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Abstract 

In the story of the pathogenesis of Alzheimer’s Disease, Amyloid-Beta (Aβ) is believed to play a key 

role. However, evidence suggests that metal ions, in particular Zn2+, may have strong modulatory, or 

even causative effects on the development of the disease. This study aimed to shed more light on the 

relationship between Aβ and Zn2+, especially with regards to their effects on cell viability. 

First, a protocol for the production of recombinant Aβ1-42 was followed to produce and purify the 

peptide. The next step was to establish a consistent cellular insult paradigm using Aβ1-42 in SH-SY5Y 

neuroblastoma cells, paying particular attention to aggregating the peptide – an important factor in 

Aβ toxicity. Subsequently this study aimed to investigate the effect of addition of exogenous Zn2+ on 

cell viability and its interaction with Aβ1-42. 

The production and purification protocol was successful in yielding quantities of pure Aβ. However, 

this protocol may require further optimisation. It was noted that while many research groups continue 

to use the MTT assay to measure cell viability, the large variability of the assay and the reported 

biochemical interaction with the Aβ peptide make it inappropriate. As such, this study used the 

resazurin assay. This research was unable to establish a consistent cellular insult paradigm in either 

SH-SY5Y neuroblastoma cells or cultured rat hippocampal or cortical cells (p>0.05; n=3). This was 

despite an ageing protocol able to produce oligomers and protofibrils of Aβ, species previously shown 

to have toxic effects on cell cultures. In fact, protofibril-containing samples of the peptide at 20 and 

40 µM increased cell viability of neuroblastoma cultures above the control (by 0.22±0.039 and 

0.36±0.041 respectively; p<0.01; n=2). No effect of Aβ1-42 was observed in the primary cells (p>0.1; 

n=4). Finally, addition of exogenous Zn2+ in some cases complimented Aβ-induced increases in cell 

viability, although this effect was inconsistent. 

This research highlighted some of the difficulties in examining Aβ in cell culture. In particular, it 

seemed important to not only identify the aggregation state of Aβ peptides, but also isolate and test 

specific species. This research suggests, however, that Zn2+ does modulate the effects of Aβ on cell 

viability and this relationship requires further investigation. 
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Chapter 1 

Introduction 

The world’s population is ageing. With greatly improved sanitation, healthcare and medicine, many of 

the formerly significant causes of mortality are being better controlled and treated, meaning more 

people are living longer. This is especially noticeable in developing countries, where average life 

expectancy has risen by 2-6 years in the last two decades (World Health Organisation, 2008). With an 

ageing population comes an increase in the prevalence of ageing-related diseases, of which one of the 

most impactful, both socially and economically, is dementia. Dementia describes those 

neurodegenerative diseases that lead to impairment of cognitive abilities – in particular memory and 

reasoning – as well as changes in personality and emotions, and that markedly disrupt a person’s 

ability to function normally. Dementia itself is a heterogeneous umbrella term for a number of 

different conditions, including vascular dementia, fronto-temporal dementia and Lewy-body 

dementia. However, by far the most common form is Alzheimer’s disease (AD), making up 

approximately 50-70% of global dementia cases (ADI, 2009). AD is characterised by severe and 

progressive memory loss, personality change and behavioural issues, mood disturbances, loss of 

motivation and self-care, with eventual loss of essential bodily functions that lead to death. 

Unfortunately, the aetiology of AD is currently still poorly-defined. Age appears to be the largest risk 

factor, although there is a subset of patients whose symptoms manifest relatively early in life, often 

by the age of 40. These patients generally have a family history of what has been termed early-onset 

AD, commonly also called familial AD (fAD), and it often has a clear genetic and hereditary component. 
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Since the genetic component of many cases of fAD has been well-defined, fAD has long shaped and 

guided research into late-onset Alzheimer’s disease, often referred to as sporadic AD (sAD). 

1.1 Prevalence and Incidence 

In 2015, 46.8 million people worldwide were estimated to be living with dementia (Prince et al., 2015). 

While recent trends have indicated a slight decline in rates of AD in the USA, believed to be due to 

improved nutrition, fitness and health trends (Langa et al., 2017), the number of dementia sufferers 

is projected to double every 20 years. This increase will be especially marked in low- and middle-

income countries, many of whom are predicted to see a greater than 200% increase in the incidence 

of dementia by 2050. In New Zealand, as of 2012, dementia affected nearly 50 000 people (Alzheimers 

New Zealand, 2012) with 13 000 new cases currently diagnosed annually – of those, 40% were male 

and 60% female. Alzheimer’s New Zealand suggests that by 2050, nearly 150 000 New Zealanders will 

have been diagnosed with dementia, this number rising by an additional 40 000 a year due to ever-

increasing life expectancy and an ageing population. 

1.2 Economic and Social Impact 

Since dementia is not immediately lethal, the economic impact of protracted treatment and care is 

considerable. Covering all health system costs, including hospital, pharmaceutical, diagnostic, care 

costs, as well as research funding and allied care costs for services such as physiotherapy or 

counselling, dementia costs New Zealand nearly $600 million a year (Alzheimers New Zealand, 2012). 

Productivity losses (in the form of lower employment rates, absenteeism and premature mortality), 

welfare payments, carer support and other costs add another $360 million to that total. Across the 

globe, this figure is as high as US$818 billion, and expected to breach the US$2 trillion mark by 2030 

as incidence rates increase (Prince et al., 2015). 
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In addition to the economic burden, dementia also carries a significant social cost. A diagnosis of 

dementia is extremely traumatic, not only for the patient, but also for their family and friends. Often 

spouses or family members need to give up their jobs to provide care for the patient, which is not only 

financially challenging, but can also lead to huge pressure on the relationship between patient and 

caregiver, and to social isolation, depression and poor physical health of both (Brodaty and Hadzi-

Pavlovic, 1990; Springate and Tremont, 2014). 

1.3 Biology of Alzheimer’s Disease 

1.3.1 Disease Progression 

The progressive memory loss characterizing AD is often divided into four stages – pre-dementia, mild, 

moderate, and severe dementia (Förstl and Kurz, 1999). Thorough neuropsychological investigation 

can sometimes highlight symptoms predictive of the pre-clinical form of the disease up to 5 years 

earlier than more obvious symptoms appear. Pre-dementia often manifests as an impairment in 

acquiring new information, as well as difficulties in performing other cognitively demanding tasks such 

as planning, or recalling semantic memory. In addition, patients may exhibit non-cognitive behavioural 

changes such as social withdrawal (Jost and Grossberg, 1995). At this stage, the symptoms typically do 

not greatly interfere with a patient’s daily life, and given their vague nature, they are not only difficult 

to identify, but are also hard to distinguish from cognitive deficits experienced due to normal ageing, 

or with conditions such as depression or senility. 

Mild or early-stage AD essentially marks when cognitive and memory deficits begin to affect the 

patient’s activities of daily living. Declarative recent memory tends to be preferentially affected, while 

short-term, long-term declarative and implicit memory remain largely intact. Activities such as 

planning, judgement and organization are impaired, and vocabulary deficits begin to interfere with 

basic communication. Spatial awareness and judgement are impaired and non-cognitive disturbances 
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such as depression and apathy become more prevalent (Benoit et al., 2012). At this stage, patients 

may still be able to live independently, but, especially in organizational matters, some kind of support 

network is needed. 

By the moderate stage of AD, memory deficits become very pronounced. Reasoning, planning and 

organization are heavily impaired. Reading, writing and comprehension are strongly affected by the 

loss of semantic memory. Episodic memory for most recent events is lost, often including anosognosia 

(loss of awareness of one’s condition). Patients lose the ability to organize motor activity sequences 

until everyday actions such as dressing, preparing food or eating become impossible. Hallucinations 

and delusions occur in a significant minority of patients, as well as visual agnosias such as 

prosopagnosia (Reisberg et al., 1996). Difficulties with ostensibly easy tasks, coupled with anosognosia 

often lead to outbreaks of temper with verbal or physical aggression. At this point, institutionalization 

can be avoided only rarely where there is a strong socio-familial support network. 

In the late stage of AD, specific cognitive and behavioural deficits become all but impossible to 

differentiate. Patients begin to lose even very early biographical memories and language is impaired 

to the point of incoherence. Aggression and restlessness occur in response to unfamiliar situations 

and environments and as a result of misunderstanding interventions. The development of extreme 

apraxia makes chewing and swallowing difficult, leaving the patient heavily dependent on 

institutionalized care. Median life expectancy following a diagnosis of AD ranges from 8.3 years for 

those diagnosed in their 60s to 3.4 years if diagnosed in their 90s (Brookmeyer et al., 2002), with the 

most common causes of death being pneumonia and ischaemic heart disease (Brunnstrom and 

Englund, 2009). 
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1.3.2 Pathology of Alzheimer’s Disease 

The post-mortem investigation of AD patients shows considerable global loss of cortical volume, which 

is especially evident in the hippocampus and surrounding temporal cortical regions, leading to greatly 

enlarged ventricles (Hyman et al., 1984). Now visible with brain imaging techniques such as MRI and 

PET, before post-mortem histopathology, this atrophy is generally most prominent in the 

hippocampus and parahippocampal gyrus, particularly in area CA1 and the subiculum, as well as layer 

II of the entorhinal cortex. Cell death in the entorhinal cortex results in a severance of the perforant 

path, which makes up the main cortical afferent to the hippocampus – a structure important in 

learning and memory – effectively disconnecting it from the cortex. In addition, cell loss in the 

subiculum and CA1 regions of the hippocampus greatly reduces hippocampal output pathways to the 

thalamus, hypothalamus, amygdala and cortex. The effective isolation of what few hippocampal cells 

remain from the rest of the brain, both in terms of afferent and efferent pathways, helps to explain 

not only the memory deficits, but also many of the other cognitive and non-cognitive impairments 

seen in the disease. It is important to note that this pattern of cell degeneration is specific to AD, and 

is not observed in normal ageing – even in very old age – or in any other age-related 

neurodegenerative condition (Hyman et al., 1984; West et al., 1994). 

The pathological hallmarks of AD, the amyloid plaques and neurofibrillary tangles (NFTs), were first 

described by Alois Alzheimer in 1907 (Stelzmann et al., 1995) in the study of his patient, Auguste D. 

Post-mortem analysis of brain tissue from AD patients revealed intracellular plaques of tangled 

insoluble protein, now isolated and identified as aggregates of the peptide Amyloid-Beta (Aβ; Glenner 

and Wong, 1984), and long filaments and fibrils of aggregated protein, isolated and identified as tau 

protein (Grundke-Iqbal et al., 1986). The deposition of these protein aggregates has been well 

characterised, and tends to follow a pattern. Amyloid plaques begin forming in the medial temporal 

cortex, from there spreading to the hippocampus, amygdala and thalamus, before reaching the 
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neocortex in the later stages of the disease. By contrast, the deposition of NFTs begins in the locus 

coeruleus and spreads outwards into the amygdala and neocortex (Braak and Braak, 1991). 

1.3.3 Diagnosis 

The diagnosis of AD remains imprecise. Although a number of methods exist that are able to 

determine cases of dementia, it is more difficult to differentially diagnose AD specifically. Currently, 

even with modern neuroimaging techniques, the only way to truly identify whether a patient had AD 

is with post-mortem analysis, looking for the amyloid plaques and NFTs. However, it is more possible 

today to give a probable diagnosis of AD within a patient’s lifespan, with a combination of 

neuropsychiatric, brain imaging and biochemical diagnostic methods. 

Psychiatric methods are usually the first line of diagnosis, often occurring soon after the onset of 

noticeable symptoms. Psychiatric diagnosis of probable AD tended to be by exclusion, and often 

required a lengthy process of ruling out other dementias, depression and delirium, although it is 

possible now to determine with more certainty whether a patient has the disease using the DSM-IV 

(Diagnostic and Statistical Manual of Mental Disorders) diagnostic criteria. These methods are usually 

combined with thorough physical and neurological examination, as well as blood screens and 

radiography, to rule out other possible causes of dementia (Grossberg and Lake, 1998). 

A more robust diagnosis, especially during the middle stages of the disease, can come from diagnostic 

imaging – either MRI or PET scanning. An MRI scan, often recommended for all patients with some 

kind of cognitive impairment, can not only rule out other causes such as meningioma or subdural 

hematoma, but can also provide positive diagnostic information about potential AD (Scheltens et al., 

1995). The most commonly used method is a visual scale rating of medial temporal lobe atrophy, 

though volumetric analysis of the hippocampus can give a more quantitative result (Scheltens et al., 

2016). Confirmation of AD pathology can be obtained using PET scans. Measuring glucose uptake by 



7 
 

neurons and glial cells using 18F-fluorodeoxyglucose PET can be used to either rule out 

neurodegenerative diseases altogether, or, if the pattern of hypometabolism is temporoparietal, 

positively diagnose AD with impressive sensitivity and specificity (Bloudek et al., 2011). An alternative 

method is PET using ligands of Aβ – one of the key pathological hallmarks of the disease – which allow 

visualisation of areas of cortical amyloidosis. However, given that Aβ aggregation is not specific to AD 

(though it is necessary for a positive diagnosis) and is present in up to 35% of cognitively healthy 

individuals over 60 (Bennett et al., 2006; Rowe et al., 2007), Aβ-PET is more useful for exclusionary 

than inclusionary diagnosis. 

Biochemical – blood and CSF (cerebrospinal fluid) – biomarkers have taken centre-stage recently as 

the most sought-after diagnostic tool for AD. In CSF, the traditional method is to look at levels of Aβ 

and tau protein, both key identifying features of AD. Levels of a common allomer of Aβ, Aβ1-42, in CSF 

act as an approximate measure of its deposition in the brain, with lower CSF Aβ1-42 correlating with 

greater plaque deposition in the brain as confirmed by autopsy (Tapiola et al., 2009). A meta-analysis 

of CSF Aβ1-42 biomarker studies showed an average ratio of 0.56 between AD and controls (Olsson et 

al., 2016). Other allomers of the Aβ peptide such as Aβ1-40 or Aβ1-38 did not show significant differences 

between AD patients and controls. CSF tau, both total- and phosphorylated-, is arguably a better 

biomarker for AD, as meta-analyses suggest ratios of 2.54 and 1.88 respectively (Olsson et al., 2016), 

and a significant relationship between CSF tau and stages of NFT pathology (Tapiola et al., 2009). Other 

CSF molecules have been suggested as biomarkers and examined, including neurofilament light 

protein (NFL), neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP), but none have 

yet stood up to rigorous analysis.  

Suitable blood or serum biomarkers are even more difficult to identify, given the effect of the blood-

brain barrier (BBB) and the ambiguity of the relationship between biomarkers in the blood and CSF. 

The naturally low levels of plasma Aβ1-42 shows no discernible difference between AD and control, nor 

do Aβ1-40, NSE, HFABP or NCP1 (Rosen et al., 2011; Zhang et al., 2013; Chiu et al., 2014; Olsson et al., 
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2016). More recent research has looked into micro-RNA biomarkers, which can circulate the body 

without being degraded (Kosaka et al., 2010; Vickers et al., 2011), and have been implicated in AD 

pathogenesis (Hebert et al., 2008; Geekiyanage and Chan, 2011). A number of possible micro-RNA 

biomarkers have been identified, which are differentially regulated in AD and MCI (Mild Cognitive 

Impairment) patients (Geekiyanage et al., 2012; Femminella et al., 2015), however these are far from 

being reproducible, and sample handling and processing techniques need to be standardized to 

ensure accurate diagnosis. It seems likely that rather than one single micro-RNA, a comprehensive 

battery of micro-RNAs will need to be examined for optimum diagnostic sensitivity and specificity. 

Overall, blood-based (serum or plasma) biomarkers are preferable, given the highly invasive nature of 

CSF sampling, though the field remains incomplete. 

1.4 Theories of AD 

1.4.1 The Amyloid Hypothesis 

The most enduring hypothesis of AD aetiology is the Amyloid Hypothesis, arising from the association 

between Aβ and AD pathology. This hypothesis proposes that AD is caused by aberrant metabolism 

of Amyloid Precursor Protein (APP), located on chromosome 21, to preferentially overexpress Aβ, 

leading to cellular and synaptic changes and eventually cell death. Amyloid-β is derived from 

proteolytic cleavage of APP sequentially by β- and γ-secretase. APP itself is a large, transmembrane 

protein thought to be involved in synapse formation and cell adhesion (Priller et al., 2006) and metal 

ion homeostasis (Barnham et al., 2003; Wong et al., 2014), ranging in size from 365 to 770 amino acids, 

although the 695 amino acid isoform is the most common in the brain (Chen et al., 2013). APP 

undergoes cleavage by a number of proteolytic enzymes called secretases, each of which gives rise to 

a different set of peptide and protein fragments with differing roles and effects.  
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Currently, there are eight confirmed and proposed cleavage sites on APP, each targeted by various 

secretases – the well-characterised alpha, beta, gamma, delta, epsilon and zeta, and the recently-

identified but yet to be characterised eta and theta. Alpha-, beta- and gamma-secretases are believed 

to be the most relevant to AD. The most important alpha-secretase cleavage is by proteins in the 

ADAM family (A Disintegrin and Metalloproteinase domain-containing protein), especially ADAM10 

(Lammich et al., 1999), while beta-secretase cleavage most often occurs by activity of BACE1 (beta-

site APP cleaving protein 1) (Vassar et al., 1999). Gamma-, zeta- and epsilon- cleavage is performed by 

the presenilin-1 complex with nicastrin, APH-1 (anterior pharynx-defective 1), and PEN-2 (presenilin 

enhancer 2) (Kaether et al., 2006). 

Alpha-secretase cleavage of APP occurs at residue 612 of the 695 amino acid isoform, releasing the 

extracellular N-terminal processed secreted APP-alpha protein (sAPPα) (Esch et al., 1990). The 

remaining C-terminal transmembrane part of APP (CTF) is further cleaved by γ-secretase to give rise 

to the amyloid intracellular domain fragment (AICD) and the transmembrane region fragment (p3). 

