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Abstract

Recently there has been an increasing interest in image segmentation due

to the needs of locating objects with high segmentation accuracy as re-

quired by many computer vision and image processing tasks. While image

segmentation remains a research challenge, ‘superpixel’ as the perceptual

meaningful grouping of pixels has become a popular concept and a number

of superpixel-based image segmentation algorithms have been proposed.

The goal of this thesis is to examine the state-of-the-art superpixel algo-

rithms and introduce new methods for achieving better image segmentation

outcome.

To improve the accuracy of superpixel-based segmentation, we propose a

colour covariance matrix-based segmentation algorithm (CCM). This al-

gorithm employs a novel colour covariance descriptor and a corresponding

similarity measure method. Moreover, based on the CCM algorithm, we

propose a multi-layer bipartite graph model (MBG-CCM) and a low-rank

representation technique based algorithm (LRR-CCM). In MBG-CCM, dif-

ferent superpixel descriptors are fused by a multi-layer bipartite graph, and

in LRR-CCM, the similarities of the covariance descriptors of the superpixel

are measured by the subspace structure. Besides, we develop a new over-

segmentation, called superpixel association, and propose a novel segmenta-

tion algorithm (SHST) which is able to generate hierarchical segmentation

from superpixel associations.

In addition to those unsupervised segmentation algorithms, we also ex-

plore the algorithms for supervised segmentation. We propose a model for

semantic segmentation, named ‘generalized puzzle game’, by which the seg-

mentation information contained in the superpixels can be integrated into

the supervised segmentation.
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Chapter 1

Introduction

1.1 Image segmentation

Image segmentation is the process of partitioning an image into several independent

regions that are supposed to be meaningful and semantically related (Wang et al.,

2013). For a human being, it is more like an inherent skill: the light comes into the eyes

and the brain instantly perceives objects, such as people, buildings, cars, or other things

that make up our real world. But in computer vision, things are completely different:

the lights go through the camera and what the computer “perceives” are some dots of

colour, namely, pixels. Unfortunately, such difference leads to a “semantic gap” (Liu

et al., 2007; Wu et al., 2012) between the human and computer visual experiences,

which has long frustrated the field of computer vision. Figure 1.1 is an example of

semantic gap in image processing. Converting the pixels into meaningful objects is

still a great challenge for researchers in this domain.

Figure 1.1: The semantic gap in computer vision.

Since the Gestalt movement in psychology (Wertheimer, 1938) pointed out that

perceptual grouping plays a critical role in human visual perception, researchers have
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turned to mathematical models that simulate this perceptual grouping behaviour. Ac-

cordingly, the digital representations of an image, such as colour and texture, are

regarded as low-level features since they are similar to the machine language, which is

designed for describing elementary and reproducible operations. And those semantic

image representations, such as contents in the image, or object-ontology (Liu et al.,

2007), are considered to be high-level features because they are more abstract and close

to the natural language. To that extent, the image segmentation is actually a clustering

problem in the view of data mining, which tends to group the points represented by

low-level features into a set of clusters that are associated with the high-level features.

Many segmentation techniques have been developed (Zhu et al., 2016). They are

usually divided into two categories: supervised segmentation and unsupervised seg-

mentation, based on the difference in their modeling approaches. For supervised seg-

mentation, the algorithm is designed in a top-down manner, which means, when given

a number of labelled images, the algorithm is able to learn the object descriptors from

the pixels belonging to the same object (Kontschieder et al., 2015). For the unsu-

pervised segmentation, the algorithm is designed under a bottom-up style, by which

the pixels are considered as one object if they are locally coherent (Ren and Malik,

2003). However, these two kinds of image segmentation methods are not mutually ex-

clusive. A few works show that the unsupervised segmentation is able to improve the

performance of supervised segmentation (Malisiewicz and Efros, Malisiewicz and Efros;

Kohli et al., 2009), because image cues contained in the unsupervised segmentations

are informative. And, the unsupervised segmentations can also get merits from the

supervised segmentations (Borenstein and Ullman, 2008; Fidler et al., 2013), because

the supervised segmentations provide the prior knowledge about the objects in the

image.

1.2 Superpixel

The concept of superpixel was first proposed by Ren and Malik (2003) as a preprocess-

ing stage for a two-class classification segmentation model. Essentially, superpixel is a

group of pixels in which the pixels are close to each other in some given feature space.

Usually, the superpixels can be obtained from the bottom-up segmentation algorithms

which are regarded as superpixel algorithms in some literatures. And, the output of a

superpixel algorithm is called superpixel segmentation, or superpixel representation. A

number of works have shown that superpixel segmentation is an effective and efficient
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representation of the image (Ding and Yilmaz, 2008; Wang et al., 2013; Fulkerson et al.,

2009; Li et al., 2012; Gould et al., 2014; Huang et al., 2016).

There are a few reasons for using superpixels instead of pixels in computer vision

applications. Firstly, even for an image at moderate resolution, the number of pixels

is tremendous, which makes the pixel-level operation intractable. But if the image is

represented by superpixels, the computational cost can drop down without too much

loss of image information because they are local and inherent, preserving the structure

needed for further segmentation.

Secondly, the pixels are not natural entities of an image but a consequence of the

discrete representation of an image. So, in the view of the perceptual grouping theory,

partitioning the image on a superpixel-level should be more likely to happen in real

human vision than directly using pixels.

Thirdly, from the pixel grouping principles (Wertheimer, 1938; Palmer, 1999), it has

been pointed out that proximity, similarity and continuation are critical for generating

proper segments. However, those properties are always enveloped by different low-level

features. For example, the similarity can be extracted from the colour space, while

the continuation are always inferred from texture features. So, a feature that contains

multiple low-level segmentation cues is preferred. Apparently, a superpixel is a richer

source than a single pixel when extracting such combined features.

Generally, the superpixel representation of an image is obtained via an unsuper-

vised segmentation, and as a pre-processing step in many real practice, the superpixel

representation is always set to over segment the image. Figure 1.2 demonstrates an

example of superpixel segmentations.

1.3 Challenges

The research in image segmentation has been carried out for years, and the researchers

have indeed gone a long way towards achieving robust, high-quality segmentations.

However, there are still several challenges facing the state of the art in this field.

The first challenge is to effectively link the semantic gap between low-level features

and high-level semantic. Hundreds of segmentation algorithms have been proposed to

implement pixel clustering and classification, which contains supervised and unsuper-

vised models, but it remains difficult to ensure the segmentation result with meaningful

partitions, especially for those unsupervised segmentation algorithms. Because even

with small variations in brightness, lighting and view, the low-level appearance of an

3



Figure 1.2: An example of superpixel segmentations: the upper row

is the original image and two human-annotated ground-truth segmen-

tations, the lower row is the example of suerpixel segmentations.

object will change drastically in different images. Although many descriptors have

been developed for extracting robust features, such as SIFT (Ng and Henikoff, 2003)

or HoG (Dalal and Triggs, 2005), there is still a long way to go for reducing the semantic

gap.

The second challenge is to produce accurate segmentation for images. As an

application-oriented task, accurate segmentation results may not be necessary in some

cases. But the demand for accurate segmentation is rising. For example, those im-

age/video processing applications that can automatically recognize the objects in pho-

tos are greatly required due to the popularity of mobile devices nowadays. Moreover,

a robust and accurate segmentation will also improve many traditional applications

such as object detection or content-based video coding (Liu et al., 2007; Huang et al.,

2011). The research in deep learning has pushed the accurate segmentation a large step

forward (LeCun et al., 2010), but to obtain a well-trained convolutional neural network

needs tremendous training samples, which may not be applicable in some cases. And

for unsupervised segmentation, researchers employed ensemble techniques to generate

robust and accurate segmentations (Li et al., 2012). Although many of them are able

to improve the accuracy of segmentations, we still lack knowledge about what kind

of feature is necessary for ensemble and how to effectively combine the features from

different feature spaces.

Finally, computational efficiency is another matter of concern. In the process of seg-

mentation, it is quite common to process large affinity matrices. A segmentation pro-
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cedure can become intractable because of the requirement for extremely large amounts

of memory or loops. This may impose a limitation on the size of images that can be

processed by the segmentation algorithms. Although the limitations may be solved

gradually by the persistent increase in computation power and storage capacity of

modern computers, the demand for efficient segmentation algorithms remains high.

For instance, in most mobile devices, the computational ability of the processors is still

limited.

1.4 Research objective

The research objective of the thesis is to develop superpixel-based techniques for image

segmentation that are able to cope with the challenges mentioned above. More specif-

ically, the goals are to study relevant issues and propose new methods for integrating

the superpixel segmentations into image segmentation process. The research mainly

focuses on the following questions:

• Can we develop an efficient descriptor for superpixels which is able to improve

the existing segmentation algorithms?

• Can we find some methods for combining the superpixel descriptors extracted

from different feature spaces?

• Is there any method that can improve the performance of the handcrafted super-

pixel descriptors?

• Is there a new method that can generate image segmentation with superpixels

more effectively than the state of the art?

• Can we make use of the image cues in superpixel segmentations to improve the

supervised segmentation?

1.5 Contributions

The main contributions of this dissertation include the following:

• Improving a state-of-the-art superpixel-based image segmentation algorithm by

– proposing a novel descriptor for superpixel that provides a strong texture

representation for the superpixels, and
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– finding a proper method for similarity measuring among the superpixels.

• Proposing a multi-layer bipartite graph model for combining superpixel descrip-

tors extracted from different feature spaces. This includes

– developing a multi-layer bipartite graph model, and

– proposing a algorithm for partitioning the multi-layer bipartite graph.

• Proposing a low-rank representation method for the covariance descriptors of

superpixel, which can improve the robustness of the algorithms that run with

covariance descriptors.

• Proposing a new superpixel-based image segmentation method by first proposing

a new type of primitive for image processing, namely, superpixel association, and

then developing a segmentation algorithm based on superpixel association.

• Developing a framework for integrating unsupervised segmentation into super-

vised segmentation, which is considered as a concept study but provides a very

promising direction for future research.

1.6 Organization of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 The Fundamentals

This chapter introduces the fundamentals of superpixel-based image segmenta-

tion. Details of algorithms for superpixel generation and ensemble segmentation

are discussed. And, the methods and data sets for evaluation are also elaborated

here. Furthermore, a general framework of our research is given.

• Chapter 3 Superpixel-based Segmentation with Covariance Matrix

In this chapter, we propose a novel covariance descriptor for superpixel and de-

velop an superpixel-based segmentation algorithm named CCM by integrating

the covariance descriptor into an ensemble segmentation method. Some parts in

this chapter have been published in Gu et al. (2014a).

• Chapter 4 Improving the Colour Covariance Matrix-based Segmenta-

tion with Subspace Representation
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In this chapter, we proposed a method for improving the performance of the

CCM algorithm, named MBG-CCM. In the MBG-CCM, we employ a multi-

layer bipartite graph to model the superpixel descriptors from different feature

spaces, and then a novel method is proposed for merging different features. Parts

of this chapter have been published in Gu et al. (2014b).

• Chapter 5 Low-rank Representation for Covariance Descriptor

In this chapter, we proposed a algorithm, called LRR-CCM. In LRR-CCM, a

low-rank representation method is developed for the covariance descriptors of

superpixel, which is able to remove the noises in the covariance descriptor set

and improve the robustness of the segmentation. Parts of this chapter have been

published in Gu and Purvis (2016).

• Chapter 6 Superpixel Association

In this chapter we proposed a new concept of over-segmentation, named super-

pixel association. Some properties of superpixel association are discussed and we

demonstrate that the superpixel association is more suitable to be the primitive

for further image processing. Besides, a segmentation algorithm based on the

superpixel associations is also proposed, which is able to produce hierarchical

segmentations in a tree structure. Parts of this chapter have been published

in Gu et al. (2016).

• Chapter 7 Semantic Segmentation with Unsupervised Segmentation

In this chapter, we propose a semantic segmentation framework, called general-

ized puzzle game, by which the unsupervised segmentations can be integrated

into the labelling process.

• Chapter 8 Conclusion and Future work

This chapter contains the conclusion drawn for the research carried out in this

dissertation, and some possible research directions for future work are also in-

cluded.
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Chapter 2

The Fundamentals

Image segmentation involves a wide range of disciplines in a broad sense, including

mathematics, psychology, computer science, and machine learning, etc., some of which

are far beyond the scope of this thesis. In this chapter, we concentrate on the funda-

mental techniques for this thesis, especially the algorithms for superpixel generation

and methods of ensemble clustering.

The chapter is organized as follows. Section 2.1, Section 2.2, and Section 2.3 are the

reviews of the image segmentation, superpixel algorithms, and ensemble segmentation

respectively. Section 2.4 and Section 2.5 are the introductions to the data sets and

the evaluation methods used in this thesis. In Section 2.6, we present our research

framework, and Section 2.7 is a summary of this chapter.

2.1 Basic approaches for image segmentation

The research about the working mechanisms of the perceptual grouping ability in hu-

man vision has been carried out for about eighty years. The study began with the work

by the scientists in cognitive science (Wertheimer, 1938), and the computer scientists

joined them in the late 1960s (Boden, 2006). Researchers are interested in simulating

the perceptual grouping ability by computers and keen on developing applications with

it, which makes image segmentation a classical topic in the field of computer vision. As

one of the basic operations in computer vision, image segmentation is considered to be

a process that partitions a natural image into some independent, meaningful regions,

for example, some particular objects or parts. However, the definition of the ‘meaning-

ful object’ is ambiguous; it can be the things, such as a person or a car, or, sky or sea.

More interestingly, even a combination of ‘objects’, sometimes, is also considered as
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one ‘object’. Figure 2.1 demonstrates an example. In the example, it is easy to notice

that the ways for partitioning mountain and sky are obviously different between the

human subjects, which means the perception of different people is not same. Thus, a

‘correct’ segmentation is hard to define, which makes the image segmentation not a

well-defined problem. Another difficulty in image segmentation is the methods for rep-

Figure 2.1: An example of blurring definitions of ‘object’. The upper

left is the original image, and the rest are human-annotated ground-

truth segmentations.

resenting ‘object’. In human vision, the ‘objects’ are perceived by the brain as words,

but in computers, they are a few sets of low-level features. To bridge this semantic gap

is still a challenge nowadays.

Fortunately, some pathways for developing segmentation algorithms can be found

from the research in human perception. The Gestalt theory and studies in cogni-

tion (Wertheimer, 1938; Hoffman and Singh, 1997) proposed a few principles of human

perception. For example, in human vision, elements similar in colour, shape, or spa-

tial position tend to be grouped together. Much research has been launched in the

field of image segmentation. The existing methods can be categorized into two major

categories: unsupervised methods and supervised methods. And for those supervised

methods, they can again be divided into semisupervised and fully supervised methods

based on how much supervision is involved.

For unsupervised segmentation, the pixels are grouped into non-overlapped regions

by their similarity over the low-level features (e.g., colours, textures) without any prior

knowledge about the image that is, there are no training examples. Therefore, they

carry out image segmentation by clustering the pixels with mixture models, mode
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shifting, or graph partitioning. We divide the conventional unsupervised methods into

two categories: the graph-based methods and the clustering-based methods (Zhu et al.,

2016).

The graph-based methods formulate an image as a graph G(V,E), where V is set

to be the pixels (or regions), E is the set of edges linking the vertices. Each edge

is associated with a weight, which reflects the similarities between the pixels (or re-

gions). The image is partitioned according to the optimization function defined on

the graph. There are a few graph-based methods that are commonly used in unsuper-

vised segmentation, which include the F-H method (Felzenszwalb and Huttenlocher,

2004), Normalize Cut (Shi and Malik, 2000), and Watershed (Vincent and Soille, 1991;

Couprie et al., 2009).

The clustering-based segmentation methods are developed on real analysis tech-

niques in data mining. Generally, they encode the pixels into a feature vector space,

and then run clustering in that space. These methods tend to partition image into small

regions because most low-level features are actually local statistics. There are some

popular clustering-based segmentation algorithms, which include K-means, Mixture of

Gaussian (Rao et al., 2009) and Mean Shift (Comaniciu and Meer, 2002; Vedaldi and

Soatto, 2008).

It is worth noting that most of the superpixel algorithms come from unsupervised

segmentation methods. In most cases, the superpixels can be generated directly by

tuning the parameters in the unsupervised algorithms, for example, adjusting the clus-

ter number in Normalized Cut. But there are also a few unsupervised algorithms

partitclarly proposed for superpixel generation, such as TurboPixel (Levinshtein et al.,

2009), Superpixel lattices (Moore et al., 2008) and SLIC (Achanta et al., 2012).

For supervised segmentation, the algorithms are designed for incorporating high-

level information as prior knowledge so that the ill-posed segmentation problem can

get a better definition.

In semisupervised methods, the prior knowledge is obtained under a framework of

interaction between human and machine, in which a few pixels in the given image are

labelled manually and then the algorithms adopt a self-training procedure to learn the

model parameters and conduct segmentation. The popular methods of semisupervised

segmentation include GrabCut (Rother et al., 2004) and OneCut (Tang et al., 2013).

In fully supervised methods, the algorithms train a segmentation model by extract-

ing knowledge about the objects from the given training samples, which generally are

well labelled, that is, all pixels are assigned to some object class labels. Based on dif-
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ferent applications, there are two major tasks in fully supervised segmentation: ‘object

proposals’ and ‘semantic segmentation’ (Zhu et al., 2016).

The first one seeks to locate the objects with regions that have high probabilities

to cover the objects. And, the algorithms generally often employ a few bounding box

detectors for generating the region candidates and select the optimal by some trained

classifiers, such as SVM (Tsai et al., 2015; Felzenszwalb et al., 2010). Moreover, salient

object detection methods are adopted to replace the bounding box detectors for region

pooling in some works (Hosang et al., 2014; Zhu et al., 2015; Borji et al., 2014).

For semantic segmentation, the goal is to develop the algorithms that can partition

an image into independent regions and associate them with some object classes pre-

defined, for example, people, cat, and sheep. Since the task of semantic segmentation

is not simply producing the possible regions that objects may locate in but parsing

the whole image into different ‘things’ and ‘stuff’, Markov random field (MRF) and

conditional random field (CRF) are often employed for modelling the neighbourhood

relations displayed in the training samples (Zheng et al., 2015; Ladický et al., 2010;

Shotton et al., 2006; Gould et al., 2008).

Figure 2.2 shows a categorization of the image segmentation methods.

Figure 2.2: A categorization of existing image segmentation methods.

Image segmentation is one basic process of many computer vision applications, and

the purpose of a segmentation algorithm varies depending on the applications it belongs

to. Thus, there are various ideas for designing a new segmentation algorithm. But

among them, there is a notable trend in developing superpixel-based algorithms. The

motivations are obvious: for unsupervised segmentation, superpixel provides a format
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for extracting more complex and discriminative features; for supervised segmentation,

using superpixel can reduce the time for training and inference. However, the superpixel

is not a perfect replacement of pixel. For example, superpixel wrecks the regular grid

structure of pixels which may bring problems to the definition of neighbourhood. And,

the inappropriate parameters in superpixel algorithms will introduce structure errors

into superpixel representation. All these problems are worthy of further investigation.

2.2 Algorithms for superpixel generation

2.2.1 Overview

Since superpixels are in fact perceptual groupings of pixels, naturally, most of the

unsupervised segmentation algorithms can be used for superpixel generation. But in

practice, because superpixels always serve as primitives for further computation, the

algorithms for superpixel generation are supposed to have a few distinctive proper-

ties, including boundary coherency, computational efficiency, hierarchy, and topology

preserving (Wei et al., 2016; Achanta et al., 2012). In the past few years, there have

been considerable achievements in superpixel segmentation, and most of the state-of-

the-art methods possess one or more of the properties mentioned. Liu et al. (2011)

proposed a graph-based method which is able to produce segmentation with good ac-

curacy. Van den Bergh et al. (2012) proposed the SEEDS algorithm that achieves a

compromise between accuracy and efficiency for superpixel generation. In Moore et al.

(2008, 2010), the proposed algorithms are able to generate superpixels that conform

to a grid topology, which can be integrating into many vision algorithms conveniently.

And, some superpixel algorithms (Felzenszwalb and Huttenlocher, 2004; Mei et al.,

2013) use a tree structure of regions to represent the image, which can characterize the

hierarchical structure of the image with a relatively low computational complexity. In

addition, a few unsupervised clustering algorithms are also widely used for generating

superpixels, such as Normalized Cut (Shi and Malik, 2000) and Mean Shift (Comaniciu

and Meer, 2002; Vedaldi and Soatto, 2008).

