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Abstract

Turbulence, the irregular motion of fluids, is a challenging problem in physics. Yet
some properties of turbulence appear to be universal, independent of the underlying
host fluid supporting the motion. Recent studies have found that turbulence in
superfluid helium, a quantum fluid, exhibits two of the most fundamental laws of
classical fluid turbulence: the Kolmogorov —5/3 law, and the dissipation anomaly.
These laws appear despite the fluid being highly constrained by quantum mechanical
effects, and completely lacking kinematic viscosity. Such findings suggest further
insight into the universal features of turbulent phenomena can be gained by studying
analogies between classical and quantum turbulence.

Atomic Bose-Einstein condensates (BECs) offer a new platform for the study of
quantum turbulence; the geometric control available in BEC experiments offers the
possibility of studying quantum turbulence in effectively two-dimensional fluids. As
two-dimensional turbulence exhibits dramatically different features from its 3D coun-
terpart, BEC systems allow for further study of the analogies between classical and
quantum turbulence. In this thesis we numerically and theoretically study 2D quan-
tum turbulence in BECs within the framework of the Gross-Pitaevskii model. We
focus on analogies with classical 2D turbulence, with the aim of identifying common
or universal features.

First we investigate coherent vortex structures in negative temperature equilibria
via an experimentally accessible flow-field measure. Coherent vortices are shown
to produce a clear signal in this measure that is independent of the confinement
geometry, and we demonstrate that it can be observed in dynamical simulations.

Second, studying a quantum analogue of the two-dimensional cylinder wake, we in-
vestigate the phenomenon of Strouhal oscillations. We find that the Strouhal number
obeys a universal relation, similar to the classical form, upon introducing a modified
superfluid Reynolds number that accounts for the critical velocity for vortex nucle-
ation. Like the classical Reynolds number, the superfluid Reynolds number is found
to govern the transition from laminar to turbulent behaviour in the quantum fluid.

Finally, simulating decaying 2D quantum turbulence for very large vortex num-
bers, we show that quantum fluids are capable of supporting the direct enstrophy
cascade, a fundamental feature of two-dimensional turbulent flows. The quantum
fluid manifests key features of the classical cascade, including Batchelor’s —3 law
of the inertial range, scaling of the inertial range against the superfluid Reynolds
number, and the value of the Kraichnan-Batchelor constant.

The findings from this work thus provide some new insight into the universality

of fundamental turbulence concepts, and their applicability to quantum fluids.

iii



v



Acknowledgements

There are a number of people without whom this PhD would have been both impos-
sible and considerably less enjoyable.

First and foremost, I'm very grateful to my supervisor Dr. Ashton Bradley. For
the most part I thoroughly enjoyed this PhD, and Ashton I believe you are one of the
main reasons. Thank you for so many fun and stimulating discussions, for offering
me advice whenever I've needed it, and for giving me encouragement when I couldn’t
tell I had interesting results and felt like giving up. Thank you also for giving me so
many opportunities to attend conferences and to travel overseas both to visit Brian
Anderson in Arizona and attend NEQFLUIDS in France. Thank you Ashton for all
the work you have put into both this research and into me as your student. I am lucky
enough to say that my PhD supervisor has also become one of my closest friends,
which is probably not something every PhD student can say. It has been a pleasure
to work with you and learn from you, and I honestly believe I could not have asked
for a better supervisor.

A very big thank you must go to Dr. Tom Billam, who, for all intents and
purposes, has served as a terrific additional supervisor for the last couple of years.
Working with Tom has been great fun, and I've learned a lot from him, especially
about programming! A lot of this work would have taken me much longer without
having Tom’s guidance through finicky details of calculations, or feedback on general
ideas.

Many thanks to those who have made the Quantum Theory room a great work
environment, in particular Dr. Xiaoquan Yu, Lewis Williamson, Dr. Sam Rooney,
and Dr. Danny Baillie. Thank you all for many amusing chats and interesting
discussions, and for being a constant reminder that I am not nearly half as clever as I
would like to be. Thanks also to Gavin King, Bianca Sawyer, and Michael Cawte, for
your friendship over the years, for putting up with all my grumbling, and for making
life in general more enjoyable.

Thank you to Kahla, for your love and emotional support, keeping me calm during
meltdowns, letting me complain (at length) about thesis writing, and especially for
your company during many stressful late nights when we both had to finish our
theses at the same time! Finally, a big thank you to Mum and Dad, for being a

lifeline throughout my studies, and for your unconditional love and encouragement.



vi



Contents

1 Introduction

1.1 Turbulence. . . . . . . . . ...
1.2 Two-Dimensional Turbulence . . . . . . . ... ... ... .. .....
1.3 Quantum Turbulence . . . . . . . . .. .. ... ... ...
1.4 Quantum Turbulence in Atomic Gases . . . . .. .. .. ... ....
1.5 Two-Dimensional Quantum Turbulence . . . . . . . .. ... ... ..
1.6 Recent Experimental Developments . . . . . . .. ... ... .. ...
1.7 The Purpose of This Thesis . . . . . . ... . ... ... .. .....
1.8 Overview . . . . . . . . . e

1.9 Peer-Reviewed Publications . . . . . . . . . .. ... ...

Classical Hydrodynamic Turbulence
2.1 The Navier-Stokes Equations . . . . . . . . ... ... ... ... ...
2.2 The Reynolds number . . . . . .. ... ... 0oL
2.3 The Cylinder Wake . . . . . . ... .. .. ...
2.3.1 Strouhal Oscillations . . . . . . ... ... ... ... ...
2.4 Statistical Description of Turbulent Flows . . . ... ... ... ...
2.5 Homogeneous and Isotropic Turbulence . . . . . . . .. ... ... ..
2.6 Conservation and Balance Laws . . . . . . . . ... ... ... ....
2.7 Spectral Representation . . . . . . ... ... ... . ... ... ..
2.7.1 The Effect of Viscosity . . . . . ... ... ... .
2.7.2  The Effects of Pressure and Inertia . . . . . . ... ... ...
2.7.3 Spectral Transport . . . . . . . ... .. ... L.
2.8 Kolmogorov’s K41 Phenomenology . . . . . . . ... ... ... ...
2.9 The Cascade Phenomenology of 2D Turbulence . . . . .. ... ...
2.9.1 Fjortoft’s Argument . . . . ...
2.9.2 Batchelor’s Enstrophy Cascade . . . . .. ... .. ... ...
2.9.3 Kraichnan’s Dual Cascade . . . . . . ... ... ... .. ....
2.10 Point Vortex Model . . . . . . . . . . ... .. ...

vii

0 00 N O W N o=

—_ =
— O



Contents

2.10.1 Bounded Domains . . . . . .. ... .. .. ... .. .....
2.10.2 Novikov’s Point-Vortex Spectrum . . . . . . .. ... .. ...
2.10.3 Statistical Mechanics of the Point-Vortex System . . . . . ..

3 Quantum Fluids and Quantum Turbulence

3.1 Gross-Pitaevskii Equation . . . . ... ... ...
3.1.1 Integrals of Motion . . . . . ... .. ... ... ... ..
3.1.2 Time Independent GPE . . . . . .. ... ... ... ...
3.1.3 Thomas Fermi Approximation . . . . . .. ... ... ... ..
3.1.4 Harmonic vs. Hard-Wall Trapping Potentials . . . . . . . . ..
3.1.5 Quasi-2D Systems . . . . .. ..o oo

3.2  Quantum Hydrodynamics . . . .. .. ... .. ... ... ......
3.2.1 Hydrodynamic Formulation . . . .. ... ... ... .....
3.2.2 Healing Length . . . . . . ... ... ... 0oL
323 Speedofsound . .. ... ... oL
3.2.4 Superfluidity . . .. ... o
3.2.5  Effectively Incompressible Flow . . . . .. .. ... ... ...

3.3 Quantum vortices . . . . . . . ...
3.3.1 The Structure of the Core . . . . . . . .. .. ... ... ...

3.4 Vortex Dynamics . . . . . . ... ...
3.4.1 Conservative Dynamics . . . . . . .. ... ... .. ... ...
3.4.2 Incompressibility for Quantum Vortex Flows . . . . . . . . ..

3.5 Kinetic Energy Spectra . . . . . . ... o

3.6 Non-Conservative Processes . . . . . . ... ... ... ... .....
3.6.1 Vortex Sound Interactions . . . . .. ... ... .. ... ...
3.6.2 Thermal Dissipation . . . . .. ... ... ... ........

3.7 Vortex Nucleation . . . . . . . ... ... ...
3.7.1 Critical Velocity of a Cylinder . . . . .. ... ... ... ...

3.8 The 2D Quantum Cylinder Wake . . . . . . ... ... ... .. ...

3.9 Cascades in Quantum Turbulence . . . . . . . ... ... ... ....
3.9.1 The Direct Energy Cascade in 3DQT . . . . . ... ... ...
3.9.2 A Superfluid Reynolds Number . . . . . ... ... ... ...
3.9.3 A Direct Energy Cascade in 2DQT? . . . . . . ... ... ...
3.9.4 The Inverse Energy Cascade in 2DQT? . . . . .. ... . ...
3.9.5 Can Hydrodynamic Cascades Really Occur in 2DQT? . . . . .



Contents ix
3.11 Natural Units . . . . . . .. . ... . 93
Signatures of Coherent Structures in a 2D Quantum Fluid 97
4.1 Introduction . . . . . . . .. ..o 97
4.2 System . . . ... 99

4.2.1 Properties of a 2D Quantum Vortex . . . . . . . . .. ... .. 100
4.2.2 Hydrodynamic decomposition . . . . . . . .. ... ... .. 101
4.2.3 Classical Kinetic Energy Spectrum . . . . . . .. ... .. .. 101
4.3 Kinetic Energy Spectrum and Velocity Probability Distribution 103
4.3.1 Quantum Kinetic Energy Spectrum . . . . . . . ... ... .. 103
4.3.2 Velocity Probability Distribution . . . . . .. ... ... ... 105
4.3.3 Quantum Kinetic Energy Spectrum: Hydrodynamic Regime 106
4.3.4 Spectral Signatures of Coherent Structure Formation . . . . . 109
4.4 Numerical Analysis of Coherent Vortex Structures . . . . . . . . . .. 110
4.4.1 Microcanonical Sampling . . . . .. ... ... ... ... ... 110
4.4.2 Recursive Clustering Algorithm . . . . . . .. ... ... ... 113
4.4.3 Spectral Analysis . . . . . ... oL 115
4.5 Emergence of Rigid-Body Rotation . . . . ... ... ... ... ... 117
4.5.1 Azimuthal Velocity Field . . . . . ... ... ... ... .... 117
4.5.2  Measures of Classical Vorticity . . . . . . ... ... ... ... 118
4.6 Dynamical Emergence in a Trapped System . . . . . ... ... ... 121
4.7 Conclusion . . . . . . . . 125
Identifying a Superfluid Reynolds Number 127
5.1 Motivation . . . . .. ... 127
5.2 System . . . ... 129
5.3 A Fringe Method for Superfluids . . . . . ... ... .. ... ... . 131
5.4  Numerical Implementation . . . . . .. .. ... ... ... ... ... 132
5.5 Strouhal Number . . . . . . .. ..o 133
5.6 Transition to Turbulence . . . . . . . . .. . ... ... ... ... 134
5.7 Discussion . . . . . . . 135
5.8 Conclusion . . . . . . . . 137
The Enstrophy Cascade in Decaying 2D Quantum Turbulence 139
6.1 Motivation . . . . .. ..o 139
6.2 Model . . . . . 142
6.2.1 Spectral Formulation . . . . . . ... ... ... ... ... .. 144



Contents

6.3 Transfer Properties for Isotropic Turbulence . . . . . ... .. .. .. 145
6.3.1 Detailed Conservation Laws . . . . . . ... ... ... .... 148
6.3.2 When Could Cascades Exist? . . . . . .. ... ... .. ... 149

6.4 Initial Condition . . . . . . . . . ... o 150

6.5 System Parameters . . . . . .. .. ... 0oL 151

6.6 Numerical Implementation . . . . . .. ... .. ... ... 153

6.7 Spectral Dynamics . . . . . .. ..o oo 154
6.7.1 Vorticity, Spectra and Flux . . . .. ... ... ... .. ... 154
6.7.2 Integral Scale Growth . . . . .. ... ... ... ... .. 156
6.7.3 Kraichnan-Batchelor Constant . . . . . . . ... .. ... ... 156

6.8 Analysis of Spectral Exponents . . . . . . ... ... ... ... ... 158

6.9 Two-Point Vorticity Correlations . . . . . . ... ... .. ... ... 159

6.10 Discussion . . . . . . . ... 163

6.11 Conclusion . . . . . . . . .. L 166

Conclusions 167

7.1 Summary . ... ... 167

7.2  Theoretical and Practical Implications . . . . . . ... .. ... ... 168

7.3 Future Work and Outlook . . . . . . . . . . .. . ... ... ... 170



Chapter 1

Introduction

1.1 Turbulence

Turbulence, the irregular motion of fluids, is a ubiquitous phenomenon that occurs in
the vast majority of both natural and man-made flows [1-4]. It appears in systems in
which the key basic ingredient of fluid motion, namely, advective nonlinearity, is the
dominant mechanism. As such, turbulent processes, in one form or another, are im-
portant in a diverse range of physical systems. “Ordinary” hydrodynamic turbulence
is relevant in the atmosphere and oceans, and its understanding is therefore crucial
to informing climate and weather predictions [5], and the distribution of pollutants
or microorganisms such as plankton [6, 7]. It is problematic in pipelines, where it
hinders transport and increases mechanical vibrations [8], yet highly desirable in com-
bustion engines where (compressible) turbulent mixing greatly enhances efficiency [9].
Furthermore, as many manifestations of turbulence often exhibit similar properties,
concepts from hydrodynamic turbulence theory often apply to other turbulent phe-
nomena. Examples include magnetohydrodynamic turbulence, important in the solar
wind [10], the earth’s core [11] and fusion plasmas [12, 13], or wave turbulence, oc-
curring in ocean waves and optical fibres [14]. More broadly, turbulence is inherently
a problem of strong nonlinearity and large fluctuations, a general property shared by
many condensed matter systems. In addition to its physical importance, turbulence
is also a subject of fundamental mathematical interest: the notions of chaos, scale
invariance, and statistical predictability have origins rooted in the study of turbu-
lence [15]. The smoothness problem of the Navier-Stokes equations, the governing
equations of turbulence, is one of the remaining unsolved Millennium Prize problems

put forward by the Clay Mathematics Institute. These are but a few examples.

1



2 Chapter 1. Introduction

Turbulence is largely considered an unsolved problem. Although the governing
equations have been known since Stokes and Navier, turbulence is unsolved in the
sense that we are not yet able to infer the properties of the flow from first principles,
even for the simplest imaginable scenarios [16]. In fact, despite several centuries of
investigation, turbulence does not even have a formal definition. Many texts actually
refuse to give one (e.g. [17, 18]) since it is widely believed that the problem is not
sufficiently well-understood, and we cannot define something we do not understand all
that well. Nonetheless, turbulence does have a list of well-agreed upon characteristics

that are common to most texts (e.g, [1-3, 17, 19]):

o Intrinsic spatiotemporal randomness, irregularity. Turbulence is chaos (but not

necessarily vice versa); its intrinsic property is self-stochastization.
o Loss of deterministic predictability; statistically predictable.

o A very large number of strongly interacting degrees of freedom (thus excluding

chaotic systems with only a handful of degrees of freedom).

o A wide range of relevant length and time scales, implying that certain charac-
teristic dimensionless numbers (e.g. Reynolds number) are much larger than

unity.

o Enhanced mixing properties, giving highly efficient transport of momentum

(implying enhanced drag), energy, and passive tracers (chemicals, heat).

e Strongly non-linear and non-equilibrium, non-integrable, non-local, non-Gaussian,

and non-Markovian (i.e. not memoryless).
e A complex interplay of order and disorder.

e Turbulent flows contain vorticity, i.e., the curl of the fluid velocity field w =

V X u is non-zero.!

1.2 Two-Dimensional Turbulence

The study of two-dimensional (2D) turbulence was not initially motivated by sit-

uations of direct physical interest [16, 20]. Rather, its study was considered as a

IThe term “turbulence” is usually understood as synonymous with “hydrodynamic turbulence”,
i.e., Navier-Stokes turbulence or similar (Secs. 2.1 and 2.6). Some forms of turbulence, for example
weak-wave turbulence (Ref. [14] and Sec. 3.6.1) do not contain vorticity.
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reduced problem which could help to understand the more practical but very challeng-

2 Two-dimensional flows are generally

ing problem of three-dimensional turbulence.
more analytically tractable, and significantly less demanding to simulate numerically.
However, it was soon realized that 2D turbulence could have a practical importance
of its own. Although purely 2D flows do not truly exist, there are a number of exam-
ples in geophysics and astrophysics where the transverse scales are much larger than
the vertical ones, such that quasi-2D turbulence is a good approximation. Examples
include planetary atmospheres [21, 22|, and plasmas constrained by strong mag-
netic fields [13]. It was thus realised that understanding two-dimensional turbulence
could be the first step to a complete understanding of these systems. Furthermore,
controlled study of two-dimensional turbulence is no longer limited to simulation;
experimental developments in, e.g., soap films [23-27], have now made it possible to
study two-dimensional turbulence in the laboratory.

Yet it was also found that two-dimensional turbulence demonstrates a number of
unique behaviours that have since come to broaden the understanding of what turbu-
lence is, and how it can behave. Most notably, in marked contrast to 3D turbulence,
highly turbulent 2D flows are characterised by vanishing energy dissipation, such
that under free evolution they evolve towards non-trivial equilibrium distributions
that happen to be characterized by negative absolute temperatures. This curious
behaviour ultimately stems from a preferential transport of energy to large scales,
rather than small scales where viscosity acts most efficiently. This large-scale energy
transport causes coherent structures — long lived, strong regions of vorticity — to
play a far more important role than in three dimensions. Possibly the most striking
example is Jupiter’s Great Red Spot, which has been observed to persist for at least
several centuries (Fig. 1.1). Properties of the storm can be described within a quasi

two-dimensional framework [28-30].

1.3 Quantum Turbulence

Quantum fluids, such as superfluid helium (Helium II) [31], ultracold Fermi gases [32]
and Bose-Einstein condensates (BECs) [33], exhibit a unique form of turbulence [34].
These fluids, constrained by quantum mechanical effects, can only support vorticity in

the form of thin quantum vortex filaments, whose strengths are constrained to single

2Some authors argue turbulent flows are strictly three-dimensional. Inevitably this leads to
semantic arguments over whether or not two-dimensional flows are “actually” turbulent. It can
nonetheless be agreed that two-dimensional flows can exhibit many characteristics of turbulence.
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Figure 1.1: False colour image, showing turbulence in Jupiter’s atmosphere, as ob-
served by NASA’s Voyager 1 spacecraft. The Great Red Spot, a coherent vortex
structure, is a storm several times the size of earth, that has been observed to persist
for several centuries. In the image one can clearly see a complex interplay of order
and disorder
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quanta of +h/m, where h is Planck’s constant and m is the mass of a constituent
particle. These quantized vortices are stable, topological objects with a well-defined
vortex core scale & (~ 1A in superfluid helium), and produce a highly constrained
velocity field. Consequently, turbulence in these fluids is referred to as quantum

turbulence.

Quantum turbulence is important in its own right: it is crucial to informing
the application of superfluid helium as a coolant in infrared astronomy devices, and
large scale superconducting devices such as those in particle accelerators and fusion
experiments (see [35] for a review). Here superfluid helium is the coolant of choice
due to its remarkable thermal properties; in superfluid helium temperature travels as
a wave (called “second sound”) rather than diffusively, giving it a far larger thermal
conductivity than any other known material [31]. However, large heat fluxes cause
turbulence to form, which in turn limits the superfluid’s ability to transport heat
efficiently through the second sound mechanism [35]. Quantum turbulence is also
believed to play a role in pulsar glitches — a potential source for further detection of

gravitational waves [36, 37].

Although much younger than its classical counterpart, quantum turbulence is still
a well-established field, having been studied in superfluid helium for some 60 years [31,
38-42]. Early experiments focussed on the unusual two-fluid nature of quantum
turbulence, arising due to the interpenetrating viscous (normal) fluid and inviscid
(superfluid) components, and particular attention was paid to turbulence generated
by the mechanism of thermal counterflow. This unique kind of turbulence became
of considerable interest due to the aforementioned practical applications, but, being
quite distinct to other forms of turbulence, its interest initially lay primarily with the
low temperature physics community [43]. However, in the last two decades, studies
of turbulence generated by more conventional means, like propellors or towed grids,
began to uncover surprising similarities between quantum turbulence and classical
turbulence, and there has been considerable interest in investigating how far these
analogies go. In particular, despite its completely different small-scale structure,
quantum turbulence has been found to exhibit two of the most fundamental laws
of classical hydrodynamic turbulence: the Kolmogorov —5/3 law [44-47], and the
dissipation anomaly [47-50]. These similarities are now known to persist even at
very low temperatures, where the normal fluid component is negligible and viscosity
is totally absent. Other close analogies, such as the von-Karman vortex street [51, 52]
and superfluid boundary layers [53], have been discovered only in the last few years.

Such nontrivial similarities suggest that, as with two-dimensional turbulence, a deeper
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understanding of quantum turbulence can also contribute to a broader understanding
of the very diverse phenomenon of turbulence as a whole, and, in particular, a more

complete understanding of the universal features of turbulent phenomena.

1.4 Quantum Turbulence in Atomic Gases

Within the last five years or so it was demonstrated that quantum turbulence could
be feasibly realised in ultracold atomic gases, specifically atomic Bose-Einstein con-
densates (BECs) [54-56]. These trapped dilute gases, confined by magnetic and
optical fields, are clouds typically spanning tens to hundreds of microns, containing
~ 102107 atoms cooled to temperatures of a few hundred nano Kelvin. They are
most commonly comprised of alkali atoms, usually 8"Rb or 2*Na, which have become
the workhorse species since Bose-Einstein condensation was first achieved using them
in 1995 [57, 58].

An appealing aspect of atomic gases is their relative simplicity. Although one
might argue quantum turbulence to be simpler due to the discrete vorticity enforced
by quantum mechanical constraints [59-63], in some respects the problem, even in
pure superfluid helium, is arguably worse than classical turbulence: not only is the
problem not well-defined, but neither are the governing equations of motion. Whereas
it is widely accepted that the Navier-Stokes equations (probably) contain classical tur-
bulence in its entirety [2], a quantitatively accurate microscopic model still does not
exist for superfluid helium despite extensive study for nearly a century. This is largely
owing to the complexity arising from the strong interactions present in the system.
Turbulence in superfluid helium is therefore typically studied phenomenologically,
with vortex filament models [38], semi-classical two-fluid models [64] or the Gross-
Pitaevskii equation [65] and its modifications [66]. In contrast, atomic Bose-Einstein
condensates, being weakly interacting boson gases near zero temperature, are ex-
tremely well-described by the Gross-Pitaevskii model, allowing for the possibility of
a very rigorous comparison between theory, numerical simulations, and experiments.

Furthermore, having now developed as a field of study for over 20 years, the ex-
perimental technology in the field of atomic gases field has reached a certain level of
maturity, such that experiments now have exquisite control over many fundamental
properties of these systems. Condensates can now be produced with tuneable atomic
interaction strengths [67-69], in essentially arbitrary confining potentials [70, 71], and
in effectively one- or two-dimensional geometries [69, 71]. If desired, additional com-

plexity such as disordered potentials [72], or long range (dipolar) interactions [73], can
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also be introduced, piece by piece. Furthermore, the vortex core scale in these dilute
gases is much larger ({ ~ 1um), and in principle tuneable through the interactions,
such that probing the smaller scales of turbulence may be simpler than in superfluid
helium. Although methods do exist in helium to measure the magnitude of the vor-
ticity using trapped ions [31], image vortex lines with hydrogen tracer particles [74],
or the measure vortex line-length through second sound attenuation [75], measuring
the whole velocity or vorticity field across all scales, and in particular down to the
small scales, still poses an experimental challenge [40, 45, 47, 76]. In atomic gases, it
should be possible to directly measure the entire vorticity field via optical means [77].
Harnessing this control could allow for certain aspects of quantum turbulence to be

probed in a level of detail that would be otherwise difficult or impossible.

1.5 Two-Dimensional Quantum Turbulence

The degree of geometric control available in atomic gases allows strong axial confine-
ment to be enforced, suppressing vortex dynamics along one direction. This offers
the unique possibility of extending the study of quantum turbulence into the two-
dimensional realm. This two-dimensional quantum turbulence (2DQT) is arguably
a minimally complex manifestation of purely quantum turbulence, comprised of a
definite number of degrees of freedom, in the form of straight-line, quantum vortex

filaments.

Being a phenomenon that contains many degrees of freedom (vortices), and a large
range of relevant length scales, quantum turbulence is still likely to be challenging to
study in atomic gases. In particular the larger vortex core scale does place atomic
gases at somewhat of a disadvantage in terms of the range of dynamically-available
length scales in which turbulence can develop. Two-dimensional quantum turbulence
should be much less challenging than its three-dimensional counterpart in this re-
gard, since much spatially larger condensates should be possible given condensates
containing the same number of atoms. Additionally, in highly oblate geometries,
where vortices are effectively simple point-like objects of unit charge, optically prob-
ing the vorticity field is dramatically simplified [77, 78], since the dynamics can be
oriented to remain orthogonal to a chosen optical imaging axis. Furthermore, just as
with two-dimensional turbulence, numerical simulation is significantly less demand-
ing, thereby allowing for more detailed numerical studies than would otherwise be

possible.
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1.6 Recent Experimental Developments

To date, the majority of studies in the 2DQT field (and QT in atomic gases in general)
have been numerical. However, within the last three years experimental developments
have rapidly made some considerable ground, and experiments have now conducted
measurements of some quantities of basic interest. Due to the simpler nature of vortex
imaging in 2D, measurements of thermal friction coefficients [79], vortex number
decay [78, 80|, and detailed observations of vortex annihilation events have already
been demonstrated (see Fig. 1.2). A number of studies have also shown viable stirring
protocols for controlled generation of vortex distributions and turbulence [52, 78,
81-85] (see also Fig. 1.3). Hard-wall trapping potentials, producing large, uniform
density condensates have been demonstrated in two [71, 86] and three [70] dimensions.
While there is still progress to be made before detailed studies of turbulence can be
conducted, observations of more fundamental interest have also been demonstrated
within the last few months: the first evidence of a von-Karman vortex street and the
transition to turbulence have been observed in the wake of a stirring obstacle [52].
Furthermore, crucially, vortex sign detection has been recently demonstrated using
Bragg spectroscopy [87], such that the entire vorticity field can now be measured.
While vortex imaging in 3D quantum turbulence presently provides comparatively
limited information, clear signatures of (classical) wave turbulence have been recently
observed in a 3D uniform BEC [88].

1.7 The Purpose of This Thesis

Examples such as thermal counterflow clearly demonstrate that the study of quantum
turbulence should not necessarily be limited only to classical analogies. However,
given the wealth of knowledge available on classical turbulence, and our present
relative ignorance about 2D quantum turbulence, focussing on classical analogies
seems like a sensible place to start. The focus of this thesis is therefore the numerical
and theoretical study of two-dimensional quantum turbulence, and specifically its

analogies with two-dimensional classical turbulence. The overarching questions are:

e Can standard fundamental measures of turbulence, or simple modifications of
them, be readily applied to 2DQT systems? Do seemingly universal aspects of

2D turbulence also apply to the quantum scenario?

o By studying well-understood classical analogues, can we determine what kinds
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Figure 1.2: Images adapted from Kwon et al. (2014), Ref. [78]. Atomic density
absorption image sequence showing decay of 2D quantum turbulence in a harmon-
ically confined, quasi-two-dimensional Bose-Einstein condensate of sodium atoms.
The small density holes within the cloud are individual quantum vortices. Close-up
images show vortex-antivortex annihilation events, in which vortices merge and form
crescent-shaped density waves.

Figure 1.3: Images adapted from Stagg et al., (2014) Ref. [89]. Simulation of the
initial forcing cycle of the experiment shown in Fig 1.2. Turbulence is generated via
stirring with a large, repulsive potential, which, in the experiment, is supplied by a
blue-detuned laser beam. The beam is then ramped down such that the turbulence
may freely decay.
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of conditions are going to be needed for 2DQT to be seriously studied in atomic
gases, in such a way that significant contributions can be made to broadening

the understanding of turbulent phenomena?

o (Can we identify measures that are easily accessible experimentally, both to aid
as an experimental diagnostic, and to allow for theoretical speculation to be

more readily confronted by experiment?

Due to the nature of these goals, the focus of this work has not been to model
experimental scenarios in a highly realistic manner. Rather, owing to the difficulty
in directly simulating turbulent flows, the approach here is more aligned with the ap-
proach often taken in classical turbulence, namely, on understanding the fundamental
underlying processes in turbulent flows of the governing equations, through minimally

complicated systems (extensive use of periodic boundary conditions is made).

1.8 Overview

The remainder of this thesis is structured as follows. Chapters 2 and 3 are essen-
tially reviews of the relevant background. Chapter 2 provides the essential back-
ground on classical turbulence: the basic properties of the cylinder wake, cascades
in fully-developed turbulence, and coherent vortex equilibrium distributions, which
are relevant to the quantum analogues studied in this thesis, are presented in some
detail. Our primary focus is 2D turbulence, but where deemed necessary or useful,
3D turbulence is discussed as a point of contrast and comparison. Chapter 3 intro-
duces the relevant quantum fluids and quantum turbulence background. While 2D
quantum turbulence itself is a relatively new field, much of the relevant underlying
physics of quantum vortices has been well studied, and some of the knowledge about
3D quantum turbulence in superfluid helium provides useful guidance. Towards the
end of the chapter, the recent developments in the studies of wakes, cascades and
equilibrium states are reviewed, to provide motivational context for the original work
presented in the subsequent chapters. It is our aim that the information collected
and summarized in Chapters 2 and 3 will provide a useful resource for others who
become interested in the subject in the future. Chapters 4, 5, and 6 then present
original work, which, broadly speaking, focusses on coherent structure equilibria, the
cylinder wake, and cascade phenomena respectively. Chapter 7 presents concluding

remarks and future outlook.
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Introduction




Chapter 2

Classical Hydrodynamic
Turbulence

This chapter provides the essential background on classical fluid turbulence. The
basic properties of the cylinder wake, cascades in fully-developed turbulence, and
coherent vortex equilibrium distributions, which are relevant to the quantum ana-
logues studied in this thesis, are presented in some detail. Our primary focus is 2D
turbulence, but where deemed necessary or useful, 3D turbulence is discussed as a

point of contrast and comparison.

2.1 The Navier-Stokes Equations

Hydrodynamic turbulence, normally referred to as simply “turbulence”, is a phe-
nomenon that is believed to be entirely described by the Navier-Stokes equations
for an incompressible Newtonian fluid. These equations govern the evolution of the

velocity field, u(x,t)

Vp 9
- . == f. 1
(9t+<u V)u p +vViu + (2.1)

Here p is the density of the fluid, p(x,t) is the pressure field, v is the kinematic
viscosity (v = p/p, where p is the molecular viscosity), and f(x,t) embodies any
external forcing mechanisms, such as gravity or external stirring. Once supplemented

by the incompressibility condition

V-u=0 (2.2)
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14 Chapter 2. Classical Hydrodynamic Turbulence

and the boundary conditions, (often the no-slip condition u = 0 at the boundary),
the problem is completely specified. It appears that we are missing an equation for
the pressure to close the system of equations, but this is in fact provided by the
incompressibility condition. Taking the divergence of Eq. (2.1) gives the Poisson
equation ,
Vpp =—-V - [(u-V)u]. (2.3)
The solutions to this equation are non-local, so changes in the velocity field are in-
stantaneously communicated to the rest of the fluid through the pressure. Obviously,

this arises from assuming the fluid is perfectly incompressible.

Although Eq. (2.1) looks complicated, it is nothing more than Newton’s second
law, expressed in terms of the velocity field rather than the position of a fluid parcel,
since the former happens to be more convenient for a continuum. The two terms
on the left correspond to acceleration in time and space, respectively. The nonlinear
(u- V)u term, which corresponds to advection, is ultimately the source of the diffi-
culty of the equations. The viscosity manifests itself through a diffusion term »V?u,
which acts to “smooth out” the velocity field. The viscosity arises from assuming the
fluid is Newtonian, such that the shear components of the stress tensor are linearly

proportional to the velocity gradients

+

(9uz- 8Uj
. 2.4

0ij = Pij + Tij = —pdij + (

Taking the divergence of the stress ), 0oy;/0x; then yields the pressure and the
viscous diffusion terms in Eq. (2.1) for an incompressible fluid. Equation (2.2), the

incompressibility condition, is nothing more than the law of mass conservation

gf; +V-(pu)=0 (2.5)
under the constraint of constant density. This is a valid assumption provided the
velocities involved are much less than the speed of sound in the fluid. For sufficiently
large velocities, density fluctuations begin to become important (see Sec. 3.2.5). It
should also be stressed that the incompressibility does not necessarily imply that the
density is constant, although this is usually true for hydrodynamic turbulence, and
this gives us the benefit of a kinematic viscosity that is not spatially dependent. This
condition is satisfied in laboratory experiments, as well as the smaller scales of the

atmosphere [1]. However, such density variations are important, for example, in the
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ocean, where the flow is incompressible, but the density variations must be taken into

account in some way, e.g., through the Boussinesq approximation [95].

2.2 The Reynolds number

Something rather illuminating can be revealed from the Navier-Stokes equations sim-
ply by expressing them in a dimensionless form. Suppose we have a given flow geom-
etry and we are able to identify a characteristic velocity U and characteristic length
scale L. It does not matter precisely what these scales are, as long as we define them
consistently for a particular problem. Then we may express the following quantities

in terms of dimensionless variables (denoted by tildes):
0 U\ 0 |
= L~ = U _— = —_— —_—= = 25 - - 2
x T u="Uu pr (L) g p = pU?P, \Y LV, (2.6)
and with the above definitions, Eq. (2.1) becomes

ou oSN S Vo &9~
8{+(u-V)u——Vp+(UL)Vu. (2.7)

The quantity in the parentheses is the inverse of the Reynolds number

Re = — (2.8)

v

which is the only remaining adjustable parameter in the equations. Furthermore,
since all quantities are now dimensionless, our specification of the boundary condition
is now reduced to the specification of the boundary geometry. Flows with the same
boundary geometry and Reynolds number are said to be dynamically similar; flows
with any combination of L, U, and v that yield the same Reynolds number will be

identical under an appropriate rescaling of space and time.!? In many situations the

!The reason why this works is because the Navier-Stokes equations are scale invariant. If we
apply a scaling transformation of the form

{r,u,t} = A, \"u, A7t} NeR,,heR (2.9)

we find that all terms are scaled by A2*~1, except for the viscous term which is scaled by A*~2. The
only solution is h = —1, which leaves the Reynolds number unchanged.

2Dynamical similarity is the reason why scale models can be used to inform the design of technical
machinery, e.g., aircraft.
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Reynolds number is the sole control parameter of the problem, and, combined with
the details of the boundary geometry, completely determines the properties of the
flow. As such, it is one of the most important quantities in turbulence theory. It
is equally valid to think of the Reynolds number as a quantity that measures the
ratio of inertial and viscous forces in a flow. Dimensional analysis of the ratio of the

inertial and viscous terms gives

u-Vu U?/L UL

’]VVQu\l - VU//L2 T (2.10)
Turbulence hence arises through the interplay between these two competing forces;
at low Reynolds numbers, viscosity can stabilise perturbations, but at high Reynolds
numbers, inertial forces dominate to amplify them. The onset of turbulence depends
on the particular geometry, but usually occurs for Re ~ 10*-103. It should be that
noted while the Reynolds number characterises the degree of turbulence, it is in-
credibly difficult to pin down a “critical” value, since this can be highly sensitive
to imperfections in the boundaries, or residual turbulence upstream [96]. The limit
Re — oo defines a theoretically idealised form of turbulence, in which the turbu-
lence is free to evolve unconstrained by boundaries or the influence of viscosity. It is

referred to as the zero viscosity limit, or fully developed turbulence.

2.3 The Cylinder Wake

To see how turbulence develops in a system as the Reynolds number is increased,
it is useful to consider a basic example. The wake produced by a circular cylinder
embedded in a uniform flow is perhaps one of the simplest systems we can imagine,
and serves as a paradigmatic example for the transition to turbulence in fluids. It will
also serve as a useful reference for later chapters, where we will study the superfluid
analogue of this system.

Fig. 2.1 shows the development of the flow past a cylinder with increasing Reynolds
number. Here, turbulence essentially develops in the system through a series of broken
symmetries.®> At low Reynolds number, in the Stokes flow regime Fig.2.1(a), the flow
exhibits a high degree of symmetry; one can barely tell that the flow is from left
to right. However, as the Reynolds number is increased, this symmetry is broken,

and a steady recirculation zone forms behind the obstacle [Fig 2.1(b)]. The length

3For a detailed discussion on this “broken symmetries” view of the transition to turbulence, see
the text by Frisch [2].
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Re = 0.16

Figure 2.1: Examples of different qualitative flow regimes and their corresponding
Reynolds numbers for a cylinder embedded in a uniform flow. Flows are visualised
via aluminium dust in water (a,b), electrolytic precipitation in water (c), or smoke
in air (d). Images reproduced from Van Dyke’s “An Album of Fluid Motion” [97].

of the recirculation zone grows with increasing Reynolds number, until it eventually
becomes unstable, at Re ~ 40. The time invariance symmetry in the flow is then
broken; periodic shedding of alternate-sign vortices occurs, leading to the formation
of a von-Karman vortex street [Fig. 2.1(c)]. At about Re = 200, the flow starts to
become unstable, and becomes increasingly irregular thereafter [Fig. 2.1(d)]. Notice
that at higher Reynolds numbers, the periodic shedding persists and can still be
clearly seen in Fig. 2.1(d), despite the highly irregular nature of the wake.

