 Urate as exposure for iron profile biomarkers as outcome 

3.2.3.5.1 Urate as exposure for iron as outcome 

 Single variant two-sample MR using the Wald ratio method did not indicate a 

causal association between urate and iron for any instrument (rs12498742: ß = -0.032, P 

= 0.31; rs1171614: ß = 0.011, P = 0.943; rs478607: ß = 0.047, P = 0.872) (Table 3.5, 

Figure 3.10: A). No causal urate-iron relationship was observed in primary combined MR 

analysis using IVW (ß = -0.029, P = 0.33) or MR-Egger (ß = -0.043, P = 0.53) (Table 3.5, 

Figure 3.10: A). Heterogeneity between the effects across the variants was not significant 

for IVW (Q-P = 0.96) or MR-Egger (Q-P = 0.99) (Table 3.5, Figure 3.11: A). However, 

a sensitivity MR-Egger indicated an evidence of little pleiotropy (intercept: ß = 0.004, OR 

= 1.01, P = 0.77) for an association between urate and iron using all 3 SNPs (Table 3.6, 

Figure 3.11: B). Removing any variant in leave-one-out IVW meta-analysis also did not 

indicate any significant causal urate-iron relationship (Table 3.7, Figure 3.10: B). All MR 

ß-estimates are presented as an effect of a mg dL-1 increase in urate on iron (per SD unit). 

This analysis did not provide any evidence of a causal role of urate in changing blood 

iron levels. 

3.2.3.5.2 Urate as exposure for transferrin as outcome 

 None of the 3 instruments indicated a causal urate-transferrin association when 

assessed via the Wald ratio method, except rs478607 that showed only nominal 

significance (ß = -0.519, P = 0.058) (Table 3.5, Figure 3.12: A). Urate was also not 

causal for transferrin in combined IVW meta-analysis (ß = 0.106, P = 0.74) (Table 3.5, 

Figure 3.12: A). No significant heterogeneity (IVW: Q-P = 0.743, MR-Egger: Q-P = 

0.803) was found for effect estimates across the instruments (Table 3.5, Figure 3.13: A). 

A sensitivity MR-Egger only indicated an evidence of little pleiotropy for an association 

between urate and transferrin using full list of 3 SNPs (intercept: ß = 0.0124, OR = 1.02, 

P = 0.48) (Table 3.6, Figure 3.13: B). The combined causal estimate via MR-Egger did 

not show a significant urate-transferrin association (ß = -0.030, P = 0.65) (Table 3.5, 

Figure 3.12: A). Leave-one-out permutation analysis also did not indicate any variant to 

be unproportionately altering the non-significant association in IVW meta-analysis (Table 

3.7, Figure 3.12: B). All MR ß-estimates are presented as an effect of a mg dL-1 increase 
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in urate on transferrin (per SD unit). This analysis did not provide any evidence of a 

causal role of urate in changing blood transferrin levels. 

3.2.3.5.3 Urate as exposure for ferritin as outcome 

 The Wald ratio method did not indicate a positive urate-ferritin relationship via 

any of the 3 instruments (rs12498742: ß = 0.003, P = 0.97; rs1171614: ß = 0.156, P = 

0.33; rs478607: ß = 0.183, P = 0.302) (Table 3.5, Figure 3.14: A). The primary combined 

MR analysis using IVW (ß = 0.018, P = 0.65) or MR-Egger (ß = 0.056, P = 0.59) 

regression also did not indicate any causal urate-ferritin relationship (Table 3.5, Figure 

3.14: A). Heterogeneity between the effects across the variants was not significant for 

IVW (Q-P = 0.361) or MR-Egger regression (Q-P = 0.089) (Table 3.5, Figure 3.15: A). 

A sensitivity MR-Egger indicated very little pleiotropy (intercept: ß = -0.007, OR = 0.99, 

P = 0.57) in association between urate and ferritin using the full list of 3 SNPs (Table 3.6, 

Figure 3.15: B). The sensitivity analysis using leave-one-out approach did not indicate 

any variant to be considerably changing the non-significant association in IVW meta-

analysis (Table 3.7, Figure 3.14: B). All MR ß-estimates are presented as an effect of a 

mg dL-1 increase in urate on ferritin (log10) (per SD unit). This analysis did not provide 

any evidence of a causal role of urate in changing ferritin levels. 

3.2.3.5.4 Urate as exposure for transferrin saturation as outcome 

 No instrument showed a causal urate-TSAT association when assessed 

individually via the Wald ratio method (rs12498742: ß = -0.0501, P = 0.11; rs1171614: ß 

= 0.027, P = 0.86; rs478607: ß = -0.187, P = 0.52) (Table 3.5, Figure 3.16: A). Urate was 

also not causally associated with TSAT in combined IVW meta-analysis (ß = -0.051, P = 

0.096) or MR-Egger sensitivity regression analysis (ß = -0.042, P = 0.542) (Table 3.5, 

Figure 3.16: A). No heterogeneity (IVW: Q-P = 0.94, MR-Egger: Q-P = 0.66) was found 

for effect estimates across the instruments (Table 3.5, Figure 3.17: A). A sensitivity MR-

Egger, however, did indicate an evidence of little pleiotropy for an association between 

urate and TSAT using the full list of 3 SNPs (intercept: ß = -0.005, OR = 0.99, P = 0.85) 

(Table 3.6, Figure 3.17: B). Leave-one-out permutation analysis also did not indicate any 

variant to be unproportionately altering the non-significant association in IVW meta-

analysis (Table 3.7, Figure 3.16: B). All MR ß-estimates are presented as an effect of a 



3 | Iron Metabolism – Mendelian Randomisation 

 122 

mg dL-1 increase in urate on TSAT (per SD unit). This analysis did not provide any 

evidence of a causal role of urate in changing transferrin saturation levels. 
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Table 3.5 Association between urate and iron-related traits using two-sample Mendelian randomisation 

MR-analysis Method 
Phenotype Gene/locus Instrument 

variant 

ß-

estimate 
SE [95% CI] p-causal Q-p 

Exposure Outcome  

Wald ratio Urate Iron SLC2A9 rs12498742 -0.032 0.031 [-0.09 ; 0.03] 0.309 - 

- Urate Iron SLC16A9 rs1171614 0.011 0.158 [-0.30 ; 0.32] 0.943 - 

- Urate Iron SLC22A12 rs478607 0.046 0.291 [-0.52 ; 0.62] 0.872 - 

All - IVW Urate Iron - All -0.029 0.031 [-0.09 ; 0.03] 0.335 0.965 

All - MR Egger Urate Iron - All -0.043 0.047 [-0.14 ; 0.05] 0.534 0.996 

Wald ratio Urate Transferrin SLC2A9 rs12498742 0.022 0.029 [-0.04 ; 0.08] 0.461 - 

- Urate Transferrin SLC16A9 rs1171614 0.091 0.152 [-0.21 ; 0.39] 0.548 - 

- Urate Transferrin SLC22A12 rs478607 -0.519 0.274 [-1.06 ; 0.02] 0.058 - 

All - IVW Urate Transferrin - All 0.011 0.031 [-0.05 ; 0.07] 0.736 0.743 

All - MR Egger Urate Transferrin - All -0.030 0.049 [-0.13 ; 0.07] 0.653 0.803 

Wald ratio Urate Log Ferritin SLC2A9 rs12498742 0.003 0.032 [-0.06 ; 0.07] 0.926 - 

- Urate Log Ferritin SLC16A9 rs1171614 0.156 0.163 [-0.16 ; 0.48] 0.336 - 

- Urate Log Ferritin SLC22A12 rs478607 0.183 0.302 [-0.41 ; 0.77] 0.544 - 

All - IVW Urate Log Ferritin - All 0.018 0.041 [-0.06 ; 0.10] 0.656 0.361 

All - MR Egger Urate Log Ferritin - All 0.057 0.077 [-0.09 ; 0.21] 0.595 0.089 

Wald ratio Urate TSAT SLC2A9 rs12498742 -0.050 0.031 [-0.11 ; 0.01] 0.109 - 

- Urate TSAT SLC16A9 rs1171614 -0.028 0.158 [-0.34 ; 0.28] 0.860 - 

- Urate TSAT SLC22A12 rs478607 -0.187 0.293 [-0.76 ; 0.39] 0.523 - 

All - IVW Urate TSAT - All -0.051 0.031 [-0.11 ; 0.01] 0.096 0.942 

All - MR Egger Urate TSAT - All -0.042 0.048 [-0.14 ; 0.05] 0.542 0.668 

TSAT: Transferrin saturation, All - IVW: Meta-analysis using inverse-variance method, All - MR Egger: Mendelian randomisation using Egger regression, ß: Beta estimates, SE: Standard error, 

95% CI: 95% confidence interval, p-causal: p-value using MR analysis, Q-p: Cochran’s heterogeneity test p-value for heterogeneity. 
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Table 3.6: Results of horizontal pleiotropy for two-sample MR-Egger test 

Phenotype Horizontal pleiotropy-MR Egger 

Exposure Outcome 
Egger 

intercept-ß (OR) 
SE p-value 

Urate Iron  0.0042 (1.004) 0.0114 0.772 

     
Urate Transferrin 0.0124 (1.012) 0.0117 0.481 

     
Urate Log Ferritin -0.0118 (0.988) 0.0183 0.634 

     
Urate TSAT -0.0026 (0.997) 0.0114 0.855 

TSAT: Transferrin saturation, MR Egger: Mendelian randomisation using Egger regression, ß (OR): beta estimates 

(odds ratio for ß), SE: standard error, p-value: p-value for directional pleiotropy. 
 

Table 3.7: Results of leave-one-out sensitivity analysis for association between urate 

and iron-related traits using two-sample Mendelian randomisation 

Phenotype Instrument variant 

excluded from IVW 

analysis 

ß-

estimate 
[95% CI] p-causal 

Exposure Outcome 

Urate Iron rs12498742 0.094 [-0.25 ; 0.29] 0.888 

Urate Iron rs1171614 -0.031 [-0.09 ; 0.03] 0.319 

Urate Iron rs478607 -0.030 [-0.09 ; 0.03] 0.324 

Urate Iron All -0.029 [-0.09 ; 0.03] 0.335 

Urate Transferrin rs12498742 0.162 [-0.12 ; 0.44] 0.256 

Urate Transferrin rs1171614 0.004 [-0.06 ; 0.07] 0.876 

Urate Transferrin rs478607 0.008 [-0.05 ; 0.07] 0.782 

Urate Transferrin All 0.010 [-0.05 ; 0.07] 0.735 

Urate Log Ferritin rs12498742 -0.052 [-0.56 ; 0.45] 0.841 

Urate Log Ferritin rs1171614 0.015 [-0.10 ; 0.13] 0.786 

Urate Log Ferritin rs478607 0.024 [-0.03 ; 0.08] 0.402 

Urate Log Ferritin All 0.018 [-0.06 ; 0.10] 0.656 

Urate TSAT rs12498742 -0.064 [-0.34 ; 0.21] 0.647 

Urate TSAT rs1171614 -0.052 [-0.11 ; 0.01] 0.097 

Urate TSAT rs478607 -0.049 [-0.11 ; 0.01] 0.109 

Urate TSAT All -0.051 [-0.11 ; 0.01] 0.096 

TSAT: Transferrin saturation, IVW: meta-analysis using inverse-variance method, ß: beta estimate, 95% CI: 95% 

confidence interval, p-causal: p-value using IVW meta-analysis. 
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Figure 3.10: Forest graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure (and serum iron as outcome) with their effect sizes on 

the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots indicate Wald ratio 

estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at the bottom 

indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate from MR-

Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot indicates 

IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each estimate. 

The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed line in (A) 

and (B) represents effect size = zero (null). 

A B 
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Figure 3.11: Graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure on serum iron as an outcome via ‘Inverse-variance weighted 

(IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via the IVW and MR-

Egger methods. Values on the x and the y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by black dots). Less 

precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the estimates (B) 

Scatter plot to compare the IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome [iron (SD) on 

the y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [urate (mg dL-1) on the x-axis]. All SNPs with 

negative effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A 
B 
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Figure 3.12: Forest graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure (and serum transferrin as outcome) with their effect 

sizes on the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots indicate Wald ratio 

estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at the bottom 

indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate from MR-

Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot indicates 

IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each estimate. 

The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed line in (A) 

and (B) represents effect size = zero (null). 

A B 
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Figure 3.13: Graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure on serum transferrin as an outcome via ‘Inverse-variance 

weighted (IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via IVW and 

MR-Egger methods. Values on the x and the y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by black dots). 

Less precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the estimates 

(B) Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome [transferrin 

(SD) on the y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [urate (mg dL-1) on the x-axis]. All SNPs 

with negative effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A B 
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Figure 3.14: Forest graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure (and serum ferritin (log) as outcome) with their effect 

sizes on the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; black dots indicate Wald ratio 

estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ red dot at the bottom 

indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression estimate from MR-

Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each black dot indicates 

IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding to each estimate. 

The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical dashed line in (A) 

and (B) represents effect size = zero (null). 

A B 
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Figure 3.15: Graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure on serum ferritin (log) as an outcome via ‘Inverse-variance 

weighted (IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via IVW and 

MR-Egger methods. Values on the x and the y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by black dots). 

Less precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the estimates 

(B) Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome [Ferritin (log) 

(SD) on the y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [urate (mg dL-1) on the x-axis]. All SNPs 

with negative effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal association. 

A B 
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Figure 3.16: Forest graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure (and serum transferrin saturation (TSAT) as 

outcome) with their effect sizes on the x-axis and IDs on the y-axis (A) Graph showing results from the Wald ratio, ‘Inverse-variance weighted (IVW)’ and ‘MR-Egger’ methods; 

black dots indicate Wald ratio estimate for each SNP with black horizontal lines across the dots representing 95% confidence intervals (CI) corresponding to each estimate. ‘All-IVW’ 

red dot at the bottom indicates regression estimate from IVW meta-analysis with the red line across the dot representing 95% CI, while the ‘All-Egger’ red dot indicates regression 

estimate from MR-Egger sensitivity meta-analysis with the red line across the dot representing the 95% CI (B) Graph showing results from ‘Leave-one-out’ sensitivity analysis; each 

black dot indicates IVW estimate for all instrument SNPs excluding the one indicated on y-axis, while the black horizontal lines across the dots represents the 95% CI corresponding 

to each estimate. The ‘All’ red dot at the bottom indicates estimate from IVW analysis including all SNPs that are the same as ‘All-IVW’ in graph (A) for a comparison. The vertical 

dashed line in (A) and (B) represents effect size = zero (null). 

A B 
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Figure 3.17: Graphs showing results of MR-analysis for three variants (SNPs) instrumented for serum urate as exposure on serum transferrin saturation as an outcome via ‘Inverse-

variance weighted (IVW)’ (indicated with light blue lines) and ‘MR-Egger’ (indicated with dark blue lines) methods (A) Funnel graph plotted to compare heterogeneity assessed via 

IVW and MR-Egger methods. Values on the x and the y-axis represent effect estimates (ßIV) and reciprocal standard errors (1/SEIV) for the instrument variables (IVs indicated by 

black dots). Less precise estimates (lower values on y-axis) 'funnel' in as they increase in precision, while asymmetry in the funnel plot indicates directional heterogeneity between the 

estimates (B) Scatter plot to compare IVW and Egger-regression MR results: SNP effects (black dots with their 95% CI as vertical grey lines through the dots) on the outcome 

[transferrin saturation (SD) on the y-axis] are plotted against SNP effects (black dots with their 95% CI as horizontal grey lines through the dots) on the exposure [urate (mg dL-1) on 

the x-axis]. All SNPs with negative effects on the exposure are shown to be positive, with the sign of the effect on the outcome flipped. The slope of the line represents the causal 

association. 

A B 
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SECTION 3.3 DISCUSSION 

 Two-sample single-instrument Mendelian randomisation using GWAS summary-

level data indicated a causal effect of exposure to iron or its biomarkers in increasing 

urate concentration. Combined meta-analyses, using the selective set of iron-related 

instruments, also indicated a causal association of an exposure of iron and ferritin in 

increasing serum urate concentrations. 

3.3.1 Single-instrument MR and pleiotropy 

 Instrumenting iron biomarkers as exposure for urate as outcome in single-

instrument MR via the Wald ratio method showed a significant causal relationship 

between all four iron profile biomarkers (iron, transferrin, ferritin and TSAT) and urate 

using a missense SNP, HFE: rs1800562, as the instrument (Table 3.2). This variant has 

been described as a cis-eQTL for tripartite motif-containing protein 8 (TRIM38), histone 

gene cluster 1 (HIST1H-2AC, 2BD, 4A and 4H) and mostly for lincRNA of unknown 

function (U91328.19 and 22) (www.archive.broadinstitute.org and www.gtexportal.org). 

On the basis of evidence available in the literature, TRIM38 was found to be involved in 

production of E3 ubiquitin-protein, which negatively regulates the immune response via 

toll-like receptors (TLRs) (Zhao et al., 2012), although the protein doesn’t seem to be 

involved in urate metabolism (Jeong et al., 2009). Overexpression of histone cluster 1 

family genes has been reported in human meningioma (Pérez-Magán et al., 2010), while 

no evidence has been found for a direct involvement in any renal function or urate 

metabolism. The variant rs1800562 is present within the HFE gene on chromosome 6 in 

close proximity to known urate loci SLC17A1-3 and therefore its causality may be 

questionable. Although, the variant rs1800562 was shown to have a low LD (r2 < 0.6) 

with only one variant within the SLC17A1 gene in Köttgen et al. (2013) data (Appendix B 

Figure 3.2), the causal signal at rs1800562 in my study was still not considered to be 

ambiguous. 

 In addition, two non-coding variants showed a significant causality of transferrin 

for urate via rs174577 and ferritin for urate via rs651007 (Table 3.2). Since these variants 

are found in intronic regions, no functionality has been described in the literature (to my 

knowledge). The SNP rs174577 is located in the intronic region of the fatty acid 

http://archive.broadinstitute.org/
http://www.gtexportal.org/


3 | Iron Metabolism – Mendelian Randomisation 

 134 

desaturase2 (FADS2) gene and has been reported to be co-expressed with multiple loci at 

gene-expression (eQTL: expression quantitative trait loci) platforms 

(www.archive.broadinstitute.org and www.gtexportal.org), while no association with 

urate has been reported for rs174577 so far except Köttgen et al. (2013) that reported a 

positive association between the A allele of rs174577 and serum urate concentration (ß = 

0.018, P = 0.002) in European individuals. However, no pleiotropic effect has been 

reported yet for this variant in the context of iron metabolism. The second SNP, rs651007, 

is located in the non-coding region of the ABO gene and is known to be associated with a 

number of traits including red blood cell count (Van Der Harst et al., 2012). The ABO 

gene encodes the glycosyltransferase responsible for the A-B-O blood groups. This 

variant has been reported to have high coexpression with only two other genes, Surfeit 6 

(SURF6) and Globoside alpha-1,3-N-acetyl-galactossaminyl-transferase (GBGT1) in the 

cis-eQTL database (www.gtexportal.org and www.archive.broadinstitute.org). Based on 

the evidence available in the literature, SURF6 is a member of the family of genes that 

codes for RNA-binding proteins in the nucleolus (Magoulas and Fried, 2000), while 

GBGT1 not only encodes for the ABO-related glycosyltransferase but also participates in 

the biosynthesis of a glycolipid heterophil protein called ‘the Forssman antigen’ (Haslam 

and Baenziger, 1996). These findings are suggestive for ‘no pleiotropy’ between the 

exposure and outcome and provide the evidence of involvement of a change in iron 

homeostasis (as exposure) to be causal for a change in urate metabolism (as outcome) 

only if certain variants are selected as potential IVs in the Mendelian randomisation 

model. 

 Instrumenting urate as exposure for iron (and its biomarkers) as outcome did not 

indicate any urate-iron positive causal relationship for any of the variant (Table 3.5). As 

detailed in Section 3.2.3.2, none of the 3 variants selected as instruments for urate 

exposure suggested a possible pleiotropy with iron metabolism. Leave-one-out sensitivity 

analysis also did not provide any evidence for any of these three variants to be outliers in 

combined meta-analysis (Table 3.7). Therefore, my study does not indicate that an 

increase in urate concentration can increase blood levels of iron or its related biomarkers. 

http://archive.broadinstitute.org/
http://www.gtexportal.org/
http://www.gtexportal.org/
http://archive.broadinstitute.org/
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3.3.2 Combined multiple-instrument MR 

 The findings from the combined multiple-instrument MR did not show any 

causality in standard IVW MR analyses for iron biomarkers on urate (Table 3.2). 

Although, these results do not support the observational findings presented in Chapter 2, 

they do not oppose them either. A possible explanation that can address these differences 

is the presence of unmeasured confounding factors in the observational results that were 

responsible for overexpression of large significant values. On the other side of the picture, 

there seems to exist a high degree of pleiotropy between iron and urate metabolism that 

makes it difficult to separate these two mechanisms on the basis of available summarised 

GWAS data. For example, rs1799945 has been reported as one of the top iron-related 

SNPs within the HFE gene in European and African American individuals (Benyamin et 

al., 2014; Li et al., 2015). Not only was this variant found to have high co-expression (P 

= 8.5E-06) with SLC17A3 (a known urate-locus), but also was significantly associated 

with urate in Köttgen et al. (2013) data (P = 2.94E-06), and having an LD (r2 < 0.6) with 

variants within SLC17A1, SLC17A2 and SLC17A3 (Appendix B Figure 5.2). This 

pleiotropy made it impossible to include this strong exposure-associated SNP as an IV in 

MR analysis, especially for serum iron and TSAT. As described earlier, the second 

variant within the HFE gene, rs1800562, provided nearly equally significant causal 

signals for all four iron-related traits (Table 3.2). Although, there is no proof available to 

support pleiotropy for rs1800562 with urate and its risk factors, the highly significant MR 

findings still require validation and may be considered less reliable than causal signals 

from rs174577 and rs651007 (Table 3.2). 

 Besides, when a sensitivity analysis was carried out using the leave-one-out 

approach, a significant causal effect of iron and ferritin was observed in increasing urate 

concentration via combined IVW meta-analysis (Table 3.4). For iron, keeping TMPRSS6: 

rs855791 out of the meta-analysis showed a highly significant cause-effect relationship 

between iron and urate (ß = 0.110, P = 1.96E-04), which in turn indicated rs855791 to be 

the variant driving non-significant association in the standard IVW analysis (Table 3.4). 

Excluding another SNP, SLC40A1: rs12693541, out of the meta-analysis also showed 

significant casual association of ferritin exposure in increasing urate concentration (ß = 

0.141, P = 0.027) (Table 3.4). The gene TMPRSS6 (transmembrane protease serine 6) 

encodes a transmembrane enzyme called ‘serine 6’, and is reported to be involved in 
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extracellular matrix remodelling within the liver (www.ncbi.nlm.nih.gov), sensing iron 

deficiency and promoting its absorption via blocking the gene encoding for hepcidin (Du 

et al., 2008). The SNP rs855791 is a missense variant that increases the enzyme 

efficiency for inhibiting hepcidin (Nai et al., 2011) and has been reported to be protective 

against iron deficiency anaemia in aged women (Pei et al., 2014). The SNP rs12693541 is 

a non-coding variant within SLC40A1 (solute carrier family 40 member 1) gene. The 

SLC40A1 gene (also known as ferroportin gene) encodes ‘ferroportin’ protein. As 

described in Chapter 2, ferroportin is so far the only known mammalian iron exporter in 

duodenal and other epithelial cells. Defects in the SLC40A1 gene can cause 

haemochromatosis type 1 and 4 (Altès et al., 2009; Camaschella, 2006) and reduced iron 

export (Moreno‐ Carralero et al., 2014). The SNP rs12693541 has been reported as a cis-

eQTL for two other genes ‘asparagine synthetase domain containing 1 (ASNSD1) and 

ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3). These genes encode for 

proteins involved in the synthesis of aspartate and sphingolipids, respectively (Siow et al., 

2015). Although, excluding the variants within these genes gave significant causal 

associations for iron and ferritin in MR analysis (Table 3.4), the roles of these two genes 

in iron homeostasis cannot be denied. These facts may not only explain how the non-

significant associations in MR analysis were driven by these two variants (rs855791 and 

rs12693541) alone, but are also suggestive of an underpinning unmeasured correlation 

between pathways involved in iron and urate metabolism. In a nutshell, excluding 

rs855791 and rs12693541 from meta-analysis provides evidence for a causal relationship 

between iron exposure and a change in urate concentration (Table 3.4). Considering 

together that urate is a natural chelator for the metal ‘iron’, studies explaining the 

upregulation and increased production of urate following exposure of iron (explained in 

Section 2.1) and causal signals in my study via rs174577 and rs651007 (detailed in 

Section 3.3.1), the presence of a possible iron to urate pathway linking these two 

metabolites cannot be ruled out. An MR analysis from del Greco et al. (2016) explained 

the protective causality between iron and ferritin as exposure and eGFR (estimated 

glomerular filtration rate) as outcome. Given that a decrease in eGFR has been associated 

with an increase in urate concentration (Johnson et al., 2013a; Mohandas and Johnson, 

2008; Suliman et al., 2006), the positive causal association in my study can be compared 

with del Greco et al. (2016) results as the set of genetic loci explaining renal function and 

serum urate concentration have 20% overlap (Köttgen et al., 2013; Pattaro et al., 2016). 

On the basis these findings, a possible role of iron in increasing urate concentration via 

http://www.ncbi.nlm.nih.gov/
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renal dysfunction can be speculated. However, there is no literature explaining a genetic 

correlation between iron and urate till date. 

3.3.3 Strengths and limitations of the study 

 This study provides the first-ever two-sample MR analysis using summary data 

from large GWAS datasets to investigate a cause-effect relationship between iron and 

urate metabolism. The prime strength of my study is the use of large-sized datasets from 

two GWAS with minimal sample overlap, which provided strength to the MR analysis by 

excluding finite sample study bias and biases created by sample overlap. The removal of 

possible pleiotropy on the basis of an a priori search of literature and gene coexpression 

information available on the bioinformatics platforms (GTEx, HaploReg 4.1, ENCODE) 

and intra-instrument LD made the MR analysis more valid. Another attribute of the study 

is the use of a robust and updated statistical approach available to analyse the summarised 

data in the context of two-sample MR and a posteriori adjustment for horizontal 

pleiotropy in various analyses after detection of intra-instrument heterogeneity. While the 

results presented from various approaches used in the MR model may seem inconsistent, 

it should be considered that each approach has its own limitations and differ in terms of 

how the validity of an instrument and possible pleiotropy is determined in each model. 

Single MR clearly provides causal signals for iron and ferritin, specifically for the top loci 

in the iron GWAS. In this study, the causality of iron and ferritin for a change in urate has 

been described via multiple-instrument analysis for a selected set of instruments using the 

leave-one-out approach. The results from IVW and MR-Egger approaches are considered 

to be robust; however, carrying out a sensitivity analysis may totally end up changing the 

status of causality. A recent study has depicted this post-test to be valid enough to 

describe a causal effect while using summary data in any MR analysis (Burgess et al., 

2017). 

 A possible limitation of the study could be the presence of unmeasured pleiotropic 

confounders that were impossible to remove, especially those other than intra-instrument 

heterogeneity e.g., gene-environment interaction (Smith and Ebrahim, 2003). Also, the 

effect estimates described by single variant or sensitivity analyses were of limited 

magnitude. A possible solution to this limitation is the availability of larger GWAS data 
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encompassing wide ranges of iron biomarkers and urate and carrying out similar MR 

analyses using such datasets. 

3.3.4 Conclusion and future directions 

 In conclusion, this study provides causal association signals for iron-urate 

correlation using single or selective instruments only. This is the first study explaining a 

cause-effect relationship between iron biomarkers and urate using a two-sample MR 

approach while incorporating GWAS summary data. A follow-up of this study using in 

vitro functional model experiments can provide evidence of any intermediate 

pathway/phenotype involved in controlling both iron and urate metabolism 

simultaneously. Several established human/animal cell lines, primary tissues or disease 

model animals (mice, zebrafish) are now available for such in vitro analyses. 

Programmable nucleases can be used to successfully introduce mutations in these cell 

lines followed by determining changes in gene regulatory function(s) and their possible 

effect on other gene expression and functionality. The gene expression study could be an 

appropriate follow-up to MR studies where any change in expression of exposure 

associated genes and their possible effect on the functionality of outcome-associated 

gene/phenotype can be recorded. This would be useful especially since urate is a natural 

chelator of iron and has been proposed to be elevated in response to the metal exposure. 

Such an experimental approach would also be helpful to explain the cause and effect 

relationship between iron and urate elevation on the basis of the ‘which is driving which’ 

principle. The significant causal effects from single variant and leave-one-out sensitivity 

analyses should be replicated in large-sized datasets where individual-level data are 

available. Due to the involvement of iron in increasing oxidative stress and enhancing 

inflammation, similar MR analysis using GWAS data for gout (no such data was 

available to carry out similar MR analysis in my thesis) will be helpful in analysing if 

there exists any stand-alone causality for gout aetiology via inflammation independent of 

urate metabolism. 
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SECTION 4.1 URATE, GOUT AND METABOLIC SYNDROME: 
AN INTRODUCTION 

4.1.1 Background 

 Metabolic syndrome (MetS) is a combination of physiological and anthropometric 

anomalies that act as risk factors for the development of cardiovascular disease and 

diabetes (Sookoian and Pirola, 2011; Wilson et al., 2005). The components that constitute 

MetS typically include abdominal obesity, hypertension, dyslipidaemia and insulin 

resistance (Alberti et al., 2005; Grundy et al., 2004). These risk factors are highly 

interrelated and, when clustered together, can increase the risk of developing 

atherosclerosis and type-2 diabetes mellitus (T2DM) by 3 and 5-fold, respectively (AHA, 

2005; Grundy et al., 2005; Sookoian and Pirola, 2011). Metabolic syndrome has also 

been associated with a 1.6-fold increase in the rate of mortality worldwide (Harris, 2013). 

Whilst MetS has classically been categorised as a combination of various 

pathophysiological conditions, several studies have described MetS as a binary factor 

including some GWA studies (Kraja et al., 2011; Kristiansson et al., 2012; Zabaneh and 

Balding, 2010). More recent studies in comparative physiology indicate that the 

syndrome and many of its associated factors can arise simply as a consequence of 

excessive fat storage (Johnson et al., 2013c). Since not all of these factors sufficiently 

explain all cardiovascular events, several other factors have been considered to be 

included in the definition of MetS. These factors broadly include increased inflammatory 

biomarkers, microalbuminuria and coagulation-related anomalies (Fu et al., 2009; Guo et 

al., 2012; Meigs et al., 2000; Ramakrishna and Jailkhani, 2008). In addition, elevated 

urate concentration (Kanbay et al., 2016) and gout (Billiet et al., 2014) have been 

described to be associated with single or multiple components of the syndrome. 

4.1.2 Prevalence of metabolic syndrome 

 The worldwide prevalence of MetS is increasing, specifically in accordance with 

age and increased BMI (Ervin, 2009). Despite the ambiguity in accurately defining the 

term ‘MetS’, a large number of studies (refer to subsequent paragraphs) have been 

undertaken to determine its prevalence in different parts of the world. Subject to attributes 

such as ethnic background, age and gender, the recent worldwide prevalence of MetS 

ranges between 10 to 84% (Kaur, 2014). A population-based study by Pal and Ellis 
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(2010) suggests that MetS affects nearly 20% of adults in the Western world. Table 4.1 

indicates some of the recent studies and their reported MetS prevalence averaged between 

males and females. 

Table 4.1 Prevalence of metabolic syndrome in the different geographical regions 

Region MetS prevalence (%) Reference 

Asia Pacific 11.9 to 37.1 (Ranasinghe et al., 2017) 

South Asia 8.6 to 46.1 (Aryal and Wasti, 2016) 

Europe 11.6 to 26.3 (van Vliet-Ostaptchouk et al., 2014) 

USA (overall) 22.9 to 34.2 
(Beltrán-Sánchez et al., 2013; Mozumdar and 

Liguori, 2011) 

USA (Central) 23.0 to 35.1 (Wong-McClure et al., 2015) 

USA (South) 18.8 to 43.3 (Márquez-Sandoval et al., 2011) 

Africa 12.5 to 62.5 (Okafor, 2012) 

Middle East 13.6 to 36.3 (Sliem et al., 2012) 

MetS: metabolic syndrome, USA: United States of America. 

 A comparative study using data from NHANES III (6,423 US individuals) and 

NHANES 1999-2006 (6,962 US individuals) showed an increase in the prevalence of 

MetS in the US population between the two survey periods (Mozumdar and Liguori, 

2011). The study also reported nearly 68 million adult US individuals (32.4 million males 

and 35.3 million females) as having MetS, with an overall prevalence ranging between 

29.2 to 34.2%. However, another more recent study using data from NHANES 2009-

2010 (> 1,800 US individuals) showed a decrease in MetS prevalence with an average of 

22.9% (Beltrán-Sánchez et al., 2013). A meta-analysis including data of adult South 

American individuals from 12 different studies also revealed the prevalence of MetS to be 

23.2% in men and 25.3% in women (Márquez-Sandoval et al., 2011). A study in the 

Australian population reported 34.4% males and 27.4% females as having MetS, with 

males having greater prevalence than females with a progression of age (Cameron et al., 

2007). Two studies, including data of European individuals from Ireland (Waterhouse et 

al., 2009) and Denmark (Jeppesen et al., 2007), showed an overall prevalence of MetS to 

be 21.4 and 23.4%, respectively. A more recent study combining data from 51 countries 

in the Asia-Pacific region reported an overall prevalence of MetS in between the range of 

11.9 to 37.1% (Ranasinghe et al., 2017). 

 Like other regions, a higher prevalence of MetS, or some of its components, have 

been reported among multicultural populations residing within New Zealand (Simmons 
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and Thompson, 2004). An initial survey in the Auckland region reported an average MetS 

prevalence of 32% for Māori, 39% for Pacific Island and 16% for European individuals 

(Gentles et al., 2007). Moreover, a number of studies showed a higher prevalence of 

MetS components in the New Zealand population, especially in Polynesian individuals. 

Some of the examples also include reports on increased obesity (Ng et al., 2014), insulin 

resistance (IR) (Simmons and Thompson, 2004), diabetes (Chan et al., 2014), 

cardiovascular disease (CVD) (Linhart et al., 2016) and CHD (Winnard et al., 2013). 

Having the highest prevalence of gout in the world (explained in Chapter 1), the New 

Zealand Polynesian population also has a considerably higher rate on occurrence of 

T2DM and CVD as comorbidities of gout (Winnard et al., 2013; Winnard et al., 2012). 

4.1.3 Urate and components of metabolic syndrome 

 While a number of studies have argued that hyperuricaemia is one of the 

components of MetS, the debate of inclusion of increased urate concentrations in the 

definition of the metabolic syndrome is still controversial (Nejatinamini et al., 2015; Wei 

et al., 2015). The simultaneous occurrence of hyperuricaemia and conditions contributing 

to MetS has been excessively observed (Billiet et al., 2014), with a number of 

epidemiological studies confirming the association between the two (Chen et al., 2007; 

Liu et al., 2015; Yamasaki and Tomita, 2008). Although a number of studies have 

suggested hyperuricaemia to be a condition occurring secondary to hyperinsulinaemia 

(Muscelli et al., 1996; Soltani et al., 2013), data suggesting its association with insulin 

resistance, diabetes (Li et al., 2013; Lippi et al., 2008), obesity (Han et al., 2014; Tang et 

al., 2010), cardiovascular disorders, hypertension (Borghi et al., 2014; Nakanishi et al., 

2003) and interlinking complex correlation of all of these conditions (Desai et al., 2010; 

Soltani et al., 2013) are still growing. 

 A recent study by Johnson et al. (2013c) redefined MetS and several of its 

associated conditions as consequences of excessive fat storage. The study also indicated 

that in most mammals and birds, excess fat is not only stored in adipose tissues but also in 

the liver and serum (as triglycerides/TG). This storage, in turn, has been shown to 

correlate with the development of decreased insulin sensitivity and hypertension in the 

form of increased blood pressure (Johnson et al., 2013c). In addition to other biological 

aspects, nucleic acid metabolism plays an important role in controlling the process of fat 
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storage in our bodies. This metabolism regulates fat storage and insulin resistance via the 

stimulation of adenosine monophosphate (AMP) deaminase, fat degradation and reduced 

gluconeogenesis through activation of AMP-activated protein kinase (Cicerchi et al., 

2014; Lanaspa et al., 2012a; Lanaspa et al., 2015). As urate is a key product of AMP 

deaminase (details in Chapter 1), a high likeliness of its major role in promoting fat 

storage have been proposed (Choi et al., 2014; Cicerchi et al., 2014; Lanaspa et al., 

2012a; Lanaspa et al., 2012b). Another recent study by Nejatinamini et al. (2015) 

reported an association of urate with factors involved in developing MetS. The major 

components of MetS included in this study are detailed in the subsequent paragraphs, 

while Figure 4.1 below illustrates the possible link between these components and 

increased urate concentration. 

Figure 4.1: Schematic diagram illustrating the interaction of urate with components of the metabolic syndrome 

(MetS), the risk of developing diabetes and cardiovascular disease. Double-headed dark-blue arrows indicate a 

two-sided interaction between urate and MetS components. The light blue arrows indicate all possible routes 

that could contribute to the development of either cardiovascular disease or diabetes, while the red arrow 

indicates interrelationship of these two anomalies with increased urate. 

4.1.3.1 Urate, insulin resistance and diabetes 

 Without question, insulin resistance (IR) contributes to the development of 

diabetes. The involvement of IR in the epidemiology of MetS was first proposed in 1988 

(Reaven, 1988). The study, for the first time, attributed insensitivity to insulin or IR as a 

major cause of MetS. Determined as being the major factor linking to gout and its 

associated co-morbidities, hyperuricaemia was first described as a contributory factor to 
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diabetes in the late 1800s (Duckworth, 1889). Johnson et al. (2013b) provided a detailed 

review of an overwhelming epidemiological literature explaining the coexistence and role 

of hyperuricaemia in the development of IR and T2DM. A study by Meshkani et al. 

(2011) found a higher prevalence of IR, hyperinsulinaemia, hypertension, dyslipidaemia 

and obesity in subjects with higher urate levels. 

 Historically, hyperuricaemia has been considered as a condition secondary to IR 

(Facchini et al., 1991; Muscelli et al., 1996). However, more recent evidence brings to 

light a plausible causal role of hyperuricaemia in the development of IR (Johnson et al., 

2013b), especially since a decrease in insulin sensitivity is preceded by an increase in 

urate concentration (Krishnan et al., 2012). In fact, a decrease in urate concentration has 

been proposed to increase insulin sensitivity in MetS murine models (Baldwin et al., 

2011). A 15-year follow-up study by Krishnan et al. (2012) investigated an increase in 

baseline urate levels in 5,012 US young adults and found a significant hazard of onset of 

both, diabetes (HR = 1.87) and IR (HR = 1.36). However, no association was reported 

between the elevated baseline urate and plasma insulin concentrations, suggesting urate 

as being a risk factor for the development of IR and, thus, diabetes. A 10-year population-

based follow-up study in the Netherland also reported urate as an independent risk factor 

for diabetes (Dehghan et al., 2008b). In a rat-model experiment, Scott et al. (1981) found 

a 26% decrease in serum insulin and 38% increase in serum glucose 4 weeks following 

inhibition of uricase. A study on sugar-induced diabetes in rats showed that elevated 

levels of urate increased oxidative stress and up-regulated the activity of urate 

transporters in pancreatic islet cells (Roncal-Jimenez et al., 2011). Although not many 

examples are available to explain the effect of reduced urate level on IR in humans, two 

small randomised controlled trials reported a reduction in IR following the administration 

of the urate lowering drugs allopurinol (Facchini et al., 2016) and benzbromarone (Ogino 

et al., 2009). In contrast to these observational studies, findings from the MR studies 

failed to report a causal association between serum urate and risk of T2DM (Keenan et al., 

2016; Pfister et al., 2011; Sluijs et al., 2015). Sluijs et al. (2015) further suggested that 

use of urate lowering therapy may not be beneficial in reducing diabetes risk. These MR 

findings make a possible role of urate levels in increasing the risk of diabetes 

controversial (Johnson et al., 2015). However, as almost all of these MR studies used 

selected variants from urate transport genes (especially SLC2A9) as MR instruments, it 

may point towards the role of these genes in improved kidney functions as described by 
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Hughes et al. (2014). Hughes et al. (2014) found that the individual genetic variants of 

the genetic risk score with the strongest effect on serum urate did not have the strongest 

beneficial effect on renal function and suggested the possibility of pathways distinct from 

serum urate levels to be involved in enhanced renal function. The authors further 

described that an increase in urate levels could possibly influence tubule biochemistry by 

exchanging uric acid for other metabolites and cofactors. For example, two well-known 

urate transporters, SLC2A9 and ABCG2 play a vital role in exchanging hexose sugars for 

uric acid and an adenosine triphosphate-dependent secretion of uric acid, respectively 

(reviewed in Anzai and Endou (2011)). While most of the observational studies showed a 

positive correlation between high urate levels and increased risk of developing diabetes 

and insulin resistance, these detrimental effects have not yet been proved via the role of 

best choice urate transport genes in MR studies. 

4.1.3.2 Urate and obesity 

 Obesity, especially abdominal obesity, is considered as a major manifestation of 

MetS (Després and Lemieux, 2006). Urate has been described as a potential predictor of 

fatty liver (Sirota et al., 2013) and obesity (Masuo et al., 2003). The simultaneous 

occurrence of hyperuricaemia and obesity has been reported to co-exist with other 

components of the syndrome e.g., diabetes and IR (Johnson et al., 2013b). An in vitro 

experiment using cultured liver cells, showed that an increase in urate concentration 

increased triglyceride levels in cells (Lanaspa et al., 2012b). Another in vitro study model 

demonstrated that urate induced fat accumulation in hepatocytes (Choi et al., 2014). 

Further to these, hyperuricaemia was also found to increase the triglyceride levels in 

hepatic cells using animal model (rat) in vitro experiments (Tapia et al., 2013). The fact 

that an increase in hepatic triglyceride levels is a known risk factor for increased 

adiposity irrespective of alcohol consumption (Fabbrini et al., 2010; Jung and Choi, 

2014), abnormally high urate concentrations could, therefore, be directly related to 

inducing this increase. Contrary to these, reports of genetically determined higher urate 

levels being causal for increased triglycerides via the MR studies provide different 

findings, with studies describing elevated serum urate as a consequence rather than a 

cause of an increased BMI, adiposity and/or its risk factors (Lyngdoh et al., 2012; Palmer 

et al., 2013; Rasheed et al., 2014). The possible factor playing a role in contradictory 
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findings between observational and MR studies has been described in the preceding 

paragraph. 

 When it comes to weight gain and adiposity, without a doubt, diet plays a central 

role. Most of the purine-rich foods that increase body concentrations of urate have been 

shown to act as risk factors for the development of MetS or its components (Choi et al., 

2004a). Historically, foods high in fat are also known to increase serum urate levels 

(Ogryzlo, 1965). A fructose-rich diet plays an interlinking role between elevated serum 

urate and increased risk of obesity and other components of MetS (Nakagawa et al., 

2006), especially the amount of fructose in ‘added sugars’ (Johnson et al., 2007). In fact, 

the use of sugar-sweetened beverages has been found to have a link with the epidemic of 

obesity as well as MetS (Basu et al., 2013; Malik et al., 2013; Malik et al., 2010). 

Additionally, several lines of experimental evidence suggest that the primary fructose-

related mechanism involved in increasing urate levels and inducing hyperuricaemia is in 

fact one of the master pathways that can lead to the development of obesity, insulin 

resistance and cardiovascular disorders (collectively called MetS) (Baldwin et al., 2011; 

Lanaspa et al., 2012b; Lanaspa et al., 2012c; Sánchez-Lozada et al., 2008; Tapia et al., 

2013). 

 A number of studies have reported that considerable weight loss can reduce serum 

urate levels in a clinically significant way (Dalbeth et al., 2014). In a dataset of 4,047 

individuals from the Swedish Obese Subjects Study, bariatric surgery was found to 

decrease urate levels by 14% at 2 years and 8% in 10 years in 1,845 and 641 Swedish 

individuals in comparison to their controls (Sjöström et al., 2004). Decreasing urate 

concentrations have also been shown to reduce the fructose sensitised fatty liver 

development in human hepatocytes. In addition, reports on reduction in liver fat 

following a urate-lowering treatment are available in both animal models with 

components of MetS (Lanaspa et al., 2012c) and in those with alcohol-induced fatty liver 

(Kono et al., 2000). 

4.1.3.3 Urate and cardiovascular disease 

 In addition to an association with IR, diabetes and obesity, hyperuricaemia has 

been associated with CVD for decades (Gertler et al., 1951). Since the first suggestion of 

a urate-CVD relationship back in the 19th century (Haig, 1889), a number of studies 
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reported urate to be a risk factor for cardiovascular events (Bos et al., 2006; Moriarity et 

al., 2000; Okura et al., 2009). Albeit the direct independent role of urate in causing heart 

disease in the general population is still controversial (Soltani et al., 2013), many 

examples report its indirect role in occurrence of CVD via IR, hypertension, and renal 

disease or a combination of these conditions (Johnson et al., 1999; Johnson and Tuttle, 

2000). A number of studies have also shown an association of hyperuricaemia with 

surrogate markers of arterial plaque build-up (atherosclerosis) e.g., coronary artery 

calcification (Krishnan et al., 2011), carotid artery thickness (Zhang et al., 2012c) and 

brachial pulse velocity (Ishizaka et al., 2007). 

 In a large study including participants with hypertension and T2DM, a higher 

serum urate concentration (> 7 mg dL-1) was found to be associated with increased 

cardiovascular mortality (Chen et al., 2009b). Another similar study suggested increased 

mortality in patients with coronary syndrome to be associated with a serum urate 

concentration of 7.5 mg dL-1 or higher (Ndrepepa et al., 2012). The occurrence of 

hyperuricaemia in patients with congestive heart failure was also reported to be 

associated with a higher rate of mortality (Kim et al., 2010). A large meta-analysis study 

including data from 15 prospective cohorts suggested a link between high serum urate 

and greater incidence of heart stroke and associated mortality (Li et al., 2014). More 

recent MR studies have reported a causal relationship between the genetically predicted 

serum urate and adverse cardiovascular outcomes including sudden cardiac death (Kleber 

et al., 2015), especially cardiometabolic disease in T2DM patients (Yan et al., 2016). 

Other similar studies, however, were unable to find any causal association of genetically 

determined elevated urate concentration with an increased risk of cardiometabolic 

anomalies including CHD, hypertension, heart failure and/or ischemic stroke (Keenan et 

al., 2016; Palmer et al., 2013). 

 Since the direct causal effect of hyperuricaemia in the context of heart disease is 

still unclear, the possible relationship between them has been a topic of interest for a 

number of clinical randomised trial studies. One such study showed that the 

administration of allopurinol to reduce urate levels improved hypertension and carotid 

intimal thickness in CHD patients with and without renal disease (Higgins et al., 2014). 

Other such examples include studies reporting benefits of urate-lowering therapy in 
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improving arterial stiffness (Grimaldi-Bensouda et al., 2014), angina (Noman et al., 

2010) and ventricular hypertrophy (Kao et al., 2011). 

4.1.4 Gout and components of metabolic syndrome 

 The five components of MetS described above (insulin resistance, T2DM, obesity, 

hypertension and CVD) are well-known comorbidities for gout and have long been 

speculated for a link with gout (Chen et al., 2012; Choi et al., 2005b; Fam, 2002). Given 

that hyperuricaemia is the main risk factor for gout aetiology and MetS being potentially 

associated with urate, it is highly unlikely that MetS would not simultaneously co-exist 

with gout. Gout, being a complex disease, has been reported to be associated with all-

cause mortality in a number of studies. However, most of the studies have reported the 

rate of mortality in gout patients to be higher for two major factors of MetS i.e., 

cardiovascular or renal disease (Choi and Curhan, 2007a; Stamp and Chapman, 2013). 