Beta-secretase (BACE1), on the other hand, cleaves APP at residue 596 of the 695 amino acid isoform 

to form secreted APP-beta (sAPPβ), with the remaining C99 CTF undergoing proteolysis by γ-secretase 

to form a range of Aβ peptides (36-43 amino acids) and the AICD. Aβ1-40 and Aβ1-42 are the most 

common alloforms, with the 42 amino acid species being the predominant constituent of amyloid 

plaques (Mann et al., 1996). There has been some suggestion that the cleavage site of γ-secretase, 

and therefore the alloform of Aβ produced, may be dependent on the location of metabolism - Aβ1-40 

may be produced from proteolysis in the trans-Golgi network, while Aβ1-42 may be produced in the 

endoplasmic reticulum (Hartmann et al., 1997). It has also been suggested that intracellular APP 

metabolism is unique to neurons and this processing only occurs at the cell membrane in other cell 

types expressing APP (Tomita et al., 1998). 

Far less is known about the other secretases and their cleavage sites. Delta-secretase, identified as 

asparagine endopeptidase (AEP), cleaves APP at two sites, N585 and N373, the former of which has 
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been demonstrated to enhance β-secretase activity and therefore production of Aβ species by up to 

50% in primary cell cultures (Zhang et al., 2015). Epsilon (ε) secretase is even less understood and has 

yet to be fully identified, although its cleavage site is known to be at residues 49/50 of the C99 

fragment (Weidemann et al., 2002). Eta (η) secretase is postulated to be Matrix Metalloproteinase 5 

(MMP-5), which cleaves APP at M505, resulting in sAPPη and CTF-η, the latter is then metabolised by 

α- or β- and γ-secretase (Willem et al., 2015). One of its metabolic products, Aη-β, impairs 

hippocampal LTP ex vivo, but its physiological validity is yet to be determined, given that its activity is 

largely masked by BACE1. Zeta (ζ) secretase cleavage results in a 46 amino acid amyloid peptide and 

its secretase is believed to be a part of the presenilin/γ-secretase complex, but its biological relevance 

is unclear (Zhao et al., 2004). Theta (θ) secretase has been identified as BACE2 and cleaves APP 

downstream of the α-site, reducing Aβ production (Sun et al., 2006). However, similarly to η-cleavage, 

this is difficult to see without upregulating the enzyme, and whether it has any clinical or therapeutic 

significance is unknown. 

The N-terminal protein sAPPα has been extensively investigated since the discovery of its 

neuroprotective properties (Goodman and Mattson, 1994), showing 100-fold greater ability to protect 

hippocampal neurons from excitotoxicity than sAPPβ (Furukawa et al., 1996). Furthermore, it has been 

demonstrated that sAPPα facilitates changes in gene expression, with downstream effects that include 

upregulation of trophic genes such as insulin-like growth factor 2 (IGF2), transthyretin (TTR) and NF-

κB and regulation of pro-apoptotic and pro-inflammatory genes such as Bcl-2-associated death 

promoter (BAD) that, when phosphorylated, releases anti-apoptotic factors, ETS homologous factor 

(Ehf) and Granzyme B (GZMB) (Stein et al., 2004; Ryan et al., 2013). 

It is inferred that AD develops as a result of an imbalance between α- and β-secretase cleavage of APP, 

the former having its neuroprotective and trophic downstream effects mitigated, while the latter’s 

neurotoxic effects are amplified. Evidence for the Amyloid Hypothesis stems from a number of 

sources. Firstly, mutations in APP and presenilin 1 have been discovered in cases of familial early-onset 
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AD (Chartier-Harlin et al., 1991; Goate et al., 1991), and people with Down’s syndrome, who carry 

three copies of chromosome 21, not only show amyloid pathology (Glenner and Wong, 1984b), but 

also often go on to develop early-onset AD-type dementia (Tyrrell et al., 2001). Furthermore, analysis 

of genetic risk factors for late-onset AD revealed that the ε4 allele of the Apolipoprotein E gene 

(ApoE4) and an allele of the microglial receptor TREM2 were significantly more prevalent in AD 

patients than in the general population (Farrer et al., 1997; Hickman and El Khoury, 2014). It was then 

discovered that ApoE and TREM2 are involved in clearing Aβ from the brain, and that the ε4 allele and 

the TREM2 variant produce species of the proteins that are less effective at this clearance (Jiang et al., 

2008; Wang et al., 2015). 

Aβ itself has been thoroughly researched and found to have profound effects on cellular function, not 

least in terms of neurotoxicity and interference with synaptic function. Aβ is highly prone to 

aggregation, progressing very quickly from a solution of monomers to form dimers and trimers, swiftly 

followed by higher-order oligomers and finally the fibrillary plaques characteristic of AD. Much debate 

has been had with regards to the relative toxicity and other effects of these aggregate species and the 

consistency of these aspects in a laboratory setting (see 1.4.2 below), although a majority consensus 

is that the smaller soluble oligomers are the most toxic species and these may be responsible for much 

of the pathology (Walsh et al., 2002b). In AD patients, in vivo, and in slice cultures, administration of 

exogenous Aβ impairs synaptic function – decreasing synaptic density (Davies et al., 1987; Shankar et 

al., 2007), impairing long-term potentiation (LTP; Walsh et al., 2002a; Wang et al., 2004) and 

facilitating long-term depression (LTD; Shankar et al., 2008). These effects are thought to manifest 

before the deposition of amyloid plaques. Further accumulation of Aβ of the fibrillary form leads to 

an inflammatory response, activating astrocytes and microglia and initiating processes that lead to 

neuronal atrophy – loss of dendritic spines, reduction in dendrite number and formation of axonal 

varicosities that interfere with normal neuronal function and eventually lead to extensive cell death 

(Tsai et al., 2004). 
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The amyloid hypothesis has undergone intensive scrutiny, with opponents citing the lack of correlation 

between amyloid plaques and disease progression, the presence of plaques in healthy adults and the 

failure of numerous clinical studies of drugs targeting Aβ (explored further in section 1.5). However, 

the hypothesis endures, and continues to be dominant in shaping research into the disease, both in 

terms of experimental models of AD and developing treatments and interventions (Reviewed in Selkoe 

and Hardy, 2016). 

1.4.2 Protein Aggregation and Toxicity 

One of the key aspects of the Amyloid hypothesis is the understanding that Aβ is highly prone to 

aggregation and that its toxicity, both in vivo and in vitro, is to some extent dependent on its 

aggregation state. Initial focus was on the fibrillary aggregates characteristic of the later stages of the 

disease, but more recent research has highlighted the importance of lower-order Aβ assemblies, in 

particular the soluble oligomers, comprising of 3-50 monomers. The amounts of these species 

correlate better with measures of disease progression than do the plaques (Dahlgren et al., 2002; 

Walsh et al., 2002b), and their levels are elevated in the brains of AD patients (Kuo et al., 1996). 

However, much of the literature on aggregation and toxicity is fraught with inconsistencies, as the Aβ 

peptide is notoriously difficult to work with. 

Research has identified at least nine different stages of Aβ aggregation (Illustrated in Figure 1). 

Monomers represent the starting molecular species released by proteolytic degradation of APP, and 

are soluble amphipathic molecules with a molecular weight of around 4-5kDa. The conformation of 

Aβ monomers appears to be determined by the pH of its solvent. A pH of 1-4 and 7-10 is conducive to 

the α-helical conformation, while a pH of 5-6 tends to form β-sheet monomers (Fraser et al., 1992). 

Furthermore, the nature of the solvent has an impact, with organic solvents leaning towards α-helical 

conformations and aqueous solvents giving rise to the β-sheet conformation (Barrow and Zagorski, 

1991; Fraser et al., 1992). However, it appears as though a combination of the two factors eventually 
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determines the final conformation (Reviewed in Serpell, 2000; Finder and Glockshuber, 2007). 

Common structural elements exist in all forms of Aβ monomer, however. Residues 6-8 and 23-27 of 

the sequence form β-“kinks” that dictate the remaining structure (Xu et al., 2005; Ahmed et al., 2010). 

The rest of the sequence folds in around these residues, leaving the N-terminal tail free. The central 

and C-terminal residues are mostly hydrophobic, and this character helps explain the  capacity for 

aggregation of the peptide. Aβ1-42 is significantly more prone to aggregation than Aβ1-40, and its 

aggregates show greater neurotoxicity (Eisenhauer et al., 2000; Dahlgren et al., 2002; Zhang et al., 

2002). This section will mostly focus on the Aβ1-42 alloform. 

 

Figure 1: Diagram describing the progression of amyloid-beta aggregates. Soluble monomers form dimers, 

trimers and other small oligomers, which in turn aggregate to form protofibrils, fibrils and the large aggregates 

referred to as plaques. Image reproduced with permission from Finder and Glockshuber (2007). Copyright 2007 

S. Karger AG, Basel. 

Aβ dimers and trimers have been isolated from human (Roher et al., 1996) and mouse (Lesne et al., 

2006) brain extracts, as well as in vitro preparations (Podlisny et al., 1995), and mark the first stage of 

aggregation. Dimers show some toxicity, but only in certain conditions, for example only in the 
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presence of microglia (Roher et al., 1996), while trimers have been shown to act as potent inhibitors 

of LTP (Townsend et al., 2006). 

The next stage of aggregation is into small oligomers of approximately 3-50 subunits, which have been 

found in vitro and in vivo (Kuo et al., 1996; Walsh et al., 2002a). Depending on the conditions of their 

preparation, the form these oligomers take is variable, although they are almost exclusively more 

soluble than larger aggregates. Some groups have reported seeing disc-shaped pentamers and 

decamers forming in low-temperature and low-salt conditions (Ahmed et al., 2010), while others have 

demonstrated a wider range of oligomers, up to dodecamers (Bitan et al., 2003). These small soluble 

oligomers have been extensively investigated, both in terms of neurotoxicity and behavioural effects 

in animal models. Firstly, several groups have independently found that levels of soluble oligomers of 

Aβ better correlate with disease progression in AD than do insoluble fibrils and plaques (McLean et 

al., 1999; Wang et al., 1999). Second, application in vivo of soluble oligomers impairs memory and 

cognitive function in animal models (Cleary et al., 2005; Lesne et al., 2006). Third, several groups 

report that these aggregates induce much more significant cell death in primary cells and immortal 

cell lines than larger aggregates (Dahlgren et al., 2002; Ahmed et al., 2010) although others dispute 

these findings (Wogulis et al., 2005). This combined evidence suggests that these soluble Aβ1-42 

oligomers are responsible for much of the cellular damage and systemic impairment seen in AD. 

Protofibrils and fibrils make up the ante- and penultimate stages of Aβ1-42 aggregation. Protofibrils are 

flexible, rod-like structures that are considered to be direct precursors of mature fibrils (Walsh et al., 

1997). Protofibrils are thought to form a regular parallel β-sheet hairpin conformation (Ahmed et al., 

2010), and have been demonstrated to fall out of this structure in equilibrium with smaller oligomers 

in a concentration, pH and temperature-dependent manner (Walsh et al., 1999; Arimon et al., 2005). 

The neurotoxicity of protofibrils has been reported in several studies (Hartley et al., 1999; Ahmed et 

al., 2010), but others have failed to replicate these findings (Wogulis et al., 2005). Multiple protofibrils 

aggregated together make up fibrillary Aβ, although their overall three-dimensional structure varies 
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according to the aggregation conditions (Petkova et al., 2005). It has been observed that fibrils formed 

by in vitro aggregation are similar to those extracted from human AD plaques (Kirschner et al., 1987). 

With regards to the neurotoxicity of fibrils, while some studies have reported that application of Aβ 

fibrils causes cell loss, astrocytosis and microgliosis (Stephan et al., 2001), others suggest that only 

soluble oligomers have these toxic effects (Nimmrich et al., 2008; He et al., 2012). Other groups have 

suggested that neither soluble nor fibrillary Aβ alone are sufficient to induce marked cell loss, but 

rather both forms are necessary (Wogulis et al., 2005). 

Overall, the literature on Aβ aggregation, while extensive, is conflicted. While there seems to be some 

agreement that the soluble oligomers of the peptide are the most neurotoxic species, the methods 

used to either isolate or prepare them for laboratory use vary wildly (e.g. Fraser et al., 1991; Wogulis 

et al., 2005; Ahmed et al., 2010). Many groups tend to use simple “ageing” protocols in order to 

produce toxic aggregates – lyophilized powder reconstituted in water or NaOH and phosphate-

buffered saline (PBS) and aged for 3 days at 37°C (Howlett et al., 1995; Hartley et al., 1999; Wogulis et 

al., 2005). While this is believed to be a consistent protocol for fibril formation, it seems that it is not 

the only one. Some groups report consistent fibril formation by dimethyl sulfoxide (DMSO) 

disaggregation followed by addition of HCl and ageing at 37°C for 24 h, while ageing at 4°C for 24 h 

seems to result in smaller oligomeric peptides (Hartley et al., 1999; He et al., 2012). Other protocols 

include dissolution in physiological salt buffer and incubation at 37°C for up to 12 days (Ahmed et al., 

2010). Similarly, some groups report protofibril and low molecular-weight oligomer formation by 2-3 

days of ageing at room temperature followed by separation by size-exclusion chromatography 

(Hartley et al., 1999). Globular oligomeric species have been observed following 24-h ageing in 

PBS/SDS at 37°C (Nimmrich et al., 2008) and mid-size oligomers have been prepared by dissolution in 

low-salt buffer and kept at 4°C for 6 h (Ahmed et al., 2010). The literature is further complicated by 

the use of different allomers of Aβ, with Aβ1-40 aggregating differently compared to Aβ1-42 (Garai et al., 

2006, 2007; Solomonov et al., 2012). Whether findings with one allomer can be related to others is 
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unclear. This leads to difficulties in interpreting data, as well as for planning experiments using amyloid 

peptides. 

Furthermore, a technical caveat exists with regards to experimental techniques evaluating the effects 

of Aβ. It has been noted that the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay has an interesting interaction with Aβ specifically, such that the use of the MTT assay with Aβ as 

the insult may give inaccurate estimates of cell viability (Shearman et al., 1995; Hertel et al., 1996; 

Wogulis et al., 2005), in turn suggesting that the interpretation of results obtained from such 

experiments may be brought into question. This is an important factor to consider when reading 

literature, since the interaction has been reported as early as 1995, and yet even in 2015, groups 

continue to use this combination of assay and insult. 

1.4.3 The Tau Hypothesis 

Alongside extracellular amyloid beta plaques, intracellular aggregates of hyperphosphorylated tau are 

one of the main hallmarks of AD. The tau hypothesis of AD suggests that the pathogenesis of the 

disease is more due to hyperphosphorylation and aggregation of the tau protein than of Aβ. The 

intracellular tangles observed by Alois Alzheimer in his post-mortem studies were finally identified in 

1986 as aggregates of axonal microtubule-associated protein tau, an important cytoskeletal protein 

involved in stabilizing microtubules (Wood et al., 1986). The stabilizing effect of tau is modulated by 

its phosphorylation, with greater phosphorylation leading to a reduction in tau binding to 

microtubules and greater microtubule instability (Rodriguez-Martin et al., 2013). It has been 

suggested that pathological changes in tau phosphorylation are the early-stage triggers for the 

development of further AD pathology, and the amyloid pathology is a downstream effect (Maccioni 

et al., 2010). Not only does tau pathology appear at very early stages of AD, but it also appears to 

correlate with cognitive impairment (Maeda et al., 2006) and is a more effective CSF biomarker 

(Olsson et al., 2016). It has also been demonstrated that the tau protein constituting the NFTs in AD 
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brains is phosphorylated to the point of insolubility (Johnson and Stoothoff, 2004). Furthermore, 

reducing or knocking-out tau in animal models increases resistance to Aβ-induced toxicity (Rapoport 

et al., 2002; Roberson et al., 2007). It is therefore possible that pathological tau phosphorylation and 

aggregation may, in fact, cause Aβ toxicity by its absence. However, the main inconsistency with the 

tau hypothesis is the knowledge that no known forms of early-onset AD have genetic components 

involving tau directly – the vast majority carry mutations directly or indirectly relating to amyloid 

pathology. 

1.4.4 The Vascular Hypothesis 

This hypothesis suggests that AD is a vascular disorder, caused by impaired cerebral perfusion and 

circulation (de la Torre and Mussivand, 1993). Most of the risk factors associated with AD – ageing, 

atherosclerosis, stroke, diabetes mellitus, smoking, high cholesterol, cardiac disease, hyper- and hypo-

tension and high fat intake – are vascular in nature (Breteler, 2000), and also common risk factors for 

vascular dementia, which is difficult to differentially diagnose (Bowler et al., 1997; Ransmayr, 1998). 

Furthermore, one of the clinical hallmarks of early MCI is hypoperfusion, and this strongly correlates 

with later conversion to an AD diagnosis (Johnson et al., 1998). Similarly, it has been suggested that 

altered and lowered metabolism of specific pathways occurs prior to either amyloid or tau pathology, 

leading to impaired synaptic function (Hatanpaa et al., 1996). Considering the evidence that 

hippocampal regions are highly susceptible to oxygen deprivation (Burmester et al., 2000), this may 

help explain why more overt neuropathlogy manifests in these areas. 

1.4.5 Neuroinflammation in AD 

A number of studies have suggested that neuroinflammation may play an important role in AD.  First, 

immune cell activation has been reported around plaques in the AD brain, in particular microglia 

(Rogers, 1998), and cultured microglia accumulate around and internalize Aβ (Bard et al., 2000; Lue et 
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al., 2001b). Furthermore, Aβ induces expression of many pro-inflammatory mediators such as reactive 

oxygen species (ROS), macrophage inflammatory proteins (MIP) and other cytokines and chemokynes 

(Lue et al., 2001a; Walker et al., 2001), whose elevation in AD brains correlates with areas of pathology 

(Reviewed in Rogers et al., 2007). It is therefore proposed that dysregulation of the brain’s immune 

system may lead to microglial hyperactivity and subsequent damage to neurons, a phenomenon 

observed in animal models (e.g. Cunningham et al., 2005). 