2.3.1 Strouhal Oscillations

The oscillatory vortex shedding that occurs at the onset of vortex street formation,
and persists into the irregular flow regime is an intriguing phenomenon that is in
fact common to the wakes of all bluff (i.e., not streamlined) bodies. An early inves-
tigator of this phenomenon was Strouhal [98], who became interested in the problem
upon noticing that telegraph wires would “whistle” on windy days. Performing an
experiment with wires and rigid rods, he found that the frequency of the shedding f
depended only on the diameter of the cylinder D and the free-stream velocity of the
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Figure 2.2: A graph of Strouhal number vs. Reynolds number for a cylinder in a
uniform flow, obtained in the seminal wind tunnel experiments by Roshko [99].

flow u. Furthermore, he found that these quantities were always related through the

expression
fD/u=0.2. (2.11)

This quantity is now known as the Strouhal number

_ /D
St =, (2.12)

which, similar to the Reynolds number, can be considered as a dimensionless measure
of the ratio of unsteady and steady inertial terms: (Ou/0t)/(u-Vu) ~ fD/u. The ap-
parent universal value of this quantity discovered by Strouhal is in fact a consequence
of dynamical similarity — since the Strouhal number is a dimensionless quantity, it
can be expressed as a universal function that depends only on the Reynolds num-
ber: St = St(Re).* The universal nature of the Strouhal-Reynolds number relation
is demonstrated in Fig. 2.2, which shows experimental wind tunnel data obtained by
Roshko [99] for a wide range of cylinder sizes. The qualitative changes in the flow are

readily seen in the St-Re relation: the steeply rising part of the curve corresponds to

4This is only true when the boundary is stationary. If the boundary is driven at some oscillation
frequency, the Strouhal number becomes an independent control parameter.
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the laminar von-Karman street, and the plateau corresponds to irregular shedding,
and a turbulent wake. The two regions are separated by an instability region.® These
qualitative regions exist for practically all obstacle shapes, although the precise form
of the curve is different in each case. Notice in Fig. 2.2 that the St-Re curve is

well-described by the empirical formula

A
St = St (1 _ Re) , (2.13)
where the asymptotic value St,, = 0.212 agrees with the value originally discovered
by Strouhal. The empirical St-Re relation is remarkably useful; if one of the flow
parameters is difficult to measure, it can be accurately determined from the Strouhal
number if the other quantities are known. An example of this application is in soap-
film experiments — these films play a central role in experimental studies of two
dimensional turbulence, yet their viscosity is difficult to measure. In Ref. [26], the
St-Re relation was used to determine a relation between soap film thickness and its

viscosity.

2.4 Statistical Description of Turbulent Flows

A key feature of turbulent flows is their random nature. Despite being governed by a
deterministic system of equations, independent measurement sequences of a turbulent
flow (for example two different time series measuring the drag force on a cylinder)
will be completely different, even under seemingly identical conditions. In fact, owing
to the chaotic nature of the flow, we might have anticipated that a fully deterministic
description is futile, since we cannot know the boundary conditions exactly under
any real situation.

However, it has been long established that the statistical properties of turbulent
flows are reproducible. If one conducts a large number of independent experiments N
to form a statistical ensemble, and takes the average of the measurements obtained,
all the statistical properties such as the mean, variance, etc. will be practically identi-
cal to a seperate ensemble, provided the ensembles are large enough to obtain reliable
statistical data. Similarly, in the steady cylinder flow problem, if one constructs his-
tograms from the two time series, the statistical properties will be identical provided

that time series are long enough.

5This region corresponds to the development of three-dimensional instabilities, and is absent in
2D flows like soap films [27].
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It is therefore necessary to discuss how we describe turbulent flows statistically.
The discussion presented here is essentially a condensed version of that presented
in Batchelor [1], and we refer the reader there, or to Frisch [2], or Pope [3] for a

more detailed discussion. The statistical properties of the turbulent velocity field

at n points u; = u(x;) etc. is determined by the joint probability distribution
P(uy,uy,...u,). The probability average of a function F(uj,ug,...,u,) is
(F) = /FP(U1,UQ,...,un)dU1dUQ...dun (2.14)
— (@)
_NIEHOONZF( uy) o ud)), (2.15)

where (i) denotes the measurements made in the ith independent experiment used
to form a statistical ensemble of N experiments. If P and hence all averaged values
are independent of position, the velocity field is called a “stationary” function of x.

In such a case, we may replace the probability average with the spatial average

(F), = lim —/F(ul,ug,...,un)dy (2.16)

for a single realisation of u, and here u; etc. should be understood as u(x; +y).

Similarly if the turbulence is a stationary function of time, then

(F); = lim —/F WUy, ... Uy, £)dt (2.17)

T—oo T

may be used interchangeably with Eq. (2.15). Naturally we must ask how we may

go about characterising the probability distribution, through quantities that can be

readily measured. First considering the statistics at a single point P(u), the answer
lies in the Fourier transform of P(u), the characteristic function

0 p

é(cx) :/ iou p(y Z il (2.18)

From Eq. (2.18), we thus find that the complete probability distribution for the

velocity field at a single point can be characterised by the set of moments formed

from the tensor products of the velocity, written in index notation as

Qijp = (W (X)u; (%) - . up(x)), (2.19)

and P(u) can be recovered through the inverse Fourier transform. Generalising this
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argument to any number of points, we find that the statistical properties of a turbulent
flow can therefore be completely characterised by the infinite set of tensors formed
by the m-order product of the velocity components at n different points (n < m),

i.e., in terms of the “m-order n-point product mean values” [1]
QU (r) = (ui(x1, )uy (X2, 1) . .ty (Xom, 1)) (2.20)

where the shorthand r defines a d xn dimensional vector (for d dimensions), comprised
of the n different vectors contained in the set {x1,Xs,...,X;,}. It is sometimes more
convenient to work with the Fourier-space representation of such quantities, and we

hence define the Fourier transform

00 = ()" [emral, eyar 22)

and its inverse

QL) = [ €™\, )k, (2.22)

Although there are infinitely many quantities like Eq. (2.20), we can in principle
consider as many as we desire, to obtain a description of the statistical properties as
accurate as required. However, the higher order terms contain information about the
“wings” of the probability distribution, and thus contain information about events
that are rarer and are hence contribute less to the statistical description. They are
also more difficult to measure reliably, since larger data sets are required to obtain
reliable information about rarer events. As such, the lower order terms are the most

important. The two-point correlation tensor
Rij(x.1) = (i (x)u;(x + 1) (2.23)
and three-point correlation tensor
Rijk(x, 1, 1) = (u;(x)uj(x + r)ug(x +r')) (2.24)

along with their Fourier transforms are the most commonly considered quantities.
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2.5 Homogeneous and Isotropic Turbulence

A seemingly simple system like the cylinder wake in fact turns out to exhibit an
incredibly rich structure and significant complexity. In particular, the spatial inho-
mogeneity of this system, introduced by the no-slip boundary condition, makes the
system difficult to analyse analytically — both the average flow properties and the
turbulent fluctuations depend on their position in space, and the direction relative
to the boundary. Such difficulties motivate the consideration of an idealised form
of turbulence of minimal complexity, without the presence of any boundaries. Such
an assumption is a valid description of turbulence in regions within the bulk of the
fluid, far from any boundaries which are the original driving source of the turbulent
flow. This assumption allows the consideration of homogeneous turbulence, in which

properties of the flow are independent of their spatial position, e.g.,
(u(x)) = (u(x +r)) (2.25)

from which it follows (u) = const., and can always be chosen to be zero by the
Galilean invariance and momentum conservation of the Navier-Stokes equations. The
simplification of the problem can be taken even further, by assuming the statistics
of the turbulence is isotropic, being independent of rotations and reflections of the
coordinate axes. Under the assumption of isotropy (which also requires homogeneity),
the two-point correlation tensor becomes dramatically simplified (see Ref. [1] for a

detailed explanation)
Rij<X7 I') = Rij (I‘) = Rij (7”) X Rii(r), (226)

i.e., the two-point correlations can be expressed in terms of a single scalar function
with one scalar argument. In practice it turns out that homogeneous and isotropic
turbulence can be readily generated experimentally, by for example passing a uniform
flow through a periodic structure which has no directional preference, such as a grid
of bars or a wire mesh. This grid turbulence can also decay sufficiently slowly with
downstream distance that the flow can be well approximated as homogeneous and
isotropic. It also happens that, at sufficiently large Reynolds numbers, the smaller
scales of the turbulent flow can become fully-developed, and treated as isotropic and
homogeneous to a reasonable degree.

In the idealised studies of homogeneous and isotropic turbulence, the interest lies

in a class of asymptotic statistical states that are (partially) independent of a wide
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class of initial states, rather than specific solutions to any particular problem. These
states are usually steady in time, or only evolve in time in some simple manner, and
quite often involve scale-invariant solutions such as power laws. Such an approach
happens to be valid because, rather conveniently, nonlinear dynamical systems with
many strongly coupled degrees of freedom have a tendency to exhibit emergent, self-

organising behaviour [1, 17].

2.6 Conservation and Balance Laws

The most convenient (and common) way to mathematically impose homogeneity is

to assume periodic boundary conditions
wi(z,y,2) =ui(x + 1L,y +mL,z+nL); l,m,n € Z, (2.27)

because the periodicity enforces the flow to have zero or constant mean flow, and

there is no physical boundary to introduce inhomogeneity. The quantity
w=Vxu (2.28)

is the vorticity. Flows that satisfy w = 0 are said to be irrotational, whereas turbulent
flows all contain vorticity. Under periodic boundary conditions, the total vorticity
is [w dx = 0 and is conserved, since it cannot be introduced or removed without a
boundary. The line integral of the velocity around a closed contour (or by Stokes’

theorem, the area integral of the vorticity within the contour)

F:fu-dlz/w-da (2.29)

is called the circulation. In an inviscid (v = 0) incompressible fluid,® the circulation
is conserved for a contour that follows the flow: OI'/0t +u - VI = 0 (this is known

as Kelvin’s Theorem). In general, the vorticity equation is

%: +(u-Vw = (w-V)u+rViw. (2.30)

The first term on the right hand side is a source term, and corresponds to vortex
stretching due to velocity gradients. Now, if a fluid flow is constrained to be two-

dimensional (u = (uy, uy, 0)), the vorticity has only a z component w = (0,0, w(z, y)),

50r a barotropic compressible fluid for which p = p(p) only.



24 Chapter 2. Classical Hydrodynamic Turbulence

and this has a dramatic consequence: the vortex stretching term vanishes, yielding

85; +u-Vw = vV, (2.31)

such that, in the zero viscosity limit, the vorticity is conserved along the flow tra-
jectory. It follows that, in contrast to three-dimensional flows, in the inviscid limit
two dimensional flows possess additional conserved quantities, the (infinite) set of the

vorticity moments

Q, — / WX (2.32)

Of these quantities, the square vorticity or enstrophy

1
% =0=— / lw]d?x (2.33)
is of particular significance, because of its relation to the energy of the flow. The

kinetic energy per unit mass is

1
E=o0 / u(x)|2d?x (2.34)
and in the absence of boundaries and external forcing it obeys the balance equation

dE
— = —uf). 2.
= v (2.35)

The importance of the enstrophy is clear: it governs the dissipation of energy. Mean-
while, the enstrophy obeys a balance equation, where its decay is governed by vorticity

gradients
ds?

dt

In unforced 2D flows, the energy and enstrophy are therefore monotonically decaying

= —v|Vw|?. (2.36)

quantities, bounded by their initial values. It is this feature that primarily distin-
guishes 2D and 3D turbulent flows. Because the enstrophy is bounded from above in

2D, the energy is conserved in the zero viscosity limit
lim — =0, (2.37)

such that freely evolving high Reynolds number flows have approximately constant
energy. In contrast, one of the fundamental experimental laws of three-dimensional

turbulence is the dissipation anomaly: the energy dissipation is finite as the viscosity
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tends to zero B

zljig(l) ik # 0. (2.38)
The source of this strange behaviour is, of course, the vortex stretching term. It
adds a source term to the enstrophy balance equation that allows it to grow indef-
initely, in such a way that it compensates for the diminishing viscosity. Through
their haphazard motion, in three dimensions vortices may lengthen, and, by the cir-
culation theorem and continuity, they must then radially contract, and amplify their
vorticity (see, e.g. [100]). For this reason, in both steady forced turbulence, and the
early stages of the decaying turbulence, and regardless of the details of the forcing
mechanism, the energy dissipation happens to obey an extremely useful empirical

relation [1, 2]

AU 3
==
which has the rather odd and remarkable property that it is independent of the

€

(2.39)

wiscosity v. Here U and L are again the characteristic velocity and length of the
flow. The dimensionless parameter A is nearly constant; it varies slightly in different

situations, but is always of order unity.

2.7 Spectral Representation

Fourier analysis is an indispensable tool for the analysis of homogeneous and isotropic
turbulence, because it provides a means by which to formally define the motion at
different scales. We will also see that Fourier analysis allows us to define an effective
number of degrees of freedom for a given turbulent flow. We start with the Navier-
Stokes equations for an incompressible fluid (neglecting the forcing term), in index

notation for convenience,

6’&1(1‘)
ot

dip(r)

+ u;(r)0jui(r) = —

—+ v 8]-8]- ui(r), (240)
accompanied by the incompressibility condition
ju;(r) =0, (2.41)

where 0; = 0/0x; and we are using the Einstein summation convention over repeated

indices. Now confining our attention to the two-dimensional case, let us assume
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periodic boundary conditions in a square box of length L:
wi(z,y) = uwi(x + mL,y +nL); m,n € Z. (2.42)
The velocity field can be written as a Fourier series

ui(r) = a;(k)e™™, (2.43)

k

where k = (k;, k,) = 2n(m,n)/L and the Fourier coefficients ;(k) are given by

1 .
1;(k) = L2/vd2r u;(r)e T (2.44)

By use of the Poisson equation Eq. (2.3), repeated use of integration by parts,
and the identity £ [y, d®r ¢PTa0T = § o where dy, is the Kronecker delta, the

Navier-Stokes equations become

(gt - ”k2> (k) = —ikm <5w‘ - kklgj) > (p)im(a), (2.45)

p+a=k

accompanied by the incompressibility condition
kju;(k) = 0. (2.46)

The terms on the right hand side of Eq. (2.45) correspond to the advection and
pressure, respectively. In light of the incompressibility condition Eq. (2.46), the term
in the parentheses on the right-hand side, P;;(k) = (0;; — kik;/k?*), can be viewed as
a projector onto the incompressible plane k;i;(k) = 0. The contribution from the
pressure therefore removes the part of the inertial term that is parallel to k, such

that incompressibility is maintained.

2.7.1 The Effect of Viscosity

The Fourier-space representation provides insight into the roles of the various terms
in the Navier-Stokes equations. Firstly notice that, for small Reynolds numbers (or
during the late stages of turbulence decay) where pressure gradients and inertia are

negligible in comparison with the viscosity term, Eq. (2.45) reduces to

(k)
ot

= —vk*u(k) (2.47)
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whose solutions are simply
a(k, t) = a(k, to)e V1), (2.48)

The amplitudes of the Fourier coefficients decay independently, and viscosity is most
effective at small scales, i.e., at large wavenumbers. Increasing the Reynolds number
is therefore equivalent to increasing the range of wavenumbers over which the effects
of viscosity are negligible. Note that this statement is true even in the presence of
boundaries: near boundaries, viscous effects are always confined to a narrow boundary
layer, whose thickness decreases as the Reynolds number increases. In this region,
the velocity field rapidly changes from its background value to zero, in order to be
consistent with the no-slip boundary condition. Under Fourier analysis, this rapid

change in the velocity field is represented in the high wavenumber components.

2.7.2 The Effects of Pressure and Inertia

Meanwhile, inspecting the nonlinear effects of the inertia and pressure we are con-
fronted with terms of considerable complexity; each Fourier mode is coupled to every
other Fourier mode, in groups of three, known as triads, and in a way that depends
on both the amplitudes and phases of each triad. The nonlinear terms thus provide
a mechanism for the system to attempt to reach equilibrium. An excitation initially
confined to one Fourier mode will be rapidly spread among the other modes in some
complicated fashion when the effects of viscosity are negligible. Furthermore, notice
that if we multiply both sides of Eq. (2.45) by @f(k) to obtain the energy contained
within each mode k, the pressure term vanishes due to incompressibility. It follows
from this observation that the role of inertia is to transfer energy between different
wavenumbers for the same velocity component, whereas the pressure forces transfer
energy within the same wavenumber among different velocity components. Unfor-
tunately, met with terms of such complexity, often the best we can hope to achieve
is to deduce general trends of the flow, based on physically plausible arguments.
Batchelor [1] stresses that general transfer trends, valid under all conditions, cannot
be expected, because the amplitudes and phases of the Fourier components can be

constructed, at least initially, to give practically any desired spectral transport.
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2.7.3 Spectral Transport

A fundamental consideration is the distribution and transport of conserved quantities
(and in particular, the energy) in scale-space — as we have already noted, turbulent
flows are very efficient at mizing. In the periodic box, the average kinetic energy

(again, per unit mass pL?) is given by
B=1/1% | dr J(ju(r)P) = § S(la)), (2.49)
v K

where ( - ) denotes an ensemble average. Now define
Uk) = () (2.50)

where Ak = 27 /L is the spacing between wavenumbers, such that the energy is

expressed as the Riemann sum

1

E =2 Uk)(Ak)? (2.51)

N |

and take the limit L — oo to formally recover isotropy’

L—oo

lim ;Ekj U(k)(Ak)? = ;/ko U(k). (2.52)

Then, assuming isotropy of averaged quantities (U(k) = U(k)), we evaluate the
angular part of the integral, which simply gives a factor of 27k, (or 47k? in three

dimensions), yielding the kinetic energy spectrum E(k)
E(k) = nkU(K); /OO dk E(k) = E. (2.53)
0

In addition to its obvious physical importance, when the turbulence is isotropic
E(k) contains all the information contained in the two-point velocity correlation
tensor, since it is the Fourier transform of Ry;(r) (see, e.g., Refs [1, 2] for detailed
explanations). Furthermore, with the aid of the incompressibility condition, it is

straightforward to show that the vorticity and velocity are related in k-space as

"Or, equivalently, we could confine our analysis to wavenumbers k > Ak.
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(lw(k)[*) = k*(Ju(k)|?), so that the enstrophy spectrum is given by
QO(k) = 2K2E(k); Q= / Tk k). (2.54)
0

To obtain the equation of motion for E(k), we multiply Eq. (2.45) by 4} (k), take the

ensemble average and add the complex conjugate to obtain

(; + 2yk2> U(k)(Ak)>

= —iky, <5ij —~ k;?) > (@7 (k)a;(p)im(a)) + c.c

pt+a=k

=2M{%%-Z<@&mmmmm»} (2.55)

pt+a=k

We can write this more succinctly as the energy balance equation:

OE(k)

o = T(k) = 20k*E(k). (2.56)

The terms on the right correspond to transfer and dissipation, respectively, and the
quantity T'(k) is called the transfer function. To gain any further insight, it is neces-
sary to explicitly expose some symmetries that the transfer term possesses. A lengthy

and somewhat tedious calculation yields T'(k) in the symmetric form

) =3 [* [T Tk Ipgdpda, TIpa) =T(klan). (257

where the symmetric function T'(k | p, q) is a complicated function that depends only

on the wavenumber magnitudes and the third-order product mean values®

T(k|p,q) = — (ZZ; Im {(k;mcz-j + Ki6im) <ﬁ"<k)|2fr<f;ij|m(q)> } D(k,p,q). (2.58)
Here
D(k,p,q)=H(q+p—Fk)—H(g—p—k)—H(p—q—k), (2.59)

is a construction of Heaviside functions H(x), completely symmetric in k, p, and ¢,

that encodes the integration domain of allowed wavenumbers, which can be rewritten

8The factor of |sinf,,| can be expressed entirely in terms of the wavenumber magnitudes using
the sine and cosine rules.
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as
k+p+q=0. (2.60)

The equation Eq. (2.58) itself is not of much particular interest. Rather, the explicit
symmetry in the transfer function aids the identification of conservation laws. We

have the global conservation laws

/OOO T(k) dk = 0; /OOO k2T (k) dk = 0; (2.61)
which reflect the fact that the nonlinear interactions serve only to redistribute the en-
ergy and enstrophy across wavenumbers, without changing their total values. Notice
that we could have also inferred these properties from Eqs. (2.35) and (2.36). Im-
portantly, the second of these equations is not true for three-dimensional turbulence,
because the vortex stretching term allows T'(k) to generate enstrophy. It follows from
Eq. (2.61) that, in the absence of viscosity, Eq. (2.56) forms a continuity equation in
k-space for the energy and enstrophy, where T'(k) is the divergence of the flux. We
may thus define the energy flux

00 k
(k) = / T(K') dk' = — / T(k')dK (2.62)
k 0
and the enstrophy flux (only in 2D)
9] k
T, (k) = 2 / KT dI = —2 / KT (k) di (2.63)
k 0

which give the transport of energy and enstrophy across k due to the conservative
interactions. Furthermore, we also find the extremely important properties of detailed

conservation

T(k|p,q) +T(pla, k) +T(q|k,p) =0 (2.64)
KT(k|p,q) +p*T(p| ¢, k) + T (q| k,p) =0 (2.65)

which can be verified using incompressibility, the laws of sines and cosines, and the
identity k + p + q = 0. Physically, T'(k|p, q) is the energy transfer rate into k from
the pair (p, q); the detailed conservation laws simply tell us that the conserved quan-
tities must be accounted for on each end of the transaction for every individual
interacting wavenumber triad. Again, note that in three dimensions T'(k|p,q) only

satisfies the detailed energy conservation property Eq. (2.64) and not the detailed
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enstrophy conservation property Eq. (2.65).

2.8 Kolmogorov’s K41 Phenomenology

It will be useful for a moment to discuss one of the most fundamental theories of 3D
turbulence, to introduce some fundamental concepts, and in order to aid discussions
of quantum turbulence in later sections. Understanding the general behaviour of 3D
turbulence also helps understand why 2D turbulence is somewhat special.

Forcing from a boundary with some macroscopic scale L primarily excites wavenum-
bers k ~ 1/L. At higher wavenumbers, the energy spectrum is typically monotoni-
cally decreasing as k — o0, such that the macroscopic scales contain the vast major-
ity of the energy. One can thus typically define some integral scale of the turbulence
kp, which is of order 1/L, where the energy spectrum is a maximum (the average
wavenumber, k;, = [[dk kE(k)]/E is another possible definition). Wavenumbers
of order k; define the energy containing range of the motion. Now, it has previ-
ously been mentioned that the energy dissipation rate is finite and constant at large
Reynolds numbers in 3D flows. Clearly then, the interaction terms have a tendency
to transport energy, on average, from k ~ kp to wavenumbers k > kj, where viscosity
can act efficiently.”

If the turbulence is sustained by a steady forcing mechanism, then naturally we
might inquire about what kind of statistically steady distributions could arise from
this transport process. However, even if the turbulence is freely decaying, we might
be able to find some kind of steady distribution over some wavenumbers provided the
decay is sufficiently slow compared to some characteristic evolution time for those
wavenumbers. The empirical decay law, Eq. (2.39), rules out this possibility for the

energy containing range of wavenumbers

E U’ L
dE/dt " AUS/L T U’

(2.66)

since Eq. (2.66) shows that their decay is of the order of their own characteristic
turnover time 7 = L/U. However, this does not rule out the smaller scales — the
smaller scales might have a much shorter characteristic time, which is ultimately

determined by precisely how the system decides to distribute the energy in k-space.

9This can also be shown by applying equilibrium statistical mechanics arguments to a finite set of
the Fourier modes when v = 0, see, e.g., [101]. The 3D equilibrium is equipartition [U(k) = const.],
giving E(k) ~ k2.
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The idea of a characteristic time is presently a very loose one, but it will be made

more concrete shortly.

Based on the above idea, and some plausible assumptions, Kolmogorov pro-
posed [102] that, at sufficiently large Reynolds numbers, the small scales of developed
turbulence (forced or decaying) might have a universal structure. Firstly, although in
reality energy transfer is permitted from any wavenumber to any other wavenumber,
it seems likely that most of the transfer at a given wavenumber k is local, in the sense
that it is dominated by wavenumbers p and ¢ that are in the local neighbourhood of k.
The physical intuition behind this argument is that the shear that acts to distort an
eddy of scale [ ~ 1/k should come from other eddies of a similar scale. Eddies much
larger will simply cause advection of this eddy, which, of course, does not contribute
to energy transport. The influence of the much smaller eddies should be limited since
they contain comparatively less energy, and their influence should cancel on average
over the scale of the larger eddy. Then, provided that the Reynolds number is large
enough such that the smallest excited scales are sufficiently far removed in wavenum-
ber space, it may not matter precisely what the mechanical driving mechanism is
doing (or was doing) to generate the turbulence at the large scales. The small scales
could be statistically independent of this mechanism, since they are only fed energy
indirectly, through a long chain of triadic interactions, through which the history
of the flow could be “forgotten” during the haphazard motion. Then, in addition
to the viscosity v, it would seem that the only other available parameter to these
scales is average energy dissipation rate (per unit mass) . However, by the universal
decay law, € is not determined by the small scales, but by the energy-containing ed-
dies themselves. It is as if the small scales form a kind of self-adjusting (statistical)
equilibrium, which merely adjusts to dissipate whatever the energy containing range
delivers at a given instant. Furthermore, regardless of the state of the driving forces,
the statistics of the small scales should be isotropic — as we have already seen in
Sec 2.7.2, the pressure forces will strive to remove any directional preferences in the

flow. Combining these considerations motivates a powerful assumption:

If the interactions between wavenumbers are predominantly local, then at large
Reynolds numbers the small scales of the turbulence could be isotropic, statistically
independent of the large scales, and in statistical equilibrium. Under such conditions,
their properties will depend only on the viscosity v, the energy dissipation rate €, and

the local wavenumber k.

If these are the only relevant parameters available, we may thus define the char-
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acteristic wavenumber and velocity

kq = (€>1/4, v = (ve)/4, (2.67)

U3

and it follows that the kinetic energy spectrum would be of the form
E(k) = v’ky" f(k/kq) (2.68)

where f(z) is some dimensionless, presumably universal function. This range would
be in a kind of equilibrium, with steady injection coming primarily from the low end,
and viscous dissipation primarily from the high end. At a given instant, the spectrum

must satisfy the energy decay law
e =2 / K2E(k)dk (2.69)
0

which is consistent with Eq. (2.68), so long as [ dz ?f(z) = 3. The condition for this
equilibrium range to exist is that the Reynolds number must be large enough such
that the integral scale of injection, k;, ~ 1/L, and the equilibrium range of dissipation

are sufficiently separated
ki < kg, (2.70)

such that the contributions to [dk E(k) (the total energy) and [dk k?E(k) (the
energy loss) come from regions of wavenumber space that are approximately non-

overlapping. Making use of the empirical decay law Eq. (2.39), an equivalent condi-

k UL\
k—z ~ (V) > 1, (2.71)

tion is

i.e., Re** > 1. If the Reynolds number is even larger, such that we may identify a
region
kp <k < kg (2.72)

then viscosity must also be unimportant in this range. In this inertial range, the
properties of the spectrum must be determined only by the local wavenumber k and
the energy transfer rate. Because we have assumed that the energy transport is local,
this must be a constant across k, and equal to the dissipation rate ¢ to be consistent

with energy conservation. It immediately follows that the only dimensionally correct
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combination that eliminates the viscosity is the famous Kolmogorov law

E(k) = C&Pk=>/3 (2.73)

where C' is the Kolmogorov constant, a dimensionless number of order unity. This
notion of constant, lossless transport through an inertial range is known as a turbulent
cascade, and this kind of cascade phenomenology is now a cornerstone of modern
turbulence theory. The condition for the inertial range to exist is stricter than the

equilibrium dissipation range. If
Re*® > 1, (2.74)

then wavenumbers of order kLRe3/ 8 = (kLkd)l/ 2 can be considered to lie in the inertial
range and by Eq. (2.70) wavenumbers krRe** will lie in the dissipation range. Note
that, via Eq. (2.73), k; can be considered the scale at which the local Reynolds

number becomes of order unity,

[ (k)k]'2

~ 1. 2.
" (2.75)

As promised, we can also define a local characteristic turnover time
T(k) = [KBE(k)] 72 ~ B33 (2.76)

which informs us that the cascade is an accelerated process. Eq. (2.76) is consistent
with the statistical independence assumption; the much smaller characteristic time
of the small scales should allow them sufficient time to “forget” their history from
the energy containing range. It also means that the decay of the turbulence will
occur over many turnover times for the small scales, thus supporting the equilibrium
hypothesis. Finally, notice also that the condition Eq. (2.71) provides us with yet
another interpretation of the Reynolds number: it measures the relevant number of

degrees of freedom in a turbulent flow

L 3
N ~ <d> ~ Re”/4. (2.77)
kg,

Egs. (2.71) and (2.76) encapsulate the ultimate difficulty in simulating large Reynolds

number flows directly. The vast range of relevant length and time scales require
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large spatial domains, and long integration times, but also high spatial and temporal
resolution. Eq. (2.77) places a lower bound on the amount of computational memory

required to store a fully-resolved simulation.

Much of the physical reasoning leading to the Kolmogorov law is not entirely
correct [103, 104]. In fact, some argue that the whole cascade scenario should be
considered as mostly pedagogical imagery [15]. Landau quickly showed the idea of
universality was critically flawed [2, 105], and one also finds discrepancies between the
theory and real turbulent flows when applying the Kolmogorov ideas to higher order
statistics (this is related to intermittency, see Frisch [2] for a discussion). Nonetheless,
the Kolmogorov law is remarkably well verified experimentally, and the Kolmogorov
constant C' &~ 1.5 is a nearly universal constant [106]. The Kolmogorov law is the
starting point for most analysis of turbulent flows; armed with the Kolmogorov law for
the inertial range, one can make predictions for the functional forms of, for example,
the two-point covariance of temperature and pressure fluctuations [1, 2, 4]. The
Kolmogorov law also immediately gave an explanation for the anomalous diffusion
rate of particles in the atmosphere observed some years earlier by Richardson [107].
Furthermore, it opened the door to practical turbulence modelling — the idea not all
scales of a turbulent low must be remodelled for each new situation is central to, e.g.,
large eddy simulations (LES), in which the large scales are simulated but the small
scales are modelled [4, 104]. Fig. 2.3 shows a particularly dramatic experimental
verification of the Kolmogorov law, in measurements of a turbulent jet, spanning

roughly two orders of magnitude in wavenumber.

2.9 The Cascade Phenomenology of 2D Turbulence

2.9.1 Fjortoft’s Argument

The appearance of the additional detailed conservation law for enstrophy in two
dimensions dramatically changes the nature of spectral transport in comparison to
three-dimensional turbulence. Although the actual situation is hopelessly compli-
cated, a simple calculation from Fjortoft [109]'° yields some considerable insight.
Suppose for a moment that the Reynolds number is high enough that we may ne-

glect viscosity, and the spectral equations are truncated to allow only three modes

10This presentation is actually a reformulation of Fjortof’s argument given by Lesieur [4].
Nazarenko [110] offers another nice reformulation, given in terms of “centroid” wavenumbers.
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Figure 2.3: Figure reproduced from Champagne (1978), Ref. [108]. Kinetic energy
spectra produced from an axis-symmetric turbulent jet. One can clearly see the three
different qualitative regions: the energy containing range (low k), the Kolmogorov
k~°/3 inertial range (intermediate k), and the equilibrium /dissipation range (high k).
The Reynolds number is Re = 3.7 x 105,
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k p, and q, which satisfy the triad relation p + q = k.!!' For simplicity we can
suppose that p = 2k, and ¢ = 3k. Then the change in the kinetic energy spectrum
0E, = E(k,ty) — E(k,t;) must satisfy two constraints:

§E, +0E,+6E,=0 (2.78)
k*0Ey + p*0E, + ¢*0E, =0 (2.79)

Now suppose that all the initial energy is contained in the intermediate wavenumber

p. Some simple algebra yields

5 3
0B, = —— p5E 2B, — — 20 25 2.81

Now, it seems likely that the system would strive to redistribute the excitation in
some manner in order to attain equilibrium. From Eqs. (2.78) and (2.79) we find
that when the excitation spreads out of the intermediate wavenumber (JE, < 0) a
transport of energy to g > p requires a large amount of enstrophy to be carried with
it. However, even more energy must be sent to k < p (along with a small amount
of enstrophy) to simultaneously satisfy both detailed conservation laws. In 3D the
nonlinear interactions preferentially send energy to high wavenumbers — where most
of the modes are — in an attempt to attain statistical equilibrium, and this can be
achieved through a generation of enstrophy, because Eq. (2.79) doesn’t need to be
satisfied. It becomes clear that the Kolmogorov scenario described in the previous
section simply isn’t possible in two dimensions. Another short elementary proof of the

inconsistency of the Kolmogorov scenario in two dimensions was given by Lee [111].

2.9.2 Batchelor’s Enstrophy Cascade

It was quickly realized that two-dimensional turbulence must have a dramatically
different behaviour to three-dimensional turbulence. However, by analogy to the
Kolmogorov scenario for 3D turbulence, Batchelor [112] proposed an enstrophy cas-

cade to high wavenumbers could occur, in the context of decaying 2D turbulence.

' Note that the detailed conservation laws for energy and enstrophy are preserved under such a
truncation.
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Recall from Sec. 2.6 that the enstrophy decay depends on vorticity gradients

1d{w?)

5 = v(wVi) = —v(|Vuwl?). (2.82)

But analogous to the enstrophy in three dimensions, the evolution for vorticity gra-

dients themselves involves a nonlinear term

1d o [ Ou; Ow Ow 2w\

which hints at the possibility of a dissipation anomaly for enstrophy. Physically, this

would arise from the amplification of vorticity gradients by extension of isovorticity
lines — because the vorticity of each fluid element is conserved, the stretching of a
vorticity patch in one direction must be compensated by a thinning along the perpen-
dicular. This filamentation process would increase the amount of enstrophy contained
in the small scales, while amplifying the vorticity gradients in the process. Such fila-
mentary structures appear during vortex merging events [see e.g., Fig. 2.4(b)], during
which vortices form spiral-like arms. By analogy to three-dimensional turbulence, this

suggests the enstrophy dissipation rate could be non-vanishing in the inviscid limit:
hir(l) v((0w/0x:)?) — x # 0 (2.84)

and hence that enstrophy would be cascaded to larger wavenumbers through this
extension mechanism, until a wavenumber is reached such that dissipation could
remove enstrophy from the system. Applying the Kolmogorov phenomenology of

Sec. 2.8 gives the characteristic wavenumber and velocity

Y\ 1/6
ka= () v = ()", (2.85)
and provided k; < kg then the enstrophy spectrum in the equilibrium range would

be of the form

Furthermore, if k;, < k < kg4, then in the inertial range the spectrum for the enstro-
phy cascade is
Q(k) = C'\*PE1, (2.87)

or equivalently E(k) = C"x?/3k=3 for some constant C’. Note that the local Reynolds

number argument [E(k)k]'/?/kv ~ 1 once again recovers kg. However, the spectrum
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yields a logarithmic divergence of the enstrophy in the limit v — 0
Q o X3 In(ky/ky). (2.88)

Batchelor suggested that the resolution of this apparent paradox is either: a) if the
source of enstrophy is very large, enstrophy will always eventually be removed at the
(finite) dissipation wavenumber ky, or b) if kg is sufficiently large, the reservoir of
enstrophy in the wavenumbers k ~ L~! would eventually become so depleted that
the transfer rate y would diminish to a value, consistent with the total enstrophy
Eq. (2.88), such that Eq. (2.87) could be maintained. In other words, he hypothesised
that the small scales will reorganise themselves to accomodate whatever the larger
scales are delivering to them. Note however that we must therefore abandon the idea

that x remains finite as Re — o0o.12

We can nonetheless obtain Reynolds number estimates for the existence of the
equilibrium and inertial ranges by using Eq. (2.87). If the inertial range is large,
it follows from integrating the spectrum that the energy will be of the order £ ~
x?*k;?, and hence U ~ x'Y3k;'. Since k; ~ L7' it follows that the condition

kp < kg is equivalent to
ko (ULN\Y?
— ~— 1 2.89

k I ( 14 ) > ’ ( )
so we would expect the equilibrium range requires Re'/? > 1 and the inertial range

requires Re'/4 >> 1. The number of relevant degrees of freedom is then
1\ 2
N ~ <d> ~ Re. (2.90)

Comparing Eqs. (2.90) and (2.77), it follows that 2D flows are significantly less de-
manding to simulate computationally. Yet Eqgs. (2.71) and (2.89) show there is a

tradeoff — a larger Reynolds number is required to allow the inertial range to exist.

Meanwhile, by the detailed conservation laws, the energy must be drifting to the
large scales through the merging of like-signed vortices or some similar process. In the
energy-containing range, the only relevant parameters are the total energy F, which

is presumably constant, and the time t. It follows that the characteristic wavenumber

12Bounds on the enstrophy dissipation rate at large Reynolds numbers have since been derived,
and it has been shown that the dissipation rate does in fact vanish in the limit Re — oo for power-law
scalings [113].
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and velocity in this range are
k = (Bt?)71/? U=E"2 (2.91)
such that the spectrum would be of the form
E(k) = Uk 'h(k/ky). (2.92)

and the integral scale would grow linearly with time'3: L ~ k; ' ~ E'?t. This growth
of the integral scale would cause the enstrophy to decay as Q = 2 [ k2E(k)dk = 2At 2,
where A = [ 2?h(z)dz, and the decay rate would thus scale as y = dQ/dt ~ At~3.

Batchelor’s theory has since generated much debate. Firstly, notice that the form

of Eq. (2.87) yields a local timescale that is the same for all scales in the cascade
7(k) ~ [ B(k)]™" ~ x7'/* = const. (2.93)

This is concerning, because it suggests that the small scales can be directly affected by
the large scales; we are forced to question our original assumption of the small scales’
ability to attain statistical independency by “forgetting” their history from the large
scales. The idea that the decay process occurs over a timescale much longer than
the characteristic timescale of the smaller scales now also rests on somewhat shaky
foundations. The enstrophy cascade is, in effect, a (relatively) nonlocal process, in
which most of the straining of the small scales comes directly from the large scales,
and elongated triads rather than a series of local triads are the dominant transport
mechanism [16, 114].

