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Abstract 

Understanding the spatial structure of populations including variability in reproductive 

biology among subpopulations is a key objective in fisheries ecology. The aim of the present 

study was to identify the small scale (<10 km) population structure of blue cod (Parapercis 

colias) and sea perch (Helicolenus percoides) along the Otago coast and Fiordland to 

understand key processes that may have resulted in important demographic structure among 

subpopulations.  

Here, comparisons of size structure of blue cod among coastal and offshore regions of 

the Otago coast were used to estimate the biological consequences of size truncation. 

Populations strongly truncated towards smaller individuals were observed in coastal regions of 

likely higher fishing pressure. These truncated populations likely produced several orders of 

magnitude fewer eggs per capita than those with larger, older mature individuals. The result 

was a highly structured population with areas of low reproductive output and areas of higher 

reproductive output in close proximity, or a source-sink population.  

Similarly, the spatial structure of sea perch populations was investigated over larger 

scales. Here, intraspecific differences in morphology, growth, and isotopic signature were 

found among sea perch populations from Otago shelf compared to inner and outer coast regions 

in Fiordland. These results suggested that sea perch formed discrete subpopulations or stocks 

of fish in each region. The spatial population structure was most likely linked to habitat type, 

with distinct morphology, growth and isotopic signature associated with inner fjord and outer 

coastal sites. 

 Further, maternal characteristics of sea perch from the Otago shelf including age, length, 

weight and condition were used to predict oil globule volume, notochord length and growth rate 

of cohorts of larvae. The results indicated that larger, older females produced offspring with 
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larger energetic reserves, and likely better survivorship, than offspring from smaller, younger 

females.  

 The investigations demonstrated important links between size and age structure and 

spatial population structure of two heavily exploited coastal fishes. The results have important 

implications for understanding population dynamics and the likely response of structured 

populations to exploitation or spatial management.  
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General introduction 

With the increasing demand of fish products worldwide, effective management of 

coastal fish populations is vital for long term sustainability of the resource. Therefore, a clear 

understanding of the spatial distribution, size and age structure, and reproductive biology of 

harvested populations is essential. The focus of the present thesis is to understand differences 

in demographics among populations of two exploited coastal fishes, blue cod (Parapercis 

colias) and sea perch (Helicolenus percoides), with distinct differences in life history strategies. 

Resolving spatial patterns in demographics is key to understanding the consequences of harvest 

on population dynamics of marine species, particularly those with relatively limited adult 

dispersal. 

 

1.1 Fish as a resource 

1.1.1 Increased demand 

In 2014, more people than ever rely on fisheries and aquaculture as a source of food and 

income (FAO, 2014). Between the 1980’s and 2012 fisheries production used for human 

consumption increased from 70% to 85% of the total catch (FAO, 2014). More than 50 million 

people worldwide rely directly on fisheries and aquaculture. Global fisheries and aquaculture 

support the livelihood of 10-12% of the human population (FAO, 2014). Fisheries are 

particularly important in developing countries, where this sector may provide up to half of the 

total value of traded commodities (FAO, 2014).  

The Food and Agriculture Organization of the United Nations (FAO) states that global 

marine capture fishery production is stable at about 80 million tonnes of fish in 2012. As global 

human population increases (Gerland et al., 2014), the demand of fish and fish products will 

most likely increase to a point where the demand will be greater than the supply. Currently, 

about 30 % of the wild fish stocks monitored regularly by the FAO are overfished. A stock is 
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generally classified as overfished when their abundance level is lower than the level that can 

produce the maximum sustainable yield (MSY) (FAO, 2014). The trend shows that the 

percentage of overfished stocks is increasing, whereas the percentage of “healthy” stocks is 

decreasing. With the increase of fishing pressure on exploited stocks, effective management 

becomes more important than ever. The management of commercially important species 

requires a robust scientific understanding of the population biology and dynamics of exploited 

stocks. 

 

1.2 Fish population structure 

Commercial fishing can dramatically alter the abundance and size structure of targeted 

species (Hsieh et al., 2006).  Recent statistics from the FAO (FAO, 2014) and other studies 

(Hutchings, 2000; Jackson et al., 2001; Myers and Worm, 2003) demonstrate that many 

commercially important fish populations have been declining during the past 3-4 decades. It 

has long been hypothesised that fishing also influences the phenotype of exploited fish 

populations (Law and Grey, 1989; Law, 2000; Hsieh et al., 2006) and, only relatively recently 

have fisheries managers recognised the relationship between extrinsic mortality, population 

demography and life history for many species. A shift in mortality can drastically influence 

abundance, demographic composition and life history of fish populations (Harvey et al., 2006; 

Levin et al., 2006).  

Fishing has been documented to particularly alter the demographic composition by 

selectively removing older and larger individuals in targeted populations (Longhurst, 1998; 

Marteinsdottir and Thorarinsson, 1998; Law, 2000). An age-truncated population has a 

demographic structure dominated by fewer and younger age classes. The result is a dramatic 

increase in population fluctuations associated with variability in year class strength for the 

resulting smaller number of cohorts making up the population. In unexploited populations a 

broad range of age classes within a population works as a buffer, allowing populations to 
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withstand poor environmental conditions by lowering effects of years of low recruitment on the 

size of the spawning biomass (Beamish et al., 2006). The lack of older and larger individuals 

within an age-truncated population has profound consequences for the reproductive output 

through maternal effects, the non-genetic contribution of the female to offspring conditions 

(Reznick, 1991). Older and larger females have been shown to have longer spawning periods 

(Kjesbu et al., 1996), be more selective for the birthdate of their offspring (Wright and Gibb, 

2005), produce larger and a higher number of eggs (Hislop, 1988; Trippel and Neil, 2004; Hixon 

et al,, 2014), and larvae with larger energetic reserves, which increase chances of survival 

(Berkeley et al., 2004b).  Due to the possible correlation between spawner age and time and 

location of spawning, reducing the age distribution of a population can reduce the spawning 

area and thus decrease the probability of encountering favourable environmental conditions 

needed for larval survival and successful recruitment (Marteinsdottir and Thorarinsson, 1998). 

Consequently, the importance of old, mature individuals in fish populations has gained wide 

appreciation among population biologists (Berkeley et al., 2004b; Sogard et al., 2008; Wing 

and Jack, 2013; Beyer et al., 2015).  

Harvest of marine species is usually size selective, truncating a population towards 

smaller individuals (Fenberg and Roy, 2008). By selectively harvesting larger and older 

individuals of a population, fisheries mortality can result in selective pressure on life history 

traits, resulting in a population with smaller, younger, and earlier maturing individuals 

(Anderson et al., 2008). There is evidence that strong size truncation and a rapid decline in age 

at maturity was associated with the collapse of the Atlantic cod stock off Newfoundland (Olsen 

et al., 2004, 2005). Thus, the truncation of larger size classes can have dramatic consequences 

for the life history traits and demography of a population. Changes to age and size at maturity, 

longevity, fecundity and egg size are the product of both phenotypic and genetic responses of 

populations to high fishing mortality (Law, 2000). Life history traits such as body size, growth 

rate, and age/size at maturity can evolve rapidly in response to harvest mortality (Conover and 
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Munch, 2002; Olsen et al., 2004). Fishery induced changes in life history of a population can 

strongly accentuate the negative impact of harvesting on population abundance. The harvested 

population will experience a reduction in body size and an increased mortality rate. An overall 

increased decline in the survival of individuals of larger sizes can lead to a multitude of 

cascading effects (Fenberg and Roy, 2008). For example, size selective fishing reduces the 

abundance and decreases the number of intraspecific competitors, thereby improving food 

access, resulting in accelerated juvenile growth and a younger age at maturity (Trippel, 1995; 

Law, 2000; Heino and Godø, 2002). Growth typically slows after maturation, therefore 

maturation at a younger age should result in a smaller size at age (Heino and Godø, 2002). A 

smaller size structure of a population can result in lower reproductive output of the population.  

 Historically, it has been assumed that larval output or egg production was directly 

proportional to the biomass of the spawning stock, regardless of the size structure of the 

population. However, size-dependent relationships, with larger females having a geometrically 

greater fecundity, are increasingly recognised for several species, such as multiple rockfish 

species (Sebastes spp.) (Beyer et al., 2015), blue cod (Parapercis colias) (Beer, Wing and 

Carbines, 2013), Icelandic cod (Gadus morhua) (Marteinsdottir and Begg, 2002), and Haddock 

(Melanogrammus aeglefinus) (Trippel and Neil, 2004). Size truncating harvesting practices are 

responsible for the reduced reproductive output in many marine populations worldwide 

(O’Farrell and Botsford, 2006; Venturelli, Shuter and Murphy, 2009). In addition, the size and 

quality of eggs or larvae can increase with female size (Trippel, 1995; Kjesbu et al., 1996; 

Berkeley et al., 2004). For example, older and larger females of the black rockfish (Sebastes 

melanops) produced larvae with larger oil globules than younger and smaller females (Berkeley 

et al., 2004b). Oil globules serve as energy reserves and provide a rich source of energy before 

feeding begins, or a buffer for conditions of low food availability. Larger oil globules can 

enhance the growth rate and survival of larvae, insuring a better chance of recruitment 

(Berkeley et al., 2004b). The fundamental problem is that selective fishing mortality, in addition 
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to removing biomass, truncates the age and size structure of a population and reduces spatial 

distribution of exploited populations (Berkeley et al., 2004; Hsieh et al., 2010). 

 Marine stocks are spatially structured into a collection of local subpopulations within 

an area with movement from one subpopulation to another provided by adult migration or larval 

dispersal (Hanski and Simberloff, 1997). Subpopulations can be well connected to other 

subpopulations, or almost completely isolated with very low dispersal. The degree of isolation 

among subpopulations depends on multiple factors, such as the distance between inhabited 

areas, oceanographic or geographic barriers, larval dispersal, and adult migration patterns 

(Harrison and Taylor, 1997). Each subpopulation can show distinct demographic parameters, 

e.g. variation in reproductive timing, and life history traits, such as size-at-maturity, or growth 

rate (Hsieh et al., 2010). Spatial structure is critical for fish populations to withstand 

environmental variability, as well as local disasters or catastrophes (Berkeley et al., 2004). In a 

population network, when a local subpopulation experiences reproductive failure or high 

mortality due to a local stressor, other subpopulations can provide a source for recolonisation 

(a rescue effect) and sustain the overall population network. Thus population networks, or 

metapopulations are extremely robust in the face of environmental variability or other local 

stressors, but sensitive to global stressors that may affect all the subpopulation in a network. 

 The spatial structure of a population is influenced by limitations on larval or adult 

dispersal resulting in subpopulations with varying degrees of isolation. Differences in vital 

demographic rates, such as growth, mortality and fecundity among subpopulations as a 

consequence of differences in habitat quality or fisheries exploitation can result in strong spatial 

structure among subpopulations (Dunning et al., 1992). The result of the degree of spatial 

structure observed in a population varies among species with different life history strategies, 

particularly differences in dispersal. For example, short-lived species inhabiting pelagic 

habitats have more homogenous, well mixed populations than longer-lived demersal or benthic 
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species with limited adult movement (Ciannelli et al., 2013). The loss of spatial structure due 

to harvesting may cause recruitment failure and further decrease the species spatial abundance. 

Spatial population structure is especially important during spawning season, when 

reproductive individuals aggregate on spawning grounds (Iles and Sinclair, 1982). The 

variability in spatial abundance during spawning can reflect the genetic structure of a 

population. Each subpopulation might be adapted to a different environmental condition, which 

may result in heterogeneous spatial patterns in the life history traits, such as somatic growth, 

age/size at maturation or reproduction phylogeny. Alterations in the spatial structure, such as 

fishing induced depletion, can cause a decrease in the genetic and phenotypic diversity of the 

population. This can have consequences for the variety of ways a population responds to 

environmental or human induced variability in their habitat (Ciannelli et al., 2013).  

Accordingly, a robust scientific understanding of natural and human induced variability 

in population dynamics is essential in order to design effective marine management strategies. 

In this context it is particularly important to preserve multiple subpopulations with potentially 

high reproductive output, ensuring high life history diversity and temporal stability (Jack and 

Wing, 2013). In the case of metapopulations or population networks, a loss of individual 

subpopulations can lessen the possibility of a “rescue-effect” due to reduced dispersal from one 

population to another and relative isolation of the remaining population (Gonzalez et al., 1998). 

This dynamic is very important for understanding how populations can persist under spatial 

management. An understanding of how population size and age structure interacts with the 

spatial distribution of subpopulations is key for estimating persistence of population networks. 

For example, population networks with strong source-sink structure can be vulnerable to 

decline if subpopulations with high reproductive output are removed or depleted (Pulliam, 

1988). For this reason a clear understanding of how differences in local population structure, 

through differences in age or size distribution, influence potential for reproduction is vital for 

effective management of populations.  
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The focus of this thesis is on two species with strong spatial structure, local 

subpopulations of relatively sedentary adults that have distinct links between age and size 

structure and reproductive output. Here differences in life history strategy among species are 

key for understanding the consequences of spatial structure of stocks for population dynamics. 

  

1.3 Marine Management 

Many management authorities seek to control stock level by setting a total allowable 

catch (TAC) for the year and close the fishery when the year’s cumulative catch has reached 

the TAC. In addition, there may be restrictions on fishing gear, season, and areas (Beddington 

et al., 2007). These methods can maintain a stock level above the MSY, however, if the TAC 

and the science behind it are not respected or understood by fisherman and not adequately 

enforced by authorities, illegal fishing and overfishing can occur. 

 Unintended consequences of fishing, such as habitat destruction, mortality of non-target 

species, and shifts in population demographics have increasingly been recognized (Pikitch et 

al., 2004; Worm et al., 2009).  Organisations like the FAO have recommended ecosystem-based 

fishery management (EBFM). Here, the overall objective is to sustain and support a healthy 

marine ecosystem and fishery by avoiding degradation of ecosystems, minimizing the risk of 

irreversible changes to species and ecosystem processes, obtaining and maintaining long-term 

socioeconomic benefits without compromising the ecosystem, and generating knowledge of 

ecosystem processes (Pikitch et al., 2004). 

Marine protected areas (MPAs) are now considered a major tool for biodiversity 

conservation and fisheries management (Quinn et al., 1993). They became the central model 

for ecosystem based management. The International Union for Conservation of Nature and 

Natural Resources (IUCN) defined MPAs as “any area of intertidal or subtidal terrain, together 

with its overlying water and associated flora, fauna, historical and cultural features, which has 

been reserved by law or other effective means to protect part or all of the enclosed environment” 
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(Kelleher and Kenchington, 1991). In order to select appropriate areas for MPA designation, an 

understanding of the spatial and temporal structure of populations is needed. However, 

uncertainties in the designation of MPAs remain as biodiversity status, threats and constraints 

linked to human use are often unclear (Pelletier et al., 2008). Some authors argue that MPAs 

should not be considered as a solution to all fisheries problems (Hilborn et al., 2004; Kaiser, 

2005), whereas others claim that the global decline in fish stocks could be reversed by large-

scale networks of marine reserves (Gell and Roberts, 2003).  A key issue relevant to this 

scientific debate is how natural or manipulated patterns in spatial structure of fish populations 

respond to spatial management of fishing pressure. 

 

1.4 Study species 

1.4.1 Blue cod  

Blue cod or Raawaru (Parapercis colias, Forster 1801) is a temperate reef fish endemic 

to New Zealand waters, found from the Three Kings Island in the north to the Snares Islands in 

the south (Francis, 2001). It is not a true cod, but a sandperch of the marine family 

Pinguipedidae. In the South Island of New Zealand, blue cod is one of the most important 

inshore commercial and recreational fish species (Carbines, 2004). 

Blue cod is distributed throughout New Zealand from the shore to the shelf edges, 

commonly found on reef edges with nearby gravel or sand, in waters up to 150 m deep (Mutch, 

1983; Carbines, 2004). There are reported catches from depths to around 360 m (Warren et al., 

1997). Blue cod seem to be associated with macro-algae (Mutch, 1983), however it is unknown 

if this relationship is due to their physical nature or through the abundance of prey items 

(Carbines, 2004).  

These fish are a relatively short ranging, bottom feeding, opportunistic carnivores, 

mainly feeding on small fish, crabs, and shellfish (Mutch, 1983; Jiang and Carbines, 2002). 

Male blue cod have been observed to be territorial by defending large but loose territories 
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(Mutch, 1983), which has been recorded for other species of the Pinguipedidae family. The size 

of the territory tends to increase with the male size. Blue cod live in harem groups. The territory 

of one male provides habitat for three to five females, depending on male and territory size. 

Home ranges of adult and juvenile blue cod seem to overlap without aggressive behaviour, 

which is possibly because of the dietary differences between adult and juvenile fish (Mutch, 

1983; Jiang and Carbines, 2002; Carbines, 2004). 

Movement patterns of blue cod are still poorly understood. Through tagging and stable 

isotope experiments, movements of inshore fish have been documented. Findings suggest that 

adult blue cod are relatively sedentary with small home ranges (Rodgers and Wing, 2008). For 

example (Cole et al., 2000) found that 75% of tagged blue cod were resighted within 100 m of 

the release site. Mace and Johnston (1983) reported a mean travelled distance of 7.6 km for 

blue cod in the Marlborough Sounds, with some individuals that moved up to 42.7 km. They 

also suggested that smaller fish are more migratory than larger blue cod. However there are 

different conclusions about size dependent movement patterns (Rapson 1965 in Carbines 2004).  

Similar to their movement patterns, there is little information available about blue cod 

spawning and breeding behaviour despite studies over several decades (Rapson, 1965; Mutch, 

1983; Pankhurst and Conroy, 1987; Pankhurst and Kime, 1991; Carbines, 2004; Beer et al.,  

2013). Blue cod have been documented as batch-spawning (Mutch, 1983; Pankhurst and 

Conroy, 1987; Pankhurst and Kime, 1991; Carbines, 2004), protogynous hermaphrodites, 

however transitional gonads have rarely been observed (Mutch, 1983; Carbines, 2004). 

Spawning occurs over an extended period of time from June to January with later spawning 

southern populations (Beer et al., 2013). Not only does the southern population seem to be 

spawning later, but also for a longer period of time than populations around the North Island 

(Beer et al., 2013). Robertson (1973) provided some evidence for spawning aggregation of blue 

cod to offshore areas in Otago.  
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Blue cod is widely considered one of the most important commercial and recreational 

fish in New Zealand, particularly in the South Island with areas like the Marlborough Sounds, 

Canterbury, Otago and Stewart Island being of note. Commercially, it is mainly caught with 

cod pots. Recreational fishers use hook and line, nets, cod pots and sometimes spears. Blue cod 

fishery in New Zealand has a long history with landings of up to 3000 tonnes reported in the 

1930s (Ministry for Primary Industries, 2014a). To manage the blue cod fishery, eight separate 

fisheries management areas (FMAs) have been determined (Figure 1. 1).  In 2012 the total 

allowable commercial catch has been lowered from 2,680 tonnes to 2,332 tonnes per year. Since 

then reported catches have been stable, varying between 2,217 and 2,176 tonnes.  