Frankly speaking, all superpixel generation approaches have their own advantages

and drawbacks that may be better kindly to a particular application. Some emperi-

cal research shows that clustering-based superpixel algorithms are more efficient than

graph-based ones (Wang et al., 2017). Stutz et al. (2017) presented an overall ranking

of superpixel algorithms, which enables researchers to select appropriate superpixel
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algorithms accordingly.

In this thesis, the superpixel generation task is done by two popular superpixel

algorithms: the efficient graph-based F-H method (Felzenszwalb and Huttenlocher,

2004) and Mean Shift (Comaniciu and Meer, 2002). This choice is based on two facts.

First, these two algorithms are based on the data-driven models by which the

intrinsic structure of the data can be easily investigated with a scale parameter. For

example, the F-H method merges the pixels into superpixels according to a predefined

minimum difference controlled by a threshold, and the Mean Shift is a nonparametric

clustering-based method that seeks the modes along the surface of the data distribution

with a given step length. So, different superpixel segmentations can be obtained by

simply adjusting the threshold or step length.

Second, these two superpixel algorithms are complementary and practically effi-

cient (Li et al., 2012). The graph-based and clustering-based methods are motivated

by different goal functions, which means the pixel data structure can be explored by

different clustering procedures. In the view of ensemble clustering, this may contribute

to the robustness of the final clustering (Zhou, 2012; Zhou et al., 2015). Actually, in

the existing works on superpixel-based image segmentation, this combination is widely

used (Li et al., 2012; Wang et al., 2013, 2015). However, we have to mention that the

algorithms we proposed in this thesis are also feasible with other choices on superpixel

algorithms.

For completeness, we elaborate the F-H method and Mean Shift in the following.

2.2.2 The efficient graph-based image segmentation

The F-H method is proposed by Felzenszwalb and Huttenlocher (2004). Let G(V,E)

be an undirected graph, where vertices vi ∈ V represent the set of elements to be seg-

mented, and edges e(vi, vj) ∈ E correspond to pairs of neighbouring vertices. Moreover,

each edge e(vi, vj) ∈ E has a weight w(vi, vj), which is a non-negative value measured

by the dissimilarity between vi and vj. And, a segmentation S = {Ci} is a partition of

V , and, ∀i, j ∈ {1, 2, ..., n}, we have Ci ∩ Cj = ∅ and Ci ∈ S.

For a given image I, the pixels are set to be the elements in V and the weight on

an edge is some measure of the dissimilarity between two pixels connected by the edge,

which could be the difference in intensity, colour, or some other attributes.

The basic idea of the F-H method is that the weights on the edges connecting

vertices in the same component should be relatively smaller while those on the edges

connecting vertices in different components should be larger. Thus, three indices are
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defined for describing this idea. The first is the internal difference of a component C,

which is defined as,

Int(C) = max
e∈MST(C,E)

w(e), (2.1)

where w(e) is the weight on the edge e, and MST(C,E) represents the edges in the

minimum spanning tree of the component C. The second is the minimum internal

difference,

MInt(Ci, Cj) = min(Int(Ci) + τ(Cj), Int(Ci) + τ(Cj)), (2.2)

where τ(C) = k/|C| is a threshold function controlling the degree of difference between

two components. The third is the difference between two components Ci and Cj,

Dif(Ci, Cj) = min
vm∈Ci,vn∈Cj ,(vm,vn)∈E

w(vm, vn), (2.3)

Then, the pairwise comparison predicate is defined as,

D(Ci, Cj) =

{
true if Dif(Ci, Cj) > MInt(Ci, Cj),

false otherwise.
(2.4)

If D(Ci, CJ) = true, then Ci and Cj will be merged. The details of F-H method are as

shown in Algorithm 2.1.

The computational complexity is O(m logm), where m is the number of edges in

the graph (Felzenszwalb and Huttenlocher, 2004).

2.2.3 Mean Shift segmentation

The mean shift algorithm is proposed by Fukunaga and Hostetler (1975) and Cheng

(1995); Comaniciu and Meer (2002) introduced Mean Shift into image segmenation.

The algorithm is essentially a mode-seeking procedure, which is based on the density

estimation.

Let X = {x1, · · · ,xn} ⊂ Rd be a dataset , where xi is a point in a d-dimension

space and predefined kernel K(x), and the diagonal H = h2I be the bandwidth matrix,

where h is a fixed bandwidth for all dimensions. Then, a multivariate kernel density

estimator is defined as

f̂(x) =
1

nhd

n∑
i=1

K(
x− xi
h

), (2.5)

where KH(x) is defined as

KH(x) = |H|−
1
2K(H−

1
2 x). (2.6)
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Algorithm 2.1 F-H method

Input: A graph G = (V,E)

Output: A segmentation S = (C1, ..., Cr) of V

1: Sort E into π = (e1, ..., em), where ∀i < j, w(ei) ≤ w(ej);

2: Initializing S by setting S0 = V

3: for q = 1, · · · ,m do

4: Let vi, vj be the vertices connected by eq, and, Cq−1
i and Cq−1

j be the components

of Sq−1 containing vi and vj respectively,

5: if Cq−1
i 6= Cq−1

j and w(eq) ≤ MInt(Cq−1
i , Cq−1

j ) then

6: merging Cq−1
i and Cq−1

j to get Sq

7: else

8: Sq = Sq−1

9: end if

10: end for

11: S = Sm

Let k(||x||2) be the profile of the kernel K(x), which satisfies K(x) = ck,dk(||x||2),

where ck,d > 0 is the normalization constant that makes K(x) integrate to 1. Then,

Eq. 2.5 can be rewritten as

f̂(x) =
ck,d
nhd

n∑
i=1

k(||x− xi
h
||2). (2.7)

Since the modes are located in the place where the gradient 5f(x) = 0, a mean

shift procedure is designed to locate the zeros without estimating the density. From

Eq. 2.7, we have

5̂fh,K(x) =
2ck,d
nhd+2

n∑
i=1

(x− xi)k
′(||x− xi

h
||2). (2.8)

Let g(x) = −k′(x), and introduce it into Eq. 2.8, which yields

5̂fh,K(x) =
2ck,d
nhd+2

n∑
i=1

(xi − x)g(||x− xi
h
||2)

=
2ck,d
nhd+2

[
n∑
i=1

g

(
||x− xi

h
||2
)][∑n

i=1 xig
(
||x−xi

h
||2
)∑n

i=1 g
(
||x−xi

h
||2
) − x

]
.

(2.9)

The second term is defined as the mean shift, i.e.

mh,G(x) =

∑n
i=1 xig

(
||x−xi

h
||2
)∑n

i=1 g
(
||x−xi

h
||2
) − x. (2.10)
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Let

yj+1 =

∑n
i=1 xig

(
||yi−xi

h
||2
)∑n

i=1 g
(
||yi−xi

h
||2
) , (2.11)

it has been proved that {yj}j=,1,2,... will converge if the kernel K(x) has a convex and

monotonically decreasing profile (Cheng, 1995). So, the modes can be found by the

mean shift procedure, i.e., updating {yj} by yj+1 = mh,G(yj) + yj until it converges.

In image segmentation, every pixel is associated to a mode via a mean shift pro-

cedure, and those pixels connected to the same mode are grouped as a cluster. The

computational complexity of the Mean Shift is O(n2) (Vedaldi and Soatto, 2008), and

Algorithm 2.2 shows its details.

2.3 Ensemble clustering in image segmentation

2.3.1 Overview

The ensemble clustering technique aims to combine the results of different clustering

methods into a more robust and better clustering (Huang et al., 2016), and it is also

called consensus clustering. In the past few years, a number of ensemble segmenta-

tion approaches have been developed by employing a variety of ensemble clustering

techniques into image segmentation. The early research concentrates on developing

the frameworks. Franek et al. (2010) proposed a framework for adapting ensemble

clustering methods into image segmentation. In their algorithm, the superpixels are

used as primitive objects and the general ensemble clustering methods are applied on

the superpixel level. The weakness of their framework is the lack of ability to use

the multiple image cues, such as colour, and lightness. Mignotte (2008) developed a

relabelling-based ensemble segmentation method, in which the local histogram of class

labels is used to control the fusing of different segmentations. But this method assumes

that every input over segmentation should be partitioned into a fixed number of clus-

ters, which is not applicable in some cases. Kim et al. (2014) proposed an algorithm

which generates the final segmentation by using the hierarchical segmentations. In

some works, the ensemble segmentation is formulated into an optimization problem,

by which the final segmentation is obtained by maximizing some predefined similari-

ties between the segmentations (Vega-Pons et al., 2011; Alush and Goldberger, 2012;

Mignotte, 2014; Wang et al., 2014). Besides, Wang et al. (2013) and Ding and Yilmaz

(2008) introduced the hypergrah into ensemble segmentation; their models also take

single superpixel segmentation as primitives and use multiple features for clustering.
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Algorithm 2.2 Mean Shift

Input: An image I = {p1, ..., pn}, bandwidth h, stop-threshold τ , merge-threshold ε

Output: A segmentation S = (C1, ..., Ck)

/∗ mean shift procedure ∗/
1: M = {m1, · · · ,mn}
2: for i = 1, · · · , n do

3: y0 = pi, j = 0, mi = 0

4: Compute y1 by Eq. 2.11

5: while ||yj+1 − yj|| > ε do

6: j = j + 1

7: yj = yj−1

8: Compute yj+1 by Eq. 2.11

9: end while

10: mi = yj+1

11: end for

/∗ segmentation ∗/
12: k = 1, Ck = ∅
13: while M 6= ∅ do

14: mi = M{1}
15: M = M −mi

16: Ck = Ck ∪ pi
17: for mj ∈M do

18: if ||mi −mj|| < τ then

19: Ck = Ck ∪ pj
20: M = M −mj

21: end if

22: end for

23: k = k + 1

24: end while
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However, the quality of their final segmentations may be affected by the superpixel

segmentations they used.

Unfortunately, the image data is generally made up of a tremendous number of

pixels, which results in high computational cost for measuring the pixel-wise similarity

globally. So, most of the existing ensemble segmentation algorithms are proposed to

approach segmentation at the superpixel level, and the robustness of the output is

inevitably affected by the quality of the superpixel segmentation they adopted. Alter-

natively, Li et al. (2012) proposed an ensemble segmentation algorithm, which takes

multiple superpixel segmentations as segmentation cues and can generate robust fi-

nal segmentation. This algorithm employs a bipartite graph to represent the pixel-

superpixel relations from the input superpixel segmentations and obtains the final

segmentation by a modified normalized-cut algorithm. Wang et al. (2013, 2015) im-

proved this method by proposing a novel method for measuring the similarity between

the superpixels in the bipartite graph construction.

The bipartite graph model employed in Li et al. (2012) and Wang et al. (2013,

2015) is first proposed by Fern and Brodley (2004), and named Hybrid Bipartite Graph

Formulation (HBGF). In this thesis, we also use this model for superpixel-based seg-

mentation.

2.3.2 The HBGF algorithm

The HBGF (Fern and Brodley, 2004) is a graph-based ensemble clustering method.

This algorithm contains two parts: the first one is the construction of the bipartite

graph which integrates the clustering information, and the second one is spectral clus-

tering by which the final clustering is obtained.

Given a data set X = {x1, · · · , xm}, let Ci = {ci1, · · · , ciKi
} be a clustering which

partitions X into Ki disjoint clusters, and let C = {C1, · · · , CN} be a collection of clus-

terings of X, where N is the number of clusterings, and K = {K1, · · · , KN} represents

the set of cluster numbers of each clustering.

For a bipartite graph G(V,E), the vertex set V can be divided into two parts, i.e.,

V = V I ∪ V C , and for each edge e ∈ E, it connects a vertex in V C to one in V I ,

i.e., ∀eic ∈ E, eic = (vi, vc), where vi ∈ V I and vc ∈ V C . And, let each edge be

associated to a weight w, we have w(eic) = wic. The bipartite graph can be rewritten

as G(V I , V C ,W ), when it needs to emphasize that G is weighted.

In HBGF, the bipartite graph G is constructed by setting the elements in X as the

vertices in V I , i.e., V I = {x1, · · · , xm}, and all the entries in C as the vertices in V C ,
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i.e., V C = ∪Ni=1C
i = {c1

1, · · · , c1
K1
, · · · , cN1 , · · · , cNKN

}; and for the weights on the edges,

we set

wic =

1 (or, other positive number), if vi ∈ vc,

0, otherwise,
(2.12)

where vi ∈ vc holds if a data point xi (denoted by vi) belongs to a cluster cjKj
(denoted

by vc).

Let n =
∑N

i=1 Ki, then, W = [wic] is a m×n matrix, which is called cross-adjacency

matrix (Liu et al., 2010). Algorithm 2.3 shows the details of the graph construction of

HBGF.

Algorithm 2.3 Graph construction of HBGF

Input: A data set X = {x1, · · · , xm}, a collection of base clusterings C =

{C1, · · · , CN}, the cluster number k of the final clustering

Output: Final clustering C = (c1, ..., ck)

1: Set V I = X, V C = ∪Ni=1C
i, n =

∑N
i=1Ki;

2: W = ∅;
3: for i = 1, · · · ,m do

4: for c = 1, · · · , n do

5: W = W ∪ wic
6: end for

7: end for

The spectral clustering on G can be done by directly extending Wm×n into W ext =[
0 W

W T 0

]
, where W ext is a (m + n) × (m + n) symmetric matrix. However, Dhillon

(2001) proved that the normalized cut algorithm on a bipartite graph can be realized

via SVD (i.e. singular value decomposition) on the cross-adjacency matrix W , and the

clustering information of X is contained in the right singular vectors.

Li et al. (2012) proposed a more efficient algorithm for computing the singular

vectors, which is called T-cut. This algorithm is proposed based on the truth that

W can be converted into the probability of a two-step transition on the vertices of

bipartite graph G. And, the T -cut algorithm makes use of the equivalence in the two-

step transition and delivers the clustering of V X from the clustering of V Y without

loss. The details of T -cut algorithm are given in Algorithm 2.4.
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Algorithm 2.4 T -cut

Input: A cross-adjacency matrix W , the cluster number k of the final clustering

Output: Final clustering S = (s1, ..., sk)

1: Compute DX(i, i) =
∑

iwij, DY (j, j) =
∑

j wij;

2: Compute WY = W TD−1
X W ;

3: Compute LY = DY −WY ;

4: Compute the bottom k eigenpairs {(λi,vi)}ki=1 of LY v= λDY v;

5: for i = 1, · · · , k do

6: Compute γi such that 0 ≤ γi < 1 and γi(2− γi) = λi;

7: Compute ui=
1

1−γiD
−1
X Wvi;

8: end for

9: Cluster u into k clusters via k-means algorithm and obtain S.

2.4 Data sets

For evaluation of the performance of the proposed approaches, there are three data

sets used throughout this thesis; these include the Berkeley Segmentation Data Set

300 (“BSDS300”) (Martin et al., 2001), the Berkeley Segmentation Data Set 500

(“BSDS500”) (Arbelaez et al., 2011), and the Microsoft Research Cambridge 21-Class

Data Set (“MSRC21”) (Shotton et al., 2008).

BSDS300 is a public image segmentation database which is widely used in evaluat-

ing the performance of unsupervised image segmentation. This data set contains 300

natural images of diverse scene categories, and each image has a number of ground truth

segmentations, which are manually segmented by different human subjects. There are

at least four human annotations for each image, and all images are in the size of

481 × 321. BSDS500 is an update of BSDS300, which contains some more 200 im-

ages. The same as BSDS300, every image has a few human-annotated ground truth

segmentations, and the image size is set to be 481× 321.

Compared with other data sets, for example, VOC2012 (Everingham and Winn,

2011), and VOC2007 (Everingham and Winn, 2007), BSDS300 and its extension have

a few unique advantages for evaluating the unsupervised segmentation algorithms.

Firstly, it provides highly accurate human-annotated ground truth, and each object

in the image has a precise boundary, which is critical for evaluating the unsupervised

segmentation. Secondly, most of the images in the two data sets are natural images that

always contain a variety of visual patterns, and they are able to examine the algorithm

with different patterns. Thirdly, the data sets provide multiple ground truths for
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every image, which is very similar to the real case. Therefore, we use BSDS300 and

BSDS500 to evaluate the algorithms, which are the same as Li et al. (2012), Arbelaez

et al. (2011), Wang et al. (2015), among others. Figure 2.3 shows a few examples in

the BSDS 300 and BSDS500 data sets.

MSRC21 is a classic data set for semantic segmentation. This data set consists of

591 images which are labelled with 21 classes: building, grass, tree, cow, sheep, sky,

aeroplane, water, face, car, bicycle, flower, sign, bird, book, chair, road, cat, dog, body,

boat. Normally, the data set is split into 276 training samples, 256 test samples, and

the rest for validation, which is the same as Shotton et al. (2008). One difficulty for

experiments on this data set is that the ground-truth labelling is approximate and

many of the pixels on the object boundaries have void labels, which make the training

difficult. Figure 2.4 demonstrates some images from MSRC21.

2.5 Evaluation

Evaluating the quality of segmentation is commonly referred to as cluster validity

analysis (Zhou, 2012). For comparison purposes, we employ the evaluation methods

that are widely used in the image segmentation society.

2.5.1 Evaluations for unsupervised segmentation

Evaluation of an unsupervised segmentation algorithm is in fact largely subjective,

mainly because there is no unique ground-truth segmentation of an image against

which the outputs may be compared. However, there are four popular segmentation

evaluation methods that are widely used in qualifying the segmentation result; they

include the Probabilistic Rand Index (PRI) (Unnikrishnan et al., 2007), the Variation

of Information (VoI) (Meilă, 2005), the Global Consistency Error (GCE) (Martin et al.,

2001), and the Boundary Displacement Error (BDE) (Freixenet et al., 2002).

PRI is a generalization to the rand index, which measures the probability of an

arbitrary pair of samples being labelled consistently in the two segmentations. In image

segmentation, it can compare the segmentation result with a set of ground truths. Let

St be the segmentation result and {Sg} be a set of ground truths, the PRI is defined

as follows,

PRI(St, {Sg}) =
1(
N
2

)∑
i<j

[cijpij + (1− cij)(1− pij)], (2.13)

where N is the number of pixels in the image, cij ∈ [0, 1] is the event that pixel i and
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Figure 2.3: A few images and their ground-truth segmentations from

BSDS300 and BSDS500 data sets. In every two rows: the upper left

is the original image and the other five are the ground-truth segmen-

tations made by different human subjects.
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Figure 2.4: A few images and their ground-truth segmentations from

MSRC21 data set. The original images are shown in odd columns,

and the respective ground-truth segmentations are listed in the even

columns with class labels shown in colour (the void label is in black).
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pixel j have the same label in St, and pij is the corresponding probability estimated

with the sample mean. A higher PRI value means a better segmentation.

The VoI is a metric that relates to the conditional entropies between the class label

distribution. It measures the sum of information loss and information gain between

the two partitions, and it is defined as

VoI(Sg, St) = H(Sg) +H(St)− 2I(Sg, St), (2.14)

where H and I are the respective entropies of the mutual information between two

clusterings. A lower VoI value indicates better segmentation result.

The GCE measures the difference between two regions that contain the same pixel

in different segmentations. Particularly, this metric compensates for the difference in

granularity. Let R(S, pi) be the set of pixels within the regions in segmentation S that

contains pixel pi, and ′−′ denote the set difference. The GCE is defined as

GCE(St, Sg) =
1

N
min

∑
i

E(St, Sg, pi),
∑
i

E(Sg, St, pi), (2.15)

where E(St, Sg, pi) = |R(St,pi)−R(Sg ,pi)|
|R(St,pi)| is the local refinement error. Obviously, for the

GCE values, being close to 0 implies a good segmentation.

The BDE measures the average displacement error of boundary pixels between two

segmentations. The error of one boundary pixel is defined as the distance between the

pixel and the closest pixel in the other boundary image.

For pi ∈ B1, we define d(pi, B2) = minp∈B2 ||pi − p|| as the distance of a boundary

point pi ∈ B1 to the boundary set B2; let NB1 and NB2 denote the number of pixels in

B1 and B2. The BDE is defined as

BDE(B1, B2) =

∑NB1
i

d(pi,B2)
NB1

+
∑NB2

i
d(pi,B1)
NB2

2
. (2.16)

A lower BDE value means less deviation between the segmentation and ground truth.