While early numerical investigations were found to be broadly consistent with
Batchelor’s hypothesis [115, 116], observations in later experiments and numerical
simulations (at higher resolution) were not entirely consistent with Batchelor’s the-
ory, and the spectra observed were often much steeper. This discrepancy was even-
tually attributed to the formation of coherent structures — long-lived, strong regions
of vorticity that spontaneously form during the decay process [see Fig 2.4]. These
structures, which are stable and essentially laminar, are strongly sensitive to the
initial conditions and can often disrupt the similarity state and the cascade process

(see Refs [16, 117] and references therein for a detailed discussion). However a more

13The integral scale also grows in decaying 3D turbulence. However, the growth is instead because
the small scales decay faster than the large ones, and the growth is therefore slower than in two
dimensions [2].
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Figure 2.4: Images adapted from Lindborg and Vallgren (2010), Ref. [118]. Images in
(a)-(c) show vorticity fields for different initial conditions in decaying 2D turbulence:
(a) Random population of enstrophy within a wavenumber shell k/Ak € [12,14]; (b) a
regular grid of 64 Gaussian vortices; (c¢) free decay after initial forcing at wavenumber
k/Ak = 30. In (d), the “compensated” enstrophy spectra k§2(k)/x*? are shown: (a)
blue; (b) green; (c) red (linetypes show different times). The compensated spectra
are seen to be flat over a broad region, indicating the region over which the spectrum
conforms to Eq. (2.87), and allow an estimation of the constant C’. In (e), the decay
of the normalised enstrophy is shown vs. the time in units of the initial turnover time
7= Y ? and clearly exhibits non-universal behaviour.

recent numerical study at very large Reynolds numbers [118] found the scaling pre-
dicted by Batchelor’s theory was robust [Fig. 2.4(d)], even despite the presence of
coherent structures, whose size and strength were vastly different depending on the
initial condition of the system [Fig. 2.4(a)-(c)]. Despite the apparent inconsisten-
cies in the original assumptions, one can thus apply the theory and attain a value
for Batchelor’s constant C’ ~ 1.4 [118], although it does vary more than the 3D
Kolmogorov constant under different conditions. Although the k~! scaling can be a
robust feature, the Batchelor theory generally does not correctly predict the enstro-
phy dissipation rate, or the integral scale drift rate, which do not seem to exhibit any

universal behaviour (see Fig 2.4(e)).
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2.9.3 Kraichnan’s Dual Cascade

In a remarkable paper, Kraichnan [119] proposed that 2D turbulence could support
a dual cascade process. He envisioned a steady-state scenario in which an idealised
external forcing mechanism F'(k) = ed(k —ky) is added to Eq. (2.56), injecting energy
at a steady rate € and enstrophy at a steady rate n = 2]{:?6. Kraichnan hypothesised

an infinitely extending similarity state of the form

E(ak)/E(k) =a™ (2.94)
T(ak |ap,aq)/T(k|p,q) = q~(HH30)/2, (2.95)

where the scaling of T(k|p,q) is assumed to be the same as [E(k)]*?k~'/2 from
dimensional analysis. Through cunning use of the detailed conservation laws, and a
series of transformations exploiting the symmetries of T'(k|p,q) to manipulate the
flux integrals,'* Kraichnan showed that two similarity states permitting constant

fluxes could exist. A similarity state with n = 3 yields

which, of course, corresponds to the enstrophy cascade put forward independently by
Batchelor. However, Kraichnan also found that the Kolmogorov similarity state with
n =5/3 yielded

(k) = e L, (k) = 0. (2.97)

Notice that the two similarity states are mutually exclusive — a constant flux of one
quantity requires the other to vanish — and they could therefore exist simultaneously
in different regions of wavenumber space. He thus hypothesised that the energy cas-
cade can exist in two-dimensional turbulence, provided it is downward in wavenumber
(i.e, provided II, = —¢), in order to satisfy the detailed conservation laws. We may

thus have simultaneously the spectrum for the inverse energy cascade

E(k) = C/k=/3 kp < k < ky (2.98)

14Ref. [120] and the appendix of Ref. [101] provide details regarding the flux calculations that
are not so clearly explained in Kraichnan’s original article, which is quite dense. Ref. [121]provides
some helpful context.
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and the direct enstrophy cascade®
E(k) = C'n**k~® k< k< kg (2.100)

While the value of k; is the same as in the Batchelor scenario, here energy conser-
vation requires from Eq. (2.98) that the total energy grows as E ~ et ~ €%/ 3k£2/ ° and

the integral scale of the turbulence thus grows faster than in the decaying scenario:
L~ kit~ (et?)V2, (2.101)

Hence, unlike 3D turbulence, forced and decaying 2D turbulence are quite different.
The inverse cascade only exists under forcing, and it is never stationary; it grows with
time, requiring constant energy input, and the spectrum asymptotically approaches
the k~5/3 ever more closely over a broader range as time progresses (see Fig. 2.5).16
Yet in any real physical system there is always a lowest attainable wavenumber. In
a phenomenon analogous to Bose-Einstein condensation, two-dimensional turbulence
thus exhibits spectral condensation. Here, through the inverse cascade, energy can
pile up within the lowest available Fourier mode, causing the formation of large-scale
vortices at the scale of the system size, creating a “giant dipole”. While this spectral
pile up can eventually become large enough to disrupt the cascade, it can also be
kept in check by large scale frictional damping, which can originate from the three-
dimensional system in which the two-dimensional system is embedded [20, 22, 125,
126]. Large scale drag has also been found to cause a steepening of the enstrophy

cascade spectrum [123, 127].

Because of the large scale ranges required for the dual cascade, experiments and
simulations are often optimised to study only one of the cascades [117, 128-130], for

example by placing the forcing either near the largest scale and introducing large-scale

I5Kraichnan later refined his theory, arguing that the kinetic energy spectrum would have to be
compensated by a logarithmic term [122]

E(k) = C'n?3k=3(In(k k)] ~1/3 (2.99)

since otherwise the enstrophy flux diverges logarithmically. This expression further highlights the
nonlocality of the cascade, because k; is important regardless of the value of k. It appears even
quite recent and extremely large simulations have not managed to definitively resolve this very slow
logarithmic scaling — the k=3 law seems to be a robust feature [22, 123].

16This is the conventional view. However, a notable exception is a recent numerical study by
Mininni and Pouquet [124]. They showed that decaying 2D turbulence could exhibit evidence of a
—5/3 scaling under extensive ensemble and time averaging. However, the scaling is also temporally
transient and over a somewhat limited scale range.
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Figure 2.5: A schematic of spectral cascades in two-dimensional turbulence at high
Reynolds number. Unlike three-dimensional turbulence, the cascade scenarios are
quite different in the forced and decaying scenarios. The dual cascade only occurs
when steady forcing is supplied (near some wavenumber ky) to sustain the inverse
energy cascade, with energy growing at the injection rate e. The total enstrophy is
approximately constant, being injected and dissipated at a steady rate n = kj%e. In the
decaying scenario, only the enstrophy cascade persists, and the integral wavenumber
k; decays at a slower rate. The total energy E is approximately conserved, and
enstrophy decays at a rate y.
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dissipation [131], or forcing relatively near the dissipation wavenumber ky [128, 132,
133]. Whereas Kraichnan envisaged the underlying processes to be vortex merger and
the simultaneous filamentation of vorticity caused in the process [119], the inverse
cascade appears to be a more subtle mechanism. It has been argued the underlying
physical mechanism is instead same-sign vortex aggregation rather than actual merger
into individual entities [16, 129], or by a similar but more local version of the thinning
process responsible for the enstrophy cascade [134, 135]. Both cascades are known to
be less local than the three-dimensional case [101], although the enstrophy cascade
is the most nonlocal for the reasons already mentioned in Sec. 2.9.2. The Kraichnan-
Batchelor constant in the forced scenario is again C" ~ 1.4 [114, 123, 130], whereas
the Kraichnan-Kolmogorov constant is much larger, C' & 7 [129]. The larger constant
implies a much less efficient cascade (for a given E(k) a large C' implies a small e,
and vice versa). The enstrophy cascade is generally viewed to be slightly more robust
in the forced case, because under certain conditions the continuous forcing provides
a mechanism to disrupt the formation of coherent structures, thereby protecting the

similarity state from their contamination [16, 114, 123, 130].

Although the cascades were individually verified somewhat earlier, it took 31
years for Kraichnan’s prediction of the dual cascade to be verified experimentally.
With the experimental developments of soap films and laser doppler velocimetry
techniques, [23, 24] an experiment by Rutgers [25], using a vertically flowing soap
film continuously forced by vertical combs, eventually provided evidence of the dual

cascade scenario (see Fig 2.6).

2.10 Point Vortex Model

We end this chapter by introducing a model that will become highly relevant in those
to come. Setting v = 0 in the Navier Stokes equations yields the Euler equation,
which describes the motion of a perfect, inviscid incompressible fluid. In the vorticity

formulation, it is

ow

—4+u-Vw=0 2.102
which mathematically expresses the fact that, in the absence of viscosity, vorticity
is simply advected by the fluid (Sec 2.6). In many cases of interest the vorticity

field may have a compact structure, and in such situations it is permissible to study
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Figure 2.6: Images adapted from Rutgers (1998), Ref. [25]: (a) An image of the
turbulent soap film, produced by interference of monochromatic light; (b) Measured
kinetic energy spectra at various positions downstream. The case A, which is within
the forced region, clearly exhibits a k=3 region, a k°/3 region, and a peak at low
wavenumbers. The peak is located at a wavenumber corresponding to twice the
width between the combs (k = 27/)), which sets an upper limit on the integral scale
of the turbulence. Measurements at farther distances downstream (B-E) show a clear
transition from the forced scenario to the decaying scenario, in which the £~%3 region
is absent; (c) Compensated kinetic energy spectra for cases A and D, showing the
quality and extent of the k~°/% and k=2 scaling regions.
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solutions of the limiting form
w(x) =Y 6% (x —x;). (2.103)

Analogous to the point masses of celestial mechanics, or the point charges of elec-
tromagnetism, these are called point vortices. Recall that any vector field can be

expressed in terms of a Helmholtz decomposition as
u(x)=u,+u, =V0+V x . (2.104)

Here @ is called the velocity potential and % is the streamfunction. Like the vor-
ticity, in two dimensions the streamfunction can be represented by a scalar function
P = (0,0,9(z,y)). While the velocity potential contains the contribution due to

irrotational flow, the streamfunction is related to the vorticity field via
V2h(x) = —w(x). (2.105)

Since the stream function satisfies a Poisson equation with the vorticity as the source
term, by the standard techniques one can write the solution in terms of the Green’s
function, satisfying

V3G(x,x") = —6(x — '), (2.106)

V60 = [ Gl y)w(y)dy. (2.107)

In the unbounded 2D domain the solution is [136]

1 x —x’
G(x,x') = —ﬂln | (2.108)
where L is an arbitrary reference scale. It follows that
1 X — X;
U(x) = _%;Fi ln‘ | (2.109)
producing the velocity field
ux) =Y Ly (2.110)
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where QZA)Z is the azimuthal unit vector around vortex 7. This leads to an equation of

motion for the vortex positions

’ ~ = Yii (2.111)
Yi 27T 2] Lij

where z;; = x;—x; etc and the prime denotes the omission of the term ¢ = 7, such that
each vortex is advected by every vortex in the fluid except itself. These point vortex
equations have a long history in practical flow computation, particularly in situations
where the vorticity field is compact [103, 136-138], because the problem is reduced
to solving for the motion of only the vorticity containing regions, rather than the
entire flow field. Point-vortex motion, modified to allow for vortex merging events,
also happens to quite accurately describe the motion of the coherent structures that

emerge in decaying two-dimensional turbulence [132, 139, 140].

However, these equations also form a very interesting dynamical system in their

own right. Notice that the kinetic energy may be written in the form

1 1 1
= 3 / |u(x)’2d2x = 3 / \Vw(x)|2d2x — §/¢(X)w(x)d2x (2.112)
from which we arrive at the Hamiltonian
1 N—-1 N s — )
=—— S T |2 (2.113)
2 =1 j=i+1 L

where the (infinite) constant self energy of the vortices has been subtracted. The

equations of motion can thus be expressed in canonical form

(2.114)

It is worth pausing here to remark on several rather unusual features of the point-
vortex system. Firstly, notice that the Hamiltonian looks like it contains only an
inter-particle interaction term, but in fact it is purely kinetic.'” Second, notice that
these “particles” are rather odd; they have no mass (and therefore no inertia), and
are governed by a first order differential equation rather than Newton’s second law.
Thirdly, the interaction between particles has infinite range. In fact, the logarithmic

interaction term in the Hamiltonian is identical to that for an interacting Coulomb

1"Kraichnan rather aptly named it the “kinetic energy of interaction” [141, 142].
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gas of point charges in two dimensions, and a two-dimensional plasma in the guiding-
centre approximation [143]. Finally, possibly the most striking feature of this system
is the nature of the canonical coordinates; the canonical coordinates and hence the
phase space of the system are determined by the physical coordinates of the vortices.
As we will soon see, this has a rather profound effect on the statistical mechanics of

the system.

In addition to conserving the vortex number NV, the translational and rotational

invariance of H leads, by Noether’s theorem, to the conservation of the following

quantities
_ Z L.z = P, (2.115)
i lwya = P, (2.116)
— i L2 = 1 (2.117)
> FZFBriﬁ = /. (2.118)

a?ﬁ

where 725 = (24 — 3)® + (Yo — y3)®>. The first three correspond to linear and
angular momentum, and the conservation of the last quantity is a consequence of the
conservation of the first three. Naturally, due to the general structure of Hamilton’s

equations, H itself is also conserved since it does not explicitly depend on time:

oH . O0H ] LOH (2.119)

cﬁ_zléqui+8mpi Bt

It follows from the above conservation properties that the separation d for two
vortices is a constant of the motion. Two opposite vortices of equal strength (a vortex
dipole) propagate in a straight line in a direction perpendicular to their separation
vector, at a velocity uy = I'/27d, while two vortices of the same sign orbit each other
about their centre of mass at a fixed distance with angular velocity w = I'/wd?. The
unbounded three-vortex system is unusual, since, by the standard analysis of Hamil-
tonian systems [136], it is a three-body problem which is integrable. It also holds a
particular level of significance because it is the minimal system capable of generating
new length scales, purely through its own internal motion — clearly there is some
analogy with the wavenumber triads in the Navier-Stokes equations. It was solved
by Novikov for three identical vortices [144], and generalised to arbitrary charges by

Aref [145]. For four vortices or more, the system exhibits chaos [136].
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2.10.1 Bounded Domains

The linear nature of the point-vortex problem makes it easily extendible to problems
in bounded domains D. Since there is no viscosity, instead of the no slip condition,
continuity only requires that the normal component of the velocity field must vanish

on the boundary

A

n
oD

= 0. (2.120)

Since the stream function satisfies Laplace’s equation V2 = 0 away from the vortex
points, this permits use of the method of images, as is used in classical electromag-
netism [146]. Provided one can find any solution that satisfies the boundary condi-
tion 1/1‘817 = const., Laplace’s equation guarantees it is the unique solution. One can
therefore find the stream function solution by introducing “imaginary” image charges
outside the domain in order to enforce the boundary conditions. Note that introduc-
ing these images does not introduce additional degrees of freedom; their positions are

always completely determined by the positions of the real vortices.

Circular Domain

One of the simplest bounded geometries is a circular domain of radius R (this system

relevant to Chapter 4). Here the boundary conditions for a single vortex of strength

I'; at x; can be satisfied by placing an image vortex of strength I'; = —I'; at the
position
R2Xi
X; — . 2.121
i = (2.121)

Generalising to an arbitrary number of vortices this gives the Hamiltonian

Xz_

(2.122)

+—ZZFF1 ‘

:——ZZFF 111

i J>0

and the equations of motion

Z 1 T [~y 1 T (-5
ey N+ - : (2.123)
Yi j i Tij i g xij

where 7;; = x; — x;, etc., and 7;; = ifj + gjfj
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Doubly Periodic Box

The doubly periodic domain, side length L containing a neutral distribution (3>, I'; =
0) of N point vortices, is of interest for making connections with homogeneous tur-
bulence (Secs. 2.6 and 2.7), and is relevant in Chapters 4 and 6 of this work.!® In
this system one must evaluate the doubly infinite sum over all periodic image vortices
(which here have the same sign as the real vortices) to determine the properties of the
basic cell. Although no closed form can be obtained in terms of elementary functions,
Weiss and McWilliams [148] have shown that one of the infinite sums can be done

analytically, such that the Hamiltonian can be written as

Hy =) i I,T; h<2”(rL_rf)> (2.124)

where the vortex pair energy function is given by

hz.y)= . - (2.125)

m=—0oQ

= [COSh(xCESiT% cos(y)] 22

giving the equations of motion®’

—bln(y”)
'i 1 ’ © cosh(xz  —2mm)—cos(y} )
( ) TR Tty (2.126)
yz j m=-—00 COSh(yij —27m)— cos(;rgj)

where (x7;,v;;) = 27(2ij, yi;)/ L, and the infinite sum over m is the sum over the re-
maining infinite strips in the unsummed (y-)direction. Due to the hyperbolic cosine
in the denominators, the infinite sums are rapidly convergent and the replacement
Y — > _ . is usually sufficient. Note that the asymmetry in h(z,y) is only
apparent, and is due to the arbitrary choice of which direction is summed over ana-
lytically; it can be shown that h(x,y) is invariant under the exchange x = y, as is
expected from the symmetry of the domain (Ref. [148] provides a clear derivation and
explains this in detail). Campbell and O’Niel [147] provide an alternative expression

for the Hamiltonian, which is equivalent to Eq. (2.124) apart from a constant shift.

8The more physical system of a (hard-walled) square region can also be understood in terms
of a periodic system four times as large, constrained to have a four-fold rotational symmetry, see
Ref. [147].

191f the prefactor of 1/2L seems odd, note that truncating the sum at m = 0 and expanding to
second order in xj; and y;; recovers the equations for the unbounded domain (Eq. (2.111)).
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2.10.2 Novikov’s Point-Vortex Spectrum

The kinetic energy spectrum for a system of point vortices was first considered by
Novikov [144]. Here it is more convenient to work with the vorticity field, and recall

from the incompressibility condition that

B() = L (ugop) = 1 90, (2.127)

For the point vortex system, we have
H(K) = (27)7! / d?x w(x)e ™% = (27) 71 Y Teixe (2.128)

which yields

B

(10 = (2r)°? (LT (z r5>

= {Z I2+2> T.Tscos(k- Xaﬁ)] (2.129)
a<f

where x,5 = X, — x3. Evaluating the angular integral, we obtain the kinetic energy

spectrum:

E(k) = 1}{ [Z IZ+23%T rﬁJo(mﬁ)] (2.130)

a<p

where 125 = (2o — 23)* + (Yo — y5)°. In the point-vortex model, the kinetic energy
spectrum is thus determined by the interference of Bessel functions, whose oscillations
depend on the distribution of the intervortex distances. The intervortex distances
can therefore be considered the active scales of the motion. Aref [142] notes that
the spectral formulation in the point vortex system is a bit of an “afterthought” in
the sense that the only real reason to adopt a spectral formulation for the point-
vortex system is to attempt to make connections with the continuum theory. Here
the spectral formulation somewhat clouds interpretation, since the original simplicity
of the model arises from being able to deal directly with the vortex positions. The
parameter k& only appears as an additional and somewhat redundant parameter, and
we are ultimately stuck with an expression that explicitly contains the intervortex
distances 7,3. Possibly for this reason, in comparison with the other elements of the
point-vortex model, the spectral formulation remains relatively unexplored [142, 149,
150].
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2.10.3 Statistical Mechanics of the Point-Vortex System

Since two-dimensional, freely evolving flows at large Reynolds numbers are character-
ized by approximately constant energy, unlike three dimensional flows they invite a
statistical mechanics treatment. Via the point vortex model, Onsager [151] offered a
statistical mechanical explanation for the spontaneous formation of large scale struc-
tures. He realized that the unusual nature of the canonical coordinates results in a
bounded phase space whenever the vortices are confined within a spatial boundary,
and this bounded phase space has profound consequences on the statistical mechanics
of the system. The volume of phase space occupied by states that have an energy

below or equal to some value £ may be written as
B(E) = /d2x1 o dPxNO(E — H(xy,...xx)) (2.131)

where we have used the Heaviside step function ©(z) to pick out all values of H
below or equal to €. The function ®(€) is everywhere positive and monotonically
increasing, with lower and upper bounds ®(—oc) = 0, and ®(c0) = AV respectively,
where A is the volume of the bounded domain and N is the number of vortices. This
behaviour is in stark contrast with most systems, where ® diverges as £ — oo. The

number of states at some energy &£ is then given by
W(E) = (&) = / &x, ... dxn0(E — H(xi,...,xy)) (2.132)

and is everywhere positive. As a consequence of the finite phase-space volume, W
must reach a maximum at some finite value, £ = &,,, because it must tend to zero
for £ — +o0, where & — const. Recalling the familiar thermodynamic formulae for

the entropy and temperature

1 05 1 (oW
s 1o () ow(®),, e

it follows that T" must be formally negative for £ > &,,. With remarkable foresight,
Onsager deduced that [151]:

“If T' < 0, then vortices of the same sign will tend to cluster, — preferably
the strongest ones —, so as to use up excess enerqy at the least possible
cost in terms of degrees of freedom. It stands to reason that the large com-
pound vortices formed in this manner will remain as the only conspicuous

features of the motion; because the weaker vortices, free to roam practi-
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cally at random, will yield rather erratic and disorganised contributions
to the flow.”

It is worth reiterating that while the vortex clustering is associated a preferential
transport of energy to large scales and formation of a spectral condensate, it is not
necessarily associated with an inverse energy cascade. The statistical mechanics of the
point vortex model only explains self-organisation, which occurs both in the forced
and decaying scenarios. In the decaying scenario there is no inverse energy cascade,
even though energy is still preferentially transported to large scales through vortex
merger, eventually causing a macroscopic population of energy in the lowest k£ mode.
The inverse energy cascade is a possible mechanism by which the system can try to
achieve the spectrally condensed equilibrium, but it is a special state exhibiting scale
invariance, constant flux, and approximately local spectral transport, and relies on
continuous forcing.?

The statistical mechanics approach initiated by Onsager has contributed signifi-
cantly to the understanding of the equilibrium end states of decaying 2D turbulent
flows. In particular, considering neutral vortex configurations for vortices of equal
magnitude, Joyce and Montgomery [152, 153] derived a nonlinear, mean-field “sinh-
Poisson” equation for the streamfunction based on a maximum entropy principle.
Remarkably, the Montgomery-Joyce approach was found to agree with the long time
dynamics of Navier-Stokes simulations, even for only moderate Reynolds numbers of
Re ~ 1000—10000 [154]. The approach was generalized to arbitrary charges (relevant
to the full Euler equation) by Miller [155] and Robert and Sommeria [156]. For a
detailed discussion of the statistical mechanics approach we refer the reader to the

review by Eyink and Sreenivasan [143], and references therein.

2ONote that Kraichnan [119, 141] did however use the argument of negative temperatures to
justify the flux direction for the inverse energy cascade. Instead of point vortices, he analysed the
equilibrium states of the Euler equation in a truncated Fourier series. Whereas the point-vortex
model exhibits negative temperatures for large values of E/N (the energy per vortex), he showed
that the truncated Euler equilibria exhibit negative temperatures for large values of E/Q). These
equilibrium states exhibit a pile up of the energy at the low wavenumber cutoff, and a pileup of
enstrophy at the high wavenumber cutoff.



Chapter 3

Quantum Fluids and Quantum
Turbulence

This chapter introduces the relevant background on quantum fluids and quantum tur-
bulence. The basic properties of the Gross-Pitaevskii equation and its hydrodynamic
formulation, quantum vortices, and vortex dynamics are covered. While 2D quantum
turbulence itself is a relatively new field, much of the relevant underlying physics of
quantum vortices has been well studied, and some of the knowledge about 3D quan-
tum turbulence in superfluid helium provides useful guidance. Towards the end of
the chapter, the recent developments in the studies of wakes, cascades and negative
temperature equilibrium states are reviewed, to provide motivational context for the

original work presented in the subsequent chapters.

3.1 Gross-Pitaevskii Equation

Below certain critical temperatures, liquid helium and other substances comprised
of particles obeying Bose statistics undergo Bose-FEinstein condensation, in which a
macroscopic population of particles condenses into the quantum mechanical ground
state of the system. Provided the system is well below the critical temperature,
and not too strongly interacting, one can model a dilute gas Bose condensate via the
Gross-Pitaevskii equation (GPE) [40], which describes the evolution of the condensate

order parameter or condensate wavefunction ¢ (x,t)

2172
Z,7181/1(:&,15) _ Y

ot V(1) + gl | Ui, 1). (3.1)

95
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Here m is the atomic mass of a constituent particle, and V' (x, ) embodies any external
potentials. The nonlinear term arises from assuming two-body interactions mediated
via a delta function pseudo-potential, where the interaction parameter

Arh2ag
g =

— (3.2)

characterises the strength of the two-body interactions in terms of the s-wave scatter-
ing length as. The energy of the collisions involved is assumed to be sufficiently low
that only s-wave scattering processes occur within a partial waves expansion [157].
It is often convenient to introduce the GPE operator

£ = |V v 1)+ gl 33)

such that the GPE may be more succinctly written as

Loy
zha = L. (3.4)
There are a number of ways to arrive at the GPE: it can be derived by factorising
the full many-body wavefunction into a product of single-particle ground states [157],
or, alternatively, it can be derived within the framework of second quantisation by
replacing the quantum field operator with its expectation value in its Heisenberg equa-
tion of motion [158]. This amounts to assuming that the occupation of the system
ground state is sufficiently large that quantum fluctuations can be neglected. There-
fore, despite the explicit appearance of Planck’s constant A in the Gross-Pitaevskii
equation, it is in fact a (semi) classical, mean-field equation. It has precisely the same
form as the nonlinear Schrodinger equation used to study other nonlinear wave phe-
nomena, for example, ocean waves and optics in nonlinear materials, and the “rogue

waves” that appear in these systems [14].

Dilute Atomic Bose-Einstein Condensates

The Gross-Pitaevskii equation is a zero temperature, classical field theory for a Bose-
Einstein condensate, valid for low temperatures, weak interactions, and reasonably
large condensate atom numbers [33]. As dilute atomic BECs satisfy precisely these
assumptions, they are extremely well described by the GPE at sufficiently low temper-
atures and high condensate atom numbers, where condensate fractions of ~ 99% are

typical [157]. While in atomic gases as can be either positive (repulsive) or negative
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(attractive) depending on the atomic species, we will only focus on the case a; > 0
throughout this thesis. It is difficult to overstate the success of this model in describ-
ing atomic condensates: it correctly captures many aspects of condensate dynamics,
such as collective oscillations, vortex lattice formation, and soliton dynamics (see,
e.g., Ref. [157]). While corrections are needed to incorporate the physics of higher
temperatures, or quantum effects in smaller condensates, in this thesis we happen
to be interested in physics where the conditions of low temperature and large atom

numbers are required, such that the GPE should be a sufficiently accurate model.

Superfluid Helium

The Gross-Pitaevskii equation was in fact first derived as a model to better under-
stand superfluid helium [159], and it is still used as a model of superfluid helium,
particularly for physics involving vortex dynamics. However, since the GPE assumes
only two-body interactions it is only a qualitatively accurate model of superfluid he-
lium, which only has a condensate fraction of about 8%, even when the superfluid
fraction is near unity [160]. This severe quantum depletion is due to the presence of
strong interactions. Nonetheless it can be a very informative model for vortex dynam-
ics and quantum turbulence in *He for temperatures < 1K, below which the role of the
normal fluid component becomes negligible at normal pressures [40, 161]. Here the
main advantage of the Gross-Pitaevskii equation is that much of the essential physics
is contained within it, including superfluidity, vortex nucleation, vortex reconnection
and annihilation, and sound wave propagation. However, the Gross-Pitaevskii equa-
tion does not capture all the physics in superfluid helium; a well-known feature it
fails to capture is the so-called “roton” minimum in the excitation spectrum [162].
Furthermore, being a cubic nonlinear equation, it can be quite demanding to sim-
ulate numerically for large systems. Turbulence in superfluid helium is therefore
also typically studied by a number of other phenomenological models, such as vortex
filament models [38], semi-classical, two-fluid models like the Hall-Vinen-Bekharivich-
Khalatnikov (HVBK) equations [64] or modified Gross-Pitaevskii equations [66]. The
Gross-Pitaevskii equation is also used as a phenomenological guide to investigate vor-
tex dynamics in neutron stars, despite these systems being fermionic, relativistic, and

strongly interacting [36, 37).
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3.1.1 Integrals of Motion

The condensate wavefunction is normalised to the total number of atoms

/dx|¢(x, H2 = N, (3.5)

and the total energy is given by

e [ar{ g TUt Ol + Vosluel + Sl (6o)

where the terms are the kinetic, potential, and interaction energies respectively. The
particle number N is conserved by the dynamics, and £ is conserved provided the

external potential is time independent.

3.1.2 Time Independent GPE

Like the Schrodinger equation, the Gross-Pitaevskii equation allows stationary solu-

tions of the form 1 (r,t) = 1)(r)e”**"  yielding the time-independent equation

h2V?
T om

+ V(%) + gl (x)* — p| ¥(x) =0 (3.7)

where the energy eigenvalue now instead the pu is the chemical potential. In a uniform

system with V' (x) = 0, the solution is ¢ = ng/?

, where nyq is the constant background
atomic number density, and hence chemical potential has the value y = ngg. Since the
time dependence of such nonlinear eigenstates is only a global phase, it is often useful
to remove this trivial time dependence from the stationary solutions by working in a
frame rotating with the chemical potential i, redefining the time-dependent equation

as

272
m@@b(x,t) _ |V

ot 5 TV 1) + gl OF = pl v(x, 1), (3.8)

3.1.3 Thomas Fermi Approximation

As a nonlinear partial differential equation, the GPE is not, in general, particularly
analytically tractable. However, for condensates containing a large number of atoms,
the interaction term can dominate over the kinetic energy term, and an approximate

solution to the time independent equation can be obtained by dropping the kinetic
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energy operator. This yields the solution

b(x) =y ——— V(x)<np (3.9)

and ¢(x) = 0 otherwise. For the common case of a harmonically confined condensate
with .
Vi(x) = §mw2r2 (3.10)

the density reaches zero at the Thomas-Fermi radius

Ryp = (3.11)

mw?’
but the definition naturally applies to any trapping potential. For the case of a

repulsive Gaussian obstacle
V(x) = Vpexp(—r?/o?) (3.12)
in an otherwise uniform density system, the radius of depletion
a=om(Vo/w)'"?, Vo>, (3.13)

is a measure of the size of the density hole produced. We will find this parameter

useful when studying the transition to quantum turbulence in Chapter 5.

3.1.4 Harmonic vs. Hard-Wall Trapping Potentials

Although the harmonic trap has been the workhorse potential for BECs since their
first realisation [57, 58, 163], such confinement is highly undesirable for studying quan-
tum turbulence [164]. The inhomogeneous density profile from such confinement is
rather unique to BECs, and somewhat irrelevant for the practical situations of inter-
est. Parabolic density profiles are not particularly relevant in, for example, superfluid
helium or classical fluid turbulence. The harmonic density profile also introduces an
additional degree of complexity to a problem that is in many respects already too
difficult to solve: the turbulence in such an environment cannot be approximated as
isotropic or even homogeneous, apart from within a very small region within the cen-
ter of the system. Furthermore, some of the more interesting features of 2D quantum

turbulence also happen to be completely destroyed by a harmonic confining potential
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Figure 3.1: Image adapted from Gauthier et al. (2016), Ref. [71]. Artistic impressions
of Bose and Einstein, within a nearly pure, and otherwise uniform Bose-Einstein
condensate of N = 5.2 x 10° 8Rb atoms. Dark regions correspond to a low optical
density, i.e., regions containing fewer atoms.

(see Sec. 3.9). Fortunately, hard-wall trapping potentials have been recently demon-
strated experimentally [70]. Furthermore, techniques using time-averaged “painted
potentials” [165], and digital micro-mirror devices [71], allow trapping potentials of

virtually any desired geometry to be created in a 2D plane (see Fig. 3.1).

3.1.5 Quasi-2D Systems

If the condensate is strongly confined in the z-direction, a quasi two-dimensional sys-

tem can be created. Consider for example the common case of harmonic confinement

1
V(x) = 5m(w3r2 + w?2?), (3.14)
with hw, > hw,. Provided hw, is much larger than any other characteristic en-
ergy in the problem, then in the z-direction, the system becomes “frozen” into the
harmonic oscillator ground state ¢(z), and one may thus write (x) = ¥ (x,y)p(z).
The z-direction dependence can then be integrated out, yielding an effectively two-

dimensional description. Integrating out the z-dependence is equivalent to making
the replacements g — g/+v/2xl, where [, = \/h/mw, is the harmonic oscillator length
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in the z direction, V* — 9% + 35 and p — p — hw,/2. The work in this thesis is
conducted exclusively within this quasi-2D framework. While assuming this kind of
tight confinement is a useful theoretical simplification, note that it is not required
to achieve effectively two-dimensional vortex dynamics. It is only required that the
axial dimension is comparable to the characteristic size of a vortex [, ~ &, such
that excitations along the vortex lines (Kelvin waves), and vortex reconnections are
suppressed [166] (see also Secs. 3.4.1 and 3.6.1). The case of strict two-dimensional
confinement will result in a greater importance of phase fluctuations, which can de-
stroy the phase coherence of the BEC [167].

3.2 Quantum Hydrodynamics

3.2.1 Hydrodynamic Formulation

By the standard polar representation of complex numbers, the wavefunction can be

Y(x,t) = y/n(x, 1)l (3.15)

where n(x,t) and 0(x,t) are real scalar fields, which physically correspond to the

written as

atomic number density and phase, respectively. In the context of Schrodinger-like
equations, this transformation is often referred to as the Madelung transformation.
Through this transformation, the Gross-Pitaevskii equation can be cast into hydro-

dynamical form. Firstly, by inspecting the probability current

. Zh’ * *
j(x,t) = 2 (VVY* —p"V) (3.16)
m
we find from the Madelung transformation this can be written as j = nu, where

u(x,t) = —Vo(x,t). (3.17)

h
m
Clearly, the phase acts as a velocity potential, and it follows that the flow must have
zero curl everywhere within the fluid interior. Inserting Eq. (3.15) into Eq. (3.8),

gathering the imaginary terms yields the mass continuity equation

?;Z + V- (nu) =0 (3.18)
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and the real part yields the quantum Euler equation

ou 1
mo = -V <5u + Zmu ) : (3.19)

which clearly resembles Newton’s second law for a conservative system in which
2
2m~/n

measures the change in the chemical potential relative to the groundstate value,

St = Vet + gn — VA — (3.20)

behaving as an effective potential. The term involving the Laplacian is inherently
quantum, and is called the quantum pressure. Introducing the mass density p = mn,

we can expand the Euler equation to give a more familiar form [cf. Eq. (2.1)]!

aui
P ( ot + (Ujaj>uz‘> = —0ip+ 0;%; + fi (3.21)

where we have once again opted for index notation with the Einstein summation

convention over repeated indices. Here

1gp?
= —— 3.22
P 2 m2 ( )
is a “classical” pressure,
fi=—Lov (3.23)
m
is an external forcing term, and
I

is the quantum stress tensor. The Gross-Pitaevskii equation thus describes the evo-
lution of a perfect (inviscid), compressible fluid [Egs. (3.21) and (3.18)]. Notice that
the diagonal elements of the quantum stress term (the quantum pressure) serve to
prohibit rapid variations in the density. The off-diagonal elements of the quantum
stress (shear stress) allow for the production of shear from density gradients. In con-
trast to a classical Euler fluid, the quantum stress therefore allows for the possibility
of vortex formation and drag even though there is no viscosity [compare Egs. (3.24)

and (2.4)]. However, being proportional to V In p, the quantum stresses only become

'Recall V(u-u) =u-Vu+ux (Vxu).
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significant when both the density becomes comparatively small to the background
value, and density gradients become quite rapid. Much like viscosity, the quantum
stress is therefore most important near obstacles, boundaries, or density shocks. If
it were not for the quantum stress, the BEC would be a simple barotropic fluid since
the pressure would be only an algebraic function of the density: p = p(p). However,
for the full equation of state p 4+ pg = 39(p/m)? — (h/2m)?p (%2) In p, although the
pressure is still uniquely related to the density, it is now related through a differential

rather than algebraic equation [66, 168]%.

3.2.2 Healing Length

Consider a semi-infinite system confined by an impenetrable barrier for z < 0. By

symmetry, the Gross-Pitaevskii equation is reduced to the one-dimensional problem

n? d

—%@‘FQW((TW—N P(z) =0, (3.25)

subject to the boundary conditions (0) = 0 and ¢ — /ng as © — oo. A straight-

forward calculation yields the solution

bla) = /g tanh(a/€) (3.26)
where 5
£ = T (3.27)

is called the healing length. The healing length defines a fundamental length scale
in this quantum fluid, and can be considered the “minimum” relevant length scale
over which the condensate wavefunction may vary. It is equally valid to consider
the healing length as being a characteristic length scale at which the kinetic energy
term (quantum pressure) will reach a similar order of magnitude as the repulsive

interactions:

h2
29, 5/2

such that it becomes energetically unfavourable to lower the density by generating

~ Mg, (3.28)

spatial variations of order & or smaller, because the energy cost of creating such
fluctuations outweighs that of a smoother profile with a larger interaction energy. It

is common to define £ as the healing length in the literature, giving an extra factor

“Note that in d dimensions, the Laplacian in the pg term will be %2.
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of 1//2, but we will use &, Eq. (3.27), throughout this thesis.

3.2.3 Speed of sound

Suppose we have a uniform system, which, at hydrostatic equilibrium has the solution
Y = /ng. Now, suppose we disturb the equilibrium with a small, time-dependent
velocity field du(x,t), which creates small density and pressure fluctuations so that
p = po+ dp and p = py + Ip respectively. Expanding to first order in u, dp, and dp,
Egs. (2.5) and (3.21) become

1
Wo_ G D1

io\2 ,
= . 92
o p0v5p+ <2m> V(V26p) (3.29)

Taking the time derivative of the first and making use of the second gives an equation

for dispersive density waves

2 2
0*dp _ (pog) V25 — (;J Visp (3.30)

ot? m2

where Eq. (3.22) has eliminated the pressure in favour of the density. Assuming
plane wave solutions of the form §p = € cos(k-x —wt), ¢ < 1 we obtain Bogoliubov’s

dispersion relation

(3.31)

e(k) = hw(k) = lhzkz <h2k2 + ongﬂm.

2m 2m m

Clearly the dispersive effects only become noticeable for wavelengths k ~ ¢-1. If

k& < 1, we obtain an ordinary wave equation

0%6p
ot?

is the speed of sound. Eq. (3.33) can be equivalently expressed as in terms of the

= *V?6p, (3.32)

where

thermodynamic relation ¢ = (Op/dp)s, where, as usual, the subscript indicates that

the derivative is taken at constant entropy S. In this limit it is therefore permissible
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to define the isentropic compressibility

1 1 g
Bs=—=—==. 3.34
poc?  gng  p? (3:34)
A straightforward calculation from the ideal gas law yields 8, ~ 107> Pa™' for air,
whereas for water it is of order 107° Pa™' (inverse of bulk modulus). In a typical
BEC experiment using 8"Rb, where m ~ 1072° kg, ¢ ~ 1072 ms™!, and n ~ 10%
m~2, yields Bg ~ 10" Pa~'. As we might expect from a dilute Bose gas, it is very

compressible.

3.2.4 Superfluidity

Quantum fluids like He-II and atomic BECs exhibit superfluidity; below a certain
critical velocity, the flow is perfectly frictionless, and an obstacle can move through
the fluid unimpeded. This can be understood in terms of a simple argument given
by Landau. Imagine an impurity of mass M (suppose it is a stirring cylinder) travels
through the fluid with some initial velocity wu;. If the impurity creates an excitation
of the fluid of energy Aw(k) and momentum £k, this leaves the impurity with a final

velocity uy. The process must conserve energy

1 s 1 2
QMui = §Muf + hw (3.35)
and momentum
Mu; = Muy + hk. (3.36)

Combining these equations and completing the square gives

h2k?

and if M is very large or k is small, we may reasonably neglect the last term. Hence

excitations cannot be created unless

k-uz» (,LJ(k)
‘ > == (3.38)

and we thus arrive at the Landau criterion for the critical velocity

u, = min (‘”2‘)) . (3.39)
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Recalling the dispersion relation from Sec. 3.2.3

) = oty = [ 1282 (2 200

2m 2m m

we find the minimum value occurs in the limit £ — 0, yielding u. = ¢, or Ma, = 1.
Hence, unless the velocity exceeds the speed of sound, a Bose condensate will exhibit
superfluidity; no excitations of the fluid are permitted, and hence no reaction force
can be exerted on the obstacle. Notice that the interactions of the Bose gas play a
central role here — without the interatomic interactions, the spectrum would not be

linear at low k, and thus the critical velocity would instead be u,. = 0.

