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Abstract 

 

Spatial modelling methods usually utilise pixels and image objects as the fundamental 

processing unit to address real-world objects (geo-objects) in image space. To do this, both 

pixel-based and object-based approaches typically employ a linear two-staged workflow of 

segmentation and classification. Pixel-based methods often segment a classified image to 

address geo-objects in image space. In contrast, object-based approaches classify a 

segmented image to determine geo-objects. These methods lack the ability to simultaneously 

integrate the geometry and theme of geo-objects in image space.  

This thesis explores Vector Agents (VA) as an automated and intelligent processing unit to 

directly address real-world objects in the image space. A VA, is an object that can represent 

(non)dynamic and (ir)regular vector boundaries (Moore, 2011; Hammam et al., 2007). This 

aim is achieved by modelling geometry, state, and temporal changes of geo-objects in spatial 

space. 

To reach this aim, we first defined and formulated the main components of the VA, including 

geometry, state and neighbourhood, and their respective rules in accordance with the 

properties of raster datasets (e.g. satellite images), as representation of a geographical space 

(the Earth). The geometry of the VA was formulated according to a directional planar graph 

that includes a set of spatial reasoning relationships and geometric operators, in order to 

implement a set of dynamic geometric behaviours, such as growing, joining or splitting. 

Transition rules were defined by using a classifier (e.g. Support Vector Machines (SVMs)), 

a set of image analysis operators (e.g. edge detection, median filter), and the characteristics 

of the objects in real world. VAs used the transition rules in order to find and update their 

states in image space. The proximity between VAs was explicitly formulated according to 

the minimum distance between VAs in image space. These components were then used to 

model the main elements of our software agent (e.g. geo-objects), namely sensors, effectors, 

states, rules and strategies. These elements allow a VA to perceive its environment, change 

its geometry and interact with other VAs to evolve in consistency together with their 

thematic meaning. It also enables VAs to adjust their thematic meaning based on changes in 

their own attributes and those of their neighbours.  

We then tested this concept by using the VA to extract geo-objects from different types of 

raster datasets (e.g. multispectral and hyperspectral images). The results of the VA model 

confirmed that: (a) The VA is flexible enough to integrate thematic and geometric 

components of geo-objects in order to extract them directly from image space, and (b) The 

VA has sufficient capability to be applied in different areas of image analysis. We discuss 

the limitations of this work and present the possible solutions in the last chapter.   
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Chapter One 

 Introduction 

Abstract 

In this chapter, we first explain remote sensing and its main components. After that, the 

notion of the image classification approach is explained. Then, the main issues related to 

automatic image classification will be discussed. The general motivations and objectives of 

this work are presented in the next section. Finally, the structure and organisation of this 

thesis is described. 

  Overview of remote sensing 

The term ‘Remote Sensing’ (RS) refers to the technology of acquiring and interpreting 

information about an object or phenomenon without making physical contact with said 

object (Richards, 2006). Specifically, the term refers to the use of sensors on board airborne 

(e.g. aircraft) or space-borne (e.g. satellite) platforms to acquire data from objects or 

phenomena on the earth’s surface and in the atmosphere. There are two types of sensors, 

active and passive, that are differentiated based on the source of energy they utilise 

(Richards, 2006). Both sensor types normally use electromagnetic (EM) radiation to acquire 

the information of an object on the earth.  

Active sensors produce their own electromagnetic radiation. A man-made source of energy 

produced on board the sensor platform is sent towards an intended target. The quantity of 

energy reflected or scattered back and the time delay between emission and reception is then 

measured. Examples of common active sensors are Radar systems (Radio Detection and 

Ranging) and LiDAR instruments. For instance, in LiDAR instruments, a sensor measures 

the time between the transmitted and backscattered pulses of a laser light as it hits a target 

surface and returns.  

In contrast, a passive system uses a natural source of energy usually originating from the 

sun or the earth. In this case, passive sensors measure the energy reflected, scattered or 

emitted from the earth. The measurement is usually performed over an elementary area 
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known as a ‘pixel’ (which defines the spatial resolution) in different frequency bands (which 

determine the spectral resolution) at a certain point in time (which defines the temporal 

resolution) (Gao, 2008). These measurements are then converted into electrical signals and 

recorded as a digital image. Such digital imagery provides a considerably wider range of 

information (e.g. textural) compared to the traditional methods (e.g. analogue images).  

The process of extracting meaningful information from these digital images can be 

accomplished with the aid of human interpretation or computer algorithms. In the former 

case, a visual analysis of the image is performed by a human expert and interpretations made 

based on their personal knowledge (e.g. identifying and distinguishing a river from a lake). 

Manual interpretation is often limited to analysing one image at a time due to the difficulty 

in viewing multiple images at once. Since there is such a large quantity of content generated 

by multispectral and hyperspectral satellite data, along with the wide variety of sensors 

available, manual interpretation can be a tedious and time-consuming process. Moreover, 

results can be inconsistent due to the varying perspectives of each interpreter. 

Computer algorithms can also be used to extract meaningful information from digital 

images. In this context, digital image processing is based on the manipulation of digital 

numbers by a computer and is thus more objective, generally resulting in more consistent 

results. The concept of digital image processing encompasses all the techniques used to 

extract meaningful information from the digital image. It consists of image correction, image 

enhancement, image transformation and image classification. This thesis focuses on image 

classification based on EM radiation, primarily in the visible/infrared spectrum, obtained 

from airborne/satellite remote sensing.  

 Image classification 

Image classification is a process that groups a set of pixels into a number of categories of 

ground cover classes. A classification can be performed based on statistical decision rules 

in the multispectral domain, known either as spectral pattern recognition, or decision rules 

in the spatial domain, called spatial pattern recognition (Gao, 2008). 

In the former case, the pixel-based approach of image classification (supervised or 

unsupervised) is based solely on the spectral values of pixels in the feature space. In this 

context, it can be difficult for conventional pixel-based approaches to differentiate between 

https://en.wikipedia.org/wiki/Algorithm
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classes that have similar spectral signature but different semantic meaning (e.g. lakes and 

rivers in a multispectral dataset). 

In the latter case, image classification methods can apply the decision rules based on spatial 

information (e.g. geometry, size). To implement these rules, spatial image classification 

methods, such as GEOBIA, use image objects in image space instead of single pixels in 

multispectral space in order to classify an image. According to Hay and Castilla (2008): 

“Geographic Object-Based Image Analysis (GEOBIA) is a sub-

discipline of Geographic Information Science (GIScience) devoted to 

developing automated methods to partition remote sensing imagery 

into meaningful image-objects, and assessing their characteristics 

through spatial, spectral and temporal scales, so as to generate new 

geographic information in GIS-ready format.” 

An image object is a group of connected pixels that is internally coherent and collectively 

different from its surroundings (Castilla and Hay, 2008), even if the collection of pixels 

corresponding to the object is heterogeneous. They are initially produced by segmentation 

(with or without the application of multi-scale characteristics) prior to classification (Hay et 

al., 2005).  

Although image objects do not necessarily correspond to geographical entities, they can 

provide more semantic information than the spectral content, which is the sole input of pixel-

based approaches. For example, textural information, such as homogeneity, similarity and 

contrast, as well as morphological information, such as geometry, shape and compactness, 

is applied in GEOBIA to support and improve the modelling process (Tian and Chen, 2007; 

Hay et al., 2005; Benz et al., 2004). Thus, the results of the object-based approaches are 

more reliable compared to the traditional per-pixel classifiers, especially when VHR images 

are used (VHR image, pixel size <5m) (Blaschke, 2010; Navulur, 2006; Blaschke et al., 

2000). 

 VHR image and image classification  

The recent abundance of high spatial resolution remote sensing data has great potential, but 

volume, complexity and automation challenges first need to be overcome (Baatz et al., 2008; 

Benz et al., 2004). One challenge is the image objects’ variability at the super-pixel scale 

(Li et al., 2012) but GEOBIA is adaptable enough to potentially overcome the limitations of 

the uniform pixel unit in this regard (Lu and Weng, 2007; Baatz et al., 2008; Walter 2004; 

Gitas et al., 2004; Benz et al., 2004; Thomas et al., 2003). Additionally, object-based output 
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facilitates greater integration with vector-based geographic information systems (GIS) in 

comparison to pixel-based approaches (Schiewe et al., 2001). Because of these abilities, the 

use of GEOBIA has become popular in the past decade. As a consequence of such a success, 

some authors have commented that GEOBIA should be considered as a new paradigm for 

image classification (Blaschke et al., 2014; Hay and Castilla, 2008). 

 Limitations of the GEOBIA approach 

Despite the advantages offered by the GEOBIA approach such as geographical objects with 

a unified identity, the results of the image classification step strongly depend on the quality 

of the segmentation process. This is heavily influenced by the parameters specified by the 

operator (e.g. scale or colour weight) for which the input image is segmented (Gao, 2008; 

Kim et al., 2008; Hay et al., 2005). These parameters include size and spectral homogeneity 

of image objects (Hay et al., 2005). However, there is no specific rule to determine the 

optimum value of these parameters, including how much weight they should be given to 

create a geographically meaningful object (Tian and Chen, 2007).  

To deal with these issues, a hierarchical network of image objects segmented at different 

scales is usually used to address objects with different sizes (Castilla and Hay, 2008; Benz 

et al., 2004). Despite the advantage of a multi-scale segmentation algorithm, the quality of 

the segmentation step is subjective and still highly depends on the segmentation parameters 

(Gao, 2008). Some methods address this issue by automatically adjusting the segmentation 

parameters, such as Estimation of Scale Parameter (ESP) tool (Dragut et al., 2010) or a 

genetic algorithm approach (Feitosa et al., 2006). However, these methods only work well 

for certain desired object classes (e.g. homogenous objects). On the other hand, the concept 

of the scale and hierarchical structure between extracted objects at different scales is not 

clear (Hay and Castilla, 2008). In this context, formalising expert knowledge and 

encapsulating it into rule sets would be a time-consuming process (Mahmoudi et al., 2013), 

especially when using criteria such as thresholds (Baatz et al., 2000). 

Once image objects are created, the GEOBIA approach uses the information of segmented 

objects via a set of rules in image space. In other words, the GEOBIA approach uses a 

sequential structure of segmentation and classification processes to classify objects in image 

space. In this sense, the classical approach of GEOBIA lacks the ability to take full 

advantage of other information that is available for segmentation and classification. This 

information includes: 
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1) thematic meaning (including vague phenomena); 

2) geometric character of a given class (shape, size, boundary complexity); 

3) neighbour relationships; 

4) scale-based limits of the object being created; 

5) the prevalent case of incomplete information (e.g. vague boundaries);  

6) the procedural knowledge being generated during this process. 

To address this issue, Baatz et al. (2008) proposed an object-oriented workflow whereby the 

object primitives are created through a segmentation process (Figure 1.1).  

 

Figure 1.1. Object-oriented workflow: the generic procedure (from Baatz et al., 2008). 

In contrast to the object-based workflow, the object-oriented approach employs these objects 

not only as information carriers but also as building blocks for any further shape 

modification, merging or segmentation procedures. As the analysis progresses, more expert 

knowledge and domain knowledge can be used to address the object of interest (Baatz et al., 

2008). Blaschke et al. (2014) proposed an advanced workflow in which a cycle of 

classification and segmentation can be applied (Figure 1.2).  

 

Figure 1.2. Idealised GEOBIA workflow proposed by Blaschke et al. (2014), which illustrates how 

classified objects are extracted through a cycle of segmentation and classification. 
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In Figure 1.2, the term ‘objectification’ refers to the integrated spatial and thematic object 

definition (Blaschke et al., 2014). In this case, the results of a classification process are used 

to take advantage of the domain-dependent knowledge of the real-world objects (Figure 1.2), 

where the geometry of objects is determined via a multiscale segmentation process.  

To enable a dynamic geometry for image objects, Hofmann et al. (2015) used agents to give 

power to the image objects in order to change their geometry (Figure 1.3). Here, after initial 

segmentation and classification steps, objects can re-segment themselves or merge with a 

neighbouring Image Object Agent (IOA) during the classification process based on the rules 

formulated on the characteristics of 3D roofs (e.g. slope).  

 

Figure 1.3. Image Object Agent (IOA) for image classification: the IOA can send messages and 

change its own shape (from Hofmann et al., 2015). 

Despite the advantages of the proposed methods, such as contextual information, these 

methods still rely on a geometry formulated through a segmentation process. In other words, 

the geometric and thematic ‘states’ of real-world objects are determined separately. This 

points to an implicit assumption that real-world objects have predictable behaviours in terms 

of their geometry. Thus, a function exists (e.g. Equation 2.7 in Chapter 2) to determine the 

initial geometry of real-world objects. In this case, every object merged against the 

homogeneity criteria leads to a meaningful object, whereas there is no unique solution for 

image segmentation (Castilla and Hay, 2008).  

Considering the above discussion, an unanswered question needs to be addressed: If 

geographic objects or geo-objects– “a bounded geographic region identified for a period of 
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time as the real-world object of a geographic term” (Castilla, 2003) – are supposed to be a 

basis for the GEOBIA processes (Blaschke, 2014; Castilla and Hay, 2008), how can we 

dynamically link the segmentation and thematic meaning in a unified classification 

process? 

Although these approaches allow the geo-objects to change their geometry during the 

classification process, geometric changes only include re-segmenting or merging of image 

objects. In other words, image objects lack the ability to tune their geometry at pixel level 

in the classification step (e.g. absorbing or removing a pixel). These methods often ignore 

the local geometric changes between objects. In these cases, the interactions between objects 

are only performed at the object level by using geometric operators, such as merging or 

splitting. Since these operators cannot support the interaction between geo-objects with 

indeterminate boundaries at pixel level, their boundaries cannot be directly sampled. Hence 

these approaches assume that objects in the real world have crisp boundaries. 

 Problem statement 

From the above, it can be concluded that both processing units, namely pixels and image 

objects, lack the necessary abilities to simultaneously model the geometry and thematic 

meaning of real-world objects in image space. Although image objects provide more 

information compared to pixels, it is not always possible to link image objects to real-world 

objects due to the absence of semantics.  

This research attempts to address this limitation by developing the VA model in image space. 

A VA is an automated processing unit that has the ability to intelligently control and alter 

its shape and attributes in order to evolve in accordance with the nature of the phenomena 

being represented (Moore, 2011; Hammam et al., 2007). Each VA has seven components, 

that enables it dynamically change its state, geometry, neighbourhood and the associated 

rules (Moore, 2011; Hammam et al., 2007). Within this setting, a geo-object can 

simultaneously identify its geometry and state, and directly interact with its environment 

and also other geo-objects. In contrast with the VA model, pixel-based and object-based 

approaches utilise a sequence of segmentation and classification processes (or vice versa) to 

extract geo-objects from image space (see Section 2.2.3 and 2.3.2). 

In this way, an image classification method is enabled to directly identify geo-objects in 

image space. In this kind of classification, the agents are closely coupled with their 
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corresponding objects in the real-world in both representation and behaviour (see Section 

2.10.2 and 3.1), and the model is more understandable than pixel-based and object-based 

approaches. 

 Research questions 

To achieve the above aim, the main research questions addressed by this thesis are:  

1) What is the most suitable dynamic geometric data structure that would allow the VA 

model to represent real world phenomena captured in a raster image? 

2) How can the VA be parameterised to find and update their thematic meaning of real 

world objects based on an elastic geometry?  

3) How can VAs interact with each other? 

4) How can the VA control geometry, state and neighbourhood relations, and evolve over 

time in image space? 

5) What are the advantages of using the VA model for image analysis? 

 Research objectives 

Considering the above research questions, the main objectives of this research are as follows: 

The first objective of this thesis is to develop a generic structure based on VAs that can 

address real-world objects in image space. This will address the following issues: 

i. Representing the geometry of real-world objects, as well as the rules and 

methods for evolving and expressing this geometry in the modelling space. 

ii. To analyse and explore transition rules and their effect on the class of real-

world objects, and how the VA uses those transition rules to identify their 

classes. 

iii. To formulate the interactions between VAs in the modelling environment 

based on neighbourhood rules. 

The challenge in integrating these components was resolved through a flexible agent 

architecture in which each component was implemented with various classes and sub-classes 

(see Chapter 3). 
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The second objective of this thesis is to validate this model in comparison with per-pixel 

classifiers in terms of classification accuracy achievable. To validate the proposed model 

against pixel-based classification types, which are mainly unsupervised and supervised 

approaches, the VAs have been tested for the following applications in image analysis: 

i. An unsupervised image classification: The ability of VAs in 

implementing a self-training algorithm for an unsupervised image 

classification is evaluated (see Chapter 4).  

ii. A supervised image classification: The ability of VAs in creating reliable 

training samples is evaluated (see Chapter 5). 

The third objective of this thesis is to assess the capabilities of the VA model in addressing 

the main limitations of the GEOBIA approach. VAs have been tested for the following 

applications in image analysis: 

i. To implement an object-based approach to classify a satellite image. The 

aim of this research is to show the capability of VAs, as an automated 

processing unit, in addressing the main issues of the conventional 

GEOBIA method, including geographic objects (see Chapter 6). 

ii. To test how satisfactory the model simulation outputs are in terms of 

their accuracy and the quality of the classification maps when compared 

with a conventional GEOBIA approach (see Chapter 6).  

The fourth objective of this thesis is to explore the proposed VA model and its ability to 

extract and identify real-world objects from raster datasets in a specific area. In this 

context, this study will assess the ability of the VA to identify, extract and classify 3D roofs 

from LiDAR datasets (see Chapter 7). 

 Motivation and approach 

In order to achieve the noted objectives in the above section, for the first time, this thesis 

proposes a new dynamic geometry based on the VA model to directly extract geo-objects 

from image space. This geometry allows geo-objects to automatically change their shape 

and affect the geometry of each other in image space over time. The use of this geometry 

along with the transition rules enables the geo-objects to simultaneously find and extract 

their attributes and geometry in image space. This approach is in contrast to GEOBIA 
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approaches that utilise an iterative process of segmentation and classification to address 

geometry of geo-objects in image space. 

These agents are also taught how to interact with each other and with their environment, 

thus enabling the concept of image interpretation by association. In a VA context, the main 

contributions of this research can be summarised as follows, using an autonomous object to: 

i. expand geometric possibilities to model indeterminate boundaries. 

ii. affect the definition of states through geometry (boundary character), 

and 

iii. create the potential for joining an object’s state with that of its 

neighbours to create a higher-level state definition that is semantically 

meaningful (one that is also capable of containing the original states as 

internal structure). 

In the area of image classification, the proposed VA model contributes in two ways: 

intelligent spatial classification and spectral classification. 

 Spatial classification 

Conventional object-based approaches use the image object to classify an image. At a 

fundamental level, image objects are a set of regular/irregular polygons based on a collection 

of user-defined parameters (e.g. scale) in image space. In this sense, two main assumptions 

are implicit within the conventional object-based approaches. First, in the classification step, 

the process of merging image objects leads to a new meaningful object. To tackle this 

limitation, geographical image objects can use a dynamic geometry that allows them to 

constantly change their geometry during the classification step. The second assumption is 

that geographical image objects have a crisp boundary. To cope with this issue, the dynamic 

geometry should also be flexible. In this sense, geographic image objects can change their 

geometry at pixel level even where there is incomplete spatial information or vague 

boundaries. Chapters 3, 6 and 7 of this thesis explore the VA as a way to support a dynamic 

and flexible geometry in close association with the shape, size and attributes of the 

corresponding class to which they are expected to belong.  

 Spectral classification 

Conventional pixel-based approaches rely solely on the spectral values of pixels in order to 

classify an image in a multispectral domain through a set of statistical rules. In this context, 
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there is an implicit assumption that all the classes of interest to be mapped have a unique 

distribution of values in all the multispectral bands used (Gao, 2008). The dynamic structure 

of the VA allows them to address spectral patterns in a multi spectral domain in close 

association with spatial patterns. In this way, the VA can find the class of each pixel based 

on the characteristics of real-world objects (e.g. geometry, texture) during an evolutionary 

process in image space. Chapters 4 and 5 explore these aspects.  

 Organisation of the thesis 

The next chapter provides an overview of the conventional methods of spatial modelling to 

capture real-world objects in an image. The concept of set theory and graph theory are then 

reviewed to formulate the geometry of the VA. To address the class of the VA in image 

space, the concept of thematic meaning of spatial objects is explored. To integrate the 

geometric and thematic definition of spatial objects, a review of object-oriented approaches 

is then presented. The following section explores the key concepts of time. The 

characteristics of a self-organising system for spatial modelling will be studied by reviewing 

the techniques of the geosimulation, GAS and VAs. Finally, Chapter 2 concludes by stating 

the basis for the work which has been developed in the context of this thesis.  

Chapter 3 presents the concept of vector agent modelling for remote sensing image analysis. 

After that, the main components of the VA in the context of image classification are 

formulated. The framework to model the relationship between geometry, transition (i.e. of 

states, or attributes) and neighbourhood rules will be introduced. Finally, the implementation 

architecture of the proposed model is described through UML.  

In Chapter 4, the application of VAs will be discussed within the context of pixel-based 

approaches. First, unsupervised pixel-based approaches are briefly reviewed. Then the 

structure of a VA-based unsupervised method is presented. After that, the proposed method 

is tested and evaluated against the conventional unsupervised method.  

Chapter 5 discusses the application of VAs for a class of supervised image classifications 

called ‘semisupervised image classification’. First, the current semisupervised algorithms 

are reviewed. Then the structure of a semisupervised VA-based method is defined, 

formulated and tested. Finally, the results are compared with a conventional semisupervised 

algorithm. 
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In Chapter 6, VAs are compared with a conventional object-based approach. First, GEOBIA 

are reviewed. Then, the limitations of the conventional GEOBIA approaches are discussed. 

After that, the structure of the VA is defined according to an object-based approach. The 

proposed VA-based image classification is then tested and evaluated in the last section. 

Chapter 7 describes the application of the VAs in extracting real-world objects (e.g. 3D 

roofs) from raster datasets (e.g. LiDAR). The conventional 3D roof extraction approaches 

are first reviewed. The elements of the VA are then formulated to extract 3D roofs. The 

proposed VA-based 3D roof extraction process is then tested and evaluated. 

Chapter 8 summarises and discusses the work done in this thesis and presents the results and 

major findings of the research. It will establish whether these conclusions answer the 

research questions raised earlier in this chapter. With these concluding remarks, limitations 

and possible directions for future research are discussed, bringing this thesis to a close.   
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Chapter Two 

Literature review: image Classification, spatial 

modelling and agents  

Abstract 

Geo-objects in image space are usually addressed by pixel-based or object-based 

approaches. These approaches lack the ability to simultaneously address the geometric and 

thematic components of real-world objects. This chapter reviews spatial modelling 

techniques in order to develop a new processing unit for extracting directly real-world 

objects from image space. To construct the geometry of the new processing unit, the 

taxonomy of vector data structures is first discussed. This chapter then examines the 

thematic component of the processing unit. Through the review of different computational 

approaches for the integration the theme and geometry of geo-objects, it is concluded that 

the vector agent model is an appropriate solution due to its capability in assimilating both 

thematic and geometric characteristics in order to directly address real-world objects in 

image space. 

 

 Geo-objects 

The real world can be seen as a collection of spatially interacting entities, called geo-objects. 

The term ‘geo-object’ describes an object which is georeferenced in a coordinate system 

and/or a geodetic reference system on earth (geo-). The ‘object’ itself refers to an 

identifiable, relevant (of interest), and describable (has characteristics) entity (Mattos et al., 

1993).  

By means of the modelling process, geo-objects in a source domain are represented by 

corresponding objects in the target domain (Worboys, 2004). A geo-object in such a model 

is usually defined by its spatial (shape and size in real-world), graphical (cartographic form 

at the generalization level), temporal (when it is created in the real world and in the database) 
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and textual (attributes) components (Worboys, 2004). In a general context, Figure 2.1 shows 

the basic components of a geo-object. Here, the geometric aspect relates to the shape and 

size of the geo-object. It also describes the location and spatial relationships of the geo-

objects in real-world. Attribute or non-spatial aspects consist of information that usually 

describes the thematic properties of geo-objects (e.g. class). From this perspective, a geo-

object can be modelled via its components. These components are first modelled for each 

geo-object. Then, these elements are linked via a unique identification to model a geo-object. 

  

Figure 2.1. Components of geo-objects: geometric data, thematic data, and a link identification 

(ID) for the geometric and the thematic components (from Abdul-Rahman and Pilouk, 2007). 

A geo-object can also be modelled through a primitive form of geographic information. In 

this method, a geo-object can be modelled via aggregation of fundamental building blocks. 

For example, to model geo-objects, the GEOBIA approach uses image-objects as the 

fundamental processing unit. These are a set of regular or irregular polygons formulated 

based on the parameters specified by a user (Hay and Castilla, 2008), without direct link to 

the geo-objects in the real-world. To define the geo-objects, Goodchild and Cova, (2007) 

used the concept of the geo-atoms. A geo-atom is associated with a point location in space–

time and a property. Based on this concept, a geo-object is defined by aggregation of points 

in space–time which have specified values for certain properties. In this case, a geo-object 

can be modelled via the changes of its elements- geometry, state and neighbourhood in direct 

connection to the real-world.  In this thesis, the notion of the geo-objects as formalised by 

Goodchild and Cova (2007) are applied to define geo-objects, more specifically automata 

types (see Chapter 3). 

In remote sensing, the process of abstraction is usually carried out via image classification. 

To model geo-objects in image space, image analysis methods usually employ image 

classification process. This process can be performed using pixels or image objects. To do 
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this, both pixel-based and object-based approaches typically employ a linear two-staged 

workflow of segmentation and classification. Pixel-based methods segment a classified 

image to address geo-objects in image space. In contrast, object-based approaches classify 

a segmented image to determine geo-objects. In the following sections, we review the 

structure of pixel-based and object-based approaches to extract geo-objects from raster 

images in more detail.  

 Pixel-based approaches 

In a pixel-based approach, pixels are the main processing unit used to classify an image. A 

pixel is the smallest element of an image, and refers to the ground area from which the 

reflected or emitted electromagnetic radiation is integrated and recorded as a single value in 

the image (Gao, 2008). In the classification process, the pixel is labelled using the Digital 

Numbers (DNs), which represents the amount of radiation received at the sensor, based on 

a set of statistical decision rules in the feature space.  

 Feature space: This is known as an abstract space in which each pixel is represented 

as a point in n-dimensional space. Its dimension is determined by the number of 

features used to describe the patterns within the feature space. Euclidean distance is 

the shortest length between any two points in a Cartesian space. The dimension of the 

feature space is specified according to the number of spectral bands used. The spectral 

distance between two points is often measured in n-dimensional Euclidean space by 

the following equation (Gao, 2008): 

𝑑((𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛)) = √∑(𝒙𝒊 − 𝒚𝒊)2 

𝑛

𝑖=1

, 

 

(2.1) 

where xi and yi are specified by the digital numbers (DNs) of two pixels corresponding to 

the spectral band, and n is the number of spectral components of raster datasets (e.g. the 

number of bands in multispectral image). Such spectral image classification can be carried 

out through either an unsupervised or supervised approach. 

 Unsupervised image classification 

An unsupervised classification or clustering algorithm uses the DNs of pixels in the feature 

space to group them into certain categories according to the similarity of their spectral values 
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(Gao, 2008). In this approach, an analyst usually determines the number of clusters, and then 

every pixel in the input data is assigned to one of those groups specified by the analyst. 

Therefore, prior to classification, the image analyst does not need to know about the scene 

or the thematic meaning of the objects in the real world (Gao, 2008). The classes produced 

have no thematic meaning. The image analyst labels each cluster after the clustering process 

is completed. Accordingly, unsupervised methods do not require as much intervention or 

priori information to classify an image as compared to supervised approaches (Duda et al., 

2012; Tso and Olsen, 2005). There are different ways to implement an unsupervised method 

(e.g. ISODATA, K-means). The K-means algorithm applied for a vector agent-based 

unsupervised image classification in Chapter 4 is reviewed in more detail below. 

 K-means 

 K-means is an iterative algorithm that uses the mean values of DNs in each cluster to 

classify pixels in the feature space (Figure 2.2). The process is performed as follows (Gao, 

2008): 

1. Candidates’ cluster centres are initialised using the statistical information of the DNs 

in feature space and the number of clusters (e.g. k) specified by an operator. 

2. The Euclidean distance between each pixel and all cluster centres is calculated based 

on Equation 2.1, where xi and yi are specified by the DNs of a candidate pixel and a 

cluster centre, respectively. A pixel belongs to the candidate cluster to which the 

spectral distance is shortest. 

3. The sum of square error (SSE) is computed as follows: 

SSE = ∑ ∑[𝐷𝑁(𝑖, 𝑗) − 𝑚𝑗]
2

𝑡

𝑖=1

𝑘

𝑗=1

 ,  

 

(2.2) 

where 𝐷𝑁(𝑖, 𝑗) is the value of the ith pixel in jth cluster, mj is the mean of each cluster and 

t is the number of pixels in each cluster, which varies from cluster to cluster. 

4. The class centres coordinates in feature space are updated at each iteration and SSE 

values are computed.  

5. The process terminates if the permitted number of iterations is reached, or the class 

centres do not change significantly from one iteration to another. An operator 

determines thresholds.  
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Figure 2.2. (a) K-means clustering in a 2-dimensional feature space. (b) The pixels are classified 

in the two classes. (c) Clustering results after the pixels are reassessed using the updated cluster 

centres during the second iteration. (d) Clustering results after the pixels are reassessed using the 

updated cluster centres during the third iteration. (e) Final clustering results (from Gao, 2008). 

After the clustering process, the image analyst determines the thematic class of each cluster. 

This means that an unsupervised approach can be applied even where the ground truth and 

ancillary information is not sufficient. Despite the advantage that an unsupervised approach 

offers, the extracted clusters generally differ from meaningful ground covers identified by 

the user in the area of the study. 

 Supervised image classification 

A supervised image classification approach uses training samples to identify the class of 

each cell or pixel in image space. The process of supervised classification is based on the 

following steps: 

1. The first step is the development of a classification scheme in order to determine the 

thematic classes and a classifier algorithm used to classify the image.  

2. In the second step, representative samples for each thematic class and learning 

process are selected. The selection of training samples is usually performed by 

ground surveys or by the interpretation of the image. After that, the selected 

classifier is trained based on the labelled samples.  
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3. In the final step, a classifier (e.g. Maximum Likelihood (ML)) determines the class 

of each pixel.  

In this thesis, the VA uses the ML (an example of parametric classifier) and Support Vector 

Machines (SVM) (an example of non-parametric classifier) to identify the class of objects 

in the real world. 

2.2.2.1. Maximum likelihood 

Parametric classifiers (e.g. ML algorithm) assume that the data for the classes of interest is 

distributed normally. The ML classifier is one of the most widely used parametric algorithms 

for image classification. The applications of ML algorithms have already been addressed in 

several studies (Sisodia et al., 2014; Srivastava et al., 2012; Foody et al., 1992). The ML 

algorithm employs the cluster centres and covariance matrix of the clusters, which are 

determined on a set of training samples to evaluate a candidate pixel x. In this case, the 

statistical distance is a probability value computed through the following algorithm 

(Richards, 2006): 

g𝑖(𝒙) = ln 𝑃(𝜔𝑖) −
1

2
 ln|𝜮𝑖| −

1

2
 (𝒙 − 𝒎𝒊)

𝑡𝜮𝑖
−1(𝒙 − 𝒎𝒊), (2.3) 

where i is the class, 𝑃(𝜔𝑖) is the probability that class 𝜔𝑖 occurs in the image assumed the 

same for all classes, |𝜮𝑖| is the determinant of the covariance matrix of the data in class 𝜔𝑖 

, 𝜮𝑖
−1 is the inverse matrix and 𝒎𝒊 is the mean vector.  

2.2.2.2. Support vector machine 

Non-parametric classifiers (e.g. SVM algorithms) are a group of classifiers that make no 

assumptions about the statistical nature of the raster datasets (Srivastava et al., 2012). The 

theory of SVM algorithms was originally proposed by Vapnik and Chervonenkis (1971). 

Over the last few years, the applications of SVM algorithms have received increasing 

attention in the remote sensing area (Mathur and Foody, 2008; Bruzzone, 2006). In the SVM 

algorithm, the decision rules are formulated on the function sgn[f(𝐱)], where a discriminant 

function f(𝐱) is usually expressed as follows (Melgani and Bruzzone, 2004): 

f(𝐱) = ∑ 𝛼𝐢

𝑖∈𝑆

𝑦𝑖𝐾(𝐱𝐢, 𝐱) + 𝑏,   (2.4) 
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where 𝐱𝐢 ∈ 𝕽𝑑  (𝑖 = 1,2, … , 𝑁) consists of N training samples, d is the dimension of the 

feature space. Training data are represented by {𝐱𝐢, 𝑦𝑖}, and 𝑦𝑖 ∈ {−1, 1} for a binary 

classification.  𝐾(𝐱𝐢, 𝐱) is a kernel function, 𝛼𝒊  ̓ s (𝑖 = 1,2, … , 𝑁) is the Lagrange 

multipliers, S is the subset of training samples corresponding to the non-zero Lagrange 

multipliers 𝛼𝒊 ̓ s and a bias 𝑏 ∈  𝕽. In this thesis, the VA uses the Radial Basis Function 

(RBF) kernel (Equation 2.5) to implement the SVM algorithm.  

      𝐾(𝐱𝐢, 𝐱) = exp(−γ‖𝐱𝐢 − 𝐱‖2), (2.5) 

where γ is a parameter inversely proportional to the width of the Gaussian kernel. To train 

the SVM model for use in classification, two parameters, namely γ and C, should be chosen. 

C, regularisation parameter, determines the level of the trust to the training data. These 

parameters are often not known. To identify the optimum values of C and γ, an n-fold cross-

validation algorithm is usually applied. The algorithm uses a grid search to automatically 

select these parameters. To do this, the algorithm divides the training data into n subsets of 

equal size. At each iteration, one of the subsets from the training samples is first removed. 

The remaining subsets are then trained in terms of different values of C and γ. For 

each(𝐶, γ), the algorithm uses the omitted subset or test samples to compute the accuracy of 

data. After n iterations, the algorithm chooses the C and γ values with the maximum 

accuracy for learning process. 

 Spatial objects in a pixel-based approach 

In pixel-based approaches, the geometry of spatial objects is determined after image 

classification. This process is often performed in two main steps: post classification filtering 

and geometric extraction. In the first step, a post classification filtering process is applied to 

improve the classification results, either by eliminating isolated pixels or using majority 

filters (Gao, 2008). Then the classified image is segmented based on the topology of the 

thematic raster data to address the geometry of the spatial objects (Figure 2.3). There are 

two ways to link object information to the cells (Molenaar, 1998): 

i. Each cell has a label based on attribute information. The complete geometry of an 

object can be found by inspecting the labels of all elements of the raster to check 

whether it belongs to the required object. Thus, objects can be identified as contiguous 

sets of cells with the same label. 
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ii. Each object points to the cell representing it. This can be done in the form of a list or 

linked list. The geometric structure of the object is then directly realised in the data 

model. 