 A quantitative study by Rho et al. (2005) was the first report that combined the 

prevalence of MetS and gout in the Korean population. Their data showed that gout cases 

were more likely to develop components of MetS (43.6%) in comparison to healthy 

controls (5.2%). The data also found increased BMI and HDL to be the variables most 

significantly associated with the development of MetS in individuals with gout when 

compared to otherwise healthy controls in the same population (Rho et al., 2005). A 

similar study including US population data from NHANES III also reported the 

prevalence of MetS in gout cases to be as high as 62.8% in comparison to the individuals 

without gout (25.4%) (Choi et al., 2007). The study further reported that 3.5 million US 

adults who had ever suffered from gout also simultaneously suffered from metabolic 

conditions included in the definition of MetS. Another more recent example comes from 

the study by Kuo et al. (2014a) that assessed data from more than 75,000 European 

individuals (from the United Kingdom) for gout and its associated comorbidities prior to 

and following the diagnosis. Kuo et al. (2014a) found that participants in the gout cohort 

were more likely to have at least one or more MetS components unlike the participants in 

the non-gout cohort. The gout individuals were also on the higher hazard of developing 

cardiovascular disease, obesity, diabetes and other endocrine disorders within an average 

timeframe of ~3.5 years unlike their ancestrally-matched controls who had an average 

time period of ~9.2 years to develop any of the aforementioned comorbidities (Kuo et al., 
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2014a). Given the higher prevalence of the coexistence of MetS (or its individual 

components) and gout in several populations, the components should be appropriately 

recognised and taken into account while suggesting any long-term treatment to 

individuals with gout. 

4.1.5 Genetics of metabolic syndrome 

 Running a large GWA study in order to identify the genetic components of MetS 

is particularly complicated owing to its complexity at both genetic and clinical levels. 

This is the reason as to why, until now, most of the genetic association studies have been 

done on individual components of MetS or a combination of a few rather than the 

syndrome per se as a binary phenotype (O'Neill and O'Driscoll, 2015). 

  Family and twin studies have provided a large amount of evidence with regard to 

the heritability of MetS. A genetic familial study by Lin et al. (2005) analysed the data of 

803 participants from 89 Hispanic families in Northern Manhattan Family Study (NMFS) 

and reported an overall heritability of 24% for MetS. The heritability for individual 

components of MetS was shown to be 46%, 24%, 47% and 60% for waist circumference, 

higher glucose, TG and HDL cholesterol levels, respectively (Lin et al., 2005). The 

heritability of MetS was reported to be 29.9% when the data of 293 Italian individuals (51 

families) within the Linosa Study were analysed (Bellia et al., 2009). Moreover, the 

results from twin studies showed a concordance in clustering of hypertension, diabetes 

and obesity to be higher (31.6%) in monozygotic twins than dizygotic (6.3%) twins 

(Carmelli et al., 1994). 

 A number of research groups also have performed MetS-related GWAS. The 

classic example comes from an intronic SNP within the fat mass obesity-associated gene 

(FTO) that was found to be associated with T2DM in a UK-based cohort (Frayling et al., 

2007). The study further explained that the FTO gene increases the risk for developing 

T2DM via its effect on BMI (Frayling et al., 2007). Similar results were also reported in 

other populations including individuals of European (Loos et al., 2008; Polašek et al., 

2009; Speliotes et al., 2010; Willer et al., 2009) and Asian decent (Wen et al., 2012). 

These GWA studies also reported some other genes to be associated with increased BMI 

and risk of obesity i.e., genes coding for transmembrane protein 13 (TMEM13), 
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potassium channel tetramerisation domain containing 15 (KCTD15) and melanocortin 

receptor 4 (MC4R). 

 To date, only three GWA studies have reported the data for MetS as a binary trait. 

A genetic association study in an Indian-Asian male population (n = 2,300) reported a 

number of loci to be associated with discrete MetS components, but was unable to find 

any loci associated with MetS as a binary trait (Zabaneh and Balding, 2010). Another 

GWA study conducted in European population of ~22,000 male and female individuals 

reported five SNPs within three loci (LPL: Lipoprotein lipase, APOA5: Apolipoprotein 

A5 and CETP: Cholesteryl ester transfer protein) to be associated with MetS at a genome-

wide threshold (Kraja et al., 2011). This and another study showed a total of 17 loci to be 

associated with either MetS as a whole or a combination of some of its components 

(Kristiansson et al., 2012). 

 While the genetic association data for MetS are limited, a bulk of literature 

presents the GWA results for its individual components reporting dozens of loci, with 

most loci including genes implicated in IR, obesity or lipid metabolism (O'Neill and 

O'Driscoll, 2015). However, the data describing a possible genetic association of 

components of MetS with urate and gout are still scarce. This chapter was structured to 

investigate this substantial gap in the literature by studying selected variants that have 

been reported to be robustly associated with major MetS components and analysing them 

for their association with urate and gout within the NZ Polynesian and European 

populations. While the particular details of each MetS-related genetic variant selected for 

this study from the ADRB3, MC3R, MC4R and ADTRP genes and their possible 

association with urate and gout are provided in the next section (Section 4.2), the specific 

aims of the study were; 

1. To genotype and test the IR and BMI associated variant, ADRB3: rs4994, for its 

association with urate and gout in the European and NZ Polynesian populations. 

2. To genotype and test the obesity and BMI associated variants, MC3R: rs3827103, 

MC4R: rs17700633 and MC4R: rs17782313 for their association with urate and 

gout in the European and NZ Polynesian populations. 

3. To genotype and test the CHD associated variant, ADTRP: rs6903956, for its 

association with urate and gout in the European and NZ Polynesian populations.  
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SECTION 4.2 GENETIC ASSOCIATION OF COMPONENTS 

OF METABOLIC SYNDROME WITH URATE AND GOUT 

4.2.1 Background 

 Hyperuricaemia and gout are closely related to most of the components of MetS, 

especially, dyslipidaemia, obesity, hypertension and glucose intolerance (Choi and Ford, 

2007; Choi et al., 2007). These, and other similar reports (Facchini et al., 1991) has led to 

construction of the basic hypothesis of this chapter. According to this hypothesis ‘if urate 

is associated with the components of MetS in observational studies, the genetic variants 

contributing to these components should also contribute to hyperuricaemia and gout’. 

This section was designed to do genetic association analyses of the selected MetS-related 

variants with serum urate and gout in European and NZ Māori and Pacific Island 

(Polynesian) individuals. Although the basic hypothesis of this study is the same as 

Mendelian randomisation, a different approach (explained in the next section) was used to 

assess the causal association due to the unavailability of genetic association data for 

selected genes/variants for the New Zealand population. 

4.2.2 Methods 

4.2.2.1 Selection of variants 

 Five MetS-related variants (SNPs) were selected based on their association with 

urate and gout in the literature. Table 4.2 provides a list of these variants, while a 

summary of each of these variants is provided in the subsequent paragraphs. 

Table 4.2: List of the MetS-associated variants selected in this study 

Variant (SNP) Chromosome 
Gene/nearest 

gene 
Consequence Gene-related trait 

rs4994 8 ADRB3 Missense BMI, IR 

rs3827103 20 MC3R Missense 
LM, Obesity, Anti-

inflam 

rs17700633 18 MC4R Intergenic BMI, LM, Obesity 

rs17782313 18 MC4R Intergenic 
BMI, LM, T2DM, 

IR, Obesity 

rs6903956 6 ADTRP Intronic CHD 

SNP: Single nucleotide polymorphism, BMI: body mass index, LM: lipid metabolism, Anti-inflam: anti-inflammatory 

response, T2DM: Type 2 diabetes mellitus, CHD: Coronary heart disease. 
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4.2.2.1.1 Insulin resistance & BMI associated variant 

 The first variant that was selected for this study is a missense variant, rs4994, 

within the beta-3 adrenergic receptor gene (ADRB3) on chromosome 8 (Table 4.1). The 

SNP causes a substitution of tryptophan (Trp) to arginine (Arg) at codon 64 (Trp64Arg) 

within the first transmembrane domain of the ADRB3 protein. The ADRB3 gene in 

humans encodes the beta-3 adrenergic receptor or β3 adrenoreceptor protein (Blocker, 

2013). This protein is a part of the adrenergic nervous system, which releases adrenaline 

and/or norepinephrine as neurotransmitters. The adrenergic system acts as one of the 

main neurohormonal regulatory centres to maintain normal smooth muscle tone within 

the heart and overall cardiac action-response. The ADRB3 gene is classically known for 

its role in the regulation of lipid metabolism and glucose homeostasis through its 

expression in adipose tissues (Krief et al., 1993). However, more recently, ADRB3 was 

reported to be abundantly expressed in the acetylcholine-releasing nerve fibres in the 

bladder, which was suggestive of its role in the regulation of metabolic functions in the 

bladder (Coelho et al., 2017). The presence of the Trp64Arg polymorphism has been 

extensively reported for its association with early onset diabetes (Gjesing et al., 2008; 

Nagase et al., 1997), obesity, BMI (Gjesing et al., 2008; Valve et al., 1998), and insulin 

resistance (Allison et al., 1998; De Luis et al., 2009; Widén et al., 1995). In a meta-

analysis of 97 cohorts (n = 44,833 individuals), Kurokawa et al. (2008) found Arg64 to 

be significantly associated with BMI having a stronger effect in East Asian sample sets. 

Consistent reports of association of the Arg64 allele with increased adiposity measures, 

high blood pressure and elevated serum urate was provided in a longitudinal study that 

analysed data of elderly male individuals in Olivetti Prospective Heart Study (OPHS) 

(Strazzullo et al., 2001). 

 The variant rs4994 was selected based on the above hypothesis (reported 

association with urate and gout) and the rationality of the MetS-related evidence in 

previous literature. A combination of increased BMI and the presence of Arg64 was 

reported to be associated with a 4-fold increase in the risk of developing hyperuricaemia 

in a postprandial diabetic group from Chinese population (Wang et al., 2002). Similar 

association of the Arg64 allele and hyperuricaemia were also reported in data sets of 

Korean (Rho et al., 2007) and Chinese (Huang et al., 2013) male individuals. The Arg64 

allele was also indicated to be significantly associated with high risk of hyperuricaemia in 
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a 6-year follow-up study including male and female individuals from Southern Spain 

(Morcillo et al., 2010). In addition to hyperuricaemia, Arg64 (rs4994: G allele) also has 

been reported to be associated with gout susceptibility in Chinese Han population (Wang 

et al., 2011a). 

4.2.2.1.2 Obesity & BMI associated variants 

 Three variants, associated with obesity and BMI, were selected from the genes 

within the melanocortin receptor (MCR) family. The selected variants included a 

missense variant, rs3827103, within the MC3R gene on chromosome 20 and two intronic 

variants, rs17700633 and rs17782313, within the MC4R gene on chromosome 18 (Table 

4.1). 

 The MCR family includes five members of the melanocortin system, expressed in 

the central nervous system (CNS) and several peripheral tissues, each holding distinctive 

specification for different melanocortins (Dores, 2009; Hadley and Dorr, 2006; Voisey et 

al., 2003). The melanocortins are members of a class of naturally occurring peptide 

hormones derived from a larger precursor molecule named pro-opiomelanocortin 

(POMC) (Hadley and Haskell, 1999; Raffin-Sanson et al., 2003). During post-

translational modification, the POMC molecule cleaves to form smaller melanocortins 

that, in turn, act as potential substrates for MCRs. Two melanocortin molecules, 

adrenocorticotropic hormone (ACTH) and melanocyte-stimulating hormones (MSH; α- 

and β-forms), are known to be involved in the regulation of anti-inflammatory response 

and hunger cycle via binding to MC3R and MC4R, respectively. The gene encoding 

MC3R has also been observed to be expressed in a range of peripheral cells including 

placenta, heart, gut, pancreas and macrophages (found within gout inflamed knee joint) 

(Getting et al., 2002). Getting et al. (2002) further explained that ACTH and other 

smaller fragments of α- and β-MSH can inhibit monosodium urate crystal-induced 

neutrophil migration and release of proinflammatory cytokines and chemokines in gouty 

arthritis. Development of severe IR and higher levels of adipose tissue inflammation have 

also been reported in experiments using MC4R and MC3R knockout mice, respectively 

(Trevaskis et al., 2007). 

 The MC3R gene has been classically known for its role in weight regulation, 

energy metabolism, and regulation of the cardiovascular system (Getting et al., 2002; 
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Rediger et al., 2012; Tao and Segaloff, 2004). Polymorphisms in this gene can cause the 

potential loss of receptor function and expression or defective receptor activation (Lee et 

al., 2007; Savastano et al., 2009). The selected SNP, rs3827103, is a missense variant 

within the MC3R gene that causes a substitution of valine (Val) to isoleucine (Ile) at 

codon 81, denoted as Val81Ile. Ile81 allele homozygosity has been reported to be 

associated with an increased risk of obesity and higher IR in children (Feng et al., 2005; 

Savastano et al., 2009). A familial study including data from T2DM patients also showed 

a marginal association between the Ile81 allele and increased IR in adult French 

Caucasians (Hani et al., 2001). More recent studies have also indicated the association of 

the Ile81 allele with significantly higher risk of developing MetS (Suazo et al., 2013). 

Alsmadi et al. (2014) also suggested a possible role of the Ile81 allele in elevated blood 

pressure and thus increased hypertension. 

 The MC4R gene is known for its role in regulating appetite, food intake and its 

associated behaviours and energy metabolism via signalling for α-MSH and agouti-

related peptide (AgRP). Common variants within/near the MC4R gene (including the 

MC4R variants selected for this study) have been associated with increased adiposity, 

reduced insulin sensitivity and higher BMI in GWA studies (Chambers et al., 2008; Loos 

et al., 2008). The variant rs17700633 is located 188 kb and rs17782313 is located 109 kb 

downstream of the MC4R gene. The literature has reported these variants to be involved 

in increasing the risk of obesity and its related phenotypes (explained hereafter). Large 

case-control studies have confirmed the association of the A allele of rs17700633 and the 

C allele of rs17782313 with obesity and increased BMI in several populations (Beckers et 

al., 2011; Srivastava et al., 2014; Zobel et al., 2009). Additionally, the same alleles have 

been reported to be significantly associated with higher intakes of total energy and dietary 

fat (Kring et al., 2010; Qi et al., 2008) and increased risk of diabetes in adults 

(Marcadenti et al., 2013; Mutombo et al., 2014). As both of these variants are located 

within non-coding regions, their direct influence on gene function is unclear. However, 

the presence of these variants is considered to alter the function of the gene as the pattern 

of phenotypic associations provided in the literature for these variants are similar to those 

mediated via altering the function of the MC4R gene (Zobel et al., 2009). 

 Although, the selected variants from the MCR genes have not been reported for 

their direct potential association with urate or gout, higher adiposity, weight gain and 
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diabetes are still strong risk factors/common comorbidities for gout (detailed in Chapter 

1). The pieces of evidence described above are supportive for strong role of MC4R and 

MC3R polymorphisms in the onset of obesity, decreased inflammatory response and 

increased insulin resistance. These facts, if incorporated into the hypothesis of this study, 

support the idea of a possible role of MetS-related variants in the aetiology of gout. 

4.2.2.1.3 Coronary heart disease associated variant 

 A CHD-associated variant, rs6903956, was also selected for this study. The SNP 

rs6903956 is an intronic variant located on chromosome 6, at position 24.1, within the 

ADTRP gene encoding the androgen-dependent tissue factor pathway inhibitor (TFPI) 

regulating protein (ADTRP). The ADTRP: rs6903956 variant is a comparatively nascent 

locus known to be associated with increased CHD susceptibility at GWAS level (Nikpay 

et al., 2015; Wang et al., 2011c). The ADTRP protein functions to up-regulate TFPI 

expression and maintain the anticoagulant protection of the endothelium to avoid 

endothelial dysfunction in response to androgen stimulus (Lupu et al., 2011). More 

recently, ADTRP gene expression has been shown to regulate the expression of other 

genes involved in the sustenance of cell cycle progression via proliferation and apoptosis 

(Luo et al., 2016). A study in the Han Chinese population reported that the A allele of 

rs6903956 can increase the risk of developing asymptomatic hyperuricaemia (aHU) in 

adults (Meng et al., 2015). 

4.2.2.2 Study participants 

 Four different data sets were used to assess the association of selected variants 

with gout. The first dataset was a sub-set of the New Zealand Gout Cohort (Section 1.2), 

including 1,872 European and 2,464 Polynesian case-control individuals from New 

Zealand. The NZ Gout Cohort was stratified into four ancestral groups as detailed in 

Section 1.2.1: NZ European (NZ EUR; 910 cases and 962 controls), Eastern Polynesian 

(EP; 510 cases and 698 controls), Western Polynesian (WP; 365 cases and 320 controls) 

and mixed Eastern and Western Polynesian (EPWP; 33 cases and 76 controls). The Māori 

dataset from NPH consisted of 270 gout cases and 192 controls. Data for the EP group 

were separately analysed in EPN (334 cases and 392 controls) and EPZ (157 cases and 

311 controls) sub-groups (details provided in Section 1.2.1). Two additional datasets of 

European gout case individuals were selected from the European Crystal Network Cohort 
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(EUROGOUT; n = 818) and the Arthritis Genomics Recruitment Initiative in Australia 

Cohort (AGRIA; n = 198) (details in Section 1.2). The gout cases from EUROGOUT and 

AGRIA Cohorts were combined with the NZ European dataset to increase the power of 

the study, hereafter referred to as ‘EUR (Combined European)’ dataset. The fourth 

dataset for gout association analysis was selected from the UK Biobank Gout Cohort 

(please refer to details in Section 1.2). This dataset included 2,432 gout cases and 102,989 

controls. Table 4.3 represents a summary of demographic details for these datasets. 

 Data for non-gout (control) individuals were sourced from four publicly-available 

datasets (detailed in Section 1.2.6 through 1.2.9). The information for individuals in these 

cohorts was only used for serum urate association analyses. The data were sourced for a 

total of 5,367 individuals in ARIC, 5,109 in FHS (Offspring and Generation 3), 1,432 in 

CARDIA and 2,421 individuals in CHS Cohort. Table 4.4 provides demographic and 

clinical details of these datasets. Analyses for serum urate association were also 

performed in NZ European and Polynesian non-gout individuals. For this purpose, any 

individuals who self-reported as taking diuretic medication or were on any other urate 

lowering therapy (ULT), had renal failure, gout or had first-degree relatives with gout 

were excluded from the various analyses. 
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Table 4.3: Demographic details of the datasets included in the study for serum urate (non-gout individuals only) and gout association 

analyses 

Population NZ Polynesian  European 

Sub-population EP WP EPWP 
 

NPH  NZ EUR UK Biobank EUROGOUT 
AGRI

A 

Group Gout 
Non-

gout 
Gout 

Non-

gout 
Gout 

Non-

gout 
Gout 

Non-

gout 
 Gout 

Non-

gout 
Gout Non-gout Gout Gout 

Baseline Information 

Total Participants 510 698 365 320 33 76 270 192  910 962 2432 102989 818 198 

Male, n (%) 
449 

(88.03) 
329 

(38.75) 
400 (88.49) 

201 
(56.94) 

34 
(85.00) 

43 
(51.80) 

226 
(83.70) 

107 
(50.95) 

 789 (82.87) 
523 

(54.53) 
2201 

(90.50) 
90414 
(87.78) 

703 (85.94) 
176 

(88.88) 

Age (years)^ 
56.21 ± 

12.97 

45.21 ± 

15.71 

48.88 ± 

12.65 

40.44 ± 

14.08 

41.67 ± 

13.21 

36.86 ± 

16.18 

57.93 ± 

12.96 

43.07 ± 

14.96 
 

63.64 ± 

13.01 

49.77 ± 

18.21 

60.59 ± 

6.56 

60.46 ± 

6.63 
62.25 ± 12.91 

59.80 ± 

11.41 

BMI (kg/m2)^ 
35.38 ± 

8.34 

32.33 ± 

7.84 

63.26 ± 

7.99 

34.45 ± 

6.68 

36.84 ± 

7.89 

33.64 ± 

6.84 

36.14 ± 

8.10 

30.62 ± 

5.88 
 

30.45 ± 

6.72 

27.71 ± 

5.83 

30.93 ± 

4.73 

27.64 ± 

4.41 
30.18 ± 7.95 

29.69 ± 

4.24 

Serum Urate (mmol L-1)^ 
0.41 ± 
0.11 

0.36 ± 
0.08 

0.44 ± 0.11 
0.39 ± 
0.09 

0.46 ± 
0.09 

0.38 ± 
0.11 

0.44 ± 
0.11 

0.36 ± 
0.08 

 0.39 ± 0.11 
0.34 ± 
0.10 

- - 0.42 ± 0.14 
0.33 ± 
0.12 

Comorbidities 

Type II Diabetes† 
27.59 

(83.30) 

13.91 

(85.03) 

22.40 

(93.92) 

16.15 

(88.64) 

22.5 

(100) 

15.18 

(95.18) 

34.03 

(95.97) 

6.34 

(97.61) 
 

85.12 

(98.84) 

5.84 

(94.08) 
- - 23.17 (55.09) 

64.70 

(25.37) 

Dyslipidaemia† 
48.97 

(77.16) 

14.73 

(80.27) 

49.64 

(91.32) 

15.45 

(85.67) 

39.47 

(95.00) 

11.84 

(91.56) 

50 

(95.47) 

18.81 

(96.19) 
 

48.59 

(97.05) 

17.32 

(89.83) 
- - 56.17 (51.07) 

53.84 

(19.40) 

Heart problems† 
40.11 

(84.40) 

13.11 

(85.84) 

20.36 

(95.87) 

5.93 

(91.08) 

22.5 

(100) 

8.64 

(97.59) 

36.31 

(95.47) 

11.11(98.

57) 
 

36.62 

(98.94) 

11.11 

(98.96) 
- - 10.77 (51.93) 

72.72 

(32.83) 

Hypertension† 
61.62 

(83.30) 
27.22 

(83.52) 
48.96 

(93.92) 
17.11 

(90.00) 
45.00 
(100) 

20.77 
(92.77) 

64.58 
(96.58) 

17.47 
(98.09) 

 
53.83 

(98.52) 
21.13 

(89.83) 
- - 72.14 (69.01) 

81.25 
(47.76) 

Kidney problems† 
24.14 

(82.83) 

3.77 

(76.79) 

18.73 

(92.62) 

3.52 

(84.32) 

21.05 

(95.00) 

4.34 

(83.13) 

11.76 

(93.96) 

2.23 

(85.23) 
 

22.88 

(98.21) 

5.51 

(46.99) 
- - 13.18 (50.07) 

70.00 

(29.85) 

Gout Characteristics 

On Diuretics/ULT† 
43.66 

(57.16) 
- 

26.25 
(82.86) 

- 
47.28 
(87.5) 

- 
18.51 

(33.33) 
-  

43.22 
(61.13) 

- - - 35.26 (61.83) - 

Gout attacks per year^ 
10.24 ± 

36.37 
- 

12.60 ± 

38.07 
- 

7.47 ± 

9.86 
- 

3.01 ± 

5.01 
-  

7.62 ± 

33.39 
- - - 3.42 ± 4.76 - 

Gout tophus† 
35.55 

(87.85) 
- 

44.31 

(91.54) 
- 40 (100) - 

8.29 

(96.98) 
-  

33.33 

(99.89) 
- - - 33.45 (77.61) 

43.13 

(76.11) 

NZ; New Zealand, EP; East Polynesian, WP; West Polynesian, EPWP; Mixture of East and West Polynesian, NPH; Māori cohort from Ngati Porou Hauora, NZ EUR; NZ European, UK; United 

Kingdom, EUROGOUT; European Crystal Network Gout Cohort, AGRIA; Arthritis Genomics Recruitment Initiative in Australia Gout Cohort, BMI; Body mass index, n (%); total number 

(percentage). ^Data are shown as mean ± standard deviation. †Data are shown as percentage reported with comorbidities (total percentage who answered the question of having comorbidities as 

‘yes’ or ‘no’), Data for the comorbidities are self-reported. Data presented as an average for five MetS-related variants genotyped through TaqMan PCR. The genotype success rate was 99.37% 

for rs4994, 98.99% for rs3827103, 98.89% for rs17700633, 98.93% for rs17782313 and 99.01% for rs6903956. 
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Table 4.4: Demographic details of publicly-available datasets used only for serum urate analysis in non-gout individuals 

Population ARIC FHS CARDIA CHS 

Baseline Information 

Total Participants 5367 5109 1432 2421 

Male, n (%) 2459 (45.81) 2360 (46.19) 671 (46.85) 987 (40.76) 

Age (years)^ 53.48 ± 5.58 36.99 ± 9.41 25.54 ± 3.33 72.13 ± 5.35 

BMI (kg/m2)^ 25.98 ± 4.32 25.81 ± 4.91 23.65 ± 3.94 25.87 ± 4.18 

Serum Urate (mmol L-1)^ 0.33 ± 0.07 0.30 ± 0.08 0.31 ± 0.07 0.31 ± 0.07 

Comorbidities 

Type II Diabetes† 2.92 (99.96) 0.72 (94.78) 0.49 (99.44) 6.21(99.71) 

Dyslipidaemia† - - 2.73 (97.28) - 

Heart problems† 1.76 (99.96) 0.48 (66.14) 5.83 (99.25) 7.98 (98.31) 

Hypertension† 6.12 (99.49) 0.99 (93.87) 7.41 (99.19) 17.71 (99.09) 

Kidney problems† - - 3.09 (100) 0 (99.46) 

ARIC; Atherosclerosis Risk in Community Study Cohort, FHS; Framingham Heart Study Cohort (Offspring and Generation 3), CARDIA; Coronary Artery Risk Development in (Young) 

Adults Study Cohort, CHS; Cardiovascular Health Study Cohort, BMI; Body mass index, n (%); total number (percentage). ^Data are shown as mean ± standard deviation. †Data are shown as 

percentage reported with comorbidities (total percentage who answered the question of having comorbidities as ‘yes’ or ‘no’), Data for the comorbidities are self-reported. 
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4.2.2.3 Genotyping 

 All five variants, rs4994, rs3827103, rs17700633, rs17782313 and rs6903956 

were genotyped over all European (NZ European, EUROGOUT and AGRIA) and NZ 

Polynesian serum samples. Genotyping was performed by an allelic discrimination assay 

i.e., TaqMan® SNP Genotyping assay (C_2215549_20; Applied Biosystems, Foster City, 

USA) following the instruction provided in the manufacturer’s protocol. The TaqMan 

SNP genotyping were auto-called via reporter dye signal plots on Lightcycler® 480 Real-

Time Polymerase Chain Reaction (RT-PCR) System (Roche Applied Science, 

Indianapolis, IN, USA). The details about the sources for genotype data for UK Biobank, 

ARIC, FHS, CARDIA and CHS cohorts are already described in Section 1.2. 

4.2.2.3.1 Genotype data imputation 

 Publicly-available European data sets used for serum urate analyses were missing 

the genotype data for a number of variants. In such groups, genotype data were imputed 

using 1000 Genomes haplotype data [phase 1; 2013, NCBI (National Center for 

Biotechnology Information) build 37] as a reference panel for all populations. A platform 

‘IMPUTE2’ was used for the purpose of imputation as described by Howie and Marchini 

(2011). Table 4.4 below provides the details of variants and populations for which the 

genotype data were imputed. 

Table 4.5: Details of variants and study cohorts for which the genotype data were 

imputed 

Variant Study Cohort Reference panel 
Imputation 

platform 

rs4994 ARIC, FHS, CHS, CARDIA 
1000 Genomes haplotype data 

(phase 1; 2013) 
IMPUTE2 

rs3827103 - 
1000 Genomes haplotype data 

(phase 1; 2013) 
IMPUTE2 

rs17700633 CHS 
1000 Genomes haplotype data 

(phase 1; 2013) 
IMPUTE2 

rs17782313 CHS 
1000 Genomes haplotype data 

(phase 1; 2013) 
IMPUTE2 

rs6903956 CHS 
1000 Genomes haplotype data 

(phase 1; 2013) 
IMPUTE2 

ARIC; Atherosclerosis Risk in Community Study Cohort, FHS; Framingham Heart Study Cohort (Offspring and 

Generation 3), CARDIA; Coronary Artery Risk Development in (Young) Adults Study Cohort, CHS; Cardiovascular 

Health Study Cohort. 
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4.2.2.4 Statistical analysis 

 A multiply-adjusted regression analysis approach was used to measure the 

association of the five MetS-related variants (explanatory variables) with gout (binary 

response variables) and serum urate (continuous response variable). All logistic and linear 

regression analyses were done using statistical software R version 3.3.2 (RCore, 2016). 

Any participant with missing data for any variable was excluded from the various 

analyses. Allelic ORs and β-estimates were calculated for each variant including age, sex 

and BMI as primary adjustors in the regression model. For Polynesian individuals, self-

reported grandparental ancestry was included as an additional adjustor in the various 

analyses. To increase the power of analysis, all NZ Polynesian subgroups were combined 

separately and with the European data sets in meta-analysis using the Meta package 

within R (http://CRAN.R-project.org/package=meta, 2014) using a fixed-effect model. 

For a meta-analysis showing heterogeneity (PHet < 0.05), the fixed-effect model was 

replaced with a random-effect model. A P ≤ 0.05 was used to indicate the threshold for 

nominal statistical significance between response and explanatory variables in regression 

and meta models. 

 Linkage disequilibrium was calculated between two MC4R variants using the 

information from 1000 Genome database (http://browser.1000genomes.org/) for both 

European and Chinese datasets. Haploview v4.2 was used to generate LD plots where r2 

≥ 60 was set as the threshold for significant LD. Power to detect a POR < 0.05 was 

calculated in the NZ Polynesian, European and UK Biobank data sets following Johnson 

et al. (2001) methodology. Additionally, power to detect an effect size (ß) of 0.02 was 

calculated for non-gout datasets using the methodology described by Cohen (1988) and 

Selya et al. (2012). 

4.2.3 Results 

 The two selected variants from the MC4R gene, rs17700633 and rs17782313, 

were not in LD with each other, both in the European and Chinese sample sets in the 

1000 Genomes database (Figure 4.2). 
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Figure 4.2: Linkage disequilibrium (LD) plot indicating ‘R-squared/r2’ values between the 2 MC4R variants in 

(A) European and (B) Chinese populations. An r2 ≥ 60 in the above plot indicates LD between the particular 

variants. Information for variant location, rs ID and LD values are from 1000 Genome database 

(http://browser.1000genomes.org/). The plots were generated using Haploview v4.2. 

 Both NZ Polynesian and combined European data sets were highly powered (> 

90%) to detect a moderate effect (OR = 1.5) at an altered allele frequency > 0.1 (Figure 

4.3). The UK Biobank data set was highly powered (100%) to detect a weaker effect (OR 

= 1.2) at an altered allele frequency > 0.1 (Figure 4.4). 

 All non-gout European sample sets used for serum urate association analysis were 

adequately powered (> 80%) to detect an effect size (ß) of > 0.02 (Figure 4.5). 

Figure 4.3: Association detection power in New Zealand European (A) and Polynesian (B) sample sets across a 

range of odds ratio (effect sizes) and altered allele frequencies. The broken red line indicates an adequate 

detection power ≥ 80%. 

A B 

A B 
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Figure 4.4: Association detection power in the UK Biobank dataset across a range of odds ratio (effect sizes) and 

altered allele frequencies. The broken red line indicates an adequate detection power ≥ 80%.  

 

 

 

 

 

 

 

 

Figure 4.5: Detection power in the European datasets used for serum urate association analyses across a range of 

effect sizes. The broken red line indicates an adequate detection power ≥ 80%. 
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4.2.3.1 Association analysis results for the ADRB3 variant 

 The G allele (Arg64 allele) of rs4994 was significantly associated with reduced 

risk of gout in the UK Biobank data (OR = 0.88, P = 0.04) after including age, sex and 

BMI as potential confounders. For the NZ Polynesian datasets, similar association was 

observed only in the WP sample set (OR = 0.62, PUnadjusted = 0.04). However, the 

association became insignificant when adjusted for potential confounders (OR = 0.61, P = 

0.08) (Table 4.6). The G allele did not show any association with gout in any other 

Polynesian and European data set (Table 4.6). The protective effect of the G allele was 

still observed in WP sample set when adjusted for T2DM (OR = 0.57, P = 0.05), 

hypertension (OR = 0.56, P = 0.05) and renal dysfunction (OR = 0.53, P = 0.03) (Table 

4.7). Including renal dysfunction as a potential adjustor also showed that the addition of 

each G allele was significantly associated with increasing susceptibility to gout by 86% in 

the EPZ data set (OR = 1.86, P = 0.05) (Table 4.7). In order to increase the power of 

analysis, all European and NZ Polynesian case-control groups were combined together 

and separately with the UK Biobank group. No significant association of the G allele of 

rs4994 with gout was observed for the combined NZ Polynesian data set (OR = 0.98, P = 

0.88, PHet = 0.10) (Table 4.9, Appendix B Figure 4.1). However, on combining the 

European and UK Biobank data sets together, the G allele showed a significant protective 

association with gout (OR = 0.89, P = 0.03, PHet = 0.22) (Table 4.9, Appendix B Figure 

4.1). The protective association was sustained when all Polynesian and European data 

sets were combined together in single meta-analysis (OR = 0.91, P = 0.04, PHet = 0.14) 

(Table 4.9, Appendix B Figure 4.1). 

 When tested for an association with serum urate in non-gout sample sets, the 

Arg64 (G) allele of rs4994 showed a strong positive association with serum urate only in 

WP individuals (β (mmol L-1) = 0.036, P = 0.004) (Table 4.8). The G allele did not show 

any association with serum urate in any other sample set (Table 4.8). Combining all NZ 

Polynesian data sets together by a meta-analysis did not show any association of the G 

allele of rs4994 with urate (β (mmol L-1) = 0.008, P = 0.16, PHet = 0.08) (Table 4.9, 

Appendix B Figure 4.2). Also, no association of the G allele of rs4994 with urate was 

found when all European sample sets were combined together (β (mmol L-1) = 0.0003, P 

= 0.84, PHet = 0.62) (Table 4.9, Appendix B Figure 4.2) and with Polynesian sample sets 

(β (mmol L-1) = 0.0007, P = 0.61, PHet = 0.19) (Table 4.9, Appendix B Figure 4.2). 
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4.2.3.2 Association analysis results for the MC3/4R variants 

4.2.3.2.1 MC3R: rs3827103 

 The A allele (Ile81 allele) of rs3827103 was significantly associated with a 

decreased risk of gout in the EPWP data set (OR = 0.43, PUnadjusted = 0.02) (Table 4.6). 

However, including age, sex, BMI and grand-parental ancestry estimates as potential 

adjustors weakened the association (OR = 0.44, P = 0.07) (Table 4.6). A similar but 

weaker trend of protective association between the Ile81 allele and gout risk was 

observed in the EPZ data set (OR = 0.64, P = 0.06) in multiply-adjusted regression (Table 

4.6). No such association was observed in any other NZ Polynesian and/or European data 

sets (Table 4.6). Including various comorbidities in the analyses showed a nominal 

protective association between the A allele of rs3827103 and gout in the EPZ, EPWP and 

EUR sample sets when adjusted for hypertension (OR = 0.60, P = 0.05), renal 

dysfunction (OR = 0.41, P = 0.05) and dyslipidaemia (OR = 0.75, P = 0.05), respectively 

(Table 4.7). The NZ Polynesian sample showed a trend towards protective association of 

the Ile81 allele with gout when combined in meta-analysis (OR = 0.85, P = 0.07, PHet = 

0.22) (Table 4.9, Appendix B Figure 4.3). Increasing the sample size in meta-analysis 

(combining all NZ Polynesian and European datasets) indicated a positive, yet no 

difference in effect size, association between the A allele and gout (OR = 0.92, P = 0.03, 

PHet = 0.27) (Table 4.9, Appendix B Figure 4.3) in comparison to when all European 

samples were combined together (OR = 0.92, P = 0.14, PHet = 0.27) (Table 4.9, Appendix 

B Figure 4.3). 

 Linear regression analysis was performed to test for association of the Ile81 allele 

of rs3827103 with urate in non-gout data sets. A weak trend of both negative and positive 

association of the A allele with urate was observed in the EPN (β (mmol L-1) = -0.01, P = 

0.06) and EPZ (β (mmol L-1) = 0.02, P = 0.06) sample sets, which did not retain after 

adjustment for potential confounders (EPN: β (mmol L-1) = -0.001, P = 0.10; EPZ: (β 

(mmol L-1) = 0.004, P = 0.66) (Table 4.8). Meta-analysing NZ Polynesian ( (mmol L-1) 

= -0.001, P = 0.88, PHet = 0.25) (Table 4.9, Appendix B Figure 4.4) and European ( 

(mmol L-1) = 0.0001, P = 0.95, PHet = 0.62) (Table 4.9, Appendix B Figure 4.4) 

populations separately and together ( (mmol L-1) = 0.0001, P = 0.99, PHet = 0.53) also 
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did not show any association of the A allele with serum urate (Table 4.9, Appendix B 

Figure 4.4). 

4.2.3.2.2 MC4R: rs17700633 

 The A allele of rs17700633 did not show any association with gout in any of the 

Polynesian and European data sets (Table 4.6). There was only a weak trend of protective 

association of the A allele with gout in the WP sample set in adjusted analysis (OR = 0.19, 

P = 0.08) (Table 4.6). The association followed a similar pattern when adjusted for 

comorbid conditions, T2DM (OR = 0.73, P = 0.06) and renal dysfunction (OR = 0.76, P 

= 0.09) (Table 4.7). Combining the Polynesian and European study groups together (OR 

= 1.03, P = 0.31, PHet = 0.48) (Table 4.9, Appendix B Figure 4.5) and separately 

(Polynesian: OR = 0.97, P = 0.76, PHet = 0.29; European: OR = 1.03, P = 0.24, PHet = 

0.76) (Table 4.9, Appendix B Figure 4.5) in meta-analyses did not show any association 

of the A allele with gout (Table 4.9). 

 No association of the A allele of rs17700633 with serum urate was found in both 

unadjusted and adjusted regression analyses in any of the study groups (Table 4.8). 

However, combining the Polynesian and European data sets together in meta-analysis 

indicated a positive but weak association of the A allele with serum urate ( (mmol L-1) = 

0.001, P = 0.07, PHet = 0.96) (Table 4.9, Appendix B Figure 4.6). No such trend was 

observed when the Polynesian ( (mmol L-1) = 0.005, P = 0.18, PHet = 0.97) and 

European ( (mmol L-1) = 0.001, P = 0.12, PHet = 0.79) data sets were combined 

separately (Table 4.9, Appendix B Figure 4.6). 

4.2.3.2.3 MC4R: rs17782313 

 The C allele of rs17782313 was significantly associated with an increased risk of 

gout in the EPZ sample set (OR = 1.51, PUnadjusted = 0.03). The association was, however, 

not significant when potential confounders were added as adjustors in the analysis (OR = 

1.56, P = 0.11) (Table 4.6). In the EUR group, each additional C allele was found to be 

associated with a 23% increase in gout risk (OR = 1.23, P = 0.02) (Table 4.6). No such 

association was observed for any other population group (Table 4.6). The association 

followed a consistent, but stronger, pattern after including renal dysfunction as an 

adjustor in the analysis (OR = 1.23, P = 0.01) (Table 4.7). Combining European datasets 
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in meta-analysis showed a 7% increase in the risk of developing gout with each additional 

C allele (OR = 1.07, P = 0.02, PHet = 0.11) (Table 4.9, Appendix B Figure 4.7). The 

association retained a similar pattern in Polynesian and European combined meta-analysis 

(OR = 1.06, P = 0.03, PHet = 0.23) that was not observed when only Polynesian data sets 

were combined (OR = 0.96, P = 0.77, PHet = 0.23) (Table 4.9, Appendix B Figure 4.7). 

 The C allele of rs17782313 was found to be positively associated with serum 

urate concentrations in non-gout individuals from the FHS data set (β (mmol L-1) = 0.004, 

P = 0.01) (Table 4.8). A strong association of the C allele was also observed in the CHS 

data set (β (mmol L-1) = 0.006, PUnadjusted = 0.008), which became weaker when adjusted 

for covariates (β (mmol L-1) = 0.004, P = 0.07) (Table 4.8). Meta-analysis indicated a 

positive association of the C allele of rs17782313 with serum urate in non-gout European 

individuals ( (mmol L-1) = 0.002, P = 0.007, PHet = 0.47) (Table 4.9, Appendix B Figure 

4.8). No such association was observed in the combined Polynesian data set ( (mmol L-

1) = 0.004, P = 0.52, PHet = 0.57) (Table 4.9, Appendix B Figure 4.8). However, when the 

Polynesian and European data sets were combined together, the C allele showed a 

positive association with serum urate ( (mmol L-1) = 0.002, P = 0.006, PHet = 0.69) 

(Table 4.9, Appendix B Figure 4.8). 

4.2.3.3 Association analysis results for the ADTRP variant 

 No association was observed with the A allele of rs6903956 and gout in any of the 

NZ Polynesian or European data sets (Table 4.6). The association remained insignificant 

even after including comorbidities, T2DM, hypertension, renal dysfunction and 

dyslipidaemia as potential confounders (Table 4.7). Moreover, the A allele was not 

associated with gout when Polynesian and European data sets were combined together 

(OR = 0.99, P = 0.71, PHet = 0.74) and separately (Polynesian: OR = 1.02, P = 0.83, PHet 

= 0.49; European: OR = 0.98, P = 0.66, PHet = 0.95) in meta-analyses (Table 4.9, 

Appendix B Figure 4.9). 