3.2.5 Effectively Incompressible Flow

It is immediately evident from Eq. (3.18) that, unlike Eqs. (2.1) and (2.2), we are
dealing with a compressible and not an incompressible fluid. In fact, we found in
Sec. 3.2.3 that the dilute Bose gas has a compressibility that is orders of magnitude
greater than air. However, all compressible fluids can achieve incompressible flow
(that is V - u = 0) to a very good approximation, provided certain conditions are
satisfied.

Suppose a steady flow is produced by an obstacle, of characteristic dimension
D > &, travelling through a large body of the fluid with a constant velocity wu.
With the exception of a thin region of width ~ ¢ in the immediate vicinity of the
obstacle, the quantum stress may be neglected, and the hydrodynamic equations can

be reduced to the form
1
V- (pu) =0, (u-V)u= —;Vp. (3.40)

From the continuity equation we then obtain

Vou- —;(u~V)p, (3.41)

and using Eq. (3.22), we may write Vp = ¢*Vp, where c is the speed of sound, giving

v.u:_i(u.v)pzm

p (3.42)

c2



3.2.  Quantum Hydrodynamics 67

Using the Schwarz inequality

2
s < (xa) (e, (3.43)
we obtain
- (- V)ul < [uffu- T < [ul oV, (3.44)
where |Vu| = /3, 3,(9u;)? is the 2-norm of the velocity gradient tensor. We arrive
at the condition
|V -u| < Ma?|Vu| (3.45)
where
Ma = - (3.46)
c

is the Mach number [169]. By Eq. (3.45), it is conventional to define flows as incom-
pressible when Ma < 0.3, such that Ma® ~ dp/p ~ dp/p < 0.1. If the flow speed u is
everywhere much less than the speed of sound ¢, then the flow will be effectively in-
compressible. Although here the quantum pressure has been neglected, this classical

estimate should nonetheless serve as a decent guide.

Importantly, however, this proof is only valid for steady flows. In unsteady flows
an additional condition must be fulfilled, and an order of magnitude estimate can be
obtained via dimensional analysis as follows [105]. Suppose the flow is characterised
by a velocity scale U, length scale L and timescale 7, and that the terms du/0t
and Vp/p are of comparable magnitude. Then U/7 ~ dp/pL, or, equivalently, dp ~
pLU/7 and hence, via Eq. (3.22) dp ~ pLU/7c*. We find then from the continuity
equation that dp/0t may be neglected when dp/L < pU/L, or equivalently

7> L/c. (3.47)

The interpretation of Eq. (3.47) is that the time taken, L/c, by a sound signal to
travel the distance L must be much smaller than the characteristic time 7 of the flow
over which “significant” changes take place. Effectively, the fluid must be able to
transmit the information of a spatially localised disturbance instantaneously — which
is precisely what we found for the incompressible Navier-Stokes equations Eq. (2.1).
In the following sections, we will see how and when these conditions are satisfied in

the presence of quantum vortices, and therefore in quantum turbulence.
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3.3 Quantum vortices

Having learned that the GPE describes the evolution of a quantum fluid, we might
naturally ask whether this fluid can support vortex solutions. This motivates us to

look for cylindrically symmetric stationary solutions of the form

D(x,t) = ng>xq(r/€)e'. (3.48)

We require g to be an integer quantum number, otherwise the wavefunction would
not be a single-valued function, and hence not yield a unique probability amplitude.

An immediate consequence is that the circulation is quantized:
h
F:}z{wdl:q—; g€ (3.49)
m

as was first appreciated in the context of superfluid helium by Onsager [151] and
Feynman [170]. The quantum number ¢ is often referred to as the charge of the
vortex. Clearly, the velocity field of an isolated quantum vortex is precisely that

produced by a point-vortex of integer circulation,

u(r) = <h> 14 (3.50)

r

where gg is the azimuthal unit vector. Naturally, the velocity field satisfies the in-

compressibility condition V - u = 0. The vorticity field is thus

_¢h

m

w(x) (x). (3.51)

Remarkably, vortices in a quasi two-dimensional condensate actually are point vor-
tices, albeit a slightly modified manifestation. The difference, of course, is contained

within the density envelope determined by x,.

3.3.1 The Structure of the Core

In terms of the scaled coordinate o = r/&, exploiting the cylindrical symmetry we

find that the vortex core function x,(c) must satisfy

1 9 ¢
—<8§+0— )Xq+xg—xq:0 (3.52)

o2
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along with the boundary conditions

Xq(0) =0, (3.53)

Xq — laso — oo, (3.54)

such that the boundary condition at the origin regularises the infinite kinetic energy
associated with the velocity field. Although this nonlinear boundary value problem

must be solved numerically, the core function has the following useful asymptotic

forms:3
(0) ~ Jy(v/30) o 7\’ < (3.55)
o)~ o) x — | —= o :
Xq q q' \/§ q
7 \2
Xo(0) ~1— () o> q (3.56)
20
In practice, it turns out that only the singly-charged (|g| = 1) core solutions are

stable [171, 172]. Vortices of higher charge disintegrate into an appropriate number
of single-charge vortices (i.e. a number that conserves their total charge), apart from
in certain cases where the confining potentials can be modified to stabilise them [172].
The singly-charged solutions on the other hand, are stable topological phase defects,
and, since there is no viscosity, they cannot decay via viscous diffusion. The only
relevant solutions for the study of quantum turbulence is thus the case |¢| = 1. For

an isolated, singly-charged vortex, the ansatz

o

X(0) =x1(0) ~ g

is a fairly decent approximation, and has the correct asymptotic behaviour [173]. The

(3.57)

value p
A I

_ — 0.82475449 . . . (3.58)
do

o=0
determined from the full numerical solution, ensures that the ansatz has the correct
asymptotic behaviour. The first four solutions to Eq. (3.52), and a comparison of the

g = 1 solution with its corresponding ansatz [Eq. (3.57)], are shown in Fig. 3.2

3For small ¢ where the wavefunction must go to zero, the nonlinear term may be neglected,
reducing (3.52) to Bessel’s equation. The solutions consistent with the boundary condition at the
origin are the Bessel-J functions. For o > ¢, the derivatives can be neglected.
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Figure 3.2: (Left) The first four solutions to the vortex core equation (3.52). (Right)
The solution for ¢ = 1 compared with the ansatz, Eq. (3.57). The inclined line has
slope A = 82475449 . ... The vertical line is at o = 27, which serves as a convenient
reference point for distinguishing regimes of the core and the far-field. Solutions were
obtained by using a pseudospectral method, using the rational Chebyshev T'L,(r)
basis for the semi-infinite interval, and a Newton-Raphson iteration scheme, see, e.g.
Ref. [174].

3.4 Vortex Dynamics

3.4.1 Conservative Dynamics

Equation (3.50) strongly suggests that the vortex dynamics in a compressible Bose-
Einstein condensate may be equivalent to the point-vortex model under certain con-
ditions. Indeed, this can be shown in the limit of a dilute vorter gas, namely, in the
limit where the intervortex distance ¢ > &, such that vortex cores are well-separated
and the motion of the vortices is adiabatic. We additionally require that the char-
acteristic axial scale [, < &, so that the vortices may be approximated as rectilinear
(Sec. 3.1.5). As pointed out by both Pismen [175, 176], and Fetter [177], the recovery
of conservative point-vortex dynamics is essentially a consequence of symmetry. The

Gross-Pitaevskii equation is invariant under the Galilean transformation
X — X — ut, V=V, o — 0 —u-V; (3.59)

¢ — Yexpli(mu - x — smut)/h). (3.60)

Since this transformation does not affect the modulus of the wavefunction, the sta-
tionary vortex solution thus remains symmetrical and stationary in the moving frame.
Furthermore, the effect of Egs. (3.59) and (3.60), aside from the unimportant global

phase factor, is exactly the same as that produced by a uniform phase gradient
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1 — e’ > Hence, subject to such a phase gradient, a vortex is only rigidly trans-
lated at the local velocity u = (A/m)V#@. It follows that in a slowly varying phase
field, which can be approximated as constant across the vortex core, a vortex will
simply be advected by the local superfluid velocity. This is precisely the kind of phase

field produced by well-separated quantum vortices.

Nonetheless, detailed proofs have been given by a number of authors [178-184].
The early proof by Fetter [177] is particularly nice, and for completeness we out-
line it here. The idea is simple; propose a suitable ansatz and show that it satisfies
the Gross-Pitaevskii equation, namely, show that the left and right hand sides are
equal. Introducing the convenient set of relative coordinates p; = r —r;, with compo-
nents (p;, ¢;), we suppose that the wavefunction is well-approximated by an ansatz

constructed from a product of individual vortex solutions

Y(r,t) =ngy’ ng(r) = ng/? {H Xj(P/f)] exp (Z %‘%‘(r)> (3.61)

where we have introduced the shorthand notation g;(r) = g(r —r;). Here x;(p/§) =
X(p;j/€) is the solution to Eq. (3.52) and ¢,(r) = atan[(y — y;)/(x — x;)] is the
polar angle about the jth vortex. The phase — which satisfies Laplace’s equation
V20 = 0 away from vortices and hence admits superposition — is exact, whereas the
approximation of the density is valid provided r;; > &, such that the vortex cores do

not overlap appreciably [185]. Evaluating the time derivative of the ansatz gives®

d(r, 1)
ot

th

. 0
= zhncl)/2 (H gj> > ! Ing(r —ry — ugt)
j k

t=0
= —ihn(l)/g (H gj) > u - Vingy. (3.62)
j k

At an arbitrary vortex, which without loss of generality we can choose to be k = 1,

this gives
— iﬁném (H gj) u; - Ving. (3.63)
J

Turning now to the right-hand side of Eq. (3.8), exploiting the property (£ —pu)gr = 0

4Note that 9; In g(h(t)) = Sél)zg%hgiaai? = é%(_ui) = —éVg-u, since gﬁj =0;; =

B9 _ 99
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allows one to write

(£ — (e, B)limo = (ng){ [z 1—X,€>2+<sz>_1”

k

- <hz> S (Ving - Ving) (3.64)

2m "

where the prime denotes the omission of the term & = [. In the vicinity an arbitrary

vortex (again e.g., k = 1), the square bracket can be expanded as

152 Z’ £( -2
- PrPL) (p1>¢)
1 [Z (1= xi)? (H Xk) - 1] e (3.65)
k 2m Z k(rlk> (:01 < f)
where as usual ry;, = |r; — rg| and we have used the asymptotic core properties in

Egs. (3.55) and (3.56) and the binomial expansion. Similarly, the term involving the

logarithms can be expanded as

- <h2> > (Ving: - Ving)

2m o
~ —ihVing -{ > V0k|r v+ (’)(5 /r3) (3.66)
k1 T
—I— - Z ZO 1/7‘1le1
M 2114

So the leading order term is

h
—ihVin g - E — V0| r=r, (3.67)
k21 T

and hence, comparing with Eq. (3.63), to lowest order,

Z Vi|eer,- (3.68)
m A

This reproduces the point-vortex equations [Eq. (2.111)], with leading corrections
being O(max |r;;|~?). Unfortunately this simple approach does not easily extend to
three dimensions, or to dissipative systems, but these cases can be approached using
a variational treatment [180, 181, 184] (see also Sec. 3.6.2). Turbulent flows in a
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quasi-2D Bose-FEinstein condensate are therefore a kind of point-vortex turbulence:

spatiotemporally disordered flows containing many point-like vortices of unit charge.

3.4.2 Incompressibility for Quantum Vortex Flows

Knowing how the dynamics of a configuration of quantum vortices behaves, we can
now address how the conditions for incompressibility discussed in Sec. 3.2.5 apply
to quantum vortices. It is clear that we must consider the velocity of the vortices
themselves, rather than the whole velocity field, since the latter diverges in the vortex
core, yet it remains incompressible. If we suppose that the vortex configuration is
characterised by some nearest-neighbour length ¢, and the vortices are on average
grouped into clusters of net charge ¢., then the characteristic velocity can be estimated
as u ~ q.h/ml ~ cq.l /€. The characteristic timescale is then 7 ~ £/u ~ ¢%/q.c. The
condition Eq. (3.47), then becomes

l
— > 1, 3.69
qc§ (3:69)
which is equivalent to
Ma, = ng <1 (3.70)

where Ma, is the superfluid Mach number:®> because of the very special relation be-
tween velocity and distance for quantum vortices, Eq. (3.70), Eq. (3.46) and Eq. (3.47)
are equivalent for a quantum fluid. Note that the factor of ¢. is important whenever
vortices are grouped into like-signed clusters, since the velocity field of the cluster

will behave as a vortex of charge ¢. at large distances.

3.5 Kinetic Energy Spectra

Connection to classical turbulence theory is usually made through the hydrodynam-
ical description. Once again making use of the Madelung transformation Eq. (3.15),
the 2D Gross-Pitaevskii energy Eq. (3.6) can be decomposed as € = Eg+Eo+Ey +&1,

SPismen [175] defines this parameter without the factor of g..
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where
En = %/dQX n(x, t)|u(x, )2, (3.71)
h2 2 2
Eo = %/d x [Wy/n(x, )2, (3.72)
& = /d2r n(x, )V (x,t), (3.73)
& = 2 / & n(x, )% (3.74)

Respectively, these define the hydrodynamic kinetic energy, quantum pressure energy,
potential energy, and interaction energy. The hydrodynamic and quantum pressure
terms originate from the kinetic energy term, and £x = &y + &g is the total ki-
netic energy. The hydrodynamic term Eg is then typically further decomposed into
incompressible and compressible parts via a Helmholtz decomposition, as was first
introduced in Ref. [59]. Since the density of the quantum fluid is not constant, one

defines a density-weighted velocity field

w = ,/pu, (3.75)

such that the hydrodynamic kinetic energy can be written as &y = 5 [ d®x |w(x)|?.

Then, writing w = w' + w¢, where
V- -w =0, V xw’ =0, (3.76)

one can evaluate the contributions due to the incompressible and compressible com-

ponents as
7 1 2 ) 2 c 1 2 c 2
5:§/dx|w(x>| £ zi/dx\w(xﬂ. (3.77)

The fields w? and w€ are easily calculated through the Fourier transform. In wavenum-

ber space, the conditions become®

k-w' =0, k x w° =0, (3.78)

6The singular point at k = 0, which satisfies both conditions, should be neglected since it only
corresponds to the mean flow.
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and introducing the incompressible and compressible projection operators”

Py (k) = (%‘ - k;) Qij(k) = kgj (3.79)

the components of the incompressible and compressible density-weighted velocity

fields are then given by
i (k) = Pagivp(k) e (k) = Qapip(k), (3.80)

where as usual summation over the repeated indices is implied. The incompressible
and compressible (total) kinetic energy spectra (c.f. Sec 2.7.3) are then defined in

the usual way:
| 1 o 1 e
Ei(k) = §/kd0k|w’(k)| Ee(k) = 5/kdek|w0(k)| . (3.81)

Notice that the density-weighted velocity field for a single quantum vortex is purely
incompressible:
V-w=p[x(V-u)+Vyx-ul =0. (3.82)

The first term vanishes by Eq. (3.50) while the second vanishes because the density
gradients and velocity field are always orthogonal. The incompressible part is thus
associated with quantum vortices, whereas the compressible part is associated with
acoustic excitations [173, 186]. In the low Mach number regime where the product
state Eq. (3.61) is a reasonable approximation to the wavefunction, the kinetic energy
is thus dominated by the incompressible component: £ ~ £'. As shown by Bradley
and Anderson [173], under such conditions the basic properties of quantum vortices
lead to a kinetic energy spectrum that is essentially a modified point-vortex spectrum.
The kinetic energy spectrum for the product state of the form Eq. (3.61) can be

written in the form

N+ quapo(krap) | (3.83)

POF2> G (KE)
a,B

B'(k) = ( A k

where the dimensionless function G (k) is an envelope function that incorporates

the contribution of the vortex core function x(r/£). The asymptotic scalings for

"Note these operators satisfy the usual properties of projection operators, namely completeness
Pi; + Q;; = 0;;, orthogonality P;,Qr; = 0 and idempotence P, Py; = Pij.
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x(r/€) yield the following asymptotic forms for G (k€)

Ga(ké) ~ 1 ke < 1 (3.84)

ke > 1 (3.85)

such that G, (k) serves to regularise the ultraviolet divergence of the self energy in
the point-vortex model, making the total energy a physically meaningful quantity.
For wavenumbers satisfying k¢ < 1, there is essentially no deviation from the point-
vortex model spectrum [Eq. (2.130)], because the density far from the vortex core is
uniform (Fig. 3.2), and the velocity fields of quantum vortices and point vortices are
identical [Egs. (2.110) and (3.50)]. In the region k§ ~ 1 (corresponding to o ~ 27 in
Fig. 3.2) the spectrum transitions from the point vortex spectrum to the vortex core
spectrum E'(k) ~ k=3 (see Fig. 3.3). The k™3 scaling is merely due to the shape of
the vortex core, and this region of the spectrum thus only depends on the number of
vortices rather than on any spectral transport processes.® It follows from Eq. (3.83)

that the vortex energy can be written as

Xa — X8

§

i pol? !
E=— > qagsIn + Feore- (3.86)
47 op

The spectrum Eq. (3.83) has been found to give very good agreement with nu-
merically calculated incompressible kinetic energy spectra, apart from in particularly
violent, high Mach number situations where the sound field is significantly excited [93,
173, 187-189]. Previously, an unfortunate setback was that Eq. (3.83) was unable
to be measured experimentally. Typical probing of atomic BECs is achieved via bal-
listic expansion and absorption imaging, which only provides density information,
thus only providing information about the vortex locations. The study in Chapter 4,
where an alternative route to attaining flow-field information is pursued, was partly
motivated by this problem. However, at the time of writing, an experimental method
for sign detection was demonstrated by Seo et al. [87], using Bragg spectroscopy.
Another method has also been theoretically proposed using gyroscopic vortex preces-
sion [77], but it has not yet been implemented successfully. Nonetheless, the method
we develop in Chapter 4 is not made redundant by these developments, as it happens

to provide different flow-field information, and is readily accessible by the common

8Note however that the k=3 core scaling is a universal feature of any nonlinear Schrodinger-like
equation, since it only depends on the linear Schrodinger behaviour near the vortex core.
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Figure 3.3: Images adapted from Bradley and Anderson (2012), Ref. [173]. [Left]
Incompressible kinetic energy spectra for a single quantum vortex using the full nu-
merical solution Gy (k&) (solid, blue), or the core ansatz Eq. (3.57) (red,dashed).
The k! and k=3 asymptotic spectra, obtained from the expressions Eq. (3.84) and
Eq. (3.85), are shown by the black and green lines, respectively. [Right] Comparison
of kinetic energy spectra for a single vortex (dash-dot line), a vortex dipole (solid
line) and a same-sign vortex pair (dashed line), as obtained from Eq. (3.83). Here
the vortex dipole and vortex pair have a spacing d = 20§, and the vertical dashed
line shows the wavenumber kq = 27/d. The core crossover scale k& = 1 is shown by
the vertical solid line.

method of ballistic expansion.

3.6 Non-Conservative Processes

3.6.1 Vortex Sound Interactions

At sufficiently high Mach numbers, compressible effects lead to a rich variety of
phenomena. For the incompressible subsystem of quantum vortices, these effects are

thus nonconservative processes, corresponding to external forcing and dissipation.

Radiation and Absorption

Clusters of same-sign vortices, which chaotically orbit around each other and therefore
are accelerating, radiate energy in the form of sound — there is obviously an analogy
to point charges in electromagnetism. Similar to an electric dipole [146], a single pair
of same-sign vortices is amenable to a detailed treatment, and it can be shown that
the power radiated per unit length by a pair of straight-line vortices, separated by a
distance 2a, is dF/dt = —J, where [38, 175, 190]

pL'”?

Ty (3.87)

J=
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which decays rapidly with the separation length. If the vortices are several healing
lengths apart, their self (core) energy does not change, so up to a constant the energy
of the pair is F = —(pI'?/47)In(2a/¢), and hence the equation of motion for the

separation distance a is
da  T¢!
dt  ad’

from which it follows that the separation of the pair asymptotically grows as a ~ t'/6.

(3.88)

For arbitrary vortex configurations, the leading order term for the power radiated in
the far field is proportional to the quadrupole moment of the configuration [175].
It follows that an isolated vortex dipole does not radiate,” and symmetric config-
urations, such as vortices placed evenly around a circle, will exhibit even weaker
radiation, dominated by the octopole moment at leading order. Furthermore, in
addition to radiation, vortices are able to absorb energy from the sound radiated
by other vortices. Such an effect was systematically studied by Parker et al. [193].
They showed that separated vortices in a double-well potential could exchange energy
with a high efficiency through sound wave interactions, in a mechanism they termed
“coherent cross-talk”.

Since in two dimensions the only radiation mechanism available is that embodied
in Eq. (3.87), we would expect that the ability for vortices to radiatively dissipate
energy will become considerably suppressed provided the characteristic inter-vortex
spacing is on the order of several healing lengths. The same conclusion could be
inferred from the findings of Lucas and Suréwska [182], who investigated compress-
ibility corrections to the point-vortex dynamics in a variational treatment of the 2D
Gross-Pitaevskii equation, and found surprisingly weak corrections due to compress-
ibility at leading order. This contrasts with the three-dimensional case, where helical
excitations along the vortex lines (Kelvin waves), and vortex reconnections open
more efficient channels for energy dissipation into the sound modes [38, 190]. Note
that Kelvin waves can become heavily suppressed, even for rather modest condensate

aspect ratios [166].

Dipole Annihilation

In an inviscid and incompressible or barotropic fluid described by the classical Eu-
ler equation, Kelvin’s theorem states that the circulation around any closed contour

following the flow is conserved. The appearance of the quantum stress in the quan-

9 Alternatively, a vortex dipole does not accelerate, and hence is a stationary solution to the
Gross-Pitaevskii equation in the moving frame [191, 192].
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tum Euler equation allows this conservation to be broken when a vortex and an
antivortex approach each other within a distance of order £&. Under such conditions,
vortex-antivortex pairs can unwind and annihilate, transforming into a solitary wave-
like structure. These isolated sound pulse structures, extensively studied by Jones
and Roberts [191, 192], and later by Berloff and Roberts [194] are often referred to as
the Jones-Roberts soliton.!® The vortex dipoles and the Jones-Roberts soliton form a
continuous family of solutions to the Gross-Pitaevskii equation in a frame translating
at constant velocity u. The low u solutions possess vorticity, corresponding to vortex
dipoles whose separation distance d — oo as u — 0. At velocities above u ~ 0.6081
the solutions lose their vorticity, becoming the solitary wave structure, and the am-
plitude of the wave becomes vanishingly small as © — ¢. Note that the annihilation
process can also occur at a boundary, since this is equivalent to annihilation with an

image vortex.

As pointed out by Jones and Roberts [192], this annihilation does not actually
violate Kelvin’s law. The annihilation is possible due to the density zero of the vortex
core: consider what happens if we draw a closed contour C' which threads between
the vortices and then allow them to approach each other. Eventually, the vortex cores
overlap, and the contour must then pass through a region containing no density. The
contour — which is meant to be a material line — is no longer closed, because it now
passes through a region containing “no material”. Kelvin’s theorem therefore ceases
to be apply at the exact moment of annihilation. At the same time, one could draw
another contour C” that encloses both vortices, in which case there is no problem in

applying Kelvin’s theorem because the circulation was always zero.

In the Navier Stokes equations the decay of circulation (vorticity) is due to the
viscosity, and the circulation is conserved as v — 0. In the Gross-Pitaevskii equation,
the decay of circulation is provided by the sound field [196, 197] (with coupling
provided by the quantum stress) and circulation is conserved in the limit £ — 0. Note
that, in principle, the reverse process in which vortex dipoles spontaneously appear
from the sound field is also possible, since the Gross-Pitaevskii equation possesses
the time reversal symmetry ¢ — —t, ©» — *. However, as one might expect from
the irreversible process of turbulence, the present experimental and numerical data
indicate that, apart from at very high Mach numbers, only the decay process is
relevant [78, 84, 92, 189].

100thers have termed the structure a vortezonium [195].
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Other Vortex-Sound Interactions

A plane acoustic wave, incident on a quantum vortex, will cause it to oscillate in
a history-dependent manner; retardation effects due to finite compressibility mean
the motion of the vortex will depend on where it was, in addition to where it 7s.
Embedded in a plane wave, a vortex will feel both a drag force in the direction of the
propagation wavevector, and a (charge-dependent) lift or Magnus force perpendicular
to the oncoming wave. A differential equation for the a straight vortex filament in
the limit of high frequency sound waves and low Mach numbers was derived by
Lund [198]. A more detailed discussion of these effects can be found in Pismen [175],

and references therein.

Wave Turbulence

Finally, it should also be mentioned that the sound degrees of freedom (the com-
pressible subsystem) themselves form a nonlinear interacting system and can also
become turbulent, exhibiting a form of turbulence known as weak-wave turbulence
(WWT). When the wave degrees are forced and damped within different regions of
scale-space, they too can support cascades (usually of the energy), just as in the
hydrodynamic case. The theory of weak-wave turbulence is laid out in, e.g., the
texts by Zakharov [199], or Nazarenko [14]. The theory is extremely general and is
relevant to many systems, for example surface water waves, or waves in plasmas; it
only discriminates between what kind of resonant n-wave interactions are permitted
by the system (often a three-wave or four-wave interaction). Another rather nice
element of the theory is that, due to the assumed weak nonlinearity, in contrast to
hydrodynamic turbulence the “Kolmogorov-Zakharov” WW'T cascade solutions can
often be found as exact solutions. The Gross-Pitaevskii equation can exhibit both
three-wave and four-wave regimes, depending whether or not there is a large con-
densate background present, and both scenarios have been studied by a number of
authors, see for example the works by Proment, Nazarenko and Onorato [200-203].'!
Note also that a WW'T cascade has been observed experimentally in a uniform 3D
BEC very recently by Navon et al. [88]. Since the regimes of vortex and weak-wave
turbulence seem to be able to exist simultaneously [187], it is quite possible that the

random buffeting of a vortex due to the turbulent sound modes would lead to some

Hlncidentally, the four-wave regime exhibits a dual cascade, of particles to low k and energy to
high k [203]. It was by first studying this regime as a mechanism for condensate formation in a
weakly interacting Bose gas that lead Kraichnan to propose the dual cascade of 2D turbulence, see
Refs. [119, 204].
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kind of Brownian or super-diffusive motion, that would depend on the spectrum of
the sound modes. While some numerical evidence of such a scenario was observed
in Gross-Pitaevskii simulations in Ref. [93], such a scenario is yet to be explored in
detail. The theory of sound generated by turbulence (“vortex sound”), pioneered by
Lighthill in the study of jet engines [205-207], might be of relevance here.

3.6.2 Thermal Dissipation

The Gross-Pitaevskii equation is a zero temperature theory, and therefore neglects
the influence of any thermal, normal fluid fraction that will be present at finite
temperatures. Whereas turbulence in superfluid helium at higher temperatures is
usually studied phenomenologically via extensions of Landau’s two-fluid model [208],
a number of microscopically justified theories have been developed to investigate
the dynamics of weakly-interacting Bose gases at finite temperatures. These include
the so-called c-field methods like the stochastic projected Gross-Pitaevskii equation
(SPGPE) [209-212], or the Zaremba-Nikuni-Griffin (ZNG) theory [208]. Such meth-
ods can be used to provide very detailed, realistic simulation of finite temperature
experimental systems, each with their own benefits and disadvantages, and regimes
of validity [208, 213]. A comparison and discussion of these methods can be found in
Ref. [214].

However, at the present stage, fully implementing these methods for numerical
simulation of quantum turbulence is computationally demanding, and one therefore
typically resorts back to a (quasi) phenomenological approach. Thermal effects are
usually included through the damped Gross-Pitaevskii equation

G

thr = (1L =0)(L = w, (3.89)

where £ is the usual Gross-Pitaevskii operator: £ = —h?*V?/2m~+V +g|v|?. Although
phenomenological, this equation is not entirely ad hoc, since it is equivalent to the
simple-growth SPGPE without the thermal noise term [209], and therefore still has
a first-principles origin. The damping rate ~ is associated with the coupling to an
external thermal cloud of chemical potential i, assumed to be stationary, and the
role of the dissipation is to damp the system back to a state with the same value
of pu. Realistic values for v are typically of order 107% [78, 84, 173, 209]. The
approximation of a stationary normal fluid component is reasonable particularly in an

oblate geometry, since anisotropy helps lock the thermal component to the trap [79].
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As such, the damped GPE has been found to give good qualitative [80] and even
quantitative [78, 84] agreement with the experimental studies conducted thus far.
Obtaining an equation of motion for the vortex dynamics within Eq. (3.89) is not
straightforward. This is mostly because the damped equation does not enjoy the same
Galilean invariance as the Gross-Pitaevskii equation (obviously this stems from the
stationary thermal cloud providing a preferred reference frame). Because of this lack
of invariance, the vortex core is distorted when placed in a uniform phase gradient,
giving rise to a nonlinear (logarithmic) correction [175].!2 Nonetheless, in the dilute
vortex gas limit, where core effects are neglected, the dissipative contribution to the

vortex motion can be derived, yielding the damped point-vortex equation [181, 184]

u; = :;LLZ (VO;|rr, — 7¢:iZ X VO|r=y,) - (3.90)
J#i

The dissipative term pushes opposite-sign vortices together, and same-sign vortices
apart, thus reducing the vortex-system energy. It has the form of the Peach-Koehler
force, which arises in the dynamics of dislocation defects in crystals [215]. Similar
terms are also present in the phenomenological vortex filament model often used to
study superfluid helium, in which context they are termed mutual friction [190], since
they arise from the interaction between the normal fluid and superfluid components.
The dissipative term bears a closer resemblance to linear (Ekman) friction —au [127]
than it does to viscosity, as in a discrete vortex method viscous diffusion is analogous
to Brownian motion [103].

Despite the corrections due the vortex core distortion, and the abundance of com-
plicated effects introduced by compressibility, there is nonetheless both numerical [93,
189], and experimental [79, 216] evidence that the dynamics of the vortex degrees of
freedom in atomic BECs can be described, at least qualitatively, by a dissipative
point-vortex model of the form in Eq. (3.90). In the presence of the Peach-Koeler
force, opposite-sign point vortices can approach each other to zero distance within a
finite time, and so vortex-antivortex annihilation must be put in “by hand” [93], when
vortices approach each other within a distance of order . As already mentioned, the
empirical evidence collected thus far indicates that the overall contribution from the
sound field is to introduce an additional source of effective dissipation for the incom-
pressible subsystem. It therefore seems reasonable, at least at a phenomenological
level, that the net effects of compressible losses could be modelled with Eq. (3.90)

12Note that the imaginary part of the time evolution is equivalent to the (real) Ginzburg-Landau
equation [175].
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through a modified value of v that will depend on the Mach number; the value of
~ can only be checked a posteriori. We will use this approach in our point-vortex

simulations in Chapter 6.

3.7 Vortex Nucleation

3.7.1 Ciritical Velocity of a Cylinder

The Landau criterion (Sec. 3.2.4) can be applied to determine the critical velocity
for vortex nucleation in the wake of a cylinder. A naive application of the Lan-
dau criterion gives the critical velocity u. = ¢, which is much larger than what is
typically observed. However, this is because the modifications of the flow field in-
troduced by the cylinder have not been accounted for. But one can still understand
the critical velocity in the spirit of the Landau argument provided one finds when
the velocity field locally exceeds the speed of sound. One can begin by assuming
incompressibility, constant density and a large impenetrable obstacle with R > &.
Solving Laplace’s equation for the velocity potential in the resulting potential flow
problem [217], one finds that for an obstacle translating at velocity U the velocity
field reaches a maximum at the edges of the disc with value 2|U|. This gives an
upper bound of u./c < 0.5 [217-219]. The potential flow field yields zero drag, a
manifestation of d’Alambert’s paradox for perfect fluids [169]. Adding in compress-
ible effects does not alter this description qualitatively — the flow is one of perfect
compressibility, exhibiting zero drag [105, 218] — but rather the density depletion
near the obstacle results in a locally lower speed of sound, and hence a lower critical
velocity u./c ~ 0.4 [217, 218, 220].

In atomic BECs, the obstacle is typically provided by an optical potential created
by blue-detuned laser light [85, 221] rather than a solid object. A more rigorous treat-
ment, considering a penetrable cylinder with a large but finite background potential
Vo > p and a radius R > & can be shown to have a size-dependent critical velocity

of [219]
h

U, =2 7.61— 3.91
e (3.91)
which in practice is very accurate until V5 < 5u. This happens to be similar in

value to the critical velocity given by Feynman [170], based on the energy required



84 Chapter 3. Quantum Fluids and Quantum Turbulence

to nucleate a vortex dipole in a jet of superfluid helium flowing from an orifice:

h R
U= In <£> : (3.92)

However, in general the critical velocity will depend on the precise geometry of the
obstacle [222]. Elliptical [89] or Gaussian [223] stirring obstacles, particularly with
Vo ~ 1 [168] can be exploited to further lower the critical velocity.

The criterion for vortex nucleation quite obviously violates the assumptions for
nearly incompressible flow in the vicinity of an obstacle. If the same critical Mach
number were exceeded in a classical fluid, density shock waves would be formed [169].
But as noted by Frisch et al. [218], these shocks require viscous dissipation, and no
such term is present in the Gross-Pitaevskii equation. The quantum fluid instead
copes by forming localized “shocks”, in the form of vortices, in order to produce
shear that can match fluid domains with different velocities. So even though one has
to violate the incompressibility condition by locally exceeding the speed of sound to
form quantum vortices, provided the obstacle diameter D is larger than a few healing
lengths, such that the critical velocity is sufficiently low, a regime can be achieved in
which the resulting wake exhibits a low superfluid Mach number Ma, ~ £/D < 1,

dominated by incompressible kinetic energy.

3.8 The 2D Quantum Cylinder Wake

Whereas early studies of the 2D cylinder wake system have considered basic prop-
erties such as vortex emission frequency and drag [168, 225], more recent studies
have uncovered remarkable similarities between the wakes of bluff bodies in classi-
cal and quantum fluids. Sasaki et al [51] studied vortex shedding in the wake of
an impenetrable (V5 ~ 100u4) Gaussian obstacle, over a range of speeds and sizes,
and observed the emergence of the von Karman street [Fig. 3.4]. They found three
qualitatively different regions of vortex shedding: an oblique dipole shedding regime
in which vortex-antivortex pairs form a v-shaped wake somewhat reminiscent of a
bow wave [Fig 3.4(a)]; a von-Karman regime, in which the vortex street is formed of
corotating pairs of same-sign vortices [Fig 3.4(b), also cf. Fig. 2.1(c)]; and a turbulent
regime of irregular shedding [Fig 3.4(c), cf. Fig. 2.1(d)]. However, in contrast to the
classical behaviour, the von-Karman street was only observed over a narrow range
of velocities and obstacle sizes. They also observed an oscillatory transverse force

on the obstacle, even when the shedding became irregular. The oscillatory shedding
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Figure 3.4: Image reproduced from Sasaki et al. (2010), Ref. [51]. Wakes produced by
a, circular Gaussian obstacle at different velocities a two-dimensional Bose-Einstein
condensate: (a) Oblique shedding of vortex dipoles, forming a v-shaped wake; (b)
The von-Karman vortex street; (c¢) Irregular, turbulent shedding at higher velocity.
In (b), the ratio of the streamwise and transverse distances between clusters was
found to be in remarkably good agreement with the stable value 0.28, originally
found by von-Karman using the point-vortex model for incompressible fluids [224].
Notice that the background density fluctuations are small, and a compression wave
is only apparent at the front of the obstacle for the highest velocity.

hints at the existence of Strouhal oscillations (Sec. 2.3.1), but the simulation domain
was not large enough to accurately resolve the shedding frequency. The first signa-
tures of the street have recently been observed in an experiment by Kwon et al. [52].
Stagg et al. [89] studied the wakes of elliptical obstacles. They noted that when one
traces out the trajectories of the early-time vortex dynamics, a flow pattern remark-
ably similar to the classical recirculation zone is observed [Fig. 3.5, cf. Fig. 2.1(a)].
These parallels, which suggest a deeper connection with hydrodynamic turbulence,
and in particular the presence of a superfluid Reynolds number (see also Sec. 3.9.2),

motivated the study of the cylinder wake presented in Chapter 5.

3.9 Cascades in Quantum Turbulence

3.9.1 The Direct Energy Cascade in 3DQT

Since the laminar behaviour of superfluid *He is so different to conventional fluids,
it was initially very surprising how similar the properties of quantum turbulence can
be to those of classical turbulence [64], and what was particularly surprising is that
the Kolmogorov cascade phenomenology (Sec. 2.8) still seems to be valid. The direct

cascade and the Kolmogorov law have been observed experimentally, in flows gener-
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Figure 3.5: Images adapted from Stagg et al. (2014), Ref [89]. Wakes produced
by an elliptical stirring obstacle in simulations of the 2D Gross-Pitaevskii equation:
(a) Instantaneous density distribution of the early-time dynamics; (b) Map of the
early-time trajectories traced out by individual vortices, revealing a recirculation
zone remarkably similar to that shown in Fig. 2.1(b) for a classical fluid.

ated by, e.g., grids and bellows or propellors [44, 45, 47, 226], as well as in GPE [59,
60, 227], damped GPE [228], and vortex filament model [229, 230] simulations of
decaying turbulence from various initial conditions. The Kolmogorov constant has
been found to be the same above and below the lambda transition [44, 226], even
at very low temperatures where the normal fluid component is negligible [40, 226].
Furthermore, the dissipation anomaly has been observed to persist in the form [cf.
Sec. 2.6, Egs. (2.35) and (2.39)]

€ = Vet {w?) = veg2.L2, (3.93)

where .Z is the vortex line length per unit volume, and v is an effective viscosity
that is of the same order as helium’s normal fluid viscosity v regardless of the normal
fluid concentration [46, 50, 76]. In the pure superfluid turbulence regime, it is now
established that the compressible degrees of freedom provide a replacement for the
viscosity as an energy sink for the incompressible energy [196, 197, and it is now
understood that the essential underlying mechanism is a bundling of many quantum
vortices of the same circulation [40, 230]. This bundling allows them to collectively
mimic a classical fluid at large scales; the bundle can lengthen and contract, thereby
mimicking the vortex stretching mechanism (it is not possible for single vortices due
to the quantisation condition), allowing them to undergo a Kolmogorov cascade in

the usual sense [232]. The semiclassical cascade breaks down at scales on the order

13When normal and superfluid components are both present, the picture is more complicated.
At large scales the superfluid and normal fluid are both turbulent, but become “locked” together
through a mutual friction induced alignment, and effectively behave as one fluid. At small scales,
dissipation can involve a combination of both normal viscosity and mutual friction [39, 46, 76, 231].
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of the average intervortex distance. At these scales, it is argued that reconnections
dissipate some energy, before a Kelvin-wave cascade takes over to transport the en-
ergy [233, 234] until it is radiated away as sound. In regimes where bundling does
not occur, quantum turbulence exhibits quite different properties. A disorganised
tangle of vortex filaments, without bundling, forms a kind of ultraquantum or Vinen
turbulence, which does not exhibit the energy cascade, and exhibits slower decay
properties [235, 236].