 

(a) 

 

(b) 

Figure 2.3. (a) Area object in raster space and (b) topologic structure (from Molenaar, 1998). 

The structure of pixel-based approaches shows that these methods use a sequential process 

of classification and spatial segmentation to address the spatial objects in image space. In 

this context, the elements of spatial objects, namely thematic and geometric, are 

independently determined (Figure 2.1). In other words, this structure shows that the spatial 

modelling algorithms based on pixel-based approaches lack the ability to directly address 

the geo-objects in image space. Thus, real-world objects are modelled regardless of their 

nature in the real world. This can lead to poor results for modelling geo-objects, especially 

when these objects are heterogeneous (e.g. forest).  

 Object-based image analysis 

In object-based approaches, image objects are the main processing units. Image objects are 

a set of regular/irregular polygons created in image space through a process known as 

segmentation. The image objects are then labelled in the classification step. 

 Image segmentation 

Image segmentation is a process that groups sets of connected pixels of a given image into 

a collection of homogenous areas that supposedly depicts a homogeneous thematic meaning, 

even if the collection of pixels corresponding to the object is heterogeneous. It can be 

formulated as follows (Mylonas et al., 2013): 

 ⋃ 𝑆𝑖

𝑁𝑠

𝑖=1

= 𝚻      

 

(2.6) 
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where T denotes the image space,  Si is a connected set of T, 𝑖 ∈ ℕ in which   

𝑆𝑖 ∩ 𝑆𝑗 = ∅, ∀ 𝑖, 𝑗 ∈ ℕ2, 𝑖 ≠ 𝑗. 

Segmentation methods are generally divided into three main categories: pixel-based, edge-

based and region-based (Blaschke et al., 2014). Object-based classification methods usually 

use region-based algorithms to segment an image, especially when there is a HSR image. 

They are less sensitive to noise compared to pixel-based and edge-based methods (Schiewe, 

2002). In this context, the multiresolution image segmentation proposed by Baatz and 

Schape (2000) is one of the most popular image segmentation methods. This approach uses 

a region-based growing algorithm formulated on spectral and spatial information of geo-

objects in order to segment an image.  

In this case, the segmentation algorithm applies the following function f to control the 

heterogeneity of objects in image space (Benz et al., 2004): 

𝑓 = 𝑤𝑐𝑜𝑙𝑜𝑢𝑟. ∆ℎ𝑐𝑜𝑙𝑜𝑢𝑟 + 𝑤𝑠ℎ𝑎𝑝𝑒 . ∆ℎ𝑠ℎ𝑎𝑝𝑒 ,  (2.7) 

where 𝑤𝑐𝑜𝑙𝑜𝑢𝑟 ∈ [0,1], 𝑤𝑠ℎ𝑎𝑝𝑒 ∈ [0,1] are the weight parameters applied to adapt 

heterogeneity definition to the application of image analysis and 𝑤𝑠ℎ𝑎𝑝𝑒 +  𝑤𝑐𝑜𝑙𝑜𝑢𝑟 = 1. 

∆ℎ𝑐𝑜𝑙𝑜𝑢𝑟 and ∆ℎ𝑠ℎ𝑎𝑝𝑒 are calculated as follows: 

∆ℎ𝑐𝑜𝑙𝑜𝑢𝑟 = ∑ 𝑤𝑐(𝑛𝑚𝑒𝑟𝑔𝑒. 𝜎𝑐,𝑚𝑒𝑟𝑔𝑒 − (𝑛𝑜𝑏𝑗−1. 𝜎𝑐,𝑜𝑏𝑗−1

𝑐

+ 𝑛𝑜𝑏𝑗−2. 𝜎𝑐,𝑜𝑏𝑗−2)),  

(2.8) 

where 𝑛𝑚𝑒𝑟𝑔𝑒 is the number of pixels within merged object, 𝑛𝑜𝑏𝑗−1 and 𝑛𝑜𝑏𝑗−2 are the 

number of pixels in objects 1 and 2, respectively. 𝜎𝑐, is the standard deviation within an 

object of channel c. 𝑤𝑐 allows multi-variant segmentation. ∆ℎ𝑠ℎ𝑎𝑝𝑒 is computed as follows: 

∆ℎ𝑠ℎ𝑎𝑝𝑒 = 𝑤𝑐𝑜𝑚𝑝𝑡. ∆ℎ𝑐𝑜𝑚𝑝𝑡 + 𝑤𝑠𝑚𝑜𝑜𝑡ℎ. ∆ℎ𝑠𝑚𝑜𝑜𝑡ℎ, (2.9) 

where ∆ℎ𝑠ℎ𝑎𝑝𝑒 controls the smoothness and compactness of an object’s shape and ∆ℎ𝑐𝑜𝑚𝑝𝑡 

and ∆ℎ𝑠𝑚𝑜𝑜𝑡ℎ are defined as follows: 

∆ℎ𝑐𝑜𝑚𝑝𝑡 = 𝑛𝑚𝑒𝑟𝑔𝑒 .
𝑙𝑚𝑒𝑟𝑔𝑒

𝑏𝑚𝑒𝑟𝑔𝑒
− (𝑛𝑚𝑒𝑟𝑔𝑒−1.

𝑙𝑚𝑒𝑟𝑔𝑒−1

𝑏𝑚𝑒𝑟𝑔𝑒−1
+ 𝑛𝑚𝑒𝑟𝑔𝑒−2.

𝑙𝑚𝑒𝑟𝑔𝑒−2

𝑏𝑚𝑒𝑟𝑔𝑒−2
), 

 

 (2.10) 
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∆ℎ𝑠𝑚𝑜𝑜𝑡ℎ = 𝑛𝑚𝑒𝑟𝑔𝑒 .
𝑙𝑚𝑒𝑟𝑔𝑒

√𝑏𝑚𝑒𝑟𝑔𝑒

− (𝑛𝑚𝑒𝑟𝑔𝑒−1.
𝑙𝑚𝑒𝑟𝑔𝑒−1

√𝑏𝑚𝑒𝑟𝑔𝑒−1

+ 𝑛𝑚𝑒𝑟𝑔𝑒−2.
𝑙𝑚𝑒𝑟𝑔𝑒−2

√𝑏𝑚𝑒𝑟𝑔𝑒−2

), 

                (2.11) 

where l is the perimeter of the segmented object and b is the perimeter of the object’s 

bounding box. The weights 𝑤𝑐, 𝑤𝑠ℎ𝑎𝑝𝑒, 𝑤𝑐𝑜𝑙𝑜𝑢𝑟, 𝑤𝑠𝑚𝑜𝑜𝑡ℎ, and 𝑤𝑐𝑜𝑚𝑝𝑡 are parameters 

defined by a human expert to get suitable segmentation results for a certain image datasets 

and a given application. As there is no specific rule to determine these parameters, they are 

defined based on trial and error (Hay et al., 2005). For example, Figure 2.4 shows the results 

of the segmentation process based on different values of these parameters. 

 
(a) 

 
(b)  

(c) 

Figure 2.4. (a) A subset of IKONOS image from an urban area, Dunedin, New Zealand. (b) and (c) 

segmented images with scale: 30, compactness: 0.5 and shape 0.1 and shape 0.9, respectively. 

The product of the segmentation process is a set of connected pixels known as image objects, 

which can satisfy Equation 2.6. The thematic class of image objects as main processing units 

is determined in the classification step using a set of rules in image space via a GEOBIA 

algorithm.  

 Spatial objects in an object-based approach 

Compared to pixel-based approaches, using image objects enables GEOBIA algorithms to 

apply and analyse more informative data such as geometry, shape, context, content and 

spectral information (Tian et al., 2007; Hay et al., 2005; Benz et al., 2000). The label of the 

extracted segmented regions in a segmentation step is determined by a classification method, 

such as the nearest neighbour or fuzzy rules (Benz et al., 2004). Rule-based systems (e.g. 

GEOBIA) belong to knowledge-based methods that simulate the human reasoning 

mechanism and translate knowledge through decision rules (Mather and Tso, 2009). The use 
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of a classification method based on knowledge provides an opportunity for the classification 

algorithm to use more information for image analysis compared to a pixel-based approach. 

This allows for better differentiation between object classes and an efficient extraction of 

objects (Campbell, 2007).  

To classify the image objects, there are two main strategies: parallel and sequential. In 

sequential methods, GEOBIA determine the class of image objects belonging to each class 

one at a time. This allows the GEOBIA methods to use information from procedural 

knowledge in order to label image objects. For example, shadow objects are usually found 

next to elevated objects (e.g. buildings). When the buildings are already classified, the 

shadow objects can be identified not just with spectral information but also the 

neighbourhood rules. Roads or rivers can be identified using the width of the objects in 

addition to spectral information. However, the labelling process can be difficult and time 

consuming because of the difficulty in formalising expert knowledge and encapsulating it 

into rule sets (Mahmoudi et al., 2013).  

In contrast, parallel methods use a fast architecture to classify an image. In this case, all 

image objects are labelled at once. However, these methods cannot use the procedural 

knowledge in the classification step. To address this issue, the application of agent-based 

modelling has already been addressed in several studies (Hofmann et al., 2015; Zhong et al., 

2014; Mahmoudi et al., 2013). The agent-based approach not only speeds up the processing 

of (remotely sensed) data analysis tasks by exploiting parallelism but also allows the agents 

to share their information.  

Despite the advantages that parallel methods offer, both parallel and sequential methods 

have two common limitations: they use a static geometry to address geo-objects in image 

space. In this case, objects cannot change their geometry once they are created (Baatz et al., 

2008). This means that the process of merging image objects can lead to a meaningful object 

during the classification step, whereas the geometric elements of geo-objects are determined 

via a set of user-defined parameters based on trial and error (Hay et al., 2005) without 

direct connection to the real-world environment (Benz et al., 2004). 

The above example also illustrates that object-based image classification uses a sequential 

process of segmentation and classification to address geo-objects. In contrast to the pixel-

based approaches, the geometry of geo-objects is first determined by a segmentation process. 

Then, the thematic meaning of the spatial objects is addressed using a classification method. 
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Similar to pixel-based approaches, the main components of spatial objects, namely thematic 

and geometric, are independently identified from the image space. In other words, object-

based approaches lack the ability to directly address geo-objects in the image space. The 

advanced object-based method uses an iteration strategy of image segmentation and 

classification (see Figures 1.1, 1.2 and 1.3) to address this issue. However, all studies are 

established on the static geometry of real-world objects. In this context, object-based 

approaches are performed based on two main assumptions: 

 The parameters of the segmentation process can be determined accurately. 

 Geo-objects have crisp boundaries. 

In light of the above, we assume in object-based approaches that geo-objects have 

predictable behaviours in a complex real-world environment.  

So far, we have seen that pixels lack the ability to directly address geo-objects in image 

space. Segmented objects show that they can be a proper solution to address this issue. 

However, a gap between reality and vector representation still remains. In our research, we 

will present a new automated processing unit to directly address geo-objects in image space.  

As the main objective of this thesis is to extract and represent real-world objects directly 

from raster data (such as remote sensing imagery), it is necessary to perform a review of 

vector geometry and the thematic concept of spatial objects. The aim of this review is to 

analyse the abstract formalisms that have been used to present a vector model in image 

space.  

 Space  

The concept of space is important in understanding and modelling real-world phenomena or 

objects. There is always an implicit model of space underlying every spatial representation 

(Takeyama, 1997). Geographic space can be expressed in raster format as a field of 

measurement (e.g. temperature) or in vector space as a collection of geometric discrete 

objects (e.g. houses) (Takeyama, 1997; Couclelis, 1992). Accordingly, two main data 

structures, namely raster and vector, can be used to represent real-world phenomena.  

 Raster space 

The raster data is structured via tessellations for geometric modelling. Each tessellation in a 

raster space is a partition of space connecting disjointed areas of a certain size or resolution. 
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Tessellations can be categorised as regular (e.g. grid, hexagon or triangle) or irregular 

(partitions with varying sizes and shapes). In this thesis, raster data refers to a regular 

tessellation, consisting of an array of pixels that are regularly spaced with a common shape 

(square). Each cell in the raster space is defined by its position, organised into rows and 

columns (or a grid), and a value that represents information, such as height. The coordinates 

of each cell are usually calculated using origin coordinates (generally lower-left) and the 

resolution of raster data.  

Hence, raster data has two main roles in our model. Firstly, the values of a cell provide the 

necessary information for the VAs to identify the thematic information of the geo-objects. 

Secondly, a predefined geometric structure of raster data, as a base map, allows the VA 

model to formulate the geometric rules for extracting geo-objects. In raster space, the 

geometry of objects is represented via a cell or a group of cells. For example, a point may 

be represented by a cell, a line by a sequence of neighbouring cells, and a polygon by a 

collection of connected cells (e.g. image objects in Figure 2.4 or thematic layer in Figure 2.3 

(a)).  

 Vector space 

Despite the advantages that raster data offer, such as simple data structure, they lack the 

ability to provide an actual geometry for geo-objects in real-world space. Since geo-objects 

are abstractions of entities in simulation domain, the vector data (e.g. point, line or polygon) 

is more suitable than raster data to represent geo-objects in real-world space (Cova and 

Goodchild, 2002). According to Hay and Castilla (2008): 

“GEOBIA relies on RS (remote sensing) data, and generates GIS 

(Geographic Information Systems) ready output, it represents a 

critical bridge between the (often disparate) raster domain of RS, 

and the (predominantly) vector domain of Geographic Information 

System.”  

As VAs are implemented in a vector or discrete space, the concept of vector data structure 

is used to define the VA model. Here, vector space is a subset of spatial space associated 

with the occurrence of geographic phenomena on the earth. In this context, vector space can 

be regarded as a container or framework of discrete, identifiable units, namely geo-objects.  
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 Geometry of spatial objects 

At a basic level, the geometry of vector data can be regarded as a collection of points with 

geographic coordinates. The geometry of geo-objects can also be expressed by the relative 

position of features (e.g. points, lines or polygons) or a mathematical function.  

 Geometric primitives 

In vector space, each geo-object can be represented by point or line or polygon. These 

features, geometric primitives, are defined as follows (David et al., 1996):    

i. Point objects: A point is a 0-dimensional geometric primitive associated with one set 

of coordinates (x, y), based on a georeferenced system. This coordinate represents the 

distance from the origin in the direction of each axis.  

ii. Line objects: A line is a one-dimensional geometric primitive, which may or may 

not be closed. A line can also be a segment (a finite line which begins and ends at two 

defined points), a string (an ordered sequence of sets of coordinates and the shortest 

connection between them), or an arc (an ordered sequence of sets of coordinates and 

connections between them that are defined by a set of mathematical functions). 

iii. Area objects: An area object is considered a bounded continuous two-dimensional 

geometric primitive, delimited by one outer non-intersecting boundary and zero or 

more non-nested non-intersecting inner boundaries. 

 Structure primitives 

Structure primitives are applied to describe the relative position of features. These primitives 

are defined as follows:  

i. Node: A node is a 0-dimensional structure primitive. It can be an isolated node (not 

related to any edge) or a connected node (related to one or more edges).  

ii. Edge: An edge is a one-dimensional structure primitive, specified as connecting a 

start node and end node. 

iii. Face: A face is a structure primitive with a minimum of two dimensions, defined by 

one outer ring and zero or more inner rings.  

The geometry of spatial objects can also be addressed indirectly in vector space. In this way, 

a mathematical function is usually applied to divide the vector space into a set of discrete 

objects. A Voronoi diagram is a special kind of decomposition of a metric space determined 

by distances to a specific set of objects (like a discrete set of points) within the space (Okabe 
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et al., 2009). A Voronoi diagram divides a 2D vector space into a set of regions. Each region 

corresponds to one point (site), and all points in this region are closer to the corresponding 

site than to any other (Figure 2.5). 

 

Figure 2.5. Voronoi diagram with irregular points distribution. 

The geo-objects can also be modelled via their geometric elements (e.g. edges). For 

example, on a raster data structure (e.g. images), sharp discontinuities can be extracted via 

an edge detection algorithm, such as Laplacian. The Laplacian L (x,y) for a pixel with 

intensity values I (x,y) is calculated as follows (Gao, 2008), 

𝐿(𝑥, 𝑦) =
∂2𝐼

𝜕𝑥2
+

∂2𝐼

𝜕𝑦2
 , 

(2.12) 

As an input image is represented by a collection of discrete pixels, we usually use a set of 

convolution kernels (e.g. Figure 2.6) to approximate the second derivatives in Equation 2.12.  

 

Figure 2.6. The commonly used the Laplacian kernel with a window size of 3 × 3 pixels. 

The extracted discontinuities can then be applied to model the boundaries of geo-objects in 

a scene. 

 Set theory  

Spatial objects can be defined from a set theory point of view. A set is a collection of objects, 

such as people or points in 2-dimensional plane (Kainz, 2004). In a discrete space, a set X =
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{𝑥1, 𝑥2, … , 𝑥𝑛} can be specified by enumeration. In set theory, four operations, including 

union, intersection, difference and complement, are often applied between sets. 

iv. Union: the union of two sets A and B, written as 𝐴 ∪ 𝐵, is the set containing all the 

elements that belong either to A or to B. It is expressed by 𝐴 ∪ 𝐵 =

{𝑥: 𝑥 ∈ 𝐴 𝑜𝑟𝑥 ∈ 𝐵}. The union of a collection of sets is written as ⋃ 𝑋𝑖𝑖∈{1,…,𝑛} . 

 Intersection: 𝐴 ∩ 𝐵 displays the intersection of two sets A and B, written as 𝐴 ∩ 𝐵 =

{𝑥: 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}. The intersection of a collection of sets is written as 

⋂ 𝑋𝑖𝑖∈{1,…,𝑛} . 

 Difference: 𝐴 − 𝐵 shows the difference between two sets A and B, written as 𝐴 −

𝐵 = {𝑥: 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵}. 

 Complement: the complement of a set A in the universe U is the set 𝐴𝑐 = 𝑈 − 𝐴 =

{𝑥: 𝑥 ∉ 𝐴 }.  

The concept of a set can also be applied to define a topological space in which a collection 

of neighbourhoods fulfils certain conditions. In Figure 2.7, three types of points can be 

distinguished in set A:  

 

 

 

 

 

Figure 2.7. The topology of point set R2 and the neighbourhood of points x1, x2 in set A with 

dimensions of 2, where R2 is the real plane defined on the Euclidean distance (adapted from 

Molenaar, 1998). 

i. For points of type x1, there are neighbourhoods Ux where all points (x) belong to x1 

and are defined by Ux ⊂ A. These points are called interior points of A, written as 

A 
∘ = {x ∈ A|∃ Ux ⇒ Ux ⊂ A}. 

ii. For points of type x3, points (x) do not belong to A. They have a neighbourhood Ux, 

which consists of points that do not belong to A. These points are known as exterior 

points of A, written as A 
− = {x ∉ A|∃ Ux ⇒ Ux⋂ A = ∅}. 
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iii. For the third group represented by x2, there are neighbourhoods Ux that consist of 

points that belong to A and A 
𝑐 (complement of set A). These points are known as 

frontier or boundary points of A, written as 𝜕A 
 = {x ∈ U|∀ Ux ⇒ Ux⋂A ≠

∅ 𝑎𝑛𝑑 Ux⋂A 
𝑐 ≠ ∅}. 

 Graph theory and planar graph 

The use of graphs is a simple way to define an object in image space. A graph formulates 

the relationships between structure primitives (node, edge and face). A graph G is an incident 

relation between two disjoint sets N and E (Rahman and Pilouk, 2007; Molenaar, 1998), 

where N and E are defined as follows: 

i. N is a non-empty set of i nodes, 𝑁 = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑖}  where the position of nodes 

are specified based on the coordinates.  

ii. E is a set of j edges, 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑗}.  

iii. An edge is a connection of two nodes, 𝑒𝑘 = {𝑛𝑝, 𝑛𝑞}, where  . 𝑒𝑘 ∈ 𝐸 and {𝑛𝑝, 𝑛𝑞} ∈

𝑁2. 

Considering the above, we can define the concept of direction, chain, segment and polygon 

in a graph as follows (Rahman and Pilouk, 2007; Molenaar, 1998):  

 Two nodes are adjacent if an edge connects them. 

  An edge is directed if 𝑒𝑖 = {𝑛𝑝, 𝑛𝑞}, with np and nq are the start and end node of ei, 

respectively. 

 Two edges can be adjacent if there is a common node between them. 

 If a node np occurs in m edge, the degree of node is equal to m. 

 A sequence of edges forms a polyline or path, if an edge only occurs once and the 

degree of nodes within the polyline is equal to 2.  

 If all possible pairs of nodes are connected, a graph is known as a connected graph. 

 A chain is a sequence of vertices and edges in which each edge’s endpoints are the 

preceding and following vertices in the sequence.  

 A graph segment or g-segment is a polyline, when the degree of all nodes in the chain 

is equal to 2.  

 A node of a g-segment with a degree of 2 is often known as vertex. 

 A polygon is a closed polyline, when the degree of all nodes is equal to 2. 
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 Planar graph 

In graph theory, a planar graph is a graph that can be drawn on the plane in such a way that 

no two edges intersect (Goodrich and Ramaiyer, 1998). A planar graph can always be 

embedded in the plane so that all its edges are straight line segments. Such a planar graph is 

called a planar straight line graph (PSLG). In the planar graph, the area segments are formed 

by polygons based on the nodes and edges. Faces are regarded as a special type of area 

segments. The data structure of PSLG can be defined through a collection of polygons. 

However, this representation is not flexible enough to support the traversal of edges around 

a vertex. This issue is often addressed by a winged edge structure or doubly connected edge 

list (DCEL) (Sack and Urrutia, 1999). 

2.5.5.1.  Winged-edge data structure 

The winged-edge data structure developed by Baumgart (1975) explicitly describes the 

geometry and topology of faces, edges, and vertices when three or more surfaces come 

together and meet at a common edge. It is assumed that the faces in objects do not have 

internal loops and are composed of a single shell or exterior ring. Each face is represented 

as a sequence of the edges it includes (i.e. a face-edge relation), while the edges are specified 

as ordered pairs of their constituent vertices (i.e. an edge-vertex relation) (Figure 2.8).  

 

 

 

 

 

Figure 2.8. Winged-edge data structure: e has a reference to e1, e2, e3, e4, u, v, f1 and f2 (from 

Čomić and de Floriani, 2012). 

In other words, for each edge e with two vertices, there are two faces incident to it, and four 

adjacent edges representing the boundary of the two faces incident to e: For each face f1, 

there is a reference to one edge on the boundary of f1: For each vertex v, there is a reference 

to one edge incident to v, which efficiently supports the retrieval of all topological relations 

(Samet, 2006). The cells in the star of a vertex or on the boundary of a face can be traversed 

in either a clockwise or counter-clockwise direction.  
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https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(mathematics)
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2.5.5.2.  Doubly connected edge list (DCEL) 

Muller and Preparata (1978) proposed the DCEL representation for embedded planar 

graphs. In a DCEL, each edge is regarded as a directed edge. In fact, the DCEL structure 

can be regarded as a simplified version of the winged-edge data structure representation 

(Čomić and Floriani, 2012). The DCEL data structure stores only two edges, namely e2 and 

e3, for each edge, one for each of the two faces incident in e (Figure 2.9).  

 

 

 

  

 

Figure 2.9. DCEL data structure: e has a reference to e2, e3, u, v, f1 and f2 (from Čomić and de 

Floriani, 2012). 

The DCEL can also support the traversal of all topological relationships, similar to the 

winged-edge data structure. However, the DCEL can only address the edges around faces in 

a clockwise direction and around a vertex in a counter-clockwise direction (Čomić and 

Floriani, 2012). A comparison between two data structures can be performed based on 

Figure 2.8 and Figure 2.9. 

 Spatial Relations between spatial objects 

Spatial relationships between geographical objects can be grouped into three main classes, 

namely topology, order and metric, based on their function or relationship with a set of 

objects (Egenhofer, 1989). 

 Topology 

Topology is a branch of Euclidean geometry concerned with the set of geometric properties 

that remain invariant under topological transformation, such as scaling or rotation 

(Egenhofer, 1989). Hence topology relationships describe the relationship between objects. 

In the context of set theory, these relations can be based on the three components of a spatial 

object, namely interior, boundary, and exterior, as described in Section 2.5.3. The 

intersection of these components can be organised into a 3×3 matrix (Figure 2.10). Through 
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this matrix, 9 logical rules can be interpreted (Pullar and Egenhofer, 1988). In Euclidean 

space, there are only eight topological relationships between two spatial objects or two sets 

A and B, summarised and shown as follows:  

 A disjoint B: there is no common boundary or interior between both objects. 

 A meets B: two polygons share at least one common boundary. 

 A equals B: two objects are equal if they have the same boundary and interior. 

 A inside B: A and B share a boundary, but not an interior. 

 A contains B: if B is inside A. 

 A covers B: a polygon A covers B if both polygons share part of a common 

boundary as well as interior B. 

 A covered by B: the same definition as A covers B, rewritten as B covers A. 

 A overlaps B: two polygons overlap if they share a common interior part and the 

boundaries intersect. 

 

 

Figure 2.10. Topological relationships (from Egenhofer, 1989). 

 Order 

Spatial order relationships rely on the definition of order based on a preference (e.g. behind) 

(Egenhofer, 1989). There are two types of order relations: strict order and partial order. In 
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the former case, namely strict order (e.g. <), the order relations are transitive, if 𝑥 < 𝑦 and 

𝑦 < 𝑧, then 𝑥 < 𝑧. In the latter case, order relations are reflexive, 𝑥 ≤ 𝑥, antisymmetric, if 

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 = 𝑧, and transitive (Abdul-Rahman and Pilouk, 2007). Each order 

relation generally has a converse relationship. For instance, the converse relation of a<b is 

determined by b<a.  

 Metric 

Metric relationships exploit the existence of measurements (e.g. distances and directions) in 

a metric space (Egenhofer, 1989). A metric space is defined according to an ordered pair 

(M, d), where M is a set and d is a function determined by 𝑑 ∶ 𝑀 × 𝑀 → ℝ, called distance 

function, in which for any 𝑥, 𝑦, 𝑧 ∈ 𝑀 , d can satisfy the following conditions (Choudhary, 

1992): 

1. 𝑑(𝑥, 𝑦) ≥ 0, the distance between x and y is more than or equal to zero, 

2. 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦, the distance from x to itself is equal to zero, 

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), the distance from x to y is equal to the distance y from x, and 

4. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧), the sum of the distances of (x, y) and (y, z) is more 

than or equal to the distance between x, y. 

The distance function is defined in Equation 2.1 for the n-dimensional Euclidean space. 

So far we have reviewed the geometry of geo-objects and the spatial relationships between 

them in vector space. In the next section, the thematic component of spatial objects (Figure 

2.3) will be explored in more detail.  

 Thematic meaning of spatial objects 

The thematic meaning or class of a geo-object is represented by a label or a class name. In 

the real world, geo-objects may belong to the same class if they have a common structure of 

attributes that are similar to the characteristics of the class of interest. In this case, geo-

objects compare their attributes with those of the class of interest through a classification 

algorithm to find their class or thematic meaning. For example, in remote sensing, an image 

may be defined based on the spectral characteristics of the class of interest or on a set of 

spatial rules. To address the thematic meaning of real-world objects, the concept of ontology 

can also be applied. Gruber (1995) defined ontology as a formal, explicit specification of a 

shared conceptualisation. The conceptualisation is an abstract and simplified view 
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representation of the world specified for a certain purpose (Gruber, 1995). The 

conceptualisation should be explicit, shared and formal to be considered ontology. These 

characteristics can be defined as follows (Arvor et al., 2013):  

i. Explicit: Concepts and constraints can be defined precisely. 

ii. Shared: The ontology can capture consensual knowledge. 

iii. Formal: The ontology can be defined by axioms in a formal language with the 

aim of providing an unbiased view of reality. It is also machine understandable. 

In the design step, the method to represent objects in ontology is determined (Arvor et al., 

2013). For example, Hofmann et al. (2015) used ontology to define the characteristics of 

classes of interest, namely the roof shapes of buildings, in order to classify an image. 

The previous discussion reviewed the main elements of spatial objects, including thematic 

and geometric. In a static structure, these components are usually linked through a unique 

identification (ID) (see Figure 2.1) to model a real-world environment. In a dynamic 

structure, all spatial objects are interacting not only with the environment, but also with 

others, whilst all components within each spatial object are linked. In this context, spatial 

modelling should be able to simultaneously address the components of geo-objects together 

with the connections and processes between objects in the simulation domain. In this way, 

a logical design (e.g. object-oriented structure) is needed to assimilate the elements of spatial 

objects and model the interactions between objects. 

 Object-oriented approach 

Object orientation can be described as a strategy for organising a system as a collection of 

interacting objects that can combine data and behaviour (Blaha & Premerlani, 1997). The 

processes and connections between and within objects are usually described through a 

modelling language called the UML. UML is a general-purpose visual modelling language 

usually applied in object-oriented modelling (Arlow and Neustadt, 2005). 

The object orientation approach is established based on the assumption that real world 

objects can be modelled as distinguishable entities based on their identity, state and 

behaviour. In an object oriented system, each object has a unique identity. The state of each 

object is described based on its attribute values at any one moment in time. The behaviour 

of objects can be regarded as a set of synchronisation constraints that define how objects 

execute their methods in relation to one another (Firesmith and Eykholt, 1995), or a 

https://en.wikipedia.org/wiki/Ontology
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Unbiased
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metaphor referring to the way objects change over time within a defined structure (Martin 

and Odell, 1992). The behaviour of an object is encapsulated in its methods or operations 

performed by the object itself or by another object. Some characteristics of an object-

oriented approach are summarised as follows: 

i. Abstraction: In the object-oriented environment, abstraction refers to the 

capture of essential characteristics of an object or group of objects while 

temporarily ignoring the unessential details (Abdul-Rahman and Pilouk, 2007; 

Sellers and Edwards, 1994). In the context of an entity, abstraction denotes a 

model that includes the most important, essential or distinguishing aspects of 

something while suppressing or ignoring less important, immaterial or 

diversionary details (Firesmith and Eykholt, 1995). There are four common 

abstraction mechanisms applied in an object-oriented system, including 

classification, generalisation, association and aggregation. 

 Classification: Objects should be placed in the same class if they have the 

same kind of properties and behaviours. 

 Generalisation: There is a general parent class as if two or more classes 

have many properties and behaviours in common. 

 Association: This defines linked objects of two different classes, allowing 

one object to cause another to perform an action on its behalf. Association 

can be one to one, one to many, many to one and many to many. 

 Aggregation: Different classes may be aggregated to build up an aggregated 

class.  

ii. Inheritance: The inheritance mechanism allows the propagation of properties 

and behaviours to lower level objects in the same hierarchy. 

iii. Polymorphism: This ability allows objects to have multiple forms, so that 

multiple types of objects can use the same attribute name without confusion 

about which class the attribute belongs to. 

iv. Encapsulation: The encapsulation ability allows each object to access its data 

only through its methods. 

As mentioned before, the entities of geographic phenomena usually are dynamic in nature, 

and their physical characteristics are subject to changes over time. In this sense, geo-objects 
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should be capable of perceiving time during the simulation process. The following section 

will review some key concepts of time for spatial modelling in more detail.  

 Time 

In a dynamic environment, time is an essential dimension for understanding and modelling 

spatial objects. The following is a brief overview in which some concepts of time are 

reviewed. 

 Definition 

2.9.1.1. Measurement of time:  

This can be a discrete (e.g. years, months, or weeks) or continuous variable, whereby there 

are an infinite number of points between any two points (Worboys and Duckham, 2004). A 

chronon is the smallest, non-decomposable unit of time. This is the time that is supported 

by a temporal database. A finite number of chronons in the database is applied to describe 

the lifespan of an object. The transition from one state of an object to another is called an 

event, and is shown by a point on the timeline, whereas a state is regarded as an interval on 

the timeline. 

2.9.1.2. Models of time:  

There are three mathematical models of time: linear time (where time moves from the past 

to the future), branching time (where there are single past and many futures), and cyclic time 

(where time repeats itself). 

2.9.1.3. Types of time: 

This can be world or event time (the time at which an event actually occurred in the real 

world); observation or evidence (the event is observed); or database or transaction time (the 

time at which an event is recorded in the database). 

 Space-time representation 

The passage of time for spatial objects is normally understood through changes occurring to 

objects in space (Peuquet, 1994). These changes can be based on geometry (e.g. urban 

expansion), position (e.g. vehicle movement), attribute (e.g. traffic volume) or a 

combination of these components (Figure 2.11) (Goodchild et al., 2007).  
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Figure 2.11. Three dimensions of temporal variability in geo-objects (from Goodchild et al., 2007). 

For example, objects (e.g. airplanes) can be regarded as uniform, moving and rigid objects, 

in which the changes are only determined by tracking their location. A moving object can 

be an evolutionary object if its changes are subject to its state (e.g. speed of an airplane). A 

spatial object is an evolutionary, stationary and elastic object if it can only change its 

geometry and state (e.g. vegetation cover during desertification). However, these changes 

are usually addressed via a static geometry (Hammam, 2008). There are different ways to 

model these changes. Some of the main models (Pelekis et al., 2004; Raza, 2001) are briefly 

introduced here. 

i. Snapshot approach: If a change occurs, it stores all versions of the map as a 

series of snapshots. It does not represent the events that cause changes. 

ii. Update model: Only the changed objects are stored. It is not a complete snapshot 

of the data.  

iii. Space-time composite: This model stores all past and present features by 

overlapping all timestamped layers to produce a space-time composite layer 

(Langran and Chrisman, 1988).  

iv. 3D/4D temporal GIS: In this approach, time is considered as a dimension of 

spatial objects that can lead to a true temporal GIS system. This approach cannot 

be implemented without a major software engineering effort (Pelekis et al., 2004; 

Raza, 2001). 
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When comparing the above models, it can be concluded that the notion of 3D/4D temporal 

GIS is most optimal for the representation of real-world objects. In this sense, geo-objects 

can be treated individually in a simulation domain that can change and update their elements 

in relation to its environment and other objects.  

In the real world, a geo-object is usually complex and composed of several parts. To model 

geo-objects, a spatial modelling method should be able to support not only mereology (a 

theory of part-whole relations) and topology but also qualitative geometry (Smith and Mark, 

1998). In a dynamic system, such as geo-simulation, this is usually addressed via automata. 

These methods model a complex system (e.g. the real world) via its elements (e.g. geo-

objects). This complex system generally exhibits the characteristics of emergent properties 

and self-organisation. Emergence means that the repeated actions of a simple element in a 

complex system can produce spatial patterns. Depending on the initial configuration of the 

simple elements, the system can also provide unique spatial patterns (e.g. fractals). In this 

sense, a complex system is known as a self-organisation system. 