 The A allele was found to be negatively associated with serum urate in the NPH 

data set (β (mmol L-1) = -0.035, P = 0.004) (Table 4.8). However, the same allele 

indicated a positive association with serum urate concentrations in the ARIC European 

data set (β (mmol L-1) = 0.002, P = 0.05) (Table 4.8). Combining all NZ Polynesian data 

sets together in a meta-analysis showed significant negative association of the A allele 
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with serum urate ( (mmol L-1) = -0.011, P = 0.02, PHet = 0.08) (Table 4.9, Appendix B 

Figure 4.10). No such association was observed when all European datasets were 

combined ( (mmol L-1) = 0.001, P = 0.11, PHet = 0.61) and when European and 

Polynesian data sets were combined together in meta-analyses ( (mmol L-1) = 0.001, P = 

0.22, PHet = 0.05) (Table 4.9, Appendix B Figure 4.10). 
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Table 4.6: Genotype/allele frequencies and association analysis of MetS-related variants with gout 

Population Group Genotype/Altered Allele Frequency 
Unadjusted Adjusted* HWE 

OR [95% CI] P OR [95% CI] P 
 

ADRB3: rs4994 

  
AA AG GG G 

     

EPN 
Case 266 (0.796) 66 (0.197) 2 (0.006) 70 (0.10) 

0.89 [0.64 ; 1.25] 0.53 1.08 [0.69 ; 1.68] 0.72 
0.33 

Control 306 (0.780) 82 (0.209) 4 (0.011) 90 (0.114) 0.56 

EPZ 
Case 122 (0.777) 33 (0.210) 2 (0.012) 37 (0.117) 

1.49 [0.95 ; 2.35] 0.07 1.66 [0.91 ; 3.08] 0.09 
0.89 

Control 262 (0.842) 47 (0.151) 2 (0.006) 51 (0.081) 0.94 

WP 
Case 336 (0.915) 31 (0.084) 0 (0.000) 31 (0.042) 

0.62 [0.38 ; 0.99] 0.04 0.61 [0.34 ; 1.06] 0.08 
0.39 

Control 272 (0.877) 34 (0.109) 4 (0.012) 42 (0.067) 0.02 

EPWP 
Case 27 (0.931) 2 (0.069) 0 (0.000) 2 (0.034) 

0.31 [0.04 ; 1.21] 0.13 0.31 [0.04 ; 1.44] 0.17 
0.84 

Control 57 (0.814) 13 (0.185) 0 (0.000) 13 (0.092) 0.39 

NPH 
Case 213 (0.803) 52 (0.196) 0 (0.000) 52 (0.098) 

1.07 [0.66 ; 1.73] 0.77 0.95 [0.47 ; 1.90] 0.89 
0.07 

Control 160 (0.833) 28 (0.144) 4 (0.020) 36 (0.093) 0.05 

EUR 
Case 1397 (0.838) 262 (0.157) 7 (0.004) 276 (0.083) 

1.00 [0.76 ; 1.30] 0.99 1.11 [0.77 ; 1.61] 0.57 
0.15 

Control 801 (0.834) 151 (0.157) 4 (0.004) 159 (0.083) 0.27 

UK Biobank 
Case 2099 (0.863) 321 (0.132) 12 (0.004) 345 (0.071) 

0.85 [0.78 ; 0.97] 0.02 0.88 [0.79 ; 0.99] 0.04 
0.94 

Control 87102 (0.845) 15252 (0.148) 635 (0.006) 16522 (0.080) 0.24 

MC3R: rs3827103 

 
GG AG AA A 

     

EPN 
Case 128 (0.389) 147 (0.446) 54 (0.164) 255 (0.387) 

0.95 [0.77 ; 1.18] 0.69 1.04 [0.78 ; 1.38] 0.77 
0.28 

Control 133 (0.341) 204 (0.523) 53 (0.135) 310 (0.397) 0.06 

EPZ 
Case 88 (0.560) 61 (0.388) 8 (0.051) 77 (0.245) 

1.05 [0.76 ; 1.45] 0.73 0.64 [0.39 ; 1.02] 0.06 
0.53 

Control 179 (0.581) 113 (0.366) 16 (0.051) 145 (0.235) 0.73 

WP 
Case 239 (0.654) 108 (0.295) 18 (0.049) 144 (0.197) 

0.97 [0.74 ; 1.26] 0.82 0.79 [0.57 ; 1.09] 0.15 
0.21 

Control 203 (0.636) 103 (0.322) 13 (0.041) 129 (0.202) 0.98 

EPWP 
Case 20 (0.606) 13 (0.393) 0  (0.000) 13 (0.196) 

0.43 [0.21 ; 0.88] 0.02 0.44 [0.17 ; 1.04] 0.07 
0.15 

Control 32 (0.421) 36 (0.473) 8 (0.105) 52 (0.342) 0.64 

NPH Case 84 (0.381) 104 (0.472) 32 (0.145) 168 (0.381) 0.90 [0.67 ; 1.21] 0.49 0.91 [0.61 ; 1.39] 0.68 0.98 
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Control 58 (0.308) 108 (0.574) 22 (0.117) 152 (0.404) 0.01 

EUR 
Case 1427 (0.857) 229 (0.137) 9 (0.005) 247 (0.074) 

0.89 [0.72 ; 1.09] 0.27 0.81 [0.61 ; 1.06] 0.12 
0.95 

Control 812 (0.844) 141 (0.146) 9 (0.009) 159 (0.082) 0.31 

UK Biobank 
Case 2057 (0.845) 366 (0.150) 9 (0.004) 384 (0.078) 

0.94 [0.85 ; 1.05] 0.34 0.96 [0.86 ; 1.06] 0.46 
0.08 

Control 86619 (0.841) 15689 (0.152) 681 (0.006) 17051 (0.082) 0.31 

MC4R: rs17700633 

  
GG AG AA A 

     

EPN 
Case 128 (0.455) 125 (0.444) 28 (0.099) 181 (0.322) 

1.14 [0.89 ; 1.45] 0.28 1.14 [0.85 ; 1.54] 0.36 
0.75 

Control 188 (0.484) 171 (0.441) 29 (0.074) 229 (0.295) 0.24 

EPZ 
Case 67 (0.527) 50 (0.393) 10 (0.078) 70 (0.275) 

1.10 [0.79 ; 1.52] 0.56 1.21 [0.78 ; 1.91] 0.38 
0.87 

Control 169 (0.555) 114 (0.375) 21 (0.069) 156 (0.256) 0.76 

WP 
Case 246 (0.677) 102 (0.281) 15 (0.041) 132 (0.181) 

0.84 [0.65 ; 1.09] 0.19 0.75 [0.55 ; 1.03] 0.08 
0.28 

Control 205 (0.641) 95 (0.296) 20 (0.062) 135 (0.211) 0.05 

EPWP 
Case 19 (0.575) 14 (0.424) 0  (0.000) 14 (0.212) 

0.68 [0.34 ; 1.29] 0.26 0.77 [0.35 ; 1.64] 0.52 
0.12 

Control 42 (0.552) 24 (0.315) 10 (0.131) 44 (0.289) 0.04 

NPH 
Case 114 (0.518) 94 (0.427) 12 (0.545) 118 (0.268) 

0.91 [0.66 ; 1.26] 0.6 0.95 [0.61 ; 1.51] 0.84 
0.18 

Control 92 (0.473) 81 (0.437) 12 (0.064) 105 (0.283) 0.29 

EUR 
Case 770 (0.464) 726 (0.437) 162 (0.097) 1050 (0.316) 

1.07 [0.95 ; 1.21] 0.23 1.01 [0.85 ; 1.19] 0.91 
0.63 

Control 475 (0.494) 394 (0.410) 92 (0.095) 578 (0.300) 0.43 

UK Biobank 
Case 1150 (0.482) 1016 (0.426) 217 (0.091) 1450 (0.304) 

1.03 [0.97 ; 1.11] 0.23 1.04 [0.97 ; 1.11] 0.27 
0.72 

Control 49892 (0.495) 42032 (0.417) 8829 (0.087) 59690 (0.296) 0.86 

MC4R: rs17782313 

  
TT CT CC C 

     

EPN 
Case 241 (0.899) 21 (0.078) 6 (0.022) 33 (0.061) 

1.11 [0.71 ; 1.71] 0.65 1.12 [0.64 ; 1.96] 0.68 
1.40E-07 

Control 347 (0.892) 41 (0.105) 1 (0.002) 43 (0.055) 0.85 

EPZ 
Case 78 (0.634) 40 (0.325) 5 (0.040) 50 (0.203) 

1.51 [1.02 ; 2.22] 0.03 1.56 [0.91 ; 2.76] 0.11 
0.96 

Control 222 (0.730) 76 (0.250) 6 (0.019) 88 (0.144) 0.86 

WP 
Case 220 (0.700) 79 (0.251) 15 (0.047) 109 (0.173) 

0.88 [0.67 ; 1.16] 0.39 0.83 [0.60 ; 1.16] 0.29 
0.02 

Control 209 (0.655) 97 (0.304) 13 (0.041) 123 (0.192) 0.68 

EPWP 
Case 21 (0.700) 9 (0.300) 0  (0.000) 9 (0.15) 

0.66 [0.28 ; 1.38] 0.29 0.61 [0.22 ; 1.44] 0.27 
0.33 

Control 49 (0.644) 21 (0.276) 6 (0.078) 33 (0.217) 0.11 

NPH Case 192 (0.868) 27 (0.1222) 2 (0.009) 31 (0.070) 1.18 [0.69 ; 2.07] 0.53 0.86 [0.41 ; 1.84] 0.70 0.34 



4 | Metabolic Syndrome 

 171 

Control 167 (0.893) 18 (0.096) 2 (0.012) 22 (0.058) 0.07 

EUR 
Case 925 (0.554) 629 (0.376) 115 (0.068) 859 (0.257) 

1.12 [0.99 ; 1.25] 0.06 1.23 [1.03 ; 1.49] 0.02 
0.56 

Control 566 (0.589) 339 (0.352) 56 (0.058) 451 (0.234) 0.57 

UK Biobank 

Case 1394 (0.573) 893 (0.367) 145 (0.059) 1183 (0.243) 

1.05 [0.98 ; 1.13] 0.12 1.05 [0.98 ; 1.12] 0.13 

0.91 

Control 60408 (0.586) 
37009 

(0.359) 
5572 (0.054) 48153 (0.233) 0.32 

ADTRP: rs6903956 

  
GG AG AA A 

     

EPN 
Case 254 (0.765) 73 (0.219) 5 (0.015) 83 (0.125) 

0.83 [0.61 ; 1.14] 0.26 0.95 [0.64 ; 1.44] 0.83 
0.92 

Control 282 (0.723) 103 (0.264) 5 (0.012) 113 (0.144) 0.19 

EPZ 
Case 88 (0.567) 58 (0.374) 9 (0.058) 76 (0.245) 

0.89 [0.64 ; 1.22] 0.48 1.04 [0.66 ; 1.63] 0.85 
0.89 

Control 164 (0.539) 118 (0.388) 22 (0.072) 162 (0.266) 0.90 

WP 
Case 313 (0.778) 85 (0.211) 4 (0.010) 93 (0.115) 

0.83 [0.61 ; 1.15] 0.27 0.83 [0.57 ; 1.24] 0.37 
0.51 

Control 239 (0.749) 74 (0.232) 6 (0.018) 86 (0.134) 0.92 

EPWP 
Case 22 (0.666) 11 (0.333) 0 (0.000) 11 (0.166) 

1.33 [0.59 ; 2.90] 0.47 1.81 [0.65 ; 4.95] 0.24 
0.25 

Control 58 (0.783) 13 (0.175) 3 (0.040) 19 (0.128) 0.06 

NPH 
Case 182 (0.674) 81 (0.300) 7 (0.025) 95 (0.176) 

1.22 [0.85 ; 1.77] 0.27 1.33 [0.80 ; 2.24] 0.26 
0.56 

Control 138 (0.722) 49 (0.256) 4 (0.021) 57 (0.149) 0.88 

EUR 
Case 604 (0.372) 791 (0.487) 227 (0.140) 1345 (0.414) 

0.99 [0.88 ; 1.12] 0.91 0.99 [0.84 ; 1.17] 0.93 
0.21 

Control 361 (0.377) 453 (0.473) 142 (0.148) 737 (0.385) 0.99 

UK Biobank 
Case 940 (0.386) 1137 (0.467) 355 (0.145) 1847 (0.379) 

0.98 [0.93 ; 1.05] 0.66 0.99 [0.93 ; 1.04] 0.67 
0.71 

Control 39294 (0.381) 48551 (0.471) 15144 (147) 78839 (0.383) 0.46 

*All values are adjusted for age, sex and body mass index, plus, for grand-parental ancestry estimates for Polynesian datasets. EPN: East Polynesian subjects with high EP ancestry, EPZ: East 

Polynesian subjects with low EP ancestry, WP: West Polynesian, EPWP; Mixture of East and West Polynesian, NPH; Māori cohort from Ngati Porou Hauora, EUR; NZ European, EUROGT 

(European Crystal Network Gout Cohort) and AGRIA (Arthritis Genomics Recruitment Initiative in Australia Gout Cohort) combined, UK Biobank; United Kingdom Biobank Cohort. OR 

[95% CI]; Odds ratio [95% confidence interval], P = p-value for ORs, HWE; Values for Hardy Weinberg Equilibrium. 
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Table 4.7: Association analysis of MetS-related variants with gout adjusted for comorbidities 

Population 
Baseline adjustments 

Comorbidities 

T2DM* 
 

Hypertension* 
 

Renal dysfunction* 
 

Dyslipidaemia* 
 

OR [95% CI] P OR [95% CI] P OR [95% CI] P OR [95% CI] P OR [95% CI] P 

ADRB3: rs4994 

EPN 1.08 [0.69 ; 1.68] 0.72 1.03 [0.66 ; 1.62] 0.86 1.08 [0.69 ; 1.70] 0.72 0.93 [0.58 ; 1.49] 0.77 0.92 [0.14 ; 1.10] 0.72 

EPZ 1.66 [0.91 ; 3.08] 0.09 1.78 [0.96 ; 3.34] 0.06 1.56 [0.80 ; 3.05] 0.18 1.86 [0.98 ; 3.60] 0.05 1.72 [0.90 ; 3.13] 0.09 

WP 0.61 [0.34 ; 1.06] 0.08 0.57 [0.32 ; 1.01] 0.05 0.56 [0.31 ; 1.01] 0.05 0.53 [0.29 ; 0.95] 0.03 0.62 [0.33 ; 1.13] 0.12 

EPWP 0.31 [0.04 ; 1.44] 0.17 0.31 [0.04 ; 1.45] 0.17 0.35 [0.04 ; 1.76] 0.24 0.41 [0.05 ; 2.02] 0.31 0.61 [0.07 ; 3.30] 0.58 

NPH 0.95 [0.47 ; 1.90] 0.89 0.93 [0.46 ; 1.89] 0.85 0.92 [0.45 ; 1.90] 0.83 0.98 [0.48 ; 1.98] 0.96 0.96 [0.47 ; 1.94] 0.91 

EUR 1.11 [0.77 ; 1.61] 0.57 1.12 [0.77 ; 1.63] 0.55 1.12 [0.76 ; 1.65] 0.56 1.11 [0.76 ; 1.63] 0.58 1.13 [0.11 ; 0.63] 0.52 

MC3R: rs3827103 

EPN 1.04 [0.78 ; 1.38] 0.77 1.03 [0.77 ; 1.37] 0.81 1.06 [0.79 ; 1.43] 0.65 1.05 [0.78 ; 1.42] 0.66 1.01 [0.73 ; 1.37] 0.96 

EPZ 0.64 [0.39 ; 1.02] 0.06 0.65 [0.40 ; 1.04] 0.08 0.60 [0.36 ; 1.00] 0.05 0.68 [0.41 ; 1.11] 0.12 0.74 [0.45 ; 1.21] 0.24 

WP 0.79 [0.57 ; 1.09] 0.15 0.77 [0.56 ; 1.07] 0.13 0.79 [0.57 ; 1.10] 0.16 0.78 [0.56 ; 1.08] 0.14 0.87 [0.62 ; 1.22] 0.42 

EPWP 0.44 [0.17 ; 1.04] 0.07 0.43 [0.17 ; 1.01] 0.06 0.44 [0.16 ; 1.08] 0.08 0.41 [0.14 ; 0.98] 0.05 0.56 [0.19 ; 1.45] 0.25 

NPH 0.91 [0.61 ; 1.39] 0.68 0.87 [0.56 ; 1.34] 0.53 0.84 [0.55 ; 1.29] 0.45 0.90 [0.58 ; 1.39] 0.64 0.91 [0.59 ; 1.38] 0.65 

EUR 0.81 [0.61 ; 1.06] 0.12 0.77 [0.58 ; 1.03] 0.08 0.77 [0.58 ; 1.04] 0.08 0.81 [0.61 ; 1.08] 0.15 0.75 [0.56 ; 1.01] 0.05 

MC4R: rs17700633 

EPN 1.14 [0.85 ; 1.54] 0.36 1.18 [0.87 ; 1.59] 0.27 1.17 [0.86 ; 1.59] 0.29 1.16 [0.86 ; 1.58] 0.31 1.27 [0.91 ; 1.78] 0.14 

EPZ 1.21 [0.78 ; 1.91] 0.38 1.24 [0.79 ; 1.96] 0.33 1.21 [0.75 ; 1.95] 0.42 1.27 [0.79 ; 2.04] 0.32 1.28 [0.81 ; 2.06] 0.28 

WP 0.75 [0.55 ; 1.03] 0.08 0.73 [0.53 ; 1.01] 0.06 0.79 [0.57 ; 1.09] 0.15 0.76 [0.55 ; 1.04] 0.09 0.77 [0.55 ; 1.07] 0.12 
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EPWP 0.77 [0.35 ; 1.64] 0.52 0.76 [0.33 ; 1.64] 0.50 0.82 [0.36 ; 1.81] 0.63 0.92 [0.41 ; 2.06] 0.85 0.85 [0.36 ; 1.94] 0.71 

NPH 0.95 [0.61 ; 1.51] 0.84 0.98 [0.61 ; 1.57] 0.95 0.97 [0.62 ; 1.55] 0.92 0.98 [0.61 ; 1.58] 0.95 1.02 [0.63 ; 1.63] 0.94 

EUR 1.01 [0.85 ; 1.19] 0.91 1.01 [0.84 ; 1.21] 0.91 1.02 [0.81 ; 1.15] 0.70 1.00 [0.84 ; 1.20] 0.94 1.01 [0.83 ; 1.21] 0.97 

MC4R: rs17782313 

EPN 1.12 [0.64 ; 1.96] 0.68 1.11 [0.63 ; 1.99] 0.7 0.13 [0.65 ; 2.01] 0.66 1.24 [0.71 ; 2.22] 0.45 0.85 [0.45 ; 1.59] 0.61 

EPZ 1.56  [0.91 ; 2.76] 0.11 1.55 [0.89 ; 2.74] 0.12 1.50 [0.84 ; 2.69] 0.16 1.71 [0.95 ; 3.11] 0.07 1.60 [0.91 ; 2.91] 0.11 

WP 0.83 [0.60 ; 1.16] 0.29 0.84 [0.61 ; 1.17] 0.32 0.92 [0.65 ; 1.31] 0.65 0.86 [0.62 ; 1.21] 0.41 0.86 [0.61 ; 1.22] 0.41 

EPWP 0.61 [0.22 ; 1.44] 0.27 0.59 [0.22 ; 1.42] 0.27 0.54 [0.18 ; 1.38] 0.22 0.57 [0.19 ; 1.44] 0.26 0.49 [0.16 ; 1.29] 0.17 

NPH 0.86 [0.41 ; 1.84] 0.70 0.83 [0.38 ; 1.81] 0.64 0.83 [0.38 ; 1.81] 0.63 0.85 [0.39 ; 1.89] 0.69 0.91 [0.42 ; 2.01] 0.81 

EUR 1.23 [1.03 ; 1.49] 0.02 1.19 [0.98 ; 1.44] 0.06 1.17 [0.97 ; 1.43] 0.09 1.23 [1.02 ; 1.51] 0.01 1.19 [0.97 ; 1.45] 0.08 

ADTRP: rs6903956 

EPN 0.95 [0.63 ; 1.44] 0.83 0.95 [0.62 ; 1.44] 0.81 0.93 [0.61 ; 1.44] 0.75 0.84 [0.54 ; 1.29] 0.43 0.81 [0.51 ; 1.28] 0.37 

EPZ 1.04 [0.66 ; 1.63] 0.85 1.03 [0.65 ; 1.62] 0.88 1.15 [0.72 ; 1.85] 0.55 1.08 [0.67 ; 1.74] 0.72 1.09 [0.68 ; 1.75] 0.71 

WP 0.83 [0.56 ; 2.24] 0.37 0.78 [0.52 ; 1.16] 0.22 0.85 [0.56 ; 1.27] 0.42 0.84 [0.57 ; 1.26] 0.40 0.94 [0.62 ; 1.44] 0.79 

EPWP 1.81 [0.65 ; 4.95] 0.24 1.81 [0.65 ; 4.92] 0.24 1.82 [0.62 ; 5.17] 0.25 1.81 [0.61 ; 5.21] 0.27 1.36 [0.41 ; 4.24] 0.59 

NPH 1.33 [0.81 ; 2.24] 0.26 1.24 [0.75 ; 2.11] 0.39 1.21 [0.72 ; 2.08] 0.47 1.22 [0.73 ; 2.08] 0.43 0.98 [0.82 ; 1.17] 0.86 

EUR 0.99 [0.84 ; 1.17] 0.93 0.97 [0.82 ; 1.17] 0.77 0.98 [0.83 ; 1.17] 0.9 0.98 [0.82 ; 1.17] 0.86 1.25 [0.75 ; 2.11] 0.39 

*All values are adjusted for age, sex and body mass index, plus, for grand-parental ancestry estimates for Polynesian datasets. EPN: East Polynesian subjects with high EP ancestry, EPZ: East 

Polynesian subjects with low EP ancestry, WP: West Polynesian, EPWP; Mixture of East and West Polynesian, NPH; Māori cohort from Ngati Porou Hauora, EUR; NZ European, EUROGT 

(European Crystal Network Gout Cohort) and AGRIA (Arthritis Genomics Recruitment Initiative in Australia Gout Cohort) combined. OR [95% CI]; Odds ratio [95% confidence interval], P = 

p-value for ORs. 
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Table 4.8: Association analysis of MetS-related variants with serum urate 

Gene: rs 

ID 
Population 

Unadjusted Adjusted * 

ß [95% CI] P ß [95% CI] P 

ADRB3: 

rs4994 

EPN 0.004 [-0.016 ; 0.026] 0.66 0.003 [-0.015 ; 0.023] 0.7 

EPZ 0.017 [-0.018 ; 0.054] 0.33 0.011 [-0.018 ; 0.040] 0.45 

WP 0.036 [0.009 ; 0.063] 0.01 0.036 [0.011 ; 0.062] 0.004 

EPWP -0.021 [-0.088 ; 0.044] 0.51 -0.018 [-0.076 ; 0.039] 0.53 

NPH -0.006 [-0.041 ; 0.026] 0.68 -0.008 [-0.051 ; 0.008] 0.16 

NZ EUR -0.025 [-0.054 ; 0.004] 0.09 -0.012 [-0.037 ; 0.012] 0.29 

ARIC EUR 0.001 [-0.003 ; 0.006] 0.56 0.001 [-0.002 ; 0.005] 0.49 

FHS EUR 0.001 [-0.005 ; 0.006] 0.9 -0.001 [-0.005 ; 0.003] 0.61 

CARDIA EUR -0.048 [-0.026 ; 0.0314] 0.87 0.011 [-0.013 ; 0.035] 0.37 

CHS EUR 0.002 [-0.006 ; 0.011] 0.55 0.001 [-0.006 ; 0.008] 0.82 

MC3R: 

rs3827103 

EPN -0.014 [-0.029 ; 0.001] 0.06 -0.001 [-0.025 ; 0.002] 0.1 

EPZ 0.021 [-0.002 ; 0.045] 0.06 0.004 [-0.014 ; 0.022] 0.66 

WP -0.001 [-0.020 ; 0.019] 0.95 0.0001 [-0.017 ; 0.018] 0.98 

EPWP 0.012  [-0.032 ; 0.057] 0.57 -0.001 [-0.042 ; 0.041] 0.95 

NPH 0.028 [0.006 ; 0.049] 0.01 0.016 [-0.004 ; 0.036] 0.11 

NZ EUR 0.012 [-0.009 ; 0.034] 0.27 0.009 [-0.0001 ; 0.027] 0.29 

ARIC EUR -0.00004 [-0.005 ; 0.005] 0.98 -0.001 [-0.005 ; 0.003] 0.6 

FHS EUR -0.003 [-0.009 ; 0.002] 0.28 -0.001 [-0.004 ; 0.003] 0.86 

CARDIA EUR -0.006 [-0.037 ; 0.024] 0.67 -0.004 [-0.030 ; 0.021] 0.72 

CHS EUR 0.006 [-0.002 ; 0.015] 0.16 0.004 [-0.003 ; 0.011] 0.29 

MC4R: 

rs17700633 

EPN 0.008 [-0.006 ; 0.023] 0.26 0.0063 [-0.006 ; 0.019] 0.34 

EPZ -0.017 [-0.041 ; 0.006] 0.14 0.000[-0.018 ; 0.019] 0.93 

WP 0.008 [-0.010 ; 0.027] 0.36 0.004 [-0.012 ; 0.021] 0.58 

EPWP 0.008 [-0.030 ; 0.048] 0.65 0.011 [-0.023 ; 0.046] 0.5 

NPH 0.006 [-0.016 ; 0.029] 0.58 0.008 [-0.013 ; 0.029] 0.46 

NZ EUR 0.001 [-0.012 ; 0.015] 0.84 -0.002 [0.001 ; 0.009] 0.67 

ARIC EUR 0.0002 [-0.002 ; 0.003] 0.86 0.001 [-0.002 ; 0.002] 0.77 

FHS EUR 0.001 [-0.002 ; 0.005] 0.41 0.002 [-0.001 ; 0.004] 0.09 

CARDIA EUR 0.006 [-0.011 ; 0.023] 0.47 0.004 [-0.009 ; 0.018] 0.52 

CHS EUR 0.003 [-0.001 ; 0.008] 0.15 0.002 [-0.002 ; 0.006] 0.41 

MC4R: 

rs17782313 

EPN 0.001 [-0.028 ; 0.031] 0.92 0.006 [-0.021 ; 0.033] 0.65 

EPZ -0.01 [-0.042 ; 0.022] 0.53 0.001 [-0.024 ; 0.026] 0.93 

WP 0.002 [-0.018 ; 0.022] 0.84 0.008 [-0.009 ; 0.026] 0.35 

EPWP 0.02 [-0.022 ; 0.064] 0.34 0.013 [-0.024 ; 0.052] 0.47 
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NPH -0.00005 [-0.044 ; 0.043] 0.99 -0.002 [-0.06 ; 0.017] 0.18 

NZ EUR -0.0001 [-0.016 ; 0.016] 0.99 0.001 [-0.002 ; 0.014] 0.87 

ARIC EUR 0.001 [-0.001 ; 0.005] 0.3 0.001 [-0.001 ; 0.003] 0.47 

FHS EUR 0.005 [0.001 ; 0.009] 0.01 0.0037 [0.0008 ; 0.006] 0.01 

CARDIA EUR -0.006 [-0.024 ; 0.012] 0.52 -0.006 [-0.021 ; 0.009] 0.42 

CHS EUR 0.006 [0.002 ; 0.012] 0.008 0.004 [-0.001 ; 0.008] 0.07 

ADTRP: 

rs6903956 

EPN 0.007 [-0.014 ; 0.029] 0.48 0.0085 [-0.010 ; 0.028] 0.38 

EPZ -0.017 [-0.042 ; 0.006] 0.15 -0.015 [-0.034 ; 0.002] 0.09 

WP -0.011 [-0.035 ; 0.012] 0.36 -0.012 [-0.034 ; 0.009] 0.27 

EPWP -0.035 [-0.086 ; 0.015] 0.16 -0.005 [-0.055 ; 0.045] 0.83 

NPH -0.036 [-0.062 ; -0.011] 0.004 -0.035 [-0.059 ; -0.011] 0.004 

NZ EUR 0.006 [-0.007 ; 0.020] 0.35 0.006 [-0.004 ; 0.018] 0.24 

ARIC EUR 0.002 [-0.001 ; 0.005] 0.15 0.002 [-0.00003; 0.005] 0.05 

FHS EUR 0.001 [-0.002 ; 0.004] 0.45 0.0004 [-0.002 ; 0.002] 0.75 

CARDIA EUR 0.0003 [-0.014 ; 0.015] 0.96 -0.00005 [-0.0127 ; 0.011] 0.92 

CHS EUR 0.0006 [-0.004 ; 0.005] 0.78 0.0001 [-0.004 ; 0.004] 0.94 

*All values are adjusted for age, sex and BMI for NZ European plus with the estimates of grand-parental ancestry for 

NZ Polynesian datasets. EP; East Polynesian, WP; West Polynesian, EPWP; Mixture of East and West Polynesian, 

NPH; Ngati Porou Hauora, NZ EUR; NZ Europeans, ARIC EUR; Europeans from Atherosclerosis risk in community 

study cohort, FHS; Europeans from Framingham Heart study Cohort (Offspring and Generation 3), CARDIA EUR; 

Europeans from Coronary Artery Risk Development in (Young) Adults Study Cohort, CHS EUR; Europeans from 

Cardiovascular Health Study Cohort, rs ID; Reference SNP cluster ID, ß; Beta/effect estimates for the alternate allele, 

95% CI; 95% confidence interval, P; p-values for effect estimates. 
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Table 4.9: Meta-analysis results of MetS-related variants for association with gout and serum urate 

rs ID Population 
Gout (case/control) Serum urate (mmol L-1) 

OR [95% CI] POR PHet ß [95% CI] Pß PHet 

rs4994 

POLY 0.98 [0.74 ; 1.28] 0.88 0.1 0.008 [-0.003 ; 0.019] 0.16 0.08 

EUR 0.89 [0.80 ; 0.99] 0.03 0.22 0.0003 [-0.0002 ; 0.003] 0.84 0.62 

POLY & EUR 0.91 [0.82 ; 0.99] 0.04 0.14 0.0007 [-0.002 ; 0.003] 0.61 0.19 

rs3827103 

POLY 0.85 [0.72 ; 1.02] 0.07 0.22 -0.001 [-0.009 ; 0.007] 0.88 0.25 

EUR 0.92 [0.84 ; 1.02] 0.14 0.27 0.0001 [-0.003 ; 0.002] 0.95 0.62 

POLY & EUR 0.92 [0.83 ; 0.99] 0.03 0.27 0.0001 [-0.003 ; 0.002] 0.99 0.53 

rs17700633 

POLY 0.97 [0.82 ; 1.15] 0.76 0.29 0.005 [-0.003 ; 0.013] 0.18 0.97 

EUR 1.03 [0.97 ; 1.09] 0.24 0.76 0.001 [-0.0003 ; 0.003] 0.12 0.79 

POLY & EUR 1.03 [0.97 ; 1.09] 0.31 0.48 0.001 [-0.0001 ; 0.003] 0.07 0.96 

rs17782313 

POLY 0.96 [0.76 ; 1.21] 0.77 0.23 0.004 [-0.008 ; 0.015] 0.52 0.57 

EUR 1.07 [1.08 ; 1.14] 0.02 0.11 0.002 [0.001 ; 0.004] 0.007 0.47 

POLY & EUR 1.06 [1.01 ; 1.13] 0.03 0.23 0.002 [0.001 ; 0.003] 0.006 0.69 

rs6903956 

POLY 1.02 [0.83 ; 1.26] 0.83 0.49 -0.011 [-0.021 ; -0.002] 0.02 0.08 

EUR 0.98 [0.93 ; 1.04] 0.66 0.95 0.001 [-0.0003 ; 0.002] 0.11 0.61 

POLY & EUR 0.99 [0.94 ; 1.04] 0.71 0.74 0.001 [-0.001 ; 0.002] 0.22 0.05 

POLY; NZ Polynesian, EUR; NZ and UK Biobank Cohort Europeans for gout analysis and NZ, ARIC, FHS, CHS and CARDIA Cohort Europeans for serum urate analysis, rs ID; Reference 

SNP cluster ID, OR/ß; Odds ratio/beta or effect estimates for the alternate allele, 95% CI; 95% confidence interval, P; p-values, POR/ß; p-value for odds ratio/beta estimates, Het; Heterogeneity. 
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SECTION 4.3: DISCUSSION 

4.3.1 ADRB3 

 Note: The below findings have recently been published in the Rheumatology 

International Journal (Fatima et al., 2016) (Appendix C). 

 This study reports association of the Arg64 (G) allele with increased serum urate 

in WP individuals ( (mmol L-1) = 0.036, P = 0.004). This finding is consistent with the 

Morcillo et al. (2010) study in Spanish individuals that associated Arg64 allele with 

development of hyperuricaemia. The finding is also in line with the studies that 

demonstrated an association of the Arg64 allele with increased serum urate and risk of 

gout in Asian subjects (Huang et al., 2013; Rho et al., 2007; Wang et al., 2011a). The 

consistent positive association observed in these findings collectively increases the 

support for a causal role of ADRB3 and adrenergic system in urate control. However, it 

was not possible to meta-analyse serum urate findings in the NZ data set with previously 

published studies as they were either described as secondary findings in conjunction with 

other metabolic conditions, from a population subgroup or as a binary outcome (Rho et 

al., 2007; Strazzullo et al., 2001; Wang et al., 2002). My study also reports a protective 

association of the Arg64 (G) allele of rs4994 polymorphism with gout in European 

individuals (OR = 0.89, P = 0.03). The G allele was also found to show a protective 

association in the WP sample set (OR = 0.62, PUnadjusted = 0.04) (Table 4.6), which did not 

change when adjusted for comorbidities, T2DM, hypertension and renal dysfunction 

(Table 4.7). The direction of association with gout in European and WP individuals 

conflicted with Wang et al. (2011a), who reported the G allele to be associated with 

increased susceptibility to gout in Han Chinese individuals. The same allele was found to 

increase the risk of gout by 86% in the EPZ sample set when adjusted for renal 

dysfunction (OR = 1.86, P = 0.05) (Table 4.6), which is consistent with the Wang et al. 

(2011a) findings in Han Chinese. However, for the WP sample set, the direction of 

association of the Arg64 allele with gout was opposite to what was observed earlier for 

serum urate. A possible explanation for the opposite effect of Agr64 allele with gout and 

hyperuricaemia could be its pleiotropic effect in the WP population, perhaps having a role 

both in determining hyperuricaemia and in the inflammatory processes leading to gout. 

The opposing effect of the Arg64 allele in the EPZ population may reflect different 
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ancestral haplotypes, which is consistent with ABCG2 having differential effects between 

EP and WP sample sets (Phipps-Green et al., 2010). 

 The ADRB3 gene encodes for beta-3 adrenergic receptor, primarily via its 

expression in adipose tissue (human visceral fat). The receptor activation, in turn, induces 

lipolysis in adipose tissue and thermogenesis in skeletal muscles. The receptor is also 

responsible for delivery of free fatty acids into the portal vein (Emorine et al., 1994), 

which can disrupt the insulin receptor signaling pathway, thereby leading to increased 

insulin resistance (Savage et al., 2005). The Arg64 allele has been reported to be 

associated with increased BMI, obesity and higher IR (Kurokawa et al., 2008; Park et al., 

2008; Zhan and Ho, 2005). A decrease in the activity of the receptor due to the Arg64 

polymorphism (Ahles and Engelhardt, 2014) could lead to a decrease in lipolysis as well 

as an increase in fat deposition in adipose tissue. The beta-3 adrenergic receptor is 

proposed to be a part of ‘leptin-sympathetic-leptin-feedback loop’; decrease in the 

activity of this receptor causes an increase in leptin secretion from the adipose tissue 

(Mark et al., 2003). Leptin is secreted in the body as an appetite suppressor, thereby 

opposing the effect of the hormone ghrelin that increases hunger (Chen et al., 2015c). The 

increase in leptin level has been positively associated with obesity (Pan et al., 2014), 

while a decrease in leptin has been associated with an improved insulin sensitivity (Wang 

et al., 2013). An increase in the levels of leptin has also been observed in hyperuricaemic 

patients (Bedir et al., 2003), which is consistent with association of Arg64 with 

hyperuricaemia. Obesity and hyperuricaemia can be possibly linked via IR (Li et al., 

2013; Modan et al., 1987). My findings for ADRB3 in relation to the Arg64 allele, 

supports the study hypothesis that the IR and BMI associated variant (rs4994) is involved 

in determining hyperuricaemia and gout. 

4.3.2 MC3R 

 This study also reports a protective association of the Ile81 (A) allele of the 

rs3827103 polymorphism of the MC3R gene with gout in combined Māori, Pacific Island 

and European data set (OR = 0.92, P = 0.03) (Table 4.9). Melanocortin 3 receptor 

(MC3R) is a major receptor for ACTH and α and ß-MSH and is thereby involved in anti-

inflammatory response (Daoussis et al., 2014; Getting et al., 2006), weight regulation, 

energy metabolism and regulation of the cardiovascular system (Feng et al., 2005; 



4 | Metabolic Syndrome 

 179 

Getting et al., 2006; Tao and Segaloff, 2004). This receptor is located on chromosome 

20q13 and Val81Ile or rs3827103 is a missense variant in the first transmembrane helix 

of the MC3R protein, involved in the binding of melanocortin peptides. Variations in this 

domain are predicted to affect melanocortin receptor functions (Schiöth et al., 1998). This 

variant has been related with in vitro diminished functionality and expression of the 

receptor, showing a significant association with childhood obesity in a case-control study 

(Feng et al., 2005). However, more recent genetic epidemiological studies have reported 

that the predisposing effect of the Ile81 allele to common forms of obesity in adults is 

unlikely (Cieslak et al., 2013; Wannaiampikul et al., 2015). This variant has been 

reported to be positively associated with developing insulin and leptin resistance in obese 

Greek Caucasians (Yiannakouris et al., 2004) and increased BMI in Belgian individuals 

(Zegers et al., 2010) while a number of studies including relatively larger data sets from 

different populations were unable to find any association between the Ile81 allele (or ‘AA’ 

homozygosity) and childhood/adolescent obesity (Cieslak et al., 2013; Obregón et al., 

2010) or increased leptin levels (Alsmadi et al., 2014). One possible explanation for these 

inconsistencies could be the more pronounced damaging effects of the MC3R 

polymorphisms during childhood. The variant, Ile81Val, is a conservative substitution 

and has been found in homologous regions of MC3/4/5 receptors of normally functioning 

mammalian models (mice, rat). No association of this variant has been reported for the 

obesity phenotype in extremely obese African American and Caucasian females (Li et al., 

2000), which suggests that Ile81Val polymorphism may not be involved in altering the 

functionality of human MC3R. In addition to these, a study in Māori kindred failed to 

report a role of the MC3R coding region variations in the development of T2D but 

suggested that other variations in regulatory regions of this gene may possibly be 

involved in insulin secretion and T2D development (Wong et al., 2002). These 

inconsistencies are also supportive for non-significant findings of the Ile81 allele with 

serum urate in my study, especially in context of the hypothesis that obesity-related 

variants should also be associated with increased serum urate (Table 4.8 and Table 4.9). 

My findings are also in line with the largest urate GWA study to now, which failed to 

report an association between the Ile81 allele with serum urate (P = 0.61) in data from 

~110,000 European individuals (Köttgen et al., 2013). Differential epistatic interactions 

between the MC3R alleles and other loci between the populations also could be a possible 

cause for the discrepancy between previous studies and my findings. 
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 While admitting the fact that the role of this variant in disrupting receptor 

functionality is controversial, it is suggested that the presence of this variant may play a 

role in increasing the binding between MC3R and ACTH in gout patients through 

modifying the overall receptor structure or it’s binding site(s). This may in turn be 

involved in enhanced anti-inflammatory effects of ACTH through modulating 

proinflammatory cytokines, attenuation of the effect(s) of inflammatory response genes 

and subsequent leukocyte extravasation in gouty arthritis. 

4.3.3 MC4R 

 Another important finding of this study is the association of the C allele of the 

variant rs17782313 with increased risk of gout in European participants (OR = 1.03, P = 

0.02) (Table 4.9). A similar association of the C allele of rs17782313 was also found in 

EPZ (OR = 1.51, PUnadjusted = 0.03), which was not retained when age, sex, BMI and 

Polynesian grandparental ancestry were added as potential confounders (OR = 1.56, P = 

0.11) (Table 4.9). A consistent direction of association of the C allele with increased risk 

of gout was also observed in most of the Polynesian data sets (EPN, EPZ and NPH) 

(Table 4.6), which became significant when all Polynesian and European data sets were 

analysed together (OR = 1.06, P = 0.03) (Table 6.9). However, my study found no 

association of the A allele of rs17700633 with gout or serum urate (Table 4.6, 4.8 and 

4.9). 

 These findings point towards an unknown underpinning pathway that depicts 

obesity as a possible risk factor for gout, especially in Europeans. Melanocortin 4 

receptor (MC4R) is the fourth member of the MCR family. It is located on chromosome 

18q21 and essentially acts as a receptor for α- and ß-MSH. The expression of MC4R is 

restricted to food regulating centres in brain (specifically within arcuate nuclei of 

hypothalamus) where it controls food intake and energy expenditure by integrating an 

agonist (satiety) signal from α-MSH and antagonist (orexigenic) signal from AgRP 

(Huszar et al., 1997; Lu et al., 1994). A large GWAS study including 16,876 individuals 

of European descent has reported two intergenic variants near MC4R, rs17782313 and 

rs17700633, to be associated with the onset of obesity (Loos et al., 2008). Other GWAS 

and replication studies also reported MC4R variants to be significantly associated with 

early onset of obesity and increased BMI (Beckers et al., 2011; Chambers et al., 2008; 
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Zobel et al., 2009). Moreover, using MC4R and TMEM18 variants (rs17782313, 

rs6548238) as instruments for BMI in an MR study, Palmer et al. (2013) reported 

increased BMI to be causal for hyperuricaemia. Similarly, another MR study reported fat 

mass explained by genetic variants of the FTO, MC4R and TMEM18 genes to be 

positively associated with hyperuricaemia (Lyngdoh et al., 2012). The findings from 

previous studies being in line with my study is supportive of the idea that rs17782313 (C 

allele) is a genuine signal for obesity and, could in turn contribute to the aetiology of gout. 

A positive association of the C allele of rs17782313 with serum urate in the combined 

European ( (mmol L-1) = 0.002, P = 0.007) data set is also consistent with the Köttgen et 

al. (2013) urate GWAS findings that found a significant association (P = 2.6E-05) of the 

same allele with urate in a large population including ~110,000 European adults. A 

positive association of the C allele with serum urate in combined European plus 

Polynesian meta-analysis ( (mmol L-1) = 0.002, P = 0.006) (Table 4.9) was also 

consistent with these findings and suggested the contribution of this variant (rs17782313: 

C allele) in gout pathophysiology through hyperuricaemia. 

 As two selected MC4R variants, rs17782313 and rs17700633 are intergenic, it is 

not possible to describe any functionality for these two. However, their association with 

obesity-related phenotypes in large GWAS datasets from several populations may 

indicate their involvement in regulating/manipulating the expression and/or response of 

other obesity-associated genes. The minor alleles of these two variants have been shown 

to possess differential, and sometimes opposite, correlation with the same obesity-related 

phenotype(s) (explained with references hereafter) in one population. The contradictory 

non-significant association results for the A allele of rs17700633 in both NZ Polynesian 

and European populations can be explained in light of these findings. In a population of 

2,265 from the Nurse’s Health Study (NHS) cohort, Qi et al. (2008) found the C allele of 

rs17782313 to be associated with a higher intake of total dietary fat and other adiposity 

measures but was unable to find any association for the A allele of rs17700633 with the 

same phenotypic traits. Another more recent analysis, including data from men and 

women, identified a relationship between rs17782313 (C allele) and morbid obesity in 

North Indian individuals, but could not find similar associations for rs17700633 (A allele) 

(Srivastava et al., 2014). These findings are supportive of the differential association 

patterns observed for the two MC4R variants (rs17782313 and rs17700633) among 

different populations in my study. 
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 It is possible that the presence of the obesity-associated C allele of rs17782313 in 

gout patients leads to an impaired signal transduction in food regulating nuclei in central 

nervous system (CNS). Peripheral enhanced food intake and reduced energy expenditure 

appear as effective responses to these abnormal signals. A recent study indicated that 

increased food craving and emotional over-eating in a set of adult European individuals 

may account for an association between rs17782313 (C allele) and increased BMI 

(Yilmaz et al., 2015). Evidences of abnormal regulation of the satiety responsiveness and 

hyperphagia (excessive eating) add to this explanation (Valette et al., 2013). Tschritter et 

al. (2011) provided evidence of leptin and insulin resistance in the presence of the minor 

C allele of rs17782313. Leptin and insulin resistance are strong risk factors for T2DM, 

renal dysfunction and hyperuricaemia (Vuorinen-Markkola and Yki-Järvinen, 1994). 

Given that hyperuricaemia, gout, obesity (McAdams DeMarco et al., 2011) and the above 

mentioned comorbidities often coexist, a consistent trend of positive association after 

including these comorbidities in the regression model (Table 4.7) strongly suggests a role 

of the C allele (rs17782313) as a possible etiologic link between obesity, elevated serum 

urate and gout. 

4.3.4 ADTRP 

 The study reports no association of the A allele of rs6903956 with gout in either 

the European (OR = 0.98, P = 0.66) and NZ Polynesian populations (OR = 1.02, P = 

0.83) (Table 4.9). However, the A allele was found to be negatively associated with 

serum urate concentrations in the combined Polynesian population ( (mmol L-1) = -0.011, 

P = 0.02), especially in Māori individuals in the NPH dataset ( (mmol L-1) = -0.035, P = 

0.004) (Table 6.8 and 6.9). In addition, the A allele of rs6903956 indicated a nominally 

positive association with serum urate in the ARIC European data set ( (mmol L-1) = 

0.002, P = 0.05) (Table 4.8). 

 Rs6903956 is located in intron 1 of the ADTRP gene (classically known as the 

C6orf105 gene). The variant was first identified as a CHD-associated signal in a GWAS 

in the Han Chinese population (Wang et al., 2011c). Following this, a number of studies 

confirmed this association with CHD in other population data sets (Nikpay et al., 2015; 

Tayebi et al., 2013). Although, a large scale study by Schunkert et al. (2011) was not able 

to find an association between the A allele and the risk of CHD in Europeans. The A 
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allele of rs6903956 was recently found to be associated with asymptomatic 

hyperuricaemia in Han Chinese individuals (Meng et al., 2015). Although, functionally 

uncharacterised, the expression of the C6orf105 (ADTRP) gene has largely been reported 

in heart, skin, stomach and kidney, and to a lesser extent in leukocytes (Wang et al., 

2011c). The A allele of rs6903956 has been suggested to decrease the expression of TFPI 

(Tissue factor pathway inhibitor: a natural inhibitor of coagulation), which in turn causes 

increased coagulation and thrombosis leading to atherosclerosis (Lupu et al., 2011; Wang 

et al., 2011c), indicating the predictable role of rs6903956 in CAD. However, a recent 

study by Chang et al. (2017) reported the A allele not to be associated with plasma 

coagulation factors in Singaporean Chinese adults and neonates, which contradicts to the 

idea of the A allele being involved in thrombosis. Additionally, the mechanism(s) 

involved in the negative association of rs6903956 (A allele) and serum urate in my study 

remains unclear. 

 A possible explanation for association of the A allele with decreased urate 

concentration could be given by considering a study by Chen et al. (2016), who found 

better prognosis of acute coronary heart stroke in men with higher urate levels. There are 

a number of recent clinical studies indicating a beneficial role of using urate as a potential 

therapy agent for patients with acute ischemic heart stroke (Amaro et al., 2016; Llull et 

al., 2016). It is suggested that the presence of the A allele may be involved in decreasing 

serum urate concentration in NZ Polynesian individuals and, thereby, increasing the risk 

of developing CHD via increased TFPI production. The contradictory findings in my 

study to Meng et al. (2015) can be explained by a couple of reasons. First, the 

associations described by Meng et al. (2015) could be false positive due to a small sample 

size being used. Second, the negative association may be present exclusively in the 

Polynesian population due to different haplotypic background and may not be comparable 

with the positive association findings of Meng et al. (2015) in the Han Chinese 

population. 

4.3.5 Strengths and limitations of the study 

 This is the first study to provide evidence for a direct genetic association of 

variants in the melanocortin system involved in obesity and anti-inflammatory response 

with serum urate and gout. The study also represents the first example describing the 
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involvement of adrenergic system TFP inhibitor (ADTRP) in reducing the serum urate 

concentration in NZ Polynesian individuals. It is also important to note that two MetS-

related variants within ADRB3 and ADTRP analysed in my study were not present in the 

largest serum urate GWAS (Köttgen et al., 2013). The reason could be the absence of any 

data for these two variants in the HapMap2 platform (www.hapmap.ncbi.nlm.nih.gov) 

that was used for imputing genotypes in Köttgen et al. (2013) GWAS. The findings in my 

study, therefore, would be a valuable addition to the knowledge through associations of 

these loci with serum urate and gout in European as well as Polynesian populations. 

Moreover, this study is one of the few studies reporting associations of more than one 

MetS-related variant in the European population as well as variants exclusive for NZ-

based Polynesian subgroups. Although all data sets used in my study had adequate power 

to determine an intermediate effect at a low allele frequency (> 0.2), still the small size of 

individual Polynesian datasets to detect a lower effect represents a study limitation. In 

addition, it is hard to comment on functional roles of the variant rs17782313 (and 

rs17700633) in context of MC4R due to the absence of any data reporting its association 

with expression of MC4R gene in currently available gene-tissue expression platforms 

(GTEx portal: www.gtexportal.org and Haploreg4: www.archive.broadinstitute.org). 

4.3.6 Conclusion and future directions 

 The study reports effects at four different MetS-related loci, ADRB3, MC3R, 

MC4R and ADTRP, predictable for increase/decrease in serum urate in European and NZ 

Polynesian individuals. It is not abnormal to find differences in direction of associations 

for the same genetic variant while dealing with two or more populations with an 

ancestrally different background. Even within the same population set, an allele could be 

expected to be positively associated with increased risk of gout while showing a negative 

association with urate levels. In addition to the difference between the genetic history of 

two populations, the involvement of different pathways controlling increased urate and 

establishment of gout (via inflammation) can help explain intra-group association 

inconsistencies. In my study, two of the loci, ADRB3 and MC4R, also indicated 

population-specific associations with gout, while negative effects of the minor allele of 

ADTRP with serum urate were exclusive to Polynesian individuals only. Results that were 

contradictory to the previous literature still warrant testing in larger data sets from diverse 

populations to eliminate the chances of any false positive/negative findings this study 

http://hapmap.ncbi.nlm.nih.gov/
http://www.gtexportal.org/
http://archive.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs17782313
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may have found. Overall, my study reports a positive association of components of MetS 

in determining the risk of hyperuricaemia and gout in European and NZ Polynesian 

individuals. If replicated successfully, the proposed mechanism(s) may also have a 

significant impact on increasing our understanding of hyperuricaemia and gout 

pathophysiology that coexist with metabolic syndrome or some of its components. Use of 

in vitro techniques to study gene expression and function in early childhood, adulthood 

and elderly may also provide a better idea of the roles these MetS-related variants play in 

these age groups. The in vitro gene functional studies exploring the role of these loci in 

up- and down-regulating the expression of other genes would also help to better 

understand the involvement of these genes in gout pathophysiology via urate production, 

its transport and renal impairment or other conditions associated with renal impairment 

e.g., insulin resistance. Availability of customary human/animal cell lines, tissue cultures 

and mammalian model animals (for gene expression studies in intact animals) have made 

these functional studies relatively easy to follow. Studying individual sequence variant’s 

functionality and expression may require a panel of genetically matched ‘normal cells’ 

alongside the ‘mutated cells’. This isogenic system can be obtained via engineered 

nucleases (e.g., zinc finger or transcription-activator-like effector nucleases) to generate 

pluripotent stem cells, introducing specific mutations and to study specific disease 

mechanisms.
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SECTION 5.1 RARE VARIANTS IN COMPLEX DISEASE: AN 

INTRODUCTION 

5.1.1 Background 

 Understanding the genetic basis of complex diseases has been the subject of 

interest for many decades. A number of genetic factors have been recognised that 

contribute to the risk of common diseases, with an open question of ‘how many more 

genetic factors to be found?’ Genome-wide association studies (GWAS) in humans have 

successfully identified thousands of common genetic variants contributing to quite a large 

number of more common phenotypes/traits. Despite these successes, the genetic makeup 

of complex traits has not been fully elucidated. As most of the genome-wide significant 

variants in GWAS exist in intronic or non-coding regions of the genome with weaker 

effect, it is hard to predict any functionality or to explain a link between disease and the 

variant through a biological mechanism. The robust associations explained by common 

genetic variants in GWAS usually explain a relatively small proportion of the disease 

heritability, with a large proportion of the heritability still ‘missing’ or unexplained 

(Goldstein, 2009; Pritchard, 2001). It is possible that some of this so-called ‘missing 

heritability’ is accounted by the genetic variants that are either rare or occur in low-

frequency (Manolio et al., 2009; McClellan and King, 2010). A second possibility is from 

studies that have suggested replacing the term ‘missing’ with ‘hidden’ by taking into 

account all SNPs being genotyped in a GWAS to explain variance in disease heritability 

(Morris et al., 2012; Yang et al., 2010a). For example, Yang et al. (2010a) reported that a 

large proportion (45%) of the heritability for human height can be explained by 

considering all common SNPs in the genome-wide data simultaneously rather than 

considering significant signals only. Consistently, the most recent urate GWAS provided 

evidence to support the possibility of ~27-41% of this ‘hidden’ heritability to be 

explainable when all common variants in the GWAS are considered together (Köttgen et 

al., 2013). Still, that a substantial proportion of variance remains unexplained by common 

variants requires looking into other possible culprits i.e., rare variants. The idea that these 

less common variants could possess considerably larger effect on disease phenotype(s) 

led researchers to discover high-throughput methodologies that precisely capture these 

variants in the genome to analyse their association with phenotypes, although the key 
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challenge in the analyses of such variants is strictly their ‘rarity’. High-tech advances in 

molecular biology using high-throughput sequencing (HTS) and exome arrays have 

provided detailed insights into the entire genome of individuals in contrast to focusing on 

some predefined loci. This not only opens up new opportunities for the genetic research 

on common diseases but also raises some new challenges e.g., how to exploit these data 

in the most efficient way. These human genome resequencing methodologies have 

explored many different types of study designs and analytical techniques (as explained in 

section 5.1.5) that can be applied for rare variant association studies with greater accuracy 

(Auer and Lettre, 2015). 