1.4.6 Metal Ion Homeostasis 

Recently, a novel hypothesis of AD aetiology and pathogenesis has been developed, that hopes to 

combine several aspects of the Amyloid Hypothesis with new evidence implicating metal ions – in 

particular the transition metals zinc, iron and copper – in the disease. It has been reported that the 

AD brain undergoes significant changes to metal ion homeostasis (Reviewed in Barnham and Bush, 

2014; Ayton et al., 2015). To summarise, levels of cortical zinc are significantly elevated in AD patients, 

and this elevation is strongly correlated with disease progression, and in particular amyloid plaque 

burden (Religa et al., 2006). In fact, amyloid plaques in AD brains and those of APP transgenic mice 

contain tremendously high concentrations of zinc (>1mM), iron (~1mM) and copper (~400µM) (Lovell 

et al., 1998; Falangola et al., 2005; Jack et al., 2005) and furthermore, the highest density of amyloid 

plaques in APP/PS1 transgenic mice are found in regions of the cortex with the highest levels of 

exchangeable zinc (Stoltenberg et al., 2007). Zinc is also significantly increased in the soluble fraction 

and synaptic vesicles of AD patients, but notably not in those individuals showing AD neuropathology 

(amyloid plaques), without the accompanying memory and behavioural deficits (Bjorklund et al., 

2012). In addition, levels of zinc transporters – ZnT1, 3, 4, 6 – have been demonstrated to be altered 

in AD brains, showing a pattern of region- and disease-severity-dependent dysregulation (Lovell et al., 

2005; Adlard et al., 2010; Lyubartseva et al., 2010), and ZnT3 knock-out mice show very similar 

behavioural deficits to other murine AD models (Adlard et al., 2010). 



19 
 

 

Figure 2: Graphical representation of Aβ1-28 conforming around a Zn2+ ion (right; in green) from data obtained 

by NMR and molecular dynamics simulations. The amino acid residues Asp-1, His-6, Glu-11, His-13 and His-14 

coordinate pentamerically around the metal ion. Image reproduced with permission from (Gaggelli et al., 

2008). Copyright (2008), American Chemical Society. 

Further evidence comes from the Aβ peptide itself. The difference between α- and β-secretase 

cleavage, and in turn the production of amyloidogenic Aβ and neuroprotective sAPPα, is a 16 amino 

acid peptide sequence that makes up the N-terminal of sAPPα and the C-terminal of Aβ. This so-called 

16mer has been itself studied for its potential neuroprotective properties, but the interesting aspect 

of the sequence is the identification by NMR of five residues involved in the binding of Zn2+ ions (in 

the human sequence) – Asp-1, His-6, Glu-11, His-13 and His-14 (Gaggelli et al., 2008) – amino acids 

common to both the toxic Aβ and the neuroprotective sAPPα (Figure 2). Though not much is 

understood about the conformation of sAPPα with metal ions, it has been shown that in certain 

peptides, this sequence conforms around the zinc ion in a pentameric structure, with each amino acid 

contributing to its binding. Initial exploration of this had focused on the His-13/14 zinc-binding motif. 

Substitution of these two amino acids yielded no effect on the neuroprotective ability of sAPPα (Singh, 
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2010). However, since the zinc binding in the sequence is pentameric, rather than relying solely on 

this motif, it seems likely the other zinc-binding residues can compensate for the loss of two amino 

acids. Aβ also binds copper and the 16mer contains 4 Cu2+ binding sites – Asp-1, His-6, His-13 and His-

14 (Drew and Barnham, 2011; Faller et al., 2014) – which, similar to zinc, help explain the co-

precipitation of copper in amyloid plaques (Lovell et al., 1998). 

In vitro, Zn2+ has been shown to interact with and alter the behaviour of Aβ. When aged in salt buffer 

at pH 7.4, addition of ZnCl2 eliminated the production of Aβ1-42 soluble oligomers, as well as decreasing 

the solubility of the peptides (Garai et al., 2006), leading to accelerated aggregation kinetics and the 

preferential precipitation of higher-weight aggregates (Garai et al., 2007). Further, Aβ-induced cell 

death is significantly decreased by addition of 8µM ZnCl2, showing a 50% reduction in the toxicity of 

10µM Aβ1-42 at 9 h, and a 30-40% reduction of 50µM Aβ1-42 toxicity at 4 h (Garai et al., 2007). On the 

other hand, ageing of Aβ1-40 with ZnCl2 is supposed to form quasi-spherical oligomers which actually 

significantly increase Aβ-induced cell death, reducing cell viability by over 80%, compared with only 

10-15% by Zn-free Aβ1-40 (Solomonov et al., 2012). While this research highlights some inconsistencies 

in the behaviour of amyloid peptides, generally the evidence suggests a strong involvement of metal 

ions, Zn2+, in particular, in the pathogenesis of AD. 

With regards to biological copper, it has been noted that a reduction of intracellular copper can 

markedly increase secretion of Aβ, with the proposed mechanisms of either influencing APP cleavage 

by β-secretase or by inhibiting the intracellular degradation of Aβ (Cater et al., 2008), while application 

of exogenous copper to cells inhibits Aβ production and promotes α-secretase cleavage of APP 

(Borchardt et al., 1999). This relationship is notable, as mentioned above, since brain copper levels 

decrease with old age (Religa et al., 2006) and are especially low in patients with AD (Deibel et al., 

1996; James et al., 2012). Counterintuitively, low cortical copper causes enrichment of copper in the 

cell membrane, where it complexes with Aβ (Hung et al., 2009) and may contribute to the creation of 

reactive oxygen species (ROS), especially H2O2 (Opazo et al., 2002; Nelson and Alkon, 2005; Puglielli et 
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al., 2005). Copper at different concentrations alters the aggregation of Aβ. At stoichiometric or greater 

concentrations, Cu2+ prevents fibril formation of both Aβ1-42 (Mold et al., 2013) and Aβ1-40 (Jun et al., 

2009; Pedersen et al., 2011), preferentially inducing formation of dimers (Bush et al., 1994). At lower 

concentrations, on the other hand, Cu2+ promotes fibril formation (Huang et al., 2004; Sarell et al., 

2010; Pedersen et al., 2011). Furthermore, Cu2+ increases Aβ-induced neurotoxicity, believed to be as 

a result of H2O2 production (Huang et al., 1999; Cuajungco et al., 2000). 

Iron also plays a role in AD directly, by affecting the metabolism of APP, through promotion of 

amyloidogenic processing (Becerril-Ortega et al., 2014), and potentially by promoting aggregation and 

cytotoxicity of Aβ (Huang et al., 2004; Liu et al., 2011). Furthermore, iron has an interaction with tau, 

promoting its aggregation (Ledesma et al., 1995), and since tau is involved with APP in iron trafficking 

(Lei et al., 2012), this relationship may underlie the intracellular retention of iron seen in AD brains 

(Goodman, 1953). High levels of intracellular iron also promote oxidative stress leading to synaptic 

dysfunction and cell death (Mattson, 2004), even inducing apoptotic processes (Salvador et al., 2010). 

The metal ion homeostasis hypothesis of AD, developed by Ashley Bush and Kevin Barnham, proposes 

that AD is as much a metallopathy as a proteopathy. They suggest that since metal ion homeostasis 

becomes perturbed in normal ageing, it seems logical that this may be a contributing factor to the 

development of AD. The change in levels and compartmentalisation of metal ions in the brain – zinc, 

copper and iron – is thought to occur prior to any of the protein pathology, evidenced by the finding 

that altered levels of these metals, either by addition of exogenous compounds or chelation by 

pharmacological agents, has a profound impact on the aggregation and toxicity of Aβ. Once 

amyloidogenic processing has begun, the co-localization of Zn and Cu with Aβ is believed to induce 

oxidative stress on cells, ostensibly by the production of H2O2. Furthermore, co-precipitation of these 

metal ions with Aβ may deprive other metalloproteins of their co-factors, and such a relationship is 

supported by the finding that the activity of Cu- and Zn-dependent enzymes cytochrome c oxidase 

(COX), peptidylglycine α-amidating monooxygenase (PAM) and Cu/Zn-superoxide dismutase (Cu/Zn-
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SOD) are significantly changed in the AD brain and those of APP transgenic mice (Famulari et al., 1996; 

Maurer et al., 2000; Bayer et al., 2003). While this hypothesis currently has no explanation for the 

aetiology of AD, it does have a reasonable explanation for contributing to its pathogenesis, though the 

progress of clinical interventions based on it (vide infra) will be its biggest challenge. 

1.5 Past, Present and Developing Treatments 

1.5.1 Pharmacological Intervention 

Among the first approved treatments for AD were simple pharmacological manipulations of 

neurotransmitters. One of the earlier neuropharmacological findings with relation to AD was the 

discovery of profound changes to the levels of acetylcholine (ACh) and the activity of NMDA glutamate 

receptors. ACh synthesis is significantly reduced in the AD brain (Sims et al., 1980) and it was originally 

thought that targeting ACh metabolism might help alleviate some symptoms of AD. As such, a number 

of ACh-targeting compounds were developed. The first was Tacrine (Cognex), an acetylcholinesterase 

inhibitor (AChEI) that increases ACh tone. While clinical trials showed some improvements in cognition 

and memory, reduced likelihood of institutionalization and improved quality of life, these effects were 

short-lived and the medication induced significant peripheral side effects such as nausea and vomiting, 

diarrhoea, headaches, dizziness and some hepatotoxicity (Knopman et al., 1996). Donepezil, another 

AChEI, showed better and longer-lasting clinical outcomes and slightly reduced peripheral side-effects, 

but also in some patients cause bradycardia and vivid dreams (Rogers, 1998; Rogers et al., 1998). Even 

later versions of AChEIs, Rivastigmine and Galantamine, were better tolerated compared with Tacrine 

and Donepezil (Gottwald and Rozanski, 1999; Tariot et al., 2000), though it has been suggested that 

the positive effects of Galantamine may be more likely due to its role as a nicotinic ACh receptor 

agonist, rather than as an AChEI (Samochocki et al., 2003). Donepezil, Rivastigmine and Galantamine 
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remain FDA-approved drug treatments for AD, although they tend to only be effective in mild-to-

moderate cases and only for a short period. 

The other neuropharmacological aspect of AD is glutamate excitotoxicity, thought to result from an 

interaction of N-methyl-D-aspartate (NMDA) receptors with Aβ (Tominaga-Yoshino et al., 2001). To 

combat this neurotoxicity, a number of NMDA receptor antagonists have been clinically examined, of 

which the most successful was Memantine, which was even able to moderately slow and slightly 

improve cognitive and memory decline in moderate-to-severe AD, though its side effects include 

confusion, dizziness, drowsiness, insomnia and even, in few cases, hallucinations (Reisberg et al., 

2003). Memantine remains a recommended treatment strategy for moderate-to-severe AD and those 

with intolerance of or contraindication for AChEIs. Regardless, all these drugs are only effective at 

treating symptoms - temporarily slowing the cognitive decline in AD, and none are as yet able to halt 

or reverse disease progression. 

1.5.2 Targeting Amyloid-Beta 

A different approach was taken with other pharmacological agents. Since the Amyloid Hypothesis 

suggests that AD is characterised by aberrant processing of APP to preferentially form Aβ, several 

drugs were developed aiming to inhibit the action of β-secretase, simultaneously reducing the 

formation of Aβ and potentially consequentially promoting formation of neuroprotective sAPPα. The 

first developed of these types of agents were Rosiglitazone and Pioglitazone, which suppressed β-

secretase expression and promoted phagocytosis of Aβ in animal models (Mandrekar-Colucci et al., 

2012). While initial clinical trials showed some promising results in improving cognition and memory, 

there soon emerged several important caveats. Rosiglitazone only saw some effectiveness in 

individuals not carrying the APOEε4 allele (Risner et al., 2006; Gold et al., 2010), while Pioglitazone 

only worked in individuals with type II Diabetes Mellitus (Hanyu et al., 2009; Sato et al., 2011). 

However, both these drugs showed significant side effects of bone weakness, hypoglycaemia, fluid 
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retention, peripheral oedema, heart failure and ischaemic cardiac events, stroke, macular oedema, 

hepatotoxicity and bladder cancer. Given these adverse effects and the insufficient evidence for 

positive effects, it was recommended these drugs not be approved for clinical use, and approval was 

removed from all countries by 2011 (Miller et al., 2011). 

The next family of Aβ-targeting compounds to be tested were two direct β-secretase inhibitors – CTS-

21166 and LY2811376 (Reviewed in Mikulca et al., 2014). CTS-21166 acts as a transition-state 

analogue inhibitor and showed promising results in animal studies in APP transgenic mouse models, 

significantly lowering Aβ levels and plaque load. A proof-of-concept study in humans showed a 

reduction in plasma Aβ levels. LY2811376 is a highly selective competitive inhibitor of BACE1 and 

similarly showed positive results from animal studies, significantly reducing cortical β-secretase 

cleavage of APP (May et al., 2011). Again, this compound initially showed a good reduction in plasma 

Aβ in human patients. However, continuing animal studies noted severe side effects of retinal 

degeneration. Neither of these drugs have undergone further clinical trials, and safety results from 

either Phase I trial have not been released. 

Alternatively, pharmacological manipulation of α-secretase seemed a promising strategy, potentially 

both inhibiting production of Aβ and promoting neuroprotective sAPPα. As such, an α-secretase 

activator EHT0202 (Etazolate) was tested in a Phase IIA randomized, placebo-controlled, double-blind 

study. Despite showing good safety and tolerability, there were no reported cognitive improvements 

and no further trials have been published (Vellas et al., 2011). Similarly, attempts to combat Aβ 

aggregation into higher molecular-weight species, for example by the anti-aggregant homotaurine 

(Tramiprosate), have shown mixed results. Tramiprosate was shown in preclinical trials to bind soluble 

Aβ, prevent the formation of fibrils, decrease Aβ1-42-induced cell death in cell cultures and inhibit 

amyloid deposition (Gervais et al., 2007). However, while tramiprosate showed promising safety and 

tolerability results (Aisen et al., 2007), the most recent Phase III trials revealed clinically meaningful 

benefits only in patients with the APOEε4 genotype (Alzheon, 2016). All-in-all, success of treatments 
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targeting Aβ have been limited at best and dangerous and life-threatening at worst. None are 

currently FDA-approved for treating AD. To some, this may be considered a damning indictment of 

the Amyloid Hypothesis of AD, but otherwise suggests alternative methods are required. 

1.5.3 Immunotherapy 

Another approach to treat AD has been immunotherapy – attempting to augment or supplement the 

innate immune system to clear Aβ from the brain or arrest its aggregation. These treatments generally 

take two forms – either via passive immunity with “vaccines” against Aβ peptides to promote 

endogenous antibody production or direct treatment with exogenous monoclonal Aβ antibodies to 

promote the clearance or halt aggregation of the endogenous peptide. The Aβ vaccines were highly 

effective in animal models of AD, successfully attenuating AD-like pathology and behavioural deficits 

in APP transgenic mice (Schenk et al., 1999; Janus et al., 2000; Morgan et al., 2000). However, human 

clinical trials proved less fruitful. While mostly the developed vaccines, using aggregated Aβ1-42 

peptide, were found to be relatively safe and tolerable in Phase I clinical trials, their progression to 

Phase IIa trials were fraught with difficulty. Not only were the vaccines shown to be significantly less 

effective than in animal models, but a number of patients who received the AN1792 vaccine 

developed meningoencephalitis, caused by an immune response and further trials were abandoned 

due to understandable safety concerns (Orgogozo et al., 2003). 

The monoclonal antibody treatments encompass bapineuzumab, solanezumab and most recently 

aducanumab. These antibodies penetrate the brain and react with Aβ aggregates, encouraging their 

clearance. Bapineuzumab and solanezumab showed acceptable safety and tolerability in Phase II 

trials, but no clinically significant changes in primary cognitive outcomes, though the latter showed 

some small treatment differences in biomarkers in APOEε4 allele carriers (Doody et al., 2014; Salloway 

et al., 2014). Aducanumab, though having only just completed a Phase II clinical trial, showed far 

better responses to treatment. Amyloid plaque load was significantly reduced after one year of 
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monthly intravenous injections and this was accompanied by a significant slowing of cognitive decline 

as measures by the Clinical Dementia Rating – Sum of Boxes (CDR-SB) and Mini Mental State 

Examination (MMSE) scores (Sevigny et al., 2016). Notably, this antibody differs from the others in 

that it shows a more effective binding to both insoluble fibrils and plaques and soluble oligomers. 

Some adverse effects were noted, especially in the highest dosage group (10mg kg-1), with the most 

common were ARIA (amyloid-related imaging abnormalities) and headaches. The authors are 

optimistic that the slowing of cognitive decline will be confirmed in the ongoing Phase III trials. 

1.5.4 Metal Protein Targeting Compounds 

The development of the metal ion homeostasis hypothesis of AD over the last 15-20 years has also led 

to the development of novel pharmacological treatments targeting biological metals. Their goal is to 

restore normal compartmentalization of biological metals, especially Zn and Cu. These compounds, 

termed metal protein attenuating compounds (MPACs), are not chelators in the strictest sense of the 

word – rather they ligate metal ions and redistribute them to other cellular compartments. Clioquinol 

was one of the first examined for its effectiveness in AD. It is a small organic molecule capable of 

penetrating the brain and showing moderate affinity for both Cu2+ and Zn2+ (Ferrada et al., 2007). It 

has been shown to inhibit aggregation of Aβ and reduce production of ROS by its interaction with 

metal ions, as well as decreasing amyloid plaque burden in Tg2576 mutant mice expressing the 

Swedish mutant of APP (Cherny et al., 2001). In human phase II clinical trials clioquinol was able to 

significantly reduce cognitive decline (Ritchie et al., 2003). Further trials were discontinued due to 

unrelated manufacturing problems. 