Since the performance of the algorithm is represented by a few indices, we use the

average rank to represent the overall performance of the algorithm. Let R = r1, · · · , rn
be the set of ranks on n evaluation indices of an algorithm. The average rank is defined

as

Avg.R =

∑n
i=1 ri
n

. (2.17)

2.5.2 Evaluations for semantic segmentation

The performance of supervised segmentation is always evaluated based on the recall and

precision criteria. Many researchers evaluated their algorithm via both the category
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average accuracy and the global accuracy (Shotton et al., 2008; Gould et al., 2014;

Yao et al., 2012). We follow their modus and use ‘Global ’ to refer the percentage of

all pixels that were correctly classified and ‘Avg(Class)’ for the average recall over all

classes. Specifically, the recall of each class is computed by

Recall(Classi) =
True Positive

True Positive + False Negative
, (2.18)

and Avg(Class) is defined as

Avg(Class) =
1

N

N∑
i=1

Recall(Classi), (2.19)

where N is the number of classes. Global is computed by

Global =

∑N
i=1 True Positive(Classi)∑N

i=1 True Positive(Classi) + False Negative(Classi)
. (2.20)

2.6 General framework

The research in image segmentation is often connected with some particular applica-

tions. So, the frameworks may vary across different applications. However, our research

concentrates on developing image segmentation approaches based on superpixels; con-

sequently, we have a general framework which dominates our research.

Figure 2.5: The flowchart of the research framework.

Generally, the work begins with generating superpixel segmentations and is followed

by a model construction procedure, where different feature extraction and similarity

measure methods are proposed. And then, image segmentation is carried out, which

could be unsupervised or supervised. We have to mention that the supervised segmen-

tation carried out in this thesis (i.e., semantic segmentation), actually involves both
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unsupervised and supervised methods. Finally, there is an evaluation procedure. Those

unsupervised segmentation algorithms are evaluated by PRI, VoI, GCE and BDE on

BSDS300 and BSDS500. For the supervised algorithms, the experiments are con-

ducted on MSRC21 and evaluated by Avg(Class) and Global. Figure 2.5 demonstrates

the flowchart of the research framework.

2.7 Summary

This chapter elaborates the fundamentals of our research that includes methods for

generating superpixels, models for ensemble segmentation and a few popular segmen-

tation evaluation methods. However, one thing that still needs to be addressed is the

necessity of ensemble segmentation.

Figure 2.6: Segmentations from different superpixel algorithms. From

left to right: the original image, Normalized Cut, F-H method, Mean

Shift, and SLIC.

The superpixel algorithms are actually bottom-up segmentation algorithms, and

most of them are proposed based on the perceptual grouping theory. But in real

practice, there are no such algorithms that can produce segmentation as good as human

vision does. Figure 2.6 shows a few segmentations made by some popular superpixel

algorithms. It is easy to notice that they all tend to oversegment the objects. One

possible reason for this phenomenon is that the perceptual grouping in human vision

occurs by composing multiple features but most of the existing bottom-up segmentation

algorithms lack the ability to group pixels in multiple feature spaces. Therefore, the

ensemble techniques in image segmentation are worthy of investigation.
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Chapter 3

Superpixel-based Segmentation

with Colour Covariance Matrix

3.1 Introduction

A number of clustering algorithms can be used to segment an image, for example,

the clustering-based algorithms such as Mean Shift (Comaniciu and Meer, 2002) and

SLIC (Achanta et al., 2012), and graph-based methods such as Ncut (Shi and Ma-

lik, 2000), F-H algorithm (Felzenszwalb and Huttenlocher, 2004) and Power Water-

sheds (Couprie et al., 2009). Unfortunately, most of them have limited performance

in practice because the visual patterns in the real-world images are broadly diverse

and ambiguous while the algorithms are developed under some particular motivations.

Actually, as is shown in Chapter 2, it is much easier for those algorithms to generate

oversegmentations, that is, superpixels. However, in order to get a good image seg-

mentation, some further treatment is required for the superpixels to be formed as the

segmentation outcome (Panagiotakis et al., 2013).

Notably, there is a growing trend in treating superpixels as cues to be merged

through the clustering ensemble techniques. In Kim et al. (2010), a superpixel-based

segmentation algorithm is proposed, in which the superpixel segmentations are fused

by a graph model; Li et al. (2012) developed an efficient graph partition method,

named T-cut, which can effectively reduce the computation complexity of bipartite-

graph-based image segmentation. More recently, Wang et al. (2013) applied a sparse

coding method to represent the superpixels in a `0 space, and achieved some impressive

results by using a modified cross-adjacency matrix with the T-Cut algorithm.

In a wider context, it is found that the fusion of multiple cues can lead to better
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segmentation, for example, by combining colour histograms, local binary patterns fea-

ture, and Bag of Words (Cheng et al., 2011). Apparently, a suitable representation of

superpixels may improve the quality of superpixel-based image segmentation.

In this chapter, we proposed a method for improving the superpixel-based image

segmentation algorithm. The experiments show that our algorithm is competitive

to the state of the art, and performs better especially in the foreground-background

segmentation. Figure 3.1 gives a quick comparison of our algorithm and SAS (Li et al.,

2012). Note that the tiger is split into different chunks by SAS, but not by our method.

(a) (b) (c)

Figure 3.1: Visual comparison of the best segmentation: (a) original

image; (b) SAS; (c) our method.

The main contributions are as follows:

• We first propose a colour covariance matrix as a kind of feature for superpixel,

and, since the covariance matrix is a kind of tensor lying on a Riemannian man-

ifold, we find a proper distance metric for it.

• We then propose several ways of fusing the similarity matrices of the superpixels

which are measured in two different feature spaces and adopt a few empirical

tests for them.

For the rest of this chapter, Section 3.2 is a brief introduction of ensemble segmen-

tation with superpixels; Section 3.3 introduces our CCM algorithm; Section 3.4 gives

the details about the experiments; and Section 3.5 is the summary of the chapter.

3.2 Superpixel ensemble

The HBGF algorithm (i.e., Algorithm 2.3) is employed to model the structure of the

pixel data by the given superpixel segmentations.

28



Let I = {pi, · · · , pm} be an image and S = {S1, · · · , SN} be a collection of su-

perpixel segmentations, where Si = {si1, · · · , siKi
} is a superpixel segmentation that

contains Ki superpixels. Obviously, ∀sik, sil, (k, l = 1, · · · , Ki), we have sik ∩ sil = ∅ for

k 6= l and ∪Ki
k=1s

i
k = I.

Let G(V X , V Y ,W ) be a bipartite graph for superpixel ensemble, where V X and

V Y are two subsets of the vertices that satisfy V X ∪ V Y = V and V X ∩ V Y = ∅; W
is the weighted cross-adjacency matrix. Similar to the original HBGF model, we set

V Y = ∪Ni=1S
i, but for V X , we set it as an union of pixels and superpixels, that is,

V X = I ∪ (∪Ni=1S
i). With this setting, the bipartite graph is not only influenced by the

relations between pixel and superpixel but also among the superpixels. Let vXi and vYj

represent vertices in V X and V Y respectively, then, the weight wij on the edge between

vXi and vYj is defined as

wij =


α, if vXi ∈ I and vXi ∈ vYj ,

sim(vXi , v
Y
j ), if vXi ∈ Si and vYj ∈ Si,

0 otherwise,

(3.1)

where α is a constant, and sim(x, y) is a function that returns the similarity of input

x and y. From Eq. 3.1, W can be considered as a concatenation of two matrices, that

is,

W =

[
W ps

W ss

]
, (3.2)

where W ps represents the similarities between pixel and superpixel, and W ss is the

superpixel-wise similarity matrix. Moreover, it always holds |V X | � |V Y | since the

number of pixels are far more than that of superpixels. So, the spectral clustering on

G can be applied via T-cut (i.e., Algorithm 2.4), which is more efficient than SVD (Li

et al., 2012).

3.3 The CCM algorithm

Figure 3.2 shows the framework of the CCM algorithm. The algorithm is named as

CCM because it employs colour covariance matrix of the superpixels as one feature for

similarity measuring among the superpixels.

In the first step, the input image is partitioned into a few oversegmentations by

the superpixel algorithms. And then, the covariance descriptors are extracted from the

superpixels. Thirdly, a bipartite graph is constructed based on the extracted covariance
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feature. Finally, the ensemble segmentation is run by the T-cut algorithm. The details

of feature extraction and graph construction are elaborated in the following subsections.

Figure 3.2: The framework of CCM.

3.3.1 Feature extraction

One of the key issues in superpixel-based segmentation is what kind of features can be

extracted from superpixels. Intuitively, colour is the most important cue for humans to

identify different objects, and in computer vision, the colour space is one of the most

natural ways for representing an image. Particularly, it has been shown that the Lab

colour can provide a good approximation of the colour difference in human vision (Jain,

1989). Therefore in CCM, the method for extracting feature descriptors is delivered

based on the Lab colour space, but actually for other colour spaces, it is also adaptive.

Let si = {x1,x2, · · · ,xR} be a superpixel of R pixels in the Lab colour space,

where, xi= (li, ai, bi)
T is a 3-dimension vector. The first feature we used to represent

a superpixel is simply the average value of the colour vectors inside the superpixel.

Given a superpixel si, the colour feature is defined as

ci = E(xr), (3.3)

where xr ∈ si.
However, using colour information alone may not be enough for generating good

segmentation because the high variations of lights and contrast in the real world always

make the colour values unstable in the digital images. In fact, many researchers incor-

porate the colour cue with some other cues for getting a better image segmentation.

For example, Li et al. (2012) use the spatial cues, that is, the neighbourhoods of the

superpixel. But such a kind of spatial cues always fail to catch the long-range relations

between the superpixels.
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Different from others, we consider using the colour covariance matrix as a feature

for the superpixel. The colour covariance matrix of superpixel si is defined as

Σi = E((xr − ci)(xr − ci)
T ), (3.4)

where xr ∈ si.
Covariance matrix is a kind of tensor that lies on a smooth manifold, hence requiring

a non-Euclidean distance metric. Since they are symmetric and positive semi-definite,

we can use the Förstner and Moonen metric (Förstner and Moonen, 2003) given as

d(ΣA,ΣB) =

√√√√ n∑
r=1

ln2 λr, (3.5)

where ΣA, ΣB are two covariance matrices of dimension n × n, and λr(r = 1, · · · , n)

are eigenvalues from the generalized eigenvalue problem |λΣA − ΣB| = 0 (Please note

that ‘| · |’ represents the determinant here).

3.3.2 The similarity measure

Another difference between the CCM and other related works is in the similarity mea-

sure of the superpixels. In Li et al. (2012), each superpixel is connected with the

nearest neighbourhood among its spatially adjacent superpixels, which fails to catch

the relationship of those vertices that are separated by spatial distance but close in the

feature space. In Wang et al. (2013), this weakness was overcome by measuring the

similarity of the superpixels with their `0 sparse coding representation. However, this

problem can also be solved in another way. In the CCM approach, the colour covari-

ance matrices are employed to strengthen the colour representations of superpixels so

that the spatial constraint can be removed.

Let dij denote the distance between superpixel si and sj. The similarity function

sim(si, sj) between the two superpixels, then, is defined as follows:

sim(si, sj) =

{
e−βmin (dij ,dji), if i 6= j,

1, otherwise,
(3.6)

where β is a coefficient of the Gaussian-like kernel, and dij is normalized into [0,1].

Because the superpixels are represented by two features and they are in two different

feature spaces, one is Euclidean and the other is non-Euclidean, it is more desirable to

compute the similarity separately than to concatenate them as a vector. Specifically,
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the distance of the superpixels (i.e., dij) is represented by Euclidean distance in colour

space, and for the representation in the covariance matrix space, Eq. 3.5 is hired.

Let simC denote the similarity in Lab colour space and simΣ be the similarity in the

covariance manifold; Sim = [simij] denotes the similarity matrix over all superpixels.

There are three algorithms for fusing the similarity matrices. The first is by means of

the entry-wise product (aka Hadamard product):

SimHP = SimC ◦ SimΣ. (3.7)

The second approach is proposed by de Sa (2005), which adopts the direct matrix

product to similarity matrices:

SimDP = Simc × SimΣ. (3.8)

The third one is to combine two individual modalities by simply adding them together,

which is proposed by Joachims (2003):

SimAD = Simc + SimΣ. (3.9)

In practice, we try all three approaches and choose the one that gives the best perfor-

mance as the fusing method. The overall algorithm of CCM is given in Algorithm 3.1

Algorithm 3.1 Superpixel-based Segmentation via Colour Covariance Matrix

Input: An image I = {p1, · · · , pm}, a collection of superpixel segmentations S =

{S1, · · · , SN}, the cluster number k of the final clustering

Output: Final clustering S = (s1, ..., sk)

1: Set V X = I ∪ (∪Ni=1S
i), V Y = ∪Ni=1S

i, n =
∑N

i=1Ki;

2: W = ∅;
3: for i = 1, · · · ,m do

4: for j = 1, · · · , n do

5: Compute the similarity of the superpixels via Eq. 3.6;

6: Fuse similarities via Eq. 3.7, Eq. 3.8, or Eq 3.9;

7: Compute wij via Eq. 3.1;

8: W = W ∪ wij;
9: end for

10: end for

11: Apply T -cut to obtain S.

Let m be the number of pixels, n be the total number of superpixels, N be the

number of superpixel segmentations, and Ki be the numbers of superpixels in the
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i-th superpixel segmentation and K = max{Ki}. In CCM, the graph construction

takes N(m+ n) operations + O(NK2), and the computational complexity of T -cut is

O(n3/2) (Li et al., 2012). The computational complexity of CCM is O
(
n3/2 +NK2

)
.

3.4 Experiments

3.4.1 Data sets and settings

The experiments are conducted on two public image segmentation datasets: the Berke-

ley Segmentation Data Set 300 (BSDS300), and its update, the Berkeley Segmentation

Data Set 500 (BSDS500) (Martin et al., 2001; Arbelaez et al., 2011).

In order to compare the performance of the CCM and the state of the art, the

parameters are set as the same as those in Li et al. (2012) and Wang et al. (2013).

Specifically, the superpixel segmentations are created by Mean Shift and F-H algo-

rithm. There are three superpixel segmentations generated by Mean Shift with the

parameters (hs, hr,M) ∈ {(7, 7, 100), (7, 9, 100), (7, 11, 100)} where hs and hr are the

bandwidth parameters, and M represents the minimum size of the superpixel, and

two or three superpixel segmentations produced by the F-H algorithm based on the

image variance in the Lab colour space with a given threshold; the parameters are

set to be (σ, c,M) ∈ {(0.5, 100, 50), (0.8, 200, 100)} for the two-segmentation case,

or (σ, c,M) ∈ {(0.8, 150, 50), (0.8, 200, 100), (0.8, 300, 100)} for the three-segmentation

case, where σ and c are the parameters for smoothing and scale; M is the minimum

size of the superpixel.

For the edge weights in Eq. 3.1, α is set to be 1 × 10−3, and the parameter β in

Eq. 3.6, we set β = 20 for all feature spaces. We also adopt a nearest-neighbour filter

on the similarity matrix of the superpixels, so each superpixel is only connected to its

closest neighbour in the final similarity matrix, which is the same as in Li et al. (2012)

and Wang et al. (2013).

The experiments are conducted in two parts. First, for each algorithm, we gradually

increase the number of segments K from 2 to 40 for every image to find the best value of

K that gives it the highest performance, and we compare the algorithms by manually

setting the K to its best value for each image in the experiments. Second, we fix

the segment number K = 2, which is considered as a foreground and background

segmentation.
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3.4.2 Results

We compare the CCM with the SAS(Li et al., 2012) and `0-sparse (Wang et al., 2013).

The evaluation is based on four popular methods, that is, PRI (Unnikrishnan et al.,

2007), VoI (Meilă, 2005), GCE (Martin et al., 2001), and BDE (Freixenet et al., 2002).

The overall performance is represented by Avg.R, that is, the average rank. Moreover,

we would like to mention that for PRI a higher value means better, and for VoI, GCE

and BDE, the lower value is better.

Table 3.1 and Table 3.2 show the scores of the four evaluation indices with the K

manually adjusted on BSDS300 and BSDS500. And, the results of K = 2 are listed in

Table 3.3 and Table 3.4 separately. Here, we note that some of the scores of the SAS

algorithm and `0-sparse representation methods are directly obtained from the reports

in (Li et al., 2012; Wang et al., 2013), and the symbol ‘−’ means there are no published

results available.

Table 3.1: Performance over BSDS300 with K adjusted manually

Algorithms PRI VoI GCE BDE Avg.R

SAS 0.8319 1.6849 0.1779 11.2900 2.5

`0-sparse 0.8355 1.9935 0.2297 11.1955 2.5

CCM(WHP) 0.8495 1.6260 0.1785 12.3034 2.25

CCM(WDP) 0.8345 2.1169 0.2341 12.0008 4.5

CCM(WAD) 0.8397 2.0359 0.2308 11.8868 3.25

Table 3.2: Performance over BSDS500 with K adjusted manually

Algorithms PRI VoI GCE BDE Avg.R

SAS 0.8372 1.6914 0.1813 12.6599 2

`0-sparse - - - - -

CCM(WHP) 0.8407 2.0399 0.2359 10.7800 1

CCM(WDP) 0.8275 2.5169 0.2541 11.5002 3.5

CCM(WAD) 0.8370 2.0490 0.2503 10.8868 2.75

In both scenarios our method gives a competitive performance. Our method ranks

the first place with PRI and VoI when the cluster number K is manually set, and when

K is fixed to 2, it gets the best scores in PRI, VoI, and GCE. We also examine the

performance of all three fusion methods in the experiments. The Hadamard product

34



Table 3.3: Performance over BSDS300 with K fixed to 2
Algorithms PRI VoI GCE BDE Avg.R

SAS 0.6179 2.0110 0.1106 42.2877 4.25

`0-sparse 0.6270 2.0299 0.1050 23.1298 3

CCM(WHP) 0.6312 1.9350 0.0820 35.8760 1.75

CCM(WDP) 0.5998 2.0336 0.0892 29.1803 3.5

CCM(WAD) 0.6284 1.997 0.0940 24.6991 2.25

Table 3.4: Performance over BSDS500 with K fixed to 2
Algorithms PRI VoI GCE BDE Avg.R

SAS 0.6094 2.0701 0.1130 43.7731 3.5

`0-sparse - - - - -

CCM(WHP) 0.6234 1.9961 0.0870 36.4631 1.5

CCM(WDP) 0.5961 2.0841 0.0923 28.6858 3

CCM(WAD) 0.6203 2.0461 0.0972 25.3790 2

seems to perform the best among the three fusing schemes with the best Avg.R, but

the difference is marginal.

Moreover, the effects of different colour spaces are also investigated. As shown

in Table 3.5, the choice of the colour space does not seem to be critical, since the

use of the colour covariance matrices seems to boost the performance significantly to

a competitive level, even for RGB and HSV. SAS, on the other hand, reports worse

results in VoI and GCE when using these two colour spaces compared with using Lab.

Table 3.5: Performance in different colour spaces (on BSDS300, K =

2)

Algorithms PRI VoI GCE BDE Avg.R

Lab (SAS) 0.6179 2.011 0.1106 42.2877 5

RBG (SAS) 0.6189 2.0224 0.1138 42.5141 4.5

HSV (SAS) 0.6182 2.0450 0.1203 42.0903 5.5

Lab (CCM(WHP)) 0.6312 1.9350 0.0820 35.8760 2

RBG (CCM(WHP)) 0.6289 1.9426 0.0815 33.9353 2

HSV (CCM(WHP)) 0.6317 1.9549 0.0838 30.2480 2
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Figure 3.3: Some segmentation results of CCM (K = 2).

The experiment results on the BSDS data sets show that the new superpixel feature

extracted by a covariance matrix apparently improves the average performance of the

bipartite graph-based algorithm when combined with colour cues. By removing the

spatial constraints, our method seems to handle long-range homogeneity well, forming

superpixels well aligned with object contours. Figure 3.3 shows more experimental

results of our algorithm when K is set to 2. And, Figure 3.4 demonstrates the results

of the K when set manually. The method seems to be quite effective in foreground-

background separation.

When the superpixel segmentations are given, the runtime of the CCM is about 3

seconds per image with Matlab 2014a and a desktop equipped with an Intel i5 CPU

and 16GB RAM.

3.5 Conclusion

In this chapter, we present a superpixel-based segmentation approach that uses colour

covariance matrices to boost the performance of graph-based image segmentation. A

non-Euclidean metric is employed for the covariance matrix space, and the new feature

is then integrated with colour information to form the affinity graph for segmentation.

The empirical results show that the new approach produces better or competitive

segmentation results compared with the state-of-the-art approaches. It is not sensitive

to the choice of colour space, different from the previous work (Li et al., 2012).
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Figure 3.4: Some segmentation results of CCM (K manually set).