In 2012 approximately 300 tonnes of blue cod were caught by recreational fishers. At 

least 70% of these were caught in South Island waters (Ministry for Primary Industries, 2014a). 

Main methods to control recreational harvests of blue cod are minimum legal size limits (MLS), 

a slot limit on size, method restrictions, and maximum daily bag limits (MDL). Both MLS and 

Figure 1. 1 Blue cod fisheries management areas (FMA) defined by the New Zealand quota management system 

in 1986 
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MDL have changed over time and vary by FMA. Aspects of the biology of blue cod, such as 

longevity and slow growth, are making this species vulnerable to exploitation. In the 

Marlborough Sounds, especially, there has been concern about the sustainability of the blue cod 

fishery. It is now treated as a single management unit and is subjected to annual closure from 

September 1st to December 19th, coinciding with the spawning season of blue cod, a new MLS 

of 33 cm replacing the slot rule and a MDL of 2 fish (Ministry for Primary Industries, 2015).  

 

1.4.2 Sea perch 

Sea perch (Helicolenus percoides, Richardson & Solander 1842) belong to the 

Sebastidae family and are found throughout New Zealand from depths less than 5 m to over 

1000 m on the continental shelf and slope, including the Challenger Plateau and Chatham Rise. 

Sea perch is known under many different common names including Jock Stewart, Red Gunard 

perch, and Ocean perch. It is less commercially important than blue cod, however due to 

relatively high recreational catches its popularity is increasing.  

 Sea perch is distributed around the New Zealand mainland but is most abundant off the 

South Island east coast, Chatham Rise, and southern Australia, with the highest abundance 

between 100-700 m water depths (Anderson et al., 1998). In previous years it was believed that 

there was a deepwater species, Helicolenus barathri, in New Zealand waters. There still are 

conflicting opinions, whether there are one or more species of the genus Helicolenus in New 

Zealand waters (Paul and Horn, 2009; Smith et al., 2009; Morrison et al., 2014). Because of 

these confusions, there is limited information on the biology of sea perch and further research 

into the taxonomy of Helicolenus species is necessary.  

 Sea perch are bottom-dwelling fish that inhabit a wide range of habitat types, including 

rocky reefs, but also flat, open seabed. In the Fiordland region sea perch are often found resting 

on rocky ledges (Morrison et al., 2014). They are benthopelagic, omnivorous ambush predators 

feeding on fish, pyrosomes, crabs, cephalopods, and shrimps (Bulman et al., 2001). Changes of 
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prey type with size have been observed. The single most important prey type for sea perch 

smaller than 20 cm seems to be crabs. With increasing fish size, crabs are replaced with 

tunicates and fish. There is low dietary overlap between sea perch smaller than 20 cm and larger 

than 30 cm (Blaber and Bulman, 1987). The extensive depth range and variability in habitat 

suggest that sea perch are a highly adaptable species (Paul and Horn, 2009). 

 Sea perch are considered slow-growing, long-lived, and late maturing fish. There appear 

to be differences in growth and maximum age between sexes and regions. Paul and Horn (2009) 

investigated growth and age of sea perch from the east coast of the South Island and Chatham 

Rise. They found that for both areas, males tend to grow slightly faster and to a larger size than 

females with a lower maximum age recorded for the east coast of the South Island. Differences 

in age at different locations might indicate heavier exploitation of one population than the other 

or migration of older fish (Paul and Horn, 2009). Long lived species tend to have a low level of 

productivity, making them more vulnerable to overfishing. Massutı ́et al. (2000) attributed these 

differences to the high energetic requirements of viviparous reproduction. Sea perch are live-

bearing fish, releasing approximately 80,000 free embryos or larvae (Pavlov and Emel’yanova, 

2013). Male gonads ripen first and fertilise the females internally. There may be a delay before 

the female gonads begin enlarging as the oocytes develop into eyed larvae (Paul and Francis, 

2002). Females are shown to have ripe gonads with eyed larvae in December-January, whereas 

males appear to have recovering gonads at this time of the year (Morrison et al., 2014).  

Sea perch was introduced into the QMS in 1998 even though there is no targeted sea 

perch fishery in New Zealand. The current TACC is 2190 tonnes per year, however since 2005 

the reported annual catch has not exceeded 1500 tonnes. Only a very small amount of this catch 

was landed for local sale (Ministry for Primary Industries, 2014b). Catches are also made by 

foreign vessels, but were largely unrecorded and the majority were most likely discarded. About 

75 % of New Zealand’s landed sea perch is caught as bycatch in trawl fisheries off the east 

coast of the South Island (Ministry for Primary Industries, 2014b). Sea perch is a rarely targeted 
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fish by recreational fishers, however they are widely caught as bycatch. Often they are used as 

bait but many are likely to be discarded. However, in the past years, the quality of sea perch as 

an eating fish has been increasingly recognised (Ministry for Primary Industries, 2014b).
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1.5 Thesis aims  

Little is known about the spatial population ecology and biology of blue cod and sea 

perch, however to sustainably manage any fin fish population it is crucial to know how size and 

age structure, growth rate, age at maturity and the species reproductive biology interact with 

spatial distribution of the species. The present study aims to resolve spatial scale patterns in 

populations of blue cod and sea perch to identify potential differences in reproductive biology, 

maternal investment and population structure. 

 

1.5.1 Population structure of blue cod  

The east Otago coast has long been exposed to high fishing pressure, influencing the 

spatial population structure of marine fishes. Natural or human induced variability in the 

population structure may have an influence on growth, maturation schedule, productivity and 

recruitment success of a population. The aim of Chapter 2 is to identify the size structure, 

weight-length relationship and isotopic signature of different on- and offshore populations of 

blue cod (Parapercis colias) along the east coast of Otago. The chosen sites are exposed to 

different levels of fishing pressure and represent distinctly different habitats from coastal kelp 

forest to offshore bryozoan reefs and rock outcrops. Size and weight data were used to model 

the potential fecundity of the different populations, using batch fecundity estimations for 

different sized blue cod from Beer, Wing and Carbines (2013). The hypotheses are (1) the size 

frequency distributions differ among on- and offshore habitats, with larger fish being further 

offshore as fishing pressure decreases. (2) Due to differences in size distribution among the 

sites, fecundity estimates differ significantly among populations with the offshore population 

being more potentially fecund than the onshore population. (3) The on-and offshore populations 

differ in their isotopic signature due to differences in the mix of basal organic matter sources 

supporting the food web and variability in niches among subpopulations of blue cod.  
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1.5.2 Subpopulations of sea perch within the South Island of New Zealand 

Differences in habitat and environmental conditions can lead to intraspecific 

differences, e.g. growth rate, age/size at maturation or morphology due to local adaptions, even 

on a relatively small spatial scale (<10 km). Recent evidence demonstrates that there are 

biologically discrete sea perch (Helicolenus percoides) populations within different fjords in 

New Zealand’s Fiordland (Lawton, Wing and Lewis, 2010). Spatial variation in growth 

trajectories, longevity and morphological differences between subpopulations can and have 

been used as effective proxies for population isolation. In Chapter 4 growth rates, morphology 

and isotopic signatures are compared among sea perch from three different regions; the inner 

and outer Fiordland regions and the offshore habitats on the Otago shelf. The hypothesis tested 

here is that sea perch from the different regions will differ in growth and morphology. Further, 

these differences are likely due to environmental differences among habitats, acting on the 

phenotype of sea perch subpopulations. 

  

1.5.3 Maternal investment in sea perch 

Currently there is limited information on the reproductive biology of sea perch. 

Berkeley, Chapman and Sogard (2004) have shown a positive relation between maternal age 

and larval growth for the black rockfish (Sebastes melanops), a close relative to the New 

Zealand sea perch. There is growing evidence that older, larger fish produce higher quality 

offspring, i.e. larvae that survive starvation longer, due to larger energetic reserves from oil 

globules, or larvae that grow faster. Chapter 5 investigates maternal investment of sea perch, 

asking the question whether larval size, oil globule volume and condition are related to maternal 

traits such as age, size, condition and liver index. It is hypothesised that the notochord length, 

oil globule volume and general condition of offspring from older and larger females will be 

greater than those of younger, smaller females of lower condition.
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Size frequency distribution: Biological consequences for a size 

truncated blue cod (Parapercis colias) population 

 

 

  

 

Juvenile blue cod (Parapercis colias)                     Photo: S. Wing 



Chapter 2 Size frequency  Introduction 

17 

 

2.1 Introduction 

The current paradigm in fishery management promotes size selective harvesting to 

protect the youngest fish to let them grow and reproduce at least once before being harvested. 

Accordingly, high fishing mortality causes a reduction or removal of larger (older) size (age) 

classes, thereby truncating the size structure of fish stocks towards an increased relative 

abundance of smaller individuals (Berkeley et al., 2004). Understanding the size structure of 

fish populations is important, because growth, reproduction, mortality, and recruitment are all 

size dependent processes (Choat et al., 2006). Some fisheries now introduce methods to avoid 

size selective harvesting, due to potentially drastic consequences of altering the size structure 

of a population. Here management measures have been initiated to protect larger and older 

individuals as well as the protection of small size classes (Brunel and Piet, 2013). Changes in 

the size structure of a population can be an early indicator for overexploitation (Fitzhugh et al., 

2012; He et al., 2015). Monitoring length-frequency distributions and calculating growth rates 

can be useful tools to manage fish populations by indicating the population’s response to 

depletion. 

Changes in the size and age structure of a population can have profound impacts on the 

dynamics of the whole population (Rouyer et al., 2011; Brunel and Piet, 2013). Recently it has 

been more explicitly recognised that the makeup of the spawning population is as important as 

the population’s total biomass in determining the stocks reproductive potential (Marteinsdottir 

and Thorarinsson, 1998; Rijnsdorp et al., 2010), and hence influences recruitment of new 

cohorts. As a result of the lower quality and quantity of the eggs of smaller fish, recruitment 

success of an age and size truncated population is highly sensitive to short-term environmental 

changes (Berkeley et al., 2004b; Wright and Trippel, 2009). For example, a balanced size and 

age structure within a population can act as a buffer against unfavourable environmental 

conditions by compensating for lost or reduced cohorts in the age structure. Removal of older, 

larger individuals increases the populations sensitivity to environmental changes, because 
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reproduction becomes dependent on a fewer number of cohorts (Hidalgo et al., 2011). Larger, 

older, and experienced spawners have higher reproductive value than those which are young, 

small and inexperienced (Solemdal et al., 1995; Trippel et al., 1997; Marteinsdottir and 

Steinarsson, 1998; Berkeley et al., 2004b). Accordingly, because of higher quality eggs, older 

and larger individuals of a population potentially increase the survival rate of larvae under 

unfavourable environmental conditions (Berkeley et al., 2004b; Hsieh et al., 2010).  

There is evidence that larger fish are able to select for a spawning time and location that 

may enhance survival of young (Berkeley et al., 2004b; Wright and Gibb, 2005). These effects 

are known as bet-hedging strategies and is the concept of “big old fat fecund female fish” 

(BOFFFF) (Longhurst, 2002; Berkeley et al., 2004; Berkeley et al., 2004b; Hixon et al., 2014). 

The association between bet-hedging and age structure is often referred to as maternal effects 

in fishes (Hsieh et al., 2010). Selective harvesting practices may undermine the bet-hedging 

effect and therefore reduce overall reproductive output. Nevertheless, due to the better market 

price it is typically the large (old) fish that are targeted and preferred by commercial and 

recreational fisherman (Berkeley et al., 2004).  

Spatial distribution, in addition to the size and age structure of a population, is an 

important component of population structure needed to withstand the detrimental effects of 

environmental variability and fishing induced mortality. Fish species are often distributed as 

population networks or meta-populations with relatively sedentary adults, separated into a set 

of subpopulations connected via larval dispersal (Kritzer and Sale, 2004). Each of these 

subpopulations can have distinct demographic parameters, e.g. reproduction time and location, 

size/age-at-maturity, or size frequency (Hanski and Simberloff, 1997; Smedbol and 

Wroblewski, 2002). If some subpopulations encounter reproductive failure due to unfavourable 

environmental conditions, subpopulations in other locations may succeed and sustain the wider 

population network. The metapopulation concept has long been recognised in terrestrial 

systems, however due to lack of knowledge of dispersal pathways for both adults and larvae it 
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has been only relatively recently appreciated in the marine environment (Kritzer and Sale, 

2004). For example, tagging studies on cod (Gadus morhua) demonstrated distinct spawning 

fidelity and homing behaviour, reinforcing the evidence for spatial population structure in this 

species (Wright et al., 2006; Svedäng et al., 2007). Studies such as this have revolutionised our 

concept of marine populations, from assumptions of a “dynamic pool” of individuals to a 

modern view of “population networks” with distinct spatial structure.  

Development of environmental chemistry techniques such as resolution of the stable 

isotopes of nitrogen and carbon have shed new light on migratory patterns in fish populations. 

Differences in food sources in particular habitats will result in distinct δ15N and δ13C (DeNiro 

and Epstein, 1978, 1981). For example, Lawton et al. (2010) used stable isotope signatures to 

determine discrete subpopulations of sea perch (Helicolenus percoides) among different fjords 

in Fiordland, New Zealand. The stable isotope signature of a consumer’s tissue provides 

information on their diet, their potential habitat and migratory behaviour, potentially even on a 

small scale (<50 km). 

The blue cod (Parapercis colias) fishery is one of New Zealand’s most important 

commercial and recreational fisheries. This temperate reef fish is endemic and distributed 

throughout New Zealand from the shore line to the shelf edges. Movement patterns and 

population structure of blue cod are still poorly understood. Tagging experiments of blue cod 

suggest that the majority of adults are relatively sedentary with small home ranges. For example 

Carbines & Mckenzie (2001) found that 60.2% of tagged blue cod in Foveaux Strait moved less 

than 1 km within two years, with a maximum travel distance of 156.1 km observed for a single 

individual. Within a study period of three years Mace & Johnston (1983) found that 74% of the 

tagged blue cod in the Marlborough Sounds travelled less than 1 km, the maximum travel 

distance of an individual was 42 km.  
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In fisheries, management is often based on the harvestable biomass rather than 

population demography. It is assumed that each kilogram of spawning stock biomass is 

identical, well mixed over the fishery area, and that all eggs and larvae are of the same quality, 

regardless of maternal characteristics. Recent research suggests these assumptions are violated 

for a variety of commercially important fishes, including New Zealand’s blue cod. The aim of 

the present study was to understand the small scale population structure of blue cod along the 

coast of Otago, New Zealand. The east Otago coast has long been exposed to high commercial 

and recreational fishing pressure, potentially causing high variability in the population structure 

of blue cod. The present chapter aimed to identify the size structure, weight-length relationships 

and isotopic signatures of blue cod from five different regions, which are likely exposed to 

different levels of fishing pressure. Using batch fecundity data from Beer et al. (2013), potential 

fecundity for the different regions was estimated. The hypotheses were that (1) the size 

frequency distribution differed among on- and offshore habitats, with larger fish being further 

offshore as fishing pressure decreases, (2) due to differences in size distribution among the 

regions, potential fecundity was predicted to differ among populations with the offshore 

population being more fecund than the onshore population. Finally, (3) the on-and offshore 

populations differ in their isotopic signature due to differences in the basal organic matter 

supporting the food web and/or trophic positions of individuals. 

. 
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2.2 Materials and methods 

2.2.1 Sampling  

Blue cod were sampled along the east Otago coast from Cape Saunders (Otago 

Peninsula) to Shag Point. The coastline was divided into three zones: onshore, offshore 

(3 nautical miles off the coast) and canyon (canyon heads of the Karitane Canyon) (Figure 2. 

1). The three zones were divided into five regions; Tow Rock offshore, Danger Reef offshore, 

Karitane Canyon offshore and Tow Rock onshore and Blueskin Bay onshore. To sample blue 

cod a combination of modified commercial cod pots (fine gage mesh, 20 mm) and hook and 

line fishing was used.  

 A total of 656 blue cod were sampled, with 61 at the Canyons, 230 at Tow Rock 

offshore, 48 at Danger Reef offshore, 192 at Tow Rock onshore and 125 at Blueskin Bay 

onshore. Total length (TL ± 1 mm) of each fish was recorded. The majority of blue cod sampled 

were released alive, however subsamples where kept for weight-at-length analysis and stable 

isotope analysis. Blue cod that were kept for further analysis were humanely euthanized using 

the Iki-method (Close et al., 1997) under University of Otago ethics protocol ET77/15. 
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Figure 2. 1 Otago Peninsula and the East Otago coast with sampling sites. Green ellipses show the onshore 

regions, grey circles = Tow Rock onshore, black circles = Blueskin Bay onshore; Blue ellipses show the 

offshore regions, grey squares = Tow Rock offshore, Black squares = Danger Reef offshore; Red ellipse 

showe the Karitane Canyon region (grey triangles) 
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2.2.2 Length-frequency distribution 

To estimate the length-frequency distribution for each region, the blue cod sampled 

were measured to the nearest millimetre and released alive. The length structure of blue cod 

sampled at the five regions was compared visually by plotting 20 mm binned length-frequency 

histograms.  

A Kolmogorov-Smirnov (K-S) approximate test was conducted to compare size-

frequency distributions statistically (Sokal and Rohlf, 1981). The K-S test has the null 

hypothesis that two samples are identical in their distribution and sensitive to differences in 

location, dispersion and skewness.  

The difference between distributions was calculated as: 

𝑑 =  |
𝐹1

𝑛1
−

𝐹2

𝑛2
| 

Where:  

d = the calculated value of the difference between two distributions 

n1 and n2 = the sample size of sample 1 and 2 

F1 and F2 = the cumulative frequencies for samples 1 and 2 

 

This calculated value for d was then compared to a critical value D: 

𝐷𝛼 =  𝐾𝛼√
𝑛1 +  𝑛2

𝑛1 ×  𝑛2
 

𝐾𝛼 = √
[− ln (

𝛼
2

)]

2
 

Where: 

α = the significance level (i.e. 0.05) 

n1 and n2 = the sample size of sample 1 and 2 

 

Two distributions are considered significantly different in their shape when d > D0.05. 
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2.2.3 Batch fecundity 

Total length and wet weight were recorded for all females before the ovaries were 

removed carefully, without rupturing the ovarian membrane. The ovaries were stored in 

individually labelled pots and fixed in 2% seawater buffered formalin, a concentration that has 

been shown to ensure proper oocyte fixation with minimal changes in the oocyte size and 

appearance (Lowerre-Barbieri and Barbieri, 1993)  

 In the laboratory, the ovaries were removed from the formalin, sieved over a 100 µm 

mesh sieve and rinsed 3 times in tap water before being transferred to a 70% ethanol solution. 

