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"It was supposed that electroreception should be unusually simple in
converting a stimulus in the form of an electrical potential difference across a

receptor cell membrane into a physiological response in the same form."
Bullock [1993]
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Abstract

We develop a theory of how the functional design of the electrosensory system
in sharks reflects the inevitability of noise in high-precision measurements, and
how the Central Nervous System may have developed an efficient solution to
the problem of inferring parameters of stimulus sources, such as their location,
via Bayesian neural computation.

We use Finite Element Method to examine how the electrical properties of
shark tissues and the geometrical configuration of both the shark body and
the electrosensory array, act to focus weak electric fields in the aquatic envi-
ronment, so that the majority of the voltage drop is signalled across the elec-
trosensory cells. We analyse snapshots of two ethologically relevant stimuli:
localized prey-like dipole electric sources, and uniform electric fields resem-
bling motion-induced and other fields encountered in the ocean. We demon-
strated that self movement (or self state) not only affects the measured field,
by perturbing the self field, but also affects the external field.

Electrosensory cells provide input to central brain regions via primary affer-
ent nerves. Inspection of elasmobranch electrosensory afferent spike trains
and inter-spike interval distributions indicates that they typically have fairly
regular spontaneous inter-spike intervals with skewed Gaussian-like variability.

However, because electrosensory afferent neurons converge onto secondary
neurons, we consider the convergent input a "super afferent" with the pulse
train received by a target neuron approaching a Poisson process with shorter
mean intervals as the number of independent convergent spike trains increases.

We implement a spiking neural particle filter which takes simulated electrosen-
sory "super afferent" spike trains and can successfully infer the fixed Poisson
parameter, or the equivalent real world state, distance to a source. The circuit
obtained by converting the mathematical model to a network structure bears
a striking resemblance to the cerebellar-like hindbrain circuits of the dorsal
octavolateral nucleus.
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The elasmobranchs’ ability to sense electric fields down to a limit imposed by
thermodynamics seems extraordinary. However we predict that the theories
presented here generalize to other sensory systems, particularly the other oc-
tavolateralis senses which share cerebellar-like circuitry, suggesting that the
cerebellum itself also plays a role in dynamic state estimation.
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Chapter 1

Introduction

The brain receives a continual stream of data from a variety of sensory modalities. In order
to maximize their chances of survival, animals must extract information from these noisy
sensory observations and produce appropriately coordinated responses. Accumulating
evidence suggests the brain combines this information in a Bayes’ optimal (or nearly
optimal) manner to make inferences about behaviourally relevant world states [Bobrowski
et al., 2008; Fischer & Pena, 2011; Ganguli & Simoncelli, 2014; Hoyer & Hyvarinen, 2003;
Karmali & Merfeld, 2012; Lochmann & Deneve, 2008, 2011; MacNeilage et al., 2008;
Paulin, 2005, 2015; Rich et al., 2015], although this field is not without controversy
[Bowers & Davis, 2012a,b; Jones & Love, 2011].

The elasmobranch electrosensory system provides a simple model to examine the
mechanisms underlying causal inference in the vertebrate brain. The electric sense be-
longs to the octavolateral system and hence shows similarities to the vestibular, lateral
line and auditory systems [Bodznick & Montgomery, 2005]. Transduction in elasmo-
branch electroreceptors is mediated by sensory hair cells, thus comparative analysis may
provide insight into hair cell mechanisms elsewhere. Electroreception allow us to exam-
ine the flow of information from peripheral sensory structures, to the destination brain
centres [Bullock, 1993]. Whereas hair cells in the vestibular, lateral line and auditory sys-
tems all receive feedback from the brain, electroreceptors lack any sign of such efferents
[Bodznick, 1989]. In ampullary electroreception measurements are passive, with the stim-
ulus strength falling off predictably as a function of distance. Given the lack of efferents,
sensors encode the measurement process undistorted by feedback from the brain.

In early electrosensors, the scenario is further simplified as the only other sources of
electric fields would have been other slowly moving living things. The electrosensory sig-
nal would therefore reliably indicate the distance and direction of other animals. Early
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1. INTRODUCTION

sensory neurons likely evolved as simple threshold detectors, therefore we can begin with a
simple one dimensional model in which the state variable of interest is distance to source.
Such a sensor would provide late pre-Cambrian animals with a means to detect proximity
to other animals and therefore react in ethologically meaningful ways, such as striking or
fleeing [Monk & Paulin, 2014]. Indeed, the onset of carnivory has been hypothesised to
be the driving force behind the evolution of neurons [Monk, 2014]. Therefore understand-
ing how the modern day elasmobranch brain infers predator/prey location may provide
insights into general principles of brain evolution.

This thesis demonstrates that there is a "cheap trick" for performing Bayesian inference
using spiking neurons. This mechanism makes quantitative predictions about electrosen-
sory afferent firing patterns and neural circuitry in the electrosensory brainstem.

1.1 Electrosensory systems

In passive electrosensory systems animals respond to nearby objects that emit electric
fields stimulating the electrosensory organs, whereas with active electrosensory systems
animal generate their own electric field and sense perturbations caused by nearby objects.
Sharks, skates and rays use their ampullary electrosensory system passively, although
skates possess an electric organ rendering them capable of active electroreception. Here
we focus on the processes involved with transduction in the passive electric sense.

The electrosensory system has been implicated in a variety of behaviours. Kalmijn
[1971] identified the electric sense as the dominant modality used in locating prey at close
range when compared to visual, chemical and mechanical cues. Collectively, experiments
examining the responses of sharks and rays to natural and artificial dipole fields demon-
strate that while the behavioural responses may differ between species, Elasmobranchs
rely heavily on their electrosense to locate and strike at prey [Blonder & Alevizon, 1988;
Kajiura & Fitzgerald, 2009; Kajiura & Holland, 2002; Tricas, 1982]. The electric sense
also appears to play a role in other other biological interactions including communication
[Sisneros et al., 1998], detection of mates [Tricas et al., 1995] and predator avoidance
[Peters & Evers, 1985; Sisneros & Tricas, 2002a]. Additionally, it has been hypothesized
that elasmobranchs may be able to use their electric sense for navigational purposes. If
ampullae are sensitive enough, they will respond to the electric field induced when either
the fish or water moves through the Earth’s magnetic field [Kalmijn, 1974; Murray, 1962;
Paulin, 1995]

Detection threshold have been estimated from both nerve recordings and behavioural

2



1. INTRODUCTION

experiments. Originally the threshold gradient for the most sensitive primary afferent
units was estimated to be in the order of 1 µV cm−1 [Murray, 1962]. More recent ex-
periments extend this range, with units responding to gradients of 20 nV cm−1 [Tricas &
New, 1998]. This is still an order of magnitude larger than reported minimum behavioural
response threshold values as low as <1 nV cm−1 [Kajiura & Holland, 2002]. If such a gra-
dient were applied directly to the sensory cells the stimulus is minuscule, particularly in
the presence of much larger background noise sources. Theories have been put forward to
account for this remarkable sensitivity. The enhancement of the signal can generally be
categorised into three key steps [Pickard, 1988]. Anatomical and biophysical properties
of the animal and sensory structures combine to focus the stimulus onto receptor cells.
The receptors are tonically active, so that changes to the focussed stimulus modulate the
activity of afferent fibres. Fibres then converge to the same area in the Central Nervous
System (CNS), which acts to integrate the output of a large number of receptor cells.

Briefly, the processes involved in the transduction of the signal are: an external electric
field creates a transdermal potential in the ampullae of Lorenzini, which convert the
electric signal to action potentials. The afferent nerves associated with the ampullae
of Lorenzini are spontaneously active, information is encoded by either an increase or
decrease in the rate of action potentials in response to the stimuli. The CNS is responsible
for deciphering the signals and noise in the spike trains, thus allowing the animal to
adjust its behaviours accordingly. These processes will be described in more detail in the
following sections.

1.2 Anatomy and physiology of detectors

Electroreception appears to have been lost and re-established independently several times
over the course of evolutionary history [Bullock et al., 1983]. Despite many similarities,
it was originally proposed that ampullary organs in cartilaginous fish were derived from
the neural crest, unlike bony fish which possess ampullary organs derived embryonically
from lateral line placodes. However recent research has confirmed that both ampullary
electroreceptors and mechanosensory neuromasts form from lateral line placodes in elas-
mobranchs [Gillis et al., 2012]. The homology of these organs between cartilaginous and
non-teleost bony fishes suggests that an electrosensory system was already present in the
last common ancestor of vertebrates [Gillis et al., 2012].

3



1. INTRODUCTION

1.2.1 Ampullae of Lorenzini

Elasmobranchs possess groups of specialized electroreceptive organs called the ampullae
of Lorenzini. Each ampulla consists of two main parts: the ampulla proper, formed by
alveoli and the jelly filled canal, which opens to the skin at pores (Figure 1.1). Because
each pore leads to an internal ampulla they provide information about the count and
distribution of internal organs without the need for dissection. Pores are distributed bi-
laterally, with distinct patterns of up to five different clusters [Norris, 1929]. The number
and distribution of ampullary pores has been described across a variety of species [Atkin-
son & Bottaro, 2006; Berquist, 2003; Camilieri-Asch et al., 2013; Egeberg et al., 2014;
Jordan, 2008; Kajiura, 2001; Kempster et al., 2012; Mello, 2009; Moore & McCarthy,
2014; Norris, 1929; Raschi, 1986; Raschi & Adams, 1988; Theiss et al., 2011; Tricas, 2001;
Wueringer & Tibbetts, 2008; Wueringer, 2012]. While there are significant differences be-
tween species, within species the number and distribution of pores is relatively conserved
and is not dependent of the age of the animal [Kajiura, 2001].

Figure 1.1: (A and B) Skates and sharks locate their prey by detecting the weak electric fields naturally
generated by biomechanical activity. (C) A network of electrosensory organs called the AoL is responsible
for this sense. (D) An individual ampulla consists of a surface pore connected to a set of electrosensory
cells by a long jelly-filled canal. Sharks and skate can sense fields as small as 5 nV/cm despite canals
travelling through up to 25 cm of noisy biological tissue. Reprinted from Josberger et al. [2016], under
terms of the Creative Commons Attribution License.
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The canals have a diameter of about 0.1 cm and range in length from 1 to 25 cm for
marine elasmobranchs [Brown et al., 2005]. Waltman [1966] likened these canals to a
submarine cable, noting that the transduction of potential or current depends not only
on the resistivity of the core but also the surrounding insulation. He observed that the
canal walls were thick and their electrical resistance, averaging 6 MΩ cm, was "uniquely
high". Conversely, the glycoprotein based gel filling these canals is highly conductive with
similar properties to seawater, almost double the conductivity (inverse of resistivity) of
body fluids [Murray & Potts, 1961]. Kalmijn [1974] queried whether it was primarily
the voltage across or the current through the receptor or a combination of both that
stimulated these receptive organs. Based on observations relating the properties of an
ampulla to an ideal voltmeter or current-meter, it was concluded that the canals were
likely signalling voltage down to receptor cells rather than channelling current.

More recently, there has been debate over whether the gel acts as a thermoelectric
semiconductor allowing sharks to follow temperature gradients. Brown [2003] measured
the strength of the electric field generated by an applied temperature gradient (ther-
mopower) for the gel of two species of shark. Results suggested that ampullae may
be sensitive enough to respond to temperature gradients of tiny magnitude (<0.001 ◦C).
Fields et al. [2007] question these extraordinary claims, suggesting a measurement artefact
resulting from the use of metallic electrodes. Experiments found that measuring ordinary
seawater with silver electrodes reproduced the same effect as ampulla gel and when gel
measurements were conducted with carbon or salt bridges no response was found. The
controversy has yet to be resolved, but it was suggested in a review by Brown [2010] that
future measurements with "small, single-material, well-characterized carbon electrodes"
and electrophysiological examination where a temperature gradient is induced between
the ampulla and some point along the canal should help to clarify matters.

1.2.2 Sensory cells

The receptor epithelium found in the alveoli (Figure 1.2a) consists of sensory and support
cells joined by tight junctions. This creates an electrical barrier between the apical and
basal surfaces of the epithelium [Tricas, 2001]. Receptor cells (Figure 1.2a) have a single
kinocilium on their apical surface and form synapses with primary afferent nerve fibres
(AFF) on their basal surface [Waltman, 1966]. The potential difference between these
surfaces modulates the rate of release of neurotransmitter from within vesicles clustered
about the synaptic ribbon (Figure 1.2b), located at the basal surface of receptor cells
[Fields & Ellisman, 1988].
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(a) Receptor cell section (b) Ion channels and transporters

Figure 1.2: Sensory cell of the ampulla of Lorenzini. a) Transverse section through sensory epithelium
showing two adjacent receptor cells (RC) with their central nuclei (NU) and a supportive cell (SC) with
an apically positioned nucleus (NU). TEM. Scale bar = 5 µm. Reprinted from Whitehead et al. [2015],
with permission from John Wiley & Sons Inc. b) Diagram summarizing the ion channels and transporters
in the ampullary epithelium identified by the effect of specific antagonists, agonists, or ion substitutions
(in brackets) on the negative conductance and the oscillation, as interpreted from admittance spectra of
isolated organs. Reprinted from Lu & Fishman [1995], with permission from Elsevier.

Most nervous system synapses respond to potentials in the order of tens of millivolts,
several orders of magnitude greater than electroreceptor limits [Broun & Govardovskii,
1983]. It has been suggested that interactions between both positive and negative con-
ductances, in apical and basal membranes, act to amplify signals [Lu & Fishman, 1994].

The morphology and biophysical properties of the peripheral electrosensory organs,
and their associated sensory cells, play an important role in how an animal perceives stim-
uli. However, to comprehensively understand the function of the electrosensory system,
it is also important to examine the circuitry that connects these sensors to the CNS.

1.3 Anatomy and physiology of the afferent nerves

A typical ampulla may contain 10,000 receptor cells, which are innervated by five to
twenty primary afferent nerve fibres [Antipin et al., 1984; Metcalf, 1915; Peabody, 1897].
These afferents (AFF) transmit sensory impulses from the periphery to the CNS via the
dorsal branch of the Anterior Lateral Line Nerve (ALLN).

AFF are spontaneously active, their rate of discharge is modulated by the potential
difference across the epithelium. Stimuli which make the apical surface more negative
(relative to the basal surface) are depolarizing, resulting in excitation of nerve activity
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(↑ in spike rate). Conversely, stimuli which make the apical surface more positive are
hyperpolarizing, resulting in inhibitory nerve activity (↓ in spike rate) [Lu & Fishman,
1994].

Unlike mechanosensory hair cells in the lateral line, ampullary electroreceptors lack
efferent innervation. Efferent innervation of hair cells has been implicated as playing an
important role in the suppression of self stimulation, caused by the fishes own movement
[Bodznick, 1989]. While reafference is still problematic for electrosensors, noise cancelling
mechanisms appear to act within the CNS rather than at the receptors.

1.4 Central processing of stimuli

Like the mechanoreceptive lateral line system, the ampullae of Lorenzini are associated
with cerebellar-like specialized hindbrain circuitry (Figure 1.3a). The AFF terminate in
the Dorsal Octavolateral Nucleus (DON) in a somatotopically organised manner [Bell &
Maler, 2005], this forms a map like representation of the spatial arrangement of electrore-
ceptors within the brain. In skates, the DON is divided into regions corresponding to the
ampullary clusters, with the volume of each division being proportional to the number
of ampullae, rather than the body surface area served by these receptors [Bodznick &
Northcutt, 1984]. Likewise, somatotopy of electrosensory receptive fields is evident in
both the mediolateral and rostral-caudal axes in rays [Schweitzer, 1986]. Similar patterns
of termination exist in other Chondrichthyes [Bodznick & Boord, 1986].

Immediately below the molecular layer, AFF contact with ascending efferent neurons
(AEN), which are the principal output of the DON (Figure 1.3a). While the animals
own ventilatory movements appear to be mainly responsible for the activity of AFFs, the
second-order AENs appear to effectively learn to cancel out the effects of this much larger
stimuli and extract biologically relevant signals (Figure 1.3b; Montgomery & Bodznick
[1999]). The neural mechanisms behind this signal processing appear to be the combina-
tion of common mode rejection and adaptive filtering [Nelson & Paulin, 1995]. This effect
can be explained by an adaptive filter model in which the self-generated component of
sensory input is predicted by parallel fibre activity and subtracted from the sensory input
in the DON [Montgomery & Bodznick, 1999; Nelson & Paulin, 1995]. However, parallel
fibre activity seems to have non-linear effects on AEN responses to afferent input, at
variance with predictions of this model [Rotem et al., 2007, 2014].
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(a) Hindbrain circuits (b) Reafference comparison between AFF and AEN

Figure 1.3: Hindbrain circuitry associated with suppression of reafference. a) Principal neuron (AEN-
ascending efferent neuron) and circuits of the dorsal octavolateralis nucleus (DON) are shown overlaying
Golgi stained transverse sections. Reprinted from Bodznick et al. [2003], with permission from Springer.
b) Comparison of afferent (AFF) and AEN activity in relation to the animal’s own ventilation and an
extrinsic electrosensory stimulus. Top two traces for both AFF and AEN represent spontaneous spike
activity and record of the animal’s ventilation respectively. Note that the AFF is strongly spontaneously
active and strongly driven by the animal’s ventilation. The AEN is silent and unaffected by ventilation.
The lower three traces for AFF and AEN represent the spike activity in response to a 1 Hz, 2 µV extrinsic
electrosensory stimulus, the representation of the stimulus itself, and the record of ventilation. Reprinted
from Bodznick & Montgomery [2005], with permission from Springer.

1.5 Environmental adaptations

Both peripheral anatomy and CNS structures associated with electroreception have been
examined in terms of sensory adaptation to an animal’s given environment. However,
such investigations have several difficulties. Firstly, phylogeny also has to be taken into
account, as similarities and differences may due to evolutionary history rather than eco-
logical adaptations. Secondly, it’s often difficult to classify some species into a single
particular habitat as there can be some overlap. Despite this, Kajiura et al. [2010] no-
ticed several broad trends in the data. Oceanic pelagic and deep water species have fewer
pores than coastal pelagic species, suggesting a reduced role of electroreception in preda-
tory iterations. Deep water species showed the greatest range of both total pore number
and ratio of dorsal to ventral pores. These results suggest utilization of different feeding
strategies, with some species likely feeding off the sea floor and others using alternative
strategies, such as ambush predation or benthic invertebrate specialists. The relative
roles of different sensory cues was also supported by differences in brain morphology,
with deep water species showing enlargement of cerebellar-like structures and a reduction
of the telencephalon compared to coastal species [Kajiura et al., 2010].
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1.6 Inference in nervous systems

It has been hypothesised that utilization of different feeding strategies was also the selec-
tion pressure driving the origin of nervous systems. When pre-Cambrian animals tran-
sitioned from passive filter-feeding, or substrate grazing, to animal-on-animal predation
it became advantageous to have a nervous system in spite of its energetic cost [Monk
et al., 2015]. Even a rudimentary threshold sensor is beneficial in predator-prey inter-
actions, allowing for precisely timed actions, such as striking or fleeing, in response to a
particular world state reaching a critical level [Monk & Paulin, 2014]. As such a trigger
becomes more sensitive it also becomes less reliable. An unreliable threshold trigger may
be useful, but at a certain point it is more useful to treat its responses as information
relevant to deciding how to act rather than as instructions to act per se. At this point it
is necessary to make inferences from the observed events, and it is necessary to evolve a
brain. The question then becomes how to extract the maximum amount of information
about behaviourally relevant states of the world based on dynamic, potentially noisy,
measurements.

Bayesian inference provides a optimal framework for updating beliefs about the state
of the world based on uncertain measurements. Paulin [2005] constructed a simple model
of the electrosensory system where individual spikes of AFF are noisy measurements of
prey location and the spatial distribution of spikes in the AEN provides a Monte Carlo
approximation of the posterior (belief about prey location given sense data). Recently it
has been demonstrated that properties of real neurons and their circuitry emerge naturally
from using principles of probability theory, without the need for additional biological
constraints [Paulin, 2015]. The structure of the Bayesian lattice, used for inference given
observations from a Poisson process, is remarkably similar to the anatomy of cerebellar-
like structures [Paulin, 2015], such as the electrosensory filtering structures in the shark
hindbrain depicted in Figure 1.3a.

The elasmobranch electric sense is relatively primitive in structure. However, it has
many similarities to more complex vertebrate senses and provides a good model system
for examining general principles of brain structure and function.

1.7 Models of passive electroreception

Computational models of electroreception can serve neuroethological research in multiple
ways:

1) they allow complex hypotheses on central nervous systems to be tested
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in silico. The ampullae of Lorenzini detect electric fields and provide the CNS spatial
and temporal information about the stimuli. From this information the brain constructs
a representation of the external world. In order to investigate models of neural processing
in sharks’ brains, we first need to construct a realistic representations of spatial and
temporal information acquisition by the electrosensory periphery. The potential difference
experienced by receptor cells depends on numerous factors, including the location of the
pore, canal length and orientation. These spatial factors, along with pore abundance,
have been measured for certain species. However, quantitative evaluation of how the
biophysical properties of the ampulla, and supporting structures, shape the stimulus is
somewhat lacking. A theoretical analysis of electrosensory observations will complement
previous experimental studies and attempt to predict the electrosensory stimulus with
acceptable accuracy. If we can mimic the spatial and temporal response of primary
afferent neurons, this will allow a realistic environment for testing hypotheses of sensory
processing in the cerebellar-like circuits of the DON.

2) they can provide new ideas for experimental measurement and manipu-
lation. Models represent simplified versions of reality, as it is often impossible to achieve
an exact representation of the entire system under all conditions. A model can be in-
terpreted as a hypothesis about a given system: it includes only the parameters and
interactions considered biologically relevant. Model development is a continuous task, al-
lowing the examination of the role of different parameters in the sensory processing. We
aim to investigate the morphological and biophysical properties that shape the stimulus
received by the CNS, through doing so we may identify parameters of the model that
require further experimental analysis.

3) they can provide biological inspiration for engineers. Electrosensory imag-
ing offers many interesting areas to explore. The ampullary system of elasmobranchs is
capable of sensing electric fields often with greater sensitivity and at spatial and tem-
poral resolutions exceeding conventional engineering instrumentation. Of particular in-
terest is even though electroreceptors are extremely sensitive, animals successfully use
electroreception in the presence of noise far exceeding the stimulus. Through studying
the ampullae of Lorenzini we may be able to identify fundamental principles concerning
the design and function of passive electosensing systems. This is especially relevant now
that researchers are starting to develop artificial electrosensors as a means of underwater
detection, localization and classification of objects [Friedman et al., 2010].

Modelling efforts to date can be divided into two parts: 1) response of electrosensory
periphery to naturalistic stimuli; and 2) sensory processing in the DON.
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1.7.1 Response of electrosensory periphery to naturalistic stim-
uli

This study of the response of electrosensory periphery builds on the work of Berquist
[2003] and overcomes several of the limitations of previous modelling attempts. A sum-
mary of the mathematical studies of sensorimotor strategies in electroreception is pre-
sented in Table 1.1. For the clarity of comparison, studies are described using five crite-
ria: model stimulus, morphological and biophysical properties of ampullae, the biophys-
ical properties of body tissue, motion through the environment, and response of AFF
(Table 1.1).

Table 1.1: Mathematical studies on the response of electrosensory periphery

Study Stimulus Body Ampulla Approach AFF
Gusev et al. [1986,
1985]

Dipole Cylinder shaped
ray

2D None None

Pickard [1988] Uniform Spherical fish None None Linear model
relating lumen V
to firing rate

Adair et al. [1998] Uniform Spherical fish None None Firing rate mod-
ulated via volt-
age gated sen-
sory cells

Brown [2002] Dipole None 2D 36 fixed
length canals,
2 geometries
corresponding to
roundhead and
hammerhead

Unchanged,
Direct, Field line

None

Berquist [2003] Dipole,
Monopole, Uni-
form

None 3D morpholog-
ically accurate
dogfish

Unchanged,
Direct, Field
line, Sinusoidal
movement

Decay function
used to mimic
published data
∆ V to firing
rate

Camperi et al. [2007] Dipole None Simplified 2D
ray. Only dorsal
hyoid cluster
(132 ampullae).
Clusters are
treated as a
single point

Parallel swim-by
(same as un-
changed in other
models) Non-
parallel swim-by
(direction 45°
angle to source)

Sigmoidal gain
function fitted to
published data

Kim [2007] Dipole None 2D simplification
of shark 50
ampullae 15
clusters

Field line Sinu-
soidal movement

None

Present study Dipole, Uniform 2D accurate,
2D and 3D
simplified

2D projections,
3D simplified

Unchanged,
Direct, Field line

Examination of
afferent sponta-
neous activity

Models have been used to investigate the spatial and temporal mechanisms responsi-
ble for elasmobranch electro-sensitivity The ampullae of Lorenzini consists of structurally
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independent groups of ampullae, with canals of differing lengths and orientations. Mod-
els have shown that these spatial features are responsible for the functional differences
between responses of individual receptors to electric stimuli [Berquist, 2003; Brown, 2002;
Camperi et al., 2007; Kim, 2007].

Models illustrated the body of the fish distorts the electric field, altering the sensitivity
of the receptors to the stimulus [Adair et al., 1998; Gusev et al., 1986, 1985; Pickard, 1988].
Therefore body tissues can be regarded as accessory structures of the electroreceptors and
should be accounted.

Dynamic models suggest that the stimulus pattern depends not only on the distance
between the sensors and the source, but also the rotational movements of the animal
within the electric field [Berquist, 2003].

From the potential drops in ampullary sensors models of neural activity of AFF have
been examined. These range in complexity from simple models which qualitatively look
like published data [Berquist, 2003; Camperi et al., 2007; Pickard, 1988], to models where
firing rate is dependent on voltage gated sensory cells and their interactions [Adair et al.,
1998].

Previous studies have illustrated key concepts in electroreception, but none of them
have included sufficient detail to examine the complex interactions between the stimulus,
the movements and shaping of the signal by the animal and its sensory receptors (Ta-
ble 1.1). The model presented here builds on the framework created by Berquist [2003]
and uses the virtual dogfish [Berquist, 2003; Berquist & Paulin, 2001] to create a morpho-
logically realistic FEM model to examine shark electroreception. This thesis investigates
the effects of different fish body geometries and electrical properties tissue on the spatial
and temporal pattern of voltage drops within canals under differing behaviourally relevant
stimuli. The statistical organization of spontaneous spiking activity in the electrosensory
periphery is examined, along with how it converges centrally onto secondary neurons.

1.7.2 Sensory processing in the DON

Models of the canal voltage drops allow for computational models of the AFF neurons,
which in turn allow us to investigate the CNS circuitry involved in sensory processing
in the DON. The DON has been implicated as playing a vital role in learning to cancel
out the effects of the fish’s own movements, acting as an adaptive filter [Montgomery &
Bodznick, 1994]. The noise component in the signal is suppressed in the cerebellar-like cir-
cuitry, where the parallel fibres in the molecular layer adjust the strength of their synapses
onto the AEN [Montgomery & Bodznick, 1999]. Using known anatomical circuitry in con-
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junction with accurate representations of neuron response properties, modelling by Nel-
son & Paulin [1995] demonstrated that the combination of common-mode rejection and
adaptive cancellation were sufficient to suppress ventilatory reafference. Whereas previous
modelling studies take a network-level, phenomenological approach, recently the adaptive
filter has been implemented using a conductance-based neuron model which demonstrates
suppression of reafferent signals based only electrophysiological neuron dynamics [Bratby
et al., 2014].

However, some experimental results are inconsistent with the adaptive cancellation
models of the DON proposed above. Rotem et al. [2007, 2014] suggest that filtering may
be mediated by parallel fibres adjusting the AEN sensitivity to AFF input. Similar to the
descending gain control observed in the teleost electrosensory brainstem [Bastian, 1986;
Mehaffey et al., 2005; Nelson, 1994]. As an alternative to adaptive filter models, recent
advances have been made suggesting the cerebellar-like circuits of the hindbrain act as a
Bayesian estimator [Paulin, 2005].

1.8 Thesis objectives

This thesis investigates electroreception as dynamic state estimation (Figure 1.4) and
hypothesises how the neural circuitry of the DON may apply Bayes’ rule. To a Bayesian,
a measurement is a sample from a probability distribution whose parameters include state
variables of interest (e.g. distance to prey). The measurement distribution is called the
likelihood function or generative model. The objective for a Bayesian brain is to compute
the posterior density of relevant state variables from sensory data. This must be done by
continuously modifying a prior distribution, as new observations become available.

Accurate, realistic generative models are a key pre-requisite for discovering if and
how elasmobranchs’ brains compute Bayesian posterior probability distributions from
electrosensory data. This thesis examines two fundamental processes involved in the
generative model. First, the physics governing the interaction between the electrosensory
system and weak electrical stimuli in the aquatic environment. Second, the spontaneous
activity of electrosensory afferents, which is related to how these neurons fire in response
to small stimuli.

This thesis aims to implement a spiking neural particle filter, which takes simulated
electrosensory spike trains (based on the generative model developed here) and infers
relevant state variables.
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Figure 1.4: Schematic of Bayesian inference in the elasmobranch electrosensory system. A generative
model (likelihood) maps the state of the world x to sensory spikes z, the brain combines this with existing
beliefs (priors) to compute the posterior. The posterior is continuously updated as new observations
become available, allowing the shark to make inferences about the state of the world.

1.9 Thesis overview

Electrosensory processing of external stimuli by the central nervous system depends on
the extraction of information that is shaped by pre-receptor, receptor and neuron cir-
cuitry mechanisms. This thesis investigates several key issues of sensory acquisition in
elasmobranchs, including:

• Biological physics governing the interaction between the electrosensory system and
the environment surrounding it and the use of numerical models to characterize
such interactions (Chapter 2).

• How the morphology and electrical properties of shark tissue distort the stimulus
received by the ampullae of Lorenzini (Chapter 3).

• The statistical organization of spontaneous spiking activity in the electrosensory pe-
riphery and how this may reflect a trade-off between sensitivity, noise and energetic
efficiency (Chapter 4).

• Convergence of afferent input onto the hindbrain and how a network of spiking
neurons with similar circuitry can construct and represent the Bayesian posterior
density (Chapter 5).

14



1. INTRODUCTION

We predict that the statistical organization of spiking activity in the electrosensory
periphery and anatomy of the CNS may reflect an efficient solution for maximizing sensory
system sensitivity in the presence of noise, via Bayesian neural computation.
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Part I

Characterising the stimulus received
by the electrosensory system
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Chapter 2

Methodology

2.1 Introduction

The key motivation behind this section is to improve our current understanding of the
biological physics governing the interaction between the elasmobranch ampullary elec-
trosensory system and the water surrounding it. This will be done by applying and solving
Maxwell’s equations and in this way clarifying the signal received by individual ampulla,
for subsequent neural processing. Modelling allows investigations into hypotheses that
may be difficult, or impossible, to undertake; such as from live animals undergoing natu-
ralistic behaviour. Modelling also allows parameters to be manipulated under controlled
circumstances.

There already exists several models of the peripheral electroreceptive organs in elas-
mobranchs. To date these models have all either neglected the presence of body tissues,
or approximated the animal as a sphere or cylinder (Table 1.1). Numerical approaches are
gaining popularity, largely due to the decreasing costs and increasing processing power
available in modern computers. Thus, numerical techniques have been applied, by re-
searchers in a variety of fields, to examine scenarios of greater complexity than analytical
approaches previously allowed. This chapter will briefly describe the different methods
used in electric field modelling and their application to electric imaging in weakly electric
fish. We then provide more detail on the numerical approach used in our research, Finite
Element Method (FEM), COMSOL the software and some of the assumptions required
to make the model tractable.
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2.2 Approaches to electric field modelling

2.2.1 Maxwell’s equations of Electromagnetics

We begin with the fundamental equations for electric fields and various simplifying as-
sumptions, then describe some of the approaches used to solve these equations. Electro-
magnetic propagation in any media can be characterised by Maxwell’s equations for time
varying fields, we use the differential form presented in COMSOL’s AC/DC Module User
Guide:

∇× ~H = ~J + ∂ ~D

∂t
(2.1a)

∇× ~E = −∂
~B

∂t
(2.1b)

∇ · ~D = ρ (2.1c)

∇ · ~B = 0 (2.1d)

where ~E and ~H are the electric and magnetic field intensities, ~D is the electric displace-
ment (or electric flux density) and ~B is the the magnetic flux density. Additionally ~J

and ρ denote the current and electric charge densities respectively. By combining Equa-
tion (2.1c) with the divergence of Equation (2.1a) we obtain the equation of continuity:

∇ · ~J = −∂ρ
∂t

(2.2)

Solving Maxwell’s equations requires additional equations (constitutive relations) de-
scribing the electrical properties of the materials in which the fields and currents are
produced. These may be very complex in biological tissues, but we simplify by assuming
that the media are linear and isotropic. In this case we have:

~D = ε ~E (2.3a)
~B = µ ~H (2.3b)
~J = σ ~E + ~Je (2.3c)

where µ is the magnetic permeability, ε the electric permittivity. In a medium with
electric conductivity σ the electric field induces a current additional to any externally
generated current ~Je.

It is these equations from which the electromagnetic fields generated by a given source
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~Je in a medium are derived. It can also be useful to formulate these problems in terms
of the electric potential (V) and magnetic potential ( ~A). These are described by:

~B = ∇× ~A (2.4a)

~E = −∇V − ∂ ~A

∂t
(2.4b)

2.2.2 Modelling Maxwell’s equations

While the basic physical laws of electromagnetics are well known, it can be difficult to solve
the partial differential equations (PDE). Thus analytical approaches are generally only
used in highly simplified models, for more realistic geometrical and biophysical properties
numerical approaches are often employed. Here we will briefly discuss some of the more
commonly used methods, before describing how they have been applied to modelling
active electroreception in weakly electric fish.

Numerical solvers are based on discretising the PDEs, which are continuous, based
on either domain or boundary discretisation techniques. The most commonly used ap-
proaches in biological electromagetics are Finite Difference Method (FDM), Finite El-
ement Method (FEM) and Boundary Element Method (BEM). The specific properties
of the problem at hand determine which of these techniques is most advantageous (Ta-
ble 2.1).

Table 2.1: A comparison of the different methods for solving the forward problem of a source in
conductive medium. Modified from Hallez et al. [2007], under terms of the Creative Commons Attribution
License.

FDM FEM BEM
Position of computational points volume volume surface
Free choice of computational points no yes yes
System matrix sparse sparse full
Solvers iterative iterative direct
Number of compartments large large small
Requires tessellation yes yes no
Handles anisotropy yes yes no

FDM models discretise the space-time domain onto a grid (Figure 2.1(B)). The PDEs
are then approximated using finite difference equations, describing the relationships be-
tween neighbouring nodes, which can be derived by truncating Taylor expansions [Pruis
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et al., 1993]. However this technique lacks geometrical flexibility, meaning it cannot deal
with complex geometries.

Another powerful numerical approach for solving domain discretised PDEs is FEM.
In this case elements are usually, but not limited to, triangles in 2D or tetrahedra in 3D
(Figure 2.1(C)). The solution is then determined by approximating the true PDE in each
element. The original problem is represented by a set of local basis functions, which are
combined to obtain a system of equations for the final calculation of the global solution
[Pruis et al., 1993]. The resulting matrix is sparse, thus it can be tackled with efficient
numerical techniques. FEM is sometimes advantageous over other numerical approaches,
as elements can have different shapes, which can be used to handle complex geometries
and material heterogeneities. However, as the complexity of the problem increases so
does the size of the system of equations, which can have a high computational cost.

Figure 2.1: The first row of figures shows strategies of different numerical methods used to discretise
a two-dimensional geometry problem: (A) Shows a 2D scene composed by an arbitrary object c (pale
violet) in a medium m (pale yellow), with their respective internal conductivities σc and σm. (B) In the
Finite Difference Method (FDM) the nodes are distributed uniformly throughout space to reconstruct the
scene in A using a regular grid, (C) in the Finite Element Method (FEM) elements are triangles and there
are only nodes at their vertices, (D) in the Boundary Element Method (BEM) elements are segments
and nodes are at the end of the segments defining the boundary surface. In the second row it is shown
how the methodology applies to the 3D fish problem: (E) Use of the BEM in 3D scenes: G. petersii, the
skin of the fish was approximated by triangles; different colors represents different conductivities of the
skin. Reprinted from Gomez-Sena et al. [2014], with permission from Elsevier.
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BEM is similar to FEM, except instead of domains only boundaries are discretised
(Figure 2.1(D)). The resulting surface integral equations can be computed using the
Barnard formula [Pruis et al., 1993]. Solutions require that boundaries are closed and
separate regions must be homogeneous and isotropic in nature. On each boundary element
the PDE is approximated either using truncated Taylor expansion (as with FDM) or using
a set of local basis functions (as with FEM) [Pruis et al., 1993]. Unlike FDM and FEM
where matrices are sparse, the matrix representing BEM is dense, making it difficult to
solve. However, due to only discretising boundaries rather than domains it generally
reduces the number of points required significantly.

To our knowledge numerical techniques have yet to be applied to the study of passive
electroreception. This is not limited to elasmobranchs, Gomez-Sena et al. [2014] stated
"Passive electroreception has been poorly studied through modelling approaches to the
point that we did not find simulation results in the bibliography of weakly electric fish".
On the other hand, modelling studies of active electroreception in weakly electric fish span
the past four decades and many research groups [Gomez-Sena et al., 2014]. We briefly
describe some of the different approaches used, for a detailed overview see Gomez-Sena
et al. [2014].

2.2.3 Modelling of active electroreception in weakly electric fish

Whereas passive electroreception refers to the detection of weak electric fields generated by
animals and other sources in the environment, active electroreception refers to detecting
the distortions to a self-generated electric field caused by the presence of objects. Like
the passive sense, active electroreception has evolved independently multiple times and
has been implicated as playing a role in object location, orientation and communication
[Lavoue et al., 2012].

Analytical methods have been used to characterize the electric fields generated by
weakly electric fish based on variations of Maxwell’s equations (section 2.2.1). Bacher
[1983] reduced the three-dimensional (3D) problem to a two-dimensional (2D) one by
assuming cylindrical symmetry. The electric field generated by the fish was represented
by the superposition of line charges and an object perturbing this field was modelled by
a dipole. It was demonstrated how various parameters such as size, shape and position
affected the electric image of an object. Analytical approaches lack the precision required
when geometries and/or sources are complex. They do not consider how the properties of
the fish body shape the stimulus received [Gomez-Sena et al., 2014]. However, in spite of
lack of explicit representation of the high-resistance skin and low-resistance internal body
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of the fish, Chen et al. [2004] were able to estimate key features of empirically measured
signal and background components across the electroreceptor array of fish during natural
behaviours. While analytical approaches are fast, numerical approaches provide greater
accuracy by allowing more complex geometries and/or physics to be examined. However,
there generally is a trade off between model complexity and computation time.