5.1.2 Common and rare variants and common disease 

 Simple (or Mendelian) diseases are the results of mutation(s) in single genes, 

which are causal and may have a variable degree of penetrance and expressivity (Auer 

and Lettre, 2015). In contrast, complex (or common) human diseases result from a 

combined effect of multiple genetic modifications and environmental factors (Craig, 

2008). These genetic variants may or may not be causal, which means that they might be 

involved in increasing the risk of developing the disease rather than individually causing 

the disease itself. Explaining the genetic architecture of common disease susceptibility 

relies on two model patterns i.e., common disease-common variant/CDCV and common 

disease-rare variant (Schork et al., 2009). The CDCV explains that more frequent, low 

penetrance variants are the major contributors in increasing the risk to common disease in 

a general population. This model is the underlying rationale to most of the GWA studies. 

The common disease-rare variant model argues for the presence of multiple, rather rare, 

high penetrance variants that increase the genetic susceptibility for a complex trait in 

specific individuals (Reich and Lander, 2001). 

5.1.3 Defining a rare variant 

 Given that the idea of studying rare variants is nascent, there is little consensus to 

separate rare from common variants on the basis of their allele frequency in any 

population. Assigning the rarity is rather reliant on their insufficient frequency and failure 

of GWAS genotyping assays to capture these variants (Pritchard, 2001). It is also not 

possible to detect such variants by classical linkage analysis in family studies, as they 

usually don’t carry sufficiently large effect sizes (McCarthy and Hirschhorn, 2008). 
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Though the meaning differs from one study to the other, ‘rarity’ is usually differentiated 

from ‘commonality’ based on the frequency of a minor allele in a said population. For 

example, a MAF of < 1% has been described as rare by Frazer et al. (2009), whereas 

Gorlov et al. (2011) set a threshold of 5% for rare variants. Bodmer and Bonilla (2008) 

described an upper limit of 1% and a lower limit of ~0.1% to differentiate the rare 

variants from their third category of ‘clearly deleterious’ mutations. The authors also 

described the possibility of an overlap between ‘low-frequency’ and ‘rare’ variants. A 

classical categorisation assigned the terms very common, less common and rare for any 

variant with MAF of 5-50%, 1-5% and < 1%, respectively (Cirulli and Goldstein, 2010). 

McCarthy et al. (2008) and Manolio et al. (2009), however, provided a more precise 

classification for assigning the rarity to any variant on the basis of allele frequency and 

disease susceptibility or penetrance (Figure 5.1). Common variants, on the contrary, are 

those that are employed in most GWAS. Zuk et al. (2014) have recently defined common 

variants as those occurring with a count that is frequent enough to allow their testing in 

affected and healthy subjects. 

Figure 5.1: Feasibility of identifying genetic variants by risk allele frequency and effect size. Modified and 

redrawn from McCarthy et al. (2008) and Manolio et al. (2009). 
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5.1.4 Types of rare genetic variants 

 Genetic variants are broadly categorised as single nucleotide polymorphisms and 

structural variants (Frazer et al., 2009). A change at a single nucleotide position on the 

DNA sequence is referred to as single nucleotide variant. Although most SNPs are 

biallelic, the presence of more than one allele or multiallelic SNPs have also been 

observed (Hüebner et al., 2007). Structural variants primarily include indel (insertion-

deletion) polymorphisms, where an addition or removal of one to a few nucleotides in the 

DNA sequence occurs. Other variants are block substitutions and inversions, which lead 

to a change in numerous adjacent nucleotides or their order. Copy number variants 

(CNVs) are DNA sequences of ≥ 1kb found in variable number in contrast to the 

reference genome (Feuk et al., 2006). Feuk et al. (2006) differentiated CNV from copy-

number polymorphism (CNP) by defining CNP as “CNV that ensues in more than 1% of 

the population”. 

5.1.5 Evaluation of rare variants for a complex trait 

 As rare variants are hard to identify because of their extremely low frequency, 

assessing these variants is a major challenge. One of the current approaches used to 

investigate the role of a rare variant in a complex disease is direct genotyping. The 

Exome chip (www.genome.sph.umich.edu/wiki/Exome_Chip_Design), metabochip 

(Voight et al., 2012) and the Immunochip (Cortes and Brown, 2011) are a few examples 

of targeted and custom designed arrays used for direct genotyping of such variants. 

Genotyping on such arrays usually requires a GWAS as a supportive platform for 

imputation of low-frequency variants and a sequenced reference panel (e.g., 1000 

Genomes Project) to provide a base to imputing genotypes (Abecasis et al., 2012). 

Another method efficiently used to assess rare variants is sequencing – either sequencing 

of whole genome (or exome) or targeted sequencing of specific regions or candidate 

genes within the genome, using again a reference panel genome to align and arrange the 

small reads obtained in re-sequencing. Figure 5.2 illustrates a schematic overview of the 

steps involved in rare-variants’ association studies for a complex trait. 

http://genome.sph.umich.edu/wiki/Exome_Chip_Design
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5.1.5.1 Association analysis approach 

 Development and implementation of an efficient method to analyse rare-variant 

associations is vital. An underpowered single-point based association analysis is 

becoming obsolete. It is suggested that combining information across multiple variants 

(or burden) within a gene should be used as a viable alternative to isolated rare-variant 

association analyses. A number of statistical models are now available to carry out such 

locus-based analyses (explained hereafter). An example of widely used method is the 

Kernel Based Associations Test and Sequence Kernel Association Test/SKAT that 

analyse data for the contribution of both rare and common genetic variants to risk of 

complex diseases (Mukhopadhyay et al., 2010; Wu et al., 2011). Other methods broadly 

involve allele-collapsing approaches based on summary statistics [such as Cohort Allelic 

Sum Test (Morgenthaler and Thilly, 2007), Weighted Sum Test (Madsen and Browning, 

2009) and Combined Multivariate and Collapsing Test (Li and Leal, 2008)] and 

regression models (Han and Pan, 2010; Morris and Zeggini, 2010; Zhou et al., 2010). The 

associations obtained from the above statistical approaches are known as first-step or 

discovery-phase associations. 

 

 

 

 

 

 

 

 

 

Figure 5.2: An overview of the steps involved in low-frequency and rare-variant association studies. Modified 

and redrawn from Panoutsopoulou et al. (2013) and Lee et al. (2014). 
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5.1.5.2 Functional annotation 

 In addition to choosing a suitable statistical approach to test for rare variant 

association, it is also crucial to decide if all of the discovered rare variants are to be 

included for a combined analysis. For instance, the sequencing of a particular gene might 

generate a range of variants in both coding (exonic) as well as non-coding (intronic, 

regulatory and un-translated) regions. It is ideal to pick those variants in coding regions 

that more likely result in structural and functional change of the protein (Auer and Lettre, 

2015). Table 5.1 presents a list of some of the many resources available to interpret 

functional consequences of genetic variants. These annotations are exceedingly helpful in 

prioritising the variants to be included and/or excluded from group-based analysis (e.g., 

burden analysis) or replication analysis. Usually, high-signal, non-synonymous variants 

with large effect sizes are chosen or prioritised from the discovery-phase to follow-up in 

replication (Lee et al., 2014). 

Table 5.1: List of tools and resources for functional annotation 

Tool/Resource Brief description URL (Reference) 

CADD 

CADD (Combined Annotation Dependent 

Depletion) is a framework that integrates 

multiple annotations into one metric by 

contrasting variants that survived natural 

selection with simulated mutations. 

http://cadd.gs.washington.edu/ 

(Kircher et al., 2014) 

ENCODE 

ENCODE (The Encyclopedia of DNA 

Elements) is a platform to build a 

comprehensive parts list of functional 

elements in the human genome using multiple 

cell lines. 

https://www.encodeproject.org/ 

(Mitchell, 2012) 

PolyPhen-2 

PolyPhen-2 (Polymorphism Phenotyping version 

2) is a tool that predicts the possible impact of an 

amino acid substitution on the structure and 

function of a human protein using 

straightforward physical and comparative 

considerations. 

http://genetics.bwh.harvard.edu/p

ph2/ 

(Adzhubei et al., 2010) 

SIFT 

SIFT (Scale-Invariant Feature Transform) 

predicts whether an amino acid substitution 

affects protein function. SIFT prediction is based 

on the degree of conservation of amino acid 

residues in sequence alignments derived from 

closely related sequences. 

http://sift.jcvi.org/ 

(Kumar et al., 2009) 
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HaploReg v1-4 

HaploReg is a tool for exploring annotations of 

the noncoding genome at variants on haplotype 

blocks, such as candidate regulatory SNPs at 

disease-associated loci in mammals. 

http://www.broadinstitute.org/ma

mmals/ 

haploreg/haploreg.php 

(Ward and Kellis, 2012) 

VEP 

VEP (Variant Effect Predictor) determines the 

effect of given variants (SNPs, insertions, 

deletions, CNVs or structural variants) on genes, 

transcripts and protein sequence, as well as 

regulatory regions. 

http://useast.ensembl.org/info/doc

s/tools/ 

vep/index.html?redirect=no 

(McLaren et al., 2010) 

PROVEAN 

PROVEAN (Protein Variation Effect Analyser) 

is a software tool, which predicts whether an 

amino acid substitution or indel has an impact on 

the biological function of a protein. 

http://provean.jcvi.org/index.php 

(Choi, 2015) 

5.1.5.3 Replication of genetic signals 

5.1.5.3.1 Foreword 

 It is essential to prioritise and replicate any signals of interest identified in the 

discovery-phase of a rare variant analysis/project in another large and independent cohort 

of individuals (replication cohort). The criteria of prioritisation may vary according to the 

study, population genetics, functional consequences, direction of association, rarity and 

novelty of the variants. The replication, however, totally relies on the allelic architecture 

of the associated locus and may require either genotyping or resequencing in the 

replication cohort (Lee et al., 2014). For example, for a single rare-variant signal, 

genotyping of the said variant in an independent sample set would suffice (Beaudoin et 

al., 2012). For multiple variants with high signals, a variant-based (genotyping of 

discovery-phase variants) and locus-based (resequencing of whole region) follow-up 

replication would be ideal (Figure 5.2). 

5.1.5.3.2 Why we need replication? 

 As described briefly above, it is important to validate any association found in 

sequencing analysis by replicating it in an independent set of individuals called a 

replication cohort. Replication of the genome-wide level (P < 5 × 10-8) signals from 

GWAS is now considered mandatory to accept, standardise and publish a variant as a 

novel phenotype/disease associated variant (Barsh et al., 2012). For sequencing studies, 

however, replication of the rare or low-frequency variants is more challenging than for 
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the variants identified by GWAS. The main factor that makes replication difficult for rare 

variants is indeed their extremely low frequency and population-specificity. A rare 

variant in the LDLR (low-density lipoprotein receptor; MAF = 0.5%) gene, associated 

with LDL-cholesterol, is an example of one such variant found to be polymorphic only in 

the Sardinian population (Sanna et al., 2011). Discovering other variants in the same gene 

associated with the same trait and evaluating their functionality to describe possible 

metabolic pathways could be the only approach to replicate such association in other 

populations. 

 In addition to the rare and low-frequency signals, it is also crucial to confirm any 

common and population-specific associations in the discovery-phase of the sequencing 

study by replicating them in an independent cohort. The first step in the replication-phase 

is to set a criterion (which may vary from study to study) and prioritise a few variants 

accordingly. While there are no definite criteria described in the literature, the 

prioritisation could be based on the direction and significance of association, frequency or 

population statistics of the alternate allele, estimated effect size, apparent biological 

relevance and functionality and novelty of the variant (Lee et al., 2014). 

 Once prioritised, the replication of the associated locus may require either 

genotyping or resequencing in the replication cohort (Lee et al., 2014). For a few or 

single variant signals, genotyping of the prioritised variants in an independent sample set 

would suffice (Beaudoin et al., 2012). This could be performed in a multitude of ways 

using a different population or an independent set of individuals within the same 

population, particularly for the population-specific variants. The strategies could be 

genotyping of the selected (prioritised) variants, selected genotyping of a perfect tag SNP 

or in silico genotyping (imputation; considered as a suboptimal approach for replication) 

of the variants of interest (Auer and Lettre, 2015). For multiple variants with high signals, 

a locus-based follow-up replication or resequencing is recommended as ideal. Adapting 

both, genotyping and resequencing, has been successful to replicate a discovery 

association in practice. Replication of a DCTN4 (Dynactin subunit 4) gene rare variant by 

Sanger sequencing (Emond et al., 2012) and of four loss-of-function variants in APOC3 

(Apolipoprotein C-III) by Illumi-Exome Chip genotyping (Crosby et al., 2014) are two 

such successful examples. A statistically significant (P ≤ 0.05) association signal in the 

replication cohort indicates that the discovery has been replicated and validated. 
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 Sample size in the replication-phase is the most important determinant of power. 

While designing a replication study, it is important to select a large group of individuals 

to gain adequate power, especially if it involves a rare or low-frequency variant. Liu and 

Leal (2010) indicated that in comparison to single variant genotyping, sequencing of a 

region could be a better and more powerful approach to validate the discovery for rare 

variants. They described that sequencing could also increase the power of the study by 

recognising additional variants that might have been missed in discovery-phase. 

Whichever strategy (sequencing or genotyping) results in the largest sample size and the 

higher rare variant frequency should be the preferred approach (Auer and Lettre, 2015). 

5.1.6 Rare variants contributing to complex traits 

 The number of rare variant association studies is growing continuously with 

advancement in the technology and analytical tools. Success stories like PCSK9 

(proprotein convertase subtilisin kexin type 9) in hypercholesterolemia are further 

motivating researchers to characterise the role of rare variants in other complex 

phenotypes. Rare variants have been associated with increased risk of major diseases in 

large GWAS and resequencing data sets. Targeted resequencing studies found multiple 

rare variants independently associated with type 1 (T1D) (Nejentsev et al., 2009) and type 

2 diabetes (T2D) (Bonnefond et al., 2012; Lohmueller et al., 2013). A large resequencing 

study of 25 GWAS including genes for autoimmune diseases identified a total of 2,990 

protein coding variants with 97.1% having frequency of < 0.5%, along with a large 

proportion of variants (68.9%) only reported in one or two individuals (Hunt et al., 2013). 

The study, however, did not formally test variants for association with autoimmune 

diseases (Hunt et al., 2013). Five discrete rare variants in the NOD2 gene have been 

reported to be associated with Crohn’s disease (Hugot et al., 2001; Ogura et al., 2001; 

Rivas et al., 2011). There are also examples of several rare variants associated with 

complex diseases with large effect sizes. A rare missense variant in the MYH6 gene was 

found to increase the risk of sick sinus syndrome by 12-fold (Holm et al., 2011). Huyghe 

et al. (2013) identified five independent low-frequency variants associated with fasting 

insulin levels in a study based on exome array genotyping. 
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5.1.7 Rare genetics of serum urate and gout 

 Genome-wide association studies have identified a number of loci explaining the 

genetic architecture of urate and gout (reviewed in Dalbeth (2016)). Still, it is challenging 

to describe the functional consequences of a number of high-signal variants in non-coding 

regions. Like many other complex phenotypes, the rare genetics’ studies are new for 

serum urate and gout and not much has been described in the literature. Li et al. (2007) 

used the term ‘rare allele’ to describe the association of a variant (rs6855911) in the 

GLUT9 gene for an allele frequency as high as 0.26 (Allele G). However, a whole-

genome sequencing study of 16 million SNPs from 457 Icelanders identified a low-

frequency missense variant (risk-allele (G) frequency = 0.019) in the ALDH16A1 

(aldehyde dehydrogenase 16 family member A1) gene to be associated with gout (OR = 

3.12, P = 1.5 x 10-16) and serum urate (effect = 0.36, P = 4.5 x 10-21) at genome-wide 

threshold levels (Sulem et al., 2011). They further confirmed the association through 

Sanger sequencing on 6,017 Icelanders and reported it to be consistent with a stronger 

effect in males than females. A recent report in 622 Han Chinese males described two 

intronic variants as ‘rare’ for their population. One of the two variants in SLC2A9 

(rs734553) was associated with gout (case-control allele (C) frequency = 0.008, 0.018, P 

= 0.028, OR = 0.45), while the association for other rare variant in SLC16A9 

(rs12356193) was neutral (case-control allele (G) frequency = 0.002, P = 0.659, OR = 

1.43) (Zhou et al., 2015). Given that no data are available to explain the possible ‘missing 

heritability’ of gout until now, the next section of this chapter was designed to carry out a 

rare-variant association analysis of exon sequencing data of two lipid-related genes, LRP2 

and A1CF, for serum urate and gout. The specific aims of this study were; 

1. To characterise the variants obtained from exon sequencing of LRP2 and A1CF 

genes in NZ Polynesian and European individuals. 

2. To identify common, low-frequency and rare variants and test for an association 

with hyperuricaemia and gout. 

3. To identify all non-synonymous and rare variants and test for their burden for 

hyperuricaemia in Europeans NZ Polynesians. 

4. To replicate any interesting findings in larger NZ ancestry based population 

cohorts (Polynesian and European). 
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SECTION 5.2 EXON SEQUENCING OF LRP2 AND A1CF 

GENES: ASSOCIATION ANALYSES 

5.2.1 Background 

 Quantitative traits underlying common diseases including urate control have a 

significant degree of heritability. The most recent genome-wide association study from 

Köttgen et al. (2013), that combined data from > 110,000 European-ancestry individuals, 

provided evidence for association of 28 loci that collectively explain 7.0% of the variance 

in urate. Besides the loci involved in urate transport, an understanding of non-urate 

transporting loci (those controlling formation of MSU crystals and the immune reaction) 

is important to characterise the shared genetic basis of gout or urate with other metabolic 

conditions. 

 As described in detail in Chapter 1 (Section 1.1.7.3), lipoprotein receptor-related 

protein 2 (LRP2/megalin) is a non-urate transport locus that has been identified for its 

major role in lipid metabolism (Cabezas et al., 2011; Christensen and Birn, 2002). The 

megalin (LRP2) protein is principally located on the apical surface of the proximal renal 

tubule (Cue et al, 1996, Nielsen 1998) and known for its role in reabsorption and 

metabolism of glomerular-filtered substances (Hosaka et al., 2009). Clusters of rare 

variants have been identified within LRP2 to be associated with pathologic conditions 

like ASD (Autism spectrum disorders) (Ionita-Laza et al., 2012) and renal injury 

(McMahon et al., 2014). Apolipoprotein B mRNA-editing enzyme 1 (APOBEC1) 

complementation factor  (A1CF) is another emerging candidate in the list of non-urate 

transport genes. This gene is known for its role in the production of two different protein 

isomers, apo B-48 and apo B-100 from one nuclear gene (Chen et al., 1987; Powell et al., 

1987). In the recent GWAS, the A1CF variant (rs10821905) was associated with serum 

urate levels in Europeans (Köttgen et al., 2013), along with significant association with 

gout risk in New Zealand Europeans although not in Māori and Pacific Islanders (Phipps-

Green et al., 2014). In terms of data from fine mapping and whole genome or exonic 

sequencing, no study has yet reported any disease-based association for other variants 

within A1CF. Both LRP2 and A1CF have been reported to be associated with increased 

eGFR (a marker for kidney function) in a recent GWAS based on European population 

(Appendix B Figure 5.2) (Pattaro et al., 2016). 
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 Despite evidence for involvement of LRP2 and A1CF in a number of 

physiological processes, little is known about the effect of their possible causal variants 

on biological pathways, particularly those leading to gout. It was, therefore, hypothesised 

that other population-specific variants within LRP2 and A1CF coding regions could 

contribute to gout risk in New Zealand (NZ) Māori and Pacific Islanders and Europeans, 

which may prove helpful in explaining some part of the ‘unexplained heritability’ for 

gout in these populations. This particular section of my thesis was aimed towards 

carrying out association analyses to determine if other common and rare variants that 

reside in exonic regions of LRP2 and A1CF are associated with gout and hyperuricaemia 

(HU). 

5.2.2 Methods 

 A replication based rare-variant analysis approach was adopted to analyse the 

association of variants within exonic regions of LRP2 and A1CF genes with 

hyperuricaemia and gout. Genotype information for these two genes was extracted from 

the ReSequencing Cohort followed by discovery and replication analyses. Below are the 

major steps that were sequentially followed for the completion of rare-variant-analysis in 

this chapter: 

1. Sequencing protocol: This section describes the overall selection of gene regions 

and the methods that were used to carry out sequencing in European and NZ 

Polynesian subjects (The ReSequencing Cohort). 

2. Association analyses – Discovery phase: This section details the extraction of the 

LRP2 and A1CF exonic regions from the ReSequencing Cohort followed by; 

i. Single variant analysis (individual association analysis of each variant 

within two genes for hyperuricaemia (European and NZ Polynesian) and 

gout (NZ Polynesian only). 

ii. Burden analysis (combined analysis for rare and non-synonymous variants 

to test for a burden of risk/protection for hyperuricaemia and gout 

(European and NZ Polynesian). 

iii. Functional annotation of variants (to check the functional status of each 

exonic variant within LRP2 and A1CF genes). 
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3. Association analyses – Replication phase: This section provides details for a list of 

variants that were prioritised from the Discovery-phase analysis to replicate (via 

TaqMan genotyping) in an independent cohort (NZ Polynesian and European 

subjects) and their subsequent association analyses. 

5.2.2.1 Sequencing protocol 

5.2.2.1.1 Study participants 

 The ReSequencing Cohort consisted of 819 individuals from three different data 

sets selected according to urate level. The first set included 526 European and Polynesian 

individuals from New Zealand. This data set was a sub-set of New Zealand Gout Cohort 

(Section 1.2). Two additional sets of European individuals were selected from Health 

Professional Follow-up Study (HPFS: n = 169) and Nurses’ Health Study (NHS: n = 

125)4. The ReSequencing Cohort was then stratified on the basis of serum urate levels 

with a cut-off value of ≥ 0.41mmol L-1 between hyperuricaemic cases (n = 427: serum 

urate ≥ 0.41 mmol L-1) and normouricaemic controls (n = 392: serum urate ≤ 0.37mmol 

L-1). Hyperuricaemic cases were selected irrespective of their gout status and urate-

lowering therapy while controls self-reported no history of gout. Self-reported ancestry 

was used to further split this cohort into European (n = 376) and Polynesian (n = 443) 

sub-sets. As it is not ideal to perform rare-variant analyses in smaller groups due to a 

drastic reduction in the power of analysis, the Polynesian sub-set was not further split into 

Eastern and Western Polynesian subgroups. Table 5.2 represents a summary of 

demographic details for the ReSequencing Cohort. 

                                                 

4 Samples from the HPFS and NHS were kindly provided by Professor Hyon K Choi (Gout and Crystal 

Arthropathy Center, Massachusetts General Hospital, Boston, MA). 
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 Table 5.2: Demographic details of the individuals in the ReSequencing Cohort 

Population NZ Polynesian European* 

Group Hyperuricaemic Normouricaemic Hyperuricaemic Normouricaemic 

Baseline Information 

Total number (n) 229 214 198 178 

Males, n (%) 192 (83.84) 92 (42.99) 165 (83.33) 73 (41.01) 

Age (years)^ 45 ± 14 45 ± 14 60 ± 15 - 

BMI (kg/m2)^ 36.97 ± 7.80 31.56 ± 6.69 30.16 ± 3.83 - 

Serum Urate (mmol L-1)^ 0.53 ± 0.64 0.30 ± 0.40 0.52 ± 0.55 0.22 ± 0.33 

Co-morbidities 

Type II Diabetes, n (%) 33 (14.40) 42 (19.63) 15 (7.57) - 

Dyslipidaemia, n (%) 26 (11.35) 75 (35.04) 31 (15.65) - 

Heart problems, n (%) 20 (8.73) 18 (8.41) 19 (23.17) - 

Hypertension, n (%) 83 (36.24) 39 (18.22) 44 (53.66) - 

Kidney problems, n (%) 22 (9.60) 5 (2.34) 13 (15.85) - 

Gout Characteristics 

Gout cases, n (%) 170 (74.24) - 76 (92.68) - 

Age at onset gout (years)^ 34 ± 12 - 47 ± 18 - 

On Diuretics/ULT, n (%) 120 (52.41) - 38 (46.34) - 

Gout attacks (per year)^ 11.56 ± 37.05 - 4.33 ± 7.56 - 

Gout tophus, n (%) 57 (24.89) - 20 (24.39) - 

 NZ: New Zealand, BMI: Body mass index, n (%): total number (percentage), ULT: Urate lowering therapy. ^Data are shown as mean ± standard deviation. Data for the co- 

 morbidities are self-reported. *Demographic data for the European cohort is based only on the NZ samples (excluding sex and serum urate levels). 
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5.2.2.1.2 Selection of the genome regions for sequencing 

 The project was based on ‘targeted resequencing’ of candidate genes and the 

genomic regions of interest. The idea behind this specific project was to sequence the 

genetic loci that have been associated with hyperuricaemia and/or gout in the earlier 

literature, and to further analyse these associations through fine mapping of these loci in 

European and Polynesian populations. For this purpose, several criteria as described 

below were followed while selecting the genomic regions with prior evidence for an 

association with gout or serum urate concentrations.5 

1. Gene/gene regions identified in Köttgen et al. (2013) in the largest serum urate 

GWAS including more than 110,000 Europeans. 

2. Sixty-seven biallelic genomic control markers genotyped in Hollis-Moffatt et al. 

(2012b) to calculate estimates of Eastern Polynesian ancestry (Appendix A Table 

5.1). 

3. Gene/gene regions coding for those proteins that contribute to allopurinol 

metabolism. 

4. Urate-transport genes that had not previously been associated with urate or gout. 

5. Gene/gene regions influencing renal function, body mass index or weight. 

6. Candidate gout risk genes known to determine the risk of gout through other 

metabolic pathways e.g., inflammation, lipid metabolism, or some unknown 

mechanisms. 

7. Deoxyribonuclease (DNAse) hypersensitivity regions were idenetified from their 

expression data in 19 renal cell samples (Appendix A Table 5.2). The expression 

data was accessed through Gene Expression Omnibus website 

(www.ncbi.nlm.nih.gov/geo). 

8. The genes/regions within or around the above chosen genic regions were also 

selected for sequencing. 

                                                 

5 Professor Tony R Merriman (PhD supervisor), Assistant Professor Eli Stahl (Icahn School of Medicine, 

Mount Sinai, New York), Professor Hyon K Choi (Gout and Crystal Arthropathy Center, Massachusetts 

General Hospital, Boston, MA) and Assisstant Professor David B Mount (Brigham and Women's Hospital, 

Boston) selected the regions for targeted sequencing. Two staff members of the Merriman Laboratory 

identified the specific genome positions to be sequenced: Murray Cadzow (Assistant Research Fellow) and 

Ruth Topless (Assistant Research Fellow). 
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Figure 5.3: An overview of the detail of region selection for sequencing 

 Using the above selection criteria ended up in a list of 790 different genes. This 

selection essentially included both, genic and regulatory genes/regions. In detail, this list 

comprised 182 gout and urate associated genes encompassing 28 loci from the Köttgen et 

al. (2013) GWAS study, all Polynesian ancestry informative genes from Hollis-Moffatt et 

al. (2012b), 14 BMI and renal function genes, 45 genes involved in allopurinol 

metabolism, 12 candidate gout risk genes and 6 urate transporters not previously known 

for an association with gout. Selected regulatory regions included SLC22A7/ABCC10 and 

30 other regions that indicated association in Köttgen et al. (2013) at GWAS level (with 

P < 5x10-8). The regulatory regions also included 865 DNAse hypersensitivity peaks 

(H3K9ac and H4K4me3) from kidney cell lines. Overlapping data from these peaks were 

combined with association regions to reduce the sequencing primer design. For each gene 

on this list, exon sequence was extracted for +/- 10 bp (base pairs) and 3' and 5' un-

translated regions (UTRs). Moreover, regions of 800 bp upstream of the transcription 

start site(s) were also sequenced for each of these genes. Markers of Polynesian ancestry 

information were sequenced +/- 50 bp upstream/downstream and entire peaks were 

sequenced for DNAse hypersensitivity regions. Merging these regions ended up in 

sequencing of nearly 2.6 Mb of the whole genome (Figure 5.3). 
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5.2.2.1.3 Library preparation and sequencing6 

 For library preparation and sequencing, 250 ng of the genomic DNA was sent to 

McDonnell Genome Institute (Washington University, St. Louis) for each participant 

included in the Sequencing Cohort. Construction of Ilmumina indexed libraries was done 

following a modified version of the manufacturer’s protocol and Nextera DNA Sample 

Prep kit (Illumina Inc., San Diego). The protocol includes fragmentation of DNA in 100 

to 400 bp strands using a Covaris E220 DNA Sonicator (Covaris Inc., Woburn) followed 

by an addition of a sequence adapter to either end of the fragmented DNA. The 

amplification was done in eight cycles adding sequencing primers and indices to the 

adapter ligated DNA fragments. Library purification and size selection was carried out 

via the Solid Phase Reversible Immobilisation (SPRI) technique that uses AMPure XP 

beads specified for targeting 300 to 500 bp DNA fragments. Next, fragment hybridisation 

and amplification was completed using custom Roche NimbleGen SeqCap kit (Roche 

NimbleGen Inc., Madison). All instructions were followed as provided in the 

manufacturer’s protocol. Sequencing was done on Illumina HiSeq 2500 (Illumina, San 

Diego) with 90 dual-indexed samples combined and captured as a pool to run in a single 

sequence lane. The sequencing was completed with an average of 51.2x coverage across 

2.6 Mb of the targeted sequenced genome. 

5.2.2.1.4 Variant calling7 

 The Genome Analysis Tool Kit (GATK) best practice pipeline (Auwera et al., 

2013) was followed for alignment of the raw sequence data and variant calling. All 

procedures for sequence alignment and variant calling were carried out in the Merriman 

Laboratory. As a first step of variant calling, Sequence Alignment/Map (SAM) tools 1.1.2 

was used to extract FastQ files from the raw sequence data files. These files were then 

aligned to human reference genome (build GRCh37) using the ‘mem’ (memory) 

command of the Burrows-Wheeler Aligner (BWA 0.7.12) to create binary alignment/map 

(BAM) files (Li and Durbin, 2009; Li et al., 2009). To mark the reads from PCR 

duplication, the above BAM files were processed using Picard 1.114 

                                                 

6  A staff member of the Merriman Laboratory, Amanda Phipps Green (Assistant Research Fellow), 

managed the sample shipping. 
7  All sequence alignment, variant calling and library preparation was performed by James Boocock 

(Research Assistant) at the Merriman Laboratory. 
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(www.github.com/broadinstitute/picard), followed by insertion/deletion (indel) alignment 

and base recalibration in GATK 3.3.0 (McKenna et al., 2010). Genomic variant call 

format (gVCF) files were created using GNU Parallel command line and the GATK 

HaplotypeCaller (DePristo et al., 2011; Tange, 2011). Prior to variant calling, these gVCF 

files were merged in batches (100 files per batch) using GATK. The SNPs in the resulting 

variant call format (VCF) file were processed using the GATK variant quality score 

recalibration utility. This utility calculated the quality of the SNPs by depth, Fisher score, 

mapping quality rank sum and read position rank sum. Next, any SNP with a truth 

sensitivity of less than 99.00 was removed during recalibration of the VCF file. Ensembl 

variant effect predictor or Ve!P (www.grch37.ensembl.org/Tools/VEP) and GEMINI 

0.17.0 (www.gemini.readthedocs.org) platforms were used to annotate the resultant SNPs. 

The annotations mainly included assigning the reference SNP cluster ID (rs number), type 

of the variant (exonic, intronic or intergenic), genes and transcripts (with length of the 

transcript) possibly affected by each variant and location of each variant. 

5.2.2.2 Association analyses – Discovery-phase 

 For the purpose of analysis in this study, the detailed exon (coding) region data of 

LRP2 and A1CF genes were extracted from the targeted sequencing of 2.6 Mb of the 

genome (Figure 5.3). A systematic flow was followed to analyse for an association of 

variants within the LRP2 and A1CF genes with hyperuricaemia (NZ Polynesian and 

European) and gout (NZ Polynesian). It was not possible to assess the European data set 

for an association with gout due to the unavailability of gout diagnosis status in HPFS and 

NHS datasets. After extracting out all coding (exon) region variants (SNPs) for both 

genes, each of these variants was analysed separately to assess an association with 

hyperuricaemia and gout. Non-synonymous (missense), low-frequency and rare variants 

were then selected and analysed for a burden for hyperuricaemia and gout in respective 

populations. 

5.2.2.2.1 Single variant association analysis 

 The study focused only on variants that fell within the LRP2 (2:169,983,619 to 

170,219,195) and A1CF (10:52,559,169 to 52,645,435) transcribed gene regions 

(ENST00000263816 and ENST00000374001 coordinates). Those variants that passed the 

quality control criteria were selected within these regions. Any variant for which an rs ID 

http://grch37.ensembl.org/Tools/VEP
http://www.gemini.readthedocs.org/


5| Lipid Metabolism - Rare Variant Analysis 

 205 

was not available was annotated by its location on the chromosome with a prefix ‘var’ 

(var = variant). A logistic regression based loop model was created in R version 3.3.2 

(RCore, 2016) to calculate the effect estimates and allelic odds ratio (OR) for each variant 

(explanatory variable) in the NZ Polynesian and European data sets. The regression was 

applied to test for association with hyperuricaemia and gout (binary response variables) 

and estimated glomerular filtration rate (eGFR: continuous response variable). The 

regression model was adjusted for sex, age and BMI (wherever possible) to obtain the 

odds ratios for both populations. Estimates for grand-parental ancestry and collection 

study were added as additional adjustors for NZ Polynesian and European data sets, 

respectively. In order to calculate the combined effect of variants, meta-analysis was done 

using the ‘meta package’ (www.CRAN.R-project.org/package=meta) within R (version 

3.3.2) using a fixed-effect model. For analyses showing heterogeneity (PHet < 0.05), the 

fixed-effect model was replaced with a random-effect model. All allelic odds ratio 

calculated for the ReSequencing Cohort were relevant to the minor allele. Any individual 

with missing or incomplete data was excluded from the various analyses. Power to detect 

a POR < 0.05 was calculated in NZ Polynesian and European data sets following the 

Johnson et al. (2001) methodology. 

5.2.2.2.2 Burden analysis 

 Burden analysis is designed to calculate the effect of all variants in a gene 

together in contrast to analysing each variant separately. This type of analysis considers 

the gene or region of interest a single unit rather than taking the effect of each variant 

alone. The analysis could, therefore, mitigate the inherent lack of power in single variant 

association analyses (Lee et al., 2014). 

 Allele frequencies obtained from single variant analyses were combined 

separately for each variant, in each sample set, for both LRP2 and A1CF genes. A 

combined allele frequency of < 0.05 (5%) was set as cut-off to determine the rare (< 0.05 

- 0.01) and very rare (< 0.01) variants in the genes regardless of their functional 

cosequences. The allele collapsing methodology of Li and Leal (2008) was used to 

classify the individuals as carriers or non-carriers of the rare allele. Following this 

methodology, the individuals were classified as having or not having a rare allele at any 

site, i.e., 

http://cran.r-project.org/package=meta
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 The number of individuals carrying a rare allele, it’s frequency and the difference 

between allele-frequency was then calculated for hyperuricaemic (cases) and 

normouricaemic (controls) via Pearson Chi-square test (Li and Leal, 2008). 

 A weighted sum statistic was used to calculate the burden of rare variants for 

hyperuricaemia in the NZ Polynesian and European sample sets. The specific 

methodology followed to calculate the weighted sum (adaptive burden test) of variants 

was first proposed by Ionita-Laza et al. (2011). This test is less sensitive to the presence 

of both risk and protective variants in a genetic region of interest and calculates the 

burden according to the frequency of variants in cases and controls. The test was 

performed by following these basic steps; 

1. Variants in question were classified into those that have a higher observed 

frequency in cases (k') and those that have a higher observed frequency in controls 

(k). 

2. A two-sided weighted (SNP effect-weighted) summary statistic (S+ and S-) was 

calculated that represents the possible burden of risk and protective variants in the 

gene or region. 

3. A one-sided p-value was calculated for risk and protective variants through 

standard permutation. The permutation involves random permuting (shuffling) of 

case/control label followed by recalculating S statistic. 

4. A two-sided p-value was calculated to assess combined burden of risk and 

protective variants (Sc = S+ + S-) via the same permutation. 

 The source code/C++ for the analysis was downloaded from www.columbia.edu. 

The code was separately run for both study populations, each tested for 1,000; 10,000; 

50,000 and 100,000 turns of permutations. The above strategy was applied to calculate 

the burden of low-frequency and rare (< 5% MAF), only rare (≤ 1% MAF) and non-

synonymous variants in both genes. 

http://www.columbia.edu/~ii2135/
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5.2.2.2.3 Functional annotation of variants 

 Functional attributes for each variant were identified and added to the VCF during 

the ‘variant calling’ phase via GEMINI and Ve!P. This phase added synonymous and 

non-synonymous annotations to all variants in the VCF along with the indication of the 

codon and the amino acid these variants could change. The functional annotations were 

assessed using four of the several tools specified in the Table 5.1. These tools are 

designed to provide a prediction score with a cut-off value that indicates if a variant is 

deleterious or neutral for a change in protein. For this study, the impact of each exonic 

variant within LRP2 and A1CF was evaluated online by applying corresponding binary 

classification criteria (deleterious or damaging and neutral). The online platforms used to 

assess the scores were; CADD (www.cadd.gs.washington.edu: score ≥ 10 indicates 

deleteriousness), SIFT (www.sift.jcvi.org: score ≤ 0.05 indicates damaging affect), 

PolyPhen-2 (www.genetics.bwh.harvard.edu: score ≥ 0.43 indicates damaging affect) and 

PROVEAN (www.provean.jcvi.org: score ≤ -2.5 is deleterious). 

5.2.2.3 Association analyses – Replication-phase 

 The distinct association signals in the discovery-phase analysis were replicated in 

NZ European and Polynesian datasets. The replication was carried out to 1) confirm and 

validate the putative associations found in the ‘discovery-phase’, and 2) to describe the 

possible biological significance of the validated associations for hyperuricaemia and gout. 

5.2.2.3.1 Prioritisation of variants 

 Prioritisation of the discovery-phase variants within LRP2 and A1CF was done 

based on several criteria. The same selection criteria were applied for NZ Polynesian and 

European populations. These criteria were: 

1. Level of significance – All variants having a nominally significant (P < 0.05) 

association for hyperuricaemia for at least one population were included. 

2. Direction of association – The prioritisation was done independent of direction of 

association i.e., rare variants showing either risk or protective association were 

selected from both populations. 

http://cadd.gs.washington.edu/
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/index.php


5| Lipid Metabolism - Rare Variant Analysis 

 208 

3. Population-specificity – Any variant found in only one of the two populations (NZ 

Polynesian and European) was included. 

4. Novelty – Any significant variant with no earlier record in 1000 Genome database 

was also included. 

 In order to rule out the possibility of complete linkage disequilibrium, an LD (R-

squared limit = 0.60) was calculated between all prioritised variants using information 

available in the 1000 Genome database (www.browser.1000genomes.org). 

5.2.2.3.2 Study participants 

 A sub-set of individuals was included from New Zealand Gout Cohort (Section 

1.2.1) to create the Replication Cohort. All subjects who were part of the ReSequencing 

Cohort (Discovery-phase) were excluded from the Replication Cohort. The Replication 

Cohort was categorised into two major ancestral groups, NZ Polynesian and European 

(728 cases and 446 controls). The New Zealand Polynesian group (1001 cases and 1134 

controls) was further divided into three sub-groups, East Polynesian (EP: 396 cases and 

613 controls), West Polynesian (WP: 310 cases and 270 controls) and a mixture of East 

and West Polynesian (EPWP: 26 cases and 59 controls). The categorisation was done as 

described by Hollis-Moffatt et al. (2012b). Data from the Ngati Porou Hauora (NPH) 

individuals were also included as a separate Māori sample set (NPH: 269 cases and 192 

controls) (See details of each Polynesian sub-group in Chapter 1, Section 1.2.1). Table 

5.3 provides demographic details of the Replication Cohort. 

 Of the above, control (non-gout) subjects were included to test for an association 

with serum urate in NZ Polynesian and NZ European individuals in the Replication 

Cohort. All subjects who self-reported as taking diuretic medication, or had renal failure 

or gout, or who were first-degree relatives with gout patients, were removed from serum 

urate association analysis. 

5.2.2.3.3 Genotyping 

 Two Polynesian specific variants, rs111360923 and var170115626, were 

genotyped over the NZ Polynesian samples only. Genotyping was performed by an allelic 

discrimination assay i.e., TaqMan® SNP Genotyping assay (C_2215549_20; Applied 

http://browser.1000genomes.org/
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Biosystems, Foster City, USA) following the instruction provided in their protocol. The 

TaqMan SNP genotyping were auto-called via reporter dye signal plots on Lightcycler® 

480 Real-Time Polymerase Chain Reaction (RT-PCR) System (Roche Applied Science, 

Indianapolis, IN, USA). These plots were then used to analyse and export correct 

genotype clustering. Genotyping data for rs2302694, rs4667596, rs2075252, rs4667591 

and rs41268685 were sourced from the Illumina Chip CoreExome dataset. The 

genotyping details for this dataset are already described in Chapter 2 (Section 2.2.2.2). 

5.2.2.3.4 Statistical analysis 

 A multiply adjusted regression analysis approach was used to measure an 

association of the seven prioritised variants (explanatory variables) with hyperuricaemia, 

gout (binary response variables) and serum urate (continuous response variable). All 

logistic and linear regression analyses were done using statistical software R version 3.3.2 

(RCore, 2016). Any participant with missing data for any variable was excluded from the 

various analyses. Allelic ORs and β-estimates were calculated for each variant including 

age, sex and BMI as primary adjustors in the regression model. For Polynesian 

individuals, self-reported grandparental ancestry was included as an additional adjustor in 

the various analyses. To increase the power of analysis, all NZ Polynesian subgroups 

were combined separately and with the European data set in meta-analysis using the Meta 

package within R (http://CRAN.R-project.org/package=meta, 2014) using a fixed-effect 

model. For a meta analysis showing heterogeneity (PHet < 0.05), the fixed-effect model 

was replaced with a random-effect model. A P ≤ 0.05 was used to indicate the threshold 

for nominal statistical significance between response and explanatory variables in 

regression and meta models. Power to detect a POR < 0.05 was calculated in NZ 

Polynesian and European data sets following the Johnson et al. (2001) methodology. For 

any variants with Polynesian-specific outcomes, an intra-variant LD (R-squared limit = 

0.60) was calculated in order to rule out the possibility of complete linkage 

disequilibrium, using genotype information in NZ Polynesian population. 
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Table 5.3: Demographic details of the Replication Cohort 

Population NZ Polynesian 
NZ European 

Sub-population East Polynesian/EP West Polynesian/WP EPWP Ngati Porou Hauora/NPH 

Group Gout Non-gout Gout Non-gout Gout Non-gout Gout Non-gout Gout Non-gout 

Baseline Information 

Total number (n) 396 613 310 270 26 59 269 192 728 446 

Males, n (%) 334 (84.34) 250 (40.78) 308 (99.35) 154 (57.03) 25 (96.15) 24 (40.67) 224 (83.27) 99 (51.56) 654 (89.83) 308 (69.05) 

Age (years)^ 57.02 ± 12.36 43.19 ± 15.43 49.92 ± 11.86 37.37 ± 14.98 45.25 ± 11.78 35.29 ± 17.11 58.41 ± 12.66 42.15 ± 14.64 63.88 ± 12.87 54.40 ± 16.68 

BMI (kg/m2)^ 35.06 ± 7.68 32.11 ± 8.20 36.80 ± 8.33 33.90 ± 6.56 36.76 ± 8.14 33.52 ± 7.57 36.49 ± 8.01 30.71 ± 5.89 30.29 ± 5.30 27.65 ± 5.63 

Serum Urate (mmol L-1)^ 0.38 ± 0.10 0.36 ± 0.08 0.41 ± 0.11 0.40 ± 0.08 0.43 ± 0.07 0.40 ± 0.10 0.43 ± 0.11 0.36 ± 0.08 0.39 ± 0.11 0.34 ± 0.11 

Co-morbidities 

Type II Diabetes, n (%) 122 (28.57) 68 (11.48) 83 (24.85) 35 (13.31) 9 (32.14) 4 (6.77) 82 (31.41) 12 (6.41) 118 (15.14) 30 (6.83) 

Dyslipidaemia, n (%) 202 (50.88) 77 (13.65) 166 (51.55) 32 (12.40) 14 (51.85) 5 (8.92) 137 (52.69) 37 (20.11) 370 (48.23) 86 (20.57) 

Heart problems, n (%) 192 (44.44) 71 (11.79) 80 (23.52) 18 (6.69) 9 (33.33) 4 (6.66) 92 (35.38) 19 (10.05) 288 (37.02) 65 (14.61) 

Hypertension, n (%) 277 (64.58) 152 (25.81) 173 (52.26) 40 (14.92) 15 (53.57) 8 (13.79) 177 (67.30) 35 (18.61) 424 (54.85) 104 (23.63) 

Kidney problems, n (%) 114 (26.76) 19 (3.59) 72 (21.95) 8 (3.18) 8 (29.62) 2 (4.00) 32 (12.40) 5 (3.04) 176 (22.76) 22 (5.21) 

Gout Characteristics 

Age at onset gout (years)^ 41.57 ± 15.35 - 37.11 ± 13.05 - 29.39 ± 10.84 - 40.49 ± 15.24 - 48.82 ± 16.93 - 

On Diuretics/ULT, n (%) 143 (45.11) - 80 (27.02) - 12 (48.00) - 15 (19.23) - 199 (71.84) - 

Gout attacks (per year)^ 9.53 ± 34.66 - 11.30 ± 28.35 - 7.53 ± 10.34 - 2.89 ± 4.85 - 7.97 ± 35.36 - 

Gout tophus, n (%) 164 (38.95) - 155 (46.68) - 12 (46.15) - 25 (9.54) - 271 (65.38) - 

NZ: New Zealand, BMI: Body mass index, n (%): total number (percentage: calculated for the number of individuals who reported for any category), ULT: Urate lowering therapy. ^Data 

are shown as mean ± standard deviation (for the number of individuals who reported for any category). Data for the co-morbidities are self-reported. Data for NZ Polynesian are represented 

as an average for individuals genotyped through TaqMan PCR and Illumina Core Exome Chip genotyping (EP: 370 cases and 463 controls, WP: 282 cases and 192 controls, EPWP: 24 

cases and 45 controls, NPH: 144 cases and 65 controls), while demographic data for NZ European represents demographic of indiviuals genotyped through Illumina Core Exome Chip 

genotyping only.  
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5.2.3 Results – Discovery-phase 

 Power calculations inidcated European and NZ Polynesian data sets to be only 

adequately powered (> 80%) to detect a significant association (OR = 2.0) in the variants 

with a minor allele frequency > 0.2 (Figure 5.4). A formal multiple-testing correction was 

avoided due to the low power of the study and due to replication being included in the 

study design. 

Figure 5.4: Association detection power in the (A) European and (B) Polynesian ReSequencing Cohorts across a 

range of odds ratio effect sizes and minor allele frequencies. The broken red line indicates an adequate detection 

power ≥ 80%. 