Therefore, the structure of the real world (e.g. spatial patterns) can be extracted through the 

local and recursive actions of geo-objects in a self-organised fashion. In the following 

sections, some examples will be reviewed in greater detail.  

 Geosimulation 

The term ‘geosimulation’ is generally applied to describe both object-based and pixel type 

spatially-explicit modelling of dynamic systems (Benenson and Torrens, 2004b). The main 

aim of geosimulation is to model a spatial system via its elemental objects, such as 

individuals in human systems or automata in computer systems (Marceau and Benenson, 

2011). There are two major classes of geosimulation models:  Cellular Automata (CA) and 

Multi Agent System (MAS) (Benenson and Torrens, 2004b).  

 Cellular automata and geosimulation  

In the CA model, space is represented by a regular 2D lattice of cells. Each cell is 

characterised by a finite set of states that is updated via transition rules, taking into account 

the cell’s previous state and the states of the neighbouring cells. White and Engelen (2000) 

used CA for ecological impact assessment, land-use and social planning. The application of 

the CA model to reproduce patterns of the land-use dynamics of cities and regions was 

presented by Batty (2007). For visualising land use patterns in urban partitions, Shen et al. 
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(2009) used a CA data structure for simulation that can be edited using irregular polygon 

layers that represent blocks and parcels in an urban area. Despite the advantages that the CA 

model offers, there has been extensive debate regarding the strict formalism of this method. 

The points of contention are as follows: 

i.  In CA, regular grids are the standard grid structure defined in a finite space. Both 

the idea of uniformly regular shapes and an infinite spatial plane are unrealistic 

for most urban contexts (Torrens, 2000).  

ii. The state of a cell is only influenced by its neighbouring cells (von Neumann and 

the Moore neighbourhood). In other words, in formal CA, actions are performed 

locally (Batty, 2007).  

iii. Transition rules are usually applied in an overly simplified way (e.g. the same 

neighbourhood for all cells) (Wu, 1996).  

The limitation of rigid geometry and uniform neighbourhoods of the CA model are usually 

addressed via an irregular tessellation such as Voronoi diagrams (Shi and Pang, 2000), 

Delaunay triangles (Semboloni, 2000), and spatial graphs (Moreno et al., 2009). To deal 

with the strict CA transition rules, utilising methods are usually applied, such as genetic 

algorithms (Colonna et al., 1998), spatial optimisation (Goldstein, 2004), and neural 

networks (Li and Yeh, 2001).  

 Agents and geosimulation  

The idea of an agent was proposed by John McCarthy in the mid-1950s, and a few years 

later, the term ‘agent’ was applied by McCarthy and Selfridge (1954). They introduced an 

agent as a soft robot and goal oriented system which can fulfil its goal by using appropriate 

computer operations (Kay, 1984).  

With the appearance and development of software agents in the 1990s, the range of domains 

that utilised agents grew. Thus, various terminology and definitions were developed to 

define what an “agent” is. For example, Brustoloni (1991) defined an agent as autonomous 

and goal oriented. Smith et al. (1994) defined agents as simulation objects. Here, agents 

were used to develop a tool for Apple Inc. that allows children to build a symbolic 

simulation. Russell and Norvig (1995) defined an agent as anything with the ability to 

perceive its environment through sensors and acting upon that environment through 

effectors (Figure 2.12).  
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Figure 2.12. Agents interact with environments through sensors and effectors (from Russell and 

Norvig, 1995). 

Wooldridge (1995, 2009) considered an agent as an autonomous decision-making system, 

which senses and acts in certain environments. Since agents are utilised in such a wide range 

of domains, it seems complicated to extract a consistent and conclusive definition of their 

characteristics from literature (Bonabeau, 2002). Some authors believe that it is not possible 

to produce a universally accepted definition of the term ‘agent’ (Macal and North, 2009; 

Raubal, 2001; Russell and Norvig, 1995). However, most definitions do tend to share some 

common characteristics (Macal and North, 2009; Wooldridge and Jennings, 1995). These 

properties were studied, extended and explained by Franklin and Graesser (1996), Epstein 

(1999) and Macal and North (2009). The following characteristics were considered by 

Crooks and Heppenstall (2012): 

i. Autonomy: Agents are autonomous units which are capable of processing 

information and exchanging this information with other agents in order to make 

decisions independently. Agents are also free to interact with each other, at least 

over a limited range of situations, and this does not (necessarily) affect their 

autonomy. 

ii. Heterogeneity: The development of autonomy can be performed individually by 

agents. A collection of agents can exist through a bottom-up structure. Thus, they 

can be amalgamations of similar autonomous individuals. 

iii. Active: In the simulation domain, agents are active. The following features can 

be identified: 

 Pro-active/goal-directed: Agents are often regarded as goal-directed or 

having goals to accomplish, which are not solely driven by objectives to 

maximise, with respect to their behaviours. 
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 Reactive/Perceptive: The reactivity property allows the agents to be aware of 

their surroundings. Agents use a ‘mental map’ of their environment supplied 

via prior knowledge in order to perceive other entities, obstacles, or required 

destinations within their environment. 

 Bounded Rationality: This feature allows agents to make inductive, discrete, 

and adaptive choices that move them towards achieving goals. 

 Interactive/Communicative: The interactive feature enables agents to 

communicate.  

 Mobility: Agents can move around in space within the simulation domain. 

Alternatively, agents can also be fixed in space. 

 Adaptation/Learning: Depending on its previous state, an agent can alter its 

current state, thus, permitting it to adapt, akin to a form of memory or 

learning. Agents can adapt at an individual level or population level. 

Considering the above, three main components —environment, sensors and actuators, can 

be assigned to the agents:  

 Environment: Every entity that surrounds the agent and affects the agent. 

 Sensors: Every component of an agent which allows the agent to understand its 

current state and changes in the environment. 

 Actuators: The elements that enable the agent to act on the environment 

autonomously. 

2.10.2.1. Spatial agent 

The use of agents with a spatial awareness is a relatively old concept (Rodrigues et al., 1995). 

Rodrigues et al. (1998) considered spatial agents as a type of agent that can understand either 

physical or non-physical real-world phenomena. The structure of these models is usually 

formed based on an environment characterised through a set of individuals, who are defined 

by their behaviour and attributes, and their interactions. Reynolds (1987) argues that some 

individual-based models are spatially explicit. In other words, individuals are associated 

with a location in space. A framework of spatial agents can be expressed as follows (Figure 

2.13) (O’Sullivan et al., 2012): 

i. Agents can be considered as spatial agents if each has a different relationship 

with its spatial environment, specifically in terms of a location (e.g. pedestrian 
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agent) (Figure 2.13 (a)). In the case that all agents have the same spatial 

relationship with the environment, agents should have an equal capability to alter 

every location in the model irrespective of their location.  

ii. Agents can be considered as spatial agents if they change their spatial 

relationship with the environment over time by means of movement, alteration, 

acquisition or disposal of locations (e.g. agent for land use change). 

iii. Agents can evaluate spatial configurations (e.g. a property developer agent in an 

urban growth) (Figure 2.13 (c)). 

 

                          (a) 

 

                           (b) 

 

(c) 

Figure 2.13. Schematic illustration of the choices facing agents in three different types of model: 

(a) Pedestrian agent, (b) land use change agent and (c) property developer agent (from O’Sullivan 

et al, 2012). 

It is possible for spatial agents to have a complicated scenario based on a combination of the 

above cases.   

2.10.2.2. Spatial agent toolkits 

There are many agent development toolkits (e.g. Swarm, Repast, NetLogo) influenced by 

the individual-based model that is spatially explicit. These systems are usually capable of 

developing spatially explicit models and integration with GIS functionality. The Recursive 

Porous Agent Simulation Toolkit (Repast) is an open-source, cross-platform, agent-based 

modelling toolkit developed at the University of Chicago's Social Science Research 
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Computing Lab (Altaweel et al., 2006). Swarm and Repast are quite similar in philosophy 

and appearance. They both provide a library of code for creating, running, displaying and 

collecting data from simulations (Allan, 2009). However, Swarm appeals to users who have 

strong programming skills. Repast allows basic models to be developed by users with limited 

programming experience using the built-in graphical user interface (GUI), unless there are 

models to be developed with more complex functionality. Variation between toolkits can be 

evaluated based on the purpose of the modelling, level of development, and modelling 

capabilities. In this thesis, the Repast was used to model geo-objects in image space. 

2.10.2.3.  Multi agent system 

A Multi Agent System (MAS) consists of multiple agents that model complex and 

heterogeneous components of a system within a computer model through the use of a virtual 

copy of the real system. The relationships between the agents can be modelled through the 

agent’s behaviours, rules or goals. Rules are typically defined based on ‘if-else’ statements 

which allow the agents to perform an action once a specified condition has been satisfied. 

Agents can interact amongst themselves and with the environment. There are different ways 

to model the relationships between the agent and its environment, including the reactive (i.e. 

agents only perform actions when triggered to do so by some external stimulus, such as 

actions of another agent) and the goal-orientated (i.e. seeking a particular goal) (Crooks and 

Heppenstall, 2012). The behaviour of agents can also be scheduled to take place 

synchronously or asynchronously. The ability to model diverse interactions between agents 

and their environment allows the MAS to realistically simulate the processes and their 

impacts (Crooks and Hailegiorgis, 2014; Crooks and Heppenstall, 2012). In this regard, the 

use of agents with spatial awareness is a powerful approach for evaluating and analysing 

real-world phenomena. 

2.10.2.4.  Agents in geosimulation model  

The application of MAS is addressed in several studies to simulate the interactions of social 

actors in various contexts, including urban dynamics (Jackson et al., 2008; Benonson, 1988), 

spatial planning (Ligtenberg, 2001), land-use changes (Lim et al., 2002), and natural 

resource management (Gimblett, 2002). Despite the advantage of MAS on aspects like 

movement, the geometry of agents is static, in contrast to CA models where objects can 

geometrically evolve through transition rules. Considering the above properties of CA and 

MAS, the geosimulation model can be based on three main characteristics: 



                                                    Chapter 2: Literature review: image classification, spatial modelling, agents 

44 

 

i. Management of Spatial Entities: Geosimulation modelling is an object-based 

approach. Simulation models can directly address spatial building blocks (e.g. 

land, road).  

ii. Management of Spatial Relationships: The spatial relationships between 

building blocks are explicitly modelled.  

iii. Management of Time: Geosimulation models are dynamic. Objects’ temporal 

behaviour can be considered as either synchronous or asynchronous. 

To combine CA and MAS in geographic space, Benonson and Torrens (2004b) proposed a 

general framework known as GAS. 

 Geographic automata system  

Geographic Automata System (GAS) refers to a variety of types of geographic automata. 

GAS automata are considered as a direct representation of real-world objects (Marceau and 

Benenson, 2011) characterised through the following components: 

GA ~ (𝐊;  𝐒, 𝐓𝐒;  𝐋, 𝐌𝐋;  𝐍, 𝐑𝐍), (2.13) 

where K determines the automata types in GAS and three pairs of symbols refer to the spatial 

or non-spatial characteristic of automata and the rules applied by automata to change their 

characteristics. The first pair denotes a set of states, S, and state transition rules, TS, that are 

associated with GAS. In the second pair, L dictates the location of automata in the system 

and ML denotes the movement rules for automata. In the third pair, N represents the 

neighbours of automata and RN represents the rules that govern changes of the automata 

relative to other automata.  

 Automata types 

At an abstract level, GAS is composed of two types of automata: fixed and non-fixed 

geographic automata. Fixed geographic automata represent objects that are static and do not 

change their location over time (e.g. parks). Non-fixed geographic automata (e.g. vehicles) 

identify entities that can move over the simulation space over time.  

A geographic system is usually formed based on both fixed and non-fixed automata types. 

For example, in the implementation of an object-based environment for urban simulation 

(OBEUS) software (Benenson and Torrens, 2004b), OBEUS consists of the two above 

automata types, an urban class with different object types (GIS layers), and a population 
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agent class. The actual geo-referenced data (e.g. parcels) can be extracted from the GIS 

vector layers of the urban class. The classes of agents (e.g. social, economic, and 

demographic) can generally be extracted from census attribute data. 

 State and transition rules 

The state, S, describes the characteristics of the automata in the real-world. It can be 

formulated based on the characteristics of fixed and non-fixed automata. For example, in the 

urban environment, the value of an apartment can be specified based on the characteristics 

of the property and its neighbours and on the structure and neighbourhood population. Any 

variable or attribute can be used to characterise S. In this way, the transition rule describes 

the conditions allowing the value of real estate to change.  

In the framework of the GAS, CA is artificially closed; cell state transition rules are driven 

only by cells (Benenson and Torrens, 2004a). In contrast, the states of objects represented 

by means of geographic automata are totally subject to their surrounding objects which can 

also be formulated on mobile geospatial automata (i.e. agents) that are responsible for 

controlling object states.  

 Location and movement rules 

L describes the location of geographic automata and how they are placed in space. For fixed 

geographic automata, the geo-referencing process is performed by recording their position 

coordinates. These coordinates do not change over time. In contrast to the fixed automata, 

non-fixed geographic automata use a dynamic method to move. They need specific 

conventions regarding L. Moreover, the geo-referencing process can be performed directly 

or indirectly (Figure 2.14).  

 

Figure 2.14. Two different geo-referencing rules: direct and indirect of fixed and non-fixed GA 

(from Benenson and Torrens, 2004b). 
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In the former case, automata use a list of coordinates to find their initial location in space. 

In the latter case, automata can be geo-referenced based on the location of the other 

automata. ML rules allow the non-fixed automata to move in space. Different formulations 

of ML can be used by automata, offering great potential for encoding the motion of traveling 

objects (e.g. vehicles or pedestrians). 

 Neighbours and neighbourhood rules 

Neighbours N are determined based on a collection of objects which can affect geographic 

automata. Fixed geographic automata can use adjacency rules formulated on regular or 

irregular tessellations, and by the connectivity of network nodes or proximity. Moreover, 

these rules can be determined in terms of human-like measures such as accessibility or 

visibility. In contrast to the fixed automata, rules are usually dynamic in space and time for 

non-fixed geographic automata. RN rules are usually formulated on geographic automata 

positions.  

Despite the advantage that the OBEUS offers, it remains geometrically static in the repast 

vector extension in terms of its implementation of the specific residential segregation model. 

It can be argued here that the dynamic aspect of real-world entities in GAS is denied. That 

means the formalisation and exemplification of represented entities are essentially static in 

the GAS. This issue has already been addressed with the introduction of geographical vector 

agents VA (Moore, 2011; Hammam et al., 2007).  

 Geographical vector agents 

In general, Vector Agents (VA) are a distinctive type of geographic automata (GA) (Torrens 

and Benenson, 2005), which can find their geometry and state, and interact with each other 

and their environment in a dynamic fashion (Moore, 2011; Hammam et al., 2007). The main 

properties of the VA are as follows: 

i. The VA can represent any discrete geographic phenomena through an irregular 

(or regular) vector data structure. 

ii. The VA can extract their own geometry and find their own location in vector 

space.  

iii. The VA are born with a nondeterministic shape boundary that subsequently 

changes based on geometric rules and methods. 
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iv. The VA can find, store and manipulate their attributes through transition rules. 

They can change and update their states in terms of states, neighbourhood and 

geometry.  

v. The VA have a dynamic neighbourhood structure that allows them to perceive 

objects in a simulation domain.  

Hammam et al. (2007) used the VA for an urban scenario. They applied the Brownian 

motion (BM) algorithm to formulate the geometry and geometry rules for modelling the 

geometry of real-world phenomena. As the BM algorithm can only represent a small subset 

of real-world objects (e.g. star-shapes), they formulated a set of geometric methods to create 

a dynamic geometry in order to model a wide range of shapes for both real-world objects 

and phenomena. They used the following geometric methods to model the geometry of real-

world objects: 

i. Midpoint displacement: This operator allows the VA to create a new point at a 

new point based on a line segment as follows: 

𝑃𝑛𝑒𝑤−𝑚𝑑 =
1

2
 (𝑃1 + 𝑃2) + 𝜇𝜎02−𝑙ℎ (2.14) 

 

where P1 and P2 are the start and end points of the line segment being divided, 𝜎0 is the 

standard deviation of the Gaussian curve, l is the level of recursivity and h is the Hurst 

exponent which controls the roughness of an object. 

ii. Vertex displacement: a new point can be created based on a random amount of 

bearing, 𝛼𝑣𝑑. This amount is derived from a Gaussian distribution.  

𝑃𝑛𝑒𝑤−𝑣𝑑 = 𝑃 + 𝜇𝜎0     (2.15) 

iii. Edge displacement: this method applies the above equation in a vertex 

displacement operator for two consecutive existing points. The magnitude and 

direction 𝛼𝑣𝑑 are equal for both points. 

Figure 2.15 displays how the VA use these algorithms to evolve in vector space. The 

neighbourhood rules allow the VA to perceive other agents in vector space.  
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Figure 2.15. The geometry of VAs based on the mentioned methods. (a) Initialising by a random 

point, (b) allocating a second point by random displacement, (c, d) applying the random new point 

displacement and accomplishing a closed polygon, (e, f) choosing any edge randomly and applying 

the new point displacement, (g, h) edge displacement, (i, j) vertex displacement (from Moore, 

2011). 

Moore (2011) developed a generic Vector Agent library for agricultural implementation. 

Here, VAs were used to model a theory of agricultural land use. The proposed method was 

a more sophisticated model that implemented states (land use categories), state rules (the 

geographic and economic processes governing agricultural land use change) and 

neighbourhoods (based on a Delaunay triangular network connecting the centroids of the 

farm polygons), but not neighbourhood rules. 

Moreno also implemented vector-based automata et al. (2009, 2010), with an emphasis 

on a dynamic neighbourhood for an object in their VecGCA model. This neighbourhood is 

not restricted by distance but defined by the state of neighbouring objects, and where 

neighbours can also affect the geometry of an object (hence, neighbourhood rules can be 

seen to be in effect). 

 Spatial agents and image analysis 

Agents have also been used in remotely-sensed image processing such as image 

classification or feature extraction. Zhou and Wang (2008) used agents to extract the 

impervious surface areas from high resolution satellite images. Here, agents were used to 

improve the results of the segmentation process. After that, a modified classifier formulated 

the relationship between spectral bands and the variability in the training objects, and those 

objects to be classified were taken into account to classify the segmented objects. This 
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structure allowed a feature extraction algorithm to use more information for extracting 

impervious surface areas in image space. Samadzadgan and Mahmoudi (2010) proposed an 

agent-based method for automatic building recognition. In this research, spatial agents, 

including trees and buildings, were used to extract buildings from the LiDAR DSM at 

feature level based on the textural information. Espínola et al. (2012) used MAS and CA for 

image classification. In the proposed algorithm, three different groups of agents, namely 

training-based, spectral and contextual agents were applied to simultaneously take 

advantage of contextual and spectral information to classify an image. 

Currently, Object Based Image Analysis (OBIA) is being recognised as a new paradigm in 

image analysis because it allows an enhanced description of meaningful objects and their 

context (Blaschke et al., 2014). In an OBIA framework, agents proved to be a competitive 

alternative in classifying segmented objects (Mahmoudi et al., 2013; Zhou and Wang, 2007). 

Zhong et al. (2014) then proposed to use agents to optimally control the merging of image 

objects, thus giving the agent some ability to control the geometry of the initially segmented 

objects. The ability of agents to perceive object geometry as just another attribute to be 

optimised was also recently tested by Hofmann et al. (2015), who gave agents the power to 

adjust the boundaries of segmented objects, thus enabling a more dynamic linkage between 

the semantic definition of a geographical phenomenon and its geometry and context. 

The results of these approaches show that agents can be considered as an effective tool for 

remotely-sensed image processing (e.g. image classification or feature extraction). These 

methods use different strategies based on spatial agents to address the objects in a raster 

space (e.g. satellite image or DSM). However, these approaches have one characteristic in 

common: they focus on the procedure of an image analysis to model objects in image space. 

In other words, these methods lack the ability to directly address real-world objects in image 

space.  

 Bridging the gap between image objects and geo-objects  

All the image-based spatial modelling methods including pixel-based, object-based and 

agent-based in the previous sections have two main limitations in common when addressing 

real-world objects in image space: 

  They use a static geometry to address real-world objects. They ignore the 

dynamic change of the physical characteristics of real-world-objects. Even with 
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the introduction of object-based approaches (Section 2.3), the formalisation 

represented objects are essentially static. For example, the geometry of image 

objects or segmented areas are determined based on a set of parameters (e.g. 

scale) specified by the human expert (see Equation 2.7-12). 

 They use a sequential process to address real-world objects. In this way, the 

geometry and the state of objects are separately determined. For example, in the 

pixel-based approach, first we determine the thematic meaning of each pixel, 

then the geometry of the objects can be delineated (Section 2.2). In an object-

based approach, the class of the objects is determined after finding the initial 

geometry of the real-world objects (Section 2.3). Although geographical objects 

with a unified identity are considered in object-based approaches, these objects 

are not related directly to the real-world objects due to the sequential process of 

segmentation and classification. 

In this situation, the classical image classification algorithms solely rely on evidence derived 

from the image itself to address geo-objects. This means that these methods lack the ability 

to take full advantage of the other information (e.g. association or location in conjunction 

with other image elements) usually applied by the human interpreter to find and identify 

real-world objects in the image space. 

These issues can be addressed through a geosimulation model called vector agents or VA. 

In this model, agents have the ability to control and alter their shape and attributes (Moore, 

2011; Hammam et al., 2007) and evolve in accordance with the nature of the phenomena 

being modelled, as well as interact with other agents to capture spatial relationships and 

context. This thesis demonstrates the application of the VA presented by Moore, (2011) and 

Hammam et al. (2007) for remote sense image analysis. In the next chapter, we will define, 

formulate and test the main elements of VAs to address real-world objects in image space.  
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Chapter Three 

Vector agent development for image classification 

Abstract 

In this chapter, the main elements of vector agents used to formulate and achieve image 

classification are examined. We expand the range of automata types based on the 

characteristics of geo- objects in the real world. We define and formulate a set of new 

geometric methods that allow the VAs to evolve in image space. In order to assimilate the 

thematic meaning and geometry of real-world objects, we define transition rules and how 

VAs or geo-objects can use them to find and update the set of attributes characterizing their 

state. To model the relations between geo-objects in image space, we propose a dynamic 

neighbourhood structure formulated on Euclidean distance. We test the VA model to identify 

and extract directly real-world objects from image space.  

 Introduction 

VAs for image analysis are formulated on the same six basic elements defined by Hammam 

et al. (2007) and Moore (2011), which are geometry, geometry methods, state, transition 

rules, neighbourhood and neighbourhood rules (see Section 2.12). From a VA perspective, 

each object is considered to be an abstraction of a real-world phenomenon (Hammam et al., 

2007). A VA is part of a collection of independent units that implement some functionalities 

of a geographic automata system (GAS) (Torrens and Benenson, 2005) (see Section 2.11). 

The elements of VAs for image analysis can be written as follows (adapted from Torrens 

and Benenson, 2005): 

 

VA ~ (𝐊;  𝐋, 𝐌𝐋; 𝐒, 𝐓𝐒;  𝐍, 𝐑𝐍), 
(3.1) 

where, 
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 K is a set of automata types. VAs are considered to be objects that are evolutionary 

(its internal structure can change), static (they are not mobile), and elastic (their 

boundary can change) (Goodchild et al., 2007, see Figure 2.10). 

  (L, ML) are the pair of terms that define the geometry of the automaton (e.g. point, 

line, and polygon), and the rules and methods that allow this geometry to evolve. 

The notions of set theory and planar graphs (see Section 2.5.4, Section 2.5.5 and 

Section 2.12) are applied to the geometry of the VAs. 

𝐌𝐋: (𝐒𝐭, 𝐋𝐭, 𝐍𝐭) →  𝐋𝐭+𝟏,  (3.2) 

 (S, TS) are the pair of terms that define the automaton’s state attributes (e.g. thematic 

meaning and the set of characteristics that allow such meaning to be determined). 

Each geographic object can find, evaluate and update its state based on transition 

functions in image space. These functions are formulated on a classifier such as the 

SVM or ML (see Section 2.2.2 and Section 2.7). 

𝐓𝐒: (𝐒𝐭, 𝐋𝐭, 𝐍𝐭) →  𝐒𝐭+𝟏,  (3.3) 

  (N, RN) are the pair of terms that define the automaton’s neighbourhood and its 

behaviour with respect to it (e.g. merging). Neighbourhood rules allow VAs to alter 

the state of other VAs in their neighbourhood. Geographic objects can perceive and 

interact with each other through metric spatial relations (see Section 2.1.3 and 

Section 2.9). 

𝐑𝐍: (𝐒𝐭, 𝐋𝐭, 𝐍𝐭) →  𝐍𝐭+𝟏,  (3.4) 

In this sense, meaningful objects can dynamically change their own geometry and states, as 

well as directly perceive each other. This enables the real-world environment captured in 

the image to be modelled in a dynamic fashion similar to a human interpreter (Figure 3.1). 

In this way, VAs simultaneously segment and classify image objects from initial pixels to 

the meaningful objects (in an object-based approach or a feature extraction process) or 

training samples (in a pixel-based approach) based on an evolving process, enabled by an 

iterative scheme that involves constant interactions between all VA components. In Section 

3.2, the main elements of the VAs are explored. The conceptual model of the VA model is 

then presented in Section 3.3.  
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Figure 3.1. The components of each VA including state, transition rules, geometry, geometry rules, 

neighbourhood and neighbourhood rules, and their evolution through iteration. 

 VA Elements 

 Automata type 

For automata types (K), Hammam et al. (2007) explored the scope of anchored automata 

with varying boundaries, which can be formalised as another type. The range of types can 

be expanded further and has itself been formalised by Goodchild and Cova (2007) in another 

context – the ‘temporal variability in geo-objects’ (see Figure 2.10). Focusing on the 

geometry and movement dimensions (ignoring internal structure regardless if there is 

variation within the geo-object or not) we can see the fixed (‘stationary’), non-fixed 

(‘moving’) and varying boundary elastic elements (see Section 2.9). Using the full scope of 

the conceptual diagram, we can see each of the eight categories as belonging to an automata 

type (see Section 2.9). 

 Geometry 

In accordance with the properties of raster datasets (e.g. satellite images) and the geo-objects 

within this space, we try to model geo-objects in a vector space with polygons. These 

polygons can then be applied to extract a specific object, generate training samples for a 

pixel-based classification and complete a full object-based image classification. Let 𝑥 =

(𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏) ∈ ℝ𝑑 denote a multispectral d-dimensional image with n pixels, 𝑦 =

(𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑛) ∈ 𝑘 an image of labels, 𝐾 = {1,2, ⋯ , 𝑘} a set of k class labels, VA =

{𝒙𝑖 
}𝑖=1

𝑙 , with l the number of pixels within VA. With this notation, L stores the vertices of 

the polygon that defines the boundary 𝜕𝑋𝑉𝐴 of the VA. L uses an adjacency list algorithm 

to store the coordinate of each vertex. In this case, for each vertex v in polygon (graph), L 

is defined via all points of v to v. Thus,  𝑋𝑉𝐴 is a connected subset of the image of labels 
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formed by the pixels belonging to the VA. The coordinate data for each polygon is contained 

within the polygon’s agent.  

 Geometry methods 

Geometry methods (ML) are rules that can define a change of boundary coordinates of the 

polygon (elastic object, Chapter 2, Figure 2.12) in either a localised (acting only on specific 

boundary points) or global (scaling, shearing of the entire polygon) manner. These methods 

can control the movement of the polygon (translation, rotation of the polygon) and/or define 

the geometric nature of geo-objects. An example of locally applied geometric rules in a 

vector agent context is the fractal/Brownian motion process governing the elastic geometries 

of urban land units (Hammam et al., 2007) and agricultural land use units (Moore, 2011) 

(see Section 2.12). In the case of image classification, VAs use the following rules that 

are consistent with the raster data model: 

1) The geometry of the VA is initialised as a vertex in the pixel centre; 

2) Each vertex can generate another new vertex along four cardinal directions at a 

set distance corresponding to the raster cell size r (see Figure 3.2(a)); 

3) Each new vertex has three reference points; 

4) An edge can be created if there is a vertex in the local neighbourhood (eight 

cardinal directions) of the new vertex and if the characteristics of the 

corresponding pixel meets some pre-defined criteria allowing it to belong to the 

VA as per state and transition rules; 

5) Each edge has a maximum length of r√2 , (the diagonal distance of a pixel). 

Figure 3.2 illustrates the possible evolution of a VA defined as a triangle. Point d can be 

placed in seven different locations. Three resulting polygons from these seven cases are 

shown. In Figure 3.2, reference points are vertices ‘a’, ‘b’ and ‘c’. The position of each point 

is specified by its x- and y-coordinates. The reference points allow the VA to specify the 

boundary of the VA in the order in which they are numbered. Thus, L will always be a 

sequence of the ordered coordinates.  

Assume that ‘a’ is the reference point applied to create a new point by the VA. Thus, in the 

next iteration, L can be expressed by one of [a d1 b c], [a d2 b c] or [a b c d7] configurations 

based on the above rules (Figure 3.2 (e), Figure 3.2 (f) and Figure 3.2 (j)). The VA uses 

qualitative shape relations (Schlieder, 1996) to define the above configurations. For 
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example, in Figure 3.2 (c) the configuration of points can be expressed by [a d2 b c], [a b d2 

c] and [a b c d2] based on point d2. 

 

 

 

Figure 3.2. (left) The different possibility of a new vertex ‘di’ for the VA given existing vertices, 

‘a’, ‘b’ and ‘c’, (right) the resulting geometry of seven of the possibilities. 

The orientation of each face (e.g. [a b d2] in [a b d2 c]) is computed through the following 

equation: 

[a b  𝑑2] = 𝑠𝑔𝑛 |

𝑥a    𝑥b   𝑥𝑑2

 𝑦a    𝑦b   𝑦𝑑2

1     1     1
|,   (3.5) 

[a b  𝑑2] shows a counter-clockwise orientation if it is positive. The negative value of 

[a b  𝑑2] corresponds to a clockwise numbering. For example, [a b d2] shows a clockwise 

direction, in contrast to the orientation of the reference points [a b c]. The VA tests different 

configurations to find the faces, edges and vertices in terms of a winged-edge data structure 

(see Section 1.3.6.1). To enable a dynamic geometry for objects, a set of individual methods 

are defined, formulated and applied in terms of the above geometry rules.  

3.2.3.1.  Individual methods 

To support the above process and changes dynamically, a set of methods are defined and 

implemented as follows:  

 Vertex displacement: this places a new vertex in vector space (Figure 3.3(a), (b)) 

and connects two vertices together by two half-edges. 
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  Half-edge joining: this constructs a new edge based on a twin edge that is formed 

by two half-edges (Figure 3.3(c), (e)). 

 Converging vertex displacement: two new edges are constructed to create a single 

new neighbouring vertex from two existing vertices (Figure 3.3(d)). 

 Edge removal: this forms a new polygon by merging two existing polygons (Figure 

3.3(f)). 

 

Figure 3.3. Four individual operations are required to change the image objects geometry: (b) 

vertex displacement, (c) converging vertex displacement, (d) edge joining, and (e) edge removal. 

The spatial relationship of the lattice point to the raster cell it represents is also made clear in 

1(a). 

These methods allow a VA to constantly change its geometry. Figure 3.4 illustrates how a 

VA implements these methods, and consequently produce its iterative evolution. First, a 

point coinciding with the centre point of a cell in the image being classified (all points in the 

vector object based classification are part of a lattice of all cell centre points) is automatically 

initialised in space. Next, the first edge is randomly constructed by finding a second point 

in the local neighbourhood. The new edge created consists of two half-edges. After that, one 

or more of the four strategies specified above are implemented, as applicable. For example, 

as a result of adding a vertex (1), it may become necessary to implement diagonal edge 

construction (2), convergence (3) and/or edge removal (4). 

 



                                                                Chapter 3: Vector agent development for image classification  

57 

 

 

Figure 3.4. How an image object is born and changes through time in image space. Note that each 

point corresponds to the centre of a raster cell in the remotely sensed image being classified and is 

thus part of a regular lattice. 

At each step, there is a check to ensure that the geometry boundary and interior cover 

spectrally similar pixels to suggest a homogeneous thematic class in the underlying raster 

image. An example of the evolutionary process of an image object from an initial point over 

1000 iterations is illustrated in Figure 3.5. The appearance of the results reflects the 

stochastic nature of the process generating the geometry, as the polygons generated here are 

similar to polygons generated by geometric methods formulated on fractals (e.g. Hammam 

et al., 2007). 
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Figure 3.5. Simulation result for first 1000 time steps in the agent modelling shell Repast 

Simphony representing how an image object uses the four aforementioned operations to transform 

its geometry. 

3.2.3.2.  Interaction methods 

Interactive methods are applied when VAs can affect the geometry of each other. These 

methods are activated based on the neighbourhood rules RN that themselves depend on the 

state of the VAs. The interaction between VAs can lead to the birth, death or geometric 

change of two interacting VAs.  

1) Joining/Killing: Two VAs becoming neighbours may involve by the merging of 

their respective geometry L and attributes S to form a single VA. This involves 

the killing of the second VA and happens when neighbourhood rules RN for each 

VA given their respective S and TS allow such interaction. Figure 3.6 shows an 

example of this joining/killing process, whereby two VAs with the similar state 

S become neighbours, and their transition rules TS allow them to join. This yields 

a single VA with updated components S, L and N and the death of the other VA.  
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(a) 

 

(b) 

Figure 3.6. Subset of an IKONOS image showing a water body. Evolution of two VAs classified as 

water (a), until they become neighbours and join to form a single water VA (b). 

2) Growing/Shrinking: When two VAs become neighbours but their respective 

neighbourhood rules do not allow them to join given their state S and transition 

rules TS, then one VA may grow into the other one when pixels at the boundary 

are found to be more likely to belong to the other VA according to its TS. This 

operator removes and transfers a vertex from one VA to the other VA. Figure 3.7 

illustrates a growing/shrinking process. 

 

Figure 3.7. The growing of a shadow VA into a shrinking tree VA. This happens when a relatively 

dark pixel initially found to match TS of the tree VA is reconsidered in view of the nearby shadow 

VA and found to be more likely to belong to the latter. 

This process might lead to one VA splitting into two VAs. In this case, a self-intersecting 

polygon is either broken into two polygons or a set of polygons (Figure 3.8).  
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(a) 

 

(b) (c) 

 

 

 

 

Figure 3.8. An example of splitting where the road VA is divided into two. A relatively dark pixel 

initially found to match the road VA (b) changes to shadow, leading to the birth of a road VA (c). 