The “next generation” of MPACs came in the form of PBT2, which showed improved solubility and 

bioavailability compared with clioquinol. Preclinical in vivo trials reported greater efficacy at improving 

cognitive performance in APP/PS1 and Tg2576 mice models, along with reduction in amyloid plaque 

burden and tau phosphorylation (Adlard et al., 2008). Phase II human clinical trials were successfully 



27 
 

completed, showing good tolerability and safety, reduction in CSF Aβ1-42, as well as slight improvement 

in certain cognitive test scores (Lannfelt et al., 2008; Faux et al., 2010). Most recently, a 12-month 

phase II PET study found that the PBT2 group showed a significant decline in cortical Aβ signal, though 

this stabilised in the 12-month extension study (Villemagne et al., 2016). Further examination of these 

compounds revealed evidence as to their mechanism of action, and it is now suggested that they act 

not as chelators, but by transporting Zn and Cu into cells, where the metals set off a neuroprotective 

signalling cascade, leading to degradation of Aβ (White et al., 2006; Caragounis et al., 2007), inhibition 

of tau phosphorylation by activating GSKβ (Crouch et al., 2011) and promoting neurite growth and 

dendritic spine density (Adlard et al., 2011). While phase III clinical trials are still some way off for 

PBT2, these data prove encouraging, and may help integrate metal ion homeostasis into more 

mainstream theories and therapies for AD. 

1.6 A Physiological role for Amyloid-Beta 

For a long time, the Aβ peptide was, by many, considered a redundant metabolic by-product of APP 

catabolism, lacking a normal physiological function. However, recent research has found that not only 

does it have numerous interactions with receptors and other molecules, but it may also be modulated 

in response to certain physiological events and may play an important role in several areas of normal 

brain function. As outlined below, Aβ has been implicated in the innate immune system, in the brain’s 

response to oxidative stress, in learning and memory, and in brain growth and development. 

1.6.1 Anti-bacterial Role 

In investigating a potential role for Aβ in health, it was noted that the peptide shares remarkable 

similarities in its physiochemical and biological properties with a group of compounds called 

antimicrobial peptides (AMPs). AMPs are a part of the innate immune system, and show effective, 

broad-spectrum antibiotic activity targeting both Gram-negative and Gram-positive bacteria, as well 
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as viruses, fungi, protozoans and even malignant host cells (Nguyen et al., 2011). Mammalian AMPs 

are divided into three broad groups – defensins, histatins and cathelicidins. The human cathelicidin 

LL-37 has been demonstrated to show similar biochemical behaviour to Aβ, notably a tendency to 

form neurotoxic oligomers (Oren et al., 1999) and insoluble fibrils (Sood et al., 2008). In a comparison 

of antimicrobial efficacy between LL-37 and Aβ, it was found that the latter not only compared 

favourably with LL-37 against seven clinically relevant organisms, including Candida albicans, 

Escherichia coli and Staphylococcus aureus, but was actually more effective at inhibiting bacterial 

growth of three of the pathogens (Soscia et al., 2010). The same effect was seen using human AD brain 

homogenate containing Aβ. This has been further confirmed – increasing survival of mice with 

meningitis caused by Salmonella typhimurium, increasing survival of Caenorhabditis elegans infected 

with C. albicans, and protecting cultured H4 (human brain neuroglioma) and CHO (Chinese Hamster 

ovary) cells from the same (Kumar et al., 2016). Furthermore, this latest work suggests that the 

protective effect of Aβ is dependent on its ability to aggregate into oligomers and fibrils, which 

promote pathogen binding and entrapment. 

1.6.2 Anti-oxidant Properties 

Closely tied to metal ion homeostasis is the theory that Aβ plays a role in mitigating oxidative damage 

due to oxidative stress. It is believed by some that the physiological role of Aβ is linked to its ability to 

sequester metal ions, in particular Cu and Zn, via the metal binding sites located at its N-terminal part. 

This sequestration is thought to activate the redox properties of the peptide, including reduction of 

the metal ions and catalysing the dismutation of superoxide (O2
-) to H2O2 (Zou et al., 2002). Increased 

Aβ production leads to a decrease in ROS production in cell culture (Gibson et al., 2000) and increases 

resistance to metal-induced oxidation in transgenic mice (Leutner et al., 2000). On the other hand, 

reducing Aβ production in mutant mice and cell cultures leads to increased ROS production and 

activation of apoptotic pathways (Guo et al., 1999a, 1999b). This evidence suggests the importance of 
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monomeric Aβ, bearing in mind its affinity for transition metal binding, in controlling metal ion 

homeostasis and alleviating oxidative stress in the brain by either direct or indirect reduction of ROS. 

1.6.3 Amyloid-Beta in Learning and Memory 

It has been suggested that far from its pathogenic effects when aggregated, endogenous Aβ may play 

an important role in the modulation of learning and memory. Despite nanomolar to micromolar 

concentrations of Aβ having severe deleterious consequences on LTP (Cleary et al., 2005; Shankar et 

al., 2008), it has been found that much lower concentrations – in the picomolar range or at 

physiological concentrations – may in fact facilitate synaptic plasticity, or at least play an important 

role in the acquisition of memory. Firstly, depletion of endogenous Aβ by antibodies disrupts memory 

retention in an inhibitory avoidance task in rats, while treatment with exogenous Aβ1-42 was sufficient 

to restore memory retention to near control levels. Second, application of exogenous Aβ1-42 peptide 

significantly improved memory retention (Garcia-Osta and Alberini, 2009). Third, APP knockout mice 

not only show severe cognitive deficits, but also significantly impaired LTP (Dawson et al., 1999; 

Morley et al., 2010). It believed that these memory-enhancing (or facilitating) effects may be through 

an interaction of Aβ with the nicotinic ACh receptor (nAChRs), to which it binds (Wang et al., 2000), 

since nAChR antagonists mimic the memory inhibition seen with anti-Aβ antibodies (Garcia-Osta and 

Alberini, 2009). This may also help explain why Aβ is localised to synapses (Fein et al., 2008), from 

where it can act on receptors. 

1.6.4 Amyloid-Beta as a Neurotrophic Factor 

Research has identified that in certain situations and under certain conditions, Aβ has considerable 

neurotrophic effects. This was highlighted by the finding that in cases of acute brain injury, levels of 

brain interstitial fluid (ISF) Aβ were strongly correlated with neurological status and recovery (Brody 

et al., 2008). When neurological status improved, the ISF concentration of Aβ was increased and vice 
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versa. In vitro, Aβ addition to cell cultures induces an enhancement of glucose metabolism, activating 

hypoxia inducible factor 1 (HIF-1), part of a significant network of neuroprotective and neurotrophic 

molecules that also includes VEGF and erythropoietin (Soucek et al., 2003). Furthermore, adding 

exogenous Aβ1-42 to cultured rat cortical cells protects them from NMDA excitotoxicity and insulin 

deprivation, well-established paradigms of neuronal stress (Giuffrida et al., 2009). This is believed to 

be via the interaction of the peptide with either the PI-3-K pathway, involved in cell growth and 

survival (Giuffrida et al., 2009), or by interacting with cellular prion protein (PrP(C)), a known receptor 

for Aβ and mediator of NMDAR activity (Black et al., 2014). In addition, Aβ has been demonstrated to 

interact with other known neurotrophic pathways. The peptide upregulates brain-derived 

neurotrophic factor (BDNF) release from astrocytes (Kimura et al., 2006), potentially by its action as a 

p75(NTR) antagonist, a growth factor receptor whose activation activates apoptotic pathways 

(Arevalo et al., 2009) or by activating TrkB receptors, whose primary role is one of cell survival, 

differentiation and synaptic plasticity (Lopez-Toledo et al., 2016). 

All the above evidence implicates a role for Aβ in normal brain function and even in modes of 

protection. However, the levels of Aβ required for these positive effects always appears to be in the 

low-nanomolar to picomolar range, and even this literature agrees that higher concentrations of Aβ 

tend to be more toxic than trophic. Nevertheless, there is clear evidence that in the non-diseased 

brain, Aβ has important roles to play in protection, neurotrophy and synaptic plasticity, as well as 

potentially being an important part of the brain’s innate immune system. 
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1.7 Aims 

With the evidence that metal ions, in particular Zn2+, are linked so closely to theories of AD aetiology 

and pathogenesis, this research aimed to better understand the relationship between zinc and Aβ. In 

fact, metal ion dyshomeostasis seems to play a role in a number of different theories of AD pathology. 

As described above, Zn2+, Fe3+ and Cu2+ homeostases are disturbed in AD, leading to aberrant 

compartmentalization of metal ions, allowing them to interact with Aβ and tau proteins in a 

pathological manner. Dysregulation of copper promotes amyloidogenic processing of APP; zinc 

modulates Aβ aggregation and its overall effect on neurons; iron interacts with the tau protein to alter 

its aggregation. Focussing on zinc, its binding to Aβ and co-precipitation in amyloid plaques, as well as 

its strong correlation with AD pathology strongly suggest a pivotal role in the development of the 

disease. It is even possible that dyshomeostasis of metal ions, common in old age, may be a trigger of 

AD, initiating the cascade of downstream metabolic and cellular changes characteristic of the disease. 

This project aimed to investigate specifically the interaction between zinc and Aβ in the context of Aβ-

induced cytotoxicity. While several functional interactions have been described between these two 

compounds, the literature remains conflicted. The goals of this research were to:  

i) produce and purify recombinant Aβ1-42.  

ii) establish and optimize a cellular insult paradigm using Aβ, paying special attention to the 

aggregation and ageing of the peptide, and, 

iii) to examine what effect, if any, exogenous Zn2+ has on the toxicity of the Aβ peptide. 
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Chapter 2 

Materials and Methods 

2.1 Amyloid-Beta Preparation 

The DNA encoding Aβ1-42 (DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA) had been 

previously cloned into the pMal-c2 vector. It was expressed as a fusion protein with maltose binding 

protein (MBP) at the N-terminus to increase solubility and prevent aggregation. Overexpression in 

Escherichia coli bacteria was driven by activation of the upstream lac-promoter. MBP-Aβ1-42 was 

separated from other proteins on an affinity column and Factor Xa protease was used to cleave the 

Aβ1-42 from the MBP. The two were then separated by reverse-phase chromatography and the eluted 

pure Aβ1-42 was quantified by the BCA protein concentration assay. 

2.1.1 Induction of Aβ1-42 expression in bacteria 

Expression of MBP-Aβ1-42 was induced from Escherichia coli bacteria, transfected with human Aβ1-42 

cloned into the pMal-c2 vector, which had been stored as a glycerol stock at -80°C. Cultures were 

inoculated with a few µl into 5 ml Lysogeny Broth (LB) (10% bacto-tryptone [peptone], 5% bacto-yeast 

extract and 10% NaCl, autoclaved for 20 min at 121°C) containing 100 µg/ml ampicillin. Following 

overnight incubation (Innova®40 incubator shaker; New Brunswick Scientific Co Inc, USA) at 37°C, 

cultures were transferred to a large bevelled flask containing 500 ml LB, 10 mM glucose and 100 µg/ml 

ampicillin and further incubated at 37°C with shaking. Samples were taken regularly and the optical 

density (OD) at 600 nm measured until it reached 0.4-0.6. Synthesis of MBP-Aβ1-42 was induced by 

addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) (4 h, 37°C, shaking). 
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2.1.2 Bacterial lysis and protein extraction 

After induction, the bacterial cells were collected by centrifuging (4000g, 4°C, 15 min) using a JSP250 

rotor in an Avanti® J-26S XP centrifuge (Beckman Coulter Inc, USA). The supernatant was decanted 

and the pellet re-suspended in Affinity Chromatography buffer (2 mM Tris Cl [pH 7.5], 0.2 M NaCl). To 

lyse the bacterial cells, the suspension was sonicated using a Vibra-Cell™ Ultrasonic Liquid Processor 

(Sonics and Materials Inc, USA) for 4x30 sec bursts (20 KHz, 20% amplitude). Cellular debris was 

removed from the suspension by centrifuging using a JA20 rotor (Beckman Coulter Inc, USA; ~11000 

x g, 4°C, 20 min). The protein-rich supernatant was retained for affinity chromatography. 

2.1.3 Affinity chromatography 

The MBP-Aβ1-42 was separated from the other bacterial proteins via affinity chromatography on an 

amylose column that binds MBP. The protein-rich supernatant was run through a column of the 

amylose resin (New England BioLabs, USA, #E8021L). The supernatant fraction was applied to the 

column, allowed to enter the resin, the flow stopped, and the column left to incubate at 4°C for 30 

min for interaction to occur. Non-bound proteins were eluted with 10 column volumes of affinity 

chromatography buffer, before bound proteins were eluted with 10 column volumes of elution buffer 

(20 mM Tris Cl [pH 7.5], 0.2 M NaCl, 10 mM Maltose). Eluate fractions were frozen at -20°C until 

ammonium sulphate fractionation. 

2.1.4 Ammonium sulphate fractionation 

Ammonium sulphate was used to precipitate the MBP-Aβ1-42 from the affinity chromatography eluate. 

Ammonium sulphate was added to 60% saturation with constant stirring for 30 min at 4°C. The 

precipitated protein was pelleted by centrifuging at 10000 x g for 30 min in a JSP250 rotor (Beckman 

Coulter Inc, USA), resulting in a white precipitate. The supernatant was removed and discarded and 
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the pellet re-suspended in a low salt buffer (1 mM Tris HCl, pH 7.5), aliquoted into 1.5 ml Eppendorf 

tubes, and frozen at -80°C. 

2.1.5 Desalting chromatography 

Desalting to remove residual ammonium sulphate was achieved using fast protein liquid 

chromatography (FPLC). Samples (1 ml) of the re-suspended precipitate were individually desalted 

through a HiTrap® (GE Healthcare Life Sciences, USA) desalting column attached to an ÄKTA™ Purifier 

FPLC system (GE Healthcare Life Sciences, USA) into low salt buffer (20 mM Tris HCl, pH 7.5). Protein 

elution was monitored by absorbance at 280nm using UNICORN control software (GE Healthcare Life 

Sciences, USA), while salt elution was monitored with a conductivity meter. Eluate fractions containing 

protein were collected with the Fraction Collector Frac-950 (Amersham Biosciences, Sweden) and 

stored at -20°C. 

2.1.6 Fusion protein cleavage 

Factor Xa protease (New England BioLabs, USA) was used to cleave the MBP from the Aβ. Desalted 

protein-containing fractions were freeze-dried and the resulting precipitate re-suspended in Factor Xa 

cleavage buffer (20 mM Tris HCL pH 7.5, 100 mM NaCl, 2 mM CaCl2) and pooled. Protein concentration 

was determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, USA). 

Factor Xa protease was added at a concentration of 10 µl/mg protein, and the solution incubated at 

23°C for 16 h in a PTC-200 Thermal Cycler (MJ Research, Canada).  

2.1.7 Reverse Phase Chromatography 

The samples were then applied to a HiTrap® Resource RPC column (GE Healthcare Life Sciences, USA) 

to separate the Aβ from the MBP and Factor Xa enzyme. A cleaved sample (100 µl) was brought to 5% 
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(v/v) acetonitrile and 0.1% (v/v) trifluoroacetic acid and applied to the column until UV absorbance at 

215 nm had stabilized. A gradient (0-100%) of a 50% acetonitrile and 0.1% trifluoroacetic acid solution 

was applied until all bound protein had been eluted. All fractions were collected using a Fraction 

Collector Frac-950 and stored at -80°C.  

2.1.8 Size-exclusion chromatography 

Size Exclusion chromatography was used to complete separation of MBP from Aβ in those fractions 

containing both. Fractions were diluted 1:1 with 1xPBS (Phosphate Buffered Saline; Oxoid Ltd., UK; 1 

tablet dissolved in 100ml MilliQ H2O) and loaded onto a Superdex 75 agarose-dextrose column (GE 

Healthcare Life Sciences, USA) with 1xPBS. Fractions were collected until all material had passed 

though the column and the UV215 nm signal had stabilized. 

2.1.9 Bicinchoninic acid (BCA) protein concentration assay 

Purified protein-containing fractions were pooled and their concentration determined using a BCA 

assay (Smith et al., 1985). This is a colorimetric assay reliant on the reduction of Cu2+ to Cu+ by peptide 

bonds in the protein, resulting in a green to purple colour change proportional to the amount of 

protein present. In a 96-well microplate, a 25 µl aliquot was added to 200 µl of the BCA reagent (50:1 

Bicinchoninic acid: CuSO4) in triplicate, along with a standard curve of known concentrations of bovine 

serum albumin (BSA). The plate was incubated (60°C, 20 min), then the absorbance at 562 nm was 

measured using an Elx808™ Ultra Microplate Reader (Bio-Tek Instruments Inc, USA). The absorbance 

values of the samples were compared to the standard curve to calculate protein concentration 
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2.1.10 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

At each stage of the production and purification process samples of all products, eluates and 

supernatants were taken for analysis by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE). Constitution of the gel and buffer solutions is detailed in Table 1. Samples were diluted 

1:1 with cracking buffer, heated to 96°C for 10 min to denature the protein, and separated by 16% 

Kolbe SDS-PAGE (Schägger & von Jagow, 1987). A 15 µl aliquot of the mixture was loaded with 5 µl 

Polypeptide SDS-PAGE Molecular Weight Standards marker (Bio-Rad Laboratories Inc, USA), diluted 

1:20 in cracking buffer. Gels were initially run at 96 V using a Model 200/2.0 Power Supply (Bio-Rad 

Laboratories Inc, USA) until the dye front passed the stacking gel, and then at 110 V for 90 min. 

Proteins were detected using either Coomassie Blue R or colloidal Coomassie (Section 2.1.11). 