But, there are two issues that need to be considered further. The first one is the

methods for merging the similarity matrix of the superpixels. We would like to explore

some other information fusing approaches rather than the three intuitive methods used

in this chapter. The second one is about the covariance matrix itself, that is, what

kind of covariance matrix is better for superpixel representation. These issues will be

discussed in the next two chapters.
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Chapter 4

Improving the Colour Covariance

Matrix-based Segmentation with

Subspace Representation

4.1 Introduction

In the CCM algorithm proposed in Chapter 3, the colour covariance matrix is employed

to represent the superpixels, by which the similarities between the superpixels can

be measured on a Riemannian manifold. The segmentation quality is improved by

fusing the superpixel-wise similarities measured in the colour space and the Riemannian

manifold. Although the CCM algorithm shows that the covariance descriptor is a useful

representation for superpixels, one thing still needs to be considered. Because different

features may have different data structures, for example, the covariance descriptors of

the superpixels are lying on an manifold while the Lab colour features are points in a

3-D Euclidean space, it may not be appropriate to fuse the superpixel descriptors from

different feature spaces directly in a Euclidean space. A new feature-fusing method is

needed for improving the CCM algorithm.

The research in subspace representation has been blooming in recent years, and

some works in that region shed light on the problem mentioned above. Actually, in

the literature this problem is also called feature embedding (Zhang et al., 2015). Most

of the proposed solutions are based on the dimensionality reduction technologies, by

which the redundancy among features can be reduced while preserving the important

discriminative information. Tang et al. (2009) modelled the relations from different

features with different graphs, and the common factors of the multiple graphs are
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extracted by linked matrix factorization. Dong et al. (2014) formulated the multiple

features by a multi-layer graph, but differently, they merge the different layers via the

regularization on a Grassmann manifold. Zhou and Burges (2007) proposed multiple-

graph merging models based on the graph random walk, and the kernel methods are

also employed for fusing the information from multiple sources (Wang et al., 2012;

Nguyen et al., 2015).

In this chapter we propose one method for fusing superpixel descriptors extracted

from different feature spaces, and this method improves the performance of the CCM.

Our contributions are as follows:

• we propose a multi-layer bipartite graph to formulate structure information pro-

vided by the colour and the covariance descriptors of the superpixels;

• we develop an algorithm for clustering multi-layer bipartite graph.

In the rest of the chapter, Section 4.2 contains the introductions of the necessary

background knowledge for elaborating our algorithms. Section 4.3 is the multi-layer

bipartite graph-based CCM algorithm (MBG-CCM) and Section 4.4 shows the results

of the experiments. In Section 4.5, we give the conclusion.

4.2 Preliminary

4.2.1 The subspace representation

Given a graph G(V,E) and letting W be the adjacency matrix of G, we set the degree

matrix D = diag(W1), where 1 is a vector of ones of appropriate size. Then, the graph

Laplacian of G is defined as

L = D −W. (4.1)

For a graph, L is a representation of its structure, i.e., the relations between the

vertices. The spectral decomposition of L can map the graph into a Euclidean space

with the structure information preserved (Von Luxburg, 2007). Moreover, if we replace

the graph Laplacian with L = D−
1
2WD−

1
2 , the eigenvectors of the k largest eigenvalues

of L will still contain most structure information of the graph (Dong et al., 2014).

Let U = [u1, · · · , uk] be a set of the first k eigenvectors of L. Since the eigenvectors

are orthogonal to each other and k is smaller than the rank of L, we say U is a subspace

representation of L .
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Figure 4.1: An example of Grassmann manifold G(2, 3). The subspace

representations are points on G(2, 3).

4.2.2 Grassmann manifold

A Grassmann manifold G(k, n) is defined as the set of k-dimensional linear subspace

of Rn (Hamm and Lee, 2008). Figure 4.1 demonstrates an example of Grassmann

manifold G(2, 3).

Obviously, the subspace representation of L can be considered as a point on a

Grassmann manifold.

4.3 Multi-layer graph-based CCM

A number of low-level features can be extracted from superpixels, such as colours,

covariance descriptors, each of which is a source of segmentation information. They can

be formulated by a multi-layer bipartite graph, with which the structure information

from each feature space is represented by a single graph layer independently.

We first introduce the clustering method of a normal multi-layer graph, then, pro-

pose the clustering algorithm for the bipartite case.

4.3.1 The multi-layer graph

A multi-layer graph is used to model a graph that processes multiple views. Given a

data set X = {x1, · · · , xn}, let G(V,E) be a graph built on X, where V is the vertex

set, each vertex represents a point in X, and E is the set of edges, representing the
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relationships between the vertices.

Suppose the data set X has M different properties which lead to M different rela-

tionships among the vertices; naturally, they can be represented by a set of weighted

edges on the common set of vertices. So, a multi-layer graph G with M -layer is defined

as

G = {Gi}Mi=1, (4.2)

where Gi is a single layer built on the i-th property and defined as

Gi = G(V,Wi), (4.3)

where Wi is the weight associated to the i-th edge set Ei.

4.3.2 Clustering on multi-layer graph

The clustering on the multi-layer graph G is actually an ensemble of the clusterings on

all single graph Gi. Since a graph can be represented by its subspace representation,

we achieve the ensemble via a Grassmann manifold.

Let Ui be the subspace representation of Gi ∈ G; the subspace representation of a

M -layer graph is written as

U = {Ui}Mi=1. (4.4)

Since each Ui is a point on a Grassmann manifold, the fusion of the Ui ∈ U can be

straightforwardly modelled as a minimization problem (Dong et al., 2014),

U = arg min
U

M∑
i=1

f(Ui, U) (4.5)

where U is the final representation of U , and, f(·, ·) is the cost function. Same as Dong

et al. (2014), we use the squared projection distance as the cost function, and Eq. 4.5

can be rewritten as

U = arg min
U

M∑
i=1

d2
proj(Ui, U), (4.6)

where dproj(·, ·) is the projection distance.

Using Eq. 4.6 is based on two facts. Firstly, the spectral clustering is equal to a

trace minimization problem (Dhillon et al., 2004), that is,

min
U∈Rn×k

tr(UTLU),

s.t. UTU = I.
(4.7)
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where n, k are the numbers of vertices and clusters respectively; tr(·) returns the trace of

the input. Secondly, projection distance is a measurement on the Grassmann manifolds,

which is related to trace. The defined of projection distance is

dproj(X1, X2) = (
k∑
i=1

sin2 θi)
1/2 (4.8)

where X1, X2 are the orthonormal matrices representing two subspaces; {θi}ki=1 is the

set of principal angles between two subspaces. So, for the squared projection distance,

we have (Hamm and Lee, 2008)

d2
proj(X1, X2) =

k∑
i=1

sin2 θi

= k −
k∑
i=1

cos2 θi

= k − tr(X1X
T
1 X2X

T
2 ).

(4.9)

And so, Eq. 4.6 can be written as

U = arg min
U

[
kM −

M∑
i=1

tr(UUTUi, U
T
i )

]
. (4.10)

Because U needs to satisfy both Eq. 4.7 and Eq. 4.10, we can combine them together

as follows:

min
U∈Rn×k

M∑
i=1

tr(UTLiU) + γ

[
kM −

M∑
i=1

tr(UUTUiU
T
i )

]
,

s.t. UUT = I,

(4.11)

where Li is the i-th Laplacian of G and Ui is the respective subspace representation,

and γ is a weight parameter that balances the effects of two terms in the equation.

Moreover, by ignoring the constant term in Eq. 4.11 and considering the fact that

tr(X) = tr(XT ), we have

min
U∈Rn×k

tr

[
UT (

M∑
i=1

Li − γ
M∑
i=1

UiU
T
i )U

]
,

s.t. UTU = I.

(4.12)

If we set

Lmod =
M∑
i=1

Li − γ
M∑
i=1

UiU
T
i , (4.13)

then, the solution of Eq. 4.12 is the first k eigenvectors of the modified Laplacian Lmod.
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4.3.3 The multi-layer bipartite graph

Given a multi-layer graph G, if each layer Gi is a bipartite graph, then we say G is a

multi-layer bipartite graph.

Let I = {p1, · · · , pm} be an image with m pixels, and S = {S1, · · · , SN} be a

collection of superpixel clusterings of the image, where Si = {si1, · · · , siki} is the i-

th superpixel clustering with ki superpixels. Suppose there are M different features

extracted from the superpixels, and let G be the multi-layer bipartite graph, which is

written as

G = {Gi}Mi=1 = {G(V X , V Y ,Wi)}Mi=1, (4.14)

where Wi is the cross-adjacency matrix corresponding to the i-th feature. And each

single layer Gi is constructed by setting V X = I ∪ S and V Y = S.

One straightforward way to merge the {Gi} is treating every Gi as a normal graph,

that is, extending Wi into a (m+n)× (m+n) matrix, so Eq. 4.13 can directly work on

G. However, this could be intractable in image segmentation because the huge number

of pixel results in high complexity both in computation and memory.

Actually, the spectral clustering of each Gi ∈ G can be done via singular value

decomposition (SVD) of the normalized Wi, and the clustering of V X can be obtained

from the clustering of V Y (Li et al., 2012; Dhillon, 2001). Fortunately, with the fol-

lowing lemma, this is also applicable for the multi-lay bipartite graph.

Lemma 4.3.1. Given a matrix A =


a11 · · · a1n

...
...

am1 · · · amn

, let DX = diag(A) be a m×m

diagonal matrix with the i-th entry of the main diagonal is the sum of the i-th row of

A (i.e.,
∑n

j=1 aij), and DY = diag(AT ) be a n× n diagonal matrix with the j-th entry

of the main diagonal is the sum of j-th column of A (i.e.,
∑m

i=1 aij), then, it holds

DY = diag(ATD−1
X A).

Proof. The proof is straightforward. ATD−1
X A =

a11 · · · am1

...
...

a1n · · · amn




(
∑n

j=1 a1j)
−1

. . .

(
∑n

j=1 amj)
−1



a11 · · · a1n

...
...

am1 · · · amn



=


a211∑n
j=1 a1j

+ · · ·+ a2m1∑n
j=1 amj

· · · a11a1n∑n
j=1 a1j

+ · · ·+ am1amn∑n
j=1 amj

...
...

a1na11∑n
j=1 a1j

+ · · ·+ amnam1∑n
j=1 amj

· · · a21n∑n
j=1 a1j

+ · · ·+ a2mn∑n
j=1 amj

,
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so, diag(ATD−1
X A) =


∑m

i=1 ai1

∑n
j=1 aij∑n
j=1 aij

. . . ∑m
i=1 ain

∑n
j=1 aij∑n
j=1 aij

 = DY .

Let Win be the i-th normalized cross-adjacency matrix, according to the definition

we have

Win = D
− 1

2
iX WiD

− 1
2

iY , (4.15)

where DiX = diag(Wi1) and DiY = diag(W T
i 1), and 1 is a vector of ones in proper

size; diag(·) is a diagonal matrix whose nonzero entries represented by ‘(·)’. Then, we

define WiY n, whose eigenvectors are the right singular vectors of Win:

WiY n = W T
inWin = D

− 1
2

iY W
T
i D

−1
iXWiD

− 1
2

iY , (4.16)

If we set WiY = W T
i D

−1
iXWi, from Lemma 4.3.1, we know DiY = diag(W T

i D
−1
iXWi),

then, the normalized graph Laplacian of GiY (V Y ,WiY ) is

LiY n = I −WiY n. (4.17)

Therefore, for a multi-layer bipartite graph G, the layers can be merged by Eq. 4.13

with the Laplacian in Eq. 4.17. Because the pixel-superpixel relations (i.e., W ps in

Eq. 3.2) in each graph layer are the same, the clustering of V X can be obtained from

the clustering of V Y by the T-cut. Algorithm 4.1 shows the details.

Algorithm 4.1 MBG-CCM

Input: A set of weighted cross-adjacency matrix {Wi}Mi=1 of multi-layer bipartite graph

G, merging weight parameter γ, number of clusters k;

Output: A final clustering C = {C1, · · · , Cn}
1: for i = 1, · · · ,M do

2: Convert Wi into WiY n by Eq. 4.16

3: Compute the normalized Laplacian Li of Gi by Eq. 4.17.

4: Compute the first k eigenvectors of Li as Ui.

5: end for

6: Compute the merged Laplacian LYmod by Eq. 4.13.

7: Compute the first k eigenvectors of LYmod as U .

8: Apply the T -cut (i.e., Algorithm 2.4) to obtain the final clustering C.

The computational cost of MBG-CCM contains three parts: the graph construc-

tion, the layer merging, and T -cut. Let m be the number of pixels, n be the total
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number of superpixels, M be the number of superpixel segmentations (i.e., the number

of layers), and Ki be the numbers of superpixels in the i-th superpixel segmentation and

K = max{Ki}. For graph construction, there are M(m+n) operations + O(MK2) op-

erations. The layer merging takes O(Mn3/2), and the cost of T -cuts is O(n3/2). There-

fore, the total computational complexity of MBG-CCM is O
(
(M + 1)n3/2 +MK2

)
,

which is M times higher than the CCM.

4.4 Experiments

4.4.1 Data sets and settings

The experiments are conducted on two public image segmentation datasets: the Berke-

ley Segmentation Data Set 300 (BSDS300), and its update, the Berkeley Segmentation

Data Set 500 (BSDS500) (Martin et al., 2001; Arbelaez et al., 2011).

For comparison purposes, we set the parameters to the same values as those used

in CCM. Specifically, the superpixel segmentations are created by Mean Shift and F-H

algorithm with the same parameter settings. There are three superpixel segmentations

generated by Mean Shift with the parameters (hs, hr,M) ∈ {(7, 7, 100), (7, 9, 100), (7,

11, 100)} where hs and hr are the bandwidth parameters, and M represents the mini-

mum size of the superpixel, and two or three superpixel segmentations produced by F-H

algorithm based on the image variance in the Lab colour space with a given threshold;

the parameters are set to be (σ, c,M) ∈ {(0.5, 100, 50), (0.8, 200, 100)} for the two-

segmentation case, or (σ, c,M) ∈ {(0.8, 150, 50), (0.8, 200, 100), (0.8, 300, 100)} for the

three-segmentation case, where σ and c are the parameters for smoothing and scale;

M is the minimum size of the superpixel.

For MBG-CCM, each single bipartite graph layer is constructed by following the

Algorithm 3.1 in Chapter 3. The edge-weights parameter α is set to be 1×10−3 and the

scale parameter β is set to be 20 for all feature spaces. In addition, the γ in Eq. 4.13

is set to γ = 1.

The experiments are conducted in two parts. First, for each algorithm, we gradually

increase the number of segments K from 2 to 40 for every image to find the best value

of K that gives it the highest performance, and we compare the algorithms by setting

the K to it best value for each image in the experiments. Second, we fix the segment

number K = 2, which is considered as a way for foreground-background segmentation.
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4.4.2 Results

We compare the performance of MBG-CCM with CCM. And the evaluation is based

on four popular methods, that is, PRI (Unnikrishnan et al., 2007), VoI (Meilă, 2005),

GCE (Martin et al., 2001), and BDE (Freixenet et al., 2002). The overall performance

is represented by Avg.R, that is, the average rank.

Table 4.1 and Table 4.2 show the results of foreground-background segmentation

(i.e., K = 2). In this case, the scores of MBG-CCM rank first in PRI on both data sets

and second in VoI and BDE with performance quite close to the best one. And the

Avg.R score of MBG-CCM is equal to CCM/HP. Moreover, Table 4.3 and Table 4.4

show the performance of K manually adjusted. MBG-CCM also performs competi-

tively. Figure 4.2 and Figure 4.3 give more visual results of MBG-CCM algorithm with

K = 2 and K manually set respectively.

Table 4.1: Performance over the BSDS300 with K fixed to 2

Algorithms PRI VoI GCE BDE Avg.R

CCM/HP 0.631 1.935 0.082 35.876 2

CCM/DP 0.599 2.033 0.089 29.180 3.75

CCM/AD 0.628 1.997 0.094 24.699 2.75

MBG-CCM 0.641 2.018 0.104 21.426 2

Table 4.2: Performance over the BSDS500 with K fixed to 2
Algorithms PRI VoI GCE BDE Avg.R

CCM/HP 0.623 1.996 0.087 36.463 2

CCM/DP 0.596 2.084 0.092 28.685 3.75

CCM/AD 0.620 2.054 0.097 25.379 2.75

MBG-CCM 0.635 2.067 0.108 21.610 2

Table 4.3: Performance over the BSDS300 with K manually adjusted

Algorithms PRI VoI GCE BDE Avg.R

CCM/HP 0.8495 1.6260 0.1785 12.3034 1.75

CCM/DP 0.8345 2.1169 0.2341 12.0008 3.75

CCM/AD 0.8397 2.0359 0.2308 11.8868 2.75

MBG-CCM 0.8421 2.0220 0.2231 11.5773 1.75
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Figure 4.2: More visual results of MBG-CCM on foreground back-

ground segmentation

Table 4.4: Performance over the BSDS500 with K manually adjusted

Algorithms PRI VoI GCE BDE Avg.R

CCM/HP 0.8407 2.0399 0.2359 10.7800 1.5

CCM/DP 0.8275 2.5169 0.2541 11.5002 4

CCM/AD 0.8370 2.0490 0.2503 10.8868 3.5

MBG-CCM 0.8418 2.0430 0.2263 11.1650 1.75
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Figure 4.3: More visual results of MBG-CCM with K manually set.

When the superpixel segmentations are given, the runtime of the MBG-CCM is

about 11 seconds per image with Matlab 2014a and a desktop equipped with an Intel

i5 CPU and 16GB RAM.

4.5 Conclusion

We have presented a novel approach, MBG-CCM, for improving the CCM. In the

MBG-CCM, we employ a multi-layer bipartite graph for modelling the segmentation

information provided by superpixel features extracted from different feature spaces and

merge the different graph layers via a Grassmann manifold.

Use of this algorithm is motivated by the fact that the cross-adjacency matrices

of a multi-layer bipartite graph can be converted into a set of positive semidefinite

matrices so that it can be decomposed into eigenvectors and eigenvalues, by which the

subspace representations of the matrices can be found. And the algorithm provides a

strong theoretical support for using different features in the original CCM.

The experiment results show that the performance of MBG-CCM is competitive
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with CCM. And if there are multiple features, the MBG-CCM is undoubtedly a better

option than trying the matrix operators one by one as in the original CCM given in

the previous chapter.

There is, however, a shortcoming of the MBG-CCM. It needs to compute the eigen-

vectors for each graph layer, which makes the computation cost higher than for CCM.

Actually in both MBG-CCM and CCM, the final segmentation is carried out by spec-

tral clustering techniques, so for them, computing the eigenvectors is an inevitable

procedure. Moreover, for spectral clustering, an exact number of clusters should be

given as prior knowledge. But this may be inapplicable in many image segmentation

applications. To solve these problems, we need to develop a new ensemble segmen-

tation method, which can formulate the pixel-superpixel relations without bipartite

graph and determine the number of clusters automatically.
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Chapter 5

Low-rank Representation for

Covariance Descriptor

5.1 Introduction

Apart from the feature fusing problem, there is another issue in the CCM that needs

to be considered, that is, how to find a ‘good’ covariance descriptor that produces the

stable performance. Actually, this is not only an issue for CCM but all the segmentation

algorithms that take handcrafted covariance descriptors as features. Similar to MBG-

CCM in Chapter 4, we also plan to convert this issue into an embedding problem.

Specifically, we aim to represent the covariance descriptors in some subspace so that

the discriminative information should be kept while the redundancies are removed.

The low-rank representation (LRR) is one of the techniques that may solve the

problem mentioned above. LRR was proposed for finding a robust subspace represen-

tation for the data represented in the linear feature spaces. Since the linear space is the

most common choice for data presentation, the application of LRR involves numerous

research fields, such as machine learning and computer vision (Liu et al., 2010). For

different applications, the LRR algorithm is developed by different motivations (Liu

et al., 2013). In some works, the subspaces are modelled as a mixture of Gaussian dis-

tributions, and the data structure can be obtained by the parameter estimation of the

mixture Gaussian model (Gruber and Weiss, 2004; Ho et al., 2003; Fischler and Bolles,

1981). And, some researchers proposed an algebraic way to model the data with LRR

and showed that the LRR is a generalized principal component analysis problem (Ma

et al., 2008; Wright et al., 2009). Moreover, an augmented Lagrange multipliers (ALM)

method is proposed by Lin et al. (2010) to solve the LRR model. Fu et al. (2015) ex-

50



tended the LRR model to the Riemannian manifold, which is nonlinear.

In this chapter we propose a low-rank representation method for the covariance

descriptors extracted from superpixels. Our contributions are as follows:

• we propose a LRR model to find the subspace structure of the covariance features;

• we improve the CCM algorithm by measuring the similarities of the superpixels

with LRR.