The removal from formalin was required under laboratory protocols. All ovaries in this study 

were treated similarly to ovaries in Beer et al., (2013) to allow comparison.  

 Fecundity was estimated using the gravimetric method. Four subsamples of 0.03-0.05 g 

were taken from the left ovarian lobe. Subsamples were weighed to the nearest 0.001g, 

transferred into Eppendorf tubes containing distilled water and shaken gently to release all 

oocytes from the ovarian lumen. Subsamples 1 and 2 were analysed using a Bogorov counting 

tray under a dissecting microscope. The number of hydrated oocytes, recognisable by their size, 

transparency and large yolk sac, was recorded. Batch fecundity (F) was calculated: 

𝐹 =  𝐹𝑠  ×  
𝑊𝑂

𝑊𝑆
 

Where: 

FS is the number of hydrated oocytes in the subsample 

WO is the ovary weight 

WS is the subsample weight 

  

The mean fecundity and standard deviation of subsamples 1 and 2 were calculated and 

used to determine the coefficient of variation (CV). If this exceeded 5% subsamples 3 and 4 

were analysed. Further sets of subsamples were taken until the CV was <5%. Fecundity was 
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regressed against length (mm) and weight (g). The relationship was best described by a power 

function. Batch fecundity for populations at the different regions was calculated with size and 

weight measurements. 

Cumulative fecundity for each region by adding individual fecundity estimations for a 

hypothetical population of 125 individuals. Here fecundity in relation to body length was used 

to calculate the cumulative fecundity (the sum of the individual fecundity estimations) per 

sampled region. For better comparison among regions, the cumulative fecundity for a 

hypothetical population of 125 individuals was calculated as: 

𝐶𝑉125 = 𝐶𝑉 × (
125

𝑛
) 

Where: 

CV125 is the cumulative fecundity for a hypothetical population of 125 individuals 

CV is the cumulative fecundity for the sampled region 

N is the number of sampled individuals per region 

 

 

2.2.4 Stable isotope analysis 

Dorsal muscle tissue samples (c. 1 cm2) were taken from behind the head of each fish. 

The samples were rinsed in deionised water and transferred in sterile 2 mL Eppendorf tubes. 

Dorsal muscle tissue has been shown to be the least isotopically variable (Pinnegar and Polunin, 

1999). The samples were oven dried at 70°C for 48 hours. When fully dried, the samples were 

ground to a fine powder, using mortar and pestle, which were rinsed with deionised water and 

dried with lint-free tissue between each sample. Lipids, which are in relatively low 

concentration in muscle, have no significant effect on δ13C for blue cod and do not need to be 

removed prior to stable isotope analysis (Rodgers and Wing, 2008). Samples of 0.1 mg were 

weighed into 5x3.5 tin capsules (Elemental Analysis Ltd.). Analyses were conducted by 

IsoTrace Research (Department of Chemistry, University of Otago, Dunedin, New Zealand) 
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using a Europa Hydra continuous flow isotope ratio mass spectrometer coupled to a Carlo Erba 

NC 2500 elemental analyser. The natural isotope abundance of 13C and 15N were expressed in 

δ notation (Peterson, 1999; Fry, 2006).  

 

2.2.5 Statistical analysis 

One-way analysis of variance (ANOVA) in combination with post-hoc Tukey’s HSD 

tests were used to determine significant differences in size frequency distributions, weights, 

fecundity, and isotopic signatures (δ15N and δ13C) among the different sites nested within 

regions. All statistical tests were performed using JMP Pro 11 (SAS Institute Inc., Cary, NC, 

1989-2007) using the general linear model “fit model” platform. 

 Principal coordinate analysis (PCO) was used to generate an unconstrained ordination 

to visualise multivariate structure within the data sets. The percentage of variation explained by 

each PCO axis provided an indication of the ability of the ordination to capture multiple 

dimensional patterns in the data. Analyses were performed using PERMANOVA + PRIMER 

v6. 
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2.3 Results 

2.3.1 Size-frequency distribution 

The size-frequency histograms (Figure 2. 2) illustrate the relative size distributions of 

blue cod populations among different regions. A K-S test found significant differences in the 

size-frequency distributions among regions, with the exception of the offshore canyon and Tow 

Rock onshore region (Table 2. 1).  

Frequency histograms for both onshore regions are skewed to the left, showing a larger 

frequency of small sized blue cod in these regions. Blue cod sampled in Blueskin Bay (n = 125) 

had the smallest average size (305 ± 4.35 mm), with 57% of the population being smaller than 

310 mm. No fish larger than 410 mm was sampled in this region. A majority of blue cod 

sampled in Blueskin Bay occurred in size class 320-339 mm with 18.4 % of the population in 

this size range (Figure 2. 2a). The Tow Rock onshore population (n = 192) had the second 

smallest average size (336 ± 3.51 mm). The size distribution of this onshore population was 

significantly different to the other four populations (Table 2. 1), with a peak of 17.2 % of the 

sampled fish in size class 320-339 mm. The maximum size of blue cod sampled here was 

445 mm (Figure 2. 2b).  

The Karitane Canyon population (n = 61) had an average size of 340 ± 6.23 mm (Figure 

2. 2e). The smallest fish in this area were in size class 220 mm, and the two largest blue cod 

were sampled in this region (530 mm and 550 mm), showing a wide range of different sizes 

within the population. The histogram shows a peak in the 300 and 360 mm bin, with 18% of 

individuals in this size ranges. The Tow Rock offshore region (n = 230) showed a peak at the 

340 mm bin, with 20% of the population being between 320 and 339 mm in length. The average 

size in this offshore region is 358 ± 3.21 mm, with more than 46% of the population being 

larger than the average size. The largest fish sampled in this region were 450-475 mm in length 
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(Figure 2. 2d). Size classes observed in the Danger Reef offshore region (n = 48) ranged from 

220-520 mm, however only 4% of the population were smaller than 300 mm and no fish were 

observed between 240 and 300 mm. The average size in this region was 378 ± 7.02 mm, with 

66% of the population being larger than the average size. Largest fish sampled in this region 

ranged between 440 and 530 mm. The peak in size in the Danger Reef offshore region was in 

the 380-399 mm bin, with 20.8 % of the sampled fish (Figure 2. 2c). 

An analysis of variance confirmed significant differences in the mean size among the 

regions sampled (one-way ANOVA; F4 = 31.719; p < 0.001). The post-hoc Tukey’s HSD test 

demonstrated that the size distribution of the blue cod population from the Danger Reef offshore 

region was significantly different from the size distribution in the two onshore regions 

(Blueskin Bay and Tow Rock onshore) and from the population from the offshore canyon 

region, but similar to the size distribution of the population from the Tow Rock offshore region 

(Figure 2. 3). Moreover, the size distribution of the blue cod population from the Tow Rock 

offshore region was similar to the distribution at the offshore canyon region, but significantly 

different to the distribution observed from the two onshore regions. Due to the larger amount 

of smaller blue cod sampled in the offshore canyon region, there was no significant difference 

between the size frequency of this population and the size frequency in the Tow Rock onshore 

region. A significant difference in size frequency was observed between the populations from 

the canyon region and the Blueskin Bay onshore region. Size frequency of the blue cod 

population from the Blueskin Bay onshore region was significantly different, with a large 

proportion of small individuals, from distributions observed at the four other regions (Figure 2. 

3). 
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Figure 2. 2 Relative size-frequency distribution (%) among different regions along the east Otago coast. Average 

length for each region is given 
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Table 2. 1 K-S test results comparing size distribution among regions. Significant differences are in bold. Results 

are significant when the calculated value for D is larger than the critical D value.  

 

 

 

 

 

 

 

 

 

 

 

Table 2. 2 Results for one-way Analysis of variance for differences in size among site nested with regions. 

Significant results are in bold 

 

 

 

 

 

 

 

 

Region pair Dcalc D0.05 D0.01 p-value 

Tow Rock offshore vs. Canyon offshore 0.227 0.195 0.234 0.05 

Tow Rock offshore vs. Blueskin Bay 0.419 0.151 0.181 0.01 

Tow Rock offshore vs. Danger Reef 

offshore 

0.266 0.215 0.258 0.01 

Tow Rock offshore vs. Tow Rock onshore 0.175 0.132 0.159 0.01 

Shag point offshore vs. Canyon offshore 0.338 0.262 0.314 0.01 

Shag point offshore vs. Blueskin Bay 0.575 0.231 0.276 0.01 

Shag point offshore vs. Tow Rock 

onshore 

0.416 0.219 0.262 0.01 

Canyon offshore vs. Blueskin Bay 0.275 0.212 0.254 0.01 

Canyon offshore vs. Tow Rock onshore 0.087 0.199 0.239 > 0.05 

Blueskin Bay vs. Tow Rock onshore 0.255 0.156 0.187 0.01 

Test df Sum of 

Squares 

Mean 

Square 

F-ratio p-value 

Size vs. 

Site[Region] 

 

4 

 

300805.1 

 

75201.3 

 

31.719 

 

<0.001 
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Figure 2. 3 Average size among regions (± standard error) with results of post-hoc Tukey's HSD test. Levels not 

connected by the same letter are significantly different. The y-axis is scaled between 300 and 400 mm 
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2.3.2 Length-Weight-Relationship 

The length-weight relationship of blue cod fits a power function W = aLb, where W = 

weight (g), L = total length (mm), and a and b are constants, determined by fitting a line to the 

measured weight and length values (Figure 2. 4). Values of b were relatively close to 3, a typical 

length to volume conversion, but ranged from 2.647 for blue cod from the offshore canyon 

region to 3.271 for blue cod from the onshore Tow Rock region (Table 2. 3). A one-way 

ANOVA showed significant differences in the weight distribution among regions (one-way 

ANOVA; F3 = 36.798, p < 0.001) (Table 2. 4). 

The post hoc Tukey’s HSD test showed that weight-length relationship in the Tow Rock 

offshore region is significantly different to the three other regions, so is the Blueskin Bay 

onshore region. No differences was found between the offshore Karitane canyon region and the 

onshore Tow Rock region (Figure 2. 5).  

 

Figure 2. 4 Length-weight relationship for blue cod sampled at four different regions at the east Otago coast. The 

relationships equals a power function y = a*xb 
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Table 2. 3 Length-Weight relationship as power function for blue cod sampled at four different regions. Estimated 

parameters (± SE) for ln transformed weight (W) data in relation to length (L) are given (L = a*ln(W)+b) 

   Parameters for lin. 

reg. model 

Region Equation          r2      a 

(±SE) 

   b 

(±SE) 

Tow Rock offshore W = 0.000072 * L 2.733 0.83  0.0078 

±0.00048 

3.703 

±0.19 

Offshore Karitane Canyon W = 0.000119 * L 2.647 0.78  0.0083 

±0.00069 

3.484 

±0.23 

Blueskin Bay onshore W = 0.00000553 * L 3.183 0.89  0.0108 

±0.00034 

2.758 

±0.11 

Tow Rock onshore W = 0.00000283 * L 3.271 0.97  0.0092 

±0.00034 

3.134 

±0.117 

 

Figure 2. 5 Mean weight (± SE) at the different regions with results of post-hoc Tukey's HSD test. Levels not 

connected by the same letter are significantly different. The y-axis is scaled between 400 and 700 g 

 

Table 2. 4 Results for ANOVA for differences in weight among the different regions. Significant results are in 

bold 

 

 

 

 

Test df Sum of 

Squares 

Mean 

Square 

F-ratio p-value 

Weight vs. 

Site[Region] 

 

3 

 

4876421 

 

1625474 

 

36.798 

 

<0.001 
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2.3.3 Batch fecundity 

Estimated fecundity for the three females in this study varied from 441 eggs for the 

smallest female (305 mm, 435 mg), 31,938 eggs for a 367 mm female (764 mg) and 39,803 for 

the largest female (387 mm, 1026 mg).  

 To increase sample size and for better fecundity estimates data from Beer et al., (2013) 

were combined with data from the present study. The relationship between fecundity and 

maternal characteristics (size and weight) is best described by a power function (Table 2. 5). 

However, r2 values are relatively low, which is most likely due to the low sample size (n = 19), 

and variability associated with the gonad maturation cycle. It is important to note that due to 

the small sample size all of the following results should be viewed with some caution, and 

significant gains in accuracy might be gained with an increased sample size (see “future work” 

Chapter 5).  

 Using the equations from Table 2.5 an estimate of potential fecundity of blue cod was 

calculated for the different regions in the present study. The highest mean fecundity, when 

calculated with size, was found for the offshore regions led by the Danger Reef offshore region 

(8,239.1 ± 1,060.3 hydrated oocytes per individual (HO indiv-1)) followed by the offshore 

Karitane Canyon region (6,260.3 ± 940.5 HO indiv-1) and the Tow Rock offshore region 

(4,810.3 ± 484.4 HO indiv-1). Lowest mean fecundity was calculated for the onshore regions 

with 3,215.2 ± 530.1 HO indiv-1 and 1,580 ± 657.0 HO indiv-1 for Tow Rock onshore and 

Blueskin Bay onshore, respectively (Figure 2. 7).  

A one-way ANOVA demonstrated significant differences among regions (One-way 

ANOVA, F4 = 10.038, p < 0.001) (Table 2.6). The post-hoc Tukey’s HSD found significant 

differences in potential fecundity among the Danger Reef offshore, Tow Rock offshore, Tow 

Rock onshore and Blueskin Bay onshore regions. The estimated fecundity of blue cod from the 

offshore Canyon region was significantly different to that estimated from the two onshore 
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regions. Fecundity at the Tow Rock offshore region was significantly different to fecundity 

from the Blueskin Bay onshore region (Figure 2. 7a).  

The results are relatively similar when potential fecundity was calculated with weight. 

The relationship between fecundity and weight was best described with a power function 

(Figure 2. 6, Table 2. 5). The highest mean (± SE) fecundity was calculated for the two offshore 

regions with 4,815.4 ± 732.5 HO indiv-1 for the population from the Canyon region and 4,341.4 

± 377.3 HO indiv-1 for the population from the Tow Rock offshore region. Fecundity was 

significantly lower in the onshore regions, with 1,422.3 ± 412.9 HO indiv-1 and 1,712.9 ± 511.7 

HO indiv-1 at Tow Rock onshore and Blueskin Bay, respectively (one-way ANOVA, F3 = 

13.2034, p <0.0001) (Table 2.6). A post-hoc Tukey’s HSD test demonstrated significant 

differences in fecundity among on- and offshore regions (Figure 2. 7b).  

The cumulative fecundity shows fecundity on a population level, here a hypothetical 

population of 125 individuals was considered (Figure 2. 8). The highest cumulative fecundity 

was calculated for the offshore population at Danger Reef with a total egg production of 

1,029,890 HO for 125 individuals, in contrast to a cumulative fecundity of 197,561 HO for 125 

individuals for the Blueskin Bay population, which is mainly composed by small individuals. 

This represents an order of magnitude difference in potential fecundity between the two 

populations. Cumulative fecundity for all five populations is very low at the legal catching size 

of 300 mm. The size at maturity for blue cod is reported to be 280 mm (Carbines, 2004), 

however results of the present study demonstrate that fecundity at this size is very low or near 

zero. Fecundity versus size relationship observed in the present study suggest that size at 

maturity is closer to 360 mm (Figure 2. 6, Figure 2. 8). 
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Figure 2. 6 Fecundity as hydrated oocytes (HO) of blue cod regresses against (a) size (mm) and (b) weight (g) 

 

Table 2. 5 Relationship between fecundity as hydrated oocytes (HO) and maternal size (mm) and weight (g). 

Regression equations and associated R2 values are given 

Characteristic Equation    r2 

Length F = 1.2323E-18 * L 8.3856 0.26 

Weight F =1.3403E-06 * W 3.2779 0.34 
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Table 2. 6 One-way ANOVA results for differences in mean fecundity calculated with size and weight among sites 

nested with regions. Significant results are in bold 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Test df Sum of 

Squares 

Mean 

Square 

F-ratio p-value 

Fecundity (size) vs. 

Site[Region] 

 

4 

 

2166764575 

 

541691144 

 

10.038 

 

<0.0001 

 

Fecundity (weight) 

vs Site[Region] 

 

 

3 

 

 

1296623722 

 

 

432207907 

 

 

13.2034 

 

 

<0.0001 

Figure 2. 7 Post-hoc Tukey's HSD results for mean fecundity as hydrated oocytes (HO) (±SE) calculated with 

(a) size (mm) and (b) weight (g). Levels not connected by the same letter are significantly different 
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Figure 2. 8 Cumulative fecundity for the five population, calculated for 125 individuals. Danger Reef offshore = 

black line, Tow Rock offshore = red line, Karitane Canyon offshore = orange line, Tow Rock onshore = blue line, 

Blueskin Bay onshore = green line. Dashed black line shows the legal catching size for Otago waters (300 mm) 
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2.3.4 Stable isotope analysis 

Stable isotope analysis of blue cod muscle tissue showed a higher mean (± SE) δ15N for 

the onshore Tow Rock population (13.32 ± 0.37 ‰) than the offshore Tow Rock population 

(12.37 ± 0.51 ‰). δ13C of blue cod from the onshore site ranges from -20.5 to -18.82 ‰ with a 

mean (± SE) of -19.66 ± 0.37 ‰. The mean δ13C of the offshore population is slightly higher 

with - 19.42 ± 0.38 ‰ (Table 2.7). The isotopic signatures of the on- and offshore population 

are significantly different (ANOVA, δ15N F89 = 86.083, p < 0.001; δ13C F89 = 8.203, p = 0.0052) 

(Table 2. 8). The isotopic signature of blue cod from the on- and offshore sites show distinct 

patterns, indicating that the onshore population occupied a restricted niche. In contrast, the 

spread out pattern of the offshore population indicates that blue cod here occupy multiple niches 

in resource limited micro habitats (Figure 2. 9).  

 Figure 2. 10 shows PCA ordinations for the two regions. Axis 1 and 2 explain 100% of 

the total variation in the isotopic signature, clearly separating the two sites from each other. 