Initial efforts in finite difference models also relied on a 2D approach. Heiligenberg
[1975] solved Laplace’s equation in 2D describing the electric field in the mid-horizontal
plane of the animal’s body, this approximation was expected to accurately model the
animal’s near field becoming less accurate at larger distances from the animal. Using this
model not only was he able to simulate electric images, but he also made predictions of
the ranges of parameters such as interior body and skin resistances prior to any direct
measurement. More recently, 3D FDM was applied to studying the images of capacitive
objects [Budelli & Caputi, 2000]. Results were qualitatively similar to those previously
obtained using a 2D model [Caputi et al., 1998] and provided a realistic model which was
able to reproduce experimental data.

Likewise the first FEM model was also based on solving Laplace’s equation in 2D.
The main advantage of this FEM approach over the previous FDM simulation was this
simulation had a heterogeneous mesh, allowing a higher mesh resolution near the surface
of the fish [Hoshimiya et al., 1980]. Results demonstrated that skin resistance plays an
important role in shaping the electric image, with skin resistivity being higher at head
than tail. The majority of FEM models have been limited to 2D representations of the
horizontal mid plane of the fish. These models can easily be adapted to a 3D state, but the
cost in terms of computation needs increases significantly. Recently Ahn & Kim [2012]
created a 3D FEM model which examined the electric field perturbation for arbitrary
shaped target objects. The potential applicability of such a FEM model to examining the
relative resistivity of fish’s internal body, fish skin, and water was also discussed.

In order to avoid the large number of elements required by FEM to accurately rep-
resent thin layers, such as skin, BEM has often been applied because only the solution
at boundaries is required. BEM has been successfully applied to the 3D study of 1) the
fields generated by weakly electric fish, 2) the voltage and current across the skin in the
presence and absence of objects and 3) the effect of position and electrical properties
of objects on electric images [Gomez-Sena et al., 2014]. While BEM has been the most
commonly applied approach in modelling weakly electric fish, it is not without its draw-
backs. BEM requires additional calculations to determine the electric potential and field
in non-boundary regions, whereas FDM and FEM calculate these quantities directly.

After considering the advantages and disadvantages of the methods discussed above,

22



2. METHODOLOGY

a decision was made to create a FEM shark model to examine passive electroreception.
Realistic models of the measurement process are necessary for determining if and how
sharks’ brains perform Bayesian inference.

2.3 Finite Element Method

FEM provides a numerical approach for finding solutions of the spatial distribution of one
(or more) dependent variables. In our work we seek to find the distribution of the electric
field (or equivalently electric potential) in a shark and surrounding medium. Mathemat-
ically, this problem is expressed by the differential equations described in Section 2.2.1.
The region of interest is digitized in small elements Figure 2.1(C). An approximate solu-
tion is associated with each element, it allows only simple spatial variation and support
is local (i.e. the solution is non vanishing inside the given element and zero elsewhere)
[Lehner, 2008]. The global solution consists of a system of equations that is formed from
this set of linearly independent basis functions, a corresponding number of initially unde-
termined parameters and the boundary conditions [Lehner, 2008]. Galerkin’s method of
weighted residuals is usually used to determine the value of the parameters at the nodal
points [Lehner, 2008]. In general this system of equations is very big, hence software such
as COMSOL that incorporates methods to reduce the computational burden and increase
efficiency is useful.

2.4 COMSOL Multiphysics

COMSOL Multiphysics is software that lets the user model and simulate physics-based
systems using FEM. The user can either define their own PDEs or can choose from one of
the predefined physics modules. The user first specifies the physics, spatial and temporal
dimensions of the model. Then the geometry of the problem must be defined. For simple
geometries, this can be achieved by using the geometry primitives in COMSOL to create
a geometry union or assembly, more complicated geometries may require using external
computer-aided design tools and importing the resulting entities. Domains, boundaries,
edges and points are then assigned relevant material properties and physical constraints.
Finally, the geometry is meshed, the model is solved and the solution can be either
examined in COMSOL or exported for post-processing. The electronic supplementary
material (Appendix A) includes a description and simple example of how to implement
models via the COMSOL user interface and how generate .m files in COMSOL for use in
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MATLAB. The electronic supplementary material (Appendix A) also includes copies of
COMSOL/MATLAB generated figures for high resolution viewing.

Our modelling makes use of the predefined AC/DC module, which allows for simulat-
ing electric, magnetic and electromagnetic fields in static and low-frequency applications.
In particular, we use the electric currents interface to compute electric field, current
and potential distributions in conducting media. This physics interface solves a current
conservation equation based on Ohm’s law using the scalar electric potential as the de-
pendent variable (Equation (2.4b)). The specific equations and boundary conditions will
be discussed in section 2.5.

Additionally, COMSOL offers a variety of algorithms which solve the system of equa-
tions. There are two fundamental classes that are used: direct and iterative methods. All
of the direct solvers are based on lower-upper decomposition, whereas iterative solvers
are essentially similar to a conjugate gradient method. Direct methods are both memory
and CPU time intensive so are suited to smaller problems, whereas iterative solvers are
generally used for larger problems and approach the solution gradually to within a given
convergence tolerance. COMSOL automatically detects the best solver for the defined
system of equations without requiring any user interaction.

2.5 Modelling considerations

Humphries [2010] warns modellers "The validity of code results depends more on the
identification of the relevant physical processes and the soundness of approximations than
on the sophistication of the numerical methods or the capabilities of the computer". Here
we identify the relevant physical processes and approximations required for the model to
be computationally tractable.

2.5.1 Sources of electric fields in the ocean and behavioural ex-
periments

Sea water acts as a highly conductive medium, presenting a wealth of electromagnetic
features to animals possessing sensory systems with detective capabilities. These signals,
varying in waveform and strength, are briefly described in the following subsections.
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2.5.1.1 Near-field dipole sources

Aquatic animals emit electric fields through three main mechanisms. Firstly, direct cur-
rent fields are associated with differences in potential distribution across certain areas, in
particular mucous membranes and gill epithelia. Wounded animals, even with minor skin
abrasions can often have significantly increased potentials [Kalmijn, 1972]. Interestingly,
Kalmijn [1972] discovered that the direct current (DC) fields emitted by elasmobranchs
were generally ten fold smaller than those of teleosts, which was suggested to be a mech-
anism for reducing self-stimulation. Secondly, the DC field is modulated by alternating
contractions and expansions of body cavities producing low frequency alternating cur-
rent (AC) fields [Kalmijn, 1972]. Finally, high frequency AC fields were immediately
recognised as resulting from muscle action potentials (e.g. heart, gill and motor muscles;
Kalmijn [1972]). While high frequency AC fields do exist in the ocean, these are of less
interest, as they are outside of the range of elasmobranch detection capabilities.

Prey bioelectric fields are typically described mathematically as a multipole expansion.
In seawater higher-order components rapidly decay leading to sources being primarily
monopolar or dipolar fields, which have been the primary focus of most studies [Kalmijn,
2000]. In behavioural experiments response thresholds are often quantified using a dipole
electric field generator designed to mimic prey fields. However there was little data on
the field characteristics of prey items to validate the accuracy of experimental design.

Recently Bedore & Kajiura [2013] quantified the voltage and frequency characteris-
tics of eleven families of marine organism, as well as an experimental dipole stimulus
generator. As predicted, the largest voltage sources were at the mucous membranes and
gill epithelia. Supporting previous studies larger potentials were found in teleost species
than elasmobranch and invertebrate species [Bedore & Kajiura, 2013]. All species exam-
ined produced both voltage and frequency characteristics that would be detectable by
elasmobranchs within a sufficient distance (Table 2.2).

The stimulus generator was found capable of reproducing the DC voltages character-
istic of the species examined, but AC voltages were not examined. As expected from
an ideal dipole, the stimulator voltage decayed proportionally to an inverse square, and
electric field inverse cube of the distance from the source [Bedore & Kajiura, 2013]. How-
ever while the dipole stimulator decayed as expected, all prey sources decayed at a slower
rate than the ideal dipole prediction (Table 2.2). Bedore & Kajiura [2013] hypothesised
that this may be due to the complex multipolar nature of actual prey items, with higher
order terms actually contributing significant components to the source. It is unclear how
important these higher order terms are to fish behaviour as foraging choice experiments
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demonstrated while the small-spotted catshark (Scyliorhinus canicula) is able to distin-
guish between DC magnitude and preferred AC over DC, they were either unable to
discriminate between or had no preference between a natural (crab) and similar magni-
tude artificial dipole [Kimber et al., 2011].

Table 2.2: Point source voltage and electric field decay equations and theoretical elasmobranch detec-
tion distance from electric potential decay measurements, with a median sensitivity of 35 nV cm−1 for
elasmobranchs. Reprinted from Bedore & Kajiura [2013], with permission from University of Chicago
Press.

Family Point source voltage Electric field Detection distance (cm)
Ariidae y = 15.98 x−.48 y = 7.62 x−1.48 38
Diodontidae y = 76.55 x−1.19 y = 90.72 x−2.19 36
Gerreidae y = 74.39 x−1.27 y = 94.77 x−2.27 32
Haemulidae y = 32.65 x−.67 y = 21.78 x−1.67 47
Lutjanidae y = 127.74 x−.97 y = 124.30 x−1.97 63
Sphyraenidae y = 197.58 x−1.02 y = 201.33 x−2.02 73
Prey simulating y = 118.59 x−1.95 y = 231.49 x−2.95 20

2.5.1.2 Modelling dipole sources in COMSOL

An ideal DC dipole field can be described analytically in 3D by [Griffiths, 1999]:

~Edip(~r) = 1
4πσ

1
r3 [3(~p · r̂)r̂ − ~p] (2.5)

where r̂ = ~r
|~r| is the unit vector in the direction of ~r and r̂ = |~r| is the magnitude of the

separation vector between the origin and a point in space. This represents the limiting
case of zero separation distance between two equal and opposite point sources +q and
−q separated a short distance d. The electric current dipole moment is given by ~p = q~d,
where ~d is a vector going from −q to +q.

In COMSOL point sources have a finite but mesh-dependent potential value. In
general, using volume or boundary sources is more flexible than using point sources but
the meshing of the source domains becomes more expensive.

2.5.1.3 Far-field and geomagnetically induced uniform electric fields

Whereas during prey detection electroreception is used to detect localized fields relating
to nearby dipole-like sources, at distances sources become more uniform in nature. Ad-
ditionally aquatic animals also encounter localized uniform electric fields resulting from
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movement of seawater through the Earth’s geomagnetic field. The horizontal component
of the ocean current induced field reaches values in the order of 0.1 µV cm−1 toward the
poles and is weaker near the equator [Tyler et al., 1997]. Conversely, the vertical com-
ponent tends to be slightly higher and is greatest near the equator and weaker near the
poles [Tyler et al., 1997]. Peak tidal flows can induce electric fields as large as 1 µV cm−1

[Kuvshinov et al., 2006], while magnetic anomalies can induce fields that are larger still
[Kuvshinov, 2008].

Prompted by the findings that electric fish use their electric sense for navigation,
Murray [1962] hypothesized electromagnetic induction may be used for this purpose in
elasmobranchs. While he was sceptical that ampullae had the required sensitivity, he iden-
tified the horizontal component of the Earth’s field as the relevant stimulus for potential
navigation. Kalmijn [1974] suggested two possible modes of electromagnetic orientation:
passive mode where fish detect the fields induced by ocean currents, or active mode where
the fields result from the animals’ own swimming activity.

The active mode hypothesis has been revisited, with Paulin [1995] clarifying the phys-
ical laws involved and proposing that sharks could compute a heading by comparing infor-
mation encoded by the vestibular and electrosensory systems. Building on this framework,
analysis was conducted on the amplitudes of electrosensory signals at harmonics of the
vestibular signals [Molteno & Kennedy, 2009]. This paper also refuted the claims that
behavioural experiments using attached magnets should be expected to impair magnetite
based magnetoreception, but leave induction based magnetoreception unaffected. Using a
simple model for a swimming fish, it was found that relative motion between the magnet
and electrosensory system as small as 100 µm is sufficient to induce a detectable electric
field [Molteno & Kennedy, 2009]. This highlights one of the difficulties involved with such
experiments, which is possibly why direct evidence supporting or refuting this mode of
navigation does not yet exist.

Electrophysiological experiments confirm that elasmobranchs are sensitive to mag-
netic fields with strengths similar to that of earth. The response of primary afferents to
stimulation with a magnetic field was examined in Black Sea skates (Raja clavata and
Trygon pastinaca). Measurements taken from a stationary animal in motionless water,
required a change in magnetic field to solicit a response and the intensity of the response
was dependant on the rate of change in the field strength [Brown & Ilyinsky, 1978; Brown
et al., 1974]. When conditions were altered so that the magnetic field remained constant
and either the fish was moved in the water, or the water was moved with respect to the
fish, ampullae again responded and in this case intensity was roughly proportional to
magnetic field or velocity [Brown & Ilyinsky, 1978].
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Perhaps the most compelling behavioural evidence comes from tracking of the mi-
gratory trajectory and potential cues in hammerhead sharks. Klimley [1993] concluded
sharks used the local magnetic field (consisting of the geomagnetic field and underwater
anomalies, such as magnetized rocks) to orientate. The above findings illustrate that
elasmobranchs can clearly sense earth strength magnetic stimuli. Whether this is via
geomagnetic induction, or an alternative mechanism, and the role the earth’s magnetic
field plays in navigation remains unclear. However, the stingray (Urolophus halleri) was
successfully conditioned to detect and orientate relative to uniform electric fields similar
to those produced by ocean currents [Kalmijn, 1982]. Furthermore, sandbar (Carcharhi-
nus plumbeus) and scalloped hammerhead (Sphyrna lewini) sharks have been conditioned
to respond directly to changes in the magnetic field [Meyer et al., 2005].

2.5.1.4 Modelling uniform sources in COMSOL

In the shark’s reference frame, the electric field induced by swimming in the Earth’s
horizontal magnetic field is virtually uniform in nature [Paulin, 1995]. Rather than dealing
with the full electromagnetic interactions we choose to model this situation as a uniform
electric field. As well as simplifying the model, uniform electric fields have frequently
been used as a stimulus in behavioural and electrophysiological experiments quantifying
sensitivity.

Potential difference in a uniform electric field varies linearly with distance. Therefore,
uniform electric fields can be approximated in COMSOL by fixing the potential values
on boundaries, with the magnitude controlled by the separation distance. This is similar
to experimental set ups, where the electric field stimuli are generally delivered along
either the transverse or longitudinal axis of the tank (animal/individual ampulla) via
plate/needle or point electrodes.

2.5.2 Morphology and physical properties of shark electrorecep-
tors and tissues

As mentioned in chapter 1, the anatomical arrangement of the ampullae of Lorenzini
has been examined for a variety of species. Differences in electroreceptor size, number,
location, pore distribution and projection patterns have been described, leading to the
functional subunit hypothesis. This states that ampullae are divided into morpholog-
ically distinct groups, which serve different primary functions e.g. prey detection and
orientation to horizontal uniform fields [Tricas, 2001]. We have access to an accurate 3D
representation of the spiny dogfish (Squalus acanthias) electrosensory organ array, based
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on digital reconstruction of plastinated cross-sectional tissue slices [Berquist, 2003] and
will use its anatomy as the basis for our morphological considerations.

Conversely, data on the electrical properties of various elasmobranch tissues is lacking,
but there exists some details in the literature and we will use these values to approximate
the correct order of magnitude of parameters (Table 2.3).

Table 2.3: Tissue resistances in elasmobranchs.

Genus Tissue Resistivity Resistance References
(Ω cm) (Ωcm2)

Raja Ampulla jelly 24-25 Murray & Potts [1961]
31 Waltman [1966]

Cranial fluids 48 Murray & Potts [1961]
Muscle
-longitudinal 110-200 Murray [1967]
-transverse 250-800 Murray [1967]
Cartilage 47-66 Murray [1967]
Skin 400-2800 Waltman [1966]
-dorsal 75-125 Murray [1967]
-ventral 75-150 Murray [1967]
Ampulla wall 6× 106 Waltman [1966]

Squalus Skin 370 Bennett et al. [1961]
Triaenodon Ampulla jelly 31.5 Brown et al. [2002]
Carcharinus Ampulla jelly 20.7 Brown et al. [2002]
Carcharodon Ampulla jelly 28.3 Brown et al. [2002]

2.5.3 Boundary conditions and spatial dimensions

In 3D simulations of electromagnetic signals, it is intuitive to model the electric field
or potential of point/boundary/volume sources in 3D space. However, the application of
such approaches is limited due to the computational resource and time requirements asso-
ciated with discretising the PDEs associated with geometry of interest. Two dimensional
modelling is often used as it reduces the number of elements required, thus reducing the
time and resource demands. Additionally, boundary conditions are required to specify
interfaces between sub-domains of different media and truncate the domain of interest.

The electric currents interface solves a current conservation equation based on Ohm’s
law, using electric potential as the dependent variable. We use the stationary study, all
variables depend on space only, which is appropriate for static electric fields and direct
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currents. The form of Ohm’s law which is solved is:

−∇ · (σ∇V − ~Je) = Qj (2.6)

where σ is the electrical conductivity (S m−1), ~Je is an externally generated current density
(A m−2) and Qj is the current source (A m−3).

COMSOL allows the user to specify traditional boundary conditions used in FEM such
as electric potential, electric insulation, zero charge, and field and current values. In addi-
tion, COMSOL provides a range of specialized formulations for efficient electromagnetic
simulations where thin structures in the geometry model need not be meshed (requiring
a large number of small elements) but can instead be represented with a boundary condi-
tion. Infinite elements are also available for modelling unbounded or large domains. By
meshing a layer outside the modelling domain with infinite elements, the field equations
are automatically scaled. These elements allow the representation of an infinite domain
with a finite-sized model and reduce the truncation effects due to model boundaries.

(a) 2D (b) 3D

Figure 2.2: Equipotential contours (black) and electric fields (grey arrows) due to a dipole pointing in
the positive direction of the y axis.

In the 2D case, the electric currents interface assumes that the model has a symmetry,
where the electric potential varies only in the x and y directions and is constant in the
z direction. Essentially the model in the 2D plane is extruded along the z axis. This
assumption is not too problematic for modelling uniform electric field stimuli but causes
issues with the representation of point sources, which are then equivalent to line sources
in 3D. The fundamental solution (or Green’s function) is used to solve Equation (2.6).
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In 3D this gives point source decay proportional to 1
4πr , where r is the distance from the

source, whereas in 2D decay is proportional to − 1
2π ln(r). While the results in Figure 2.2

look qualitatively similar the magnitudes of the potentials differ significantly, meaning
we cannot interpret values obtained for 2D dipoles in terms of experimentally described
electroreceptor sensitivities.

This is by nature a 3D problem, and only 3D studies will adequately capture the
relevant electric field information. However because 2D models are easier to modify and
solve much faster, we still begin with 2D representations of both localized and uniform
electric fields. The challenge then is to utilize 2D simulations to illustrate which mor-
phological and physical properties have the greatest impact on the stimulus received and
might merit further investigation in the 3D.

2.6 Verification of meshing, boundary considerations
and overall accuracy of COMSOL

Before investigating the role of body parts in shaping the stimulus in the vicinity of
the shark, we first examine meshing, boundary considerations, and overall accuracy of
COMSOL. To achieve this the numerical results are compared with simplistic problems
for which analytical results are known.

2.6.1 2D conducting cylinder in a uniform electric field

To test the accuracy of modelling the uniform electric field stimulus, we compare the
analytical solution to numerical results obtained from an infinite conducting cylinder
kept between two parallel plates (Figure 2.3). The electric potential depends on both the
original electric field E0 and the potential superimposed due to the induced charges on
the cylinder.

This example involves boundary conditions at both the exterior and at the interface
between of the surrounding medium and the cylinder. In order to achieve a uniform
electric field at the centre of cylinder, separation between plates and width of the plates
need to be chosen to be large compared to the radius of cylinder.

2.6.1.1 Numerical vs. analytical solutions

The analytical solution for the electric potential in the neighbourhood of an infinite
cylinder of radius a, placed in an initially uniform electric field Eo, is given by the following
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equations [Haus & Melcher, 1989]:

V (r ≤ a, θ) = − 2σe
σi + σe

E0rcosθ

V (r > a, θ) = −aE0cosθ
[(
r

a

)
−
(
a

r

)(
σi − σe
σi + σe

)] (2.7)

where (r, θ) is the coordinate of interest, σi and σe are the conductivity of the cylinder
and external medium respectively.

Figure 2.3: Infinite conducting cylinder of radius a and conductivity σi immersed in a medium of
conductivity σe exposed to a uniform electric field of strength E0.

The numerical solution was found using COMSOL and compared to the analytical
solution which was calculated using a MATLAB function. To assess the goodness of fit a
Root Mean Square (RMS) error was calculated, comparing the analytical and numerical
values at specific points in the geometry. This percent error is used along with qualitative
comparisons to investigate the location of the outer boundary and the degree of precision
for the mesh (both of these impact computation time and thus constrain our choices
particularly when we extend these models to 3D).
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2.6.1.2 Location of the exterior boundary

In experimental analyses of electroreception involving uniform electric fields, tanks range
between approximately 2 m [Kalmijn, 1982] and 7 m [Meyer et al., 2005] in diameter.
Kalmijn [1982] stated inside the smaller, fenced off region used for behavioural exper-
iments, the field was uniform to within 5 percent. We examine diameters (separation
distance between the two parallel plates, using a square geometry) from 2 to 40 m. Be-
cause we are predominately interested in the accuracy of the field inside and near the
"fish", in this example we assess the RMS % error for 100 points between r = 0.01 m and
r = 1.0 m (θ = 0 and the fish is a cylinder at the origin, with radius 0.4 m). Our analyses
suggest that while 7m was sufficient for electric potential to be visually indistinguishable
from the analytical solution (Figure 2.4c), RMS was still approximately 1% and continued
to decrease with increasing ROI (Figure 2.4a). Therefore 20m was selected as our region
of interest for 2D uniform electric field models.

2.6.1.3 Mesh density

COMSOL offers both the ability to use predefined meshing options, or create custom
meshes based on specifying a variety of element size parameters. If the physics-controlled
mesh is selected, COMSOL creates a mesh that is adapted to the current physics settings
in the model. There are nine predefined element sizes, which generate meshes ranging from
extremely fine to extremely coarse. Having already examined the effect of location of the
outer boundary, we are now more concerned that the mesh is sufficiently detailed for fields
at the fish-water interface. Therefore, we assess the RMS % error for 100 points between θ
= 0 and θ = π (along the fish water interface, r = 0.4 m) for each of the default mesh sizes.
Our analysis of mesh resolution suggested that for this simple geometry meshing with the
’normal’ resolution was sufficient and little advantage was gained by having a finer mesh
(Figure 2.5). Therefore for 2D uniform electric field models, the normal mesh was used
for the seawater exterior, and ’finer’ resolution was selected for the electroreceptors in
order to get them to successfully mesh.
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(a) Root Mean Squared error (%) versus Region Of Interest (ROI)

(b) ROI=2m (c) ROI=7m (d) ROI=20m

Figure 2.4: 2D outer boundary calibration: Uniform stimulus. Comparison between numerical (COM-
SOL) and analytical solutions for the electric potential in the neighbourhood of an infinite cylinder, in
a uniform electric field. Figure 2.4a shows the RMS error (in %) for 100 points between r = 0.01 and r
= 1.0 m (along θ = 0), with the outer boundary at various locations. Circles in Figure 2.4a mark the
ROI’s displayed in Figures 2.4b to 2.4d, which show the numerical and analytical solutions overlaid.
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(a) Root Mean Squared error (%) versus number of triangular elements. Blue line shows
ROI=7m and green shows ROI=20m.

ROI=7m

(b) extra coarse (236 tri.) (c) normal (1182 tri.) (d) extra fine (6926 tri.)

Figure 2.5: (Continued on the following page.)
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ROI=20m

(e) extra coarse (246 tri.) (f) normal (1426 tri.) (g) extra fine (7382 tri.)

Figure 2.5: 2D mesh density calibration: Uniform stimulus. Comparison between numerical (COMSOL)
and analytical solutions for the electric potential in the neighbourhood of an infinite cylinder, in a uniform
electric field. Figure 2.5a shows the RMS error (in %) for 100 points between θ = 0 and θ = π (along the
fish water interface r = a) with different COMSOL default mesh densities. Circles in Figure 2.5a mark
the mesh densities displayed in Figures 2.5b to 2.5g, which show the numerical and analytical solutions
overlaid.

2.6.2 2D line dipole

Whereas in 3D the fundamental solution tends toward zero as the distance from the
source approaches infinity, this is not the case in 2D (see Section 2.5.3). Analytical
solutions in 2D are complicated by the fact that at infinity the field must be uniform
(therefore solutions include an arbitrary coefficient which must be specified [Haus &
Melcher, 1989]). We are unaware of an analytical solution for the line dipole adjacent
to a cylinder. Therefore, to test the accuracy of modelling the localised electric field
stimulus, we first compare the analytical solution to numerical results obtained from a
pair of infinite, oppositely charged, parallel cylinders (Figure 2.6). This example involves
boundary conditions at both the exterior and between the cylindrical sources and the
surrounding medium.

2.6.2.1 Numerical vs. analytical solutions

The analytical solution for pair of infinite, oppositely charged, parallel cylinders immersed
in a medium of conductivity σe, can be derived by replacing the cylinders with equivalent
line charges [Paul, 2008]. The voltage at point ~P , shown in Figure 2.6, due to the line
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charges ±q ,separated by distance d along the x axis, is expressed as

V (x, y) = q

2πσe
ln
(
R−

R+

)
(2.8)

where
R+ =

√
(x+ d/2)2 + y2

and
R− =

√
(x− d/2)2 + y2

We specify this source numerically in COMSOL using floating potential boundary
conditions, where an unknown potential depends on a fixed total current ±q. Simulations
use cylinders of radius 1 mm, separated by 5 cm.

Figure 2.6: A pair of infinite, oppositely charged, parallel cylinders immersed in a medium of conduc-
tivity σe.

2.6.2.2 Location of exterior boundary

If a traditional Dirichlet or Neumann boundary condition was used to truncate the ge-
ometry, the trend shown with increasing accuracy with region of interest size is similar to
that shown for the uniform stimulus in Figure 2.4a. However, because these boundaries
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are no longer being used to produce the required stimulus (rather they just define the
region to mesh) we can use an alternative boundary condition, infinite elements. This
avoids the need to include large empty regions in the simulation to avoid the boundary
affecting the region of interest. Due to the infinite elements, there was no advantage to in-
cluding a large area for the external region Figure 2.7. Therefore, for 2D dipole approach
trajectories we included approximately and extra 0.5m in each direction additional to the
space that the shark’s trajectory covered.

2.6.2.3 Mesh density

Similar to the uniform case, for a 2D line dipole, there was little improvement to results
from a finer mesh than ’normal’ (Figure 2.8). We introduced an additional conducting
cylinder into the numerical simulation to approximate the body of the shark. When
we examined results for changes in potential, between simulations with different mesh
densities, at points along the surface of a cylinder, there was little change in results
beyond the ’normal’ mesh option (Table 2.4).

Table 2.4: 2D mesh density calibration: Dipole stimulus with a conducting cylinder. Comparison
between numerical solutions, with different COMSOL default mesh densities, for the electric potential
in the neighbourhood of a pair of infinite, oppositely charged, parallel cylinders and a larger conducting
cylinder. Change in electric potential (%) was summed for 100 points between θ = 0 and θ = π (along
the cylinder water interface r = a)

Mesh density Change in potential (%)
extremely coarse → extra coarse 0.8901
extra coarse → coarser 0.5919
coarser → coarse 0.2905
coarse → normal 0.1337
normal → fine 0.0074
fine → finer 0.0332
finer → extra fine 0.0130
extra fine → extremely fine 0.0033

As long as there were sufficient elements in the region of the source there was little dif-
ference in results obtained by modelling the scenario as two equal and opposite cylindrical
sources, or two line current sources separated by a finite distance, or an ideal line dipole.
To help ensure an accurate representation, we therefore included a circle surrounding our
point dipole which resulted in a greater number of elements in that region.
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(a) Root Mean Squared error (%) versus Region Of Interest (ROI)
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Figure 2.7: 2D outer boundary calibration: Dipole stimulus. Comparison between numerical (COM-
SOL) and analytical solutions for the electric potential in the neighbourhood of a pair of infinite, oppo-
sitely charged, parallel cylinders. Figure 2.7a shows the RMS error (in %) for 100 points between r =
0.01 and r = 1.0 m (along θ = 0), with the outer boundary at various locations. Circles in Figure 2.7a
mark the ROI’s displayed in Figures 2.7b to 2.7d, which show the numerical and analytical solutions
overlaid.
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Figure 2.8: (Continued on the following page.)
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ROI=7m

(e) extra coarse (200 tri.) (f) normal (400 tri.) (g) extra fine (1080 tri.)

Figure 2.8: 2D mesh density calibration: Dipole stimulus. Comparison between numerical (COMSOL)
and analytical solutions for the electric potential in the neighbourhood of a pair of infinite, oppositely
charged, parallel cylinders. Figure 2.8a shows the RMS error (in %) for 100 points between r = 0.01 and
r = 1.0 m (along θ = 0), with different COMSOL default mesh densities. Circles in Figure 2.8a mark
the mesh densities displayed in Figures 2.8b to 2.8g, which show the numerical and analytical solutions
overlaid.

2.6.3 3D conducting sphere in a uniform electric field

Having already examined meshing, boundary considerations, and overall accuracy of
COMSOL extensively in 2D we tried to keep the operations equivalent for our 3D simula-
tions where possible. To ensure this was a reasonable, we compare the numerical results
with the analytical results for a 3D conducting sphere in a uniform electric field. With
geometry set up as in Figure 2.3, the equations expressing electric potential due do a
sphere of radius a in an initially uniform electric field E0 are [Haus & Melcher, 1989]:

V (r ≤ a, θ) = − 3σe
σi + 2σe

E0rcosθ

V (r > a, θ) =
[(

σi − σe
σi + 2σe

)
a3

r3 − 1
]
E0rcosθ

(2.9)

where (r, θ) is the coordinate of interest, σi and σe are the conductivity of the sphere and
external medium respectively.

Figure 2.9a shows a plot of a cutline through the sphere of radius 0.4m, located at the
origin in a uniform electric field directed along the y axis. The numerical and analytical
results match well, resulting in an approximation error of less than 0.05% within this
region (Figure 2.9b).
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Figure 2.9: 3D mesh and boundary calibration: Uniform stimulus. Figure 2.9a shows a comparison
between numerical (COMSOL; circular points) and analytical (solid line) solutions for a conducting
sphere in a uniform electric field. The sphere is located at the origin and has radius 0.4 m and is
subjected to a uniform electric field of 500 nV cm−1 directed along the y axis. Figure 2.9b shows the
percent approximation error for the same scenario.

2.6.4 3D point dipole

As above we tried to keep the set up equivalent to our 2D simulations. To examine if this
is justified we compare the numerical with the analytical results for a 3D point dipole.
The voltage at point distance ~R from the dipole, specified by ~P , immersed in a medium
of conductivity σe is expressed as:

V (~R) = 1
4πσe

(
~P · ~R

)
R3 (2.10)

We implement this source numerically in COMSOL using the built in electric point dipole,
specified by dipole moment ~P .

Figure 2.10a shows a plot of a cutline aligned with the dipole axis. Due to continuity
constraints the numerical solution smoothly transitions between positive and negative, in
the analytical solution voltage values tend to infinity at the dipole centre. This means
the results are similar at a distance but differ slightly at distances less than a few cm
(Figure 2.10b).
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Figure 2.10: 3D mesh and boundary calibration: Dipole stimulus. Figure 2.10a shows a comparison
between numerical (COMSOL; circular points) and analytical (solid line) solutions for a three dimensional
point dipole. The dipole is located at the origin and directed along the y axis. Figure 2.10b shows the
percent approximation error for the same scenario.

While the basic physical laws of electromagnetics are well known, it can be difficult to
solve the partial differential equations. Thus, analytical approaches are generally only
appropriate for highly simplified models. For more realistic geometrical and biophysical
properties numerical approaches are necessary. Furthermore, electroreception is by na-
ture a 3D, time varying problem, and only 3D dynamic studies will adequately capture
the relevant electric field information. Because 2D models and quasi-static snapshots are
easier to modify and solve much faster, the challenge is to utilize these simplifications
to illustrate which morphological and physical properties have the greatest impact on
the stimulus received and might merit further investigation. The simulations conducted
in this chapter demonstrate that COMSOL provides an accurate representation of two
ethologically relevant stimuli: localized prey-like dipole electric sources, and uniform elec-
tric fields resembling motion-induced and other fields encountered in the ocean. Existing
models of the elasmobranch electroreceptive periphery have all either neglected the pres-
ence of body tissues, or approximated the animal as a sphere or cylinder. Chapter 3
examines how the shark’s morphology impacts the electric field in the vicinity of the
shark. The shark’s body may be a sensory accessory structure that acts like an electrical
lens. However, the biophysical relations between the shark and environment are rather
complex and may be difficult to model, even if many of the details are known.
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Chapter 3

Interaction between the
electrosensory system and weak
electrical stimuli

3.1 Introduction

After years of dispute over the function of the ampullae of Lorenzini, the prediction by
Lissmann [1958] that these organs might extract electric information from the environ-
ment was eventually confirmed. There is a long history of evidence suggesting this sense
plays an important role in prey detection [Kalmijn, 1971]. More recently research that
suggests a role in other behaviours such as predator avoidance [Sisneros et al., 1998], com-
munication [Sisneros et al., 1998], detection of mates [Tricas et al., 1995] and navigation
[Kalmijn, 1974; Paulin, 1995]. During interactions with other animals the electrosensory
array is exposed to small localized fields, whereas if indeed this sense is being used for
navigation the stimuli are large uniform fields. Studies have demonstrated that the re-
sponse of individual ampullae depends not only on the form of the stimulus, but on the
relative orientation of the canal [Kalmijn, 1974]. In addition to the spatial organization
of the electrosensory array, movements of the animal (and/or its prey) cause temporal
variations in the signals canals receive. Thus, the shark must integrate signals over both
space and time in order to accumulate information [Kalmijn, 2000]. The optimal way
to combine time varying signals from multiple sensors is Bayesian inference [Vilares &
Kording, 2011].

Over the past thirty years, different modelling techniques have been used to character-
ize the spatial and temporal mechanisms responsible for elasmobranch electrosensitivity.
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Two and three dimensional analytical models have been developed, each with its specific
advantages and disadvantages (see Table 1.1). Models have demonstrated both the mor-
phology of the ampullary array [Berquist, 2003; Brown, 2002; Camperi et al., 2007; Kim,
2007] and the tissues of the animal itself play a role in the effective stimulus received
[Adair et al., 1998; Gusev et al., 1986, 1985; Pickard, 1988]. While analytical models
have the advantage of being computationally fast and accurate under certain assump-
tions, they are generally limited to the study of simplified object geometries and make
it difficult to examine more complex interactions between fish body geometries and elec-
trical properties. Numerical models generally allow for a more realistic examination of
the biophysical and geometrical properties of various tissues in the body shape. However,
this comes at the cost of being more computationally demanding. Specifically, when using
finite element method (FEM) the geometry has to be discretized into elements, which can
be extremely difficult, particularly in three dimensions or when the scale of features of
interest differ greatly.

The goal of this chapter was to build on the framework created by Berquist [2003]
and use the virtual dogfish to create a morphologically realistic 2D FEM model to ex-
amine shark electroreception. In addition to the morphologically realistic model, two
geometrical simplifications were also created in order to independently study the effects
of different fish body geometries and electrical properties for the first time. Kalmijn
[1974] considered the effective stimulus to the ampullary receptors to consist of two main
components: (1) the potential drop across the skin surrounding the ampulla pore and
(2) the potential drop along the canal due to the tissue it is embedded in. This chapter
attempts to characterize the relative influence of these components by investigating the
spatial and temporal pattern of voltage drops within canals under differing behaviourally
relevant stimuli. Finally, a geometrically simplified 3D FEM shark is presented. These
preliminary models illustrate how the morphology of the shark may be shaping electrosen-
sory signals and provides insight into what properties should be considered important for
future experimental and modelling efforts.

3.2 Methods

3.2.1 Electrosensory signal modelling

We revisit the virtual dogfish model, described in chapter 4 of the doctoral thesis by
Berquist [2003]. This previous approach was an analytical electrostatic model where the
static permittivity of seawater, ε = 7× 10−10 C2N−1m−1, was used for the entire region of
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interest and no attempt was made to investigate the role of shark tissues on the effective
stimulus to ampullae [Berquist, 2003]. We begin with a numerical electric currents model,
where the conductivity of seawater, σ = 4.5 S m−1, was initially used for the entire region
of interest before specifying relevant conductivities for body tissues. We choose to solve
for electric potential using an electric currents model (current conservation via Ohm’s
law), rather than electrostatics (Gauss’ law for electric field), as more data existed in the
literature about the conductivity/conductances of various tissues than permittivity.

As mentioned previously the majority of experiments conducted on elasmobranchs
focus on two key stimuli:

1. Detection of localized prey-simulating dipole fields. Berquist [2003] chose a dipole
of strength P = 5.6× 10−16 C m to simulate prey based on measurements from
flatfish, Pleuronectes platessa, where electric fields averaged 200 µV cm−1 at 0.5 cm,
20 µV cm−1 at 2 cm, 2 µV cm−1 at 5 cm and 0.2 µV cm−1 at 10 cm [Kalmijn, 1974].
With the conductivity specified as above, we matched the dipole moment for the
equivalent electric currents model as dipole strength P = 3.6× 10−6 A m.

2. Orientation in large-scale uniform electric fields. Berquist [2003] chose a constant
electric field of magnitude E = 500 nV cm−1 to investigate the large scale uniform
field’s typical of those induced by water moving in the earth’s magnetic field, we
will also use this value.

The effective stimulus to ampullary receptor cells is the potential difference between
the external pore and the tissues surrounding the ampulla proper (Figure 3.1):

∆V = Vpore − Vampulla (3.1)

Whereas previous models have mainly computed these voltage drops analytically, we use a
numerical approach to calculate the voltages at the pore (Vpore) and the corresponding am-
pulla (Vampulla). Depending on the polarity of the stimulus, the afferent nerves associated
with receptor cells respond by increasing or decreasing spiking relative to spontaneous
activity. When the pore is negative relative to the ampulla activity is excitatory, whereas
when the pore is positive relative to the ampulla activity is inhibitory [Murray, 1962].