In the rest of the chapter, Section 5.2 gives the introductions of the necessary

background knowledge for elaborating our algorithms. Section 5.3 is the low-rank

representation-based CCM algorithm (LRR-CCM). Section 5.4 shows the results of

the experiments; in Section 5.5, we give the conclusion.

5.2 Preliminary

5.2.1 Low-rank representation

The low-rank representation (LRR) can be considered as a generalized principle com-

ponent analysis (PCA) problem. One basic assumption of the LRR theory is that the

given high-dimensional data lie near a lower-dimensional linear subspace. Mathemati-

cally, given a data set X = {x1, · · · ,xn} and xi be a d-dimension column vector, i.e.,

xi ∈ Rd, suppose X is sampled from a subspace, then, X can be decomposed into

X = X0 + E, (5.1)

where X0 is the origin of X and holds rank(X0) < rank(X), and, E is a matrix

representing the difference between X0 and X, also called corruption. The goal of

LRR is to estimate the low-dimensional subspace efficiently and accurately. However,

modelling this problem depends on the intrinsic structure of the data set X.

If the corruption is caused by additive i.i.d. Gaussian noise with small magnitude,

then, Eq. 5.1 can be modelled as an optimization problem, that is,

min ||E||F ,

s.t. rank(D) ≤ k, and, X = D + E,
(5.2)

where D is the low-rank representation of X, k is the target dimension of the subspace,

and || · ||F is the Frobenius norm. Actually, Eq. 5.2 is equivalent to a PCA problem (Lin

et al., 2010).
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But Eq. 5.2 will fail to find the proper D̂ when there exists large corruption in X,

even though the corruption affects only a few of the entities. In this case, Eq. 5.1 can

be solved by the following minimization problem (Lin et al., 2010; Wright et al., 2009),

that is,

min
D,E
||D||∗ + λ||E||1,

s.t. X = D + E,
(5.3)

where || · ||∗ is the nuclear norm of a matrix (i.e., the sum of its sigular values), || · ||1 is

the sum of absolute values of matrix entries, and λ is a positive weighting parameter.

In Liu et al. (2013), a more generalized version of Eq. 5.3 is given, which is based

on the fact that many real-world data sets contain multiple subspace structures. Let

S = {S1, · · · ,Sk} be a set of subspaces, and we assume X is drawn from a union of

these subspaces, denoted as S = ∪ki=1Si; let A = [A1, · · · , Ak] be a ‘dictionary’ that

linearly spans the data space, and Ai is the dictionary for the i-th subspace, then,

Eq. 5.1 can be modelled as

min
Z,E
||Z||∗ + λ||E||`,

s.t. X = AZ + E,
(5.4)

where || · ||∗ is the nuclear norm, and,

Z =


Z1

Z2

. . .

Zk


is called the low-rank representation of X; λ > 0 is a parameter and || · ||` represents

some regularization strategy for modelling the noise, such as the squared Frobenius

norm. And, we note that if set A = I and || · ||` to be || · ||1, then, Eq. 5.4 is equivalent

to Eq. 5.3.

Eq. 5.4 can be solved by the augmented Lagrange multiplier (ALM) method pro-

posed in (Liu et al., 2013). First, Eq. 5.4 is rewritten into the following equivalent

formation, that is,

min
Z,E,J

||J ||∗ + λ||E||2,1,

s.t. X = AZ + E,Z = J,
(5.5)
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where ||E||2,1 =
∑n

j=1

√∑n
i=n([E]ij)2 is called `2,1 norm. Then, the augmented La-

grange function is written as

L = ||J ||∗ + λ||E||2,1 + tr(Y T
1 (X − AZ − E))

+ tr(Y T
2 (Z − J)) +

µ

2
(||X − AZ − E||2F + ||Z − J ||2F )

(5.6)

where tr(·) is the trace operator, Y1 and Y2 are the Lagrange multipliers, and µ > 0 is

the penalty parameter. So, Eq. 5.5 can be solved by iteratively updating one variable

while fixing the others each time until the convergence conditions are met. The inexact

ALM method is shown in Algorithm 5.1, which is a variation of ALM method for an

unsmooth object function (Liu et al., 2013).

Algorithm 5.1 Inexact ALM for Eq 5.4

Input: A data set X = {x1, · · · ,xm}, parameter λ, dictionary A.

Output: The lowest-rank representation Z∗

1: Initialization: Z = J = 0, E = 0, Y1 = 0, Y2 = 0, µ = 10−6, µmax = 106,

ρ = 1.1, and ε = 10−8

2: while not converged do

3: Fix the others and update J by J = argmin 1
µ
||J ||∗ + 1

2
||J − (Z + Y2/µ)||2F .

4: Fix the others and update Z by Z = (I+ATA)−1(AT (X−E)+J+(ATY1−Y2)/µ)

5: Fix the others and update E by E = argminλ
µ
||E||2,1+ 1

2
||E−(X−AZ+Y1/µ)||2F .

6: Update Y1 and Y2 by Y1 = Y1 + µ(X − AZ − E), Y2 = Y2 + µ(Z − J)

7: Update µ by µ = min(ρµ, µmax)

8: Check convergence conditions, ||X − AZ − E||∞ < ε and ||Z − J ||∞ < ε.

9: end while

5.2.2 Covariance descriptor and collinearity

Covariance Descriptor and Sym+
d

Covariance descriptor maps feature functions to a symmetric positive definite matrix

space.

Specifically, let F = (f1, ..., fd)
T be a feature array, where fi is a vector whose entries

are the observations of the i-th feature. A covariance descriptor is the covariance matrix

of F, which is defined as

cov(F) =
[
E((fi − µi)T (fj − µj))

]
d×d , (5.7)
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where µi is the mean of the i-th feature fi, [·]d×d indicates an d×d matrix. Apparently,

different sets of fi generate different cov(F), which brings a different performance.

Moreover, since the d×d covariance matrix is symmetric and semi-positive definite,

the space of d× d covariance matrix is a convex cone in the d2-dimensional Euclidean

space, that is, a manifold embedding in d2-dimensional Euclidean space, written as

Sym+
d .

Collinearity

Collinearity (or multi-collinearity), a term from statistics, refers to a linear association

between two (or more) variables. Specifically, given a feature array F, suppose there

exists a set of not-all-zero scalar λ1, ..., λn that makes the following equation hold

λ1f1 + λ2f2 + · · ·+ λnfn + u = 0. (5.8)

If u = 0, F is perfect multi-collinearity, while if u ∼ N(0, σ), F is nearly multi-

collinearity.

In image segmentation, this multi-collinearity phenomenon is common when build-

ing the covariance descriptors. For example, if we use the RGB value and intensity

value as two features for covariance descriptor construction, the covariance matrix gen-

erated by Eq.5.7 is not full rank. Because the intensity value can be converted from

the RGB value via a linear transformation, the covariance matrix generated by Eq.5.7

is not full rank. This means there are redundant entries and noises in the covariance

descriptor.

5.3 LRR-based CCM

In CCM, a colour covariance matrix is used as a descriptor of the superpixels. Ob-

viously, it is not the only covariance descriptor available for superpixels. By using

different covariance descriptors, the performance of CCM may vary. In many appli-

cations, the most suitable covariance descriptor are often chosen in an empirical way,

that is, trying different selections of them and taking the one that gives the best per-

formance (Habiboğlu et al., 2012; Kviatkovsky et al., 2013). This may work in practice

but lacks theoretical support. In this section, the LRR is used to reduce the noises in

the covariance descriptor set.
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5.3.1 Refine covariance descriptors with LRR

The low-rank representation (LRR) is proposed for finding a stable and compact rep-

resentation for a given data set, which has been proved an efficient method for noise

reduction in the Euclidean space (Candès et al., 2011; Wright et al., 2009; Ganesh

et al., 2009; Chen and Yang, 2014; Liu and Yan, 2011). Recently, it has been extended

into the non-Euclidean space, such as Riemannian manifold (Fu et al., 2015; Wang

et al., 2015a,b).

The covariance descriptors are the points lying on a Sym+
d , and in this case, the

Frobenius norm is used as the metric for it. So, the Sym+
d is embedded into the d2-

dimensional Euclidean space. Although this Frobenius metric is not geodesic, which

may lose the intrinsic structure of the data set in embedding, it allows all the methods

from Euclidean space to be applied to the manifold directly.

LRR for covariance matrices

Given a set of covariance descriptors X = {X1, · · · , Xn}, where Xi is a covariance

matrix of size d× d, if we stack the Xi in a third dimension, then, X become a 3-order

tensor, i.e., a cube. By the Frobenius metric, we can embed X into the d2-dimensional

Euclidean space, so the LRR model, Eq.5.4, is written as follows:

min
E,Z
‖E‖2

F + λ‖Z‖∗,

s.t. X = X×3Z + E,
(5.9)

where ‖·‖F is the Frobenius norm; ‖·‖∗ is the nuclear norm; λ is the balance parameter;

×3 means mode-3 multiplication of a tensor and matrix (Kolda and Bader, 2009).

Eq. 5.9 can be solved via augment Lagrangian multiplier (ALM) and the solution is as

follows (Wang et al., 2015b):

for the error term E, we have ‖E‖2
F = ‖X − X×3Z‖2

F , and we can rewrite ‖E‖2
F as,

‖E‖2
F =

N∑
i

‖Ei‖2
F , (5.10)

where Ei = Xi −
∑N

j zijXj, i.e., the i-th slice of E. Note that for matrix A, it holds
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‖A‖2
F = tr(ATA), and Xi is symmetric, so, Eq. 5.10 can be expanded as

‖Ei‖2
F = tr[(Xi −

N∑
j

zijXj)
T (Xi −

N∑
j

zijXj)]

= tr(XT
i Xi)− tr(XT

i

N∑
j

zijXj)− tr(
N∑
j

zijX
T
j Xi)

+ tr(
N∑
j1

zij1X
T
j1

N∑
j2

zij2Xj2)

= tr(XiXi)− 2tr(
N∑
j

zijXiXj) + tr(
N∑
j1,j2

zij1zij2Xj1Xj2).

Let ∆ be a symmetric matrix of size N ×N , whose entries are ∆ij = ∆ji = tr(XiXj)

and P = ∆
1
2 . Because Xi is a symmetric matrix, ∆ij can be written as ∆ij =

vec(Xi)
Tvec(Xj), where vec(·) is an operator that vectorized a matrix. As a Gram

matrix, ∆ is positive semidefinite. So, we have

‖Ei‖2
F = ∆ii − 2

N∑
j=1

zij∆ij +
N∑
j1

N∑
j2

zij1zij2∆j1j2

= ∆ii− 2
N∑
j=1

zij∆ij + zi∆zTi .

For ∆ = PP T ,

‖E‖2
F =

N∑
i=1

∆ii − 2tr[Z∆] + tr[Z∆ZT ]

= C + ‖ZP − P‖2
F ,

where C is a constant. The optimization Eq.5.9 is equivalent:

min
Z
‖ZP − P‖2

F + λ‖Z‖∗. (5.11)

We transform the Eq.5.11 into an equivalent formulation

min
Z

1

λ
‖ZP − P‖2

F + ‖J‖∗,

s.t. J = Z.

(5.12)

Then by ALM (Argument Lagrange Multiplier), we have

min
Z,J

1

λ
‖ZP − P‖2

F + ‖J‖∗+ < Y,Z − J > +
µ

2
‖Z − J‖2

F , (5.13)
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where Y is the Lagrange coefficient; λ and µ are scale parameters. Eq.5.13 can be

solved by the following two subproblems (Lin et al., 2010):

Jk+1 = min
J

(‖J‖∗+ < Y,Zk − J > +
µ

2
‖Zk − J‖2

F )

and,

Zk+1 = min
Z

(
1

λ
‖ZP − P‖2

F+ < Y,Z − Jk > +
µ

2
‖Z − J‖2

F ).

Fortunately, according to Cai et al. (2010), the solutions for the above subproblems

have the following close forms:

J = Θ(Z +
Y

µ
),

Z = (λµJ − λY + 2∆)(2∆ + λµI)−1,

where Θ(·) is the singular value thresholding operator (Cai et al., 2010). Thus, by

iteratively updating J and Z until the converge conditions are satisfied, a solution for

Eq.5.9 can be found.

5.3.2 LRR-CCM algorithm

In the graph construction step of the CCM algorithm, the superpixels-wise similarity

matrix W ss in Eq. 3.2 is obtained by measuring the similarity between the superpixels

within the same superpixel segmentation. Let Si = {si1, · · · , siKi
} be a set of covariance

descriptors of the i-th superpixel segmentation; it is easy to see Si is a 3-order tensor.

Thus, we can get the LRR of Si by solving Eq. 5.9, i.e. using Algorithm 5.1. Let Zi

be the LRR coefficient matrix of Si and Ũi be the row-normalized singular vectors of

Zi. The same as Ma et al. (2007), we define a similarity matrix for the superpixels as

SimKi×Ki
= (ŨiŨi

T
)2. (5.14)

and, the entry at (m,n) of matrix Sim is the similarity between superpixel descriptor

sim and sin, written as Sim(m,n). By setting the entries of W ss to the respective

Sim(m,n), the superpixel-wise similarity matrix can be obtained. The LRR-CCM

algorithm is shown in Algorithm 5.2.

5.4 Experiments

5.4.1 Data sets and settings

The experiments are conducted on two public image segmentation data sets: the Berke-

ley Segmentation Data Set 300 (BSDS300), and its update, the Berkeley Segmentation
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Algorithm 5.2 The LRR-CCM Algorithm

Input: An image I, a collection of superpixel segmentations S, the number of clusters

k;

Output: A final clustering C = {C1, · · · , Cn}
1: Compute the LRR (i.e., Z) for every superpixel segmentation by Algorithm 5.1.

2: Build the bipartite graph G via Algorithm 3.1, in which the superpixel-wise simi-

larity matrix W ss obtained by Eq.5.14.

3: Apply Algorithm 2.4 (i.e., T -cut) on G and obtain the final clustering C.

Data Set 500 (BSDS500) (Martin et al., 2001; Arbelaez et al., 2011).

For comparison purposes, we set the parameters to the same values as those used in

CCM. Specifically, the superpixel segmentations are created by Mean Shift and the F-H

method with the same parameter settings. There are three superpixel segmentations

generated by Mean Shift with the parameters (hs, hr,M) ∈ {(7, 7, 100), (7, 9, 100), (7,

11, 100)} where hs and hr are the bandwidth parameters, and M represents the min-

imum size of the superpixel, and two or three superpixel segmentations produced by

F-H method based on the image variance in the Lab colour space with a given thresh-

old; the parameters are set to be (σ, c,M) ∈ {(0.5, 100, 50), (0.8, 200, 100)} for the

two-segmentation case, or (σ, c,M) ∈ {(0.8, 150, 50), (0.8, 200, 100), (0.8, 300, 100)} for

the three-segmentation case, where σ and c are the parameters for smoothing and scale;

M is the minimum size of the superpixel.

For LRR-CCM, the parameter λ in Eq. 5.9 is chosen by a grid search among

{1, 0.1, 0.01, 0.001} for every image, that is, we select the value that gives the high-

est performance.

Moreover, for the LRR-based CCM algorithm, three different covariance descriptors

are used:

• CovI : [R,G,B],

• CovII : [R,G,B, I,
∂I

∂x
,
∂I

∂y
,
∂I

∂2x
,
∂I

∂2y
],

• CovIII :[R,G,B,
∂R

∂x
,
∂R

∂y
,
∂G

∂x
,
∂G

∂y
,
∂B

∂x
,
∂B

∂y
,
∂R

∂2x
,
∂R

∂2y
,
∂G

∂2x
,
∂G

∂2y
,
∂B

∂2x
,
∂B

∂2y
].

From CovI to CovIII, the dimensionality of the covariance descriptor is increasing.

For example, CovI contains the patterns in the R, G, B channels, while in CovIII, the

patterns of their derivatives are also included. This means the covariance descriptors
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Table 5.1: Performance of LRR with different covariance descriptors

Algorithms PRI VoI GCE BDE Avg.R

CovI+LRR 0.8454 1.7564 0.1885 13.0427 2

CovII+LRR 0.8499 1.7418 0.1915 12.7635 1.5

CovIII+LRR 0.8451 1.7698 0.1932 12.4837 2.5

become more discriminative. But since the partial derivatives are directly computed

from other contained features, the tendencies of multi-collinearity are also growing.

The main purpose of our experiments is to evaluate the ability of LRR method

in extracting the subspace structure of covariance descriptors. Because the subspace

structure of each image may be different, therefore, we partition every image into K

regions with K ∈ [2; 40]. And, the reported evaluation results are based on the K that

provides the best performance of the algorithms.

5.4.2 Results

The LRR-CCM can successfully run over all images in the BSDS300 but not all im-

ages in the BSDS500 since ALM (i.e., Algorithm 5.1) failed to converge when running

with a few images in BSDS500. One possible reason is there is too much noise in

the covariance descriptor sets of those images, which makes it hard to find the stable

subspace structure. And, an incorrect subspace representation may result in a problem-

atic superpixel-wise similarity matrix, which causes a failure in the spectral clustering

procedure in T-cut.

Table 5.1 shows the results of LRR-CCM with different types of covariance descrip-

tors over BSDS300. With CovII descriptor, the PRI and VoI of LRR-CCM reach the

best, and, GCE and BDE reach the best with CovI and CovIII respectively. But the

overall performance of the three descriptors are very close.

Table 5.2 shows the comparison between the state-of-the-art algorithms with LRR-

CCM on BSDS300. The CCM has the highest overall performance but LRR-CCM

performs best on PRI. In order to run the experiments of LRR-CCM on BSDS500,

we use Gaussian filter to smooth the images that failed on ALM. Table 5.3 shows the

corresponding performance. The LRR-CCM has the second-highest average rank, and

its performance on PRI is still the highest overall. Figure 5.1 demonstrates a few results

of the LRR-CCM.

When the superpixel segmentations are given, it takes about 15 seconds to run
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Table 5.2: Performance of different algorithms over BSDS300

Algorithms PRI VoI GCE BDE Avg.R

SAS 0.8319 1.6849 0.1779 11.2900 2.5

`0-sparse 0.8355 1.9935 0.2297 11.1955 3.5

CCM 0.8495 1.6260 0.1785 12.3034 2.25

MBG-CCM 0.8421 2.0223 0.2231 11.5771 3.75

LRR-CCM 0.8499 1.7418 0.1915 12.7635 3

Table 5.3: Performance of different algorithms over BSDS500

Algorithms PRI VoI GCE BDE Avg.R

SAS 0.8372 1.6914 0.1813 12.6599 3.25

`0-sparse - - - -

CCM 0.8495 1.6260 0.1785 12.3034 1.75

MBG-CCM 0.8418 2.0430 0.2263 11.1650 3

LRR-CCM 0.8498 1.7858 0.1948 11.9848 2

Note: The symbol ‘−’ means there are no published results available.

Figure 5.1: Some visualized results of LRR-CCM.
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LRR-CCM on one image with Matlab 2014a and a desktop equipped with an Intel i5

CPU and 16GB RAM.

5.5 Conclusion

We have presented a novel approach, LRR-CCM, for improving the CCM algorithm.

In LRR-CCM, we apply the augmented Lagrange multiplier (ALM) method to find the

low-rank representation of the covariance descriptor set and build the superpixel-wise

similarity matrix based on the low-rank representation.

We test the LRR-CCM with three different covariance descriptors. Each of them

contains noise due to collinearity. The experiment results show that the performance

of LRR-CCM with these covariance descriptors are relatively stable, which means the

LRR method we proposed is able to extract the robust subspace representation for

the covariance descriptors. And for covariance descriptors, the low-rank representation

may be the ‘good’ descriptor.

But the shortcomings of the MBG-CCM also happen on LRR-CCM. It needs spec-

tral clustering for generating the final segmentation and a specified number of clusters.

Moreover, in order to find the most suitable parameters, LRR needs to search over the

parameter space, which is a significant overhead for a segmentation algorithm. So, a

new algorithm that can avoid these problems is needed. This is the purpose of our

next chapter.
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Chapter 6

Superpixel Association

6.1 Introduction

As a group of pixels with perceptual similarities, superpixel is widely used in com-

puter vision applications. In many works, the superpixels are used as primitives for

image processing tasks. For example, Gould et al. developed a few of object recogni-

tion algorithms based on superpixels (Gould et al., 2008, 2014, 2009); Kluckner et al.