 

Table 2. 7 The minimum, maximum, mean and standard error for δ15N and δ13C of blue cod muscle tissue sampled 

from the on- and offshore Tow Rock sites. Sample size is also given 

Site  Min Max Mean SE n 

Offshore δ15N 11.34 13.90 12.37 0.51 59 

δ13C -20.42 -18.71 -19.42 0.38 59 

Onshore δ15N 12.05 13.98 13.32 0.37 32 

δ13C -20.50 -18.82 -19.66 0.37 32 
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Figure 2. 9 Isotopic signatures for blue cod sampled in the on- and offshore Tow Rock regions, grey triangles = 

onshore Tow Rock, black triangles = offshore Tow Rock 

 

Table 2. 8 Results of ANOVA tests comparing δ15N and δ13C at paired on- and offshore regions, including the test 

statistic t, the significance level p. Significant results (p < 0.05) are shown in bold 

Comparison Test df        F Ratio Mean 

square 

p-value 

 

Offshore vs. onshore 

δ15N 89 86.083 18.629 < 0.001 

δ13C 89 8.203 1.194 0.0052 
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Figure 2. 10 Scatter plot of the first two principal component analyses (PCA) derived from the isotopic signature 

grouped by regions; black triangles = offshore Tow Rock, grey triangles = onshore Tow Rock 

 

 

 

 

 

 

 

 

 

‘ 



Chapter 2 Size frequency  Discussion 

42 

 

2.4 Discussion 

The results of the present chapter demonstrated that there are significant differences 

among size frequency distributions of blue cod populations along the East Otago coast. The 

differences in size and weight distributions among the different regions resulted in significant 

differences in estimates of potential fecundity, with populations of a larger mean size showing 

a significantly higher cumulative fecundity. In addition, the isotopic signature of blue cod from 

the Tow Rock onshore and offshore regions were analysed, showing significant differences in 

δ15N between the two regions. The results indicate potential differences in the δ15N at the base 

of the food web or differences in the trophic level between the two regions, suggesting 

population differentiation at a small spatial scale (<10 km).  

 Age and size structure are considered important characteristics determining the health 

of a population (Brunel and Piet, 2013). Accordingly, a healthy population consists of multiple 

smaller and larger size and age classes, sustaining the population against environmental 

fluctuations and extending the spawning season to its maximum range (Rouyer et al., 2011). 

Data from Wing et al. (2012) and Beer and Wing (2013) demonstrate a size structure of a blue 

cod population in Fiordland that is assumed to be “healthy” or relatively undisturbed with low 

fishing pressure (Wing et al., 2012; Beer and Wing, 2013). The Fiordland population typifies a 

mature size distribution, consisting of multiple cohorts of juvenile fish (<280 mm) a large mode 

of mature sized blue cod and some very large (>440 mm), old (ca. 25 years) individuals (Figure 

2. 11). Blue cod populations in the present study consisted of significantly different size 

distributions, with populations from the onshore regions being truncated towards a large 

percentage of small, pre-reproductive individuals. The size structure of the Danger Reef 

offshore population had a similar average size (387 mm) to that observed for the Fiordland 

population, suggesting that it was closer to an intact distribution of ages. In addition, the size 

structure indicates a similar  
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shape to the Fiordland population, including a good representation of BOFFFs. However, a 

larger sample size of the Danger Reed population is needed for a precise comparison.  

Changes in the size frequency of a population can be an indicator for overexploitation. 

In the present study, the onshore populations show size structures skewed towards smaller sizes. 

A possible explanation could be higher fishing pressure in the onshore regions. These regions 

are likely exposed to higher fishing pressure due to ease of accessibility (more sheltered, closer 

to shore) than the offshore regions. Size selective harvesting and exploitation primarily cause 

the reduction of body size of the targeted population (Fenberg and Roy, 2008), which has been 

shown for a number of species (e.g. Jackson et al., 2001; Harvey et al.,  2006; Hsieh et al., 

2006). However, quantifying the decline in body size requires knowing the point before 

exploitation starts from historical size-frequency data of the species (Jackson et al., 2001; 

Fenberg and Roy, 2008). For example, Leach et al. (2000) compared pre-European blue cod 

catches from the Chatham Islands and Mana Island (Cook Strait) to modern catches from 

multiple regions around the South Island of New Zealand. The largest blue cod from the pre-

Figure 2. 11 Size-frequency distribution of blue cod in Fiordland. (see Beer and Wing, 2013, Wing et al., 2012) 
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European time period ranged between 616 and 685 mm in the Chatham Islands and up to 

591 mm for Mana Island. In comparison, modern catches showed a decline in their average size 

and maximum size ranged from only 417 mm in the Long Island Marine Reserve (Marlborough 

Sounds) to 580 mm around Stewart Island. Their results demonstrate that, at least in Cook Strait, 

blue cod reached much larger sizes before intensive harvesting than they do today (Leach et al., 

1999). In the present study, no blue cod larger than 550 mm were sampled, possibly indicating 

a decline in size at the East Otago coast. While no pre-European data have been analysed for 

size for this region, individuals in the 600 to 630 mm size range have been observed in relatively 

unexploited populations in Fiordland (Wing et al., 2012).  

Fecundity was calculated using the ovaries of three females sampled during the size 

frequency surveys of the present study combined with data from Beer et al. (2013). The results 

show a clear relationship between maternal size and batch fecundity, with older females having 

a larger number of hydrated oocytes. The relationship between fecundity and size was best 

described by a power function, however the estimated value for b was very high. Batch 

fecundity is related to the volume of the body cavity, therefore the value for b tends to be 

approximately 3.0, but may vary between 1.0 and 5.0 in marine fishes, depending on their body 

shape (Wootton, 1990). The value b has been precisely estimated for a number of marine 

species, for example, 2.65 in European hake (Merluccius merluccius) (Mehault et al., 2010), 

2.74 in Argentine hake (M. hubbsi) (Macchi et al., 2013), 4.37 in Atlantic cod (Marteinsdottir 

and Begg, 2002), 6.24 in Atlantic haddock (Melanogrammus aeglefinus) (Trippel and Neil, 

2004), and 7.53 in Southern bluefin tuna (Thunnus maccoyii) (Farley and Davis, 1998).  

 Villanueva-Gomila et al. (2015) estimated the relationship between fecundity and size 

for the Chilean sandperch (Pinguipes brasilianus), a closely related species of the same family 

as blue cod. They estimated the value b to be 7.16 ± 1.07, which is relatively similar to the value 

in the present study 8.38. Moreover, the estimated batch fecundity for Chilean sandperch was 

similar to those of blue cod with the lowest batch fecundity of 342 HO indiv-1 for a 240 mm 
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female and 47.949 HO indiv-1 for a 420 mm female. The comparability of the two studies 

indicate that despite low sample size there is a general trend and relationship between maternal 

size and batch fecundity for blue cod that is consistent with estimates for similar species. 

 The present study clearly demonstrated the large effect a truncated size structure can 

have on the cumulative fecundity of a population. The onshore populations that consisted of 

blue cod with a general smaller average size show a significantly lower cumulative fecundity 

than blue cod populations from the offshore regions with a larger average size. Indeed, the 

estimated cumulative fecundity for blue cod populations from offshore habitats at Danger Reef 

was 5.2 times higher than the calculated cumulative fecundity for populations from the Blueskin 

Bay region. These results corroborate similar studies on different species, demonstrating the 

consistent results that larger/older fish produce significantly more eggs and therefore contribute 

more to the population’s overall productivity (Hislop, 1988; Fitzhugh et al., 2012; Beer, Wing 

and Carbines, 2013; Hixon et al., 2014; Beyer et al., 2015). Here larger females are observed 

to invest less energy in somatic growth and more into the quality and quantity of their eggs 

(Kuparinen et al., 2016). However, due to the low sample size to calculate fecundity in the 

present study, the results may be subjected to considerable variability among samples. A larger 

sample size of gravid individuals would improve the precision of these results.  

 The minimum landing size for blue cod in most fishing areas in New Zealand is 330 mm, 

again with exception for the Auckland area (BCO1), Kermadec area (BCO10), and the South-

East coast (BCO3) where the minimum landing size is 300 mm total length, excluding the 

Kaikoura region within BCO3, where the legal size is 330 mm. (Ministry for Primary Industries, 

2014a, 2017). Fecundity and cumulative fecundity calculations of the present study indicate 

very low or no egg production in blue cod smaller than 330 mm. The data imply that the 

fecundity of blue cod smaller than 360 mm is very low and those fish may not be sufficient to 

support the population’s productivity. However, productivity seems to dramatically increase 

when fish grow larger than 360 mm. Size-at-maturity for female blue cod in Southland has been 
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determined as 280 mm (6 years) (Carbines, 2004). However, due to individual and 

environmental differences not all fish will mature at the same size/age (Beentjes and Carbines, 

2005). The results of the present study demonstrate that most blue cod in a population have not 

reached maturity at 300 mm and significant egg production may only be reached when fish 

reach a size greater than 360 mm.  

 Differences in size and growth may be related to differences in nutrition and resource 

use. In the present study, the isotopic signatures of blue cod from the Tow Rock on- and offshore 

populations have been analysed to identify possible differences in the underlying foodweb 

supporting blue cod populations. Isotopic signatures provide time-integrated information on the 

feeding ecology of blue cod for a period of approximately a year (Suring and Wing, 2009). The 

significant differences in δ15N between blue cod from the two different regions indicate that 

there may be little mixing among adults (e.g. Rodgers and Wing, 2008). It is likely that juvenile 

individuals from the offshore population migrate onshore, based on observations of juvenile 

distribution and behaviour (G. Carbines, pers. com.). Theory predicts that populations with a 

reproductive surplus (source) maintain populations with local reproductive deficits (sink), 

where local reproductive success fails to keep pace with local mortality rates (Pulliam, 1988; 

Amarasekare, 2004). Therefore, source-sink dynamics provide a rescue effect for spatially 

heterogeneous populations (Ciannelli et al., 2013). In the present study, the Tow Rock offshore 

population likely acts as a reproductive source population, supporting the onshore population 

(sink) with recruits. A scenario where fishing pressure increases offshore and offshore source 

populations are reduced may have dramatic consequences for the re-colonisation of the onshore 

population and result in a wide scale population decline. 

 The present study demonstrated clear differences in size, fecundity and nutrition 

between populations of blue cod inhabiting on- and offshore habitats along the Otago coast. A 

source-sink-population structure is likely to support the onshore populations with recruits from 

offshore habitats. However the intense size-selective harvesting reduces this rescue effect and 
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the onshore populations were in general smaller and reproductive output was reduced. In these 

cases where population size structure has been truncated a small number of larger individuals 

can significantly raise the cumulative fecundity and sustain the population (Birkeland and 

Dayton, 2005). With increasing removal of the largest individuals from a population this effect 

is endangered and a decline of the population’s overall recruitment rate is likely (Fenberg and 

Roy, 2008; Ciannelli et al., 2013). The current minimal legal size for blue cod in Otago 

(300 mm) is far below sizes that produce significant numbers of eggs (360 mm) observed in the 

present analysis. These results support an increase of the legal size to at least 360 mm to sustain 

reproduction within the population.  
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Population structure of sea perch (Helicolenus percoides): 

Morphological differences around the South Island of New 

Zealand 

 

  

Sea perch (Helicolenus percoides) in Fiordland                 Photo: S. Kolodzey 
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3.1 Introduction 

In a natural environment animals often face multiple ecological challenges and may 

respond with phenotypic shifts (Langerhans et al., 2007). Accordingly morphological changes 

have been observed in a variety of fish species associated with variation in habitat, diet or 

predation risk (Ehlinger and Wilson, 1988; Parker et al., 2009; Webster et al., 2011). 

Morphological plasticity may increase the fitness of a species or an individual through a variety 

of mechanisms, such as improvements in foraging success, growth rate and body condition 

(Webster et al., 2011), enhanced ecological partitioning between competitors to facilitate 

coexistence of closely related species (Bolnick, 2004; Svanbäck et al., 2008) or avoidance of 

predation (Parker et al., 2009; Webster et al., 2011) 

The spatial and temporal differences in both biotic and abiotic qualities may vary 

strongly among aquatic habitats (Langerhans et al., 2003), resulting in distinct phenotypic 

responses among fish populations. For example, Svanbäck & Eklöv (2002) found that perch 

(Perca fluviatilis) sampled from the littoral zone of a lake showed a deeper body, larger head 

and mouth, and longer fins than perch from the pelagic zone, independent of size. Coexisting 

benthic and pelagic morphotypes have been observed for a wide range of species, such as the 

panga (Pterogymnus laniarius) and silver kob (Argyrosomus inodorus) (Mattson and Belk, 

2013), the two neotropical fish species Bryconops caudomaculatus and Biotodoma wavrini 

(Langerhans et al., 2003), the threespine stickleback (Gasterosteus aculeatus) (Matthews et al., 

2010), and multiple species of sunfish (Lepomis sp.) (Ehlinger and Wilson, 1988; Robinson et 

al., 1996; Hegrenes, 2001). Polymorphism within a species is believed to be the result of 

differential selection pressures among alternative habitats (Robinson and Wilson, 1994; Smith 

and Skulason, 1996). 

One of the most commonly studied patterns in environmental influence on phenotype is 

the relationship between feeding niche/diet and the morphology of fishes. The diet of a fish can 

influence several aspects of  morphology, characterised by the position of the mouth, gape size 
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and shape of the body (Wainwright and Richard, 1995; Robinson and Wilson, 1996; Mittelbach 

et al., 1999; Mattson and Belk, 2013). Intraspecific differences in morphology can be 

interpreted as adaptations to different ecological conditions, with habitat specific foraging 

abilities as the driver for resource polymorphism (Ehlinger and Wilson, 1988). For example, 

deeper-bodied perch (Perca fluviatilis), found in the littoral zone of a lake, showed higher 

capture rates of prey within areas of high vegetation, in contrast to more streamlined 

individuals, found in pelagic areas of a lake, showing higher foraging success in open water 

(Svanbäck et al., 2003). The ability to discriminate differences in foraging behaviour among 

individuals with differences in phenotype, therefore, represents an important scientific 

opportunity to elucidate mechanisms for variability in fish populations and stock structure.  

Application of stable isotopes to trophic ecology of fishes provides a valuable tool for 

discrimination of trophic position in this regard (Fry et al., 1999).The stable isotope signature 

and trophic position of an individual are used as a ‘natural tag’, providing insight into the effect 

of the food web structure on species diversification (Lawton et al., 2010; Matthews et al., 2010). 

δ15N and δ13C of a consumer’s tissue provides a robust tracer of the isotopic signature of their 

diet, and a repeatable measure of the structure of the underlying food web. Differences in 

isotopic signature of food sources in distinct habitats will result in distinct δ15N and δ13C of 

consumers (DeNiro and Epstein, 1978, 1981). Because δ15N and δ13C provide long term 

integration of diet, isotopic signatures can also be used to highlight patterns in spatial structure 

of populations. For example, Lawton et al. (2010) used stable isotope signatures in addition to  

morphological measurements to determine discrete subpopulations of sea perch (Helicolenus 

percoides) among different fjords in Fiordland, New Zealand.  

Intraspecific morphological differences have been observed for multiple fish species in 

association with differences in habitat type or quality. Important physical drivers for habitat 

induced phenotypic plasticity in fishes can be hypoxia (Chapman, Galis and Shinn, 2000), 

hypersalinity (Weaver et al., 2016), water temperature (Angilletta and Dunham, 2003), or 
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habitat complexity (Garduño-Paz et al., 2010). In marine systems, intraspecific morphological 

variation is relatively poorly documented. Marine environments often lack physical barriers, 

with less opportunities for local adaptation (Mattson and Belk, 2013), more diverse 

communities than freshwater systems, and less opportunities for ecological variation (Palumbi, 

1994). Nevertheless, observations of adaptive radiation and morphological variability across 

depth and among habitats have been observed in some groups, such as Pacific rockfishes 

(Sebastes spp.) in the family Sebastidae (Ingram, 2011; Ingram and Kai, 2014). 

 In New Zealand, sea perch (Helicolenus percoides) are a local representative of the 

family Sebastidae, distributed across the shelf in benthic habitats. Little is known about their 

movement patterns at any life-history stages, however regional variations in colour and growth 

rate suggest that adult sea perch are unlikely to undertake large movements (Paul and Horn, 

2009). This implies that the larval stage of sea perch might be more important for maintaining 

population connectivity than adult migration. Two distinct morphs of sea perch are recognised 

in the literature, but relatively little work has been accomplished on their population biology 

over the full range of the species (Kailola et al., 1993). In Fiordland (New Zealand) differences 

in morphology, growth rates, stable isotope composition and otolith microchemistry of sea 

perch have revealed that adult sea perch form discrete subpopulations (Lawton et al., 2010), 

demonstrating that a population’s trophic position and vital rates are strongly influenced and 

linked with the local environment.  

 The aim of the present chapter was to determine whether populations of sea perch form 

subpopulations with distinct characteristics from two distinct fjord habitats in the Fiordland 

region (inner fjords and outer coast) and from deep habitats on the Otago shelf. Here three 

proxies for population isolation were used to discriminate among fish from these three distinct 

habitats. Morphological measurements were used to determine whether there are differences in 

phenotype among the populations. Length-at-age data were used to test for differences in 

growth trajectories among populations. Stable isotopes (δ15N and δ13C) of muscle tissue were 
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used to estimate isotopic signature and trophic level of individuals from each of the habitats. It 

is anticipated that differences in habitat characteristics on the Otago shelf and among habitats 

in Fiordland resulted in distinct morphotypes of sea perch associated with these different 

habitats. As sea perch are long-lived, slow growing and late maturing fish, knowledge of their 

stock structure is vital for effective management in the context of fisheries for the species, and 

for understanding their role in the benthic marine food web. 
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3.2 Materials and methods 

3.2.1 Sampling  

Sea perch (Helicolenus percoides) were sampled using hook and line from different 

locations in Fiordland, New Zealand in November 2015 and off the coast of Otago, New 

Zealand in August 2015 and November 2015 (Figure 3. 1). Each fish was humanely euthanized 

under the University of Otago ethics guidelines (University of Otago ethics protocol ET77/15). 

Fish were then stored in a -20°C freezer until further analysis. Sea perch that were sampled 

from the Otago shelf were used for spawning experiments prior to morphological analysis, 

therefore, fish were kept alive until spawning occurred (see 4.2.1). Sea perch were then 

humanely euthanized under University of Otago ethics protocol ET77/15 and stored in a -20°C 

freezer for further analysis.  

Figure 3. 1 Map of (a) New Zealand showing the different sampling areas in (b) Fiordland and (c) the Otago 

shelf 
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3.2.2 Morphological measurements 

Sea perch were collected from Otago (n = 35) outer Fiordland (n = 6) and inner 

Fiordland (n = 17) were morphologically measured to analyse if there are morphological 

difference between fish from the different areas. Sample size was increased by adding 

morphology data of sea perch sampled by Wing et al. in previous surveys along the Otago coast 

(n = 32), and outer Fiordland (n = 69) and inner Fiordland (n = 291) (see Lewis, 2008; Lawton, 

Wing and Lewis, 2010).   