 State 

The state of the vector agent is stored alongside the polygon geometry data within the agent 

architecture. In the context of image classification, this would normally be the classification 

label, but may also include the following parameters: 

i. Spectral descriptors: These can be expressed based on the mean values of each 

band as well as a covariance matrix. Spectral indices, such index ratios, can also be 

used to establish the foundation of classification (Mahmoudi et al., 2013). 

ii. Textural descriptors: Textural descriptors can be measured based on the grey 

value relationships between each pixel and its neighbours in the polygon of the VA. 

iii. Contextual relationships: Definitions of contextual relationships between 

neighbouring objects can improve the accuracy of object based image analysis 

results. This is performed based on the neighbourhood rules. Context based methods 

operate at the level of image understanding, analysing the whole image to retrieve 

the required information (Peets and Etzion, 2010). 

iv. Structural descriptors: Calculating suitable structural descriptors based on the 

geometry of a VA, namely L, provide a tool for refining the results of the 

classification process at object level. 

There is also potential to formulate states based on ontology of the real-world objects. In 

this case, an object can be described based on an integrated collection of facts from the above 

parameters. For example, a lake state may be constrained to a smoothly curved boundary 

geometry with a specific neighbour (e.g. wet sand). A state can also be associated with a 
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learning algorithm during the evolving process. In this situation, a state is determined by 

performing a particular task. 

These state descriptions allow image objects to convey more information compared to 

individual pixels. The descriptors form new features by which the classification can be relied 

upon to discriminate classes that would otherwise be similar based solely on spectral 

description. Being dynamic in nature, each VA updates its attributes at each iteration and 

possibly changes its class when transition rules allow. This procedure is performed through 

transition rules.  

 Transition rules 

VAs use transition rules (TS) to find, evaluate and update their classes and attributes. 

Depending on the application of VAs in image analysis and available datasets, there are 

three main strategies used to define transition rules: 

1) The spectral signatures of the classes of interest are the only available information. 

In this case, spectral descriptors are the fundamental information used by VAs to 

implement the transition rules based on a classifier algorithm such as the SVM or 

ML (see Chapter 4 and Chapter 5, the application of VAs for unsupervised and 

semisupervised image classification). As the SVM classifier does not make any 

assumptions on the underlying data distribution, in this thesis, the VA model uses 

the SVM classifier to formulate the transition rules.  

2) The information available is the spectral signatures of the classes of interest and also 

a set of facts about those classes. Here, different combinations of spectral, textural, 

contextual and structural descriptors can be applied to address objects in image space 

(see Chapter 6, the application of VAs for object-based image classification).  

3) The ontology of the classes of interest can be applied to describe geo-objects. For 

example, a building is defined as an elevated object with a very steep slope at its 

edge (see Chapter 7, the application of VAs to extract 3D roofs).  

To find the initial state, VAs can either use the spectral signature of the classes of interest, a 

set of specified rules based on the characteristics of real-world objects or a combination 

thereof. Then, VAs use the evaluation process to assess whether a neighbouring pixel is 

eligible to be captured. Depending on whether the pixel already belongs to a VA or not, VAs 

use different transition rules and geometric methods. In the former case, where a pixel 

belongs to another VA, VAs utilise interactive geometric methods (e.g. growing/shrinking 
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(Figure 3.6(b)). In the latter case, where the candidate pixel is an isolated pixel, VAs utilise 

only the individual geometric methods (e.g. Figure 3.6(a)). In updating the process, VAs use 

the membership functions and/or various reasoning rules to update their attributes based on 

new attributes. These attributes can also be obtained from other VAs or their environment. 

Contextual descriptors apply the knowledge that the VA has of its neighbours via the N 

component. Specific contextual rules may allow the transition of VAs from one class to 

another on the basis of its context. For example, in an IKONOS image (a 4 band multi-

spectral dataset), water and shadow are two classes spectrally similar but can be 

discriminated based on contextual information, since shadows require the proximity of an 

elevated class, such as trees. As such, a contextual rule will allow a water VA to transition 

to a shadow VA if tree VAs are among its neighbours.  

 Neighbourhood  

The proximity between VAs is explicitly defined based on the metric relationships (Chapter 

2, Section 2.4.3). This metric is formulated on the minimum distance between two planar 

sets in a Euclidean space. Thus, the distance between 𝑉𝐴1,𝑡 and 𝑉𝐴2,𝑡 is defined as: 

𝑑(𝑉𝐴1,𝑡, 𝑉𝐴2,𝑡) = inf{𝑑(𝑥1, 𝑥2): 𝑥1 ∈ 𝑋𝑉𝐴1,𝑡
, 𝑥2 ∈ 𝑋𝑉𝐴2,𝑡

 },     (3.6) 

where 𝑑(𝑥1, 𝑥2) is the Euclidean distance in space between pixels 𝑥1 and 𝑥2. For each VA, 

the pair-wise distance with all other VAs is stored in its neighbourhood component N. 

Alternatively, neighbourhoods could be defined by Delaunay triangulation of polygon 

centroids (Hammam et al., 2007). 

 Neighbourhood rules 

Neighbourhood rules can alter the neighbourhood of an agent from time step to time step. 

There are different ways to define neighbourhood rules. For example, Moore (2011) used a 

Delaunay triangular network to form the basis for neighbourhood operations. In this thesis, 

neighbourhood rules are explicitly defined by the Euclidean distance between VAs in the 

modelling space. This means that there are two kinds of neighbourhood rules, namely 

adjacency rules and remote rules. The set of VAs adjacent to 𝑉𝐴𝑖,𝑡 is defined as: 

 

𝑑(𝑉𝐴𝑖,𝑡, 𝑉𝐴𝑗,𝑡) ≤ 𝑟√2, (3.7) 
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where 𝑉𝐴𝑗,𝑡, 𝑗 ∈ ℕ. A basic adjacency rule triggers the joining/killing geometry method 

when two adjacent VAs have the same class. Alternatively, two adjacent VAs of different 

classes may enter a state of negotiation for pixels at the boundary. This may lead to a 

growing/shrinking process (Figure 3.7). Furthermore, adjacency rules allow a VA to change 

the state of its direct neighbours to a class that is judged more consistent with its own state 

at iteration t. For example, a VA of the forest class can change the class of the water VA if 

it is next to the forest VA.  

Remote rules are unrestricted in terms of Equation 3.7. In this case, remote rules enable VAs 

to alter the state of other VAs in an extended neighbourhood despite the absence of a shared 

boundary. These rules allow, for example, a VA of class building to reclassify all VAs of 

class pasture into class recreation park (within a given distance) if there are many other VAs 

of class building in the same area. Another example is shown in Figure 3.9, where a VA of 

class tree is growing next to a VA of class water up to the point of becoming adjacent. In 

this case, a RN rule has been defined to change the water VA into a shadow VA because the 

latter exhibits a similar signature, but is more likely to be close to an elevated feature such 

as a tree. The notion of dynamic neighbourhood proposed by Moreno et al. (2009, 2010) can 

also be applied.  

(a) time= 20 (b) time= 28 (c) time=33 

 

Figure 3.9. The interaction between two VAs in terms of adjacency rules whereby a tree VA 

becomes adjacent to water VA, forcing the water VA to change to a shadow (c). 

Both adjacency and remote neighbourhood rules allow for the explicit coding of rules related 

to the process of association, whereby knowledge of the meaning of an image object informs 

that of another connected, or nearby object. However, the dynamic 

segmentation/classification approach enabled by the VA departs from traditional 
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classification schemes whereby such contextual information is used and applied a posteriori 

during a re-classification step, rather than dynamically in a ‘classify as you go’ approach. 

The elements of the VA are summarised and displayed in Figure 3.10.  

 

 

Figure 3.10. The detailed components of each VA from Figure 3.1. 

 Model Architecture 

The VA applied in this thesis is a goal-oriented agent. Figure 3.11 displays the main 

components of an agent. In this context, VAs can perceive information from feature space, 

passive objects and other agents in the simulation environment, make decisions about 

actions based on their goals, and subsequently perform those actions. In fact, the agent’s 

behaviour is to find a way to achieve its goal. As shown on Figure 3.11, agents are not 

capable of total autonomous actions because they do not have the means to learn from 

experience yet. 
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Figure 3.11. Schematic diagram of the model architecture of the VA including state, sensor, rules 

and strategies, and effectors. 

 Agent’s sensor 

VAs perceive their environment through sensors. The agent’s sensor – its measuring 

instruments – includes spectral, spatial and temporal information that is collected when the 

observations are made. These observations are collected from the simulation environment 

and feature space. Moreover, VAs are capable of perceiving other VAs in the environment. 

To perceive the simulation environment and feature space, VAs use the following classes: 

i. VATransitionRule: This class has methods that VAs use to evaluate pixels in a 

feature space. For example, in Figure 3.12, VAs use a SVM to evaluate the class 

of an isolated pixel. 

ii. VANeighbourhoodRule: This class includes methods that enable VAs to 

perceive other VAs in a simulation space. 

iii. VAGeometryFactory: This class has a method that allows the VA to evaluate a 

candidate point based on geometric rules in a simulation space. 

 Agent’s state 

The internal state of each VA is determined by the class and geometry of real-world objects. 

Depending on the application of VAs for image analysis, VAs also maintain additional 

information. For example, in the image classification process, VAs store their signatures and 

update it at each increment. The signature of a VA is defined by the pixels within the VA. 
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In this case, the VA simply uses a table to store this information (see Chapter 4, Chapter 5 

and Chapter 6).  

 Rules and strategies 

Rules and strategies keep the agent behaving in a structured way and allow it to perform a 

task based on a set of decision rules. These rules can be divided into two groups: internal 

rules and external rules. In the former case, rules are defined by the characteristics of the 

vector agent, such as the creation of dynamic geometry with different operators (see Section 

3.3). External rules include those defined by a human expert based on the application of 

VAs. These rules are usually embedded within VANeighbourhoodRule, VATransitionRule 

or VecAgent classes. For example, to create the training objects for supervised image 

classification, the area of VA should be less than the specific threshold.  

 Effectors 

Effectors allow the VA to act upon the simulation environment and the feature space. In the 

simulation space, actions of a VA can include changing its geometry or class. VAs can also 

affect the geometry and state of other VAs. Furthermore, VAs can affect the pixels in the 

feature space through their effectors. The main classes compromising the vector agent’s 

effector (the actions of the VAs) are as follows:  

i. VANeighbourhoodRule: There are some methods within this class that enable 

VAs to affect the geometry or state of other VAs.  

ii. VATransitionRule: This class contains the method that VAs use to update their 

classes during a simulation process.  

iii. VAPolygon: A VA uses this class and its method to change its geometry.  

iv. VALineString: This class and its method are applied by VAs to implement the 

half-edge joining method on polygons. 

v. VAPoint: VAs use this class and its method to create a random point based on 

one of four main directions. 

vi. VAGeometry: This class and its methods provide essential geometric operators 

(e.g. merging/killing) for the VAs.  

 Environment 

The environment of any simulation for vector agents is a continuous vector space with 

predefined x, y coordinate limits determined on the input raster datasets. In this thesis, the 
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simulated environment is static and cannot change while the vector agent is deciding on an 

action. The environment is accessible, and therefore, VAs have access to the complete, 

accurate and up-to date state of other agents in the environment at each time step. Moreover, 

VAs can perceive the feature space. In this context, this means that VAs can extract spectral 

patterns in the feature space through their actions in the modelling space. 

Figure 3.12 shows the UML class diagram of the main components constructing the VA 

model, which is an example of the application of the VA model for the GEOBIA approach. 

Figure 3.12 only includes the main methods of each class (see Appendix A for more details).  

There are three types of agents in the proposed approach: SimpleAgent, MakerAgent and 

VecAgent.  

i. SimpleAgent 

SimpleAgent provides initial information on input data for all agents. This 

information includes: the signature of the classes of interest, the input raster datasets, 

and any other information (e.g. the structural information of real-world objects). 

There are two offshoots of SimpleAgent: MakerAgent and VecAgent. 

ii. MakerAgent  

MakerAgent exists in a hierarchical structure, with SimpleAgent as the top level 

agent, which does not have a geometry in itself. MakerAgent first creates the VAs, 

placing them into context through the generateVA method. MakerAgent is also 

responsible for facilitating the coordination between VAs. To do this, MakerAgent 

applies the trackVA method. 

iii. VecAgent  

The instances of the VecAgent class, namely VAs, use the VAGeometry, VAPoint, 

VALineString, VAPolygon and VAGeometryFactory classes (Figure 3.12) to 

determine and change their geometry stored in the py variable. At each increment, 

VAs update the polygon variable.  

iv. ContextCreator 

VecContext is the class for running a simulation in the vector agent model. The class 

has the functionality to display and represent the environment in a dynamic fashion 

with all agent’s geometrics. There is one context, VecContext, to which all agents 

belong. 
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 Processes 

The intelligent agent-driven classification process encompasses adaptation, updating image 

objects over time based on feedback from the vector and raster space, their internal 

knowledge and knowledge of their neighbours. By adaptation, image objects can continually 

alter classes based on the contextual information in the simulation domain, pixel value in 

real-world space and class of image objects. In addition, a parallel mechanism is applied to 

perform and control a network of the image objects in an image analysis process. 

This modified method, which is also enabled by iteration and adaptation, can simultaneously 

cope with image segmentation and classification in tandem. In this case, image objects are 

efficient and robust than they would be if created by a sequential process. Other important 

aspects of the action of vector agents in segmentation and classification that impacts 

geometry, states and neighbourhoods include the potential ability to work with vague 

phenomena (i.e. modelled by fuzzy logic) and incomplete information (some examples are 

given above). Another aspect gleaned from the above is the ability to implement an 

adaptable (spatial and possibly temporal) scale through rules. In the next chapters, we will 

test the VA model for different applications of image analysis. 
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Chapter Four 

Vector agent model for unsupervised image 

classification 

Abstract 

Unsupervised image classification methods usually use the DNs of pixels to classify an 

image in the spectral domain without using training samples. This chapter presents a novel 

unsupervised approach based on the VA model to classify a High Spatial Resolution (HSR) 

image  without human supervision. The proposed method can be summarised in four main 

steps: selection, creation, identification and classification. In the selection step, we first 

utilises an unsupervised algorithm (e.g. K-means) to cluster the image, assuming that the 

desired number of clusters is known. The algorithm then uses the mean and standard 

deviation of each cluster to select a set of reliable samples for each cluster. The spectral 

information of these samples allows the VA model to apply an SVM classifier for formulating 

the transition rules. In the creation step, the method employs the VA model to identify a set 

of reliable samples from the image space. The dynamic structure of the VA enables them to 

recapture the spectral information of each cluster through a set of polygons in the image 

space. In the identification step, the algorithm then applies the properties of the VA-

generated polygons (e.g. shape, size, and covariance) to automatically rename the VA-

generated samples. In the classification step, the spectral information of the updated and 

selected VAs (e.g. covariance) allows the method to utilise a classifier algorithm, such as 

Maximum Likelihood (ML), to label the remaining pixels. The preliminary results–Overall 

Accuracy (OA) and precision– show the enhanced capability of VAs to classify a HSR 

satellite image. 

 Introduction 

Image classification refers to the process of converting a set of pixels into a number of 

thematic classes or meaningful objects (see Chapter 1 and Chapter 2). When considering 

pixels as the underlying unit for image classification, there are two main types of 
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classification: supervised and unsupervised. In the former case, supervised methods use 

training data to classify an image. As the process requires human input, it can be time 

consuming, error-prone and expensive (Chi et al., 2008). 

In contrast, unsupervised methods (e.g. K-means or Fuzzy c-means) simply use the DNs of 

the pixels to classify an image without the need of training data. The K-means is an iterative 

algorithm that starts with K cluster centres in the feature space. Cluster centroids can be 

initialised to random values or derived from a priori information (Omran and Engelbrecht, 

2006). Each pixel in the image is then assigned to the closest cluster. At each iterative step, 

the centroids are recomputed according to its associated pixels in feature space. This process 

is repeated until convergence is achieved (see Section 2.2.1).  

Compared to supervised approaches (which need labelled samples), unsupervised K-means 

methods do not require as much intervention (Tso and Olsen, 2005; Gao, 2008) and a priori 

information (Duda et al., 2012) to classify an image. However, K-means methods have the 

following drawbacks: 

i. Results depend on the initial values and suboptimal partitions are frequently 

found. 

ii. The results depend on the value of K. 

iii. The K-means algorithm is also an ill-posed problem when compared to the 

supervised approaches, due to the absence of training samples (Banerjee et al., 

2015; Alajlan et al., 2011). 

The above restrictions can cause difficulty when the clusters have poor contrast, overlapping 

intensities and noise (Ghaffarian, 2014). This limitation is usually addressed by using a soft 

clustering algorithm, in which pixels belong to multiple clusters and are characterised by 

varying degrees of membership values (Dopido et al., 2012). In this case, instead of making 

a hard assignment of labels, the density models or clusters are analysed as probabilistic 

distributions (Kearns et al., 1998). 

Several studies have already addressed the applications of soft clustering algorithms, such 

as Fuzzy c-means (FCM), to reduce noise (Yang and Hung, 2012), improve the degree of 

automation (Ghaffarian, 2014), increase accuracy (Hung et al., 2011), or find the optimum 

number of clusters (Zanaty and Afifi, 2013). FCM is a method of clustering for which each 

pixel is defined by a fuzzy membership, rather than a crisp value. Processes of an FCM 

method, including initialisation, iteration, and termination, are the same as the K-means 
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algorithm (see Section 2.2.1) except FCM methods use a weighted centroid based on 

probabilities during the iteration process.  

In the context of soft clustering algorithms, several studies show that the use of spatial 

information can not only improve the results of conventional soft clustering methods, but 

also remove the noise.  There are various strategies available, such as utilizing a local 

window in image space (Zheng et al., 2014; Liu et al., 2006), segmentation process (Tyagi 

et al., 2008) or features (e.g. edges) (Li et al., 2013). For example, Tyagi et al. (2008) used 

the results of a segmentation process to take advantage of spatial-context information via an 

FCM algorithm to identify the initial clusters. They employed an Expectation-Maximisation 

(EM) algorithm within a Bayesian framework to estimate the statistical parameters of each 

cluster and then to classify the image. Li et al. (2013) proposed a modified FCM method, 

whereby the weights of pixels within local neighbour windows were formulated on the edges 

extracted by Canny edge detection. Zheng et al. (2014) argued that the use of spatial 

distances and membership values of neighbouring pixels, along with the quality of the centre 

pixel in a local window could affect the fuzzy membership values of pixels within clusters. 

They demonstrated that their method could improve the robustness and noise insensitiveness 

of conventional FCM methods. 

These methods show that the use of spatial information, along with FCM and EM algorithms 

can reduce not only the effect of crisp boundaries between clusters but also salt and pepper 

effects and the noise within clusters. However, their results are subject to an implicit 

assumption that all clusters to be mapped have predictable behaviours in feature or image 

space. For example, in EM, the clustering algorithms use Gaussian distribution in the feature 

space for the clustering process (e.g. Tyagi et al., 2008). To take advantage of the spatial 

information, conventional FCM methods use a neighbourhood system of fixed size (e.g. Li 

et al., 2013; Zheng et al., 2014), but there is no specific rule to determine what shape should 

be used and what size should be given in order to obtain optimum results. Thus, pixels may 

be assigned to an erroneous cover identity in the output results if the above assumption is 

violated.  

Additionally, conventional soft clustering algorithms are sensitive to initial conditions (e.g. 

the cluster centroids in the FCM method or Gaussian components) (Tao et al., 2016; 

Ghaffarian, 2014). In this case, an improper initialisation may lead to suboptimal solutions 

in FCM algorithms (Banerjee et al., 2015; Omran and Engelbrecht, 2006), overfit the data 

or a reduction of model flexibility in EM -based algorithms (Tao et al., 2016).  
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From the above discussion, it can be concluded that the use of some information about 

clusters is necessary to improve the clustering results. In this case, unsupervised methods 

are utilised via a two-stage process to label pixels in the feature space. These methods first 

apply clustering algorithms to select a set of reliable training samples from raster dataset. In 

contrast to supervised methods, these samples are generated without human intervention.  

Next, a classifier (e.g. ML), which is trained based on the selected samples, is used to label 

remaining pixels in the classification step. For example, Mukhopadhyay and Maulik (2009) 

used a multiobjective fuzzy clustering to identify the reliable samples for each cluster in the 

feature space. The authors then applied an SVM classifier trained based on the selected 

samples to label the remaining pixels in the classification step. To select the reliable samples 

in the spectral domain, Banerjee et al. (2015) proposed an advanced method based on the 

ensemble cluster method. They then used an EM algorithm to find the optimum parameters 

for each cluster, such as covariance. To classify the image, the authors utilised an ML 

algorithm. The results show that the use of some information (e.g. covariance) about the 

clusters can improve the clustering result.  

In this chapter, the flexibility of VAs is applied to extract a set of training polygons for each 

cluster from the image space, just as a human interpreter would do in a supervised approach. 

In contrast to the conventional above approaches, the proposed method extract training 

samples based on not only the spectral information (e.g. covariance) in the feature space 

but also the spatial information (e.g. location, shape and size) in the image space. The 

algorithm then employs the spectral information of the eligible VAs to train an ML algorithm 

for labelling the remaining pixels in the classification step.  

In section 4.2, the proposed method is presented. The results are discussed in Section 4.3. A 

short summary and ideas for further work are presented in Section 4.4. 

 Proposed method 

The proposed approach consists of four main steps: selection, creation, identification and 

classification. First, a set of reliable samples for each cluster is selected from the image 

clustered by a K-means algorithm. This method uses the mean and variance of the clusters 

to identify initial samples. These samples allow the VA to formulate its transition rules and 

find their state in image space (see Section 3.2.5). Next, the method employs the VAs to 

extract a collection of training objects for each cluster from the image space. The dynamic 

structure of the VA enables them to identify the training objects (polygons) based on the 
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rules which are usually applied by a human interpreter in a supervised approach (Gao, 2008, 

pg. 270; Richards and Jia, 2006, pg. 199). These objects are then applied to select the eligible 

labels from the initial labels in the identification step. This is performed based on the 

geometric and spectral information of the VA-generated samples via a separability matrix. 

Finally, in the classification step an ML classifier is trained on the spectral information of 

the updated VAs and employed to label the remaining pixels.  

 Selection process 

Let 𝑋 = (𝒙1, 𝒙2, 𝒙3, ⋯ , 𝒙𝑛) ∈ ℝ𝑑 denote a multispectral d-dimensional image with n pixels 

(or vectors) and 𝑌 = (𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑛)  ∈ 𝐾   denotes an image of labels where 𝑦𝑖 ∈ 𝐾, 𝐾 =

{1,2, ⋯ , 𝑘} is a set of K class labels. Let us assume that K is already known, whereas the 

labels are not. Let 𝑍 = (𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑛) ∈ 𝐶   represent an image of labels where 𝑧𝑖 ∈ 𝐶, 

𝐶 = {1,2, ⋯ , 𝑐}, |𝐶| > |𝐾|, |𝐶| = 𝐾 × 𝑤, 𝐾 ⊂ 𝐶 and 𝑤 ∈ [1.5, 2.5]. Thus, the size of C is 

always greater than the number of desired clusters K.   By partitioning the feature space in 

more detail, the VA model can test a number of different starting points. This can reduce the 

level of sensitivity of the proposed method to the results of K-means algorithm. This strategy 

also allows the method to use different partitional clustering algorithms (e.g. K-means), 

regardless of their results. Additionally, the method can use a multimodal distribution for 

each cluster to label pixels in the classification step. 

A K-means clustering is first used to cluster pixels in which the number of clusters is set to 

C. The following rule is applied to identify the initial training samples or labelled samples 

for each cluster. 

  𝑝�̅� − 𝜆 × 𝜎𝑝,𝑖  < 𝑝𝑐,𝑖 < 𝑝�̅� + 𝜆 × 𝜎𝑝,𝑖 ,    (4.1) 

where 𝑝�̅� and 𝜎𝑝,𝑖 are the mean reflectance and standard deviation in band i of all pixels in 

each cluster, respectively. 𝜆 is a constant set between [0.01,2]. To select the reliable 

samples, 𝑋𝐿 = {(𝒙𝒊 ,𝑧𝑖)}𝑖=1
𝑙 , which are very close to the centroid of each cluster, the 

algorithm uses a minimum distance algorithm. 𝑙 is the number of initial training 

samples, 𝑧𝑖 ∈ 𝑍 and 𝒙𝒊 ∈ 𝑋. VAs use these samples to implement transition rules and 

geometrically evolve in order to find and update their classes.  
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 Creation process 

In the creation step, VAs are applied to extract training objects from the image space. To 

classify an image, the main elements of VAs, including geometry, state and neighbourhood 

together with their rules along the lines of GA are formally defined in Chapter 3.  

4.2.2.1.  Geometry and geometry methods 

The geometry component (L) of a VA stores the vertices that define the boundary 𝜕𝑋𝑉𝐴 of 

the VA (see Section 3.2.2). The geometric methods ML, defined in Chapter 3 (see Section 

3.2.3.1), enable VAs to change the boundary 𝜕𝑋𝑉𝐴 and interact with other VAs in the 

simulation domain. However, in the proposed unsupervised method, VAs do not use the 

interaction geometry rules, including growing/merging, growing/shrinking and 

shrinking/splitting.  

4.2.2.2.  State and transition rules  

The state S of a VA is the class of a VA and the set of attributes (e.g. spectral signature 

rectangularity, homogeneity) that form the feature space involved in the classification 

process. TS rules allow the VAs to find and update their classes and evaluate pixels in the 

image space. To initialise in image space, the candidate pixel xc and its immediate 

neighbours should be found to be members of the same class. VAs use the SVM classifier, 

which is trained based on a reliable sample set, namely 𝑋𝐿, to evaluate such membership. 

These candidate points, namely VAs, will evolve via an iterative process into polygons by 

capturing nearby pixels based on TS rules. To do this, VAt uses the following rules to assess 

a candidate pixel 𝒙𝑐(e.g. V in Figure 1 (b)) at time t+1: 

 𝑉𝐴𝑡. 𝑆. 𝑐𝑙𝑎𝑠𝑠 = 𝒙𝑐. 𝑐𝑙𝑎𝑠𝑠     (4.2) 

 [𝑃𝑎 
(𝑉𝐴𝑡+1) − 𝑃𝑏(𝑉𝐴𝑡+1)] ≥ 𝛽   (4.3) 

To evaluate Equation 4.2, VAt uses the SVM classifier trained according to the labelled 

training 𝑋𝐿. 𝑃𝑎(𝑉𝐴𝑡+1) and 𝑃𝑏(𝑉𝐴𝑡+1) are the largest and the second largest probability of 

𝑉𝐴𝑡+1 to belong to classes a and b, where a and b belong to k, computed by the SVM 

classifier, which is based on the spectral descriptors (mean value in each spectral band) of 

pixels within 𝑋𝑉𝐴  and pixel 𝒙𝑐. These two rules allow the VAs to evaluate pixel 𝒙𝑐 at two 

different levels, regardless of the spectral distribution in the feature space. At the first level, 

the VAt locally evaluates pixel 𝒙𝑐 based exclusively on the labelled training samples 𝑋𝐿. At 

the second level, Equation 4.3 allows the VAt to evaluate pixel 𝒙𝑐 in terms of its own 
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signature at each iteration. β is a parameter set between [0,0.8]. β is applied by each VA to 

control the effect of its signature at each iteration. This structure improves the confidence 

level of the extracted samples for the learning process. If 𝒙𝑐 
is found to be eligible to belong 

to 𝑉𝐴𝑡, its attributes in S are updated according to the new geometry Lt+1 and the 

corresponding set of pixels 𝑋𝑉𝐴𝑡+1
. The features characterising the VAt, such as spectral, 

textural, and structural descriptors are re-evaluated. This yields a new signature for the VAt 

in the next iteration, namely t+1. 

4.2.2.3.  Neighbourhood and neighbourhood rules 

The neighbourhood component N is a collection of objects within the neighbour distance of 

a VA. Neighbourhood rules RN are based on a set of rules applied by an object when it 

interacts with each other in a simulation domain. As DNs are the only available information, 

VAs cannot affect each other’s geometry and state. In our case, this is the main 

neighbourhood rule applied by VAs. Thus, each VA should have knowledge of the subset 

of VAs adjacent in the image space. The set of VAs adjacent to 𝑉𝐴𝑖,𝑡 is defined as, 

 𝑑(𝑉𝐴𝑖,𝑡 , 𝑉𝐴𝑗,𝑡) ≤ 𝑟√2  , (4.4) 

where 𝑉𝐴𝑗,𝑡 , 𝑗 ∈ ℕ. This structure simultaneously allows VAs to address the geometry and 

class of objects from initial pixels to the final training objects based on an evolving process, 

enabled by an iterative scheme that involves constant interactions between all VA 

components (Equation 4.5 adapted from Torrens and Benenson (2005)). Equation 4.5 

describes the elements of each VA (see Section 3.2): 

 VA ~ (L, ML; S, TS; N, RN)         (4.5) 

4.2.2.4.  Implementation of VAs for unsupervised classification 

To ensure the highest quality of the training samples and to maximize the representativeness 

of the training samples, a set of rules is considered by the VAs during the evolving process. 

The criteria of these rules are based on quantity, size, location, number and uniformity. In 

conventional supervised algorithms, a human expert usually performs this process. In our 

experiment, the following set of rules is used to automatically accommodate the 

prescriptions as discussed by Gao (2008, pg. 270), Richards and Jia (2006, pg. 199), and 

also when selecting training samples in supervised image classification: 

1) A VA is killed if the total area of the VA cannot grow beyond 40 pixels. 
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2) A VA stops growing once it reaches 60 pixels, although this can be adjusted on the 

number pixels of each cluster. The size of the training dataset should be at least 10 

to 30 times the number of features for each class (Gao, 2008). In our experiments, 

we use a 4 band multispectral IKONOS satellite image. 

3) The maximum number of training polygons for each cluster is equal to five. Gao 

(2008) recommended a minimum of five to ten polygons per class.  

4) A VA is removed if it has an interior ring (see Figure 3.5). The geometry of the VAs 

allows them to control their internal structure.  

It is worth mentioning that in the proposed method, the above rules can automatically be 

updated based on different images (datasets) without human supervision. The process starts 

by seeding a desired number of VAs as points in a vector agent space whose coordinates 

correspond to the centre of image pixels. This seeding process can obey a specific sampling 

scheme (e.g. fully random, stratified random, systematic unaligned random, etc.). In this 

chapter, a systematic unaligned random sampling scheme is chosen so that VAs are seeded 

for every class at various locations throughout the image as described above. At the 

beginning, VAs are born with a threshold β of 0.8 (the highest confidence level).  

These points or VAs will evolve via an iterative process into polygons by capturing nearby 

pixels based on transition and neighbourhood rules via their geometry methods. In the event 

that all VAs are passive and β is not zero, the algorithm automatically reduces the threshold 

β based on an interval of 0.1. The new VAs are born and activated on the new value of the 

threshold β. The simulation process continues until all VAs become passive with the 

threshold β of zero. This structure allows the VA model to extract training objects at different 

confidence levels. The output of the creation step, namely VA-generated samples, can be 

expressed as follows:  

𝒟 = {𝑉𝐴𝑖|𝑉𝐴𝑖  ∩  𝑉𝐴𝑗 = ∅, 𝑖 ≠ 𝑗 }𝑖=𝑘
𝑁 , (4.6) 

where 𝑁 ∈ [𝑘, 5𝑐] is the number of extracted VAs. We set the maximum number of training 

polygons to 5 (see rule 3 in the above). The size, shape and the class of VAs may vary 

according to the observed data. Figure 4.1 indicates that there are no training objects for the 

cluster 8. Because the objects in the cluster 8 lack the necessary geometric properties (see 

the above rules) to exist in the image space. Figure 4.1 also displays how VAs use the above 

rules to extract training objects at different confidence levels from the image in Figure 4.1(f). 
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For example, in the case that the threshold β is 0.6, only the objects in clusters 4 and 5 are 

determined (Figure 4.1(a), 4.1(b) and 4.1(c)). When the threshold β becomes 0.5, the objects 

in clusters 9 and 2 are identified from the image space. The β values is utilised by the VA-

based approach to rename the clusters in the identification step (see Section 4.2.3).  

As can be seen in Figure 4.1(e), the number of cluster labels is greater than the desired 

number of clusters, k. To reduce the number of cluster labels to k, the algorithm uses a 

separability matrix formulated on the VA-generated samples in an iterative manner. In 

supervised approaches, a human expert usually employs a separability matrix to evaluate, 

merge, delete or rename the signature of training polygons.  

 

(a) time=100 

 

(b) time=200 

 

(c) time=284 

 

(d) time=350 

 

(e) time=584 

 

(f) time=647 

 

Figure 4.1. (a), (b) and (c) are the extracted VAs at a confidence level of 0.6. (d) and (e) are the 

VA-generated samples at a confidence level of 0.5. (f) Projected VAs on a subset of a multispectral 

IKONOS image, pixel size 4 meter, at confidence level of zero. 

 Identification 

In the identification step, VAs are iteratively refined via a separability matrix, computed by 

a Transformed Divergence (TD) algorithm (Mather and Koch, 2011; Richards, 2006). 
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𝑑𝑖𝑗 =
1

2
𝑡𝑟{(𝑆𝑖 − 𝑆𝑗)(𝑆𝑗

−1 − 𝑆𝑖
−1)} +

1

2
𝑡𝑟{(𝑆𝑗

−1 + 𝑆𝑖
−1)(𝑚𝑖 − 𝑚𝑗)(𝑚𝑖 − 𝑚𝑗)𝑡}, (4.7) 

TDij = 2000 (1 − exp (
−𝑑𝑖𝑗

8
)), 

(4.8) 

where i and j correspond to the classes being compared. The symbol tr(.), trace, is computed 

by the sum of the diagonal elements of the indicated matrix. 𝑆𝑖 and 𝑆𝑗 are the variance-

covariance matrices for two classes computed by the spectral information of the VAs 

belonging to the class labels i and j . 𝑚𝑖 and 𝑚𝑗 are the corresponding mean vectors. The 

value 2000 is used as an exponentially decreasing weight to increase distances between the 

classes. Considering the above formula, the matrix �̌� can be expressed as follows: 

�̌� = [
𝑑11 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 𝑑𝑛𝑛

], 
(4.9) 

where 𝑑𝑖𝑗 is the distance between two clusters i and j computed by Equations 4.7 and 4.8 

according to the variance-covariance matrix and mean vectors of the whole VAs that belong 

to class labels i and j. At each iterative step, the algorithm first finds the minimum value in 

matrix �̌�, in which 𝑑𝑖𝑗 is not zero. It converts the elements of the matrix corresponding to 

the minimum value into zero. The clusters i and j are then declared to form an identical pair. 

To reduce the number of clusters, the proposed method uses not only the covariance matrix 

of each VA-generated samples but also the number of the VAs in each cluster. 