While we examine how certain features of the shark distort the stimulus, we neglect
to model a common source of noise in the electrosensory system. Through the same
mechanisms as the prey they are attempting to detect, sharks produce their own DC
and low frequency potentials [Bodznick et al., 1992]. These common mode signals are
largely suppressed in higher order efferents [Bodznick et al., 1992]. In later chapters we
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will discuss mechanisms for noise reduction in neural computation, however here we focus
on examining the impact of the geometry and electrical properties of shark tissues on the
stimulus.
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Figure 3.1: Peripheral electrosensory system of the spiny dogfish, Squalus acanthias. Colour cod-
ing indicates ampullarly groupings: blue=buccal, red=superficial ophthalmic (SO), magenta=hyoid,
green=mandibular.

3.2.2 2D shark geometries

All geometries were related to the morphologically accurate representation of the pe-
ripheral electrosensory system of the spiny dogfish, Squalus acanthias (for further details
see Berquist [2003]; Figure 3.1). Two dimensional geometries were created by import-
ing .stl files of the various body structures into MATLAB and using the coordinates to
generate simplified geometries. Large body structures (shark exterior and brain) the stl
was projected into either the xy or yz plane and a contour around the structure was
used to create an interpolation curve object for COMSOL via the MATLAB LiveLink
(Figures 3.2a and 3.2d). Additionally, two further simplifications were made to the ge-
ometry, the fins were removed (Figures 3.2b and 3.2e) and the sharks head was replaced
by the estimated minimum volume ellipsoid fit to the coordinates of the ampullary pores
(Figures 3.2c and 3.2f).

In two dimensional simulations the ampullae were included as edges in the geometry
for the FEM model. This has the benefit of ensuring sufficient resolution of the mesh in
the region of interest and makes it easier to use the built in COMSOL post processing
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tools. In each plane the 2D coordinates for the base and pore of the ampulla were used to
generate geometry (e.g. horizontal plane=xy coordinates, vertical plane=yz coordinates).
Neglecting the third dimension resulted in overlapping ampullae (Figure 3.1), therefore
we reduced the number of canals for analysis by pairwise testing for intersections of the
lines corresponding to the canal coordinates. Canals were removed, starting with the
lines with the greatest number of intersections, until no canals intersected each other or
the contour representing the brain region.
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Figure 3.2: 2D shark geometries

3.2.3 3D shark geometries

While it was fast and easy to implement and manipulate realistic two dimensional shark
geometries in COMSOL, three dimensions proved much more challenging. COMSOL al-
lows for importing of three dimensional geometries from .stl and .vrml files. However, it
proved difficult to import the original virtual dogfish as COMSOL requires that a surface
geometry be watertight in order to convert it to a solid interior region for meshing. COM-
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SOL provides limited tools to automatically repair gaps (and the option of purchasing
further import functionality via the CAD Import Module). We found the easiest way to
import pre-existing geometries was to use external software, such as Simpleware, to ma-
nipulate .stl models prior to importing. Ultimately, even though we did eventually import
and mesh the dogfish skin, mesh quality was low and simulations were time consuming,
therefore it was later abandoned in favour of a simplified ellipsoid and cone version of a
shark (Figure 3.3).
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Figure 3.3: Simplified 3D shark geometry: the shark is constructed from an ellipsoid head and cone-like
body.

During our two dimensional simulations we discovered that the electric properties
had a greater impact on the voltage drops in the ampullary array than the geometrical
specifics. Therefore, the following simplifications were made to better examine some of the
phenomena observed in our 2D simulations. Firstly, we found the approximately minimum
volume ellipsoid that contained all ampulla and pore coordinates. Secondly, we projected
the pore coordinates onto the closest point on the ellipsoid surface. This resulted in some
small alterations to ampulla length and orientation, but meant all pores coordinates were
on the surface of the head and all ampulla proper coordinates were located on the interior
of the ellipsoid. A cone-like body was created by visually matching geometry primitives
to the original shark stl, these features are less important but based on the 2D simulations
likely still impact the electric field. Additionally, we originally attempted to include the
ampullae as edges in the geometry, which meshed for certain configurations but failed to
be robust. Therefore, instead of using the COMSOL post processing tools available for
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edges, we exported the values for electric potential interpolated at the locations of the
canal pore and ampulla. We also opted to use the ’extra fine’ resolution to mesh the
dogfish body for the dipole approach and ’extremely fine’ for the uniform electric field.
This was necessary to ensure a sufficient number of elements were in the vicinity of the
shark, as no longer including the ampullae as edges resulted in significantly less elements
being included in the shark body under the default ’normal’ mesh option.

In this chapter, we build on the previous virtual dogfish electrosensory model to
calculate canal voltage drops within large-scale uniform electric fields and local dipole
electric fields. We use both 2D and 3D models to examine the effective stimulus to
ampullary receptors, in terms of the geometry and electrical properties of the animal.

3.3 Results

3.3.1 Comparison between 2D numerical model and previous
3D analytical model

Previous versions of the virtual dogfish model have examined the spatio-temporal dy-
namics of canal voltage drops resulting from three dimensional prey-simulating dipoles.
The signals were dependent on canal length, angular orientation, and relative distance
from the source [Berquist, 2003]. We wish to examine how the electrical properties of
shark tissue distort the electric fields sensed by these animals. However, this problem is
currently intractable in three dimensions. Thus, firstly we examine the similarities and
differences between our two dimensional numerical solutions and the three dimensional
analytical solutions presented by Berquist [2003]. Due to the simplifying assumptions
mentioned in section 3.2.2, we focus here on the pattern of canal voltage drops rather
than the absolute magnitude of individual canals. Secondly, we examine a geometrically
simplified three dimensional FEM model of the virtual dogfish. Digital copies of all figures
from this chapter are available in Appendix A for higher resolution viewing.

50



3. SHAPING OF STIMULUS

3.3.1.1 Dipole stimulus: Horizontal plane trajectories

For a detailed description of the relevant methods and results obtained by Berquist [2003]
see chapter 4 of her thesis. Briefly, we attempted to match our two dimensional numerical
models to the approach trajectories she described. As the virtual dogfish moves along
its approach trajectory, it encounters and then passes by a dipole located at the origin,
with the dipole axis aligned with the negative y-axis. The dogfish begins its trajectory
approximately 1 m from the dipole, with its mouth located at approximately x = 0.45
m and y = -0.9 m (Figure 3.4). In the ’unchanged’ scenario (green), the dogfish swims
past the dipole with a closest approach distance of 0.45 m, in a direction parallel to the
orientation of the dipole. In the ’direct’ scenario (black), the dogfish is oriented so the it
swims directly over the dipole. Finally, in the ’fieldline’ scenario (red), the dogfish aligns
its body axis such that the average electric field it receives is constant [Kalmijn, 1997].
In all cases of our implementation of the fieldline approach trajectory we pre-calculate
the electric field, neglecting any tissue properties, and fix the shark orientation to that
(rather than looking at the electric field averaged over the ampullary array and any
potential tissue effects). Canal voltage drops, for six locations along each of the described
approach trajectories, are displayed in Figures 3.5 to 3.7. Note the changing voltage scales
(in keeping with Berquist [2003] we allow the scale for each colourmap to differ between
subfigures, as magnitudes of voltage drops differ greatly between locations).
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Figure 4.4A-B.  Canal voltage drops at each of six locations along three trajectories in the dipole 

horizontal plane (z = 0).  (A) Swimming trajectories and locations where voltage distributions were 

mapped.  Dipole strength, P = 5.6 × 10-18 – 10-15 C m.  (B) Voltage maps for the ‘unchanged’ 

trajectory.  Axes show distance from the dipole origin (m).  

(a) 3D [Berquist, 2003]
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Figure 3.4: XY approach trajectories in the dipole horizontal plane and locations where canal voltage
drops were mapped. Figure 3.4a shows the three dimensional analytical model. Reprinted from Berquist
[2003], with permission from Dr. Rachel Berquist. Figure 3.4b shows the numerical solutions for the
approximately matched 2D scenarios. In both cases the source is located at the origin. Note: the
equipotential contours have been plotted to illustrate the differences between dimensions and may not
correspond to matched contour levels.
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Figure 3.5 compares the ’unchanged’ trajectory computed analytically in three di-
mensions to the numerical 2D numerical solution. In the dogfish’s starting position (Fig-
ure 3.5a, i), Berquist [2003] found shorter canals exhibited voltage drops of less than
±1 nV, with longer canals aligned with the electric field developing the largest voltage
drops ranging from −4 to 2 nV. Our 2D models showed similar results with the largest
voltage drops ranging from −4 to 3 nV in the canals which were several cm long. The
closest the dogfish gets to the dipole under this approach trajectory is 0.45 m (Figure 3.5e,
v). Like Berquist [2003] we find the maximum voltage drops in the longest canals never
exceed ±30 nV. The overall general trends from Berquist [2003] were also maintained
with all four ampullary groups experiencing both negative and positive voltage drops at
any one time.

While the largest voltage drops were still found in longest canals oriented with the
electric field, we found strongest negative voltage drops hyoid canals and the strongest
positive voltages develop in the buccal canals (whereas Berquist [2003] found strongest
negative voltage drops in buccal and strongest positive voltage drops in mandibular and
hyoid). Other notable differences in the initial stages of the trajectory (Figures 3.5a
to 3.5b, i to ii) the shorter buccal and superficial ophthalmic (SO) groups in the snout
exhibit voltage drops of smaller magnitude, likely due to the 2D ampulla being shorter in
length (due neglecting the z-dimension and to only using xy coordinates of the pore and
ampulla proper). Another difference likely be attributed to flattening the geometry into
2D is the hyoid canals on the left (closest to the source) mainly exhibited negative voltage
drops (Figures 3.5a to 3.5b, i to ii), whereas in these early stages Berquist [2003] found
the majority of hyoid canals on both sides exhibited positive voltage drops. The hyoid
cluster has a fan-like distribution, with distinct dorsal and ventral clumpings and only a
small number oriented horizontally [Berquist, 2003]. Thus, it is perhaps not surprising
that horizonal (xy) model exhibits differences from three dimensions.

As the dogfish changes location, the source gets closer to the shark’s body and the
relative angle between the dipole axis and the canals changes causing changes in the
polarity and magnitude of the voltage drops. Like Berquist [2003] we find that the long
buccal groups on the left, closest to the source, swap polarity (Figure 3.5c, iii). As the
shark gets closer (Figure 3.5d, iv), the buccal canals on the right switch to positive and
by Figure 3.5e, v the canals on the left and right receive approximately balanced stimulus
with the majority of clusters having the same polarity and similar magnitude. Finally,
the dogfish passes the dipole (Figure 3.5f, vi) and the long buccal, hyoid and mandibular
canals on the left switch polarity again.

Alternative trajectories where dogfish maintains a somewhat constant orientation to
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the dipole field (’fieldline’ approach; Figure 3.7) or takes a direct path to the dipole source
(’direct’ approach; Figure 3.6) produce similar distributions of voltage drop magnitudes
and polarities. Apart from when the dipole was directly underneath the dogfish, the
spatial distribution of voltage drop polarities remains constant and near symmetrical on
each side of the head (Figure 3.6; Figure 3.7). The role of different clusters is similar to
the ’unchanged’ trajectory with strongest negative voltage drops in buccal cluster and
strongest positive voltage drops in mandibular and hyoid clusters. However, while the
spatial distribution remains somewhat constant, the magnitude of voltage drops along
these trajectories increases significantly. In agreement with Berquist [2003], we find short
canals initially experience drops of less than 1 nV but develop strong voltage drops of
greater than 100 µV as the dogfish passes over the dipole (Figure 3.6e, v; Figure 3.7e, v).

3.3.1.2 Dipole stimulus: Vertical plane trajectories

The vertical plane approach strategies are similar to the horizontal trajectories in sec-
tion 3.3.1.1. As the virtual dogfish moves along its approach trajectory, it encounters and
then passes by a dipole located at the origin, with the dipole axis aligned with the nega-
tive y-axis. With the vertical trajectories the dogfish begins its trajectory approximately
0.95 m from the dipole, with its mouth located at approximately z = 0.3 m and y = -0.9
m (Figure 3.8). Figure 3.9 compares the ’unchanged’ trajectory computed analytically
in three dimensions to the numerical 2D numerical solution. In the dogfish’s starting
position (Figure 3.9a, i), similar to the horizontal plane the largest voltage drops range
from −5 to 3 nV in the canals which were several cm long. The closest the dogfish gets
to the dipole under this approach trajectory is 0.3 m (Figure 3.9e, v). The maximum
voltage drops in the longest canals never exceed ±55 nV. However, unlike the horizontal
plane trajectories where all four ampullary groups experienced both negative and positive
voltage drops at any one time, the mandibular cluster only experiences negative voltage
drops at the final phase of the unchanged trajectory (Figure 3.9f).
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Figure 4.4A-B.  Canal voltage drops at each of six locations along three trajectories in the dipole 

horizontal plane (z = 0).  (A) Swimming trajectories and locations where voltage distributions were 

mapped.  Dipole strength, P = 5.6 × 10-18 – 10-15 C m.  (B) Voltage maps for the ‘unchanged’ 

trajectory.  Axes show distance from the dipole origin (m).  
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Figure 3.5: Canal voltage drops at each of six locations along an unchanged approach trajectory in
the dipole horizontal plane (see Figure 3.4). Figure 3.5i to vi show the 3D analytical solutions, dipole
strength P = 5.6× 10−16 C m, water permittivity ε = 7× 10−10 C2N−1m−1. Reprinted from Berquist
[2003], with permission from Dr. Rachel Berquist. Figures 3.5a to 3.5f show the numerical solutions for
the approximately matched 2D scenarios, dipole strength P = 3.6× 10−6 A m, water conductivity σ =
4.5 S m−1. Axes show distance from the dipole origin (m). Note the scale for each colourmap to differs
between subfigures, as magnitudes of voltage drops differ greatly between locations.
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Figure 4.4C-D.  (C) Voltage maps for the ‘direct’ approach trajectory.  (D) Voltage maps Figure 

4.4B presents canal voltage drops for the ‘unchanged’ trajectory.  
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Figure 4.4C-D.  (C) Voltage maps for the ‘direct’ approach trajectory.  (D) Voltage maps Figure 

4.4B presents canal voltage drops for the ‘unchanged’ trajectory.  
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Figure 3.6: Canal voltage drops at each of six locations along a direct approach trajectory in the
dipole horizontal plane (see Figure 3.4). Figure 3.6i to vi show the 3D analytical solutions, dipole
strength P = 5.6× 10−16 C m, water permittivity ε = 7× 10−10 C2N−1m−1. Reprinted from Berquist
[2003], with permission from Dr. Rachel Berquist. Figures 3.6a to 3.6f show the numerical solutions for
the approximately matched 2D scenarios, dipole strength P = 3.6× 10−6 A m, water conductivity σ =
4.5 S m−1. Axes show distance from the dipole origin (m). Note the scale for each colourmap to differs
between subfigures, as magnitudes of voltage drops differ greatly between locations.
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Figure 4.4C-D.  (C) Voltage maps for the ‘direct’ approach trajectory.  (D) Voltage maps Figure 

4.4B presents canal voltage drops for the ‘unchanged’ trajectory.  
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Figure 4.4C-D.  (C) Voltage maps for the ‘direct’ approach trajectory.  (D) Voltage maps Figure 

4.4B presents canal voltage drops for the ‘unchanged’ trajectory.  
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Figure 3.7: Canal voltage drops at each of six locations along a fieldline approach trajectory in the
dipole horizontal plane (see Figure 3.4). Figure 3.7i to vi show the 3D analytical solutions, dipole
strength P = 5.6× 10−16 C m, water permittivity ε = 7× 10−10 C2N−1m−1. Reprinted from Berquist
[2003], with permission from Dr. Rachel Berquist. Figures 3.7a to 3.7f show the numerical solutions for
the approximately matched 2D scenarios, dipole strength P = 3.6× 10−6 A m, water conductivity σ =
4.5 S m−1. Axes show distance from the dipole origin (m). Note the scale for each colourmap to differs
between subfigures, as magnitudes of voltage drops differ greatly between locations.
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Figure 4.5A-B. Canal voltage drops at each of six locations along three trajectories with vertical and 

horizontal displacements from the dipole.  Dipole strength, P = 5.6x10-16 C m.   (A) Swimming 

trajectories with the locations from where voltages were mapped. Zinitial = 0.3 m.  (B) Lateral-view 

voltage maps for the ‘unchanged’ trajectory.  Axes show distance from the dipole origin (m).  

(a) 3D [Berquist, 2003]
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Figure 3.8: YZ approach trajectories in the dipole vertical plane and locations where canal voltage
drops were mapped. Figure 3.8a shows the three dimensional analytical model. Reprinted from Berquist
[2003], with permission from Dr. Rachel Berquist. Figure 3.8b shows the approximately equivalent two
dimensional numerical model. In both cases the source is located at the origin. Note: the equipotential
contours have been plotted to illustrate the differences between dimensions and may not correspond to
matched contour levels.

The spatial distribution of canal voltage drops remains similar in the first three lo-
cations of the ’unchanged’ trajectory. Like Berquist [2003] we found strongest negative
voltage drops in the long buccal canals and the strongest positive voltages develop in the
hyoid canals (Figures 3.9a to 3.9c, i to iii). Similarly we also find as the dogfish progresses
along its trajectory the orientation of the electric field rotates, becoming well aligned with
the hyoid canals, resulting in strong positive or negative voltage drops depending on the
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canal orientation. Additionally, this rotation of the field causes the polarity of voltage
drops in these hyoid and mandibular canals to switch (Figures 3.9d to 3.9f, iv to vi).
Again, we find minor differences from Berquist [2003] in our two dimensional simulation,
particularly in the relative magnitudes of voltage drops in the shorter buccal and SO
canals. However, trends in the spatial distribution of the strongest voltage drops appear
to be largely maintained, likely due to strong voltage drops occurring in canals which are
well aligned with the source electric field.

Like Berquist [2003], we find the alternative vertical trajectories, where the dogfish
approaches and passes by the dipole source (’direct’ approach; Figure 3.10; ’fieldline’
approach, Figure 3.11), produce similar results to the corresponding horizontal plane
trajectories (Figure 3.6; Figure 3.7). As with the ’unchanged’ trajectory, the strongest
voltage drops were in the long buccal and hyoid canals. The short canals initially experi-
ence drops of less than 1 nV, but develop strong voltage drops of greater than 1 µV in the
mandibular canals as the dogfish passes over the dipole (Figure 3.10e, v; Figure 3.11e, v).

The overall generalizations of Berquist [2003] hold, despite our two dimensional sim-
ulations only considering a smaller subset of ampullae, only one angular orientation at a
time and reducing the length of canals that were not well aligned with the horizontal or
vertical planes (as we only used either the xy or yz coordinates of pore and ampulla lo-
cations and removed overlapping ampullae). At a distance, the long horizontally aligned
canals appear responsible for initial detection of prey-like stimuli. As the dogfish ap-
proaches and passes over the dipole, shorter more vertically aligned canals around the
snout and mouth develop strongest voltage drops. We use these simulations as our base-
line model and later will examine the effects of electrical and geometrical properties of
shark tissues on the stimulus that ampullae receive.
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3D [Berquist, 2003]
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Figure 4.5A-B. Canal voltage drops at each of six locations along three trajectories with vertical and 

horizontal displacements from the dipole.  Dipole strength, P = 5.6x10-16 C m.   (A) Swimming 

trajectories with the locations from where voltages were mapped. Zinitial = 0.3 m.  (B) Lateral-view 

voltage maps for the ‘unchanged’ trajectory.  Axes show distance from the dipole origin (m).  

 

 80 
 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y(m)

'Field Line' approach
'Direct' approach
'Unchanged' trajectory

z(
m

) 

(A)  Horizontal Plane Trajectories 

 [i] [ii] [iii] [iv] [v] [vi] 

 

 

 

 

 

 + - 

 

  

(B)  ‘Unchanged’ Trajectory 

 [i] x10-9V [ii]  x10-9V [iii]  x10-8V 

-0.94 -0.90 -0.86 -0.82

0.28

0.30

0.32

0.34

0.36

0.38

-5

0 

5 

z(
m

) 

y(m) 
-0.70 -0.66 -0.62 -0.58

0.28

0.30

0.32

0.34

0.36

0.38

-1  

-0.5

0   

0.5 

1   

y(m) 
-0.46 -0.42 -0.38 -0.34

0.28

0.30

0.32

0.34

0.36

0.38

-1

0 

1 

y(m) 

 

 

 

 

 

-0.21 -0.17 -0.13 -0.09

0.28

0.30

0.32

0.34

0.36

0.38

-2

0 

2 

z(
m

) 

y(m) 
0.03 0.07 0.11 0.15

0.28

0.30

0.32

0.34

0.36

0.38

-5

0 

5 

y(m) 
0.26 0.30 0.34 0.38

0.28

0.30

0.32

0.34

0.36

0.38

-2

-1

0 

1 

2 

y(m) 

 [iv]  x10-8V [v]  x10-8V [vi]  x10-8V 

 

 

 

 

 

Figure 4.5A-B. Canal voltage drops at each of six locations along three trajectories with vertical and 
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trajectories with the locations from where voltages were mapped. Zinitial = 0.3 m.  (B) Lateral-view 

voltage maps for the ‘unchanged’ trajectory.  Axes show distance from the dipole origin (m).  
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Figure 3.9: Canal voltage drops at each of six locations along an unchanged approach trajectory in
the dipole vertical plane (see Figure 3.8). Figure 3.9i to vi show the 3D analytical solutions, dipole
strength P = 5.6× 10−16 C m, water permittivity ε = 7× 10−10 C2N−1m−1. Reprinted from Berquist
[2003], with permission from Dr. Rachel Berquist. Figures 3.9a to 3.9f show the numerical solutions for
the approximately matched 2D scenarios, dipole strength P = 3.6× 10−6 A m, water conductivity σ =
4.5 S m−1. Axes show distance from the dipole origin (m). Note the scale for each colourmap to differs
between subfigures, as magnitudes of voltage drops differ greatly between locations.
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3D [Berquist, 2003]
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Figure 4.5C-D.  Canal voltage drops at each of six locations along three trajectories in the dipole 

horizontal and vertical planes.  (C) Lateral-view voltage maps for the ‘direct’ approach trajectory.  (D) 

Later al-view vo ltage maps for the ‘field line’ approach trajectory.  Axes show distance from the  

dipole origin (m).  
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(D)  ‘Field Line’ Approach 
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Figure 3.10: Canal voltage drops at each of six locations along a direct approach trajectory in the
dipole vertical plane (see Figure 3.8). Figure 3.10i to vi show the 3D analytical solutions, dipole strength
P = 5.6× 10−16 C m, water permittivity ε = 7× 10−10 C2N−1m−1. Reprinted from Berquist [2003],
with permission from Dr. Rachel Berquist. Figures 3.10a to 3.10f show the numerical solutions for
the approximately matched 2D scenarios, dipole strength P = 3.6× 10−6 A m, water conductivity σ =
4.5 S m−1. Axes show distance from the dipole origin (m). Note the scale for each colourmap to differs
between subfigures, as magnitudes of voltage drops differ greatly between locations.
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3D [Berquist, 2003]
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Figure 3.11: Canal voltage drops at each of six locations along a fieldline approach trajectory in the
dipole vertical plane (see Figure 3.8). Figure 3.11i to vi show the 3D analytical solutions, dipole strength
P = 5.6× 10−16 C m, water permittivity ε = 7× 10−10 C2N−1m−1. Reprinted from Berquist [2003],
with permission from Dr. Rachel Berquist. Figures 3.11a to 3.11f show the numerical solutions for
the approximately matched 2D scenarios, dipole strength P = 3.6× 10−6 A m, water conductivity σ =
4.5 S m−1. Axes show distance from the dipole origin (m). Note the scale for each colourmap to differs
between subfigures, as magnitudes of voltage drops differ greatly between locations.
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3. SHAPING OF STIMULUS 2D

3.3.1.3 Uniform electric field stimulus

As with the dipole approach trajectories we attempted to match a 2D numerical solution
for canal voltage drops along a sinusoidal trajectory through a constant uniform electric
field to the three dimensional analytical solutions described by Berquist [2003]. While we
were able to approximately match the corresponding trajectories (Figure 3.12), there were
some discrepancies. In the text description of the simulation the oscillation frequency of
the head during swimming was described as 0.6 Hz and this is what Figure 3.12a appears
to show, but the figure caption says the frequency is 0.66 Hz. Visually we matched the
angular head oscillation amplitude to be 0.1 m (Figure 3.12a). The angle of the dogfish
head differs to our simulations, suggesting a different oscillation amplitude may have
been used. In spite of this, similar trends in the spatial distributions of voltage drops are
observed if we examine the absolute values of canal voltage drops (Figures 3.13a to 3.13c),
which is what Berquist [2003] appears to have plotted (Figure 3.13 i to iii).
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Figure 3.12: Sinusoidal swimming trajectory (0.6 Hz) of the dogfish moving in a horizontal plane
through the constant uniform electric field of magnitude, ∆V = 500 nV cm−1. The dogfish’s mean
heading is parallel to the positive voltage gradient. Figure 3.12a shows the three dimensional analytical
model. Reprinted from Berquist [2003], with permission from Dr. Rachel Berquist. Figure 3.12b shows
the approximately equivalent two dimensional numerical model. Note: the equipotential contours may
not correspond to matched contour levels between the two models.
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3. SHAPING OF STIMULUS

Due to uniformity of the electric field, all changes in the voltage drops experienced by
canals are as a direct result of the dogfish’s rotational movements. When the dogfish is
aligned with the electric field direction the voltage drops on the right and left ampullae
are symmetrical (Figure 3.13ii; Figure 3.13b). As the dogfish rotates, canals on one side of
the body are in better alignment with the electric field and the distribution between sides
becomes increasingly asymmetric (Figure 3.13; Berquist [2003]). The spatial distribution
of voltage drops is similar to that of the weak fields experienced in the dipole approach
trajectories when the stimulus was far away. It is the long buccal canals that develop the
largest voltage drops, due to their alignment with the dogfish body axis. This remains the
case even as the shark rotates, as shorter canals even when well aligned with the electric
field do not span much difference in voltage amplitude.

3D [Berquist, 2003]
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Figure 3.13: Canal voltage drops at each of three locations along a sinusoidal trajectory in a horizontal
plane through the constant uniform electric field of magnitude 500 nV cm−1 (see Figure 3.12). Figure 3.13i
to iii show the 3D analytical solutions. Reprinted from Berquist [2003], with permission from Dr. Rachel
Berquist. Figures 3.13a to 3.13c show the absolute values of the numerical solutions for the approximately
matched 2D scenarios. Note the scale for each colourmap to differs between subfigures, as magnitudes of
voltage drops differ greatly between locations.
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3. SHAPING OF STIMULUS 2D

3.3.2 How electrical properties of shark tissue distort the stim-
ulus

Simulations of dipole electric sources and uniform electric fields (section 3.3.1) were re-
peated using tissues of differing electrical properties, based on the values specified in
Table 2.3.

3.3.2.1 Uniform electric field stimulus

We first examine the uniform electric field scenario as it is simpler, due to all changes in
the voltage drops experienced by canals are as a direct result of the dogfish’s rotational
movements. When the shark’s body axis is aligned with the electric field (Figure 3.14a)
there is little difference between the simulations with different electrical properties of shark
tissue. This figure does however illustrate some general properties previously mentioned
for the simulations where the body of the shark was neglected (all tissue conductivity =
σwater; histogram subplots and blue lines). Firstly, the magnitude of the voltage drops
scales linearly with canal length. Secondly, there is a non-linear relationship between
canal orientation and the normalized voltage drop (voltage drop/canal length). Canals
with the pore anterior to the ampulla (270°) experienced the largest positive drops and
canals with the pore posterior to the ampulla experienced the largest negative drops (90°),
with voltage drops being symmetrical between left (180°) and right (0/360°).

In the default case (all tissue conductivity = σwater; histogram subplots and blue lines)
when the shark rotates (Figure 3.14b), the linear relationship remains for canal length.
The non-linear relationship with canal orientation becomes skewed, as the voltage drops
become increasingly asymmetrical due to certain canals becoming better aligned with the
electric field. In contrast to the body parallel simulation, internal voltage gradients do
play a more significant role. The shark’s body tissues are more resistive than seawater,
causing equipotential surfaces to bend towards the shark resulting in all simulations where
tissues were included experiencing voltage drops of greater magnitude. Specifying the
brain as higher conductivity (red, teal) rather than equal to the conductivity of muscle
(green, magenta) does not seem to effect the non-linear relationship with orientation. It
does however appear to again increase voltage drops in longer canals, which are more
likely to span the tissue and come into proximity of the brain. Conversely adding surface
resistance boundary condition for the skin (teal, magenta) decreases the magnitude of
voltage drops. The significance of skin resistance is potentially overestimated due to the
geometry of the two dimensional simulations resulting in pores located in the shark tissue,
rather than pores all providing direct contact with seawater. In summary, for uniform
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electric fields both voltage drop across skin and body tissues contribute to the effective
stimulus in long canals.
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Figure 3.14: Canal voltage drops in a uniform electric field, with tissues of differing electrical properties.
Figure 3.14b shows the drops from the location (b) in fig. 3.12b. Figure 3.14a shows the drops from
location (a) in fig. 3.12b. The upper two figures in each subplot show the relationship between voltage
drop and canal length (left) and the relationship between normalized voltage drop and canal orientation
(right) under the model: all tissues have the conductivity of seawater. The lower two figures in each
subplot show the same histograms when tissues are given different electrical properties. Blue: All σwater =
4.5; Green: σbrain = σbody = 0.5; Red: σbody = 0.5, σbrain = 2.1; Magenta: σbrain = σbody = 0.5, skin
surface impedance = 0.037 Ωm2; Teal: σbody = 0.5, σbrain = 2.1, skin surface impedance = 0.037 Ωm2.

3.3.2.2 Dipole stimulus: Horizontal plane trajectories

At large distances the local dipole fields appear spatially uniform, thus the dipole ap-
proaches showed some similarities to the uniform electric field simulations above. For the
unchanged trajectory of a shark passing by a dipole in the horizontal plane (Figure 3.4),
the closest the dogfish gets is 0.45 m. At the closest phase (Figure 3.15c) the results look
similar to Figure 3.14a suggesting the dogfish body is nearly parallel to the electric field.
Like the uniform parallel case the voltage drops do not differ much from the default case
(all tissue conductivity = σwater; histogram subplots and blue lines). Simulations where
tissues were given different conductivities did result in voltage drops of greater magnitude
(red, green), but the effect of this was largely negated when skin resistance was considered
(magenta, teal). For the remainder of the trajectory (Figures 3.15a, 3.15b and 3.15d), the
results look similar to Figure 3.14b only the magnitude of drops differs based on distance
from the dipole and the asymmetry of canal orientation subplots depends on the relative
orientation of canals to the local electric field. Once the shark has passed by the dipole,

65



3. SHAPING OF STIMULUS 2D

body tissue and skin in the tail appears to be shaping the effective stimulus, particularly
in the mid to long canals (Figure 3.15d).

For the direct and fieldline trajectories in the horizontal plane (Figure 3.4) the results
at a distance again showed similarities to the uniform electric field simulations (due to
the similarity between direct and fieldline trajectories, we will henceforth only display
fieldline results). In these cases the body of the shark was well aligned with the electric
field (Figures 3.16a and 3.16b), so the results look similar to Figure 3.14a.

When the shark is near the dipole and the field is no longer uniform, the shorter
canals experience voltage drops of larger magnitude. Unlike the unchanged trajectory
where the shark is always at a distance from the dipole in these approach trajectories,
due to the reduction in dimensions from 3D to 2D, the dipole is actually located in the
shark tissue rather than seawater during phase Figure 3.4 (e) and (f). We further examine
what happens in the proximity of the dipole by conducting two further simulations,
firstly when the dipole is <1cm away from the dogfish snout (Figure 3.16c) and secondly
when the dogfish has passed by the dipole and the body tissues of the shark no longer
obscure the source (Figure 3.16d). The short canals become more important at close
range (Figure 3.16c) and skin plays a more important role in both short and long canals.
This is illustrated by the inclusion of body tissues actually reducing the effective stimulus
(red, green), however the addition of skin resistance (magenta, teal) yields results that
are similar to the water only simulation. However, when results are normalized for canal
length and plotted against canal orientation, the peak magnitude is smaller with the
inclusion of skin. Again this may be partially attributed to the reduction in dimensions
meaning pores terminate in the shark tissue, beneath the skin, rather than providing
direct contact to the external seawater.

Once the dogfish has passed by the dipole (Figure 3.16d) we find that whereas the
water only simulation (histograms; blue) showed similar results to the shark parallel to
the uniform electric field (Figure 3.14a), when body tissues are included the distribution
of voltage drops becomes skewed similar to the shark rotated in the uniform electric field
(Figure 3.14b). This suggests that the body of the fish, likely the trunk and tail, are
shaping the effective stimulus received by the ampullae. We further investigate the effect
of shark geometry on stimulus received in the following section.
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Figure 3.15: Canal voltage drops in the horizontal plane from a 2D dipole, with tissues of differing elec-
trical properties. Figures show the voltage drops from the unchanged trajectory in fig. 3.4b. Figure 3.15a
shows the drops from the location (a). Figure 3.15b shows the drops from location (d). Figure 3.15c
shows the drops from the location (e). Figure 3.15d shows the drops from location (f). The upper
two figures in each subplot show the relationship between voltage drop and canal length (left) and the
relationship between normalized voltage drop and canal orientation (right) under the model: all tissues
have the conductivity of seawater. The lower two figures in each subplot show the same histograms when
tissues are given different electrical properties. Blue: All σwater = 4.5; Green: σbrain = σbody = 0.5; Red:
σbody = 0.5, σbrain = 2.1; Magenta: σbrain = σbody = 0.5, skin surface impedance = 0.037 Ωm2; Teal:
σbody = 0.5, σbrain = 2.1, skin surface impedance = 0.037 Ωm2.
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Figure 3.16: Canal voltage drops in the horizontal plane from a 2D dipole, with tissues of differing
electrical properties. Figures show the voltage drops from the fieldline trajectory in fig. 3.4b. Figure 3.16a
shows the drops from the location (a). Figure 3.16b shows the drops from location (d). Figure 3.16c
shows the drops when dipole is <1cm away from the dogfish snout. Figure 3.16d shows the drops when
the dogfish has passed by the dipole and the body tissues of the shark no longer obscure the source.
The upper two figures in each subplot show the relationship between voltage drop and canal length (left)
and the relationship between normalized voltage drop and canal orientation (right) under the model: all
tissues have the conductivity of seawater. The lower two figures in each subplot show the same histograms
when tissues are given different electrical properties. Blue: All σwater = 4.5; Green: σbrain = σbody = 0.5;
Red: σbody = 0.5, σbrain = 2.1; Magenta: σbrain = σbody = 0.5, skin surface impedance = 0.037 Ωm2;
Teal: σbody = 0.5, σbrain = 2.1, skin surface impedance = 0.037 Ωm2.
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3.3.2.3 Dipole stimulus: Vertical plane trajectories

As with the horizontal plane trajectories, in the vertical plane at large distances the local
dipole fields appear spatially uniform. For the unchanged trajectory of a shark passing by
a dipole in the horizontal plane (Figure 3.8), the closest the dogfish gets is 0.3 m. At the
closest phase (Figure 3.17c), the dogfish body is nearly parallel to the electric field and
exhibits similarities to Figure 3.14a in spite of the different plane of analysis. Like the
uniform parallel case (and instances of the horizontal plane trajectory where the dogfish
body axis was aligned with the electric field) simulations where tissues were given different
conductivities did result in voltage drops of greater magnitude (red, green), but the effect
of this was largely negated except in longer canals when skin resistance was considered
(magenta, teal). Conversely, at Figure 3.17d, the dogfish body is nearly perpendicular to
the electric field. In this case voltage drops and their interactions with tissue properties
are independent of canal length and depend more on the relative orientations of the canals
to the local field.

The direct and fieldline trajectories in the vertical plane were similar to their horizontal
counterparts. The body of the shark was well aligned with the electric field (Figures 3.18a
and 3.18b) so the results look similar to Figure 3.14a. When the shark is near the dipole
and the field is no longer uniform, so there is no longer a linear relationship between canal
length and magnitude of voltage drop.

As with the horizontal trajectories, the dipole is actually located in the shark tissue
rather than seawater during the two phases closest to the dipole. We further examine
what happens in the proximity of the dipole by conducting two further simulations,
firstly when the dipole is ~5cm away from the dogfish mouth (Figure 3.18c) and secondly
when the dogfish has passed by the dipole and the body tissues of the shark no longer
obscure the source (Figure 3.18d). In the horizontal plane, at close proximity to the
dipole (Figure 3.16c), the inclusion of body tissues reduced the effective stimulus and the
addition of skin resistance largely restored voltage drops to similar magnitudes to the
water only simulation. This is not the case in the vertical plane trajectory (Figure 3.18c)
where both the inclusion of body tissues and skin resistance resulted in smaller magnitude
drops. Whereas reduction of dimensions into the frontal plane (XY) still maintained some
pores near the surface of the dogfish skin, reduction of the sagittal plane (YZ) resulted in
most pores being at least few mm away from the surface, which exacerbates the problem
that pores are not directly interfacing with the external seawater.