3.9.2 A Superfluid Reynolds Number

Since quantum turbulence can exhibit a Kolmogorov spectrum (Sec. 3.9.1), an im-
mediate question that is raised is: what is the Reynolds number? There should be
a large dimensionless parameter that assumes this role, and predicts, for example,
the length of the inertial range [Sec. 2.8, Eq. (2.71)]. For turbulence in a pure super-
fluid, it is not immediately clear how one might define a Reynolds number since the
viscosity is identically zero, such that naively one might expect it to be infinite or
undefined [196, 227]. However, Onsager noted [237] that the only available parameter
with the unit of viscosity is the unit of circulation I' = h/m. He thus proposed the

superfluid Reynolds number!4
(3.94)

which essentially measures the characteristic flow parameters against those of a single
vortex (note that I' = 27¢f in the Gross-Pitaevskii description). There is some
evidence that Eq. (3.94) gives a good indication of the degree of turbulence in the
fully developed regime Re, > 1 [45, 47, 59, 60, 220, 226, 233, 238-240]. Of particular
note is a relatively recent study by Salort et al. [46]; by varying only the turbulent
intensity (i.e., varying U) in HVBK simulations, they presented evidence that the
inter-vortex spacing ¢ scales as Re, >4, just like the viscous length scale (k;1) in
the classical Kolmogorov theory [see Eq. (2.71)]. Verification of this behaviour was
also demonstrated in the recent experiment by Babuin et al. [76] over a wide range
of superfluid fractions (0.9% to 97%). Unfortunately however, experiments have not
yet managed to verify the scaling of the inertial range with Reg, as the smallest scales

are below the currently available measurement resolution [45, 50, 76]. It also seems

14 Although Rey, unlike Re, is not rigorously derived from the governing equations, notice that the
point vortex equations (or the vortex filament equations in 3D) and Onsager’s superfluid Reynolds
number do obey precisely the same scaling transformation as the Reynolds number and the Navier-
Stokes equations, see Sec. 2.2.
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Res has not yet been systematically tested near the transition to turbulence.

3.9.3 A Direct Energy Cascade in 2DQT?

The appearance of the Kolmogorov law in 3D quantum turbulence motivated the
study of the classical 2D cascade phenomenology in 2D quantum turbulence. After
a number of early works observed no convincing evidence for the inverse energy cas-
cade [241-243] (Sec. 2.9.3), Numasato et al. [186] argued that compressibility and
the mechanism of dipole recombination would instead lead to a direct cascade of
energy to small scales through a k%% spectrum, as in three dimensions (Sec. 2.8).
Studying GPE dynamics starting from a random phase initial condition, they ob-
served the nucleation and subsequent decay of many vortex dipoles. Although the
enstrophy of quantum vortices, being proportional to a squared delta function, is
formally undefined, they noted that the total enstrophy is nonetheless proportional
to the number of vortices: 2 = I'2N§(0). Thus attributing to the vortex number N
the role of enstrophy, they argued that the lack of enstrophy conservation caused by
dipole annihilation prevents the possibility of the enstrophy cascade. They argued
that this invalidates Kraichnan’s arguments, ruling out the inverse energy cascade,
since it could not be accompanied by a k=3 spectrum.

An early counter argument [173, 187], was that this dipole annihilation mecha-
nism would be inhibited by a distribution that contained initial clustering of same-
sign vortices; the clustering would self-consistently separate opposite-sign vortices
spatially, restoring enstrophy conservation, and thereby preventing this “direct cas-
cade” mechanism. Unfortunately, this debate has now caused some confusion in the
literature over the role of enstrophy conservation, in particular the misconception
that enstrophy needs to be conserved to achieve energy transport to large scales (see
e.g. [78, 83, 195, 244-246]). It is therefore worth taking a moment to explain a few
important points. First and foremost, enstrophy does not have to be conserved for
energy to be transported to large scales: the 2D Navier-Stokes equations do not con-
serve enstrophy either [see Eq. (2.36) and Sec. 2.9.2]. Under free evolution, at large
Reynolds numbers the energy is approximately conserved, but the enstrophy decays
monotonically (see, e.g., Fig. 2.4(e), or Ref. [247]). It is only important that the
inviscid transfer processes in T'(k) (i.e., the incompressible Euler equations) conserve
the enstrophy [Eqgs. (2.61) and (2.65)]. Most importantly, they must not allow the
enstrophy to grow, because this is the process that permits energy to travel to small

scales via vortex stretching (Sec. 2.9.1). Furthermore, the inverse energy cascade does
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not require the enstrophy cascade to be simultaneously present; it only requires the
transfer properties encoded within the detailed conservation laws. As already noted
in Sec. 2.9.3, studies are often optimised to only study the inverse energy cascade by
forcing near the dissipation wavenumber. This leaves “no room” in scale space for
the enstrophy cascade to develop, even though the underlying transfer mechanisms

are still occurring.

The direct cascade scenario of Numasato et al. seems to be at odds with a number
of basic principles. Firstly, since it has already been established that the conserva-
tive contribution to quantum vortex dynamics is point-vortex motion, it is difficult
then to see how introducing the non-conservative processes via sound coupling could
change this in any fundamental way; dipoles approaching each other in this manner
is not consistent with point-vortex dynamics unless radiation or thermal dissipation
is included. In the GPE, as Mag ~ £/¢ — 0 annihilation becomes negligible and
enstrophy conservation is restored in 2D, just as for the classical Euler limit v — 0.1
In 3D this is not so, because the vortex lines can lengthen.!'® In 2D, without the
possibility for bundles to lengthen, the only way to amplify enstrophy would be to
nucleate dipoles from the sound field — but this is forcing, not an energy-conserving
transfer process of the incompressible subsystem. If, as in the scenario of Numasato
et al., the sound coupling is strong, one could also argue that hydrodynamic cascade
arguments for the incompressible energy become largely irrelevant, because there is
unlikely to be a region of scale space over which conservative transport processes
alone are dominant. Indeed, the k=% scaling observed is both temporally transient
and of limited scale range, and the flux that is evaluated is an approximation. Finally,
note that the dipole annihilation mechanism described is in no way inconsistent with
the role of viscosity in the Navier-Stokes picture: since only closely paired vortex-
antivortex pairs can annihilate, this process removes two vortices while only removing
a comparatively small fraction of the energy (see Sec. 2.6 and also Sec. 3.10). In fact,
Ref. [147], a (classical) point-vortex study, uses precisely this mechanism to model
viscosity! While it is true that Kraichnan’s arguments are irrelevant for the scenario
of Numasato et al., it is not due to a lack of enstrophy conservation. Rather, in their
situation, (a) the turbulence is not subject to steady forcing, and (b) the Mach num-
ber is high and the sound coupling is strong, such that the incompressible subsystem

most likely experiences a large effective viscosity. In this sense it is analogous to

15 A distinction of course is that quantum vortices do not move when &/¢ — 0.
16Growth of the vortex line length in 3D and vortex number conservation in 2D is clearly demon-
strated in the Gross-Pitaevskii simulations of Ref. [60], see their Figs. 17 and 9 respectively.
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a low Reynolds number flow, where dissipation rather than inertia is the dominant
mechanism.

In Ref. [248] a direct cascade was also inferred from this dipole recombination
process. Here the decay of a lattice of multiply charged vortices was investigated,
in holographic duality simulations within the AdS-CFT framework. The same-sign
clusters nucleated from the multi-quantum vortex decay were observed to rapidly
form dipoles and annihilate. In Ref. [93], which studied the same scenario within
the damped GPE and damped point-vortex models, it was shown that the apparent
Kolmogorov scaling attributed to a cascade in Ref. [248] vanished when the core-
envelope function G (k) was removed (Sec 3.5, and Fig 3.3), suggesting the apparent
scaling was instead merely due to the core crossover region. Although there is no
direct mapping between the holographic model and the Gross-Pitaevskii theory, the
vortices do still exhibit the same near-field and far field properties in both models
[Egs. (3.53) and (3.54)]. It was noted in Ref. [93] that the dynamics in [248] look
remarkably similar to Gross-Pitaevksii simulations with very large damping ~ ~
O(1071), and it was suggested that the system instead underwent a “dissipative

collapse” rather than a cascade.

3.9.4 The Inverse Energy Cascade in 2DQT?

Contrary to the direct cascade argument, the experiment of Neely et al. [80], ob-
served small but long-lived clusters of same sign vortices in a toroidal BEC, and the
numerical modelling of the experiment revealed a Kolmogorov spectrum at the end
of the forcing cycle. This prompted a number of studies to revisit the inverse energy
cascade directly within the Gross-Pitaevskii model. In Ref. [187], the damped GPE
was used to investigate turbulence in a harmonically confined BEC, stirred by a re-
pulsive Gaussian potential. While fairly convincing evidence of wave turbulence was
found, the findings were inconclusive regarding hydrodynamic cascades. In particu-
lar, it was found that the system exhibited a spectral scaling close to the k=5/3 law
over some range, even when the vortex shedding dynamics was highly regular. It was
noted that system did not contain a great number of vortices, and the scale range
was severely limited by the system size. White et al [249, 250] and Skaugen and
Angheluta [246] conducted similar studies within the GPE, obtaining similar results.
Kobyakov et al. [244] observed the k~°/3 scaling in turbulence generated in binary
condensates via the Rayliegh-Taylor instability. However, since the turbulence was

decaying, the observation goes against the current understanding of the theory and
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is therefore not readily explained in terms of the inverse energy cascade.

It became apparent that clear cascade realisations would not be possible in any
currently available experimental systems, since the system scale L, the intervortex dis-
tance ¢ and the healing length ¢ typically only satisfy the relation L > ¢ 2> £, whereas
the hydrodynamic regime, which superfluid helium satisfies, requires L > ¢ > €.
Hence Ref [188] simulated two-dimensional quantum turbulence in a large, uniform
system continuously forced by a stirring grid, within the damped GPE framework.
Some signatures consistent with an inverse energy cascade were observed, including
a quasi-steady accumulation of incompressible kinetic energy in the lowest modes of
the system, and a spectrum in reasonable agreement with the k=%/% law. However,
one could offer a number of possible criticisms. The range of the observed power
law behaviour was still rather narrow (nearly 1 decade). Additionally, unfortunately
a relatively high value of dissipation (y ~ 1072?) was needed to consistently inject
vortices without too much compressible energy; for the chosen system parameters,
turbulent shedding from the small-scale forcing could only be achieved at a relatively
high Mach number (u/c ~ 0.8), and the dissipation was needed in to suppress the re-
sulting sound waves. Values for the Kraichnan constant and the integral scale growth

rate were not obtained.

3.9.5 Can Hydrodynamic Cascades Really Occur in 2DQT?

Due to the lack of a truly definitive demonstration, there is no consensus on the inverse
energy cascade in two dimensional quantum turbulence. Meanwhile, the enstrophy
cascade has yet to be explored at all, and as such the relevance of the entire 2D cascade
phenomenology is presently uncertain. The only hint that the cascades might occur
is that the energy cascade does occur in 3D, but this is a fairly strong indication that
classical signatures should emerge. In light of this result, the question is probably not
if, but rather when?: How many vortices are needed before the laws of turbulence
reveal themselves, and how large do the systems need to be?

It is already clear that realising the cascades may be challenging in the presently
available experimental systems. However, in some sense this does not matter. Re-
gardless of whether or not the cascades can be realistically achieved experimentally,
their theoretical investigation is useful and necessary at a fundamental level. They
provide a means to test our general ideas about how turbulent flows in quantum flu-
ids behave, and could provide some further insight into the universality of the ideas

behind cascade phenomenology. As already mentioned, the appearance of the Kol-
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mogorov law in superfluid helium was not initially expected. A clear demonstration
of either of the 2D cascades under the right conditions would make matters con-
siderably clearer, and would provide a guide for what kind of conditions would be
required in reality. It would also provide information about how to quantify turbu-
lence in a 2D quantum fluid — since fundamental measures like the Reynolds number
are currently absent in the 2DQT literature, a validation of Eq. (3.94) as a suitable
parameter, through the inertial range length, or any other benchmark for comparison,
would be immensely beneficial.

The studies summarized in this section highlight issues with both the scale lim-
itations of the systems considered, and the danger of inferring cascade mechanisms
from the kinetic energy spectrum alone, without flux measurements or similar cor-
roborating evidence. Clearly this is particularly problematic with quantum vortices,
since the spectrum has a permanent k~! background (and a k=3 crossover) that, ac-
companied by broad Bessel function oscillations, can very easily lead to a spurious
k=5/3 scaling. In fact, in Ref. [251] it was demonstrated that a k=% scaling seems
to appear, over nearly a decade of wavenumbers and for a substantial timeframe, for
only two vortices in a harmonic trap (in three dimensions). It is somewhat difficult to
believe that a system of two vortices has much to do with the transport processes of
fully-developed turbulence. Such results suggest that it would be beneficial to inves-
tigate a very large, idealised system and work back towards a more realistic scenario.
This is the focus of Chapter 6 where we first study the enstrophy cascade for very

large vortex numbers, and then systematically decrease to more realistic values.

3.10 Spectral Condensate Formation in 2DQT

Since negative temperature states are a somewhat rare phenomenon, there has been
some considerable interest in testing whether the negative temperature, spectrally
condensed equilibrium states (Sec. 2.10.3) can be realized with quantum vortices.!”
Initially, this idea was met with some skepticism, since the negative temperature
state might be too unstable, imparting too much of its energy to the sound field.
As a proof of principle, Billam et al. [92] demonstrated that spectral condensation
could occur within Gross-Pitaevskii dynamics with periodic boundary conditions. In
a moderately large system (500 x 500€) containing ~ 300 vortices they showed that a

high energy, low entropy, non-equilibrium distribution could evolve towards the equi-

17Spectral condensation has been called “Onsager-Kraichnan condensation”, and “Onsager vortex
formation” in the quantum fluids literature. They are all the same thing.
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librium spectral condensate — despite compressibility, the weak radiative coupling
in 2D (Sec. 3.6.1) allowed the incompressible subsystem to retain most of its energy.
Simula et al. [189] showed that the spectral condensate could form by a completely
different mechanism, in a more experimentally realistic system. Simulating the full
3D Gross-Pitaevskii evolution of random vortex configurations within a quasi-2D
bucket trap, they showed that the vortices could spontaneously condense from a low
energy state via vortex losses. Since the only way vortices may be removed from the
system is via dipole annihilation, or leaving at the boundary (annihilation with their
image), these processes can only remove the low energy vortices from the system.
Although under annihilation the total vortex energy decreases, the energy per vortex
is substantially increased with each event. The gradual energy increase from this an-
nihilation causes same-sign vortices to slowly cluster, eventually shutting off the loss
mechanism altogether [see Fig. 3.6]. By analogy to evaporative cooling mechanism
used to achieve Bose condensation, they termed this mechanism evaporative heating.
The evaporative heating mechanism was studied further by Grozek et al. [195]. They
emphasised that the evaporative heating mechanism does not depend on the initial
conditions of the system: with enough vortices, the system could in principle evap-
oratively heat even from deep within the low energy, positive temperature regime.
They also showed, importantly, that the spectral condensation phenomenon could
not occur in a harmonic confining potential. Spectral condensation was also recently
investigated by Salman and Maestrini [252], in a box potential. They found that the
condensed states formed in the Gross-Pitaevskii equation were in reasonable agree-
ment with the solutions predicted by the Montgomery-Joyce equation. Yu et al. [94],
building on the work of Smith and O’Niel [253, 254], obtained mean-field results for
the condensate formation for a neutral point vortex system in the disc. Casting the
problem in the language of phase transitions, they obtained the critical temperature
and scaling results for the growth of the global dipole moment (the order parameter),
finding good agreement with Monte-Carlo simulations. Many other details of the con-
densation mechanism were elucidated from the solution obtained for the mean-field
vorticity distribution. In Chapter 4, we explore the detection of spectral condensate

formation via an experimentally accessible measure.

3.11 Natural Units

In computational physics it is always a good idea to express equations in dimensionless

form, such that the important numerical quantities are of order unity. Doing so is
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0.0 1.0

Figure 3.6: Image reproduced from Simula et al. (2014), Ref [189]. Column integrated
density images showing spectral condensate formation within the Gross-Pitaevskii
model. From an initially random configuration of vortices, vortex annihilation events
cause an evaporative heating of the vortex distribution, driving it towards the nega-
tive temperature equilibrium state. The final state clearly exhibits macroscopic flow
structures, formed from clusters of same-sign vortices.
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beneficial, because it both aids interpretation by providing natural reference scales,
and also improves numerical accuracy. The healing length &, and the speed of sound
¢, together with the natural timescale 7 = £/c = h/u and the chemical potential
i = ng = mc? define convenient reference scales for length, speed, time and energy
in an atomic BEC. These units are especially useful in quantum turbulence, since they
are directly related to quantum vortices and have a clear meaning. In particular, the
velocity field at a distance ¢ from a vortex is precisely the (background) speed of
sound c:
h
c=—. (3.95)
mé
In natural units, c =& = =1, and I' = 27. Denoting dimensionless variables with

tildes, in these units, we make the replacements

l 0 c\ 0 - 3
VoY or (g) ot LAl V=V, (3.96)
such that the quasi-2D Gross-Pitaevskii equation (Sec 3.1.5) takes the dimensionless
form 5 o
i qgiX) - [_2 +V(x, 1) + Culto(x)]* — 11 Y (x), (3.97)

where C,,; = v/8mas/l,, and the tildes have been dropped for notational convenience.

However, we also have the freedom of redefining the wavefunction normalization via

Y — /Cyt), such that the GPE takes the form

z'((waix) = l—v; +V(x,t) + [vx)]* - 1] (%), (3.98)

Note that in this form the total effective strength of the nonlinearity (gN) is now
implicitly contained within the system size L. Natural units will be used in all

numerical work in this thesis.
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Chapter 4

Signatures of Coherent Vortex

Structures in a 2D Quantum Fluid

In this chapter we study coherent vortex structure formation via an experimentally
accessible measure. We introduce the so-called quantum kinetic energy spectrum,
and demonstrate how it is related to the velocity probability distribution of the
quantum fluid. We then analytically show how coherent vortices give rise to a k2 law
in this energy spectrum. Then, we test our analytical predictions against numeri-
cally generated vortex distributions, and, furthermore, demonstrate that the k* law

spontaneously emerges in Gross-Pitaevskii dynamics of a trapped system.

4.1 Introduction

The emergence of coherent rotating structures from disordered flows is a central fea-
ture of 2D classical turbulence [16, 22, 255]. In two-dimensional quantum turbulence
(2DQT) [80, 83, 173, 186, 187, 243, 245], the analogous phenomenon involves large-
scale clustering of quantum vortices of the same sign of circulation; such clustering
can occur in negative temperature equilibrium states [92, 143, 151], and as a re-
sult of a turbulent inverse-energy cascade induced by small-scale forcing [188]. The
characterisation of such clustered vortex states, which tend to be highly disordered ar-
rangements of same-sign vortices, poses a theoretical challenge of recent interest [187,
249]. In many respects, these states strongly contrast with a rotating superfluid in
its ground state, which will form a regular Abrikosov lattice comprised of co-rotating
vortices, exhibiting a sixfold rotational symmetry, and obeying Feynman’s rule of
constant areal vortex density [170, 256]. Although the velocity field of the superfluid

97
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is formally curl-free, the velocity field of a large lattice approaches that of rigid-body
rotation under appropriate coarse-graining over many vortex cores [257], as required
by Bohr’s correspondence principle. Furthermore, the self-similar expansion of the
atomic density of a 3D turbulent cloud [54] can be modelled by introducing a rota-
tional velocity field [258], suggesting that the development of a rotational velocity
field in an ¢rrotational superfluid may be a fundamental property of quantum tur-
bulence. In the context of the negative temperature states arising as the end states
of decaying 2DQT [92], these considerations motivate the question: what kind of

rotational velocity field emerges in the interior of a large, coherent vortex cluster?

In this work we address the problem of characterising emergent coherent vortex
structures in a 2D Bose-Einstein condensate (BEC), a compressible superfluid, with
an emphasis on experimentally accessible measures. While measurements of vortex
locations and circulations has been recently demonstrated [87], allowing inference of
the classical (point-vortex-like) energy spectrum [59, 173] (Sec. 3.5), it is also desir-
able to consider measures that may be more readily accessible by current standard
measurement techniques [80, 83]. Here, we consider information contained in the
quantum kinetic energy spectrum of the quantum fluid; provided interactions can be
suppressed using, for example, an appropriate Feshbach resonance, this information
may be readily available in experiments via ballistic expansion [259]. We develop
a link between the quantum kinetic energy spectrum over wavenumber k and the
superfluid velocity probability distribution, and show analytically that a spectrum
E(k) o< k3 in the infrared arises from the coherent quantum vortex structures emerg-
ing in negative-temperature vortex configurations. We show analytically that such
a spectrum can correspond to rigid-body rotation, extending to a scale determined
by the size of the coherent vortex structures, and, additionally, can arise due to
quadrupole velocity fields resulting from the interaction between the coherent struc-

tures and the superfluid boundary.

We numerically sample vortex configurations over a range of energies, exploring
a number of measures with which to characterise the vortex distributions. We verify
the emergence of a k® spectrum and demonstrate that the coherent structures pro-
duce a well-defined peak in the quantum kinetic energy spectrum. This peak can be
quantitatively understood by considering the largest vortex structures. We further
find that the largest structures exhibit a constant areal vortex density, and conclude
that the clustered states that emerge in negative-temperature configurations obey
Feynman’s rule while being spatially disordered. We consider the outlook for observ-

ing quasi-classical coherent vortex structures in atomic BEC experiments. Dynamical
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simulations of a trapped BEC (within the damped Gross-Pitaevskii description) show
that, for well-chosen non-equilibrium vortex configurations that may be accessible via
laser-stirring protocols [82], the resulting vortex dynamics can form long-lived, high-
energy coherent vortex structures despite some loss of energy to sound.

Our main result is that quasi-classical coherent structures exhibiting rigid-body
rotation can emerge in negative-temperature vortex states, establishing a new link
between classical and quantum turbulence that may be explored experimentally.

This chapter is structured as follows. So that this chapter may be read in a
self-contained manner, in Sec. 4.2 we briefly recapitulate some relevant background
from Chapter 3, and discuss some aspects of the classical spectral decomposition
frequently used in the literature. In Sec. 4.3 we develop a decomposition of the
quantum kinetic energy spectrum of the quantum fluid, and show its connection to the
velocity probability distribution for a compressible superfluid in the hydrodynamic
regime. In Sec. 4.4 we present our numerical methods for sampling and analysing
clustered states, and analyse kinetic energy spectra of vortex distributions over a
range of energies for vortex configurations in a doubly-periodic box. In Sec. 4.5
we analytically and numerically investigate the emergence of quasi-classical flows
for negative-temperature states. In Sec. 4.6 we show that high-energy coherent
vortex structures, and the associated spectral signatures, can emerge dynamically in
a trapped BEC, and compare the properties of the dynamically-generated structures
to the properties predicted by microcanonical sampling. Sec. 4.7 presents concluding

remarks.

4.2 System

Here we briefly outline our system and restate some basic properties previously dis-
cussed in Chapter 3. We consider a BEC that is tightly confined in the z-direction.
The Gross-Pitaevskii equation describing this homogeneous 2D Bose gas is written
in terms of an effective 2D interaction parameter gs:

n 2t (—Wi + litr, t>|2) b(r 1) (4.1

ot 2m

where go = g¢/l, [ is the characteristic thickness of the 3D system [186], and g =
4mth*as/m for s-wave scattering length a, and atomic mass m. For example, in a

system with harmonic trapping in the z-direction characterized by trapping frequency
w,, the length scale is | = v/27l, where [, = \/h/mw, is the z-axis harmonic oscillator
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length, and the confinement is assumed sufficient to put the wavefunction into the z-
direction single-particle harmonic oscillator ground state (Sec. 3.1.5). Note, however,
that such tight confinement in one direction is not necessarily required for effectively

two-dimensional vortex dynamics [80, 166].

4.2.1 Properties of a 2D Quantum Vortex

For solutions with chemical potential 1 containing a single vortex at the origin (with

circulation necessarily normal to the plane of the 2D quantum fluid) we can write [257]

di(r,t) = rge” " x(r/€) e (4.2)

where £ = ii/mec is the healing length for speed of sound ¢ = /u/m, and ng = p/go
is the 2D particle density for r > £ and is taken to be a constant. The vortex radial

amplitude function x (o), where o = r/¢ is a scaled radial coordinate, is a solution of
(—a*lao 00, + 072) x=2(x — ). (4.3)

The boundary conditions are x(0) = 0, and the derivative x' = dx/do evaluated at
o = 0 must be chosen such that it is consistent with y(co) =1 and x’(c0) = 0. The

value

A=Y'(0) =lim —— (4.4)

is a universal feature of the vortex core, and numerically is found to be A = 82475449 . ..

(see Sec 3.3). The quantum vortex state (4.2) has the velocity field of a point-vortex

v(r) = T’Z(¢ sind, £ cos ) = (vy, vy), (4.5)

which has vorticity, w(r) = 0,v, — 0V, given by

w(r) = i:lé(r), (4.6)

where 4(r) is the Dirac d-function.
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4.2.2 Hydrodynamic decomposition

The 2D Gross-Pitaevskii energy in the homogeneous system is given by
E= /er h—z\vw(r >+ @W(r H* . (4.7)
2m ’ 2 ’

Using the Madelung representation 1 (r, ) = \/n(r, t)e? ™" which gives the superfluid
velocity as v(r,t) = hVO(r,t)/m, the energy can be decomposed as € = Ey+Eo+Er,

where
. m 2 2
& = % /}irymrJNV(ntﬂ , (4.8)
h2 2 2
& = —2m/d r |Vy/n(r,t)]%, (4.9)
92 2 2
& = Ez/drn@J). (4.10)

Respectively, these define the hydrodynamic kinetic energy, quantum pressure energy,
and interaction energy. The hydrodynamic and quantum pressure terms originate

from the kinetic energy term, and £x = &y + &g is the total kinetic energy.

4.2.3 Classical Kinetic Energy Spectrum

It is worthwhile to briefly discuss some additional aspects of the spectral decompo-
sition introduced in Sec. 3.5. We call this the classical kinetic energy spectrum, as
in a classical fluid it is exactly the kinetic energy power spectrum. This spectrum
is obtained by applying the general correspondence between a two-point correlation
function and its associated power spectrum to the velocity field (Secs. 2.7.3 and 3.5).
However, as we will show in Sec. 4.3, in a quantum fluid the existence of a quantum
phase 6(r) breaks this correspondence. While in a quantum fluid this classical spec-
trum is no longer the only way to construct a kinetic energy spectrum, it provides a
useful link to classical turbulence theory, allowing the identification of, for example,

the Kolmogorov k~%/3 law associated with an inertial range (Sec. 2.8).

As we will only focus on particular instants in time, we now drop the explicit time
dependence from our notation. By Parseval’s theorem, (4.8) may be equivalently

written in wavenumber (k)-space as

5H:§/fkmmw, (4.11)
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where
(k) = Flu(r)] = ;ﬁ [ (), (4.12)

and u(r) = y/n(r)v(r) is the density-weighted velocity field. The one-dimensional
spectral density in k-space is given in polar coordinates by integrating over the az-

imuthal angle to give

mk 2T ~
en(k) = 5 /. doy, [a(k)|? (4.13)
2 1 . 2
_ mk oy, —/er e ®Tu(r) (4.14)
2 Jo 2T

which, when integrated over all k, gives the total hydrodynamic kinetic energy £ =

Jo° dk ep (k). Similarly, for the quantum pressure we have

217T/d2r e Ty, /n(r)

and the total kinetic energy is given by Ex = E + Eg = [ dk [en (k) + eq(k)].

2
)

(4.15)

h2 2T
eq(k) = %k/o oy,

As detailed in Sec 3.5, the hydrodynamic spectrum ey (k) can be further decom-
posed into incompressible and compressible parts via a Helmholtz decomposition,
writing u = u’ + u®, where V-u’ = 0 and V x u® = 0. The incompressible part is
associated with quantum vortices, whereas the compressible part is associated with
acoustic excitations [173, 186]. Although we do not make direct use of this decom-
position here, we are generally interested in the incompressible limit, where u ~ u’.
As a single vortex is purely incompressible [Eq. (3.82)], the incompressible limit cor-
responds to a fluid for which the background density is smoothly varying, and the
quantum vortices are sufficiently well-separated that their cores do not overlap [see

Eq. (3.61)].

It has become standard in the literature to interpret the incompressible and com-
pressible parts of e (k) as kinetic energy densities in k-space [186, 188, 228], as is the
case for classical fluids, and thus these kinetic energy densities are generally referred
to as “incompressible” and “compressible” kinetic energy spectra. However, this ap-
proach does not provide a kinetic energy spectrum that can be directly connected to

the momentum distribution of a quantum fluid.
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4.3 Kinetic Energy Spectrum and Velocity Prob-
ability Distribution
In this section we pursue an alternative route to decomposing the kinetic energy

of the quantum fluid, and develop a link between the true quantum kinetic energy

spectrum and the velocity probability distribution.

4.3.1 Quantum Kinetic Energy Spectrum

The kinetic energy of the quantum fluid is given by

h2
Ex =5 /d% IV (r) 2. (4.16)

This may be equivalently written in momentum space as

h? 9
= — k |ko(k)|? 4.1
Ex 5 /d ko (k)| (4.17)
where

(k) = ;ﬁ / dr e T (r). (4.18)

Writing k = k(cos 0, sin 6,), and performing the angular integration, we obtain the

quantum kinetic energy spectrum

B0 = 0 [ e fotro, (419)

2m

and the total kinetic energy via Ex = [;° dk E(k).

We now provide a decomposition of the quantum kinetic energy spectrum that al-
lows the identification of hydrodynamic and quantum pressure components, and their
relationship to the momentum distribution. Returning to Eq. (4.17), the integrand
can be decomposed using (4.18) and the Madelung transformation, Eq. (3.15).

We thus write the total kinetic energy as

Exc = /0 T dk E(k) (4.20)

— [k [Bulk) + Eqk) + Equ(k)], (4.21)
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where
k 27 1 . . 2
Eu(k) = % [ a, % / Pr eIy ()| (4.22)
hQ
Eo(k) = / dby, | — / 2r ¢miker b (4.23)
Eou(k) = / d6,D( (4.24)
and

re k07, In(r) - /dzr’eik'rl_w(r/)u(r') + c.c., (4.25)

with c.c. denoting the complex conjugate. Equations (4.22), (4.23), and (4.24) give
the kinetic energy spectra for the hydrodynamic, quantum pressure, and quantum-

hydrodynamic components respectively.

The decomposition derived above provides spectral energy densities that are lo-
cally additive in k-space: Eg(k) + Eq(k) + Equ(k) = E(k). In contrast, although
integrating the classical spectra yields £y + g = €k, the classical spectra are not
locally additive in k-space: ey (k) + eq(k) # E(k). The hydrodynamic and quantum
pressure terms here differ to those of the classical spectral decomposition by the for-
mal replacement u(r) — e®@u(r) from (4.14) to (4.22) and VF ) — e V\/i
from (4.15) to (4.23). Notice also that there is no term corresponding to the quantum-
hydrodynamic term (4.24) in the classical kinetic energy decomposition. Furthermore,

as

Exc=En+Eg = /0 T Ak [en (k) + (k)] (4.26)

- /ooo dk [E(k) + Eq(k) + Equ(k)), (4.27)

we may conclude that

/0 " dk Eou (k) =0, (4.28)

illustrating that the quantum-hydrodynamic term is only an “interference” term: it
does not contribute to the total energy, and only redistributes the energy in k-space.
An important property of the quantum kinetic energy spectrum [Eq. (4.19)] is its
potential experimental accessibility: The momentum distribution of a non-interacting
condensate, |¢(k)[?, can be obtained through ballistic (time-of-flight) expansion [33,

259]. Thus, after suppressing interatomic interactions via an appropriate Feshbach
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resonance, one can obtain E(k) to high accuracy.

The spectral decomposition we have introduced here thus highlights an important
distinction between classical and quantum fluids. In a quantum fluid Eq. (4.22) could
be considered the “true” hydrodynamic kinetic energy spectrum, whereas Eq. (4.13)
is the power spectrum of the velocity autocorrelation function (Secs. 3.5 and 2.7.3). In
a classical fluid there is no quantum phase, and hence there is no distinction between
these two measures. We remark that the quantum spectra may resemble the classical
spectra in regimes where the phase 6(r) is approximately constant over large regions

of the system, for example in the vortex-dipole gas regime (see also Sec. 4.4).

4.3.2 Velocity Probability Distribution

The probability, P(v), that an atom has velocity v = |v]| is

1

P(”U):m

[ s = VD), (4.29)
for Nioy = [ d*r |¢h(r)|? atoms, where the normalization is [;° dv P(v) = 1. Note that
binning the velocity neglects the density weighting, and so in the context of 2DQT is
equivalent to the above for a homogenous superfluid with coreless vortices [260, 261].
The physical distinction is important in regions where the atomic density is rapidly

varying, such as near a quantum vortex core.

Let us briefly consider the velocity probability distribution of a single vortex in
a homogeneous, compressible superfluid. We start by calculating P(v) for atoms in
a superfluid vortex, given by (4.2), in an otherwise homogeneous 2D system. Using

(4.2), (4.5), and (4.29), and exploiting cylindrical symmetry, yields

= 2 (<) (9)

cN; tot v
where we have introduced the system size R, and the Heaviside function H restricts

2

H(v—vg), (4.30)

the range of velocities to v > vg = ¢/ R = h/mR, avoiding infrared divergence. Two
regimes can be identified within (4.30), namely a point-vortex regime for vg < v < ¢
(where > €)

o)~ 52(9), (a31)

vLe R2 C v
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and a vortex core regime for v > ¢ (r < )

Pl)| ~ & 207 (6)5. (4.32)

v>c R2 C v

Notice the parameter A [Eq. (4.4)] appears in the vortex core regime, whereas this is
absent in (4.31). The v™° power law seen here stems from the structure of a vortex
core in an atomic Bose-gas superfluid. In a macroscopically occupied BEC with small
healing length, the vortex core region only corresponds to a tiny fraction of the atoms.
However, it might be possible to observe the v=° power law when the system contains

many vortices and few particles, namely, in the vortex-liquid phase [256].

The v~ power-law tail of Eq. (4.31) is a universal result for quantum vortices [34],
and has been identified in the 2D and 3D GPE [260], the point-vortex model in 2D
[262, 263], and in superfluid helium [261, 264], which is well-described by a vortex-
filament model at larger scales. Previous works [260, 261] have emphasised the v=3 law
as a feature distinguishing quantum turbulence from classical turbulence. However,
as the v=2 power law is a single vortex effect, note that it will always be present
in, but is not indicative of, turbulent vortex dynamics. For scales smaller than the
minimum inter-vortex distance but appreciably larger than the healing length, the
single-vortex velocity field can be expected to dominate the distribution. However,
effects due to cooperative behaviour of many quantum vortices are central to quantum
turbulence [92, 173], and may lead to different behaviour for scales greater than the

minimum inter-vortex distance [264, 265].

4.3.3 Quantum Kinetic Energy Spectrum in the Hydrody-

namic Regime

We now evaluate the definition of the spectrum (4.22) within a hydrodynamic approx-
imation that neglects high-order density and phase gradients. This approximation
gives a rigorous link between the velocity probability distribution and the quantum
kinetic energy spectrum, applicable for a system of quantum vortices in a smoothly
varying background density, while neglecting the density variations occurring within

distance & of a vortex core.

We confine our attention to the hydrodynamic kinetic energy spectrum Ep (k).
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Performing the integral over 6y, the spectrum (4.22) becomes

mkf 1 /
Bulk) = 5o [ dn [ diwetteoe)

xy/n(r)n(r)v(r) - v(r') Jo(klr — r']). (4.33)

Transforming to coordinates x = (r +r’)/2, and y = r — r/, Taylor expanding in

powers of y gives

Ox+y/2)-0(x—y/2) =~ y-Vix)=

e R (A )

y - v(x), (4.34)

VOHy/2) vi-y/2) m VGOR - Iy VIVGOR, (430
yielding the expression
Bu(k) ~ "L [ [y om0 (hy)
X [n(x)|v(x)|2 (4.37)
Oy o - MR (v a) )
+116 (y v n(x)>2 y- v)v(x)f] _ (4.39)

This may be written as By (k) ~ EY (k) + E% (k) + B (k), where the superscripts
denote the orders of V involved in each term. We now take a hydrodynamic approach
and treat the lowest order term, validating the results against a full numerical treat-
ment. Considering the lowest order term, Eq. (4.37), and performing the angular

integral in y gives
k; 1
EVk) = me /dzxn )|v(x)|?

X /0 ydy Jo <ym|h(x)‘> Jo(ky). (4.40)

This can be evaluated using the Bessel closure relation [5° xdx J,(ux)J,(ve) = d(u—
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v)/u, to give the useful result

0) m m|v(r)|

EPR) = % / d2r n(r)|v(r)[28 <k: - h) . (4.41)

At this level of approximation, the kinetic energy is a simple local transform of the

hydrodynamic kinetic energy.

Given the above, let us note that integrating over k gives
/ dk B9 (k) = % / &r n(r)|v(r)? = &, (4.42)
0

such that our approximations have not affected the total energy. Furthermore, using
(4.29) with (4.41), we have

ho(Rk\® _ [ hk
El('j([))(k>:Ntot§ <m> P(m)’ (4.43)

where the total hydrodynamic kinetic energy is given by

o0 00 2

/0 EQ()dk = N /0 v P(v)%. (4.44)
The expression (4.43) is our main analytical result, providing a rigorous link between
the velocity distribution and the kinetic energy spectrum in the hydrodynamic regime.
A superfluid state comprised of quantized vortices in a homogeneous background will
be very well described by this expression for the kinetic energy in the regime k < 71,
provided &£ is the dominant energy contribution, and the system does not contain a

significant amount of acoustic energy.