The algorithm then uses the triplet (𝜗𝑖, �̅�𝑖, 𝛿𝑖𝑗) to rename one of these clusters, where 𝜗𝑖 and 

�̅�𝑖 are the number of polygons and the average of the 𝛽 values in cluster i, respectively. 𝛿𝑖𝑗 

indicates how many times in matrix �̌�,  𝑑𝑖𝑛 values in cluster i are greater than the element 

corresponding 𝑑𝑗𝑛 in cluster j. If a pair, e.g. (𝜗𝑖 , �̅�𝑖), in cluster i is greater than the 

corresponding pair in cluster j, the algorithm removes the row and column in matrix �̌�, 

which linked to index j. Thus, the class of all VAs in cluster j is renamed as cluster i. 

The iteration continues until the number of cluster labels reaches k, namely the desired 

number of clusters. Figure 4.2(b) displays the results of the identification. In this sense, the 

VA approach can model clusters according to different distributions in the feature space. 

For example, in Figure 4.2, the algorithm changes the VA samples within cluster 1 and 

cluster 9 into cluster 5. First, the algorithm finds that cluster 1, cluster 5 and cluster 9 can be 
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converted into each other based on TD distance (Equation 4.8). To rename the samples 

within each cluster, the algorithm uses (𝜗𝑖 , �̅�𝑖, 𝛿𝑖𝑗). For example, although the number of 

training polygons for cluster 1, cluster 5 and cluster 9 are the same (5 polygons per cluster, 

as shown in Figure 4.2(a)), Figure 4.1(c) and Figure 4.1(e) show that the average 𝛽 value 

obtained from the VAs in cluster 5 is more than the average 𝛽 values of VAs belonging to 

cluster 1 and cluster 9. This method uses the spectral information of these polygons to train 

a classifier (e.g. ML) in order to label the remaining pixels in the classification step. 

  

 
 

(a) 
 

(b) 

 

Figure 4.2. (a) The training polygons before the identification step. (b) The results of the 

identification step. 

 Experimental results 

 Data 

The proposed approach was tested on two subsets of a multispectral IKONOS image (blue, 

green, red and near infrared bands) from a rural area near Dunedin, New Zealand (Figure 

4.3(a) and Figure 4.6(a)). A Java implementation of the Repast (Recursive Porous Agent 

Simulation Toolkit) modelling framework (Howe et al., 2006), along with a generic Vector 

Agent library developed by Moore (2011), was used to develop a Vector Agent-led training 

and labelling process. The VA model uses the geometric rules and methods described in 

Chapter 3. This solution was used to implement unsupervised image classification.  

To implement the transition rules, VAs employ the SVM classifier. The LIBSVM 

classification library for support vector machines developed by Chih-Chung Chang and 
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Chih-Jen Lin (2011), is applied. In our case, the SVM classifier is trained according to the 

Radial Basis Function (RBF) kernel. The RBF kernel is defined by Κ(x, x′) =

exp (−γ‖x − x′‖2), where x and x′ are two samples represented as feature vectors in spectral 

space (Camps-Vallas et al., 2007). γ and C parameters are tuned via a 10-fold cross-

validation algorithm where C is a regularisation parameter. 

 Results and discussion 

4.3.2.1.  Dataset 1 

In the first experiment, the image dataset utilised is a 200 by 200 pixel (4meter spatial 

resolution) scene containing five land cover classes: bare soil, gray area, meadow, soil and 

tree(Figure 4.3(a)) (Mathieu et al., 2007). These classes are specified according to a 

preliminary K-means algorithm where C is set to 10. In this experiment, 𝜆 is set to 1 in 

Equation 4.1, yielding a candidate set of labelled training samples for each cluster. 10 pixels 

are selected for each cluster according to a minimum distance algorithm.  

For the quantitative evaluation of the classification maps, some areas of the classes of 

interest are manually classified as a ground truth map (Figure 4.3(b)). Figure 4.3(d), 4.3(e), 

4.3(f) display the classification maps generated by K-means, K-medoids and Fuzzy c-means 

algorithms, respectively. In contrast to the K-means, K-medoids chooses the DNs of pixels 

as centers (medoids) in the feature space. To produce the maps in Figure 4.3(d), 4.3(e) and 

4.3(f), we first cluster the image into 10 clusters. The clusters are then merged into each 

other.  

A visual assessment of the classification maps based on the above algorithms (Figure 4.3(d), 

4.3(e), 4.3(f)) and VA model (Figure 4.3(g)) reveals that the VA-based approach generates 

a smoother classification map compared to the conventional unsupervised methods. As it 

can be observed from Figures 4.3(g) the VA-based map has more homogenous regions (or 

patch-like areas) than the K-means, K-medoids and FCM algorithms. A comparison between 

Figure 4.3(c), which is provided by a Normalized Difference Vegetation Index (NDVI), and 

Figure 4.3(g) also indicates the satisfactory results of the VA model in separating vegetation 

from non-vegetation clusters. 

 



                                               Chapter 4: Vector agent model for unsupervised image classification 

82 
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(c) 

(d) (e) (f) 

 
(g) 

 

  

 

 

 

Figure 4.3. (a) 4m resolution false colour IKONOS image. (b) Ground truth map. (c) NDVI map. 

(d), (e) and (f) the classified maps based on K-means, K-medoids and Fuzzy c-means methods, 

respectively. (g) The classified maps based on the VA model. 

Figure 4.4(a) displays a classified map obtained by using a traditional K-means algorithm in 

which the number of clusters is set to 5. As can be observed in Figure 4.4(a), the classified 

map differs from that provided by the VA model (Figure 4.3(h)). This may be due to the fact 

that traditional K-means methods are dependent on initial conditions. For example, a visual 

assessment of Figure 4.4(a) and 4.3(a) shows that some pasture pixels are classified as bare 

soil. The algorithm also divides the class of forest into two subclasses, namely tree and dense 

forest. 
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Figure 4.4.( a) the classified map based on a traditional K-means in which the number of clusters 

is set to 5. (b) the classified map by using the ML algorithm. 

To evaluate the results of the identification step, we manually create a set of training 

polygons (1 polygon per cluster) to implement an ML algorithm (Figure 4.4(b)). For 

example, the meadow areas in Figure 4.4(b) and Figure 4.3(g) are similar. However, the 

VA-based approach uses the spectral information of different clusters (see cluster 1, cluster 

5 and cluster 9 in Figure 4.2(a) and Figure 4.2(b)). This shows the ability of the VA model 

to deal with the limitations of mono-modal Gaussian distribution, as applied in the clustering 

algorithms that use the EM algorithm. Using this strategy also allows us to measure the 

ability of the VA model to deal with issues such as overlapping intensities and noise 

originating from the crisp boundaries between clusters. Figures 4.3(g) and 4.4(b) indicate 

that the classified maps produced by the VA-based and ML supervised approaches are 

similar, whereas in the ML method, an expert operator manually defines the training objects.  

To evaluate the performance of the proposed approach, the clusters are compared with their 

corresponding reference clusters in Figure 4.3(b). Table 4.1 displays the outcome of this 

comparison in terms of True Positive (TP), False Positive (FP) and False Negative (FN) 

analysis. 

i. TP is the number of pixels that have the same class in both datasets (ground truth 

map and classified map). 

ii. FP or commission error represents pixels that belong to another class, but are 

classified belonging to the class in the classification process.  

iii. FN or omission error represents pixels that belong to the class, but are wrongly 

identified in the classification process.  

For assessing the accuracy of the proposed method, three indices, including completeness, 

correctness (precision) and quality, are computed through the following equations: 
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𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                  (4.10) 

       𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                   (4.11) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 ,                                 (4.12) 

Table 4.1. Comparison between the results of K-means, Fuzzy c-means, K-medoids and the VA-based 

approaches. TP, FP and FN values are divided by the number of pixels within each ground truth 

class. 

Classification method Criteria Object class (%) 

  Bare soil Gray area Meadow Soil Tree 

K-means TP 92.56 98.68 99.85 97.73 85.42 

 FP 24.69 0.37 24.48 0.61 1.5 

 FN 7.44 1.32 0.15 2.27 14.58 

Fuzzy c-means TP 93.45 99.12 89.87 97.25 87.18 

 FP 23.32 0.37 22.98 35.06 1.23 

 FN 6.55 0.88 10.13 2.75 12.82 

K-medoids TP 88.75 97.65 99.93 97.85 92.58 

 FP 15.17 0.23 12.93 0.86 2.06  

 FN 11.25 2.35 0.07 2.15 7.42 

VA model TP 94.42 99.85 99.89 97.25 97.30 

 FP 0.56 1.69 6.89 0.12 0.64 

 FN 5.58 0.15 0.11 2.75 2.70 

Figure 4.5 indicates that the VA model outperforms the K-means, K-medoids and FCM 

methods. For example, a sharp improvement (more than 15%) in the quality and correctness 

indices of the bare soil and meadow classes can be observed. There are two reasons for this. 

Firstly, the conventional unsupervised algorithms only use the mean or medoids values to 

cluster an image. Secondly, due to the heterogeneous structure of the tree cluster (as can be 

seen in Figure 4.3(d)), some tree pixels are classified as bare soil or meadow. This increases 

the omission errors for these classes (see Table 4.1).  

The results show the capability of the VA model in dealing with the heterogeneous classes 

that are composed of pixels with different classes (e.g. tree objects). The values of the above 

indices in Figure 4.5 show that the proposed algorithm provide more reliable results 

compared to the K-means, K-medoids and Fuzzy c-means methods. 
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From Figure 4.5 (d), it can also be observed that the completeness, correctness, quality and 

OA values of the ML approach are slightly better than the VA-based method. For example, 

the overall accuracy of the VA method is 97.89%. compared to 98.91% for the ML method. 

However, the ML approach uses human-provided training samples to classify the image. In 

contrast, the VA-based method generates training samples without human supervision.  

  

(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 4.5. Comparison between K-means algorithms, Fuzzy C-means and VA-based methods 

based on correctness (a), completeness (b) and quality (c) indices. (d) The average rate of these 

indices in terms of the ML and VA-based approaches. 

4.3.2.2. Dataset 2 

In the second experiment, a K-means algorithm is used to cluster a subset of multispectral 

IKONOS image (240×240 pixels) into six land-cover classes that include bare soil, building, 

bush, grey area, pasture and shadow (Figure 4.6 and Figure 4.7(a)).  

The image benefited from a pan-sharpening process, yielding four spectral bands, namely 

blue, green, red and near infrared, with a 1×1m spatial resolution. In this example, 𝜆 is set 

to 1 in Equation 4.1. 10 pixels are selected for each cluster from the eligible pixels obtained 

from Equation 1. A K-means algorithm is applied to extract 13 initial clusters from the image 
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in Figure 4.7(a). Figure 4.6(a) and 4.6(b) show the spatial distribution of the VA samples 

before and after the identification step, respectively. 

 
 

(a) 
 

(b) 

 

Figure 4.6. (a) The result of the creation step. (b) The results of the identification step. 

Figure 4.7(b) shows some areas manually identified as a ground truth map. Figure 4.7(d), 

(e), (f) and (g) display the classification maps provided by the K-means, K-medoids and the 

Fuzzy c-means algorithms. It can be observed from Figure 4.7 that the unsupervised 

algorithms produce maps with a salt and pepper effect. In contrast, the VA-based method 

(Figure 4.7(h)) provides more homogenous regions compared to the unsupervised methods. 

The results also indicate that the VA-based method accurately separates vegetation from 

non-vegetation areas.  

Similar to the previous example, we use a supervised approach to evaluate the extracted VA-

generated samples. This also allows us to assess the capability of the proposed method in 

dealing with the limitations of mono-modal Gaussian distribution. To do this, firstly, a set 

of training samples, one training polygon for each cluster, are manually selected. These 

samples are then used by an ML algorithm to classify the image. The results indicate that 

the ML method lacks the ability to classify the image accurately, despite both the VA-based 

approach and the ML method using the same statistical rules to classify pixels. This can be 

explained by the fact that the dynamic VA approach allows variation in the signature of a 

thematic class to be found. This may cause the signature of a class to depart from a Gaussian 

distribution, thus compromising the ML classifier. In this example, the SVM classifier, as a 

supervised approach, is used to classify the image (Figure 4.7(I)). The SVM classifier 

exhibits better performance compared to the ML method. However, the SVM classifier 
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produces a map with salt and pepper compared with the VA approach (see Figure 4.7(h) and 

4.7(I)). 

(a) 
 

(b) (c) 

 

(d) (e) (f) 

 

 
(g) 

 
 (h)  

(i) 

 

Figure 4.7. (a) A 1m resolution false colour IKONOS image. (b) Ground truth map. (c) NDVI map. 

(d), (e) and (f) classified maps based on the K-means, K-medoids and Fuzzy c-means methods, 

respectively. (g), (h) and (i) display the results of the VA-based method, the ML and the SVM 

classifiers.  

Table 4.2 shows the results of the different methods based on the TP, FP and FN errors. 

These errors are applied to calculate the correctness, completeness and quality indices. As 
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can be seen in Figure 4.8, the VA model improves the correctness, completeness and quality 

of the bare soil cluster by a rate of 1% to 7%. Because of the salt and pepper effect, the K-

means algorithms exhibits poor results when compared with the VA model. Figure 4.8(c) 

also shows that the VA model increases the quality of the gray area cluster by more than 

7%. The completeness index of the building cluster shows an improvement of more than 

30% based on the VA approach. However, the correctness value of the building cluster 

decreases by 30% based on the VA model. As the spectral reflectance of the gray area and 

building clusters are similar, some gray area pixels are classified as bush (see Figure 4.7(h)). 

When considering the meadow cluster, the correctness, completeness and quality indices of 

all approaches are similar. However, these indices for the bush class are entirely different 

for each respective approach. This could be due to the high spatial distribution of the shadow 

and meadow pixels within the bush areas. 

Table 4.2. Comparison between the results of VA model, K-means algorithms and Fuzzy C-means 

and K-medoids approaches. TP, FP and FN values are divided by the number of pixels within each 

ground truth class. 

Classification 

method 

Criteria Object class (%) 

  Bare Soil Building 

 

Bush Gray area Pasture Shadow 

K-means TP 98.18 63.28 72.37 86.26 98.91 96.69 

 FP 3.87 0.00 12.76 6.23 5.69 58.56 

 FN 1.82 36.72 27.63 13.74 1.09 3.31 

Fuzzy c-means TP 98.95 69.53 68.47 86.26 98.91 96.69 

 FP 6.39 89.89 7.09 2.22 4.97 56.27 

 FN 1.05 30.47 31.53 13.74 1.09 3.31 

K-medoids TP 99.6 82.03 67.52 88.05 96.01 85.29 

 FP 10.57 1.90 10.85 2.17 3.55 52.16 

 FN 0.4 17.97 32.48 11.95 3.99 14.71 

VA model TP 99.35 99.22 63.85 90.92 99.15 99.26 

 FP 0.03 83.46 3.87 0.39 6.06 97.78 

 FN 0.65 0.78 36.15 9.08 0.85 0.74 

Figure 4.8 shows a comparison between the VA-based method and the SVM algorithm. The 

aim is to evaluate the quality of the VA-generated samples in terms of a supervised approach, 

such as the SVM algorithm. The correctness, completeness, quality and OA values of the 

VA-based method are similar to the SVM algorithm. In contrast to the SVM algorithm, the 

proposed method classifies the image without the need of training data.  
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Finally, Table 4.3 shows the CPU processing time (in seconds) spent on the different steps 

of the proposed method for the cases illustrated in Figure 4.3 and Figure 4.6. The method is 

implemented using Repast and powered by an Intel CPU running at 3.40 GHz with 16 GB 

of memory. 

 

 
 (a)  

 
(b) 

 
(c) 

 
(d) 

Figure 4.8. Comparison between K-means algorithms, Fuzzy C-means and VA-based approach 

method based on (a) correctness, (b) completeness, and (c) quality indices. (d) The average rate of 

these indices in terms of the VA-based method and the SVM approach. 

             Table 4.3. Computational time spent in each step of the VA model. 

Name Creation step Identification step Classification step Sum 

Dataset 1 160.0 Sec. 2.0 Sec. 2.0 Sec. 164.0Sec. 

Dataset 2 210.0 Sec. 2.0 Sec. 2.0 Sec. 214.0Sec. 

 Conclusions 

Traditional K-means methods use pixels in isolation to cluster an image. As a result, they 

lack the ability to deal with certain limitations such as poor contrast, overlapping intensities 

and noise, especially where there are HSR images. These limitations are usually addressed 

through the use of a soft clustering algorithm (e.g. FCM) or an EM-based method along with 

the spatial information. These methods usually employ a neighbourhood system of fixed 

shape and size or a Gaussian function to cluster an image. Hence these methods assume that 
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the clusters have a predictable behaviour in the feature or image space. When this 

assumption is violated, clustering results may be imprecise. 

From the above discussion it can be concluded that in order to overcome the aforementioned 

limitations, some information about clusters is required. This information is usually obtained 

by utilising clustering methods, such as the proposed methods by Banerjee et al. (2015) and 

Mukhopadhyay and Maulik (2009). These methods usually ignore the spatial characteristics 

of clusters (e.g. geometry) in image space. That means, this information about clusters is 

only provided based on the spectral characteristics of clusters. In this chapter, we 

investigated the capabilities of VAs as a new processing unit to extract a set of training 

objects in image space, just as a human interpreter would do in supervised approaches. The 

spectral information of these training polygons was then applied by the proposed method to 

classify the image. 

To reach this aim, we first used a traditional K-means algorithm to identify the initial 

clusters. We assumed that the number of initial clusters is known. We then described the 

components of VAs and how VAs can extract a set of training objects from image space. To 

control the quality of the training polygons, VAs employed a set rules usually applied by a 

human interpreter in supervised approaches. To reduce the number of clusters to the desired 

number clusters K, the method used an iterative approach. This was formulated on a 

separability matrix, based on the spectral information of the VAs in the feature space and 

the geometric characteristics of the VA polygons in the image space. In the classification 

step, the updated signatures were employed by an ML algorithm to label pixels. The 

experimental results demonstrate the desirable performance of this new approach. VAs 

prove able to classify an image without using a predefined shape or setting-specific 

distribution. Moreover, the results of the labelling step indicate that the accuracy of the 

classified images delivered by VAs are better than both the traditional K-means method and 

the supervised approaches, even in complex scenes. 

In our examples, the VA model is implemented with the assumption that the number of 

clusters is known. To resolve this issue, we can use the characteristics of the TD algorithm. 

According to Jensen (1996), a TD value of 1900 or more indicates that two signatures can 

be separated, and a value between 1700 and 1900 means that the separation is relatively 

good. If TD is less than 1700, the separation is poor. In this sense, the identification process 

can be based on the quality of the clusters, without setting the number of clusters. For 

example, the algorithm terminates the identification process if all TD values are more than 
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1900. In this case, the method can identify the optimum number of clusters based on the 

quality of clusters. Consequently, we do not need to set an exact number of the clusters. 

Developing an intelligent identification process can also significantly reduce the processing 

time of the creation step. The use of a full scope of VA model to classify an entire image 

would also be interesting to study.  

In the next chapter, we will explore the application of the VA model for supervised image 

classification. 
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Chapter Five 

Vector agent model for supervised image 

classification 

Abstract 

Supervised approaches use training samples to classify an image. This method produces a 

more reliable result compared to unsupervised approaches. Despite promising results, the 

process of generating training samples is usually time consuming and expensive, especially 

when using hyperspectral remotely sensed images. This limitation is usually addressed via 

semisupervised approaches. The main aim of semisupervised methods is to generate reliable 

labelled samples from the limited subset of labelled samples without significant effort/cost.  

In this chapter, we explore the capabilities of VAs in classifying hyperspectral images within 

the context of a semisupervised SVM classification. The proposed method consists of three 

main steps: creation, selection and classification. In the creation step, VAs are employed to 

extract a set of training objects from the image space. The dynamic structure of VAs allows 

them to capture the spectral information of each specified class of the initial labelled 

training samples through a set of polygons in the image space. In the selection step, a 

similarity metric is applied to identify the most reliable samples from the VA-generated 

samples. Finally, in the classification step, the samples selected from the previous step are 

used by the SVM classifier in order to label the remaining pixels. We have validated this 

concept by implementing the VA method to classify two different hyperspectral remote 

sensing datasets. The preliminary results show that the VA-based method can yield high 

classification accuracy with only a small number of labelled training samples.  

 Introduction 

Image classification is a fundamental process in image analysis and is typically addressed 

in either unsupervised or supervised manner. In the latter case, the algorithms involve two 

main steps: training and classification. The training step generates statistics for each class 
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that describe its distribution in a defined feature space. These results are then used in a 

classification process, such as the ML method. 

 Alternatively, unsupervised approaches rely on a weaker formulation that involves the prior 

definition of the number or the typical variance of clusters to be identified in the feature 

space (e.g. the K-mean and ISODATA algorithms). It has been well established that when 

both methods are compared, supervised methods, with its reliance on training samples, 

yields more accurate classification, but has the downside of needing a higher level of 

expertise (Gao, 2008). 

Nonetheless, the quality of the classification depends ultimately on a suitable and consistent 

definition of the training samples usually collected by a human expert (Tuia et al., 2011; Chi 

et al., 2008; Foody and Mathur, 2004). Thus, the training process is affected by the 

availability of training samples and the experience and skills of the human operators. This 

makes the process time consuming, relatively complex, and costly (Jun and Gush, 2013; Chi 

el al., 2008). 

Semisupervised Learning (SSL) techniques have allowed some of these limitations to be 

mitigated. SSL techniques belong to a group of supervised classification algorithms that 

only need a limited quantity of labelled data to classify an entire dataset (Chapelle et al., 

2008). This is based on the assumption that a suitable set of unlabelled training samples 

(Shahshahani and Landgrebe, 1994) can be obtained from the limited subset of labelled 

samples without significant effort/cost (Chapelle et al., 2008; Bruzzone et al., 2006). Figure 

5.1 shows how the use of unlabelled training samples can affect the performance of a 

classifier, such as SVM.  

 
(a) 

 
(b) 

 
(c) 

Figure 5.1. (a) the SVM model based on only the labelled data. (b)  the SVM model projected on 

the labelled and unlabelled datasets. (c) the effect of using unlabelled samples on the SVM model. 

Because of this ability, the use of SSL methods in remote sensing image analysis has become 

popular over the past decade, especially in connection with hyperspectral images that have 

a limited number of training samples. In hyperspectral data processing with a limited number 
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of training samples, increasing the dimension of feature space can significantly reduce the 

accuracy of the classified map (Bruzzone et al., 2006; Hughes, 1968).  

To date, many different methods have been proposed for semisupervised classification of 

hyperspectral images, such as Transductive Support Vector Machines (TSVMs) (Bruzzone 

et al., 2006), graph-based methods (Camps-Valls et al., 2007), generative models (Krithara 

et al., 2011) and self-learning methods (Dópido et al., 2013).  

For example, Bruzzone et al. (2006) utilised the SVMs through a transductive process to 

execute a semisupervised method. Here, the authors employed both labelled and unlabelled 

samples (e.g. Figure 5.1 (c)) to search for a reliable separating hyperplane in the training 

phase. Some studies also propose the use of graphs (Di and Crawford, 2010; Camps-Valls 

et al., 2007). For example, Camps-Valls et al. (2007) employs graphs to exploit reliable 

unlabelled samples based on their neighbours in the image.  Krithara et al. (2011) employed 

a generative model to measure mislabelling errors generated by adding unlabelled samples 

during the training process. Here, the algorithm iteratively assigned class labels to unlabelled 

examples using the current model and re-estimating the probabilities of the mislabelling 

errors. Dópido et al. (2013) presented a self-learning method. In their method, unlabelled 

samples are selected with an algorithm applied a first-order spatial connectivity on a map 

provided by a probabilistic SVM. They then employed an active learning algorithm to 

identify the most informative samples. In contrast to passive learning algorithms (e.g. Figure 

5.1), the learner is able to interactively select unlabelled samples for the learning process.  

Based on these methods, the main challenges of a semi-supervised learning approach are the 

issue of selecting the most helpful unlabelled samples and subsequently determining the 

class label of these new selected samples. Several studies show that the use of spatial 

information can improve the results of the semisupervised image classification (Tan et al., 

2015 and 2014; Wang et al., 2014; Dópido et al., 2013; Bruzzone and Persello, 2009). In 

this framework, the SVM algorithms have proven to be an effective tool for combining 

spectral and spatial information (Bruzzone and Persello, 2009).  

For example, Bruzzone and Persello (2009) presented a novel context-sensitive 

semisupervised method to reduce the effect of mislabelled training samples. The method 

employed an updated cost function formulated on labelled and unlabelled samples to 

minimize the total misclassification costs. To take advantage of the spatial information, 

authors used a local window centred on labelled samples. Wang et al. (2014) used a 
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neighbourhood system of fixed size to identify unlabelled samples. Here, the authors 

employed a probability map created by an SVM algorithm to identify the most informative 

unlabelled samples and then label them through an active learning algorithm. Tan et al. 

(2014) proposed a segmentation-based algorithm to select unlabelled training samples. They 

then applied a similarity metric formulated on labelled samples and segmented regions to 

select reliable unlabelled training samples for each cluster. 

The above methods show that the use of spatial information along with spectral 

characteristics is key towards inferring a suitable set of training pixels from limited initial 

sampling. The aforementioned algorithms use different strategies to improve the SSL 

methods. However, all methods have one property in common: they use a neighbourhood 

system of a fixed size specified by a human expert. For example, to segment an image, we 

need to specify some parameters (e.g. scale or kernel size). To take advantage of the spatial 

information, conventional semisupervised approaches employ a local window of fixed 

shape, but there is no specific rule to determine what shape should be used and what size 

should be given to it in order to obtain optimum results. 

This chapter demonstrates that the flexibility of the VA approach to image analysis can also 

be used to support the selection of numerous and consistent training samples towards a 

semisupervised method. The proposed method uses spatial information without setting 

shape parameters or using a specific shape in order to select unlabelled samples in the 

context of semisupervised approaches. In the next section, the proposed method is 

presented. The algorithm will be discussed in Section 5.3 and 5.4. The experimental results 

of the VA model are presented in Section 5.5. A short summary and ideas for further work 

are represented in Section 5.6.  

 Proposed method 

Let 𝑥 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏) ∈ ℝ𝑑 denote a multispectral d-dimensional image with n pixels, 

𝑦 = (𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑛) an image of labels, 𝐾 = {1,2, ⋯ , 𝑘} a set of k class labels, 𝑋𝐿 =

{(𝑦𝑖, 𝒙𝒊 
)}𝑖=1

𝑙  labelled samples, l number of labelled samples, and 𝑋𝑈 = {𝒙𝒊}𝑖=𝑙 +1
𝑛  unlabelled 

samples. Let  �̃�𝐿 = {(𝑗, 𝒙𝒋)}𝑗=1
𝑘  denote the feature labelled samples, where �̅�𝒋 

 is calculated 

on the mean value in each band of all 𝒙𝒊 
∈ 𝑋𝐿 with the same class. The proposed approach 

is based on three main steps: creation, selection and classification. In the creation step, VAs 
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are applied to extract training objects from image dataset. The output representation can be 

described as follows: 

𝐼𝑃 = ⋃ 𝑉𝐴𝑖,𝑐∈𝐾
𝑁
𝑖=1 , 𝑉𝐴𝑖 ∩ 𝑉𝐴𝑗 = ∅ , 𝑖 ≠ 𝑗 , (5.1) 

where Ip is the VA-based image model (or VA map), VAi,c is regarded as a set of labelled 

connected pixels of the class 𝑐 ∈ 𝐾, and N is the number of VAs. The size, shape and the 

class of VAs may vary according to the observed data. In the selection step, a similarity 

metric is applied to extract reliable VA samples from VA-generated samples and candidate 

sets for the learning process. In the classification step, the selected VAs are then used by the 

SVM classifier to classify the image. 

 Vector agents  

For semisupervised applications, VAs are used to identify a set of training objects. In the 

following sections, the elements of VAs are described in terms of a semisupervised 

algorithm. 

 Geometry and geometry methods 

The geometry component L determines the shape and size of the training objects. L stores 

the vertices that determine the boundary of the VA at each increment. Geometry methods 

ML are a collection of individual geometric methods (see Section 3.2.2.1) allowing the 

geometry L to evolve in the simulation space.  

 State and transition rules  

Similar to the VA-based unsupervised approach, the state S of a VA is the class of a VA and 

the set of attributes (e.g. spectral descriptor) that form the feature space involved in the 

classification process. Since it is dynamic in nature, each VA updates its attributes at every 

increment. A VA is initialised in the image space if a candidate pixel xc and its neighbouring 

pixels should have the same class. To assess the class of neighbouring pixels, VAt uses the 

SVM classifier.  

These points or candidate pixels will evolve into polygons via an iterative process by 

capturing nearby pixels based on TS rules (see Section 4.2.2.2). If 𝒙𝑐 
is found eligible to 

belong to 𝑉𝐴𝑡, its attributes in S are updated based on the new geometry Lt+1 and the 

corresponding set of pixels 𝑋𝑉𝐴𝑡+1
. The features characterising the VAt such as spectral, 
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textural, and structural descriptors are re-evaluated. This yields a new signature for VAt in 

the next iteration, namely t+1. 

 Neighbourhood and neighbourhood rules 

As VAs cannot affect the geometry of each other, VAs use the same neighbourhood rules 

RN described in the previous chapter (Chapter 4, section 4.2.2.3). In this context, each VA 

only has knowledge of the subset of VAs that are adjacent.  

This structure allows VAs to address simultaneously the geometry and class of objects from 

initial pixels to the final training objects based on an evolving process enabled by an iterative 

scheme (see Section 3.3.6) that involves constant interactions between all VA components. 

The output of the creation step is the VA-generated samples (Equation 5.1). Once candidate 

sets are inferred, the proposed approach uses the following selection algorithm to 

automatically identify the most informative samples from the VA-generated samples.  

 Selection of VA-generated samples 

As the use of all VA-generated samples in the creation step for the learning process can 

drastically increase computational cost, the Nearest-Neighbour (NN) algorithm is applied to 

find the most informative candidate sets of each class. Let 𝐷 = {𝑉𝐴𝑖}𝑖=1
𝑁  be the VA-

generated samples set, �̃� = {(𝒛�̅�, 𝑆𝑖)}𝑖=1
𝑁  the feature set, N the number of VAs, �̅�𝒊 a vector 

based on the mean value in each spectral band of all pixels within each VA, and 𝑆𝑖 ∈

𝐾 specified on the state of each VA, S (see Section 3.2.4). Thus, the similarity metric 𝜃 of 

the two samples (�̅� ,�̅�), �̅� ∈ �̃� and 𝒙 ∈  �̃�𝐿, can be calculated via the spectral angle algorithm 

as follows:  

 

𝜃 = cos−1 (
∑ �̅�𝑖,𝑆=𝑘.�̅�𝑖,𝑦=𝑘

𝑑
𝑖=1

(∑ �̅�2
𝑖,𝑆=𝑘  

 

 

 𝑑
𝑖=1 )

1
2

∗(∑ �̅� 
2

𝑖,𝑦=𝑘
𝑑
𝑖=1 )

1
2

),    
(5.2) 

 

𝑀 = {𝜃𝑖}𝑖=1
𝑁  and 𝑅 = {(𝛿𝑗, 𝑆𝑗)}𝑗=1

𝑘  are the similarity metric set and the reference set, 

respectively, where 𝛿𝑗 is equal to the minimum 𝜃 for each class in M and 𝑆𝑗 ∈ 𝐾. Thus, VAi 

in D is a selected sample if its corresponding θi in M can satisfy the following rule: 
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𝜃𝑖 − 𝛿𝑗,𝑆=𝑉𝐴𝑖.𝐒 ≤ 𝛼,   (5.3) 

 

where α is a threshold manually determined. The selected VAs can be expressed as follows: 

 

  𝒟𝑠 = ⋃ 𝑉𝐴𝑖 
𝑃
𝑖=𝑘 ,    (5.4) 

 

P is the number of selected VAs. P=k means there is only one selected VA for each class. 

In the classification step, the selected VAs, along with the initial label training samples, are 

applied via an SVM algorithm to identify the class of the remaining pixels.  

 Experimental results 

 Data 

The proposed approach was experimentally tested on two well-known datasets, ROSIS 

Pavia University and AVIRIS Indian Pines (doi:10.4231/R7RX991C).  

1) Indian Pine: the first dataset used in our experiments was a forest/agricultural region in 

India and collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor 

with a size of 145×145 pixels. 200 spectral dimensions were used and 20 spectral bands 

were removed due to the noise and water absorption. We used eight main classes with the 

largest numbers of samples including corn-notill, corn-mintill, grass-trees, hay-windrowed, 

soybeans-no till, soybeans-notill, soybeans-clean, and woods (Figure 5.2(a)).  

 2) University of Pavia: the second dataset was an urban area in Pavia, Italy and was 

collected by the reflective optics system imaging spectrometer (ROSIS) sensor with a subset 

image of size 250×250 pixels and spatial resolution of 1.3m. It covers nine classes including, 

asphalt, meadows, gravels, trees, metal sheets, bare soil, bitumen, bricks, and shadows. The 

original 115 bands were reduced to 103 bands; water absorption bands affected by the 

atmosphere were removed. Figure 5.3(a) shows the studied area. 

The proposed method uses the Repast modelling framework discussed in Section 4.3.1 to 

run the VA model. The threshold α also is set to 0.01 and 0.008 for the Pavia University and 

Indian Pines, respectively (Tan et al., 2014). 

http://dx.doi.org/10.4231/R7RX991C
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 Experimental design 

To assess the performance of the proposed approach, we used three different sizes of labelled 

training samples 𝑋𝐿 for each class: 5, 10 and 15 pixels. To create the classification maps, 

different pixel numbers of the selected VAs in 𝒟𝑠 were randomly applied to classify the 

images. This permitted us to analyse the effect of the size of VAs on the classification 

accuracy. Moreover, the parameter β is tested to evaluate the effect of the proposed 

algorithm to identify the proper VAs.  

To analyse the performance of the proposed approach, the results of the VA-based 

semisupervised classification methods were compared with a controlled classification 

whereby the SVM algorithm used only the initial label training samples to classify images. 

Since data acquired from remotely sensed imagery often have unknown distributions, the 

use of methods, such as ML, may lead to misclassifications, especially when there is a 

hyperspectral image (Mountrakis et al., 2010).  The purpose of this comparison was to 

measure the benefit of the VA-generated samples on the classification. In all cases, the 

overall accuracy (OA) and Kappa coefficient (Kappa) were used to measure the 

classification accuracy. 

 Results and discussion 

Figure 5.2(c) shows the VA map for the experiments conducted using 15 labelled training 

samples on the image dataset. Figure 5.2(d) displays the spatial distribution of the selected 

VAs on the ground truth map (yellow polygons). As can be seen, most selected polygons lie 

on the corresponding ground truth class. A visual assessment of Figures 5.2(e) and (f) shows 

that the proposed method suggests a better depiction of the ground truth map compared to 

the Supervised SVM (SSVM).  