Solution Ingredient Amount To make: 

4x separating gel 
buffer 

3 M Tris  
0.4% (w/v) SDS 
Adjusted to pH 8.8 with HCl 

90.86 g 
10 ml (w/v) 10% 

250 ml 

4x stacking gel 
buffer 

500 mM Tris 
0.4% (w/v) SDS 
Adjusted to pH 6.8 with HCl 

6.057 g 
4 ml (w/v) 10% 

100 ml 

3x Cracking 
buffer 

4x stacking buffer 
1% (w/v) SDS 
8 M Urea 
0.3% (w/v) Bromophenol Blue (BPB) 
1% Β-Mercaptoethanol 

50 ml 
10 ml (w/v) 10% 
36.3 g 
 
10 µl 

100 ml 
 
 
 
1 ml 

Inner running 
buffer 

0.1 M Tris Cl 
0.1 M Tricine 
0.1% (w/v) SDS 
Adjusted to pH 8.25 with HCl 

9.688 g 
14.336 g 
8 ml (w/v) 10% 

800 ml 

Outer running 
buffer 

0.2 M Tris Cl 
Adjusted to pH 8.9 with HCl 

19.376 g 800 ml 

Kolbe separating 
gel 16% 

4x Separating buffer 
30% (w/v) Acrylamide 
MilliQ H2O 
10% (w/v) Ammonium Persulphate (APS) 
TEMED (Tetramethylethylenediamine) 

2.5 ml 
5.364 ml 
2.136 ml 
50 µl 
7.5 µl 

2x gels 

Kolbe stacking gel 
16% 

4x Stacking buffer 
30% (w/v) Acrylamide 
MilliQ H2O 
10% (w/v) APS 
TEMED 

1.25 ml 
0.84 ml 
2.88 ml 
25 µl 
5 µl 

2x gels 

Table 1: Constituents of SDS-PAGE gel solutions 
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2.1.11 Coomassie Staining 

Coomassie blue R and colloidal Coomassie G staining were used to visualise protein bands on SDS-

PAGE (solutions detailed in Table 2). Polyacrylamide gels were removed from the cassettes and 

washed 3 x 10 min in MilliQ H2O. Gels were either incubated in Coomassie blue R Stain (1 h, RT) and 

then destained (Super Destain, 30-45 min, destain overnight) or colloidal Coomassie G stain 

(overnight, RT), washed (1 h, MilliQ H2O) and destained (2 h), then finally washed with MilliQ H2O until 

the background cleared. Stained gels were scanned with an ImageScanner III (GE Healthcare Life 

Sciences, USA) using Epson Scan Software (Epson, Japan) and the images processed for optimising 

brightness and contrast using Image Studio Lite (LI-COR Biosciences, USA). 

Solution Ingredient Amount To make: 

Coomassie Stain Brilliant Blue R 
MilliQ H2O 
Methanol 
Glacial acetic acid 

0.5 g 
90 ml 
90 ml 
20 ml 

200 ml 

Colloidal Coomassie Stain Coomassie Blue G250 
Ammonium sulphate 
Orthophosphoric acid (50% v/v) 
Ethanol 

600 mg 
50 g 
100 ml 
100 ml 

500 ml in 
MilliQ H2O 

Colloidal Coomassie 
Destain 

Ethanol 
Orthophosphoric acid 
MilliQ H2O 

50 ml 
25 ml 
425 ml 

500 ml 

Coomassie Destain Methanol 
Glacial Acetic acid 
H2O 

25 ml 
37.5 ml 
437.5 ml 

500 ml 

Coomassie Super Destain Methanol 
Glacial Acetic acid 
H2O 

180 ml 
40 ml 
180 ml 

400 ml 

Table 2: Constituents of staining and destain solutions 

2.1.12 Commercial Aβ peptides 

Additional Aβ peptides – Aβ1-42 and scrambled Aβ42 as HCl salts – were purchased from Chempeptide 

(PRC; Catalog #A-1021-1 and A-1022-1 respectively). The sequence of the scrambled peptide was as 

follows – AIAEGDSHVLKEGAYMEIFDVQGHVFGGKIFRVVDLGSHNVA. 
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2.2 Cell culture techniques 

2.2.1 Cell lines 

Two lines of cells in culture were used in this study. The SH-SY5Y human-derived neuroblastoma cell 

line (ATCC® reference number CRL-2266) was generated from a bone marrow biopsy of a metastatic 

neuroblastoma site. These cells show neuronal characteristics and exhibit multiple neurite-like 

outgrowths. This cell line was used as the initial experimental model due to their growth 

characteristics. Later, primary rat neuronal cell cultures were also used, as these are more 

physiologically relevant, especially since they also contain supporting glial cells. Further information 

can be found in section 2.2.9. 

2.2.2 Growth of cells 

SH-SY5Y cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, Gibco® Invitrogen 

Corporation, USA) with added 1% (v/v) Antibiotic-Antimycotic (Thermo Fisher Scientific, USA) and 10% 

(v/v) fetal bovine serum (FBS, Gibco® Invitrogen Corporation, USA). This is henceforth referred to as 

DMEM+. Experiments were performed with FBS-free medium (referred to as DMEM-), to control for 

unknown components of the FBS. 

Cells were grown at 37°C in a 5% (v/v) CO2 atmosphere in an incubator (Forma® Steri-Cycle CO2 

incubator, Thermo Fisher Scientific, USA) in 250 ml T75 flasks with filter caps, with the media volume 

maintained at 12 ml. The medium was aspirated and replaced every 2-3 days to maintain a nutrient-

rich and pH-stable environment. 
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2.2.3 Storage of cells 

Long-term preservation of cells was achieved by freezing low-passage cells. Initially grown to 80-90% 

confluence, the cultures were trypsinized (see section 2.2.5) and pelleted by centrifuging at 168 x g 

for 4 min (CL10 Centrifuge, Thermo Fisher Scientific, USA). The supernatant was aspirated and the 

pellet re-suspended in 5 ml freezing medium consisting of 90% (v/v) FBS and 10% (v/v) DMSO, before 

being transferred in 1ml aliquots to cryo-tubes and stored at either -80°C for short-term or in liquid 

nitrogen for long-term storage. 

2.2.4 Seeding cells from frozen stock 

Frozen cell stocks were rapidly thawed in a 37°C water bath (SUB Aqua 12, Grant, UK), taken up in 9 

ml of pre-warmed DMEM+ and pelleted by centrifuging at 1000 rpm for 4 min. The supernatant 

containing the freezing medium was aspirated and the pellet re-suspended in 10ml DMEM+, before 

being seeded in T75 flasks and made up to 12 ml. 

2.2.5 Passaging of cells 

When cell cultures reached 80-90% confluence, they were passaged to ensure a sufficient supply of 

cells and to prevent overcrowding. The medium was aspirated and the cells washed with 1x PBS to 

remove cell debris. To detach the cells from the flask, 1ml of 0.05% (w/v) Trypsin (Gibco™ Invitrogen 

Corporation, USA) was pipetted onto the cells and incubated for 4 min. DMEM+ (9 ml) was added to 

stop the digestion and re-suspend the cells, and the suspension was centrifuged at 1000 rpm for 4 

min. The supernatant was aspirated and the cell pellet re-suspended in 10 ml DMEM+. Cells were split 

either 1:5 or 1:10 into separate new T75 flasks and the volume made up to 12 ml. Cells were 

maintained for a maximum of 15 passages before being discarded, as they tend to lose their neuronal 

characteristics at higher passage numbers. 
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2.2.6 Seeding cells into 24- or 96-well plates 

Cultured cells were seeded into 24- or 96-well plates for treatment. Cells were passaged by 

trypsinization, the cell pellet re-suspended in 10 ml DMEM+. A 10 µl sample of the suspension was 

taken and 10 µl Trypan Blue solution (Thermo Fisher Scientific, USA) added to stain dead cells. Cells 

were counted using a hemocytometer (Weber Scientific International Ltd, UK) under a Nikon Eclipse 

TS100 microscope (Japan) and the concentration of the cell suspension adjusted to 4x105 cells/ml. 

Appropriate volumes of the cell suspension were added to the wells of the plates – 500 µl for 24-well 

plates and 100 µl for 96 well plates – and placed in the incubator for at least 24 h for the cells to 

adhere. 

2.2.7 Treating SH-SY5Y cells with Aβ and Zn2+ 

Once plated cells had been given time to adhere, they were treated with Aβ peptides, ZnCl2 or both. 

DMEM+ was carefully aspirated, then a volume of DMEM- added such that the total volume in each 

well, including the Aβ and/or ZnCl2, equalled 500  µl for 24-well plates or 100 µl for 96-well plates. 

Then the insult or treatment was added to each well, and the plate returned to the incubator for a 

further 24-48 h. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay or the Resazurin cell viability assay (Section 2.3). 

2.2.8 Glucose Deprivation (GD) insult 

The glucose deprivation (GD) insult was used as a well-established paradigm that results in consistent 

cell death (Furukawa et al., 1996). Cells were seeded in 96-well plates and allowed to adhere. DMEM+ 

was carefully aspirated and replaced with no-glucose DMEM (Gibco™ Invitrogen Corporation, USA), 

and a volume of either MTT or resazurin to make up to 500 µl for 24-well plates or 100 µl for 96-well 
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plates. Cells were incubated at 37°C for 4 h and either absorbance of MTT or fluorescence of resazurin 

measured at the end of the 4 h period as described in section 2.3. 

2.2.9 Primary cells 

Primary rat hippocampal and cortical cultures were prepared by PhD student Megan Elder 

(Department of Anatomy). Briefly, postnatal day 0-1 Sprague-Dawley pups were sacrificed by 

pentobarbital and decapitation, the brain removed and dissected. Cells were dissociated by 

trituration, pelleted by centrifuging and the pellet resuspended in normal growth medium (NGM; 97% 

(v/v) Neurobasal-A medium (Gibco 10888022), 2% (v/v) B-27 Supplement (50x, Gibco, 17504001), 1% 

(v/v) GlutaMAX Supplement (Gibco, 35050061)). Cells were plated in poly-D-lysine-coated 96-well 

plates at a density of 40,000 cells/well (160,000 cells/ml) and incubated at 37°C, 2% (v/v) CO2 for 

between 7-25 days. Primary cell cultures were treated very similarly to SH-SY5Y cells – media were 

made up to 100 µl with NGM and either Aβ, ZnCl2 or both. Plates were then returned to the incubator 

for 24 h, at which time cell viability was measured using the Resazurin assay. 

2.3 Cell viability assays 

2.3.1 MTT cell viability assay 

The MTT assay is a method of indirectly measuring cell viability (Mosmann T, 1983). It relies on cellular 

NAD(P)H-dependent oxidoreductases to convert MTT (a yellow salt) to its formazan, which are 

insoluble purple crystals. A reduction in cell viability would be reflected by a decrease in cellular 

metabolic activity and therefore a decrease in the production of formazan crystals, a change that can 

be measured by colorimetry. Four hours prior to the end of the treatment period, MTT was added at 

0.32 mg/ml and the treatment incubation period completed for an additional 4 h. Media was then 

carefully aspirated and DMSO:EtOH (4:1) added to each well, and the plate agitated at room 
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temperature for 10 min to solubilise the formazan crystals. Absorbance was measured at 562nm using 

an Elx808™ Ultra Microplate Reader (Bio-Tek Instruments Inc, USA). 

2.3.2 Resazurin cell viability assay 

The resazurin cell viability assay was used as an alternative to MTT (Anoopkumar-Dukie et al., 2005), 

particularly given the finding that there is a proposed interaction between MTT and Aβ (discussed in 

section 1.4.5). This assay is based on the metabolic reduction of resazurin, a weakly fluorescent blue 

dye, to resorufin, a highly red fluorescent dye, both of which are minimally toxic to living cells. Similar 

to how the MTT was applied, 4 h prior to the end of the treatment period, 25 µl of 0.15 mg/ml 

resazurin sodium salt (Sigma-Aldrich Corporation, USA) was added to each well, and incubated at 37°C 

for an additional 4 h. At the end of this incubation period, fluorescence in the 96-well plates was 

measured at wavelengths of 530nm excitation and 590nm emission. 

2.4 Amyloid-Beta Aggregation 

Aggregation of Aβ peptides was undertaken to determine optimum conditions for formation of toxic 

species (discussed in section 1.4.5). Aliquots of Aβ1-42 and scrambled Aβ42 were diluted to 110 µM with 

the following vehicles: MilliQ H2O, 1x PBS, DMSO, DMEM, 10 mM 3-(N-morpholino)propanesulfonic 

acid (MOPS) and artificial cerebrospinal fluid (aCSF; 124 mM NaCl, 26 mM NaHCO3, 10 mM glucose, 

3.2 mM KCl, 1.25 mM NaH2PO4, 2.5 mM CaCl2, 1.3 mM MgCl2). The aliquots were incubated at 37°C 

and samples taken at time-points of day 0, 2, 3, 4 and 7. Samples were immediately frozen at -80°C to 

halt aggregation and stored until analysis. Samples were analysed by running on 16% (w/v) Kolbe SDS-

PAGE gels and stained by Coomassie staining as described in section 2.1.11. 
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Furthermore, structural analysis of Aβ1-42 and scrambled Aβ1-42 peptides was performed using the 

Aggrescan3D server (Zambrano et al., 2015), which can predict aggregation propensity in protein 

structures, as well as predicting tertiary protein structure. 

2.5 Data Analysis 

Cell viability data were analysed using scripts written in R (R Project for Statistical Computing; 

http://www.r-project.org/; scripts available in Appendix I). Data were calculated as a fold-change from 

the mean of the controls. Statistical significance was determined using Kruskal-Wallis one-way analysis 

of variance with Dunn’s post-hoc test and Holm-Šidák correction. A p-value of <0.05 was considered 

significant. 
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Chapter 3 

Results  

3.1 Amyloid-Beta production 

3.1.1 Aβ induction in bacterial culture 

In order to test Aβ-induced toxicity, production of the peptide was necessary and this was achieved 

using a bacterial protein over-expression system. Gene expression was induced in the E. coli bacterial 

stocks transfected with a plasmid encoding an MBP- human Aβ1-42 fusion protein. In order to 

determine the efficiency of expression on the MBP-Aβ1-42 complex, samples of cultures were taken 

following induction and analysed by SDS-PAGE. Figure 3 shows a representative SDS-PAGE of three 

preparations demonstrating successful induction of protein synthesis driven by the lac-promoter. The 

Figure 3: Representative Coomassie stained SDS-PAGE of samples before and 3 h after protein synthesis induction 

of E. coli cultures by IPTG. The band of interest is marked with an arrow. Molecular weight estimated using broad-

range marker (left-most column).  
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presence of a strong protein band at approximately 47 kDa post-induction (marked with the arrow) 

reproduced in three replicate cultures is consistent with the expected molecular weight of the MBP-

Aβ1-42 fusion protein. The absence of any other differences in protein banding suggests that this is the 

product of activation of the lac promoter immediately upstream of the encoded fusion protein.  

3.1.2 Purification of MBP-Aβ1-42 from bacterial lysate 

In order to purify the MBP-Aβ1-42 from other protein and cellular residue, samples underwent firstly 

affinity chromatography and then desalting chromatography. Following induction of MBP-Aβ 

synthesis in the bacterial cultures, the protein complex was isolated by binding to an amylose resin 

column that interacts with MBP. This column binds the associated Aβ in the fusion protein indirectly, 

while allowing other proteins to elute. Bound proteins were eluted with free maltose and the resulting 

fractions were concentrated by ammonium sulphate precipitation and the resulting precipitate 

desalted using FPLC. A representative FPLC plot showing both 280 nm absorbance – denoting protein 

– and salt concentration is shown in Figure 4. The large peaks in blue denote successful separation of 

protein from the salt – in this case the protein was the MBP-Aβ complex, endogenous bacterial MBP 

and other amylose-interacting proteins. All protein-containing fractions were collected for further 

purification. 

3.1.3 Cleavage of Aβ from MBP 

In order to separate Aβ1-42 from the MBP in the fusion protein, the samples were cleaved by Factor Xa 

protease, which specifically cleaves at Ile-(Glu or Asp)-Gly-Arg, the sequence at the border of MBP and 

its fused protein moiety, in this case Aβ1-42. Figure 5 shows a representative gel of pre- and post-

cleavage samples. The highest molecular weight band represents the complete MBP-Aβ1-42 complex, 

while the slightly lower band represents cleaved MBP, and the protein band just below the 6.5 kDa 

marker is Aβ1-42. There were two higher molecular weight bands and the lower molecular weight band 
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(Aβ1-42-MBP, MBP and Aβ1-42 respectively) also surprisingly in the pre-cleavage samples. Cleavage in 

the absence of incubation with Factor Xa suggests either non-specific cleavage at the linkage site has 

occurred or there has been some contamination of the sample with Factor Xa cleavage enzyme. Some 

endogenous MBP would be expected in the pre-cleavage sample but Aβ is not found in E. coli. 

Nevertheless, it is clear that post-cleavage, the band corresponding to Aβ1-42-MBP has completely 

disappeared, and the staining shows only the fully-cleaved separate bands. This indicates successful 

cleavage of Aβ1-42 from the MBP fusion protein, despite the lack of enrichment of the protein band at 

~6.5 kDa corresponding to Aβ1-42. 

Figure 4: Representative FPLC plot from desalting chromatography on a HiTrap® desalting column showing two 

1 ml aliquots of re-suspended ammonium sulphate precipitated Aβ-MBP in low-salt buffer (20 mM Tris, pH 7.5). 

The blue trace represents absorbance at 280 nm (denoting protein), while the brown trace represents salt 

concentration. Collected fractions are noted on the x-axis in red. Fractions 2 and 3 from each run, containing the 

highest protein signal, were retained and pooled for further purification. 
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Figure 5: Analysis of Factor Xa cleavage by Coomassie-stained 16% (w/v) Kolbe gel. Desalted samples of isolated 

MBP-Aβ1-42 were analysed before and after incubation with Factor Xa protease to cleave Aβ1-42 from MBP. Bands 

representing MBP and Aβ1-42 are indicated by the top and bottom arrows respectively. The two lanes represent 

duplicates of the same pre- and post- samples. 