Once the dogfish has passed by the dipole (Figure 3.18d) in shorter canals the presence
of shark tissues and skin increases the effective stimulus, whereas in longer canals the
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effective stimulus decreases. This is likely due in part to the orientation of canals, with
there being little difference in canals orientated near 90°, increases in magnitude of voltage
drops in canals orientated near 180° (positive) and 0° (negative).
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Figure 3.17: Canal voltage drops in the vertical plane from a 2D dipole, with tissues of differing electrical
properties. Figures show the voltage drops from the unchanged trajectory in fig. 3.8b. Figure 3.17a shows
the drops from the location (a). Figure 3.17b shows the drops from location (d). Figure 3.17c shows the
drops from the location (e). Figure 3.17d shows the drops from location (f). The upper two figures in each
subplot show the relationship between voltage drop and canal length (left) and the relationship between
normalized voltage drop and canal orientation (right) under the model: all tissues have the conductivity
of seawater. The lower two figures in each subplot show the same histograms when tissues are given
different electrical properties. Blue: All σwater = 4.5; Green: σbrain = σbody = 0.5; Red: σbody = 0.5,
σbrain = 2.1; Magenta: σbrain = σbody = 0.5, skin surface impedance = 0.037 Ωm2; Teal: σbody = 0.5,
σbrain = 2.1, skin surface impedance = 0.037 Ωm2.
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Figure 3.18: Canal voltage drops in the vertical plane from a 2D dipole, with tissues of differing electrical
properties. Figures show the voltage drops from the fieldline trajectory in fig. 3.8b. Figure 3.18a shows
the drops from the location (a). Figure 3.18b shows the drops from location (d). Figure 3.16c shows the
drops when dipole is ~5cm the dogfish mouth. Figure 3.16d shows the drops when the dogfish has passed
by the dipole and the body tissues of the shark no longer obscure the source. The upper two figures
in each subplot show the relationship between voltage drop and canal length (left) and the relationship
between normalized voltage drop and canal orientation (right) under the model: all tissues have the
conductivity of seawater. The lower two figures in each subplot show the same histograms when tissues
are given different electrical properties. Blue: All σwater = 4.5; Green: σbrain = σbody = 0.5; Red:
σbody = 0.5, σbrain = 2.1; Magenta: σbrain = σbody = 0.5, skin surface impedance = 0.037 Ωm2; Teal:
σbody = 0.5, σbrain = 2.1, skin surface impedance = 0.037 Ωm2.
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3.3.3 How geometrical properties of shark tissue distort the
stimulus

The effect of shark geometry on the effective stimulus received by ampullae is now ex-
amined. Simulations of dipole electric sources and uniform electric fields (section 3.3.1)
were repeated under two geometrical simplifications: 1) removal of fins and 2) removal
of fins and head replaced by an ellipse. In each case, tissue properties were specified
as σbody = 0.5, σbrain = 2.1, skin surface impedance = 0.037 Ωm2 and compared to the
default water only model (σall = 4.5).

3.3.3.1 Uniform electric field stimulus

When the dogfish’s body axis was not aligned with the electric field, there was little
difference in the voltage drops between the different geometries (Figure 3.19a). The
geometry with fins removed (black dashed) was very similar to the 2D shark projection
(black solid). However, when both fins were removed and the head was replaced by
an ellipse (black dotted) the magnitude of the effective stimulus was slightly larger in
the longer canals. Differences based on geometry are smaller in magnitude than the
differences between including body tissues (black solid) and the default water only model
(grey solid). Conversely, when the dogfish’s body axis was aligned with the electric field
(Figure 3.19b) both simplifications increase the magnitude of voltage drops, particularly
in longer canals, suggesting that tissue in the fins is modifying the electric field.
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Figure 3.19: Canal voltage drops in a uniform electric field, with differing dogfish geometries. Fig-
ure 3.19a shows the drops from the location (a) in fig. 3.12b. Figure 3.19b shows the drops from location
(b) in fig. 3.12b. The upper two figures in each subplot show the relationship between voltage drop and
canal length (left) and the relationship between normalized voltage drop and canal orientation (right)
under the model: all tissues have the conductivity of seawater. The lower two figures in each subplot
show the same histograms, with differing dogfish geometries. Grey: No body/all σwater = 4.5; Black
solid: 2D shark projection; Black dashed: fins removed; Black dotted: fins removed and head replaced
with ellipse.

3.3.3.2 Dipole stimulus: Horizontal plane trajectories

As with the examination of the effect of how the electrical properties of tissues distort
the field, there are similarities to the uniform field simulations. At the closest phase
(Figure 3.20c) the results look similar to Figure 3.19b. Like the uniform parallel case
both geometrical simplifications result in greater magnitude voltage drops, particularly
in longer canals. Figures 3.20a and 3.20d show the opposite trend with the magnitude of
voltage drops being reduced, particularly in longer canals, again suggesting fins impact
the stimulus received by ampullae. However in longest canals, this reduction was smaller
in the simplification where the original head geometry was replaced by an ellipse (black
dotted). This suggests maybe it is the overall volume of tissue that is important, rather
than specific geometry, as the ellipse head is slightly larger than the head based on realistic
shark geometry. Finally, in Figure 3.20b there is little difference between any of the shark
geometries, much like the uniform rotated simulation (Figure 3.19a).

For the direct and fieldline trajectories in the horizontal plane, the results at a distance
were similar, with both geometrical simplifications increasing the magnitude of voltage
drops, particularly in longer canals (Figures 3.21a, 3.21b and 3.21d). When the shark
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was near the dipole (Figure 3.21c), removal of the fins had little effect (black dashed) but
head replacement (black dotted) increased the magnitude of voltage drops likely due to
an increase in pores not being located on the shark surface. The relationship normalized
voltage drops, and canal orientation did not differ much between the shark geometries.
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Figure 3.20: Canal voltage drops in the horizontal plane from a 2D dipole, with differing dogfish
geometries. Figures show the voltage drops from the unchanged trajectory in fig. 3.4b. Figure 3.20a
shows the drops from the location (a). Figure 3.20b shows the drops from location (d). Figure 3.15c
shows the drops from the location (e). Figure 3.20d shows the drops from location (f). The upper
two figures in each subplot show the relationship between voltage drop and canal length (left) and the
relationship between normalized voltage drop and canal orientation (right) under the no body model:
all tissues have the conductivity of seawater. The lower two figures in each subplot show the same
histograms, with differing dogfish geometries. Grey: No body/all σwater = 4.5; Black solid: 2D shark
projection; Black dashed: fins removed; Black dotted: fins removed and head replaced with ellipse.
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Figure 3.21: Canal voltage drops in the horizontal plane from a 2D dipole, with differing dogfish
geometries. Figures show the voltage drops from the fieldline trajectory in fig. 3.4b. Figure 3.21a shows
the drops from the location (a). Figure 3.21b shows the drops from location (d). Figure 3.21c shows the
drops when dipole is <1cm away from the dogfish snout. Figure 3.21d shows the drops when the dogfish
has passed by the dipole and the body tissues of the shark no longer obscure the source. The upper
two figures in each subplot show the relationship between voltage drop and canal length (left) and the
relationship between normalized voltage drop and canal orientation (right) under the model: all tissues
have the conductivity of seawater. The lower two figures in each subplot show the same histograms, with
differing dogfish geometries. Grey: No body/all σwater = 4.5; Black solid: 2D shark projection; Black
dashed: fins removed; Black dotted: fins removed and head replaced with ellipse.
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3.3.3.3 Dipole stimulus: Vertical plane trajectories

In the vertical plane removal of fins (black dashed) appeared to have very little effect
for all phases of the unchanged trajectory (Figure 3.22). Again, replacing the head with
an ellipse (black dotted) caused greater changes in magnitude of voltage drops in longer
canals and there was little difference between geometries for the relationship between
normalized voltage drops and canal orientation (Figure 3.22).

Under the direct and fieldline approaches there was little difference in the relationship
between magnitude of voltage drops and canal length as the shark approached the dipole
(Figures 3.23a to 3.23c). Examining the relationship between normalized voltage drops
and canal orientation revealed some slight alterations in magnitudes of voltage drops but
trends exhibited in the realistic geometry were largely maintained. However, once the
shark had passed the dipole (Figure 3.23a) there were differences in both magnitude of
voltage drops versus length and normalized voltages drops versus canal orientation, again
suggesting the fins (or volume of shark tissue) likely impact the stimulus received by
ampullae.
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Figure 3.22: Canal voltage drops in the vertical plane from a 2D dipole, with differing dogfish geome-
tries. Figures show the voltage drops from the unchanged trajectory in fig. 3.8b. Figure 3.22a shows
the drops from the location (a). Figure 3.22b shows the drops from location (d). Figure 3.22c shows
the drops from the location (e). Figure 3.22d shows the drops from location (f). The upper two figures
in each subplot show the relationship between voltage drop and canal length (left) and the relationship
between normalized voltage drop and canal orientation (right) under the model: all tissues have the
conductivity of seawater. The lower two figures in each subplot show the same histograms, with differing
dogfish geometries. Grey: No body/all σwater = 4.5; Black solid: 2D shark projection; Black dashed:
fins removed; Black dotted: fins removed and head replaced with ellipse.
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Figure 3.23: Canal voltage drops in the vertical plane from a 2D dipole, with differing dogfish geome-
tries. Figures show the voltage drops from the fieldline trajectory in fig. 3.8b. Figure 3.23a shows the
drops from the location (a). Figure 3.23b shows the drops from location (d). Figure 3.23c shows the
drops when dipole is ~5cm the dogfish mouth. Figure 3.23d shows the drops when the dogfish has passed
by the dipole and the body tissues of the shark no longer obscure the source. The upper two figures
in each subplot show the relationship between voltage drop and canal length (left) and the relationship
between normalized voltage drop and canal orientation (right) under the model: all tissues have the
conductivity of seawater. The lower two figures in each subplot show the same histograms, with differing
dogfish geometries. Grey: No body/all σwater = 4.5; Black solid: 2D shark projection; Black dashed:
fins removed; Black dotted: fins removed and head replaced with ellipse
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3.3.4 Simplified 3D shark geometry

Our 2D simulations revealed that the effect of adding electrical properties to tissues was
of greater magnitude than the differences from geometrical simplifications. Additionally,
some of the differences in voltage drops between both electrical properties of tissues
and shark geometries can be attributed to the reduction in dimensions (e.g. pores not
in contact with animal surface, being unable to examine results when shark geometry
overlaps dipole etc). Brain tissue made a small difference in 2D, but mainly only in long
canals which came into close proximity of the brain. Long canals often run near parallel
to the skin, hence the proximity to the brain was mainly an artefact of flattening 3D
geometry into 2D. Therefore, for ease of geometry manipulation and meshing we exclude
this from our 3D model and focus solely on body tissues and skin. We now proceed with a
simplified shark geometry in three dimensions. In this case the shark has an ellipsoid and
cone like geometry (Figure 3.3), but all pore coordinates were mapped to the ellipsoid
surface and all simulations were conducted so that the shark geometry did not overlap
the dipole (e.g. mouth was just above dipole in both horizontal and vertical approach
trajectories).

3.3.4.1 Uniform electric field stimulus

We compare the canal voltage drops in our simplified 3D shark where no tissue properties
were specified (Figures 3.24a to 3.24c) with the voltage drops where we have specified body
conductivity and skin surface impedance (Figures 3.24d to 3.24f). When the dogfish’s
body axis was aligned with the electric field (Figures 3.24b and 3.24e) adding tissue
properties has little effect in the magnitude of the largest voltage drops in the long buccal
canals. However, some shorter canals now experience drops of greater magnitude. This
effect appears to be greatest in canals that both aligned with the direction of the electric
field and are perpendicular to the skin surface (Figures 3.24d to 3.24f). When the dogfish
body axis is rotated relative to the field direction (Figures 3.24a, 3.24c, 3.24d and 3.24f),
shark tissues appear to slightly increase the magnitude of voltage drops across much of the
ampullary array. Again, long buccal canals experience the largest drops, but the shorter
buccal and SO canals aligned with the field now receive greater stimulus (Figures 3.24d
and 3.24f).
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All tissues=water
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Figure 3.24: Canal voltage drops at each of three locations along a sinusoidal trajectory in a hor-
izontal plane through the constant uniform electric field of magnitude 500 nV cm−1 (see Figure 3.12).
Figures 3.24a to 3.24c show the numerical solutions for all tissues = water conductivity σ = 4.5 S m−1.
Figures 3.24d to 3.24f show the numerical solutions when body tissues are specified as σbody = 0.5 S m−1,
skin surface impedance = 0.037 Ωm2. Note the scale for each colourmap to differs between subfigures, as
magnitudes of voltage drops differ greatly between locations.
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3.3.4.2 Dipole stimulus: Horizontal plane trajectories

At large distances the local dipole fields appear spatially uniform, thus the dipole ap-
proaches showed some similarities to the uniform electric field simulations above. At the
closest phase (Figures 3.25e and 3.25k) the results look near symmetrical similar to Fig-
ures 3.24b and 3.24e suggesting the dogfish body is nearly parallel to the electric field.
Whereas in the uniform case there was little difference in the magnitudes of the effec-
tive stimulus, in this case there was a slight reduction in the mid to long canals when
tissues were included. Likewise for most phases in the unchanged trajectory the voltage
drops the magnitudes of peak voltage drops for tissue included simulations (Figures 3.25g,
3.25h, 3.25k and 3.25l) are either similar or slightly reduced relative to the default model
(Figures 3.25a, 3.25b, 3.25e and 3.25f). Whereas the inclusion of tissues increases the
magnitude of peak voltage drops in (Figures 3.25i and 3.25j) relative to the default model
(Figures 3.25c and 3.25d). In particular, some of the shorter buccal and SO canals in the
snout experience larger voltage drops, as do many of the longer hyoid (Figure 3.25i) and
buccal canals (Figure 3.25j).

When the dogfish is approaching the dipole, the direct and fieldline trajectories are
similar to when the dogfish’s body axis was aligned with the uniform electric field (Fig-
ures 3.24b and 3.24e). The largest voltage drops are still in the long buccal canals,
adding tissues (Figures 3.26g to 3.26j) slightly increases the magnitude of these drops
(Figures 3.26a to 3.26d). However, now even at a distance some of the shorter buccal and
SO canals in the snout experience much larger voltage drops, which increase until they
are approximately the same magnitude as those in the much longer canals (Figure 3.26j).
As predicted, the local dipole fields do not penetrate the skin well, resulting in voltage
drops being smaller in magnitude (Figure 3.26k) than the default case (Figure 3.26e)
when the dogfish is in close proximity to the dipole. Once the dogfish has passed over the
dipole, the long buccal canals resume being the group exhibiting the strongest stimulation
(Figures 3.26f and 3.26l). However, now instead of the shorter snout canals experienc-
ing larger magnitude voltage drops, it is now the hyoid canals at the rear of the head
(Figure 3.26l).
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All tissues=water
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Figure 3.25: Canal voltage drops at each of six locations along an unchanged approach trajectory in
the dipole horizontal plane (similar to the 2D trajectories in Figure 3.4, z=0). Figures 3.25a to 3.25f
show the numerical solutions for dipole strength P = 3.6× 10−6 A m, all tissues = water conductivity
σ = 4.5 S m−1. Figures 3.25g to 3.25l show the numerical solutions when body tissues are specified as
σbody = 0.5 S m−1, skin surface impedance = 0.037 Ωm2. Axes show distance from the dipole origin (m).
Note the scale for each colourmap to differs between subfigures, as magnitudes of voltage drops differ
greatly between locations.
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Figure 3.26: Canal voltage drops at each of six locations along an fieldline approach trajectory in
the dipole horizontal plane (similar to the 2D trajectories in Figure 3.4, z=0). Figures 3.26a to 3.26f
show the numerical solutions for dipole strength P = 3.6× 10−6 A m, all tissues = water conductivity
σ = 4.5 S m−1. Figures 3.26g to 3.26l show the numerical solutions when body tissues are specified as
σbody = 0.5 S m−1, skin surface impedance = 0.037 Ωm2. Axes show distance from the dipole origin (m).
Note the scale for each colourmap to differs between subfigures, as magnitudes of voltage drops differ
greatly between locations.
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3.3.4.3 Dipole stimulus: Vertical plane trajectories

Similar to section 3.3.4.2, in the vertical plane the inclusion of tissues resulted in magni-
tudes of peak voltage drops (Figures 3.27g, 3.27h, 3.27k and 3.27l) that are reasonably
similar to the default model (Figures 3.27a, 3.27b, 3.27e and 3.27f) for most snapshots
of the unchanged trajectory. Whereas the inclusion of tissues increases the magnitude of
peak voltage drops in (Figures 3.27i and 3.27j) relative to the default model (Figures 3.27c
and 3.27d). The spatial distribution of voltage drops remained similar to Figures 3.27a
to 3.27f. Again, several of the shorter buccal and SO canals now experience drops of
greater magnitude.

The vertical direct and fieldline approach trajectories showed similarities to the hor-
izontal plane. Again the largest voltage drops are mainly in the long buccal canals,
adding tissues (Figures 3.28g to 3.28j) has little effect on the magnitude of these drops
(Figures 3.28a to 3.28d). Likewise, at a distance the shorter buccal canals in the snout
experience much larger voltage drops, which increase until some are of larger magnitude
than those in the much longer canals (Figure 3.28j). Unlike the horizontal plane, when the
dogfish is in close proximity to the dipole the voltage drops are of similar magnitude when
differing electrical properties are included (Figure 3.28e versus Figure 3.28k). As with
the horizontal plane once the dogfish has passed over the dipole, the long buccal canals
resume being the group exhibiting the strongest stimulation (Figures 3.28f and 3.28l),
along with larger magnitude voltage drops in the hyoid canals at the rear of the head
(Figure 3.28l).
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Figure 3.27: Canal voltage drops at each of six locations along an unchanged approach trajectory
in the dipole vertical plane (similar to the 2D trajectories in Figure 3.8, x=0). Figures 3.27a to 3.27f
show the numerical solutions for dipole strength P = 3.6× 10−6 A m, all tissues = water conductivity
σ = 4.5 S m−1. Figures 3.27g to 3.27l show the numerical solutions when body tissues are specified as
σbody = 0.5 S m−1, skin surface impedance = 0.037 Ωm2. Axes show distance from the dipole origin (m).
Note the scale for each colourmap to differs between subfigures, as magnitudes of voltage drops differ
greatly between locations.
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Figure 3.28: Canal voltage drops at each of six locations along an fieldline approach trajectory in
the dipole vertical plane (similar to the 2D trajectories in Figure 3.8, x=0). Figures 3.28a to 3.28f
show the numerical solutions for dipole strength P = 3.6× 10−6 A m, all tissues = water conductivity
σ = 4.5 S m−1. Figures 3.28g to 3.28l show the numerical solutions when body tissues are specified as
σbody = 0.5 S m−1, skin surface impedance = 0.037 Ωm2. Axes show distance from the dipole origin (m).
Note the scale for each colourmap to differs between subfigures, as magnitudes of voltage drops differ
greatly between locations.
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3.4 Discussion

In this chapter, we have constructed a series of finite element models in order to study the
spatial and temporal dynamics of electrosensory signal development in the electrosensory
periphery of the spiny dogfish (S. acanthias). Although the models rely on simplifying
assumptions, the most notable being reduction of dimensions and body geometry, the
methods applied here provide the first steps in examining how pre-receptor mechanisms
and interactions shape the effective stimulus received by elasmobranch electrosensory
systems. Tissue and skin conductivities have long been hypothesised to contribute to the
electrical stimulus individual ampullary receptors measure [Kalmijn, 1974].

3.4.1 Passive electrosensory signal modelling using FEM

Despite our two dimensional simulations considering a smaller subset of ampullae, only
one angular orientation at a time, reduced length of canals that were not well aligned
with the 2D plane and apparent slight differences in the position and orientation of the
shark in some simulations, our baseline model (all σwater) was able to reproduce many of
the overall generalizations of Berquist [2003] in examining the role of different ampullary
groups under different stimuli and trajectories. For the dipole stimulus at a distance,
the long horizontally aligned canals appear responsible for initial detection of prey-like
stimuli. As the dogfish approaches and passes over the dipole, shorter more vertically
aligned canals around the snout and mouth develop the strongest voltage drops. For the
uniform stimulus, it is again the long buccal canals that develop the largest voltage drops,
due to their alignment with the dogfish body axis. This remains the case even as the
shark rotates, as shorter canals even when well aligned with the electric field do not span
much difference in voltage amplitude.

The effects of internal tissues (body and brain) and skin conductivity were studied
in these 2D simulations. Additionally, we compared the morphologically accurate shark
geometry with two geometrical simplifications (fins removed, fins removed and head re-
placed with ellipsoid), with the aim of building a simplified version of a 3D shark. The
2D geometries were easy to manipulate and each model was simple to implement, using
the finite element software COMSOL Multiphysics 4.4 Livelink with MATLAB. For each
configuration, the 2D FEM model solved in approximately 1 minute or less (on a Windows
7 Professional 64-bit Intel i7 processor @ 3.20GHz with 16.0 GB RAM).

Additional shortcomings relating to the two dimensional model are when the electrical
properties of body tissues have been specified, there are phases of the prey approach
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trajectory where the dipole ends up being in the dogfish’s internal tissues, rather than
in the external environment. We therefore had to limit our analysis to phases of the
trajectories where no part of the body intersected with the dipole location. Furthermore,
due to the geometry of the two dimensional simulations many pores were located in the
shark tissue, rather than all pores providing direct contact with external seawater.

To address these problems we developed a simplified three dimensional model where
the shark’s body was represented by an ellipsoid and cone geometry. Pore coordinates
were mapped to the surface of the estimated minimum volume ellipsoid containing all pore
and ampulla coordinates, while ampulla proper coordinates were retained. This resulted
in slight modifications to the length and orientation of canals, but ensured that all pores
were on the surface, while all ampulla proper were on the interior of the shark. The 3D
geometries were more difficult to manipulate and mesh, which resulted in the decision to
no longer treating the ampullae as edges in the geometry, but rather interpolating the
electric potential at the coordinates of the pore and ampulla in post-processing. Due to
this simplification, for the dipole stimulus the 3D FEM model actually solved faster, in
approximately 15 seconds or less for each configuration. Whereas due to the large area of
mesh required for the external environment, the uniform stimulus was slower in 3D, with
each configuration solved in approximately 1 minute 45 seconds.

3.4.2 Large scale uniform fields

Marine elasmobranchs have relatively low skin resistance compared with tissue resistances,
therefore Murray [1967] hypothesised that the potential gradient in body tissues will
be similar to the uniform external gradient in seawater. He further predicted that the
effective stimulus in this case is the gradient through the animals tissues multiplied by
the length of the canal aligned with the electric field [Murray, 1967]. This theory was
supported by measurements on a marine ray Platyrhinoidis triseriata, potential gradients
inside the animal significant compared with the external uniform electric field parallel
to the body axis [Szabo et al., 1972]. However, these measurements did show some sub-
epidermal decrease relative to the voltage gradients exterior to the animal [Kalmijn, 1974].
Kalmijn [1974] presented a qualitative diagram based on these measurements showing
the equipotential surfaces bending towards the fish (since animals are more resistive than
seawater) and voltage gradients in the body tissues being not much weaker than the
external stimulus. He concluded in a large scale uniform field both the voltage drop across
the skin and the gradients in the tissues contribute to the effective stimulus [Kalmijn,
1974].
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Pickard [1988] built on the qualitative concepts presented above and developed an
analytical model of a spherical shark in a uniform electric field. Due to the predominance
of long canals, it was concluded that the appropriate expression for electroreceptors is the
skin to deep-interior potential, which under the assumptions specified, was independent
of skin conductance. The outcome of this model was confirmation that sensory cells in
long canals will experience a large fraction of the stimulus that would have over the length
of the fish, in the absence of the fish, whereas short canals will experience smaller stimuli
[Pickard, 1988].

We attempted to quantify these effects over the entire electrosensory array. Overall,
our series of 2D and 3D models suggest the following about how electrical properties of
tissues shape the stimulus in a uniform electric field:

• When the body is parallel with the electric field, the inclusion of skin and tissues has
little effect on the stimulus received by shorter canals. Whereas, in longer canals
the inclusion of body tissues increases the effective stimulus, but this is partially
cancelled out by the inclusion of skin.

• When the body is rotated relative to the electric field, the inclusion of body tissues
increases the effective stimulus across all length canals, but again this is partially
cancelled out by the inclusion of skin.

• Tissues shape the effective stimulus to a greater extent when the body axis is rotated
in the electric field, but voltage drops have greater absolute magnitudes when the
body axis is aligned with the field direction.

• In absolute terms it is the longest canals aligned with the electric field which expe-
rience the greatest advantage by spanning body tissues. However in relative terms
when examining the ratio of the canal voltage drops in seawater to the drops when
tissues are included, changes of the greatest magnitudes appear in the canals run-
ning near perpendicular to the electric field. This is because under the default
condition canals would have received near zero voltage drops, whereas due to the
distortion caused by the body the electric field has been modified so it is no longer
zero.

• However, when we examine the ratio of the canal voltage drops in seawater to the
drops when tissues and skin are both included, it is more difficult to interpret trends,
the drops now result from an interaction between both the distorting effects of the
tissue and skin.
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3.4.3 Localized dipole fields

Conversely, Kalmijn [1974] found that when a local dipole field was applied to the same
marine rays, P. triseriata, the electric fields did not penetrate the body tissues. Thus
suggesting for small localized fields, the effective stimulus in both long and short canals
is almost entirely the voltage drop across the skin [Kalmijn, 1974].

Gusev et al. [1986, 1985] investigated these qualitative concepts via a model of a disk
shaped ray in a dipole electric field. This model specified the conductivity of water and
skin, under the simplifying assumption that the conductivity of body tissues is approx-
imately equal to that of water, in order to derive a numeric solution. The results of
this model suggested that if the dipole axis was aligned with the plane of the disk, then
skin caused negligible distortions to the effective stimulus. Whereas when the dipole
was perpendicular to the disk plane, the hypothesis of [Kalmijn, 1974] was supported,
with voltage gradients inside body tissues being negligibly weak compared to those in
surrounding seawater [Gusev et al., 1986]. These conclusions were largely independent
of specific conductivities, as long as the conductivity of water was greater than the con-
ductivity of skin. It was concluded that the body acts as an accessory structure, which
reduces the effective stimulus of dipoles not belonging to the animals body plane [Gusev
et al., 1986].

We attempted to quantify these effects over the entire electrosensory array, with more
realistic geometries, under different dipole approach trajectories. Overall, our series of
2D and 3D models suggest the following about how electrical properties of tissues shape
the stimulus in a dipole electric field:

• At a distance from the dipole the fields are locally uniform in nature, so results are
similar to the uniform electric field simulations.

• As predicted by [Kalmijn, 1974] when the dipole is nearby there is a large voltage
drop relative to the dipole stimulus in seawater caused by the resistance of skin.
Thus shorter canals are now better suited to sensing the potential distribution
directly over skin surface.

• Whereas the modelling of Gusev et al. [1986] concluded it sufficient to specify the
conductivity of water and skin (as long as σwater > σskin). In our models, where
skin was a surface impedance boundary condition which specified the resistance,
we found that the inclusion of tissues with a lower conductivity than the surround-
ing water impacted results, significantly increasing the voltage drops experienced
relative to the skin only simulations.
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• Gusev et al. [1986] suggested the body acts as an accessory structure, which results
in negligible voltage drops for dipoles not belonging to the animals body plane.
Results from our unchanged trajectories in the vertical and horizontal planes suggest
that this may not be the case. During the initial phases of the trajectory there was
some reduction in the stimulus relative to a dipole in seawater. However, despite the
shark never getting closer than 0.45m in the horizontal plane (or 0.3m for vertical
approach) the voltage drops in the mid to late stages of the trajectory were of the
same magnitude or slightly greater than those in seawater alone.

3.4.4 How the animal impacts the stimulus it receives

Here we focussed on the voltage drops over entire electrosensory array and how the body
scale pre-receptor mechanisms impact the stimulus received by electrosensors. The mor-
phological and electrical properties of the canal itself and the receptor cells therein also
likely effect the stimulus received by individual ampullae. The most comprehensive anal-
ysis of electrical properties and morphological structure of the ampullae of Lorenzini was
conducted by Waltman [1966] on species of skate from the Rajidae family. He noted that
the canal walls had uniquely high resistance, much higher than elasmobranch skin, and
two to three orders of magnitude higher than any previously reported values for epithe-
lial resistance. This in combination with the relatively low resistance of the gel filling
the canal suggests that, for dc and low frequency signals, the ampullae acts as an ideal
submarine cable [Waltman, 1966]. Therefore, the majority of the effective stimulus is sig-
nalled by the voltage drop across the sensory epithelium. Additionally, each receptor cell
bears a cilium which interfaces with the lumen of the ampulla proper [Waltman, 1966].
While a role in electroreception has yet to be demonstrated, it has been retained from
ancestral hair cells in spite of being mechanically isolated at the bottom of the canal.
Analogous to a lightning rod, the cilium should draw electrical isopotential lines towards
its tip, increasing the voltage gradient and amplifying currents passing through the re-
ceptor cell membrane at that point. The specific location of transduction channels in
electroreceptor cells is unknown, but transduction channels in mechanosensory hair cells
are located at the tips of cilia [Hudspeth, 1982]. The fact that cilia have been retained in
electroreceptors, immobilised in electrically conductive gel, suggests that voltage-sensitive
transduction channels are at the tips of the cilia in electroreceptors.

Our analysis consisted of a series of snapshots of shark behaviour rotating in a uniform
electric field and approach trajectories in the horizontal and vertical plane of a dipole.
However shark behaviour is much more complex than our simplified analysis. Kim [2007]
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demonstrated that head swaying movements of elasmobranchs would be required to esti-
mate electric field direction in order to follow the fieldline approach trajectory [Kalmijn,
1997]. It would be of interest to model the effect of body parts under more realistic
behaviour, including head swaying and tail bending, or match numerical models to video
recordings of shark behaviour. It has been suggested electroreceptors are limited to the
head region of sharks to avoid the regions of the body which undergo greater bending
movements during swimming [Murray, 1974]. However, some motion is necessary for the
detection of electric fields that are dc in origin. Dipole approaches depend on both linear
and angular movements, and uniform electric fields (similarly the electric field induced by
swimming in the earth’s magnetic field) require angular movements [Peters et al., 2007].
Conversely, the animal’s own movements also act as one of the main sources of noise in
the electrosensory system.

In particular, ventilatory movements have been shown to modulate firing rates of
electrosensory afferents [Montgomery, 1984a; New, 1990]. Animals are faced with the
problem of distinguishing electrosensory information about their external environment
(exafference) from electrosensory information that results from their own state/motor
activity (reafference). Ventilatory noise is largely removed in the secondary ascending ef-
ferent neurons (AENs), suggesting sensory processing suppresses reafference [New, 1990].
Kalmijn [1974] suggested that one advantage of the long ampullary canals arranged in
groups is it allows for the sampling of a large area of skin at the pores, while maintaining
the ampullae proper nearly isopotential. Thus, providing a common mode signal which
may be used to suppress various form of noise via common mode rejection. Indeed the
suppression of common mode signals has been well documented in the elasmobranch elec-
trosensory system [Bodznick et al., 1992, 1999; Conley & Bodznick, 1994; Hjelmstad et al.,
1996; Montgomery & Bodznick, 1993]. How hindbrain circuitry, specifically the dorsal
octavolateralis nucleus (DON), achieves this initial processing is an ongoing area of re-
search, with several models studying the mechanisms behind this phenomenon [Bratby
et al., 2014; Montgomery & Bodznick, 1994; Nelson & Paulin, 1995].

The adaptive filter model of reafference suppression supposes that self movement (or
self state) affects the measured field by perturbing the self field [Bratby et al., 2014;
Montgomery & Bodznick, 1994; Nelson & Paulin, 1995]. That is true. However, this
chapter has demonstrated that the self state also affects the external field. The dynamic
state-to-sensory transformation is a non-linear distortion of the field, not an additive
difference. Specifically, the adaptive filter considers:

~E = ~E(self) + ~E(ext) (3.2)
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but the reality is:
~E = ~E(self, ext) (3.3)

which is a complex interaction that can only be computed numerically.
For any given self and external stimuli, it is possible to predict the electrosensory

consequences of the animal’s own behaviour, ~E(self, ext), and subtract that expectation
from what animal actually sees. But that only works for the particular scenario - it does
not generalize (it is unlikely that the animal’s brain has the time or resources to consider
all possible realities). Under experimental conditions, where an animal is repeatedly
presented ~E(self, ext), with identical self and external stimuli every time, subtracting
away the predictable component of that signal may work.

However, the fact that animals’ are able to subtract away the predictable compo-
nent from the raw sensory input, ~E = ~E(self) + ~E(ext), to provide an estimate of the
sensory signal generated by objects in the external world, ~E(ext), does not necessarily
imply adaptive subtraction. The animal finds a solution equivalent to subtracting its own
field, ~E(self), because under experimental conditions this is the problem that it is faced
with. In the real world the animal faces a non-linear problem which cannot be solved
by prediction and subtraction. It can only (or best) be solved by Bayesian inference.
The remainder of the thesis is about exploring if and how elasmobranchs might perform
Bayesian inference.
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Electrosensory perception as causal
inference
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Chapter 4

Spontaneous activity of
electrosensory afferents: Analyses of
interspike interval distributions

4.1 Introduction

Elasmobranchs use their ampullary electroreceptors to detect and locate weak electric
fields associated with prey organisms [Kalmijn, 1971]. Stimuli in the order of nanovolts
are sufficient to elicit a behavioural response [Kalmijn, 1982; Peters et al., 2007]. In the
frequency range of the elasmobranchs’ electrosensory system, this signal across the sensory
epithelium is comparable to thermal noise [Kalmijn, 1984, 2003]. Bioelectric fields allow
sharks to "see" prey even though it may be buried under sand [Kalmijn, 1971] and the weak
neuronal signal is buried in thermal noise [Kalmijn, 1984, 2003]. While the sensory signal
may be all but invisible in the noise, stochastic afferent spike trains carry information
to the brain about state variables of the prey, including for example its location relative
to the predator. Sharks’ ability to precisely locate the prey and correctly orient its jaws
suggests that sharks’ brains are able to infer these parameters. How they do this remains
to be established, but even in spiking neuron models of elasmobranch electroreception
the statistical structure of spike trains has been ignored [Adair et al., 1998; Berquist,
2003; Bratby et al., 2014; Camperi et al., 2007; Montgomery & Bodznick, 1999, 1994;
Nelson & Paulin, 1995; Pickard, 1988]. Sharks would do this at their peril. Natural
selection favours more effective predators and more evasive prey. The statistical structure
of spike trains contains valuable information about the processes generating spikes (e.g.
distance to prey). Structure is generally not fully characterised by the first two moments
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of the distribution [Kuhn et al., 2003]. Due to the uncertainty in sensory information,
the optimal strategy involves computing the conditional probability distribution of world
states given what has been observed - the Bayesian posterior [Knill & Pouget, 2004].
A Bayes’ optimal agent maintains a representation of this distribution, allowing for the
efficient integration of information over space and time and multisensory cue combination
[Knill & Pouget, 2004].

It is not clear that sharks are Bayesians, but theoretical arguments suggest that many
of the computations performed by nervous systems are instances of probabilistic inference
[Pouget et al., 2013; Sengupta et al., 2013]. As Levy & Morel [2006] noted, other things
being equal Bayesian inference is an optimization that nervous systems should have dis-
covered. Behavioural and psychophysical evidence from a number of species, including
humans, suggest that is indeed the case [De Ridder et al., 2014; Friston et al., 2012;
Kording, 2014; Lochmann & Deneve, 2011; Loeb & Fishel, 2014; Orban de Xivry et al.,
2013; Pouget et al., 2013]. But other things are not necessarily equal. Bayesian methods
can be relatively difficult to implement, slow, computationally expensive and at least in
some situations can be mimicked by simple rules that make no reference to probability
distributions [Domurat et al., 2015]. Energetic costs appear to have shaped the evolution
of nervous systems and this may favour sub-optimal mechanisms [Laughlin et al., 1998].
Perhaps it is not even possible to implement Bayesian methods using neurons. Recent
research suggest brains are poorly adapted to calculating probabilities, but rather act as a
Bayesian sampler [Sanborn & Chater, 2016]. Infinite samples are required for a Bayesian
sampler to conform to the laws of probability and finite samples can systematically intro-
duce probabilistic errors [Sanborn & Chater, 2016]. Thus when big fish meets little fish, a
simple mechanism such as a linear adaptive array filter [Bratby et al., 2014; Montgomery
& Bodznick, 1999, 1994; Nelson & Paulin, 1995] might isolate signals emanating from the
prey and allow the predator to out-compete Bayesians in the real world.

The elasmobranch electric sense has special characteristics that make it particularly
suitable for examining if and how brains implement Bayesian computation. Many elas-
mobranchs execute well-aimed strikes in response to both real and simulated prey electric
fields [Bedore et al., 2014; Haine et al., 2001; Jordan et al., 2009; Kajiura, 2003; Kajiura
& Fitzgerald, 2009; Kajiura & Holland, 2002; Kalmijn, 1971; McGowan & Kajiura, 2009].
While the bioelectric fields surrounding animals in aquatic environments can be consid-
ered the sum of multipole sources, at the distance at which sharks initiate their strikes
the dipole term is sufficient [Kalmijn, 1988]. This dipole field varies slowly, propagates
instantaneously and can be fully characterised using only a handful of parameters. It
is therefore relatively easy to analyse the stimulus intensity received by each ampullary
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organ expressed as a function of parameters of the signal source. Since the evolutionary
origin of vertebrate nervous systems more than half a billion years ago [Monk, 2014; Monk
& Paulin, 2014], small electric dipole sources in the ocean would have reliably indicated
the live animals. It is only in more modern times that sharks have encountered poten-
tially confusing anthropogenic electric field sources during foraging. Thus the question
of what causes such fields is literally a no-brainer for a shark: it’s food. A shark’s brain
only has to figure out where it is. Indeed sharks appear either unable to discriminate
between, or show no preference for similar magnitude, natural and artificial D.C. electric
fields [Kimber et al., 2011]. Whereas hair cells in the vestibular, lateral line and auditory
systems all receive feedback from the brain, electroreceptors lack any sign of such efferents
[Bodznick, 1989]. Given the lack of efferents, measurements from sense organs are not
contaminated by existing brain states, or prior beliefs in a Bayesian framework. This
simplifies models of how brain states may be updated by measurements.

To a Bayesian, making an inference about the state of the world (here, prey dipole
parameters) requires a likelihood function of how measurements are generated. In elec-
troreception, a sensory spike train is a sample form a stochastic point process parametrised
by prey state variables, which include its dipole strength, location, orientation relative to
the predator. The posterior density summarizes everything we know about the relevant
state variables after the measurement is taken into account. This is computed by contin-
uously modifying a prior distribution, as the predator approaches the prey and new mea-
surements become available [Dall et al., 2005; McNamara & Houston, 1980]. Accurate,
realistic generative models of electrosensory afferent firing patterns a key pre-requisite
for discovering if an how elasmobranchs’ brains compute Bayesian posterior probability
distributions from electrosensory neuron data. The aim of chapter 4 is to develop such
models.

4.2 Methods

4.2.1 Animals and electrophysiological recordings

Spike train recordings were obtained from Professor David Bodznick, Wesleyan University.
He has provided the following brief description of the experimental protocol used.

Adult little skates, L. erinacea, are captured by otter trawl in Vineyard Sound, held
in chilled seawater (ca. 12 ◦C) and maintained on a diet of squid and fish until used in
experiments.