 Extracting the data of coding regions ended up in a list of 134 variants for LRP2 

and 69 for A1CF (Appendix A Table 5.3 and Appendix B Figure 5.1). Within LRP2, 81 

variants were identified to be non-synonymous (missense), while only 4 non-synonymous 

(missense) variants were found in A1CF. Table 5.4 provides a summary of variable 

nucleotide sites for both genes.  
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Table 5.4: Summary of coding region variants of LRP2 and A1CF 

Ex Len Ts Tv Ts/Tv Sn NS Ex Len Ts Tv Ts/Tv Sn NS 

A1CF 

5' UTR - 3 0 - - - 8 274 1 0 - 1 0 

1 95 0 0 - 0 0 9 182 1 0 - 0 1 

2 144 1 0 - 1 0 10 137 0 0 - 0 0 

3 135 2 0 - 2 0 11 149 0 0 - 0 0 

4 131 1 0 - 1 0 12 7,472 1 1 1 2 0 

5 239 3 0 - 1 2 3' UTR - 31 20 1.55 - - 

6 165 2 0 - 1 1 Total 9,221 48 21 2.28 11 4 

7 98 2 0 - 2 0        

LRP2 

1 365 0 0 - 0 0 41 159 0 1 - 1 0 

2 108 1 1 1.00 0 2 42 290 5 0 - 4 1 

3 123 1 0 - 0 1 43 204 0 0 - 0 0 

4 117 1 2 0.50 2 1 44 243 0 1 - 0 1 

5 111 0 0 - 0 0 45 126 1 0 - 0 1 

6 114 1 0 - 1 0 46 120 1 0 - 0 1 

7 117 1 0 - 0 1 47 132 1 0 - 0 1 

8 153 2 1 2.00 2 1 48 202 1 0 - 1 0 

9 120 0 0 - 0 0 49 296 1 0 - 0 1 

10 129 0 0 - 0 0 50 517 4 0 - 2 2 

11 170 2 0 - 2 0 51 153 2 1 2.00 1 2 

12 224 2 0 - 0 2 52 171 1 0 - 1 0 

13 207 4 0 - 1 3 53 224 1 0 - 0 1 

14 203 4 0 - 2 2 54 178 1 0 - 1 0 

15 141 5 0 - 2 3 55 197 3 0 - 1 2 

16 204 2 3 0.67 1 4 56 246 2 1 2.00 1 2 

17 193 0 0 - 0 0 57 129 2 0 - 1 1 

18 126 0 1 - 0 1 58 120 1 0 - 1 0 

19 131 5 2 2.50 5 2 59 117 1 1 1.00 1 1 

20 138 2 0 - 1 1 60 117 1 0 - 0 1 

21 282 1 0 - 0 1 61 138 1 0 - 1 0 

22 240 2 0 - 1 1 62 123 1 0 - 0 1 

23 120 2 1 2.00 2 1 63 129 0 0 - 0 0 

24 117 0 0 - 0 0 64 132 1 1 1.00 0 2 

25 378 0 0 - 0 0 65 132 1 0 - 0 1 

26 249 1 1 1.00 1 1 66 144 1 0 - 1 0 

27 212 0 1 - 0 1 67 166 1 1 1.00 0 2 

28 185 0 1 - 1 0 68 129 0 0 - 0 0 

29 229 4 0 - 2 2 69 221 1 1 1.00 0 2 

30 178 2 0 - 1 1 70 177 1 1 1.00 1 1 

31 129 1 3 0.33 1 3 71 120 0 0 - 0 0 

32 167 1 0 - 0 1 72 91 1 0 - 0 1 

33 144 0 0 - 0 0 73 68 2 0 - 0 2 

34 110 0 0 - 0 0 74 121 1 1 1.00 1 1 

35 178 0 0 - 0 0 75 130 0 1 - 1 0 

36 214 2 0 - 1 1 76 102 0 0 - 0 0 

37 240 2 1 2.00 0 3 77 108 1 0 - 0 1 

38 189 1 0 - 0 1 78 72 0 0 - 0 0 

39 921 7 3 2.33 2 8 79 1,722 1 0 - 1 0 

40 166 0 0 - 0 0 Total 15,808 102 32 3.19 53 81 

Ex: Exon number, Len: Length of the exon in base pairs (bps) according to the longest transcript reported in Genome 

Reference consortium human genome build 37 (GRCh37) on Ensembl (http://grch37.ensembl.org/), Ts: Transitions, 

Tv: Transversions, Ts/Tv: Ratio of transitions to transversions, Sn: Total synonymous variants, NS: Total non-

synonymous (missense) variants, UTR: Untranslated region. 



5| Lipid Metabolism - Rare Variant Analysis 

 213 

5.2.3.1 Single variant association analyses 

 Single variant association analysis for each variant within LRP2 and A1CF exonic 

regions indicated population-specific variants for both genes. Only 31.86% of the variants 

were present in one out of two populations with 18 European-specific (12 for LRP2; 6 for 

A1CF) and 11 Polynesian-specific variants (8 for LRP2; 3 for A1CF). A total of 25 (19 

for LRP2; 6 for A1CF) variants were found to be common (combined altered allele 

frequency > 5%) for both genes. 

 For LRP2, overall, 10 variants (i.e., the altered allele of each variant) were 

significantly associated with hyperuricaemia in European (rs34693334, rs41268685, 

rs2075252, rs4667591) and NZ Polynesian (rs111360923, rs13397109, rs2302694, 

rs4667596, rs830994, var170115626) (Table 5.5). Out of these, two non-synonymous 

(missense) variants were found only in the Polynesian population with almost equal allele 

frequencies (rs111360923: C-allele frequency = 0.071; var170115626: C-allele frequency 

= 0.074) (Table 5.5). The C allele of rs111360923 and the C allele of var170115626 were 

protectively associated with hyperuricaemia (rs111360923: OR = 0.55, POR = 0.02; 

var170115626: OR = 0.57, POR = 0.03) (Table 5.5). It was also not possible to calculate 

linkage disequilibrium (LD) between these two variants in any population due to 

unavailability of the information in 1000 Genome database 

(www.browser.1000genomes.org). The altered alleles of all other variants indicated a 

protective association with hyperuricaemia, except two missense variants, rs34693334 

and rs34693334. The G allele of rs34693334 and T allele of rs41268685 were found to 

be associated with an increased risk of hyperuricaemia in Europeans only (rs34693334: 

OR = 2.33, POR = 0.02; rs41268685: OR = 3.85, POR = 0.04) (Table 5.5). However, 

similar effects were not observed for NZ Polynesians for these two variants (Table 5.5). 

Another variant of interest was rs4667591 (missense), where the G allele was found to be 

protectively associated with hyperuricaemia in Europeans (OR = 0.61, POR = 0.05) and 

indicated a similar trend of association in NZ Polynesians (OR = 0.75, POR = 0.08) (Table 

5.5). Of the above 10 significant variants (except 2 Polynesian-specific SNPs), none was 

in LD with any other in the Caucasian or Han Chinese populations (Figure 5.5). Two 

exceptions were rs2075252 and rs4667591 having 82% LD and rs4667596 and 

rs2302694 having 100% LD only in Han Chinese population (Figure 5.5). No association 

http://browser.1000genomes.org/
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was found for any of the A1CF variants with hyperuricaemia in either population (Table 

5.5). 

 When the European and NZ Polynesian data sets were combined together in meta-

analysis, only few variants within LRP2 indicated some interesting results (Appendix A 

Table 5.3). The A allele of rs2302694 (OR = 0.54, POR = 0.001, PHet = 0.29), the T allele 

of rs4667596 (OR = 0.36, POR = 0.03, PHet = 0.31), the C allele of rs2075252 (OR = 0.75, 

POR = 0.03, PHet =0.41) and the G allele of rs4667591 (OR = 0.72, POR = 0.01, PHet = 

0.43) all indicated a protective association with hyperuricaemia (Appendix A Table 5.3). 

The C allele of rs2229265 was associated with 32% increase in risk of developing 

hyperuricaemia (OR = 1.32, POR = 0.03, PHet = 0.81) (Appendix A Table 5.3). 

 Single variant regression analysis was also carried out with gout and eGFR 

(estimated glomerular filtration rate) to assess an association with gout and kidney 

function. However, these two analyses were limited to NZ Polynesians only due to 

unavailability of information for both traits, gout status and eGFR, in HPFS and NHS 

data sets. Owing to the significance of outcomes, the results for association analysis for 

gout are provided below, while those for eGFR are provided in Appendix A Table 5.4. 

 The C alleles of two Polynesian-specific non-synonymous variants within LRP2 

were also protectively associated with gout (rs111360923: OR = 0.44, POR = 0.004; 

var170115626: OR = 0.46, POR = 0.006) (Table 5.6). The consistent pattern of protective 

association with gout was observed for the G allele of rs4667591 (OR = 0.72, POR = 0.04), 

the G allele of rs830994 (OR = 0.55, POR = 0.003), the A allele of rs2302694 (OR = 0.44, 

POR = 0.001) and the C allele of rs13397109 (OR = 0.45, POR = 0.0009) (Table 5.6). In 

addition, the T allele of rs2075249 (OR = 1.42, POR = 0.05) and the C allele of rs2229265 

(OR = 1.55, POR = 0.019) indicated a susceptible association with gout in NZ Polynesians 

(Table 5.6). Neither of these two variants were in LD with each other in European or 

Hans Chinese populations on 1000 Genomes database (Figure 5.5). In addition, only the 

A allele of rs149367019 (within LRP2) indicated a negative association with eGFR (ß 

(mL/min/1.73m2) = -44.15, Pß = 0.044) (Appendix A Table 5.4). 

 Two variants within A1CF indicated interesting results (Table 5.6). The G allele 

of rs16751 was found to be associated with an increased risk of gout (OR = 1.38, POR = 

0.01), while the A allele of rs184644838 showed an association with decreased risk of 
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gout (OR = 0.59, POR = 0.006) in the NZ Polynesian population (Table 5.6). It was not 

possible to calculate the LD for these variants in European and Han Chinese populations 

as no information was available for rs16751 on any selected array on 1000 Genome 

database. 

Figure 5.5: Linkage disequilibrium (LD) plot indicating ‘R-squared/r2’ values between the 12 LRP2 variants in 

(A) Europeans and (B) Chinese populations. An r2 ≥ 60 in the above plot indicates LD between the particular 

variants. Information for variant location, rs ID and LD values are from 1000 Genome database 

(http://browser.1000genomes.org/). The plots were generated using Haploview v4.2. 

 

A B 
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Table 5.5: Summary of single variant association analysis within LRP2 and A1CF for hyperuricaemia 

Exon Position 
rs ID/var 

position 

Allele Codon 

European NZ Polynesian 

Allele Frequency 
^OR 

[95% CI] 
^POR 

Allele Frequency 
*OR 

[95% CI] 
*POR 

Re

f 

Al

t 
Ref|Alt Normo Hyper Normo Hyper 

LRP2 

2 2:170177382 rs144829356 G A gGg|gAg - - - - 
70 

(0.164) 

96 

(0.211) 

1.30 

[0.90; 1.87] 
0.20 

3 2:170175334 rs2229263 T C aTc|aCc 
118 

(0.341) 

140 

(0.357) 

1.05 

[0.71; 1.56] 
0.81 

66 

(0.155) 

65 

(0.143) 

0.87 

[0.58; 1.31] 
0.59 

4 2:170163816 rs34104660 G T ccG|ccT 
35 

(0.101) 

32 

(0.082) 

0.62 

[0.30; 1.27] 
0.19 

3 

(0.007) 

0 

(0.000) 
- - 

6 2:170150671 rs2229266 G A gaG|gaA 
102 

(0.295) 

102 

(0.260) 

0.79 

[0.52; 1.21] 
0.29 

154 

(0.363) 

165 

(0.361) 

0.96 

[0.70; 1.32] 
0.80 

8 2:170147502 rs34693334 C G Cgt|Ggt 
23 

(0.066) 

24 

(0.061) 

2.33 

[1.11; 4.87] 
0.02 

4 

(0.009) 

4 

(0.009) 

0.58 

[0.13; 2.50] 
0.47 

14 2:170131548 rs111360923 T C tTt|tCt - - - - 
47 

(0.110) 

32 

(0.070) 

0.55 

[0.33; 0.92] 
0.02 

14 2:170129474 rs145709922 G A ttG|ttA 
1 

(0.003) 

2 

(0.005) 

0.76 

[0.05; 12.42] 
0.85 - - - - 

14 2:170129547 rs34291900 C T gCc|gTc 
11 

(0.032) 

15 

(0.038) 

1.58 

[0.57; 4.38] 
0.38 

2 

(0.005) 

1 

(0.002) 

0.40 

[0.03; 5.05] 
0.47 

14 2:170129528 rs830994 A G gtA|gtG 
123 

(0.355) 

135 

(0.344) 

1.11 

[0.74; 1.68] 
0.62 

95 

(0.223) 

76 

(0.167) 

0.63 

[0.44; 0.92] 
0.02 

15 2:170115588 rs2241190 T C acT|acC 
155 

(0.448) 

183 

(0.467) 

1.17 

[0.79; 1.72] 
0.44 

169 

(0.397) 

176 

(0.388) 

0.97 

[0.72; 1.32] 
0.87 

15 2:170115672 rs33954745 A G gaA|gaG 
26 

(0.075) 

28 

(0.071) 

0.92 

[0.44; 1.91] 
0.82 

7 

(0.016) 

5 

(0.011) 

0.62 

[0.17; 2.29] 
0.57 

16 2:170127559 rs141180155 G A acG|acA 
3 

(0.009) 

6 

(0.015) 

2.45 

[0.45; 13.23] 
0.30 

0 

(0.000) 

1 

(0.002) 
- - 

17 2:170115626 var170115626 T C Ttc|Ctc - - - - 
46 

(0.108) 

34 

(0.075) 

0.57 

[0.34; 0.96] 
0.03 
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19 2:170103471 rs17848143 C T acC|acT - - - - 
5 

(0.012) 

4 

(0.009) 

0.73 

[0.17; 3.10] 
0.58 

19 2:170103351 rs2075249 G T acG|acT 
154 

(0.445) 

196 

(0.500) 

1.06 

[0.72; 1.55] 
0.77 

101 

(0.237) 

120 

(0.264) 

1.20 

[0.85; 1.69] 
0.28 

19 2:170103336 rs831043 T C acT|acC 
148 

(0.428) 

181 

(0.462) 

1.22 

[0.82; 1.82] 
0.32 

169 

(0.397) 

175 

(0.385) 

0.97 

[0.71; 1.31] 
0.83 

21 2:170100011 rs150552608 G A cGt|cAt 
2 

(0.006) 

1 

(0.003) 

0.38 

[0.03; 4.23] 
0.43 - - - - 

22 2:170099473 rs831042 T C gcT|gcC 
146 

(0.422) 

180 

(0.459) 

1.26 

[0.85; 1.87] 
0.26 

169 

(0.397) 

175 

(0.385) 

0.97 

[0.71; 1.31] 
0.83 

23 2:170097707 rs17848149 T G gTc|gGc 
7 

(0.020) 

12 

(0.031) 

0.94 

[0.29; 3.10] 
0.92 

26 

(0.061) 

29 

(0.064) 

1.19 

[0.65; 2.18] 
0.62 

26 2:170096095 rs34915742 C G cgC|cgG 
2 

(0.006) 

1 

(0.003) 

0.38 

[0.03; 4.23] 
0.43 

0 

(0.000) 

1 

(0.002) 
- - 

27 2:170094756 rs146289506 C A Ctc|Atc 
1 

(0.003) 

1 

(0.003) 

0.76 

[0.05; 12.42] 
0.85 - - - - 

28 2:170093726 var170093726 T G acT|acG - - - - 
5 

(0.076) 

2 

(0.004) 

0.32 

[0.05; 1.93] 
0.25 

29 2:170092439 rs151079411 G A Gtg|Atg 
1 

(0.003) 

1 

(0.003) 

1.97 

[0.09; 43.53] 
0.67 - - - - 

29 2:170092395 rs2229267 A G tgA|tgG 
77 

(0.223) 

94 

(0.240) 

1.07 

[0.71; 1.63] 
0.74 

128 

(0.300) 

129 

(0.284) 

0.94 

[0.68; 1.31] 
0.69 

29 2:170092504 var170092504 C T cCc|cTc - - - - 
5 

(0.012) 

10 

(0.022) 

1.85 

[0.56; 6.10] 
0.35 

30 2:170089934 rs145384264 C T tcC|tcT 
4 

(0.012) 

7 

(0.018) 

1.62 

[0.30; 8.80] 
0.57 

2 

(0.005) 

1 

(0.002) 

0.41 

[0.03; 5.28] 
0.47 

31 2:170088351 rs2302694 G A tcG|tcA 
37 

(0.107) 

32 

(0.082) 

0.71 

[0.37; 1.37] 
0.31 

64 

(0.150) 

43 

(0.095) 

0.46 

[0.29; 0.74] 
0.01 

32 2:170082936 rs138070797 T C aTt|aCt 
1 

(0.003) 

3 

(0.008) 

1.54 

[0.14; 17.36] 
0.73 - - - - 

36 2:170070348 rs11886219 T C cgT|cgC 
15 

(0.043) 

18 

(0.046) 

0.78 

[0.30; 2.06] 
0.62 

7 

(0.106) 

5 

(0.011) 

0.76 

[0.20; 2.85] 
0.77 

36 2:170070172 rs4667596 C T aCa|aTa 
8 

(0.023) 

5 

(0.013) 

0.65 

[0.15; 2.78] 
0.56 

10 

(0.023) 

4 

(0.009) 

0.22 

[0.07; 0.77] 
0.02 

39 2:170063263 rs149367019 G A Gta|Ata 
1 

(0.003) 

4 

(0.010) 

0.76 

[0.05; 12.42] 
0.85 

1 

(0.002) 

0 

(0.000) 
- - 
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39 2:170063471 rs35114151 A G gaA|gaG 
8 

(0.023) 

14 

(0.036) 

1.18 

[0.40; 3.49] 
0.77 

26 

(0.061) 

28 

(0.062) 

1.15 

[0.63; 2.12] 
0.69 

39 2:170062977 rs61995915 T C gTa|gCa 
4 

(0.012) 

7 

(0.018) 

2.00 

[0.42; 9.62] 
0.39 

0 

(0.000) 

1 

(0.002) 
- - 

41 2:170062078 rs13397109 G C cgG|cgC 
17 

(0.049) 

23 

(0.059) 

1.26 

[0.53; 2.98] 
0.60 

72 

(0.169) 

55 

(0.121) 

0.63 

[0.41; 0.96] 
0.03 

42 2:170060603 rs17848169 T C Tat|Cat 
13 

(0.038) 

17 

(0.043) 

1.27 

[0.48; 3.38] 
0.64 

2 

(0.005) 

1 

(0.002) 

0.40 

[0.03; 5.05] 
0.47 

44 2:170058345 var170058345 C A Ccc|Acc - - - - 
5 

(0.076) 

3 

(0.007) 

0.39 

[0.09; 1.81] 
0.25 

46 2:170053505 rs2228171 T C Tca|Cca 
251 

(0.725) 

266 

(0.679) 

0.74 

[0.48; 1.12] 
0.16 

182 

(0.427) 

187 

(0.412) 

0.92 

[0.68; 1.23] 
0.64 

48 2:170048482 rs149148763 C T agC|agT 
4 

(0.012) 

1 

(0.003) 

0.45 

[0.04; 4.79] 
0.51 - - - - 

50 2:170042245 rs35734447 T C Tac|Cac 
1 

(0.003) 

1 

(0.003) 

1.97 

[0.09; 43.53] 
0.67 - - - - 

54 2:170032989 rs2229265 T C caT|caC 
157 

(0.454) 

207 

(0.528) 

1.28 

[0.89; 1.83] 
0.18 

320 

(0.751) 

362 

(0.797) 

1.40 

[0.99; 1.98] 
0.08 

55 2:170031824 rs17848184 C T ccC|ccT - - - - 
85 

(0.200) 

99 

(0.218) 

1.19 

[0.82; 1.72] 
0.40 

57 2:170029657 rs34355135 C T Ctg|Ttg 
2 

(0.006) 

4 

(0.010) 

1.98 

[0.22; 17.85] 
0.54 - - - - 

58 2:170028529 rs199528723 G A aaG|aaA - - - - 
5 

(0.076) 

5 

(0.011) 

0.57 

[0.16; 2.10] 
0.38 

60 2:170026248 var170026248 C T Cct|Tct 
1 

(0.003) 

1 

(0.003) 

1.97 

[0.09; 43.53] 
0.67 - - - - 

61 2:170025083 rs2229268 A G tgA|tgG 
71 

(0.205) 

85 

(0.217) 

1.06 

[0.69; 1.63] 
0.79 

28 

(0.066) 

39 

(0.086) 

1.37 

[0.77; 2.45] 
0.21 

64 2:170013904 rs79723119 A C gAt|gCt 
6 

(0.017) 

8 

(0.020) 

1.71 

[0.38; 7.60] 
0.48 

1 

(0.002) 

0 

(0.000) 
- - 

66 2:170010985 rs2075252 T C Tag|Cag 
272 

(0.786) 

280 

(0.714) 

0.65 

[0.42; 1.01] 
0.05 

139 

(0.326) 

131 

(0.289) 

0.78 

[0.56; 1.07] 
0.19 

67 2:170009390 rs142934522 C T cCc|cTc 
2 

(0.006) 

1 

(0.003) 

0.38 

[0.03; 4.23] 
0.43 - - - - 

69 2:170003432 rs4667591 T G Ttc|Gtc 
284 

(0.821) 

301 

(0.768) 

0.61 

[0.38; 0.99] 
0.05 

170 

(0.399) 

155 

(0.341) 

0.75 

[0.55; 1.02] 
0.08 
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70 2:170002412 var170002412 T C gTc|gCc - - - - 
1 

(0.002) 

1 

(0.002) 

0.49 

[0.03; 7.92] 
0.61 

72 2:169997051 rs990626 G A atG|atA 
272 

(0.786) 

281 

(0.717) 

0.75 

[0.48; 1.16] 
0.19 

180 

(0.423) 

179 

(0.394) 

0.89 

[0.66; 1.19] 
0.51 

73 2:169996070 rs41268685 C T gCc|gTc 
5 

(0.014) 

11 

(0.028) 

3.85 

[1.03; 14.38] 
0.04 

1 

(0.002) 

0 

(0.000) 
- - 

77 2:169989127 rs142245618 A G gAt|gGt 
3 

(0.009) 

2 

(0.005) 

0.67 

[0.10; 4.45] 
0.68 - - - - 

79 2:169985338 rs34564141 C T atC|atT 
3 

(0.009) 

4 

(0.010) 

1.38 

[0.24; 8.11] 
0.72 - - - - 

A1CF 

5' UTR 10:52645424 rs10994860 C T - 
58 

(0.168) 

65 

(0.166) 

0.95 

[0.55; 1.63] 
0.85 

49 

(0.115) 

56 

(0.123) 

1.36 

[0.85; 2.16] 
0.20 

2 10:52623804 var52623804 A G - -  -  
9 

(0.021) 

8 

(0.018) 

0.62 

[0.22; 1.74] 
0.36 

3 10:52603754 rs35967725 A G tgA|tgG 
1 

(0.003) 

6 

(0.015) 

6.49 

[0.49; 86.26] 
0.16 

3 

(0.007) 

2 

(0.004) 

0.61 

[0.09; 4.39] 
0.63 

3 10:52603874 rs142969066 T C ggT|ggC 
5 

(0.014) 

4 

(0.010) 

0.65 

[0.14; 2.99] 
0.58 

1 

(0.002) 

0 

(0.000) 
- - 

6 10:52587964 rs143315865 G A atG|atA 
1 

(0.003) 

1 

(0.003) 

0.76 

[0.05; 12.42] 
0.85 - - -  

7 10:52576068 rs4245008 A G - 
49 

(0.142) 

56 

(0.143) 

0.95 

[0.55; 1.65] 
0.86 

1 

(0.002) 

0 

(0.000) 
- - 

7 10:52580318 rs372408821 A G aaA|aaG 
0 

(0.000) 

1 

(0.003) 
- 1.00 

1 

(0.002) 

1 

(0.002) 

1.26 

[0.06; 28.03] 
0.88 

8 10:52576025 rs142026324 G A tcG|tcA 
3 

(0.009) 

2 

(0.005) 

0.90 

[0.08; 10.72] 
0.93 - - - - 

9 10:52573772 rs41274050 C T Cgc|Tgc 
2 

(0.006) 

4 

(0.010) 

3.40 

[0.40; 29.06] 
0.26 

71 

(0.167) 

87 

(0.192) 

1.31 

[0.89; 1.93] 
0.18 

12 10:52566594 rs34190540 G C ctG|ctC 
1 

(0.003) 

1 

(0.003) 

0.51 

[0.02; 11.25] 
0.67 - - - 0.20 

3' UTR 10:52559596 var52559596 C T - 
1 

(0.003) 

1 

(0.003) 

0.76 

[0.05; 12.42] 
0.85 - - - - 

3' UTR 10:52559634 rs10994507 A G - 
31 

(0.090) 

32 

(0.082) 

0.99 

[0.51; 1.91] 
0.98 

22 

(0.052) 

18 

(0.040) 

0.83 

[0.41; 1.67] 
0.60 
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3' UTR 10:52559843 rs7084132 G T - 
50 

(0.145) 

56 

(0.143) 

0.91 

[0.53; 1.57] 
0.74 

71 

(0.167) 

87 

(0.192) 

1.31 

[0.89; 1.93] 
0.18 

3' UTR 10:52560557 rs6479731 A G - 
50 

(0.145) 

56 

(0.143) 

0.91 

[0.53; 1.57] 
0.74 

1 

(0.002) 

3 

(0.007) 

1.46 

[0.15; 14.23] 
0.74 

3' UTR 10:52560658 rs10994521 A T - 
1 

(0.003) 

1 

(0.003) 

0.76 

[0.05; 12.42] 
0.85 - - - - 

3' UTR 10:52561803 rs74352101 A G - 
30 

(0.087) 

31 

(0.079) 

1.01 

[0.52; 1.96] 
0.99 

71 

(0.167) 

87 

(0.192) 

1.31 

[0.89; 1.93] 
0.18 

3' UTR 10:52561829 rs7072584 A C - 
50 

(0.145) 

56 

(0.143) 

0.91 

[0.53; 1.57] 
0.74 

71 

(0.167) 

87 

(0.192) 

1.31 

[0.89; 1.93] 
0.18 

3' UTR 10:52561919 rs12571156 C T - 
2 

(0.006) 

1 

(0.003) 
- 0.99 

99 

(0.232) 

110 

(0.242) 

1.11 

[0.79; 1.57] 
0.54 

3' UTR 10:52561920 var52561920 G A - 
0 

(0.000) 

1 

(0.003) 
- 1.00 

3 

(0.007) 

6 

(0.013) 

2.07 

[0.44; 9.70] 
0.36 

3' UTR 10:52562434 var52562434 A C - 
1 

(0.003) 

1 

(0.003) 

0.51 

[0.02; 11.25] 
0.67 

1 

(0.002) 

0 

(0.000) 
- - 

3' UTR 10:52563051 rs4282939 C T - 
86 

(0.254) 

86 

(0.223) 

0.91 

[0.60; 1.37] 
0.64 

71 

(0.167) 

87 

(0.192) 

1.31 

[0.89; 1.93] 
0.18 

3' UTR 10:52563196 rs16751 A G - 
177 

(0.512) 

201 

(0.513) 

1.05 

[0.74; 1.50] 
0.79 

111 

(0.261) 

141 

(0.311) 

1.10 

[0.80; 1.52] 
0.54 

3' UTR 10:52563845 var52563862 C T - 
1 

(0.003) 

1 

(0.003) 

0.76 

[0.05; 12.42] 
0.85 

0 

(0.000) 

1 

(0.002) 
- - 

3' UTR 10:52563898 rs112824128 C A - 
2 

(0.006) 

3 

(0.008) 

1.17 

[0.14; 9.71] 
0.88 - - - - 

3' UTR 10:52563981 rs150545950 C T - 
2 

(0.006) 

2 

(0.005) 

0.61 

[0.05; 7.93] 
0.71 

0 

(0.000) 

1 

(0.002) 
- - 

3' UTR 10:52564065 rs4619096 A G - 
50 

(0.145) 

56 

(0.143) 

0.91 

[0.53; 1.57] 
0.74 

200 

(0.481) 

175 

(0.403) 

0.78 

[0.58; 1.04] 
0.08 

3' UTR 10:52564421 rs80080606 G T - 
1 

(0.003) 

0 

(0.000) 
- 1.00 

99 

(0.232) 

110 

(0.242) 

1.11 

[0.79; 1.57] 
0.54 

3' UTR 10:52564524 var52564700 A T - - - - - 
4 

(0.009) 

1 

(0.002) 

0.47 

[0.04; 5.00] 
0.53 

3' UTR 10:52564700 rs74874346 G A - 
29 

(0.084) 

31 

(0.079) 

0.93 

[0.48; 1.82] 
0.83 

22 

(0.052) 

18 

(0.040) 

0.83 

[0.41; 1.67] 
0.60 

3' UTR 10:52565100 var52565132 A C - 
1 

(0.003) 

2 

(0.005) 

1.31 

[0.08; 21.30] 
0.85 

0 

(0.000) 

1 

(0.002) 
- - 
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3' UTR 10:52565132 rs185182715 C T - 
1 

(0.003) 

0 

(0.000) 
- 1.00 

103 

(0.242) 

85 

(0.187) 

0.72 

[0.50; 1.03] 
0.07 

3' UTR 10:52565377 rs75583477 C T - 
1 

(0.003) 

0 

(0.000) 
- 1.00 

22 

(0.052) 

18 

(0.040) 

0.83 

[0.41; 1.67] 
0.60 

3' UTR 10:52565903 rs4078160 C A - 
49 

(0.142) 

56 

(0.143) 

1.05 

[0.61; 1.81] 
0.86 - - - - 

3' UTR 10:52565951 rs4619097 T C - 
2 

(0.006) 

1 

(0.003) 

0.38 

[0.03; 4.23] 
0.43 

71 

(0.167) 

87 

(0.192) 

1.31 

[0.89; 1.93] 
0.18 

3' UTR 10:52566049 rs10821846 A G - 
177 

(0.512) 

201 

(0.513) 

1.05 

[0.74; 1.50] 
0.79 

111 

(0.261) 

141 

(0.311) 

1.10 

[0.80; 1.52] 
0.54 

3' UTR 10:52566333 var52566417 G A - - - -  
25 

(0.059) 

19 

(0.042) 

0.64 

[0.32; 1.28] 
0.21 

UTR: Un-translated region, rs ID: Reference SNP cluster ID, Chr: Chromosome, var: Variant, Ref: Reference, Alt: Alternate. Normo: Normouricaemic, Hyper: Hyperuricaemic, OR: Odds 

ratio for the alternate allele, 95% CI: 95% confidence interval, POR: p-value for odds ratio. *Odds ratios are adjusted for sex, age, BMI and estimates of grand-parental ancestry. ^Odds 

ratios are adjusted for sex and collection study. Exon numbers and variant positions are sourced from the Genome Reference Consortium human genome build 37 (GRCh37) on Ensembl 

(http://grch37.ensembl.org/). 
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Table 5.6: Summary of single variant association analysis within LRP2 and A1CF for gout in NZ Polynesians 

Exon Chr:Position 
rs ID/var 

position 

Allele Codon Allele Frequency 
*OR [95% CI] *POR 

Ref Alt Ref|Alt Control Case 

     LRP2     

2 2:170177382 rs144829356 G A gGg|gAg 93 (0.171) 73 (0.221) 1.27 [0.88 ; 1.82] 0.20 

3 2:170175334 rs2229263 T C aTc|aCc 86 (0.158) 44 (0.133) 0.78 [0.51 ; 1.20] 0.26 

4 2:170163816 rs34104660 G T ccG|ccT 3 (0.006) 0 (0.000) - 0.98 

4 2:170163808 var170163808 G T gGt|gTt 0 (0.000) 1 (0.003) - 0.98 

6 2:170150671 rs2229266 G A gaG|gaA 190 (0.349) 125 (0.379) 1.19 [0.87 ; 1.65] 0.28 

7 2:170148871 var170148871 T C Tcc|Ccc 0 (0.000) 1 (0.003) - 0.98 

8 2:170147502 rs34693334 C G Cgt|Ggt 5 (0.009) 3 (0.009) 0.62 [0.14 ; 2.75] 0.53 

8 2:170147408 var170147408 A G tAa|tGa 0 (0.000) 1 (0.003) - 0.98 

14 2:170131548 rs111360923 T C tTt|tCt 60 (0.110) 20 (0.061) 0.44 [0.25 ; 0.78] 0.004 

14 2:170129547 rs34291900 C T gCc|gTc 2 (0.004) 1 (0.003) 0.77 [0.06 ; 9.86] 0.84 

14 2:170129528 rs830994 A G gtA|gtG 121 (0.222) 49 (0.148) 0.55 [0.37 ; 0.82] 0.003 

15 2:170115588 rs2241190 T C acT|acC 219 (0.403) 123 (0.373) 0.91 [0.67 ; 1.24] 0.56 

15 2:170115672 rs33954745 A G gaA|gaG 8 (0.015) 4 (0.012) 0.76 [0.19 ; 2.96] 0.69 

16 2:170127559 rs141180155 G A acG|acA 0 (0.000) 1 (0.003) - 0.98 

16 2:170113671 rs147621120 T A Tct|Act 1 (0.002) 0 (0.000) - 0.98 

16 2:170127497 var170127497 A G aAt|aGt 0 (0.000) 1 (0.003) - 0.98 

17 2:170115626 var170115626 T C Ttc|Ctc 59 (0.108) 20 (0.061) 0.46 [0.26 ; 0.81] 0.006 

18 2:170104017 var170104017 A C Att|Ctt 2 (0.004) 0 (0.000) - 0.98 

19 2:170103471 rs17848143 C T acC|acT 6 (0.011) 3 (0.009) 0.81 [0.18 ; 3.67] 0.79 

19 2:170103351 rs2075249 G T acG|acT 126 (0.232) 93 (0.282) 1.42 [1.00 ; 2.01] 0.05 

19 2:170103336 rs831043 T C acT|acC 218 (0.401) 123 (0.373) 0.92 [0.68 ; 1.26] 0.61 

19 2:170103219 var170103219 T A acT|acA 1 (0.002) 0 (0.000) - 0.98 

22 2:170099474 rs144723964 G A gGa|gAa 1 (0.002) 0 (0.000) - 0.98 
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22 2:170099473 rs831042 T C gcT|gcC 218 (0.401) 123 (0.373) 0.92 [0.68 ; 1.26] 0.61 

23 2:170097655 rs138030034 G A tgG|tgA 1 (0.002) 0 (0.000) - 0.98 

23 2:170097707 rs17848149 T G gTc|gGc 35 (0.064) 183 (0.555) 1.12 [0.61 ; 2.06] 0.72 

26 2:170096095 rs34915742 C G cgC|cgG 1 (0.002) 0 (0.000) - 0.98 

28 2:170093726 var170093726 T G acT|acG 5 (0.009) 2 (0.006) 0.60 [0.10 ; 3.74] 0.59 

29 2:170092395 rs2229267 A G tgA|tgG 164 (0.301) 90 (0.273) 0.90 [0.64 ; 1.27] 0.56 

29 2:170092504 var170092504 C T cCc|cTc 6 (0.011) 9 (0.027) 2.59 [0.81 ; 8.33] 0.11 

30 2:170089934 rs145384264 C T tcC|tcT 2 (0.004) 1 (0.003) 0.79 [0.06 ; 10.35] 0.86 

31 2:170088296 rs144054579 C G Cgg|Ggg 1 (0.002) 0 (0.000) - 0.98 

31 2:170088242 rs149469954 G A Gtc|Atc 0 (0.000) 1 (0.003) - 0.98 

31 2:170088351 rs2302694 G A tcG|tcA 78 (0.143) 28 (0.085) 0.44 [0.27 ; 0.72] 0.001 

36 2:170070348 rs11886219 T C cgT|cgC 8 (0.015) 4 (0.012) 0.93 [0.23 ; 3.74] 0.92 

36 2:170070172 rs4667596 C T aCa|aTa 10 (0.018) 4 (0.012) 0.43 [0.12 ; 1.46] 0.17 

39 2:170063263 rs149367019 G A Gta|Ata 1 (0.002) 0 (0.000) - 0.98 

39 2:170063471 rs35114151 A G gaA|gaG 35 (0.064) 17 (0.052) 1.07 [0.57 ; 1.98] 0.84 

39 2:170063380 rs35413340 T C Tct|Cct 1 (0.002) 0 (0.000) - 0.98 

39 2:170062977 rs61995915 T C gTa|gCa 0 (0.000) 1 (0.003) - 0.98 

41 2:170062078 rs13397109 G C cgG|cgC 95 (0.175) 31 (0.094) 0.45 [0.28 ; 0.72] 0.0009 

42 2:170060603 rs17848169 T C Tat|Cat 2 (0.004) 1 (0.003) 0.77 [0.06 ; 9.86] 0.84 

42 2:170060619 rs199593393 C T caC|caT 0 (0.000) 1 (0.003) - 0.98 

44 2:170058345 var170058345 C A Ccc|Acc 5 (0.009) 3 (0.009) 0.75 [0.16 ; 3.46] 0.71 

45 2:170055385 var170055385 T C cTt|cCt 1 (0.002) 0 (0.000) - 0.98 

46 2:170053505 rs2228171 T C Tca|Cca 234 (0.430) 132 (0.400) 0.88 [0.65 ; 1.19] 0.40 

48 2:170048482 var170038806 C T cCc|cTc 0 (0.000) 1 (0.003) - 0.98 

54 2:170032989 rs2229265 T C caT|caC 409 (0.752) 268 (0.812) 1.55 [1.07 ; 2.23] 0.019 

55 2:170031824 rs17848184 C T ccC|ccT 107 (0.197) 76 (0.230) 1.31 [0.90 ; 1.92] 0.16 

56 2:170030506 rs142549310 C T cCc|cTc 1 (0.002) 0 (0.000) - 0.98 

56 2:170030556 var170030556 G A caG|caA 0 (0.000) 3 (0.009) - 0.98 
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58 2:170028529 rs199528723 G A aaG|aaA 5 (0.009) 5 (0.015) 1.08 [0.29 ; 3.99] 0.91 

61 2:170025083 rs2229268 A G tgA|tgG 34 (0.063) 33 (0.100) 1.72 [0.96 ; 3.09] 0.06 

62 2:170022511 var170022511 T C Ttt|Ctt 1 (0.002) 0 (0.000) - 0.98 

64 2:170013904 rs79723119 A C gAt|gCt 1 (0.002) 0 (0.000) - 0.98 

64 2:170013979 var170013979 A G aAa|aGa 1 (0.002) 0 (0.000) - 0.98 

66 2:170010985 rs2075252 T C Tag|Cag 173 (0.318) 96 (0.291) 0.81 [0.58 ; 1.13] 0.21 

69 2:170003432 rs4667591 T G Ttc|Gtc 214 (0.393) 110 (0.333) 0.72 [0.53 ; 0.99] 0.04 

70 2:170002412 var170002412 T C gTc|gCc 1 (0.002) 1 (0.003) 0.90 [0.06 ; 14.56] 0.94 

72 2:169997051 rs990626 G A atG|atA 231 (0.425) 127 (0.385) 0.81 [0.60 ; 1.11] 0.19 

73 2:169996070 rs41268685 C T gCc|gTc 1 (0.002) 0 (0.000) - 0.98 

74 2:169995880 rs370978040 G A acG|acA 0 (0.000) 1 (0.003) - 0.98 

A1CF 

5' UTR 10:52645424 rs10994860 C T - 67 (0.124) 38 (0.113) 1.03 [0.63 ; 1.67] 0.91 

5' UTR 10:52619722 var52619722 A G - 1 (0.002) 0 (0.000) - 0.98 

2 10:52623804 var52623804 A G - 11 (0.020) 5 (0.015) 0.64 [0.22 ; 1.88] 0.42 

3 10:52603874 rs142969066 T C ggT|ggC 1 (0.002) 0 (0.000) - 0.98 

3 10:52603754 rs35967725 A G tgA|tgG 1 (0.002) 1 (0.003) 2.40 [0.11 ; 51.57] 0.58 

5 10:52595864 var52595864 C T Cct|Tct 1 (0.002) 0 (0.000) - 0.98 

6 10:52588045 rs146662131 C T caC|caT 1 (0.002) 0 (0.000) - 0.98 

7 10:52576068 rs4245008 A G - 100 (0.185) 57 (0.170) 0.94 [0.63 ; 1.39] 0.74 

9 10:52573772 rs41274050 C T Cgc|Tgc 1 (0.002) 0 (0.000) - 0.98 

12 10:52566594 rs34190540 G C ctG|ctC 3 (0.006) 2 (0.006) 1.32 [0.18 ; 9.81] 0.78 

3' UTR 10:52559291 rs61856570 A G - 1 (0.002) 3 (0.009) 1.84 [0.18 ; 18.82] 0.61 

3' UTR 10:52559634 rs10994507 A G - 27 (0.050) 13 (0.039) 0.85 [0.41 ; 1.76] 0.20 

3' UTR 10:52559843 rs7084132 G T - 100 (0.185) 57 (0.170) 0.94 [0.63 ; 1.39] 0.74 

3' UTR 10:52559853 var52559853 T G - 1 (0.002) 0 (0.000) - 0.98 

3' UTR 10:52560181 var52560181 T C - 1 (0.002) 0 (0.000) - 0.98 

3' UTR 10:52560476 rs75907017 G A - 124 (0.229) 85 (0.253) 1.26 [0.89 ; 1.81] 0.20 
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3' UTR 10:52560557 rs6479731 A G - 100 (0.185) 57 (0.170) 0.94 [0.63 ; 1.39] 0.74 

3' UTR 10:52561178 var52561178 G C - 0 (0.000) 1 (0.003) - 0.98 

3' UTR 10:52561680 var52561680 T G - 4 (0.007) 5 (0.015) 2.30 [0.50 ; 10.55] 0.28 

3' UTR 10:52561803 rs74352101 A G - 27 (0.050) 13 (0.039) 0.85 [0.41 ; 1.76] 0.65 

3' UTR 10:52561829 rs7072584 A C - 100 (0.185) 57 (0.170) 0.94 [0.63 ; 1.39] 0.74 

3' UTR 10:52561919 rs12571156 C T - 124 (0.229) 85 (0.253) 1.26 [0.89 ; 1.81] 0.98 

3' UTR 10:52562339 var52562339 C T - 1 (0.002) 0 (0.000) - 0.98 

3' UTR 10:52563051 rs4282939 C T - 250 (0.473) 125 (0.391) 0.76 [0.57 ; 1.02] 0.07 

3' UTR 10:52563196 rs16751 A G - 136 (0.251) 115 (0.342) 1.38 [1.00 ; 1.90] 0.01 

3' UTR 10:52563707 rs184644838 G A - 133 (0.245) 55 (0.164) 0.59 [0.40 ; 0.86] 0.006 

3' UTR 10:52563725 var52563845 A C - 0 (0.000) 1 (0.003) - 0.98 

3' UTR 10:52563904 var52563981 G C - 5 (0.009) 0 (0.000) - 0.98 

3' UTR 10:52563981 rs150545950 C T - 1 (0.002) 0 (0.000) - 0.05 

3' UTR 10:52564065 rs4619096 A G - 100 (0.185) 57 (0.170) 0.94 [0.63 ; 1.39] 0.74 

3' UTR 10:52564524 var52564700 A T - 0 (0.000) 1 (0.003) - 0.98 

3' UTR 10:52564700 rs74874346 G A - 27 (0.050) 13 (0.039) 0.85 [0.41 ; 1.76] 0.65 

3' UTR 10:52564768 var52565100 G A - 0 (0.000) 1 (0.003) - 0.98 

3' UTR 10:52565903 rs4078160 C A - 100 (0.185) 57 (0.170) 0.94 [0.63 ; 1.39] 0.74 

3' UTR 10:52565940 var52565951 T C - 30 (0.055) 14 (0.042) 0.72 [0.35 ; 1.47] 0.36 

3' UTR 10:52566049 rs10821846 A G - 136 (0.251) 115 (0.342) 1.38 [1.00 ; 1.90] 0.65 

3' UTR 10:52566333 var52566417 G A - 0 (0.000) 1 (0.003) - 0.98 

UTR: Un-translated region, rs ID: Reference SNP cluster ID, Chr: Chromosome, var: Variant, Ref: Reference, Alt: Alternate. Normo: Normouricaemic, Hyper: Hyperuricaemic, OR: Odds 

ratio for the alternate allele, 95% CI: 95% confidence interval, POR: p-value for odds ratio. *Odds ratios are adjusted for sex, age, BMI and estimates of grand-parental ancestry. ^Odds 

ratios are adjusted for sex and collection study. Exon numbers and variant positions are sourced from the Genome Reference Consortium human genome build 37 (GRCh37) on Ensembl 

(http://grch37.ensembl.org/).
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5.2.3.2 Burden analysis 

 Combining the allele frequencies obtained from single variant analyses with a cut-

off combined allele frequency of < 0.05 (5%) to determine the rarity resulted in a list of 

111 variants (11 rare and 100 very rare variants) within LRP2 and 53 variants (1 rare 52 

very rare variants) within A1CF (Appendix A Table 5.4). Non-synonymous variants were 

also identified for both genes regardless of their allele frequency. This ended up in a list 

of 81 missense variants in LRP2 and 4 missense variants in A1CF. Out of 81 missense 

variants in LRP2, 74 were still very rare (< 0.01), while only 7 variants had a combined 

allele frequency < 0.05 to 0.01. One out of 4 missense variants in A1CF was rare and 3 

were very rare (Appendix A Table 5.4). Non-synonymous deleterious variants were 

identified on the basis of information gained via functional annotations for the variants in 

all four annotation platforms being used (see details in Sections 5.2.2.2.3 and 5.2.3.3). 

 Analysing the burden of rare exonic variants of LRP2 and A1CF did not signify an 

effect associated with hyperuricaemia in both NZ Polynesian and European individuals 

(Table 5.7). The rare variants within A1CF indicated a slight trend for protection against 

hyperuricaemia only in European individuals (PBurden (Protection) = 0.06) but not Polynesians 

(PBurden (Protection) = 0.51) (Table 5.7). The frequency of individuals carrying a rare allele 

was almost equal when compared between hyperuricaemic cases and normouricaemic 

controls for both genes. All results from allele-collapsing and adaptive weighted sum tests 

were insignificant for a rare variant burden in LRP2 and A1CF (Table 5.7). Changing the 

number of permutations also did not indicate a considerable change for burden 

associations at any gene (Table 5.7). 

 Non-synonymous variants within LRP2 and A1CF with combined allele-

frequency of < 0.05 were also tested for having a burden for hyperuricaemia in NZ 

Polynesian and Europeans. The analysis indicated a significant burden of risk variants 

within LRP2 only in the European population (PBurden (Risk) = 0.009) (Table 5.8), which 

retained when burden for risk and protective variants was collectively calculated (PBurden 

(Combined) = 0.023) (Table 5.8). The number of rare allele carriers for non-synonymous 

variants was significantly higher in hyperuricaemic than normouricaemic European 

individuals (P = 0.04) (Table 5.8). The rare non-synonymous variants did not indicate a 

burden for hyperuricaemia in NZ Polynesian (PBurden (Risk) = 0.14 and PBurden (Protection) = 
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0.37) with almost equal frequency of rare non-synonymous variants between the 

hyperuricaemic cases and nonrmouricaemic controls (P = 0.98) (Table 5.8). No notable 

burden effects or difference in frequency were observed in A1CF for both Europeans and 

Polynesians (Table 5.8).  
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Table 5.7: Rare variant burden analysis of LRP2 and A1CF for hyperuricaemia 

Permut NZ Polynesian European 

 
Frequency PBurden Frequency PBurden 

 
Normo Hyper Comb Risk Protect Normo Hyper Comb Risk Protect 

LRP2 

Allele-

collapsing 

43 

(0.09) 

46 

(0.11) 
0.998 - - 

115 

(0.31) 

131 

(0.35) 
0.997 - - 

1,000 - - 0.543 0.649 0.375 - - 0.565 0.183 0.843 

10,000 - - 0.519 0.666 0.349 - - 0.555 0.171 0.859 

50,000 - - 0.521 0.664 0.349 - - 0.565 0.168 0.861 

100,000 - - 0.525 0.669 0.346 - - 0.564 0.166 0.861 

A1CF 

Allele-

collapsing 

28 

(0.06) 

26 

(0.05) 
0.692 - - 

36 

(0.09) 

41 

(0.11) 
0.999 - - 

1,000 - - 0.811 0.778 0.528 - - 0.077 0.407 0.077 

10,000 - - 0.828 0.796 0.503 - - 0.066 0.396 0.066 

50,000 - - 0.819 0.789 0.508 - - 0.068 0.401 0.068 

100,000 - - 0.817 0.787 0.510 - - 0.066 0.401 0.066 

Frequency: number and frequency of individulas carrying a rare allele. Permut: Permutations, Normo: Normouricaemic 

controls, Hyper: Hyperuricaemic cases, Comb: Combined, Protect: Protective. 