Eq. (4.43) further emphasises the difference between the classical and quantum
kinetic energy spectra in a quantum fluid. The classical spectrum, Eq. (4.13), con-
tains information about the spatial structure of velocity correlations, and is thus the
quantity that will for example exhibit the Kolmogorov scaling [188, 228, 266], and
a pileup at low k in the presence of spectral condensation (Secs. 2.9.3 and 3.10). In
contrast, whilst the quantum kinetic energy spectrum, Eq. (4.22), draws information
from the velocity probability distribution [as shown in Eq. (4.43)], it has no obvious

classical counterpart.
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4.3.4 Spectral Signatures of Coherent Structure Formation

For systems containing many vortices and little compressible energy, the quantum
kinetic energy spectrum should be well described by the hydrodynamic approximation
Eq. (4.43). We now consider the spectral features that may be observed for systems

containing coherent vortex structures.

A fundamental property of superfluidity is the constraint that the vorticity w(r) =
0 except at vortex cores where it is singular. However, as is well known from the study
of Abrikosov vortex lattices, the coarse-grained velocity field can acquire a rotational
component as the system approaches a classical state [257], consistent with Bohr’s
correspondence principle. Denoting the classical velocity field by v.(r), the rotational

part can be described by the ansatz
ve(r) = Q.xr, (4.45)

for some Q. = Q.z. Ignoring the vortex core structure, the probability distribution

for a cluster of radius R, exhibiting rigid-body rotation is found from (4.29) as

Mo 2 271'710 Re
(v) N r (v T) N Jo rdr o(r —v/Q,)
21Ny
= H(Q - 4.4
ey H(OuR =), (446

where the Heaviside function limits this behaviour to the cluster interior. This dis-
tribution, with (4.43), gives the power-law form Eg,))(k) ~ k3 for k < k., where

ke = mQ.R. /R, (4.47)

giving a relation between the cluster size, classical vorticity field, and the k? scale
range in the spectrum. Note that the k? form is quite distinct from the infrared result
for a single vortex, for which (4.31) and (4.43) immediately yield Eg))(k;) o kL.

For any finite system with a sufficiently high level of clustering, there will be signif-
icant modifications to the velocity field due to the interactions between the coherent
structures and the boundary (or, equivalently, the image vortices that ensure the
flow obeys the boundary conditions). For vortex distributions containing both pos-
itive and negative vortices, highly energetic, maximum-entropy configurations take
the form of a macroscopic dipole [92, 143]. The interaction between the clusters that

form this dipole with their image vortices will induce a quadrupole mode in the phase,
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which will generate a stagnation point in the velocity field. The phase in the vicinity
of a stagnation point may be modelled as 0(r) = axy, where « is a constant with
dimensions of inverse area [267] (see Sec. 4.4 for examples of this phase structure).

The velocity field is thus given by

ho
S 4.4
VS m (y7 x)’ ( 8)
and from Eq. (4.29), one finds
P) = 20y (g - (4.49)
n h2|O{|2NtOt 3 h‘o&’ )

with the Heaviside function again limiting the behaviour to some region r < R;.
Here P(v) again yields the spectrum Eg))(k:) ~ k3. Eqgs. (4.46) and (4.49) suggest
that a significant region of the quantum kinetic energy spectrum may exhibit a k3
power law if coherent vortex structures are present in the system. We also note from
Eq. (4.19) that a k? spectrum corresponds to a constant momentum distribution. We
explore the quantum kinetic energy spectrum further in the following section, where

we examine vortex distributions via numerical sampling.

4.4 Numerical Sampling and Spectral Analysis of

Coherent Vortex Structures

In order to characterize the emergence of coherent vortex structures, we consider the
end-states of freely decaying (i.e., unforced) 2DQT. Such states can be sampled using
microcanonical methods [92] and, in the case of appropriate experimental small-scale
forcing [188], are expected to form via the subsequent freely-evolving vortex dynamics

after switching off the forcing mechanism.

4.4.1 Microcanonical Sampling

We consider neutral (zero net circulation) vortex configurations within a doubly-
periodic box. We consider configurations of varying point-vortex energy per vortex,
which correspond to varying degrees of clustering, and directly correspond to Gross-
Pitaevskii energies in the incompressible regime [92]. Following Refs. [92, 148] the
energy per vortex for a neutral configuration of N point-vortices with charges {x;} =

+1 (circulations hr;/m), located at positions {r;} within a square box of side length
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Figure 4.1: (Top row) Vortex distributions for a range of point-vortex energies. The
distribution has been decomposed into clusters, dipoles and free vortices using the
RCA [188] (see text). For ¢ > 5, R and |r — R| = R. are shown by crosses and
dashed lines respectively. Vortices in clusters are connected by solid lines showing
the minimal spanning tree of the cluster, determined by Kruskal’s algorithm. In
each panel the field of view is L x L, where L = 512¢. (Middle row) Phase profiles
O(r) for the corresponding vortex distributions. (Bottom row) Log-log graphs of the
quantum kinetic energy spectrum (E(k)) [ensemble average of Eq. (4.19)], and the
classical hydrodynamic spectrum (eg(k)) [ensemble average of Eq. (4.13)] for a range
of point-vortex energies, averaged over 40 random walk trajectories at each energy.
Shaded regions show +1 standard deviations. Lines proportional to k* (green) are
shown for comparison. For € > 5 the vertical dashed line and shaded regions show
ERCA and 41 standard deviation respectively (see text).

L is given in terms of the vortex-pair energy [148]

h(r) = :f_j In COSh(xC;Sig:T)n; Cos(y)] - (4.50)
e({r;}, {x;}) = o +% Z__jl PO h (W) , (4.51)

where the point-vortex energy is in units of poI'? /47, for background density py = mng
and circulation I', and ¢y = —0.1170... is a constant that shifts the energy axis such

that € = 0 corresponds to an uncorrelated vortex distribution (see Sec 2.10.1).!

IThis shifting of the energy axis is in fact equivalent to using the alternative expression for the
point-vortex energy derived in [147], although we use Eq. (4.51) for our computations as it is more
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As detailed in Sec. 2.10.3, the canonical momenta of the point-vortex system are
the vortex coordinates (up to circulation prefactors) and, as a result, if the spatial do-
main is bounded so is the volume of accessible phase space [151]. Consequently, in this
system at € = €yax &~ —0.255 [92, 147] the structure function W (e) (i.e. the number
of available states at a given energy) reaches a maximum and is monotonically de-
creasing thereafter as € — co. Hence for € > €%, the temperature T = W(9W/de)
is formally negative. These negative temperature states are associated with a ten-
dency for like-sign vortices to aggregate, and the emergence of macroscopic vortex
clusters in maximal entropy (equilibrium) configurations [143]. Averaging over the
microcanonical ensemble at a given energy (provided N is sufficiently large, to ensure
ergodicity) characterises the end states of decaying 2DQT at that energy.

In a quantum fluid, the validity of this point vortex description is dependent on
the system size (relative to the healing length), the point-vortex energy, and the
vortex density of the system. In particular, increasing the energy or vortex density,
or decreasing the system size, eventually leads to strong coupling between vortex and
sound degrees of freedom. Note, however, that making the incompressible velocity
everywhere small compared to the sound speed c¢ greatly reduces the strength of
this coupling: a regime where the point vortex description is valid can always be
reached by increasing the system size (or alternatively reducing the vortex number,
although this approach will cause larger statistical fluctuations and eventually violate
the ergodicity assumption). As detailed in Sec. 3.4.2, we would expect the point
vortex description to be valid when the superfluid Mach number Mas ~ ¢.£/¢ < 1,
where ¢ is the average intervortex distance and ¢. is the average cluster charge.
Previous work has confirmed that the statistical approach correctly describes the end
states of decaying turbulence in the damped GPE for energies up to € = 6 [92] (in a
box of length 512¢ for 384 vortices). In this work we provide further confirmation of
the approach for even higher energies in trapped systems (see Sec. 4.6).

We investigate the equilibrium states over a range of point-vortex energies via
a random-walk procedure. We start with an uncorrelated distribution of N = 386
vortices in a box of length L = 512£. For an uncorrelated distribution the nearest-
neighbour correlation functions cp = évzl Zqul I{pl-iz()q) /BN (where /{é‘]) is the g¢th
nearest neighbour to vortex p) are equal to zero [92, 188, 249]. The vortices undergo
a random walk towards a state with a desired point-vortex energy e, specified within
a tolerance of Ae = £0.01. A minimum inter-vortex separation of 27¢ is enforced

to ensure the vortex cores are non-overlapping [173], such that higher order density

convenient to work with numerically.
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gradients may be neglected, consistent with the analysis of Sec. 4.3.3. This effective
hard vortex core can also be viewed physically as an approximation to the energy bar-
rier associated with the formation of multiply-quantized vortices in Gross—Pitaevskii
theory [257].

Once a configuration with the desired energy is obtained, we find the correspond-
ing Gross-Pitaevskii wavefunction using the constructive approach developed in Ref.
[92]. In brief, the modulus of the wavefunction m is constructed as the product
of the individual vortex core wavefunctions [the numerical solution to Eq. (4.3)] and
the phase (r) is constructed from the sum of the phases due to individual vortex
dipoles [see also Eq. (3.61)]. We work in units of the healing length £ and the chemical
potential ;. The wavefunctions are constructed on a standard pseudospectral Fourier
tensor grid of resolution M = 20482, i.e., 2048 grid points in the z and y directions.
We sample within the range of point-vortex energies € = [—3,200], sampling over 40

random walk trajectories at each value of e.

4.4.2 Recursive Clustering Algorithm

To analyse the vortex distributions, we make use of the recursive clustering algorithm
(RCA) first presented in [188]. The algorithm yields detailed spatial information
about a neutral vortex configuration by decomposing it into clusters, dipoles and free

vortices. The algorithm consists of two rules:

(i) Mutual nearest-neighbours of the opposite sign constitute a dipole. Since iso-
lated dipoles have a relatively weak far-field velocity due to screening effects
(1/r® vs. the 1/r field of a lone vortex), they are removed from subsequent

consideration by the algorithm.

(ii) Same-sign vortices which are nearer to each other than either is to a vortex of

the opposite sign are allocated to the same cluster.

Rule (i) is applied first, recursively, until no more vortices can be added to dipoles.
Rule (ii) is then applied to the remaining vortices, until no more can be added to
clusters. Vortices that cannot be allocated to either a dipole or a cluster are considered
to be “free”. Clusters are initially grown from “seeds” which consist of a pair of
same-sign vortices that are mutual nearest neighbours and are therefore guaranteed

to be part of the same cluster. The search radius for cluster candidates is limited
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by the nearest oppositely signed vortex. The domain periodicity is accounted for
by determining the shortest minimal spanning tree of the cluster over all possible
wrappings, by implementing Kruskal’s algorithm [268] with sparse matrix routines.
The spanning tree allows for a correct determination of spatially dependent cluster
properties such as the centre of mass, and also provides a convenient means for cluster

visualisation (see e.g. Fig 4.1).

This simple algorithm provides a unique decomposition of the vortex distribution,
and seems to faithfully capture the qualitative features of the flow relatively well:
vortices attributed to dipoles tend to traverse the system in straight-line trajectories,
whereas clustered vortices orbit about their cluster centre (see, e.g., Ref. [92]). The
RCA has been shown to extract useful flow-field information such as a “spectral
condensate fraction” analogous to a BEC fraction [269], and has also been used to

study free vortices as (quasi) passive tracers [246].

From the decomposition of the vortex distribution, we may acquire characteristic
information about each cluster. In particular, the physical location of the cluster is

estimated by the center of mass

1
¢ jeC
where C' denotes the set of all vortices that belong to a particular cluster, and N, =
|K.| denotes the number of vortices in the cluster. Additionally, the spatial extent of a
cluster can be estimated by the cluster radius, which we define as the mean distance

from the center of mass

1
Re=+ > r; =R (4.53)

¢ jeC
Although the cluster algorithm yields values for R and R, for every cluster in a given
distribution, throughout this section we are primarily concerned with the largest
clusters in the system. Hereafter we will use the above notation to refer to the

position and radius of the largest cluster only.

We show the resulting decomposition of the vortex distribution for a range of
point-vortex energies in the top row of Fig. 4.1. Qualitatively, the algorithm captures
the well-known physics of the point-vortex model: at negative point-vortex energy,
the distribution takes the form of a dipole gas, with many or all vortices being bound
in vortex-antivortex pairs. As the point-vortex energy is increased, clusters of same-
sign vortices emerge, accumulating more vortices with increasing energy. With further

increase of the point-vortex energy, clusters continue to accumulate vortices, but also
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contract spatially, storing more energy internally rather than accumulating more
vortices from the remaining vortex field (as the latter would lower the entropy). At
sufficiently high energy (e ~ 200) the phenomenon of supercondensation occurs [255],
and the distribution collapses into two macroscopic clusters, each of charge N/2.
While such a state is unlikely to be achievable in atomic BEC, the supercondensed

state nonetheless demonstrates the limiting physics at very high energy.

4.4.3 Spectral Analysis

In the bottom row of Fig. 4.1 we show the (ensemble-averaged) quantum kinetic
energy spectrum (E(k)) [Eq. (4.21)] over a range of point-vortex energies. It is
evident that, for positive energies, the spectrum acquires a k% scaling in the infrared.
The scaling begins at low k and progresses towards larger wavenumbers as the point-
vortex energy of the system is increased. The behavior of the spectrum is in stark
contrast with the classical spectrum [Eq. (4.13)], for which the emergence of large-
scale structure is signified by a spectral “pile-up” at length scales of order the system
size, as is shown in Fig. 4.1. Notice however that the two spectra are very similar
in the low energy vortex-dipole regime. Even for the relatively modest point-vortex
energy € = 5 the spectrum exhibits nearly a decade of k® scaling in this system. For
sufficiently high energy (e ~ 100) the range of the k* scaling extends past the point
k= &1 In dynamical simulations, it is unlikely that the &% scaling would extend
this far, as effects due to compressibility are non-negligible at velocities comparable
to ¢ (see Sec. 4.6). At high energy, the regions of slowly-varying phase that contribute
to the infrared spectrum are clearly seen at the stagnation points and in the interior
regions of the largest clusters. In the supercondensed state, the stagnation point
phase structure 0(r) = axy becomes particularly evident.

The location of the peak in the kinetic energy spectrum, which we label k., gives an
indication of the k? scale-range observed in the negative-temperature regime. In light
of Eq. (4.43), in the hydrodynamic approximation where v = hk/m, this wavenumber
indicates a most probable or “characteristic” velocity. This characteristic velocity is
associated with the coherent structures; as the energy is increased and large structures
emerge, we observe that phase fluctuations of a characteristic wavelength develop
around these structures, and throughout the system [Fig. 4.1]. The characteristic
wavelength of the fluctuations shortens as € increases. These observations are con-
sistent with Onsager’s prediction — that the velocity field of a negative-temperature

equilibrium state will be dominated by the coherent motion of the macroscopic vortex
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Figure 4.2: Wavenumber corresponding to the peak of the spectrum k., as a function
of the point-vortex energy per vortex €. The shaded region and errorbars show + 1
standard deviations.

clusters, since the motion of the remaining vortices is essentially random [143].

We find that the characteristic velocity can be estimated from the RCA by consid-
ering only the largest cluster (in terms of charge) in a given configuration. The wave-
length of the phase variations at a distance r from a large cluster will be A\ = 277 /K pet,
where k. denotes the net charge within the region enclosed by a circle of radius r.
The corresponding wavenumber is thus k = kyet /7. To calculate a value for k. from
the RCA data, which we denote kR°A| we take the largest cluster and calculate the
net charge enclosed within the cluster’s radius R.. We only consider energies at which
we may unambiguously define the largest cluster (e > 5 );2 for these values, kR4 is
shown in Fig. 4.1 (bottom row), where it clearly provides a good indication of the
location of the spectral peak. Conversely, the location of the peak provides a good
estimator of the scale of the largest cluster in the system. We also compare k. as
calculated directly from the kinetic energy spectrum to kR4 in Fig. 4.2. In general
there is very good agreement in the data, even though the RCA does not account for
cluster anisotropy [e.g. see Fig. 4.1, ¢ = 50]. Agreement is poorest at lower energies
(e £10), when the largest clusters are not significantly larger than those in the back-
ground vortex distribution. However, as the energy is increased, agreement improves

as the largest clusters begin to dominate the velocity field.



4.5. Emergence of Rigid-Body Rotation 117

26—5 : e=20 :
I I
S
3! l l
= | |
[ S R
0 | I

)
W
=)
=)
W
)

Ir - R|/&

Figure 4.3: Azimuthal velocity field vq of the largest cluster, as a function of distance
from the cluster center [r — R/, for a range of point-vortex energies e. Shaded regions
show +1 standard deviations. Solid (red) lines show a linear fit to the averaged
velocity field within the region 0 < |r — R| < 40£. The slope yields a value for
Oft (see text and Fig.4.4). Horizontal and vertical dashed lines show the values
vROA Jo = ERCAE (see Fig. 4.2) and (R,) respectively.

4.5 Emergence of Rigid-Body Rotation

4.5.1 Azimuthal Velocity Field

According to the analysis in Sec. 4.3.4, the presence of a k® spectrum suggests
that the azimuthal velocity field in the vicinity of a large cluster may mimic that
of a rigid body, that is ve(r') = Q|r’|, where |r'| = |r — R| is the distance from
the cluster center. However, we have shown that the k® spectrum may also be due
to the stagnation points of the velocity field. Due to the non-local nature of the
Fourier transform, it is difficult to disentangle the spectral contributions from rigid-
body rotation and the stagnation points. This motivates us to analyse the clusters
directly, to determine the extent to which they exhibit rigid-body characteristics.
Again considering energies € > 5, we calculate the angular velocity field relative

to the cluster center, averaging over the azimuthal direction and the ensemble:

vo(r') = <217T / 7 |v9(r’)|>. (4.54)

The resulting velocity field for a range of point-vortex energies is shown in Fig. 4.3.
The averaged velocity field is approximately linear over the cluster interior, although
fluctuations are larger at lower energy. The linear behaviour is typically maintained
up to scales comparable to the average cluster radius (R.). At (R.) the velocity is

well approximated by the characteristic velocity vX“4 = AERCY /m. We find vq to

2We analyse energies for which there is a unique N. = max({N..;}) for at least 90% of the random
walk trajectories. In the few cases where multiple clusters satisfy N. = max({N.;}), one of these
clusters is selected at random.
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be linear for at least ' < 40€ for € > 5, and that the slope of vy steepens with
increasing €. Note that although the RCA sometimes overestimates the region of
linear behaviour, the velocity is always well described by vECA at (R.). Additionally,

notice v (0) & 0, suggesting that the RCA accurately determines the location of the

cluster center.

4.5.2 Measures of Classical Vorticity

To further characterise the rigid-body flow field, we may determine the rigid-body
rotation frequency )., thus also determining the characteristic turnover time T =
27/, for the largest cluster. We describe four measures:

Qfit: A value may be obtained from the slope of a linear fit to vg. We fit over the
region 0 < 1" < 40¢, where linearity holds for all €, as shown by the lines of best fit
in Fig. 4.3. We show Qf* as a function of € in Fig. 4.4(a). There is a clear linear
trend in the data, which are well described by the relation Qft = (1.5¢ + 36) x 107
We use Qft as a base measure, which we compare against other measures.

QFeyn: The positive-temperature ground state for a system rotating at frequency
Q). is an ordered vortex lattice that has a constant vortex density given by Feynman’s
rule, n, = mQ./mwh [170]. In order to maintain rigid-body rotation, the negative-
temperature clustered states considered in this work must still exhibit a constant
area per vortex on average, even though they do not maintain crystalline order.
Applying Feynman’s argument, we expect a rotation frequency
wh{n,)

= (4.55)

Feyn
Qc
m

where (n,) denotes the average vortex density of the largest cluster in each sample,
averaged over the ensemble. Considering the cumulative distribution N, (r), which
counts the number of vortices with |r; — R| < r, we find the distribution is well
described by N,(r) = mn,r* (as required for constant n,) over the region where vq
is linear. We verify that this is not an artifact of the vortex-separation minimum
by reducing the separation cutoff used in our microcanonical sampling from 27¢ to
¢, finding nearly identical results. Fitting over the same region 0 < ' < 40 yields
values for QF*" which are in excellent agreement with Qi) as shown in Fig. 4.4(b).
We emphasise that Qfit is obtained from the velocity field, while QI is determined
by the vortex distribution.

QRCA: A value for 2. may also be calculated from the RCA data. Since the rigid-
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Figure 4.4: Measures of the rigid-body rotation frequency €2.. The shaded regions
(Q%) and error bars (other measures) indicate £1 standard deviations. In (b)-(d)
Qfit is shown for comparison.

body velocity field persists up to the characteristic wavenumber k., = m{.R./h, and

k. is well described by k?CA = Knet/ Re, clearly we may consider

hk 1 1
RCA _ net \ 2

where R is the region enclosed by a circle of radius R. centered on R. This is

equivalent to averaging the vorticity distribution over the region of the cluster. The

values QRCA

are shown in Fig. 4.4(c). There is reasonable quantitative agreement
between the data obtained directly from the wavefunction (%) and that extracted
from the RCA. It is clear that there is some discrepancy in qualitative trend however,
and agreement between the two quantities is poorest for ¢ ~ 120. This “sag” at
intermediate energies is due to a decline in vortex density in the outer region of the
cluster, which causes N,(r) to deviate from the expected quadratic behaviour, and
consequently vg to deviate from rigid-body behaviour (Fig. 4.3, € = 100). For perfect
rigid body rotation extending out to R, one would expect Qft and QFCA to yield

RCA
Qc

exactly the same values. Thus indicates the extent to which the velocity field

deviates from perfect rigid-body rotation over the scale of the cluster as defined by
the RCA value R..

Qclass: The presence of a rigid-body velocity field requires that, under an ap-
propriate coarse graining procedure (see also, e.g., [230, 270]), the formally sin-
gular vorticity field becomes constant over the central region of the cluster, i.e.,

w(r) =h/mY;d(r —r;) = we(r) ~ 2Q, for [r — R| $ R.. Defining an average over
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Figure 4.5: The emergence of classical flows: Exemplar RCA vortex distributions
and coarse grained vorticity fields w,(r) [the latter obtained by including only spatial
modes k < key = 2m/(2R,.)] for a range of e. Streamlines show the velocity field
v(r) = AVO(r)/m. Crosses show the center-of-mass position of the largest cluster
in each sample, R, as determine by the RCA. The RCA radius R, is shown by the
dashed line.

many quantum vortices, we consider the coarse-grained classical vorticity field
w(r) = - / 2k & (k)e* (4.57)
¢ 2m Jk '

where @(k) = Flw(r)] and K is the k-space domain satisfying |k| < ke = 27/ leys for
a chosen cutoff length-scale (., > &. Coarse graining over the spatial extent of the
largest vortex cluster ({e,, = 2R.) yields a value consistent with the other measures

if we consider w.(r) at the cluster center:

Qelass _ <1wC(R)>‘ (4.58)

2
Values for Q85 are shown in Fig. 4.4(d). We find excellent agreement between Qclass
and Q8 until € ~ 150, at which point Q2% deviates to higher values. This discrepancy
is due to taking the value locally at R, where the vorticity can be slightly more
concentrated, particularly for large clusters, whereas Qi incorporates information
away from the cluster center. Q2 indicates that, apart from at very high energy,

the clusters do not deviate significantly from rigid-body motion in their interior.

Coarse graining over f., = 2d for mean nearest-neighbour distance d (typically
d ~ R./3) yields similar values for Q9 but with larger fluctuations. For this
value of l., we also verify that w.(r') ~ const. for |[r'| < R.. Averaging over the
azimuthal direction and ensemble to obtain w.(r’), we find (w.(40¢)) = 0.9(w.(0))
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at all energies, consistent with the linear vg and quadratic NV, observed up to this
scale. At the cluster radius, (w.(R.))/{w.(0)) ~ 0.6 — 0.8 for low (¢ < 50), and high
(e 2 150) energies respectively, and (w.(R.))/{w.(0)) ~ 0.5 for intermediate energies.
This is consistent with the deviation from rigid-body behaviour at larger scales as
seen in Fig. 4.3, and as indicated by the qualitative trend of QRCA,

The emergence of a classical flow field from the quantum vortex distribution is
qualitatively captured in Fig. 4.5, where we present particular examples of the vortex
distribution (as decomposed by the RCA) and the classical vorticity field w.(r) (for
lews = 2R.), generated at various e. As large clusters emerge, they generate macro-
scopic regions of approximately uniform vorticity, capturing the qualitative features
of the emergent quasi-classical velocity field, as shown by the velocity streamlines.

It is interesting to compare the rigid-body rotation property observed here to the
rotational properties of coherent structures in classical fluids. The states we have
considered here are the freely-decayed states of a turbulent superfluid. Decaying
turbulence described by the inviscid Euler equations has been shown to approach the
statistical equilibrium predicted by the mean-field Montgomery-Joyce (sinh-Poisson)
equation [153, 271]. With quantum vortices we would expect to recover this regime in
the limit N — oo. Indeed, the rigid-body rotation observed here in quantum vortex
clusters for large N is qualitatively consistent with the form of the doubly-periodic

vortex dipole solution of the Montgomery-Joyce equation [272].

4.6 Dynamical Emergence in a Trapped System

Finally, we demonstrate that coherent structures and the associated k3 power law
can emerge dynamically in a trapped system, and compare the dynamical results
against sampling. The model we use to describe the dynamics of a 2D Bose gas is
the damped Gross-Pitaevskii equation (dGPE):

0 (i)~ i), (4.59)
where p—
£= (<G Volr) ot ). (460)

for an external confining potential Ve (r). The damping parameter 7 describes the
finite-temperature effects due to collisions between the condensate and a stationary

thermal reservoir with chemical potential . Within the framework of c-field theory,
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the dGPE can be obtained from the stochastic projected Gross-Pitaevskii equation
for a large BEC in the low-temperature regime, for which the thermal noise is negli-
gible [209]. The dGPE has been used extensively in quantum turbulence studies [80,
82, 187, 228, 243], and has been demonstrated to give qualitative agreement with
experiment even for relatively high temperatures [82]. We set v = 107°, an experi-
mentally realistic value under the conditions for which the dGPE theory is valid [173].
For such a value of v, the modifications to the vortex dynamics [184] are essentially
negligible over the integration time we consider. The primary effect of the damping
is thus to suppress compressible excitations at very high k, which are numerically
demanding to resolve, yet have little physical effect on the vortex dynamics in the
regime of interest here.
We simulate a 2D BEC confined within a circular well or “bucket” potential of
radius R, i.e.,
Vext(r) = Vo{1 + tanh[(r — R)/a]}, (4.61)

and set Vp/pu =10, R/€ = 200, and a/& = 3, such that V., approximates a hard-wall
potential. We remark that Bose condensation in a quasi-uniform cylinder has been
recently demonstrated experimentally [70].

In this system, the energy of an N-vortex configuration may be characterized by

the energy per vortex for point-vortices (in units of poI'? /47) within a circular domain
D of radius R (see Sec. 2.10.1):

| NN
e({rj} {r}) =€ -+ Z > Fpky In |-
p Lg#p
1 N N
N Z Kpkg In |- (4.62)
where r; = R’r;/|r;|? is the location of an image vortex with charge k; = —k;

and € ~ —4.158 shifts the axis such that ¢, = 0 corresponds to an uncorrelated
distribution, as does ¢, in Eq. (4.51). The images ensure that the velocity field
satisfies the boundary condition v -1 |sp = 0, i.e., that the flow perpendicular to the
boundary 9D is zero everywhere on dD.

We set the vortex number to N = 112. Whilst fewer vortices will inevitably lead
to larger statistical fluctuations, a lower vortex density is beneficial here as it reduces
the radiative loss of vortex energy into the sound field. Reducing the vortex density
ensures that the incompressible velocity field is everywhere small compared to the

speed of sound ¢, and also lowers the chance of vortex core overlap, thus ensuring
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that the vortices remain sufficiently well separated such that their Gross—Pitaevskii

dynamics are well-approximated by a point-vortex description (see Secs 3.4.1 and
Sec. 3.4.2).

The initial condition, 1,(r,0), is generated via a similar method to that outlined
in Sec. 4.4:

Uo(r) = Yrp(r)e®® Hx v —r;]/€). (4.63)

7j=1

Here the Thomas-Fermi wavefunction ¢rg(r) = \/ (1t — Vet (1)) /g for Vg (r) < p
and 0 otherwise, x(r) is the radial core profile of an individual quantum vortex [the

numerical solution to Eq. (4.3)], and

Z@ ) + 7;0,(T), (4.64)

where 6;(r) is the phase due to an individual positive vortex at r;. We prepare a
high-energy [e,(t;) = 10.1], non-equilibrium initial vortex configuration, as shown in
Fig 4.6. The wavefunction is constructed on a spatial domain of length L = 512¢,
and is discretised on a uniform grid of M = 10242 points. We numerically integrate
the dGPE pseudo-spectrally, using an adaptive 4th-5th order Runge-Kutta method
[273, 274], and a relative error tolerance of 7 = 107°. We have confirmed that all
statistical measures of the vortex dynamics remain the same for L = 700, M = 2048,
T =105

The initial configuration is highly unstable, and the horizontal lines of like-charge
clusters undergo a roll-up, due to the Kelvin-Helmholtz instability. The initial ki-
netic energy spectrum, shown in Fig. 4.6, does not follow the &% power law, but does
exhibit a well-defined peak. The peak is due to the initial clustering in the configura-
tion, which produces phase fluctuations of a characteristic wavelength A ~ 10& — 20€&.
Full relaxation to equilibrium is slow, requiring an integration time of order 10*4/p.
However, clear signs of a k* power law emerge after ¢ ~ 3000h/pu, as, at this stage
of the evolution, large, quasi-equilibrium clusters have already formed. This is con-
sistent with the observations in Ref. [92], where it is shown that the macroscopic
clusters begin to form well before the equilibration time. After ¢; = 11300/ of
evolution, the system has clearly reached the equilibrium state containing coherent
vortex structures, as shown in Fig 4.6. Although during the evolution some of the
vortex energy is lost to sound, most of the vortex energy is retained [e,(¢;) ~ 7.8], and

thus the configuration is still well within the negative temperature regime. It may be
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Figure 4.6: Time-averaged quantum kinetic energy spectra (left) and vortex distri-
butions (right) for the dynamical system at t; = 0h/p (top row) and ¢; = 11300h/
(middle row). The spectra for the dynamical system are averaged from ¢ to t+5004/ .
The spectrum and distribution at ¢¢ can be compared against those of the statistical
ensemble (40 samples) at the same point-vortex energy (bottom row). On the spec-
trum plots, lines proportional to k% are shown for comparison, shaded regions show
+1 standard deviation, the vertical dashed line shows k. as calculated from the en-
semble using Eq. 4.47, with the shaded vertical band showing £1 standard deviation.
Symbols for the vortex distribution plots are as denoted in Fig.4.1



4.7. Conclusion 125

that radiative energy loss of the vortex distribution as a whole is partially inhibited
by vortex “cross-talk”, a mechanism via which vortices of the same sign can efficiently
impart energy to each other through radiation and absorption of sound [193].

We emphasise that the final energy per vortex e, = 7.8 is substantial, being
analogous to a point-vortex energy in the periodic system considered in Sec. 4.4 of
e > 7.8. Indeed, using the supercondensation energy (e, ~ 70) as a reference, one can
consider the final point-vortex energy in the simulation, €,(t;) = 7.8, to be roughly
equivalent (interpreted as a fraction of the supercondensation energy) to € ~ 22 in
the doubly-periodic system considered in Sec. 4.4 (where supercondensation occurs
at € &~ 200). A more quantitative estimate of equivalence can be obtained using
the nearest neighbour clustering measure ¢; (as defined in Sec. 4.4.1); we find the
equilibrium values to be approximately the same (¢; = 0.35) for €, = 7.8 and € ~ 25,
supporting the above analysis. The quantum kinetic energy spectrum and vortex
distribution at t; can be compared against the same quantities obtained from a
statistical ensemble, as shown in Fig. 4.6. The spectra are qualitatively very similar,
and nearly identical in the &% region. The RCA value for k. still gives a reasonable
indication of the range of k% behaviour and the location of the spectral peak. The
vortex distribution as determined by the RCA is also very similar [see Fig. 4.6].

We propose that the most direct way initial conditions similar to those shown in
Fig. 4.6 could be created is by carefully-controlled laser stirring and manipulation
protocols: The field of two-dimensional quantum turbulence has seen several numeri-
cal studies of the injection of clustered vortices via optical stirring potentials in recent
years [83, 89, 187, 249, 250], and injection of small vortex clusters has indeed already
been demonstrated experimentally [82]. While neutral systems having similar spatial
extent (relative to the healing length) and containing as many vortices as we have
considered here may be challenging to achieve, they are nonetheless within the scope

of current experimental technology.

4.7 Conclusion

In this work we have shown that the coherent vortex structures that emerge in de-
caying 2DQT can exhibit quasi-classical rigid-body rotation, obeying the Feynman
rule of constant areal vortex density while remaining spatially disordered. By devel-
oping a rigorous link between the velocity probability distribution and the quantum
kinetic energy spectrum we have shown that these coherent structures are associated

with a k% power-law in the infrared region of the spectrum. The power-law region
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terminates at a peak located near the inverse spatial scale of the largest cluster. The
k3 spectrum and associated peak provide signatures of coherent structure formation
that may be measured independently of the vortex configuration data, and should
be accessible in atomic BEC experiments. Furthermore, our analysis illuminates the
important distinction between the quantum kinetic energy spectrum and the power
spectrum of the velocity autocorrelation function in a quantum fluid, namely, the
classical hydrodynamic kinetic energy spectrum.

By identifying a clear spectral signature that is accessible via ballistic expansion
imaging, this work provides an additional measurement tool for experimental obser-
vations of negative-temperature coherent vortex structures in two-dimensional atomic
Bose-Einstein condensates. Experimental confirmation of the Feynman rule at neg-
ative temperature may provide further indication of the appearance of rigid-body

rotation and the universality of rotational velocity fields in quantum turbulence.



Chapter 5

Identifying a Superfluid Reynolds

Number via Dynamical Similarity

In this chapter, we study the transition to turbulence, in the wake of a cylinder in a
2D quantum fluid, as a means to test Onsager’s superfluid Reynolds number across
the transition. We develop a new numerical method to gain access to the steady-state
properties of the wake, allowing a detailed investigation of Strouhal oscillations to be
conducted. Dynamical similarity is found to be recovered in the Strouhal-Reynolds
number relation when the superfluid Reynolds number is modified to account for the
critical velocity for vortex nucleation. For obstacles larger than a few healing lengths,
the transition from laminar flow to turbulent vortex shedding is found to occur at

the same value of this modified Reynolds number, regardless of obstacle size.

5.1 Motivation

Turbulence in classical fluid flows emerges from the competition between viscous
and inertial forces. For a flow with characteristic length scale L, velocity u, and
kinematic viscosity v, the dimensionless Reynolds number Re = uL/v characterises
the onset and degree of turbulent motion (Sec. 2.2). An analogous quantity can be
defined for a finite-temperature superfluid through an effective quantum viscosity
that arises due to interactions with the normal fluid component [173]. However, a
naive evaluation of the Reynolds number for an ideal, zero-temperature superfluid is
thwarted by the absence of kinematic viscosity, suggesting that the classical Reynolds
number of a pure superfluid is formally undefined [51, 89, 196]. Nonetheless, for

sufficiently rapid flows, perfect inviscid flow breaks down and an effective viscosity

127
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emerges dynamically via the nucleation of quantized vortices [218]. As discussed
in Sec. 3.9.2, Onsager [237|, noted that the quantum of circulation of a superfluid
vortex, given by the ratio of Planck’s constant to the atomic mass, h/m, has the
same dimension as v, and provides the only dimensionally consistent quantity that
can be made from the available parameters in the problem. This suggests making the
replacement v — h/m, giving a superfluid Reynolds number Reg ~ uL/(h/m) [238—
240]. This approach is supported by evidence that this quantity accounts for the
degree of superfluid turbulence when Reg > 1 [45-47, 59, 60, 76, 220, 226, 233, 238
240], but has yet to be tested by a detailed study of the transition to turbulence.

The wake of a cylinder embedded in a uniform flow is a paradigmatic example of
the transition to turbulence [275], and has been partially explored in the context of
quantum turbulence in atomic Bose-Einstein condensates (BECs) [51, 89, 168, 218,
225], see Sec. 3.8. The classical fluid wakes (Sec. 2.3) exhibit dynamical similarity:
for cylinder diameter D, and free-stream velocity u, their physical characteristics are
parametrised entirely by Re = uD/v, such that any combination of w, D, and v
that yields the same Reynolds number will produce a wake that is identical after
appropriate rescaling. Above a critical Reynolds number, vortices of alternating
circulation shed from the obstacle with characteristic frequency f, and, because of
dynamical similarity, the associated dimensionless Strouhal number St = fD/u is
a universal function of the Reynolds number (Sec. 2.3.1). In the context of a zero-
temperature superfluid, the Strouhal number is a measurable quantity that can be
used to define the superfluid Reynolds number as a dimensionless combination of flow
parameters that reveals dynamical similarity.

In this chapter we numerically study the Strouhal-Reynolds relation across the
transition to turbulence in quantum cylinder wakes of the two-dimensional Gross-
Pitaevskii equation. We develop a numerical approach to gain access to quasi-steady-
state properties of the wake for a wide range of system parameters, and to accurately
determine the Strouhal number St. We find that plotting St against a superfluid

Reynolds number defined as

Re, = oY) (5.1)

where u, is the superfluid critical velocity and x = A/m,' reveals dynamical similar-

ity in the quantum cylinder wake: for obstacles larger than a few healing lengths the

"Here choosing x rather than h/m results in a transition to turbulence near Reg ~ 1.
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wakes exhibit a universal St—Reg relation similar to the classical form. Furthermore,
for these obstacles Reg characterises the transition to quantum turbulence, with ir-
regularities spontaneously developing in the wake when Res ~ 0.7, irrespective of

cylinder size.

5.2 System

We consider a Gaussian stirring potential moving at a steady velocity u through
a superfluid that is otherwise uniform in the zy-plane and subject to tight har-
monic confinement in the z-direction. In the obstacle reference frame with coordinate
r = ry + ut, the time evolution of the lab-frame wavefunction ¢ (r,t) = ¢ (r,t) is
governed by the Gross-Pitaevskii equation (GPE);

0Y(r,t)

ZHT =(L—u-p—p)(r,1), (5.2)

where 4 is the chemical potential, p = —tAV, and

h2V?
B 2m

Lo t) = [ V) + gl O] v, ) (53

Here, go = v/8mh?a,/ml,, where m is the atomic mass, a, is the s-wave scattering
length, and [, = \/h/mw, is the harmonic oscillator length in the z-direction. The
trapping in the z-direction is assumed strong enough to suppress excitations along

this direction (Sec. 3.1.5).2 The stirring potential is of the form
Vi(r) = Voexp{—[(z — m)* — y*]/0"}, (5.4)
giving an effective cylinder width
D = 2a = 20[In(Vy /)], (5.5)

defined by the zero-density region in the Thomas-Fermi approximation. The parame-
ter a is a reasonable measure of the cylinder radius provided Vj and o are appreciably
larger than p and & respectively, so that the tunnelling depth of the wavefunction is

small relative to the obstacle size, and vortices therefore enter the bulk of the super-

2Note that particularly strong confinement is not necessary to obtain effectively two-dimensional
vortex dynamics [166].
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Figure 5.1: (Top) A quantum cylinder wake in the quasi-steady state. Same-sign
vortices aggregate into clusters to form a semi-classical vortex street. Vortices within
the fringe region |x| > w, are unwound in pairs by imprinting opposite-signed vortices
on top of them, thus recycling the flow to the uniformly translating state as indicated
at the right of the domain. (Bottom) Time series data of the transverse force on the
obstacle. The force exhibits a well-defined frequency, which determines the Strouhal
number for the flow.

fluid at approximately y = +a. For all obstacles we consider, we find that vortices
unpin from the obstacle at y ~ =+a, indicating that D gives a good indication of the

effective cylinder width (see Fig. 5.1).