Nine morphological measurements were taken from each fish: total length, head length, 

snout length, maxillary length, orbital diameter, inner orbital distance, body width, pectoral fin 

length, and tail length. Maxillary length was corrected among studies to account for differences 

in measurement techniques among studies. However, due to variability in precision among 

collections measurement of the inner orbital distance and body width were excluded from 

statistical analysis. To account for the effect of body length on the single measurements, 

morphological measurements were divided by body length and the resulting proportions were 

used for statistical tests.  

The morphological measurements were made to 0.01 mm using electronic Vernier 

callipers (Figure 3. 2). Total length was measured to the nearest millimetre and wet weight was 

recorded to the nearest milligram. All measurements were taken on thawed fish, so any freezing 

effects were assumed to be constant.  

In addition to morphological measurements the saggital otoliths were removed to 

estimate the age of each fish, and a sample of dorsal muscle tissue was taken for stable isotope 

analysis and subsequent “trophic level” determination. 

 

 

 



Chapter 3 Morphological differences  Materials & methods 

55 

 

 

 

 

 

 

 

 

 

 

3.2.3 Age estimation 

The saggital otoliths were removed by cranial dissection, rinsed in deionised water and 

transferred to sterile Eppendorf-tubes. One of each pair of otoliths was embedded in K36 epoxy 

resin (Epoxy Kit, Nuplex Industries Inc., Auckland, New Zealand). Transverse sections (~1 

mm thickness) were cut through the primordium using a Buehler Isomet low speed diamond-

tipped saw. The sections were mounted on glass slides using crystalbond 509 (Amerco Products 

Inc., NY). The otoliths were then ground using wet-dry sandpaper (grades P600 and P800) until 

the growth rings were clearly visible. The slides were polished using ultrafine sandpaper (grade 

P1500) in combination with alumina silicate polishing powder. Ages were estimated using 

photomicrographs of sectioned otoliths under transmitted light. Only opaque (winter growth 

zones) bordered by translucent (summer growth zones) on both sides were counted (Figure 3. 

3). Image editing software (ImageJ) was used to improve resolution of images and allow a more 

accurate reading of the annual growth rings.  

Figure 3. 2 Morphological measurements on (a) the body and (b) the head of sea perch. 1 Inner orbital 

distance; 2 Head length; 3 Orbital diameter; 4 Snout length; 5 Maxillary length; 6 Body depth; 7 Pectoral 

fin length; 8 Tail fin length; 9 Total length 
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3.2.4 Growth rate analysis 

Growth models were constructed using von Bertalanffy’s growth model (von Bertalanffy, 

1934): 

𝐿𝑡 =  𝐿∞(1 − 𝑒−𝑘(𝑡−𝑡0) 

Where: 

Lt = Length at time t 

L∞ = the asymptotic length (i.e. the length an individual would reach if it would grow to an 

infinite age) 

k = the growth constant expressing the rate at which length approaches the asymptote 

t0 = the theoretical age from settlement of an individual at zero size (this can be negative for 

species with large larvae) 

 

Optimal values for L∞ and k were obtained by minimising residual sums of square with 

the Solver application (Frontline System Inc.) for Excel 2013 (Microsoft Corporation) after  

Haddon (2001). The parameter t0 is extrapolated from available data. No fish were sampled 

from the youngest age classes (<2yrs) so t0 was set to zero for all models. To determine 

differences in growth between the Otago and Fiordland populations, analysis of residual sum 

of squares was used (Haddon, 2001). 

Figure 3. 3 Thin section of a saggital otolith of sea perch with visible growth rings marked by red arrows 
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3.2.5 Stable isotope analysis 

Dorsal muscle tissue samples (c. 1 cm2) were collected from each fish to analyse δ13C 

and δ15N and estimate trophic level (TL) of sea perch sampled at the Otago coast and the two 

Fiordland regions. Stable isotopes and trophic level were then used as proxies for population 

isolation. If food sources in the particular habitats differ, so will the isotope signature and most 

likely trophic level of the animals feeding in these habitats. Each sample was rinsed in deionised 

water and transferred in sterile 2 mL Eppendorf tubes. Dorsal muscle tissue has been shown to 

be the least isotopically variable (Pinnegar and Polunin, 1999). The samples were oven dried at 

60°C for 48 hours. When fully dried, the samples were ground to a fine powder, using mortar 

and pestle, which were rinsed with deionised water and dried with lint-free tissue between each 

sample. Lipids, which are in relatively low concentration in sea perch muscle, have no 

significant effect on δ13C and do not need to be removed prior to stable isotope analysis 

(Rodgers and Wing, 2008). Samples of 0.1 mg were weighed into 5x3.5 tin capsules (Elemental 

Analysis Ltd.). Analyses were conducted by IsoTrace Research (Department of Chemistry, 

University of Otago, Dunedin, New Zealand) using a Europa Hydra continuous flow isotope 

ratio mass spectrometer coupled to a Carlo Erba NC 2500 elemental analyser. The natural 

isotope abundance of 13C and 15N was expressed in δ notation (Peterson, 1999; Fry, 2006).  

Using the isotopic ratio of nitrogen δ15N, the trophic level of a secondary consumer can 

be calculated as follows (McCutchan et al. 2003): 

𝑇𝑟𝑜𝑝ℎ𝑖𝑐 𝑙𝑒𝑣𝑒𝑙 =  𝜆 + (
𝛿15𝑁𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 −  𝛿15𝑁𝑏𝑎𝑠𝑒

∆15𝑁
) 

Where: 

λ = trophic position of the basal organism (λ = 1 for primary producers)  

δ15Nbase = the nitrogen isotope ratio of the base of the food chain 

δ15Nconsumer = the nitrogen isotope ratio of the consumer 

Δ15N = the trophic discrimination factor for δ15N 
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To estimate the trophic level the nitrogen isotope of the base of the food chain is needed. 

In the present study the literature value δ15N = 5.9 ‰ of the marine macroalgae Ecklonia radiata 

was used (Beer and Wing, 2013).  

 

3.2.6 Statistical analysis 

To identify significant morphological differences among the three populations one-way 

analysis of variance (ANOVA) was performed on each morphological character using JMP Pro 

11 (SAS Institute Inc., Cary, NC, USA 2013). When significant differences were detected, post 

hoc Tukey-HSD tests were performed.  

A discriminate function analysis, asking the question of the probability of each sample 

belonging to the category of similar samples, was used to compare morphologies between sea 

perch from Otago and sea perch from Fiordland.  

Overall morphology of sea perch, δ15N, δ13C and trophic level were compared among 

the three different regions (fixed factor, 1 level) using permutational analysis of variance in 

PERMANOVA+ for PRIMER v6 (PRIMER-E Ltd, Plymouth, UK). PERMANOVA tests used 

9999 permutations, based on the Euclidean distance between samples.  

Growth rates among populations were compared using the analysis of residual sum of 

squares (AoRSS) method (Chen, Jackson and Harvey, 1992; Haddon, 2001). Analysis were 

conducted in Microsoft Excel 2013. 
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3.3 Results 

3.3.1 Morphological measurements 

The largest sea perch were found along the Otago shelf, on average sea perch from this 

site were 57.89 mm larger than sea perch from the inner fjords and 34.39 mm larger than sea 

perch from the outer coast of Fiordland (Table 3. 1). Outer coast sea perch show on average 

longer snouts, maxillaries, eyes and pectoral fins than sea perch from Otago and the inner fjords. 

The largest difference was found between the average head length of fish from Otago and the 

inner fjords with sea perch from Otago showing 21.64 mm larger heads on average. The 

smallest difference was found in the snout length of fish from Otago and the outer Fiordland, 

with Fiordland fish having 0.31 mm longer snouts than Otago specimens (Table 3. 1).  

One-way ANOVAs comparing standardised morphological measurements showed that 

all standardised morphometrics (scaled in proportion to body length) were significantly 

different among the three regions (Table 3. 2). The post hoc Tukey-HSD test showed that only 

head length was significantly different among the three regions (Otago vs. Inner Fiordland p < 

0.05; Otago vs. Outer Fiordland p < 0.01; Inner vs. Outer Fiordland p < 0.0001) (Figure 3. 4), 

while there were no significant differences in snout length, orbital diameter, maxillary length, 

pectoral fin length and tail length between the outer and inner Fiordland regions (Figure 3. 4). 

PCO analysis based on standardised morphological measurements supported the ANOVA and 

Tukeys-HSD test results by showing the Otago population as a separate cluster from the outer 

and inner fjord populations that are relatively morphologically similar (Figure 3. 5).  

 Discriminant function analysis indicated there was a significant separation among sites 

(Figure 3. 6). The 95% confidence ellipses around the three groups indicate that sea perch 

sampled at the Otago shelf are morphologically significantly different from sea perch sampled 

in the inner and outer Fiordland regions. A PERMANOVA supports these results by 

demonstrating significant differences among all three paired regions (PERMANOVA; Otago 
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vs. outer fjord pseudo-t = 6.12, p < 0.0001; Otago vs. inner fjord pseudo-t = 7.07, p < 0.0001; 

inner vs. outer fjord pseudo-t = 2.50, p < 0.0001) (Table 3. 3). 

 The length-weight relationships for sea perch are similar for all three regions (Figure 3. 

7). The parameter b falls in the normal range between 2.5 and 3.5 for all three groups (Froese, 

2006). However, b < 3 for the Otago population (b = 2.8117), indicating a change in body shape 

or a better nutritional condition of small specimens (Froese, 2006). 

 

Table 3. 1 Morphometric measurements (mm ± SE) of sea perch from Otago (n = 52), outer (n = 75) and inner 

Fiordland (n = 308) 

Morphometric 

parameter 

Otago Outer Fiordland  Inner Fiordland 

    

Total length 

Head length 

296.53 ± 4.1  

92.69 ± 1.4 

273.03 ± 3.9 

89.81 ± 1.6 

238.59 ± 1.9 

71.04 ± 0.8 

Snout length 18.84 ± 0.5 19.14 ± 0.4 16.67 ± 0.2 

Maxillary length 46.09 ± 0.8 46.66 ± 0.7 40.2 ± 0.4 

Orbital diameter 26.04 ± 0.4 27.08 ± 0.4  24.05 ± 0.2 

Inner orbital distance 13.37 ± 0.3 11.36 ± 0.2 9.48 ± 0.1 

Body width 78.42 ± 1.3 69.75 ± 2.8 70.77 ± 2.7 

Pectoral fin length 58.8 ± 1.2 59.72 ± 1.0 52.51 ± 0.7 

Tail fin length 54.36 ± 1.1 47.88 ± 0.7 42.76 ± 0.3 

 

Table 3. 2 Results of one-way ANOVA for differences in individual standardised morphometric parameters of sea 

perch from the three regions (Otago, inner and outer Fiordland). Significant results are in bold 

Morphological 

parameter 

F-statistic df      p-value 

    

Head length 

 

18.219 

 

2 

 

<0.0001 

Snout length 35.553 2 <0.0001 

Maxillary length 146.047 2 <0.0001 

Orbital diameter 46.104 2 <0.0001 

Pectoral fin length 47.241 2 <0.0001 

Tail fin length 5.929 2 <0.005 
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Figure 3. 4 Results of post hoc Tukey-HSD test for differences in morphological parameters of sea perch from 

three different regions 
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Figure 3. 6 Canonical plot scores and 95% confidence ellipses from discriminant function analysis of six 

morphometric characteristics of sea perch from three regions (Otago = green circles, inner Fiordland = red circles 

and outer Fiordland = blue circles). Significantly different groups have non-interacting circles 

 

Figure 3. 5 Scatter plot of the first two principal component analyses (PCO) derived from 6 morphological 

measures (tail length, maxillary length, pectoral fin length, head length, orbital diameter and snout length) 

grouped by regions; black circle = Otago, clear triangle = Inner Fiordland region, black triangle = outer coast 

Fiordland 
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Table 3. 3 Results of PERMANOVA tests comparing the morphology of sea perch between paired sites, including 

the test statistic pseudo-t, the significance level p calculated under permutation, the number of unique values 

obtained from 9999 permutations and the degree of freedom. Significant results are shown in bold 

Comparison Pseudo-t p-value Unique 

perms 

df 

 

Otago vs. inner Fiordland 

 

7.0757 

 

0.0001 

 

99464 

 

222 

 

Otago vs. outer Fiordland 

 

6.1213 

 

0.0001 

 

9919 

 

113 

 

Inner vs. outer Fiordland 

 

2.5088 

 

0.0001 

 

9949 

 

211 

 

Figure 3. 7 Length weight relationship for sea perch from (a) Otago (circles), (b) the inner Fiordland (squares), 

and (c) the outer coast of Fiordland (triangles) 
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3.3.2 Age and growth 

Von Bertalanffy growth models were fitted to age at length data to compare growth rates 

among the sea perch populations from the Otago coast, inner regions and outer coast of 

Fiordland. The higher k value calculated for sea perch from the inner Fiordland (k = 0.173) 

indicated that these fish grew faster than fish from the outer coastal regions of Fiordland (k = 

0.152) and Otago (k = 0.157) (Figure 3. 8). However, relatively few small sea perch were 

sampled and, therefore, the growth model was not fully resolved for the value of k. Even though 

the inner fjord population seems to grow faster, higher k, than the two other population, sea 

perch from Otago (L∞ = 339 mm) and outer coast Fiordland (L∞ = 295 mm) reach greater L∞ 

than inner Fiordland sea perch (L∞ = 254 mm).  

 Comparing growth curves using the AoRSS method showed a significant difference in 

the age and growth trajectories pooled across the three regions (AoRSS, F = 52.278, p < 0.001) 

(Table 3. 4). Pairwise tests showed significant differences between the age and size trajectories 

of sea perch from Otago and the inner fjords (AoRSS, F = 94.535, p < 0.001), Otago and the 

outer fjords (AoRSS, F = 19.284, p < 0.001), and the inner and outer fjords (AoRSS, F = 34.140, 

p < 0.001) (Table 3. 5).  
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Figure 3. 8 Raw size-at-age data and von Bertalanffy growth curve models for sea perch sampled in Otago (a), 

inner Fiordland (b) and outer coast Fiordland (c). Boxes show the calculated L∞, k and residual sum of squares 

(RSS) for each population. Degree of freedom (df) and n are given 

 

Table 3. 4 Results from growth curve comparisons between sea perch collected from different regions (Otago 

coast, outer Fiordland, inner Fiordland). Comparisons were made using the AoRSS method.  Significant results 

are shown in bold 

Region comparison F-statistic p-value 

 

Otago, outer, inner Fiordland 

 

52.278 
 

< 0.001 

 

Table 3. 5 Results from growth curve pairwise comparisons between sea perch collected from different regions 

(Otago coast, outer Fiordland, inner Fiordland). Comparisons were made using the AoRSS method.  Significant 

results are shown in bold 

Pairwise Region comparison F-statistic p-value 

 

Otago vs. inner Fiordland 

 

94.535 
 

< 0.001 

 

Otago vs. outer Fiordland 

 

19.284 
 

< 0.001 

 

Inner vs. outer Fiordland 

 

34.140 
 

< 0.001 
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3.3.3 Stable isotope analysis and trophic level 

 Mean δ13C was most enriched in the heavy isotope 13C in sea perch from the outer 

Fiordland region (Figure 3. 9), with the widest range of δ13C found in the inner Fiordland 

specimens, summarised in Table 3. 6. Mean δ15N was highest in sea perch sampled in the outer 

Fiordland region, whereas the Otago sea perch showed lowest δ13C values (Table 3. 6). 

PERMANOVA detected significant differences in δ13C among regions, indicating that there 

were likely differences in the basal carbon sources for fish sampled at the three different 

locations (PERMANOVA; Otago vs. inner fjord pseudo-t = 4.34, p = 0.0003; Otago vs. outer 

fjord pseudo-t = 3.34, p = 0.002)  (Table 3. 7).  

Trophic level was highest for the outer fjord population (Table 3. 8), however the 

differences were only small and the three groups and all ranged around tropic level 3 (Figure 3. 

10). Performed PERMANOVA did not show significant differences trophic level among H. 

percoides from Otago and both Fiordland regions (Table 3. 9).  

 

Figure 3. 9 δ15N vs. δ13C enrichment in muscle tissue of H. percoides from Otago = black circles (n = 35), 

outer = black squares (n = 6) and inner Fiordland = white circles (n = 17) 
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Table 3. 6 The minimum, maximum, mean and standard error δ15N and δ13C of muscle tissue of sea perch sampled 

in each region. Sample size is also reported 

Region  Minimum Maximum Mean SE n 

 

Otago 

δ13C 

δ15N 

-19.91 

11.08 

-17.20 

14.91 

-18.57 

12.81 

0.12 

0.17 

35 

35 

 

Outer Fiordland 

δ13C 

δ15N 

-18.05 

13.09 

-17.12 

14.00 

-17.60 

13.64 

0.16 

0.14 

6 

6 

 

Inner Fiordland 

δ13C 

δ15N 

-18.92 

12.60 

-17.33 

14.07 

-17.78 

13.28 

0.10 

0.11 

17 

17 

 

Table 3. 7 Results of PERMANOVA tests comparing δ13C and δ15N at paired Otago and Fiordland regions 

including the test statistic pseudo-t, the significance level p calculated under permutation, the number of unique 

values obtained from 9999 permutations and the degree of freedom. Significant results are shown in bold 

Comparison Test Pseudo-t p-value Unique 

perms 

df 

 

Otago vs. inner Fiordland 

δ13C 

δ15N 

4.3445 

1.8403 

0.0003 

0.0714 

1244 

1475 

50 

50 

 

Otago vs. outer Fiordland 

δ13C 

δ15N 

3.3417 

1.9737 

0.002 

0.0584 

886 

1163 

39 

39 

 

Inner vs. outer Fiordland 

δ13C 

δ15N 

0.9273 

1.7984 

0.3674 

0.0926 

484 

514 

21 

21 
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Table 3. 8 The minimum, maximum, mean and standard error of the estimated trophic level (TL) of sea perch 

sampled in each region. Sample size is also reported 

Region  Minimum Maximum Mean SE n 

Otago TL 2.22 3.89 2.97 0.07 35 

Outer Fiordland TL 3.10 3.49 3.34 0.06 6 

Inner Fiordland TL 2.88 3.52 3.18 0.05 17 

 

Table 3. 9 Results of PERMANOVA tests comparing the estimated trophic level (TL) at paired Otago and 

Fiordland regions including the test statistic pseudo-t, the significance level p calculated under permutation, the 

number of unique values obtained from 9999 permutations and the degree of freedom. Significant results are shown 

in bold 

Comparison Test Pseudo-t p-value Unique 

perms 

df 

Otago vs. inner Fiordland TL 1.8402 0.0734 733 50 

Otago vs. outer Fiordland TL 1.9789 0.0559 545 39 

Inner vs. outer Fiordland TL 1.7984 0.0961 130 21 

 

 

Figure 3. 10 Mean trophic level (± SE) of sea perch from the three different regions in Otago and Fiordland 
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3.4 Discussion 

The results of the present study provide strong evidence that adult sea perch (H. 

percoides) form relatively distinct subpopulations within the inner and outer habitats of 

Fiordland and the Otago shelf. Evidence for distinct population structure is supported by 

significant differences in morphology, length-at-age, δ13C and δ15N of muscle tissue and trophic 

level estimates among population from the three regions. The findings support the assumption 

that adult sea perch show high site fidelity with physical and energetic differences among 

habitats and local food webs resulting in differences in growth, morphology and nutrition 

(Lawton et al., 2010; Beer and Wing, 2013). 