 

3.1.4 Reverse-Phase Chromatography 

Following confirmation of successful cleavage of MBP from Aβ, the two proteins were separated by 

reverse-phase chromatography. An amount corresponding to 6 mg of protein was loaded onto the 

column per run, and the absorbance at 215 nm carefully monitored throughout. Previous work in the 

lab had found that the Aβ and MBP tend to elute relatively close to each other, around 30-50ml after 

the beginning of the salt gradient. However, all protein-containing fractions, including the initial flow-

through, were examined by 16% (w/v) Kolbe SDS-PAGE. A representative FPLC trace is shown in Figure 

6a, the region of interest – the “shoulder” of the large peak – is denoted by the black arrow. A 

Coomassie-stained SDS-PAGE gel of the initial flow-through fractions (Figure 6b) showed the presence 

of only MBP at ~40 kDa and no Aβ at ~4.5 kDa. Gel analysis of the region of interest (Figure 6c) revealed 

the presence of a clear protein band at ~4.5 kDa, consistent with Aβ. There were a number of pure 

fractions containing only Aβ, but several fractions contained both Aβ and MBP. These fractions were 

further purified to optimise the yield of Aβ obtained from the preparation. To this end, size-exclusion 
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chromatography was performed since there was a significant difference in size between the two 

proteins. However, perhaps because of the dilution, this technique was unable to isolate additional 

Aβ (Appendix B).  

3.1.5 Quantification of Aβ concentration 

All fractions containing pure Aβ were pooled and their concentration determined by a BCA assay. The 

standard curve for this assay is shown in Appendix C. The coefficient of determination (R2) calculated 

from the standard curve was 0.9978, indicating a high assay accuracy, and suggesting an accurate 

determination of the concentration of Aβ could be made. Using the equation derived from the 

relationship between absorbance at 562 nm and protein amount (y=0.0566x+0.0026), the 

concentration of Aβ was calculated. An absorbance of 0.1325 corresponds to 2.29 µg protein in 12.5 

µl or 41 µM, correcting for dilution. The yield of this protocol was ~500 µg/L initial culture. This 

represents a reasonably high purification level, consistent with previous preparations in the group, 

though the overall yield was relatively low. 

Conclusion 

The results presented here suggest successful production of Aβ1-42. Protein synthesis in the bacterial 

cultures was successfully induced, and Aβ was cleaved from MBP successfully. Reverse-phase 

chromatography was largely successful in separating the two proteins, with a degree of overlap of the 

elution peaks. The size-exclusion chromatography did not recover more Aβ peptide. Despite obtaining 

a relatively good purification level, the demands of the subsequent assays meant the yield of ~500 

µg/L was nonetheless insufficient and so commercially-produced Aβ was purchased to supplement 

the stocks. 
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Figure 6: Results of reverse-phase chromatography to separate Aβ and MBP. a) Representative FPLC trace 

showing absorbance at 215 nm (pink) and salt concentration (brown). The region of interest, as suggested by 

previous work in the lab, is indicated by the black arrow. Fractions analysed by Coomassie-stained SDS-PAGE 

gels are denoted by the double-sided arrows. b) Coomassie-stained SDS-PAGE gel of flow-through fractions 

shows the presence of a strong high molecular weight band above 26 kDa. c) This Coomassie-stained SDS-PAGE 

gel of fractions of interest shows the presence of a protein band between 3.5 and 6.5 kDa, consistent with the 

size of Aβ. A number of the earlier fractions show pure Aβ eluent, while later fractions show Aβ contaminated 

with MBP. Only pure Aβ fractions were pooled for quantification. 
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3.2 Amyloid-Beta toxicity in SH-SY5Y neuroblastoma cell cultures 

In order to investigate the relationship between zinc and Aβ1-42, it was first necessary to establish a 

consistent paradigm for Aβ1-42-induced toxicity in cell cultures. An initial probe of effective Aβ1-42 

concentration was performed. During this, it was concluded that the commonly-used MTT cell viability 

assay may not be the best to use in this case because of its reported interaction with Aβ – as such it 

was replaced by the resazurin assay. This was followed by an investigation into how “ageing” protocols 

affect Aβ1-42 aggregation. Using information obtained from this work, Aβ1-42 treatments were 

performed in SH-SY5Y neuroblastoma cells and primary rat cortical and hippocampal cell cultures. 

Finally, following establishment of optimum Zn2+ concentration, the effect of co-treatment of cell 

cultures with Aβ1-42 and Zn2+ was investigated to explore their biological relationship. 

3.2.1 Initial probe of effective Aβ1-42 concentration 

In order to determine an optimum Aβ1-42 concentration that causes cell death, an investigation of 

effective concentrations of the peptide was performed. Previous work in the group had suggested a 

possible optimal concentration of Aβ1-42 that induced cell death. While this work had been completed 

in hippocampal slice cultures (Elder, 2013), it was important to validate these findings in the SH-SY5Y 

neuroblastoma cell cultures. In the earlier study, it was found that application of 2.5µM Aβ1-42 aged at 

37°C for 3 days was sufficient to induce upwards of 50% cell death in hippocampal slice cultures. Since 

these experiments aimed to investigate a potential bidirectional effect of Zn2+ on cell viability, it was 

decided that beginning with a slightly lower concentration of the peptide might produce a percentage 

cell death effect that allowed for both an increase and decrease to be effectively measured with Zn2+ 

treatment. As such, an initial pilot experiment was performed using 1 µM Aβ1-42, both from the current 

production batch, and a batch previously produced in the lab. Previous work had also suggested that 

a 24 h incubation period was sufficient to induce cell death, so this was the time point chosen.  
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Figure 7: Dot and Bar plot showing changes in cell viability in SH-SY5Y cultures treated with 1 µM Aβ1-42 for 24 

h, as measured by the MTT assay. Data are shown as a fold-change from the mean of the control (PBS) New Aβ 

denotes that produced as part of this project, while old Aβ is that previously produced in the lab using the same 

methods. The data are highly variable and no significant effects were observed with either batch of peptide 

(p>0.05; Kruskal-Wallis test with Dunn’s post-hoc test, n=3). 

No effect was found on cell viability using either preparation of 1 µM Aβ1-42 across 3 experiments with 

5 replicates each (Figure 7). There was considerable variability in the data; some of the data looked to 

be trending downwards, but a considerable amount of data showed the opposite – an increase in cell 

viability. This suggests a deep underlying problem with this combination of insult and assay. Overall, 

this 24 h treatment with 1 µM Aβ1-42 failed to induce significant cell death, contrary to what had been 

observed in previous work. 

3.2.2 Comparing the MTT cell viability assay to the resazurin assay 

Although the MTT assay is one of the most commonly used cell viability assays (Howlett et al., 1995; 

Eisenhauer et al., 2000; Dahlgren et al., 2002; Chafekar et al., 2008; Ahmed et al., 2010), this does not 

necessarily mean that it is suitable for all situations. As noted in section 1.4.5, a confounding 

interaction exists specifically between MTT and Aβ. As such, it was considered that the resazurin cell 

viability assay may be a more accurate measure of cell death. To test this, a pilot experiment was 
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performed assessing cell death induced by the glucose-deprivation (GD) assay, a very well-

characterised and consistent cellular insult, which avoids the use of Aβ1-42, by way of either the MTT 

or resazurin assays (Figure 8).  

Figure 8: Comparison of Resazurin and MTT assays using 4 h glucose-deprivation as an insult. With the same 

insult, Resazurin read as lower cell viability than MTT, and the spread of datapoints looks considerably less with 

the former than the latter. Indeed, the variance of the resazurin data are less than those of the MTT data (n=2). 

Using either assay, it was shown that 4 h glucose deprivation was sufficient to induce cell death – up 

to 50% as seen by the resazurin assay. However, most crucially in Figure 8 is the spread of data points 

around the mean, and therefore the variance of the dataset. Even visually, the resazurin assay appears 

far less variable (more precise) than the MTT assay. Calculating the variance of the datasets reveals 

the same story. The resazurin assay for control and GD revealed variances of 9.68 and 7.86 

respectively, while the equivalent for the MTT assay were 12.98 and 38.06. This gives strong evidence 

that changing the cell viability assay may lessen some of the issues with high variance encountered in 

Figure 7, not to mention mitigating the confounding effects of using the MTT assay with Aβ. 

Using a concentration curve of 1, 5 and 10 µM, which lie well within the range of toxicity observed in 

the literature (Garai et al., 2007; Ahmed et al., 2010), the comparison between “New” and “Old” Aβ 

was repeated (Figure 9). At the 24 h time point, 1, 5 and 10 µM Aβ insults were ineffective at inducing 

cell death, while in the case of the previously produced Aβ, treatment with 10 µM caused an upward 
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trend in cell viability (New Aβ µ=-0.04, 0.04, 0.03; Old Aβ µ=-0.05, 0.04, 0.19) (Figure 9a). This positive 

effect disappeared at the 48 h time point (New Aβ µ=-0.02, 0.01, 0.01; Old Aβ µ=-0.02, 0.02, 0.06) 

(Figure 9b). However, due to the low number of replicates, it was not possible to assess any differences 

statistically. Nevertheless, the results clearly show no decrease in cell viability and the data have low 

variance and therefore likely high precision.  

Conclusion 

These data begin to highlight some of the inconsistencies encountered with Aβ1-42 insults to 

neuroblastoma cells, ranging from dosage required for toxicity to the variability in cell viability assays. 

From this point it was decided that the resazurin assay would be used over the MTT assay. Not least, 

these results led to a discussion about the efficacy and relevance of the previously-used ageing 

protocol. The results described here strongly suggest that simply ageing Aβ1-42 at 37°C for three days 

does not always produce toxic species of the peptide, and this may underlie the incongruity with the 

established literature. It was therefore necessary to examine the aggregation of the peptide, in order 

to ascertain a protocol able to consistently produce aggregated species of Aβ. 

3.3 Amyloid-Beta aggregation and toxicity 

As discussed in section 1.4.5, the aggregation of Aβ peptides in vitro is a complex phenomenon, and 

the relationship between aggregation state and toxicity is fraught with a lack of clear interpretation. 

These experiments aimed to first determine what species of Aβ aggregates are formed by the standard 

ageing procedure, second, what species are formed by other ageing protocols using a number of 
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different solvents and buffers and third, to investigate the effects on toxicity, if any, of the most 

effective ageing techniques.  

Figure 9: Bar and dot plot showing changes in cell viability as measured by the resazurin assay as a result of 

treatment with Aβ. Data are shown as a fold change from the mean of the Control (PBS). a) Change in cell viability 

in response to 24 h treatment. At this timepoint, no differences can be observed, though 10 µM old Aβ appears 

to be trending upwards. b) Change in cell viability in response to 48 h treatment. Again, no differences can be 

observed in response to up to 10 µM Aβ (n=1). 

9a 

9b 
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3.3.1 Effects of different buffers on Aβ aggregation 

Ageing experiments were undertaken to determine the effects of several buffers on the aggregation 

of Aβ1-42 peptides in vitro. These buffers included those commonly used in the literature – PBS 

(Nimmrich et al., 2008), DMSO (Dahlgren et al., 2002), MOPS (Solomonov et al., 2012) – as well as 

those not commonly used, but that hold some experimental (DMEM) or physiological (aCSF) 

relevance. All further experiments were performed with commercial Aβ peptide (Chempeptide). 

The peptide (Chempeptide), was aged for up to seven days, with samples taken at 0, 2, 3, 4 and 7 days. 

Figure 10 shows the Coomassie-stained gels obtained from these samples. In the case of MilliQ H2O, 

PBS, MOPS, and DMSO, ageing of the peptide essentially shows no change in the aggregation state 

over the seven-day period. In each case, day 0 samples show clear bands of monomer at 4.5 kDa, as 

well as bands of what appear to be trimers (MW ~ 14-15 kDa). With H2O, PBS, MOPS, and DMSO, this 

same pattern of monomers and small oligomers continues throughout the ageing process, with a 

distinct lack of any bands at higher molecular weights indicating higher-order oligomers, protofibrils, 

or fibrils (Figure 10a, b, c, d). However, as seen in Figure 10e and f, incubating Aβ1-42 with aCSF leads 

to the formation of higher-order aggregates, consistent with the pattern of aggregate formation 

previously described (Ahmed et al., 2010). Interestingly, despite identical aggregation conditions in 

Figures 10e and 10f, higher-order aggregates formed earlier in one experiment (Figure 10f; day 3) than 

the other (Figure 10e; day 7). Incubation with DMEM (Figure 10g) showed a loss of signal associated 

with the monomer, but no additional bands to indicate the presence of larger aggregates. 

It is also important to note that scrambled Aβ42 is also capable of forming aggregates when incubated 

with aCSF (Figure 10h), which form very early (day 2), but these aggregates show a different pattern 

of protein bands than those seen with Aβ1-42 in aCSF (Figure 10e and f). This phenomenon is currently 

undescribed in the literature.  
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Figure 10: Effect of solvent on aggregation of Aβ1-42 and scrambled Aβ42 peptides incubated at 37°C. Coomassie-

stained 16% (w/v) Kolbe SDS-PAGE of samples of aged Aβ peptides. Aliquots of pure Aβ1-42 were diluted 1:1 with 

the following buffers and aged for up to 7 days: H2O (a), PBS (b), MOPS (c), DMSO (d), aCSF (e and f) and DMEM 

(g). Scrambled Aβ42 was also incubated in aCSF (h). 
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3.3.2 Structural analysis and aggregation prediction of Aβ peptides 

In order to understand the aggregation dynamics of both the Aβ1-42 and the scrambled Aβ42, in 

particular with regard to the unexpected finding that the scrambled peptide was highly prone to 

aggregation, the peptide sequences were entered into the Aggrescan3D server, an aggregation 

prediction server using intrinsic aggregation propensity values for amino acids. This server is able to 

differentiate and largely ignore hydrophobic core residues and instead focuses on surface amino acids 

(Zambrano et al., 2015). 

As expected, Aβ1-42 was predicted to show a considerable propensity to aggregate, with a number of 

regions being marked as aggregation-prone “hot spots”, notably from residues 17 to 21 and 31 to 42 

(Figure 11b). These data are consistent with much of the Aβ aggregation literature, which highlight 

these regions as contributing to the formation of aggregates (e.g. Ahmed et al., 2010).  

While generally not as aggregation-prone as Aβ1-42, the scrambled peptide regardless was predicted 

to also include a number of regions scoring highly on propensity to aggregate (Figure 11d). Indeed, its 

secondary structure is quite globular (Figure 11c), and the regions from residues 15 to 21 and 30 to 34 

scored most highly in this regard. Whether this is a property of all scrambled amyloid peptides, or 

whether it is a result of this particular amino acid sequence (shown in Figure 11c), is unclear. 

Nevertheless, structural analysis and aggregation prediction fits with the data observed in Figure 10. 
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Figure 11: Data obtained from the Aggrescan3D server showing secondary structure and aggregation propensity 

of the amyloid peptides. a) shows a predicted secondary structure for Aβ1-42 and its amino acid sequence, 

consistent with other models derived from NMR. b) Aggregation propensity of the Aβ1-42 peptide. Residues 

above the dotted line indicate those prone to aggregation. c) Predicted secondary structure of the scrambled 

Aβ42 peptide and its amino acid sequence below. d) Aggregation propensity of the scrambled Aβ42 peptide, 

showing a surprising number of aggregation-prone regions, comparable to that of the wild-type peptide. 

3.3.3 Effect of ageing Aβ on cell viability 

Having established that ageing Aβ1-42 in MilliQ H2O, PBS, MOPS, DMSO and DMEM does not seem to 

affect the aggregation state of the peptide, while ageing in aCSF does, it was then crucial to determine 

whether this ageing had any effect on the toxicity of the peptide. To this end, SH-SY5Y cells were 

treated for 24 h with Aβ1-42 and scrambled Aβ42, diluted in either MilliQ H2O or aCSF, either aged for 3 

days or not aged. Cell viability was measured using the resazurin assay and the results displayed in 

Figure 12. 
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Figure 12: Bar and dot plots showing changes in SH-SY5Y cell viability in response to Aβ insult. a) The effect of 

ageing Aβ1-42 on cell viability in neuroblastoma cell culture, compared to unaged Aβ1-42 and scrambled Aβ42. b) 

The effect of Aβ peptides aged in aCSF on cell viability in neuroblastoma cell culture. Cell viability measured by 

the resazurin assay (n=1). 

No significant cell death was caused in any condition. In fact, similar to 10 µM Aβ1-42 in Figure 9a, 20 

µM aged Aβ1-42 also showed a trend of increasing cell viability (Figure 12a; Aged Aβ µ=0.17). This 

modest positive effect seemed to reverse when the Aβ1-42 was aged with aCSF, with the unaged 
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trending higher than the aged (Figure 12b), suggesting that aCSF may be modulating cell viability. The 

presence of the high molecular weight aggregates observed in aCSF-aged Aβ (Figure 10e and f) may 

be changing the effect of Aβ1-42 administration to these cell cultures. It is also possible that even 20 

µM Aβ1-42 is insufficient to induce toxicity in SH-SY5Y cell cultures, whose lineage, as a form of cancer, 

makes them more resilient to insult. At this stage it is not possible to say for certain whether the 

modest increases in cell viability indicate a trophic effect or whether they simply represent 

experimental fluctuation. 

Conclusion 

Clearly, addition of certain buffers to Aβ1-42, especially aCSF, does alter the aggregation of the peptide, 

causing the formation of larger aggregates, possibly protofibrils. However, the characteristics of this 

aggregation propensity are not reproducible. In one experiment large aggregates were seen on day 3, 

while in another they did not appear until day 7. Interestingly, large aggregates were also observed 

with aCSF-aged scrambled Aβ42, a phenomenon not yet reported in the literature. It was discovered 

that this particular scrambled sequence contained aggregation “hot spots”, which may help explain 

this finding. Finally, it was shown that ageing with or without aCSF does seem to modulate the effect 

of the peptide on cell viability in SH-SY5Y cells, though clear evidence of toxicity was not observed. 