(2009) proposed an image segmentation algorithm that working with superpixels via

the random forests. While in some other research, different superpixel segmentations

are regarded as segmentation clues, and the ensemble clustering algorithms are applied

to them and produce the final segmentation. Kim et al. (2010) proposed an algorithm

in which the superpixel segmentations are incorporated in a dense affinity matrix over

pixels, and the final segmentation is obtained by spectral clustering on the pixels. A

bipartite graph is used to solve the information fusing problem by which both the pixels

and superpixels are set as graph vertices (Li et al., 2012; Wang et al., 2013), and the

final clustering information of the pixels is delivered from a spectral clustering-based

algorithm, named T -cut (Li et al., 2012).

Although most of the superpixel-based algorithms are well-tuned to provide good

performance, there are still a few issues to be addressed. The first one is the selec-

tion of superpixel segmentations. Since different superpixel algorithms (or, different

parameter settings) generate different superpixel segmentations, the performance of

those algorithms varies, especially for those algorithms that work on a single super-

pixel segmentation directly. Secondly, many superpixel-based algorithms employ graph

models and the final segmentation is often obtained via spectral clustering. So, they

need a specified cluster number for the final segmentation. However, even for a human,
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it is still not easy to give an exact cluster number for image segmentation, because for

an image, the ‘correct’ segmentation is not unique, especially for natural images. Fig-

ure 6.1 demonstrates this phenomenon: the first left column is the original image, and

the rest are the different segmentations made by a human. It is easy to notice that

some people partition the sky into a few regions while others don’t. Actually, all these

segmentations are considered to be ‘correct’. This phenomenon encourages researchers

to model the segmentation with a hierarchical structure. For example, Arbelaez et al.

(2011) proposed the ultrametric contour map (UGM) algorithm in which a hierarchical

segmentation tree is built to capture the possible segmentations with different scales.

Figure 6.1: An example of the multiple ‘correct’ segmentations.

In this chapter, we also propose a hierarchical tree model for image segmentation,

which is named superpixel-based hierarchical segmentation tree (SHST). With this

algorithm, we can generate segmentations with different scales. Different to the UGM

in which the tree is constructed from the contours, our algorithm builds the tree with

the superpixel associations. To our knowledge, this method has not been sufficiently

explored. Our contributions mainly contain the following:

• we propose the concept of superpixel association and show some nice properties

of it;

• we propose the SHST algorithm by which a hierarchical segmentation tree can

be built with superpixel associations;

• we propose a strategy for determining the number of segments with the SHST.

The rest of the chapter is organized as follows. Section 6.2 is about the superpixel

association and its properties. In Section 6.3, we propose the SHST algorithm and give

the details for building the SHST. The experiment results are reported in Section 6.4.

And Section 6.5 summarizes the chapter.
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6.2 Superpixel association

The concept of superpixel association is proposed with the inspiration from the Hybrid

Bipartite Graph Formation (HBGF) algorithm. In HBGF-based image segmentation

algorithms, like SAS (Li et al., 2012) and CCM, we find that those pixels having the

same pixel-superpixel relations are always partitioned into the same segment in the

final segmentation. This indicates those pixels can be considered as a unit in the

HBGF-based algorithm. Actually, we will prove that the segmentation result from an

HBGF-based algorithm will not change if we take the superpixel associations instead

of pixels as primitives for segmentation. Firstly, we give the definitions of superpixel

association.

Let I = {pu}mu=1 represent an image of m pixels. A superpixel segmentation is

a clustering on I denoted by S = {s1, · · · , sK}, where si is a subset of I, called a

superpixel, and K is the number of superpixels in S; for ∀si, sj ∈ S, where i 6= j,

we have si ∩ sj = ∅. We denote S = {S1, · · · , SN} as a collection of superpixel

segmentations, where N is the number of superpixel segmentations. And, let SLi =

{1, 2, · · · , Ki} represent the set of superpixel labels of Si, where Ki is the number of

superpixels in Si.

For a given Si ∈ S, we define an indicator Id : I → SLi, which assigns a superpixel

label l ∈ SLi to pixel pu. Then, we have the following definition:

Definition 6.2.1 (Superpixel association). A set of pixels Sa = {pu}nSa
u=1 is called a

superpixel association if it satisfies the following conditions:

(i) ∀pu, pv ∈ Sa, ∀Si ∈ S, it holds that Id(pu) = Id(pv);

(ii) ∀pu ∈ Sa and pv /∈ Sa, ∃Si ∈ S, such that Id(pu) 6= Id(pv);

where nSa is the number of pixels in the superpixel association.

For a given S, there exists a unique collection of Sa, which is denoted as A =

{Sa1, ..., SaM}, where M is the number of superpixel associations. Two pixels are in

the same Sa if and only if they are in the same superpixel in all of the given superpixel

segmentations; Figure 6.2 gives an example. Besides, for a given threshold τ ≥ 0, we

say Sa is a tiny superpixel association, if nsa < τ holds.

Theoretically, we can take superpixel associations as primitives for segmentation

instead of pixels because of the following Theorem 6.2.1.
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(a) (b)

Figure 6.2: An example for superpixel association: (a) two super-

pixels; (b) the corresponding superpixel associations. Intuitively, the

superpixel associations are the intersected and non-intersected parts

of the given superpixels.

Theorem 6.2.1. For a given I and a collection of its clusterings S, let Gp(V X
p , V

Y
p , Ep)

and GSa(V X
Sa, V

Y
Sa, ESa) denote two bipartite graphs constructed according to the HBGF

algorithm, and, S
′
sp and S

′
spassoc denote the final clusterings obtained from the respective

graphs. For the spectral clustering on Gp and GSa with a given cluster number k, it

holds that S
′
sp = S

′
spassoc, if Gp and GSa satisfy the following conditions:

(i) vertices in V X
p and V X

Sa represent pi ∈ I for Gp and Sai ∈ A for GSa respectively;

(ii) weights on the Ep = {er}Rp

r=1 and ESa = {er}RSa
r=1 are set to be C for Gp and

{nrSaC}
RSa
r=1 for GSa respectively;

where C is a positive constant; Rp and RSa are the numbers of edges; and, nrSa is the

number of pixels in the Sa that is connected to some superpixel by er.

Proof. Without loss of generality, for image I = {p1, · · · , pm}, we make the following

settings to simplify the proof,

1. the superpixels Sp = {s1, · · · , sn};

2. the superpixel associations A = {Sa1, · · · , SaM};

3. Gp is built with Algorithm 2.3 by V I = I, and the weights on the edges are set

to be 1;

4. GSa is built with Algorithm 2.3 by V I = A, and, the number of pixels in Sai,

denoted as ti, is set to be the edge weight that connects Sai and sj, if Sai ⊆ sj.
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Let Bp and BSa be the respective cross-adjacency matrices. Since the order of the

rows is irrelevant to the result, we arrange the rows of Bp into blocks according to the

superpixel associations, that is, those pixels belonging to a same superpixel association

will stay together. Let Zi be a set of subscripts of the superpixels in Sp that cover Sai,

and, we set Z = {Z1, · · · , ZM}. Then, we suppose Bp and BSa are as follows,

Bp =



s1 ··· su ··· sv ··· sn

p1 1 · · · 0 · · · 1 · · · 0
...

...
...

...
...

pt1 1 · · · 0 · · · 1 · · · 0

pt1+1 0 · · · 1 · · · 1 · · · 0
...

...
...

...
...

pt1+t2 0 · · · 1 · · · 1 · · · 0
...

...
...

...
...

pm 1 · · · 0 · · · 1 · · · 1


m×n

,

and,

BSa =



s1 ··· su ··· sv ··· sn

Sa1 t1 · · · 0 · · · t1 · · · 0

Sa2 0 · · · t2 · · · t2 · · · 0
...

...
...

...
...

SaM tM · · · 0 · · · tM · · · tM


M×n

.

We denote DX = diag(B1) and DY = diag(BT1) are two degree matrices correspond-

ing to V I and V C , where 1 is a vector of ones in proper size and diag(·) is a diagonal

matrix whose nonzero entries represented by ‘(·)’. Obviously, we have Dp
Y = DSa

Y .

Besides, we have

Dp
X =



1 ··· t1 t1+1 ··· t1+t2 ··· m

1 |Z1|
...

. . .

t1 |Z1|
t1+1 |Z2|

...
. . .

t1+t2 |Z2|
...

. . .

m |ZM |


m×m

,
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where |Zi| represents the number of entries in Zi, and,

DSa
X =



1 2 ··· M

1 |Z1|t1
2 |Z2|t2
...

. . .

M |ZM |tM


M×M

.

So,

(Bp)T
[
(Dp

X)−1Bp
]

=



p1 ··· pt1 pt1+1 ··· pt1+t2 ··· pm

s1 1 · · · 1 0 · · · 0 · · · 1
...

...
...

...
...

...

su 0 · · · 0 1 · · · 1 · · · 0
...

...
...

...
...

...

sv 1 · · · 1 1 · · · 1 · · · 1
...

...
...

...
...

...

sn 0 · · · 0 0 · · · 0 · · · 1


×



s1 ··· su ··· sv ··· sn

p1
1
|Z1| · · · 0 · · · 1

|Z1| · · · 0
...

...
...

...
...

pt1
1
|Z1| · · · 0 · · · 1

|Z1| · · · 0

pt1+1 0 · · · 1
|Z2| · · ·

1
|Z2| · · · 0

...
...

...
...

...

pt1+t2 0 · · · 1
|Z2| · · ·

1
|Z2| · · · 0

...
...

...
...

...

pm
1
|ZM |

· · · 0 · · · 1
|ZM |

· · · 1
|ZM |



=


1 ··· n

1
∑M

q=1

(
tq
|Zq |δ(1 ∈ Zq)δ(1 ∈ Zq)

)
· · ·

∑M
i=q

(
tq
|Zq |δ(1 ∈ Zq)δ(n ∈ Zq)

)
...

...
...

n
∑M

q=1

(
tq
|Zq |δ(n ∈ Zq)δ(1 ∈ Zq)

)
· · ·

∑M
q=1

(
tq
|Zq |δ(n ∈ Zq)δ(n ∈ Zq)

)


=

( M∑
q=1

tq
|Zq|

δ(i ∈ Zq)δ(j ∈ Zq)

)
ij


n×n

,

where the value of δ(·) is 1 if the condition ‘(·)’ is true, and 0, otherwise; i, j ∈
{1, 2, · · · , n}. And,

(BSa)T
[
(DSa

X )−1BSa
]

=



Sa1 Sa2 ··· SaM

s1 t1 0 · · · tM
...

...
...

...

su 0 t2 · · · 0
...

...
...

...

sv t1 t2 · · · tM
...

...
...

...

sn 0 0 · · · tM


×



s1 ··· su ··· sv ··· sn

Sa1
1
|Z1| · · · 0 · · · 1

|Z1| · · · 0

Sa2 0 · · · 1
|Z2| · · ·

1
|Z2| · · · 0

...
...

...
...

...

SaM
1
|ZM |

· · · 0 · · · 1
|ZM |

· · · 1
|ZM |



=

( M∑
q=1

tq
|Zq|

δ(i ∈ Zq)δ(j ∈ Zq)

)
ij


n×n

.
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So, for

L
p(sym)
Y = (Dp

Y )−
1
2 (Bp)T (Dp

X)−1Bp(Dp
Y )−

1
2

and

L
Sa(sym)
Y = (DSa

Y )−
1
2 (BSa)T (DSa

X )−1BSa(DSa
Y )−

1
2 ,

we have

LpY = LSaY .

Let ui and vi be the i-th eigenvector of LX and LY and λi be the respective eigenvalue of

LY . According to Theorem 1 in Li et al. (2012), ui = 1
1−γiD

−1
X Bvi, where γi(2−γi) = λi.

So,

upi =
1

1− γi
(Dp

X)−1Bpvpi ,

and,

uSai =
1

1− γi
(DSa

X )−1BSavSai ,

Because the eigenvectors of LpY and LSaY are the same (i.e., vpi = vSai ), the m-th element

in vpi is same to the n-th element in vSai if pm ∈ San. Thus, Gp and GSa are equivalent

in representing the data structure of the pixel set P .

For those HBGF-based segmentation algorithms, Theorem 6.2.1 indicates that we

can get same clustering result if we take superpixel associations instead of pixels as

the vertices in G. But if we are using superpixels, there is not such a guarantee. This

means, as primitives, superpixel associations are better than superpixels.

6.3 Segmentation with superpixel associations

Since the superpixel associations is a kind of primitives for ensemble clustering, for

hierarchical image segmentation, one intuitive idea is to generate the segmentation by

merging the superpixel association gradually (i.e., by a bottom-up process). Moreover,

this can be easily done with a tree-growing algorithm. Thus, we propose a novel im-

age segmentation algorithm which works on the superpixel association level, named

superpixel-based hierarchical segmentation tree (SHST). In our algorithm, the super-

pixel associations are regarded as the leaves, and, the tree is constructed based on a

similarity matrix of the superpixel associations.

The framework of SHST can simply be divided into two parts: measuring the

similarities among the superpixel associations and merging them according to the sim-

ilarities. However, this algorithm has three characteristics that are different from the
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state of the art. The first one is the method for similarity measure. The second one is

a two-stage merging strategy that allows balancing between the local and globe simi-

larity. Finally, SHST is able to determine the number of segmentations automatically

by setting a cluster lifetime. The details are elaborated as follows.

6.3.1 The similarity measure

We propose a voting strategy for measuring the similarity between two superpixel

associations. Given a set of superpixel segmentations S, Sai = {pi1, · · · , piKi
} and

Saj = {pj1, · · · , p
j
Kj
} are two superpixel associations obtained from S that contain Ki

and Kj pixels respectively. Moreover, let Π = {π1, · · · , πM} be a set of segmentations

of the image I and πm = {Rm
1 , · · · , Rm

rm} be a segmentation containing rm regions. We

define a δ function as

δm(pi, pj) =

1, if pi ∈ Rm
r , pj ∈ Rm

r , and, Rm
r ∈ πm

0, otherwise,
(6.1)

where pi and pj are pixels in I. Then, the co-occurrence pi and pj on a given Π is

∆(pi, pj) =
M∑
m=1

rm∑
r=1

δm(pi, pj). (6.2)

And, the similarity between Sai and Saj is defined as,

sim(Sai, Saj) =

∑
pi∈Sai

∑
pj∈Saj ∆(pi, pj)

|Sai| · |Saj|
, (6.3)

where |Sai| represents the number of pixels in Sai. Actually, if we set H to be a

histogram of N bins where N is the total number of regions in Π, and each bin is

represented by the number of pixels belonging to the respective region, then, Eq. 6.3

can be rewritten as

sim(Sai, Saj) =
HSaiH

T
Saj

|Sai| · |Saj|
, (6.4)

where HSai is a row vector representing the histogram of occurrence of pixels in Sai on

Π.

There are a few nice properties for our similarity function. First, the similarity

is computed purely from the co-occurrence of the pixels, which is simple and easy to

adopt. Given S, we can get the similarity without any other extra feature extraction

procedures. Moreover, according to Eq. 6.4, the similarity is actually a normalized

inner product, which is quite easy to compute. Second, we can balance the similarity

in different scales by using different base segmentations Π, which may benefit image

segmentation.
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6.3.2 Two-stage merging

From Eq. 6.3 it is clear that different segmentation sets Π will bring different simi-

larities. Thus, we developed a two-stage merging strategy that merges the superpixel

associations in two steps with two different Π. In the first stage, the superpixel associ-

ations are refined with the given superpixel segmentations S, and in the second stage,

the refined superpixel associations are merged to final segmentation based on a few

clusterings of S, which contain the long-range relations of the superpixel associations.

Refining superpixel association with S

The whole merging procedure starts with the refining step based on S. There are two

reasons for doing this. First, there always exists some tiny superpixel associations, that

is, superpixel association with very small size, because noise or complexity in real-world

images makes the superpixel boundaries unstable. Second, many superpixel algorithms

tend to oversegment the image, which makes H in Eq. 6.4 (the occurrence histogram

on S) sparse. This means S contains strong local similarity information while weak

long-range relations. Therefore, a refining procedure based on S is necessary and good

for producing the stable performance.

We refine the superpixel associations by merging the tiny entries into their nearest

neighbours according to the similarity measure in Eq. 6.3. For a given threshold τ , the

tiny superpixel association is merged with the one that is most similar to it. Since it

is possible for two tiny superpixel associations to be merged into one but the new one

is still tiny, the merging process is done in an iterative manner. In this chapter, we set

τ as a p-quantile of the superpixel associations’ size sequence, where p ∈ [0, 1]. This

makes the selection of τ more adapting.

Long-range similarity

Since many superpixel algorithms tend to oversegment the image, the base segmenta-

tion set S tends to lose the long-range similarities among the superpixel associations,

which means the H based on S is sparse and Eq. 6.4 cannot work properly. The solution

for this problem is intuitive, that is, making a set of clusterings on S and computing

the similarities based on them. Fortunately, we can obtain the clusterings on S easily

with an algorithm similar to HBGF, which models the pixel-superpixel relations with

a bipartite graph and get the clusterings via spectral clustering. Algorithm 6.1 shows

the details. Besides, it is worthy to mention that, in Algorithm 6.1, we can fuse dif-
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Algorithm 6.1 The spectral clustering on S
Input: Image I = {p1, · · · , pm}, Superpixel clusterings S = {S1, · · · , SN}, a set of

number of clusters K = {K1, · · · , KM} ;

Output: A set of clusterings on S: C = {C1, · · · , CM}.
1: /∗Part I: Graph construction.∗/
2: Set V X = I ∪ S, V Y = S, W = ∅; //Another option is V X = I.

3: Compute n =
∑N

i=1Ki; // Ki is the number of superpixels in Si.

4: for vXi ∈ V X , i = 1, · · · ,m+ n do

5: for vYj ∈ V Y , j = 1, · · · , n do

6: wij = similar(vXi , v
Y
j ) //similar(·, ·) is the similarity measure.

7: end for

8: end for

9: /∗ Part II: Partition Superpixels∗/
10: Compute the adjacency matrix on V Y : WY = W TD−1

x W .

11: Apply spectral clustering on W Y with Ki ∈ K, and obtain C.

ferent features of the superpixels by the function similar(·, ·), then, the segmentation

information from different features will transfer into the final segmentation via Eq. 6.3.

Construction of SHST

The tree is built on the refined superpixel associations by a minimum spanning tree

algorithm (MST). Let Z be the similarity matrix of the refined superpixel associations;

the tree construction process is summarized in Algorithm 6.2.

6.3.3 The cluster lifetime

We define the k-cluster lifetime for the SHST. Let T = {t1, · · · , tM |t1 ≤ t2 ≤ · · · ≤ tM}
denote the set of sorted edge weights of the SHST, and a cluster lifetime is defined as

δi = (ti+1 − ti). Since the SHST is constructed by a MST algorithm, we say δi is a

k-cluster lifetime if the SHST is separated into k subtrees when removing the edges

whose weights t satisfy t > ti.

According to the highest lifetime criterion proposed in ?? (fre), a higher value of a k-

cluster lifetime indicates the k is closer to the true cluster number of the data set. Thus,

given a sorted cluster lifetime set ∆ = {δ1, · · · , δM−1|δ1 ≥ δ2 ≥ · · · ≥ δM−1}, we can

obtain the image segmentation by specifying the lifetime level, which is more flexible
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Algorithm 6.2 Construction of SHST

Input: Superpixel associations A = {Sa1, · · · , SaM}, Size threshold τ , base cluster-

ings S = {S1, · · · , SN}, a set of number of clusters K = {K1, · · · , KM} ;

Output: A hierarchical segmentation tree H

/∗ The first stage of merging∗/
1: A∗ = ∅, Z = [Zij]

2: for Sai ∈ A do

3: Sa = Sai, remove Sai from A;

4: repeat

5: Compute the sim(Sa, Saj) by Eq. 6.4 based on S for all i 6= j;

6: Find the most similar Saj of Sa;

7: Sa = Sa ∪ Saj;
8: Remove Saj from A∗;

9: until |Sa| > τ

10: A∗ = A∗ ∪ Sa;

11: end for

/∗ Computer a set of clusterings of S ∗/
12: Apply Algorithm 6.1 on S with K;

13: Obtain C;
/∗ The second stage of merging∗/

14: Compute the similarity matrix Z of A∗ by Eq. 6.4 based on C;
15: Apply MST on (−Z) and get H //note:(−Z) is the dissimilarity matrix.
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Figure 6.3: A dendrogram produced from SHST. If we remove the

edges at l2 level, the SHST will be partitioned into 2 subtrees. And,

if we remove the edges at l3, the SHST will be partitioned into 3

subtrees.

and objective than those algorithms that only work with specified cluster numbers.

Figure 6.3 demonstrates the lifetime criterion.

Therefore, we have two ways for getting the segmentation result from SHST. One is

cutting the tree with a specified cluster number, another is partitioning the tree with

a given lifetime level.