For electrophysiological studies, an animal is anesthetized by immersion in Benzocaine
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(Ethyl-p-aminobenzoate, 0.05% in seawater) and then placed on ice during surgery to
open the cranial roof exposing the anterior lateral line nerve near its entry into the
medulla. While still anesthetized the skate is decerebrated by transecting the caudal
forebrain, injected with a muscle relaxant (Pancuronium bromide, ca. 0.5 mg kg−1, IV),
and positioned in an experimental aquarium of fresh, aerated seawater at 12 ◦C. The
fish’s head is held with the cranial opening just above the water surface using a Plexiglas
head holder fitted with mouth tubes which supply a steady flow of cold, aerated seawater
across the skate’s gills. The decerebrate but unanesthetized skates remain healthy and
responsive to sensory stimuli for several days under these conditions. All procedures for
the care and use of the skates were approved by the Animal Care and Use Committees
of both the Marine Biological Laboratory, Woods Hole and Wesleyan University.

Extracellular recordings of spontaneous activity from primary electrosensory afferents
in the anterior lateral line nerve are made with sharp glass microelectrodes (20 to 30 MΩ;
4 mol NaCl), conventional electronics, and Cambridge Electronic Design computer in-
terface and Spike2 software. Spike train data, with a 0.2 ms sampling resolution, was
exported to MATLAB for analysis.

4.2.2 Analysis of spike trains

Motivated by the automatic spike train analysis described in Pouzat & Chaffiol [2009a],
we created MATLAB code to perform basic data analysis and fitting of probability dis-
tributions to the spontaneous recordings and output a brief summary using MATLAB’s
publish function. We briefly discuss the individual components below before examining
the fitted ISI distributions in more detail.

4.2.3 Tests of stationarity

A spike train is considered non-stationarity if the rate of discharge increases or decreases
within a recording. Most quantitative analyses assume stationary neuronal discharges.
However, nonstationarities can introduce themselves particularly when working with
anaesthetised animals [Spanne et al., 2014]. We first visually inspect the data both as
a raster plot and as the cumulative number of spikes as a function of occurrence time.
Two statistical tests were also applied to the data. Firstly, regression analysis of the ISIs
against their serial number, with a non-zero slope suggesting a trend in the data. Sec-
ondly, we performed a Wald-Wolfowitz test based on the number of runs, of consecutive
values, above or below the median value (MATLAB function: runstest). Trends in activ-
ity are indicated by significantly large negative values of the test statistic [Duchamp-Viret
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et al., 2005]. The spike train was considered nonstationary if either of the statistical tests
were significant at the 0.05 level.

If the spike train failed the tests for stationarity we attempted to prune the record
to a segment where spontaneous activity could be considered stationary. We performed
regression of cumulative sum of ISIs as a function of their order in the sequence. Prun-
ing began by discarding the ISIs from the first to that at which the cumulative function
first intersected the straight-line fit. Stationarity tests were then repeated. If necessary,
pruning continued but this time discarding ISIs from the last to that at which the cumu-
lative function last intersected the straight-line fit. This process was repeated iteratively,
alternating between discarding segments from the start and end until the period passed
stationarity tests or the number of ISI in the sequence was less than 100 (in which case
the recording was excluded from analysis due to insufficient samples for accurate fitting,
see section 4.2.10).

4.2.4 Periodicity

To discover possible periodicities in the spike trains we again employed both visual inspec-
tion and statistical tests. The power spectra was calculated as the magnitude-squared of
the Fourier transform via the MATLAB code provided in [Storey et al., 2015] and plotted.
We expect large peaks corresponding to the mean firing rate and its harmonics, while
other peaks illustrate rhythmic components of neuron discharge. The Wald-Wolfowitz
test, used for testing the stationarity, also indicates the presence of periodicities. In this
case it is significantly large positive values of the test statistic that suggest periodicity in
ISIs [Duchamp-Viret et al., 2005].

4.2.5 Tests of independence between successive intervals

Serial independence is an important criterion for characterising the activity of a neuron
as a renewal process. However, many neurons exhibit "memory" in their spiking activity,
where the length of the current ISI is influenced by past spiking activity. This memory
is commonly quantified in terms of serial correlation (MATLAB function: autocorr).
Coefficients measure the dependence of pairs of ISIs separated by a number of intervals
(lags). Positive coefficients indicate that long ISI tend to be followed by long ones and
short followed by short. Negative coefficients indicate that long ISI will tend to be followed
by short ones and vice versa.

We also construct the graphical test suggested in Pouzat & Chaffiol [2009a]. ISI
are sorted in increasing order. Oj is the "rank" of interval ISIj, which describes the
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arrangement of elements of the original unsorted sequence into the new sorted one. When
order (Oj+k) is plotted at different lags (k), if the ISI are independent points on the
scatter diagram will be uniformly distributed, whereas dependencies will result in an
above average number of points localized in some areas. We test this by subdividing the
surface of the plots into cells, with subdivisions chosen such that the expected number
of points per cell is at least 25. Plots were generated for Ok vs Ok+1 and Ok vs Ok+2.
Additionally χ2 tests were performed on the number of points in each cell with respect
to the expected number of points for lags up to lag = 10 log10 (length(ISI)).

4.2.6 Central tendency and regularity of stationarity activity

The central tendency and regularity of stationary activity was characterised by the fol-
lowing measures: mean (x̄), standard deviation (SD), the coefficient of variation (SD/x̄),
skewness (g1; an indicator of distribution symmetry) and kurtosis (g2; an indicator of peak
shape). Additionally, the following non-parametric equivalents were calculated: median
(xM), interquartile range (IQR) and CVM (IQR/xM).

The mean and standard deviation above are related to the first and second order mo-
ments of the ISI distribution and are easily estimated from experimental data. Skewness
and kurtosis represent the third and fourth moments. These higher order moments al-
though less frequently used, help quantify some features which are evident in histograms
of ISI distributions. Alternatively if certain assumptions are met, ISI probability density
functions (PDF) provide complete information about the statistical structure of the spike
train, but require more difficult quantitative methods [Kostal et al., 2011].

4.2.7 Point processes

Motivated by the observation "data of interest are not precise voltage measurements,
but rather precise measurements of times of occurrence of events", Perkel et al. [1967]
introduced a framework where statistical techniques applied to spike train data should be
related to the underlying theory of stochastic point processes. A point process describes a
series of events in time, separated by random intervals, with outcomes evolving according
to a stochastic process. For spike train data the process may be specified in terms of spike
times, ISI, or spike counts [Kass et al., 2014]. The simplest point process is the Poisson
process.

100



4. SIMULATING THE VARIABILITY OF REAL NEURONS

4.2.7.1 Homogeneous Poisson processes

A homogeneous Poisson process can be described as a stochastic process which is fully
characterised by a single constant parameter, τ . This model results in the ISI being
independent and identically distributed according to the exponential distribution:

f(x|τ) = 1
τ

exp
(−x
τ

)
(4.1)

Both the mean and standard deviation of the distribution are equal to τ resulting in
CV = 1.

While the Poisson process is simple and has appealing distributional properties, real
neurons often demonstrate non-Poissonian behaviour. In particular, neurons exhibit a
refractory period where the probability of spiking depends on the time since the last
spike. Whereas the homogeneous Poisson process assumes the point process is both
stationary and independent of past event history, a homogeneous renewal process loosens
this assumption so that the probability of an event depends only on the immediately
preceding event.

4.2.7.2 Renewal processes

A renewal process specifies the distribution of inter-event waiting times (in this case ISI).
The waiting times are mutually independent and in the homogeneous case all come from
the same distribution [Kass et al., 2014]. The Poisson process is itself a renewal process,
but we can now modify it by adding a "offset" or "dead time" parameter to incorporate
refractoriness (see Equation (4.2)).

Theoretically a renewal process can be defined using any PDF that takes on positive
values. A number of distributions have been repeatedly used, either due to a direct
connection with the physiology of neurons, or because their distributional properties
allow a simple, flexible, model of the shape of ISI distributions [Kass et al., 2014]. We fit
the empirical ISI distribution with the 6 common two-parameter duration distributions
described in Pouzat & Chaffiol [2009a], along with the Normal and Birnbaum Saunders
distributions. Their probability density functions are:

• Refractory Exponential:

f(x|τ, d) =

0 x < d

1
τ

exp
(
−(x−d)

τ

)
x ≥ d

(4.2)
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• Normal:

f(x|µ, σ) = 1
σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(4.3)

• Lognormal:

f(x|µ, σ) = 1
xσ
√

2π
exp

(
− (ln x− µ)2

2σ2

)
(4.4)

• Loglogistic:

f(x|µ, σ) = 1
σ

1
x

exp ((log (x)− µ) /σ)
(1 + exp ((log (x)− µ) /σ))2 (4.5)

• Weibull:

f(x|a, b) = b

a

(
x

a

)b−1
exp

(
−
(
x

a

)b)
(4.6)

• Inverse Gaussian (also known as Wald):

f(x|µ, λ) =
√

λ

2πx3 exp
(
−λ

2µ2x
(x− µ)2

)
(4.7)

The Inverse Gaussian describes the distribution of the time a Brownian Motion, with
positive drift, takes to reach a fixed positive level. This is distributed according to
f
(
x|µ = a

m
, λ = a2

σ2

)

• Gamma (Erlang if restricted to integer k):

f(x|k, µ) = 1
Γ (k)µkx

k−1 exp
(
−x
µ

)
(4.8)
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where Γ (·) is the Gamma function. This distribution can arise through various
mechanisms e.g. Gamma ISIs could result from a Poisson process of rate 1/µ where
only every kth event triggers firing.

• Birnbaum Saunders:

f(x|β, γ) = 1√
2π

exp

−
(√

x/β −
√
β/x

)2

2γ2



(√

x/β −
√
β/x

)
2γx

 (4.9)

Additionally, we fit several three-parameter distributions. These have the form of
"shifted"/"offset" distributions, with a parameter-dependent lower bound (x in the above
pdfs has been replaced with (x− d)):

• offset Wald

• offset Lognormal

• offset Loglogistic

• offset Weibull

• offset Erlang

• offset Birnbaum Saunders

or censored Poisson processes (obtained from the convolution of an exponential random
variable with another distribution):

• ex-Gaussian [Palmer et al., 2011]:

f(x|µ, σ, τ) = 1
τ

exp
(
µ

τ
+ σ2

2τ 2 −
x

τ

)
φ

(
x− µ− σ2/τ

σ

)
(4.10)

where φ (·) is the cumulative density of the standard Gaussian distribution

• ex-Wald [Heathcote, 2004]:

f(x|m, a, τ) =


1
τ

exp
(
−
(
x
τ
− a (m− k)

))
FW (x|k, a) m2 ≥ 2/τ

1
τ

exp
(
−(a−m)2

2x

)
Re

[
w
(
k′
√

x
2 + ia√

2x

)]
m2 < 2/τ

(4.11)
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where k =
√
m2 − 2

τ
, k′ =

√
2
τ
−m2 and w(z) = exp (−z2) [1− erf (−iz)]. See

Heathcote [2004] for further detail. We reparametrize the ex-Wald in terms of µ
the mean, and λ the shape parameters of the Inverse Gaussian

(
m =

√
λ
µ
, a =

√
λ
)
.

• ex-Erlang:

f(x|µ, k, τ) =
exp

(
−x
τ

)
xk (x− (µx) /τ)−k (Γ (k)− Γ (k, x (1/µ− 1/τ)))

τΓ (k) (4.12)

The ex-Lognormal, ex-Loglogistic, ex-Weibull and ex-Birnbaum Saunders were also
fitted, however these had no closed form analytical solutions (that we know of) so these
distributions were calculated numerically by convolving the two distributions.

4.2.8 Information theoretic measures

In information theory, entropy is often employed to measure the deviation of a spike train
from the Poisson process. Of all the possible PDF describing a renewal process with fixed
mean, the exponential distribution has the maximum entropy. Entropy was introduced
by Shannon [1948] as a measure of uncertainty of a probability distribution. For a discrete
random variable X, the entropy is defined as:

H(X) = −
∑
x

fX (x) log fX (x) (4.13)

In information theory the base of the logarithm is usually taken to be 2, thus relating
it to "bits" of information. Elsewhere a natural logarithm is sometimes used for ease of
calculation, we use log2. In the continuous case, the sum is replaced by an integral:

H(X) = −
∫ ∞

0
f (x) log f (x) dx (4.14)

Although the two equations for entropy are analogous, Equation (4.14) cannot be directly
used to measure uncertainty as it may negative and is not scale invariant [Kapur &
Kesavan, 1992].

An alternative measure which overcomes these difficulties is the Kullback-Leibler di-
vergence (KLD) [Kostal & Lansky, 2005], also known as the relative entropy. KLD
provides a measure of the distance or divergence between two probability distributions.
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The discrete version is expressed as:

DKL(f, g) =
∑
x

fX (x) log fX (x)
gX (x) (4.15)

and analogous continuous version:

DKL(f, g) =
∫ ∞

0
f (x) log f (x)

g (x)dx (4.16)

The KLD is a nonsymmetric measure (DKL (f, g) 6= DKL(g, f)).
We use KLD to measure how far away the specified model PDF is from the empirical

ISI distribution. We compute the discrete KLD for quantized (finite sample interval) spike
data. The KLD is evaluated by computing model probabilities in histogram bins using
numerical (rectangle) integration. Bins were equal to the sample period and aligned
to ensure that each bin contains exactly one sample point. Compared with maximum
likelihood fitting, the KLD approach gave better performances for the model probability
distributions and data considered here.

4.2.9 Fitting probability density functions

We perform an iterative search process using the interior-point approach to constrained
minimization (MATLAB function: fmincon) to minimize the KLD for each model PDF.
We constrained any parameters influencing the location of the probability distribution
to be greater than zero. These constraints ensured all distributions satisfied the renewal
process criteria of taking on only positive values. Additionally, positive values of pa-
rameters are more plausible for capturing something biologically relevant about neuronal
stochastic processes. Where possible initial parameter guesses were obtained by method
of moments. However, in some cases these expressions were not available and parame-
ters were estimated heuristically. The parameter values of the PDF are adjusted until
maximum fit to the observed data is achieved to within a given tolerance.

Although the interior-point algorithm has many good characteristics, such as low
memory usage, the ability to solve large problems quickly and recovery from NaN or
Inf results, the parameter search may fail to converge. This occurs if the solver reaches
its limit on the number of iterations, or function evaluations, before the change in the
objective function becomes smaller than the termination tolerance or the change in pa-
rameter values becomes smaller than the function tolerance. Additionally, even if the
solver converges it may be to a local rather than global optimum. To minimize the risk of
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this when feasible we use the MATLAB MultiStart function, which generates a number
of starting points (we choose 100) for the constrained minimisation problem. It then
uses a local solver to find the optima in the basins of attraction of the starting points
and we take the best local solution to estimate the global optimum. The ex-Birnbaum
Saunders, ex-Weibull, ex-LogNormal and ex-LogLogistic required the PDFs be calculated
by numerical quadrature which was prohibitively slow for multiple runs.

4.2.10 Monte Carlo evaluation

A Monte Carlo study was performed to evaluate potential biases associated with the
parameter estimates when using the present implementation of the fitting process. In
particular, we were interested in the minimum number of samples required for convergence
of pdf fits. Previous analysis of offset Wald and ex-Wald distributions suggested that for
the parameter space involved in response time data, a minimum sample size of at least
100 for the offset Wald and 400 for the ex-Wald should be used [Heathcote, 2004]. We
took the parameters of the best fitting Wald, offset Wald, ex-Wald, Erlang, offset Erlang
and ex-Erlang for three ISI distributions: one with low CV (x̄ = 0.0555, CV = 0.1041),
one with intermediate CV (x̄ = 0.0522, CV = 0.2395) and one with high CV (x̄ = 0.0485,
CV = 0.3108) and used these to characterise the "true" parameters (Figure 4.1). For each
of the theoretical distributions, the Monte Carlo study was performed for sample sizes N
= 100, 200, 400, 800, and 1600. A Monte Carlo estimation of the sampling distribution
was obtained for each sample size by sampling the theoretical distribution 500 times and
performing the pdf fitting described above for each sample.

4.2.11 Assessing goodness of fit

The KLD is useful in selecting the best model among a set of candidate models but fails
to assess how well the best model fits the data. In order to examine this we plot the
empirical quantiles versus the model derived quantiles, commonly known as a Q-Q plot.
A perfect fit would result in a straight line fit with intercept = 0 and slope = 1. Deviations
from this diagonal line show where the model fails to agree with the data.

The Q-Q plot can never prove or disprove the independently distributed assumption
behind modelling the spike train as a realisation of a renewal process [Pouzat & Chaffiol,
2009a]. Therefore, in addition to the tests we conducted prior to fitting, we also examine
the best candidate model using Ogata’s tests. Ogata’s goodness of fit tests transform the
renewal process onto a homogeneous Poisson process with rate 1 [Ogata, 1988]. For a
detailed description of how to apply the battery of tests to spike train data see Pouzat
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& Chaffiol [2009b]. Briefly, Ogata’s first test or the "uniform test" tests the uniformity of
transformed event times given the number of events using a Kolmogorov-Smirnov (KS)
test. Ogata’s second test or "Berman’s test" checks the uniformity of transformed inter
event intervals, again using a KS test. Ogata’s third test examines dependency by plotting
the lag 1 transformed intervals. The final "variance vs. mean test" splits the transformed
time axis into non-overlapping windows of increasing length and a graph of the variance
as a function of the mean event count is produced. The result should be a straight line fit
with intercept = 0 and slope = 1. These goodness of fit tests can be also used for counting
processes involving history dependencies, or time varying rates, but this is beyond the
scope of this chapter.

4.2.12 Interactions between parameters

Linear models (MATLAB function: fitlm) were used to analyse patterns between ex-Wald
model parameters and ISI sample statistics across the population. Some relationships
were linear, while others appear linear on log-log axes, indicating power-law relationships
in untransformed data. No natural distinction exists between predictor and response
variables when investigating interactions between ex-Wald parameters, therefore we used
Principal Component Analysis (PCA) to fit an orthogonal regression (MATLAB function:
pca). The statistical significance of interactions is examined using both frequentest and
Bayesian measures.

4.3 Results

Spontaneous activity was recorded from a total of 40 primary afferent electrosensory
neurons in adult skates, the automatically generated reports are included in the electronic
supplementary information (see Appendix A). The mean firing rates ranged from 12.7 to
26.1 spikes s−1 (21.3 ± 3.1; x̄ ± SD). Primary afferent electrosensory neurons in healthy
fish typically exhibit a reasonably regular discharge. However, interspike interval duration
was not distributed randomly about the mean.

4.3.1 Trend, periodicity, and serial dependency

The nonsignificant results of both applied tests stationarity were considered as a confir-
mation that the data are meeting the condition of weak stationarity. The presence of
trend was indicated in 37 units, i.e. only 3 units (7.5%) demonstrated no trend over the
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entire recording. When the samples with trend were pruned using the procedure described
in Section 4.2.3, we were able to obtain a segment in which no trend was observed for a
period of at least 100 spikes most recordings (37 units, 92.5 %). The 3 units containing no
stationary segments were found to exhibit periodicity, indicated by large positive values of
the Wald-Wolfowitz test statistic used for testing stationarity. Finally, serial correlation
was found in 7 units (17.5 %) via visual examination of autocorrelation and χ2 plots.

Table 4.1: Basic statistics for raw and pruned spike train recordings

Raw Pruned
Number of neurons 40 30
Number of ISIs 3332 (1519− 7787) 1078 (118− 2553)
Central values

x̄ 0.048 (0.038− 0.079) 0.049 (0.037− 0.079)
xM 0.047 (0.038− 0.078) 0.048 (0.036− 0.078)

Variabilities
SD 0.010 (0.005− 0.021) 0.010 (0.005− 0.016)
IQR 0.014 (0.006− 0.024) 0.014 (0.006− 0.021)
CV 0.215 (0.104− 0.464) 0.205 (0.100− 0.311)
CVM 0.291 (0.135− 0.508) 0.285 (0.136− 0.463)

Higher order moments
g1 0.681 (−0.302− 2.838) 0.522 (0.091− 1.589)
g2 2.797 (−0.398− 34.329) 0.716 (−0.608− 7.668)

Thus 30 units (75.0 %) were retained for further statistical evaluation. This result
demonstrates that long-term trends are a common feature of afferent spontaneous activity.
On the other hand quasi-stationary segments of activity can be found in the majority
of recordings. However, the most common violation of renewal assumptions was non-
independence.

4.3.2 Central value and variability of ISIs

Henceforth neurons (or segments of neuronal activity) displaying trend, periodicity or se-
rial dependency are excluded from analysis, as they violate the assumptions of a renewal
process. However, their exclusion made little difference to the minimum, maximum and
mean values for parametric and non-parametric measures of the central value and vari-
ability of ISIs (Table 4.1).

Figure 4.1 shows the recorded interspike interval histograms and spike train plots
for three representative afferents, with resting discharge rates near the population mean.
There was a positive linear relationship between mean ISI and SD (SD = 0.185x̄+ 0.001,
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(a) Low
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(b) Intermediate
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(c) High

Figure 4.1: Regularity of spontaneous activity from electrosensory afferents in the little skate, Leucoraja
erinacea. Units of varying CV were selected with mean ISI near the population mean (x̄ = 0.049). Upper
plots show interspike interval (ISI) histograms binned at 1 ms resolution. Lower plots show the cumulative
number of spikes as a function of their occurrence time and a traditional spike raster for the first 5 s of
recording.

r2 = 0.189, p = 0.016; Figure 4.2a). The variability of neuronal discharge was further
examined via the CV, values ranged from 0.100 to 0.311 (0.205 ± 0.069). There was
no association between mean ISI and CV (Figure 4.2b). All distributions were skewed
to the right, ranging from near normal to near exponential (Figure 4.1). While there
was no association between mean ISI and either skewness or excess kurtosis, there was a
positive linear relationship between CV and skewness (g1 = 2.777CV −0.047, r2 = 0.372,
p = 0.0003; Figure 4.3a). The lack of relationship between mean ISI and CV, skewness
and kurtosis suggests that the shape of the ISI distribution is largely independent from
the mean interval. The majority of ISI distributions were leptokurtotic (positive excess
kurtosis) indicating more ISI concentrated near the mean and tails and fewer ISI in the
intermediate regions relative to the normal distribution, however platykurtotic distribu-
tions were also found (negative excess kurtosis; Figure 4.3b). The apparent positive trend
between CV and excess kurtosis was not statistically significant.
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Figure 4.2: Relationship between mean and variability of ISI for electrosensory primary afferent spon-
taneous activity in the little skate, Leucoraja erinacea. Figure 4.2a shows positive linear relationship
between mean ISI and SD (SD = 0.185x̄ + 0.001, r2 = 0.189, p = 0.016). There was no association
between mean ISI and CV (Figure 4.2b).
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Figure 4.3: Relationship between regularity (CV) and higher order moments for electrosensory primary
afferent spontaneous activity in the little skate, Leucoraja erinacea. Figure 4.3a shows a positive linear
relationship between CV and skewness (solid line; g1 = 2.777CV − 0.047, r2 = 0.372, p = 0.0003). There
was no significant association between CV and excess skewness (Figure 4.3b).
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4.3.3 Stochastic processes describing spontaneous activity

Until now we have focussed on single parameter estimates (and their interactions) describ-
ing the central tendency and variability of afferent ISI. We now attempt to characterise
spontaneous activity as a stochastic process with the hope of providing some insight at
the neuronal mechanisms responsible for generating spikes.

4.3.3.1 Monte Carlo sampling

Estimation failures. Of the 45,000 fits performed all produced parameter estimates,
indicating that the starting point heuristics and fitting procedure are reasonably robust.
There were however instances where the estimates were orders of magnitude different
from the true parameters (in particular the shape parameters λ and k), we will examine
these further below.

Bias, efficiency and consistency. Bias was estimated as the difference between
mean of the Monte Carlo parameter estimates and the true value, with positive values
indicating overestimation and negative underestimation. Efficiency was estimated by the
standard deviation of the parameter estimates. Consistency refers to estimates approach-
ing the true value as the sample size increases. We are mainly interested in the minimum
number of spikes required for fitting to generate consistent estimates within the expected
parameter range of afferent spike trains.

Tables 4.2 to 4.7 contain the bias and efficiency estimates for the two parameter
Gamma and Wald distributions and their respective three parameter offset and exponen-
tial convolutions. To compare estimation performance across distributions, it is useful to
recognize that the offset parameters (d), the exponential parameters (τ) and the Erlang
and Wald parameters (µ) have the same units as the data. Estimation performance can
also be judged for all parameters as a proportion of their true values, which are listed in
the table captions.
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Table 4.2: Absolute bias (Monte Carlo mean - true value) and efficiency (SD) for Erlang parameter
estimates. Results are reported for each parameter according to sample size for 3 different distributions
(k1 = 11, µ1 = 4.405e-03; k2 = 17, µ2 = 3.070e-03; k3 = 92, µ3 = 6.033e-04) and are based on 500
estimations.

100 200 400 800 1600
kBias 0.420 0.142 0.104 -0.010 0.030

0.546 0.292 0.086 0.098 0.046
3.234 1.420 1.030 0.258 0.224

kSD 1.700 1.189 0.852 0.571 0.449
2.532 1.779 1.243 0.889 0.655
13.465 9.238 6.472 4.591 3.442

µBias -7.631e-05 -6.061e-06 -1.287e-05 1.637e-05 -5.119e-06
-3.290e-05 -2.059e-05 -7.618e-07 -1.125e-05 -4.084e-06
-8.566e-06 -3.708e-06 -3.528e-06 -2.104e-07 -6.991e-07

µSD 6.624e-04 4.739e-04 3.464e-04 2.387e-04 1.807e-04
4.352e-04 3.142e-04 2.251e-04 1.607e-04 1.216e-04
8.461e-05 5.855e-05 4.200e-05 2.966e-05 2.251e-05

Table 4.3: Absolute bias (Monte Carlo mean - true value) and efficiency (SD) for Wald parameter
estimates. Results are reported for each parameter according to sample size for 3 different distributions
(λ1 = 0.482, µ1 = 4.846e-02; λ2 = 0.850, µ2 = 5.218e-02; λ3 = 5.055, µ3 = 5.550e-02) and are based on
500 estimations.

100 200 400 800 1600
λBias 0.014 0.008 0.005 0.002 0.002

0.033 0.010 0.008 0.003 0.002
0.160 0.091 0.040 -0.004 0.010

λSD 0.072 0.052 0.036 0.025 0.018
0.128 0.094 0.063 0.042 0.029
0.748 0.514 0.362 0.261 0.172

µBias -9.069e-05 -2.194e-05 -2.434e-05 5.815e-05 7.180e-06
-2.138e-05 -8.166e-05 -5.034e-06 -1.729e-05 1.190e-06
3.342e-05 -1.395e-05 -9.924e-06 -1.079e-05 2.421e-07

µSD 1.467e-03 1.137e-03 7.554e-04 5.404e-04 3.709e-04
1.220e-03 8.771e-04 6.408e-04 4.797e-04 2.979e-04
5.884e-04 4.267e-04 2.915e-04 2.070e-04 1.417e-04
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Table 4.4: Absolute bias (Monte Carlo mean - true value) and efficiency (SD) for offset Erlang parameter
estimates. Results are reported for each parameter according to sample size for 3 different distributions
(k1 = 5, µ1 = 6.820e-03, d1 = 1.436e-02; k2 = 17, µ2 = 3.045e-03, d2 = 4.121e-04; k3 = 92, µ3 =
6.029e-04, d3 = 3.867e-05) and are based on 500 estimations.

100 200 400 800 1600
kBias 0.510 0.192 0.030 0.078 0.050

-3.714 -3.070 -2.506 -1.654 -1.182
-21.320 -18.694 -17.536 -16.554 -13.976

kSD 2.683 1.922 1.137 0.803 0.566
5.139 4.510 3.303 2.513 1.884
33.842 28.541 25.596 21.843 18.648

µBias 3.012e-04 1.685e-04 1.362e-04 4.360e-06 8.184e-06
7.434e-04 5.162e-04 3.494e-04 2.102e-04 1.345e-04
2.411e-04 1.594e-04 1.212e-04 9.545e-05 7.146e-05

µSD 2.073e-03 1.421e-03 9.645e-04 6.952e-04 5.097e-04
1.210e-03 8.483e-04 5.300e-04 3.583e-04 2.422e-04
4.652e-04 3.022e-04 2.194e-04 1.494e-04 1.086e-04

dBias -2.418e-04 1.703e-04 1.675e-04 -5.446e-05 -8.334e-05
7.030e-03 5.710e-03 4.252e-03 2.684e-03 1.903e-03
9.741e-03 7.538e-03 6.762e-03 5.897e-03 4.815e-03

dSD 6.466e-03 4.703e-03 2.899e-03 2.174e-03 1.486e-03
8.640e-03 7.084e-03 5.245e-03 3.815e-03 2.788e-03
1.274e-02 1.056e-02 9.310e-03 7.637e-03 6.493e-03
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Table 4.5: Absolute bias (Monte Carlo mean - true value) and efficiency (SD) for offset Wald parameter
estimates. Results are reported for each parameter according to sample size for 3 different distributions
(λ1 = 0.482, µ1 = 4.845e-02, d1 = 9.574e-06; λ2 = 0.850, µ2 = 5.218e-02, d2 = 4.235e-22; λ3 = 5.055,
µ3 = 5.550e-02, d3 = 2.142e-20) and are based on 500 estimations.

100 200 400 800 1600
λBias -0.061 -0.037 -0.017 -0.007 -0.004

-0.089 -0.064 -0.043 -0.022 -0.013
-1.526 -1.371 -1.138 -0.963 -0.707

λSD 0.139 0.108 0.076 0.051 0.030
0.268 0.208 0.151 0.096 0.065
2.069 1.828 1.537 1.273 1.071

µBias -0.003 -0.002 -0.001 -0.000 -0.000
-0.003 -0.002 -0.001 -0.001 -0.000
-0.010 -0.008 -0.006 -0.005 -0.003

µSD 0.005 0.004 0.002 0.002 0.001
0.006 0.005 0.003 0.002 0.001
0.012 0.010 0.008 0.006 0.005

dBias 0.003 0.002 0.001 0.000 0.000
0.003 0.002 0.001 0.001 0.000
0.010 0.008 0.006 0.005 0.003

dSD 0.005 0.004 0.002 0.001 0.001
0.006 0.005 0.003 0.002 0.001
0.012 0.010 0.008 0.006 0.005
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Table 4.6: Absolute bias (Monte Carlo mean - true value) and efficiency (SD) for ex-Erlang parameter
estimates. Results are reported for each parameter according to sample size for 3 different distributions
(k1 = 11, µ1 = 3.557e-03, τ1 = 9.325e-03; k2 = 17, µ2 = 2.973e-03, τ2 = 1.647e-03; k3 = 92, µ3 =
5.993e-04, τ3 = 3.671e-04) and are based on 500 estimations.

100 200 400 800 1600
kBias 9.040 3.724 1.892 0.804 0.324

9.410 5.966 2.424 1.502 0.922
-6.038 -3.160 -0.694 -1.114 -0.676

kSD 18.043 9.324 3.928 2.359 1.630
16.756 11.794 4.246 2.820 1.690
12.686 10.171 8.249 7.202 5.517

µBias -4.854e-04 -1.642e-04 -9.065e-05 7.469e-05 1.471e-04
-6.546e-04 -5.514e-04 -3.773e-04 -2.905e-04 -2.353e-04
4.203e-05 1.737e-05 -1.861e-06 3.309e-06 2.294e-06

µSD 1.594e-03 1.308e-03 1.056e-03 8.407e-04 6.991e-04
9.952e-04 8.349e-04 5.797e-04 4.661e-04 3.250e-04
1.149e-04 8.794e-05 6.312e-05 5.296e-05 3.753e-05

τBias -2.769e-03 -2.238e-03 -1.917e-03 -2.002e-03 -1.794e-03
2.605e-03 2.926e-03 2.349e-03 2.134e-03 2.015e-03
1.476e-03 1.235e-03 1.069e-03 7.352e-04 3.863e-04

τSD 5.410e-03 5.152e-03 4.552e-03 4.105e-03 3.665e-03
4.294e-03 4.031e-03 3.432e-03 3.028e-03 2.706e-03
1.092e-03 1.117e-03 1.081e-03 8.940e-04 5.744e-04
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Table 4.7: Absolute bias (Monte Carlo mean - true value) and efficiency (SD) for ex-Wald parameter
estimates. Results are reported for each parameter according to sample size for 3 different distributions
(λ1 = 0.400, µ1 = 3.985e-02, τ1 = 8.603e-03; λ2 = 0.761, µ2 = 4.610e-02, τ2 = 6.089e-03; λ3 = 4.934, µ3
= 5.450e-02, τ3 = 1.006e-03) and are based on 500 estimations.

100 200 400 800 1600
λBias 1150091.291 63001.352 0.092 0.055 0.032

314817.146 2138.751 0.169 0.092 0.072
28834.181 1.353 0.735 0.493 0.365

λSD 11532323.990 482247.622 0.187 0.094 0.057
2238566.958 47815.411 0.271 0.137 0.101
345884.086 2.014 1.180 0.774 0.505

µBias -2.143e-03 -1.894e-03 -9.837e-04 -8.539e-04 -8.739e-04
-2.324e-03 -1.698e-03 -1.703e-03 -1.370e-03 -1.385e-03
-1.521e-03 -1.435e-03 -1.465e-03 -1.449e-03 -1.341e-03

µSD 5.794e-03 4.473e-03 3.058e-03 2.440e-03 2.078e-03
4.604e-03 3.145e-03 2.357e-03 1.652e-03 1.292e-03
1.999e-03 1.592e-03 1.268e-03 1.095e-03 1.106e-03

τBias 2.097e-03 1.869e-03 9.841e-04 8.208e-04 9.336e-04
2.337e-03 1.731e-03 1.701e-03 1.372e-03 1.333e-03
1.548e-03 1.418e-03 1.475e-03 1.471e-03 1.365e-03

τSD 5.495e-03 4.386e-03 2.847e-03 2.407e-03 2.058e-03
4.267e-03 2.934e-03 2.293e-03 1.504e-03 1.247e-03
1.678e-03 1.404e-03 1.185e-03 1.073e-03 1.114e-03
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As mentioned previously the parameter fits show some biases particularly for smaller
sample sizes. We examine these further by plotting the 2.5th, 50th (median), and 97.5th
percentiles of the Monte Carlo parameter estimates. In the case of the two parameter
distributions, for the specific parameter values used in this Monte Carlo study, the pa-
rameter fits to the sampling distributions do not appear strongly biased for sample sizes
of 100 or more (Figures 4.4 and 4.5). The median values quickly converge to near the
true parameters and the inter-percentile range is relatively symmetric decreasing with
increasing sample size.

With the exception of the most skewed offset gamma distribution (which also had the
largest d parameter), the offset d for both Erlang and Wald distributions was generally
over estimated probably due to true d values being very small and fits constrained to
d > 0 (Figures 4.6 and 4.7).

The shape parameters k and λ were generally underestimated. The scale parameter
µ showed bias in opposite directions for the two distributions, for the offset Erlang µ

was overestimated whereas the offset Wald µ was underestimated. The magnitude of
these biases was relatively small and the efficiency of estimates increased with sample
size (Tables 4.4 and 4.5).

The most noticeable feature of the Monte Carlo simulations was the exponentially
convolved distributions sometimes exhibited spuriously large values for the shape param-
eters k and λ (Figures 4.8 and 4.9; This was so extreme for λ with the smaller sample
sizes that we chose not to show the entire 97.5th percentile bar so that we could visualise
the trends for larger sample sizes). However, even when the shape parameter estimates
were orders of magnitude too large, this did not seem to significantly bias the estimation
of the other two parameters (Tables 4.6 and 4.7). Samples of 400 or more ISI did not
exhibit these extreme values.

The Monte Carlo study suggests that our fitting algorithm may generate large shape
parameters if fits are based on a small number of ISI, but generally provides good param-
eter estimations for the ISI distributions, at least for the test values that were used.
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Figure 4.4: Sample size versus Erlang parameter estimates. Median (circle) along with the 2.5th and
97.5th percentiles (error bars) of parameter estimates from Monte Carlo samples. Results are reported
for each parameter according to sample size for 3 different distributions (k1 = 11, µ1 = 4.405e-03; k2 =
17, µ2 = 3.070e-03; k3 = 92, µ3 = 6.033e-04) and are based on 500 estimations. The dashed line is the
true parameter value.
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Figure 4.5: Sample size versus Wald parameter estimates. Median (circle) along with the 2.5th and
97.5th percentiles (error bars) of parameter estimates from Monte Carlo samples. Results are reported
for each parameter according to sample size for 3 different distributions (λ1 = 0.482, µ1 = 4.846e-02; λ2
= 0.850, µ2 = 5.218e-02; λ3 = 5.055, µ3 = 5.550e-02) and are based on 500 estimations. The dashed line
is the true parameter value.
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Figure 4.6: Sample size versus offset Erlang parameter estimates. Median (circle) along with the
2.5th and 97.5th percentiles (error bars) of parameter estimates from Monte Carlo samples. Results are
reported for each parameter according to sample size for 3 different distributions (k1 = 5, µ1 = 6.820e-03,
d1 = 1.436e-02; k2 = 17, µ2 = 3.045e-03, d2 = 4.121e-04; k3 = 92, µ3 = 6.029e-04, d3 = 3.867e-05) and
are based on 500 estimations. The dashed line is the true parameter value.