3.4 Comparing toxicity in primary cells and neuroblastoma cells 

To test the hypothesis that higher concentrations of Aβ1-42 were needed to see a toxic effect, an 

additional concentration curve experiment was performed in the SH-SY5Y neuroblastoma cells, as well 

as in rat primary cortical and hippocampal cell cultures, using higher concentrations of Aβ, still aged 

with aCSF to induce formation of higher-order aggregates. 
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3.4.1 Aβ effects on SH-SY5Y neuroblastoma cell cultures 

Figure 13 shows the results of several concentration curve experiments in SH-SY5Y cell cultures. There 

is a clear and highly significant concentration-dependent increase in cell viability, culminating in a 

nearly 40% increase at 40 µM. No change in cell viability was seen with the scrambled peptide. The 20 

µM and 40 µM groups differed significantly from the control (Z=-4.29 and -5.57 respectively; p<0.01). 

The 20 µM and 40 µM treatments also differed significantly from the scrambled treatment (Z=-3.42 

and -6.70 respectively; p<0.001). While consistent with some earlier data obtained during this project 

(see Figures 9 and 12), this protection is contrary to much of the literature on Aβ, which suggests it to 

be strongly cyto- and neurotoxic (discussed in section 3.4.5). However, it was important to validate 

these findings in a more physiologically valid primary cell culture model, in this case cortical and 

hippocampal cell cultures, to determine whether this positive effect of Aβ1-42 was reproduced in other 

cell culture models. 

Figure 13: Bar and dot plot of changes in cell viability of SH-SY5Y cells in response to a concentration curve of Aβ 

for 24 h, measured using the resazurin cell viability assay. Data combined from 5 replicates over two separate 

experiments. Asterisks indicate groups differing significantly from the control (p<0.001; Kruskal-Wallis test with 

Dunn’s post-hoc and Holm-Šidák correction, n=2). 
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3.4.2 Aβ effects on primary cortical and hippocampal cell cultures 

Cortical and hippocampal primary cell cultures were derived from Sprague-Dawley rats, with identical 

experimental conditions to those used for the neuroblastoma cells. Figure 14 describes the results 

from the cortical cell cultures. It is immediately obvious that the trophic or protective positive effect 

seen in the SH-SY5Y cultures does not occur with these cultures. Furthermore, the variance of these 

results is much higher than that seen with the neuroblastoma cells, suggesting either inherent 

variability in primary cell cultures, or potentially indicative of a difference in the aggregation of the 

peptides used, as suggested by the aggregation SDS-PAGE gels of aCSF-aged Aβ (Figure 10e and f). This 

variability is especially notable when comparing individual experiments (see Appendix D) – trends 

observed in one experiment were not visible in another.  

Figure 14: Bar and dot plot of cell viability changes induced by 24 h treatment with aCSF-aged Aβ1-42 and 

scrambled Aβ42 in rat cortical cell cultures. In this case, no significant differences were observed between any of 

the treatment groups. (p>0.05; Kruskal-Wallis test with Dunn’s post-hoc and Holm-Šidák correction, n=4). 

A similar lack of significant differences between concentrations of Aβ are seen with rat primary 

hippocampal cell cultures (Figure 15), and high variance within the treatment groups is seen in all 

groups. There are no discernible differences between cortical and hippocampal primary cultures in 
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regards to their reaction to Aβ. This also seems inconsistent with the literature, which suggests that 

hippocampal cells may be more susceptible to Aβ insult than cortical cells (Mark et al., 1997). 

Figure 15: Bar and dot plot of cell viability changes induced by 24 h treatment with aCSF-aged Aβ1-42 and 

scrambled Aβ42 in rat hippocampal cell cultures. No significant differences were observed between any of the 

groups (p>0.1; Kruskal-Wallis test with Dunn’s post-hoc and Holm-Šidák correction, n=4). 

Conclusion 

In SH-SY5Y neuroblastoma cell cultures, aCSF-aged Aβ1-42 caused a dose-dependent increase in cell 

viability. However, the same treatment in primary rat cortical and hippocampal cells had no effect on 

overall cell viability. Firstly, these results raise the question of why Aβ-induced toxicity is reported so 

frequently and so consistently in the literature, yet these experiments fail to show any evidence of a 

cytotoxic effect. Second, it is unclear why there is such a considerable difference between the effect 

of Aβ on primary cell cultures – where it has no overt effect on cell viability – and its effect on SH-SY5Y 

human neuroblastoma cell cultures – where it exhibits potent trophic effects.  
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3.5 Zinc and Amyloid-Beta toxicity 

In Section 3.4 it has been found that Aβ1-42 consistently induces an increase in SH-SY5Y neuroblastoma 

cell viability. Since Aβ1-42 contains five Zn2+-binding sites in its first sixteen amino acid residues (Gaggelli 

et al., 2008), this next stage was to determine whether addition of exogenous zinc to the cell cultures 

would modulate the observed effects on cell viability. The directionality of this effect is not 

immediately obvious, as the literature is divided on this matter. While some research has 

demonstrated that exogenous zinc exacerbates Aβ-induced cytotoxicity (Solomonov et al., 2012), 

others have proposed that it instead protects against Aβ insult (Garai et al., 2007) 

3.5.1 Concentration-dependent effect of Zinc on neuroblastoma cell culture 

viability 

It was first necessary to examine the effects of zinc alone on cell viability of SH-SY5Y cultures. A 

concentration curve of ZnCl2 was added to neuroblastoma cell cultures for 24 h and the cell viability 

determined by the resazurin assay. Figure 16 shows the results of this concentration curve, 

demonstrating a strong dose-dependent effect on cell survival. At concentration of 100 µM or less, 

ZnCl2 has no effect or a positive effect on cell viability, with 25 µM ZnCl2 causing around a 20% increase 

in resorufin fluorescence. Conversely, at concentrations of 200 µM or higher, zinc causes a 

considerable reduction in fluorescence, indicating significant cell death, and there is almost total death 

at 1 mM. This pattern is consistent with other literature describing this phenomenon (Choi et al., 1988; 

Bozym et al., 2010), however the slight increase in cell viability at 25 µM is not commonly described 

in other work. One possibility is that because DMEM does not contain any zinc, and the cell culture 

medium in supplemented with zinc from FBS, the control condition may actually represent a sub-

optimal cellular environment. Supplementation with exogenous zinc may, in this case, cause an 

increase in cell survival. Alternatively, it has been demonstrated that Zn2+ is a potent inhibitor of 
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caspase-3, an enzyme heavily involved in apoptotic pathways (Perry et al., 1997). Addition of zinc to 

the cell culture medium may be causing inhibition of normal cell apoptosis and may account for the 

observed increase in cell viability. Regardless, further experiments were performed with either 5 or 

25 µM ZnCl2, with the former representative of no effect, and the latter, a positive one. 

 

Figure 16: Bar and dot plot showing the effect on cell viability of varying concentrations of ZnCl2 in the medium 

of cultured SH-SY5Y neuroblastoma cells. Up to 1 mM ZnCl2 was added to the medium for 24 h and cell viability 

measured using the resazurin assay (n=2). 

3.5.2 Effect of combined zinc and Aβ on neuroblastoma cell culture viability 

In order to examine how the presence of Zn2+ in the cell culture mediummodulates Aβ-induced 

changes in cell viability, SH-SY5Y cell cultures were exposed to 20 µM Aβ for 24 h, with either 5 or 25 

µM ZnCl2. The results are displayed in Figure 17. In this experiment, the Aβ1-42 and scrambled Aβ42 

were aged in MilliQ H2O for 3 days. Firstly, consistent with data previously described, neither Aβ1-42 on 

its own, nor the scrambled Aβ42 had any effect on cell viability. The effects of the two concentrations 

of ZnCl2 were also similar to those seen in Figure 16, although somewhat lower, showing a very small 

increase in cell viability at 25 µM and almost no change at 5 µM. However, Aβ1-42 in combination with 

ZnCl2 showed a considerable increase in cell viability, up to 60-70% above the control in the case of 25 
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µM zinc and around 40% for 5 µM. Comparing these data to the scrambled Aβ42 strongly suggests that 

this significant increase is likely a result of an interaction between Aβ1-42 and Zn2+, since the scrambled 

groups were essentially identical to their respective controls – scrambled Aβ and zinc showed the 

same effect as zinc on its own. These data strongly suggest that Zn2+ and Aβ interact. 

Figure 17: Bar and dot plot showing effects of Aβ1-42 combined with ZnCl2 on cell viability in SH-SY5Y cell cultures. 

Aβ1-42 and scrambled Aβ42 were applied at a concentration of 20 µM for 24 h and the ZnCl2 added concurrently 

to the medium when used (n=1). 

However, when the Aβ was aged in aCSF, this strong positive effect was no longer evident (Figure 18). 

Firstly, the considerable increase in cell viability observed with 20 µM Aβ1-42 and 25 µM ZnCl2 in Figure 

17 is no longer present, with this condition showing no difference to Aβ1-42 on its own. Furthermore, 

the positive effect seen with 20 µM Aβ-aCSF seen in Figure 13 is also conspicuously absent. Even the 

slight positive effect of 25 µM ZnCl2 is not seen. While it is possible that this variation in the effects of 

the Aβ peptide may be due to variability in its agregation during the ageing process, this is unlikely to 

be the case for Aβ1-42 aged in MilliQ H2O, as its aggregation states were constant across several 

experiments. For Aβ1-42 aged in aCSF, this is certainly a possibility, as the aggregation experiments 

(Figure 10e and f) highlighted that despite identical ageing conditions, the aggregation state of the 

peptide can vary significantly, with the formation of high molecular weight aggregates forming on 
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different days. It is possible that the Aβ-aCSF samples used for the experiments in Figure 13 had 

undergone a different aggregation pattern than those used for the experiment in Figure 18. 

 

Figure 18: Bar and dot plot showing changes in SH-SY5Y cell viability after treatment with Aβ1-42, Aβ1-42 aged with 

aCSF and ZnCl2. Aβ1-42 was applied at 20 µM, and ZnCl2 at 25 µM for 24 h. Cell viability was measured using the 

resazurin assay (n=1). 

Conclusion 

A concentration curve of Zn2+ effects on cell viability was used to establish an optimum protocol for 

the metal ion. While one experiment demonstrated that co-administration of aged Aβ and zinc to 

neuroblastoma cell cultures led to a dramatic increase in cell viability, further experiments were 

unable to validate these results. The data described here raise interesting questions regarding Aβ and 

its relationship with zinc, as well as highlighting some inherent variability in the effects of the peptide 

on cell viability and the difficulties in using Aβ in experimental paradigms. 
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Chapter 4 

Discussion  

The work described here was successful in producing and purifying Aβ1-42 from bacteria transfected 

with human Aβ1-42. However, establishment of a consistent protocol for Aβ1-42-induced toxicity was 

unsuccessful in either SH-SY5Y neuroblastoma cells or primary rat cortical or hippocampal cell 

cultures. Examining the relationship between aggregation conditions and effects on cell viability 

revealed an interesting effect of aCSF-aged Aβ1-42 in neuroblastoma cells – this treatment showed 

evidence of high molecular-weight aggregates, whilst also causing an increase in cell viability above 

the control. Co-treatment with Zn2+, however, abolished this increase, but also showed an increase in 

cell viability after treatment with H2O-aged Aβ1-42. This research suggests that the relationship 

between aggregation of Aβ1-42 and its effects on cell culture viability are complex, but that these can 

be regulated by exposure of the cells in culture to Zn2+
 in the culture medium. This relationship 

undoubtedly requires further investigation.  

4.1 Amyloid-Beta production 

The protocol described and followed in this study demonstrates that amyloid-beta can be produced 

in-house with relatively high purity and with full knowledge of its history – an important parameter 

when studying the effects of aggregation. This protocol used bacteria transfected with human Aβ1-42 

cloned into the pMal-c2 vector, as when the peptide is produced alone a very low yield is obtained 

(Wilson, 2007). These bacterial stocks were successfully induced to express the peptide fused to 

maltose-binding protein, and, after initial purification of the fusion protein by affinity 
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chromatography, this complex was cleaved and the Aβ purified to create stocks at a concentration of 

41 µM, with a yield of ~500 µg/L bacterial culture. 

However, this protocol appears to have several drawbacks. Firstly, following reverse-phase 

chromatography to separate cleaved Aβ from MBP, it was found that, while some fractions of Aβ were 

well separated from MBP, there still existed a considerable (~20-30%) overlap in the elution regions 

of the two proteins. This meant that some of the Aβ-containing fractions were contaminated with 

MBP and were therefore needed to be further purified. It is not entirely clear why this would be the 

case, except that the solubility and hydrophobicity of the two proteins must be similar enough that 

their elution from the hydrophobic RPC column occurs at similar concentrations of acetonitrile. This 

may suggest that other systems or fusion partners might be used for production, such as glutathione 

S-transferase (GST), and purification on a glutathione column used in other projects in the laboratory. 

Nevertheless, E. coli MBP remains a very useful and effective fusion protein, as it greatly improves the 

solubility of bound proteins and prevents their aggregation (Kapust and Waugh, 1999). 

Attempts to further purify MBP-contaminated fractions of Aβ by SEC proved entirely ineffective. In 

fact, SDS-PAGE analysis of protein-containing SEC fractions revealed that the peptide could not be 

detected in any of the fractions analysed. It could have been that the total amount of Aβ in the loaded 

samples with the well-recognised dilution of samples during gel exclusion chromatography was great 

enough to prevent Aβ being visible by Coomassie staining, or that the peptide ended up spread over 

several fractions in small amounts. Unfortunately, this meant that the overall yield was not as high as 

it could have been. Further optimization of this Aβ purification could be valuable to determine a more 

effective and efficient method of separating cleaved Aβ and MBP. Several groups have developed 

different protocols for Aβ purification using intestinal fatty acid binding protein (IFABP) (Garai et al., 

2009), or immobilized metal affinity chromatography (IMAC) and a glutathione S-transferase (GST)-

tag (Chhetri et al., 2015). The latter especially reported a yield of 15mg/L of culture, compared the 3-

4mg/L in the previous study and ~500µg/L for the protocol in this study. 
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Third, while this protocol is an effective method of expressing and purifying Aβ, it is important to note 

that it cannot compete in yield to what is now available with commercial production of the peptide. 

High yields of the protein, greater amounts and guarantees of higher purity can be obtained, although 

the cost is significant. In the past batches of commercial Aβ were found to be inconsistent in their 

activity and that stimulated production within the Tate research laboratory (Tate personal 

communication). Despite obtaining a relatively high protein concentration of Aβ, it was nevertheless 

necessary to subsequently purchase commercial batches of the peptide, as the amount produced was 

insufficient for all the experiments in this study. 

4.2 Cellular insult paradigm 

4.2.1 The MTT assay is inappropriate for examining Amyloid-Beta toxicity. 

The discovery, as early as 1995, that the reagents in the MTT cell viability assay interact with Aβ in 

such a way as to confound the results has startlingly not been accepted by many current researchers 

in the Alzheimer’s field, with many groups continuing to use the assay to study the effects of Aβ. As 

well as its component interaction with Aβ, the MTT assay suffers from several drawbacks. Firstly, the 

MTT assay is very much an end-point assay, as the production of formazan crystals is toxic to cell 

cultures. This limits its effectiveness for assessing changes in cell viability over time. Second, as 

previously reported, MTT, of all cell viability assays dependent on cellular metabolism, is the least 

consistent, showing the highest comparative variability for the same insult (van Tonder et al., 2015). 

The results described in this study seem to support that conclusion and found that the alternative 

resazurin cell viability assay may be more suited to examining toxicity in cell culture. Not only does 

this assay not suffer from any known interactions with experimental compounds (as the MTT assay 

does with Aβ), but also shows less variability and more consistency. In addition, the compound is 

minimally toxic to living cells, allowing for multiple assays across time points in the same cultures. 
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4.2.2 Amyloid-beta effects on cell viability are dependent on its aggregation. 

As previously described, it has been suggested that the effect of Aβ on cell viability is strongly 

dependent on its aggregation state, and that its aggregation state varies depending on the conditions 

in which it was aged. Here, we confirmed that specific ageing conditions do strongly impact the 

aggregation state of the peptide. The majority of buffers tested – MilliQ H2O, PBS, DMSO, DMEM and 

MOPS – revealed no change in aggregation state over 7 days as tested by SDS-PAGE. While SDS-PAGE 

analysis of DMEM-aged Aβ showed a reduction in the monomer band intensity, the absence of bands 

indicating other aggregates suggests that no further aggregation took place. Throughout this period, 

gel analysis revealed the presence of monomers of Aβ, as well as a dispersed band consistent with 

soluble oligomers – dimers, trimers and small-order aggregates. 

One chemical mixture was able to induce production of higher molecular weight aggregates – those 

within aCSF. This condition produced very high molecular weight aggregates, consistent with previous 

reports of the appearance of protofibrils and fibrillar Aβ1-42 (Ahmed et al., 2010). However, it appears 

that this aggregation is not entirely consistent – while one gel showed these aggregates forming on 

day 7, another gel showed their formation on day 3. It may be that a nucleation state has to be formed 

for the higher aggregates to be produced and that may be the variable parameter. Therefore, without 

confirming aggregation states after each individual ageing event of Aβ1-42, it is difficult to determine 

what specific aggregates are present in samples of Aβ aged with aCSF. This may be reflected in the 

variability of cell viability experiments performed with these samples (Section 3.3.3 onwards). 