To assess the performance of the proposed approach, we randomly selected three different 

sizes of labelled training samples of 5, 10 and 15 pixels for each class from the ground truth 

map (Figure. 5.2(b)). To create the classification maps, the method used different pixel 

numbers of the selected VAs within 𝒟𝑠. This permitted the analysis of the effect of the size 

of VAs on the classification accuracy. To analyse the performance of the proposed approach, 

the results of the VA-based method were compared with a controlled classification where 

the SVM algorithm used only the initial label training samples to classify images. 

 



                                               Chapter 5: Vector agent model for supervised image classification 

100 

 

(a) (b) (c) 

(d) (e)  
(f) 

 

Figure 5.2. (a) The Indian Pine datasets. (b) Ground truth map of the Indian Pine datasets. (c) VA- 

generated training samples. (d) The selected VAs (yellow polygons) based on 15 initial training 

samples. (e) and (f) classification maps based on the VA approach and the supervised SVM 

algorithm by using 15 label training samples, respectively. 

Table 5.1 lists the overall accuracy (OA) and Kappa values of the classified images based 

on the different configurations described above.  

Table 5.1. OA values and Kappa values of the Indian Pine dataset based on different methods: the 

supervised SVM (0%), and the VA-based algorithm where β is set to 0.1. 

Percentage of each selected 

VA 

0 10 20 30 40 50 100 

 

 

 

 

Number of 

labelled 

training 

samples 

 

5 

OA 54.94 55.10 

 

56.39 

 

56.52 

 

54.95 

 

56.34 

 
57.71 

 

Kappa 46.96 47.40 

 

48.73 

 

48.92 

 

46.96 

 

48.69 

 
50.65 

 

 

10 

OA 56.75 59.70 

 

60.54 

 

59.94 

 

60.27 

 

60.84 

 
61.09 

 

Kappa 49.81 52.74 

 

53.51 

 

52.8 

 

53.8 

 

53.15 

 
54.07 

 

 

15 

OA 64.75 68.20 68.95 70.01 70.05 69.4 71.43 

 

Kappa 58.43 62.18 

 

62.95 

 

64.27 

 

64.26 

 

63.53 

 
65.92 
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As can be observed from Table 5.1, in all cases the VA-based approach exhibits better 

performance than the SSVM. For example, in the case with 15 training samples per class, 

the OA values are 64.75% and 71.43% based on the SSVM and the VA-based approach, 

respectively. The use of the VAs shows an improvement of more than 7% for the OA value. 

The OA accuracy and Kappa values are slightly increased when the VA-based approach 

uses more samples. 

Figure 5.3(c) shows the VA map for the experiments conducted with 15 labelled training 

samples on the Pavia University image (Figure 5.3(a)). Figure 5.3(d) displays the spatial 

distribution of the selected VAs on the ground truth map. As can be seen, most selected 

polygons lie on the corresponding ground truth class (Figure 5.3(d)). Figure 5.3(e) and 5.3(f) 

display the classification maps based on the VA semisupervised SVM and supervised SVM 

(SSVM), respectively.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

 

Figure 5.3. (a) The Pavia University datasets. (b) Ground truth map. (c) VA-generated training 

samples showing the selected VAs by the algorithm 1 (represented as yellow polygons) based on 15 

initial training samples (d). (e) and (f) are the classification maps based on VA approach and the 

SSVM by using 15 label training samples. 
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Table 5.2 lists the overall accuracy (OA) and Kappa values of the classified images based 

on the different configurations described in Section 5.5.2. Table 5.2 shows that the VA-

based approach exhibits better performance than the SSVM for all cases. The OA accuracy 

and Kappa values are increased when the VA-based semisupervised approach uses more 

samples. Tables 5.3 and 5.4 list the classification accuracy with 15 labelled training samples 

based on different values of β. As can be seen from Tables 5.3 and 5.4, the OA values are 

slightly improved when threshold β increases.  

Table 5.2. OA values and Kappa values of the Pavia University dataset based on different methods: 

the supervised SVM (0%), and the VA-based algorithm where β is set to 0.1. 

Percentage of each selected 

VA 

0 10 20 30 40 50 100 

 

 

 

 

Number of 

labelled 

training 

samples 

 

5 

OA 77.58 82.43 84.41 83.3 

 

84.80 84.47 

 

82.46 

 

Kappa 73.12 78.64 

 

80.94 

 

79.65 

 
81.40 

 

81.05 

 

78.36 

 

 

10 

OA 84.01 86.93 

 

86.5 

 

85.91 

 

86.86 

 

86.28 

 
86.79 

 

Kappa 80.05 83.67 

 

83.16 82.41 

 

83.52 82.83 83.43 

 

15 

OA 85.15 88.15 

 

88.41 

 

87.94 

 

87.76 

 

88.02 

 
89.25 

 

Kappa 51.65 85.33 

 

85.66 

 

85.11 

 

84.89 

 

85.2 

 
86.67 

 

              Table 5.3. The classification accuracy of the Indian Pine dataset with 15 labelled  

              Training samples based on different values of threshold β. 

Percentage of each selected 

VA 

10 20 30 40 50 100 

 

 

 

 

β  

 

.0

00 

OA 67.58 

 

68.81 

 

70.27 

 

69.95 

 

68.55 

 
71.33 

 

Kappa 61.63 

 

62.96 

 

64.54 

 

64.23 

 

62.61 

 
65.87 

 

 

0.

15 

OA 67.71 

 

69.32 

 

69.39 

 

70.23 

 

71.05 

 
72.42 

 

Kappa 61.84 

 

63.59 

 

63.62 

 

64.49 

 

65.52 

 
67.04 

 

             Table 5.4. The classification accuracy of the Pavia University dataset with 15 labelled  

              Training samples based on different values of threshold β. 

Percentage of each selected 

VA 

10 20 30 40 50 100 

 

 

β  

 

0 

OA 88.03 

 

88.19 

 

87.42 

 

87.89 

 

88.42 

 
89.36 

 

Kappa 85.16 

 

85.39 

 

84.49 

 

85.04 

 

85.67 

 
86.82 

 

 

0.

15 

OA 88.87 

 

86.57 

 

88.13 

 
89.32 

 

87.95 

 

89.04 

 

Kappa 86.20 

 

83.52 

 

85.33 

 
86.74 

 

85.14 

 

86.43 
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It is important to mention that increasing the β value not only improves the confidence level 

of the extracted VAs, but also helps to reduce the computational cost. However, increasing 

β can result in some classes being ignored by the VAs (Figure 5.4). For example, Figure 

5.4(b) shows that VAs cannot identify the grass-trees and hay-windrowed classes when β is 

set to 0.5. 

 
(a) 

 
(b) 

Figure 5.4. The extracted VAs based on 15 labelled training samples when β is equal to 0.5: (a) the 

Pavia University dataset, (b) Indian Pine dataset. 

Finally, Table 5.5 shows the CPU processing time (in seconds) spent on the different steps 

of the proposed method for the case illustrated in Figure 5.2(d).  

             Table 5.5. Computational time spent in each step of the VA-based approach based on  

            100% of the samples from the selected VA.  

Creation step Selection step  Classification step Sum 

135.0 Sec. 2.0 Sec. 6.0 Sec. 143.0Sec. 

It should be noted that this configuration was designed to address the difficult case of the 

Indian Pine image. The image has more than 136 VA polygons with a range of 43 to 200 

pixels, representing up to 70% of the pixels in the image. The processing is carried out 

using Repast running on an Intel CPU at 3.40 GHz with 16 GB of memory. 

 Conclusions 

In supervised image classification, the process of selection label samples is often expensive 

and time consuming, especially for hyperspectral satellite images. This issue is usually 

addressed via the SSL algorithms in which a large number of unlabelled data along with the 
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available labelled data are utilised to build classifiers. Thus, SSL methods require less 

human efforts in sample collection. However, the quality of the selected unlabelled samples 

is important in order to obtain accurate classification results. To ensure the highest quality 

of the selected unlabelled samples, several studies have proposed using spatial information 

(Tan et al., 2015 and 2014; Wang et al., 2014; Dópido et al., 2013; Bruzzone and Persello, 

2009). These methods usually utilise a predefined geometry (e.g. a fixed size window) or 

parameters (e.g. kernel size) to identify the most helpful unlabelled samples. This chapter 

presented a new approach, based on an actual dynamic geometry to generate new labelled 

samples from relatively few initial training samples, without setting predefined 

segmentation parameters or shapes. 

To reach this aim, we defined the components of VAs, including geometry, geometry 

methods, state, transition rules, neighbourhood and neighbourhood rules. The geometry of 

VAs is modelled as a directional planar graph, using a set of spatial reasoning relationships 

and geometric operators to implement a set of dynamic geometric behaviours, such as 

growing or joining. The geometry and geometry rules enable VAs to implement a dynamic, 

irregular geometry to segment and classify concurrently new training samples. State and 

transition rules were applied to specify the classes and membership criteria allowing VAs to 

determine their class dynamically as their geometry evolves. To update their own class, VAs 

can rely on a membership function as well as a crisp test related to spectral descriptors. By 

being spatially aware via their neighbourhood components and neighbourhood rules, VAs 

can explicitly perceive each other in image space. To identify the most effective VA-

generated samples, we used the NN algorithm formulated on the spectral angle function. 

The selected VAs were applied by the SVM classifier to label the remaining pixels in the 

classification step. The experimental results demonstrate the desirable performance of the 

new approach. 

The process to find, extract and evaluate the training samples is an automatic process based 

on a fully random sampling scheme. In the future, we will explore the possibility of 

developing an intelligent initialisation process in image space based on the characteristics 

of the classes of interest in the real-world that could significantly reduce processing time. 

Two thresholds, α and β, were determined manually. To increase the degree of automation 

of the proposed method, some information of the initial labelled samples can be applied to 

automatically determine β. The selection process is performed through the threshold α. The 
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use of the geometric information of VAs along with the spatial relationship between VAs 

instead of the threshold α would also be interesting to study.  

So far, we have seen some examples of the VA model to improve the results of the pixel-

based approaches. In Chapter 4 and Chapter 5, we used the VA model to create training 

samples for supervised and unsupervised approaches. In the next chapter, we demonstrate 

the application of the VA model for image classification in the context of the GEOBIA 

approach.  
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Chapter Six 

Vector agent model for GEOBIA image classification  

Abstract 

The aim of this chapter is to show the capabilities of VAs in extracting geo-objects under 

different conditions. This is tested in the context of GEOBIA image classification. We use 

VAs to detect and extract real-world objects from different raster datasets, including a 

WorldView-3 image subset, an IKONOS image subset and a LiDAR DSM. The results show 

the flexibility of VAs to incorporate various transition rules in order to address a complex 

system composed of a number of heterogonous components, exhibiting adaptive properties 

through space and time. The obtained results are compared to those obtained using a 

traditional GEOBIA approach. Experimental tests indicate that VAs outperform GEOBIA, 

marking them out as viable new processing units for remote sensing image classification. 

 Introduction 

In simple terms, the Geographic Object-Based Image Analysis (GEOBIA) approach refers 

to a group of image analysis techniques that use the spatial and thematic knowledge of 

meaningful image objects in geographic space to analyse an image (Hay and Castilla, 2008). 

The core idea of GEOBIA for an object-based classification system (OBC) is to use expert 

knowledge for image classification. This use of expert knowledge allows the object-based 

approaches to rely on more information and produce more reliable maps compared to the 

conventional pixel-based approaches.  

Despite the advantages that the GEOBIA approach offers such as spatial knowledge, 

classical GEOBIA lacks the necessary abilities to directly address real-world objects in as 

dynamic a fashion as human interpreters do. To address real-world objects, the GEOBIA 

approach usually uses a sequential process of image segmentation and classification (see 

Section 2.3). In this context, the classical GEOBIA approach lacks the ability to take full 

advantage of the spatial and non-spatial information (e.g. shape or thematic meaning) of 

real-world objects during an image classification process. To tackle this limitation, the 
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GEOBIA approach uses a cycle of classification and segmentation (see Figures 1.1, 1.2 and 

1.3). In this way, the GEOBIA approach employs the results of a pre-classification step in 

order to take advantage of the domain-dependent knowledge of real-world objects. 

Although the above strategy provides the necessary contextual information, it still relies on 

a static geometry obtained through a segmentation process. In this sense, objects cannot 

change their geometry during the classification process (see Section 2.1.2.2). This causes 

problems for the subsequent classification stage, which depends upon a correspondence of 

segmented object and real-world object to be effective.  

In this framework, it would also be difficult to find the source of errors; that is, whether the 

error is from the segmentation or the classification steps. In other words, the GEOBIA 

approach separately models the geometry and theme of geo-objects, but there is no specific 

rule to determine the accuracy of the segmentation. According to Hay and Castilla (2008), 

“The visual appeal of image-objects, their easy GIS-integration and 

their enhanced classification possibilities and information potential 

have attracted the attention of major RS image processing vendors, who 

are increasingly incorporating new segmentation tools into their 

packages. This provides a wider choice for practitioners, but promotes 

confusion (among different packages, options, syntax, etc.) and makes 

it more difficult to develop a cohesive GEOBIA community. Will a lack 

of protocols, formats, and standards lead to a segmentation of the field 

rather than a consolidation?”  

 

To address the challenges highlighted thus far, this chapter assesses the capabilities of VAs 

as a new dynamic processing unit that improves on current GEOBIA methods.  

In the next section, the proposed method is presented. The experimental results will be 

discussed in Section 6.3 and Section 6.4. A short summary and ideas for further work are 

discussed in Section 6.5. 

 Vector Agent 

In the context of the VA model, meaningful objects can dynamically change their own 

geometry and state, as well as directly perceive each other, thus allowing the real world 

environment captured by the image to be modelled in a dynamic fashion similar to a human 

interpreter. VAs simultaneously segment and classify image objects from initial pixels to 

the final classified objects based on an evolving process enabled by an iterative scheme that 
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involves constant interactions between all VA components. The aim of the VA model is to 

provide an autonomous processing unit for image analysis that is implemented using VAs.  

Supporting this general account of the model are the following examples that demonstrate 

the various stages of processing. To implement the VA model, the proposed method uses 

the Repast modelling framework discussed in Section 4.3.1. To describe the VA model, we 

use a UML. The main components and methods of constructing the vector agent-based 

image classification are shown in Figure 3.12 in Chapter 3.  

 Dataset 1 

The first example model includes a collection of spatial goal-oriented agents to extract five 

different classes, building, meadow, road, shadow and tree, from a multispectral IKONOS 

image and LiDAR DSM (Figure 6.1). The image benefited from a pan-sharpening process 

yielding four spectral bands, namely blue, green, red and near infrared, with 1×1m spatial 

resolution. 

 
(a) 

 
 

(b) 

 

 

 

 

 

 

Figure 6.1. (a) Subset of an IKONOS multispectral image with a size of 140×140 pixels obtained 

from an image fusion process (panchromatic pixel size 1m × 1m; multispectral pixel size 4m × 4m 

for blue, green, red and near infrared bands) and (b) LiDAR DSM with 1m spatial resolution. 

 Proposed methodology 

As can be observed from Figure 3.12 in Chapter 3, there are two main types of agents in the 

proposed approach: MakerAgent and VecAgent, which both inherit from the top level agent 

in the object hierarchy, SimpleAgent. 

6.3.1.1.  MakerAgent  
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MakerAgent creates the VAs in the first step, putting them into context through the 

generateVA method. To create and add VAs to the vector space, MakerAgent uses the rules 

in Table 6.1. 

Table 6.1. Initialisation rules. 

Name Description 

Rule 1: The candidate pixel xc and its immediate neighbours should be found to be members of 

the same class.  

Rule 2: An elevated VA can exist in vector agent space if its height is more than TL.  

Rule 3: The standard deviation of pixel xc and its immediate neighbours should be less 

than 𝜎ℎ ≤ 𝑇𝐻.  

To implement Rule 1, MakerAgent uses the SVM classifier, which is trained by a limited 

number of training samples, to evaluate membership values of candidate pixels for each of 

the classes (e.g. meadow, road, shadow and tree). To initiate elevated VAs (e.g. tree), 

MakerAgent applies Rule 1 and Rule 2. In this case, TL is set to 2.70m computed by the 

lowest elevation on DSM (in this case, 2.20m) plus the minimum height of tree objects (e.g. 

0.5m). To create building VAs, MakerAgent uses Rule 2 and Rule 3. In our case, TL is equal 

to 5 meters calculated according to the lowest value on DSM plus the standard height of 

buildings (e.g. 2.80m) in an urban area. In fact, TL values divide pixels into three main 

groups: ground pixels, non-ground pixels and intermediate pixels (Figure 6.2).  

For the ground pixels, TL is less than or equal to 2.70m (see Figure 6.2). These pixels 

obviously belong to the meadow, road and shadow classes. As the terrain is quite flat in our 

example, a candidate pixel belongs to the building or tree classes if its elevation is more than 

5m. Pixels between 2.70m and 5m are regarded as intermediate pixels. In the case that the 

terrain is not flat, these thresholds can be updated according to average slope on LiDAR 

DSM datasets. Because the tree objects produce heterogeneous elevation information in 

contrast to buildings (Figure 6.1(b)), Maker agents also employs standard deviation values 

to separate buildings from trees via Rule 3. In this case, TH can be defined by the accuracy 

of the DSM datasets or a human interpreter. 
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Figure 6.2. The classification map based on the elevated information including 3 different classes: 

non-ground, intermediate and ground classes provided by ArcGIS software according to the TL. 

The initialisation process can obey a specific sampling scheme (e.g. fully random, stratified 

random, systematic unaligned random, etc.). In our example, MakerAgent uses a fully 

random schema to initiate VAs in vector space. MakerAgent is also responsible for 

facilitating the coordination between VAs. To do this, MakerAgent applies the trackVA 

method. For example, the MakerAgent retrains the SVM classifier based on the VA-

generated signatures if all VAs are passive.  

6.3.1.2.  VecAgent  

The instances of the VecAgent class, namely VAs, use the VAGeometry, VAPoint, 

VALineString, VAPolygon and VAGeometryFactory classes (Figure 3.12 in Chapter 3) to 

determine and change their geometry stored in the polygon variable. At each increment, VAs 

will update the polygon variable. VAs can also generate a new VA or set of VAs (see Figure 

3.8). In the shrinking/splitting process, the shrinking of a VA may lead to the initialisation 

of a new VA. Each new VA has its own attributes specified in terms of its geometry on the 

input raster datasets. 

Through the class variable, VAs can determine the thematic meaning of the real-world 

objects. In this case, VAs employ VATransitionRule and VANeighbourhoodRule classes to 

find and update their classes. VASignature and VAFeatureSignature variables allow the 

VAs to store and update their own spectral information at each iteration. To implement the 

neighbourhood rules, VAs calculate the spatial distance in the vector space. VAs use these 
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variables and classes via the Evolving method to find and extract their geometry and classes 

during the simulation process. 

Time is considered as discrete time steps supported through the Schedule class in Repast 

Simphony. The polygon and VASignature variables are the elements of the VAs updated at 

each increment. Each VA uses a snapshot approach to model its changes. At each time 

increment, this model simply provides a new map which is composed of a temporally 

homogeneous unit (Figure 6.3). 

 

time=300 

 

time=1200 

 

 

 

time=2200 

 

 

 

 

 

Figure 6.3. Simulation result over 2200 time steps in the agent modelling shell Repast Simphony.  

6.3.1.3.  Process overview and scheduling 

The model simulates the interactions between VAs and their environment over time. The 

processes running during each time step and their respective relations are illustrated in UML 

sequence diagrams (Figure 6.4). This diagram presents an outline of the sequence of 
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processes and the schedule of methods applied by agents at each discrete time step. Each 

process is defined according to a certain class of agents from the UML class diagram. 

The proposed model works in five main steps: initialisation, growing, developing, 

construction and production. First, the MakerAgent uses the initialisation rules (see Table 

6.1) and the generateVA method to create and add VAs to the vector space. Furthermore, 

the MakerAgent checks the VAs as a coordinator agent via the trackVA method. A parallel 

mechanism allows the MakerAgent and VecAgent classes to perform simultaneously their 

own respective methods.  

 

Figure 6.4. UML sequence diagram of the MakerAgent and its methods including generateVA and 

trackVA; and VecAgent and its main method, namely Evolving executed through an iterative 

mechanism. 

In the growing step, VAs automatically change their geometry in terms of geometric 

methods and transition rules based on initial training samples. To do this, VAs employ a 

mechanism of adaptation and updating through the Evolving method (e.g. Figure 6.3). When 

all VAs are passive (e.g. Figure 6.5(a)), MakerAgent uses the VA-generated samples to 

retrain the SVM classifier in the developing step.  
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As the use of all VA-generated samples can greatly increase computational cost, 

MakerAgent applies a Nearest-Neighbour (NN) algorithm to identify the most informative 

VA-generated samples. Let 𝑉𝐴𝑗 , 𝑗 = 1, ⋯ , 𝑚 denote the j-th VA of the k class (e.g. meadow) 

generated via the growing process, and m be the number of VAs. A similarity metric to 

measure the distance between the samples in VAj and the initial labelled samples XL of the k 

class is defined as: 

                  𝐷 
 
 
(𝑉𝐴𝑗, 𝑋𝐿) = 𝑚𝑖𝑛{𝑑(𝑥𝑖, 𝑥 )|𝑥𝑖 

∈ 𝑉𝐴𝑗 , 𝑥  
∈ 𝑋𝐿 },       

(6.1) 

  

 
(a) 

 
(b) 

 
 

(c)  
 

(d) 

 

 

Figure 6.5. Simulation results of each step: (a) growing step and (b) developing step where there is 

only interaction between a VA and its environment (see Section 7.3.1.4). (c) construction step. (d) 

production step where there is interaction between VAs and between VAs and their environment. 
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where xi and x are the vectors specified by the mean value in each spectral band, and 𝑑(𝑥𝑖, 𝑥 ) 

is the distance of two samples (𝑥𝑖, 𝑥 ) formulated on spectral angle distance. The selected 

VAs, namely 𝒟𝑠, can be expressed as follows: 

                  𝒟𝑠 = ⋃ 𝑉𝐴𝑖,
𝐾
𝑖=1      (6.2) 

where K is the number of classes. After that, random selection is applied to select a smaller 

number of pixels (e.g. 40 pixels) within each eligible VA for the learning process. VAs are 

then activated by a new SVM model by the MakerAgent. Figure 6.5(b) shows the results of 

the developing step.  

In the construction step, VAs change their behaviour based on new transition rules. In this 

case, all VAs except the building VAs continue the developing process even where there are 

intermediate pixels. Thus, a VA can capture a candidate pixel xc only if it is an adjacent 

pixel. If pixel xc belongs to another VA, VAs use the interaction rules (see Section 6.3.1.4) 

to negotiate with each other (e.g. Figure 6.5(c)). In the production step, pixel xc belongs to 

a VA only if it is an adjacent pixel. If pixel xc is a dependent pixel, VAs (except building 

VAs) employ the interaction rules (see Section 6.3.1.4) to determine the boundaries of real-

world objects in the image space (e.g. Figure 6.5(d)). In the production step, all VAs are 

regarded as active agents (see Appendix B).  

6.3.1.4.  Interactions 

The interactions among VAs, and between VAs and their environment are the primary basis 

for the dynamics of the model. Table 6.2 summarises the rules employed by VAs through 

the Evolving method.  

                               Table 6.2. Interaction rules. 

Name Formula 

Rule 4:    𝑉𝐴𝑡 . 𝑆. 𝑐𝑙𝑎𝑠𝑠 = 𝒙𝑐 . 𝑐𝑙𝑎𝑠𝑠 

Rule 5:            𝑃𝑎 
(𝑉𝐴𝑡+1) − 𝑃𝑏(𝑉𝐴𝑡+1) ≥ 𝛽 

Rule 6:          𝐷𝑁𝐷𝑆𝑀 
(𝒙𝒄) ≥ 𝐷𝑁𝐷𝑆𝑀 

(𝒙𝒃)  

Rule 7:  𝑃𝑉𝐴2,𝑡
(𝒙𝒄) ≤ 𝑃𝑉𝐴1,𝑡

(𝒙𝒄) 

i. Vector agent-environment interaction 

In the event that a candidate pixel xc is an isolated pixel, all VAs except the building VAs 

use Rule 3 and Rule 4 to evaluate pixel xc. The VA uses the SVM classifier to evaluate the 

class of pixel 𝒙𝑐. 𝑃𝑎(𝑉𝐴𝑡+1) and 𝑃𝑏(𝑉𝐴𝑡+1) are regarded as the largest and second largest 
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probability of VA to belong to the classes a and b ∈ 𝐾 = {1,2, ⋯ , 𝑘}, a set of k class labels. 

𝑃𝑎(𝑉𝐴𝑡+1) and 𝑃𝑏(𝑉𝐴𝑡+1) are computed through the SVM classifier and the mean value in 

each spectral band. The mean values are calculated based on the assumption that pixel 𝒙𝑐 

belongs to the VA at time t+1. β is a parameter applied by each VA to control the effect of 

its signature at each iteration. This structure allows the VA to evaluate pixel xc at two 

different levels. At the first level, the VA locally evaluates pixel 𝒙𝑐 based on the labelled 

training samples. At the second level, the above function allows the VA to evaluate pixel 𝒙𝑐 

in terms of its own signature at each iteration. Pixel 𝒙𝑐 belongs to the VA if it can satisfy 

Rule 4 and Rule 5. 

In the case that pixel xc is a non-ground pixel, building VAs use Rule 3 and Rule 6 to capture 

pixel xc. In the growing step, the VA building applies Rule 3 to evaluate pixel xc. This rule 

allows the VAs to implement a region growing algorithm to find their initial boundary 

(Figure 6.5(a)). As the standard deviation of pixels lying on the boundary of roofs is high, 

building VAs use the transition rules, namely Rule 6, formulated on the Gaussian kernel, to 

delineate their boundary in the developing step (Figure 6.5(b)). 

In this case, VAs simultaneously change their behaviour from region-based to edge-based 

via Rule 6. 𝐷𝑁𝐷𝑆𝑀 
(𝒙𝒄)  and 𝐷𝑁𝐷𝑆𝑀 

(𝒙𝒃)  are convoluted output pixel values of pixel 𝒙𝒄 and 

pixel 𝒙𝒃 on DSM computed via Equation 6.3 and Equation 6.4. Pixel 𝒙𝒃 is the adjacent pixel 

of pixel 𝒙𝒄 that the VA uses to create a new vertex centered on pixel 𝒙𝒄. 

       𝐷𝑁𝑜𝑢𝑡 =
1

𝑊
∑ ∑ 𝜔𝑖𝑗

𝑑
𝑗=1

𝑑
𝑖=1 𝐷𝑁(𝑖, 𝑗) ,    (6.3) 

      𝑊 = ∑ ∑ 𝜔𝑖𝑗
𝑑
𝑗=1

𝑑
𝑖=1 ,  (6.4) 

where d is set to 3. 𝐷𝑁(𝑖, 𝑗)  is the pixel value in the input DSM at location (i, j) and  DNout  

is the convoluted output pixel value. 𝜔𝑖𝑗 and W are the values of the element at location (i, 

j) in the kernel and sum of all kernel elements, respectively.  

ii. Vector agent- vector agent interaction 

In the case that pixel xc belongs to another VA, all VAs except building VAs use the 

interaction rule, Rule 7. The interaction between VAs can explicitly be carried out based on 

the geometry and the state of involved VAs (Equation 6.5).  
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              𝑙(𝑉𝐴𝑖,𝑡, 𝑉𝐴𝑗,𝑡) ≤ 𝑟√2,          (6.5) 

where 𝑉𝐴𝑗,𝑡, 𝑗 ∈ ℕ, l is the Euclidean distance and r is the resolution of raster datasets. In 

the event that pixel 𝒙𝑐 
 lies on the common boundaries between two VAs such as 𝑉𝐴1,𝑡 and 

 𝑉𝐴2,𝑡  having different classes 𝑘1 and 𝑘2, respectively, 𝑉𝐴1,𝑡  can capture 𝒙𝑐 
 during a 

growing/shrinking (Figure 6.6) or shrinking/splitting (see Figure 3.8) process if it can satisfy 

Rule 7, where  𝑃𝑉𝐴2,𝑡
(𝒙𝒄) and 𝑃𝑉𝐴1,𝑡

(𝒙𝒄)  are calculated by the SVM classifier. These 

operators remove and transfer a vertex from one to the other VA.  

 

(a) 
 

(b) (c) 

 

 

 

 

Figure 6.6. An example of growing/shrinking process where pixel xc lies on the shadow VA. (b) is 

more likely to belong to the tree VA based on Rule 7 (c). 

The spatial and spectral space provides all of the vector agents with their required resources 

and the spatiotemporal dynamics of interactions are influenced by the object’s 

characteristics at each location. Accordingly, the interactions vary within the study area and 

the VAs will behave heterogeneously in terms of their elements.  

 Implementation and results 

6.3.2.1.  Initialisation 

VecContext class initiates the MakerAgent. In this event, the normalised input images and 

DSM dataset along with the ground truth (GT) map (Figure 6.7(d)) are read in raster format. 

The initial training samples are randomly selected from the GT map using 15 pixels for each 

class except the building class. The number of VA-generated samples is set to 40 pixels. In 

other words, the MakerAgent only selects VAs with a size of more than 40 pixels to retrain 

the SVM classifier in the developing step. In this experiment, the Radial Basis Function 

(RBF) kernel is chosen for classification (Camps-Vallas et al., 2007). To find the appropriate 

kernel parameters for the SVM classifier, MakerAgent uses a 10-fold cross-validation 
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algorithm (see Section 2.2.2.2). In our example, β is set to 0.1. As already mentioned in the 

previous chapter, the increasing β value can improve the confidence level of the extracted 

VAs. However, some classes may be ignored by the MakerAgent if the VA model uses a 

high value for threshold β (e.g. Figure 5.3 in Chapter 5).  

6.3.2.2.  Discussion 

Figure 6.7(g) displays the classification map produced by the VA-based method. To evaluate 

the accuracy of the VA model, a conventional GEOBIA method is applied. First, the image 

and the DSM datasets are segmented through a multiresolution segmentation process using 

eCognition software (Figure 6.7(f)). Figure 6.7(b) displays the image created by a 

Normalized Difference Vegetation Index (NDVI).  

As Figure 6.7(b) shows, it is difficult to separate the meadow class from the tree class. This 

issue can be resolved by using the height information from the LiDAR DSM. Figure 6.7(c), 

produced by a Laplacian edge detection operator, shows that the height information from 

the LiDAR DSM dataset is key to identifying elevated objects (e.g. buildings and trees). As 

the information contained in the LiDAR DSM and in the image is important, all datasets are 

applied for the segmentation process.  The segmented image is then classified via a set of 

structural (e.g. elevated information), spectral (e.g. NDVI) and contextual rules (e.g. 

neighbourhood relationships) in the classification step (Figure 6.7(f)). A visual assessment 

of the classification maps (Figure 6.7(f) and Figure 6.7(g)) shows that the VA-based 

approach provides more satisfactory classification results than the conventional GEOBIA 

approach (e.g. building objects). A comparison between Figure 6.7(c) and Figure 6.7(g) 

indicates the VA buildings are very close to the real structure of the buildings in detail, while 

the VAs do not impose any constraint on building shape (e.g. scale). As can be seen in Figure 

6.7(c), the LiDAR DSM image shows the jagged edges, especially where there are features 

such as chimneys and windows. These results indicate the high potential of the VA model 

in dealing with noise caused by features such as windows or chimneys on LiDAR DSM 

images (Figure 6.7(c)).  Figure 6.7(g) shows that in terms of meadow and tree classes, the 

VA model can separate the meadow objects from tree objects without setting a threshold. 

Figure 6.7(d) displays the ground truth map manually created by an expert operator to 

evaluate the performance of the VA model. Classified objects in Figure 6.7(g) and 6.7(f) are 

compared with their corresponding reference objects in Figure 6.7(d). 
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Figure 6.7. (a) A false colour combination of an IKONOS image. (b) NDVI map. (c) Extracted 

edges in terms of a Laplacian edge detection kernel. (d) Ground truth map manually selected by an 

expert operator. (e) Segmented image based on scale=14, shape=0.5, compactness=0.5 and layer 

weights=1(f) Classification map based on the GEOBIA method. (g) VA map. 

Table 6.3 displays the results of this comparison based on TP, FP and FN values. For the 

assessment of the accuracy of the proposed method, three indices, completeness, correctness 

and quality, are computed through Equations 4.10, 4.11 and 4.12 (see Chapter 4). From 

Figure 6.8, it can be observed that the completeness, correctness and quality rates of the VA-

based and the GEOBIA approaches for the building class are similar. However, the 

geometric structure of the extracted boundaries indicates the VA buildings are more similar 

to the true buildings compared to the GEOBIA approach. The main reason for this error in 
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the GEOBIA approach is related to the segmentation step. As the segmented objects are 

formulated on the spectral and elevated information, it is difficult to distinguish buildings in 

relation to their neighbourhood (Figure 6.7(e)).  

Table 6.3. Comparison between the results of the VA-based and object-based approach. TP, FP and 

FN values are divided by the number of pixels within each ground truth class. 

Classification 

method 

Criteria Object class (%) 

  Building Meadow Road Shadow    Tree 

GEOBIA  TP 99.48 98.98 98.75 74.29 100.00 

 FP 0.57 0.00 1.09 11.43 8.20 

 FN 0.52 1.02 1.25 25.71 0.00 

Vector Agent TP 99.88 98.98 100.00 98.57 98.36 

 FP 0.00 0.00 0.17 7.14 1.64 

 FN 0.12 1.02 0.00 1.43 1.64 

 

 

(a) 

 
(b) 

 

 

(c) 

 

(d) 

Figure 6.8. Comparison between the VA-based approach and the GEOBIA method based on the 

completeness (a), correctness (b) and quality (c) indices. (d) The average rate of these indices in 

terms of VA and object-based approaches. 
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The results show a considerable improvement for the shadow class (more than 20%). There 

are two issues to consider when evaluating this result. Firstly, the segmented objects may 

lack the necessary characteristics of the shadow class. Secondly, there is an unbalanced 

spatial distribution of the shadow objects on the ground truth map. During photo-

interpretation, it was difficult to separate shadow areas from other classes because of the low 

contrast between objects. When considering the road class, the results of the VA-based 

approach show more reliable results when compared to the GEOBIA method (Figure 6.8(c) 

and 6.8(d)). Figure 6.8(d) shows that the VA model achieves an improvement of more than 

5% for completeness, 3% for correctness, and 6% for quality compared to the GEOBIA 

model. The results from the proposed method confirm the high potential of VAs in 

integrating the segmentation and classification step in order to directly address real-world 

objects in image space. The framework of this method is developed in Repast using an Intel 

CPU running at 3.40 GHz with 16 GB of memory. The VA model took 432 seconds to find 

the optimum values for the RBF kernel, train the SVM algorithm and classify the image.  