In contrast to previous studies [51, 89] employing strong potentials (Vo ~ 1004u)
to approximate a hard-walled obstacle, we use soft-walled obstacles (with Vy = ep,
such that D = 20): these obstacles exhibit a well-defined vanishing-density region,
but have a much lower critical velocity than hard-wall obstacles (see Sec. 3.7.1, and
Refs. [223, 225]). A low critical velocity makes the transition to turbulence — which
must occur between the critical velocity and the supersonic regime — more gradual,
aiding our numerical characterisation. Lower velocities will minimise the importance
of sound waves (Sec. 3.2.5), making it easier to compare results with classical hydro-

dynamic turbulence (Sec. 2.1).
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5.3 A Fringe Method for Superfluids

To facilitate our study of quasi-steady-state quantum cylinder wakes we develop a
numerical method to maintain approximately steady inflow-outflow boundary condi-
tions in the presence of quantum vortices. This method enables us to evolve cylinder
wakes for extremely long times in a smaller spatial domain, making our numerical ex-
periment computationally feasible. In essence, we extend the sponge or fringe method
[138, 276-278], which implements steady inflow/outflow boundary conditions by “re-
cycling” flow in a periodic domain, to deal with quantum vortices. The essential idea
of the fringe method is to divide the spatial region of the numerical simulation into
a “computational domain” of interest and a “fringe domain”. Inside the fringe do-
main, the solution is usually damped to an exactly known solution to the equation of
motion. Inside the fringe domain, we use a damped GPE [209, 279] to rapidly drive
the wavefunction to the lab-frame ground state with chemical potential u; a uniform
state, free from excitations and moving at velocity —u relative to the obstacle, is
thus produced at the outer boundary of the fringe regions. The modified equation of
motion becomes
OY(r,t)

th=—— = (L—u-p—pi(r,t) — ir(r)(Ly — p)o(r,1), (5.6)

where the free GPE evolution operator £; = £ — V,(r). At the computational/fringe
boundary (z,y) = (fw,, £w,), v must be chosen to ramp smoothly from zero to a
large value to prevent reflections, with hyperbolic tangent functions a common choice
[276]. We set v(r) = max[y(z),v(y)], where

T — Wy

v(z) = % {2 + tanh { } — tanh

) e

and similarly for y(y).

Quantum vortices, as topological excitations, decay only at the fluid boundary
or by annihilation with opposite-sign vortices (Sec 3.6.1). While damping drives
opposite-signed vortices together at a rate proportional to v [184], relying on this
mechanism to avoid vortices being “recycled” around the simulation domain requires
a prohibitively large fringe domain when the wake exhibits clustering of like-sign
vortices, a key feature of the transition to turbulence. Instead, we unwind vortex-
antivortex pairs within the fringe domain by phase imprinting an antivortex-vortex
pair on top them, using the expression for the phase of a vortex dipole in a periodic

domain derived in Ref. [92]. For a vortex dipole, with positive/negative vortices



132 Chapter 5. Identifying a Superfluid Reynolds Number

positioned at (x,f, yr) in a periodic box of length 27, the phase is given by
s Y, +2 X, —
Or(z,y) = > {atan [tanh (,H;mz) tan <’“27T>]

Y +2 X -
—atan [tanh <kz7m> tan (lfzﬂﬂ

b [HOG) - HX)] } -

+
T — Ty

5 - (5.8)

where X7 = x — z;7 etc are the relative coordinates and H(z) is the Heaviside step

function. For arbitrary box lengths one makes the replacement z; — 27z /L etc.

In practice, this sum is rapidly convergent, and making the replacement > >° _ —
°__ . is sufficient. When vortices of only one sign exist within the fringe region, the

same method is used to “reset” vortices back near the start of the fringe (r = —w,) to
prevent them being recycled. The high damping in the fringe domain rapidly absorbs

the energy added by imprinting and annihilation events.

5.4 Numerical Implementation

Working in units of the healing length { = h/,/myp, the speed of sound ¢ = \/m
and time unit 7 = i/, we discretise a spatial domain of L, = 512§ by L, = 256¢ on a
Fourier collocation grid of M, = 1024 by M, = 512 points. The obstacle is positioned
at xp = 100&, and the fringe domain parameters are w, = 220¢, w, = 100§, d = 7¢
and 7o = 1.> The magnitude (and frequency) of the streamwise (transverse) force
on the obstacle was verified to be independent of the choice of resolution, spatial
domain size, details of the fringe domain, and obstacle location. It was also verified
that the simulations replicated the properties of vortex street for the parameters
given in Ref. [51], to ensure that the fringe region was not affecting the results.
We integrate Eq. (5.6) using standard Fourier pseudospectral methods for spatial
derivatives, and the time stepping scheme is a fourth-fifth order adaptive Runge-
Kutta algorithm (Cash-Karp variety). A small amount of initial noise is added to
break the symmetry. We integrate Eq. (5.6) for sufficient time to accurately resolve

the cluster shedding frequency f (see Fig. 5.1, bottom panel). Analysing obstacles in

3A slightly larger domain than quoted was required for the largest obstacle D /& = 24. For this
obstacle, we verified that rescaling {L,, Ly, wg, wy, zo} — a{Ly, Ly, wy, wy, zo} (while also scaling
M, M, to maintain the same spatial resolution) yielded very similar Strouhal numbers (to within
error bars) for « &~ 1.2 and o = 2.
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Figure 5.2: Strouhal number plotted as a function of the superfluid Reynolds num-
ber for obstacles of different diameters D. The dashed lines indicate the transition
between regular and irregular wakes (see text). Solid lines in the left panel indicate
regions of oblique dipole (OD) and charge-2 von Karméan (K2) shedding. The solid
grey line shows the best-fit curve St = 0.1402[1 — 0.1126/(Res + 0.2456)]. Error
bars give an indication of the uncertainty in St due to the Fourier-space resolution
Af =1/T. Insets show the original shedding frequency data as a function of velocity.
The data for D/¢ = 4 is truncated as the shedding frequency becomes poorly defined
at higher velocities for this particular obstacle.

the range 4 < D /¢ < 24 requires integration times 5000 < 7'/7 < 12000, representing
a significant computational challenge. The tolerance for acceptance for the adaptive
scheme is set to ensure that the fourth and fifth order solutions to the wavefunction
agree to within tol = 107% at each grid point. The vortex-deleting algorithm for
the fringe region is evaluated every 57, which was found to be sufficiently rapid to
prevent all vortices from escaping the fringe region for all parameters considered. To
optimise the algorithm, vortices in the fringe are prioritised by how “urgently” they
need to be deleted: vortices closest to the exit of the fringe region x = w,, are highest
priority, and vortices closest to the entrance x = —w, are lowest priority. A typical

result from the numerical setup is shown in Fig. 5.1.

5.5 Strouhal Number

To determine the Strouhal number St = fD/u we calculate the transverse force
on the obstacle from the Ehrenfest relation, F, = [d?r ¢*(9,V:)¢, with f being
defined by the dominant mode in the frequency power spectrum of F,. Our main
results are shown in Fig. 5.2, where the Strouhal number St is plotted against the

superfluid Reynolds number Re; = (u — u.)D/k for a range of obstacle diameters
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D [insets show shedding frequency f against velocity u].* The obstacles are broadly
classified as quantum (o < 12¢, left) or semi-classical (o > 12¢, right). For quantum
obstacles the vortex core size influences the shedding dynamics, and the St-Reg curve
exhibits three distinct regimes (see also Fig. 3.4): At low Reg, vortex dipoles are
released obliquely from the obstacle (OD regime), and St rises sharply with Reg. As
Reg is increased, the gradient of the St-Reg curve drops sharply when a charge-2
von Kérmén vortex street [51] appears (K2 regime). The Strouhal number peaks at
Res ~ 0.7,5t =~ 0.16, and beyond this point the shedding becomes irregular, and the
Strouhal number gradually decreases towards St ~ 0.14. The St-Re, data conform
to a single curve rather well when compared against the f vs. u data shown in the
inset, apart from variation in the OD regime at low Res. This can be attributed
to the influence of vortex core structure on shedding, which is most pronounced for
D/¢ =4. At D/& = 12 the curve becomes very steep, and dipole shedding seems to
disappear.

For semi-classical obstacles (right panel of Fig. 5.2), the St-Rey curve is qualita-
tively different. Obstacles with D /£ > 12 appear to lack a stable OD regime,® and the
most steeply-rising region of the St-Re curve corresponds to the K2 regime. The peak
seen in the St-Reg curve for quantum obstacles is generally absent (with a remnant
for D/¢ = 16), and the St-Reg data conform to a universal curve extremely well for
Res < 0.5 and Reg

be an effect of using a soft-walled obstacle, for which varying o for fixed V{ leads to a

2 2, and to a lesser extent around Re, = 1. This discrepancy may
slight change in the density profile near the obstacle. Remarkably, the St-Reg curve
for the semiclassical obstacles is well-fitted by the formula St = St [1—a/(Res+3)],°
which is similar to the classical form St = St (1 — A/Re), see Sec. 2.3.1.

5.6 Transition to Turbulence

To test whether Rey provides an accurate indicator of the transition to quantum
turbulence, in Fig. 5.3 we show the vortex-cluster charge probability distribution,

P(ke, Res). This indicates the probability of any vortex belonging to a cluster of

4Movies showing condensate density and vortex-cluster dynamics for representative sets of pa-
rameters can be found in the Supplemental Material of Ref. [91].

SFor D/¢ = 16, even resolving the critical velocity to within Au/c =2 x 10~ does not reveal a
clear OD regime.

6 The need for the shift 3 in the fit shown in Fig. 5.2 is a consequence of the fact that the vortex
street in a classical fluid does not appear until Re 2 40, whereas for our semiclassical obstacles it
emerges immediately above u. (i.e., for Res > 0).
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charge k., as determined by the recursive cluster algorithm outlined in Sec. 4.4.2.
The transition to turbulence manifests as an abrupt spreading in P at Re; ~ 0.7. The
distribution P is similar for all obstacles except the smallest (D /¢ = 4) where high Reg
vortex turbulence is suppressed by compressible effects due to the transsonic velocities
involved. Notice that the distribution is close to independent of obstacle size for larger
obstacles (D > 12¢). We find that the K2 regime persists for a significant range of Reg
even for large D, in contrast to Ref. [51]. We suggest the vanishing of the K2 regime
at large D seen in Ref. [51] may be due to the higher critical velocity of the hard-
walled obstacle. We find no regular charge-x. von Kérman regimes (Kk,. regimes)
other than K2. The lack of a K1 regime, the focus of von Karman’s original analysis
of vortex streets [280], suggests that the additional degree of freedom provided by the
internal length scale of the charge-2 cluster is what enables stable vortex shedding in
the K2 regime. The lack of Kk, regimes for k. > 2 appears to be due to instabilities;
although regimes do exist where P is strongly peaked around |k.| > 2, such regimes

do not appear to be stable.

5.7 Discussion

The superfluid Reynolds number Reg introduced in Eq. (5.1) serves as a good control
parameter for the transition to turbulence, which occurs at Reg = 0.7 for all obstacle
sizes investigated except D/¢ = 4. Note however that dynamical similarity is not
expected for D — &. Here, due to the small scales and transonic velocities, the heal-
ing length and Mach number become important parameters. The definition of Reg in
terms of u —u,. is intuitively appealing: the subtraction of u. becomes unimportant in
the classical limit (where u, vanishes) and when Reg > 1, consistent with previous ob-
servations (Sec. 3.9.2). Furthermore, notice from Eq. (3.91) for the critical velocity of
sufficiently large, hard-walled obstacles, it does not matter whether one uses a critical
velocity Res = (u—wu.)D/k or a critical diameter Res = u(D — D,)/k; the definitions
are equivalent and the correction merely corresponds to an appropriate shift of the
origin by a dimensionless constant, which depends on the particular geometry of the
problem. Subtracting . is consistent with previous arguments that corrections to the
Reynolds number formula are necessary for quantum obstacles [233], and reflects the
fact that in a pure superfluid an effective viscosity due to quantum vortices is only
activated through vortex nucleation — it does not make much sense to talk about
the vortex circulation x unless vortices are present in the system. Note that Reg is

distinct from the quantum Reynolds number defined in Ref. [173]; the latter stems
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Figure 5.3: Cluster charge probability distribution P(k., Res), which shows the prob-
ability that a vortex belongs to a cluster of charge magnitude .. Note that k. = 0
corresponds to a dipole and k. = 1 corresponds to a free vortex. The vertical dashed
line shows the value Res; = 0.7 at which the probability distribution suddenly spreads,
indicating that the wake has developed irregularities. The three different shedding
regimes observed are labelled for the case D/ = 8.

from interactions between superfluid and thermal fractions at finite-temperature.
Although Reg takes on small values here compared to the Reynolds number of
classical cylinder wakes, we note the close correspondence between the St-Reg curve
obtained here and the classical St-Re curve. Typically the St-Re curve (for any
obstacle shape) rises steeply when the shedding is regular, and reaches a plateau as
the shedding becomes irregular (compare Figs. 2.2 and 5.2). This correspondence
suggests that Res; ~ 0.7 may be roughly equivalent to Re ~ 200 for the cylinder.
The fact that the St-Reg curves approach a universal form for different obstacle sizes
suggests that the shedding is insensitive to considerable changes in Mach number,
which occur between different obstacle widths at fixed Re;. Although this behaviour
is somewhat surprising, it is consistent with a previous study, where it was noted
that the drag force is dominated by vortex shedding even into the transonic regime
[168]. The discrepancy between the asymptotic values of St found here and in the
classical case appears to be mainly due to the use of soft-walled obstacles: we have
confirmed that simulations with V5/u = 10exp(1) and D/ = 20 produce an St-Re;
curve qualitatively similar to Fig. 5.2, but with higher asymptote St., ~ 0.16. For the
hard-wall obstacle” of Ref. [51] we find St ~ 0.18 for the narrow window of velocities

that give a vortex street. This asymptote is in reasonable agreement with classical

"Vo/p = 100, u/c = 0.51659, o/ = 1.5811 (D /¢ = 6.7861)
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observations where Sto, ~ 0.2 [281, 282]. The lower Strouhal number of the soft-
walled obstacle suggests that it is “bluffer” than the hard-walled one, in the sense
that it has a larger drag coefficient, and produces a wider wake for a given obstacle
dimension D [282].

The K2 regime should be accessible to current BEC experiments [51], since the
wake is stable and easily identified. Although accessing the high Reg regime with
fine resolution may be experimentally challenging, the low Res turbulent regime,
particularly near the transition, should be accessible in current BEC experiments.
In this regime the Strouhal number should be measurable, since the induced wake

velocity u,, — 0 [99] and thus the average streamwise cluster spacing A = (u —
Uy)/f — u/f determines St = D/\.

5.8 Conclusion

In conclusion, we have developed a vortex-unwinding fringe method to study quasi-
steady-state quantum cylinder wakes, revealing a superfluid Reynolds number Reg
that controls the transition to turbulence in the wake of an obstacle in a planar
quantum fluid. The expression for Re, resembles the classical form, modified to
account for the critical velocity at which effective superfluid viscosity emerges. As
the critical velocity encodes details of geometry and the microscopic nature of the
superfluid, the general form of Reg suggests that it may apply to a broad range
of systems, much like the classical Reynolds number. We thus conjecture that Reg
may provide a useful starting point for characterising turbulence in a broader class
of superfluids that involve physics beyond GPE theory, such as liquid helium [283],
polariton condensates [284], or BEC-BCS superfluidity in Fermi gases [285]. The
fringe method we have developed here should prove useful for future numerical studies
of bluff-body wakes in quantum fluids, especially if the method can be extended to
three-dimensional flow problems.

Shortly after publication of this work [91], some evidence that Res may serve as
a useful parameter in superfluid helium experiments was presented by Schoepe [286,
287]. Schoepe has shown that Re, reveals dynamical similarity in the lifetime 7*
of transient turbulence, generated by oscillating wires, in superfluid helium at mil-
liKelvin temperatures. The lifetime was found to obey a relation of the form 7% ~
[exp(cRe;)]?, with ¢ = 1.22. Note also that Kwon et al. have recently observed the
first signatures of the von Karman street in a quasi-2D BEC [223]. While a direct

comparison between our results and their results is limited due to the harmonic pro-
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file of the experimental setup, they found the transition between the K2 and irregular

regimes occurred in their system at Re; ~ 1.2.



Chapter 6

The Direct Enstrophy Cascade in
Decaying 2D Quantum Turbulence

In this chapter we study the direct enstrophy cascade in decaying 2D quantum tur-
bulence, for very large vortex numbers, in order to elucidate the nature of spectral
transport and the emergence of cascade solutions in 2D quantum turbulence. We
show that the 2D quantum fluid can indeed exhibit the universal scaling properties
associated with the direct enstrophy cascade, provided a few hundred vortices are
present with suitable initial conditions. The decaying system is found to be well-
characterised by Onsager’s superfluid Reynolds number, Re,, equivalent to our newly
proposed Reynolds number from Chapter 5 in the limit Re, > 1. The quantum fluid
is found to manifest key features of the classical cascade, including Batchelor’'s —3
law of the inertial range, scaling of the inertial range against the superfluid Reynolds

number, and a value for the Kraichnan-Batchelor constant close to the accepted value.

6.1 Motivation

The Kolmogorov phenomenology of three-dimensional (3D), classical turbulence at
large Reynolds numbers (Sec. 2.8) has been shown to also apply to 3D quantum turbu-
lence in regimes where a bundling of same-sign quantum vortices occurs (Sec. 3.9.1).
The bundling leads to an emergent Kolmogorov direct energy cascade [40, 230, 288],
which conservatively transports energy through an inertial scale range, and down to
the scale of the average inter-vortex distance. In contrast, the question of whether the
cascade phenomenology of classical 2D turbulence (Secs. 2.9.2 and 2.9.3) can emerge
in 2D quantum turbulence remains unclear [93, 164, 186, 188, 189, 243, 248, 266, 289

139
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(see Sec. 3.9 for a detailed discussion), despite the fact that quantized vortices in 2D,
when well-separated compared to the healing length, realise a simple point-vortex
model (Secs. 2.10 and 3.4.1).

As discussed in Sec. 2.9.1, the phenomenology of classical 2D turbulence hinges
on the observation that, in contrast to the 3D case, the nonlinear advection must
simultaneously conserve both energy and enstrophy (mean square vorticity). In the
canonical scenario of fully developed 2D turbulence formulated by Kraichnan, Leith
and Batchelor (KLB) [112, 119, 290], narrowband forcing at scales much smaller
than the system size leads to a dual cascade (Sec. 2.9.3). For both quantities to
be simultaneously conserved, the energy cascade must reverse; same-sign vortices
aggregate, transporting energy to low wavenumbers k, at a steady rate € through a
kinetic energy spectrum E(k) = Ce*3k~5/3, where C is the Kraichnan-Kolmogorov
constant. Over a separate inertial range of wavenumbers, enstrophy cascades to high
k through the filamentation of vortex patches, creating steady spectrum FE(k) =
C'n?/3k=3, where 7 is the constant enstrophy flux, and C” is the Kraichnan-Batchelor
constant. For freely decaying turbulence (Sec. 2.9.2), the enstrophy cascade persists
[112, 123], but the steady inverse cascade is replaced by generic, non-universal energy
transport through vortex merging events. While this still results in growth of the

integral scale of the turbulence, the k=53 spectrum is generally not observed [124].

Due to the similarities between 3D classical and quantum turbulence, one might
reasonably expect the KLB phenomenology to apply to 2D quantum turbulence.
Other close correspondences, for example the fact that the point-vortex model pro-
vides a (finite-time) convergent numerical approximation to the Euler equation [291,
292], are also suggestive. Indeed, a number of studies have attempted to verify
whether the KLB phenomenology can emerge in quantum turbulence or point vor-
tex turbulence by studying the inverse energy cascade within the Gross-Pitaevskii
equation [80, 92, 186, 188, 189, 243, 244, 248], or the point-vortex model [293, 294].
Yet conflicting results have emerged from these studies, and a definitive demonstra-
tion has not been achieved. As discussed in Sec. 3.9.4, the systems studied within
the Gross-Pitaevskii framework have departed from the idealised KLB scenario in a
number of ways, having either: relatively few degrees of freedom [<100 vortices]; no
direct evidence of flux; short power-law ranges; strong dissipation; or strong coupling
to sound. A number of inconsistencies also appear in the point vortex studies con-
ducted. Sedov [293] investigated the cascades in the point-vortex model, and claimed
to observe simultaneous k=% and k=°/3 scalings. However, as noted by Aref [149],

because the system contained only 100 vortices of the same sign the scalings are
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questionable, since homogeneous, isotropic turbulence requires a neutral vortex con-
figuration. Siggia and Aref [294] obtained a convincing k%% scaling accompanied
by steady energy growth in a forced point vortex model. However, they obtained
a Kraichnan-Kolmogorov constant that was double the accepted value. This result
seems at odds with the studies of three dimensional turbulence, where the Kolmogorov
constant is the same in the classical and quantum cases. Additionally, a recent study
of point vortex flows on the sphere [289] found no evidence of cascades at all, only a

rapid relaxation to equilibrium.

The departures listed make it difficult to distinguish an inverse energy cascade
from more generic non-equilibrium energy transport. Furthermore, it appears that
no studies have yet investigated the enstrophy cascade, which is equally fundamental
to the theory. Consequently, the question of whether the KLB phenomenology can
truly apply to 2D quantum turbulence remains an open problem. Many fundamen-
tal questions remain: How many vortices are needed to achieve fully-developed 2D
quantum turbulence? Do the cascades occur, and at realistically attainable vortex
numbers? If so, are the cascade constants the same as the classical values? And
how do the extents of the inertial ranges scale with the (superfluid) Reynolds num-
ber? Some of these questions might be more readily answered by putting aside the
inverse energy cascade and studying whether the enstrophy cascade can emerge for
decaying turbulence, at larger vortex numbers, and in a situation that more closely

approximates the idealised KLB scenario.

In this chapter we study a damped N-point-vortex model of decaying 2D quantum
turbulence at large N via direct simulation. First we discuss some general properties
of spectral transport within the model, and discuss under what conditions the cas-
cades might be expected. Then, by constructing appropriate initial conditions, we
create a direct superfluid analog of a scenario where, for a classical 2D fluid described
by the Navier-Stokes equations, the existence of an enstrophy cascade is well estab-
lished (see Fig. 6.1). We show that under dynamical evolution the characteristic k=3
spectrum of the cascade emerges over nearly a decade of wavenumbers for N ~ 500.
The associated enstrophy and energy fluxes are found to agree with KLLB theory. By
simulating up to very large N (up to 32, 768), clear features of the KLLB theory can be
verified. The Kraichnan—Batchelor constant for 2D quantum turbulence is found to
be C" & 1.6, close to the classical value. We find that the system is well-characterised
by Onsager’s superfluid Reynolds number Reg; here Re; is found to be proportional
to the number of vortices N, and the inertial range is found to scale as v/Re;, as in

the classical scenario. These results definitively demonstrate that the phenomenology
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Figure 6.1: A schematic of the direct enstrophy cascade in decaying two-dimensional
classical turbulence at large Reynolds numbers Re. A generic initial state, with kinetic
energy spectrally localised near some wavenumber k;, spontaneously self-organises
under free evolution into a k=% similarity state, in which enstrophy is cascaded to
high wavenumbers at a rate x until it reaches wavenumbers k; ~ kLRel/ 2 where
it is dissipated by viscosity. The total energy E is approximately conserved, and
drifts towards low wavenumbers, causing a decay of the integral growth scale k, (see
Sec 2.9.2 for more details).

of classical 2D fluid turbulence can apply to 2D quantum turbulence under the right

conditions, even for fairly modest vortex numbers.

6.2 Model

We consider a quantum fluid characterized by healing length ¢ and speed of sound
¢, carrying quantized vortices of charge ¢; = 1 and circulation I'; = ¢I'.!' For a
quasi-2D system (Sec. 3.1.5), vortex bending is suppressed and the dynamics become
effectively two-dimensional [166]. In the low Mach number limit, where the vortices
are separated by scales appreciably larger than the healing length (Sec. 3.4.2), the
motion of the ith quantum vortex, located at r;, can be described by a dissipative

point-vortex model (Sec. 3.6.2)

Tn the case of a superfluid described by a (damped) Gross-Pitaevskii equation, such as an atomic
BEC, one has £ = h/\/pm, ¢ = \/pu/m, and T = h/m, where p is the chemical potential and m is
the mass of a constituent particle.
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dI'Z'
dt

N
=VitwW; Vi= Y Vz(j); W; = —7(;€3 X Vi, (6.1)
j=L.j#i

where 7 is the dissipation rate, €; is a unit vector perpendicular to the fluid plane,
and v; and w; are the conservative and dissipative parts of the velocity respectively.
Physically, the dissipation rate v arises from thermal friction due to the normal fluid
component, here assumed to be stationary. The velocity of the ith vortex due to the
Jth, ng ), is obtained from a Hamiltonian point-vortex model subject to appropriate

boundary conditions. As often considered classically [115, 116, 118], we will consider
a doubly-periodic square box, of size L x L, with L > ¢ for which (Sec. 2.10.1)

N ~ sin(y,)
v = TEI S | el i neesti) (6.2)
(L/€) s 1
cosh(y;j—27rm)—cos(:p;j)
where (zi5,y;;) = 1y = vy — vy, and (z};,y;;) = 27(2ij,vi;)/ L. The absence of

a physical boundary offers the usual advantage: vortices cannot reach their own
images, enforcing conservation of net vorticity (here equal to zero). This helps achieve

statistical homogeneity and isotropy, as required for comparisons with KLLB theory.

Vortices in a compressible superfluid also interact with density fluctuations. While
such interactions can be modelled in detail using, for example, a Gross-Pitaevskii
description [209], modelling the full compressible dynamics complicates the calcula-
tion of fluxes [93], and, in the large systems considered here, would be prohibitively
expensive computationally. However, as described in Ref. [93], Eq. (6.1) can be ex-
tended to account for these effects phenomenologically. The physics not captured by
Eq. (6.1) alone primarily influence the dynamics when vortices approach each other at
healing-length scales. These close approaches can be accounted for by: 1) removing
opposite-sign vortex pairs separated by less than &, and 2) by smoothly increasing

the dissipation v for same-sign vortex pairs with

e = max (exp [In(1) =), (6.3)

o —7

where 7;, is the distance to the nearest same-sign neighbour of vortex 7, ro = £, and
r1 = 0.1£. These effects model, respectively, dipole annihilation events and sound

radiation emitted by rapidly accelerating vortices.

Although the dissipation introduced in Eq. (6.1) and its modification in Eq. (6.3)

are only approximate, it should be stressed that for determining the existence of
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a turbulent cascade it should not matter exactly what the form of the dissipation
is. A turbulent cascade, by definition, occurs over a region of scale-space where
dissipation is not important. In classical turbulence studies of the enstrophy cascade
it is common to replace the viscous term V2 in the Navier-Stokes equations with the
“hyperviscosity” V®, [16] which allows for a larger inertial range to be established
with the use of fewer grid points. In fact, although modifying v as in Eq. (6.3) is
physically motivated by sound radiation for rapidly accelerating vortices, it could also
be viewed as a superfluid analog of hyperviscosity, since it alleviates the problem of

close approaches.

6.2.1 Spectral Formulation

The (average) kinetic energy spectrum, per unit mass, in the periodic box is given

by [92]

E(k) = Eqr(k) + Eng(k) = 8(7?]{:211)2 N +2 <Z1 -Z1qiqj cos(k - rij)>] , (6.4)

where k = (n,Ak,n,Ak) for ny,n, € Z, Ak = 2r/L, and (-) denotes ensemble
averaging. The total kinetic energy per unit mass is 3, E(k)(Ak)? = B + Ein.
At fixed N, the self-energy term is a cutoff-dependent constant, set by £ and L. The

time evolution of E(k) governs the spectral transport of kinetic energy:

dE (k)
dt

=T(k) + D(k), (6.5)
where T'(k) is the transfer function, given by

2

T(k) = — <Z S qigysin(k - 1i;)k - (vi — vj)> , (6.6)

7TkL =5

and D(k) is the dissipation spectrum, obtained from Eq. (6.6) by setting v — w. As
usual, the enstrophy and energy spectra are related via Q(k) = k*E(k). While Q(k)
is well-defined, the total enstrophy is divergent, but nonetheless proportional to the
number of vortices: 2 = I'?N§(0). Like its classical counterpart, the superfluid trans-
fer function T'(k) conservatively redistributes energy, with >, T'(k)(Ak?) = 0. The
dissipation spectrum D(k) assumes a role normally played by the enstrophy spec-

trum in a viscous classical fluid, governing the rate of energy loss: ) D(k)(Ak)? =
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dE/dt < 0. Turbulent cascades can be expected to develop when v < 1 and T'(k) is
large, such that it dominates D(k), allowing a lossless inertial range to be established

over some range of k.

To ensure an accurate representation of the one-dimensional spectral measures
E(k) = [dorkE (k) etc., we avoid approximating angular integrals analytically. In-

stead, for n = 1,2,..., we define the discrete angular integral of a function f(k) as

f(nAk) =Y pep, f(k) Ak, where D,, = {k|(n—1/2)Ak < |k| < (n+1/2)Ak}. This

defines the discrete energy and enstrophy fluxes forn =1,2,...,

II. (nAk) = — " _, T(mAk) Ak, (6.7)
I, (nAk) = —23" _ (mAk)?*T(mAk) Ak, (6.8)

which represent the instantaneous energy and enstrophy flux through the k-space bin

|k| = nAk due to the conservative interactions.?

6.3 Transfer Properties for Isotropic Turbulence

Before proceeding to directly investigate the enstrophy cascade, it is natural to ask
under what conditions cascades can exist in quantum turbulence, and some insight
into the fundamental nature of the transfer processes of 2D quantum turbulence can
be gained by considering the equations for the unbounded domain (Sec. 2.10.2). These
equations should be a good indication of the dynamics for the motion on scales where
modes are dense and the statistics are isotropic, i.e., L7! < k < £71. Taking the
limit of continuous k, and performing an angular integral gives (ignoring ensemble

averaging for the moment)

E(k) = MF;LQ N+ QZ[; G050 (kT ag) (6.9)

T(k) = — 471;; azﬁj qaqu1<krw)d;%? (6.10)

D(k) = —475; aZ; qaqﬂJl(krag)C”;‘;ﬁ) (6.11)

2This becomes equal to the conventional continuum flux (k) = — [ T(k')dk’ in the high-k

limit, by setting k = nAk (see Sec. 2.7.3).
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where the superscripts (u) and (w) denote the contribution from the conservative and
dissipative velocity fields, respectively. Notice that the integrals for the fluxes can be

evaluated analytically:

T2 Jo(krag) drt)

(k) = g LB T ap 12
27.2 ar
L, (k F i I gy 2 WTa8) Fas Toy (6.13)
Tap dt

The expression for II,(k) does not converge as k — oo (it oscillates indefinitely).
However, wavenumbers k > (=1 for an average inter-vortex distance ¢ do not have a
clear meaning unless close approaches play a significant role in the vortex distribution.
This point was previously stressed by Kraichnan [141], who qualitatively argued that
under such conditions the spectral formulation could be truncated, thereby effectively

creating a system of rigid discs of uniform vorticity rather than point-like vortices.

Since dr((luﬁ) /dt comes from the conservative part of the dynamics, it follows that
this change can only come from vortices other than o and . Naturally it follows
that T'(k) = 0 everywhere for a system of two vortices because their separation is
a constant of the motion in the absence of dissipation. At the fundamental level,
energy transport is therefore a three vortex process. For three vortices, projecting

the velocity field from vortex 7 along r,s gives:

dr. r . in o,
rap _ I'gy (sings sing o (6.14)
dt 2\ Ty Tva

where €,4, is the alternating pseudo-tensor (positive when {c, 3, v} appear in counter-
clockwise order) and ¢, is the internal angle of the triangle formed by the vortex triple
at vortex a. For isotropic turbulence it is desirable to eliminate the angles. We can
express the transfer function entirely in terms of the lengths of the triple, and using

Anpy = TapTpySin g etc. where A,p, is the area of the triangle

dre, I'q, A, 1 1
e el =l I (6.15)
dt 2 rag \Thy  Ta

and therefore

) = 3 Tugs (4) (6.16)
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where

s Ji(krag) (1 1
Tosy(K) = —— | qu Apgrapy—— | —5— — — |, 6.17
sy (k) <87r2L2> 4aqBdyAapyEapy Tas r%v T?,a ( )

and Yn = X, X520 is the sum over all vortex triples. The transfer function is
expectedly complicated, and, much like in the classical case, we do not expect to
be able to make definitive statements regarding transfer that will be valid under all
conditions. Similar to the Navier-Stokes transfer function in Sec. 2.7.3, the transfer
ultimately depends on the nature of the triple vortex charge product ¢,gsgy, which
here plays the role of the triple vorticity correlation, and is unknown in general (the
probability distributions in turbulence are not shape-preserving [1]). Nonetheless,
some important qualitative features of the transfer function can be identified from

Eq. (6.17)

o Locality — Although ultimately determined by the distribution of g,gpg,, it
seems likely that spectrally local transfer could arise from Eq. (6.17). Firstly,
we expect the majority of transfer at a given mode k to come from scales r,g ~
k=1, since the Bessel function is largest in the local neighbourhood kr.s ~ 1,
and obviously 7,3 must change continuously. For small arguments, J;(krqg)
vanishes, and for large arguments .J; (kr,s) is highly oscillatory and it therefore
could plausibly average to zero. Locality could be further ensured by the term
in parentheses: whenever one leg of the triple is significantly shorter than the
other two, strong cancellations will occur in the sum for that triple: T,s, (k) +
Tsva(k) +Thap(k) =~ 0. Recall however from Sec. 2.9.2 that local transfer, while
dominant in the inverse energy cascade, is not necessarily dominant for the

enstrophy cascade.

e Screening — For two reasons, transfer will be suppressed when the distribution
exhibits negative interaction energy (FEi, < 0). Firstly, although the contribu-
tion from any one triple {+, —, —} may be non-negligible, because at negative
energies the vortices are on average grouped into vortex-antivortex pairs, a sig-
nificant proportion of this transfer will be cancelled by screening from the triple
formed with the adjacent vortex {+, —, +}, which will form a triple of similar
lengths. At distances larger than the average dipole distance, the configura-
tions will be close to uncorrelated (g,gsg, will average to zero at these scales),
yielding vanishing transport. Secondly, related to the point noted above, as
the energy becomes increasingly negative, the vortex-anti vortex pairs in the

distribution become ever more isolated, and hence all triples formed will have
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one leg significantly shorter than the other two. These arguments are consistent
with the findings of Ref. [93] where vortex dipole states were found to exhibit

very little energy transport.

6.3.1 Detailed Conservation Laws

The special nature of spectral transport in two-dimensional classical fluids ultimately
stems from the detailed conservation laws. However, for point vortices, if the transfer
function does satisfy detailed conservation properties in wavenumber space, it is not
immediately evident from Eq. (6.17). Curiously, however, notice that integrating over

k the transfer function becomes

r? 1 1 1
Topy = — <87r2L2> Q0989 AaprCapy—5— (73 - ) ; (6.18)

Tag \TBy  Tia
Tosy = Thar- (6.19)

It is then straightforward to verify that

Taﬂv + TB’W + Twaﬂ = 07 (620)
rzﬂTm + rgvTﬁw + riaTW =0, (6.21)
and
> Topy =0, > ragTupy =0, (6.22)
A A

which shows that both the energy and the quantity I = >, 5 qaq/grfw are conserved
both globally, and in detail, by every individual triple. Note however that conserva-
tion of [ only strictly applies in the unbounded domain. If the sums are expressed
in terms of the lengths of each triple rather than the vortices, these conservation
laws have the exact same mathematical form as the detailed conservation laws of
the Navier-Stokes equations [Eqgs. (2.64) and (2.65)]. This suggests that Kraichnan’s
analysis [119] might be applicable to the point vortex system in “separation space”.
However, since in this study we are primarily interested in the wavenumber-space
formulation and the enstrophy cascade, this possibility will not be pursued further

here.
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6.3.2 When Could Cascades Exist?

The analysis of the previous sections provides some insight into when the cascades
could exist in two-dimensional quantum turbulence. The analysis of the transfer
function suggests that the interaction energy must be positive in order to obtain
a large transfer in wavenumber space, because screening will suppress transfer at
negative energies (the vorticity correlations need to be long ranged). This is consistent
with the knowledge of 3D quantum turbulence, where a “bundling” of same-sign
vortices is needed to observe the direct energy cascade [40]. Further supporting
evidence for this statement can be obtained from inspection of Eq. (6.9). If we

propose an ansatz with nontrivial power-law scaling of the form

Bl{?_u, kr <k <k
E(k) = w#1, B>0; (6.23)
0 otherwise

first notice that this scaling can only ever come from FEj(k), because at any given
instant of time the full spectrum could only ever be of the form

E(k) = B (k) + Ein (k) (6.24)

2
- 471;L2 ﬁj + Bk‘“} .
This result seems to have gone unnoticed in the literature.> The condition B > 0 does
not completely rule out the possibility of such a scaling existing when FEy,; < 0, since
one could imagine a scenario where Ej,(k) is positive over some region and negative
over another (larger) region. However, it seems unlikely that such a state would arise
spontaneously through the dynamics, since the transfer function (at least classically)
tends to fill the “emptiest” regions of wavenumber space [1]. It thus seems likely
that the negative energy region would be preferentially filled, thereby depleting the
source of energy required to establish the power-law scaling over an inertial range.
We are therefore lead to suggest that B > 0 implies Ej,; > 0 also, and the range of
any power law scaling will ultimately be limited by the amount of energy available
to fill the area under the curve. Importantly however, note that we expect that the
condition Fji > 0 is necessary but not sufficient for the development of a cascade.
Two dimensional turbulence is special; unlike in three dimensions, a large Reynolds
number does not guarantee that a flow will become turbulent [16, 117]. For example,

a state such as the spectral condensate, i.e. a solution to the Montgomery-Joyce

3All of the previously noted studies of 2D quantum turbulence [80, 92, 186, 188, 189, 243, 244,
248] inspected the full spectrum, suggesting that some results may need to be revisited.
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equation, will not exhibit strong spectral transfer (it is an equilibrium distribution),
despite having a large positive interaction energy (and therefore a large characteristic

velocity), a large integral scale, and hence a large Reynolds number.