 

Table 5.8: Rare and non-synonymous variant burden analysis of LRP2 and A1CF 

for hyperuricaemia 

Permut NZ Polynesian European 

 
Frequency PBurden Frequency PBurden 

 
Normo Hyper Comb Risk Protect Normo Hyper Comb Risk Protect 

LRP2 

Allele-

collapsing 

49 

(0.11) 

52 

(0.12) 
0.985 - - 

68 

(0.18) 

107 

(0.28) 
0.045 - - 

1,000 - - 0.255 0.141 0.372 - - 0.024 0.008 0.150 

10,000 - - 0.270 0.151 0.365 - - 0.023 0.009 0.151 

50,000 - - 0.259 0.144 0.373 - - 0.023 0.009 0.151 

100,000 - - 0.256 0.144 0.370 - - 0.024 0.009 0.150 

A1CF 

Allele-

collapsing 

0 

(0.00) 

1 

(0.002) 
1 - - 

3 

(0.008) 

1 

(0.003) 
0.529 - - 

1,000 - - 1 0.546 1 - - 0.432 0.432 1 

10,000 - - 1 0.550 1 - - 0.458 0.458 1 

50,000 - - 1 0.537 1 - - 0.444 0.444 1 

100,000 - - 1 0.543 1 - - 0.444 0.444 1 

All values are calculated at combined allel-frequency threshold of < 0.05. Frequency; number and frequency of 

individulas carrying a rare allele. Permut: Permutations, Normo: Normouricaemic controls, Hyper: Hyperuricaemic 

cases, Com: Combined, Protect: Protective. 
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5.2.3.3 Functional annotation of variants 

 All non-synonymous (missense) variants within LRP2 and A1CF were classified 

on the basis of having deleterious (damaging) and neutral effects at the protein level. The 

binary prediction scores indicated some consistency in all four ‘functional annotation 

platforms’ namely, CADD, SIFT, PolyPhen-2 and PROVEAN (Table 5.1). The four 

scores were consistent for a damaging effect on protein function in 52.63% of the cases 

(Figure 5.6). 

 Overall, the prediction score was calculated for 72 (84.70%) missense variants for 

either a deleterious or neutral effect on protein function. Ten variants (LRP2: 9; A1CF: 1) 

were identified to have damaging effect in all prediction programs, while 21 variants 

were identified to be deleterious in at least two out of the four prediction programs. There 

were 27 (37.5%) missense variants that were found to have a neutral effect on protein 

function when all four scores were obtained. Both genes had 64 (LRP2: 53; A1CF: 11) 

synonymous variants, with 54 untranslated region/UTR variants (5'UTR: 3; 3'UTR: 51) in 

A1CF. A detail of significant non-synonymous annotations is provided in Table 5.9 

below (full details provided in Appendix A, Table 5.6). A CADD score of ≥ 10 indicates 

deleteriousness of the particular variant at protein level. Likewise, a score of ≤ 0.05, ≥ 

0.43 and ≤ -2.5 indicate a damaging effect as per SIFT, PolyPhen-2 and PROVEAN, 

respectively. 

 

 

 

 

 

 

Figure 5.6: Consistency between four methods predicting the deleterious functional consequences of non-

synonymous variants in LRP2 and A1CF. 
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Table 5.9: Predicted consequences of ten LRP2 and A1CF non-synonymous variants on protein function 

Exon Chr: location rs ID/var position 

CADD PolyPhen-2 SIFT PROVEAN 

Score Score Prediction Score Prediction Score Prediction 

73 2:169996058 var169996058 29.7 2.1 Deleterious 0.03 Deleterious -3.15 Deleterious 

59 2:170027153 rs200475391 32 2.19 Deleterious 0 Deleterious -6.94 Deleterious 

56 2:170030458 var170030458 28.1 2.02 Deleterious 0 Deleterious -7.67 Deleterious 

51 2:170038795 var170038795 25 2.19 Deleterious 0.01 Deleterious -3.22 Deleterious 

50 2:170042245 rs35734447 27.8 1.63 Deleterious 0.01 Deleterious -4.96 Deleterious 

37 2:170068592 var170068592 34 3.62 Deleterious 0.02 Deleterious -3.34 Deleterious 

15 2:170115652 var170115652 28.7 3.46 Deleterious 0 Deleterious -8.28 Deleterious 

14 2:170129529 rs116332504 24 1.42 Deleterious 0 Deleterious -3.8 Deleterious 

13 2:170134385 rs201490492 31 3.58 Deleterious 0.02 Deleterious -4.29 Deleterious 

5 10:52595978 rs143123872 10.7 1.54 Deleterious 0.03 Deleterious -2.58 Deleterious 

Chr: Chromosome, rs ID: Reference SNP cluster ID, var: variant, CADD: Combined annotation dependent depletion, PolyPhen-2: Polymorphism phenotyping verision 2, SIFT: Scale-

invariant feature transform, PROVEAN: Protein variantion effect analyser.  
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5.2.4 Results – Replication-phase 

 Power calculations inidcated the NZ Polynesian dataset to be highly powered (> 

90%) to detect a moderate effect (OR = 1.5) at an altered allele frequency > 0.1 (Figure 

5.7). The European dataset was only adequately powered (> 80%) to detect a moderate 

effect (OR = 1.5) at an altered allele frequency > 0.1 (Figure 5.7). 

 Applying the criteria for prioritisation described in Section 5.2.2.3.1 ended up in a 

list of seven common variants within exonic regions of LRP2 only. Table 5.10 provides a 

detailed summary of these variants while Figure 5.8 illustrates an overview of exonic 

regions (n (exons) = 79) of the gene LRP2 with positions of all 7 variants indicated within 

their respective exons. Calculation of LD showed no in between variant LD in Europeans, 

while there was a complete LD between rs2302694 and rs4667596 and between 

rs4667591 and rs2075252 only in the Han Chinese population. However, all four variants 

were selected for replication in NZ datasets. (Table 5.11). Only one variant, rs41268685, 

was found to be monomorphic for European and South Asian populations when 

population-genetic data were used from the Genome Reference consortium human 

genome build 37 (GRCh37) on Ensembl (www.grch37.ensembl.org), while all other six 

variants were polymorphic.   

http://grch37.ensembl.org/
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Figure 5.7: Association detection power in the (A) NZ Polynesian and (B) NZ European subsets in the 

Replication Cohorts across a range of odds ratio effect sizes and minor allele frequencies. The broken red line 

indicates an adequate detection power ≥ 80%. 

A 

B 
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Table 5.10: Summary detail of variants prioritised for replication 

Exon Location 
rs ID/var 

position 

Functional 

consequence 

OR (POR) 

Direction 

of 

association 

Population 

specificity 

Alternative-allele 

frequency 

Novelty Hyperuricaemia Gout 
NZ 

Polynesian 
European 

Poly Eur Poly 

14 2:170131548 rs111360923 Missense 0.55 (0.02) - 0.44 (0.004) Protective Polynesian 0.070 - 

Not in 

1000 

Genome 

database 

17 2:170115626 var170115626 Missense 0.57 (0.03) - 0.46 (0.006) Protective Polynesian 0.075 - 

Not in 

1000 

Genome 

database 

31 2:170088351 rs2302694 Synonymous 0.46 (0.01) 0.71 (0.31) 0.44 (0.001) Protective Both 0.095 0.082 Not novel 

36 2:170070172 rs4667596 Missense 0.22 (0.02) 0.65 (0.56) 0.43 (0.17) Protective Both 0.009 0.013 Not novel 

66 2:170010985 rs2075252 
Stop-lost 

(nonsense) 
0.78 (0.19) 0.65 (0.05) 0.18 (0.21) Protective Both 0.289 0.714 Not novel 

69 2:170003432 rs4667591 Missense 0.75 (0.08) 0.61 (0.05) 0.72 (0.05) Protective Both 0.341 0.768 Not novel 

73 2:169996070 rs41268685 Missense - 3.85 (0.04) - Risk Both 0.002 0.028 Not novel 

rs ID: Reference SNP cluster ID, var: Variant, Poly: NZ Polynesian, Eur: European, OR: Odds ratio, POR: p-value of odds ratio. 
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Figure 5.8: An overview of LRP2 showing 79 exons (dark red blocks) and the position of each prioritised variant on the respective exons. Labels on the x-axis 

indicates location of variants in each exon, while values on y-axis are only presenting graphics in the plot. Plot was created using exon sequencing data in European 

and NZ Polynesian individuals in R (v3.3.2). Exons numbers and variant positions are sourced from the Genome Reference Consortium human genome build 37 

(GRCh37) on Ensembl (http://grch37.ensembl.org/). 

Exon    79                   1 

 

Location 
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Table 5.11: R-squared (r2) LD values between prioritised variants in Caucasian and 

Chinese/Japanese populations 

Variant/SNP 
Distance 

R-squared (r2) 

Query Proxy Caucasian Han Chinese 

rs111360923 No record on any array - - - 

var170115626 No record on any array - - - 

rs4667591 

rs2075252 7553 0.39 0.829 

rs4667596 66740 0.087 0.001 

rs2302694 84919 0.009 0.001 

rs2302694 

rs4667596 18179 0.174 1 

rs2075252 77366 0.007 0.003 

rs4667591 84919 0.009 0.001 

rs2075252 

rs4667591 7553 0.39 0.829 

rs4667596 59187 0.064 0.003 

rs2302694 77366 0.007 0.003 

rs4667596 

rs2302694 18179 0.174 1 

rs4667591 66740 0.087 0.001 

rs2075252 59187 0.39 0.003 

rs41268685 

rs4667591 7362 0.004 - 

rs2302694 92281 0.156 - 

rs2075252 14915 0.004 - 

rs4667596 74102 0 - 

SNP: Single nucleotide polymorphism, Query: SNP for which the LD was calculated, Proxy: SNP with which the LD 

was calculated. R-squared ≥ 0.60 indicates an LD. All values are as provided in 1000 Genome database 

(http://browser.1000genomes.org/). 

 The association results in resequencing for rs111360923 were successfully 

replicated for gout in a larger NZ Polynesian dataset (Table 5.12). The altered allele (C) 

of the Polynesian-specific missense variant rs111360923 was significantly associated 

with gout in both EP (OR  = 0.59, P = 0.01) and WP (OR  = 0.57, P = 0.02) individuals 

(Table 5.12). The association was not significant for both EPWP (OR = 1.15, P = 0.80) 

and NPH (OR = 0.89, P = 0.76) individuals (Table 5.12). When all Polynesian subgroups 

were combined together in a meta-analysis, the C allele of rs111360923 indicated a 

strong protective association for gout with no heterogeneity between the subgroups (OR  

= 0.64, POR = 0.002, PHet = 0.52) (Table 5.14). The Replication-phase failed to follow 

similar trend of association between rs111360923 and hyperuricaemia (Table 5.12 and 

Table 5.14). Also, no association was observed between the C allele of rs111360923 and 

serum urate concentrations in NZ Polynesian controls (ß (mmol L-1) = -0.01, Pß = 0.12, 

PHet = 0.61) (Table 5.14). 

 The association for the C allele of another Polynesian-specific variant, 

var170115626, was also successfully replicated and was found to be nominally associated 

with a decreased risk of gout in WP individuals (OR  = 0.73, P = 0.05) (Table 5.12). No 
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significant association was found for any other population subgroup, although the 

direction of effect was consistent in EP, WP and NH subgoups (Table 5.12). Combining 

the Polynesian subgroups in meta-analysis indicated a significant protective association 

between the C allele of var170115625 and gout with no heterogeneity intra populations 

(OR  = 0.73, POR = 0.02, PHet = 0.65) (Table 5.14). The C allele also indicated a trend of 

negative association with serum urate concentrations (ß (mmol L-1) = -0.012, Pß = 0.06, 

PHet = 0.59) (Table 5.14). However, the association results from the Discovery-phase 

were not replicated for hyperuricaemia in any Polynesian subgroups (Table 5.12 and 

Table 5.14). 

 Given the data for above two variants indicated Polynesian-specific effects and 

the evidence of previously reported variant within LRP2 (rs2544390) that also indicated 

to have Polynesian-specific effects (Rasheed et al., 2013a), an LD between all three 

variants was calculated using the genotype data in NZ Polynesian population using 

Haploview (v4.2) platform. While the results from the LD calculation showed a strong 

(83%) LD between rs111360923 and var170115626, both of the variants were found to 

be independent of the signals at rs2544390 with only 5% in between LD (Figure 5.9). 

 The A allele of the synonymous variant rs2302694 was not associated with either 

hyperuricaemia or gout when tested in the NZ Polynesian subgroups and NZ Europeans 

separately (Table 5.12), although meta-analysis successfully replicated the protective 

association against hyperuricaemia (OR = 0.79, POR = 0.04, PHet = 0.35) (Table 5.14). 

The A allele also indicated a trend of protective association with gout (OR = 0.80, POR = 

0.06, PHet = 0.89) in NZ Polynesians only (Table 5.14). The allele A was also found to be 

associated with decreasing the serum urate concentrations in EP (ß (mmol L-1) = -0.014, 

P = 0.04) (Table 5.13) and combined Polynesian healthy controls (ß (mmol L-1) = -0.015, 

Pß = 0.01, PHet = 0.63) (Table 5.14). 

 The association results for another synonymous variant, rs2075252, were 

successfully replicated for hyperuricaemia. The C allele of rs2075252 was associated 

with hyperuricaemia with a protective effect in EP (OR = 0.81, P = 0.05), while it showed 

an opposite susceptible association in EPWP (OR = 2.54, P = 0.05) individuals (Table 

5.12). Meta-analysis of all Polynesian group together indicated a protective association of 

the C allele against hyperuricaemia (OR = 0.83, POR = 0.01, PHet = 0.11) (Table 5.12), 

which followed the similar trend of association when NZ Polynesian and European 
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populations were combined together (OR = 0.87, POR = 0.03, PHet = 0.12) (Table 5.14). 

However, the C allele was not associated with serum urate in either NZ Polynesian (ß 

(mmol L-1) = -0.005, Pß = 0.23, PHet = 0.24) or NZ European (ß (mmol L-1) = -0.007, P = 

0.30) individuals (Table 5.13 and Table 5.14). 

 The missense variant rs4667591 represents another example of successful 

replication of Discovery-phase associations in this study. The G allele of rs4667591 

showed a significant protective association with hyperuricaemia in both EP (OR = 0.74, P 

= 0.006) and NPH (OR = 0.67, P = 0.04) sample sets (Table 5.12). The same G allele was 

also found to be associated with increased risk of developing gout in NZ Europeans (OR 

= 1.26, P = 0.02) (Table 5.12). Combining the NZ Polynesian sample sets together 

indicated association of the G allele with hyperuricaemia (OR = 0.79, POR = 0.002, PHet = 

0.38). Meta-analysis also showed association with hyperuricaemia when NZ Polynesian 

and European populations were combined together (OR = 0.82, POR = 0.002, PHet = 0.39) 

(Table 5.14). The G allele was not associated with serum urate concentrations in any 

population group (Table 5.13 and Table 5.14). 

 The Replication-phase failed to replicate the association for two missense 

variants, rs4667596 and rs41268685, in NZ Polynesian and European populations (Table 

5.12). However, the T allele of rs4667596 (ß (mmol L-1) = 0.136, Pß = 0.03) and the G 

allele of rs41268685 (ß (mmol L-1) = 0.192, Pß = 0.01) were found to be associated with 

increased serum urate concentrations in NPH individuals only (Table 5.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8: Linkage disequilibrium (LD) plot indicating ‘R-squared/r2’ values between the 3 Polynesian-specific 

LRP2 variants. An r2 ≥ 60 in the above plot indicates LD between the particular variants. Information for 

variant location, rs ID and LD values are from NZ Polynesian data. The plot was generated using Haploview 

v4.2. 
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Table 5.12: Genotype/allele frequencies and association analysis results for the LRP2 variants in the Replication Cohort for gout and 

hyperuricaemia 

Population/rs 

ID/var 

position 

Group 

Genotype/ 

Altered Allele Frequency 

Gout (case/control) Hyperuricaemia (NU/HU) 

Unadjusted Adjusted* Unadjusted Adjusted* 

  

OR 

[95% CI] 
P 

OR 

[95% CI] 
P 

OR 

[95% CI] 
P 

OR 

[95% CI] 
P 

rs111360923 
 

TT CT CC C 
   

     

EP 

Case 
339 

(0.856) 

55 

(0.138) 

2 

(0.005) 

59 

(0.074) 0.84 

[0.62 ; 1.14] 
0.27 

0.59 

[0.40 ; 0.88] 
0.01 

0.96 

[0.69 ; 1.35] 
0.83 

0.84 

[0.58 ; 1.21] 
0.35 

Control 
522 

(0.851) 

85 

(0.138) 

6 

(0.009) 

97 

(0.079) 

WP 

Case 
271 

(0.874) 

39 

(0.125) 

0 

(0.000) 

39 

(0.062) 0.70 

[0.47 ; 1.05] 
0.08 

0.57 

[0.35 ; 0.93] 
0.02 

0.84 

[0.56 ; 1.28] 
0.42 

0.79 

[0.51 ; 1.22] 
0.29 

Control 
234 

(0.866) 

32 

(0.118) 

4 

(0.015) 

40 

(0.074) 

EPWP 

Case 
21 

(0.807) 

5 

(0.192) 

0 

(0.000) 

5 

(0.096) 1.39 

[0.53 ; 3.45] 
0.49 

1.15 

[0.37 ; 3.49] 
0.80 

1.55 

[0.60 ; 4.36] 
0.38 

1.32 

[0.45 ; 4.24] 
0.62 

Control 
49 

(0.830) 

10 

(0.169) 

0 

(0.000) 

10 

(0.085) 

NPH 

Case 
230 

(0.855) 

36 

(0.134) 

3 

(0.011) 

42 

(0.078) 1.19 

[0.72 ; 2.01] 
0.50 

0.89 

[4.34 ; 1.92] 
0.76 

0.98 

[0.61 ; 1.55] 
0.92 

0.77 

[0.45 ; 1.29] 
0.33 

Control 
167 

(0.869) 

25 

(0.130) 

0 

(0.000) 

25 

(0.065) 

var170115626 
 

TT CT CC C 
   

     

EP 

Case 
337 

(0.851) 

56 

(0.141) 

3 

(0.007) 

62 

(0.078) 0.92 

[0.68 ; 1.24] 
0.60 

0.72 

[0.49 ; 1.07] 
0.11 

0.87 

[0.61 ; 1.21] 
0.41 

0.79 

[0.55 ; 1.14] 
0.22 

Control 
529 

(0.863) 

77 

(0.125) 

7 

(0.014) 

91 

(0.074) 

WP 

Case 
268 

(0.864) 

42 

(0.135) 

0 

(0.000) 

42 

(0.067) 0.78 

[0.53 ; 1.16] 
0.22 

0.73 

[0.39 ; 1.02] 
0.05 

0.79 

[0.52 ; 1.19] 
0.27 

0.71 

[0.46 ; 1.10] 
0.13 

Control 
235 

(0.870) 

31 

(0.115) 

4 

(0.015) 

39 

(0.072) 

EPWP 

Case 
22 

(0.846) 

4 

(0.154) 

0 

(0.000) 

4 

(0.077) 1.40 

[0.50 ; 3.64] 
0.50 

0.63 

[0.41 ; 4.28] 
0.63 

1.47 

[0.54 ; 4.44] 
0.46 

1.40 

[0.45 ; 4.91] 
0.57 

Control 

 

49 

(0.830) 

10 

(0.169) 

0 

(0.000) 

10 

(0.084) 
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NPH 

Case 
232 

(0.862) 

36 

(0.134) 

1 

(0.004) 

38 

(0.071) 1.13 

[0.66 ; 1.95] 
0.66 

1.33 

[4.15 ; 1.97] 
0.76 

1.18 

[0.72 ; 1.91] 
0.51 

0.95 

[0.54 ; 1.64] 
0.85 

Control 
168 

(0.875) 

24 

(0.125) 

0 

(0.000) 

24 

(0.062) 

rs2302694 
 

GG AG AA A 
   

     

EP 

Case 
278 

(0.751) 

85 

(0.229) 

7 

(0.019) 

99 

(0.134) 0.90 

[0.69 ; 1.15] 
0.40 

0.85 

[0.62 ; 1.16] 
0.30 

0.83 

[0.62 ; 1.09] 
0.19 

0.79 

[0.58 ; 1.06] 
0.12 

Control 
351 

(0.758) 

102 

(0.220) 

10 

(0.022) 

122 

(0.132) 

WP 

Case 
224 

(0.794) 

56 

(0.198) 

2 

(0.007) 

60 

(0.106) 0.85 

[0.59 ; 1.23] 
0.39 

0.71 

[0.47 ; 1.10] 
0.12 

0.80 

[0.55 ; 1.16] 
0.24 

0.71 

[0.48 ; 1.05] 
0.08 

Control 
156 

(0.812) 

33 

(0.172) 

3 

(0.015) 

39 

(0.101) 

EPWP 

Case 
31 

(0.688) 

14 

(0.311) 

0 

(0.000) 

14 

(0.155) 1.11 

[0.44 ; 2.69] 
0.82 

0.99 

[0.33 ; 2.82] 
0.98 

1.61 

[0.67 ; 4.12] 
0.30 

2.13 

[0.73 ; 7.03] 
0.19 

Control 
18 

(0.750) 

6 

(0.250) 

0 

(0.000) 

6 

(0.125) 

NPH 

Case 
105 

(0.729) 

38 

(0.264) 

1 

(0.007) 

40 

(0.138) 1.00 

[0.54 ; 1.94] 
0.99 

0.70 

[2.76 ; 1.83] 
0.46 

0.93 

[0.54 ; 1.56] 
0.77 

0.84 

[0.46 ; 1.49] 
0.55 

Control 
47 

(0.723) 

18 

(0.276) 

0 

(0.000) 

18 

(0.138) 

EUR 

Case 
586 

(0.804) 

131 

(0.179) 

11 

(0.015) 

153 

(0.105) 0.98 

[0.75 ; 1.29] 
0.89 

0.96 

[0.71 ; 1.31] 
0.81 

1.03 

[0.77 ; 1.38] 
0.82 

0.98 

[0.73 ; 1.33] 
0.92 

Control 
362 

(0.812) 

80 

(0.179) 

4 

(0.009) 

88 

(0.098) 

rs4667596 
 

CC CT TT T 
   

     

EP 

Case 
451 

(0.974) 

12 

(0.026) 

0 

(0.000) 

12 

(0.129) 1.73 

[0.93 ; 3.25] 
0.08 

1.76 

[0.82 ; 3.92] 
0.15 

0.85 

[0.41 ; 1.68] 
0.65 

0.79 

[0.37 ; 1.63] 
0.53 

Control 
348 

(0.941) 

22 

(0.059) 

0 

(0.000) 

22 

(0.029) 

WP 

Case 
268 

(0.950) 

13 

(0.046) 

1 

(0.003) 

15 

(0.026) 1.46 

[0.68 ; 3.41] 
0.35 

0.98 

[0.42 ; 2.47] 
0.97 

0.86 

[0.36 ; 2.04] 
0.72 

0.69 

[0.29 ; 1.66] 
0.40 

Control 
186 

(0.968) 

6 

(0.031) 

0 

(0.000) 

6 

(0.015) 

EPWP 

Case 
22 

(0.916) 

2 

(0.083) 

0 

(0.000) 

2 

(0.042) 4.32 

[0.40 ; 95.09] 
0.24 

3.77 

[0.28 ; 94.81] 
0.33 

0.38 

[0.02 ; 4.07] 
0.43 

0.51 

[0.02 ; 6.69] 
0.61 

Control 
44 

(0.978) 

1 

(0.022) 

0 

(0.000) 

1 

(0.011) 

NPH Case 139 5 0 5 0.55 0.38 0.68 0.69 1.27 0.70 1.51 0.58 
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(0.965) (0.034) (0.000) (0.017) [0.14 ; 2.28] [1.10 ; 5.75] [0.36 ; 4.31] [0.35 ; 6.85] 

Control 
61 

(0.938) 

4 

(0.061) 

0 

(0.000) 

4 

(0.031) 

EUR 

Case 
690 

(0.947) 

38 

(0.052) 

0 

(0.000) 

38 

(0.026) 0.94 

[0.56 ; 1.60] 
0.81 

0.82 

[0.46 ; 1.50] 
0.51 

1.25 

[0.71 ; 2.17] 
0.43 

1.14 

[0.63 ; 2.02] 
0.66 

Control 

 

422 

(0.946) 

24 

(0.054) 

0 

(0.000) 

24 

(0.027) 

rs2075252 
 

TT CT CC C 
   

     

EP 

Case 
132 

(0.356) 

172 

(0.464) 

66 

(0.178) 

304 

(0.411) 0.90 

[0.75 ; 1.07] 
0.24 

0.86 

[0.69 ; 1.07] 
0.17 

0.79 

[0.66 ; 0.97] 
0.02 

0.81 

[0.65 ; 1.00] 
0.05 

Control 
145 

(0.313) 

232 

(0.501) 

86 

(0.185) 

404 

(0.436) 

WP 

Case 
132 

(0.468) 

120 

(0.425) 

30 

(0.106) 

180 

(0.319) 1.09 

[0.86 ; 1.38] 
0.46 

1.27 

[0.95 ; 1.70] 
0.11 

0.85 

[0.66 ; 1.09] 
0.19 

0.85 

[0.65 ; 1.10] 
0.22 

Control 
102 

(0.531) 

69 

(0.359) 

21 

(0.109) 

111 

(0.289) 

EPWP 

Case 
13 

(0.542) 

11 

(0.458) 

0 

(0.000) 

11 

(0.229) 0.69 

[0.33 ; 1.38] 
0.30 

0.57 

[0.21 ; 1.45] 
0.25 

1.56 

[0.79 ; 3.22] 
0.21 

2.54 

[1.03 ; 6.78] 
0.05 

Control 
13 

(0.288) 

27 

(0.600) 

5 

(0.111) 

37 

(0.411) 

NPH 

Case 
44 

(0.305) 

71 

(0.493) 

29 

(0.201) 

129 

(0.447) 1.13 

[0.76 ; 1.71] 
0.55 

1.07 

[5.76 ; 1.99] 
0.84 

0.76 

[0.54 ; 1.06] 
0.11 

0.75 

[0.51 ; 1.08] 
0.12 

Control 
25 

(0.384) 

26 

(0.400) 

14 

(0.215) 

54 

(0.415) 

EUR 

Case 
48 

(0.065) 

276 

(0.379) 

404 

(0.555) 

1048 

(0.744) 1.13 

[0.94 ; 1.36] 
0.20 

1.12 

[0.92 ; 1.38] 
0.26 

0.99 

[0.81 ; 1.20] 
0.89 

0.97 

[0.79 ; 1.19] 
0.78 

Control 
32 

(0.072) 

191 

(0.428) 

223 

(0.500) 

637 

(0.714) 

rs4667591 
 

TT GT GG G 
   

     

EP 

Case 
112 

(0.303) 

171 

(0.462) 

87 

(0.235) 

345 

(0.466) 0.93 

[0.79 ; 1.10] 
0.41 

0.87 

[0.70 ; 1.07] 
0.19 

0.77 

[0.64 ; 0.93] 
0.006 

0.74 

[0.60 ; 0.92] 
0.006 

Control 
135 

(0.292) 

216 

(0.466) 

112 

(0.242) 

440 

(0.475) 

WP 

Case 
110 

(0.390) 

137 

(0.485) 

35 

(0.124) 

252 

(0.446) 0.78 

[0.62 ; 0.98] 
0.03 

0.94 

[0.71 ; 1.24] 
0.66 

0.83 

[0.65 ; 1.05] 
0.13 

0.89 

[0.69 ; 1.15] 
0.39 

Control 
62 

(0.324) 

91 

(0.476) 

38 

(0.199) 

167 

(0.437) 

EPWP Case 
11 

(0.458) 

13 

(0.5412) 

0 

(0.000) 

13 

(0.271) 

0.57 

[0.28 ; 1.09] 
0.10 

0.76 

[0.34 ; 1.66] 
0.49 

1.04 

[0.56 ; 1.94] 
0.91 

1.21 

[0.56 ; 2.70] 
0.62 
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Control 
8 

(0.178) 

29 

(0.644) 

8 

(0.178) 

45 

(0.50) 

NPH 

Case 
36 

(0.250) 

76 

(0.527) 

32 

(0.222) 

140 

(0.486) 1.04 

[0.69 ; 1.57] 
0.86 

0.79 

[4.16 ; 1.48] 
0.46 

0.73 

[0.52 ; 1.02] 
0.07 

0.67 

[0.45 ; 0.99] 
0.04 

Control 
20 

(0.307) 

28 

(0.431) 

17 

(0.261) 

62 

(0.476) 

EUR 

Case 
25 

(0.034) 

248 

(0.341) 

455 

(0.625) 

1158 

(0.795) 1.29 

[1.06 ; 1.57] 
0.01 

1.26 

[1.02 ; 1.56] 
0.02 

0.94 

[0.76 ; 1.16] 
0.57 

0.91 

[0.73 ; 1.14] 
0.43 

Control 
26 

(0.058) 

174 

(0.396) 

246 

(0.552) 

666 

(0.746) 

rs41268685 
 

AA AG GG G 
   

     

EP 

Case 
367 

(0.992) 

3 

(0.008) 

0 

(0.000) 

3 

(0.004) 1.05 

[0.21 ; 4.78] 
0.95 

0.50 

[0.09 ; 2.84] 
0.42 

1.52 

[0.28 ; 8.25] 
0.61 

1.78 

[0.31 ; 10.61] 
0.51 

Control 
460 

(0.993) 

3 

(0.006) 

0 

(0.000) 

3 

(0.003) 

WP 

Case 
281 

(0.996) 

1 

(0.003) 

0 

(0.000) 

1 

(0.002) 0.78 

[0.03 ; 19.8] 
0.86 

0.50 

[0.02 ; 16.01] 
0.66 - - - - 

Control 
191 

(0.994) 

1 

(0.005) 

0 

(0.000) 

1 

(0.002) 

EPWP 

Case 
24 

(100) 

0 

(0.000) 

0 

(0.000) 

0 

(0.000) 
- - - - - - - - 

Control 
44 

(0.978) 

1 

(0.022) 

0 

(0.000) 

1 

(0.011) 

NPH 

Case 
144 

(100) 

0 

(0.000) 

0 

(0.000) 

0 

(0.000) 
- - - - - - - - 

Control 
64 

(0.984) 

1 

(0.015) 

0 

(0.000) 

1 

(0.007) 

EUR 

Case 
687 

(0.943) 

41 

(0.056) 

0 

(0.000) 

41 

(0.028) 1.49 

[0.86 ; 2.71] 
0.17 

1.64 

[0.88 ; 3.19] 
0.13 

0.88 

[0.48 ; 1.56] 
0.67 

0.90 

[0.48 ; 1.67] 
0.75 

Control 
430 

(0.964) 

16 

(0.036) 

0 

(0.000) 

16 

(0.018) 

*All values are adjusted for age, sex and BMI for NZ European plus with the estimates of grand-parental ancestry for NZ Polynesian. EP: East Polynesian, WP: West Polynesian, EPWP: 

Mixture of East and West Polynesian, NPH: Ngati Porou Hauora, EUR: NZ Europeans, NU: Normouricaemic, HU: Hyperuricaemic, rs ID: Reference SNP cluster ID, var: Variant, OR: 

Odds ratio for the alternate allele, 95% CI: 95% confidence interval, P: p-value for odds ratio. 
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Table 5.13 Association analysis results for the variants in the Replication Cohort for 

serum urate 

rs ID/var 

position 

Populatio

n 

Unadjusted Adjusted* 

ß [95% CI] P ß [95% CI] P 

rs111360923 

EP 0.003 [-0.017 ; 0.022] 0.77 -0.011 [-0.028 ; 0.005] 0.17 

WP -0.001 [-0.027 ; 0.025] 0.94 -0.008 [-0.031 ; -0.015] 0.49 

EPWP 0.046 [-0.024 ; 0.117] 0.19 0.028 [-0.034 ; 0.090] 0.37 

NPH -0.020 [-0.061 ; 0.022] 0.35 -0.020 [-0.059 ; -0.019] 0.32 

var170115626 

EP -0.001 [-0.020 ; -0.018] 0.93 -0.014 [-0.031 ; 0.002] 0.08 

WP -0.002 [-0.029 ; 0.024] 0.86 -0.01 [-0.033 ; -0.013] 0.39 

EPWP 0.049 [-0.027 ; 0.125] 0.21 0.033 [-0.034 ; 0.100] 0.33 

NPH -0.014 [-0.054 ; 0.026] 0.48 -0.015 [-0.053 ; 0.024] 0.45 

rs2302694 

EP -0.012 [-0.028 ; 0.005] 0.17 -0.014 [-0.015 ; 0.005] 0.04 

WP -0.009 [-0.036 ; -0.018] 0.52 -0.021 [-0.045 ; 0.004] 0.10 

EPWP 0.027 [-0.036 ; 0.090] 0.40 0.022 [-0.037 ; 0.081] 0.46 

NPH -0.014 [-0.069 ; 0.041] 0.62 -0.015 [-0.076 ; 0.046] 0.62 

EUR 0.008 [-0.015 ; 0.031] 0.51 0.007 [-0.012 ; 0.025] 0.48 

rs4667596 

EP -0.022 [-0.067 ; 0.022] 0.32 -0.029 [-0.066 ; 0.008] 0.12 

WP 0.004 [-0.077 ; 0.085] 0.92 -0.032 [-0.104 ; 0.040] 0.38 

EPWP 0.003 [-0.214 ; 0.219] 0.98 -0.011 [-0.207 ; 0.185] 0.91 

NPH 0.104 [-0.010 ; 0.198] 0.03 0.136 [-0.013 ; 0.258] 0.03 

EUR -0.013 [-0.033 ; 0.059] 0.58 0.006 [-0.031 ; 0.043] 0.74 

rs2075252 

EP -0.005 [-0.017 ; 0.006] 0.36 -0.005 [-0.015 ; 0.005] 0.33 

WP -0.015 [-0.033 ; 0.003] 0.11 -0.014 [-0.030 ; 0.003] 0.11 

EPWP 0.008 [-0.039 ; 0.054] 0.76 0.029 [-0.020 ; 0.078] 0.26 

NPH -0.014 [-0.045 ; -0.017] 0.37 -0.017 [-0.022 ; 0.056] 0.37 

EUR -0.008 [-0.024 ; 0.007] 0.28 -0.007 [-0.019 ; 0.006] 0.30 

rs4667591 

EP -0.002 [-0.013 ; 0.009] 0.75 -0.002 [-0.012 ; 0.007] 0.62 

WP 0.001 [-0.016 ; -0.018] 0.93 0.008 [-0.008 ; 0.023] 0.34 

EPWP -0.017 [-0.062 ; 0.028] 0.46 -0.005 [-0.047 ; 0.036] 0.80 

NPH -0.006 [-0.039 ; 0.026] 0.69 -0.012 [-0.024 ; 0.048] 0.50 

EUR -0.016 [-0.032 ; -0.001] 0.04 -0.008 [-0.021 ; 0.004] 0.20 

rs41268685 

EP -0.018 [-0.098 ; 0.135] 0.76 -0.013 [-0.110 ; 0.084] 0.79 

WP - - - - 

EPWP -0.120 [-0.334 ; 0.095] 0.28 - - 

NPH 0.171 [-0.012 ; 0.331] 0.04 0.192 [0.047 ; 0.337] 0.01 

EUR -0.021 [-0.072 ; 0.029] 0.41 -0.019 [-0.061 ; 0.024] 0.39 

EP: East Polynesian, WP: West Polynesian, EPWP: Mixture of East and West Polynesian, NPH: Ngati Porou Hauora, 

EUR: NZ Europeans, rs ID: Reference SNP cluster ID, var: Variant, ß: Beta/effect estimates for the alternate allele, 

95% CI: 95% confidence interval, P: p-values for effect estimates. *All values are adjusted for age, sex and BMI for 

NZ European plus with the estimates of grand-parental ancestry for NZ Polynesian. 
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Table 5.14 Meta-analysis results for the variants in the Replication Cohort for gout, hyperuricaemia and serum urate 

rs ID/var 

position 
Population 

Gout (case/control) Hyperuricaemia (NU/HU) Serum urate (mmol L-1) 

OR [95% CI] POR PHet OR [95% CI] POR PHet ß [95% CI] Pß PHet 

rs111360923 POLY 0.646 [0.491; 0.851] 0.002 0.52 0.828 [0.650; 1.054] 0.13 0.85 -0.010 [-0.022; 0.003] 0.12 0.61 

var170115626 POLY 0.736 [0.561; 0.966] 0.03 0.65 0.814 [0.638; 1.039] 0.10 0.69 -0.012 [-0.023; 0.001] 0.06 0.59 

rs2302694 
POLY & EUR 0.859 [0.712; 1.035] 0.11 0.82 0.857 [0.718; 1.022] 0.08 0.34 -0.015 [-0.025; -0.003] 0.01 0.78 

POLY 0.801 [0.632; 1.015] 0.06 0.89 0.797 [0.641; 0.991] 0.04 0.35 -0.015 [-0.026; -0.003] 0.01 0.63 

rs4667596 
POLY & EUR 1.069 [0.718; 1.591] 0.74 0.48 0.936 [0.637; 1.373] 0.74 0.78 -0.008 [-0.031; 0.016] 0.53 0.09 

POLY 1.339 [0.778; 2.301] 0.29 0.56 0.803 [0.480; 1.341] 0.40 0.81 -0.018 [-0.049; 0.013] 0.27 0.07 

rs2075252 
POLY & EUR 1.035 [0.909; 1.176] 0.61 0.15 0.879 [0.777; 0.993] 0.03 0.12 -0.006 [-0.012; 0.001] 0.12 0.37 

POLY 0.979 [0.828; 1.156] 0.79 0.12 0.833 [0.715; 0.969] 0.01 0.11 -0.005 [-0.013; 0.003] 0.23 0.24 

rs4667591 
POLY & EUR 1.003 [0.883; 1.139] 0.95 0.10 0.828 [0.732; 0.936] 0.002 0.39 -0.002 [-0.008; 0.004] 0.61 0.54 

POLY 0.880 [0.751; 1.032] 0.11 0.92 0.794 [0.685; 0.919] 0.002 0.38 0.001 [-0.007; 0.008] 0.86 0.65 

rs41268685 
POLY & EUR - - - - - - 0.036 [-0.067; 0.139] 0.50 0.02 

POLY - - - - - - 0.083 [-0.117; 0.283] 0.42 0.02 

POLY: NZ Polynesian, EUR: NZ European, NU: Normouricaemic, HU: Hyperuricaemic, rs ID: Reference SNP cluster ID, var: Variant, OR/ß: Odds ratio/beta or effect estimates for the 

alternate allele, 95% CI: 95% confidence interval, P; p-values, POR/ß: p-value for odds ratio/beta estimates, Het: Heterogeneity. All values are adjusted for age, sex and BMI for NZ 

European plus with the estimates of grand-parental ancestry for NZ Polynesian. 
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SECTION 5.3 DISCUSSION 

 The findings of this study are four fold. First, the characterisation of exonic 

variants within LRP2 and A1CF identified 11 Polynesian-specific variants in total, with 7 

variants having an allele frequency > 0.05 (common) for both genes (Table 5.5). The 

Discovery-phase association analyses revealed the presence of common, low-frequency 

and rare variants within both genes, carrying both risk and protection for hyperuricaemia 

and gout (Table 5.5 and Table 5.6). Two Polynesian-specific variants showing protection 

against hyperuricaemia and gout were also identified in this analysis (rs111360923 and 

var170115626) (Table 5.5 and Table 5.6). Second, calculating the burden for rare and 

non-synonymous variants within LRP2 and A1CF indicated a burden of hyperuricaemia 

risk variants in European individuals within LRP2 (Table 5.8). Third, assigning functional 

annotations to exonic variants via four different annotation programs showed that at least 

53% of the variants within coding regions of LRP2 could have damaging (functional) 

effects on the proteins (Table 5.8). Overall, the Discovery-phase results from LRP2 came 

out to be more interesting than A1CF, with a number of variants showing an association 

with hyperuricaemia and gout in Europeans and Polynesians (Table 5.5 and Table 5.6). 

Several variants were, therefore, selected from LRP2 for validation of their association 

with hyperuricaemia and/or gout in a larger independent Replication Cohort, which 

represents the fourth finding of this study (detailed below). 

 Multiply-adjusted regression analysis of the seven prioritised variants from the 

Discovery-phase successfully replicated five variants for an association with either 

hyperuricaemia or gout (Table 5.12 to Table 5.14). The genotype and allele frequencies in 

the Replication-phase were similar to that observed in the Discovery-phase for all 

replicated variants (Table 5.12). Two Polynesian-specific variants, rs111360923 and 

var170115626 were replicated for an association with gout (rs111360923; OR = 0.64, 

POR = 0.002, var170115626 = OR = 0.73, POR = 0.03) but not hyperuricaemia (Table 

5.14), while var170115626 indicated a trend of negative association with urate in 

otherwise healthy (control) Polynesian individuals (ß (mmol L-1) = -0.012, P = 0.06) 

(Table 5.14). The similar results and population specificity for these two variants were 

validated via LD that indicated both of these variants to be in strong LD (r2 = 83%) 

(Figure 5.8). Similar but very low LD (5%) with the previously reported variant at LRP2: 

rs2544390 that showed Polynesian-specific association with gout (Rasheed et al., 2013a) 
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further indicated that association signals from these two variants in my study are 

independent of rs2544390. Both of these variants have been reported as having extremely 

low frequencies in the ExAC (The Exome Aggregation Consortium) database 

(http://exac.broadinstitute.org/) for other populations. However, no homozygotes have 

been reported for either variant. The C allele frequency reported for rs111360923 was 

8.9E-04 (108 out of 121,016 alleles), predominantly reported in Africans (C allele 

frequency = 0.008) and South Asians (C allele frequency = 0.001). The C allele 

frequency for the var170115626 was 6.05E-05 (1 out of 165,08 alleles), reported only in 

South Asian population in ExAC. However, this variant was not reported for any other 

population in ExAC (total allele record: 121,232). Moreover, there is no previous report 

available for both of these variants in the context of a pathologic condition (to my 

knowledge). The absence of these variants in other populations, their rarity in South 

Asians and frequent occurence in NZ Polynesian (rs111360923 = 0.07, var170115626 = 

0.07) is likely linked to the settlement processes in the Polynesian region. While people 

moving out of East Asia and speaking Austronesian languages (reaching Polynesia with 

the Lapita culture around 3000 years ago) seem to have contributed to a great extent to 

the genetic variation present in Polynesians, there was also admixture with the earliest 

inhabitants of the New Guinea and Solomon Islands en route. Most of the Y chromosome 

present in Polynesian populations can be traced back to original inhabitants of the Sahul 

continent (which comprised what is now Australia and New Guinea) rather than the East 

Asian ancestors, which indicates some significant admixture (Kayser, 2010). The first 

people to settle the Sahul continent probably arrived via South Asia as part of one of the 

earliest movements of people out of Africa (Hudjashov et al., 2007; Kayser, 2010; 

O'Connell and Allen, 2004; Summerhayes et al., 2010). This is likely where these 

variants originated and became higher in frequency in Polynesians as a result of founder 

effect, genetic drift and population expansion. Due to the scarcity of information 

available in the literature and no functional annotations assigned on any platform for 

rs111360923 and due to the var170115626 being annotated as having a neutral effect on 

protein function in three (PolyPhen-2, SIFT and PROVEAN) out of four annotation 

programs, it is hard to elucidate an effect on protein function. However, the protective 

effect (for hyperuricaemia and gout) of rs111360923 and var170115626 variants in the 

resequencing data and its successful replication through TaqMan genotyping (for gout 

only) represents a novel Polynesian-specific variant known to influence gout risk. 
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 Another common missense variant that showed significant associations with 

hyperuricaemia and gout is rs4667591. The G allele was only nominally associated with 

hyperuricaemia in Europeans (OR = 0.61, P = 0.05) and gout in Polynesians (OR = 0.72, 

P = 0.04) with a protective effect in Discovery-phase analysis (Table 5.5 and Table 5.6). 

Following replication through TaqMan PCR genotyping, the G allele successfully 

replicated the strong protective association with hyperuricaemia in the combined NZ 

Polynesian group (OR = 0.79, P = 0.002) but not NZ Europeans (OR = 0.91, P = 0.43) 

(Table 5.12 and Table 5.14). However, the Replication-phase revealed that addition of 

each G allele increased the risk of gout in NZ Europeans by 26% (OR = 1.26, P = 0.02) 

(Table 5.12). The variant has been reported to be common in other populations in 

Genome Reference Consortium human genome build 37 (GRCh37) on Ensembl 

(http://grch37.ensembl.org/) with the G allele frequency of 0.49 for East Asian and 0.79 

for European (consistent with this study) populations. The frequency of the G allele was 

little different between the East and West Polynesians and Māori individuals from Ngati 

Porou Hauora (0.46, 0.44 and 0.48, respectively). The association of this variant with 

increased risk of gout in NZ European data set is consistent with the recent GWAS data 

from Pattaro et al. (2016) that reported the other (T) allele of rs4667591 to be associated 

with increased eGFR (ß (mL/min/1.73m2) = 0.003, P = 0.006) in the European population 

(Appendix B Figure 5.3). The fact that a decrease in eGFR has been associated with an 

increase in urate concentration (Johnson et al., 2013a; Mohandas and Johnson, 2008; 

Suliman et al., 2006) and higher prevalence of gout (Krishnan, 2012), the allele T should 

be ideally associated with decreasing a risk of gout by decreasing urate concentrations. So, 

the G allele can be expected to have opposite effects on urate concentration and, thus, the 

risk of developing gout in Europeans. 

 Another common (nonsense/stop) variant within LRP2 that indicated significant 

associations in this study is rs2075252. The analysis of sequencing data in the Discovery-

phase showed a protective association of the C allele of rs2075252 with hyperuricaemia 

in Europeans only (OR = 0.65, P = 0.05) (Table 5.5). However, genotyping in the larger 

Replication Cohort did not follow the same trend in NZ Europeans (OR = 0.97, P = 0.78) 

(Table 5.12) but the C allele indicated a protection against hyperuricaemia in the 

combined NZ Polynesian dataset (OR = 0.83, P = 0.01) (Table 5.14). Similar to the 

results for rs4667591, the data presented in large European GWAS from Pattaro et al. 

(2016) indicated a positive association of the opposite (T) allele of the rs2075252 with 
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increased eGFR (ß (mL/min/1.73m2) = 0.004, P = 4.5E-06) (Appendix B Figure 5.3). The 

protective effect of C alleles of both of these variants (rs4667591 and rs2075252) for 

hyperuricaemia in the NZ Polynesian dataset may be supported by ancestral differences 

between these populations. However, in the absence of literature reporting these two 

variants in the context of Polynesian population, it would be naive to comment on 

protective findings in my study. 

 Both rs4667591 and rs2075252 are in the same haplotype block with LD (r2) 

values of 0.39 in European and 0.82 in Han Chinese populations (Table 5.11). In a recent 

GWAS including 2,640 European individuals from the FHS Offspring Cohort, the A 

alleles of rs2075252 and rs4667591 were found to be positively associated with urinary 

levels of Trefoil Factor-3 (rs2075252: ß = 0.22, P = 1.62E-16; rs4667591: ß = 0.19, P = 

0.01) (McMahon et al., 2014). Higher urinary levels of TFF3 have been recognised as 

indicators of renal tubular injury (Yu et al., 2010), acute and/or chronic kidney disease 

(Lebherz-Eichinger et al., 2015) and/or process of kidney damage repair (Astor et al., 

2011; Taupin and Podolsky, 2003). Given that rs2075252 and rs4667591 (the A alleles) 

have been positively associated with higher urinary TFF3 levels, these variants might be 

playing a role in determining the change in urate concentrations. In addition, rs2075252 

and the haplotype GA of rs4667591 were found to be associated with variation in bone 

mineral density in Chinese females (Wang et al., 2011b). Higher bone mineral density 

has been associated with higher urate levels and has been attributed to protect bone health 

in primary osteoporotic patients (Chen et al., 2015b). Although this may present a 

connecting role of these two variants in determining bone health via a change in serum 

urate concentrations, an opposite relationship has also been reported between the two 

metabolic pathways (Zhang et al., 2015). Although none of these two variants have been 

functionally characterised so far, rs4667591 was annotated as having a damaging effect 

on protein function in PolyPhen-2 and SIFT with a high CADD score (31) (Appendix A 

Table 5.6), which may possibly be one of the explanations describing the role of this 

variant in influencing hyperuricaemia and gout in NZ Polynesian and European 

population. 