6.4 Experiments

6.4.1 Data sets and settings

The experiments are conducted on two public image segmentation data sets: the Berke-

ley Segmentation Data Set 300 (BSDS300), and its update, the Berkeley Segmentation

Data Set 500 (BSDS500) (Martin et al., 2001; Arbelaez et al., 2011).

For the similarity measure between superpixels, colour and texture are two signifi-

cant clues. We take Lab colour space to compare the colours, in which the Euclidean

distance can represent the difference of colours in the human visual system, while for

the texture feature, we use texton (Arbelaez et al., 2011) and colour covariance ma-

trix (Gu et al., 2014a). In addition, we also consider the geometry relations of the
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superpixels, that is, the neighbourhoods of the superpixels and take it as a cue in

graph construction (Li et al., 2012).

For the parameters in Algorithm 6.1, they are set to the same values as those in Li

et al. (2012) and Gu et al. (2014a). For τ in Algorithm 6.2, we set it as the p-quantile of

the input superpixel associations’ size sequence, and we adopt a grid search in [0.1, 0.9]

with the step of 0.1 for finding the best p. We set the cluster number K from 2 to 20 for

base clustering generation, which gives 19 different clusterings for all the superpixels.

Furthermore, we use two classical superpixel algorithms to generate the superpixel

segmentations: the F-H method (Felzenszwalb and Huttenlocher, 2004) and Mean

Shift (Comaniciu and Meer, 2002); and the parameters for superpixel generation are

set to be the same as those in Chapter 3.

6.4.2 Results

We test the SHST with PRI (Unnikrishnan et al., 2007), VoI (Meilă, 2005), GCE (Mar-

tin et al., 2001), and BDE (Freixenet et al., 2002). And in some tables, we also listed

the performance of the state of the art for comparison, which includes, SAS(Li et al.,

2012) and `0-sparse algorithm (Wang et al., 2013), and CCM.

Firstly, we test the algorithm with different features, segmentation information,

and different combinations of them, which includes the Lab colour (Col), texton (Tex),

colour covariance matrix (CovMat) and geometry relations of the superpixels(Geo).

The performance of SHST is stable with those features over the two data sets; and

the indices values indicate that the combination of Col, Tex, and Geo is better than

others. The mean values of each index are demonstrated in Table 6.1 and Table 6.2.

Secondly, the comparisons against other state-of-the-art algorithms are conducted.

SHST gets higher performance on PRI, VoI and GCE except BDE, which implies our

approach is good at partitioning the regions containing the objects but with rough

boundaries. Table 6.3 and Table 6.4 show the average values of each index over the

data sets.

Finally, we test the algorithm by varying the tiny superpixel association threshold

p. Figure 6.4 displays the result on BSDS500, which is conducted by combing the Col,

Tex and Geo features. And, we find the the performance gets better with the increasing

of p.

In addition, we note that, in all the tables, (·)∗ and (·)† represent the results that

were obtained by the lifetime criterion and specified segment numbers respectively; the

parameters are well tuned for the highest performance on PRI. And, Figure 6.5 is an
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Figure 6.4: Testing on the size threshold parameter p of tiny super-

pixel association. The four charts correspond to the average scores

of PRI, VoI, GCE and BDE on BSDS500; Lab colour, texton and

geometry relations are used in the test.

example of hierarchical segmentation tree; Figure 6.6 shows a few of the segmentations

generated by different algorithms. On a desktop equipped with an Intel i5 CPU and

16GB RAM, the run time of the Matlab code for building a SHST on one image is

about 20 seconds when the superpixel segmentations are given.

6.5 Conclusion

We propose a novel concept, named superpixel association, which is the overlap of su-

perpixels from different superpixel segmentations. Then, a similarity measure function

is defined based on the majority voting algorithm. And with this similarity measure,
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Figure 6.5: An example of the hierarchical structure; from left to

right, the number of segments is decreasing.

Table 6.1: Performance of SHST with different features on BSDS300
Features PRI VoI GCE BDE

(Col+Geo)∗ 0.8422 1.4668 0.1502 18.2738

(Col+CovMat)∗ 0.8368 2.3072 0.1945 12.5409

(Col+Tex)∗ 0.8374 2.2240 0.1939 11.7387

(Col+Geo+Tex)∗ 0.8416 1.4308 0.1449 21.9028

(Col+Geo)† 0.8465 1.4491 0.1465 18.2901

(Col+CovMat)† 0.8335 1.9257 0.2120 12.5758

(Col+Tex)† 0.8339 1.8597 0.2081 11.3832

(Col+Geo+Tex)† 0.8452 1.4209 0.1420 23.1781

Table 6.2: Performance of SHST with different features on BSDS500
Features PRI VoI GCE BDE

(Col+Geo)∗ 0.8399 1.5458 0.1612 15.7963

(Col+CovMat)∗ 0.8369 2.3513 0.1948 11.8055

(Col+Tex)∗ 0.8367 2.2909 0.1964 11.1386

(Col+Geo+Tex)∗ 0.8417 1.4846 0.1497 18.1900

(Col+Geo)† 0.8443 1.5264 0.1588 15.6898

(Col+CovMat)† 0.8337 1.9473 0.2158 11.5977

(Col+Tex)† 0.8331 1.9066 0.2152 10.8030

(Col+Geo+Tex)† 0.8451 1.4749 0.1483 19.0004
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(a) (b) (c) (d)

Figure 6.6: Segmentations from different approach: (a) the original

(b) SAS (c) CCM (d) SHST∗. SHST∗ tends to partition the image

with fewer segments.
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Table 6.3: Performance of Different Algorithms on BSDS300

Algorithms PRI VoI GCE BDE Avg.R

SAS 0.8319 1.6849 0.1779 11.2900 3.5

CCM 0.8495 1.6260 0.1785 12.3034 2.75

`0-sparse 0.8335 1.9935 0.2297 11.1955 4

SHST∗ 0.8422 1.4668 0.1502 18.2738 2.75

SHST† 0.8465 1.4491 0.1465 18.2901 2.25

Table 6.4: Performance of Different Algorithms on BSDS500

Algorithms PRI VoI GCE BDE Avg.R

SAS 0.8372 1.6914 0.1813 12.6599 3

CCM 0.8407 2.0399 0.2359 10.7829 3

`0-sparse - - - - -

SHST∗ 0.8417 1.4846 0.1497 18.1900 2.25

SHST† 0.8451 1.4749 0.1483 19.0004 1.75

Note: The symbol ‘−’ means there are no published results available.

the tiny superpixel associations can be merged into their neighbours so that a more

robust oversegmentation of the image (i.e., a set of refined superpixel associations) can

be obtained.

And, we also proposed a segmentation tree algorithm (i.e., SHST), which can build

a hierarchical segmentation tree on the superpixel associations (or, refined superpixel

associations). SHST has two advantages. First, it is more flexible in partitioning the

image since it can generate the segmentation with a specified number of segments or

a scale level. Second, SHST is built with the superpixel associations, which makes the

computational cost affordable.

Extensive experiments have been conducted and the results have shown that our

method gets stable performance with different features; and compared with other state-

of-the-art segmentation algorithms, the outputs of SHST are competitive. Moreover,

the grid search of the size threshold τ for the tiny superpixel association shows this

parameter has a strong connection with the performance of SHST. So, as a parameter

for balancing the quantity and quality of superpixel associations, it is efficient and

effective.
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Chapter 7

Semantic Segmentation with

Unsupervised Segmentation

7.1 Introduction

Semantic segmentation is one of the frontiers in computer vision that attempts to

partition the image into semantically meaningful parts and classify each part into one

of the predetermined classes. Compared with unsupervised segmentation, semantic

segmentation not only partitions the image into several ‘coherent’ parts but also tries

to understand what these parts represent. To this extent, semantic segmentation and

unsupervised segmentation are different in solving the segmentation problem. For

semantic segmentation, it is more like a classification task, while for unsupervised

image segmentation, it is a task of clustering.

A wide range of semantic segmentation algorithms has been published in the past

few years. In many early works, great efforts have been made to building frameworks for

the semantic segmentation. Shotton et al. (2008) proposed the semantic random forests,

which labels every pixel by a set of decision trees simply with a few low-level features.

Fulkerson et al. (2009) proposed a two-stage model to do the semantic segmentation

on superpixel-level, in which the superpixels are labelled by a support vector machine

and then the labels are refined by a conditional random field (CRF). Krähenbühl and

Koltun (Krähenbühl and Koltun) built a fully connected CRF over the pixels, and

they proposed an efficient inference algorithm to label every pixel. Another focus in

this region is the features extraction. Gould et al. (2008) proposed a superpixel-based

algorithm in which the relative location prior is incorporated into the CRF. And Liu

et al. employed a convolutional neural network to extract the ‘deep features’, and the
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performance of the state of art is improved when replacing the traditional features with

those ‘deep’ ones (Liu et al., 2015).

Moreover, the unsupervised segmentation also draws the attention of researchers

in semantic segmentation. Because the image cues contained in the unsupervised seg-

mentations, such as contours and object shape, are informative, they may be helpful

in deciding the pixel labels. Kohli et al. (2009) proposed a higher-order conditional

random field, which expands the basic CRF framework to incorporate higher-order

potentials defined on superpixels. This higher-order CRF incorporates the superpixels

from different superpixel segmentations and improves object segmentation with better

boundaries. Kluckner et al. (2009) also take use of the region consistency extracted

from superpixels to improve the labelling accuracy.

In this chapter, we propose an algorithm that integrates the superpixel associations

into semantic segmentation. In our algorithm, we adopt a random forests algorithm

which provides structured labels, and the final labelling is generated via a puzzle game

framework. The rest of the chapter is organized as follows. Section 7.2 is a brief

introduction of semantic segmentation. In Section 7.3, we propose a generalized puzzle

game framework, and Section 7.4 specifies the algorithm we proposed for semantic

segmentation. In Section 7.5, the results of the experiments are reported. And in

Section 7.6, the conclusion is given.

7.2 Semantic image segmentation

An image always contains one or more objects, including things like animals, people,

sky, water, and mountains. The appearances of the objects generate intensity edges

between one object and its neighbours in the image, and semantic image segmentation

aims to split the image into regions corresponding to the objects and label them with

the relevant object category simultaneously.

Usually, this task is approached with supervised machine learning techniques, which

use a set of training images with manually segmented and labelled ground-truth to learn

the parameters for discriminating different regions.

7.2.1 Overview

Essentially, the semantic segmentation task is a pixel-classification problem. A variety

of methods have been proposed for solving this problem in recent years. However,

based on the relationships of encoding between different pixels, these methods can be
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(a) (b) (c) (d) (e)

Figure 7.1: Methods of modelling pixel relationships: (a) pixels are

independent, (b) pairwise relationships between pixels, (c) higher-

order relationships between pixels, (d) using superpixels, (e) pairwise

relationships between superpixels. Random field models are built on

different pixel relationships.

categorized into two classes. In the first class, the pixel-labelling problem is solved by

classifying each pixel independently, that is, with a pixel-level model, such as Shotton

et al. (2006, 2008). While in the second class, the algorithms work with pixel groups

(i.e., superpixels) and assign a label to each group; we call them region-level mod-

els (Gould et al., 2008). Compared with those pixel-level algorithms, the region-based

methods are more computationally efficient but may lead to an incorrect final labelling.

Many semantic segmentation algorithms for both two categories have a common

framework, which is considered as a two-stage process (Fulkerson et al., 2009; Gould

et al., 2008). The first stage is for extracting the unary potentials, and the second

stage is to label the pixel based on its relationships between the neighbouring pixels.

The second stage is modelled by a pairwise Markov Random Field (MRF) or Condi-

tional Random Field (CRF) (Lafferty et al., 2001; Kumar et al., 2003). These models

encourage the adjacent pixels to take the same semantic label, which leads the smooth

boundaries in the segmentation results. In Kohli et al. (2009) and Ladický et al. (2010),

the pairwise interaction between pixels are replaced by higher-order relationships be-

tween pixels (or pixel groups), which improves the segmentation results with better

object boundaries. Figure 7.1 shows different ways of using the pixel (or pixel group)

relationships. The random field models are constructed on those relationships.

Moreover, from Shotton et al. (2006), we know that the unary potential has a sig-

nificant influence on the success of a segmentation algorithm. Much effort has been put

into the generation of good unary potentials. In some early works, many classical clas-

sifiers are used as unary classifiers, such as support vector machine, logistic regression,

and random forests (Shotton et al., 2006; Verbeek and Triggs, 2007; Gould et al., 2008;
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Fulkerson et al., 2009). Recently, structured prediction algorithms are also introduced

to training the unary classifiers, for example, the structured support vector machine

in Liu et al. (2015) and the structured random forests in Kontschieder et al. (2011,

2014).

7.2.2 Features

Feature extraction is one critical issue in image segmentation. There are many infor-

mative image cues that can be used for semantic segmentation.

Obviously, the most widely used features are the low-level features, such as intensity,

colour, texture. These features are easy to get and always computed on a per-pixel

basis and incorporate local colour or texture statistics. Other popular descriptors are

the mid-level features, which are extracted from regions (i.e., superpixels) to provide

shape, continuity or symmetry information. For example, in Kluckner et al. (2009),

the covariance descriptors extracted from superpixels are used to train the random

forests. In addition, many handcrafted features are also involved in generating mid-

level descriptors. For example, the density of SIFT and HoG feature is used to represent

the superpixels (Fulkerson et al., 2009; Ladický et al., 2010), and Bo et al. (2011) encode

the pixels by a multi-layer sparse coding algorithm. A stronger mid-level feature is the

deep feature introduced by Liu et al. (2015). This feature is extracted by a well-trained

convolutional neural network and improves the performance of the CRF-based semantic

segmentation model.

In addition to the abovementioned features, the context information is also prevail-

ing in semantic segmentation (Johnson et al., 2013; Torralba et al., 2003; Rabinovich

et al., 2007). The motivation behind using this feature is the perceptual psychology,

which claims that the global image statistics and information about the contextual

relations can help to seek the proper configurations of the objects in images.

7.2.3 Training data issues

To a large extent, the quality of the training data set is also related to the performance

of the semantic segmentation algorithms. Most techniques require a variety of training

images with full pixel-wise labels. Unfortunately, such a kind of data set is expensive

to obtain. But Shotton et al. (2008) showed that the performance of the algorithm can

be improved by a random transform of the training images, which includes rotating

with some random angles, rescaling with random ratios, and adding Gaussian noises.

82



Actually, with such transfer operations, the number of training images is increased.

So, the random transform is a simple but effective method which may bring a boost in

performance of the semantic segmentation algorithm.

7.3 Generalized puzzle game for semantic segmen-

tation

Kontschieder et al. (2011) proposed a framework for semantic segmentation with squared

label patches, and they named it as label puzzle game. We generalize this framework

and make it integrated with unsupervised segmentation. To avoid unnecessary confu-

sions, we inherit part of the notations from Kontschieder et al. (2011) in this section.

7.3.1 The generalized puzzle game

An image is a function f : D → Rd mapping the pixels in a 2-dimensional lattice

D ⊆ Z2 to d-dimensional feature vectors. Let Y = {1, · · · , k} be the class label set, and

a labelling for an image is a function ` : D → Y mapping the pixels to labels. A (label)

puzzle piece is a label configuration, which is defined as a function p : P → Y ∪ {⊥}
mapping 2-dimensional points to labels or void (i.e., {⊥}, the absence of label), where

P ⊆ Z2 is a neighbourhood of the pixel. Since one pixel can be associated to multiple

puzzle pieces, we set P to represent the set of puzzle piece associating to one pixel.

We set F , L and P to denote the set of images, labellings and puzzle pieces

respectively. Then, a puzzle configuration is defined as a function z : D →P assigning

each pixel in D with a puzzle piece in P. And, the set of puzzle configuration is denoted

by Z .

Moreover, let (i, j) and (u, v) represent the coordinates on D, and the puzzle piece at

(i, j) is written as pi,j and by setting (i, j) be the centre of pi,j, we denote pi,j(u−i, v−j)
the label in position (u, v), and this denotation also holds for the puzzle configuration

z. Let S ⊆ D be a region on image D, and the set of S is written as S . We denote

Si,j = {S ∈ S |S ∼ Pi,j 6= ∅} the regions associated with (i, j), where the symbol ‘∼’

indicates some relation. And, given a labelling `, `(S) is the label configuration of S.

The generalized puzzle game of semantic segmentation has three components: the

puzzle generator, the agreement, and the game solver. They are given by the following

four definitions.
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Definition 7.3.1 (puzzle generator). For semantic segmentation, a puzzle generator

is a function π that maps each pixel (i, j) ∈ D to a non-empty set of puzzle pieces

Pi,j ⊆P.

Let π be a puzzle game, then from Definition 7.3.1, all possible puzzle configurations

obtained from π can be written as

Z |π = {z ∈ Z |zi,j ∈ Pi,j}.

Definition 7.3.2 (generalized agreement). Given an image labelling ` and a set of

region S respecting to the puzzle piece p, the agreement of p is defined as

φ(p, `,S) =
∑
S∈S

similarity(p, `(S)), (7.1)

where similarity(·, ·) is a function measure the similarity between p and `(S).

Moreover, for a puzzle piece configuration, we define a total agreement as the sum

of its puzzle piece agreements, that is,

Definition 7.3.3 (total agreement). Given a puzzle piece configuration z, a labelling

` and the region set S = {Si,j}, the total agreement of z is

Φ(z, `,S ) =
∑
zi,j∈z

φ(zi,j, `,Si,j). (7.2)

Here, we note that Definition 7.3.2 and Definition 7.3.3 are the generalized versions

of the respective definitions in (Kontschieder et al., 2011), which extend the similarity

measured with a region set S .

Then, the solution for the puzzle game can be defined as an optimization problem

of Eq. 7.2.

Definition 7.3.4 (game solver). Given a labelling set L = {`(1), · · · , `(T )} respected

to Z |π and a region set S , the solution (z∗, `∗) of the puzzle game satisfies

(z∗, `∗) = arg max
(z,`)
{Φ(z, `,S )|(z, l) ∈ Z |π ×L }. (7.3)

In our puzzle game definitions, the unsupervised segmentation is able to affect

the labelling updating via the agreement, which is different from those proposed by

Kontschieder et al. (2011). Figure 7.2 shows the framework.
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Figure 7.2: The framework of our algorithm. From left to right: first,

a classifier generates a few puzzle pieces for each pixel; meanwhile,

a few unsupervised segmentation algorithms produce some unsuper-

vised segmentations; second, we compute the agreement by integrat-

ing the unsupervised segmentation and alternatively update the la-

belling and agreement; finally, the labelling converges to the final

result.

7.3.2 Agreement with unsupervised segmentation

The agreement is critical for solving the puzzle game. With the generalized agreement

(i.e., Definition 7.3.2), we can integrate the information provided by the unsupervised

segmentation into the game solver.

The puzzle piece is set to be in a square patch shape with the size of d× d, which

is same as Kontschieder et al. (2011). But for the regions associated with pixel (i, j),

we define them as Si,j = {SD ∈ S D|SD ∩Pi,j 6= ∅}, where S D is a given unsupervised

segmentation S D = {SD1 , · · · , SDK}. Intuitively, those pixel labels within one region

should be the same, so, given a labelling `, we set the label of a segmentation SDk by a

majority vote on the labels within it, written as Vote[`(SDk )]. Therefore, the similarity

is defined as the coincidence of the labels of pi,j ∩ Si,j in pi,j and `(Si,j), which is

φi,j(pi,j, `,Si,j) =
∑

(u,v)∈D

∑
Si,j∈Si,j

δ[pi,j(u− i, v − j) = Vote[`(Si,j)]|(u, v) ∈ Si,j], (7.4)

where δ[·] is a delta function which yields 1 if the input is true, 0 otherwise.
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7.3.3 Optimization of game solver

We follow the algorithm in (Kontschieder et al., 2011) to find the solution for the puzzle

game. Specifically, the optimization of game solver (i.e., Eq. 7.3) is obtained by itera-

tively switching between optimizing the labelling ` ∈ L and the puzzle configuration

z ∈ Z |π.

Let `(t) be the labelling of the image at time t ≥ 0. The entries in puzzle configu-

ration z(t+1) at time t+ 1 are individually updated via

z
(t+1)
i,j ∈ arg max

pi,j

{
φi,j(pi,j, `

(t),Si,j)|pi,j ∈ Pi,j
}
. (7.5)

And then, the `(t+1) is computed with the given z(t+1) by taking a majority vote over

all puzzle pieces in z. Let C be the set of puzzle pieces z that cover pixel pxi and z(i)

be the label of pxi in z, we have

`(t+1)(u, v) ∈ arg max
y

 ∑
(i,j)∈D

δ[z
(t+1)
i,j (u− i, v − j) = y|y ∈ Y ]

 . (7.6)

Given an initial labelling L(0), then, by updating the z and ` alternatively, it will reach

the local maximum of the game solver, which is proofed as Theorem 1 in (Kontschieder

et al., 2011).