 Dataset 2 

In the second experiment, the VA model is experimentally tested on a subset of WorldView-

3 image 8 multispectral bands (red, red edge, coastal, blue, green, yellow, near-IR1 and near-

IR2) from a rural area near Dunedin, New Zealand (Figure 6.9(a)). The image dataset is a 

subset with a size of 140×140 pixels (1.20m pixel size) of a scene containing six land cover 

classes: bare soil, grass, lake, pond, river and shadow (Figure 6.9(a)).  

Figure 6.9(b) displays the ground truth (GT) map manually extracted by an expert operator. 

In the initialisation step, 15 pixels are randomly identified from GT map as training samples. 

It is important to mention that all water bodies, including pond, river and lake, use the same 

training samples, 15 pixels for all water objects. Similar to the previous experiment, the 

algorithm uses a 10-fold cross-validation algorithm to identify the parameters of the RBF. β 

is set to 0.1. The MakerAgent only uses 40 pixels from the eligible VA samples to train the 

SVM classifier. 
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Figure 6.9. (a) Subset of a WorldView-3 multispectral image with a size of 140×140 pixels from a 

rural area in Dunedin, New Zealand, Digital Globe Foundation, www.digitalglobefoundation.org. 

Ground truth map manually created by an expert operator. 

 Implementation 

In this example, the VA model is implemented in four main steps: initialisation, growing, 

developing and production. In the first step, the MakerAgent uses Rule 1 in Table 6.1 to 

create and add VAs to the vector space. The MakerAgent also employs a parallel mechanism 

to check the VAs as a coordinator agent via the trackVA method.  

VAs change their geometry in terms of geometric methods and transition rules based on 

initial training samples. As the pond, river and lake classes have similar DNs and use the 

same training samples, VAs employ the following structural rules in order to distinguish 

each of those classes: 

i. Water bodies are born as pond objects. 

ii. If the area of a pond is more than threshold Ta and the elongation index is more 

than threshold Te, it is considered a river object. The elongation index refers to 

the ratio of the major axis of the bounding polygon to its minor axis. Figures 

6.10(a) and 6.10(b) show how the pond VA is converted into river VA according 

to this rule (see red arrows in Figures 6.10(a) and 6.10(b)). 

http://www.digitalglobefoundation.org/
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iii. A pond becomes a lake, if its area is more than threshold Ta and its elongation 

index is less than threshold Te. The black arrows in 6.10(b) and 6.10(c) illustrate 

the transition from pond VA to lake VA. 

 

 (a) time=800 

 

 (b) time=803 

 

 

(c) time=824 

 

 

 

 

 

 

Figure 6.10. The red arrows in (a) and (b) display the transition from pond VA to river VA. The 

black arrows indicate the transition from pond VA to lake VA. 

In the event that all VAs are passive, MakerAgent retrains the SVM classifier based on the 

VA-generated samples in the developing step. MakerAgent employs One-Nearest-

Neighbour (NN) algorithm to identify the eligible VA. The algorithm randomly selects 40 

pixels for each class from the eligible VAs. VAs are then activated by the new SVM model 

(Figure 6.11(b)). In the production step, VAs can capture pixel xc if it is an adjacent pixel. 

In the case that pixel xc belongs to another VA, VAs employ interaction rules (see Section 

6.3.1.4) to negotiate with each other (Figure 6.11(c)).  
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Figure 6.11. Simulation results of each step: (a) growing step, (b) developing step, (c) production 

step. 

 Discussion 

Figures 6.12(a) and 6.12(b) show the maps created by the VA model and the GEOBIA, 

respectively. To create the GEOBIA map, we use a sequential GEOBIA approach (see 

Section 2.1.2.2). This is performed using eCognition software according to spectral features 

(to determine the initial class of image objects), NDVI (to identify the grass objects), 

structural information (to classify water bodies) and neighbourhood information (to refine 

mislabelled classes). A visual assessment of the classified map shows that the results of the 
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VA model are similar to the GEOBIA approach (Figure 6.12 (b)). However, in the GEOBIA 

approach we manually define thresholds and rules to label image objects. 

Figure 6.12(c) and (d) display the map provided using an SVM classifier, similar to the VA-

based approach. In this case, the object-based method first uses initial training samples to 

classify different segmented images by using the SVM classifier.  Then, the method uses the 

rules, which is applied by the VA model, to classify waterbodies into three classes, namely 

Lake, Pond and River. As can be observed from Figure 6.12(c) and (d), the object-based 

method misses some objects belonging to the pond class. However, the object-based and the 

VA-based methods use the same rules to classify waterbody objects. Because image objects 

corresponding to the pond class lack the necessary characteristics of the pond class, some 

pond objects in Figure 6.12(c) are classified as shadow objects.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

 

 

 

 

Figure 6.12. (a) the results of the VA model (b) the extracted geo-objects based on the GEOBIA 

approach; the method uses the image which is segmented based on scale=15, shape=0.5, 

compactness=0.5, layer weights= 1 except band7 weight=2, (c) the GEOBIA method uses the SVM 

classifier to classify the segmented image parameterized in (b), (d) the GEOBIA method applies 

the SVM classifier to classify the segmented image specified based on scale=15, shape=0.9, 

compactness=0.5, layer weights= 1 except band7 weight=2 and (e) NDVI map. 
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Figure 6.12(e) shows the image created by the NDVI. A comparison between Figures 6.12(a) 

and 6.12(e) indicates that the VA model separates vegetation from non-vegetation areas 

without using NDVI or setting any thresholds. Figure 6.12(e) shows that the GEOBIA 

approach cannot detect some grass objects (e.g. the south west area in Figure 6.12(b)). For 

water bodies, Figure 6.12(a) shows how the VA model can accurately classify them based 

on different criteria. However, the VA model fails to identify few pond objects. This is due 

to the small area of some of those pond objects.  

Table 6.4 shows TP, FP and FN values calculated according to the GT map in Figure 6.9(b). 

  Table 6.4. Comparison between the results of VA-based and object-based approach in Figure 

6.12(b). TP, FP   and FN values are divided by the number of pixels within each ground truth class. 

Classification method 

Criteria 

Object class (%) 

Bare soil Grass Lake Pond River Shadow 

GEOBIA TP 99.92 74.43 100.00 97.40 100.00 76.42 

 FP 4.38 1.62 0.00 0.00 0.00 0.00 

 FN 0.08 25.57 0.00 2.60 0.00 23.58 

Vector Agent TP 99.68 91.58 100.00 90.91 100.00 84.28 

 FP 1.30 7.11 0.00 10.39 0.00 0.00 

 FN 0.32 8.42 0.00 9.09 0.00 15.72 

The results of the VA model in Figure 6.13 reveal that the correctness, completeness and 

quality indices of bare soil, lake and river classes are similar for both the VA model and the 

GEOBIA method. Figure 6.13 indicates there is a considerable improvement of results for 

the pond class when using the GEOBIA approach (more than 15% for the quality index). As 

can be seen from Figure 6.12(b) and Figure 6.9(b), some soil pixels are wrongly classified 

as pond pixels. For grass objects, the VA model shows an improvement of more than a 10% 

in the quality index. Figure 6.13(d) indicates the GEOBIA approach has an average value 

correctness index that is higher than the VA model. This is due to the effect of the pond 

objects. However, the completeness and quality indices improved by more than 3% and 1%, 

respectively, compared to the GEOBIA method. This shows that the VA model is successful 

in achieving image classification, whereas in the VA model, user-defined parameters do not 

need to be set (e.g. scale, thresholds) to segment the image or classify the segmented objects. 

The VA model took 780 seconds to classify the entire image. 
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(d) 

Figure 6.13. Comparison between the VA-based approach and the GEOBIA method based on 

completeness (a), correctness (b) and quality (c) indices. (d) The average rate of these indices in 

terms of VA and object-based approaches. 

 Conclusions 

In GEOBIA methods, image segmentation, thematic meaning and spatial knowledge of real 

world objects are the fundamental elements used to analyse a satellite image (Hay and 

Castell, 2008). Accordingly, GEOBIA outputs are strongly dependent on the results of a 

segmentation process. However, such image segmentation is highly subjective in terms of 

scale, which is defined based on trial and error (Hay and Castell, 2008; Benz et al., 2004).  

To address the above limitations, GEOBIA approaches usually utilise an iterative procedure 

of segmentation and classification to classify an image (Baatz et al., 2008; Blaschke et al., 

2014; Hofmann et al., 2015). This workflow allows GEOBIA methods to change and update 

geometry and class of geo-objects during the classification process. This means that, the 

adaption of each object’s geometry is triggered externally based on an image analysis, such 

as classification.   

In this chapter, we investigated the capabilities of VAs as a new processing unit to classify 

an image. In this regard, a given image is classified through its elements, namely geo-
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objects, in the real-world. In contrast to the above methods, here, a geo-object autonomously 

evaluates its current situation and decides to change its geometry.  

To reach this aim, we first defined the main components of VAs, including geometry, state 

neighbourhood and their rules. To describe the structure of the proposed method, we 

employed a UML diagram. We tested the VA model by modelling a set of objects on a 

subset of WorldView-3 images, IKONOS images and LiDAR DSM datasets. The 

experimental results demonstrate the desirable performance of the VA model to extract real-

world objects from raster datasets. For example, the extracted 3D roofs exhibit a high degree 

of similarity with corresponding 3D roofs in the real world when the VA model only uses 

the LiDAR DSM dataset. In the example implemented on the WorldView-3 image, the 

results show that the VA model can accurately classify objects which have similar DNs (e.g. 

rivers and lakes) based on different criteria, such as area. The obtained results also indicate 

that the VA model can identify geo-objects from remote sensing satellite images and LiDAR 

DSM datasets without setting predefined segmentation parameters and user-defined 

classification thresholds, as compared to conventional GEOBIA approaches. Moreover, 

results of the classification step demonstrate that the accuracy of the VA map is better than 

the map provided by the GEOBIA method.  

As there are several stochastic processes within the VA model, such as initialisation, results 

may be slightly different in each run especially where the VAs only use the image datasets. 

Further research needs to formalise the initialisation process. In our example, the building 

VAs only use the elevated information to find their own boundaries, therefore, there is no 

interaction between the elevated VAs (e.g. buildings and trees). The use of spectral 

information along with elevated information allows the building VAs to interact with the 

tree VAs, which can improve the accuracy of the extracted boundaries between the elevated 

VAs. It would also be interesting to study the concept of combining the spatial semantics 

and thematic semantics of objects in order to enhance the aspect of the neighbourhood rules.  

So far, we demonstrated the capabilities of the VA model for the pixel-based and object-

based image classification methods. In the next chapter, we will discuss the application of 

the VA model in identifying, extracting and classifying geo-objects (e.g. 3D roofs) from 

raster datasets (e.g. LiDAR datasets) without using the classification process.  
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Chapter Seven 

Vector agent models for extraction of 3D roofs  

Abstract 

This chapter addresses the application of VAs in extracting real-world objects from raster 

datasets. In this context, a variety of geo-objects in a real-world environment (e.g. lakes, 

roads, 3D roofs) can be addressed via the use of VAs. This chapter shows the capability of 

the VAs in extracting geo-objects from raster datasets without the use of training samples. 

Here we use VAs to identify, extract and classify 3D roofs from LiDAR DSM datasets. To 

achieve this, we define the transition rules based on the characteristics of 3D roofs in the 

real world. In contrast to conventional roof extraction methods, VAs detect, extract and 

classify 3D roofs based on different elevations without the need of static geometric 

primitives (e.g. edges), predefined shapes, or user-defined parameters (e.g. scale).  

 Introduction 

Recent advancements in Light Detection and Ranging (LiDAR) systems (more generally 

known as Airborne Laser Scanners (ALS)) have provided new opportunities for improving 

the accuracy and the level of automation in spatial modelling, such as automatic roof 

extraction. To date, a wide range of algorithms for automatically extracting buildings from 

LiDAR datasets have been proposed. These algorithms are usually categorised into two main 

classes: model driven and data-driven (Maas and Vosselman, 1999). 

Model-driven approaches employ a predefined catalogue of 3D roof forms to reconstruct 

3D roofs. In this context, primitive building shapes (e.g. edges) are initially identified from 

the input datasets. The most appropriate model for each roof is then selected from the 

predefined roof library according to the properties of the primitive shapes. In the modelling 

step, the 3D roofs are reconstructed by updating the parameters (e.g. scale or rotation) of the 

selected models. For example, Schwalbe et al. (2005) used vertical profiles as the primitive 

building features to reconstruct 3D roofs. To model more complex building shapes, Lafarge 

and Mallet (2010) proposed an advanced method based on regular and irregular components 
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of roofs. Here, a combination of geometric primitives (e.g. planes) and mesh-patches were 

used to address the primitive features. Hung et al. (2013) developed a generative statistical 

method via a segmentation process to reconstruct 3D roofs.  

Despite the advantages that model-driven approaches offer, such as consistent geometry, 

their results strongly depend on the predefined catalogue of roof forms (Song et al., 2015; 

Kim and Shan 2011; Tarsha-Kurdi et al., 2007). In other words, the model-based methods 

cannot address a 3D roof if it is especially complex or not included in the predefined roof 

library (Song et al., 2015; Kim and Shan 2011; Tarsha-Kurdi et al., 2007). In contrast, data-

driven approaches can address any building shape (Song et al., 2015; Kim and Shan 2011; 

Tarsha-Kurdi et al., 2007). 

Data-driven algorithms use planar roof primitives to model 3D roofs. Planar roof primitives 

are groups of points or pixels that have homogenous properties. They are created through a 

segmentation process in feature space or image space (e.g. raster LiDAR datasets) (Lari and 

Habib, 2014). For example, Ma (2005) used the texture information (e.g. variance) of 

LiDAR points to extract planar roof surfaces. Filin and Pfeifer (2006) developed a cluster-

based segmentation based on slope to identify roof primitives from laser point datasets. To 

create planar roof segments, Awrangjeb et al. (2014) proposed a novel approach based on 

pure non-ground points (not including wall points) via a clustering algorithm. Sampath and 

Shun (2007) applied a region-growing algorithm formulated on a predefined local window 

to segment LiDAR datasets. Sun and Salvaggio (2013) used a region growing segmentation 

to identify the roof primitives. After the segmentation process, 3D roofs are reconstructed 

by assimilating the planar roof primitives based on their topology in the real world.  

Although most data-driven approaches show promising results, they still rely on a two-stage 

linear segmentation and reconstruction process. In this context, these methods lack the 

ability to simultaneously identify, extract and classify 3D roofs based on different criteria 

(e.g. elevation or slope). Furthermore, the formulation of topological relations among 

primitive roofs during the reconstruction process is still a challenging task (Kwak and Habib, 

2013; Kim and Shan, 2011; Tarsha-Kurdi et al., 2007; Brenner, 2005). To address these 

issues, we propose a novel data-driven approach based on the VA model to directly extract 

roofs from LiDAR DSM datasets and classify them based on elevation attributes. 

Agent modelling is an artificial intelligence technique whereby elementary objects with a 

dynamic nature evolve in parallel to achieve pre-defined goals. Each agent is viewed as an 



                                                               Chapter 7: Vector agent models for extraction of 3D roofs  

130 

 

autonomous processing unit that can communicate, cooperate and negotiate with other 

agents and its environment to achieve objectives through a Multi Agent System (MAS) 

(Wooldridge, 2009). Samadzadegan et al. (2010) proposed MAS to extract 3D roofs from 

LiDAR datasets. Here, textural and spatial information was applied by two different groups 

of agents, including tree and building types, to recognise and extract buildings from LiDAR 

datasets. The ability of agents to perceive the object geometry as just another attribute to be 

optimised was also tested by Hofmann et al. (2015). In their work, agents had the capability 

of adjusting the boundaries of roof objects and classify roofs based on different criteria (e.g. 

slope). Here, the initial geometry of agents was defined based on the segmentation process. 

During the subsequent adaptation process, class ontology was used to change agent 

geometry. 

This chapter shows that the flexibility of the VA approach on image analysis can also be 

used to identify, extract and classify 3D roofs from LiDAR DSM, even when there are no 

training samples. The VA model allows 3D roof extraction methods to directly identify 

roofs from raster datasets without using a secondary process, such as segmentation or 

edge detection. The main elements of the VA model are described in Section7.2. The 

processes of the proposed method are presented in Section 7.3. The experimental results are 

discussed in Section 7.4. A short summary and ideas for further work are discussed in 

Section 7.5.    

 Vector Agents  

From a VA perspective, each object is considered to be an abstraction of a real-world 

phenomenon (e.g. 3D roofs) (Hammam et al., 2007).  

 Geometry and geometry rules 

Through the geometry component, L, a 3D roof VA stores its vertices that define the 

boundary 𝜕𝑋𝑉𝐴 of the VA. 𝑋𝑉𝐴 is the coordinate of a connected subset of the raster datasets 

formed by the pixels on LiDAR DSM belonging to the VA. The geometric methods, ML,   

allow the VAs to address any shape of 3D roof and reconstruct the topological relations 

between 3D planar roofs with minimum human intervention.  
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 State and transition rules  

The state S of a VA is defined based on the elevation of VAs on the DSM. Being dynamic 

in nature, each VA uses the transition rules TS to update its attributes at each iteration 

through the following rules:  

   𝜎ℎ(𝒙𝒄) ≤ 𝑇𝐻  ,    (7.1) 

𝐷𝑁𝐷𝑆𝑀 
(𝒙𝒄) ≥ 𝐷𝑁𝐷𝑆𝑀 

(𝒙𝒃),  (7.2) 

where, 𝜎ℎ(𝒙𝒄) is the standard deviation of the elevations of a candidate pixel xc and its 

neighbours. A human interpreter defines threshold TH. 𝐷𝑁𝐷𝑆𝑀 
(𝒙𝒄)  and 𝐷𝑁𝐷𝑆𝑀 

(𝒙𝒃) are 

convoluted output pixel values of pixel 𝒙𝒄 and pixel 𝒙𝒃 on DSM computed via Equation 7.3 

and 7.4. Pixel 𝒙𝒃 is the adjacent pixel of pixel 𝒙𝒄 that the VA uses to create a new vertex 

centred on pixel 𝒙𝒄. 

𝐷𝑁𝑜𝑢𝑡 =
1

𝑊
∑ ∑ 𝜔𝑖𝑗

𝑑
𝑗=1

𝑑
𝑖=1 𝐷𝑁(𝑖, 𝑗) ,     (7.3) 

𝑊 = ∑ ∑ 𝜔𝑖𝑗
𝑑
𝑗=1

𝑑
𝑖=1 ,  (7.4) 

where d is the kernel size set to an odd number ranging from 3 to 9. Here, d is set to 

3. 𝐷𝑁(𝑖, 𝑗)  is the pixel value in the input DSM at location (i, j) and DNout  is the convoluted 

output pixel value. 𝜔𝑖𝑗 and W are the value of the element at location (i, j) in the kernel and 

sum of all kernel elements, respectively. In the case that there is homogenous elevation 

information (e.g. within a roof boundary), VAs use Equation 7.1 to evolve geometrically. 

As the standard deviation of pixels on the boundary of 3D roofs is high, building VAs use 

transition rules, namely Equation 7.2, formulated on the Laplacian edge detection kernel to 

delineate their initial boundaries. 

In the case that pixel 𝒙𝑐 
 lies on the common boundaries between two VAs, such as 𝑉𝐴1,𝑡 

and  𝑉𝐴2,𝑡  with their classes 𝑘1 and 𝑘2, respectively, 𝑉𝐴1,𝑡  can capture 𝒙𝑐 
 during a growing/ 

shrinking method if it can satisfy the following rules:  

   |Δ𝐻𝑉𝐴1,𝑡
(𝒙𝒄)| ≤ |Δ𝐻𝑉𝐴2,𝑡

(𝒙𝒄)|,  (7.5) 

 |�̅�𝑉𝐴1,𝑡  
−�̅�𝑉𝐴2,𝑡

| > 𝑇𝐻,  (7.6) 
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where Δ𝐻𝑉𝐴1,𝑡
(𝒙𝒄) and Δ𝐻𝑉𝐴2,𝑡

(𝒙𝒄) are computed on the elevation of 𝒙𝒄 and a local average 

elevation of 𝑉𝐴1,𝑡 and 𝑉𝐴2,𝑡, namely �̅�𝑉𝐴1,𝑡
 and �̅�𝑉𝐴2,𝑡

. VAs use a local 3×3 window centred 

on pixel 𝒙𝒄 to calculate �̅�𝑉𝐴1,𝑡
 and �̅�𝑉𝐴2,𝑡

.  

 Neighbourhood and neighbourhood rules 

Neighbourhood component N is a collection of objects that lie in the adjacent distance of a 

VA. To interact with other objects in the simulation domain, VAs use neighbourhood rules 

RN specified on an adjacent distance. For example, a basic adjacency rule triggers the 

merging/killing geometry method when two adjacent VAs have the same class (Figure 7.1). 

 

(a) 

 

(b) 

 

(c) 

 

 

 

Figure 7.1. Subset of an RGB image and LiDAR DSM. Evolution of two VAs classified as roof (a) 

(b), until they become neighbours and merge to form a single roof VA (c), resulting in the ‘killing’ 

of the yellow VA. 

 Process overview and scheduling 

The model simulates interactions among VAs and between VAs and their environment. The 

proposed model has five main steps: initialisation, growing, developing, construction and 

production. To initialise in the simulation space, VAs use the following rules: 

i. Rule 1: The elevation of pixel xc and its neighbouring pixels should be more than 

𝑇𝐿. Threshold 𝑇𝐿 is determined on the lowest elevation on the DSM plus the 

standard height of buildings (e.g. 2.80 m) in an urban area. 

ii. Rule 2: The standard deviation of candidate pixel xc and its immediate 

neighbours should be less than 𝜎ℎ ≤ 𝑇𝑈. Threshold TU is defined based on the 

accuracy of the LiDAR DSM dataset. 

VAs use Rule 1 to identify the initial location of the buildings on the LiDAR DSM datasets. 

Rule 2 allows the VAs to lie only on the homogenous areas of 3D roofs (e.g. within the 

boundary of roofs). In the growing step, VAs automatically change their geometry through 
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the growing and merging/killing methods and transition rule, namely Equation 7.1(e.g. 

Figure 7.2). To do this, VAs employ a mechanism of adaptation and update (see Section 

3.3.6). The process is continuously repeated until all VAs become passive. A VA is passive 

if it cannot change its geometry based on the current transition rules. In this neutral state, it 

is possible for a VA to be active again with different transition rules. Once transition rules 

are updated, all VAs within the image space simultaneously to become active.  In this event, 

VAs use the new transition rules (e.g. Equation 7.2) to change their geometry until all VAs 

become passive again.  

 

(a) time=100 

 

(b) time =200 

 

(c) time=200 

 

Figure 7.2. (a) and (b): Simulation results over 200 time steps in the agent modelling shell Repast 

Simphony to identify 3D roofs from a subset of LiDAR DSM datasets. (c) 3D roof VAs at time=100 

(brown polygons) projected on 3D roof VAs at time=200 (black polygons). 
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In the developing step, VAs only employ the growing method. If all the VAs are passive in 

the construction step, a VA can evolve if the elevation of an adjacent pixel calculated on a 

low pass filter is more than 𝑇𝐿. The use of a low pass filter allows the VA to reduce the effect 

of noise pixels that lie on the edges. In the construction step, VAs only use the growing 

method to evolve geometrically. In the production step, the boundaries of the 3D roofs are 

tuned through the interaction between VAs. In this step, VAs apply growing/shrinking 

methods to determine their boundaries via Equations 7.5 and 7.6 (see Appendix C). 

 Experimental results 

 Dataset 1 

In the first experiment (Figure 7.3(b)), the VA model approach was tested on a subset 

(251×251 pixels) with 20cm resolution LiDAR DSM which covers an urban area in 

Zeebrugge, Belgium (GRSS, 2015). The test area contains various buildings of complex 

shapes (Figure 7.3(a)). The LiDAR DSM shows jagged edges especially where there are 

features such as chimneys and windows. 

 

(a) 

 

(b) 

Figure 7.3. (a) A subset RGB colour image from an urban area in Zeebrugge, Belgium. (b) A 

subset of LiDAR DSM datasets. 

The VAs use a Java implementation of Repast (see Section 2.10.2.2) along with a generic 

Vector Agent library developed by Moore (2011) to extract and classify 3D roofs from 

LiDAR DSM datasets. To assess the performance of the proposed approach, the extracted 

3D roofs provided by the VA-based approach were compared with corresponding buildings 
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created manually by a human expert. The quality of the extracted boundaries of 3D roofs by 

the VA model is compared with the results of a segmentation process (a region growing 

algorithm using eCognition) and a Laplacian edge detection kernel. To classify the 3D roofs 

based on their elevation, TH is set to 0.20 m. In our case, TL is 52.57m (see Rule 1 in Section 

7.3).  

Figure 7.4(a) shows the boundaries of the 3D roofs provided by the Laplacian edge detection 

kernel. As can be seen from Figure 7.4(a), the Laplacian edge detector can easily detect and 

extract the edges that appear on the block boundary. However, the Laplacian kernel misses 

some building edges, while many other detected edges are not actually buildings. Moreover, 

the edge map shows that the Laplacian kernel lacks the necessary ability to deal with the 

noise caused by objects, such as windows and chimneys (shown by yellow arrows in Figure 

7.4(a)). Figure 7.4(b) displays the result of a segmentation process. To get the most realistic 

image objects, segmented objects with small sizes are applied (Figure 7.4(b)). As can be 

seen from Figure 7.4(b), the segmented objects can readily determine the boundary of the 

block. However, Figure 7.4(b) shows that the segmented objects cannot accurately address 

the boundaries between 3D roofs (see yellow arrows in Figure 7.4(b)). 

Figure 7.4(c) shows the extracted 3D roofs based on the VA-based approach. Figure 7.4(c) 

shows that the edges that appear on the block boundary overlap with their corresponding 

segmented objects and the Laplacian edge detection kernel. A visual assessment of the 

extracted roofs by the VA-based approach shows that the VA roofs are very close to the real 

structure of the buildings, while the VA model does not impose any constraints on building 

shape. Experimental results also indicate that the dynamic structure of VAs allows them to 

deal with noise caused by features such as windows or chimneys, except when these objects 

lie on the boundaries between two roofs (see yellow arrows in Figure 7.4(c)). In these cases, 

the boundaries between VAs may not be delineated accurately due to the noise points on the 

walls and features (see yellow arrows in Figure 7.3(a)).  

Figure 7.4(d) displays the roof VAs projected on a classification map provided based on 

threshold TL (e.g. 52.57m). The blue arrows show the areas ignored by the VAs; they have 

been ignored because these regions are heterogeneous and small (Figure 7.4(d)). Thus, VAs 

cannot satisfy the initialisation rules (see Rule 2 in Section 7.3) or growing rule (see Equation 

7.1) in these areas to extract 3D roofs. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.4. (a) An image based on the Laplacian edge detection kernel. (b) The segmented image 

provided by eCognition software, based on scale=8, shape=0.1 and compactness=0.5. (c) 3D roof 

VA. (d) a classified image based on TL =52.57. The brown areas show the pixels of the image in 

Figure 7.3(b) which have an elevation of more than 52.57m. The black polygons are the 3D roof 

VAs superimposed on the classified image. 

The VA roofs were evaluated by comparing them with reference building models processed 

manually by a human interpreter. To make a quantitative assessment of extracted roofs, the 

completeness or shape accuracy of the detected buildings (Table 7.1) is measured by the 

following metric: 

             Shape𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
|𝐴−𝐵|

𝐴
,    (7.7) 

where A is the area of the roof which is extracted based on human interpretation, and B is 

the area extracted by the VAs. 
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                    Table 7.1. Performance evaluation of the 3D roof VAs based on the shape accuracy index. 

Statistics VA-based Segmentation-based 

Maximum (%) 99 99 

Minimum (%) 81 75 

Mean (%) 92 91 

Standard deviation (%) 9.3 9.0 

Number of buildings 9 9 

The experiments show that the proposed approach can reach an average shape accuracy of 

92%. The standard deviation value 9.3% and mean value 92% also indicate that the most 3D 

roof VAs are close to the true 3D roofs manually extracted by a human operator. Although 

the results of the VA model and the segmentation-based approach are similar, the boundaries 

of the 3D roofs are manually extracted by merging image objects in the segmentation-based 

approach.  

 Dataset 2 

In the second experiment, we used a LiDAR DSM dataset with a size of 751×751 pixel 

(10cm pixel size, Figure 7.5(b)) from an urban area in Zeebrugge, Belgium to test the VA 

model (GRSS, 2015). Here, TL is 48.02m (see Rule 1 in Section 7.3). As can be seen from 

Figure 7.5(a), the test area contains various buildings of complex shapes. Similar to the 

previous example, the LiDAR DSM shows the jagged edges in which there are features such 

as chimneys and windows (Figure 7.5(b)).  

In this experiment, VAs use different values of TH to classify 3D roofs based on different 

elevations. VAs first model 3D roofs with a threshold TH of 0.05m. After the construction 

step, new VAs are generated with a threshold TH of 0.20m. The process continues until all 

3D roofs are identified from raster datasets (Figure 7.5(e)). Figures 7.5(c) and 7.5(d) display 

the maps produced by the Laplacian edge detection and region-growing segmentation 

process, respectively. The results in Figure 7.5(c) show that the Laplacian kernel correctly 

identifies the borders of 3D roofs from LiDAR DSM. However, the kernel misses some 

other edges (see blue arrows in Figure 7.5(c)). Moreover, the Laplacian edge operator, like 

other conventional edge detection operators, is sensitive to noise.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

(e) 

 

(f) 

Figure 7.5. (a) A subset RGB colour image from an urban area in Zeebrugge, Belgium. (b) A 

subset of LiDAR DSM datasets. (c) Segmented image provided by eCognition software, based on 

scale=5, shape=0.15 and compactness=0.5. (d) Image based on the Laplacian edge detection 

kernel. (e) 3D roof VA. (f) VA map projected on the segmented image. 
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In Figure 7.5(c), some edges are falsely identified, especially in areas with features such as 

chimneys or windows. In contrast, Figure 7.5(e) shows that the VA model can readily reduce 

the noise originating from these features. For situations where features (e.g. chimneys) are 

nearby the block boundaries, 3D roofs may not be determined correctly (e.g. see yellow 

arrows in Figure 7.5(e)). Figure 7.5(d) shows the high capability of the segmentation-based 

approach to identify the boundaries of blocks and individual buildings. However, the results 

in Figures 7.5(d) and 7.5(f) indicate that image objects lack the ability to address the 

boundaries between 3D roofs (see the blue and yellow arrows).  

As discussed in Chapter 2 (see Section 2.3.1), image objects are formulated based on a 

predefined set of parameters, such as colour and scale. When there is poor contrast between 

the borders of the 3D roofs (Figures 7.5(b), 7.5 (d)), the algorithm cannot accurately identify 

the boundaries between 3D roofs from LiDAR DSM. In contrast, Figure 7.5(e) shows the 

high potential of the VA model to extract 3D buildings from raster datasets based on 

different elevations. 

Similar to the first experiment, we use the completeness index to make a quantitative 

assessment of the extracted roofs (Table 7.2).  

Table 7.2. Performance evaluation of the 3D roof VAs based on the shape accuracy index. 

Statistics VA-based Segmentation-based 

Maximum (%) 98 99 

Minimum (%) 84 84 

Mean (%) 91 91 

Standard deviation (%) 3.5 5.8 

Number of buildings 14 14 

The results in Table 7.2 (e.g. average shape accuracy of 91%) indicate the enhanced 

capabilities of the VA to model 3D roofs, showing that the VA-based approach needs 

minimum human intervention to extract and classify roofs from raster datasets. 

 Conclusions 

To identify 3D roofs from LiDAR datasets, automatic building extraction methods usually 

use a two-stage process of image segmentation and reconstruction. In the first step a 

segmentation process is used to create planar roof primitives, which are then merged to 
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reconstruct 3D roofs in the second step. In this case, planar roof primitives remain 

unchanged once they are created. To address this issue, building extraction methods utilise 

algorithms that allow buildings to change their geometry during the construction step, such 

as proposed by Hofmann et al. (2015). However, these algorithms still use a segmentation 

process to build primitive processing units, namely planar roofs.  

In this chapter, we presented a dynamic and automated processing unit, namely VAs, to 

extract different shapes and structures of 3D roofs from a LiDAR dataset. In contrast to 

conventional methods based on a specified set of parameters (e.g. scale) or predefined 

shapes, the VA-based approach identifies, extracts and classifies 3D roofs with minimum 

human intervention.  

To reach this aim, we defined the elements of VAs, including geometry, geometry rules and 

methods, state, transition rules, neighbourhood and neighbourhood rules. These components 

were formulated on the characteristics of 3D roofs and input data including LiDAR DSM. 

The geometry of VAs was defined based on a directional planar graph. To create an irregular 

dynamic geometry, VAs applied a set of geometric operators such as growing and 

merging/killing. State and transition rules were defined and formulated in terms of a region 

growing algorithm based on a standard deviation value, Laplacian edge detection function 

and a low pass filter kernel. Neighbourhood and neighbourhood rules were defined on the 

Euclidian distance concept. This structure enables a dynamic geometry for the VAs to 

address various buildings of complex shapes without setting user-defined parameters (e.g. 

scale) or using any constraint on building shape. The results indicate the high potential of 

the VA model to address the limitations of the conventional data-driven approaches. 

In our example, VAs are only applied to extract 3D roofs and we assume that buildings are 

the only available elevated objects. To separate elevated objects from different classes (e.g. 

trees and buildings), we need to define and formulate new transition rules based on the 

characteristics of objects in the real world. In the future, we will explore the possibility of 

developing VAs that can extract and classify elevated objects from different classes. The 

use of a regularisation algorithm to improve the accuracy of the 3D roof VAs would also be 

an interesting area to study.
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Chapter Eight 

Conclusion and future work  

Abstract 

This chapter begins with a brief conclusion, then goes on to review two fundamental 

processing units, namely pixels and image objects, for image classification. After describing 

the proposed VA model, we will discuss the research and present the results by reviewing 

the applications of the VA model for pixel-based classification, the feature extraction 

process and object-based image classification. In the last section, we propose various 

directions for future research in model computation and application areas. 

 Purpose 

The aim of this thesis was to develop a new automated processing unit to directly address 

geo-objects in image space. The proposed processing unit uses the VA model to find and 

extract geo-objects directly from raster datasets (e.g. high resolution satellite images, 

hyperspectral imagery, and LiDAR DSM). 

 The need for a new processing unit for image classification 

In order to develop the newly proposed method, it was crucial to identify and understand 

current methods of modelling geo-objects in image space. Preliminary research in this area 

concluded that both pixel-based and object-based methods achieve this goal by using a 

sequential process of segmentation and classification.  

In pixel-based approaches, pixels are first labelled via a clustering algorithm (e.g. ML) in 

the feature space. The labelled pixels are then used in a segmentation process to determine 

the geometry of geo-objects in the image space. When this method is used to extract geo-

objects from raster datasets in a pixel-based approach, two implicit assumptions are made. 