 The Replication-phase analysis successfully replicated rs2302694 for an 

association of the A allele with hyperuricaemia in NZ Polynesian (OR = 0.79, P = 0.04), 

showing a trend of protective association with gout (OR = 0.80, P = 0.06) and negative 
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association with serum urate concentrations (ß (mmol L-1) = -0.015, P = 0.01) (Table 

5.14). The same allele A was also reported to be negatively associated with increased 

eGFR in European individuals (ß (mL/min/1.73m2) = -0.004, P = 0.005) in a recent 

GWAS (Pattaro et al., 2016) (Appendix B Figure 5.4). However, the A allele did not 

show any association with either hyperuricaemia (OR = 1.14, P = 0.66) or serum urate 

concentrations (ß (mmol L-1) = -0.007, P = 0.30) in the NZ European population (Table 

5.12 and Table 5.13). One reason that can expalin this difference could be the small 

sample size in my study compared to the Pattaro et al. (2016) GWAS. In addition, the 

individuals included in the Replication Cohort were not from the extreme spectrum of 

serum urate (Table 5.3), which may have caused the insignificant outcome in NZ 

European dataset. 

 The study has also found a significant burden of rare non-synonymous variants 

within LRP2 that increases the risk of developing hyperuricaemia in Europeans (PBurden 

(Risk) = 0.009) (Table 5.8). The allele collapsing method revealed a significantly higher (P 

= 0.04) frequency of the altered allele in hyperuricaemic cases (allele frequency = 0.28) 

compared to normouricaemic controls (allele frequency = 0.18) in the European 

population (Table 5.8). Previous research indicated that more common variants within 

LRP2 is inconsistently associated with serum urate and gout in other populations 

(Kamatani et al., 2010; Nakayama et al., 2014; Rasheed et al., 2013a) but no such 

common variant risk associations have been replicated in Europeans. Only a GWAS 

including data from European individuals (FHS Offspring Cohort: n = 2,640) found 

common variants within LRP2 to be associated with urinary biomarker TFF3. An exon 

sequencing follow-up burden analysis in their study also found that rare SNPs within 

LRP2 together explain 3.1% of the variance (P = 2.9×10-4) in TFF3 levels (McMahon et 

al., 2014). The findings of the present study are consistent with the fact that rare (and 

non-synonymous) variant clusters within LRP2 are involved in determining the risk of 

various kidney-related conditions in European individuals. This study presents the first 

evidence of rare variants within LRP2 conferring a risk of hyperuricaemia in the NZ 

European population. 



5| Lipid Metabolism - Rare Variant Analysis 

 249 

5.3.1 Strengths and Limitations of the Study 

 The exon sequencing of LRP2 and A1CF and their follow-up replication indicated 

some interesting results for two populations under study. However, the study also has 

strengths and limitations presented below as a summary. 

 The ReSequencing Cohort was only adequately powered to detect a moderate or 

weaker effect for both European and Polynesian populations (Figure 5.2). This means that 

results from the Discovery-phase analysis could have small study biases in terms of 

having false positive associations and elevated effect sizes. Such underpowered studies 

have low reproducibility and replication success rate (Button et al., 2013). The underlying 

genetic architecture of any trait determines the best-powered design to detect an 

association (Laird and Lange, 2006). For complex traits like gout and hyperuricameia, 

where the genetic architecture is partially known, it is not possible to predict a priori the 

most powerful study design (Auer and Lettre, 2015). However, the study had several 

other complementary factors which could overcome the low detection power to some 

extent. First, the phenotypes assessed were extreme or binary i.e., hyperuricaemic vs 

normouricaemic and gout case vs control. The binary characterisation is described to be 

better than having a continuous phenotype (e.g., serum urate) while carrying out an 

analysis of sequencing data, especially rare variant analysis (Auer and Lettre, 2015; 

Button et al., 2013; Do et al., 2012). Second, a burden analysis approach was used to 

combine the effect of all rare and non-synonymous variants within LRP2 and A1CF. This 

analysis is specialised to calculate the effect of all variants together considering them as 

one unit and is more powerful than testing the effect of each variant separately (Lee et al., 

2014). 

 Follow-up genotyping of the interesting results from the Discovery-phase 

represents the major strength of this study. It is essential to replicate the outcomes of a 

whole genome/exome sequencing analysis via one of several follow-up replication 

strategies (Auer and Lettre, 2015) to confirm the true and false associations. The study 

Replication Cohort was designed by choosing larger and well-characterised data sets from 

two populations. Also, the Replication-phase analysis was able to reproduce similar 

associations for at least one of the two phenotypes (hyperuricaemia and gout) with a total 

success rate of 75%. However, there were some findings from Discovery-analysis that 
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were not replicable and/or were not significant in the Replication-phase. One potential 

limitation could be the average serum urate levels in hyperuricaemic group in the 

Replication Cohort were only marginally hyperuricaemic and were not from extreme ends 

of the urate spectrum as for the Discovery Cohort. Use of individuals with average urate 

levels matching the Discovery Cohort may provide better replication results, but such 

individuals were not available. 

 Another strength of the study is the selection of two different approaches to 

calculate a burden of rare and non-synonymous variants. The selection, however, could 

also be a likely limitation of the study. Falling within five major categories, many 

different burden testing designs are now available (Lee et al., 2014). The burden testing 

approach used in this study was based on the simplicity of computing and the ability of 

the weighted sum statistic test to calculate the burden in two (risk and protective) 

directions. Other approaches (e.g., SKAT) may or may not be more efficient in picking 

up rare variants than the present approach. Additionally, no other methodolodgy is yet 

available to test the burden for risk and protective variants separately. 

5.3.2 Conclusion and future directions 

 The work described in this section provides a detailed characterisation of exonic 

regions of two genes, LRP2 and A1CF. Overall in both genes, 12 common, low frequency 

and rare variants were detected to be associated with hyperuricaemia in Europeans and 

hyperuricaemia or gout or both in NZ Polynesians. Two non-synonymous Polynesian-

specific variants (i.e., alleles) have been identified within the coding region of the gene 

LRP2 showing protection for gout. The confirmation of this association through follow-

up genotyping in a larger cohort presents a novel finding of this study exploring 

population-specific variants in NZ Polynesian individuals indicating a real effect 

associated with gout. The study for the first-time reports rare non-synonymous variants 

within LRP2 to carry a significant risk burden for hyperuricaemia in European individuals. 

The study, however, was unable to find any potentially interesting associations for the 

gene A1CF in the context of hyperuricaemia and gout for European and Polynesian 

populations. A few inconsistent results in the discovery-phase analysis for an association 

with hyperuricaemia and gout in NZ Polynesian population may indicate an independent 

involvement of these variants in either urate transport or the inflammatory pathway. The 
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failure of replication of sequencing associations could be a result of the small sample size 

(low power) of the study (Button et al., 2013). Increasing the sample size of Discovery 

and Replication Cohorts and broadening by including hyperuricaemic individuals with 

urate levels at extreme ends of the hyperuricaemia spectrum would be helpful in 

explaining the associations that were not replicable in my study. The replicated non-

synonymous variants can be further tested for their functional consequences using gene 

cloning and expression approaches in human/animal cell lines. Using such in vitro 

techniques, the effect of variants on the expression of the respective gene, mRNA 

expression and protein activity can be tested. Following the expression assays, the 

proteins encoded by these genes (especially LRP2) can be purified via chromatography to 

further test for their binding to appropriate ligands (e.g., LDL for LRP2), which would be 

beneficial in explaining the role of these genes in the underpinning pathway between lipid 

metabolism and gout aetiology. 
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SECTION 6.1: CONCLUSIONS 

6.1.1 Summary 

 The need to disentangle the intricate pathophysiology of gout in a country like 

New Zealand with an isolated geographical location and markedly high prevalence of this 

complex phenotype is discernible. My study was an attempt to shed light on the potential 

relationship of gout with other coexisting metabolic conditions with a focus of “which is 

driving which”. Through the implementation of cross-disciplinary research methods, I 

have been able to explore and report as novel findings the genetic/causal associations of 

urate, hyperuricaemia and gout with a set of several metabolic conditions that has more 

often than not been ignored in previous studies of the kind. 

 The first two research chapters (Chapter 2 and Chapter 3) of this thesis aimed out 

to explore a possible causal relationship between gout and imbalanced iron metabolism as 

its co-existing complication. Chapter 2 reports a successful replication of a previously 

reported (Ghio et al., 2005) positive association of urate with serum levels of ferritin (iron 

storage protein that directly reflects total body iron) and transferrin saturation in 

Europeans and/or African Americans using the data in the NHANES III and the JHS 

cohorts (Table 2.5). The ferritin-urate associations were extended from Europeans and 

African Americans to New Zealand Polynesian males (P = 2.53E-04) (Table 2.5). To 

ensure that the observed positive associations were not aggravated by an inflammatory 

condition e.g., hyperuricaemia and/or gout, the robustness of association was validated 

via adjusting for serum levels of CRP as an indicatory marker for acute inflammation. 

This study for the first time reported an association of increased serum ferritin with the 

risk for gout (OR = 1.03, P = 1.76E-03) and frequency of gout flares (ß (flares/year) = 

0.09, P = 0.04) in the New Zealand Polynesian and European male populations, 

respectively (Table 2.7 and 2.8). Results of this study also showed that the levels of 

ferritin were significantly higher in New Zealand Polynesian gout cases (P = 2.29E-04) 

compared to non-gout controls (Appendix A Table 2.4). 

 The observational study in Chapter 2 was primarily conducted to elaborate a 

biochemical association and was not aimed to elucidate the exact mechanism of iron-

urate relationship. However, the results of this study along with the data reported in the 

previous literature suggested a possible role of change in blood levels of ferritin in 
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increasing the risk of gout via hyperuricaemia, especially in New Zealand Māori and 

Pacific Island individuals. Evidence reporting a possible relationship of iron and urate are 

not recent (Green and Mazur, 1957; Mazur et al., 1958; Muirden and Senator, 1968). 

Urate being an antioxidant in humans has been reported as reducing the oxidative stress 

of free floating iron by acting as a metal chelator (Aust et al., 1985; Davies et al., 1986). 

Increased exposure to iron has been shown to upregulate the activity of xanthine oxidase 

resulting in the increased production of urate (Ghio et al., 2002; Martelin et al., 2002; 

Stonehuerner et al., 1998). Additionally, the presence of iron deposits in the synovial 

membrane in people with rheumatoid arthritis (Muirden and Senator, 1968), and the 

reduction in the severity of gout flares following the depletion of the metal via 

phlebotomy are supportive of my observational findings in Chapter 2 (Facchini, 2003). 

My study also reports a preliminary finding of increased serum ferritin in New Zealand 

Polynesians (P = 0.04) who self-reported the consumption of iron-rich food (seafood, fish 

and red meat) as a trigger for gout (Table 2.10). This finding, along with the results from 

previous research conducted in the Merriman Laboratory (Flynn et al., 2015), further 

provoked the idea for a possible role of iron-rich food in increasing, both the frequency 

and severity of gout flares. 

 Albeit the outcomes of Chapter 2 presented an interesting theme of the 

involvement of iron metabolism in gout aetiology via hyperuricaemia, although the 

results were still prone to biases due to the presence of possible confounders (Mann and 

Wood, 2012). To confirm the observational data an initial genetic association analysis 

was done using two iron-related variants (rs1799945 and rs1800562) within the HFE 

(haemochromatosis) gene. In the adjusted analyses (adjusted for age, body mass 

index/BMI and estimates of grand-parental ancestry in Polynesians), the G allele of 

rs1799945 was found to be positively associated with serum urate in the New Zealand 

population sub-groups and with a 28% increase in the risk of developing gout in New 

Zealand European females (OR = 2.28, P = 0.03) (Table 2.12). These results not only 

provided support to my observational data but also a logical base to design the research in 

Chapter 3. 

 The research in Chapter 3 was designed to validate the observational findings in 

Chapter 2 using the robust ‘Two-sample Mendelian randomisation’ approach to infer the 

causal association between iron and urate metabolism/metabolic pathways in the larger 
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population datasets of European descent. My study, for the first time, exploited summary 

statistics data from two large GWAS (Benyamin et al., 2014; Köttgen et al., 2013) to 

investigate the iron-urate causality in a population. Mendelian randomisation is a 

statistical approach to infer a cause-effect relationship via using the appropriate genetic 

instrument(s) (Smith and Ebrahim, 2003). The analysis provided an evidence for a causal 

role for serum iron (ß (SD) = 0.11, P = 1.96E-04) and ferritin (ß (SD) = 0.14, P = 0.03) to 

raise serum urate levels in European individuals (Table 3.4). Given that the study 

included effect estimate data from > 240,000 Europeans, it was presumed to have high 

power to detect a weaker effect. Since the outcomes of Mendelian randomisation studies 

require selection of instruments with ‘no pleiotropy’, a thorough search via literature 

review and the use of bioinformatics tools/platforms was carried out to rule out this 

possibility of any such pleiotropic effects. The results were reported only after removing 

all possible ambiguities (to my knowledge). However, it is impossible to remove the 

effect from any unknown confounders and such studies thus merit further exploration. 

Overall, result from my study in Chapter 3 provides evidence of a causal role of exposure 

iron and ferritin in increasing urate concentration as an outcome. However, my study does 

not report a causal effect of exposure of urate to influence iron homeostasis, which in turn, 

suggested that an increase in blood levels iron (or ferritin) is causative for an increase in 

urate concentration as an outcome. 

 The prevalence of gout is high in the New Zealand population (~7% in 

Polynesians and ~3% in Europeans) (Winnard et al., 2012) and so is the prevalence of its 

comorbidities (detailed in Chapter 1). Most of these comorbidities (IR, T2D, hypertension 

and CVDs) are collectively referred to as components of or ‘metabolic syndrome (MetS)’ 

per se. Seldom has MetS been studied for its genetic relationship with gout and 

hyperuricaemia with most of the studies reporting only its prevalence in the New Zealand 

population. The research in Chapter 4 was, therefore, designed to explore the shared 

genetic basis between gout and the components of MetS in the New Zealand based 

ancestral groups. TaqMan genotyping was used to collect genotype information for > 

4,600 New Zealanders. The data from large publicly-available European populations 

were also sourced from the UK Biobank, ARIC, FHS, CHS and CARDIA cohorts. The 

variants that have primarily been reported for their association with the components of 

MetS and/or serum urate in other populations were selected including ADRB3: rs4994, 

MC3R: rs3827103, MC4R: rs17700633 and rs17782313 and ADTRP: rs6903956. The 
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genotype association analyses were adjusted for baseline confounders (age, sex, BMI and 

estimates of grand-parental ancestry for New Zealand Polynesian datasets) plus with 

other comorbid conditions (hypertension, renal dysfunction, T2D and dyslipidaemia) of 

hyperuricaemia and gout. The analysis successfully replicated the previously reported 

positive associations (Huang et al., 2013; Morcillo et al., 2010; Rho et al., 2007; Wang et 

al., 2011a) of the insulin resistance-related G allele of rs4994 with increased serum urate 

in the New Zealand Polynesians (WP:  (mmol L-1) = 0.036, P = 0.004) (Table 4.8). The 

analysis further revealed a possible pleiotropic effect of the G allele in Western 

Polynesian sub-group, showing a protective effect against gout (OR = 0.62, PUnadjusted = 

0.04) (Table 4.6). The protective association of the G allele with gout was also observed 

in the much larger European dataset from the UK Biobank Cohort (OR = 0.88, P = 0.04) 

(Table 4.6) and was consistent with my previously published data for the G allele of 

ADRB3: rs4994 in Western Polynesian (described above) (Fatima et al., 2016) and 

suggests a possible positive relationship of insulin-resistance and hyperuricaemia. 

 The research in Chapter 4 also reports interesting results for variants within/near 

the obesity-related melanocortin receptor genes (MC3R and MC4R) with gout in the New 

Zealand Polynesian and European populations. While the A allele of MC3R: rs3827103 

indicated a protective association with gout in the overall New Zealand population (OR = 

0.92, P = 0.03) (Table 4.9), the C allele of MC4R: rs17782313 was found to be associated 

with an increased risk for gout in New Zealand Europeans (OR = 1.03, P = 0.02) and the 

combined NZ European and Polynesian datasets (OR = 1.06, P = 0.03) (Table 6.9). The C 

allele of rs17782313 was also associated with increased serum urate in the non-gout 

European plus Polynesian individuals ( (mmol L-1) = 0.002, P = 0.006) (Table 4.9). 

Collectively these findings are consistent with the previously reported genetic/causal 

association of MC3/4R (for the same alleles of variants under study) with serum urate in 

Europeans (Köttgen et al., 2013; Lyngdoh et al., 2012; Palmer et al., 2013). The C allele 

of rs17782313 has been abundantly reported as a genuine signal for obesity and increased 

BMI in several populations (Beckers et al., 2011; Chambers et al., 2008; Loos et al., 

2008; Zobel et al., 2009). Given that the melanocortin system is involved in the anti-

inflammatory response (via MC3R) and in food uptake regulation (via MC4R) (Getting et 

al., 2002; Huszar et al., 1997; Lu et al., 1994), my findings in Chapter 4 not only depicts 

obesity and insulin resistance to have causal relationship with gout but also are suggestive 

of an unknown shared metabolic pathway between gout and MetS. Put together, these 
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findings hence constructed a bridge between gout and MetS via the genetic association 

analyses in New Zealand-based populations. 

 The research in Chapter 5 dealt with ‘dyslipidaemia’ as the third and last 

comorbid condition for gout among the comorbidities included in my PhD project via 

replication-based rare variant association analysis approach. Two lipid-related genes, 

LRP2 and A1CF, were assessed for their association with hyperuricaemia and/or gout in 

the European and NZ Polynesian individuals using exon sequencing data for these 

particular genes from the information available in the ReSequencing Cohort. Exploring 

the genetic association of non-urate transporter genes with hyperuricaemia and gout was 

the major purpose of this research. The results of the Discovery-phase showed several 

novel population-specific association signals for gout and hyperuricaemia from common 

(via single variant analyses) and rare (via non-synonymous burden) variants within the 

coding regions of the LRP2 gene (Table 5.5 and Table 5.6). The C alleles of two 

Polynesian-specific variants, rs111360923 and var170115626, were successfully 

replicated for an association with gout (rs111360923; OR = 0.64, P = 0.002, 

var170115626 = OR = 0.73, P = 0.03) when validated in a larger Replication Cohort that 

included the data from > 3,300 New Zealand-based Polynesian and European individuals 

(Table 5.12 to Table 5.14). Owing to the presence of similar allele frequencies of 

rs111360923 (MAF = 0.07) and var170115626 (MAF = 0.07) LD was calculated, which 

indicated a strong LD (r2 = 83%) between rs111360923 and var170115626 in the New 

Zealand Polynesian population (Figure 5.8). The association signals of these two variants 

(the C alleles) were, however, found to be independent of the T allele of LRP2: 

rs2544390 (r2 = 5%) that was previously reported for its Polynesian-specific association 

with gout (Rasheed et al., 2013a). Both of these variants have been reported as having 

extremely low frequencies in other populations (rs111360923 MAF = for Africans 

(0.008) and South Asians (0.001); var170115626 MAF = 6.05E-05 only in South Asians). 

A thorough literature search also revealed that these two variants have never been 

described in relation to any pathophysiologic condition, which further ascribed the 

novelty of my findings in Chapter 5. The allelic associations of three more common 

variants, rs4667591, rs2075252 and rs2302694, were also replicated for gout and/or 

hyperuricaemia in the New Zealand European and/or Polynesian ancestral groups. The G 

allele of rs4667591 was significantly associated with hyperuricaemia, albeit in opposite 

direction, in the New Zealand Polynesian (OR = 0.79, P = 0.002) and European (OR = 



6| Conclusions 

 260 

1.26, P = 0.02) groups (Table 5.14). The C allele of rs2075252 and the A allele of 

rs2302694 were found to have a protective effect for hyperuricaemia in the New Zealand 

Polynesians (rs2075252: OR = 0.83, P = 0.01; rs2302694: OR = 0.79, P = 0.04) (Table 

5.14). Further to these, the rare non-synonymous variants within the LRP2 gene showed a 

significant burden risk of developing hyperuricaemia in European individuals (PBurden (Risk) 

= 0.009) (Table 5.8). The combined rare variant allele frequency was significantly higher 

(P = 0.04) in hyperuricaemic cases compared to controls (Table 5.8). While the previous 

literature provided evidence for the involvement of more common variants within the 

LRP2 gene in increasing the risk of hyperuricaemia and/or gout in other populations 

(Kamatani et al., 2010; Nakayama et al., 2014; Rasheed et al., 2013a), my findings in 

Chapter 5 are suggestive for a protective role of common variants within the LRP2 gene 

for hyperuricaemia. The replicated protective findings of LRP2 in my study are of interest 

and are not supportive for a role of LRP2 in increasing the risk of hyperuricaemia and/or 

gout in Polynesian individuals. It is also notable that the sample size for the Discovery-

phase indicated a lower power and the individuals in the Replication Cohort did not have 

their urate levels from extreme spectrum of hyperuricaemia. Admitting that these 

limitations could have caused a difference in the direction of association for LRP2 

variants, the protective findings in my study merits further exploration e.g., use of larger 

data set with hyperuricaemic individuals having higher average urate levels than the 

Replication Cohort. 

6.1.2 Study limitations 

The limitations of the work presented in this thesis are detailed below; 

1. The observational data provided in Chapter 2 suggested a positive association of 

imbalanced iron homeostasis with urate and gout with an initial suggestion of an 

involvement of iron-rich food in gout pathophysiology. However, it was not 

possible to further investigate the relationship between iron-rich diet and gout and 

frequency of gout flares due to the small sample size used. 

2. Mendelian randomisation analyses in Chapter 3 represent three major limitations 

of my study. First, the causal effect estimates described by the single variant as 

well as the sensitivity analyses were of limited magnitude and therefore may not 

retain causality if summary data encompassing a wider range of iron biomarkers 
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were used. Second, the causal role of iron and ferritin in increasing serum urate 

was confirmed in Europeans only due to the unavailability of GWAS data for 

Polynesian individuals. These findings, therefore, cannot guarantee the existence 

of a similar causal relationship between iron and urate in the New Zealand 

Polynesian individuals. And finally, the causality was described for ferritin/iron-

urate only, again, due to the absence of GWAS data for gout-related loci, which 

means the causality may or may not retain significance if measured for an iron-

gout relationship. 

3. The associations presented in Chapter 4 were collectively assessed in large New 

Zealand Polynesian and European datasets. However, the data presented for 

individual Polynesian sub-groups could possibly have small-study biases. 

4. The rare variant association analyses using sequencing data resulted in several 

positive significant associations that were not replicable in the larger cohort. The 

failure of replication presents a limitation of these analyses i.e., the Discovery-

Cohort was only adequately powered to detect an intermediate effect (Figure 5.4) 

due to its small size and may have overrepresented some false-positive 

associations. 

6.1.3 Future directions 

 The limitations detailed above need to be addressed appropriately to further 

confirm the false positive association(s) in my study, if any. A few suggestions to extend 

this research are detailed below; 

1. The observational associations between ferritin and gout should be replicated in a 

larger data set from New Zealand individuals. In addition, detailed information 

about the involvement of iron-rich diet in triggering gout flares and the frequency 

of flares should be gained to elaborate the aspects of and further extend the 

research presented in Chapter 2. 

2. A GWAS study detecting gout-related loci in the New Zealand European and 

Polynesian populations will facilitate analysing and validating of the iron/ferritin-

urate causal associations via Mendelian randomisation. Also, the data covering a 

wider range of serum iron biomarkers and urate would be beneficial to assess if 

the causality still exists. 
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3. The recruitment of a larger New Zealand cohort to replicate the association in 

Chapter 4 and the Discovery-phase findings in resequencing analyses (Chapter 5) 

will be beneficial. In addition to increasing the sample size, choosing individuals 

from extreme ranges of hyperuricaemia would be desirable to investigate as to 

why replication of some variants failed. 

6.1.4 Concluding remarks 

 The initially stated overarching aim of this research was to identify the potential 

causal relationship between gout and its comorbidities in the New Zealand population. 

While recognising the limitations, I believe that my study represents an original 

contribution to fill in the substantial gap in literature explaining the cause-effect 

relationship between gout, iron homeostasis, metabolic syndrome and dyslipidaemia. My 

study for the first time reports the association of ferritin with gout and the frequency of 

gout flares in the New Zealand individuals. It is also the first to describe a causal 

contribution of iron homeostasis in hyperuricaemia and gout pathophysiology in 

Europeans. My study is one of a few that addresses several components of the metabolic 

syndrome simultaneously while explaining their genetic relationship in gout. Its is also so 

far the only study reporting two Polynesian-specific common variants within the LRP2 

gene that influence any pathophysiological condition per se, hyperuricaemia and gout in 

this case. Finally, the study is the only one of its kind to report rare variants within the 

coding regions of LRP2 to carry a significant burden of risk of hyperuricaemia in the 

European population. 
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APPENDIX A 

Appendix A Table 2.1: Association of serum iron (μg dL-1), Transferrin (g L-1), TIBC (μmol L-1) and TSAT (%) with serum urate 

(μmol L-1) 

Iron profile 

marker 

Unadjusted Adjusted* 

ß [95% CI] P ß [95% CI] P 

NZ European 

Serum iron -4.44e-05 [-6.58e-04 ; 5.69e-04] 0.885 1.74e-05 [-6.04e-04 ; 6.391e-04] 0.955 

Transferrin -0.013 [-0.0607 ; 0.0338] 0.571 -0.008 [-0.0564 ; 0.0396] 0.726 

TIBC -5.35e-04 [-0.0024 ; 0.0013] 0.571 -3.36e-04 [-0.0022 ; 0.0016] 0.726 

TSAT 1.35e-04 [-0.0019 ; 0.0022] 0.898 2.45e-04 [-0.0018 ; 0.0026] 0.816 

NZ Polynesian 

Serum iron -3.86e-04 [-7.66e-04 ; -5.97e-06] 0.046 -3.40e-04 [-7.05e-04 ; 2.52e-05] 0.068 

Transferrin 0.029 [0.0037 ; 0.054] 0.024 0.023 [-0.0018 ; 0.048] 0.069 

TIBC 0.0012 [1.51e-04 ; 2.17e-03] 0.024 9.20e-04 [-7.47e-05 ; 0.0019] 0.069 

TSAT -0.0021 [-0.0033 ; -7.16e-04] 0.002 -1.69e-03 [-0.0029 ; -3.91e-04] 0.011 

JHS (All) 

Serum iron 1.11e-04 [4.08e-05 ; 2.63e-04] 0.152 -8.91e-05 [2.21e-04 ; 4.27e-05] 0.185 

TIBC -1.82e-04 [-2.82e-04 ; -8.19e-05] 3.77e-04 3.31e-05 [-5.45e-05 ; 1.21e-04] 0.459 

TSAT 5.62e-04 [1.28e-04 ; 9.96e-02] 0.011 3.35e-04 [7.19e-04 ; 4.96e-05] 0.087 

JHS (Males) 

Serum iron 2.71e-04 [4.82e-04 ; 5.91e-05] 0.012 -1.63e-04 [3.72e-04 ; 4.54e-05] 0.125 

TIBC 1.29e-04 [-3.47e-05 ; -2.93e-04] 0.122 1.07e-04 [-5.17e-05 ; 2.66e-04] 0.185 

TSAT -9.57e-04 [-1.56e-03 ; 3.51e-04] 0.002 -6.32e-04 [-1.23e-03 ; 3.31e-05] 0.038 

JHS (Females) 

Serum iron -2.15e-04 [3.95e-04 ; 3.39e-05] 0.02 -5.98e-05 [-2.28e-04 ; 1.08e-04] 0.487 

TIBC -6.06e-05 [-1.68e-04 ; 4.67e-05] 0.268 2.49e-05 [-7.89e-05 ; 1.28e-04] 0.637 
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TSAT -4.75e-04 [-8.53e-03 ; 5.79e-05] 0.081 -2.31e-04 [-7.34e-04 ; 2.71e-04] 0.366 

NHANES III: EUR (All) 

Serum iron 0.209 [0.149 ; 0.269] 7.78e-12 0.159 [0.109 ; 0.208] 3.33e-10 

TIBC -0.296 [-0.514 ; -0.077] 0.008 0.306 [0.121 ; 0.491] 0.001 

TSAT 0.681 [0.489 ; 0.873] 3.98e-12 0.358 [0.199 ; 0.5180] 1.07e-05 

NHANES III: EUR (Males) 

Serum iron 0.135 [0.055 ; 0.216] 9.22e-04 0.135 [0.058 ; 0.212] 5.76e-04 

TIBC 0.931 [0.619 ; 1.242] 5.2e-09 0.548 [0.244 ; 0.852] 4.03e-04 

TSAT 0.156 [-0.096 ; 0.409] 0.225 0.265 [0.025 ; 0.506] 0.030 

NHANES III: EUR (Females) 

Serum iron 0.022 [-0.046 ; 0.091] 0.519 0.171 [0.108 ; 0.233] 1.12e-07 

TIBC 0.042 [-0.198 ; 0.284] 0.727 0.192 [-0.031 ; 0.416] 0.0925 

TSAT 8.53e-03 [-0.219 ; 0.236] 0.942 0.411 [0.204 ; 0.618] 1.01e-04 

NHANES III: AA (All) 

Serum iron 0.235 [0.159 ; 0.312] 1.49e-09 0.164 [0.097 ; 0.232] 1.5e-06 

TIBC -1.015 [-1.272 ; -0.757] 1.33e-14 0.197 [-0.031 ; 0.425] 0.09 

TSAT 0.950 [0.699 ; 1.202] 1.47e-13 0.378 [0.155 ; 0.601] 8.71e-04 

NHANES III: AA (Males) 

Serum iron -0.029 [-0.135 ; 0.075] 0.577 0.131 [0.029 ; 0.233] 0.011 

TIBC 0.417 [0.018 ; 0.816] 0.041 0.485 [0.105 ; 0.865] 0.012 

TSAT -0.244 [-0.593 ; 0.104] 0.17 0.252 [-0.083 ; 0.587] 0.14 

NHANES III: AA (Females) 

Serum iron -0.037 [  -0.135 ; 0.059] 0.447 0.163 [0.075 ; 0.252] 2.9e-04 

TIBC -0.783 [-1.078 ; -0.487;] 2.21e-07 0.165 [-0.118 ; 0.449] 0.252 

TSAT 0.036 [-0.290 ; 0.362] 0.828 0.361   [0.063 ; 0.657] 0.017 

NZ; New Zealand, JHS; Jackson Heart Study, NHANES III; US Third National Health and Nutrition Examination Survey, EUR; White Caucasian/European, AA; African American, 

TIBC; Total iron binding capacity, TSAT; Transferrin saturation. *Adjusted for age, sex, BMI and number of self-reported Polynesian grandparents for the NZ Polynesian group. 
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Appendix A Table 2.2: Association of serum iron (μg dL-1), Transferrin (g L-1), TIBC (μmol L-1) and TSAT (%) with hyperuricaemia 

Iron profile 

marker 

Unadjusted Adjusted* 

OR [95% CI] P OR [95% CI] P 

JHS (All) 

Serum iron 1.005 [0.999 ; 1.009] 0.067 1.002 [0.994 ; 1.006] 0.958 

TIBC 0.984 [0.966 ; 1.003] 0.108 1.006 [0.983 ; 1.029] 0.607 

TSAT 1.016 [1.001 ; 1.031] 0.034 0.996 [0.979 ; 1.014] 0.735 

JHS (Males) 

Serum iron 0.997 [0.990 ; 1.003] 0.379 0.998 [0.991 ; 1.005] 0.713 

TIBC 1.013 [0.987 ; 1.041] 0.330 1.012 [0.985 ; 1.040] 0.396 

TSAT 0.987 [0.968 ; 1.006] 0.186 0.992 [0.972 ; 1.012] 0.432 

JHS (Females) 

Serum iron 0.999 [0.986 ;1.011] 0.976 1.004 [9.88e-01 ; 1.016] 0.577 

TIBC 0.988 [0.948 ; 1.029] 0.587 1.001 [9.55e-01 ; 1.046] 0.981 

TSAT 1.001 [0.962 ; 1.036] 0.953 1.007 [9.645e-01 ; 1.048] 0.714  

NHANES III: EUR (All) 

Serum iron 1.003 [1.002 ; 1.004] 5.05e-06 1.002 [1.001 ; 1.004] 6.4E-04 

TIBC 0.994 [0.989 ; 0.999] 0.026 1.013 [1.008 ; 1.019] 1.07e-06 

TSAT 1.009 [1.005 ; 1.013] 9.4e-06 1.002 [0.997 ; 1.007] 0.302 

NHANES III: EUR (Males) 

Serum iron 1.001 [0.999 ; 1.002] 0.252 1.002 [1.001 ; 1.004] 0.00646 

TIBC 1.015 [1.008 ; 1.021] 4.51e-06 1.019 [1.012 ; 1.026] 2.71e-08 

TSAT 0.998 [0.993 ; 1.003] 0.526 1.001 [0.996 ; 1.006] 0.607 

NHANES III: EUR (Females) 

Serum iron 0.996 [0.993 ; 0.999] 0.016 1.001 [0.998 ; 1.005] 0.413   

TIBC 0.986 [0.977 ; 0.995] 0.00345 1.006 [9.9e-01 ; 1.016] 0.183 

TSAT 0.992 [0.983 ; 1.002] 0.147 1.001 [0.989 ; 1.011] 0.899 

NHANES III: AA (All) 

Serum iron 1.003 [1.001 ; 1.005] 4.44e-04 1.005 [1.002 ; 1.006] 1.29e-04 

TIBC 0.977 [0.971 ; 0.985] 1.12e-09 1.005 [0.996 ; 1.013] 0.241 

TSAT 1.016 [1.009 ; 1.023] 6.63e-07 1.012 [1.004 ; 1.019] 2.77e-03 
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NHANES III: AA (Males) 

Serum iron 0.999 [0.996 ; 1.002] 0.6 1.004 [1.001 ; 1.007] 0.003 

TIBC 0.992 [0.983 ; 1.002] 0.1509 1.004 [0.993 ; 1.015] 0.407 

TSAT 0.999 [0.991 ; 1.007] 0.908 1.012 [1.002 ; 1.021] 0.013 

NHANES III: AA (Females) 

Serum iron 0.999 [0.995 ; 1.003] 0.724 1.005 [1.001 ; 1.009] 0.024 

TIBC 0.974 [0.961 ; 0.987] 9.3e-05 1.009 [0.995 ; 1.024] 0.176 

TSAT 1.004 [0.991 ; 1.017] 0.503 1.011 [0.994 ; 1.025] 0.19 

JHS; Jackson Heart Study, NHANES III; US Third National Health and Nutrition Examination Survey, EUR; White Caucasian/European, AA; African American, TIBC; Total iron binding 

capacity, TSAT; Transferrin saturation. *Adjusted for age, sex, BMI and number of self-reported Polynesian grandparents for the NZ Polynesian group. 
 

 

Appendix A Table 2.3: Association of serum iron (μg dL-1), Transferrin (g L-1), TIBC (μmol L-1) and TSAT (%) with gout 

Iron profile 

marker 

Unadjusted Adjusted* 

OR [95% CI] P OR [95% CI] P 

NZ European 

Serum iron 0.991 [0.981 ; 1.002] 0.115 0.994 [0.981 ; 1.008] 0.459 

Transferrin 1.393 [0.606 ; 3.307] 0.440 1.318 [0.045 ; 3.801] 0.602 

TIBC 1.013 [0.981 ; 1.048] 0.440 1.011 [0.097 ; 1.054] 0.602 

TSAT 0.968 [0.934 ; 1.003] 0.077 0.096 [0.092 ; 1.013] 0.171 

NZ Polynesian 

Serum iron 0.995 [0.984 ; 1.005] 0.354 0.993 [0.981 ; 1.005] 0.263 

Transferrin 1.708 [0.934 ; 3.252] 0.090 1.663 [0.839 ; 3.476] 0.156 

TIBC 1.021 [0.997 ; 1.048] 0.090 1.020 [0.099 ; 1.051] 0.156 

TSAT 0.964 [0.925 ; 1.003] 0.074 0.960 [0.916 ; 1.004] 0.082 

NZ; New Zealand, TIBC; Total iron binding capacity, TSAT; Transferrin saturation. *Adjusted for age, sex, BMI and number of self-reported Polynesian grandparents for the NZ 

Polynesian group. 
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Appendix A Table 2.4: Comparison of average values of iron profile markers in gout 

case-control groups 

Population P [95% CI] for difference 

NZ European 

Serum iron (μg dL-1) 0.114 [-1.96 ; 18.06] 

Serum ferritin (ng mL-1) 0.213 [-97.46 ; 22.02] 

Transferrin (g L-1) 0.446 [-0.17 ;  0.07] 

TIBC (μmol L-1) 0.446 [-4.42 ; 1.96] 

TSAT (%) 0.074 [-0.27 ; 5.64] 

NZ Polynesian 

Serum iron (μg dL-1) 0.342 [-5.09 ; 14.57] 

Serum ferritin (ng mL-1) 2.29E-04 [-211.88 ; -66.31] 

Transferrin (g L-1) 0.073 [-0.32 ; 0.014] 

TIBC (μmol L-1) 0.073 [-8.05 ; 0.36] 

TSAT (%) 0.071 [-0.21 ; 5.01] 

US 

Serum ferritin (ng mL-1) 6.60E-17 [-167.19 to -107.16] 

NZ; New Zealand, TIBC; Total iron binding capacity, TSAT; Transferrin saturation. 

 

 

Appendix A Table 2.5 Association of serum ferritin with gout (Transformed data) 

Population OR [95% CI] P OR [95% CI]* P* 

NZ European 1.19 [0.81 ; 1.76] 0.37 0.88 [0.49 ; 1.52] 0.64 

NZ Polynesian 1.76 [1.12 ; 2.84] 1.63E-02 2.24 [1.27 ; 4.17] 7.41E-03 

US 2.42 [1.79 ; 3.39] 7.02E-08 2.31 [1.65 ; 3.31] 2.26E-06 

NZ; New Zealand, US; United States of America. *Adjusted for age, sex, BMI, C-reactive protein and number of self-

reported Polynesian grandparents in the NZ Polynesian analyses. All odds ratios represent a change per unit log of 

ferritin. 

 

 

Appendix A Table 2.6 Association of serum ferritin with gout flares/year 

(Transformed data) 

Population ß [95% CI] P ß [95% CI]* P* 

NZ European 1.74 [0.17 ; 3.32] 0.030 1.94 [0.24 ; 3.63] 0.025 

NZ Polynesian -4.42 [-9.750 ; 0.90] 0.10 -4.68 [-10.11 ; 0.75] 0.090 

US 0.38 [0.11 ; 0.64] 0.0063 0.37 [0.10 ; 0.63] 0.0066 

NZ; New Zealand, US; United States of America. *Adjusted for age, sex, BMI and number of self-reported Polynesian 

grandparents in the NZ Polynesian analyses. All ß-estimates represent a change per unit log of ferritin. 
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Appendix A Table 2.7 Association of serum ferritin with gout flares/year 

Population 
^Unadjusted *Adjusted †Adjusted 

ß [95% CI] P ß [95% CI] P ß [95% CI] P 

NZ European 0.08 [0.001 ; 0.16] 0.045 0.09 [0.003 ; 0.17] 0.042 0.069 [-0.005 ; 0.144] 0.067 

NZ Polynesian -0.11 [-0.24 ; 0.03] 0.13 -0.11 [-0.24 ; 0.03] 0.14 -0.091 [-0.22 ; 0.034] 0.15 

US 0.02 [0.01 ; 0.04] 0.003 0.02 [0.01 ; 0.04] 0.002 0.018 [0.001 ; 0.036] 0.043 

^Unadjusted; *Adjusted for age, BMI and number of self-reported Polynesian grandparents in the NZ Polynesian analyses; †Adjusted for age, BMI, allopurinol usage and number of self-

reported Polynesian grandparents in the NZ Polynesian analyses. 

 

Appendix A Table 2.8 Association of serum ferritin (ng mL-1) with gout excluding those ‘not taking allopurinol’ 

Population 
All Taking allopurinol 

OR [95% CI] P OR [95% CI]* P* OR [95% CI] P OR [95% CI]* P* 

NZ 

European 
1.011 [0.993 ; 1.031] 0.22 0.997 [0.971 ; 1.023] 0.84 1.009 [0.987 ; 1.033] 0.42 0.993 [0.961 ; 1.025] 0.67 

NZ 

Polynesian 
1.026 [1.011 ; 1.045] 1.71E-03 1.032 [1.013 ; 1.055] 1.76E-03 1.039 [1.013 ; 1.0725] 6.83E-03 1.061 [1.024 ; 1.112] 3.93E-03 

US 1.115 [1.071 ; 1.170] 1.47E-06 1.112 [1.066 ; 1.170] 7.41E-06 1.149 [1.086 ; 1.233] 1.57E-05 1.270 [1.148 ; 1.469] 8.89E-05 

^Unadjusted; *Adjusted for age, BMI, C-reactive protein and number of self-reported Polynesian grandparents in the NZ Polynesian analyses. All OR values represent change in risk for 

per 10 ng mL-1 increase in serum ferritin. 
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Appendix A Table 2.7 Association of ferritin (ng mL-1) with serum urate (μmol L-1) (Transformed data) 

Population ß [95% CI] P ß [95% CI]* P* 

NZ European 21.97 [-2.452 ; 46.389] 0.076 20.027 [-6.174 ; 46.229] 0.13 

NZ Polynesian 22.031 [7.465 ; 37.151] 3.35E-03 22.824 [8.098 ; 37.551] 2.5E-03 

US 22.98 [-3.882 ; 49.836] 0.092 19.326 [-9.281 ; 47.933] 0.18 

JHS (males) 10.921 [2.642 ; 19.200] 9.82E-03 9.476 [1.457 ; 17.495] 2.06E-02 

JHS (females) 17.48 [11.863 ; 23.093] 1.64E-09 9.527 [3.765 ; 15.288] 1.22E-03 

JHS (combined) 31.470 [27.021 ; 35.919] 7.16E-41 10.850 [6.249 ; 15.452] 4.11E-06 

NHANES III EUR (Males) 8.663 [5.215 ; 12.111] 8.91E-07 5.118 [1.816 ; 8.419] 2.39E-03 

NHANES III EUR (Females) 17.814 [15.342 ; 20.286] 9.27E-44 11.571 [9.074 ; 14.068] 2.07E-19 

NHANES III EUR (Combined) 28.779 [26.779 ; 30.777] 6.12E-163 10.645 [8.655 ; 12.634] 1.76E-25 

NHANES III AA (Males) 13.809 [9.425 ; 18.193] 7.93E-10 7.389 [3.135 ; 11.643] 6.70E-04 

NHANES III AA (Females) 22.585 [19.856 ; 25.313] 2.62E-56 12.526 [9.658 ; 15.394] 1.91E-17 

NHANES III AA (Combined) 31.375 [29.188 ; 33.562] 4.51E-160 12.347 [9.994 ; 14.701] 1.53E-24 

NZ; New Zealand, JHS; Jackson Heart Study, NHANES III; US Third National Health and Nutrition Examination Survey, EUR; White Caucasian/European, AA; African American. 

*Adjusted for age, sex, BMI, C-reactive protein and number of self-reported Polynesian grandparents in the NZ Polynesian analyses. All ß-estimates represent a change per unit log of 

ferritin. 

 

 

Appendix A Table 2.8 Association of serum ferritin with hyperuricaemia (Transformed data) 

Population OR [95% CI] P OR [95% CI]* P* 

JHS (Males) 1.31 [1.01 ; 1.72] 4.22E-02 1.30 [1.00 ; 1.70] 5.74E-02 

JHS (Females) 2.40 [1.55 ; 3.84] 1.41E-04 2.12 [1.31 ; 3.61] 3.029E-03 

JHS (Combined) 2.17 [1.78 ; 2.68] 7.22E-14 1.52 [1.20 ; 1.92] 4.65E-04 

NHANES III EUR (Males) 1.40 [1.31 ; 1.51] 1.22E-20 1.18 [1.09 ; 1.27] 2.31E-05 

NHANES III EUR (Females) 2.21 [1.99 ; 2.46] 2.81E-48 1.52 [1.36 ; 1.71] 2.1E-12 

NHANES III EUR (Combined) 1.97 [1.86 ; 2.08] 3.89E-126 1.35 [1.27 ; 1.44] 6.00E-21 

NHANES III AA (Males) 1.65 [1.49 ; 1.84] 3.82E-20 1.31 [1.16 ; 1.47] 9.14E-06 

NHANES III AA (Females) 2.36 [2.05 ; 2.72] 2.15E-32 1.74 [1.48 ; 2.05] 3.35E-11 

NHANES III AA (Combined) 2.21 [2.04 ; 2.39] 7.91E-83 1.50 [1.37 ; 1.65] 2.41E-17 

NZ; New Zealand, JHS; Jackson Heart Study, NHANES III; US Third National Health and Nutrition Examination Survey, EUR; White Caucasian/European, AA; African American. 