 Morphological characteristics or the shape in fishes often correlate with differences in 

trophic ecology (Wainwright and Richard, 1995; Osenberg et al., 2004) and spatial distribution 

(Bellwood and Wainwright, 2001; Fulton et al., 2001). In the present study the shape of sea 

perch differed among regions, with the Otago subpopulation being significantly different in 

shape from the two Fiordland subpopulations. The shape of fishes can reflect variability in 

trophic ecology among subpopulations, including differences in feeding behaviour or 

adaptations to predator avoidance (Langerhans et al., 2007; Montana et al., 2010). The inner 

and outer fjord subpopulations only differed in the size of their heads, with the inner fjord 

population having significantly smaller heads than the outer Fiordland population, scaled in 

proportion to their body size. A smaller anterior body and head region in fish has been described 

as a morphological adaptation to high predation in some fishes (Langerhans et al., 2007).  

The observed differences in morphology are consistent with small asymptotic sizes of 

the subpopulations inhabiting the inner fjord habitats (Lewis, 2008; Lawton et al., 2010). 

Significant differences in growth rate were found between the three subpopulations, however 

these results should be treated carefully due to the lack of small individuals in the age size 

analysis. The Otago population was found to grow to the largest L∞. Paul & Horn (2009) found 

sea perch from the east coast of New Zealand and the Chatham Rise reach even larger maximum 
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lengths of ca. 40 cm and 46 cm, respectively. Sea perch from the Otago coast in the present 

study likely grew more slowly than sea perch from the east coast of the South Island estimated 

by Paul & Horn (2009). There are multiple explanations for these observed differences: (1) 

there could be a difference in the interpretation and counting of growth rings of otoliths, (2) the 

differences in growth could indicate and reflect discrete subpopulations, or (3) differences in 

sample techniques bias the sampling, as the present study was based on 108 specimens caught 

by line fishing (<100 m) versus more than 400 specimens sampled by trawling. Differences in 

growth rate can indicate the influence of habitat and food quality on subpopulation structure. 

Further research focussing on differences in the population structure, habitat and food sources 

at different sites along the east coast of New Zealand is necessary to fully resolve these patterns. 

 In the present study stable isotope analysis did not show significant differences in δ15N 

and trophic level between the three subpopulations, indicating that all three subpopulations 

likely occupy a similar position in the food web even though they inhabit different habitats. Sea 

perch are omnivorous bentho-pelagic feeders (Jones, 2009; Horn, Forman and Dunn, 2012). 

Despite different sample areas, the main prey has been described as multiple crab species, 

pelagic tunicates (salps), smaller crustaceans and brittle stars (Blaber and Bulman, 1987; Jones, 

2009; Horn et al., 2012). With increasing total length the diet of sea perch shifts from small 

crustaceans to larger crabs and fish (Horn et al.,. The similarities in prey within different 

habitats could be an explanation for the similarities in δ15N composition and trophic level found 

in the present study and seems more likely than a large amount of adult migration among areas. 

Significant differences in the δ13C composition between Otago and the inner fjords suggest that 

there is little to no adult migration between these two subpopulations. Similarities in the isotopic 

signature between the inner and outer fjord subpopulations indicate some movement of adults 

between these two regions. However, a similarity in the isotopic signature of the food sources 

seems more likely, due to the high site fidelity of adult sea perch (Lewis, 2008). In support of 

this, Lawton et al. (2010) used trace element analysis of otoliths to test for differences in site 
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fidelity. Their results demonstrated that there was relatively little mixing on the scale of a 

lifetime of a sea perch between different fjords in Fiordland, New Zealand.  

 The observed differences in growth and morphology of sea perch between regions in 

the present study suggest that habitat quality and differences in environmental conditions may 

influence the phenotype of subpopulations. The mechanism for these differences remains 

unknown, however key differences in environmental conditions among habitat suggests that 

the trophic ecology of fishes inhabiting the fjords is distinct from those on the outer shelf 

habitats. For example, changes in temperature and oxygen content can directly affect the 

physiology of marine organisms, with biological responses in distribution (Perry et al., 2005), 

phenology (Edwards and Richardson, 2004), productivity, and growth (Cheung et al., 2013). 

Temperature and oxygen in particular are known to influence body size and growth (Angilletta, 

Steury and Sears, 2004), with fish living in colder regions growing slower but to larger sizes 

than their counterparts in warmer regions (Baudron et al., 2014; Trip et al., 2014). The deep 

basins of Fiordland have very distinct temperature and oxygen conditions relative to similar 

depths on the outer shelf (e.g. Mcleod and Wing, 2009; Mcleod et al., 2010). 

The coastal region of Otago is highly influenced by the Southland Current flowing 

northward along the coast, mainly transporting cold subAntarctic water (Murphy et al., 2001; 

Sutton, 2003). This is in contrast to the Fiordland region, which is mainly influenced by 

subtropical water from the Tasman Sea in combination with high freshwater input. In addition 

to transporting warmer water, most fjords are characterised by showing very low dissolved 

oxygen levels (Stanton, 1984). It is possible for fish to survive in areas of low O2 levels (Nasby-

Lucas et al., 2009; Sadorus, 2012), consequently changes in physiological and metabolic rate 

processes, organism abundance, lifestyle, diversity, morphology, growth, and size structure are 

possible (Stramma et al., 2010; Cheung et al., 2013).  
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These results of the present study could be explained by the differences in water 

temperature between the three regions. Sea perch in the colder Otago region show slower 

growth than sea perch from both Fiordland regions, but larger maximum length. In support of 

that, the smaller maximum length of sea perch from the inner fjord region could be explained 

by the low dissolved oxygen levels. Oxygen is one of the key requirements for body growth 

and oxygen limitation is a fundamental mechanism determining biological responses of fish to 

environmental changes and even small changes in the oxygen content can have large effects on 

fish size (Cheung et al., 2013).  

The inner Fiordland habitat is not only characterised by lower oxygen levels, but also 

differs fundamentally in regard of primary productivity and density of habitat providing 

macroalgae from outer coast and offshore habitats (Goebel et al., 2005; Wing et al., 2007). 

Primary production and the composition of organic matter source pools can be directly linked 

to diet, subpopulation structure, growth, and fecundity of fish (Wing and Jack, 2013). 

Differences in organic matter supporting populations may result in large differences in the 

nutritional quality of prey items among different habitats (Beer and Wing, 2013). The observed 

spatial variability in growth of sea perch populations in the present study may be in response to 

differences in prey quality or availability as a result of differences in primary productivity 

among regions. Consequently for differences in growth and size-at-maturity, differences in 

fecundity, and larval quality among habitats are likely (Berkeley et al., 2004b; Sogard et al., 

2008; Beyer et al., 2015). The results indicate the importance of environmental influences on 

growth over the lifetime of an individual and most likely indicate that the differences between 

subpopulation are extrinsic and ontogenetic rather than genetic differences between substocks 

(Lewis, 2008; Lawton et al., 2010). Nevertheless, without analysis of possible intrinsic 

differences among these populations we cannot discount genetic structure as a mechanism. 

Even though colouration was not formally compared in the present study, it was 

strikingly different between sea perch sampled from the Otago coast and the inner Fiordland 
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habitats. Sea perch collected from the Otago shelf were generally bright orange with lighter 

bandings. In contrast, sea perch from the inner fjords were much darker, almost dark brown 

with banding only barely visible. Environmental factors such as light, diet or substratum, as 

well as sexual selection can lead to intraspecific variation in colour (Maan and Sefc, 2013). The 

differences in colouration between the Otago and Fiordland sea perch is most likely a result of 

differences in light intensity and quality. The low salinity surface layer in Fiordland is rich in 

tannin, reducing the light intensity and spectral distribution of light in the underlying high 

salinity layer (Miller et al., 2006). Differences in the colouration of sea perch from different 

regions have been observed by Lewis (2008) and Smith et al. (2009). This, again, demonstrates 

the importance of habitat quality and supports the hypothesis of a subdivision of the three 

subpopulation among the different regions. 

The present study demonstrates that sea perch most likely form discrete subpopulations 

within the inner fjord habitats, outer fjord region and Otago shelf. The present chapter brings 

into question how management practices could be applied to a species of subdivided 

populations with distinct differences in their local vital rates. To improve the scientific support 

for effective management of this species focussed research is needed to define whether these 

differences are extrinsic or genetic and how differences in growth rate and size structure might 

affect reproduction among subpopulations. For example, larger individuals are known to have 

energetic and ecological advantages that increase their investment into reproductive output 

(Birkeland and Dayton, 2005). Increased reproductive output and higher larval survival chances 

have been shown for larger and older females for multiple species of the closely related genus 

Sebastes (Berkeley et al., 2004b; Beyer et al., 2015) 

The aim of the present chapter was to determine whether populations of sea perch from 

two distinct habitats in the Fiordland region (inner fjords and outer coast) and from deep 

habitats on the Otago shelf form subpopulations with distinct characteristics. Differences 

among regions were found in morphology, stable isotope composition, growth rate and 
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colouration, with the inner and outer Fiordland populations seeming to be less distinct from 

each other than from the Otago population. These results suggest that sea perch are relatively 

sedentary as adults over the spatial scale sampled in this analysis. Further research is needed to 

resolve differences in reproductive output, including larval survival and growth, among regions 

and subpopulations.  
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Maternal investment in the viviparous temperate reef fish 

Helicolenus percoides relative to age, size and condition 

 

 

Sea perch larvae under the microscope        Photo: S. Kolodzey 

 

Figure 4. 1Sea perch larvae under the microscope   
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4.1 Introduction 

A robust understanding of the reproductive biology of a species is vital for providing 

scientific advice for effective fisheries management. Specifically, in order to estimate a stock’s 

spawning potential and provide information for models that optimise reproductive output under 

a range of harvest regimes, information on size specific fecundity patterns and other aspects of 

reproductive biology of a population are essential (Murawski et al., 2001; Murua et al., 2003; 

Morgan, 2008). Significant scientific challenges remain in this area of research due to a vast 

range of reproductive life histories among fishes. 

 Sea perch (Helicolenus percoides Richardson & Solander 1842) are a member of the 

family Sebastidae which includes the genera Adelosebastes, Helicolenus, Hozukius, Sebastes, 

Sebasticus, Sebastolobus, and Trachyscorpia. Sea perch, like many species of the family, are 

viviparous, with egg fertilization and larval development occurring inside the female. Mature 

females with full ripe gonads are found in December and January, many with eyed larvae (Paul 

Figure 4. 1 Helicolenus percoides larvae development in Tasmanian waters (Furlani, 1997). (A) Preflexion, 2.05 

mm BL. (B) Preflexion, 3.85 mm BL, striated pigment on pectoral-fin blade. (C) Preflexion, 4.80 mm BL, 

formation of spongy tissue dorsally and striated pigment on pectoral-fin blade. (D) Flexion, 6.25 mm BL, ventral 

midline pigment with 2 melanophores. (E) Late flexion, 6.80 mm BL. (F) Postflexion, 7.68 mm BL, ventral 

midline pigment with 2 melanophores. (G) Postflexion, 9.60 mm BL, ventral midline pigment with 3 

melanophores 
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and Francis, 2002), but some regional differences in spawning times may occur (Furlani, 1997). 

Nevertheless, there remains little specific biological information on fecundity of sea perch and 

much of what is known is anecdotal or based on single observations. For example, Graham 

(1939) observed the extrusion of c. 90,000 larvae in a floating jelly-like mass. Mines (1975) 

described a 30 cm female produced between 150,000 and 200,000 eggs with 40-50,000 

fertilized and containing developing embryos. Graham (1939) suggested an extended spawning 

season, due to the presence of eggs and all larval stages in a single ovary. In New Zealand, 

larvae have been recorded off the coast of Otago from spring through the summer months into 

autumn, whereas in Tasmania sea perch larvae were present earlier in the year from late winter 

through summer with no larvae caught between autumn and mid-winter (Furlani, 1997; 

Morrison et al., 2014). Furlani (1997) described the development and ecology of H. percoides 

larvae from around Tasmania (Figure 4. 1). She described a functional mouth, pigmented eyes, 

a loosely coiled gut, and a well formed base and blade of the pectoral fins in the smallest larvae 

sampled (1.9 mm body length (BL)). Larvae at parturition have no visible spines, nor a yolk 

sac. A small oil globule, providing energy until the first feeding, is clearly visible due to its 

Figure 4. 2 H. percoides larvae with visible oil globule at the day of parturition 
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orange to yellow colour (Furlani, 1997; Berkeley et al., 2004b) (Figure 4. 2). Spines begin to 

form in larvae of 3.8 mm BL. The pectoral fin develops rapidly and base and blade are well 

differentiated by 2 mm BL. Flexion is completed and full caudal fin rays are present at 7.7 mm 

BL. By 8.2 mm BL the development of the pelvic fin is completed. Fin development (pectoral, 

caudal, dorsal, anal, and pelvic) is completed by 9 mm BL. Sea perch larvae are relatively easy 

to recognise based on their pigmentation. Larvae show internal melanophores along the ventral 

mid line and on the gut epithelium. The pigments develop rapidly as the larvae grow (Figure 4. 

1). Similar to other viviparous fish, the otoliths of H. percoides larvae show regular banding 

outside a dark band at the core of the otoliths, which is assumed to be deposited at the day of 

parturition with following daily formed increments (Furlani, 1997). The findings of Furlani 

(1997) suggest an extended planktonic life, with the oldest larvae having been in the water 

column for 52 days.  

 Fish of the family Sebastidae are considered to be relatively slow growing and late 

maturing, with a maximum recorded age of 59 years for a male sea perch sampled at the 

Chatham rise (Paul and Horn, 2009). It is assumed that H. percoides smaller than 25 cm are 

immature, however more research on the life history of sea perch in New Zealand waters is 

needed to confirm age and size at maturity. It is likely that there are small scale spatial 

differences in growth of sea perch around the South Island of New Zealand, possibly resulting 

in differences in age and size at maturity.  

Studies over the past four decades have indicated that larger, older fish can have 

distinctly different reproductive attributes than smaller, younger individuals (Hempel and 

Blaxter, 1967; Hislop, 1988; Kjesbu, 1989; Chambers and Leggett, 1996; Trippel et al., 1997). 

For example, many species of marine fish show extremely long life spans, with some families 

exceeding 100 years or more and remaining reproductively active throughout life (Cailliet et 

al., 2001; Nielsen et al., 2016). In these long-lived species with low natural mortality, older and 

larger females invest more energy into reproduction than growth as they age and it is now 
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recognised that relative fecundity increases with maternal age in a wide range of marine species 

(Hixon et al., 2014). For example, Berkeley et al. (2004) found that larval oil globule volume 

is correlated with female age in Sebastes melanops, a closely related species to H. percoides. 

Older mothers provide their offspring with more energy rich triacylglycerol (TAG) than do 

younger mothers. Those larvae show higher survival rates and faster growth than their 

counterparts from younger mothers (Berkeley et al., 2004; Berkeley et al., 2004b). If older 

females produce larvae of higher quality, with higher survival rates, selectively harvesting 

larger, older individuals may have dramatic negative effects on the reproductive output of a 

population. 

Currently there is limited information on the reproductive biology of H. percoides. The 

present chapter investigated maternal investment in sea perch, asking the question whether 

larval size, oil globule volume and condition are related to maternal traits such as age, size and 

condition, as indicated by a liver index. It was hypothesised that the notochord length, oil 

globule volume and general condition of larvae from older and larger females would be greater 

than those larvae produced by younger, smaller females of lesser condition. To test these 

hypotheses, female sea perch with developing larvae were sampled off the coast of Otago. 

Females were kept in individual tanks until spawning occurred naturally. After spawning, 

information on age, size and condition of the female was collected. Larvae of different females 

were kept in individual tanks and the notochord length, oil globule diameter and dry weight 

were measured at every 2nd to 3rd day of survival. These data provide the basis for investigating 

covariability between maternal and larval characteristics.  
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4.2 Materials and methods 

4.2.1 Collecting and maintaining adult sea perch 

Adult H. percoides were collected off the coast of Otago, New Zealand in late 

November 2015 (Figure 4. 3). It is not possible to determine the sex of sea perch without 

dissecting their gonads, therefore 30 fish were sampled using hook and line fishing in an attempt 

to sample at least 15 females.  

The fish were kept alive in a live transport tank (measurements: 1 m wide x 1.5 m high) 

with constant seawater circulation and brought to the Portobello Marine Laboratory (PML), 

Dunedin, New Zealand. Fish were transferred into two aerated 2000 L tanks, connected to the 

laboratory’s seawater circulation system. The water temperature in the tanks varied from 15 °C 

in late November to 19 °C in the end of December, depending on the temperature of the 

Figure 4. 3 Map of the Otago Peninsula. Black circle indicates the area sea perch were sampled 
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seawater of the Otago harbour. The fish tanks were outside, covered with a protective mesh, 

ensuring a natural day-and-night cycle. Fish were fed twice a week with grapsid crabs, collected 

at the nearby beach. Gravid females, recognisable by an enlarged abdomen, were transferred 

into individual 60 L, aerated seawater tanks inside the wet-laboratory at PML. The water 

temperature of the individual tanks was similar to the water temperature in the tanks located 

outside, as both are connected to the same seawater circulation system. The outflow of each 

tank was covered with a mesh basket (Ø = 10 cm, 1.5 µm mesh size) to prevent larvae from 

escaping the tank before transfer. While inside the individual tanks, fish were not fed.  