119



4. SIMULATING THE VARIABILITY OF REAL NEURONS

500 1000 1500

0.2

0.3

0.4

0.5

0.6

λ

500 1000 1500

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500

2

4

6

500 1000 1500

0.035

0.04

0.045

0.05

µ

500 1000 1500

0.035

0.04

0.045

0.05

0.055

500 1000 1500
0.02

0.03

0.04

0.05

500 1000 1500
0

5

10

15

x 10
−3

d

500 1000 1500
0

0.005

0.01

0.015

0.02

offset Wald parameters

500 1000 1500
0

0.01

0.02

0.03

Figure 4.7: Sample size versus offset Wald parameter estimates. Median (circle) along with the 2.5th
and 97.5th percentiles (error bars) of parameter estimates from Monte Carlo samples. Results are re-
ported for each parameter according to sample size for 3 different distributions (λ1 = 0.482, µ1 =
4.845e-02, d1 = 9.574e-06; λ2 = 0.850, µ2 = 5.218e-02, d2 = 4.235e-22; λ3 = 5.055, µ3 = 5.550e-02, d3
= 2.142e-20) and are based on 500 estimations. The dashed line is the true parameter value.
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Figure 4.8: Sample size versus ex-Erlang parameter estimates. Median (circle) along with the 2.5th and
97.5th percentiles (error bars) of parameter estimates from Monte Carlo samples. Results are reported
for each parameter according to sample size for 3 different distributions (k1 = 11, µ1 = 3.557e-03, τ1 =
9.325e-03; k2 = 17, µ2 = 2.973e-03, τ2 = 1.647e-03; k3 = 92, µ3 = 5.993e-04, τ3 = 3.671e-04) and are
based on 500 estimations. The dashed line is the true parameter value.
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Figure 4.9: Sample size versus ex-Wald parameter estimates. Median (circle) along with the 2.5th and
97.5th percentiles (error bars) of parameter estimates from Monte Carlo samples. Results are reported
for each parameter according to sample size for 3 different distributions (λ1 = 0.400, µ1 = 3.985e-02, τ1
= 8.603e-03; λ2 = 0.761, µ2 = 4.610e-02, τ2 = 6.089e-03; λ3 = 4.934, µ3 = 5.450e-02, τ3 = 1.006e-03)
and are based on 500 estimations. The dashed line is the true parameter value. Note the y axis limits
for λ1 and λ2 have been cropped at 10× λtrue so that intervals for the larger sample sizes are visible.
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4.3.3.2 Probability distribution fits

Based on the mean KLD, ex-Wald is the best fitting probability distribution (Table 4.8).
However, there is not much difference between several distributions, with normalised
pairwise comparisons to the ex-Wald KLD indicating that the majority of distributions
will, at times, fit as well or better (Table 4.8).

Table 4.8: Mean Kullback-Leibler divergence (KLD) and normalized pairwise differences between ex-
Wald KLD and other theoretical distributions (x̄(min,max)).

Raw Pairwise
Refractory Exponential -13.6483 0.0432 (0.0216, 0.0715)
Normal -14.2308 0.0028 (-0.0007, 0.0087)
Birnbaum Saunders -14.2666 0.0003 ( 0.0000, 0.0009)
Erlang -14.2648 0.0004 (-0.0011, 0.0016)
Loglogistic -14.2475 0.0017 (-0.0008, 0.0040)
Lognormal -14.2661 0.0003 (-0.0000, 0.0009)
Weibull -14.1730 0.0069 (-0.0004, 0.0123)
Wald -14.2665 0.0003 (0.0000, 0.0009)
offset Birnbaum Saunders -14.2673 0.0003 (-0.0001, 0.0009)
offset Erlang -14.2700 0.0001 (-0.0011, 0.0008)
offset Loglogistic -14.2484 0.0016 (-0.0008, 0.0037)
offset Lognormal -14.2668 0.0003 (-0.0000, 0.0009)
offset Weibull -14.2658 0.0003 (-0.0028, 0.0034)
offset Wald -14.2670 0.0003 (-0.0001, 0.0009)
ex-Gaussian -14.2624 0.0006 (-0.0008, 0.0027)
ex-Birnbaum Saunders -14.2678 0.0002 (-0.0011, 0.0013)
ex-Erlang -14.2677 0.0002 (-0.0001, 0.0009)
ex-Loglogistic -14.2558 0.0011 (-0.0008, 0.0026)
ex-Lognormal -14.2673 0.0003 (-0.0000, 0.0009)
ex-Weibull -14.2515 0.0014 (-0.0012, 0.0043)
ex-Wald -14.2709 -

We further investigated a subset of best fitting models Birnbaum Saunders (BS),
Erlang (Er), Lognormal (LN), Wald (W) and their offset and exponentially convolved
counterparts. Table 4.9 reinforces there is very little difference in how well this subset
of distributions fits electrosensory afferent data. The majority of analysed spike train
segments passed the KS test for uniformity of transformed event times for the entire
subset of best fitting distributions. Likewise, although the proportion of segments passing
the KS test for uniformity of transformed inter event intervals (Berman’s test) was lower,
there was little difference between the distributions.
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Table 4.9: Kolmogorov-Smirnov (KS) tests for fittings of observed ISIs to theoretical distributions

Uniform Berman
Birnbaum Saunders 28 (93%) 22 (73%)
Erlang 26 (87%) 26 (87%)
Lognormal 28 (93%) 22 (73%)
Wald 28 (93%) 22 (73%)
offset Birnbaum Saunders 28 (93%) 22 (73%)
offset Erlang 27 (90%) 24 (80%)
offset Lognormal 28 (93%) 22 (73%)
offset Wald 28 (93%) 22 (73%)
ex-Birnbaum Saunders 28 (93%) 22 (73%)
ex-Erlang 28 (93%) 23 (77%)
ex-Lognormal 28 (93%) 22 (73%)
ex-Wald 27 (90%) 22 (73%)

The BS, Er, LN and W distributions can all approximate a Gaussian or slightly skewed
Gaussian, but in all cases fits were improved slightly by adding in an offset (Figure 4.10).
With the exception of offset Erlang (the second best fit), the exponential convolutions
outperformed the corresponding distributions with an arbitrary delay. Figure 4.11 sug-
gests that the subset of distributions is equivalent for more normal-like distributions (low
CV) and the slight differences between distributions become more apparent as variability
is increased (high CV).
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Figure 4.10: Normalized pairwise differences between ex-Wald Kullback-Leibler divergence (KLD) and
other theoretical distributions, x̄ ± SE. Birnbaum Saunders (BS), Erlang (Er), Lognormal (LN), Wald
(W), offset Birnbaum Saunders (oBS), offset Erlang (oEr), offset Lognormal (oLN), offset Wald (oW),
ex-Birnbaum Saunders (exBS), ex-Erlang (exEr), ex-Lognormal (exLN).
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Figure 4.11: Interspike interval (ISI) histograms
binned at 1 ms resolution, with fits overlaid. Offset
Erlang (green), offset Wald (cyan), ex-Erlang (red),
ex-Wald (black).

We looked at the relationship between normalized pairwise differences between ex-
Wald KLD and CV for several probability distributions (Figure 4.12). For the couple of
spike trains with lowest CV, oEr and exBS provided slightly better fits than exW, whereas
differences between exW and the oBS, oW and exEr distributions were essentially non-
existent. For the majority of the midrange CVs (~0.125 to 0.224) exW provided the best
fit. However, there was a negative linear relationship between the normalized pairwise
differences for oBS, oEr, oW, exEr and CV, implying that the goodness of fit of the
alternative distributions approached that of exW for spike trains with the highest CV
(Figure 4.12). In the case of oEr (the second best candidate model) this trend suggests
oEr may provide as good, or better fit than exW for CVs in the mid to upper range
(~0.225 to 0.311).
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Figure 4.12: Normalized pairwise differences between ex-Wald Kullback-Leibler divergence (KLD) and
other theoretical distributions as a function of Coefficient of Variation (CV). Positive values indicate
worse fitting relative to ex-Wald, negative values indicate better. Offset Birnbaum Saunders (blue;
KLD = 0.000785 − 0.00255CV , r2 = 0.375, p = 0.00032), offset Erlang (green; KLD = 0.00826 −
0.00367CV , r2 = 0.316, p = 0.00123), offset-Wald (cyan; KLD = 0.000764 − 0.00237CV , r2 = 0.375,
p = 0.000666), ex-Birnbaum Saunders (magenta; no significant linear relationship p=0.0859), ex-Erlang
(red; KLD = 0.000802− 0.00279CV , r2 = 0.429, p = 8.49e− 05).

Fitted offset Erlang models have a mean offset of 0.0105 ± 0.0087 s (x̄ ± SD), fitted
offset Wald models have a mean offset of 0.0019 ± 0.0051 s, and fitted offset Birnbaum-
Saunders models have a mean offset of 0.0023± 0.0052 s. These offsets are symptomatic
of a discrepancy between the two-parameter duration distributions and the data. For
any given neuron, the offset required to place a model with the best-fitting shape in the
best-fitting location along the time axis is a fixed time period, which can be large relative
to the neuron’s inter-spike intervals. Realistic interpretation of such a model implies that
each neuron has a precise internal clock, allowing it to wait for a specified time after a
spike before initiating a process that will trigger the following spike. It seems implausible
that neuronal inter-spike interval distributions would be generated by a combination of a
timer with clock-like regularity followed by a stochastic process with high variability.
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Based on this analysis we conclude that while other distributions may provide better
fits for specific spike train segments, looking at the entire data set ex-Wald is the best
fit out of the candidate models we tested. Ex-Wald provides a model capable of captur-
ing the variability observed in spontaneous activity of electrosensory primary afferents
(Figure 4.13).
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Figure 4.13: Relationship between Ex-Wald the-
oretical and observed data moments. Figure 4.13a
shows a positive linear relationship between the
model mean and data mean (x̄data = 1.000x̄model +
4.565e − 06, r2 = 1.000, p = 1.41e − 79).
Figure 4.13b shows a positive linear relationship
between the model variance and data variance
(vdata = 0.987vmodel − 6.997e− 07, r2 = 0.996, p =
2.47e−35). Figure 4.13c shows a positive linear re-
lationship between the model coefficient of variation
(CV) and data CV (CVdata = 0.984CVmodel+0.001,
r2 = 0.997, p = 1.25e− 37).
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4.3.3.3 Relationships between parameters

Having identified ex-Wald as the best fitting candidate model, we now consider the im-
plications of this distribution in the context of sensory processing models. All three
parameters in the ex-Wald distribution have dimensions of time. No natural distinction
exists between predictor and response variables when investigating interactions between
ex-Wald parameters, so we used Principal Component Analysis (PCA) to fit a linear re-
gression. In the case of electrosensory afferents, the combination of PC1+PC2 mainly
describes the relationship between λ and τ which explains 98.81% of the variance (Fig-
ure 4.14). PC3, the error term in the regression, mainly consists of µ and accounts for
the remaining 1.19% of variance (Figure 4.14).

This analysis implies that µ (the mean censoring time) is largely independent of the
other two parameters. The fitting of power laws using linear regression on log-transformed
data further supports µ being relatively constant (µ = 0.044 ± 0.008; x̄ ± SD). µ is
independent of τ (Figure 4.14a) and shows no to weak correlation with λ (Figure 4.14b).
µ is less variable relative to λ (λ = 1.681 ± 1.444) and τ (τ = 0.005 ± 0.003). Mean λ

scales with 1/τ 0.889 (Figure 4.14c).
Censoring mean, µ, has a strong linear relationship with the ISI mean (Figure 4.15b),

suggesting that the relatively constant µ may be due to spontaneous activity having a
reasonably constant firing rate. While τ also shows a positive linear relationship with
ISI mean, the relationship is much weaker due to the high variability in τ for a given
firing rate (Figure 4.15a). The interaction between τ and λ is reinforced when examining
the relationships of these parameters with data CV. Figure 4.15c shows that CV scales
proportional to τ 0.464, but has a slightly stronger relationship with λ in the opposite
direction (CV~λ−0.438; Figure 4.15d). τ appears to be mainly influencing the variability
of the ISI distribution, with a strong positive linear relationship between τ and variance
(Figure 4.15e).
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Figure 4.14: Ex-Wald parameter correlations in-
vestigated via power law regression and orthogo-
nal regression using Principal Components Analysis
(PCA). Black line=power law fit, Blue line=PC1,
Red line=PC2. PC1 accounts for 87.48% of vari-
ance, PC2 accounts for 11.33%, leaving 1.19% to
be explained by PC3. Figure 4.14a shows no signif-
icant relationship between τ and µ (power law fit
p=0.991; posterior probability ratio µ(τ)=1.027).
Figure 4.14b shows a weak to non-significant pos-
itive relationship between λ and µ (power law fit:
µ = 0.042λ0.087, r2 = 0.172, p=0.023; posterior
probability ratio µ(λ)=0.061). Figure 4.14c a signif-
icant negative relationship between τ and λ (power
law fit: λ = 0.009τ−0.889, r2 = 0.618, p=2.637e-07;
posterior probability ratio λ(τ)=9.931e-07).
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Figure 4.15: Relationship between Ex-Wald
parameters and data moments. Figure 4.15a
shows a positive linear relationship between τ
and the data mean (x̄ = 1.181τ + 0.043, r2 =
0.148, p = 0.036). Figure 4.15b shows a posi-
tive linear relationship between µ and the data
mean (x̄ = 1.022µ + 0.004, r2 = 0.895, p =
3.24e−15). Figure 4.15c shows a positive power
law relationship between τ and the data CV
(CV = 2.457τ0.464, r2 = 0.820, p = 6.37e− 12).
Figure 4.15d shows a negative power law rela-
tionship between λ and the data CV (CV =
0.210λ−0.438, r2 = 0.932, p = 6.62e − 18). Fig-
ure 4.15e shows a positive linear relationship be-
tween τ and the data variance (v = 0.025τ −
1.32e− 05, r2 = 0.926, p = 2.36e− 17).
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4.4 Discussion

Previous studies in elasmobranchs have noted that spontaneous activity of primary af-
ferents is reasonably regular, but not normally distributed. However, these studies have
generally focussed on the mean, variance, and in rare cases the higher order moments, to
assess the normality of the ISI distribution. In the present study we use these metrics
to investigate the firing rate and its variability and compare our results to the existing
literature. Additionally, we fit several two-parameter probability distributions commonly
used in neuroscience literature, as well their offset counter parts and the lesser known
convolutions of the two-parameter distributions with an exponential random variable.
We compare the goodness of fit of these distributions to probability models from other
afferents and interpret the potential implications for sensory processing. Our results show
that spontaneous activity in electrosensory afferent neurons can be accurately modelled
as inverse Gaussian-censored Poisson processes.

4.4.1 Spontaneous firing rate and its variability

Primary afferent neurons in a variety of sensory systems exhibit spontaneous activity in
the absence of any stimulus. This discharge plays an important role in the sensitivity and
response properties of electrosensory afferents [Tricas & New, 1998].

The average discharge rate from our study on adult little skates, L. erinacea, was
21.3 spikes s−1 at 12 ◦C. Spike rate was greater than the previously reported values from
the same species of 1.67 spikes s−1 [Conley & Bodznick, 1994] and 8.6 spikes s−1 [New,
1990], likely due in part to the higher experimental temperature. Despite being at a lower
temperature, the discharge rate was higher than that of P. triseriata, which averaged 15
to 18 spikes s−1 at 16 to 18 ◦C [Montgomery, 1984a,b]. Conversely, the discharge rate was
lower than that of U. halleri at 34.2 spikes s−1 [Tricas & New, 1998], R. eglanteria at
44.9 spikes s−1 [Sisneros et al., 1998] and D. sabina at 52.1 spikes s−1 [Sisneros & Tricas,
2002b].

While there are reasonably large differences in values reported for spontaneous firing
rate, variability as reflected in CV values appears to be relatively conserved across species
and different conditions. The CV of afferent units in our study on L. erinacea ranged from
0.104 to 0.464 (0.215±0.076; x̄±SD) in raw spike trains. This range was reduced slightly
(0.100 to 0.311; 0.205±0.069) when only segments of spikes trains that passed the renewal
process tests were retained. These values are very similar to those reported for adult R.
eglanteria [0.20± 0.03; Sisneros et al., 1998], D. sabina [0.163± 0.057; Sisneros & Tricas,
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2002b] and U. halleri where CV ranged from 0.13 to 0.34 [0.22±0.04; Tricas & New, 1998].
The majority of research has been conducted on skates and rays, however steady state
discharge of the dogfish, S. canicula, has also been examined under different temperatures
and static electric currents. While the mean ISI was dependent on temperature and on
current strength, the CV under all conditions investigated was near constant, between
0.20 and 0.30 [Bromm et al., 1975]. We found no significant trend between mean ISI
and CV, whereas Tricas & New [1998] found slower units exhibited greater regularity.
However the authors questioned the biological significance of the relationship due to the
high variability in CV among units with a given mean.

Afferents from adult skates and rays exhibit reasonably regular discharge. However,
both ontogenetic and seasonal variation in activity has been demonstrated. Male Atlantic
stingrays, D. sabina, show a decrease in CV (increase in regularity) corresponding to on-
set of the reproductive season, while there was no difference in discharge rates [Sisneros
& Tricas, 2000]. This seasonal change in afferent activity is mirrored by the ontogenetic
changes. Discharge rate remains constant, but variability decreases from the neonate to
juvenile stages [Sisneros & Tricas, 2002b]. Similarly, variability decreases from the embry-
onic to juvenile stages in clearnose skates, R. eglanteria, which is coupled with an increase
in discharge rate [Sisneros et al., 1998]. These differences in afferent properties have been
hypothesized to represent adaptive plasticity in the electrosensory system, enhancing an
individuals fitness by allowing young animals to detect potential predators and adult
animals to detect potential mates [Sisneros & Tricas, 2002a]. Regular afferents encode
information about steady state or slowly varying stimuli, whereas irregular afferents are
more suited to encoding higher frequency.

Afferent discharge of other octavolateralis senses also display greater diversity in vari-
ability. Whereas elasmobranch electrosensory afferents are mainly classed as regular,
mechanosensory lateral line afferents in D. sabina exhibit regular (CV < 0.40), irregular
(CV > 0.40, g1 > 0) and silent (only respond when stimulated) discharge patterns. The
variability of spontaneous discharge appears to be linked to neuromast position as well
as morphology, with ventral non-pored canals having a greater proportion of silent units
than pored canals (either ventral or dorsal) and dorsal canals showing more irregular units
than ventral canals [Maruska & Tricas, 2004]. The greater diversity in afferent responses
may be due to differences in stimulus characteristics. Water movement is complex, con-
sisting of both high and low frequency components. Therefore, diversity in responses
of neuromasts at different locations may allow individuals to sample the spectrum of
frequencies available to the lateral line system [Maruska & Tricas, 2004].

In addition to rate and variability, higher order moments (skewness g1 and kurtosis g2)
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have been used to assess the normality of electrosensory afferent discharge [Tricas & New,
1998]. It was found ISI distributions in U. halleri ranged from bilaterally symmetrical
(g1 ≈ 0.08) at low CV values, to slightly right skewed (g1 ≈ 0.71) in intermediate to
highest CV units. We found for the pruned spike trains in L. erinacea skewness increased
linearly in relation to CV with minimum value near normal (0.091). The maximum value
(1.589) never reached the skewness of an exponential distribution (g1 = 2). Regardless
of CV, Tricas & New [1998] found most units were found to be leptokurtotic (g2 > 0).
However, while this was also the case for the majority of our ISI distributions, we also
found some platykurtotic distributions (10/30 units had g2 < 0). Tricas & New [1998]
suggested that leptokurtotic distributions indicated more ISI concentrated near the mean
than expected from a normal distribution, implying a high degree of regularity. While
this is likely the case, leptokurtotic distributions can also indicate more items in the tails,
whereas platykurtotic distributions have fewer items near the mean and in the tails and
more items in the intermediate regions [Sokal & Rohlf, 1981]. We attempted to avoid
some of the ambiguity in examining distribution moments by fitting probability density
functions to the ISI distribution.

4.4.2 Spontaneous activity as a stochastic process

Regarding spontaneous activity from the dogfish, S. canicula, Bromm & Tagmat [1977]
state "The interspike interval distributions of steady state discharges in the Lorenzinian
ampulla followed a Gamma probability density function with small disturbances, thus
usually a Gaussian description was sufficient [Bromm et al., 1975]". However, in our ex-
amination of Bromm et al. [1975], there was no description of ISI distributions beyond
mean, standard deviation, CV and ISI histograms. Thus, it is likely the description of
distributions as Gamma to Gaussian -like was made solely based on visual inspection. Be-
yond this description, to our knowledge elasmobranch electrosensory afferent responses
have not been examined as a stochastic process. However, electroreception has indepen-
dently evolved multiple times in many taxa of fishes and amphibians [Baker et al., 2013].
Additionally, the electric sense belongs to the octavolateralis senses, hence it is related
to the other specialised hair cell-based systems (lateral line, auditory and vestibular), as
they share evolutionary and developmental origins [Gillis et al., 2012]. We now compare
our findings on spontaneous activity as a stochastic process firstly to electroreception in
other vertebrates and finally to the other octavolateralis senses.

Ampullary electroreceptors, hypothesized to be homologous to the ampullae of Loren-
zini, are found in wide variety of non-teleost fish, spanning several different taxonomic
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groups [Baker et al., 2013]. In contrast to elasmobranchs which rely solely on ampullary
electroreceptors, weakly electric fish possess two classes of receptor, ampullary and tuber-
ous. Tuberous receptors are specialized for active electrolocation and communication,
thus are tuned to high frequencies within the range of the species own electric organ
discharge [Hagiwara et al., 1965]. Ampullary organs are similar to elasmobranch elec-
troreceptors in that they are sensitive to the low frequency environmental electric fields
[Suga, 1967]. Research conducted on the ampullary organs of two species of Catfish, Claris
guriepinus and Ictahrus nebulosus, illustrated spontaneous activity can be well fitted by
a Gamma distribution [Teunis et al., 1990, 1991a]. In both species it was suggested
that spontaneous spiking results from a limited number of membrane events, whereby
Stein’s model was proposed as a description of the possible firing mechanism responsible
for stochastic fluctuations [Teunis et al., 1990, 1991a]. The Gamma shape parameter
corresponds to the firing threshold of the spike generator and Gamma scale parameter
corresponds to the input rate of synaptic quanta [Teunis et al., 1991b]. Experimental
manipulation of the mean firing rate revealed differing trends in the Gamma parameters,
depending on the stimulus strength [Teunis et al., 1991b].

Whereas electroreception involves physiological responses of the same form as the stim-
uli, other octavolateralis senses convert various mechanical stimuli into physiological re-
sponses through mechanoelectrical transduction. Lateral line afferents in Zebrafish, Danio
rerio, exhibit spontaneous spiking which has been shown to result from hair cell neuro-
transmission [Trapani & Nicolson, 2011]. These neurons show Poisson-like behaviour,
with no bursting or rhythmic spiking and ISI histograms being fit by either a single-phase
or two-phase exponential decay equation [Trapani & Nicolson, 2011, note these equations
were fit to the peak of the histogram, so the single phase exponential would be equivalent
to our refractory exponential (eq. (4.2))]. Further research suggests that fits achieved
with a two-phase exponential were no better than with a single exponential decay [Levi
et al., 2015]. Similar to the stingray lateral line mechanoreceptors, auditory afferents in
the midshipman fish, Porichthys notatus, exhibit heterogeneity with regular, irregular and
silent ISI distributions. Sisneros & Bass [2003] classified any units with ISIs that were
normally distributed as regular. However, the remaining spontaneously active neurons
were classified as irregular, with no further description of the ISI distribution.
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4.4.3 Spontaneous activity as a censored Poisson process

Our results show that spontaneous activity in electrosensory afferent neurons can be accu-
rately modelled as inverse Gaussian-censored Poisson processes. This family of probability
distributions was derived to model response time distributions in human decision-making,
and called the ex-Wald (convolution of an exponential and Wald) distribution [Schwarz,
2001, 2002]. The same result has been found in mammalian vestibular semicircular canal
afferent neurons, which exhibit greater heterogeneity in ISI distributions than skate elec-
trosensory afferents [Hoffman & Paulin [2015]; Paulin et al. [2016]; Appendix B].

By using KLD as a fitting metric we selected the model that best describes how
uncertainty about when the next spike will occur is distributed over time since the last
spike. This distribution is required in order to infer causal parameters of the interval
distribution, including state variables of stimulus sources, from observed spike times.
Ex-Wald is the best among the candidate models that we considered. The two next-best
biologically plausible candidates are ex-Erlang and ex-Birnbaum-Saunders models. These
are also censored Poisson processes. Both the Erlang and Wald distributions are members
of the Generalized Inverse Gaussian (GIG) family of probability distributions [Leiva et al.,
2015]. The GIG family are time-to-barrier distributions for drift-diffusion processes, which
are common models for neuronal spiking with a straightforward biophysical interpretation
[Xing et al., 2015]. The Birnbaum-Saunders distribution is not a member of the GIG
family, but rather the cumulative damage family [Leiva et al., 2015]. However, it has
been argued that as the Birnbaum-Saunders distribution models a Wiener process of
accumulated fatigue in time (with positive drift) it can be viewed as an approximation to
the inverse Gaussian, under certain parameterizations [Bhattacharyya & Fries, 1982]. The
parameters of both the Birnbaum-Saunders and inverse Gaussian distributions may be
linked to values with biological interpretations via the integrate-and-fire model of neuron
spiking [Leiva et al., 2015].

The cluster of censored Poisson models at the top of our ranking suggests that, even
if the ex-Wald model is not exact, spiking in electrosensory afferent neurons involves a
Poisson process censored by a drift-diffusion process. The model implies that there is an
underlying Poisson process with a high mean rate, ranging from about 100Hz to about
1KHz in different afferents, and a drift-diffusion process that suppresses events in the
Poisson process, or at least prevents them from appearing at the output, until it reaches
a threshold point.

The range of frequencies represented by the Poisson component (0.1 - 1KHz) matches
the low pass filtering bandwidth of ampullary sense organs in rays [Waltman, 1966].

135



4. SIMULATING THE VARIABILITY OF REAL NEURONS

This is the expected output bandwidth of ampullary organs given thermal noise inputs,
suggesting that the Poisson component of spontaneous afferent spike trains is, ultimately,
a response to thermal noise in sensory coupling and transduction [Basano & Ottonello,
1975]. The fluctuation-dissipation theorem then implies that the Poisson component
carries information about the response of afferents to small stimuli [Kubo, 1966; Marconi
et al., 2008]. The mean interval, τ , is a sufficient statistic for a Poisson process, which
means that the posterior density of this single parameter captures all of the information
that a spike train sample contains about causal parameters of the process that generated
it [Zacks, 2014].

Individual electrosensory afferent spike trains are not samples from a Poisson pro-
cesses, rather they appear to be random sub-samples of this process. The censoring
distribution (Wald, or other) in effect pulls out a random sub-sample of spikes in the
Poisson process, so it is transmitted to the brain in random pieces. We hypothesise that
censoring occurs because rapid spiking (as required by extremely short intervals being
most likely in a Poisson process) is energetically inefficient. Breaking up information be-
tween a group of neurons, transmitting in parallel, allows individual neurons to spike at a
near optimal rate [Balasubramanian, 2015]. Therefore a group of sensory afferent neurons
converging to a secondary neuron can be thought of as a "super-afferent" that delivers
a Poisson sample to the brain. The "super-afferent" delivers information more efficiently
than a single afferent could, in a form that would allow neurons there to perform Bayesian
inference in a simple, natural way.

This abstract model may provide a useful framework for investigating not only central
mechanisms of inference in electroreception (see Chapter 5), but also peripheral mecha-
nisms of sensory transduction and spike coding. The fact that one model has been found
to fit octavolateralis neuron firing patterns on two distinct branches of the vertebrate
phylogenetic tree, elasmobranch electroreception (here) and mammalian vestibular sys-
tem [Hoffman & Paulin [2015]; Paulin et al. [2016]; Appendix B], suggests that the model
may extend to all vertebrate octavolateralis senses, including in particular the mammalian
auditory system, whose sensitivity to acoustic energy rivals the elasmobranchs’ sensitivity
to electrical energy [Bialek, 1987; Chen et al., 2011].

136



Chapter 5

Bayesian inference in the
elasmobranch electrosensory system

5.1 Introduction

The brain receives a continual stream of data from a variety of sensory modalities. Under-
standing the basis of sensory systems and information processing in the brain is a central
part to modern neuroscience research. However, how the brain organizes this incoming in
information from sense organs and controls muscles to produce a properly coordinated re-
sponses remains unclear [Kayser & Shams, 2015]. In interacting with the world the brain
faces two key challenges. Firstly, perception usually relies on the integration of cues from
multiple different sensory systems, each providing a noisy and potentially biased estimate
about the state of the world [Kayser & Shams, 2015]. Secondly, the brain must perform
causal inference, that is decide which sensory inputs likely had the same source of origin
[Kayser & Shams, 2015]. In this chapter, causes are world states, including body states,
and the effect is a sensory spike train.

The elasmobranch electrosensory system provides a simple model to examine the
mechanisms underlying causal inference in the vertebrate brain. The electric sense be-
longs to the octavolateral system and hence shows similarities to the vestibular, lateral line
and auditory systems [Bodznick & Montgomery, 2005]. Transduction in elasmobranch
electroreceptors is mediated by sensory hair cells, thus comparative analysis may provide
insight into hair cell mechanisms elsewhere. Electroreception allow us to examine the
flow of information from peripheral sensory structures, to the destination brain centres
[Bullock, 1993]. Whereas hair cells in the vestibular, lateral line and auditory systems
all receive feedback from the brain, electroreceptors lack any sign of such efferents [Bul-
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lock, 1993]. In ampullary electroreception measurements are passive, with the stimulus
strength falling off predictably as a function of distance. Given the lack of efferents,
sensors encode the measurement process undistorted by feedback from the brain.

In early electrosensors, the scenario is further simplified as the only other sources
of electric fields would have been other slowly moving living things. The electrosensory
signal would therefore reliably indicate the distance and direction of other animals. Early
sensory neurons likely evolved as simple threshold detectors, therefore we can begin with
a simple one dimensional model in which state variable of interest is distance to source.
Such a sensor would provide late pre-Cambrian animals with a means to detect proximity
to other animals and therefore react in ethologically meaningful ways, such as striking or
fleeing [Monk & Paulin, 2014]. Indeed, the onset of carnivory has been hypothesised to be
the driving force behind the evolution of neurons [Monk, 2014]. Therefore understanding
how the modern day elasmobranch brain infers predator/prey location may provide us
with insights into general principles of brain evolution and brain function.

5.2 Perception as causal inference

In the introduction we mentioned several key concepts for this chapter including mea-
surement process, causal inference and state estimation. Here we elaborate on these and
demonstrate how causal inference must underly perception (or maybe even be perception).

Imagine you obtained some data from a particular collection of things. It could be the
length of a piece of string, or the distance to another animal and so on. Such measurements
are called samples and like the analysis of spike trains in the previous chapter you can
use the obtained data in two ways. The most straightforward approach give a detailed
description of the sample. For example, you can calculate a point estimate of how long
the string is, such as the mean or median, and some measure of the measurement spread,
such as standard deviation, variance.

However, if you wanted to generalize the properties from sample to a population
this requires inferential statistics. In inferential statistics the data is represented by a
probability distribution. Under a frequentist approach probability is the limit of a samples
relative frequency in a large number of trials. Under a Bayesian approach you can use
probabilities to represent the uncertainty in the sample. Bayes’ theorem (Equation (5.1))
provides the optimal strategy for modifying beliefs based on uncertainty in the data.

f(x|z) = f(z|x)f(x)
p(z) (5.1)
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Let the state of the world, or in this specific example string length, be represented by
x and the measurements by z. f(z|x) is the likelihood of the measurements (z) given
string length (x), f(x) is our prior knowledge of string length, p(z) is the evidence

which in practice amounts to a normalization term. The likelihood f(z|x) represents the
generative relationship between string length (x) and measurement (z). Calculation of
the posterior f(x|z) allows optimal decisions i.e decisions that maximize or minimise some
performance criterion, by integrating expected state-dependent costs over the posterior
density of states. For example if you cut a length of string that is a little too short
you have to find a new piece (big cost), but if it’s a little longer than necessary that’s
no big deal (little cost). Analogously in predator-prey interactions it may cost energy
if an animal decides to strike/flee too soon, but it’s potentially fatal to act too slowly
(life-lunch principle).

Therefore it would appear that if nervous systems could evaluate the posterior den-
sity of relevant state variables given sense data, then they should. Evidence supporting
this idea of neuronal computation of Bayesian posteriors has accumulated over the past
two decades [Bobrowski et al., 2008; Fischer & Pena, 2011; Ganguli & Simoncelli, 2014;
Hoyer & Hyvarinen, 2003; Karmali & Merfeld, 2012; Lochmann & Deneve, 2008, 2011;
MacNeilage et al., 2008; Paulin, 2005, 2015; Rich et al., 2015], although controversy in
this field should be acknowledged [Bowers & Davis, 2012a,b; Jones & Love, 2011]. One
such argument by Bowers & Davis [2012a] is given the computational cost of implement-
ing Bayesian inference why would we expect the brain to be Bayesian? Nervous systems
would be better served by using simple, cheap tricks to make adequate decisions without
computing posterior probabilities along the way. In this chapter we will demonstrate
that there is a cheap trick for performing Bayesian inference using spiking neurons and it
predicts cerebellar-like architecture in the electrosensory brainstem.

5.3 Inference from Poisson samples

We revisit the distribution of ISI in a homogeneous Poisson process (Equation (4.1)).
The mean interval, τ , is a sufficient statistic for a Poisson process, which means that the
posterior density of this single parameter captures all of the information that a spike train
sample contains about causal parameters of the process that generated it.

f(x|τ) = 1
τ

exp
(−x
τ

)
(5.2)
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As mentioned previously the homogeneous Poisson is the simplest stochastic process, the
probability of firing a spike in a small time interval is independent of the firing activity
at all other times. Due to their tractability and simplicity, Poisson processes are often
appealing as a practical start point for computation involving point processes (similarly
to Normal distributions commonly being applied to continuous random variables), even
though individual spike trains are rarely Poisson [Kass et al., 2014].

Suppose that one spike was observed at time t0 < t and no further spikes have been
observed. The likelihood function for this process is expressed by:

f(τ |no spike in (t0, t]) = 1
τ

exp
(
−(t− t0)

τ

)
(5.3)

If the posterior density of the Poisson parameter τ at time t0 was f0(τ), then substituting
these expressions into Bayes rule (Equation (5.1)) the inference problem takes the form:

f(no spike in (t0, t] |τ) = f(τ |no spike in (t0, t])f0(τ)
A

(5.4)

Where the normalizing denominator A = A(τ, t) ensures that f(τ) is a probability density,
i.e. it integrates to 1 over the range of τ . Equation (5.4) shows that the posterior density
of τ changes smoothly during inter-spike intervals, decaying exponentially as a function
of the last spike time, adjusted by the normalizing denominator.

5.4 Neurons as computers for inference from Poisson
samples

It has been demonstrated that a network of Poisson neurons can perform Bayesian infer-
ence similar to Monte Carlo methods such as particle filtering [Huang & Rao, 2014, 2016],
and that individual spikes are likely the operands of neural computation [Monk, 2014].
Paulin [2015] suggests that "neurons are natural computers for inference from Poisson
samples". Consider the leaky integrate and fire neuron. Its sub-threshold membrane po-
tential v evolves over time according to the following differential equation [Gabbiani &
Koch, 1998]:

C
dv

dt
= I(t)− v

R
(5.5)

where C represents the membrane capacity, I(t) is the input current and R is the mem-
brane resistance.

In the case of constant input current I, during interspike intervals the leaky integrate
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and fire model decays exponentially towards the steady-state voltage v = IR:

v(τ, t) = IR
(

1− exp
(−t
τ

))
(5.6)

with time constant τ = RC [Gabbiani & Koch, 1998].
Here mean ISI is proportional to the voltage threshold (vth). Accordingly, Poisson

spike trains can be obtained from integrate and fire neurons by resetting the threshold
after each spike to a new random value according to the distribution, p(v) = 1

vth
exp

(
−v
vth

)
[Gabbiani & Koch, 1998]. Based on these assumptions, a leaky integrator could easily
track the numerator in Equation (5.4) for this inference problem.

If we have secondary neurons firing randomly with mean intensity proportional to
membrane potential v, inference requires some mechanism to continuously normalize
membrane potentials across the population. Accumulating evidence suggests that nor-
malization of neuronal populations plays a role in a variety of sensory modalities, brain
regions and species [Carandini & Heeger, 2012]. We implement normalization in our neu-
ral particle filter by adding a tertiary layer of neurons that sum the activity of secondary
neurons, with a short time constant, and feedback this signal onto secondary population
to achieve the required normalization [Paulin, 2015].

Hence the problem for modelling mechanisms of inference in the electrosensory sys-
tem is not to determine whether it is possible for neurons to evaluate expressions like
Equation (5.1), but to determine if and how central electrosensory neurons in the dor-
sal octavolateralis nucleus (DON) actually do it. The equivalence between exponential
likelihoods and the leaky integrator dynamics of neuronal membranes evident in Equa-
tions (5.4) and (5.6) indicates that there may be a simple and efficient strategy that a
population of afferent neurons converging onto central secondary neurons (AEN) could
compute Bayesian posterior densities of variables that parameterize sensory spike trains,
if those spike trains are samples from Poisson processes.

5.5 Inference in the electrosensory system

We demonstrated in the previous chapter electrosensory afferent spike trains are not
samples from Poisson processes. However, it is not the individual afferents that require
Poisson statistics, rather the targets in the brain should receive Poisson input. Electrosen-
sory afferents converge onto secondary neurons (AEN), therefore a group of afferents can
be thought of as a "super-afferent" that delivers samples to the brain. Our model implies
that the Poisson component τ carries information about small stimuli.
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5.5.1 Are "super-afferents" samples from Poisson processes?

Despite the importance of electroreception in the behaviour of elasmobranchs, the anatom-
ical information concerning the convergence of the electroreceptive periphery onto the
central nervous system is sparse. Generally, it has been concluded that convergence and
divergence in this pathway is very low [Rotem et al., 2014]. Each ampulla appears to be
the origin of 5-16 afferent nerve fibres [Kempster et al., 2013]. Recordings from whole
animal preparations suggest afferent receptive fields can typically be isolated to a single
ampullary pore, whereas AEN receptive fields may be receiving input from 2-7 pores
[New, 1990]. Recordings from isolated brain stem preparations suggest that each AEN is
innervated by 2-5 fibres [Rotem et al., 2014].

Convergence of afferent neurons onto AEN means that events arriving at the DON
could have Poisson statistics (and therefore exponential ISI) even though individual sen-
sory afferents do not. The Poisson limit theorem states that sums of stochastic inde-
pendent point processes converge to Poisson processes, even if those point processes are
non-Poissonian themselves [Arratia et al., 1990; Streit, 2010]. Using the values above as
a guide, we simulated 20s duration spike trains that were either ex-Wald or Gaussian.
In this case we used the mean fitted values from the ex-Wald fits in chapter 4, that is
µ = 0.0436, λ = 1.6808, τ = 0.0051, to parameterize the ex-Wald distribution and the
matched mean (µ+ τ) and standard deviation (

√
µ3

λ
+ τ 2) to parameterize the Gaussian.