Firstly, each geo-object should have a unique spectral behaviour in a real-world environment 

that can be modelled in feature space. Secondly, geo-objects should have a homogenous 

spectral behaviour in image space. If any of these assumptions are violated, it will result in 
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a poor spatial model. Although the use of spatial and spectral information has been proposed 

in several pixel-based approaches (see Chapter 4 and Chapter 5), these approaches lack the 

ability to directly address geo-objects in image space.  

In an object-based approach, image objects are first created in image space. The thematic 

meaning of these image objects is only determined in the subsequent classification step. 

Therefore object-based methods cannot address both the geometry and theme of geo-objects 

simultaneously in image space. Although several studies have addressed this issue using a 

cycle of segmentation and classification, the geometry of geo-objects remains static for two 

reasons: Firstly, it is defined according to a set of predefined parameters (see Section 2.3). 

Secondly, objects cannot change their geometry during the classification step (see Section 

1.2.2 and Section 2.3). In this context, we implicitly assume that geo-objects have 

predictable behaviours in image space.  

While reviewing different approaches for spatial modelling, the introduction of vector 

agents in a geosimulation domain has recently been conceived as a new way of representing 

geo-objects in image space. This is the basis on which the major objectives of this research 

were formed (see Chapter 1). These objectives guided the work described in this thesis, the 

research questions, and the resulting conclusion drawn in this chapter. 

 The development of the vector agent model 

The first objective of this thesis is to develop a generic structure based on s that can 

address real-world objects in image space. In order to construct the geometry of VAs, we 

applied a planar graph formulated on the winged-edge data structure. To enable a dynamic 

geometry for VAs, a set of individual geometric operators were defined and implemented. 

These operators, e.g. Vertex displacement, Converging vertex displacement, Half-edge 

joining and Edge remove, allowed the VAs to geometrically evolve in the simulation space. 

To interact with each other, VAs used a set of interaction geometric methods, including 

growing, merging, shrinking and splitting.  

A sub-objective in this area was to develop VAs that could find and update their classes 

and attributes in the simulation space. This was central to developing the model in order 

to suit different geo-objects in image space. Depending on the application of VAs and 

available raster datasets, VAs used different strategies, such as the ML classifier or 

Laplacian edge detector, to implement transition rules. 
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Additionally, the generic design of VAs enabled them to interact with each other within the 

simulation space. This objective was fulfilled through the use of neighbourhood rules. Here, 

neighbourhood rules are explicitly defined on Euclidean distance, and the neighbours can 

be implemented over vector space without distance limitations. 

The integration of these components was one of the challenges raised in this thesis. This 

integration was achieved through the flexible agent architecture combined with its 

components: agent’s sensor, agent’s state, and agent’s effectors. The model integrates the 

agent and its environment within the framework of these components. Each component was 

implemented with different classes and sub-classes that facilitated the agent’s perception of 

the environment. The agent evaluates its available options in the environment according to 

its rules and strategies in order to achieve the desired goal. The chosen option is then 

executed via the agent’s effectors. 

 Vector agent for pixel-based approaches 

The second objective of this thesis is to validate this model in comparison with per-pixel 

classifiers in terms of classification accuracy achievable. As mentioned earlier, several 

studies have already proposed the use of spatial information to improve the accuracy of 

pixel-based classification maps. Vector agents have the potential to allow pixel-based 

approaches to integrate the spatial and spectral spaces for generating reliable training 

objects. In the unsupervised method, VAs were used to create a set of training objects in a 

self-training fashion. An ML classifier, trained on the VA-generated samples, was employed 

to classify the remaining pixels. The method was successfully tested on a high spatial 

resolution satellite image.  

In the supervised approach, VAs were applied to extract training objects from hyperspectral 

datasets. Here, a similarity metric, formulated according to a nearest-neighbour algorithm, 

was applied to select the most informative VA samples for learning the SVM algorithm. The 

simulation yielded satisfactory results from the VA model for semisupervised classification. 

 Vector agents for GEOBIA approaches 

The third objective of this thesis is to assess the capabilities of the VA model in addressing 

the main limitations of the GEOBIA approach. This was done by utilising VAs to extract 

geo-objects from a high spatial resolution satellite image and LiDAR DSM dataset. In this 

case, the VA model used different types of transition rules to address different geo-objects 

in image space. For the building geo-object, the VA model used the transition rules that were 
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formulated on the region growing and edge detection operators. To address the meadow and 

shadow geo-objects in the satellite image, the VA model employed the SVM classifier. The 

results of the VA model demonstrate its ability to understand and simulate the complexity 

of a real-world environment. 

 Vector agents and real-world objects 

The fourth objective of this thesis is to explore the proposed VA model and its ability to 

extract and identify real-world objects from raster datasets in a specific area. This has 

been achieved via the use of VAs in modelling 3D roofs without the need of labelled training 

samples. In this instance, transition rules were defined by the characteristics of geo-objects 

in real-world objects. The model integrates different algorithms, such as Laplacian edge 

detection and region growing, to find, extract and classify 3D roofs from LiDAR DSM 

datasets. The extracted 3D roofs exhibit a high degree of similarity with corresponding 3D 

roofs in the real world.  

From the above discussion, it is proposed that an intelligent processing unit should be 

capable of the following: 

1) Define its own location in space: The application of VAs in the preceding 

chapters shows that VAs can find their locations in the simulated space under 

different schemas.  

2) Represent any discrete geographic phenomena entity through an 

irregular/regular vector data structure: The geometric component of the VAs, 

defined on a directed planar graph, allows them to store any shapes in image 

space. 

3) Construct and change its geometry: The geometric methods and rules enable 

VAs to construct and change their geometry. 

4) Update internal structure in the simulation space: VAs use the transition rules 

to find and update their attributes during the simulation process. 

5) Perceive image and feature space: The structure of the VA model allows it to 

perceive and act on the image and feature space simultaneously.  

6) Interact with other geo-objects in image space: VAs can geometrically interact 

with other VAs and with their environment. They can also affect each other’s 

state through the neighbourhood rules.  
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7) Consider the characteristics of a complex system during the simulation process: 

The mechanism and structure of the VA model allow the VAs to repeat their 

rules for producing unique spatial patterns, namely geo-objects, in image space 

and spectral patterns in feature space.  

8) Use the evidence derived from an image combined with external knowledge 

during decision-making: This was achieved when using the VAs to model 3D 

roofs based on real-world descriptive facts of those roofs. 

9) Integrate and use data from multiple sources: This can be justified through the 

application of VAs for the 3D roof extraction together with the GEOBIA method.  

10) Learn from experience: The dynamic structure of VAs provides an ideal tool for 

learning from their experiences. In this case however, VAs were regarded as 

goal-oriented agents with a predefined set of rules. Learning capabilities are 

considered a potential future implementation. 

As such, an intelligent processing unit distinguishes itself from the pixels and image objects 

covered in the previous chapters, in that a geo-object can autonomously construct its 

geometry, find its classes, and interact with other geo-objects and its environment. Such a 

processing unit could be termed as an “intelligent processing unit” because this structure 

gives the VA model intelligent properties in order to detect and extract geo-objects from 

image space just as a human interpreter does. 

 Limitations and Future Work 

Through the development of the VA model for image analysis, the following limitations can 

be addressed in the context of the VA model and VA model applications.  

 VA model  

VAs use a set of predefined rules to accomplish their goals. In this way, they lack the ability 

to learn from their experiences. When endowed with learning ability in a specific domain, 

VAs can find a solution that may depend on specific knowledge during the simulation 

process. For example, after a number of sequences, land and sea VAs can learn to find the 

best growth direction in order to extract coastlines from an image. In this case, instead of 

classifying the entire image to extract coastline, the VAs only classify the areas that the 

coastlines may exist. This improves the performance of the VA model by saving memory 

and simulation time. Learning can also increase the level of automation of the VAs. For 



                                                                                         Chapter 8: Conclusion and future work  

146 

 

example, in pixel-based approaches, VAs can use their experiences to determine β, the 

parameter that determines the confidence level of the extracted training objects. A brief 

illustration of this concept was presented in Chapter 4 where the VAs automatically changes 

the threshold β to extract training samples.  

To define and formulate the geometric methods, we used a four-neighbour neighbouring 

system (see Figure 3.3(a)). With the implementation of geometric methods, we 

demonstrated that the VA can construct its own geometry in image space. For example, in 

Chapter 6 and Chapter 7, we employed the VA to extract the buildings or roads from the 

raster datasets. The results for the VA model in extracting geo-objects from raster datasets 

were promising. It would be interesting further research to test other geometric algorithms, 

such as using an eight-neighbour, which also includes the neighbours at the corners. 

All the experiments were carried out on a computer with an Intel CPU running at 3.40 GHz 

with 16 GB of memory. The framework of each method was developed in the Repast 

environment.  The processing times for extracting training samples for unsupervised and 

semi-supervised classification were 214 and 143 seconds, respectively. The roof extraction 

process took 330 seconds. To extract geo-objects in the context of the GEOBIA approach, 

the VA model spent 432 seconds to classify the entire image.  The elapsed times were within 

the acceptable limit based on the size of the raster datasets used (average size of 200 pixels). 

However, the computational cost may increase as the number of vertices within a VA 

increases. This is due to the stochastic nature of the VA model for certain processes. For 

example, the VA model uses a first-order neighbouring system to create a new vertex based 

on one of four main directions (see Section 3.2.3.1). In this case, each vertex of a VA is 

checked four times according to the transition and geometric rules at each iteration. This can 

increase the processing time when the number of vertices within a VA is increased. To solve 

this issue, after a number of specific sequences, VAs can be made to learn which direction 

to grow to achieve its desired goal based on the condition of its environment. It is worth 

mentioning that for all examples within this thesis the processing times only include machine 

running time. A realistic assessment can be computed based on the time spent on codifying 

transition rules (e.g. Section 6.4.1) or neighbourhood rules, and machine running time. 

Another issue raised from the stochastic nature of the VA model is the robustness of the VA 

model. To initialise in the vector space, the VAs in this thesis use a random scheme. Hence, 

the results may vary slightly for each run within an acceptable limit. Further research might 
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consider the possibility of developing an intelligent initialisation process that can make the 

VA model more robust. 

 VA model application 

So far, we have successfully tested the VA in extracting geo-objects (e.g. training samples 

or 3D roofs) from high resolution multispectral images, hyperspectral images and DSM 

datasets. The use of the VA for other types of remotely sensed data (e.g. radar) is also a 

potential area for further research. 

In the previous chapters, we used the VA model in the context of image classification 

processes, such as pixel-based or object-based image classification, to address geo-objects. 

The application of the VA model in identifying specific targets (e.g. road, lake or coastline) 

from raster datasets can also be an interesting area for further research.  

In the area of software agents, ontologies have a vital role in explicitly describing geo-

objects for respective domains and applications in Geographic Information Systems (GIS). 

From the point of view of the VA model, the conceptual framework in Figure 8.1 can be 

applied to clarify and model the relationships between the components of VAs in order to 

address geo-objects. The aim of this framework is to impose a rational and internally 

consistent description on simulating geographic phenomena. This framework also allows 

the VA model to describe the transforming process of data from a low level image 

representation (e.g. pixel) to high level object representations (e.g. geo-object) (Gahegan 

and Flack, 1999). The construction and implementation of that model is intended to help us 

in understanding the nature of what it describes.  

In this framework, the geo-object’s state, namely L, S, N components of the VA model, is 

expressed according to ML, TS, RN, (ML, TS), (ML, RN), (TS, RN) or (ML, TS, RN) rules. 

The following examples describe the effect of ML methods on (L), (S), (L, N) and (L, S, 

N), as implemented in this thesis, respectively:  

1) (L): In the proposed geometry, the building fractions could not be more than 

√2 × 𝑟 (Chapter 3, Section 3.2.3); 

2) (S): The growing method can change the class of 3D roofs. For example, in 

Figure 7.4 (d) and Figure 7.5(e), 3D roofs are classified based on different 

elevations. 

3) (L, S): The growing ML method can change the geometry of a pond object and 

convert it into a lake object (see Figure 6.10). 
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4) (L, N): A shrinking/splitting method changes the geometry of a VA and its 

neighbours (see Figure 3.8).  

5) (L, S, N): A merging/killing method moves a VA to an unknown coordinate 

system, changes the state of the VA to an unknown object, and removes the 

neighbours of the VA (see Figure 3.6 or Figure 7.1). 

The study of other combinations within this framework could be an interesting area for 

further research. For example, a land geo-object can be considered an island geo-object if it 

lies within a waterbody. This can be implemented with a vector network (e.g. Delaunay 

triangular network, Moore (2011)) that includes links between VAs. In this case, the VA 

model can use (TS, RN) rules to change a land into island object.  

Another possibility for research in this area would be the study of modelling dependent 

objects, such as elevated features (e.g. forest) and their associated shadows, or sand and sea. 

For example, pairs of VAs can be seeded and evolve together. Such crude reasoning is 

capable of implementing association rules as part of RN that can solve conflicts between 

objects exhibiting similar spectral characteristics (e.g. shadow and water). In this context, 

the VA model can also be applied for modelling the behaviour of an object (e.g. shadow) 

affected by another object or external phenomena (e.g. sun). In this case, the VAs can use 

(ML, TS, RN) rules to model the effect of the sun on the shadow according to L, the geometry 

of shadow objects.  

The full scope of geometry, states, neighbourhood rules, and different combinations thereof, 

can achieve the main objective of image classification: to automatically categorise all pixels 

of an image into land cover classes or themes. 
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Appendix  

A- VA model structure in Repast 

 A.1. Introduction 

Image classification approaches usually utilise pixels or image objects as the fundamental 

processing unit. These conventional classification methods usually depend on a two-stage 

sequential process of image segmentation and classification (or vice versa) in order to 

identify geo-objects in raster datasets. However, these methods lack the necessary 

capabilities of simultaneously extracting geometric and thematic meaning of geo-objects 

from image space. This issue can be addressed using Vector Agents (VAs). 

 Purpose 

This section is designed to describe the main elements of the VAs in order to extract geo-

objects from raster datasets in a unified classification process. 

 Data 

To describe the VA model, a subset of WorldView-3 image 8 multispectral bands (red, red 

edge, coastal, blue, green, yellow, near-IR1 and near-IR2) from a rural area near Dunedin, 

New Zealand is applied (Figure Appendix A.1(a)). The image dataset is a subset with a 

resolution of 140×90 pixels (1.20m pixel size) of a complex scene containing six land cover 

classes: bare soil, grass, lake, pond, river and shadow (Figure Appendix A.1(a)). You can 

find this image named ‘ImageData.xls’ (converted into an Excel file) in the source folder.  

In our example, the proposed method uses nine labelled pixels for each cluster in order to 

train the Support Vector Machine (SVM) classifier through the SVM class. The training data 

can be found in the source folder, named ‘TrainData.txt’ in the source folder. The VA model 

applies the SVM classifier to implement the transition rules. Since the waterbody clusters, 

namely pond, river and lake, have similar spectral reflectance, the proposed method only 

uses 36 pixels to train the SVM classifier in the initialization step. 
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(d) 

 

 

 

Figure Appendix A- 1. (a) It displays a true colour combination band of WorldView-3multispectral 

image, Digital Globe Foundation, www.digitalglobefoundation.org (b) The classified image is 

provided using the SVM classifier based on the initial label samples, (c) a false colour band 

combination of the given image and (d) it displays the given image based on the Normalized 

Difference Vegetation Index (NDVI). 

 

 User requirements 

To run the example, you need Repast Simphony (version 2.1 or later) and the Java JDK 

(Java development kit) which can be downloaded on the Repast website and Java Standard 

Edition Downloads Page, respectively. After installing Repast and Java JDK, copy and paste 

the Geography folder to your root directory (e.g., “C:\”). 

To run the Geography model, you also need to add a collection of java libraries to your 

Repast project. You can find these libraries in the Geography folder (e.g., “F:\ 

Geography\lib”). Figure Appendix A.2 shows how you can add them to the project.  

 

 

 

  

http://www.digitalglobefoundation.org/
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(a) 

 

(b) 

Figure Appendix A- 2. (a) and (b) display how you can add the java libraries to the Repast. 

Please check that you have set the image file path in the ContextCreator class in your 

project.  

 A.2. Classes 

In this section, we present the main components of the proposed method that consists of 

procedure, geometry, state, neighbourhood and utility (see Figure 3.12 for more details). 

 Procedure 

The procedure component includes the classes that describe the agents and their 

environment.  
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 SimpleAgent 

SimpleAgent provides initial information on input data for all agents. This information is 

defined based on the input data and spatial/ non-spatial information of geo-objects, such as 

elongation index for the waterbody classes. 

 Variables 

In our experiment, the SimpleAgent uses the variables in Table Appendix A.1-3 to classify 

the image: 

Table Appendix A- 1. A VecAgent generally uses these variables to control its geometry and state. 

Variable name Variable type Value Comment 

Hole_Size_VA int 15 Determines the minimum size for each 

interior ring in a VA. It is specified based 

on the number of vertices within each VA.  

Number_Elgible_Pixels int 15 Determines the number of pixels applied 

by the proposed method to train the SVM 

classifier. These pixels are selected from 

the most informative VA-generated 

samples.  

Size_VA int 15 
Used to determine the minimum size of 

each VA. It is defined based on the 

number of vertices within each VA.  A 

VA is removed if its size is less than the 

Size_VA threshold.  

The variables can independently be 

specified for each cluster or each geo-

objects. For example, in a given image, the 

forest cluster can be divided into two 

clusters based on the number of holes.  

 

Table Appendix A- 2. The method uses these variables to classify the waterbody objects. 

Variable name Variable type Value Comment 

Waterbody_Area_Threshold int 300 Used to classify the waterbody objects 

based on their geometric 

characteristics. 

Elongation_Threshold int 2  
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Table Appendix A- 3. Variables which are used by all classes. 

Variable name Variable type Value Comment 

cont Context … Built in the initialization step 

by the ContextCreator class. 

svmModel svm_model … The ContextCreator class uses 

the SVM class to train the 

SVM classifier based on the 

initial labelled samples (36 

pixels).  

Image_Data double [][][] … Initialized via the 

ContextCreator class.  

feature double [][] … The ContextCreator computes 

this variable via the 

VAUpdateTransitionRules.  

trainData double [][] … Initialized by the 

ContextCreator class.  

Grid_SizeX int  141 Automatically initialized via 

the ContextCreator. 

Grid_SizeY int 90 Automatically initialized via 

the ContextCreator. 

Num_Band int 8 Automatically initialized via 

the ContextCreator. 

fac VAGeometry

Factory 

… Constructed by the 

SimpleAgent class. 

Poly_RemovedVA Polygon A predefined 

polygon 

based on the 

size of the 

image 

A polygon used to transfer a 

VA from a georeferenced 

plane to a non-georeferenced 

plane. In fact, the method uses 

this geometry to remove or kill 

a VA. 

Poly_Frame Polygon A predefined 

polygon 

based on the 

size of the 

image 

Used to control the location of 

the VAs within a 

georeferenced plane. 

status String growth The MakerAgent uses this 

variable to coordinate the 

behaviour of the VAs in each 

stage. The proposed method is 

performed in four main steps: 

growth, development, 

construction and production.  

 

 Method 

i. public void step ()  

This method is called by the MakerAgent and VecAgent at every iteration. 
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 MakerAgent  

The proposed method utilises the MakerAgent class to first generate the VAs, placing them 

into context through the generateVA method. MakerAgent is also responsible for facilitating 

the coordination between GVAs. To do this, MakerAgent applies the controlVA method. 

 Variables 

This class only includes local variables. 

 Method 

The proposed method consists of four main steps: growth, development, construction 

and production. In each step, different geometric operators are used to identify geo-

objects from the image space (Table Appendix A.4). 

            

Table Appendix A- 4. Different stages of the VA-based image classification. 

Step name geometric operators SVM model 

growth born, grow, merge and kill The SVM classifier is only trained 

based on the initial labelled 

samples. 

development born, grow, merge and kill The SVM classifier is trained based 

on the initial and VA-generated 

samples. 

construction born, grow, merge and kill The VA model uses the SVM 

model trained in the development 

step. 

production born, grow, merge, shrink, split 

and kill 

The VA model uses the SVM 

model trained in the construction 

step. 

As can be seen from the above table, different strategies are used to train the SVM 

classifier at each stage.  

In the construction step, a VA captures a pixel if it is an adjacent pixel. VAs utilise 

the shrinking, shrinking/splitting and shrinking/killing operators only in the 

production step. Figure Appendix A.3 displays the results of each step (see the video 

clip1 in the source folder for more detail). In this example, VAs do not use 

shrinking/splitting and shrinking/killing operators in the production step. 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 

Figure Appendix A- 3. (a) and (b) display the extracted geo-objects after the growth and 

development steps, (c) displays the results of the construction step when all VAs become passive 

and (d) shows the results in the production step. 

 

In the case that VAs utilise shrinking/splitting and shrinking/killing operators, the 

method uses an additional stage, called edition, to label remaining pixels in the image 

space (see the video clip2 in the source folder). In the production step, a VA may be 

removed if its size is less than a specific threshold.  

i. public void step ()  

The MakerAgent uses the following methods to control the VAs and generate the 

VAs at every time step. 

ii. public void generateVA ()  

The MakerAgent applies this method to create and place a VA in an appropriate 

location in the context. 

iii. public void generateVASubProcess ()  

This method creates a VA based on a coordinate checked by the generateVA method. 

iv. public void controlSeedPoint ()  

It controls the class of each seed point based on its coordinate in the image space. 

v. public void controlVA ()  

This method returns true if all VAs become passive in the context. In our example, 

we use red polygons to show the passive VAs (see the attached video clip). 
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 VecAgent 

The VecAgent class utilises the following variables and methods to change their geometry 

and states. This is performed through the geometry, state and neighbourhood components. 

 Variables 

Each VA is specified based on the variables in Table Appendix A.5.  

Table Appendix A- 5. Variables of each VA. 

Variable name Variable type Value Comment 

spectralInfo double [][] … Stores the DNs of each pixel that lies 

within each VA.  

classNameInitial int  … Determines the class of each VA based 

only on the spectral information. 

classNameFinal int … Determines the class of each VA based 

on the spectral and geometric 

information of each VA. In our 

example, it is used by the VAs to 

classify the waterbody classes. 

ID int … It is a unique value for each VA. 

isActive boolean true In the birth event, it is true for each VA.  

py Polygon … Stores the geometry of each VA at each 

time step.  

coordList Vector  Used by the VAs to store coordinates 

evaluated. In each stage, it is redefined.   

 Method 

i. public void step ()  

This method is called by each VA in each time step. 

ii. public int getColor () 

This method returns the colour of a VA. 

iii. public void setColor (final int classNameFinal) 

This method changes the colour of a VA. 

iv. public void update () 

This method manipulates and updates the geometry and state of each VA at each 

iteration. 

 ContextCreator 

ContextCreator is the class for running the proposed method. In our method, there is only 

one context for all agents.  

 Variables 

This class only includes local variables. 
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 Method 

i. public Context<Object> build (final Context<Object> context) 

This method provides a vector space in which VAs can change their geometry and 

state and upon which they can interact with each other and their environment. The 

method also has some functions that allow it to read and normalize a raster dataset, 

and solve an SVM problem. 

 Geometry 

This component provides the classes that allow a VA to build and change its geometry or 

affect the geometry of another VA. 

 VAGeometryFactory 

A VA uses this class to create a new point in every time step. 

 Variables 

This class only includes local variables. 

 Method 

i. double [] [] pointDisplacement (final VecAgent VA) 

This method is used to create a new point based on a base vertex on a VA randomly 

selected. It returns the coordinate of the new point along with the index of the base 

vertex. It also determines the geometric operator for the VA through the 

VAEvaluateState class.   

ii. public Point [] createCardinalPoints (final Coordinate coord) 

The VAGeometry uses this method to create a set of points. 

iii. public static Polygon createPolygon (final Coordinate coord) 

This method creates a bounding box. The center point of the bounding box is 

specified by a coordinate. 

 VAGeometry 

The VAGeometry class provides a set of constructive methods that allow a VA to 

geometrically interact with other VAs in the context. The VAGeometry class also includes 

some functional methods applied by the method that can test the structure of a VA based 

on the geometry rules (Chapter 3), edit the geometry of a VA, change order of vertices and 

to reduce the processing time. 
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 Variables 

This class only includes local variables. 

 Constructive methods 

i.  public static Polygon unionTwoPolygonsMain (final Polygon geom1, final 

Polygon geom2, final double [][] coordNewPt) 

This method returns a newly generated polygon by merging two polygons into each 

other. 

ii. public static Polygon unionTwoPolygonsSubProcess (Polygon poly1, Polygon 

poly2, Coordinate coord) 

This method is applied by a VA to merge two polygons into each other. 

iii. public static Polygon [] shrinkSplitMain (final Polygon py, final Coordinate 

coordNewPt) 

An active VA uses this method to affect the geometry of a passive VA. In this case, 

the active VA removes a new vertex that lies on the polygon of the passive VA. If 

the new vertex is a duplicated vertex on the polygon of the passive VA, the active 

VA splits the polygon of the passive VA into two. 

iv. public static Polygon [] shrinkSplitSubProcess1(final Polygon poly,  final 

Coordinate coordPoint, boolean onInteriorRing) 

It removes a vertex on a polygon or splits a polygon into two polygons. 

v. public static Coordinate [] shrinkSplitSubProcess2(final Coordinate [] coord, 

final Coordinate coordPoint, boolean onInteriorRing) 

It returns a list of coordinates that can construct a ring. 

 Functional methods 

i. public static boolean intersectionPolygonPoint (final Polygon poly, final 

Coordinate coord) 

It returns true if there is intersection between a point and a specific polygon.  

ii. public static boolean testIntersection (final Polygon py, final Coordinate coord, 

int ID, int ID1) 

The class uses this method to determine intersections between a collection of 

polygons. It returns true if there is an intersection between two polygons. 

iii. public static boolean intersectionPolygons (final Polygon py1, final Polygon 

py2) 
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If two polygons intersect each other, it returns true. To do this, it also uses the 

intersectionPolygons1 method. 

iv. public static boolean controlGeometry (final Polygon poly) 

In the case that the distance between two successive vertices on a polygon is more 

than r√2, it returns false. r is defined based on the raster cell size. 

v. public static boolean qulifiedPoint (Point pt, int ID, double classNameInitial) 

The MakerAgent uses this method to check the location of a seed point. It returns 

false if a candidate point lies within an interior ring of a VA, and the VA has the 

same class. 

vi. public static Polygon controlInteriorRing (Polygon py) 

This method is applied by a VA to remove a vertex on an interior ring. A candidate 

vertex is removed if the distance between its successor and predecessor is less than 

or equal to r√2. 

vii. public static Coordinate [] removeDuplicatedPoint (Coordinate [] coord) 

It deletes a duplicate point if it is equal to its successor.  

viii. public static Polygon changePositionStartPoint (Polygon poly) 

VAs use this method to change the start point of a polygon. 

ix. public static Polygon elongationRatio (Polygon py) 

This method is used by the VAs to compute the elongation ratio. 

 VAPolygon 

VAs use this class to update the py variable. 

 Variables 

The VAPolygon uses the following variables to change the geometry of the VA at 

each time step. 

Table Appendix A- 6. Variables of the VAPolygon. 

Variable name Variable type Value Comment 

newPlusRandPoint VAPoint[] …. It is initialized through the 

VAGeometryFactory class 

py Polygon   … It is initialized through the 

VecAgent class 

 Method 

i. public void manipulate () 

This method allows a VA to change its geometry without interaction with other VAs. 
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ii. Polygon generateInteriorRing (Polygon py1, Polygon py2, Coordinate [] coord, 

Coordinate coordinate) 

This method compares two polygons that have intersected at a specific coordinate to 

generate a new interior ring. 

iii. public double [] [] sort4PointsClockwise (final Coordinate [] coord) 

This method is used to sort a set of points including a new point, a random point and 

its successor and predecessor.  To do this, the method uses the coordinates of these 

points. 

 VALineString 

The aim of this class to create a new line constructed formed by two half-edges. 

 Variables 

This class only includes local variables. 

 Method 

i. public static Polygon halfEdgeJoiningMain (Polygon pyInput, 

Coordinate coorNewPt) 

This method change the geometry of the VA based on the half-edge rule in a specific 

coordinate. 

ii. public static Polygon halfEdgeJoiningVertices (Polygon pyInput) 

This method controls and changes the geometry of the VA based on the half-edge 

rule for all vertices of a polygon.  

 VAPoint 

The aim of this class is to create a new point based on a base point randomly selected via 

the VAGeometryFactory. 

 Variables 

Table Appendix A.7 shows the variable of the VAPoint. 

     Table Appendix A- 7. Variable of the VAPoint. 

Variable name Variable type Value Comment 

pt Point   …. It is constructed by the 

VAPoint. 
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 Method 

i. public VAPoint createRandomPointCardinalDirection (final Point point, final 

int direction) 

The VAGeometryFactory uses this method to create a new point if a base point lies 

in an exterior ring. 

ii. public VAPoint createRandomPointDiagonalDirection (final Point point, final 

int direction) 

In the case that a base point lies in an exterior ring, the VAGeometryFactory applies 

this method to create a new point. 

 State 

VAs utilise the State component to find and update transition rules. 

 VAFindState 

VAs use this class to find their state. 

 Variables 

This class only includes local variables. 

 Method 

i. public static int findState (final Coordinate coord) 

The MakerAgent uses this method to identify the class of a seed point. 

 VAEvaluateState 

The aim of this class is to assess the class of a dependent (belonging to a VA) or an 

independent pixel. 

 Variables 

This class only includes local variables. 

 Method 

i. public static String [] evaluatePixel (final VecAgent VA, final Coordinate coord) 

The method uses the SVM model to assess the class of a dependent (belonging to a 

VA) or independent pixel. 

ii. public static void addPixel (final VecAgent VA, final Coordinate coord) 
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A VA uses this method to update its spectralInfo variable based on a specific 

coordinate. 

iii. public static void removePixel (final VecAgent VA, final Coordinate coord) 

This method is used by a VA to delete the DNs of a pixel from its spectralInfo 

variable based on a specific coordinate. 

iv. public static void updateSpectralinfoVA (final VecAgent VA) 

A VA employs this method to update its spectralInfo variable based on the py 

variable. 

v. public static void updateSpectralinfoCombinedPolygon (final VecAgent vec1, 

final VecAgent vec2) 

A VA uses this method to update its spectralInfo variable after merging process. 

 VAUpdateTransitionRules 

The aim of this class to update the SVM model based on the VA-generated samples. This 

class is also applied by the method to classify the waterbody objects. 

 Variables 

This class only includes local variables. 

 Method 

i. public static void updateSVM () 

It is used to update the SVM model based on the VA-generated samples. The method 

first applies the featureExtractor, selectVA, findBestVA functions, featureExtractor, 

featureExtractor1 and randomizeTable to select the most informative VA samples. 

Next it randomly selects a number of pixels, specified based on the 

Number_Elgible_Pixels parameter, to train the SVM classifier. 

ii. public static void classifyWaterBody (VecAgent vecAgent) 

The aim of this method is classify the waterbody VAs based on their geometric 

information. 

 Neighbourhood 

The elements of this component enable the VAs to perceive and interact with each other. 

 VAFindAdjacent 
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This class is applied by a VA uses to find its neighbours. 

 Variables 

This class only includes local variables. 

 Method 

i. public static int findAdjacentObjects (final Coordinate coord, final int id) 

A VA uses this method to find its neighbours based on a specific coordinate.  

 VANeigbourhoodRules 

The aim of this class is to implement neighbourhood rules defined by a user. For example, 

a pond object is a shadow object if it is next to a tree object.  

 Variables 

This class only includes local variables. 

 Method 

i. public static void implementNeighbouringRules (VecAgent vecAgent) 

A shadow VA is converted into a pond VA if it cannot find an elevated feature, 

such as tree. Here, the pasture VAs are considered as an elevated object. 

 Utility 

This component is composed of a set of utility classes applied by the proposed method in 

order to read a file and solve the SVM model. 

 NewExcel 

This class is used by the proposed method to read the image converted into an Excel file. 

 Variables 

The following variables are applied by the NewExcel Class to read a file. 

      Table Appendix A- 8. Variables of the NewExcel class. 

Variable name Variable type Value Comment 

inputFile String  … Initialized via the 

ContextCreator class. 

num int   … Initialized via the 

ContextCreator class. 

data double[][]  … Initialized via the NewExcel 

class. 
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 Method 

i. public void setInputFile (final String inputFile, final int num) 

This method sets the address of the input datasets. 

ii. public double [] [] read ()  

This method reads the input datasets. 

 SVM 

This class is used by the VA model to formulate the transition rules. 

 Variables 

This class only includes local variables. 

 Method 

i. public static svm_model svmTrain (final double [] [] train, final double gamma, 

final double c) 

This method is applied to train the SVM model. 

ii. public static double [] evaluate (final double [] features) 

The VA model uses this method to assess the class of a candidate pixel. 

iii. public static double [] comapreProbability (final double [] features, 

final double classname1, final double classname2) 

In the case that two VAs have different classes, an active VA model uses this method 

to assess a pixel belonging to a passive VA. 

 GridSearch 

The aim of this class is to find the optimum values for the gamma and C parameters in the 

RBF kernel applied by the SVM classifier. 

 Variables 

The following variables are applied by the GridSearch. 
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      Table Appendix A- 9. Variables of the GridSearch class. 

Variable name Variable type Value Comment 

classifier LibSVM …  

dataset Dataset …  

folds int …  

cv CrossValidation …  

bestAccuracy double  …  

bestC double …  

bestGamma double  …  

C double [] …  

    

gamma double [] …  

svmParameters svm_parameter …  

 Method 

i. public GridSearch (final LibSVM classifier, final Dataset dataset1, final int 

folds) 

This method provides a grid of parameter values specified based on the C [] and 

gamma []. 

ii. private void crossValidation (final Integer CIndex, final Integer gammaIndex) 

This method uses the crossValidation algorithm to find the best value for the C and 

gamma parameters. 
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B- VA model for GEOBIA image classification 

Supporting data for the application of the VA model for the GEOBIA is available in the 

attached file. In this example, we used a subset of multispectral IKONOS image and LiDAR 

DSM dataset to extract five different classes, building, meadow, road, shadow and tree, from 

(Figure 6.1). The framework of this method is developed in Repast using an Intel CPU 

running at 3.40 GHz with 16 GB of memory. The VA model took 432 seconds to classify 

the image. 
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C- VA model for extraction 3D roofs 

Supporting data for the application of the VA model for extraction and classification of 3D 

roofs is available in the attached file. In this example, we used the LiDAR DSM dataset of 

251× 251 pixels with 20cm resolution LiDAR DSM (Figure 7.3(b)) which covers an urban 

area in Zeebrugge, Belgium (GRSS, 2015). The method is implemented using Repast and 

powered by an Intel CPU running at 3.40 GHz with 16 GB of memory in 330 Seconds.  

 

 

 

 

 

 

 

 

 

 

 

 