7.4 Integrating unsupervised segmentations

In our generalized puzzle game for semantic segmentation, we employ a structured pre-

diction random forests algorithm as the game generator. Theoretically, a structured

prediction algorithm is able to produce more candidates for the puzzle piece and en-

rich the searching space. The unsupervised segmentation is generated from superpixel

associations via the SHST algorithm in Chapter 6.

7.4.1 Structured prediction with random forests

The random forests algorithm is an ensemble learning method for classification pro-

posed in Breiman (2001), which has a few appealing properties, such as robustness to

noise and resistance to overfitting. Traditionally, the random forests algorithm assigns

the input data samples with single, atomic class labels, but for many computer vision

application, this kind of prediction models is limited because the inherent topological

structure in the label space is ignored. Kontschieder et al. (2014) propose a random
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forests algorithm for structured prediction, that is, a random forests algorithm pre-

dicts structured objects rather than scalar discrete or real values. Here, we refer to

the traditional random forests as standard random forests, while for the one providing

structured predictions, we refer to it as structured random forests.

Basically, the two types of random forests have common structures, that is, they are

both an ensemble of decision trees. Let X be a data set, Y = {yi} represent the class

labels and π be a prediction of the class label. A decision tree t is a tree-structured

classifier which makes a prediction by routing a sample x ∈ X through the nodes to

a leaf, where the final prediction is proposed. A leaf LF (π) ∈ t is a node without any

children nodes and is able to cast a class prediction π for any x that reaches it. For

all other nodes, written as ND(ψ, tl, tr) ∈ t, each of them is associated with a decision

binary split function ψ(x) : X → {0, 1}, which determines the next route of sample x.

If ψ(x) = 0, x will be forwarded to the left sub-tree tl ⊂ t, or sent to the right sub-tree

tr ⊂ t, if ψ(x) = 1. And, a random forest is written as F = ∪ki=1ti, that is, an ensemble

of a couple of decision trees.

The main difference between standard and structured random forests is in the train-

ing of split function. In the following, we first introduce the prediction function and

then show the difference between the standard and structured random forests.

Formally, the prediction function h(x|t) : X → Y for the nodes in a decision tree T

is written as

h(x|ND(ψ, tl, tr)) =

h(x|tl), if ψ(x) = 0,

h(x|tr), if ψ(x) = 1,

h(x|LF (π)) = π.

(7.7)

A sample x is branched recursively, and the procedure stops until x reaches a leaf.

Obviously, the split function ψ is critical for the prediction, and different ψ leads

different outputs. In computer vision, there are four types of ψ commonly used; let

f(x) be the feature vector of sample x and f(x)θ be the value at the θ-th dimension.

ψ(1)(x|θ1, τ) = [f(x)θ1 > τ ],

ψ(2)(x|θ1, θ2, τ) = [f(x)θ1 − f(x)θ2 > τ ],

ψ(3)(x|θ1, θ2, τ) = [f(x)θ1 + f(x)θ2 > τ ],

ψ(4)(x|θ1, θ2, τ) = [|f(x)θ1 − f(x)θ2| > τ ],

where τ is a threshold, and [·] is an operator that gives 1 if the ‘·’ is true and 0

otherwise. The split function ψ and the parameters θ and τ are learned based on the
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information gain theory, which is computed from the class label distribution. Let P be

the samples reached node ND in the training, E(P) represent the entropy of the class

label distribution of ND, and Ψ be the set of ψ. When training the random forests,

firstly, a ψ is selected from Ψ randomly, and then, the algorithm randomly generates

a few sets of θ and τ , by which the P is split into {Pl,Pr}. The information gain is

defined as (Shotton et al., 2008)

∆E = −|Pl|
|P|

E(Pl)−
|Pr|
|P|

E(Pr), (7.8)

and, {ψ, τ} is selected to maximize the ∆E.

In standard random forests, every sample in the training data is assigned with ex-

actly one label, so the entropy E(P) is computed on the distribution of one variable.

But for the structured random forests, the samples for training are associated with

a batch of labels, which means the E(P) is computed on a distribution of multiple

variables (i.e., a joint distribution). This makes the computation cost of the structured

random forests higher than the standard one. But, it has been pointed out that by

randomly choosing a (marginal) distribution from the joint distribution, the output

of the structured random forests remains as effective as the one using joint distribu-

tion (Kontschieder et al., 2011).

Moreover, the leaf node of structured random forests is also different from the

standard one. Because the samples reached the leaves are assigned to multiple labels,

the label presentation of a leaf should also be a set of labels. In this chapter, we

extract the label representations for the leaves in the same way as in (Kontschieder

et al., 2011). Specifically, let Pt = {p1 · · · ,pk} be the puzzle pieces that reach leaf LFt

during the training process. The joint probability of the labels in p ∈ Pt is defined as

Pr(p|Pt) =
∏
i,j

Pr(i,j)(p(i, j)|Pt), (7.9)

where Pr(i,j)(p(i, j)|Pt) is the marginal probability over all p ∈ P of the label at

position (i, j). Then, the label representation π of leaf LFt will be the one puzzle piece

that maximizing the joint probability, that is,

π = arg max
p∈Pt

Pr(p|P). (7.10)

7.4.2 Integrating the unsupervised segmentation

We take the superpixel associations as the unsupervised segmentation for integration

into the puzzle game.
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The superpixel association is the intersections of superpixels from different over-

segmentations and has been proved to be a good replacement of pixels for region-

level models. The main motivation for using superpixel associations is because the

probability of the pixels having the same labelling inside the superpixel association is

higher than those regions obtained from single superpixel segmentation.

To obtain superpixel associations, we first use two classical superpixel algorithms

to generate the superpixel segmentations, i.e., the F-H method (Felzenszwalb and Hut-

tenlocher, 2004) and Mean Shift (Comaniciu and Meer, 2002), and the parameters in

the superpixel generation procedure are set to be the same as those in Chapter 6. And

then, following the Definition 6.2.1 in Chapter 6, we can get the superpixel associations.

Moreover, for those superpixel associations whose size is smaller than a given thresh-

old, that is, the tiny superpixel associations, we can adopt an optimization option to

merge them into their nearest neighbours.

7.5 Experiment

For semantic segmentation, the feature representations have a significant influence on

the success of a labelling algorithm. However, in this chapter, since the primary inten-

tion of our experiments is to demonstrate the effects of integrating the unsupervised

segmentation, we simply use the Lab colour and a multi-layer sparse coding feature to

be the pixel representation. The effect of the integration of unsupervised segmentation

can still be observed, even with this simple feature.

7.5.1 Data set and settings

The experiments of our algorithm are conducted on MSRC21. Following the protocol

of previous works using MSRC21 (Shotton et al., 2008; Gould et al., 2008; Kohli et al.,

2009), we split the data into 276 training and 256 test samples and ignore those pixels

with the void label during both training and evaluation. The results are evaluated with

recall and precision (i.e., Avg(Class) and Global).

In our experiment, each pixel is represented by a vector that incorporates the colour

and texture features. For the colour feature, we concatenate the Lab colour values of

pixels within the dcol × dcol neighbour (centred at the current pixel).

As for the texture feature, we employ the sparse coding algorithm with a spatial

pyramid. Specifically, we first use the sparse coding techniques to extract a sparse

representation for each pixel, and then adopt a few spatial max pooling procedures on
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the sparse representations, that is, a spatial pyramid. Finally, the texture feature is

generated by concatenating the coefficients of different layers of the spatial pyramid.

After all, the parameters are empirically set to be those providing the highest

performance. For the colour feature, the neighbourhood size is set to be 23× 23; while

for the texture feature, the patch size for sparse coding is set to be 15× 15, the spatial

max pooling is adopted within a 2×2 grid of each pixel, and the number of the layers in

spatial pyramid is set to be 3. Besides, the training samples are collected on a regular

lattice with a stride of 4, which leads to approximately 500,000 training samples. Each

forest contains ten trees.

7.5.2 Results

In order to demonstrate the effects of integrating unsupervised segmentation, the ex-

periments are conducted with different algorithms on MSRC21. We set RFstd as the

standard random forests, and RFstr as the structured random forests. For different

agreement definitions, ‘reg’ represents the definition proposed by Kontschieder et al.

(2011), and, ‘usp’ denotes the one proposed in this chapter. Particularly, we use ‘uspall’

represents the superpixel associations without optimization, and ‘usp100’ and ‘usp40’

represent the superpixel associations that are merged into 100 units and 40 units based

on the SHST algorithm (i.e., Algorithm 6.2) respectively.

Table 7.1 shows the results of experiments. The results obtained from our algo-

rithms are visualized in Figure 7.3 and Figure 7.4; each row shows the results of one

class. Also, Figure 7.5 demonstrates a few failures of our algorithm.

From the visualized results, we can see the outputs of RFstr(usp40) have the clearest

object boundaries. Moreover, the object labels obtained from RFstr(usp40) are more

accurate than those of others. Actually, when comparing the results of RFstr, it is easy

to find that the higher performance of RFstr(usp40) algorithm mainly comes from the

integration of the unsupervised segmentation.

However, there are also some failed examples in which the objects (or parts of the

object) are well marked but labelled incorrectly. This is most likely due to the weak

feature scheme we used in the experiments.

Finally, in our experiments, the run time for the trained RFstr(usp40) labelling one

image is about 7 seconds on a desktop equipped with an Intel i5 CPU and 16 GB RAM

with Matlab 2014a.
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Table 7.1: Performance of Different Random Forests on MSRC21
Algorithm RFstd RFstr(reg) RFstr(uspall) RFstr(usp100) RFstr(usp40)

building 26.09% 29.84% 31.64% 32.21% 31.98%

grass 92.47% 93.85% 94.30% 94.22% 94.41%

tree 73.14% 77.64% 75.81% 78.19% 78.23%

cow 43.19% 48.26% 45.14% 46.94% 45.29%

sheep 54.94% 63.29% 65.27% 65.40% 68.86%

sky 91.25% 93.54% 95.98% 95.63% 95.45%

aeroplane 44.67% 55.41% 58.44% 58.79% 61.53%

water 51.07% 53.94% 59.39% 55.31% 55.70%

face 58.24% 64.00% 66.53% 67.62% 68.69%

car 32.84% 39.68% 42.97% 47.81% 48.88%

bicycle 60.66% 68.31% 68.46% 71.45% 74.12%

flower 37.06% 41.44% 40.48% 40.29% 40.97%

sign 23.35% 27.28% 39.30% 37.24% 37.66%

bird 7.81% 6.32% 2.38% 5.51% 3.57%

book 41.28% 49.55% 51.57% 53.05% 55.36%

chair 18.52% 21.85% 22.78% 22.98% 23.82%

road 58.74% 64.22% 74.51% 70.30% 73.28%

cat 43.38% 52.25% 55.52% 55.43% 59.76%

dog 20.11% 19.63% 24.43% 20.01% 20.53%

body 17.03% 18.79% 20.73% 20.28% 19.84%

boat 12.79% 10.05% 5.74% 5.39% 4.03%

Avg(Class) 43.27% 47.57% 49.59% 49.72% 50.57%

Global 57.77% 61.57% 63.91% 63.72% 64.37%
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Figure 7.3: Semantic segmentation from different random forests: (a)

the original, (b) standard random forest, (c) structured random for-

est, (d) structured random forest with unsupervised segmentation,

(e) the ground truth with class labels shown in colour (the void label

is in black).
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(a) (b) (c) (d) (e)

Figure 7.4: Semantic segmentation from different random forests: (a) the

original, (b) standard random forest, (c) structured random forests, (d)

structured random forest with unsupervised segmentation, (e) the ground

truth with class labels shown in colour (the void label is in black).
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Figure 7.5: A few failures of our algorithm. The outputs of our

algorithm are listed in the upper row, and their respective ground-

truth segmentations are in the lower row with class labels shown in

colour (the void label is in black). Most objects are properly figured

out but with wrong labels, which is most likely due to the weak feature

scheme used in the experiments.

7.6 Conclusion

In this chapter, we proposed a generalized puzzle game framework for semantic seg-

mentation, by which the unsupervised segmentations can be easily integrated into the

labelling procedure. The experiment results show that the integration of unsupervised

segmentation brings obvious improvement for the labelling algorithm. Compared with

the standard random forests, the structured random forests improves the average class

and the global accuracy by 4.3% and 3.8% respectively; while integrating the unsu-

pervised segmentations, the maximum improvements (i.e., RFstr(usp40)) are 7.3% for

average class accuracy and 6.6% for global accuracy. Also, within the structured ran-

dom forests, the accuracy increments from using different unsupervised segmentations

are around 2%.

The feature scheme we used in the experiments is a concatenation of Lab colour

values and a texture extracted by sparse coding techniques. When compared with those

popular ‘deep features’, it is less effective in capturing the segmentation information,

which results in relatively low performance of out algorithm.
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Chapter 8

Conclusion and Future work

8.1 Conclusions

Applications of image segmentation in the foreseeable future will be on demand. For

example, automatic car driving, medical imaging, image editing for artistic purposes

will require exact pixel-accurate segmentation of an object. Superpixel segmentation,

as a preprocessing procedure, is widely used in image segmentation applications, by

which object parts or image features can be extracted. In this thesis, we have examined

the issues about using superpixels in image segmentation. Our research began by asking

the following questions:

• Can we develop an efficient descriptor for superpixels which is able to improve

the state-of-the-art segmentation algorithms?

• Can we find some methods for combining the superpixel descriptors that ex-

tracted from different feature spaces?

• Is there any method that can improve the performance of the handcrafted super-

pixel descriptors?

• Is there any new method that can generate image segmentation with superpixels

more effectively than the state of the art?

• Can we take use of the image cues in superpixel segmentations to improve the

supervised segmentation?

These questions have been explored in one chapter, or relevant chapters jointly, as

follows:
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• Proposing a novel covariance descriptor for superpixel and developing

a corresponding segmentation algorithm ‘CCM’ in Chapter 3.

The SAS algorithm (Li et al., 2012) is a superpixel-based segmentation algo-

rithm, which employs a bipartite graph to model the pixel-superpixel relations.

The performance of this model is critically influenced by the similarity defined

on superpixels. So, we proposed a colour covariance matrix, as a representation

of superpixel, adding to the discrimination ability of the colour feature. And, we

also propose the CCM algorithm, by which the similarity of superpixel covari-

ance descriptor in measured not only in colour space but also a manifold of the

covariance matrix. With a properly defined metric for the covariance descriptor,

CCM can perform better than SAS.

• Proposing a multi-layer bipartite graph model ‘MBG-CCM’ for fusing

superpixel descriptors from different feature spaces in Chapter 4.

The feature fusing method for bipartite graph has not been sufficiently explored.

In the CCM algorithm, the superpixel similarities measured in colour space and

covariance manifold are combined by a few matrix operators, which may be inap-

plicable with multiple features. So, we develop the MBG-CCM algorithm, which

employs a multi-layer bipartite graph to formulate the similarities from different

features. And, the layers of the graph are fusing by their subspace representation

on a Grassmann manifold. Moreover, because of the high computational cost,

the spectral clustering algorithm of normal multi-layer graph is intractable on

our multi-layer bipartite graph. To solve this problem, we propose a transfer

procedure for fusing the subspace representations, which is based on a property

of singular value decomposition, that is, the left and right singular vectors can

be computed from each other. Theoretically, the MBG-CCM is able to generate

robust final segmentation with multiple features.

• Proposing a low-rank representation model ‘LRR-CCM’ for utilizing

subspace structure of the covariance descriptors of superpixel in Chap-

ter 5.

The covariance descriptors are common, handcrafted features for superpixel. But

the research about how to use the covariance descriptors effectively is not suf-

ficient. So, we develop a low-rank representation algorithm that can find the

subspace structures for the covariance descriptor set. We combine this algorithm

with CCM and propose the LRR-CCM algorithm, which measures the similarity
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between the superpixels via the low-rank representation. The empirical experi-

ments show that LRR-CCM is able to generate stable segmentation with noisy

covariance descriptors.

• Proposing a new oversegmentation method ‘superpixel association’ and

a novel hierarchical segmentation algorithm ‘SHST’ in Chapter 6.

Inspired by the fact that, in HBGF-based segmentation algorithms, the pix-

els having the same pixel-superpixel relations are always partitioned into the

same segment in the final segmentation, we propose the superpixel association

method. Moreover, we proved that there exist an explicit relation between su-

perpixel association and the pixels in the HBGF algorithm. This indicates that

superpixel association is a good replacement of pixel in superpixel-based segmen-

tation. Thus, we proposed a hierarchical segmentation algorithm (i.e., SHST).

This novel segmentation algorithm takes superpixel associations as leaves and

grows the segment by iteratively merging those closest regions. Since the number

of superpixel associations is far less than that of pixels, the computational cost of

the SHST is affordable. Another advantage of SHST is the number of segments

in the final segmentation can be determined automatically, while for most of the

existing algorithms, a specified number of segments is a prerequisite.

• Developing a framework for integrating superpixel segmentation into

semantic segmentation in Chapter 7.

Apart from those unsupervised segmentation methods, we extend our research

into semantic segmentation. We propose a semantic segmentation algorithm,

by which the superpixel segmentations can be easily integrated into the label-

ing procedure. This algorithm is named as generalized puzzle game, because its

framework is inspired from the puzzle game. And, it contains three parts. The

first part is called game generator, which is in charge of generating label puzzle

pieces from the given image. The second is named agreement, which is a prede-

fined similarity between the puzzle pieces and the current image labelling. The

last one is called game solver, which is a predefined objective function, that is, the

condition that the final labelling should satisfy. A modified random forests algo-

rithm is employed as a game generator, which can provide more proposals (i.e.,

label puzzle pieces) than tradition random forests. Moreover, we introduce a new

definition of agreement, by which the superpixel segmentation can influence the

similarity measuring between the label puzzle pieces and current labelling. And,
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the final image labelling is obtained by alternatively updating the selection of

puzzle pieces and the respective image labelling until the game solver converges.

8.2 Future work

Superpixel-based image segmentation is a research topic with an extensive and multi-

faceted scope. In the following, we intend to discuss some current limitations and a

few possible future directions that may extend from the work in this thesis.

• Computational cost-related study

For online segmentation applications or some applications running on devices

with low computational capacity, the computational cost is critical. Unfortu-

nately, in our study, this has not been sufficiently considered because our major

work is concentrating on improving the accuracy of the segmentation. Actually,

there is a conflict between computational cost and segmentation quality. For most

existing segmentation models, the high segmentation accuracy will definitely re-

sult in the high computational complexity. However, one possible solution for

this problem is parallel computing. And, for superpixel-based segmentation, this

means new ensemble segmentation techniques should be proposed with the ability

to be parallelized and operated on multiple processors.

• Application of superpixel association

Superpixel association is, in fact, an ensemble of superpixels, which can be con-

sidered as a replacement of pixel in many image-processing tasks. It is able to

keep more image details, especially the boundary information than superpixel,

yet, its amount is far smaller than that of the pixel. To bring about a more accu-

rate segmentation result but with a relatively low computational cost, it may be

possible to modify the superpixel-based segmentation algorithms with superpixel

association. For example, it would be interesting to see how the performance

of the models proposed by Gould et al. (2014) might be possibly improved by

replacing the superpixels with superpixel associations.

• Deep learning with superpixel

Supervised image segmentation would benefit from integrating the unsupervised

segmentation. In our study, we only combined the unsupervised segmentation
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into a two-stage labelling framework (i.e., generating proposals and optimiz-

ing their combination). But, a more efficient and complicated structure, called

deep learning, has been proposed recently (LeCun et al., 2015), which achieves

remarkable performance in supervised image segmentation. Moreover, studies

in (Zheng et al., 2015; Arnab et al., 2016) show that the performance of VGG-16

network (Simonyan and Zisserman, 2014) is enhanced by considering the infor-

mation from unsupervised segmentations. In order to boost both the training

and inference stages, it may be possible to formulate a framework that integrates

the superpixel segmentations with deep neural networks.
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Kohli, P., Ladický, L., and Torr, P. H. (2009). Robust higher order potentials for

enforcing label consistency. International Journal of Computer Vision, 82 (3), 302–

324.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM

review , 51 (3), 455–500.

Kontschieder, P., Bulo, S. R., Bischof, H., and Pelillo, M. (2011). Structured class-labels

in random forests for semantic image labelling. In Proceedings of IEEE International

Conference on Computer Vision (ICCV), 2190–2197. IEEE.
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