After spawning, the females were humanely euthanized using an Aqui-S (Aqui-S, New 

Zealand LTD) water bath under University of Otago ethics protocol ET77/15. For euthanasia 

fish were transferred in a 150 mg/L Aqui-S solution for 40min (Aqui-S New Zealand LTD, 

2016). Fish were then stored in a -20°C freezer for further analysis of age, size and weight. 

Larvae were separated from each female and transferred into separate 5 L tanks. The 

tanks were not connected to the seawater system, therefore filtered seawater was exchanged 

manually every second day to ensure an adequate oxygen enrichment and to remove dead larvae 

from the bottom of the tank. Water temperature was 16°C, similar to the air temperature in the 

wet laboratory. A natural day-and-night cycle was applied and larvae were not fed. Every 

second to third day of survival a random subsample of ~60 larvae was collected for 

measurements of size, oil globule dimensions and dry weight. The subsample was preserved in 

2% seawater buffered formalin. 
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4.2.2 Maternal traits 

Age (years), weight (g), liver weight (g), and total length (mm) were recorded for each 

female that had spawned in captivity. As a measure of energy reserves a liver index (LI) was 

calculated as liver weight/wet weight. From length and wet weight a condition index (CI) was 

calculated as: 

𝐶𝐼 = (𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙𝑒𝑛𝑔𝑡ℎ3⁄ ) × 100 

The largest pair of the otoliths was removed by cranial dissection to determine maternal 

age. To prepare the otoliths for aging the same methods as in Chapter 3 were used (see 3.2.3) 

 

4.2.3 Larval characteristics  

Notochord length (µm), oil globule volume (mm³), dry weight (µg), larval condition 

index, and growth in length (µm/d) and mass (µg/d) were collected as larval characteristics.  

Microphotographs of a subsample of 30 larvae per day of survival were used to 

determine notochord length and oil globule diameter. From the oil globule diameter the oil 

globule volume was calculated as:  

𝑉 =  
1

6
 𝜋 × 𝑑3 

Where:  

V = Oil globule volume 

d = oil globule diameter 

 

 Growth in length was estimated using a linear regression model, where Lt is the 

estimated notochord length (µm) at time (t), a is the y-axis intercept, b is the change in size 

(µm/day): 

𝐿𝑡 = 𝑎 + 𝑏𝑡 
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A separate subsample of 45 larvae for each day of survival was used to measure the dry 

weight. Larvae were rinsed in deionised water and separated into three replicates of 15 larvae 

each. Larvae were placed on pre-dried (60°C for 48 hours) and pre-weighed (to the nearest 

0.00001 g) glass fibre filters (Whatman glass fibre filter, Ø 25 mm, 1.2 µm pore size). Filter 

with larvae were dried at 60°C for 48 hours and weighed to the nearest 0.00001 g again to 

estimate larval dry weight. The weight was then divided by 15 to get an estimate of the mean 

single larval weight. Growth in weight was estimated using linear regression models where Wt 

is the estimated weight (µg) at time (t), a is the y-axis intercept, b is the change in weight 

(µg/day): 

𝑊𝑡 = 𝑎 + 𝑏𝑡 

 

4.2.4 Statistical analysis 

Simple pairwise Pearson correlations and r2 statistics were used to analyse relationships 

between single maternal characteristics and larval traits.  

To predict larval traits at the day of parturition and the last day of survival from maternal 

characteristics a general linear model (GLM) (multiple linear regression) framework was used. 

Using a GLM allows one to examine the relationship between multiple maternal characteristics 

and one larval trait. Stepwise selection was used to identify the best fit models. 

All statistical analysis were performed using JMP Pro 11 (SAS Institute Inc., Cary, NC, 

USA).     
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4.3 Results 

4.3.1 Maternal traits 

From the 30 sea perch sampled, 15 were females. Eleven of the females spawned in 

captivity, of these 11 females larvae of five survived longer than the day of parturition.  

Female sea perch that spawned in captivity ranged from 257 mm to 338 mm in length 

and from 13 to 24 years in age. Wet weight and liver weight were measured and ranged from 

289.2 g to 667.9 g and 2.2 g to 6.4 g, respectively (Table 4. 1). The condition index for each 

female ranged from 1.65x10-3 to 2.08x10-3. The calculated liver index, used here as a measure 

of maternal energy reserves, ranged from 3.85x10-3 to 1.05x10-2. 

 

Table 4. 1 Characteristics of the 10 females that spawned in captivity with size in mm, age in years, wet weight 

and liver weight in grams, condition and liver index 

Fish ID Size 

(mm) 

Age 

(Years) 

Wet 

weight (g) 

Liver 

weight (g) 

Condition 

index 

Liver 

index 

FSP01 296 18 489.1 2.9 1.89x10-3 5.89x10-3 

FSP02 257 14 289.2 2.8 1.70x10-3 9.58x10-3 

FSP03 338 23 667.9 4.3 1.73x10-3 6.44x10-3 

FSP04 291 18 405.6 4.5 1.65x10-3 1.11x10-2 

FSP05 319 19 558.4 2.2 1.72x10-3 3.85x10-3 

FSP06 317 21 593.4 6.4 1.86x10-3 1.07x10-2 

FSP07 306 18 594.9 5.3 2.08x10-3 8.86x10-3 

FSP08 279 15 402.7 4.2 1.85x10-3 1.05x10-2 

FSP09 296 19 429.5 3.0 1.66x10-3 7.08x10-3 

FSP10 324 19 580.8 4.3 1.71x10-3 7.35x10-3 
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4.3.2 Larval characteristics  

Only larvae from five females survived longer than the day of parturition. Larvae of two 

females survived for 10 days. The larvae of the other three females survived for two, three and 

five days. The largest larval cohort at parturition had an average size of 2848.0 ± 14.6 µm, but 

all larvae had died after two days. The smallest larval cohort had an average size of 

2104.0 ± 31.3 µm. Average size of those larvae that survived longer than the day of parturition 

tended to be larger until the 3rd to 5th day of survival and then smaller following 5 days after 

parturition.  

Oil globules were evident in all larvae and clearly visible as orange/yellow spheres 

(Figure 4. 5). The largest average oil globule volume on the day of parturition was 

 3.82x10-4 ± 3.6x10-5 mm³ for a cohort of larvae with an average size of 2511.2 ± 39.5 µm 

(Figure 4. 4). The volume of the oil globule was highly variable, and tended to be smaller among 

larvae with longer notochord lengths (Figure 4. 6).  

The greatest average individual weight of larvae at the day of parturition was 

171.25 ± 51.1 µg for a cohort of larvae with an average notochord length of 2992.1 ± 11.7 µm 

and an average oil globule volume of 1.13x10-5 ± 1.5x10-5 mm3. The smallest average 

individual weight was 24.2 ± 3.2 µg, these larvae had an average notochord length of 

2104.0 ± 31.3 µm and an average oil globule volume of 1.27x10-4 ± 1.9x10-5 mm3.  

The condition index of larvae at the day of parturition varied from the lowest 1.97x10-7 

for larvae of an average notochord length of 2449.6 ± 34.4 µm and an average weight of 

28.89 ± 4.23 µg to the highest condition index of 1.002x10-6 for larvae of an average length of 

2211.9 ± 33.7 µm and an average weight of 108.44 ± 67.79 µg (Table 4. 2). 
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Figure 4. 4 Mean (± SE) oil globule volume (mm3) and notochord length (µm) at the day of parturition. 

Each black circle represents a cohort of larvae from a different female 
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Figure 4. 6 Oil globule volume (mm3) plotted against notochord length (µm) of larvae at the day of parturition. A 

normal distribution bell curve is fitted to notochord length, the 1st and 3rd quartiles are given. 

 

 

 

Figure 4. 5 A Sea perch larvae at the day of parturition (magnification: 2.52x); B Close up of the larvae’s head with oil 

globule. Yellow line represents the measurements for notochord length and oil globule diameter (magnification: 6.3x) 
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Table 4. 2 Table showing the survival of larvae per female in days, the average size of the larvae per day of survival 

(µm), oil globule volume per day of survival (µm³) , average individual larval weight per day of survival (µg) and 

the calculated condition index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Female 

ID 

Larval 

age 

(days) 

Average 

size ± SE 

(µm) 

Oil globule 

volume ± SE 

(mm³) 

Average 

larval weight 

± SE 

(µg) 

Larvae 

condition index 

FSP01 1 2104.0 

±31.3 

1.27x10-4 

±1.87x10-5 

24.22 

±3.15 

 2.6x10-7 

FSP02 1 2147.3 

±31.9 

1.22x10-4 

±2.37x10-5 

25.56 

±6.31 

2.58x10-7 

FSP03 1 2511.2 

±39.6 

3.82x10-4 

±3.63x10-5 

88.33 

±33.2 

5.58x10-7 

FSP04 1 2778.0 

±18.8 

2.97x10-4 

±2.61x10-5 

88.89 

±7.73 

4.15x10-7 

FSP04 3 2922.3 

±14.4 

8.5x10-5 

±1.5x10-5 

145.11 

±13.73 

5.81x10-7 

FSP04 5 3045.7 

±15.7 

9x10-6 

±8x10-7 

324.67 

±29.46 

1.149x10-6 

FSP04 7 2981.1 

±15.6 

7x10-6 

±8x10-7 

569.56 

±60.00 

2.15x10-6 

FSP04 10 2595.4 

±48.3 

8x10-6 

±4.4x10-6 

286.67 

±16.26 

1.64x10-6 

FSP05 1 2505.9 

±47.0 

1.6x10-5 

±1.8x10-6 

62.22 

±8.88 

3.95x10-7 

FSP05 3 2138.3 

±23.1 

1.4x10-5 

±2.9x10-6 

54.67 

±5.03 

5.59x10-7 

FSP06 1 2211.9 

±33.7 

1.67x10-4 

±1.84x10-5 

108.44 

±67.79 

1.002x10-6 

FSP06 3 2942.1 

±39.1 

2.8x10-5 

±6.2x10-7 

179.33 

±18.90 

7.04x10-7 

FSP06 5 2801.5 

±34.8 

2x10-6 

±5x10-7 

397.50 

±142.32 

1.808x10-7 

FSP07 1 2992.1 

±11.7 

1.13x10-4 

±1.51x10-5 

171.25 

±51.05 

6.39x10-7 

FSP07 4 3056.8 

±21.1 

1.6x10-5 

±4x10-7 

283.78 

±47.65 

9.94x10-7 

FSP07 7 2874.1 

±39.4 

4x10-6 

±4x10-7 

200.67 

±32.95 

8.45x10-7 

FSP07 10 2711.4 

±31.5 

6x10-6 

±5x10-7 

228.00 

±40.51 

1.144x10-7 

FSP08 1 2848.0 

±14.6 

1.6x105 

±4.4x10-6 

132.14 

±19.73 

5.72x10-7 

FSP08 2 2882.9 

±20.4 

3x10-5 

±1.1x10-6 

284.00 

±38.19 

1.185x10-7 

FSP09 1 2449.6 

±34.4 

1.9x10-4 

±2.29x10-6 

28.89 

±4.23 

1.97x10-7 

FSP10 1 2544.6 

±47.4 

 1.05x10-4 

±1.1x10-6 

36.44 

±0.77 

   2.21x10-7 
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Larval cohorts from five females survived longer than the day of parturition. Larval 

cohorts that survived more than two days declined in average notochord length after the third 

day of survival, likely indicating the early death of larger individuals. Simple linear regressions 

between the first and the second day of survival were used to calculate the average change in 

size of the cohort (µm/day) (Table 4. 3). The average change in size of a cohort was regressed 

against maternal age, length and weight and oil globule diameter, and notochord length at the 

day of parturition. The results show that the average size of larval cohorts increases with 

increasing maternal age, size and weight (Figure 4. 6). There is no clear trend in the relationship 

between the average increase in size of a cohort and oil globule volume. The relationship 

between the average increase in size of a cohort and average notochord length at the day of 

parturition is strongly negative, indicating that the mortality among larvae with larger 

notochords is higher than mortality of cohorts with smaller notochords at the day of parturition 

(Figure 4. 6).  

 

Table 4. 3 Linear regression equations for the average change in size (µm/d) of larvae that survived longer than 

the day of parturition 

Female ID Survival  

(days) 

Change in size between 

1st and 2nd day 

FSP04 10 y = 72.177x + 2705.8 

FSP05 3 y = 183.78x + 1954.5 

FSP06 5 y = 365.12x + 1846.8 

FSP07 10 y = 21.564x + 2970.5 

FSP08 2 y = 34.968x + 2813 
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Figure 4. 7 Average change in size of a cohort regressed against against (a) maternal age (years) (y = 55.262x - 

870.27, r² = 0.6987), (b) larval oil globule volume at the day of parturition (mm³) (y = -454.76x + 1348.4, r² = 

0.9661), (c) maternal length (mm) (y = 5.7833x - 1613.4, r² = 0.48), (d) notochord length at the day of parturition 

(µm) (y = 104.6x + 122.75, r² = 0.0074), (e) maternal weight (mg) (y = 0.7511x - 248.33, r² = 0.2671) 
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4.3.3 Statistical analysis 

4.3.3.1 Single relationships between maternal trait and larval characteristic 

Larval traits at the day of parturition were correlated against each maternal trait. Results 

of each linear regression are shown in Table 4. 4. The majority of r²-values are relatively low 

and a single maternal trait only explains a small amount of the variability of a single larval 

characteristic. The highest r² value was found for the relation between maternal condition index 

(MCI) and initial larval weight (ILW) (r² = 0.43, p < 0.001). A relatively high correlation was 

found between maternal age (MA) and oil globule volume (OGV) with r² = 0.21 (p < 0.001). 

Larval condition index and ILW both were relatively high correlated to the maternal liver index 

(MLI) with r² values of 0.25 (p < 0.001). The LCI was significantly correlated to each of the 

maternal characteristics. Initial larval length (ILL) was significantly correlated with MA 

(r² = 0.04, p < 0.01), MLI (r² = 0.05, p < 0.001) and MCI (r² = 0.06, p < 0.001), however the r² 

values are small so conclusions should be made with some caution (Table 4. 4). 

 

Table 4. 4 Matrix of coefficients of determination (r²) for maternal and larval traits Results are based on linear 

regression between each pair of traits. Positive relationships are marked by asterisk (* = p < 0.05; ** = p < 0.01; 

*** = p < 0.001) and in bold, non-significant relationships are marked by 0. A negative relationship is designated 

with a minus sign 

    Trait      

Trait MA ML MWW MCI MLI ILL OGV ILW LCI 

MA  *** *** * *** (-) ** *** 0 *** 

ML 0.80  *** 0 *** (-) 0 *** 0 *** 

MWW 0.65 0.88  *** *** (-) 0 * *** *** 

MCI 0.02 0.00 0.09  ** *** *** *** *** 

MLI 0.12 0.24 0.16 0.03  *** 0 *** *** 

ILL 0.04 0.00 0.00 0.05 0.06  0 *** * 

OGV 0.21 0.05 0.02 0.07 0.01 0.00  0 0 

ILW 0.00 0.00 0.06 0.43 0.25 0.38 0.00  *** 

LCI 0.08 0.05 0.16 0.24 0.25 0.02 0.00 0.56  

Abbreviations: MA, maternal age; ML, maternal length; MWW, maternal wet weight; MCI, maternal 

condition index; MLI, maternal liver index; ILL, initial larvae notochord length; OGV, oil globule 

volume; ILW, individual larval weight; LCI, larval condition index 
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4.3.3.2 Maternal investment in larval traits on the day of parturition 

A general linear model framework was used to analyse the effect of maternal traits on 

larval characteristics on the day of parturition. Models were calculated to predict larval oil 

globule volume, average notochord length, average individual weight and larval condition as 

larval characteristics at the day of parturition of a cohort of larvae.  

 Variability in maternal age and size were compared with variability in oil globule 

volume. The GLM demonstrated that 64.5 % of the variability of the OGV are statistically 

explained by MA and ML (F2,7 = 8.219, p < 0.05), demonstrating that females of greater age 

and size are associated with larval cohorts with a larger OGV. The results are consistens with 

the hypothesis that older, larger fish produce larvae with larger oil globules (Table 4. 5).  

 Variability in maternal weight and liver index were compared with variability in the 

larval condition index. The results show that 70.1 % of the variability in LCI were explained 

by MWW and MLI at the day of parturition. Females with a greater liver index and body weight 

produced larvae that were in a better condition than larvae of less heavier females with smaller 

liver indices (F2,7 = 8.219, p < 0.05) (Table 4. 5). 

 Multiple models were found to predict initial larval weight. Variability in maternal age, 

weight and liver index explained 64% of the variability in larval weight. (F3,6 = 3.591, 

p = 0.086). However, maternal age was non-significant in this model and the overall model was 

not significant. After removal of an outlier the model became significant (F3,5 = 7.361, p < 0.05) 

with an r² of 0.815. Even though the model was significant, maternal age remained non-

significant, whereas the significance of maternal weight and liver index increased. A third 

model was used to compare variability of larval weight with the variability in maternal age, size 

and liver index (F3,5 = 12.764, p < 0.01). This time, the GLM showed that 88.5 % of the 

variability in ILW were explained by MA, ML and MLI (Table 4. 5).  

No significant model was found to predict larval notochord length from maternal traits.  
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Table 4. 5 Multiple linear regression results for dependent larval characteristics predicted by maternal traits. 

Significant results are in bold 

Dependent 

variable 

Independent 

variables (p-

value) 

β-

coefficient 

Lower 

95% CI 

Upper 

95% CI 

F-

value 

r² p-

value 

 

Oil globule 

volume 

MA     (< .05) 8.0813e-5 

 

2.2379e-5 

 

0.00169  

6.35 

 

0.645 

 

.0267 

ML      (< .05) -6.54e-6 -0.000013 -1.537e-7 

 

Larval 

condition 

MWW (< .05) 1.6565e-9 5.087e-10 2.8044e-9 

 

 

8.22 

 

0.701 

 

 

.0146 

MLI     (< .05) 8.0477e-5 2.4962e-5 0.000136 

Larval 

individual 

weight 

MA    (= .177) -13.697 -35.626 8.232  

3.59 

 

0.642 

 

.0856 MWW (< .05) 0.523 0.029 1.018 

MLI     (< .05) 13931.493 231.815 27631.172 

Larval 

individual 

weight* 

MA    (= .053) 

MWW (< .05) 

MLI     (< .05) 

-17.605 -35.525 0.314  

7.36 

 

0.815 
 

.0278 0.637 0.225 1.049 

13152.417 2248.001 24056.833 

Larval 

individual 

weight* 

MA     (< .01) 

ML     (< .01) 

MLI    (< .01) 

-39.185 

5.829 

19197.356 

-62.151 

3.012 

9658.078 

-16.219 

8.646 

28736.634 

 

12.76 

 

0.885 
 

.0088 

Abbreviations: MA, maternal age; ML, maternal length; MWW, maternal wet weight; MLI, maternal 

liver index; * model with removed outlier 
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4.4 Discussion 

The aim of the present study was to identify potential relationships between maternal 

characteristics and larval traits among individual sea perch (Helicolenus percoides). It was 

hypothesised that maternal age, size, weight, and condition could be used as predictors of larval 

traits such as notochord length and oil globule volume at the day of parturition.  