6.4 Initial Condition

Previous studies of decaying superfluid turbulence have considered initial conditions
including regular lattices [93], and configurations generated from the snake instability
of solitons [150]. However, spectral transport in such systems can be difficult to inter-
pret due to the broadband initial spectrum, and choosing a simple initial condition
is desirable for making comparisons with the KLB scenario. This is especially true
if, as in the case of the N-body problem here, very large Reynolds numbers might be
difficult to attain. Consequently, to investigate the enstrophy cascade we would like
to consider the ideal, spectrally localised, and highly non-equilibrium initial states
that are often considered classically in, e.g., [116, 118]. The difficulty in creating such
states in a quantum fluid is that quantum vortices have a broadband spectrum — it
is not immediately clear from Eq. (6.9) what kind of vortex distribution would create

such an initial state.

Suppose the turbulence is generated by some initial rapid forcing localised near a
forcing wavenumber k;. The forcing is then switched off so that the turbulence freely
decays under its own evolution. A simple method was devised to create a superfluid
analogue of such initial states as follows: we define a set of wavenumbers D; that
form a shell of width w localised around ks: Dy = {k | ky —w/2 < |k| < kf + w/2}.
Each mode in Dy is occupied with a random complex phase 6(k), uniformly sampled
on [0, 27] to define a (Hermitian) vorticity field: &(k) = ?® ifk € D; and (k) =0
otherwise. The real-space vorticity field, w(r) = [d*k e**®(k), is then separated
into positive and negative regions w. (r) such that w_(r) = |w(r)| if w(r) < 0 and
w_(r) = 0 otherwise, and similarly for wy(r). The components are then normalised
to unity [ d*rwy(r) = 1]. The fields w(r) are then used as probability distributions
to create an N-point-vortex initial condition via rejection sampling. This procedure
creates an initial condition with the vast majority of the interaction energy contained

within one k-mode, even for quite small vortex numbers N ~ O(10?).
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Figure 6.2: Average values for the parameter (A) as defined in Eq. (6.27), for different
values of the vortex number N and the (dimensionless) forcing wavenumber ny =
k¢/Ak. Averages were calculated from 100 initial condition samples.

6.5 System Parameters

The system parameters chosen were a fixed box length L/¢ = 10%, fixed dissipation
v = 107* [78, 84, 173], and increasing vortex numbers N = 2" n = {9,10,...,15}.4
We characterise the system by the superfluid Reynolds number Reg (Sec. 3.9.2) and

the characteristic eddy turnover time 7

Upms L L
Re, = mTf r=-L (6.25)
urms
where L; = 2m/ky and s is the root-mean-square vortex velocity. To obtain

clear scaling laws over a wide range of wavenumbers, it is desirable to maximise the
Reynolds number. Instead of u,,s it would be equally valid to use Eiln/f (which has the
same dimensions), and a useful formula for the Reynolds number can thus be obtained
from Eq. (6.4). For the positive energy states relevant here, the N> — N &~ N? terms
in the double sum of Eq. (6.4) also yield Ei,, oc N? [94, 153] (at negative energies
Eint ~ N). Furthermore, since the sum has been explicitly constructed to form a delta

function shell of the radial wavevector, we are motivated to propose the (continuum)

4The point-vortex approximation requires that u.m,s < 0.3c, so, for the given parameters, the
largest N simulations (ignoring that N is also unrealistically large) are not physically reasonable.
However, provided L >> & the choice of L is somewhat arbitrary, since rescaling {x, L} — a{x, L}
(for fixed &) yields Upms — Urms/@, and 7 — a7. For the smaller values of N, the box length L can
be reduced by roughly an order of magnitude without invalidating the point-vortex approximation,

in order to make the parameters more realistic.
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ansatz
F2

- 8(mnAkL)?
where n = k/Ak and ny = ky/Ak = L/Ls, and A(N,ny) is a random function that

allows for additional, “anomalous” dependence on N and ny. For the continuum, we
make the replacement 3, (Ak)? — [ ndndf, (Ak)?, yielding

B = (4:;) <NQ> (A(N,ny)). (6.27)

2
ny

d(n —ny)

it Pl

) (AN, ns)) (6.26)

¥

The average values (A) for a range of N and ny, as calculated from the numerical
initial conditions, are presented in Fig. 6.2. Remarkably, (A) is virtually constant,
and of order unity. The surprising result that (A) is close to constant leads to a
remarkably simple formula for the Reynolds number as the ratio of two dimensionless

quantities

(6.28)

where we have neglected the unimportant factor of /(A)/4w. According to Eq. (6.28),
in 2DQT there are only two ways to increase the Reynolds number: either increase
the vortex number N, or decrease ny to increase the degree of same-sign vortex
clustering. Uncorrelated vortex distributions with Ei, ~ 0, (i.e. the “ultraquantum”
regime) correspond to ny 2 L/¢ (giving Res’ ~ 1), where ¢ is the average intervortex
distance, since the discrete vorticity field will not be able to (on average) resolve
higher spatial frequencies than ¢~!. However, we expect the ansatz may break down
when Ej; < 0, since the energy will no longer scale as N2. Indeed, in Fig. 6.2, the
case N = 1024, n; = 32 (for which Rey’ = 1) deviates from the general trend. For
states that are not spectrally localised, the constancy of (A) suggests n; can simply

be replaced with the average wavenumber

1 00
ng) = dk kFEy (k). 6.29
)= x5 ) (k) (6.20)
or, equivalently, the average cluster size. Based on the above analysis, to maximise the
Reynolds number while still maintaining approximate isotropy, we choose L; = L/4.
The energy was found to be rather insensitive to the value of w, and we thus choose the
narrowest window, w = Ak. Note that such behaviour is consistent with Eqgs. (6.27)

and (6.29): for example, an equal superposition of the values ny = {3,4,5} gives
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N (Upms) / Tc/€ (approx.) Res Re,’ # runs
512 (254+0.7) x 1072 9.9 x 10* 10 32 40
1024 (4.3+£0.9) x 1072 5.8 x 10* 17 64 20
2048 (7.440.7) x 1072 3.4 x 10* 30 128 16
4096 (14£0.7) x 1072 1.8 x 10* 54 256 12
8192 (26 £0.7) x 1072 9.7 x 10° 102 512

16384 0.51 4 0.01 4.9 x 10° 202 1024

32768 ~ 0.97 2.5 x 103 385 2048

Table 6.1: Parameters for the L = 10%¢ periodic box.

(1/32 +1/4% +1/5%)/3 = 0.0712 ~ 1/4% = 0.0625. Values of Re,, Re), and 7 for the

chosen values of L; and w, for different values of IV, are presented in Table 6.1.

6.6 Numerical Implementation

Starting from the initial conditions described above, we directly simulate the point
vortex model [Egs. (6.1) and (6.2)] and calculate ensemble-averaged spectra and fluxes
[Egs. (6.4) — (6.8)], using GPU codes programmed in Nvidia CUDA-C++ [295]. Util-
ising this hardware allowed the dynamics of very large N to be simulated within a
reasonable computational timeframe, without the need for any approximation meth-
ods. The CUDA kernel that evaluated the vortex velocities was based on the CUDA
N-body gravity problem example [295], (using shared memory), but modified to cope
with positive and negative charges, and a variable body number /N to allow for annihi-
lation events. The time stepping scheme was an adaptive 4th-5th order Runge-Kutta
scheme (Cash-Karp variety). The tolerance of the adaptive scheme was set to en-
sure that the absolute difference between the 4th and 5th order solutions agreed to
within tol = 107 for all vortices. For this tolerance, the infinite sum in Eq. (6.2)
was truncated at m = 43, at which point it converges to within 107!*. Testing the
case N = 16,384 against a simulation using m = 45, and tol = 1078 did not alter
the results presented. For the same value of N, increasing v, r; and 7y each by an
order of magnitude, to increase the importance of damping, also did not alter the
results at a qualitative level, in the sense that a k=2 spectrum was still observed for
a significant number of turnover times. Simulations were run for ¢ = 107 in each
case, with outputs generated every ot ~ 7/20. The number of trajectories varied

with N depending on what was required to obtain smooth spectral flux data (see Ta-
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ble 6.1), subject to the constraint of practical computation time. Two Nvidia Tesla
K40 cards (Kepler architecture, 12GB RAM), and three GTX Titan Black cards (Ke-
pler Architecture, 6GB RAM) with compute capability 3.5 were used to perform the
calculations in double precision. The required computing time varied greatly with
N: the entire 40-run ensemble for N = 512 took 1 — 2 days, including the spectral
calculations for every output; each run for N = 16,384 took on the order of 1 week
of calculation time, and a similar amount of time to calculate the spectra at every
output per run; the N = 32,768 run took about 3 weeks, and another 3 weeks to

calculate the spectral measures.

6.7 Spectral Dynamics

6.7.1 Vorticity, Spectra and Flux

Fig. 6.3 shows the dynamics of the vorticity field, kinetic energy spectra, and fluxes for
N = 16,384 (Re; ~ 200). The qualitative behaviour is similar for all NV considered,
but naturally large N yields clearer power-laws. Very early times [Fig. 6.3(a)] show
the flux rapidly grows from zero, causing the spectrum to rapidly spread from the
initial state well-localised at k; = 4(Ak) [Fig. 6.3(a), inset]. Times ¢ ~ 27 mark the
onset of power-law scaling. At the onset, the spectrum agrees quite well with the
Saffman scaling k=% [224], consistent with the formation of sharp, isolated vorticity-
gradient filaments [Fig. 6.3, (b)]. These filaments are repeatedly stretched and packed,
and the spectral slope gradually transitions, settling to the k=3 scaling at t ~ 47
[Fig. 6.3, (c)]. A transition from k= to k=2 scaling was also reported in pseudospectral
Navier-Stokes simulations of decaying 2D turbulence [296]. Note that in Fig. 6.3 only
the interaction term FEj, (k) is shown, as the self-energy term can only ever contribute
a trivial N/k scaling. Removal of the self term is necessary to observe the very steep
k=3 law, which otherwise quickly becomes dominated by the N/k scaling unless the
energy is extremely large. Without the subtraction of the self term, the spectrum was
found to exhibit transient agreement with £~ over a shorter range of the spectrum
at t ~ 27, when the interaction spectrum scales as k~*.

Inspection of the energy and enstrophy fluxes confirms the directions of spectral
transport. During the early developing stages before the peak is depleted [Fig. 6.3(b)]
the fluxes are quite similar to the scenario of forced turbulence envisaged by Kraich-
nan: the flux ranges of energy and enstrophy are mutually exclusive and quasi-

constant, with negative energy flux indicating flow to low k£ and positive enstrophy
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Figure 6.3: Vorticity distributions, kinetic energy spectra, and fluxes for N = 16, 384
at (a) t &= 0.257, (b) t & 1.857, and (c¢) t &~ 47. Inset in (a) shows the full spectrum,
FEaat (k) + B (k), at t = 0. Spectra and flux (shown in units of I'? /47 L?) are averaged
over 4 runs. A narrow window of time averaging is also used to obtain better statistical
data, by averaging over a window of ~ 0.57, using 9 time samples with time-spacing
0t =~ 7/20. In the top panel, at high k, Ej(k) is comparatively small and oscillates
about zero. The negative values cannot be shown on the log scale, causing the
broken data line. In (c), over the decade of wavenumbers indicated, linear fit to the
logarithmic data yields a slope of —3.12, with an R-squared goodness of fit value
R?* =0.997.
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Figure 6.4: Time evolution of the energy centroid wavenumber kg, Eq. (6.30)

flux indicating flow to high k.

6.7.2 Integral Scale Growth

The flux of energy towards low k causes a growth of the integral scale, or, equivalently,
decay of the integral wavenumber. To quantify the integral scale growth with time,

we measure the energy centroid wavenumber

[ kB (K)dk

kp = .
B B (k)dk

(6.30)
Due to the steep nature of the spectrum, kg has a very similar value to k7 (which we
define as the wavenumber where FEi (k) is largest), but exhibits smoother evolution
with time. The evolution of kg is shown in Fig. 6.4. At low N, kg decays approxi-
mately as ~ (£/7)7%3 but as N increases the decay appears to converge to a power
law ~ (t/7)7%%. While the decay is considerably slower than Batchelor’s prediction
kg ~ (t/7)7', such behaviour is typical and expected [16, 117]. A systematic study
across different values of k¢ would be needed to determine if the scaling is universal.
However, since this is not the case classically (Sec. 2.9.2), a universal scaling seems

unlikely.

6.7.3 Kraichnan-Batchelor Constant

The k73 spectrum [Fig. 6.3(c)] is corroborated by a nearly constant enstrophy flux
over approximately one decade of wavenumbers, allowing for a determination of the

Kraichnan-Batchelor constant via the so-called compensated kinetic energy spectrum:
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Figure 6.5: Compensated kinetic energy spectra for a range of N, averaged over
ensemble and a time window ~ 0.57. For clarity the spectra are vertically shifted by
increasing powers of 4. The horizontal dashed lines shows the value C' = 1.6 (also
vertically shifted for comparison at different N). Dash-dot lines indicate the inter-
vortex spacing wavenumber k; at different N (see text). In the legend the bracketed
superscripts indicate the number of independent realisations used in the ensemble
average.

C' = E(k)K*/n*?, where n = Il averaged over k, time window, and ensemble.
Fig. 6.5 shows the compensated spectrum for different N at t ~ 47. The k=3 scaling
is observed to some degree for all N considered, albeit over less than a decade for
small N (~ 0.7 decades for N = 512). However the quality and range of the scaling
increases dramatically as N is increased. For smaller N, C” is quite large (C" ~ 3.8),°
but as N increases C’ decreases and tends towards a constant value C' =~ 1.6. A
simulation with N = 16,384 and k; = 8(Ak) (Re; ~ 50) yielded C’ =~ 2.0, in good
agreement with N = 4096, ky = 4(Ak) (which has roughly the same Re;) and yielded
¢’ =~ 1.9. Very flat behaviour over the entire compensated spectrum (as is evident in
Fig. 6.5) is rather short-lived, existing for around 1 turnover time. This is somewhat
expected: in decaying 2D turbulence, the formation of coherent structures [16] or low
Reynolds number effects [118] can cause significant deviations from the k=2 scaling.
The k=3 range is found to persist up to k; = 27/¢, the wavenumber associated with
the average intervortex distance ¢ = L/ V/N. Notice that for N > 16, 384 this means
the compensated spectrum is constant over a significant range, roughly 1.5 decades
above the original forcing scale, and two decades above the integral scale k;, = 2Ak
(where Ei (k) is largest) at t = 47, see Fig. 6.3(c). Above ky, the interaction spectrum

quickly decreases, indicating a transition from many-vortex to single-vortex physics.

5Slight variation of €’ with the forcing scale or Reynolds number is not unusual [118, 119, 123]
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6.8 Analysis of Spectral Exponents

We now investigate the quality of the power-law behaviour and degree to which
the spectrum conforms to the k=3 scaling via best-fit analysis. For this analysis, the
mean of Fi, (k) was taken at each value of k by averaging over ensemble and a narrow
time window containing 9 time samples of spacing 6t ~ 7/20 at a given time step.
Uncertainty in Fi, (k) was calculated from the standard deviation of the sample.
Inspecting the distribution of Fi, (k) at each value of k£ gave no indication of outliers
(the distributions appeared to be normal or at worst quasi-normal), so standard least-
squares fitting with weights was used. Uncertainties in the logarithmic data were then
calculated using standard error propagation methods [297]. Quality of the linear fit
was measured using the R? value. Defining 2z = log;y(k) and &(2) = log[Fin(2)],

we consider two functional forms:
E(z,t) = —n(t)z + a(t) (6.31)

and
E(z,t) = —nz +a(t), n=...,293031,... (6.32)

Figs. 6.6 (a) and (b) show the exponent n and goodness of fit measure R? as functions
of time as obtained from fitting Eq. (6.31). The data confirm the qualitative remarks
in Sec. 6.7: Early times exhibit a rapid decrease in n and a rapid increase in R? as
the spectrum enters the scaling regime. The onset of power-law behaviour is seen
in the flattening of R? at t ~ 1.67, at which time the exponent is n ~ 4. Between
t =~ 1.67 and t ~ 47, there is then a more gradual transition from n = 4 to n = 3.
Interestingly, the transition from n = 4 to n = 3 was found to be well described as
exponential decay: n(t) = 3 + e /7 with 8 ~ 2. During this time window, the
fit quality is quite high with R? > 0.995. At t ~ 47 the exponent is very close to
3, and the goodness of fit is exceptionally high: R? = 0.998. During subsequent
evolution the spectral exponent is close to n = 3, and although the quality of the fit
gradually decreases, it is always > 0.988. An example of the spectrum and best-fit
line when the exponent is close to 3 is shown in Fig. 6.6 (c). Fig. 6.6 (d) shows the
time-averaged goodness of fit (R?); for different n, as obtained using Eq. (6.32). The
time average is computed over all values ¢t > 27, i.e., over the entire time range over
which the spectrum appears to exhibit power law scaling. Clearly, n = 3 yields the
highest average goodness of fit. Figure 6.7, shows the same as Fig. 6.6, but for the
case N = 512. The qualitative behaviour is essentially identical to that in Fig. 6.6,
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Figure 6.6: Best-fit analysis for the N = 16,384 simulations: (a) exponent n and
(b) goodness of fit R?* (b) obtained from a weighted linear least-squares fit to the
spectrum for values k € [ky,10ky] as functions of time (in units of eddy turnover
time 7). Values are averaged over 4 runs and 9 time samples of spacing dt ~ 7/20
centered around t. (c) An example fit when the spectrum is close to k73. (d) Time-
averaged goodness of fit (R?);, for lines with different fixed slopes n, averaged over
all times ¢t > 27.

except the range of scaling is smaller, the fluctuations are larger, and the quality of

fit is somewhat poorer.

6.9 Two-Point Vorticity Correlations

While the data already presented provide considerable evidence of an enstrophy cas-
cade, it is nonetheless desirable to verify that some other measure behaves in a way
that is consistent with the process, especially since the slope of the spectrum fluctu-

ates, and the fitting analysis of the previous section shows that the spectrum is never
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Figure 6.7: Same as Fig. 6.6, but for N = 512. Here fits were only over the range k €
[kf, ki), where ky = 2n/v/N/L ~ 5.65k; (about 0.75 decades), since the interaction
spectrum Fiy (k) virtually vanishes beyond ky (see Fig.6.5). Values are averaged over
40 runs and 9 time samples of spacing 0t ~ 7/20, centered around t.
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perfectly k=3, Here we consider the two-point vorticity correlation function, which is
related to the kinetic energy spectrum. In the limit L — oo, strict isotropy can be

recovered, and we may write
Ry(r) = (wx)w(x +1)) = /d2k (Jw(k) e (6.33)

Using the definition of the vorticity field w(x) = I' Y, ¢ad(x — r,,), and performing

an angular average yields

R,(r) = 17 [Né(r) + <Z, qaqpd(r — Ta5)>] ) (6.34)

2rr Y

In a similar manner, the angular dependence of Eq. (6.4) can be integrated out

yielding

F2
Ar 2

KE(k) =

N+ <Z% QQQﬁJO(kTaﬂ)>:| = 2}12/dTT’Rw(T)JQ(k5T). (6.35)

Eq. (6.34) hence defines R, (r) such that kE(k) and R,(r) are related in the usual
way, via the Hankel transform [Eq. (6.35)]. Here it becomes evident that neglecting
the N/k self spectrum is equivalent to explicitly ignoring the self correlation at r = 0.
The normalised vorticity correlation function can then be expressed in terms of the

kinetic energy spectrum in the usual way [298]

Ro(r) = 52 dk K2 B (k) Jo(kr)
NI dE K2 By (k)

r#0, (6.36)
and, for the interaction spectrum, we may use the ansatz

Bk™3 2m/l <k <2m/a
Eini(k) = (6.37)
0 otherwise.

By inserting Eq. (6.37) into Eq. (6.36), we may derive an expression for the two-point
vorticity correlations, provided the inertial range is well developed, i.e., [ > r > a.

Adding and subtracting 1/k, we may write

2r/a Jo(k’?“) . 2r/a 1-— Jo(k"f’)
/M ak =" —n(i/a) - /W dk —2 (6.38)
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A change of variables to ¢ = ka yields for the remaining integral

27 1 — 2m 1 — 2
2mall q 0 q !

where we have exploited the property [ > r > a for a well-developed inertial range.
Finally, the remaining integral can be split into two parts: [;" dq = [y dg + [7" dqg,
yielding

1 1 — 2
/Odqjoq(qr/a)—kln%r— : quo(qqr/a)' (6.40)

For the well-developed inertial range, the Bessel function is highly oscillatory in the
term on the right, where ¢ > 1. Extending the integration region to infinity will
therefore not significantly alter the integral, yielding

/loodqjowqr/a):—’y+ln2—ln(r/a)+/01dq 1—Joq(qr/a)’ (6.41)

where 7 is the Euler-Mascheroni constant. The remaining integrals cancel, and hence

_{/r)—y—Inm
R ==y

[>r>a. (6.42)

This expression provides a robust test for the k73 scaling, because exponents larger
or smaller than —3 yield power-law rather than logarithmic scaling of the correlation
function [298]. The expression will also contrast strongly with early times, where we

may use the ansatz
Eint<k) = Einté(k — ]i?f) < Rw(’f’) = Jo(ka') (643)

In Fig. 6.8 we show R, (r/&) for the N = 16,384 vortex system (as is shown in
Fig. 6.3), for t = 0 and t ~ 57 and ¢ =~ 107. The correlation function was calculated
from a single run and time frame. At early times, the correlation function is very
similar to the predicted Bessel function behaviour, especially considering it contains
no fitted parameters. At t = 57, when the k=3 spectrum has developed, the cor-
relation function agrees remarkably well with Eq. (6.42). Fitting within the range
r/€ € [10,1000] yields a ~ 25 and [ &~ 9775. These values are in quite good agreement
with the predictions based on the kinetic energy spectrum: the integral scale [ can be
estimated from the wavenumber where Ei (k) is the largest, which by ¢ = 67, is at

k = Ak, giving | ~ 10*. Since the spectrum drops rapidly beyond k;, the wavenum-
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Figure 6.8: Two-point vorticity correlation function R, (r/£) for the N = 16384 vortex
configuration in Fig. 6.3, shown at ¢t = 0 (left), ¢ ~ 57 (middle) and ¢ ~ 107 (right).
Dashed lines show analytical predictions Jo(ksr), [no fitted parameters, (left)] and a
line of best fit using Eq. (6.42) [(middle, right), see text]. Insets show the same data
against In(r/&) for comparison.

ber associated with the intervortex distance, the microscale can be estimated from
the intervortex distance, a = L/ VN ~ 78. By t ~ 107, the range of logarithmic
behaviour has extended, and fitting over r € [10,2000] yields [ ~ 1.327 x 10%, and
a ~ 1.17. The simultaneous increase of [ and decrease of a leads to a shallower slope

of the correlation function.

6.10 Discussion

It appears that, under the appropriate conditions, the basic KLB phenomenology of
classical 2D turbulence applies to superfluids as well. As in 3D, the bundling of same-
sign vortices is the crucial element responsible for mimicking classical behaviour [40,
230, 288]. Here the “bundled” states that exhibit strong spectral transport have
positive interaction energies and negative-temperature equilibria [92, 141, 151]. In
contrast, the analysis of Sec. 6.3 suggests that the states with positive temperature
equilibria (negative energies) exhibit essentially no spectral transport in comparison.
This is consistent with the findings of Ref. [93], where only clustered states were
found to exhibit significant energy transport.5

Our results suggest Re/, as defined in Eq. (6.28) is a good measure for quantifying
the degree of turbulence, and can be used to estimate the range of the enstrophy cas-

cade. Specifically, figure 6.5 shows that the k=3 scaling extends from wavenumbers of

6A number of simulations of states with negative energies also showed virtually no spectral
transport compared to the clustered states, despite the fact that our value of + is much smaller than
that in Ref. [93].
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order ky = 2mny/L up to the wavenumber associated with the mean intervortex dis-
tance, ky = 21/ = 2mv/N/L. Hence the range of wavenumbers is k;/k; = VN /n;.
Since in Eq. (6.28) gives Re, = N/n7%, it follows that k¢/k; = \/Riels, which is ex-
actly the same as in Batchelor’s classical theory (see Fig. 6.1 and Sec. 2.9.2). Note,
however, that here the high wavenumber cutoff is set by the discrete nature of the
vorticity field rather than viscous dissipation. Nonetheless it appears that the full
KLB phenomenology can be carried over to the quantum fluid. The sudden drop in
Ein (k) at k, suggests that the point-vortex system can be truncated at wavenumbers
k ~ k. This is consistent with the arguments put forward by Kraichnan [141]; he
argued that the point-vortex and truncated Euler equations should be similar when
close approaches are not significant. It would be interesting to analyse the drop-off

region further, to determine if it shares any similarities with the dissipation range.

It is somewhat surprising that the £~ scaling can be seen even for N = 512
(Res ~ 10), since the same number of degrees of freedom would be achieved by a
mere 20 X 20 Fourier modes contributing to the inertial range in a Navier-Stokes
description. On the other hand, in contrast to a classical fluid, the dissipation rate
~v is independent from the Reynolds number [238, 239], and lossless transport can be
sustained through all the accessible Fourier modes if v < 1. Although for small N
the uncertainty in C” is larger due to larger fluctuations in 7, a larger value of C’
for smaller NV is perhaps intuitively sensible; it suggests that fewer available degrees
of freedom results in less efficient spectral transport (given F(k), larger C’ indicates

smaller 7).

For large Reg, the Kraichnan-Batchelor constant C’ &~ 1.6 was found to be close to
the accepted value for a classical fluid, C" = 1.4 [118, 130]. Similarly, the Kolmogorov
constant in 3D has been found to be the same above and below the A-transition in
superfluid He? [40]. In constrast, a study of the inverse energy cascade using a forced
point-vortex model [294], found the associated Kraichnan-Kolmogorov constant to be
double the accepted value, seemingly at odds with the results from 3DQT as well as
those obtained here. Further study is certainly warranted. In Ref. [294], a forcing
term was introduced by essentially reversing the sign of 7. A more physical scenario
would be to introduce vorticity instead, possibly via the rejection sampling method
described earlier, which could be considered as a more realistic minimal model of a
stirring grid in a 2D superfluid [25, 128, 299]. The forced case would reveal whether
both cascades can exist simultaneously in the point-vortex system, and would allow
a more accurate estimate of the cascade constants if stationarity could be obtained.

Intermittency effects, if present [130], could also be explored.



6.10. Discussion 165

Full Gross-Pitaevskii simulations for the smaller values of N considered here are
well within computational reach, and would be highly informative regarding the ef-
fective viscosity arising from the coupling to compressible modes. Furthermore, the
physical mechanism of enstrophy loss could be elucidated in this more realistic model,
since in principle there are two possible mechanisms. The first is a physical loss
of vortices through dipole annihilation events, which, similar to viscous effects in
the Navier-Stokes equations, remove enstrophy while removing comparably little en-
ergy [189].7 The second would be enstrophy loss as a coarse-grained effect; as the
vortex distribution reorders towards the “final dipole”; a greater fraction of the distri-
bution becomes uncorrelated (Sec. 2.10.3), and would be lost under a coarse-graining
operation. This would be similar to the behaviour of the (conservative) Fourier-
truncated Euler equation, in which thermalized high-k modes can form a fictitious
“dissipative micro-world”, for the non-equilibrium lower & modes [121, 300, 301]. In
our system the second mechanism appears to be more significant, since the ratio ¢/¢
is large, and consequently physical vortex losses are relatively small, < 1%.

Finally, regarding the prospect of observing the cascade in atomic condensates, the
difficulty would ultimately be achieving a system large enough relative to the healing
length £. From Table 6.1, for our smallest vortex number N = 512, the system size
could be reduced to L ~ 850§ without invalidating the incompressibility assumption
Ums < 0.3c [see Sec. 3.2.5 and recall x — Ax yields u — A 'u and t — A%t in
Eq. (6.2)]. For comparison, current experimental setups have achieved L ~ 200
in 2D uniform systems [71], and for similar parameters such a large system would
require N, ~ 107 — 10® atoms, which is the upper limit of what has been achieved
in harmonically confined systems [302]. Some further additional freedom is possible

1/2 through a Feshbach resonance [67, 68], or through tuning the

by tuning £ o« ag
effective 2D interaction parameter gop = g/v/27l, (Sec 3.1.5), although this would
eventually enhance three-body losses [303]. Condensate lifetimes, on the other hand,
appear to be less of an issue. Lifetimes on the order of ' = 60s are not uncommon [78],
and, with a natural timescale of e.g. &/c ~ 0.13 ms [78], this gives T ~ 4.6 x 10°
¢/c. For the rescaled N = 512 system this corresponds to 7'/7 & 460 turnover times,
easily long enough to investigate the cascade (see Table 6.1). Furthermore, simple
stirring protocols (such as in Chapter 5) also show promise for efficient injection of
large vortex clusters. We therefore argue that, although undoubtedly challenging,

the required experimental conditions do not seem out of reach.

"Similarly, in 3D quantum turbulence at very low temperatures, the effective “viscous” loss is
measured through the decay of the vortex line length [47, 76, 196, 197].
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6.11 Conclusion

We have demonstrated that, under the appropriate conditions, 2D quantum turbu-
lence can support an enstrophy cascade as predicted by classical KLB theory, thus
broadening the universality of the KLLB scenario. Providing firm evidence that this
fundamental process occurs in the ideal limit is a step towards understanding 2D
quantum turbulence in real systems, and strongly implies that the inverse energy
cascade can indeed occur in 2D quantum turbulence. The simplicity of the 2D point
vortex system allowed the determination of a simple formula for the Reynolds number
in decaying 2DQT. The formula was verified as a useful measure by demonstrating
that it predicts the length of the inertial range. The scaling of the inertial range
also demonstrates that the ideas of fully-developed turbulence become a meaningful
description for quantum fluids once the vortex number reaches the order of several
hundred, possibly less than one might expect. Validating that Re, faithfully measures
the degree of turbulence ensures that it can be used in future work to allow for a

more quantitative comparison between different studies.



Chapter 7
Conclusions

In this thesis we have numerically and theoretically studied analogues of 2D classical
turbulence in quantum fluids. Here we briefly summarize the studies and results
that have been presented in Chapters 4, 5, and 6, before discussing some practical
and theoretical implications of the results. We conclude by offering an outlook and

suggestions for future work.

7.1 Summary

The studies presented in Chapters 4, 5, and 6 have broadly focussed on coherent
vortex formation, the transition to turbulence in bluff-body wakes, and the cascade
phenomena of fully-developed turbulence, respectively.

In Chapter 4, we presented a new hydrodynamic decomposition of the kinetic
energy spectrum for a quantum fluid. Interestingly, it was found that this decompo-
sition provided completely different flow-field information to the “classical” kinetic
energy spectrum usually considered in the literature. Whereas the classical spectrum
contains information regarding velocity correlations, the quantum kinetic energy spec-
trum contains information of the velocity probability distribution. We then used this
new decomposition to analyse negative temperature equilibrium distributions of 2D
quantum turbulence, a subject of current interest. We showed that the quantum
spectrum would exhibit a k% power law in the presence of large, coherent vortices
that emerge in negative temperature equilibria. The k® law was demonstrated to
emerge in damped Gross-Pitaevskii dynamics in a trapped system, and the coherent
vortex clusters were found to obey the Feynman rule of constant areal density, ex-

hibiting rigid body rotation. The infrared k law and the generalized Feynman rule
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provide new accessible measures for characterizing negative temperature states in 2D
quantum turbulence.

In Chapter 5 we studied the transition to turbulence in the wake of a cylindrical
object in a 2D quantum fluid. To study this system, we developed a new numerical
fringe method to cope with quantum vortices, allowing for steady-state wake prop-
erties to be investigated. The Strouhal-Reynolds number relation, which exhibits
universal behaviour in the classical analogue, was then investigated as a means to
test Onsager’s superfluid Reynolds number across the transition to quantum turbu-
lence. It was found that a seemingly universal Strouhal-Reynolds relation, similar to
the classical form, emerged for large cylinders when Onsager’s superfluid Reynolds
number was modified to account for the critical velocity for vortex shedding: for
cylinder width D, velocity u, and critical velocity u., and quantum of circulation

Kk = h/m, the parameter
(u—u.)D
K

Re, =

was found to recover dynamical similarity in the wake. For this modified Reynolds
number, the transition to turbulence was observed to occur at Res =~ 0.7 regardless
of obstacle size, providing further evidence for dynamical similarity.

In Chapter 6 we studied the direct enstrophy cascade in decaying 2D quantum
turbulence, for very large vortex numbers, in order to elucidate the nature of spec-
tral transport and the emergence of cascade solutions in 2D quantum turbulence.
We showed that quantum fluids can indeed exhibit the universal scaling proper-
ties associated with the direct enstrophy cascade, provided a few hundred vortices
are present with suitable initial conditions. The decaying system was found to be
well-characterised by Onsager’s superfluid Reynolds number, equivalent to our newly
proposed Reynolds number in the limit Res; > 1. The scaling of the inertial range
versus the superfluid Reynolds number was found to be the same as in the classical
scenario. This work shows that classical cascade phenomena can emerge quite read-
ily in both 3D and 2D quantum turbulence under the right conditions. This could
be considered as a rather remarkable and highly nontrivial demonstration of Bohr’s

correspondence principle.

7.2 Theoretical and Practical Implications

Regarding the results of Chapter 4: while the velocity probability distribution in-

formation contained within the quantum kinetic energy spectrum is useful, it does
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not inform us of the spatial structure of turbulence, which is contained within the
joint probability distributions for two or more points. Whereas the one-point veloc-
ity statistics in turbulence are usually of the pure-chance type (i.e., Gaussian), the
statistics of the two-points and higher measures, being related through the equations
of motion, exhibit highly nontrivial behaviour. Nonetheless, access to the probability
distribution through expansion imaging offers an experimentally accessible method
for detecting negative temperature equilibrium states, a subject where some consider-
able interest currently lies. As the signatures of negative temperature states emerge
at low k in the quantum spectrum, this may make it less susceptible to high frequency
spatial noise from the sound field or other noise sources, and it therefore may serve
as a complementary approach to the recently demonstrated method for vortex sign
detection [87]. The k3 law is in principle universal, and should appear under the right

conditions regardless of the confining geometry of the system.

Recent experimental results suggest that the superfluid Reynolds number pro-
posed in Chapter 5 may have some real predictive power beyond 2D quantum turbu-
lence. In particular, Shoepe has shown experimentally that the superfluid Reynolds
number revealed dynamical similarity in the lifetime of transient turbulence in 3D
superfluid helium at milliKelvin temperatures [286, 287]. If the superfluid Reynolds
number stands up to further investigation across a diverse range of systems, it would
provide a very useful quantitative measure of quantum turbulence. A universal quan-
titative measure of quantum turbulence near the transition might even provide infor-
mation about how to control it. However, it is also worth bearing in mind that all
practical applications of superfluid helium are significantly more complex, involving
two-fluid behaviour. Nonetheless, given the much lower superfluid Mach numbers
attainable in superfluid helium, we might expect the superfluid Reynolds number to
be more useful there than in BECs, where the Mach number is more often sufficiently

large that it cannot be neglected.

From Chapter 6 we have learned the somewhat unfortunate reality that probing
the classical limit of fully-developed turbulence in BECs is likely to be quite demand-
ing. The systems are required to have many vortices (at least several hundred degrees
of freedom), yet, simultaneously, the vortices must also be well-separated, such that
inertial effects can become dominant over radiation and forcing effects from the sound
coupling. Although numerically these large systems, while computationally demand-
ing, are straightforward to achieve, creating such large systems in reality is likely to
be a considerable experimental challenge. The situation does however appear much

more promising for 2D systems, where experiments are already making condensates
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spanning several hundred healing lengths [71, 78], and the conditions required do not
appear to be completely out of reach. From a theoretical perspective, the cascade
studies summarized in Chapter 3, combined with the results of Chapter 6, demon-
strate that the spectral formulation quite easily leads to spurious scaling “laws” for
the kinetic energy spectrum of quantum vortices, and, furthermore, clear spectral
laws are difficult to achieve unless quite a large number of vortices are present. For
quantum fluids, the spectral formulation isn’t all that helpful; Fourier transforming
everything and looking at the same information in wavenumber space is mostly detri-
mental, removing the nice feature that 2D quantum vortices are localized objects in
position space. The spectral formulation needs to be used with caution, scrutinized
using compensated spectra, and corroborated by either flux calculations or real-space

vorticity correlations whenever possible.

7.3 Future Work and Outlook

The present research has explored parallels between classical and quantum 2D tur-
bulence, and investigated whether some of the fundamental principles of classical
turbulence can be used to understand similar quantum fluid phenomena. The find-
ings from this work have provided some new insight into the applicability of universal
concepts such as the Reynolds number and turbulent cascades in quantum fluids.

As was originally believed for 2D turbulence, it may turn out that much of 2D
quantum turbulence will be limited to the realm of numerical simulation. This of
course does not mean that its study cannot contribute to the understanding of real
systems. The fact that the superfluid Reynolds number proposed in Chapter 5 has
already been shown to be useful in superfluid helium is a perfect example of how
the simplicities of two dimensions can be exploited to conduct more detailed studies
than would otherwise be possible in order to learn something new. The systematic
study of the enstrophy cascade up to very large vortex numbers (Chapter 6), which
clearly demonstrated the validity of Onsager’s superfluid Reynolds number and the
Kraichnan-Batchelor theory, is another such example.

Since our proposed superfluid Reynolds number appears to be an idea of some
merit, it would be worthwhile to test its validity in a variety of scenarios. If the super-
fluid Reynolds number truly recovers dynamical similarity, it should recover universal
relations for all dimensionless parameters of interest. Testing drag coefficients and
Strouhal numbers for a variety of obstacle shapes, and in other scenarios like grid

turbulence or pipe flow, would be a good place to start. If steady-state problems
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can be extended to three dimensions through the fringe method we have developed
(or any other method), this would also be worthwhile. Recent experimental develop-
ments [52, 71], suggest the transition to turbulence could be explored experimentally
within the near future.

While larger Reynolds numbers are always desirable to push turbulence ever closer
to its “purest” form, it seems likely that experimental studies of quantum turbulence
in BECs will be limited to relatively small superfluid Reynolds numbers. Nonetheless,
the crossover from quantum to classical physics is usually an interesting topic, and
this region of parameter space should be within experimental reach. It has been
recently suggested that Fermi gases, with a much smaller coherence length, could be
a viable alternative for experimental endeavours [32]. Numerical studies on the other
hand may be able to achieve quite large Reynolds numbers in 2D quantum turbulence
by exploiting time-saving schemes such as tree algorithms, and this could yield some

interesting results in quantum turbulence that remain to be discovered.
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