For both distributions, the summed response with 2 neurons is obviously not Poisson
(Figures 5.1a and 5.1b). However, as the number of neurons increases the distributions
become more Poisson-like (Figure 5.1). We tested the fits using the time-transformation
tests from the previous chapter, in these simulations by 10 neurons the summed ex-Wald
passed Berman’s test at the 95% level whereas the summed Gaussian did not. Addition-
ally, we used the KS test to test how well the exponential distribution fits the simulated
data. The exponential distribution (with parameter τ ∗ = (µ+ τ)/N) provided a statisti-
cally significant fit to the ex-Wald data at 10 summed spike trains (KS statistic=0.0179,
p=0.1396). However, these numbers were simulation dependent, for both models the
summed distributions visually appeared Poisson-like by 5 neurons and statistically were
not significantly different from the exponential distribution by 10-20 summed trains.

Similar results were obtained when spike train parameters were bootstrap sampled,
from the chapter 4 ex-Wald fits, for each spike train (Figure 5.2). Simulations by 10 neu-
rons the summed ex-Wald passed Berman’s test at the 95% level whereas the summed
Gaussian did not. Likewise, the exponential distribution provided a statistically signifi-
cant fit to the ex-Wald data at 10 summed spike trains (KS statistic=0.0127, p=0.5650).
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Figure 5.1: Histograms and QQ plots with 90 and 95% confidence bands. Figures 5.1a and 5.1b
show the simulated "super afferent" responses of 2 summed ex-Wald and Gaussian neurons respectively,
Figures 5.1c and 5.1d: 5 neurons, Figures 5.1e and 5.1f: 7 neurons and Figures 5.1g and 5.1h: 10 neurons.
Each ex-Wald spike train was sampled from the distribution with the following parameters µ = 0.0436,
λ = 1.6808, τ = 0.0051. Each Gaussian spike train was sampled from the distribution with matched
mean and standard deviation.
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Figure 5.2: Histograms and QQ plots with 90 and 95% confidence bands. Figures 5.2a and 5.2b
show the simulated "super afferent" responses of 2 summed ex-Wald and Gaussian neurons respectively,
Figures 5.2c and 5.2d: 5 neurons, Figures 5.2e and 5.2f: 7 neurons and Figures 5.2g and 5.2h: 10
neurons. Each ex-Wald spike train was based on a bootstrap sample of files containing ex-Wald fits to
electrosensory afferent spontaneous activity. Each Gaussian spike train was sampled from the distribution
with matched mean and standard deviation.
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5.5.2 Example and performance evaluation

Figures 5.3 and 5.4 show a simulation of a neural particle filter described in Paulin [2015],
written in MATLAB, with parameters based on the values from the literature and our
spike train analysis.

There is a signal source at a fixed distance causing the "super afferent" to spike with
ISI sampled from either: 1) the sum of 5 independent ex-Wald afferent spike trains (each
with distribution parametrized by µ = 0.0436, λ = 1.6808, τ = 0.0051; Figure 5.4, sample
mean ISI=0.0095) or 2) the mean matched Poisson distribution (τ ∗=0.0097; Figure 5.3,
sample mean ISI=0.0096). No averaging is done by the "super afferent", its mean ISI
is therefore 5 times shorter than that of the independent ex-Wald afferents. The filter
has 2025 secondary neurons (the DON consists of in the order of 2000 AEN; Paul &
Roberts [1977]; Rotem et al. [2014]), each described by Equation (5.6), with membrane
time constants spaced uniformly between 0 and 25ms (~2.5×τ ∗). The simulation updates
at time step length 1.0ms or at the occurrence of primary neuron spikes. Each secondary
neuron fires randomly in each time step, with probability proportional to its membrane
potential. All secondary neuron membrane potentials are divided in proportion to the
total number of spikes in the secondary population on the previous time step. This
division is performed by an additional population of 10,000 tertiary neurons (AEN receive
input from tens of thousands of parallel fibres and inter neurons; Bodznick et al. [1999];
Paul & Roberts [1977]), scaled so that the expected number of spikes in the secondary
population is 135, 1/15 of the population size (this selection was largely arbitrary).

In each of the figures, (a) shows the sample spike train, lasting 1s (chosen as a suffi-
ciently short period to view effect of individual spikes), with ISI distribution as described
above (Figures 5.3a and 5.4a). This provides the input to AEN, which respond according
to Equation (5.6).

The solid red line in the next trace (b) shows the median of the posterior density of τ ∗

given the spike train, computed numerically from Bayes rule (Equation (5.4)), with initial
prior, f0(τ), exponential on 1/τ ∗ at t = 0 (corresponding to expecting prey to appear at
a distance, therefore longer ISI more probable). This shows the true posterior median,
within numerical error. The posterior median jumps to lower values of τ ∗ at spike times
and drifts towards higher values of τ ∗ during interspike intervals. Open circles in (b)
represent the median of the posterior estimated by the lattice of AENs. For both versions
of the sensory spike train there is good agreement between the exact posterior median
and the neural particle filter at all times (Figures 5.3b and 5.4b).

The three graphs in (c) are spatial histograms of spike locations in the AEN popula-
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Figure 5.3: Simulation of neural Bayesian particle filter. (a) Sample sensory Poisson spike train
τ∗=0.0097, sample mean ISI=0.0096. (b) Exact Bayesian posterior median (red) and neural Bayesian
posterior median (circles) at sample times. (c) Spatial histograms of spike locations in three snapshots,
mapped in τ∗-space, overlaid by the numerically computed posterior density of τ∗ at the corresponding
times. (d) 2-D spatial maps of spiking activity at the snapshot times. Columns in the 2D map align with
bins in the spatial histograms.
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Figure 5.4: Simulation of neural Bayesian particle filter. (a) Sample "super afferent" sensory spike
train. 5 summed ex-Walds with µ = 0.0436, λ = 1.6808, τ = 0.0051, sample mean ISI=0.0095. (b) Exact
Bayesian posterior median (red) and neural Bayesian posterior median (circles) at sample times. (c)
Spatial histograms of spike locations in three snapshots, mapped in τ∗-space, overlaid by the numerically
computed posterior density of τ∗ at the corresponding times. (d) 2-D spatial maps of spiking activity at
the snapshot times. Columns in the 2D map align with bins in the spatial histograms.
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tion, with τ ∗ divided into 45 bins of equal width, with ’snapshots’ of activity taken at t
= 0, t = 0.5s and at t = 1s. The true parameter value, τ ∗=0.0097, is shown in each plot
by a vertical line. The initial spike histogram is a random sample from the exponential
initial prior density on 1/τ ∗, however convergence is largely unaffected by choice of prior.
As spikes arrive the true posterior density becomes increasingly Gaussian and narrower
and the neural particle filter infers it accurately (Figures 5.3c and 5.4c).

The three graphs in Figures 5.3d and 5.4d, again show ’snapshots’ at the time points to
above. In this case, plots represent the activity of the secondary neuron lattice, where the
2025 proposal points corresponding to AEN time constants have been laid out in a 45x45
array. Here we presented the parameter characterising the posterior as τ ∗, corresponding
to secondary neuron time constants. However, with an appropriate coordinate rescaling
they can equivalently be interpreted as maps of Poisson intensities 1/τ ∗, or the more
interesting real world maps of distance to the prey item (Paulin [2015]; for a dipole prey
there is an inverse cubic transformation between distance and Poisson intensity).

The circuitry of the neural particle filter presented here was derived by Paulin [2015]
under the assumption of a homogeneous Poisson process (i.e τ ∗ is fixed/the prey item
and predator are stationary). Under these conditions, with sufficiently large numbers of
neurons, the neural particle filter asymptotically approaches exactly Bayes rule [Paulin,
2015]. Figure 5.3 shows the results based on samples from a homogeneous Poisson process,
whereas Figure 5.4 shows samples from a Poisson-like "super afferent" based on the sum
of 5 simulated primary afferents. Examining the two plots there is very little difference
between the two, particularly considering spikes in all neurons (primary, secondary and
tertiary) is stochastic in nature. If the input to AEN is indeed Poisson, then sharks can
make Bayes optimal decisions, however even non-Poisson input can perform sub-optimal
inferences due to convergence of repeated measurements.

5.6 Discussion

The spiking neural particle filter model described in Paulin [2015], applied here to neural
circuitry of the shark electrosensory system, can infer the fixed parameter of a Poisson
process, or an underlying real world state such as distance to a signal source. This
scenario may be too simplistic for modern agile animals, however fossil evidence suggests
that primitive nervous systems evolved around the onset of carnivory [Monk & Paulin,
2014]. Initially sensory neurons could have been simple threshold detectors, equipping late
pre-Cambrian animals with a means to detect proximity to other animals and therefore
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react in ethologically meaningful ways, such as striking or fleeing [Monk & Paulin, 2014].
Indeed modern electroreceptors have been implicated not only in prey detection but also
predation reduction strategies with shark, skate and ray embryos exhibiting a "freeze"
response to predator-mimicking electric fields [Ball et al., 2016; Kempster et al., 2013;
Sisneros et al., 1998].

All animals emit a variety of signals in their vicinity. In early electrosensors, a simple
threshold trigger would suffice, as the only other sources of electric fields would have
been other slowly moving living things. The electrosensory signal would therefore reliably
indicate the distance and direction of other animals, with a threshold indicating when
there is an animal within some critical distance. Bioelectric fields are proportional to the
cube of distance, suggesting that when animals were very slow moving threshold triggering
would have occurred at a very short range, where field strength is strong [Paulin, 2015].
However, as animals became more agile natural selection would have favoured sensors
that maximize the signal received, driving the selection of the threshold sensor to the
physical limit of sensitivity imposed by thermal noise [Paulin, 2015].

Evolution appears to have developed a solution for maximizing sensory system sensi-
tivity in the presence of noise. Although the thermal noise is inevitable for living cells,
the weak electrosensory signals can still be encoded by an array of electrosensors mea-
suring deviations from this noise process. Electroreception by elasmobranchs is therefore
inherently a statistical inference problem, in which properties of signal sources must be
determined from observations of a noise process that they parameterize.

Once animals had sensory neurons that produced spikes conditional on critical states
of the world, it became possible for them to perform inference about the world based on
these spikes [Monk, 2014]. An animal capable of successfully implementing Bayes rule,
extracts the maximum information about the world states from sensory spikes [Monk
& Paulin, 2014]. If computations are done on the time scale of incoming spikes, this
would allow for rapid decisions about the dynamic state of the world, thus providing vital
information to the animal when decisions can involve fatal interactions [Monk & Paulin,
2014]. We showed that this computation is possible, in principle, using a simple network
of spiking neurons can construct and represent the Bayesian posterior density of a fixed
Poisson parameter, or equivalently a signal source at fixed distance.

The model suggests that thermal noise is a consequence of maximizing sensitivity of
sensors. Therefore, it is unsurprising that electrosensory afferents also show sensitivity to
thermal stimuli [Akoev et al., 1980; Braun et al., 1994; Bromm et al., 1975, 1976; Hensel,
1974; Hensel & Nier, 1971; Murray, 1959, 1960; Nier et al., 1976; Sand, 1938]. Brown
[2003] suggested the gel in ampullary organs acts as thermoelectric semiconductor in a
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novel mode of "sensing temperature without ion channels". This sensitivity may be an
emergent property from natural selection driving the ability to sense electric fields down
to the limit imposed by thermodynamics.

The model predicts that sensory input to secondary neurons should be modelled as
observations from a Poisson process parametrized by relevant state variables. Here we
argue that convergence of afferent neurons onto AEN means that events arriving at the
DON could have Poisson statistics even though individual sensory afferents do not. We
demonstrated the summed distributions visually appeared Poisson-like by 5 neurons and
statistically were not distinguishable from the exponential distribution by 10-20 summed
trains. Given that the literature suggests each AEN is innervated by 2-5 fibres [Rotem
et al., 2014] and our bootstrap sampled ex-Walds did appear to potentially converge to a
Poisson distribution with fewer afferents than summed mean parameter ex-Walds, a more
thorough examination is warranted. While we focussed on the stationary case, which was
equivalent to estimating the Poisson parameter τ ∗ in summed spontaneous afferent spike
trains, we assume in the dynamic case there is some predictable change in τ ∗ which has
yet to be confirmed.

The model predicts that arrays of secondary neurons represent the posterior density of
world states via the time constants of secondary neurons in the AEN. Our lattice points
spanned membrane time constants spaced uniformly between 0 and 25ms (~2.5 × τ ∗),
which is seemed plausible given the electrophysiological values of membrane time constant
across neuron types from literature range from tenths of ms to hundreds ms [Tripathy
et al., 2014]. However, Rotem et al. [2007] found that response of activated neurons
within the DON (assumed to be the AEN) decayed with 70ms, suggesting this to be
their membrane time constant. Additionally, there should be a systematic relationship
between membrane time constants, synaptic input weights and the state-space receptive
fields of secondary neurons [Paulin, 2015]. In our stationary, one dimensional model, this
was not testable, should this circuitry be extended to the more realistic dynamic case
relationships could be examined [Paulin, 2015].

The model predicts that secondary neurons have some mechanism to continuously nor-
malize membrane potentials across the population. This requires that as sensory inputs
fluctuate, the activity of some secondary neurons is stimulated while others is suppressed,
such that the firing in a random sample of the population remains constant [Paulin, 2015].
Recent intracellular recordings in the DON suggest that stimulating the afferent nerve
activates a mixture of excitatory and inhibitory feed-forward synapses [Rotem et al.,
2014]. This could potentially provide the internal circuitry required for normalization.
The cerebellar-like circuits of the DON have been hypothesised to act as an ’adaptive
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filter’, responsible for the removal of self generated noise [Bodznick et al., 1999; Bratby
et al., 2016; Montgomery & Bodznick, 1994]. These models suggest the DON subtracts
away the predictable common mode signals via a summing of the input of parallel fibres
with afferent input, whereas the neural particle filter predicts that parallel fibres act via
a tertiary layer of neurons that adjusts the AENs responses to afferent inputs [Paulin,
2005; Rotem et al., 2007]. The data of Rotem et al. [2014] suggest this adjustment of
AEN response is mediated by an inhibitory interneuron that is activated by the afferent
nerve.

While here we focussed on the electrosensory system, ampullary electroreceptors are
octavolateralis senses. Thus, they share developmental and anatomical similarities with
the other senses derived from hair cells such as vestibular, lateral line and auditory systems
[Bodznick & Montgomery, 2005]. These similarities extend to the central projections and
central processing of information in cerebellar-like circuitry [Bodznick & Montgomery,
2005]. Ancestral electroreceptors could have bootstrapped from simple threshold trigged
devices performing quasi-stationary, one-dimensional inferences, however this is a special
case that is not relevant to other senses, or electroreception in extant animals [Paulin,
2015]. The evolution of agility means that bioelectric fields vary both spatially and
temporally, depending on the configuration of both predator and prey. Bayesian inference
provides a means of both updating belief about world states based on dynamics and
allowing for the integration of multiple sensory systems. Due to similarities between
cerebellar-like structures and the cerebellum accumulating evidence suggests that the
cerebellum also plays a role in dynamic state estimation [Baumann et al., 2014; Bell
et al., 2008; Paulin, 2005].

We hypothesize that the statistical organization of spiking activity in the electrosen-
sory periphery and anatomy of the CNS may reflect an efficient solution for maximizing
sensory system sensitivity in the presence of noise, via Bayesian neural computation. This
strategy may be common to other octavolateralis senses.
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Chapter 6

General Discussion

In this thesis we developed a theory of how the functional design of the electrosensory
system in sharks reflects the inevitability of noise in high-precision measurements, and
how the CNS may have developed an efficient solution to this problem via Bayesian neural
computation (Figure 6.1).

world 
state x 

neural 
firing z 

inference 
about 

the world 

Likelihood 
f(z|x) 

Posterior 
f(x|z) 

Behavioural 
response 

Prior 
f(x) 

Figure 6.1: Schematic of Bayesian inference in the elasmobranch electrosensory system. A generative
model (likelihood) maps the state of the world x to sensory spikes z, the brain combines this with existing
beliefs (priors) to compute the posterior. The posterior is continuously updated as new observations
become available, allowing the shark to make inferences about the state of the world.

We investigated the physics governing the interaction between the electrosensory sys-
tem and weak electrical stimuli in the aquatic environment (Figure 6.1: world state).
Using geometrically accurate 2D and simplified 3D FEM models of the dogfish, we ex-
amined the role of electrical properties and geometry in shaping the effective stimulus

152



6. CONCLUSIONS

received by electroreceptors. We demonstrated that self movement (or self state) not
only affects the measured field, by perturbing the self field, but also affects the external
field.

Next, we considered the spontaneous activity of electrosensory afferents, which is re-
lated to how these neurons fire in response to small stimuli (Figure 6.1: neural firing). We
demonstrated elasmobranch electrosensory afferent spike trains and inter-spike interval
distributions typically have fairly regular spontaneous inter-spike intervals with skewed
Gaussian-like variability and can be accurately modelled as inverse Gaussian-censored
Poisson processes.

Finally, we implemented a spiking neural particle filter which takes simulated elec-
torsensory spike trains and can successfully infer the fixed Poisson parameter, or the
equivalent real world state, distance to a source (Figure 6.1: inference about the world).

We now discuss the significance of these results in a general context, and hypotheses
that emerge from these results. We finish with a short discussion of limitations of the
current research and future directions based on the work presented here.

6.1 Alternative framework for electroreception

Animals are faced with the problem of distinguishing electrosensory information about
their external environment (exafference) from electrsensory information that results from
their own state/motor activity (reafference). Classical models have suggested that the
DON acts as an adaptive filter to suppress this reafference [Bratby et al., 2014; Mont-
gomery & Bodznick, 1994; Nelson & Paulin, 1995]. In chapter 3 we demonstrated that
self movement (or self state) not only affects the measured field, by perturbing the self
field, but also affects the external field. The dynamic state-to-sensory transformation is
a nonlinear distortion of the field, not an additive difference. The shark faces a nonlinear
problem which cannot be solved by prediction and subtraction. It can only (or best) be
solved by Bayesian inference.

Bayesian inference and Bayes optimality provides an alternative framework for look-
ing at electroreception. In this framework we can make and test predictions about neural
computation, and think about technology (measuring devices) that exploit simple prop-
erties of materials to observe nature at the limits determined by statistical physics.
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6.2 "Super afferent" spike trains

Poisson spiking neurons can perform Bayesian inference [Huang & Rao, 2014, 2016;
Paulin, 2015]. In chapter 4, we discovered individual electrosensory afferent spike trains
are not samples from a Poisson processes, rather they appear to be random sub-samples
of this process. However, because electrosensory afferent neurons converge onto secondary
neurons, we consider the convergent input a "super afferent" with the pulse train received
by a target neuron approaching a Poisson process with shorter mean intervals as the
number of independent convergent spike trains increases. The distributions of spikes may
represent a trade off, with evolution driving the selection of energy efficient inverse Gaus-
sian interval distributions at the sensory periphery [Xing et al., 2015], whereas input to
secondary neurons from convergent afferent should have a Poisson distribution to allow for
a simple and efficient strategy of how central secondary neurons could compute Bayesian
posterior [Paulin, 2015].

This abstract model may provide a useful framework for investigating not only cen-
tral mechanisms of inference in electroreception, but also peripheral mechanisms of sen-
sory transduction and spike coding. The fact that one model has been found to fit
octavolateralis neuron firing patterns on two distinct branches of the vertebrate phy-
logenetic tree, elasmobranch electroreception (here) and mammalian vestibular system
[Hoffman & Paulin [2015]; Paulin et al. [2016]; Appendix B], suggests that the model
may extend to all vertebrate octavolateralis senses.

6.3 Inference in the electrosensory system

We demonstrated a spiking neural particle filter which takes simulated electrosensory
"super afferent" spike trains and can successfully infer the fixed Poisson parameter, or
the equivalent real world state, distance to a source (chapter 5). The circuit obtained by
converting the mathematical model to a network structure bears a striking resemblance to
the cerebellar-like hindbrain circuits of the dorsal octavolateral nucleus. Electroreceptors
share developmental and anatomical similarities with the other senses derived from hair
cells such as vestibular, lateral line and auditory systems [Bodznick & Montgomery, 2005].
These similarities extend to the central projections and central processing of information
in cerebellar-like circuitry [Bodznick & Montgomery, 2005].

The elasmobranchs’ ability to sense electric fields down to a limit imposed by ther-
modynamics seems extraordinary. However we predict that the theories presented here
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generalize to other sensory systems, particularly the other octavolateralis senses which
share cerebellar-like circuitry, suggesting that the cerebellum itself also plays a role in
dynamic state estimation.

6.4 Limitations of models

Some aspects of our modelling are obviously oversimplified when put in the specific context
of the elasmobranch electroreception.

First, the main shortcoming of our FEM modelling approach is that simulations were
conducted using either two dimensions or a geometrically simplified shark model. These
models still advance knowledge of how the morphology and electrical properties of shark
tissues alter the stimulus received by electrosensors, as previous models either neglect the
presence of the body or have even less realistic geometries. Our analysis consisted of a
series of snapshots of shark behaviour rotating in a uniform electric field and approach
trajectories in the horizontal and vertical plane of a dipole. The model could simply be
extended to analyse trajectories at a finer temporal resolution. However, shark behaviour
is much more complex than our simplified analysis. It would be of interest to model
the effect of body parts under more realistic behaviour, including head swaying and tail
bending, or match numerical models to video recordings of shark behaviour. It has been
suggested electroreceptors are limited to the head region of sharks to avoid the regions of
the body which undergo greater bending movements during swimming [Murray, 1974].

Second, our examination of afferent spike trains focussed on spontaneous activity, un-
der the assumption that this represents the limit of the dynamic case i.e. how afferents
respond to small signals. Theoretically, the approaches used for basic data analysis and
fitting of probability distributions can be extended to deal with counting processes involv-
ing history dependencies, or time varying rates [Pouzat & Chaffiol, 2009b], which would
be required for examining dynamic recordings.

Finally, we showed the neural circuitry associated with the electrosensory system
is capable of performing quasi-stationary, one-dimensional inferences, however this is a
special case that is not relevant to other senses, or electroreception in extant animals
[Paulin, 2015]. The evolution of agility means that bioelectric fields vary both spatially
and temporally, depending on the configuration of both predator and prey. Extending this
to the more realistic dynamic case would allow for the examination of several predictions,
relating to the systematic relationship between neural circuitry components [Paulin, 2015].

This research highlighted that the interactions between the shark, environment and
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brain are rather complex and can be difficult to model, even if many of the details are
known. Which perhaps makes the hyperacuity of the elasmobranchs’ electric sense even
more remarkable, given that dogfish appear capable of performing inferences in brains
weighing <4 g [Northcutt, 1977] and drawing only microwatts of power.

6.5 Future directions

Several interesting lines of research stem from our current models.

• Provide a better approximation of voltage drop distortions that result from the
shark’s presence in an electric field. This area could benefit from additional experi-
mental data. Ideally, simultaneous video recording of sharks’ trajectories in 3D and
measurements of the electric field in the water surrounding the shark would allow a
better analysis of the accuracy of 2D and geometrically simplified 3D FEM models.

• Additionally, video recordings would provide a framework to model the effect of
body parts under more realistic behaviour, including head swaying and tail bending.
This would be relatively simple to implement in 2D models but 3D geometries were
more difficult to manipulate and mesh in COMSOL.

• The inclusion of voltage sources such as the sharks’ own bioelectric field, as well as
other sources of self-noise, would allow more detailed comparison of the adaptive
filter vs Bayesian inference frameworks.

• Here we focussed on the voltage drops over entire electrosensory array and how the
body scale pre-receptor mechanisms impact the stimulus received by electrosensors.
The morphological and electrical properties of the canal itself and the receptor cells
therein also likely effect the stimulus received by individual ampullae. It would be
interesting to implement individual ampullae FEM models to examine this effect. In
particular, can we identify the function of the receptor cell cilium which interfaces
with the lumen of the ampulla proper?

• Examination of stimulus-response data from afferent neurons presented with weak
electrical stimuli to determine if the censored Poisson distributions are indeed ca-
pable of fitting afferent spike train dynamics.

• Examination of ascending efferent neuron responses to determine if central conver-
gence of afferents does result in a "super afferent" delivering a Poisson sample to
the brain.
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• Extending the quasi-stationary, one-dimensional spiking neural particle filter to the
more realistic dynamic case.

• Investigation of other sensory systems using the Bayesian framework presented here,
particularly the other octavolateralis senses which share cerebellar-like circuitry, to
determine if the theories presented here generalize to other sensory systems.

The elasmobranchs’ ability to sense electric fields down to a limit imposed by thermo-
dynamics seems extraordinary. Operating at this limit, the efficiency of the elasmobranch
electrosense exceeds electronic sensing/computing technology by many orders of magni-
tude. We predict that the theories presented here generalize to other sensory systems, par-
ticularly the other octavolateralis senses which share cerebellar-like circuitry. Cerebellar-
like-circuitry is an evolutionary precursor of cerebellum, but much more tractable. Thus,
the elasmobranch electrosense provides a viable approach to understanding the cerebellum
and its role in dynamic state estimation.
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Appendix A

Electronic supplemental information

The following are available electronically on the DVD provided.

A.1 How to create models using the COMSOL GUI

A description and simple example of how to implement models via the COMSOL GUI.

A.2 How to generate .m files in COMSOL for use in

MATLAB

A description and simple example of how generate files in COMSOL for use in MATLAB.

A.3 High resolution pictures

Copies of COMSOL/MATLAB generated figures for high resolution viewing. Figures are
arranged by chapter and labelled by figure label. For captions see thesis text.

A.4 Spike train summaries

Basic data analysis and fitting of probability distributions to the spontaneous activity of
electrosensory primary afferents.
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Appendix B

Ex-Wald model of vestibular afferent

discharge

Our results show that spontaneous activity in electrosensory afferent neurons can be
accurately modelled as inverse Gaussian-censored Poisson processes. The same result has
been found in mammalian vestibular semicircular canal afferent neurons, which exhibit
greater heterogeneity in ISI distributions than skate electrosensory afferents.

This paper, in preparation, demonstrates that vestibular afferents can also be accu-
rately modelled as inverse Gaussian-censored Poisson processes and discusses the impli-
cations of these distributions for models of neural computation.

The fact that one model has been found to fit octavolateralis neuron firing patterns on
two distinct branches of the vertebrate phylogenetic tree, elasmobranch electroreception
(thesis) and mammalian vestibular system (here), suggests that the model may extend
to all vertebrate octavolateralis senses.
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is an efficient way to transmit high-acuity data for Bayesian inference. 
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Abstract 

Models of neural computation for Bayesian inference require modelling sense data as 

samples drawn from probability distributions whose parameters are variables of interest to 

the observer.  We recorded spontaneous spiking activity of vestibular semicircular canal 

afferent neurons in chinchillas. Statistical model identification showed that firing patterns of 

these neurons can be described by an effectively two-parameter family of censored Poisson 

processes, whose inter-spike interval distributions are a convolution of an exponential and an 

inverse Gaussian distribution.  Model analysis suggests that the Poisson parameter 

corresponds to a high bandwidth signal that may contain information about head state, while 

the inverse Gaussian represents post-spike inhibition that censors the Poisson process and 

improves energy efficiency. Central neurons receiving such spike trains could continuously 

compute the posterior density of the Poisson parameter by exploiting a natural 

correpondence between the dynamics of neuronal membrane potentials and the likelihood 

function for sequential inference from a Poisson process. We conclude that the seemingly 

inefficient, noisy, heterogeneous, distributed functional organization of the vestibular nerve is 

a fast, efficient way to transmit high-acuity, high-bandwidth information in a form that would 

permit central vestibular neurons to quickly, simply and efficiently compute Bayesian 

posterior probability distributions of state variables that quantify head orientation and 

movements. 

181



 

 

Introduction 

Bayesian inference requires a model of the observed system and the measurement process 

in the form of a probability distribution parameterised by variables of interest to the observer 

(Gelman et al., 2013).  In Bayesian neural models, sense data are treated as samples drawn 

from the measurement distribution, and the brain infers the posterior distribution of 

parameters from the samples (Berniker & Kording, 2011; Doya, 2007; Knill & Pouget, 2004; 

Kording, 2014).   Statistically optimal decisions and control actions require computing 

Bayesian posterior distributions of variables that affect outcomes of the decisions and actions 

(J. O. Berger, 1985; Kording & Wolpert, 2004, 2006), implying that evolution should select 

nervous systems to compute Bayesian posteriors of such variables if there is a way that they 

could do it (K. Friston, 2010, 2012; Levy, 2006).  A growing body of evidence indicates that 

nervous systems can, and do perform Bayesian inference (Chater, Oaksford, Hahn, & Heit, 

2010; Colombo & Series, 2012; De Ridder, Vanneste, & Freeman, 2014; Kording, 2014; 

O'Reilly, Jbabdi, & Behrens, 2012; Trimmer et al., 2011).  Developing appropriate statistical 

models of sensory inputs to the brain is a prerequisite for testing whether brains compute 

Bayesian posteriors from sense data, and for determining how they do it. 

The vestibular system, which monitors head orientation and movement in vertebrates, 

provides a convenient, low-dimensional model system.  Each semicircular canal of the 

vestibular apparatus isolates a single degree of freedom of head movement, rotation around 

the canal axis, and transmits spike trains to the brain on a dedicated branch of the vestibular 

nerve (J. M. Goldberg et al., 2012).  Spiking acitivity on an individual canal branch can be 

parameterized by a single state variable such as angular velocity. The situation can be 

further simplified by considering spontaneous activity which occurs while the head is 

stationary.  This special case is very simple yet biologically relevant, because it corresponds 

to important behavioural and clinical issues of postural stability and perceptual threshold 

sensitivity in the vestibular system (Karmali, Chaudhuri, Yi, & Merfeld, 2016; Merfeld, 2011; 

Rey et al., 2016).   

Canal branches of the vestibular nerve each contain large populations of neurons with 

heterogeneous stochastic spiking behaviour (J. M. Goldberg, 2000; J. M. Goldberg & 

Fernandez, 1971; J. M. Goldberg, Smith, & Fernandez, 1984; Honrubia, Hoffman, Sitko, & 

Schwartz, 1989; Oleary, Dunn, & Honrubia, 1974; Sadeghi, Chacron, Taylor, & Cullen, 

2007).   Some neurons fire rapidly and regularly with approximately Gaussian inter-spike 

interval variability.  Others fire slowly and irregularly with approximately Poisson variability.  

B. EX-WALD MODEL OF VESTIBULAR AFFERENT DISCHARGE
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There is a range of different behaviours between these extremes.  Similar functional 

organization has been found in the vestibular nerve of different species from fish to primates 

(Boyle & Highstein, 1990; Brontestewart & Lisberger, 1994; Honrubia, Sitko, Kimm, Betts, & 

Schwartz, 1981; Oleary & Honrubia, 1976), but it remains unclear why the nerve is organized 

this way.  On the face of it, the observed pattern of organization is very inefficient.  A signal 

representing a single degree of freedom of motion, with a bandwidth in the order of tens of 

Hz (Carriot, Jamali, Chacron, & Cullen, 2014; Cromwell, Newton, & Carlton, 2001; 

Grossman, Leigh, Abel, Lanska, & Thurston, 1988; Li, Paulin, Smith, Hullar, & Hoffman, 

2016), should easily be carried by a single neuron firing a few tens of spikes per second 

(Kass, Eden, & Brown, 2014). At most a few neurons each firing a few spikes per second 

should provide sufficient channel capacity to transmit information about head rotation around 

one axis.   But in mammals, each semicircular canal nerve branch contains thousands of 

afferent neurons, and transmits in the order of a hundred thousand spikes per second, even 

when the head is not moving (Baird, Desmadryl, Fernandez, & Goldberg, 1988; Hoffman & 

Honrubia, 2002; Honrubia, Kuruvilla, Eichel, & Mamikunian, 1987).  This apparent excess 

capacity, by a factor of at least three orders of magnitude, is somewhat surprising, given that 

the high energetic cost of spiking appears to have been a strong constraint on nervous 

system evolution (Isler, 2013; Monk, Paulin, & Green, 2015; Niven & Laughlin, 2008).   The 

high level of randomness or noise in many vestibular neurons is particularly puzzling.   

Transmitting noise uses energy but, by definition, does not provide information. We might 

therefore expect evolution to have selected afferents to be as regular as possible, with small 

coefficients of variation (CV) and high signal-to-noise ratios (SNR).  Such neurons are 

possible, because they exist in vestibular nerves of all species (J. M. Goldberg et al., 2012). 

But then why aren’t all vestibular afferent neurons as regular as possible?  In particular, why 

do some of them have highly irregular, Poisson-like firing statistics?  Poisson variability 

implies that spike times are as random as possible given the constraint that spiking is 

parameterized by the stimulus (Landolt & Correia, 1978; Softky, 1995). If such neurons 

encode stimulus parameters in firing rate then they are not merely inefficient, they are as 

inefficient as they could possibly be. 

Semicircular canal afferent neuron firing activity has previously been modelled using linear 

transfer functions that map head angular velocity to instantaneous firing rate (Baird et al., 

1988; Cullen, 2012; J. M. Goldberg et al., 2012; Oleary & Honrubia, 1976).   Using such 

models the posterior distribution of head angular velocity could be computed by a Kalman 

filter, which is a Bayesian state estimator for linear dynamical systems (Haykin, 2001; Liu & 

Chen, 1998; Schiff, 2009).  Behavioural and comparative evidence suggests that there is a 
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neural analog of a Kalman filter in the vestibulo-cerebellar brainstem, the central target of 

vestibular sensory neurons (Bastian, 2011; Bell, Han, & Sawtell, 2008; Herzfeld & Shadmehr, 

2014; Manto et al., 2012; Miall, Christensen, Cain, & Stanley, 2007; Miall & King, 2008; 

Molinari, Restuccia, & Leggio, 2009; Nixon & Passingham, 2001; Paulin, 1993; Selva & 

Oman, 2012). This is a particular example of the Bayesian brain hypothesis, which predicts 

that sense data will be transformed into a representation of the posterior distribution of  

relevant causal variables at an early stage of sensory processing (Kording, 2014; Kording et 

al., 2007; Orbán & Wolpert, 2011; Wolpert, 2007).  However, it is not plausible that the 

vestibulo-cerebellum implements the Kalman filter algorithm.  It requires algebraic operations 

not naturally suited to neuronal implementation, and does not generalize to nonlinear 

dynamical state estimation problems that nervous systems of agile animals would appear to 

be able to solve with ease.   

Proposed algorithms for statistical computation in nervous systems often assume that 

incoming sensory spike trains have Poisson statistics (J. M. Beck et al., 2008; Brown, Frank, 

Tang, Quirk, & Wilson, 1998; Deneve, 2008; Huang & Rao, 2016; Lehky, 2010; Ma, 2010; 

Zemel, Dayan, & Pouget, 1998). This is a general simplifying assumption for inference from 

point processes (Kass et al., 2014; Landolt & Correia, 1978), which may be particularly 

germane for Bayesian models of neural computation for dynamical state estimation. The 

likelihood function for sequential Bayesian inference from a Poisson process is an 

exponential decay function of time between events (Koyama, Eden, Brown, & Kass, 2010) 

(See Methods).  Neuronal membranes, whose electrical potential decays exponentially 

towards resting potential between synaptic input events (Koch & Segev, 1989), are natural 

computers for evaluating these likelihoods.   The consequent advantages of Poisson data for 

statistical computation in the central nervous system could explain why peripheral neurons 

might transmit data in what seems to be a very inefficient form.  Central neurons vastly 

outnumber sensory afferent neurons, and higher efficiency in central computation would 

greatly outweigh lower efficiency in data acquisition.   

Canal afferent spike trains are generally more regular than expected for Poisson processes 

and most do not have the exponential inter-spike interval distributions that characterise 

Poisson processes (J. M. Goldberg, 2000; J. M. Goldberg & Holt, 2013; Sadeghi et al., 

2007).  However, as in other sensory systems, vestibular afferent neurons form parallel 

channels that converge onto central target neurons (J. M. Goldberg, 2000; Straka & 

Dieringer, 2000; Straka, Holler, & Goto, 2002). Parallel organization of spiking 

communication channels has energetic advantages that are optimized when sub-channels 
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are more regular than Poisson processes (Balasubramanian, 2015; T. Berger & Levy, 2010; 

Sengupta & Stemmler, 2014).  Because sums of stochastic point processes converge to 

Poisson processes (Arratia, Goldstein, & Gordon, 1990; Chen, 1975), convergence of 

afferent axons onto central targets means that events arriving at central target neurons could 

have Poisson statistics, with the requisite exponential inter-spike interval distribution, even if 

spike trains transmitted by individual sensory afferent axons do not.  

We hypothesized that the curious and seemingly inefficient statistical organization of spiking 

activity in the vestibular nerve may reflect the inevitability of statistical noise in high-precision 

measurements, coupled to a trade-off between the energetic advantages of regular firing in 

parallel channels for transmitting spikes to the brain and the advantages of Poisson data for 

Bayesian neural computation.   The aim of this investigation is to model vestibular sense 

data in a way that allows this hypothesis to be tested, and to provide an empirical foundation 

for testable models of neural mechanisms for Bayesian inference in the brain. 

 

Methods 

All procedures involving animals were approved by the UCLA Chancellor’s Animal Research 

Committee. 

Single afferent electrophysiology 

• Anesthesia with sodium pentobarbital; heart, respiratory rates, and O2 saturation were 

monitored; core temperature maintained at 38.5°C; 

• superior vestibular nerve exposed medial to ampullae; 

• individual afferents recorded for spontaneous and rotation evoked discharge using 

standard methods. 

Spiketrain analyses 

• The data used for this investigation came from the database maintained in the laboratory, 

representing primarily 20 second epochs of spontaneous discharge from afferents 

projecting from the horizontal and superior semicircular canal cristae. 

• Afferents were distinguished by epithelia of origin by response phase relative to turntable 

kinematics (i.e. recording from the superior vestibular nerve of the right labyrinth). 
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• Spiketimes were determined using custom Matlab scripts (MGP) and basic interspike 

interval statistics determined. 

• Distributions of interspike intervals (ISI) for each afferent were fitted to two different 

models the maximum likelihood criterion between model and data, using MATLAB.  

Intervals that were isolated, either much smaller or much larger than intervals in the main 

lobe of the distribution, were considered outliers and deleted.  After fitting, intervals with 

very low probability according to the model were considered to be additional outliers and 

were also deleted.  The model was then re-fitted. 

• One model is an offset gamma distribution (OSG). A gamma distribution is the waiting 

time for a certain number of events in a Poisson process.  It has a shape parameter, k = 

number of events, and a scale parameter, theta = Poisson intensity. A gamma is 

exponential for k = 1, converging towards a Gaussian as k gets larger.   Shapes of 

empirical ISI distributions resemble those of gamma distributions, but it is necessary to 

include an additional fixed waiting time in each interval in order for the OSG model to fit 

the observations.  This offset is a fixed parameter, not a random variable.  Realism would 

require any mechanism that implemented this model to contain a precise clock. 