The SDS-PAGE results shown in Figure 10h describe aggregation in the scrambled Aβ peptide, with 

high molecular weight aggregates, comparable in size to protofibrils and fibrils of Aβ1-42, appearing as 

early as day 2. This phenomenon has not been reported in the literature previously (and to the 

author’s knowledge, an examination of the aggregation of the scrambled peptide has not been 

attempted), probably because each form of scrambled peptide is different to others used, depending 
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on the exact amino acid sequence. Examining the primary and secondary structure of the scrambled 

peptide using the Aggrescan 3D server predicted significant aggregation propensity (Figure 11), to the 

extent of being comparable to the Aβ1-42 peptide itself. This finding has implications for the 

interpretation of data obtained from the cell viability experiments, and brings into question what is 

an appropriate control. 

4.2.3 Amyloid-Beta is inconsistent as a cellular insult 

Despite the frequent use of Aβ as a cellular insult in research into Alzheimer’s disease, this study 

highlighted some of the difficulties in using this paradigm. This research was unable to develop a 

paradigm that consistently caused significant cell death in either SH-SY5Y neuroblastoma cell cultures 

or primary rat cortical or hippocampal cell cultures. Up to 20 μM Aβ aged with MilliQ H2O did not lead 

to any significant changes in cell viability. Despite the commonly-held understanding that small 

oligomers are the most toxic species of Aβ, and the finding here that 3-day ageing of the peptide in 

water produced a considerable amount of aggregates consistent with soluble small aggregates 

alongside monomers, there was no toxicity observed in any cases. In fact, treatment of neuroblastoma 

cells with 10 μM Aβ for 24 hours gave the first indication that the peptide may indeed be 

neuroprotective and not exclusively toxic. 

Under certain conditions, Aβ may show trophic effects. In SH-SY5Y neuroblastoma cells, treatment 

with aCSF-aged Aβ showed a dose-dependent increase in cell viability over the control (Figure 13). 

While trophic and neuroprotective effects of Aβ have been observed previously (Kimura et al., 2006; 

Giuffrida et al., 2009), the concentration of the peptide required for a positive effect tends to be 

significantly lower – in the pico- to nano-molar range – contrary to the 20-40 μM range used here. It 

was initially thought that perhaps the neuroblastoma cell cultures may be under oxidative stress, 

particularly as many of the experiments were performed in cell cultures approaching passage numbers 

of 10-15, and the addition of Aβ may have been ameliorating oxidative damage, potentially by 
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precipitating redox-active metal ions such as Zn2+ and Cu2+. However, when the experiment was 

repeated in passage 5 cells that would not show the same level of oxidative stress as the “older” cell 

cultures, the obtained results were identical (data not shown). 

Alternatively, the lack of Aβ-induced toxicity observed may be characteristic of the immortal 

neuroblastoma cell line. Both differentiated and undifferentiated SH-SY5Y neuroblastoma cells have 

been demonstrated to show a dopaminergic nature – they express tyrosine hydroxylase, dopamine-

beta-hydroxylase and the dopamine transporter (Xie et al., 2010) – though differentiated cells show 

more of this character. The toxicity of Aβ, on the other hand, is reportedly NMDA-dependent 

(Birnbaum et al., 2015), but some evidence suggests that neuroblastomas may not express ionotropic 

glutamate receptors (Weber et al., 2010), or that their NMDARs may be non-functional (Sun et al., 

2010). However, the fact that toxicity was not observed in primary rat cortical or hippocampal cell 

cultures suggests that this factor may not necessarily account for the results observed, in particular 

the Aβ-induced increases in cell viability seen in SH-SY5Y cells. On the other hand, the presence of glial 

cells in the primary rat neuronal cultures may be vital to understanding the lack of any effect of Aβ on 

their viability. It is now recognised that glial cells play an important role in homeostasis of the neuronal 

environment and this has been shown to include control over the clearance and breakdown of Aβ 

(reviewed by Ries & Sastre, 2016). Glial cells secrete neprilysin, insulin-degrading enzyme, endothelin-

converting enzyme and a variety of matrix metalloproteinases, cathepsins and chaperones 

demonstrated to be involved in the degradation and clearance of Aβ from the extracellular space. The 

activity of these enzymes and proteases may account for the absence of a consistent toxic effect of 

Aβ on primary rat neuronal cultures, another factor that must be taken into account when developing 

cellular models to study AD. 

One factor to consider may be the difference between intracellular and extracellular Aβ. While some 

evidence shows that the toxic effects of Aβ may be as a result of an interaction with NMDA receptors 

(Birnbaum et al., 2015), others have reported that chronologically, accumulation of the peptide 
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intraneuronally occurs first, and this may lead to p53-related apoptosis (Ohyagi, 2008). However, it 

has also been demonstrated that neurons can take up Aβ from the extracellular environment – 

possibly an important part of normal clearance of the peptide – suggesting that addition of exogenous 

Aβ may also increase its intraneuronal concentration (Kanekiyo et al., 2013). An important future step 

may be to determine firstly whether exogenous Aβ can be taken up by neurons in culture, and second, 

whether intracellular or extracellular Aβ has a greater effect on cell viability. 

The discovery that scrambled Aβ42 also formed aggregates suggests that peptide aggregation alone is 

not sufficient to produce cellular toxicity. Scrambled Aβ42 consistently had no effect on cell viability in 

either SH-SY5Y neuroblastoma cell cultures or cultured primary rat cortical and hippocampal cells. In 

addition, it is suggestive that the positive, trophic effects of oligomeric and fibrillar Aβ1-42 must be a 

result of a specific interaction of the peptide, rather than a general effect of either peptide 

supplementation or aggregation. 

4.3 Zinc and Amyloid-Beta interactions 

4.3.1 Zinc has a dose-dependent effect on SH-SY5Y cell viability 

In order to determine optimum concentrations of ZnCl2 for cell culture experiments, a concentration 

curve of the zinc salt was tested in SH-SY5Y neuroblastoma cell cultures, ranging from 5 μM to 1 mM. 

A clear dose-dependent effect was observed, with concentrations less than 100 μM showing a positive 

or no effect on cell viability, while higher concentrations lead to markedly decreased cell viability to 

less than 10% of control. Although physiological concentrations of zinc are overall in the pico- to 

nanomolar range, when Zn2+ is released synaptically, concentrations in the synaptic cleft can reach as 

high as 30 μM (Frederickson and Bush, 2001). Due to the tight regulation of intracellular Zn2+ ions by 

zinc transporters, it is difficult to alter intracellular zinc by addition of exogenous zinc, though evidence 

suggests that intracellular concentrations of around 100 nM is fatal. It is possible that application 
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of >100 μM zinc to cell culture media may overload zinc transporters and drive the intracellular 

concentration into this toxic range. However, it is equally likely that such a high concentration of zinc 

simply causes the pH of the media to drop to a toxic level, leading to the high levels of cell death seen 

in this study. 

Similarly, the finding that 5-100 μM ZnCl2 has a neutral or positive effect on cell culture viability is 

likely closely modulated by the zinc transporters. Nevertheless, as serum-free DMEM contains no free 

zinc, it is equally likely that the positive effect of Zn2+ is simply due to this supplementation of the 

culture media with a biologically-relevant and essential metal ion. 

4.3.2 Zinc modulates Amyloid-Beta induced changes in cell viability 

The range of zinc concentrations used in Section 3.5.2 (5-25 μM) was used firstly because it was a non-

toxic amount and secondly because it is consistent with previous findings that 8 μM Zn2+
 is protective 

against Aβ toxicity (Garai et al., 2007). Similar to the results obtained in Section 3.5.1, 5 and 25μM 

ZnCl2 resulted in an increase in cell viability compared to the control. This seems likely a result of 

supplementation of DMEM- with essential zinc. However, the combination of Zn2+ and Aβ1-42 aged in 

water was observed to increase cell viability beyond the increase observed with Zn2+ on its own. By 

contrast, the scrambled Aβ42 with zinc did not raise cell viability above zinc alone. This evidence 

suggested that the increase was a result of a specific interaction between Aβ1-42 (in this case 

specifically monomers and small oligomers) and Zn2+. The reason for the positive effects of this 

proposed interaction is unclear. Firstly, the possible trophic or neuroprotective effect of Aβ1-42 require 

further exploration, as this extent of increased cell viability at concentrations of Aβ as high as 40 μM 

has not been reported previously. Second, previous reports of Aβ-Zn2+ interactions have been 

contradictory – while some reports suggest a positive interaction (Garai et al., 2007), others report an 

increase in toxicity (Solomonov et al., 2012). Both agree, however, that Zn2+ has profound effects on 

the structure of Aβ aggregates. This relationship undoubtedly requires further investigation, not only 
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in regards to why Aβ-zinc treatment shows trophic effects in SH-SY5Y cells, but also clarification of the 

effect of Zn2+ on the structure of Aβ aggregates, which appears to play an important role in the 

physiological effects of the peptide. 

4.4 Conclusions 

This research has described a successful protocol for the production and purification of Aβ1-42, 

although due to the amount of the peptide unusable due to MBP contamination, it clearly requires 

further optimization and minor adjustments to the experimental strategy. This study initially aimed to 

determine a consistent protocol for Aβ-induced cell death – a well-described paradigm of cell toxicity. 

However, far from observing cell death, Aβ-treatment of SH-SY5Y neuroblastoma cells as high as 40μM 

actually increased cell viability by up to 40%, while no significant changes were observed in primary 

rat neuronal cultures. This effect was shown to be dependent on the aggregation state of the peptide, 

which in turn is heavily dependent on the “ageing” environment, with aCSF causing formation of high 

molecular weight aggregates, and all other tested buffers only showing formation of monomers and 

small oligomers. Finally, it was demonstrated that addition of exogenous Zn2+ positively modulated 

this already positive effect on cell viability of Aβ, beyond the trophic effect of Zn2+ alone. 

4.5 Future Directions 

Given the conflicting results obtained in this study, future research must work to elucidate the true 

relationship between Aβ aggregation and its effects on cell viability. While many studies regularly 

report Aβ-induced toxicity in a variety of cellular and animal models, this research failed to replicate 

any of those results. It may be necessary to produce and isolate individual species of Aβ aggregates – 

monomers, small oligomers, larger soluble aggregates, protofibrils and fibrils – in order to determine 

the true relationship between aggregation and toxicity. 
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It will also be necessary to repeat the experiments reported here to replicate the findings that aCSF-

aged Aβ1-42 showed trophic or neuroprotective effects. As previously mentioned, such effects have 

been observed, but with significantly lower concentrations of the peptide. It will also be important to 

determine whether these effects can be demonstrated in primary cell cultures (which did not show 

increased cell viability in this study), as well as repeating the experiment in differentiated 

neuroblastoma cell cultures, which exhibit more neuronal characteristics (Shipley et al., 2016). Other 

neuronal cell models may be more suited to examining Aβ-induced toxicity than neuroblastoma cells, 

for example Neuro2a cells, which show cholinergic characteristics and are often used in the study of 

AD, or the NTera-2 cell line, which can be differentiated to express NMDA receptors (Younkin et al., 

1993).  

If a consistent cellular insult paradigm can be established, potentially with specific Aβ aggregate 

species and different cell culture models, the next stage would be to further examine the relationship 

between Aβ and Zn2+. This study has demonstrated that the combination of Aβ1-42 and Zn2+ can have 

profound effects on cell viability beyond that of each individually. However, the directionality of this 

relationship is conflicted in the literature, and may differ between different allomers and aggregation 

states of Aβ. A concentration curve of Zn2+ with specific species of Aβ may help elucidate this 

relationship, though as previous research has suggested, AD pathophysiology may develop as a result 

of aberrant compartmentalization of metal ions (Ayton et al., 2015). Using metal protein targeting 

compounds such as clioquinol or PBT2 may allow control of Zn2+ compartmentalization and 

examination of how metal ion localization affects cell activity and survival.  

It may also be interesting to investigate how Zn2+ may influence neuroprotection by APP-derived 

processed proteins or peptides such as sAPPα and 16-mer. The sAPPα protein shows significant 

neuroprotective effects (Goodman and Mattson, 1994; Furukawa et al., 1996) and there have been 

suggestions that the 16-mer peptide may also have mild neuroprotective properties (Potemkin, 2014; 

Morissey, 2016). The 16-mer, as discussed previously, has a number of possible Zn2+-binding sites, and 
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this sequence also constitutes an apparently unstructured C-terminal region of sAPPα. It is possible 

that, in addition to trophic gene regulation effects of sAPPα (Ryan et al., 2013), its neuroprotective 

effects may be mediated by its zinc-binding potential, perhaps directly by co-binding with Aβ around 

the Zn2+ ion. It has been suggested that amyloid plaques are a protective mechanism (Cohen et al., 

2006; Nilsson et al., 2013), preferentially precipitating Aβ aggregates to clear toxic species such as 

protofibrils or soluble oligomers. sAPPα may act to sequester toxic Aβ aggregates into benign plaques, 

that can potentially be cleared by the phagocytic properties of microglia. If this could be 

demonstrated, it may significantly alter the direction of research into treatments for AD, many of 

which target Aβ plaques by immunotherapy or altering Aβ production. Indeed the recent 

immunotherapy strategy targeting the toxic soluble aggregates is appearing to be much more effective 

than previous plaque focussed attempts (Sevigny et al., 2016). 
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Appendices 
Appendix A: R statistical analysis scripts 

Calculating means and fold change of cell viability data 

## Open raw data file 
filename<-file.choose() 
data2=read.csv(filename,header=TRUE,sep=","); 
name<-basename(filename) 
 
## Calculate means 
means<-array(0,dim=c(ncol(data2),1)) 
for (i in seq(ncol(data2))) 
  means[i]=mean(data2[,i],na.rm=TRUE); 
end 
 
## Reformat means with data labels 
data1means<-data.frame(colnames(data2),means) 
 
data1means 
 
## Calculate fold change compared to means of the control 
FoldChange<-array(0,dim=c(nrow(data2),ncol(data2))) 
 
for (i in seq(ncol(data2))) 
 for (j in seq(nrow(data2))) 
  FoldChange[j,i]=((data2[j,i])/(means[1])*100); 
end 
 
## Reformat Fold change data with data labels 
colnames(FoldChange)=colnames(data2) 
 
## Save file 
write.csv(FoldChange, file=paste("Foldchange",name), row.names=F) # automatic field separator is "," 
getwd() # shows you filepath where file is saved. 
 
 
 

Draw bar and dot plot of fold change cell viability data 

## Open file 
filename<-file.choose() 
data4=read.csv(filename,header=TRUE,sep=","); 
name<-basename(filename) 
na.pass(data4) 
data4<-(data4/100)-1 
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## Reformat data 
meltdata<-melt(data4,na.rm=TRUE) 
colnames(meltdata)<-c("Treatment","Value") 
formatdata<-meltdata[order(meltdata$Treatment),] 
#fix(formatdata) 
 
## Assign the barplot to x so that x will contain the bar positions. 
x = barplot(tapply(formatdata$Value, formatdata$Treatment, FUN=mean), ylim=c(-0.25,1), 
xlab="Treatment", ylab="Fold change in cell viability" ,xaxt="n") 
points(rep(x, table(formatdata$Treatment)), formatdata$Value[order(formatdata$Treatment)], 
pch=21, bg="red")  
## assign x and y axis limits  
## assign x and y axis legends 
 
## Add X-axis labels 
label<-c("Control",expression(paste("New A",beta," 1",mu,"M")), expression(paste("Old A",beta," 
1",mu,"M"))) # change depending on experimental variables 
text(cex=1, x=x-0.25, y=min(data4, na.rm=TRUE)-0.1, label, xpd=TRUE, srt=45, pos=1) 
 
 

Perform Kruskal-Wallis test with Dunn’s post-hoc test 

## Open file for Kruskal-Wallis test 
filename<-file.choose() 
data3=read.csv(filename,header=TRUE,sep=","); 
name<-basename(filename) 
na.pass(data3) 
data3 
 
## Reformat data for Kruskal-Wallis test 
meltdata<-melt(data3,na.rm=TRUE) 
colnames(meltdata)<-c("Treatment","Value") 
formatdata<-meltdata[order(meltdata$Treatment),] 
fix(formatdata) 
 
## Define test parameters 
statsdata=as.data.frame(formatdata) 
colnames(statsdata)<-c("Treatment","Value") 
Treatment = statsdata$Treatment 
Value = statsdata$Value 
 
KW.DT<-dunn.test(Value, Treatment, method="hs", kw=TRUE, list=TRUE, alpha=0.01)  
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Appendix B: Size-exclusion chromatography to separate Aβ1-42 from 

MBP 

Figure S1: Analysis of protein-containing fractions obtained from size-exclusion chromatography. 

Coomassie-stained 16% (w/v) Kolbe gels of all protein-containing fractions eluted from the Superdex 

75 agarose-dextrose column loaded with pooled samples from reverse-phase chromatography 

containing both Aβ1-42 and MBP. The high molecular weight band is consistent with MBP. 
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Appendix C: Standard curve of BSA concentrations used to determine 

Aβ concentration. 

Figure S2: Standard curve of BSA amounts used to determine concentration of Aβ. Known amounts of BSA are 

plotted against their corresponding 562 nm absorbance values. Coefficient of determination for this standard 

curve was 0.9978. The equation describing the relationship between the two variables was as follows: 

y=0.0566x+0.0026. This formula was used to determine Aβ concentration, correcting for the 1:1 dilution factor 

of the peptide sample in the assay.  

 



110 
 

Appendix D: Individual primary cell culture data 

 

Figure S3: Bar and dot plots showing cell viability changes in primary rat cortical cell cultures after treatment 

with Aβ1-42 and scrambled Aβ42. Each plot represents an individual experiment, whose data points were 

combined to give Figure 14. These data well illustrate the variability of Aβ1-42 as a cellular insult encountered in 

this model. 
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Figure S4. Bar and dot plots showing cell viability changes in primary rat hippocampal cell cultures after 

treatment with Aβ1-42 and scrambled Aβ42. Each plot represents an individual experiment, whose data points 

were combined to give Figure 15. As above, the variability of these data precluded an accurate estimation of the 

effect of Aβ1-42 treatment in primary rat hippocampal cell cultures. 

 