The results of the present study clearly demonstrate a relationship between maternal 

characteristics and larval traits and performance of cohorts of larvae in sea perch. It was 

observed that older and larger females provisioned their larvae with significantly larger oil 

globules than younger/smaller females. In addition, the larvae of heavier females with higher 

liver indexes were in significantly better condition at the day of parturition. Average larval 

weight of cohorts was higher when the females were older, larger and had a higher liver index. 

Average change in size of cohorts of larvae increased with increasing maternal age, size and 

weight.  

The present study showed that oil globule volume is highly variable among cohorts of 

larvae. A trend of decreasing OGV with increasing notochord length at the day of parturition 

was observed. Similar to fish of the genus Sebastes, most of the yolk sac of sea perch larvae at 

extrusion has already been absorbed (Moser et al., 1977; Furlani, 1997). The oil globule serves 

as a source of endogenous energy, primarily composed of triacylglycerol (TAG), providing 

energy for metabolism and growth (Norton et al., 2001). TAG is most likely the main source 

of energy, sustaining larvae when no food is available during the transition to exogenous 

feeding. Accordingly, Berkeley et al. (2004) found that the amount of TAG formed a close 

relationship with the survival rate of larvae. In cohorts of black rockfish larvae greater stores of 

TAG were correlated with faster growth rates even when food was present. A number of studies 

on maternal investment among different species of the genus Sebastes have shown that older 

and larger females provision their offspring with significantly larger oil globules than smaller, 

younger fish (Berkeley et al., 2004b; Sogard et al., 2008; Rodgveller et al., 2012; Beyer et al., 
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2015). Evidence for maternal characteristics determining oil globule volume was also found in 

capelin (Mallotus villosus), an unrelated species with external fertilization and broadcast 

spawning (Chambers et al., 1989). The results of the present study support the growing body 

of evidence that older and larger females are more important to a population’s reproductive 

ecology than previously thought. Here there is evidence that old large females produce not only 

more eggs, but eggs and larvae of better quality. Provision of more energetic reserves to larvae 

may result in cohorts of larvae with better survivorship in the face of a variable planktonic 

environment. 

Several studies have demonstrated that the size of the oil globule has a clear relationship 

with resistance to starvation and faster growth rates in larvae (Berkeley et al., 2004b; Fisher, et 

al.,, 2007; Sogard et al., 2008). In the present study, no clear relationship between the average 

change in size among cohorts of larvae and the size of the oil globule was found. This may well 

be because the average change in size of a cohort of larvae can include variability in size specific 

mortality among cohorts. The observed negative relationship between notochord length and 

change in size suggests that cohorts of larger larvae may have had slower growth in the first 

days of life. Alternatively this pattern may reflect higher mortality among faster growing 

individuals as they exhaust their energy reserves in an environment without food.  

A larger body size throughout the duration of the larval stage is important, as body size 

influences the vulnerability to predators through escape ability and predator-gape limitation 

(Miller et al., 1988; Garrido et al., 2015). A number of field studies show that mortality  of 

larvae and juvenile fish in natural environments is size-dependent (Searcy and Sponaugle, 2001; 

Bergenius et al., 2002; Hoey and McCormick, 2004). In addition, slow growing larvae are more 

susceptible to predators, independent of body size, with fast growing larvae observed to be in 

better physiological condition, enhancing their escape ability (Takasuka et al., 2003). The large 

but slow growing larvae in the present study could be a side effect of the no-food treatment. 

Larvae of larger sizes might have used the energy provided by the oil globule for basal 
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metabolism rather than growth, whereas smaller larvae might have grown faster due to a 

relatively low basal metabolic rate. For larval and juvenile fish, the change in body size is an 

important variable affecting survival (Rice et al., 1993). It is suggested that relatively small 

reductions in growth may cause a decrease of 1-2 orders in magnitude of a cohort’s survival. 

This is due to the prolonging of the period of vulnerability to mortality sources (e.g. predation 

or starvation) (Leggett and Deblois, 1994).  

Investigations in parental energetic investment in larvae suggest a trade-off between 

larval body size and oil globule volume. Larger larvae of H. percoides in the present study had 

smaller oil globules, compared to larvae of smaller body size at parturition which had larger oil 

globules. In addition there was an interaction between notochord length and oil globule volume 

that likely provided the highest survival chances among cohorts of larvae, as indicated by 

changes in size of larval cohorts. Fisher et al. (2007) found similar results in larvae of multiple 

species of the genus Sebastes. Large oil globules provide enhanced resistance to starvation, 

whereas a larger body size could improve performance in growth and escape abilities. However, 

larger larvae with a small oil globule must start feeding sooner after parturition or risk early 

starvation. Larvae with larger oil globules, and therefore a larger reserve of endogenous lipid 

reserves, have higher chances to survive longer periods of less favourable environmental 

conditions or environments where prey densities are variable and starvation-based mortality is 

high (Letcher et al., 1996; Fisher et al., 2007).  

For larvae that are not limited by prey availability, predation is likely the main cause of 

mortality (Letcher et al., 1996) and selection for larger body sizes and faster growth rates would 

likely be favoured (Fisher et al., 2007). Results of the present study suggest a greater potential 

for maternal effects to be expressed in the oil globule size rather than body size of larvae. No 

significant influence of maternal effects on larval size were found in the present study. This is 

similar to results found by Berkeley et al. (2004). 
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Alternatively a larger larval body size or a larger oil globule volume may be partially 

environment driven. In the present study all female sea perch where sampled offshore on the 

Otago coast, which is strongly influenced by the Southland Current. Downwelling 

oceanographic conditions at the east coast of the south island of New Zealand, caused by the 

sub-Antarctic current, lead to minimal nutrient input and only a relatively small amount of 

phytoplankton growth (Menge et al., 1999, 2003), which may lead to low prey abundance for 

fish larvae, particularly in sub-Antarctic surface waters. Therefore a larger oil globule and fast 

growth may be favourable for larval survival under low food availability experienced during 

the first days after parturition. However, larvae of females from different regions may show 

differences in the oil globule – notochord length relationship and further research is necessary 

to resolve this question.  

Larval cohorts in the present study survived up to 10 days with no food available. The 

strong Southland Current, that generally flows to the north-east, helps larvae to disperse quickly 

northwards and this may strongly influence larval survival. Their mean dispersal distance in the 

Southland Current is estimated to be 177 km within 10 days after hatching (Chiswell and 

Rickard, 2011). However, about 62% of the larvae hatched offshore Dunedin may have 

dispersed as far as Lyttelton (c. 350 km) after 9 days (Chiswell and Rickard, 2011). In this 

scenario larvae advected to the north would experience more productive oceanographic 

conditions during the late spring and summer months and therefore a higher food supply (Hart 

et al., 2008). In general, environmental variation and favourable conditions after hatching can 

cause differences in growth rates and survival of different cohorts of larvae (March, 1991; Høie 

et al., 1999). In this situation small differences in energetic reserves afforded by differences in 

oil globule volume could translate into large differences in larval survival and favour larvae 

from older, larger females. 

The liver is the primary storage organ for lipids, which are the most immediate available 

nutrients for fishes (Green, 2008), making it a useful measure of spawner quality (Marshall et 
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al., 1999). For example, Marshall et al. (1999) found a positive association between female 

liver weight and recruitment in the Barents Sea cod (Gadus morhua) stocks. Similar results 

were found by Yoneda and Wright (2004), who concluded that the condition of the liver 

significantly affects fecundity in North Sea cod (Gadus morhua). Further, in several species of 

rockfish of the genus Sebastes, relative fecundity increased among females with high liver 

condition. Macfarlane and Bowers (1995) described the viviparous yellowtail rockfish 

(Sebastes flavidus) as matrotrophic, with females mobilising and transferring energy stores to 

the ovaries. This is to provide nutrition for the developing larvae, most likely through the 

ovarian fluid (Macfarlane and Bowers, 1995). In the present study variability in maternal liver 

index as a proxy of maternal condition was compared with variability in larval traits. The results 

demonstrate that maternal liver index was a significant predictor of larval weight and larval 

condition for cohorts of larvae at the day of parturition. Females with higher liver index 

produced cohorts of larvae that weighed more and were in better general condition. 

Developing eggs and larvae can make up to 28% of the female’s total body weight 

(Beyer et al., 2015). Large and heavy ovaries may affect swimming and feeding capabilities of 

pregnant females, suggesting a decline in condition during the larval development and through 

parturition. Therefore, one has to be careful when measuring the female’s condition as a 

predictor of larval quality, as her condition may have changed during gestation. There is 

evidence in the present study that maternal liver index and condition index were positively 

correlated with larval traits such as initial larval length and weight. However, a larger sample 

size is needed to fully explore the effect of maternal condition on larval traits and survival in 

sea perch.  

Another consideration more difficult to investigate is the paternal influence on offspring 

traits and quality. Multiple paternity is a common reproductive strategy among species of the 

genus Sebastes (Hyde et al., 2008; van Doornik et al., 2008) and there are multiple hypothesis 

on how polyandry may improve reproductive success. For species of the genus Sebastes, it is 
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known that females are able to store sperm for up to four months, making it possible that sperm 

from multiple males is mixed prior to fertilisation (van Doornik et al., 2008). It is not known if 

H. percoides is able to store sperm over a long term, even though mating season is observed to 

be during the southern winter and larvae are released during summer in December and January 

(Paul and Horn, 2009). Long-term sperm storage of up to 10 months has been described for the 

blue-mouth rockfish Helicolenus dactylopterus dactylopterus (Muñoz et al., 1999) and 

therefore it seems likely that H. percoides is able to store sperm over a longer period of time. 

Polyandry might be a way to maximise genetic diversity, and therefore, fitness. Increased 

fitness will maximise the survival of offspring while projected to unfavourable environmental 

conditions that otherwise may cause variation in juvenile mortality rates (van Doornik et al., 

2008). Polyandry increases with female size and age (van Doornik et al., 2008). Older and 

larger females have a higher relative fecundity than smaller and younger females (Hixon et al., 

2014), and might mate with multiple males to obtain enough sperm to fertilise all of their eggs 

(van Doornik et al., 2008). As fertilization is internal in Helicolenus, females might even be 

able to actively choose males of higher fitness, e.g. males that are larger than others or in better 

condition. 

Results of the present study demonstrate that maternal age and size are reliable 

predictors of the oil globule volume among larvae and explain up to 64% of the variability. 

Older, larger females produce larvae with larger oil globules that have potentially higher 

survival rates under food limitation, particularly in the first few days of larval life. The present 

study supports the growing body of evidence showing that larger, older females are a vital 

contributor of the reproductive biology of a population. The results have important implications 

for the management of exploited fish species in New Zealand. While current fishery 

management practices do not incorporate maternal age and size effects into considerations 

about catch, results of the present study demonstrate that gains in reproductive potential could 

likely be made by incorporating maternal age into management considerations.  
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General conclusion 

The present thesis aimed to examine patterns in the demographic structure of discrete 

populations of blue cod and sea perch in order to identify potential differences in reproductive 

biology and maternal investment related to subpopulation structure. Here examination of 

evidence for spatial patterns in population structure was followed by an analysis of potential 

differences in reproductive biology among subpopulations or regions based on differences in 

local demographics. 

 Firstly, the second chapter provides an analysis of variation in size frequency 

distributions of blue cod sampled among several regions on the Otago coast separated by 10-

20 km. Differences in size structure were then analysed relative to reproductive potential based 

on a relationship between batch fecundity and size. It was hypothesised that (1) the size 

frequency distribution of blue cod between on- and offshore habitats were significantly 

different, (2) differences in size frequency accounted for significant differences in mean per 

capita and cumulative potential fecundity among the populations. The results demonstrate 

significant differences in the size distribution and mean size of fish among the five regions 

sampled, providing evidence for spatial patterns in population structure. Significantly larger 

fish were found at the offshore sites, likely indicating differences in fishing mortality among 

the sites. These differences in size distributions likely translate into significant differences in 

mean per capita and cumulative fecundity among populations, given a homogeneity of sex ratio 

across regions. The results show that even on the small spatial scale of only a few kilometres, 

populations were significantly different in estimated reproductive potential, indicating a 

possible source-sink reproductive system. The third hypothesis considered here was that 

populations from onshore regions would differ in their isotopic signature relative to those from 

offshore regions. This difference would indicate regional differences in the basal organic matter 

sources supporting the food web or differences in the trophic position of fishes from different 

populations. Here evidence for the existence of discrete subpopulations with relatively little 
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adult mixing was supported by consistent differences in trophic level, based on stable isotope 

analysis, between on-and an offshore populations. Isotopic differences reflect isolation on the 

temporal scale of a year or more (e.g. Suring and Wing, 2009). 

 Differences in habitat and environmental conditions can lead to intraspecific differences 

in growth rate, age or size at maturation or morphology in fishes, due to differences in resource 

availability or because of local adaptions, even on a small spatial scale. Therefore, the third 

chapter examined morphological, growth and isotopic differences in sea perch from the Otago 

shelf and two regions in Fiordland. It was hypothesised that sea perch from the different regions 

would differ in growth and morphology. The results clearly showed significant differences 

between sea perch from Otago and Fiordland, indicating phenotypically distinct populations 

between the east and the west coast of the South Island. The differences between the two 

Fiordland populations are not as large, though populations from inner fjord habitats were 

morphologically distinct from those from the outer shelf. These results are consistent with 

mesoscale (30-100 km) structure in sea perch populations, with distinct demographic 

differences among regions. Here we observe populations on the outer Otago shelf with a high 

frequency of large, old individuals, while sea perch of similar age in the inner fjord populations 

are much smaller in size. The basic demographic differences in sea perch population among 

regions likely influence mesoscale patterns in size or age specific reproductive output. 

 The growing evidence that older, larger fish produce offspring of greater quantity and 

better quality and the current lack of information on the reproductive biology of sea perch 

inspired the final data chapter. Chapter 4 investigates maternal investment in sea perch of 

different sizes and ages. The hypotheses considered were that larger, older females in good 

condition produce larvae with larger oil globules and greater notochord length than larvae 

produced by younger and smaller females. The results clearly demonstrate a relationship 

between maternal characteristics and larval traits, with larger, older females producing higher 

quality offspring. However, it is the combination of multiple maternal characteristics rather than 
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a single characteristic that was correlated with improved larval condition. In addition, the results 

indicate a trade-off between oil globule size and notochord length within cohorts larvae. This 

likely reflects a trade-off between quality and quantity of larvae produced by females.  

 The present studies provide insight into population biology and ecology of discrete 

populations of blue cod and sea perch. The evidence suggests that adults of both species have 

high site fidelity and little movement, resulting in the observed discrete population structure 

within relatively small areas (10-20 km). Blue cod make up subpopulations with distinct size 

distributions along the Otago coast within close proximity. These subpopulations are most 

likely connected via source-sink dynamics. Sea perch exist as morphologically distinct 

subpopulations of adults connected via larval dispersal and therefore likely rely exclusively on 

larval survival for population connectivity.  

Subpopulations of fish in general can be characterised by distinct demographics, e.g. 

distinct growth rates and maximum sizes, spatial and temporal spawning events. Size structure 

in combination with egg production provide useful baselines to understand the reproductive 

potential of spatially structured populations. The present thesis demonstrates that size 

truncation towards smaller individuals of blue cod and sea perch populations reduces the 

population’s egg production and possibly influences larval survival via differences in maternal 

investment. Larger, older females produce more eggs and larvae with higher energetic stores 

and, therefore, need to be protected to ensure the populations sustainability.  

There is a growing body of evidence demonstrating that the current management 

assumptions that all individuals, and units of biomass, of a population are equal in terms of 

reproductive potential and that a population forms a well-mixed pool within a management area 

are violated for many fishes. The research presented here demonstrates that the dynamic pool 

assumption that underlies using surplus production models in fisheries management is not met 

for costal populations such as blue cod and sea perch. Similar conclusion have been made for 
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other species such as rockfish (Sebastes spp.) (Berkeley, Chapman and Sogard, 2004; Beyer et 

al., 2015) and Atlantic cod (Gadus morhua) (Marteinsdottir and Thorarinsson, 1998; 

Marteinsdottir and Begg, 2002). In these cases if one only considers the biomass of a population 

this will most likely overestimate the production of viable larvae in a surplus production model. 

This assumption can have severe consequences for sustainable harvest, population recovery and 

species persistence under high harvest and potentially variable or unfavourable environmental 

conditions. Many of the current stock assessment techniques based on catch per unit effort over 

large areas do not include the spatial structure of populations within a management area. The 

result is that unsustainable exploitation may be left undetected for reproductive isolated 

populations. Thus, management models that incorporate demographic information about a 

species over relatively small spatial scales (10-50 km) are needed.  

The present studies gave some insight into the reproductive biology and small scale 

population structure of blue cod and sea perch, both of which are important commercial species 

in New Zealand. However, more research on the population structure and connectivity of blue 

cod and sea perch is needed. Important questions remain unanswered in this system. How are 

fish populations structured along the east coast of New Zealand? How are they connected by 

larval dispersal or adult movement? What are the potential barriers that separate the 

populations? Extended size-frequency surveys, stable isotope analysis, otolith microchemistry 

and morphological measurements are useful tools to resolve these questions. It would also be 

interesting to know whether growth and maximum size differ among populations. One of the 

most important questions concerns differences in reproductive biology among subpopulations. 

How does per capita fecundity, egg and larval quality differ among populations inhabiting 

different habitats? Results of the present study on maternal investment indicated a possible 

trade-off between oil globule volume and notochord length, leading to the question whether 

there is a trade-off between quality and quantity of eggs and larvae of sea perch? How do oil 

globule volume and notochord length affect survival of larvae? Answers to these questions 
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would help further define the role of demographic structure in the reproductive biology of sea 

perch and blue cod. 

Blue cod and sea perch are commercially and recreationally important species for New 

Zealand and the South Island in particular. Both species are vulnerable to overexploitation due 

to their life history traits, such as slow growth and late maturation. Management models that 

incorporate life history and demographics of a population are needed. The present research 

supports the protection of the mature size and age structure of populations and the incorporation 

of small scale spatial structure into the management of blue cod and sea perch stocks.  
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