*Adjusted for age, sex, BMI, C-reactive protein and number of self-reported Polynesian grandparents in the NZ Polynesian analyses.  All odds ratios represent a change per unit log of 

ferritin. 
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Appendix A Table 3.1 Details of study cohorts included in GWAS used in MR-analysis 

Köttgen et al. (2013) Benyamin et al. (2014) data 

Name of the study 
Number of 

individuals 
Name of the study 

Number of 

individuals 

AGES Reyjavik Study 3219 Australia-Adult 9148 

Amish 1193 Autralia-Adolescent 2544 

ARIC 9049 BHS 877 

ASPS 845 Cambridge  2419 

AUSTWIN 11520 CoLAUS 5409 

BLSA 521 ERF/Rotterdam 871 

BRIGHT 1743 Estonian Biobank (Original) 893 

CARDIA 1713 Estonian Biobank (Replication) 1017 

CHS 3252 FENLAND 1402 

CoLaus 5409 InCHIANTI 1206 

CROATIA-CORCULA 895 INTERACT 9294 

CROATIS-VIS 490 KORA F3 1634 

CROATSIS-SPLIT 912 KORA F4 1809 

DESIR 716 Micros/EURAC 1218 

ERF 1835 NBS 1791 

EPIC-Norfolk cohort 889 PREVEND 3644 

Estonian Biobank (Original) 931 SardiNIA 4694 

Family Heart Study (FamHS) 7837 Val Borbera 1659 

FHS 7699 Total number 51529 

Health 2000 2069   

InCHIANTI 1205 
  

INCIPE 940 
  

INGI-Carlantiono 432 
  

INGI-CLIENTO 859   

INGI-FVG 1018 
  

INGI-Val Borbera 1658 
  

KORA F3 1643 
  

KORA F4 1814 
  

LBC1936 769 
  

LifeLines 3343 
  

LOLIPOP_EW_A 587 
  

LOLIPOP_EW_P 650 
  

LOLIPOP_EW610 924 
  

LURIC 963 
  

MICROS 1236 
  

NESDA 1731 
  

NSPHS 655 
  

ORCADES 888 
  

PREVEND 3785 
  

PROCARDIS 3742 
  

RS-I 4274 
  

RS-II 2123 
  

SardiNIA 4694 
  

SHIP 4067 
  

SOCCS 1105 
  

Sorbs 896 
  

TwinsUK 3640 
  

WGHS NA 
  

Young Finns Study 2023 
  

Total 114401 
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Appendix A Table 5.1: Sixty-seven Genomic control SNPs genotyped to calculate 

estimates of individual Eastern Polynesian ancestry 

TaqMan Genotyped Sequenom MassArray Genotyped PCR-RFLP 

rs1183201 rs10025373 rs7725 

rs9358890 rs1143634 rs573816 

rs3799344 rs11536879  

rs12664474 rs1205  

rs2075876 rs2812378  

rs1816532 rs3014875  

rs13419122 rs344542  

rs12401573 rs40401  

rs6945435 rs452204  

rs743777 rs4780884  

rs10511216 rs4781011  

rs12745968 rs4804221  

rs1539438 rs4845622  

rs729749 rs4889640  

rs3738919 rs507879  

rs1130214 rs6005863  

rs755622 rs6819597  

rs7901695 rs6835636  

rs7578597 rs7811892  

rs2043211 rs7842  

rs10733113 rs795467  

rs900865 rs8075846  

rs2059606 rs8122  

rs4129148 rs9639436  

rs831628 rs9882205  

rs1929480 rs11078855  

rs12917707 rs11119568  

 rs1184835  

 rs12535365  

 rs12877336  

 rs2683764  

 rs35958249  

 rs4256629  

 rs4571803  

 rs493430  

 rs615204  

 rs693916  

 rs7108425  

 rs7118682  

 rs730275  

 rs9294168  

 rs9690688  

PCR-RFLP: Polymerase Chain Reaction-Restriction Fragment Length Polymorphism 
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Appendix A Table 5.2: *Brief summary of the 19 renal cell samples used to identify 

DNase hypersensitivity regions for sequencing 

 

Sample Analysis 

GEO 

accession 
Sex Age Tissue Type Marker Type Protocol 

GSM621648 Male 67 (Years) Adult Kidney Histone Methylation ChIP-Seq 

GSM701494 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM701502 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM701511 Male 16 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM701517 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM701519 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM701529 Male 13 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM701532 Female 17 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM772811 Male 67 (Years) Adult Kidney Histone Acetylation Chip-Seq 

GSM773005 Male 50 (years) Adult Kidney Histone Methylation ChIP-Seq 

GSM773006 Male 50 (years) Adult Kidney Histone Acetylation ChIP-Seq 

GSM817176 Male 18 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM817190 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM817202 Male 17 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM817203 Male 17 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM817210 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM817211 Male 15 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM878629 Male 14 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

GSM878667 Female 13 (Weeks) Foetal Renal Cortex DNase-Hypersensitivity DNase-Seq 

*Modified from Flynn (2016) 
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Appendix A Table 5.3: Meta-analysis results of single variant association analysis within LRP2 and A1CF for hyperuricaemia 

Exon Chr: location rs ID/var number POR PHet OR [95% CI] 

LRP2 

2 2:170177382 rs144829356 0.198 1.000 1.27 [0.88; 1.83] 

3 2:170175334 rs2229263 0.841 0.577 0.97 [0.73; 1.29] 

4 2:170163816 rs34104660 0.191 0.984 0.62 [0.30; 1.27] 

6 2:170150671 rs2229266 0.401 0.481 0.90 [0.70; 1.16] 

8 2:170147502 rs34693334 0.094 0.096 1.76 [0.91; 3.39] 

13 2:170131548 rs111360923 0.019 1.000 0.54 [0.32; 0.90] 

14 2:170129474 rs145709922 0.850 1.000 0.76 [0.05; 12.42] 

14 2:170129547 rs34291900 0.583 0.318 1.30 [0.51; 3.36] 

14 2:170129528 rs830994 0.151 0.051 0.82 [0.62; 1.08] 

15 2:170115588 rs2241190 0.735 0.479 1.04 [0.82; 1.32] 

15 2:170115672 rs33954745 0.625 0.703 0.85 [0.45; 1.61] 

15 2:170115626 var170115626 0.029 1.000 0.56 [0.34; 0.94] 

16 2:170127559 rs141180155 0.298 0.982 2.45 [0.45; 13.23] 

19 2:170103471 rs17848143 0.582 1.000 0.67 [0.16; 2.82] 

19 2:170103351 rs2075249 0.314 0.614 1.14 [0.88; 1.47] 

19 2:170103336 rs831043 0.664 0.355 1.05 [0.83; 1.34] 

21 2:170100011 rs150552608 0.429 1.000 0.38 [0.03; 4.23] 

22 2:170099473 rs831042 0.605 0.301 1.07 [0.84; 1.35] 

23 2:170097707 rs17848149 0.693 0.755 1.11 [0.65; 1.91] 

26 2:170096095 rs34915742 0.429 0.979 0.38 [0.03; 4.23] 

27 2:170094756 rs146289506 0.850 1.000 0.76 [0.05; 12.42] 

28 2:170093726 var170093726 0.249 1.000 0.35 [0.06; 2.07] 

29 2:170092439 rs151079411 0.668 1.000 1.97 [0.09; 43.53] 

29 2:170092395 rs2229267 0.910 0.612 0.99 [0.76; 1.28] 

29 2:170092504 var170092504 0.345 1.000 1.78 [0.54; 5.86] 

30 2:170089934 rs145384264 0.943 0.361 1.05 [0.26; 4.31] 

31 2:170088351 rs2302694 0.001 0.291 0.54 [0.37; 0.79] 

32 2:170082936 rs138070797 0.725 0.000 1.54 [0.14; 17.36] 

36 2:170070348 rs11886219 0.565 0.948 0.80 [0.37; 1.73] 

36 2:170070172 rs4667596 0.033 0.308 0.36 [0.14; 0.92] 

39 2:170063263 rs149367019 0.850 0.982 0.76 [0.05; 12.42] 

39 2:170063471 rs35114151 0.623 0.948 1.14 [0.67; 1.94] 

39 2:170062977 rs61995915 0.387 0.982 2.00 [0.42; 9.62] 
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41 2:170062078 rs13397109 0.083 0.152 0.71 [0.49; 1.05] 

42 2:170060603 rs17848169 0.854 0.398 1.09 [0.44; 2.72] 

44 2:170058345 var170058345 0.250 1.000 0.41 [0.09; 1.88] 

46 2:170053505 rs2228171 0.234 0.368 0.86 [0.68; 1.10] 

48 2:170048482 rs149148763 0.510 0.000 0.45 [0.04; 4.79] 

50 2:170042245 rs35734447 0.668 0.000 1.97 [0.09; 43.53] 

54 2:170032989 rs2229265 0.027 0.809 1.32 [1.03; 1.69] 

55 2:170031824 rs17848184 0.399 0.000 1.17 [0.81; 1.69] 

57 2:170029657 rs34355135 0.543 0.000 1.98 [0.22; 17.85] 

58 2:170028529 rs199528723 0.375 1.000 0.56 [0.15; 2.04] 

60 2:170026248 var170026248 0.668 1.000 1.97 [0.09; 43.53] 

61 2:170025083 rs2229268 0.336 0.408 1.18 [0.84; 1.67] 

64 2:170013904 rs79723119 0.482 0.981 1.71 [0.38; 7.60] 

66 2:170010985 rs2075252 0.028 0.415 0.75 [0.58; 0.97] 

67 2:170009390 rs142934522 0.429 1.000 0.38 [0.03; 4.23] 

69 2:170003432 rs4667591 0.012 0.430 0.72 [0.56; 0.93] 

70 2:170002412 var170002412 0.607 1.000 0.48 [0.03; 7.79] 

72 2:169997051 rs990626 0.201 0.470 0.85 [0.67; 1.09] 

73 2:169996070 rs41268685 0.045 0.980 3.85 [1.03; 14.38] 

77 2:169989127 rs142245618 0.682 1.000 0.67 [0.10; 4.45] 

79 2:169985338 rs34564141 0.718 1.000 1.38 [0.24; 8.11] 

A1CF 

5'UTR 10:52645424 rs10994860 0.272 0.487 1.22 [0.86; 1.73] 

5'UTR 10:52645409 var_52645409 0.362 1.000 0.62 [0.22; 1.74] 

3 10:52603874 rs142969066 0.576 0.982 0.65 [0.14; 2.99] 

3 10:52603754 rs35967725 0.857 0.534 0.86 [0.16; 4.51] 

6 10:52587964 rs143315865 0.850 1.000 0.76 [0.05; 12.42] 

7 10:52580318 rs372408821 0.237 0.426 3.31 [0.45; 24.17] 

7 10:52576068 rs4245008 0.263 0.980 3.40 [0.40; 29.06] 

8 10:52576025 rs142026324 0.935 1.000 0.90 [0.08; 10.72] 

9 10:52573772 rs41274050 0.317 0.355 1.18 [0.86; 1.61] 

3'UTR 10:52566049 rs10821846 0.529 0.833 1.08 [0.85; 1.37] 

3'UTR 10:52559634 rs10994507 0.701 0.715 0.91 [0.56; 1.47] 

3'UTR 10:52560658 rs10994521 0.850 1.000 0.76 [0.05; 12.42] 

3'UTR 10:52563898 rs112824128 0.885 1.000 1.17 [0.14; 9.71] 

3'UTR 10:52561919 rs12571156 0.543 0.994 1.11 [0.79; 1.57] 

3'UTR 10:52563981 rs150545950 0.707 0.980 0.61 [0.05; 7.93] 

3'UTR 10:52563196 rs16751 0.529 0.833 1.08 [0.85; 1.37] 
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3'UTR 10:52565132 rs185182715 0.068 1.000 0.72 [0.50; 1.03] 

3'UTR 10:52563051 rs4282939 0.317 0.355 1.18 [0.86; 1.61] 

3'UTR 10:52564065 rs4619096 0.093 0.547 0.82 [0.65; 1.03] 

3'UTR 10:52565951 rs4619097 0.364 0.293 1.16 [0.84; 1.59] 

3'UTR 10:52561643 rs59030524 0.429 1.000 0.38 [0.03; 4.23] 

3'UTR 10:52560557 rs6479731 0.745 0.990 1.46 [0.15; 14.23] 

3'UTR 10:52561829 rs7072584 0.364 0.293 1.16 [0.84; 1.59] 

3'UTR 10:52559843 rs7084132 0.364 0.293 1.16 [0.84; 1.59] 

3'UTR 10:52561803 rs74352101 0.364 0.293 1.16 [0.84; 1.59] 

3'UTR 10:52564700 rs74874346 0.723 0.695 0.92 [0.57; 1.49] 

3'UTR 10:52565377 rs75583477 0.830 0.598 0.95 [0.58; 1.54] 

3'UTR 10:52564421 rs80080606 0.543 0.994 1.11 [0.79; 1.57] 

3'UTR 10:52559853 var52559853 0.850 1.000 0.76 [0.05; 12.42] 

3'UTR 10:52561920 var52561920 0.357 1.000 2.07 [0.44; 9.70] 

3'UTR 10:52562642 var52562642 0.668 1.000 1.97 [0.09; 43.53] 

3'UTR 10:52563862 var52563898 0.850 1.000 0.76 [0.05; 12.42] 

3'UTR 10:52564524 var52564700 0.530 1.000 0.47 [0.04; 5.00] 

3'UTR 10:52565940 var52565951 0.850 1.000 0.76 [0.05; 12.42] 

3'UTR 10:52566333 var52566417 0.207 1.000 0.64 [0.32; 1.28] 

Exon: Exon number, UTR: Un-translated region, rs ID: Reference SNP cluster ID, Chr: Chromosome, var: Variant, Ref: Reference, Alt: Alternate. Normo: Normouricaemic, Hyper: 

Hyperuricaemic, OR: Odds ratio for the alternate allele, 95% CI: 95% confidence interval, POR: p-value for odds ratio. PHet: p-value for intra population heterogeneity. *Odds ratios are 

adjusted for sex, age, BMI and estimates of grand-parental ancestry for Polynesian dataset. Exons numbers and variant positions are sourced from the Genome Reference Consortium 

human genome build 37 (GRCh37) on Ensembl (http://grch37.ensembl.org/). 
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Appendix A Table 5.4: Summary of single variant association analysis within LRP2 for eGFR in NZ Polynesians 

Exon rs ID/var number 
Allele Altered allele Frequency 

Beta 
95% CI 

PBeta 
Ref Alt Normouricaemic Hyperuricaemic 

n f n f Lower Upper 

2 rs144829356 G A 70 0.164 1 0.211 -2.169 -5.84 1.50 0.247 

3 rs2229263 T C 66 0.155 187 0.143 0.774 -3.42 4.97 0.718 

4 rs34104660 G T 3 0.007 5 0.000 -6.026 -30.86 18.81 0.635 

4 var170163808 G T 0 0.000 1 0.002 -11.914 -54.92 31.09 0.587 

6 rs2229266 G A 154 0.362 362 0.363 0.516 -2.67 3.70 0.751 

7 var170148871 T C 0 0.000 1 0.002 9.949 -33.00 52.90 0.650 

8 rs34693334 C G 4 0.009 0 0.000 3.953 -11.37 19.28 0.613 

8 var170147408 A G 0 0.000 0 0.000 -3.109 -46.07 39.85 0.887 

13 rs111360923 T C 47 0.110 0 0.000 -3.600 -8.71 1.51 0.168 

14 rs34291900 C T 2 0.005 0 0.000 -2.618 -33.06 27.82 0.866 

14 rs830994 A G 95 0.223 0 0.000 -1.845 -5.58 1.88 0.333 

15 rs2241190 T C 169 0.397 39 0.388 0.367 -2.65 3.39 0.812 

15 rs33954745 A G 7 0.016 43 0.011 -5.523 -18.66 7.61 0.410 

15 var170115626 T C 46 0.108 0 0.000 -3.473 -8.61 1.66 0.186 

16 rs141180155 G A 0 0.000 0 0.000 -16.177 -59.54 27.19 0.465 

16 rs147621120 T A 0 0.000 0 0.000 0.909 -42.05 43.87 0.967 

16 var170127497 A G 0 0.000 0 0.000 -7.127 -50.08 35.83 0.745 

18 var170104017 A C 2 0.005 0 0.000 -3.404 -33.80 26.99 0.826 

19 rs17848143 C T 5 0.012 0 0.000 9.363 -5.10 23.82 0.205 

19 rs2075249 G T 101 0.237 0 0.000 1.487 -1.92 4.90 0.393 

19 rs831043 T C 169 0.397 175 0.385 0.220 -2.81 3.25 0.887 

19 var170103219 T A 1 0.002 0 0.000 -0.095 -43.05 42.86 0.997 

22 rs144723964 G A 0 0.000 0 0.000 0.909 -42.05 43.87 0.967 

22 rs831042 T C 169 0.397 76 0.385 0.220 -2.81 3.25 0.887 

23 rs138030034 G A 0 0.000 55 0.002 0.909 -42.05 43.87 0.967 

23 rs17848149 T G 26 0.061 4 0.064 0.381 -5.62 6.38 0.901 

26 rs34915742 C G 0 0.000 4 0.002 0.909 -42.05 43.87 0.967 

28 var170093726 T G 5 0.012 10 0.004 -1.066 -17.42 15.29 0.898 

29 rs2229267 A G 128 0.300 165 0.284 -1.222 -4.53 2.08 0.469 

29 var170092504 C T 5 0.012 0 0.000 3.401 -7.88 14.68 0.555 

30 rs145384264 C T 2 0.005 0 0.000 -11.735 -36.55 13.08 0.355 

31 rs144054579 C G 0 0.000 0 0.000 0.909 -42.05 43.87 0.967 

31 rs149469954 G A 0 0.000 0 0.000 -7.997 -51.00 35.01 0.716 
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31 rs2302694 G A 64 0.150 176 0.095 -2.902 -7.47 1.66 0.213 

36 rs11886219 T C 7 0.016 0 0.000 -5.665 -18.26 6.93 0.378 

36 rs4667596 C T 10 0.023 155 0.009 4.447 -7.66 16.56 0.472 

39 rs149367019 G A 1 0.002 0 0.000 -44.147 -86.96 -1.34 0.044 

39 rs35114151 A G 26 0.061 1 0.062 -0.687 -6.73 5.36 0.824 

39 rs35413340 T C 0 0.000 28 0.002 28.626 -14.37 71.63 0.193 

39 rs61995915 T C 0 0.000 4 0.002 -7.127 -50.08 35.83 0.745 

41 rs13397109 G C 72 0.169 5 0.121 -1.675 -5.91 2.56 0.438 

42 rs17848169 T C 2 0.005 29 0.002 -2.618 -33.06 27.82 0.866 

42 rs199593393 C T 0 0.000 5 0.002 -12.078 -55.45 31.30 0.586 

44 var170058345 C A 5 0.012 0 0.000 3.756 -11.56 19.07 0.631 

45 var170055385 T C 1 0.002 0 0.000 11.254 -31.75 54.26 0.608 

46 rs2228171 T C 182 0.427 131 0.412 0.305 -2.65 3.26 0.839 

51 var170038806 C T 0 0.000 0 0.000 4.318 -39.07 47.71 0.845 

54 rs2229265 T C 320 0.751 65 0.797 0.292 -3.16 3.75 0.868 

55 rs17848184 C T 85 0.200 1 0.218 1.626 -2.06 5.31 0.387 

56 rs142549310 C T 0 0.000 0 0.000 13.541 -29.83 56.91 0.541 

56 var170030556 G A 0 0.000 0 0.000 -7.114 -26.35 12.12 0.469 

58 rs199528723 G A 5 0.012 99 0.011 4.400 -9.36 18.17 0.531 

61 rs2229268 A G 28 0.066 129 0.086 0.673 -4.93 6.28 0.814 

62 var170022511 T C 1 0.002 1 0.000 11.254 -31.75 54.26 0.608 

64 rs79723119 A C 1 0.002 0 0.000 -18.965 -61.94 24.02 0.388 

64 var170013979 A G 0 0.000 0 0.000 1.244 -42.15 44.63 0.955 

66 rs2075252 T C 139 0.326 120 0.289 0.124 -3.06 3.31 0.939 

69 rs4667591 T G 170 0.399 0 0.000 0.887 -2.15 3.92 0.567 

70 var170002412 T C 1 0.002 0 0.000 -12.650 -43.05 17.75 0.415 

72 rs990626 G A 180 0.423 175 0.394 0.717 -2.26 3.69 0.637 

74 rs370978040 G A 0 0.000 0 0.000 13.320 -29.82 56.46 0.545 

rs ID: Reference SNP cluster ID, Chr: Chromosome, var: Variant, Ref: Reference, Alt: Alternate.n: Total number of altered alleles, f: Altered allele frequency, Beta: Effect estimates 

(mL/min/1.73m2) for the alternate allele, 95% CI: 95% confidence interval, PBeta: p-value for effect estimates. *Values are adjusted for sex, age, BMI and estimates of grand-parental 

ancestry. Exons numbers and variant positions are sourced from the Genome Reference Consortium human genome build 37 (GRCh37) on Ensembl (http://grch37.ensembl.org/). Note: 

eGFR was calculated using CKD-EPI formula (mL/min/1.73m2) (https://www.qxmd.com/calculate/calculator_251/egfr-using-ckd-epi). 
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Appendix A Table 5.5: List of the variants selected for rare-variant burden analyses 

for LRP2 and A1CF 

LRP2 A1CF 

rs ID/var position CAF rs ID/var position CAF rs ID/var position CAF 

rs114460450 0.003 rs34564141 0.009 rs10994521 0.003 

rs114842875 0.003 rs34592807 0.001 rs112824128 0.007 

rs116332504 0.001 rs34693334 0.034 rs141891504 0.001 

rs11886219 0.028 rs34915742 0.002 rs142026324 0.007 

rs138030034 0.001 rs35114151 0.047 rs142968717 0.001 

rs138070797 0.005 rs35413340 0.003 rs142969066 0.006 

rs138269726 0.001 rs35734447 0.003 rs143123872 0.003 

rs139514301 0.003 rs35942532 0.003 rs143315865 0.003 

rs140272085 0.003 rs370978040 0.001 rs146662131 0.001 

rs140586887 0.001 rs371966515 0.001 rs150441974 0.001 

rs140918583 0.003 rs374368151 0.001 rs150545950 0.003 

rs141068435 0.001 rs375394006 0.001 rs16909156 0.001 

rs141180155 0.006 rs41268685 0.011 rs181769526 0.003 

rs141305635 0.001 rs4667596 0.017 rs183260900 0.001 

rs142093111 0.001 rs61995915 0.007 rs185182715 0.001 

rs142221587 0.001 rs7598640 0.001 rs34190540 0.004 

rs142245618 0.007 rs79723119 0.009 rs35967725 0.006 

rs142549310 0.002 var169995201 0.001 rs372408821 0.001 

rs142934522 0.004 var169995769 0.001 rs41274050 0.004 

rs143150497 0.001 var169996058 0.001 rs4619097 0.004 

rs143893803 0.001 var170002291 0.001 rs59030524 0.001 

rs144054579 0.001 var170002412 0.002 rs61742973 0.001 

rs144451000 0.001 var170012798 0.001 rs61856570 0.007 

rs144723964 0.001 var170013979 0.001 rs75583477 0.001 

rs145201961 0.003 var170022511 0.001 rs80080606 0.001 

rs145365776 0.001 var170026248 0.003 rs9073 0.001 

rs145384264 0.009 var170029656 0.001 var52559596 0.003 

rs145709922 0.004 var170030458 0.001 var52559853 0.001 

rs146149181 0.003 var170031714 0.001 var52559869 0.001 

rs146289506 0.003 var170038795 0.001 var52559874 0.001 

rs146783211 0.001 var170038806 0.001 var52560181 0.001 

rs147267007 0.001 var170042056 0.001 var52561178 0.001 

rs147287428 0.001 var170050399 0.001 var52561212 0.001 

rs147621120 0.001 var170055385 0.001 var52561680 0.010 

rs148356370 0.005 var170058345 0.009 var52561920 0.001 

rs148503556 0.001 var170060706 0.001 var52562339 0.001 

rs149148763 0.007 var170062881 0.001 var52562434 0.003 

rs149367019 0.004 var170063080 0.001 var52562642 0.001 

rs149469954 0.001 var170063503 0.001 var52563248 0.001 

rs149558767 0.001 var170066058 0.001 var52563513 0.001 

rs149853330 0.001 var170068592 0.001 var52563650 0.001 

rs150552608 0.004 var170092504 0.017 var52563845 0.001 

rs150752263 0.001 var170093726 0.008 var52563862 0.003 

rs151079411 0.003 var170096262 0.001 var52563898 0.001 

rs17848143 0.01 var170101294 0.001 var52563981 0.006 

rs17848149 0.046 var170103219 0.001 var52564700 0.001 

rs17848169 0.02 var170103416 0.001 var52565100 0.001 

rs199528723 0.011 var170103488 0.001 var52565132 0.004 

rs199593393 0.001 var170104017 0.002 var52566417 0.001 

rs200475391 0.004 var170115652 0.001 var52595864 0.001 

rs200587303 0.001 var170127497 0.001 var52619722 0.001 

rs201490492 0.001 var170135946 0.001 var52623804 0.019 

rs202154723 0.001 var170137024 0.001 var52645409 0.001 

rs33954745 0.041 var170147408 0.001 
  

rs34104660 0.043 var170148871 0.001 
  

rs34291900 0.018 var170163808 0.001 
  

rs34355135 0.008 
    

CAF: Combined frequency of altered allele in NZ Polynesian and European populations, rs ID: Reference SNP cluster 

ID, var; Variant. 
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Appendix A Table 5.6: List of all exonic variants/ SNPs for LRP2 and A1CF exported from Ensembl Variant Effect Predictor (Ve!P) 

and their functional consequences with annotation scores 

Sr. # Exon Location Conseq rs/var number CADD PolyPhen2 SIFT POVEAN Protein 

     
Score Score Prediction Score Prediction Score Prediction Pos Ref|Alt 

LRP2 
1 2 2:170177325 MV rs114460450 20.4 Not scored Not scored Not scored Not scored Not scored Not scored 50 S|T 

2 2 2:170177382 MV rs144829356 Not scored Not scored Not scored Not scored Not scored Not scored Not scored 31 G|E 

3 3 2:170175334 MV rs2229263 0.001 Not scored Not scored Not scored Not scored Not scored Not scored 83 I|T 

4 4 2:170163816 MV rs34104660 2.735 - - - - - - 134 P 

5 4 2:170163827 SL rs34592807 0.245 - - - - - - 131 *|R 

6 4 2:170163808 SV var170163808 Not scored Not scored Not scored Not scored Not scored Not scored Not scored 137 G|V 

7 6 2:170150671 SV rs2229266 12.22 - - - - - - 213 E 

8 7 2:170148871 MV var170148871 Not scored Not scored Not scored Not scored Not scored Not scored Not scored 221 S|P 

9 8 2:170147502 MV rs34693334 10.32 Not scored Not scored Not scored Not scored Not scored Not scored 259 R|G 

10 8 2:170147368 SReV rs375394006 7.89 - - - - - - 303 T 

11 8 2:170147408 SV var170147408 - - - - - - - 290 * 

12 11 2:170136871 SG rs148503556 7.379 - - - - - - 444 L 

13 11 2:170137024 SV var170137024 0.021 - - - - - - 393 Q|* 

14 12 2:170136059 MV rs202154723 9.236 Not scored Not scored Not scored Not scored Not scored Not scored 463 I|T 

15 12 2:170135946 MV var170135946 26.7 Not scored Not scored Not scored Not scored Not scored Not scored 501 G|R 

16 13 2:170131548 MV rs111360923 Not scored Not scored Not scored Not scored Not scored Not scored Not scored 589 F|S 

17 13 2:170134324 MV rs141305635 13.99 - - - - - - 568 W|* 

18 13 2:170134385 MV rs201490492 31 3.583 Deleterious 0.02 Deleterious -4.29 Deleterious 548 G|S 

19 13 2:170131729 SG rs374368151 24.8 2.077 Deleterious 0.5 Neutral -3.44 Deleterious 529 R|C 

20 14 2:170129529 MV rs116332504 24 1.423 Deleterious 0 Deleterious -3.8 Deleterious 606 D|G 

21 14 2:170129474 MV rs145709922 8.443 - - - - - - 624 L 

22 14 2:170129547 SV rs34291900 33 2.385 Deleterious 0.07 Neutral -6.41 Deleterious 600 A|V 

23 14 2:170129528 SV rs830994 - - - - - - - 606 V 

24 15 2:170115588 MV rs2241190 0.34 - - - - - - 683 T 

25 15 2:170115672 MV rs33954745 8.978 - - - - - - 655 E 

26 15 2:170115706 MV rs371966515 7.774 0.647 Neutral 0.9 Neutral -1.05 Neutral 644 I|T 

27 15 2:170115626 SV var170115626 Not scored -0.12 Neutral 0.33 Neutral -0.44 Neutral 671 F|L 

28 15 2:170115652 SV var170115652 28.7 3.458 Deleterious 0 Deleterious -8.28 Deleterious 662 F|S 

29 16 2:170127559 MV rs141180155 12.92 - - - - - - 725 T 

30 16 2:170127556 MV rs144451000 12.96 0.879 Neutral 0.08 Neutral -2.31 Neutral 726 F|L 

31 16 2:170113671 MV rs147621120 Not scored 0.386 Neutral 0.25 Neutral -2.4 Neutral 731 S|T 

32 16 2:170113670 MV rs150752263 19.02 0.386 Neutral 0.25 Neutral -2.4 Neutral 731 S|T 

33 16 2:170127497 SV var170127497 Not scored 1.757 Deleterious 0.01 Deleterious -3.39 Deleterious 746 N|S 

34 18 2:170104017 MV var170104017 Not scored 1.583 Deleterious 0 Deleterious -4.57 Deleterious 790 I|L 

35 19 2:170103472 MV rs114842875 15.16 2.966 Deleterious 0.18 Neutral -2.35 Neutral 841 R|K 

36 19 2:170103471 MV rs17848143 - - - - - - - 841 T 
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37 19 2:170103351 SV rs2075249 0.593 - - - - - - 881 T 

38 19 2:170103336 SV rs831043 0.126 - - - - - - 886 T 

39 19 2:170103219 SV var170103219 - - - - - - - 925 T 

40 19 2:170103416 SV var170103416 27.2 - - - - - - 860 L 

41 19 2:170103488 SV var170103488 13.07 1.462 Deleterious 0.65 Neutral -0.42 Neutral 836 P|S 

42 20 2:170101269 MV rs149853330 3.687 0.171 Neutral 0.11 Neutral -0.59 Neutral 985 F|L 

43 20 2:170101294 SV var170101294 0.008 - - - - - - 976 H 

44 21 2:170100011 MV rs150552608 10.62 1.605 Neutral 0.5 Neutral -3.42 Deleterious 1014 R|H 

45 22 2:170099474 MV rs144723964 Not scored 0.464 Neutral 0.32 Neutral -0.73 Neutral 1083 G|E 

46 22 2:170099473 SV rs831042 10.6 - - - - - - 1083 A 

47 23 2:170097655 MV rs138030034 - - - - - - - 1159 W|* 

48 23 2:170097707 SG rs17848149 0.758 0.684 Neutral 0.74 Neutral -3.97 Deleterious 1142 V|G 

49 23 2:170097508 SV rs200587303 10.16 - - - - - - 1208 S 

50 26 2:170096095 MV rs34915742 11.14 - - - - - - 1412 R 

51 26 2:170096262 SV var170096262 24.6 1.634 Deleterious 0.37 Neutral -3.03 Deleterious 1357 Y|H 

52 27 2:170094756 MV rs146289506 12.52 1.642 Neutral 0.04 Deleterious -1.63 Neutral 1451 L|I 

53 28 2:170093726 SV var170093726 - - - - - - - 1526 T 

54 29 2:170092467 MV rs141068435 11.62 - - - - - - 1601 W|* 

55 29 2:170092439 MV rs151079411 11.52 Not scored Not scored Not scored Not scored Not scored Not scored 1611 V|M 

56 29 2:170092395 SG rs2229267 6.06 - - - - - - 1625 *|W 

57 29 2:170092504 SL var170092504 Not scored 2.726 Deleterious 0 Deleterious -4.85 Deleterious 1589 P|L 

58 30 2:170089947 MV rs145365776 13.38 0.476 Neutral 1 Neutral 0.15 Neutral 1691 G|E 

59 30 2:170089934 SV rs145384264 14.25 - - - - - - 1695 S 

60 31 2:170088328 MV rs142221587 18.15 0.471 Neutral 0.22 Neutral -0.68 Neutral 1708 P|L 

61 31 2:170088296 MV rs144054579 Not scored 1.042 Neutral 0.54 Neutral -0.86 Neutral 1719 R|G 

62 31 2:170088242 MV rs149469954 11.88 1.621 Neutral 0.06 Neutral -0.01 Neutral 1737 V|I 

63 31 2:170088351 SRV rs2302694 3.454 - - - - - - 1700 S 

64 32 2:170082936 MV rs138070797 9.969 1.557 Deleterious 0.77 Neutral -1.53 Neutral 1797 I|T 

65 36 2:170070348 MV rs11886219 4.612 - - - - - - 1953 R 

66 36 2:170070172 SV rs4667596 17.88 0.496 Neutral 0.99 Neutral -0.13 Neutral 2012 T|I 

67 37 2:170068598 MV rs138269726 23.7 1.943 Deleterious 0.62 Neutral -1.85 Neutral 2054 H|Y 

68 37 2:170068502 MV rs146149181 23 -0.021 Neutral 0.07 Neutral 0.64 Neutral 2086 S|T 

69 37 2:170068592 MV var170068592 34 3.621 Deleterious 0.02 Deleterious -3.34 Deleterious 2056 G|R 

70 38 2:170066058 MV var170066058 23.1 2.726 Deleterious 0.54 Neutral -1.05 Neutral 2125 P|L 

71 39 2:170063372 MV rs140918583 15.51 0.49 Neutral 0.26 Neutral -3.83 Deleterious 2286 L|F 

72 39 2:170063339 MV rs143893803 25 2.277 Deleterious 0.24 Neutral -3.53 Deleterious 2297 F|L 

73 39 2:170063223 MV rs147287428 11.29 1.72 Deleterious 0.69 Neutral -0.32 Neutral 2336 P|L 

74 39 2:170063263 MV rs149367019 6.299 Not scored Not scored Not scored Not scored Not scored Not scored 2323 V|I 

75 39 2:170063471 MV rs35114151 1.78 - - - - - - 2253 E 

76 39 2:170063380 MV rs35413340 5.194 0.548 Neutral 1 Neutral 0.06 Neutral 2284 S|P 

77 39 2:170062977 MV rs61995915 0.016 0.053 Neutral 0.54 Neutral -0.96 Neutral 2418 V|A 

78 39 2:170062881 MV var170062881 9.935 1.599 Neutral 0.14 Neutral -2.45 Neutral 2450 S|N 

79 39 2:170063080 SG var170063080 3.326 0.043 Neutral 0.67 Neutral -0.02 Neutral 2384 F|L 
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80 39 2:170063503 SV var170063503 7.804 - - - - - - 2243 G|* 

81 41 2:170062078 SV rs13397109 9.831 - - - - - - 2542 R 

82 42 2:170060631 MV rs139514301 11.51 - - - - - - 2622 E 

83 42 2:170060750 SV rs145201961 11.03 - - - - - - 2583 L 

84 42 2:170060603 SV rs17848169 0.307 1.407 Deleterious 0.87 Neutral -1.73 Neutral 2632 Y|H 

85 42 2:170060619 SV rs199593393 - - - - - - - 2626 H 

86 42 2:170060706 SV var170060706 10.98 - - - - - - 2597 G 

87 44 2:170058345 MV var170058345 Not scored 1.267 Neutral 0.83 Neutral 0.2 Neutral 2749 P|T 

88 45 2:170055416 MV rs140586887 24.6 1.637 Deleterious 0.48 Neutral -1.67 Neutral 2820 G|C 

89 45 2:170055385 MV var170055385 Not scored -0.216 Neutral 0.41 Neutral 0.02 Neutral 2830 L|P 

90 46 2:170053505 MV rs2228171 0.003 -1.003 Neutral - Not scored - - 2872 S|P 

91 47 2:170050399 MV var170050399 0.001 0.143 Neutral 0.37 Neutral -1.19 Neutral 2901 L|P 

92 48 2:170048482 SV rs149148763 13.31 - - - - - - 2964 S 

93 49 2:170044768 MV rs142093111 23.9 0.848 Neutral 0.13 Neutral -3.9 Deleterious 3014 G|R 

94 50 2:170042208 MV rs143150497 10.43 2.151 Deleterious 0.06 Neutral -1.54 Neutral 3217 F|S 

95 50 2:170042495 MV rs146783211 7.817 - - - - - - 3121 G 

96 50 2:170042245 SL rs35734447 27.8 1.634 Deleterious 0.01 Deleterious -4.96 Deleterious 3205 Y|H 

97 50 2:170042056 SV var170042056 6.843 - - - - - - 3268 *|R 

98 51 2:170038694 MV rs149558767 2.376 - - - - - - 3327 A 

99 51 2:170038795 MV var170038795 25 2.199 Deleterious 0.01 Deleterious -3.22 Deleterious 3294 V|I 

100 51 2:170038806 SV var170038806 Not scored -0.937 Neutral 0.6 Neutral 2.84 Neutral 3290 P|L 

101 52 2:170037962 SV rs140272085 23.5 - - - - - - 3389 L 

102 53 2:170034424 MV rs147267007 26.6 1.765 Deleterious 0.06 Neutral -5.06 Deleterious 3428 W|R 

103 54 2:170032989 SV rs2229265 2.762 - - - - - - 3501 H 

104 55 2:170031824 MV rs17848184 - - - - - - - 3549 P 

105 55 2:170031714 SV var170031714 12.34 -0.087 Neutral 0.27 Neutral 0.4 Neutral 3586 P|L 

106 56 2:170030506 MV rs142549310 19.26 0.514 Neutral 0.12 Neutral -3.05 Deleterious 3646 P|L 

107 56 2:170030458 MV var170030458 28.1 2.023 Deleterious 0 Deleterious -7.67 Deleterious 3662 V|G 

108 56 2:170030556 SV var170030556 - - - - - - - 3629 Q 

109 57 2:170029657 MV rs34355135 13.06 - - - - - - 3698 L 

110 57 2:170029656 SV var170029656 13.97 1.423 Deleterious 0.51 Neutral -2.02 Neutral 3698 E|G 

111 58 2:170028529 SV rs199528723 - - - - - - - 3753 K 

112 59 2:170027153 MV rs200475391 32 2.148 Deleterious 0 Deleterious -6.94 Deleterious 3763 V|E 

113 59 2:170027095 SV rs7598640 12.18 - - - - - - 3782 K 

114 60 2:170026248 MV var170026248 23 1.657 Deleterious 0.58 Neutral -1.59 Neutral 3821 P|S 

115 61 2:170025083 SL rs2229268 4.949 - - - - - - 3867 *|W 

116 62 2:170022511 MV var170022511 Not scored 0.186 Neutral 0.44 Neutral -0.64 Neutral 3897 F|L 

117 64 2:170013904 MV rs79723119 0.005 0.759 Neutral 0.42 Neutral -0.34 Neutral 3999 D|A 

118 64 2:170013979 MV var170013979 Not scored 1.665 Deleterious 0.62 Neutral -0.53 Neutral 3974 K|R 

119 65 2:170012798 MV var170012798 22.4 0.253 Neutral 0.59 Neutral -0.15 Neutral 4046 P|L 

120 66 2:170010985 SL rs2075252 16.49 - - - - - - 4094 *|Q 

121 67 2:170009390 MV rs142934522 11.96 2.116 Deleterious 0.22 Neutral 0.78 Neutral 4127 P|L 

122 67 2:170009391 MV rs148356370 5.278 -0.329 Neutral 0.8 Neutral 0.58 Neutral 4127 G|C 
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123 69 2:170003335 MV rs35942532 22.1 1.609 Deleterious 0.51 Neutral -3.63 Deleterious 4242 V|A 

124 69 2:170003432 MV rs4667591 31 0.922 Deleterious 0.03 Deleterious -1.91 Neutral 4210 F|V 

125 70 2:170002291 MV var170002291 5.035 - - - - - - 4318 V 

126 70 2:170002412 SV var170002412 Not scored 1.853 Deleterious 0.01 Deleterious -6.15 Deleterious 4278 V|A 

127 72 2:169997051 MV rs990626 14.46 Not scored Not scored Not scored Not scored Not scored Not scored 4371 M|I 

128 73 2:169996070 MV rs41268685 23 2.095 Deleterious 0.11 Neutral -2.58 Deleterious 4417 A|V 

129 73 2:169996058 MV var169996058 29.7 2.1 Deleterious 0.03 Deleterious -3.15 Deleterious 4421 A|V 

130 74 2:169995880 MV rs370978040 - - - - - - - 4423 T 

131 74 2:169995769 SRV var169995769 25.3 1.991 Deleterious 0.01 Deleterious -2.13 Neutral 4460 N|K 

132 75 2:169995201 SV var169995201 9.565 - - - - - - 4468 V 

133 77 2:169989127 MV rs142245618 6.369 0.076 Neutral 0.79 Neutral -1.31 Neutral 4562 D|G 

134 79 2:169985338 SRV rs34564141 22.9 - - - - - - 4601 I 

A1CF 
1 5' 10:52645409 5' UTR var52645409          

2 5' 10:52645424 5' UTR rs10994860 - - - - - - - - - 

3 5' 10:52619722 5' UTR var52619722 - - - - - - - - - 

4 2 10:52623804 NCT var52623804 - - - - - - - - - 

5 3 10:52603754 SL rs35967725 - - - - - - - 76 *|W 

6 3 10:52603874 SV rs142969066 - - - - - - - 36 G 

7 4 10:52601702 SV rs141891504 - - - - - - - 95 K 

8 5 10:52595853 SV rs61742973 - - - - - - - 195 A 

9 5 10:52595864 MV var52595864 Not scored Not scored Not scored 0 Deleterious -1.99 Neutral 192 P|S 

10 5 10:52595978 MV rs143123872 10.73 1.545 Deleterious 0.03 Deleterious -1.99 Deleterious 154 T|A 

11 6 10:52587964 MV rs143315865 12.64 2.381 Deleterious 0.77 Tolerated -1.99 Neutral 232 M|I 

12 6 10:52588045 SV rs146662131 - - - - - - - 205 H 

13 7 10:52576068 NCT rs4245008 - - - - - - - - - 

14 7 10:52580318 SV rs372408821 - - - - - - - 287 K 

15 8 10:52576025 SV rs142026324 - - - - - - - 294 S 

16 9 10:52573772 MV rs41274050 23.8 1.792 Deleterious 0.24 Tolerated -1.99 Neutral 390 R|C 

17 12 10:52566594 SV rs34190540 - - - - - - - 552 L 

18 12 10:52566611 SV rs9073 - - - - - - - 547 L 

19 3' 10:52559291 3' UTR rs61856570 - - - - - - - - - 

20 3' 10:52559596 3' UTR var52559596 - - - - - - - - - 

21 3' 10:52559634 3' UTR rs10994507 - - - - - - - - - 

22 3' 10:52559843 3' UTR rs7084132 - - - - - - - - - 

23 3' 10:52559853 3' UTR var52559853 - - - - - - - - - 

24 3' 10:52559869 3' UTR var52559869 - - - - - - - - - 

25 3' 10:52559874 3' UTR var52559874 - - - - - - - - - 

26 3' 10:52560181 3' UTR var52560181 - - - - - - - - - 

27 3' 10:52560476 3' UTR rs75907017 - - - - - - - - - 

28 3' 10:52560557 3' UTR rs6479731 - - - - - - - - - 

29 3' 10:52560658 3' UTR rs10994521 - - - - - - - - - 
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30 3' 10:52560693 3' UTR rs142968717 - - - - - - - - - 

31 3' 10:52561178 3' UTR var52561178 - - - - - - - - - 

32 3' 10:52561212 3' UTR var52561212 - - - - - - - - - 

33 3' 10:52561643 3' UTR rs59030524 - - - - - - - - - 

34 3' 10:52561680 3' UTR var52561680 - - - - - - - - - 

35 3' 10:52561803 3' UTR rs74352101 - - - - - - - - - 

36 3' 10:52561829 3' UTR rs7072584 - - - - - - - - - 

37 3' 10:52561919 3' UTR rs12571156 - - - - - - - - - 

38 3' 10:52561920 3' UTR var52561920 - - - - - - - - - 

39 3' 10:52562099 3' UTR rs150441974 - - - - - - - - - 

40 3' 10:52562339 3' UTR var52562339 - - - - - - - - - 

41 3' 10:52562434 3' UTR var52562434 - - - - - - - - - 

42 3' 10:52562642 3' UTR var52562642 - - - - - - - - - 

43 3' 10:52563051 3' UTR rs4282939 - - - - - - - - - 

44 3' 10:52563196 3' UTR rs16751 - - - - - - - - - 

45 3' 10:52563248 3' UTR var52563248 - - - - - - - - - 

46 3' 10:52563345 3' UTR rs16909156 - - - - - - - - - 

47 3' 10:52563513 3' UTR var52563513 - - - - - - - - - 

48 3' 10:52563650 3' UTR var52563650 - - - - - - - - - 

49 3' 10:52563707 3' UTR rs184644838 - - - - - - - - - 

50 3' 10:52563725 3' UTR var52563845 - - - - - - - - - 

51 3' 10:52563845 3' UTR var52563862 - - - - - - - - - 

52 3' 10:52563862 3' UTR var52563898 - - - - - - - - - 

53 3' 10:52563898 3' UTR rs112824128 - - - - - - - - - 

54 3' 10:52563904 3' UTR var52563981 - - - - - - - - - 

55 3' 10:52563981 3' UTR rs150545950 - - - - - - - - - 

56 3' 10:52564065 3' UTR rs4619096 - - - - - - - - - 

57 3' 10:52564421 3' UTR rs80080606 - - - - - - - - - 

58 3' 10:52564524 3' UTR var52564700 - - - - - - - - - 

59 3' 10:52564700 3' UTR rs74874346 - - - - - - - - - 

60 3' 10:52564768 3' UTR var52565100 - - - - - - - - - 

61 3' 10:52565100 3' UTR var52565132 - - - - - - - - - 

62 3' 10:52565132 3' UTR rs185182715 - - - - - - - - - 

63 3' 10:52565377 3' UTR rs75583477 - - - - - - - - - 

64 3' 10:52565903 3' UTR rs4078160 - - - - - - - - - 

65 3' 10:52565940 3' UTR var52565951 - - - - - - - - - 

66 3' 10:52565951 3' UTR rs4619097 - - - - - - - - - 

67 3' 10:52566049 3' UTR rs10821846 - - - - - - - - - 

68 3' 10:52566057 3' UTR rs183260900 - - - - - - - - - 

69 3' 10:52566333 3' UTR var52566417 - - - - - - - - - 

MS: Missense variant, NS: Non-synonymous variant, SRV: Splice region variant, SReV: Splice retained variant, *: Stop, SL/G: Stop lost/gained, NCT: Non-coding transcript, Ref|Alt: 

Reference|Alternate amino acid, Conseq: Functional consequence, Pos: Position, UTR: Untranslated region. 
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APPENDIX B 

Appendix B Figure 2.1: Histograms indicating non-linear distribution of ferritin data in US (A) Control and (B) Gout, NZ Polynesian (C) Control and (D) Gout 

and NZ European (E) Control and (F) Gout case groups. 
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Appendix B Figure 2.2: Histograms indicating non-linear distribution of ferritin data in (A) NHANESIII European, (B) NHANESIII African American and 

(C) JHS African American non-gout (control) groups.  
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Appendix B Figure 2.3: Histograms indicating log-transformed distribution of ferritin data in US (A) Control and (B) Gout, NZ Polynesian (C) Control and 

(D) Gout and NZ European (E) Control and (F) Gout case groups. 

  



8 | Appendices 

 320 

 

 

Appendix B Figure 2.4: Histograms indicating log-transformed distribution of ferritin data in (A) NHANESIII European, (B) NHANESIII African American 

and (C) JHS African American non-gout (control) groups. 
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Appendix B Figure 3.1: Venn diagram representing total sample overlap between the two GWAS (Benyamin et al., 2014; Köttgen et al., 2013) selected for two-

sample Mendelian randomisation analysis. 
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Appendix B Figure 3.2: Locus zoom plot indicating two HFE gene variants (A) rs1800562 (P = 0.001) 

and (B) rs1799945 (P = 2.94E-06) having an LD with variants within/near SLC17A1-3 loci in a recent 

GWAS (Köttgen et al., 2013). Plots were created online (http://locuszoom.sph.umich.edu/).  

A 

B
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Appendix B Figure 4.1: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs4994 (G allele) with gout. 
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Appendix B Figure 4.2: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs4994 (G allele) with serum urate. Values on x-axis represent effect size 

(ß) for serum urate in mmol L-1. 
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Appendix B Figure 4.3: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs3827103 (A allele) with gout. 
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Appendix B Figure 4.4: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs3827103 (A allele) with serum urate. Values on x-axis represent effect 

size (ß) for serum urate in mmol L-1. 
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Appendix B Figure 4.5: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs17700633 (A allele) with gout. 
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Appendix B Figure 4.6: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs17700633 (A allele) with serum urate. Values on x-axis represent effect 

size (ß) for serum urate in mmol L-1. 
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Appendix B Figure 4.7: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs17782313 (C allele) with gout. 
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Appendix B Figure 4.8: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs17782313 (C allele) with serum urate. Values on x-axis represent effect 

size (ß) for serum urate in mmol L-1. 
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Appendix B Figure 4.9: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs6903956 (A allele) with gout. 
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Appendix B Figure 4.10: Meta-analysis of (A) NZ Polynesian, (B) European and (C) All sample sets 

combined for association of rs6903956 (A allele) with serum urate. Values on x-axis represent effect 

size (ß) for serum urate in mmol L-1. 
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Appendix B Figure 5.1: An overview of coding (exonic) and non-coding (intronic) regions of (A) LRP2 gene: total length – 235.58 kb, exons – 79, coding exons – 

79, transcript length – 15,808 bps, introns – 78, and (B) A1CF gene: total length – 86.27 kb, exons – 12, coding exons – 11, transcript length – 9,221 bps, introns 

– 11. Sourced from Genome Reference consortium human genome build 37 (GRCh37) on Ensembl (http://grch37.ensembl.org/). 
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Appendix B Figure 5.2: Locus zoom plot indicating association signals for two lipid-related genes (A) 

LRP2 and (B) A1CF with eGFR (mL/min/1.73m2) in a recent GWAS (Pattaro et al., 2016). Plots were 

created online (http://locuszoom.sph.umich.edu/).  
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Appendix B Figure 5.3: Locus zoom plot indicating association signals for two LRP2 variants (A) 

rs4667591 (P = 0.006) and (B) rs2075252 (P = 0.004) with eGFR (mL/min/1.73m2) in a recent GWAS 

(Pattaro et al., 2016). Plots were created online (http://locuszoom.sph.umich.edu/). 
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Appendix B Figure 5.4: Locus zoom plot indicating association signals for two LRP2 variant 

rs2302694 with eGFR (mL/min/1.73m2) in a recent GWAS (P = 0.005) (Pattaro et al., 2016). Plots 

were created online (http://locuszoom.sph.umich.edu/). 
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APPENDIX C 
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