• The other model is a gamma-censored Poisson (GCP) distribution. In this model the ISI 

distribution is exponential, the ISI distribution of a Poisson process, that is left-censored 

using a gamma process. The gamma process acts as a `gate’, blocking the production of 

the next spike in the Poisson process until an event occurs in the gamma process.  For 

example the Poisson events could be generated by a noisy signal crossing a threshold, 

but the threshold trigger could be de-activated after a spike and require a certain number 

of random events (e.g. molecules binding to a receptor) before it is re-activated.  Thus 

threshold crossings occur, but do not generate spikes, during a refractory period. The 

gamma distribution of the refractory period gives a gamma-like shape to the ISI 

distribution, which is a convolution of a gamma and an exponential. 

 

Results 

1. Identifying a model of spiking activity in canal afferents 

Inter-spike interval (ISI) histograms of three spike trains illustrating typical ISI distributions in 

the data are displayed in three sub-plots of figure 1(a).  The spike trains had mean intervals 

13.1 ms, 16.7ms and 32.5ms, with corresponding mean rates 76.3, 59.9 and 30.8 
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spikes/second and coefficients of variation (CV) 0.038, 0.28 and 0.52 respectively.  CV is a 

dimensionless measure of regularity, whose expected value is 1 for an irregular Poisson 

process and 0 for a perfectly regular process with equal intervals.  Observed ISI distributions 

range from narrow, nearly-symmetric and Gaussian-like in units that fire rapidly and 

regularly, like the unit on the left, to broad, positively skewed and exponential-like in units 

that fire more slowly and irregularly, like the one on the right.  The center sub-plot shows an 

intermediate form.  Axes have been scaled to fit the shape of each ISI distribution. In reality, 

the distributions vary from tall and thin to short and wide, as indicated by the inset in the left 

sub-plot,  showing the three distributions overlaid on the same scale with a common aspect 

ratio.  

Figure 1(b) is a scatterplot of mean ISI versus CV for all neurons.  It shows that fast, regular 

units are more common than slow, irregular units.  This scatterplot closely resembles 

previously published plots of similar data in a variety of species (refs), indicating that our 

sample is representative of activity in the nerve and reflects a common statistical pattern that 

has been observed previously not only in chinchillas but in a range of other species. 

 

Figure 1:  GIG-censored poisson model characterises heterogeneity in afferent firing 

statistics. (a) Spontaneous inter-spike interval (ISI) distributions of three representative units: 

i -  regular, ii - intermediate and iii - irregular.  Best fitting gamma censored Poisson models 

are overlaid on the empirical histograms. Inset in i shows models overlaid with common 

aspect ratio. (b) Scatterplot of mean ISI versus coefficient of variation (CV) for all units.  

Points corresponding to the three representative units are indicated.  Note the concentration 

of very regular units and relatively few units near the line CV = 1 which corresponds to a 
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Poisson process.  (c) Same three units with exwald model overlaid. The exwald model 

decomposes into an exponential and a Wald (inverse Gaussian) distribution. Note that the 

exponential components of the three units are very different but the Wald components are 

relatively similar.  (d) Goodness of fit. KLD  measures how much further away the specified 

model is from the empirical distribution, measured by Kullback-Liebler divergence, relative to 

the exwald model for all units (mean ± SEM).  The models are gamma (GAM), Wald or 

inverse Gaussian (ING), Birnbaum-Saunders (BBS), offset Gamma (OSG), offset inverse 

Gaussian (OIG), offset Birnbaum-Saunders (OBS), gamma censored Poisson (GCP), 

exponential Birnbaum-Saunders (EBS) and exponential Gaussian (EXG).  Exwald is the best 

fitting model overall, corresponding to the line KLD  = 0. 

During initial exploratory data analysis we considered a number of candidate models to fit the 

observed ISI distributions. Candidates must be approximately Gaussian in some region of 

their parameter space and become positively skewed elsewhere. Many probability 

distributions satisfy the first condition because of the Central Limit Theorem, and many also 

satisfy the second.  Among initial candidates, the Weibull and log-normal distributions turned 

out to have very large fitting errors relative to other models’. Inspecting plots of fitted models 

showed that Weibull and log-normal distributions differ qualitatively in shape from the data 

distributions.  Because including these models would cloud the analysis of subtler differences 

between other candidate models, we do not discuss them further.  

Data exploration identified three suitable candidate models: The  gamma, inverse Gaussian 

and Birnbaum-Saunders distributions. These distributions have all been used previously to 

model neuronal inter-spike interval distributions (Barbieri, Quirk, Frank, Wilson, & Brown, 

2001; Heil, Neubauer, Irvine, & Brown, 2007; Iyengar & Liao, 1997; Leiva et al., 2015).  They 

are all members of the Generalized inverse Gaussian (GIG) family (Xing, Berger, Sungkar, & 

Levy, 2015).   The GIG family are time-to-barrier distributions for drift-diffusion processes, or 

Brownian motion under a driving force.   The inverse Gaussian itself is the distribution of 

times taken for Brownian motion with constant drift to reach a fixed threshold.  The gamma 

and Birnbaum-Saunders distributions have simple special interpretations, as waiting times for 

a specified number of events in a Poisson process, and time-to-failure when Gaussian-sized 

defects accumulate, respectively.  Not only do these models contain members with shapes 

resembling the shapes observed in the data, they are each consistent with a generic 

biophysically realistic neuron model in which spiking results from a stochastic process that 

drives an internal state variable to a threshold, and is then reset (Xing et al., 2015).    
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Inspecting plots of fitted models overlaid on empirical ISI distributions indicated that fits for 

nearly all neurons for all three candidates could be substantially improved by including a 

time-shift parameter, which de-couples the shape of  the fitted distribution from its location 

along the time axis.  This introduces three new models: The offset gamma, offset inverse 

Gaussian and offset Birnbaum-Saunders distributions.   

The offset models all accurately fit not only the shapes but also the locations of empirical 

distributions. This is illustrated in figure 1(a) where the best fitting offset gamma model has 

been overlaid on each of the three example data distributions.  This model evidently fits each 

of these example distributions with high accuracy.  Quantitative analysis and inspection of 

plots shows that this holds true for all of the data. However, as will be seen below, the offset 

gamma turns out to be the poorest of the three offset GIG candidate models.   

Fitted offset gamma models have a mean offset of 7.0±4.6 ms (mean ± s.d.), fitted offset 

inverse Gaussian models have a mean offset of 2.8±6.0 ms, and fitted offset Birnbaum-

Saunders models have a mean offset of 3.2±5.8 ms. These offsets are symptomatic of a 

discrepancy between the GIG models and the data.  For any given neuron, the offset 

required to place a model with the best-fitting shape in the best-fitting location along the time 

axis is a fixed time period, typically large relative to the neuron’s inter-spike intervals.  

Realistic interpretation of such a model implies that each neuron has a precise internal clock, 

allowing it to wait for a specified time after a spike before initiating a GIG process that will 

trigger the following spike. This is not impossible, but it does seem implausible that neuronal 

inter-spike interval distributions would be generated by a combination of a timer with 

crystaline precision followed by a stochastic process with high variability.  Rather more 

problematically, a large proportion of fitted latencies are negative.  They are predictions, not 

delays.  Negative offset implies that a neuron must initiate the stochastic process that 

triggers each spike at a precise time before the random time at which the preceding spike will 

occur.  This violates causality. 

Vestibular neurophysiologists and modellers have established that spiking variability in 

vestibular afferent neurons is controlled by a post-spike inhibitory stochastic process, and 

that heterogeneity in spiking statistics, i.e. variations in inter-spike interval distributions 

across neurons, are controlled by differences in the parameters of that process (Kalluri, Xue, 

& Eatock, 2010; Smith & Goldberg, 1986).  We hypothesized that this post-spike inhibitory 

process, which dominates the shape of observed ISI distributions, generates refractory 

periods with a GIG distribution.  By censoring another stochastic process, this could account 
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for discrepancies between GIG models and data.  The simplest model consistent with the 

assumption that the censored process carries information about the stimulus is that it is a 

Poisson process.  Poisson processes arise naturally in simple physical processes (Basano & 

Ottonello, 1975) and are the generic limiting case when point processes are combined, 

analogous to the Gaussian limiting case when measurements of continuous variables are 

combined (Chen, 1975).   In the absence of specific information pointing to an alternative 

model, Poisson processes are the natural maximum entropy prior for point process inference 

(Jaynes & Bretthorst, 2003).  The correspondence between the likelihood function for 

sequential inference from a Poisson process and the dynamics of neuronal membrane 

potentials provides specific information favouring a Poisson process model of the 

observations in the case of neural computation.  Thus, having established that afferent ISI 

distributions are not Poisson processes, the argument that on empirical and theoretical 

grounds they ought to be Poisson processes still stands.  Our hypothesis is that semicircular 

canal afferent spiking does indeed contain a Poisson process, but it is hidden to varying 

degrees in different afferents by another process with a GIG distribution.   

The hypothesis that the observed sensory spike trains are Poisson processes censored by 

GIG processes introduces a further three models: Gamma censored Poisson, inverse 

Gaussian censored Poisson, and Birnbaum-Saunders censored Poisson distributions.  The 

inverse Gaussian censored Poisson has previously been called the exwald distribution 

(Schwarz, 2001).  We also considered a Gaussian censored Poisson model at this point. 

Gaussians are members of the GIG family, but were not considered initially because 

Gaussians are never skewed and the data distributions always are.  Gaussian censored 

Poisson distributions do have the general characteristics of the empirical distributions, 

forming a continuum of models ranging from Gaussian to Poisson, with a range of positively 

skewed intermediate forms.  

A GIG censored Poisson spike train is a Poisson spike train with random segments removed 

by blocking spike generation for a random interval after a spike occurs. Because the time to 

the next event in a Poisson process is independent of time since the last event, the time to 

the next spike at the end of post-spike inhibition has a Poisson distribution with the same 

parameter as the uncensored process.  Poisson processes have exponentially distributed 

intervals, and so the distribution of intervals in a GIG censored Poisson process is the 

distribution of the sum of a GIG distributed and an exponentially distributed random variable. 

This is a convolution of the GIG and an exponential.   
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In total we now have ten candidate models:  Three GIG models, three offset GIG models and 

four GIG censored Poisson models, including the Gaussian censored Poisson.  Goodness of 

fit for all candidates is summarized in figure 1(d).  The inverse Gaussian censored Poisson or 

exwald distribution is the best candidate, having the smallest Kullback-Liebler divergence 

between data and model. The performance of other candidates is displayed in figure 1(d) by 

plotting the mean pairwise difference in K-L divergence between data and model, relative to 

the exwald distribution. The exwald model itself scores zero, with no variability, because it 

performs precisely as well as itself for every neuron, and is not shown on the plot.  Because 

our spike train datasets are large, thousands of spikes in most records, the picture remains 

essentially unchanged, and the conclusions are not affected, whether we use Kullback-

Liebler divergence, mean squared fitting error or the AIC statistic as a performance metric.   

Figure 1(d) shows that the offset GIG models all perform better than the corresponding 

naked GIG models.  The gamma censored Poisson and Birnbaum-Saunders censored 

Poisson models also out-perform their plain GIG counterparts, but they do not perform as 

well as the offset GIG models.  However, GIG censored Poisson models have a technical 

advantage over the offset models in that they do not require a physical mechanism that 

violates causality.  The exwald model out-performs every other model.  In this case, the 

censored Poisson model does not merely correct latency errors in the inverse Gaussian 

model, it also more accurately characterizes the observed shapes of ISI distributions.  The 

Gaussian censored Poisson model comes a close second to the exwald model.  This 

indicates that censoring distributions in the exwald model are all approximately Gaussian 

which, as will be seen below, is true.   

Figure 1C shows fitted exwald models for the units displayed in figure 1(a), together with the 

decomposition into inverse Gaussian and exponential components.  The Poisson 

components vary markedly between these neurons ( = 140s, 4.1ms and 19.0ms 

respectively), but the censoring components are all approximately Gaussian with similar 

location and shape parameters.  The ISI distribution of the most regular unit, on the left, 

closely resembles the censoring distribution.  This is because the Poisson component of this 

model has very short intervals relative to intervals in the censoring process. A spike is 

observed almost immediately after each refractory period, and therefore the distribution of 

intervals between spikes is largely determined by the distribution of refractory periods.  At the 

other extreme, the ISI distribution of the most irregular unit resembles the interval distribution 

of the uncensored Poisson component, but shifted to the right. This is because the Poisson 

component for this unit has long and highly variable intervals relative to refractory periods. 
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Post-spike inhibition in effect adds a small, relatively constant delay, shifting the distribution 

to the right while adding a small amount of additional variation.  Alternatively, the censoring 

process can be thought of as chopping a small segment from the left edge of the Poisson 

distribution. Either way the effect is the same, because the right tail of an exponential 

distribution is the same shape as the full distribution, shifted to the right.  

The censoring distributions for the three units in figure 1 are similar. The censoring process 

blocks spiking for about 13ms after each spike, plus or minus a millisecond or two.  The 

censoring distribution for the intermediate unit (figure 1C, ii) is broader, but also has a mean 

of about 13ms.  As will be seen in the following section, the intermediate example in this 

figure has an atypically broad censoring distribution.  It was chosen as an example because 

the broader censoring distribution makes it easier to visualize how the exwald distribution 

decomposes into an exponential and an inverse Gaussian or Wald distribution, and how the 

exwald model accounts for the location and shape of the data.   

In summary, the results presented in this section show that GIG censored Poisson processes 

are good models of spontaneous firing activity in chinchilla semicircular canal afferent 

neurons.  Given our data the exwald distribution is the best among candidates considered.   

2. Exwald model-based analysis of spiking patterns 

We parameterized the exwald model with three free parameters: ,  and . Two of these,  

and  are parameters of the inverse Gaussian or censoring component, while the third, , is 

the parameter of the censored Poisson process.  The inverse Gaussian is the distribution of 

times taken for Brownian motion with constant drift to reach a barrier.  With our 

parameterization,  is the mean time to reach the barrier,  is the reciprocal of the standard 

deviation of Brownian increments, and  is mean interval of the censored Poisson process.  

These parameters all have dimensions of time, and are reported in milliseconds. 
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Fig 2. Scatterplots of fitted parameters of the exwald model.  All three plots have the same 

square aspect ratio.  Lines are principal component axes.  (a) The mean  of censoring 

distributions is approximately 12ms, independent of the Poisson mean .  (b)  which 

characterises mean drift rate in the censoring process, is also independent of the parameter 

 which characterizes variability in the drift  (c) log  varies roughly in proportion to log, 

indicating a power law relationship between these parameters. 

Figure 2 shows log-log scatterplots of fitted parameters of the exwald model for all neurons.  

All axes are the same length and the plots have unit aspect ratio, which helps to visualize the 

three-dimensional structure of the parameter cloud.  It is a flat ellipsoid lying almost parallel 

to the log  - log  plane. Parameters   and  co-vary over four orders of magnitude, while  

varies independently over only about 0.1% of that range.  Principal component axes are 

overlaid on the data.  Linear relationships on these log-log plots are power laws in  

space.    

The first principal component (PC1) explains 91.67% of the variance in logged parameter 

values.  This component is in the direction ( -0.015, - 0.516, 0.856) in log   space.  It is 

almost entirely a combination of log  and log , mostly log .  The second principal 

component (PC2) explains 7.60% of the variance. It is in the direction (0.213, 0.835, 0.507). 

This is also predominantly a combination of log  and log , and is almost perpendicular to 

PC1 in the log  - log  plane. The remaining principal component (PC3) accounts for only 

0.74% of variance. It is in the direction (0.977, - 0.190, - 0.098), nearly parallel to the log  

axis.  
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This principal components analysis confirms the first impression provided by figure 2, that  

is effectively constant across the population, is independent of the other parameters, and has 

relatively small variance (Figure 2A, B).  It can therefore be modelled simply by using its 

estimated mean (12.19ms) and standard deviation (3.94ms).   

Almost all of the variation in firing behaviour among these neurons can be accounted for by  

and , which are strongly correlated.  Linear regression of log  as a function of log  gives a 

slope estimate of -0.54, meaning that  varies roughly in proportion to 1/√𝜏.  1/√𝜏.  This 

indicates that noise variance in the censoring process is coupled to the Poisson rate of the 

censored process.   

 

Figure 3: Exwald parameters and descriptive statistics. (a) CV as a function of mean 

interspike interval for all units.  Data as in figure 1(b), with curve showing cv for given mean 

ISI predicted by the exwald model.  (b) CV as a function of the Poisson parameter of the 

exwald model for all units.  Curve shows the cv for given  predicted by the exwald model.  

Vertical bar indicates the data discretization interval at 330S [remove?].  The plot shows 

that differences in spiking regularity are largely accounted for by differences in .  (c) For 

large , greater than the mean censoring interval at about 12ms, the mean ISI approaches , 

as expected for the uncensored Poisson process (dotted line).  For small  the mean ISI is 

constrained to approximate the mean of the censoring distribution.  Plots (b) and (c) show 

how the pattern seen in the traditional scatterplot (a) can be simplified and explained in terms 

of ‘hidden variables’ that are parameters of the exwald model. 

Figure 3 shows how the exwald model accounts for simple descriptive statistics - mean inter-

spike interval and CV, which have been used in the past to characterize heterogeneity in 

vestibular afferent spiking behaviour.  Figure 3A is a scatterplot of mean ISI versus CV, 

containing the same data as figure 1(b).  The curve drawn on this plot shows the expected 

CV for a neuron with a given mean ISI, computed from principal components.  We computed 
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model parameters on PC1 corresponding to a specified mean interval, then computed the 

CV of that model.  This figure shows that when we map from exwald model parameter space 

to the traditional space of descriptive statistics for spike trains, we obtain an elegant and 

novel characterization of the observed pattern that, unlike earlier characterizations (cf 

Goldberg fig), explains how the pattern could emerge from an underlying stochastic process 

model.  

The data plotted in figure 3B shows how the CV of a spike train co-varies with the Poisson 

parameter, , of the exwald model fitted to that spike train.  The overlaid curve is the 

relationship predicted by the exwald model, the expected value of CV given a value of . 

There is a very strong relationship between these variables.  The figure shows that most of 

the variation in firing regularity among these neurons can be explained by variation in , as 

anticipated from the principal components analysis.  This indicates that  may be preferable 

to CV or CV* as a descriptive statistic for quantifying firing regularity of vestibular afferent 

neurons.  CV and CV* describe the behaviour, but  describes the behaviour while 

connecting it to an underlying stochastic process model that characterizes how the behaviour 

is generated.  

Figure 3B also shows that some neurons - the fastest and most regular ones - transmit 

information about astonishingly fast processes, down to about 10 microsecond intervals 

between events.  A Bayesian observer could infer rates of these very fast processes, up to 

about 100KHz, by estimating  from afferent spike trains, even though the afferent firing rates 

are about a thousand times slower than that, at less than 100Hz.  It is undeniably possible to 

estimate from such data, because we just did.   

The vertical line at about 0.3ms in figure 3B indicates the sampling interval used for digitizing 

spike time data, corresponding to a sample rate of 3KHz.  We had expected this to be fast 

relative to timescales in the data, and were surprised to find a parameter with the dimensions 

of time and values as small as about 100 microseconds for some neurons.  We carried out 

simulation studies, drawing samples from exwald distributions and fitting exwald models to 

the samples, to check whether fitted parameters are close to true parameters when samples 

come from a known model, and whether quantization during data acquisition might bias fitted 

model parameters.  The answers are yes, and no.  In particular, the unexpectedly small 

values of  found in some neurons do not appear to be artifacts of data quantization or the 

fitting procedure. 

195



 

 

The relationship between mean interval and CV of intervals in vestibular afferent spike trains 

can be further unpacked by looking at the mean inter-spike interval as a function of  as 

shown in figure 3C.  The dotted line on the right of this plot corresponds to where  is equal 

to the mean ISI, which is where the data would lie if the spike trains were Poisson processes.  

The horizontal line shows the mean censoring interval, and the curve shows the exwald 

model-predicted mean ISI for a specified .  On the right, spiking is more Poisson-like as  

becomes large relative to , because typical interval lengths in the Poisson process are long 

relative to censoring intervals, and the censoring has relatively less effect.  On the left,  

becomes small relative , intervals in the Poisson process become negligible relative to 

censoring intervals, and the inter-spike interval distribution approaches that of the censoring 

process.    

 

Fig 4: Map of ISI distributions in the  parameter plane of the exwald model. This plane 

accounts for more than 99% of between-neuron variability in spontaneous firing patterns.  

The first principle component alone accounts for more than 90% of the variability.  ISI 

distributions in the map have been scaled to the same height. Inset shows the true change in 
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shape along the first principle axis, at four points equally spaced between the circles marked 

on the axis.    Dashed polygon is the convex hull enclosing the fitted parameters () for all 

neurons in our sample (c.f. figure 2(c)). 

Figure 4 shows a map of ISI distributions in the log  plane of exwald parameter space.  

This plane, which is very nearly parallel to the PC1-PC2 plane, accounts for almost all 

(99.26%) of the variation in spiking behaviour between neurons.   The dashed line shows the 

convex hull of fitted points, defining the boundary of parameter values found in the sample.  

Exwald distributions are drawn on a grid aligned with the principal component axes. Each 

distribution is drawn with a time axis on which t=0 is located at the point in parameter space 

corresponding to that distribution.  Distributions are scaled vertically, so that they are all the 

same height in the map, for the same reason that the three sub-plots in figure 1A were 

individually scaled, i.e. differences in real shapes across the map are so extreme that it is 

very difficult to visualize the shapes as well as differences between shapes on a single plot 

using the same aspect ratio.  The inset (lower left) shows the true range of shape changes 

along the PC1 axis between the two points marked with open circles, showing that in reality 

the ISI distributions of the most regular units are so tall and narrow and the distributions of 

the least regular units are so short and wide that when they are plotted together with the 

same aspect ratio it is difficult to see the shape of either of them.  

The map illustrates that heterogeneity in firing behavior among chinchilla semicircular canal 

afferent neurons is almost fully accounted for (>99%) by just two parameters,  and .  These 

parameters are strongly corrrelated, such that a single parameter, PC1, which is a linear 

combination of them, accounts for most of the pattern (>91%).  Towards the upper left of the 

map, where the first principle axis crosses the boundary of the data cloud, distributions are 

tall, narrow and symmetric. Neurons in this part of the map fire rapidly and regularly with 

mean rate near 1/.  As we move along the first principal axis, ISI distributions become 

progressively flatter, wider and more positively skewed, representing neurons that fire slowly 

and irregularly with increasingly Poisson-like ISI distributions.  Shape changes along the 

second principal axis are less pronounced. The main effect along PC2 is that the leading 

edge of the ISI distribution becomes sharper, corresponding to less-variable refractory 

periods.  

Comparison of the map in figure 4 with the scatterplot in figure 2C shows that the cloud of 

parameter points is more concentrated near the first principal axis within the convex hull, so 

the map over-emphasizes the contribution of the second axis to shape variability.  The 
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pattern is quite well characterized by the first principle axis alone, which defines a continuum 

from narrow, sharply censored ISI distributions that have small positive skew to broad, less 

sharply-censored ISI distributions that have large positive skew. It also appears that the 

density of data points tends to increases in concert with regularity. That is, the more 

censoring that takes place at a given value of , the more neurons transmit a signal with that 

value of .  

 

Discussion 

Statistical model identification has shown here that generalized inverse GIG censored 

Poisson processes are accurate models of spontaneous firing activity of chinchilla 

semicircular canal afferent neurons.  The exwald, or inverse Gaussian censored Poisson 

distribution (Schwarz, 2001), is the best model among candidates that we considered.  GIG 

distributions have previously been used to model neuronal firing patterns, not only because 

they resemble inter-spike interval distributions of various kinds of neurons, but also because 

they emerge as interval statistics when a stochastic dynamic process evolves to a threshold 

state and is then reset, as occurs in neuronal spiking mechanisms (T. Berger, Levy, & Jie, 

2011; Iyengar & Liao, 1997).  Our results show that spontaneous inter-spike intervals of 

chinchilla semicircular canal afferent neurons are approximately GIG-distributed, but they 

differ systematically from GIG distributions and are more accurately represented by a 

convolution of an inverse Gaussian distribution with an exponential distribution. 

Descriptive statistics and plots indicate that our data is qualitatively and quantitatively similar 

to previously published data from vestibular neurons, not only from chinchillas but also from 

other species, indicating that our results are likely to hold for vertebrate vestibular afferent 

neurons in general.  Because a spike train can be fully reconstructed from its inter-spike 

intervals, a statistical model of intervals between spikes is a complete statistical model of a 

spike train.   We have only considered spontaneous firing activity, so it remains to be seen 

whether and how the exwald model may generalize to driven or dynamic responses of 

vestibular afferent neurons.  However, spontaneous activity is the low-signal limit of the 

general dynamical case, and so it follows that the exwald model must be accurate for small 

signals. There is merely a question about how small is “small”.  

The small-signal regime is clinically and behaviourally significant, because postural stability 

and motor agility, especially in large bipeds with long muscle-activation delays like ourselves, 

requires measuring small forces and accelerations quickly and accurately.   The transduction 
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mechanism of vestibular hair cells has a very small dynamic range and adapts very rapidly 

(Eatock & Songer, 2011; Gillespie & Müller, 2009; Howard, Roberts, & Hudspeth, 1988). This 

means that even during large, fast head movements, these receptor cells are in fact 

responding to small changes in head acceleration.  Because of this, and because a time-

varying or inhomogenous Poisson process is itself a Poisson process (Kass et al., 2014), it is 

plausible that the exwald model may account not only for spontaneous activity but also for 

driven activity of vestibular neurons. The simplest generalization of our results is to propose 

that each afferent neuron generates a spike train with an exwald distribution of intervals, 

whose time-varying parameters are functions of some kinematic state variable(s) of the 

head.  Given that the exwald model is a very accurate description when the head is 

stationary, continuity requires that any accurate statistical model of afferent firing must 

approach an exwald distribution for small head movements. Therefore the exwald model 

provides a foundation for and an empirical constraint on models of vestibular afferent firing 

during head movements.  

Heterogeneity of vestibular afferent spiking activity has previously been characterized using 

the CV* statistic, which was invented specifically for this purpose (J. M. Goldberg et al., 

1984).  CV* is a transformation of the coefficient of variation or CV, a dimensionless statistic 

that quantifies variability of a point process. It was introduced in vestibular spike train 

analysis in order to compensate for systematic changes in the CV of individual afferent 

neurons at different mean firing rates, providing a standardized measure of spiking variability 

that allows neurons with different firing rates to be compared on an equal footing.  Data from 

figure 2A in Goldberg (2000) (appendix?) shows that the standard deviation of inter-spike 

intervals in semicircular canal afferent neurons scales approximately as a 3/2 power-law 

function of the mean inter-spike interval. This is a characteristic of inverse Gaussian 

distributions.  CV* effectively transforms this power law structure out of descriptive statistics 

of vestibular afferent spiking variability.  In doing this it simplifies the statistical description of 

population spiking variability, as intended, but at the expense of concealing a clue to 

explaining that variability.  The 3/2 power law evident in Goldberg’s figure 2A indicates that 

semicircular canal afferent firing activity is approximately inverse Gaussian during stimulation 

over a wide dynamic range.  This is prima facie evidence that dynamic models of vestibular 

afferent responses may require little or no structural modification of the exwald model.  In 

retrospect, the data in Goldberg 1984 table 1 is even more revealing. That data indicates 

power-law scaling with an exponent near 3/2, characteristic of inverse Gaussian distributions, 

for units with highest mean firing rates, smoothly changing to an exponent near 1, 
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characteristic of exponential distributions, for units with the lowest mean firing rates.  The 

exwald model can explain this pattern in a very simple way.    

Our results indicate that energy efficiency may be an important determinant of functional 

anatomy in the vestibular nerve.   There is good evidence that energy efficiency is an 

important constraint on nervous system design (Faisal, White, & Laughlin, 2005; K. J. 

Friston, 2009; Laughlin, 2001, 2004; Laughlin, van Steveninck, & Anderson, 1998; Levy & 

Baxter, 1996; Niven & Laughlin, 2008; Xing et al., 2015).  Indeed in the context of evolving 

self-organizing thermodynamic structures, energy efficiency may be a global design criterion 

that defines attractors in the space of possible organisms (England, 2013, 2015).  The 

consequences of selection for energy efficiency may simply be more obvious in nervous 

systems than in other organ systems because neurons are much more energetically 

expensive than other cell types (Balasubramanian, 2015; Niven & Laughlin, 2008; Sengupta, 

Stemmler, & Friston, 2013).  A predicted consequence of evolutionary selection for energy 

efficiency is that nervous systems should perform Bayesian inference and be Bayes-optimal 

decision-makers (K. J. Friston, 2009; Levy, 2006; Schwartenbeck, FitzGerald, Dolan, & 

Friston, 2013). 

Neurons have a baseline energetic cost, and a cost per spike which increases faster than the 

rate of spiking (Alle, Roth, & Geiger, 2009; Balasubramanian, 2015; Laughlin, 2001; Lewis, 

Gilmour, Moorhead, Perry, & Markham, 2014; Sengupta & Stemmler, 2014).  As a 

consequence of this, individual neurons are most efficient at particular firing rates, and 

populations are most efficient when high-bandwidth signals are distributed across neurons so 

that individuals fire at these rates (Balasubramanian, 2015).  Analysis of information 

transmission and power consumption in spiking neuron models indicates that myelinated 

axons are most energetically efficient when they fire in the order of 100 spikes per second 

(D. H. Goldberg, Sripati, & Andreou, 2003), with generalized inverse Gaussian distributions 

of inter-spike intervals (T. Berger & Levy, 2010; Xing et al., 2015).  These results imply that 

the most efficient way to construct a high-capacity communication channel using myelinated 

axons, maximizing bits per joule while achieving a specified capacity in bits per second, is to 

employ many neurons each firing on average about 100 spikes per second with a 

generalized inverse Gaussian distribution of inter-spike intervals.  Our data and analysis 

shows that this is approximately true in semicircular canal branches of the vestibular nerve in 

chinchillas.   However, closer inspection revealed systematic deviations from GIG models, 

and statistical system identification showed that inter-spike interval distributions are more 
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accurately described by exwald distributions, which contain inverse Gaussians as a limiting 

case. 

The small but systematic mismatch between the exwald model fitted to data and predictions 

based on a theoretical model of neuron energetics (T. Berger & Levy, 2010; Xing et al., 

2015) suggests that there may be incorrect or missing assumptions in the model.  One 

possibility is that the analysis is correct, but only considers energy efficiency in the nerve and 

fails to take into account that evolution may select less efficient components if they make the 

organism more efficient.  Neurons themselves illustrate this point, since they are by far the 

most energetically expensive cell type, and yet evolution evidently deems them worth having 

at least in some organisms.  Neurons in the central nervous system vastly outnumber 

sensory afferent neurons, and therefore it may be energetically advantageous for sensory 

neurons to transmit data in a form that the central nervous system can process more 

efficiently, even if this makes the sensory neurons less efficient than they could be. Other 

things being equal, Bayesian inference is an efficiency that evolution ought to have 

discovered (K. J. Friston, 2009; Levy, 2006).   There is good evidence from psychophysical 

and behavioral studies indicating that nervous systems can and do perform Bayesian 

inference (De Ridder et al., 2014; de Xivry, Coppe, Blohm, & Lefevre, 2013; K. J. Friston, 

Samothrakis, & Montague, 2012; Kording, 2014; Lochmann & Deneve, 2011; Loeb & Fishel, 

2014; Pouget, Beck, Ma, & Latham, 2013).   

Sense data are provided in the form of stochastic point processes which on certain 

theoretical grounds we might expect to be Poisson processes.   Poisson processes arise 

naturally from simple mechanisms and as limiting cases of complex mechanisms, 

analogously to the way that normal distributions often emerge naturally in samples from 

continuous processes (Basano & Ottonello, 1975; Chen, 1975).  They are the simplest class 

of stochastic point processes, as measured for example by Jaynes’ principle of maximum 

entropy (Jaynes & Bretthorst, 2003).  Their simple structure means that inference from 

Poisson processes is relatively simple both analytically and computationally (Kass et al., 

2014; Koyama et al., 2010). It is surprising, and perhaps surprising that it is not better known, 

that neurons are natural computers for real-time inference from Poisson processes.  

Suppose that a spike occured at time t0 < t and no spikes have occurred since then.  If the 

posterior density of the Poisson parameter  at time t0 was 𝑓0(𝜏), then Bayes rule for the 

posterior density at a later time t is: 

𝑓(𝜏 | 𝑛𝑜 𝑠𝑝𝑖𝑘𝑒 𝑖𝑛 (𝑡0, 𝑡]) = 𝐴 𝑓( 𝑛𝑜 𝑠𝑝𝑖𝑘𝑒 𝑖𝑛 (𝑡0, 𝑡] | 𝜏) 𝑓0(𝜏)  (1) 
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Where 𝐴 = 𝐴(𝜏, 𝑡) is a normalizing factor which ensures that 𝑓(𝜏) is a probability density, i.e. 

it integrates to 1 over the range of .  If spiking is a Poisson process with mean interval  then 

the probability density of another spike following any spike decays exponentially with time 

constant . This defines the likelihood function for continuous inference from the process: 

              𝑓( 𝑛𝑜 𝑠𝑝𝑖𝑘𝑒 𝑖𝑛 (𝑡0, 𝑡] | 𝜏) =
1

𝜏
𝑒−(𝑡−𝑡0)/𝜏                          (2) 

Substituting the likelihood function (2) into Bayes rule (1) shows that the posterior density of  

at any point in the parameter space during inter-spike intervals is an exponential decay 

function of the density at the last data input spike time, adjusted by a normalizing factor.   

Neurons are natural computers for this operation because neuronal membrane potentials 

decay exponentially towards resting membrane potential if they receive no inputs.  The 

membrane potential therefore exactly tracks the likelihood.   

Normalization simply means that the total activity in a population of neurons performing the 

computation (1) must be regulated. Activity normalization is so common in populations of real 

neurons that it has been called a canonical operation in neural computation (J.M. Beck, 

Latham, & Pouget, 2011; Carandini & Heeger, 2012; Eliasmith & Martens, 2011; Louie, 

Khaw, & Glimcher, 2013).  Various computational models have been proposed and evidence 

indicates that normalization is implemented by different mechanisms in different parts of 

nervous systems of different animals (Carandini & Heeger, 2012).  In that case the problem 

for modelling mechanisms of inference in central vestibular pathways is not to determine 

whether neurons can evaluate expressions like (1), but to determine if and how central 

vestibular neurons actually do it. The exact correspondence between exponential likelihoods 

and the leaky integator dynamics of neuronal membranes evident in equations (1) and (2)  

indicates that there may be a strikingly simple way that a population of neurons in the 

vestibular brainstem could compute Bayesian posterior densities of variables that 

parameterize sensory spike trains, if those spike trains are samples from Poisson processes.   

Semicircular canal afferent spike trains are not samples from Poisson processes. We have 

shown, however, that they are random sub-samples of samples from Poisson processes.  

Each afferent spike train can be thought of as being constructed from an underlying Poisson 

process by extracting a spike then waiting for a random interval before extracting another.   If 

a group of neurons do this independently at random, sub-sampling from independent 

Poisson processes with a common parameter , then they can collectively represent a 

sample from a Poisson process with that parameter.  From equation (1), a neuron receiving 
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convergent inputs from the group could infer the Bayesian posterior density of  at a point.  A 

group of sensory afferent neurons converging to a secondary neuron can be thought of as a 

‘super-afferent’ that delivers a Poisson sample to the brain. The super-afferent delivers 

information more efficiently than a single afferent could, in a form that would allow neurons 

there to perform Bayesian inference in a simple, natural way.  This idea may explain the 

statistical organization of spiking activity in the vestibular nerve.  It makes the strong 

prediction that the collective activity of afferent neurons that converge onto a particular 

central target neuron will be a Poisson process, whose mean rate matches the membrane 

time constant of the target.  Target neuron dynamics are likely to be affected by the 

normalization operation, presumably implemented by diffuse feedforward and/or feedback 

pathways in the target population, and so testing this prediction may require a neural 

population model with some biophysical detail to account for this. 

The first thing a Bayesian must do with data is to compute the posterior distribution(s) of 

relevant variables.  Since the vestibular nerve transmits information about head orientation 

and movements to the vestibulo-cerebellum, this would suggest that the vestibulo-cerebellum 

may be a Bayesian dynamical estimator for kinematic state variables of the head.  This 

suggestion is consistent with various strands of circumstantial evidence indicating that there 

is a neural analog of a Kalman filter in the vestibulo-cerebellum (Paulin, 1989, 1993; Selva & 

Oman, 2012; Young, 2011; Young & Oman, 1969). The Kalman filter is an algorithm for real-

time Bayesian dynamical state estimation given samples from a linear Gaussian process 

(Haykin, 2001). It was the most general form of a Bayesian dynamical state estimator known 

until the modern development of random sample-based or MC inference algorithms 

(Bolviken, Acklam, Christophersen, & Stordal, 2001; Doucet, De Freitas, & Gordon, 2001; 

Gordon, Salmond, & Smith, 1993).  The idea that vestibulo-cerebellum is a generalized 

Kalman filter implemented by neurons is consistent with the broader hypothesis that the 

cerebellum is a general nonlinear dynamical state estimator.  The cerebellum is essential for 

motor agility and various other tasks that require dynamical prediction (Baumann et al., 2015; 

Paulin, 1993).   Agility requires predicting kinematics of the body and objects and agents in 

the environment as quickly and accurately as possible.  Real time  Bayesian inference is the 

gold standard for that task.  In animal interactions that involve power and agility it may be 

energetically favourable to employ bigger Bayesian brains than bigger muscles, despite the 

fact that gram-for-gram, spiking neurons are more energetically costly than active muscle 

cells (Balasubramanian, 2015; Rolfe & Brown, 1997).   This may explain why most neurons 

in the human brain are in the cerebellum (Itō, 1984).   
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In conclusion, the exwald model provides a potential solution to long-standing puzzles about 

statistical patterns of firing activity in the vestibular nerve.  It provides an empirical foundation 

not only for developing realistic biophysical models of how these patterns arise, but also for 

developing realistic models of neural computation for Bayesian inference, or whatever it is 

that all those neurons are doing in the cerebellum (Marr, 2010).    
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